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Péter Érdi
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Preface

Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path
Integrals is a graduate–level monographic textbook. This is a book about pre-
diction & control of general nonlinear dynamics of high–dimensional complex
systems of various physical and non-physical nature and their underpinning
geometro–topological change.

The book starts with a textbook–like expose on nonlinear and chaotic dy-
namics (Chapter 1). After an introduction into attractors and chaos, a brief
history of chaos theory is given. Then, temporal chaotic dynamics is devel-
oped, both in its continuous form (nonlinear differential equations) and in
its discrete form (nonlinear iteration maps). Spatio–temporal chaotic dynam-
ics of nonlinear partial differential equations follows with some physiological
examples. The Chapter ends with modern techniques of chaos–control, both
temporal and spatio–temporal.

The dynamical edge of chaos physically corresponds to the phase transi-
tions. Therefore, Chapter 2 continues exposé on complex nonlinearity, from
the point of view of phase transitions and the related field of synergetics. After
the introduction and classification of equilibrium phase transitions, a brief on
Landau’s theory is given (providing a background for order–parameters and
synergetics). The concept is subsequently generalized into non–equilibrium
phase transitions, together with important examples of oscillatory, fractal and
noise–induced transitions. This core Chapter of the book also introduces the
concept of partition function, together with its general, path–integral descrip-
tion. After that the basic elements of Haken’s synergetics are presented, and
subsequently developed into synergetics of attractor neural networks.

While the natural stage for linear dynamics comprises of flat, Euclidean
geometry (with the corresponding calculation tools from linear algebra and
analysis), the natural stage for nonlinear dynamics is curved, Riemannian ge-
ometry (with the corresponding tools from tensor algebra and analysis). In
both cases, the system’s (kinetic) energy is defined by the metric form, either
Euclidean or Riemannian. The extreme nonlinearity – chaos – corresponds to
the topology change of this curved geometrical stage, usually called configu-
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ration manifold. Chapter 3 elaborates on geometry and topology change in
relation with complex nonlinearity and chaos.

Chapter 4 develops general nonlinear dynamics, both continuous and dis-
crete, deterministic and stochastic, in the unique form of path integrals and
their action–amplitude formalism. This most natural framework for represent-
ing both phase transitions and topology change starts with Feynman’s sum
over histories, to be quickly generalized into the sum over geometries and
topologies. This Chapter also gives a brief on general dynamics of fields and
strings, as well as a path–integral based introduction on the chaos field theory.
The Chapter concludes with a number of non–physical examples of complex
nonlinear systems defined by path integrals.

The last Chapter puts all the previously developed techniques together
and presents the unified form of complex nonlinearity. Here we have chaos,
phase transitions, geometrical dynamics and topology change, all working to-
gether in the form of path integrals. The concluding section is devoted to
discussion of hard vs. soft complexity, using the synergetic example of human
bio-mechanics.

The objective of the present monograph is to provide a serious reader with
a serious scientific tool that will enable them to actually perform a competitive
research in modern complex nonlinearity. The monograph includes a compre-
hensive bibliography on the subject and a detailed index. For all mathematical
questions, the reader is referred to our book Applied Differential Geometry:
A Modern Introduction. World Scientific, Singapore, 2007.

Target readership for this monograph includes all researchers and students
of complex nonlinear systems (in physics, mathematics, engineering, chem-
istry, biology, psychology, sociology, economics, medicine, etc.), working both
in industry (i.e., clinics) and academia.

Adelaide, V. Ivancevic, Defence Science & Technology Organisation,
Feb. 2008 Australia, e-mail: Vladimir.Ivancevic@dsto.defence.gov.au

T. Ivancevic, School of Mathematics, The University of Adelaide,
e-mail: Tijana.Ivancevic@adelaide.edu.au
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1

Basics of Nonlinear and Chaotic Dynamics

In this introductory Chapter we develop the basis of nonlinear dynamics and
chaos theory to be used in the subsequent Chapters. After a basic introduc-
tion into attractors and deterministic chaos, a brief history of chaos theory is
given. Then, temporal chaotic dynamics is developed, both in its continuous
form of nonlinear ordinary differential equations (ODEs) and in its discrete
form (nonlinear iteration maps). Spatio–temporal chaotic dynamics of non-
linear partial differential equations (PDEs) follows with some physiological
examples. The Chapter ends with modern techniques of chaos–control, both
temporal and spatio–temporal.

1.1 Introduction to Chaos Theory

Recall that a popular scientific term deterministic chaos depicts an irregu-
lar and unpredictable time evolution of many (simple) deterministic dynam-
ical systems, characterized by nonlinear coupling of its variables (see, e.g.,
[GOY87, YAS96, BG96, Str94]). Given an initial condition, the dynamic equa-
tion determines the dynamic process, i.e., every step in the evolution. However,
the initial condition, when magnified, reveals a cluster of values within a cer-
tain error bound. For a regular dynamic system, processes issuing from the
cluster are bundled together, and the bundle constitutes a predictable pro-
cess with an error bound similar to that of the initial condition. In a chaotic
dynamic system, processes issuing from the cluster diverge from each other
exponentially, and after a while the error becomes so large that the dynamic
equation losses its predictive power (see Figure 1.1).

For example, in a pinball game, any two trajectories that start out very
close to each other separate exponentially with time, and in a finite (and in
practice, a very small) number of bounces their separation δx(t) attains the
magnitude of L, the characteristic linear extent of the whole system. This
property of sensitivity to initial conditions can be quantified as
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Fig. 1.1. Regular v.s. chaotic process.

|δx(t)| ≈ eλt|δx(0)|,

where λ, the mean rate of separation of trajectories of the system, is called the
Lyapunov exponent . For any finite accuracy |δx(0)| = δx of the initial data,
the dynamics is predictable only up to a finite Lyapunov time

TLyap ≈ −
1
λ

ln |δx/L|,

despite the deterministic and infallible simple laws that rule the pinball mo-
tion.

However, a positive Lyapunov exponent does not in itself lead to chaos
(see [CAM05]). One could try to play 1– or 2–disk pinball game, but it would
not be much of a game; trajectories would only separate, never to meet again.
What is also needed is mixing, the coming together again and again of trajec-
tories. While locally the nearby trajectories separate, the interesting dynamics
is confined to a globally finite region of the phase–space and thus the sepa-
rated trajectories are necessarily folded back and can re–approach each other
arbitrarily closely, infinitely many times. For the case at hand there are 2n

topologically distinct n bounce trajectories that originate from a given disk.
More generally, the number of distinct trajectories with n bounces can be
quantified as

N(n) ≈ ehn,

where the topological entropy h (h = ln 2 in the case at hand) is the growth
rate of the number of topologically distinct trajectories.

When a physicist says that a certain system “exhibits chaos”, he means
that the system obeys deterministic laws of evolution, but that the outcome is
highly sensitive to small uncertainties in the specification of the initial state.
The word “chaos” has in this context taken on a narrow technical meaning. If



1.1 Introduction to Chaos Theory 3

a deterministic system is locally unstable (positive Lyapunov exponent) and
globally mixing (positive entropy), it is said to be chaotic.

While mathematically correct, the definition of chaos as “positive Lya-
punov exponent + positive entropy” is useless in practice, as a measurement
of these quantities is intrinsically asymptotic and beyond reach for systems
observed in nature. More powerful is Poincaré’s vision of chaos as the interplay
of local instability (unstable periodic orbits) and global mixing (intertwining
of their stable and unstable manifolds). In a chaotic system any open ball
of initial conditions, no matter how small, will in finite time overlap with
any other finite region and in this sense spread over the extent of the en-
tire asymptotically accessible phase–space. Once this is grasped, the focus of
theory shifts from attempting to predict individual trajectories (which is im-
possible) to a description of the geometry of the space of possible outcomes,
and evaluation of averages over this space.

A definition of “turbulence” is even harder to come by. Intuitively, the
word refers to irregular behavior of an infinite–dimensional dynamical system
described by deterministic equations of motion – say, a bucket of boiling water
– described by the Navier–Stokes equations. But in practice the word “turbu-
lence” tends to refer to messy dynamics which we understand poorly. As soon
as a phenomenon is understood better, it is reclaimed and renamed as: “a
route to chaos”, or “spatio–temporal chaos”, etc. (see [CAM05]).

First Motivating Example: A Playground Swing

To gain the initial idea of the principles behind chaos and (strange) attractors,
let us consider a common playground swing , which physically represents a
driven nonlinear pendulum. Its dimensionless differential equation of motion
(to be explained later in more detail) reads

θ̈ + γθ̇ + sin θ = F cos(wDt), (1.1)

where θ is the pendulum angle in radians, overdot represents the time deriva-
tive (as always), γ is the damping parameter , F is the amplitude of the driving
force, while wD is the frequency of that force.

Now, it is common to use the small angle approximation for this equation
with sin θ ∼ θ << 1. This linearization allows the equation to be analyti-
cally integrated, but at the same time physically means that the pendulum
will either undergo regular motion or, without a driving term, eventually
stop swinging altogether. For the type of motion that we desire to study,
this approximation is invalid and hence the equation can no longer be solved
analytically.

Instead, in nonlinear dynamics, we would rewrite the original second–order
ODE of the pendulum motion (1.1), either as a 2D autonomous system (suit-
able for numerical integration),

ẇ = −γw − sin θ + F cos(wDt), θ̇ = w, (1.2)



4 1 Basics of Nonlinear and Chaotic Dynamics

or, as a 3D autonomous system,

ẇ = −γw − sin θ + F cosφ, θ̇ = w, φ̇ = wD, (1.3)

where the new variable, φ, is called the phase of the driver.
The dynamical variables of the system, in this case the pendulum’s angle θ

and angular velocity w, are the coordinates defining the system’s phase–space.
In the 2D case (1.2), the variables can be plotted to display a phase portrait of
the system’s dynamical behavior. By varying the parameters of the equation
for the nonlinear pendulum and then plotting the resulting phase portrait a
wide range of behavior can be observed.

The point (0,0) of the pendulum’s phase plane is called an attractor .
Roughly, an attractor is a ‘magnetic set’ in the system’s phase–space to which
all neighboring trajectories converge.1 That is, an attractor is the subset of
the phase–space with the following properties (see, e.g., [Str94]):

1. it is an invariant set (i.e., any trajectory that starts in it – stays in it for
all time);

2. it attracts all trajectories that start sufficiently close to it;
3. it is minimal (it cannot contain one or more smaller attractors).

Ordinary (or, regular) attractors are stable fixed–points (which can exist both
in linear and nonlinear dynamics) and stable limit cycles (which can exist
only in nonlinear dynamics). Finally, in chaotic dynamics the most important
geometrical objects are strange attractors, also called chaotic attractors or
fractal attractors (that is, attractors with non–integer dimension), which are
special attractors that exhibit sensitive dependence on initial conditions. A
strange attractor typically arises when the phase–flow undergoes stretching ,
squeezing and folding . Trajectories on a strange attractor remain confined
to a bounded region of phase–space, yet they separate from their neighbors
exponentially fast.

Now, by approximating the nonlinear equations with linear forms and
assuming that their behavior will not differ substantially around critical points
it can be shown that the damped pendulum with initial conditions θ0 and w0

will spiral in towards the point (2nπ) closest to it, where n is an integer. A
useful analogy could be to think of a series of bowls (imagine, somehow, that
there are no gaps between them) with the points of θ = 2nπ at the centers.
These are equilibrium points, where the potential energy is the lowest. The
peaks of the walls separating these ‘bowls’ or, basins of attraction are at the
points ((2n+1)π, 0), representing unstable critical points called saddle points.
At these saddle points the pendulum would be pointing vertically upwards and
the merest push will send it back down again.

Suppose we now use a non–zero driving force F . We start off with a value
for g that’s not too strong, the intention is just to overcome the energy loss
due to damping. If we plot the phase diagram we see that the attractor is no
1 Opposite of an attractor is a repeller .
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longer a single point at (0,0) but now a closed, almost elliptical curve, called
the limit–cycle attractor . A limit cycle is an isolated closed trajectory . If all
neighboring trajectories approach the limit cycle, we say that it is attracting
or stable. Otherwise, it is repelling or unstable. In our case, the pendulum
is swinging back and forth tracing out the same path, undergoing regular
motion.

If we increase the driving force a bit more, we now find that instead of
just tracing out one loop, the pendulum must now swing through two loops
until it reaches the same point again on the phase diagram. The pendulum’s
period has doubled. Increase a bit the driving force F and the period doubles
once more: 4 loops appear. This doubling continues as F is increased until a
point is reached where, in order to return to the same point, the pendulum
must pass through an infinite number of swings. In other words, the motion
of the pendulum ceases to be regular and becomes chaotic.

Using the so–called Poincaré section (taking ‘snapshots’ of the phase–
space at time intervals equal to tn = 2nπ

w+φ , where n is an integer and φ is the
above phase term), we find that regular motion with a single period means
that only one point is plotted. A period doubling adds another point, and
each extra period doubling adds two more points. When a chaotic state is
reached then instead of points Poincaré section consists of long ‘wavy’ lines,
composed themselves of bunches of lines. If we magnified one of these lines
we would see that this was also composed of another bunch of lines. In fact
we could continue the magnification indefinitely and we would still see much
the same thing. Hence, the pendulum’s attractor is now a fractal, just like the
celebrated Lorenz attractor (see below).

The unique character of chaotic dynamics may be seen most clearly by
imagining the system to be started twice, but from slightly different initial
conditions (in case of human motion, these are initial joint angles and angu-
lar velocities). We can think of this small initial difference as resulting from
measurement error. For non–chaotic systems, this uncertainty leads only to
an error in prediction that grows linearly with time. For chaotic systems, on
the other hand, the error grows exponentially in time, so that the state of the
system is essentially unknown after very short time. This phenomenon, firstly
recognized by H. Poincaré, the father of topology, in 1913, which occurs only
when the governing equations are nonlinear, with nonlinearly coupled vari-
ables, is known as sensitivity to initial conditions. Another type of sensitivity
of chaotic systems is sensitivity to parameters: a small variation of system pa-
rameters (e.g., mass, length and moment of inertia of human body segments)
results in great change of system output (dynamics of human movement).

If prediction becomes impossible, it is evident that a chaotic system can
resemble a stochastic system, say a Brownian motion. However, the source of
the irregularity is quite different. For chaos, the irregularity is part of the in-
trinsic dynamics of the system, not random external influences (for example,
random muscular contractions in human motion). Usually, though, chaotic
systems are predictable in the short–term. This short–term predictability is
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useful in various domains ranging from weather forecasting to economic fore-
casting.

Recall that some aspects of chaos have been known for over a hundred
years. Isaac Newton was said to get headaches thinking about the 3−body
problem (Sun, Moon, and Earth). In 1887, King Oscar II of Sweden an-
nounced a prize for anyone who could solve the n−body problem and hence
demonstrate stability of the solar system. The prize was awarded to Henri
Poincaré, who showed that even the 3−body problem has no analytical solu-
tion [Pet93, BG79]. He went on to deduce many of the properties of chaotic
systems including the sensitive dependence on initial conditions. With the
successes of linear models in the sciences and the lack of powerful comput-
ers, the work of these early nonlinear dynamists went largely unnoticed and
undeveloped for many decades. In 1963, Ed Lorenz from MIT published a
seminal paper [Lor63, Spa82] in which he showed that chaos can occur in
systems of autonomous (no explicit time dependence) ordinary differential
equations (ODEs) with as few as three variables and two quadratic nonlinear-
ities. For continuous flows, the Poincaré–Bendixson theorem [HS74] implies
the necessity of three variables, and chaos requires at least one nonlinearity.
More explicitly, the theorem states that the long–time limit of any ‘smooth’
two–dimensional flow is either a fixed–point or a periodic solution. With the
growing availability of powerful computers, many other examples of chaos
were subsequently discovered in algebraically simple ODEs. Yet the sufficient
conditions for chaos in a system of ODEs remain unknown [SL00].

So, necessary condition for existence of chaos satisfies any autonomous
continuous–time dynamical system (a vector–field) of dimension three or
higher, with at least two nonlinearly coupled variables (e.g., a single hu-
man swivel joint like a shoulder or hip, determined by three joint angles
and three angular momenta). In case of non–autonomous continuous–time
systems, chaos can happen in dimension two, while in case of discrete–time
systems – even in dimension one. Now, whether the behavior (a flow), of
any such system will actually be chaotic or not depends upon the values of
its parameters and/or initial conditions. Usually, for some values of involved
parameters, the system behavior is oscillating in a stable regime, while for
another values of the parameters the behavior becomes chaotic, showing a
bifurcation, or a phase transition – from one regime/phase to a totally dif-
ferent one. If a change in the system’s behavior at the bifurcation point is
really sharp, we could probably be able to recognize one of the celebrated
polynomial catastrophes of R. Thom (see [Tho75, Arn92]). A series of such
bifurcations usually depicts a route to chaos.

Chaos theory has developed special mathematical procedures to under-
stand irregularity and unpredictability of low–dimensional nonlinear systems,
including Poincaré sections, bifurcation diagrams, power spectra, Lyapunov
exponents, period doubling, fractal dimension, stretching and folding, special
identification and estimation techniques, etc. (see e.g., [Arn78, Arn78, Arn88,
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Arn93, YAS96, BG96]). Understanding these phenomena has enabled science
to control the chaos (see, e.g., [OGY90, CD98]).

There are many practical reasons for controlling or ordering chaos. For
example, in case of a distributed artificial intelligence system, which is usually
characterized by a massive collection of decision–making agents, the fact that
an agent’s decision also depends on decisions made by other agents – leads to
extreme complexity and nonlinearity of the overall system. More often than
not, the information received by agents about the ‘state’ of the system may be
‘tainted’. When the system contains imperfect information, its agents tend to
make poor decisions concerning choosing an optimal problem–solving strategy
or cooperating with other agents. This can result in certain chaotic behavior
of the agents, thereby downgrading the performance of the entire system.
Naturally, chaos should be reduced as much as possible, or totally suppressed,
in these situations [CD98].

In contrast, recent research has shown that chaos may actually be useful
under certain circumstances, and there is growing interest in utilizing the
richness of chaos [Gle87, Mos96, DGY97]. Since a chaotic, or strange attractor2

usually has embedded within it a dense set of unstable limit cycles, if any of
these limit cycles can be stabilized, it may be desirable to stabilize one that
characterizes certain maximal system performance [OGY90]. The key is, in
a situation where a system is meant for multiple purposes, switching among
different limit cycles may be sufficient for achieving these goals. If, on the
other hand the attractor is not chaotic, then changing the original system
configuration may be necessary to accommodate different purposes. Thus,
when designing a system intended for multiple uses, purposely building chaotic
dynamics into the system may allow for the desired flexibilities [OGY90].

Within the context of brain dynamics, there are suggestions that ‘the con-
trolled chaos of the brain is more than an accidental by–product of the brain
complexity, including its myriad connections’ and that ‘it may be the chief
property that makes the brain different from an artificial–intelligence machine
[FS92]. The so–called anti–control of chaos has been proposed for solving the
problem of driving the system trajectories of a human brain model away from
the stable direction and, hence, away from the stable equilibrium (in the case
of a saddle type equilibrium), thereby preventing the periodic behavior of
neuronal population bursting. Namely, in a spontaneously bursting neuronal
network in vitro, chaos can be demonstrated by the presence of unstable
fixed–point behavior. Chaos control techniques can increase the periodicity of
such neuronal population bursting behavior. Periodic pacing is also effective
in entraining such systems, although in a qualitatively different fashion. Us-
ing a strategy of anti–control such systems can be made less periodic. These
techniques may be applicable to in vivo epileptic foci [SJD94].

2 Strange attractor is an attracting set that has zero measure in the embedding
phase–space and has fractal dimension. Trajectories within a strange attractor
appear to skip around randomly.
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Within the context of heart dynamics, traditionally in physiology, healthy
dynamics has been regarded as regular and predictable, whereas disease, such
as fatal arrythmias, aging, and drug toxicity, are commonly assumed to pro-
duce disorder and even chaos [Gol99, AGI98, IAG99, KFP91]. However, in
the last two decades, laboratory studies produced evidence to show that:

1. The complex variability of healthy dynamics in a variety of physiological
systems has features reminiscent of deterministic chaos; and

2. A wide class of disease processes (including drug toxicities and aging) may
actually decrease, yet not completely eliminate, the amount of chaos or
complexity in physiological systems (decomplexification).

These postulates have implications both for basic mechanisms in physiology as
well as for clinical monitoring, including the problem of anticipating sudden
cardiac death. In contrast to the prevalent belief of clinicians that healthy
heart beats are regular, recent research on the inter–beat interval variations
in healthy individuals shows that a normal heart rate apparently fluctuates
in a highly erratic fashion. This turns out to be consistent with deterministic
chaos [Gol99, AGI98, IAG99, KFP91].

Similar to the brain (and heart) dynamics, human biodynamics represents
a highly nonlinear dynamics with several hundreds of degrees of freedom, many
of which are naturally and nonlinearly coupled (see [II05, II06a, II06b]). Its
hierarchical control system, neural motor controller, necessarily has to cope
with the high–dimensional chaos.

Nevertheless, whether the purpose is to reduce ‘bad’ chaos or to induce
‘good’ ones, researchers felt strongly the necessity for chaos control [CD98].

Basic Terms of Nonlinear Dynamics

Recall that nonlinear dynamics is a language to talk about dynamical systems.
Here, brief definitions are given for the basic terms of this language. All these
terms will be illustrated at the pendulum example (see Introduction).

• Dynamical system: A part of the world which can be seen as a self–
contained entity with some temporal behavior. In nonlinear dynamics,
speaking about a dynamical system usually means to speak about an ab-
stract mathematical system which is a model for such an entity. Mathe-
matically, a dynamical system is defined by its state and by its dynamics.
A pendulum is an example for a dynamical system.

• State of a system: A number or a vector (i.e., a list of numbers) defin-
ing the state of the dynamical system uniquely. For the free (un–driven)
pendulum, the state is uniquely defined by the angle θ and the angular ve-
locity θ̇ = dθ/dt. In the case of driving, the driving phase φ is also needed
because the pendulum becomes a non–autonomous system. In spatially ex-
tended systems, the state is often a field (a scalar–field or a vector–field).
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Mathematically spoken, fields are functions with space coordinates as in-
dependent variables. The velocity vector–field of a fluid is a well–known
example.

• Phase space: All possible states of the system. Each point in the phase–
space corresponds to a unique state (see Figure 1.2). In the case of the
free pendulum, the phase–space has 2D whereas for driven pendulum it
has 3D. The dimension of the phase–space is infinite in cases where the
system state is defined by a field.

• Dynamics, or equation of motion: The causal relation between the present
state and the next state in the future. It is a deterministic rule which tells
us what happens in the next time step. In the case of a continuous time,
the time step is infinitesimally small. Thus, the equation of motion is an
ordinary differential equation (ODE) (or a system of ODEs):

ẋ = f(x),

where x is the state and t is the time variable (overdot is the time derivative
– as always). An example is the equation of motion of an un–driven and
un–damped pendulum. In the case of a discrete time, the time steps are
nonzero and the dynamics is a map:

xn+1 = f(xn),

with the discrete time n. Note, that the corresponding physical time points
tn do not necessarily occur equidistantly. Only the order has to be the
same. That is,

n < m =⇒ tn < tm.

The dynamics is linear if the causal relation between the present state and
the next state is linear. Otherwise it is nonlinear. If we have the case in
which the next state is not uniquely defined by the present one, this is
generally an indication that the phase–space is not complete. Thus, there
are important variables determining the state which had been forgotten.
This is a crucial point while modelling a real–life systems. Beside this, there
are two important classes of systems where the phase–space is incomplete:
the non–autonomuous and stochastic systems. A non–autonomous system
has an equation of motion which depends explicitly on time. Thus, the
dynamical rule governing the next state not only depends on the present
state but also at the time it applies. A driven pendulum is a classical
example of a non–autonomuous system. Fortunately, there is an easy way
to make the phase–space complete: we simply include the time into the
definition of the state. Mathematically, this is done by introducing a new
state variable: t. Its dynamics reads

ṫ = 1, or tn+1 = tn,

depending on whether time is continuous or discrete. For the periodically
driven pendula, it is also natural to take the driving phase as the new state
variable. Its equation of motion reads
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θ̇ = 2πw,

where w is the driving frequency (so that the angular driving frequency
is 2πw). On the other hand, in a stochastic system, the number and the
nature of the variables necessary to complete the phase–space is usually
unknown. Therefore, the next state can not be deduced from the present
one. The deterministic rule is replaced by a stochastic one. Instead of the
next state, it gives only the probabilities of all points in the phase–space
to be the next state.

• Orbit or trajectory: A solution of the equation of motion. In the case of
continuous time, it is a curve in phase–space parametrized by the time
variable. For a discrete system it is an ordered set of points in the phase–
space.

• Phase Flow: The mapping (or, map) of the whole phase–space of a con-
tinuous dynamical system onto itself for a given time step t. If t is an
infinitesimal time step dt, the flow is just given by the right–hand side of
the equation of motion (i.e., f). In general, the flow for a finite time step is
not known analytically because this would be equivalent to have a solution
of the equation of motion. For example, Figure 1.2 shows the phase–flow
of a damped pendulum in the (θ, θ̇)−phase–plane.

Fig. 1.2. Phase–portrait of a damped pendulum: Arrows denote the phase–flow,
dashed line is a null–cline, filled dot is a stable fixed–point, open dot is an unstable
fixed–point, dark gray curves are trajectories starting from sample initial points,
dark lines with arrows are stable directions (manifolds), light lines with arrows are
unstable directions (manifolds), the area between the stable manifolds is basin of
attraction.

Phase Plane: Nonlinear Dynamics without Chaos

The general form of a 2D vector–field on the phase plane (similar to one in
Figure 1.2) is given by
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ẋ1 = f1(x1, x2), ẋ2 = f2(x1, x2),

where fi (i = 1, 2) are given function. By ‘flowing along’ the above vector–
field, a phase point ‘traces out’ a solution xi(t), corresponding to a trajectory
which is tangent to the vector–field. The entire phase plane is filled with
trajectories (since each point can play the role of initial condition, depicting
the so–called phase portrait . Every phase portrait has the following salient
features (see [Str94]):

1. The fixed points, which satisfy: fi(x) = 0, and correspond to the sys-
tem’s steady states or equilibria.

2. The closed orbits, corresponding to the periodic solutions (for which
x(t + T ) = x(t), for all t, for some T > 0.

3. The specific flow pattern, i.e., the arrangement of trajectories near the
fixed points and closed orbits.

4. The stability (attracting property) or instability (repelling property) of
the fixed points and closed orbits.

Nothing more complicated than the fixed points and closed orbits can exist
in the phase plane, according to the celebrated Poincaré–Bendixson theorem,
which says that the dynamical possibilities in the phase plane are very limited.
Specifically, there cannot be chaotic behavior in the phase plane. In other
words, there is no chaos in continuous 2D systems.

However, there can exist chaotic behavior in non–autonomous 2D con-
tinuous systems, namely in the forced nonlinear oscillators, where explicit
time–dependence actually represents the third dimension.

Free vs. Forced Nonlinear Oscillators

Here we give three examples of classical nonlinear oscillators, each in two
modes: free (non–chaotic) and forced (possibly chaotic). For the simulation
we use the technique called time–phase plot , combining an ordinary time plot
with a phase–plane plot. We can see the considerable difference in complexity
between unforced and forced oscillators (with all other parameters being the
same). The reason for this is that all forced 2D oscillators actually have di-
mension 3, although they are commonly written as a second–order ODE. That
is why for development of non–autonomous mechanics we use the formalism
of jet bundles, see [II06b].

Spring

• Free (Rayleigh) spring (see Figure 1.3):

ẋ = y,

ẏ = − 1
m

(ax3 + bx + cy),
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where x is displacement, y is velocity, m > 0 is mass, ax3 + bx + cy is the
restoring force of the spring, with b > 0; we have three possible cases: hard
spring (a > 0), linear (Hooke) spring (a = 0), or soft spring (a < 0).3

Fig. 1.3. Time–phase plot of the free hard spring with the following parameters:
m = 0.5 kg, a = 1.3, b = 0.7, c = 0.5, x0 = 3, y0 = 0, tmax = 20 s. Simulated
using MathematicaTM .

• Forced (Duffing) spring (see Figure 1.4):

ẋ = y,

ẏ = − 1
m

(ax3 + bx + cy) + F cos(wt),

θ̇ = w,

where F is the force amplitude, θ is the driving phase and w is the driving
frequency; the rest is the same as above.

Self–Sustained Oscillator

• Free (Rayleigh) self–sustained oscillator (see Figure 1.5):

ẋ = y,

ẏ = − 1
CL

(x + By3 −Ay),

3 In his book The Theory of Sound, Lord Rayleigh introduced a series of methods
that would prove quite general, such as the notion of a limit cycle – a periodic
motion a system goes to regardless of the initial conditions.
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Fig. 1.4. Time–phase plot of the forced hard spring with the following parameters:
m = 0.5 kg, a = 1.3, b = 0.7, c = 0.5, x0 = 3, y0 = 0, tmax = 20 s, F = 10, w = 5.
Simulated using MathematicaTM .

where x is current, y is voltage, C > 0 is capacitance and L > 0 is induc-
tance; By3 −Ay (with A,B > 0) is the characteristic function of vacuum
tube.

Fig. 1.5. Time–phase plot of the free Rayleigh’s self–sustained oscillator with the
following parameters: A = 1.3, B = 1.5, C = 0.7, L = 1.5, x0 = 3, y0 = 0, tmax =
20 s. Simulated using MathematicaTM .
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• Forced (Rayleigh) self–sustained oscillator (see Figure 1.6):

ẋ = y,

ẏ = − 1
CL

(x + By3 −Ay) + F cos(wt),

θ̇ = w.

Fig. 1.6. Time–phase plot of the forced Rayleigh’s self–sustained oscillator with the
following parameters: A = 1.3, B = 1.5, C = 0.7, L = 1.5, x0 = 3, y0 = 0, tmax =
20 s, F = 10, w = 5. Simulated using MathematicaTM .

Van der Pol Oscillator

• Free Van der Pol oscillator (see Figure 1.7):

ẋ = y, (1.4)

ẏ = − 1
CL

[x + (Bx2 −A)y].

• Forced Van der Pol oscillator (see Figure 1.8):

ẋ = y,

ẏ = − 1
CL

[x + (Bx2 −A)y] + F cos(wt),

θ̇ = w.
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Fig. 1.7. Time–phase plot of the free Van der Pol oscillator with the following
parameters: A = 1.3, B = 1.5, C = 0.7, L = 1.5, x0 = 3, y0 = 0, tmax = 20 s.
Simulated using MathematicaTM .

Fig. 1.8. Time–phase plot of the forced Van der Pol oscillator oscillator with the
following parameters: A = 1.3, B = 1.5, C = 0.7, L = 1.5, x0 = 3, y0 = 0, tmax =
20 s, F = 10, w = 5. Simulated using MathematicaTM .
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1.2 Basics of Attractor and Chaotic Dynamics

Recall from [II06b] that the concept of dynamical system has its origins in
Newtonian mechanics . There, as in other natural sciences and engineering
disciplines, the evolution rule of dynamical systems is given implicitly by a re-
lation that gives the state of the system only a short time into the future. This
relation is either a differential equation or difference equation. To determine
the state for all future times requires iterating the relation many times–each
advancing time a small step. The iteration procedure is referred to as solving
the system or integrating the system. Once the system can be solved, given
an initial point it is possible to determine all its future points, a collection
known as a trajectory or orbit . All possible system trajectories comprise its
flow in the phase–space.

Fig. 1.9. Action of the phase–flow ft in the phase–space manifold M : (a) Trajectory
of a single initial point x(t) ∈ M , (b) Transporting the whole manifold M .

More precisely, recall from [II06b] that a dynamical system geometrically
represents a vector–field (or, more generally, a tensor–field) in the system’s
phase–space manifold M , which upon integration (governed by the celebrated
existence & uniqueness theorems for ODEs) defines a phase–flow in M (see
Figure 1.9). This phase–flow ft ∈ M , describing the complete behavior of a
dynamical system at every time instant, can be either linear, nonlinear or
chaotic.

Before the advent of fast computers, solving a dynamical system required
sophisticated mathematical techniques and could only be accomplished for
a small class of linear dynamical systems. Numerical methods executed on
computers have simplified the task of determining the orbits of a dynamical
system.

For simple dynamical systems, knowing the trajectory is often sufficient,
but most dynamical systems are too complicated to be understood in terms
of individual trajectories. The difficulties arise because:
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1. The systems studied may only be known approximately–the parameters
of the system may not be known precisely or terms may be missing from
the equations. The approximations used bring into question the validity or
relevance of numerical solutions. To address these questions several notions
of stability have been introduced in the study of dynamical systems, such
as Lyapunov stability or structural stability . The stability of the dynamical
system implies that there is a class of models or initial conditions for which
the trajectories would be equivalent. The operation for comparing orbits to
establish their equivalence changes with the different notions of stability.

2. The type of trajectory may be more important than one particular
trajectory. Some trajectories may be periodic, whereas others may wander
through many different states of the system. Applications often require enu-
merating these classes or maintaining the system within one class. Classifying
all possible trajectories has led to the qualitative study of dynamical systems,
that is, properties that do not change under coordinate changes. Linear dy-
namical systems and systems that have two numbers describing a state are
examples of dynamical systems where the possible classes of orbits are under-
stood.

3. The behavior of trajectories as a function of a parameter may be what
is needed for an application. As a parameter is varied, the dynamical systems
may have bifurcation points where the qualitative behavior of the dynamical
system changes. For example, it may go from having only periodic motions to
apparently erratic behavior, as in the transition to turbulence of a fluid.

4. The trajectories of the system may appear erratic, as if random. In these
cases it may be necessary to compute averages using one very long trajectory
or many different trajectories. The averages are well defined for ergodic sys-
tems and a more detailed understanding has been worked out for hyperbolic
systems. Understanding the probabilistic aspects of dynamical systems has
helped establish the foundations of statistical mechanics and of chaos.

Now, let us start ‘gently’ with chaotic dynamics. Recall that a dynamical
system may be defined as a deterministic rule for the time evolution of state
observables. Well known examples are ODEs in which time is continuous,

ẋ(t) = f(x(t)), (x, f ∈ R
n); (1.5)

and iterative maps in which time is discrete:

x(t + 1) = g(x(t)), (x,g ∈ R
n). (1.6)

In the case of maps, the evolution law is straightforward: from x(0) one com-
putes x(1), and then x(2) and so on. For ODE’s, under rather general assump-
tions on f , from an initial condition x(0) one has a unique trajectory x(t) for
t > 0 [Ott93]. Examples of regular behaviors (e.g., stable fixed–points, limit
cycles) are well known, see Figure 1.10.

A rather natural question is the possible existence of less regular behaviors
i.e., different from stable fixed–points, periodic or quasi-periodic motion.



18 1 Basics of Nonlinear and Chaotic Dynamics

Fig. 1.10. Examples of regular attractors: fixed–point (left) and limit cycle (right).
Note that limit cycles exist only in nonlinear dynamics.

After the seminal works of Poincaré, Lorenz, Smale, May, and Hénon (to
cite only the most eminent ones) it is now well established that the so called
chaotic behavior is ubiquitous. As a relevant system, originated in the geo-
physical context, we mention the celebrated Lorenz system [Lor63, Spa82]

ẋ = −σ(x− y)
ẏ = −xz + rx− y (1.7)
ż = xy − bz

This system is related to the Rayleigh–Bénard convection under very crude
approximations. The quantity x is proportional the circulatory fluid particle
velocity; the quantities y and z are related to the temperature profile; σ, b
and r are dimensionless parameters. Lorenz studied the case with σ = 10 and
b = 8/3 at varying r (which is proportional to the Rayleigh number). It is
easy to see by linear analysis that the fixed–point (0, 0, 0) is stable for r < 1.
For r > 1 it becomes unstable and two new fixed–points appear

C+,− = (±
√

b(r − 1),±
√

b(r − 1), r − 1), (1.8)

these are stable for r < rc = 24.74. A nontrivial behavior, i.e., non periodic,
is present for r > rc, as is shown in Figure 1.11.

In this ‘strange’, chaotic regime one has the so called sensitive dependence
on initial conditions. Consider two trajectories, x(t) and x′(t), initially very
close and denote with Δ(t) = ||x′(t)−x(t)|| their separation. Chaotic behavior
means that if Δ(0) → 0, then as t → ∞ one has Δ(t) ∼ Δ(0) expλ1t, with
λ1 > 0 [BLV01].

Let us notice that, because of its chaotic behavior and its dissipative na-
ture, i.e.,

∂ẋ

∂x
+

∂ẏ

∂y
+

∂ż

∂z
< 0, (1.9)

the attractor of the Lorenz system cannot be a smooth surface. Indeed the
attractor has a self–similar structure with a fractal dimension between 2 and
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3. The Lorenz model (which had an important historical relevance in the
development of chaos theory) is now considered a paradigmatic example of a
chaotic system.

Fig. 1.11. Example of an aperiodic signal: the x variable of the Lorenz system (1.7)
as function of time t, for r = 28.

Lyapunov Exponents

The sensitive dependence on the initial conditions can be formalized in order
to give it a quantitative characterization. The main growth rate of trajectory
separation is measured by the first (or maximum) Lyapunov exponent , defined
as (see, e.g., [BLV01])

λ1 = lim
t→∞

lim
Δ(0)→0

1
t

ln
Δ(t)
Δ(0)

, (1.10)

As long as Δ(t) remains sufficiently small (i.e., infinitesimal, strictly speaking),
one can regard the separation as a tangent vector z(t) whose time evolution
is

żi =
∂fi
∂xj

|x(t) · zj , (1.11)

and, therefore,

λ1 = lim
t→∞

1
t

ln
||z(t)||
||z(0)|| . (1.12)

In principle, λ1 may depend on the initial condition x(0), but this dependence
disappears for ergodic systems. In general there exist as many Lyapunov ex-
ponents, conventionally written in decreasing order λ1 ≥ λ2 ≥ λ3 ≥ ..., as
the independent coordinates of the phase–space [BGG80]. Without entering
the details, one can define the sum of the first k Lyapunov exponents as the
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growth rate of an infinitesimal kD volume in the phase–space. In particular,
λ1 is the growth rate of material lines, λ1 + λ2 is the growth rate of 2D sur-
faces, and so on. A numerical widely used efficient method is due to Benettin
et al. [BGG80].

It must be observed that, after a transient, the growth rate of any generic
small perturbation (i.e., distance between two initially close trajectories) is
measured by the first (maximum) Lyapunov exponent λ1, and λ1 > 0 means
chaos. In such a case, the state of the system is unpredictable on long times.
Indeed, if we want to predict the state with a certain tolerance Δ then our
forecast cannot be pushed over a certain time interval TP , called predictability
time, given by [BLV01]:

TP ∼
1
λ1

ln
Δ

Δ(0)
. (1.13)

The above relation shows that TP is basically determined by 1/λ1, seen its
weak dependence on the ratio Δ/Δ(0). To be precise one must state that,
for a series of reasons, relation (1.13) is too simple to be of actual relevance
[BCF02].

Kolmogorov–Sinai Entropy

Deterministic chaotic systems, because of their irregular behavior, have many
aspects in common with stochastic processes. The idea of using stochastic pro-
cesses to mimic chaotic behavior, therefore, is rather natural [Chi79, Ben84].
One of the most relevant and successful approaches is symbolic dynamics
[BS93]. For the sake of simplicity let us consider a discrete time dynamical
system. One can introduce a partition A of the phase–space formed by N
disjoint sets A1, ..., AN . From any initial condition one has a trajectory

x(0) → x(1),x(2), ...,x(n), ... (1.14)

dependently on the partition element visited, the trajectory (1.14), is associ-
ated to a symbolic sequence

x(0) → i1, i2, ..., in, ... (1.15)

where in (n = 1, 2, ..., N) means that x(n) ∈ Ain at the step n, for n = 1, 2, ....
The coarse-grained properties of chaotic trajectories are therefore studied
through the discrete time process (1.15).

An important characterization of symbolic dynamics is given by the
Kolmogorov–Sinai entropy (KS), defined as follows. Let Cn = (i1, i2, ..., in)
be a generic ‘word’ of size n and P (Cn) its occurrence probability, the quan-
tity [BLV01]

Hn = sup
A

[−
∑

Cn

P (Cn) lnP (Cn)], (1.16)
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is called block entropy of the n−sequences, and it is computed by taking
the largest value over all possible partitions. In the limit of infinitely long
sequences, the asymptotic entropy increment

hKS = lim
n→∞

Hn+1 −Hn, (1.17)

is the Kolmogorov–Sinai entropy. The difference Hn+1 −Hn has the intuitive
meaning of average information gain supplied by the (n+1)−th symbol, pro-
vided that the previous n symbols are known. KS–entropy has an important
connection with the positive Lyapunov exponents of the system [Ott93]:

hKS =
∑

λi>0

λi. (1.18)

In particular, for low–dimensional chaotic systems for which only one Lya-
punov exponent is positive, one has hKS = λ1.

We observe that in (1.16) there is a technical difficulty, i.e., taking the
sup over all the possible partitions. However, sometimes there exits a special
partition, called generating partition, for which one finds that Hn coincides
with its superior bound. Unfortunately the generating partition is often hard
to find, even admitting that it exist. Nevertheless, given a certain partition,
chosen by physical intuition, the statistical properties of the related symbol se-
quences can give information on the dynamical system beneath. For example,
if the probability of observing a symbol (state) depends only by the knowl-
edge of the immediately preceding symbol, the symbolic process becomes a
Markov chain (see [II06b]) and all the statistical properties are determined
by the transition matrix elements Wij giving the probability of observing a
transition i → j in one time step. If the memory of the system extends far
beyond the time step between two consecutive symbols, and the occurrence
probability of a symbol depends on k preceding steps, the process is called
Markov process of order k and, in principle, a k rank tensor would be required
to describe the dynamical system with good accuracy. It is possible to demon-
strate that if Hn+1 −Hn = hKS for n ≥ k + 1, k is the (minimum) order of
the required Markov process [Khi57]. It has to be pointed out, however, that
to know the order of the suitable Markov process we need is of no practical
utility if k 	 1.

Second Motivating Example: Pinball Game and Periodic Orbits

Confronted with a potentially chaotic dynamical system, we analyze it through
a sequence of three distinct stages: (i) diagnose, (ii) count, (iii) measure. First
we determine the intrinsic dimension of the system – the minimum number of
coordinates necessary to capture its essential dynamics. If the system is very
turbulent we are, at present, out of luck. We know only how to deal with the
transitional regime between regular motions and chaotic dynamics in a few
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dimensions. That is still something; even an infinite–dimensional system such
as a burning flame front can turn out to have a very few chaotic degrees of
freedom. In this regime the chaotic dynamics is restricted to a space of low
dimension, the number of relevant parameters is small, and we can proceed to
step (ii); we count and classify all possible topologically distinct trajectories of
the system into a hierarchy whose successive layers require increased precision
and patience on the part of the observer. If successful, we can proceed with
step (iii): investigate the weights of the different pieces of the system [CAM05].

With the game of pinball we are lucky: it is only a 2D system, free motion
in a plane. The motion of a point particle is such that after a collision with one
disk it either continues to another disk or it escapes. If we label the three disks
by 1, 2 and 3, we can associate every trajectory with an itinerary, a sequence
of labels indicating the order in which the disks are visited. The itinerary is
finite for a scattering trajectory, coming in from infinity and escaping after
a finite number of collisions, infinite for a trapped trajectory, and infinitely
repeating for a periodic orbit.4 Such labelling is the simplest example of sym-
bolic dynamics. As the particle cannot collide two times in succession with
the same disk, any two consecutive symbols must differ. This is an example of
pruning , a rule that forbids certain subsequences of symbols. Deriving prun-
ing rules is in general a difficult problem, but with the game of pinball we are
lucky, as there are no further pruning rules.5

Suppose you wanted to play a good game of pinball, that is, get the pinball
to bounce as many times as you possibly can – what would be a winning
strategy? The simplest thing would be to try to aim the pinball so it bounces
many times between a pair of disks – if you managed to shoot it so it starts
out in the periodic orbit bouncing along the line connecting two disk centers,
it would stay there forever. Your game would be just as good if you managed
to get it to keep bouncing between the three disks forever, or place it on any
periodic orbit. The only rub is that any such orbit is unstable, so you have to
aim very accurately in order to stay close to it for a while. So it is pretty clear
that if one is interested in playing well, unstable periodic orbits are important
– they form the skeleton onto which all trajectories trapped for long times
cling.

Now, recall that a trajectory is periodic if it returns to its starting position
and momentum. It is custom to refer to the set of periodic points that belong
to a given periodic orbit as a cycle.

Short periodic orbits are easily drawn and enumerated, but it is rather
hard to perceive the systematics of orbits from their shapes. In mechanics a
trajectory is fully and uniquely specified by its position and momentum at
4 The words orbit and trajectory here are synonymous.
5 The choice of symbols is in no sense unique. For example, as at each bounce we

can either proceed to the next disk or return to the previous disk, the above
3–letter alphabet can be replaced by a binary {0, 1} alphabet. A clever choice
of an alphabet will incorporate important features of the dynamics, such as its
symmetries.
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Fig. 1.12. A 3–disk pinball game. Up: (a) Elastic scattering around three hard
disks (simulated in Dynamics SolverTM ); (b) A trajectory starting out from disk
1 can either hit another disk or escape; (c) Hitting two disks in a sequence re-
quires a much sharper aim; the cones of initial conditions that hit more and
more consecutive disks are nested within each other. Down: Poincaré section for
the 3–disk pinball game, with trajectories emanating from the disk 1 with x0 =
(arc − length, parallel momentum) = (s0, p0), disk radius: center separation ratio
a : R = 1 : 2.5; (d) Strips of initial points M12, M13 which reach disks 2, 3 in one
bounce, respectively. (e) Strips of initial points M121, M131 M132 and M123 which
reach disks 1, 2, 3 in two bounces, respectively; the Poincaré sections for trajectories
originating on the other two disks are obtained by the appropriate relabelling of the
strips (modified and adapted from [CAM05]).

a given instant, and no two distinct phase–space trajectories can intersect.
Their projections on arbitrary subspaces, however, can and do intersect, in
rather unilluminating ways. In the pinball example, the problem is that we are
looking at the projections of a 4D phase–space trajectories onto its 2D sub-
space, the configuration space. A clearer picture of the dynamics is obtained
by constructing a phase–space Poincaré section.

The position of the ball is described by a pair of numbers (the spatial
coordinates on the plane), and the angle of its velocity vector. As far as a
classical dynamist is concerned, this is a complete description. Now, suppose
that the pinball has just bounced off disk 1. Depending on its position and
outgoing angle, it could proceed to either disk 2 or 3. Not much happens
in between the bounces – the ball just travels at constant velocity along a
straight line – so we can reduce the 4D flow to a 2D map f that takes the
coordinates of the pinball from one disk edge to another disk edge. Let us
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state this more precisely: the trajectory just after the moment of impact is
defined by marking sn, the arc–length position of the nth bounce along the
billiard wall, and pn = p sinφn is the momentum component parallel to the
billiard wall at the point of impact (see Figure 1.12). Such a section of a flow
is called a Poincaré section, and the particular choice of coordinates (due to
Birkhoff) is particularly smart, as it conserves the phase–space volume. In
terms of the Poincaré section, the dynamics is reduced to the return map

P : (sn, pn) → (sn+1, pn+1),

from the boundary of a disk to the boundary of the next disk.
Next, we mark in the Poincaré section those initial conditions which do

not escape in one bounce. There are two strips of survivors, as the trajectories
originating from one disk can hit either of the other two disks, or escape
without further ado. We label the two strips M0,M1. Embedded within them
there are four strips, M00,M10,M01,M11 of initial conditions that survive
for two bounces, and so forth (see Figure 1.12). Provided that the disks are
sufficiently separated, after n bounces the survivors are divided into 2n distinct
strips: the Mith strip consists of all points with itinerary i = s1s2s3...sn,
s = {0, 1}. The unstable cycles as a skeleton of chaos are almost visible here:
each such patch contains a periodic point s1s2s3...sn with the basic block
infinitely repeated. Periodic points are skeletal in the sense that as we look
further and further, the strips shrink but the periodic points stay put forever.

We see now why it pays to utilize a symbolic dynamics; it provides a nav-
igation chart through chaotic phase–space. There exists a unique trajectory
for every admissible infinite length itinerary, and a unique itinerary labels ev-
ery trapped trajectory. For example, the only trajectory labelled by 12 is the
2–cycle bouncing along the line connecting the centers of disks 1 and 2; any
other trajectory starting out as 12 . . . either eventually escapes or hits the
3rd disk [CAM05].

Now we can ask what is a good physical quantity to compute for the game
of pinball? Such system, for which almost any trajectory eventually leaves a fi-
nite region (the pinball table) never to return, is said to be open, or a repeller .
The repeller escape rate is an eminently measurable quantity. An example of
such a measurement would be an unstable molecular or nuclear state which
can be well approximated by a classical potential with the possibility of es-
cape in certain directions. In an experiment many projectiles are injected into
such a non–confining potential and their mean escape rate is measured. The
numerical experiment might consist of injecting the pinball between the disks
in some random direction and asking how many times the pinball bounces
on the average before it escapes the region between the disks. On the other
hand, for a theorist a good game of pinball consists in predicting accurately
the asymptotic lifetime (or the escape rate) of the pinball.

Here we briefly show how Cvitanovic’s periodic orbit theory [Cvi91] ac-
complishes this for us. Each step will be so simple that you can follow even at
the cursory pace of this overview, and still the result is surprisingly elegant.
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Let us consider Figure 1.12 again. In each bounce, the initial conditions get
thinned out, yielding twice as many thin strips as at the previous bounce. The
total area that remains at a given time is the sum of the areas of the strips,
so that the fraction of survivors after n bounces, or the survival probability is
given by

Γ̂1 =
|M0|
|M | +

|M1|
|M | , (1.19)

Γ̂2 =
|M00|
|M | +

|M10|
|M | +

|M01|
|M | +

|M11|
|M | ,

...

Γ̂n =
1
|M |

(n)∑

i=1

|Mi|,

where i = 01, 10, 11, ... is a label of the ith strip (not a binary number), |M |
is the initial area, and |Mi| is the area of the ith strip of survivors. Since at
each bounce one routinely loses about the same fraction of trajectories, one
expects the sum (1.19) to fall off exponentially with n and tend to the limit

Γn+1/Γ̂n = e−γn → e−γ ,

where the quantity γ is called the escape rate from the repeller. In [Cvi91]
and subsequent papers, Cvitanovic has showed that the escape rate γ can be
extracted from a highly convergent exact expansion by reformulating the sum
(1.19) in terms of unstable periodic orbits.

1.3 Brief History of Chaos Theory

Now, without pretending to give a complete history of chaos theory, in this
section we present only its most prominent milestones (in our view). For a
number of other important contributors, see [Gle87]). Before we embark on
the quick historical journey of chaos theory, note that classical mechanics has
not stood still since the foundational work of its father, Sir Isaac Newton.
The mechanical formalism that we use today was developed mostly by the
three giants: Leonhard Euler , Joseph Louis Lagrange and Sir William Rowan
Hamilton. By the end of the 1800’s the three problems that would lead to the
notion of chaotic dynamics were already known: the three–body problem (see
Figure 1.13), the ergodic hypothesis,6 and nonlinear oscillators (see Figures
1.3–1.8).
6 The second problem that played a key role in development of chaotic dynamics

was the ergodic hypothesis of Boltzmann. Recall that James Clerk Maxwell and
Ludwig Boltzmann had combined the mechanics of Newton with notions of prob-
ability in order to create statistical mechanics, deriving thermodynamics from the
equations of mechanics. To evaluate the heat capacity of even a simple system,
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1.3.1 Poincaré’s Qualitative Dynamics, Topology and Chaos

Chaos theory really started with Henry Jules Poincaré, the last mathematical
universalist, the father of both dynamical systems and topology (which he
considered to be the two sides of the same coin). Together with the four
dynamics giants mentioned above, Poincaré has been considered as one of the
great scientific geniuses of all time.7

Boltzmann had to make a great simplifying assumption of ergodicity: that the
dynamical system would visit every part of the phase–space allowed by conserva-
tions law equally often. This hypothesis was extended to other averages used in
statistical mechanics and was called the ergodic hypothesis. It was reformulated
by Poincaré to say that a trajectory comes as close as desired to any phase–space
point.

Proving the ergodic hypothesis turned out to be very difficult. By the end of
our own century it has only been shown true for a few systems and wrong for quite
a few others. Early on, as a mathematical necessity, the proof of the hypothesis
was broken down into two parts. First one would show that the mechanical system
was ergodic (it would go near any point) and then one would show that it would
go near each point equally often and regularly so that the computed averages
made mathematical sense. Koopman took the first step in proving the ergodic
hypothesis when he noticed that it was possible to reformulate it using the recently
developed methods of Hilbert spaces. This was an important step that showed that
it was possible to take a finite–dimensional nonlinear problem and reformulate it
as a infinite–dimensional linear problem. This does not make the problem easier,
but it does allow one to use a different set of mathematical tools on the problem.
Shortly after Koopman started lecturing on his method, John von Neumann
proved a version of the ergodic hypothesis, giving it the status of a theorem. He
proved that if the mechanical system was ergodic, then the computed averages
would make sense. Soon afterwards George Birkhoff published a much stronger
version of the theorem (see [CAM05]).

7 Recall that Henri Poincaré (April 29, 1854–July 17, 1912), was one of France’s
greatest mathematicians and theoretical physicists, and a philosopher of science.
Poincaré is often described as the last ‘universalist’ (after Gauss), capable of un-
derstanding and contributing in virtually all parts of mathematics. As a mathe-
matician and physicist, he made many original fundamental contributions to pure
and applied mathematics, mathematical physics, and celestial mechanics. He was
responsible for formulating the Poincaré conjecture, one of the most famous prob-
lems in mathematics. In his research on the three-body problem, Poincaré became
the first person to discover a deterministic chaotic system. Besides, Poincaré intro-
duced the modern principle of relativity and was the first to present the Lorentz
transformations in their modern symmetrical form (Poincaré group).

Poincaré had the opposite philosophical views of Bertrand Russell and Gottlob
Frege, who believed that mathematics were a branch of logic. Poincaré strongly
disagreed, claiming that intuition was the life of mathematics. Poincaré gives an
interesting point of view in his book ‘Science and Hypothesis’: “For a superficial
observer, scientific truth is beyond the possibility of doubt; the logic of science
is infallible, and if the scientists are sometimes mistaken, this is only from their
mistaking its rule.”



1.3 Brief History of Chaos Theory 27

Poincaré conjectured and proved a number of theorems. Two of them
related to chaotic dynamics are:

1. The Poincaré–Bendixson theorem says: Let F be a dynamical system
on the real plane defined by

(ẋ, ẏ) = (f(x, y), g(x, y)),

where f and g are continuous differentiable functions of x and y. Let S be
a closed bounded subset of the 2D phase–space of F that does not contain
a stationary point of F and let C be a trajectory of F that never leaves S.
Then C is either a limit–cycle or C converges to a limit–cycle. The Poincaré–
Bendixson theorem limits the types of long term behavior that can be exhib-
ited by continuous planar dynamical systems. One important implication is
that a 2D continuous dynamical system cannot give rise to a strange attractor .
If a strange attractor C did exist in such a system, then it could be enclosed
in a closed and bounded subset of the phase–space. By making this subset
small enough, any nearby stationary points could be excluded. But then the
Poincaré–Bendixson theorem says that C is not a strange attractor at all – it is
either a limit–cycle or it converges to a limit–cycle. The Poincaré–Bendixson
theorem says that chaotic behavior can only arise in continuous dynamical
systems whose phase–space has 3 or more dimensions. However, this restric-
tion does not apply to discrete dynamical systems, where chaotic behavior
can arise in two or even one–dimensional.

2. The Poincaré–Hopf index theorem says: Let M be a compact differen-
tiable manifold and v be a vector–field on M with isolated zeroes. If M has
boundary, then we insist that v be pointing in the outward normal direction
along the boundary. Then we have the formula

∑

i

indexv = χ(M),

where the sum is over all the isolated zeroes of v and χ(M) is the Euler
characteristic of M . systems.

In 1887, in honor of his 60th birthday, Oscar II, King of Sweden offered
a prize to the person who could answer the question “Is the Solar system
stable?” Poincaré won the prize with his famous work on the three–body prob-
lem. He considered the Sun, Earth and Moon orbiting in a plane under their
mutual gravitational attractions (see Figure 1.13). Like the pendulum, this
system has some unstable solutions. Introducing a Poincaré section, he saw
that homoclinic tangles must occur. These would then give rise to chaos and
unpredictability .

Recall that trying to predict the motion of the Moon has preoccupied
astronomers since antiquity. Accurate understanding of its motion was im-
portant for determining the longitude of ships while traversing open seas. The
Rudolphine Tables of Johannes Kepler had been a great improvement over
previous tables, and Kepler was justly proud of his achievements. Bernoulli
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Fig. 1.13. The 2–body, problem solved by Newton (left), and the 3–body problem,
first attacked by Poincaré, and still the point of active research (right).

used Newton’s work on mechanics to derive the elliptic orbits of Kepler and
set an example of how equations of motion could be solved by integrating. But
the motion of the Moon is not well approximated by an ellipse with the Earth
at a focus; at least the effects of the Sun have to be taken into account if one
wants to reproduce the data the classical Greeks already possessed. To do that
one has to consider the motion of three bodies: the Moon, the Earth, and the
Sun. When the planets are replaced by point particles of arbitrary masses, the
problem to be solved is known as the 3–body problem. The 3–body problem
was also a model to another concern in astronomy. In the Newtonian model
of the Solar system it is possible for one of the planets to go from an elliptic
orbit around the Sun to an orbit that escaped its domain or that plunged
right into it. Knowing if any of the planets would do so became the problem
of the stability of the Solar system. A planet would not meet this terrible end
if Solar system consisted of two celestial bodies, but whether such fate could
befall in the 3–body case remained unclear.

After many failed attempts to solve the 3–body problem, natural philoso-
phers started to suspect that it was impossible to integrate. The usual tech-
nique for integrating problems was to find the conserved quantities, quantities
that do not change with time and allow one to relate the momenta and po-
sitions different times. The first sign on the impossibility of integrating the
3–body problem came from a result of Burns that showed that there were
no conserved quantities that were polynomial in the momenta and positions.
Burns’ result did not preclude the possibility of more complicated conserved
quantities. This problem was settled by Poincaré and Sundman in two very
different ways.

In an attempt to promote the journal Acta Mathematica, Gustaf Mittag–
Leffler got the permission of the King Oscar II of Sweden and Norway to
establish a mathematical competition. Several questions were posed (although
the king would have preferred only one), and the prize of 2500 kroner would
go to the best submission. One of the questions was formulated by the ‘father
of modern analysis’, Karl Weierstrass:

“Given a system of arbitrary mass points that attract each other ac-
cording to Newton’s laws, under the assumption that no two points
ever collide, try to find a representation of the coordinates of each
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point as a series in a variable that is some known function of time and
for all of whose values the series converges uniformly.
This problem, whose solution would considerably extend our under-
standing of the Solar system...”

Poincaré’s submission won the prize. He showed that conserved quantities that
were analytic in the momenta and positions could not exist. To show that he
introduced methods that were very geometrical in spirit: the importance of
phase flow, the role of periodic orbits and their cross sections, the homoclinic
points (see [CAM05]).8

Poincaré pointed out that the problem was not correctly posed, and proved
that a complete solution to it could not be found. His work was so impressive
that in 1888 the jury recognized its value by awarding him the prize. He found
that the evolution of such a system is often chaotic in the sense that a small
perturbation in the initial state, such as a slight change in one body’s initial
position, might lead to a radically different later state. If the slight change
is not detectable by our measuring instruments, then we will not be able
to predict which final state will occur. One of the judges, the distinguished
Karl Weierstrass, said, “This work cannot indeed be considered as furnishing
the complete solution of the question proposed, but that it is nevertheless of
such importance that its publication will inaugurate a new era in the history
of celestial mechanics.” Weierstrass did not know how accurate he was. In
Poincaré’s paper, he described new mathematical ideas such as homoclinic
points. The memoir was about to be published in Acta Mathematica when an
error was found by the editor. This error in fact led to further discoveries by
Poincaré, which are now considered to be the beginning of chaos theory . The
memoir was published later in 1890. Poincaré’s research into orbits about
Lagrange points and low-energy transfers was not utilized for more than a
century afterwards.
8 The interesting thing about Poincaré’s work was that it did not solve the problem

posed. He did not find a function that would give the coordinates as a function
of time for all times. He did not show that it was impossible either, but rather
that it could not be done with the Bernoulli technique of finding a conserved
quantity and trying to integrate. Integration would seem unlikely from Poincaré’s
prize–winning memoir, but it was accomplished by the Finnish–born Swedish
mathematician Sundman, who showed that to integrate the 3–body problem one
had to confront the 2–body collisions. He did that by making them go away
through a trick known as regularization of the collision manifold. The trick is
not to expand the coordinates as a function of time t, but rather as a function
of 3 t. To solve the problem for all times he used a conformal map into a strip.
This allowed Sundman to obtain a series expansion for the coordinates valid
for all times, solving the problem that was proposed by Weirstrass in the King
Oscar II’s competition. Though Sundman’s work deserves better credit than it
gets, it did not live up to Weirstrass’s expectations, and the series solution did
not ‘considerably extend our understanding of the Solar system.’ The work that
followed from Poincaré did.
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In 1889 Poincaré proved that for the restricted three body problem no
integrals exist apart from the Jacobian. In 1890 Poincaré proved his famous
recurrence theorem, namely that in any small region of phase–space trajecto-
ries exist which pass through the region infinitely often. Poincaré published
3 volumes of ‘Les méthods nouvelle de la mécanique celeste’ between 1892
and 1899. He discussed convergence and uniform convergence of the series
solutions discussed by earlier mathematicians and proved them not to be
uniformly convergent. The stability proofs of Lagrange and Laplace became
inconclusive after this result.

Poincaré introduced further topological methods in 1912 for the theory
of stability of orbits in the 3–body problem. It fact Poincaré essentially in-
vented topology in his attempt to answer stability questions in the three body
problem. He conjectured that there are infinitely many periodic solutions of
the restricted problem, the conjecture being later proved by George Birkhoff .
The stability of the orbits in the three body problem was also investigated by
Levi–Civita, Birkhoff and others (see [II06b] for technical details).

To examine chaos, Poincaré used the idea of a section, today called the
Poincaré section, which cuts across the orbits in phase–space. While the orig-
inal dynamical system always flows in continuous time, on the Poincaré sec-
tion we can observe discrete–time steps. More precisely, the original phase–
space flow (see [II06b]) is replaced by an iterated map, which reduces the
dimension of the phase–space by one (see Figure 1.14). Later, to show what

Fig. 1.14. The 2D Poincaré section, reducing the 3D phase–space, using the iterated
map: xnew = F (x, y), ynew = G(x, y).

a Poincaré section would look like, Hénon devised a simple 2D–map, which
is today called the Hénon map: xnew = 1 − ax2 + by, ynew = x, with
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parameters a = 1.4, b = 0.3. Given any starting point, this map generates a
sequence of points settling onto a chaotic attractor.

As an inheritance of Poincaré work, the chaos of the Solar system has been
recently used for the SOHO project,9 to minimize the fuel consumption need
for the space flights. Namely, in a rotating frame, a spacecraft can remain
stationary at 5 Lagrange’s points (see Figure 1.15).

Fig. 1.15. The Lagrange’s points (L1, ...L5) used for the space flights. Points
L1, L2, L3 on the Sun–Earth axis are unstable. The SOHO spacecraft used a halo
orbit around L1 to observe the Sun. The triangular points L4 and L5 are often
stable. A Japanese rescue mission used a chaotic Earth–Moon trajectory.

9 The SOHO project is being carried out jointly by ESA (European Space Agency)
and NASA (US National Aeronautics and Space Administration), as a cooper-
ative effort between the two agencies in the framework of the Solar Terrestrial
Science Program (STSP) comprising SOHO and CLUSTER, and the Interna-
tional Solar–Terrestrial Physics Program (ISTP), with Geotail (ISAS–Japan),
Wind, and Polar. SOHO was launched on December 2, 1995. The SOHO space-
craft was built in Europe by an industry team led by Matra, and instruments
were provided by European and American scientists. There are nine European
Principal Investigators (PI’s) and three American ones. Large engineering teams
and more than 200 co–investigators from many institutions support the PI’s in
the development of the instruments and in the preparation of their operations
and data analysis. NASA is responsible for the launch and mission operations.
Large radio dishes around the world which form NASA’s Deep Space Network are
used to track the spacecraft beyond the Earth’s orbit. Mission control is based at
Goddard Space Flight Center in Maryland.
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Poincaré had two protegés in the development of chaos theory in the new
world: George D. Birkhoff (see [Bir15, Bir27, Bir17] for the Birkhoff curve
shortening flow), and Stephen Smale.

In some detail, the theorems of John von Neumann and George Birkhoff
on the ergodic hypothesis (see footnote 6 above) were published in 1912 and
1913. This line of enquiry developed in two directions. One direction took an
abstract approach and considered dynamical systems as transformations of
measurable spaces into themselves. Could we classify these transformations in
a meaningful way? This lead Andrey N. Kolmogorov to the introduction of
the fundamental concept of entropy for dynamical systems. With entropy as a
dynamical invariant it became possible to classify a set of abstract dynamical
systems known as the Bernoulli systems.

The other line that developed from the ergodic hypothesis was in trying
to find mechanical systems that are ergodic. An ergodic system could not have
stable orbits, as these would break ergodicity. So, in 1898 Jacques S. Hadamard
published a paper on billiards, where he showed that the motion of balls on
surfaces of constant negative curvature is everywhere unstable. This dynamical
system was to prove very useful and it was taken up by Birkhoff.

Marston Morse in 1923 showed that it was possible to enumerate the or-
bits of a ball on a surface of constant negative curvature.10 He did this by
introducing a symbolic code to each orbit and showed that the number of pos-
sible codes grew exponentially with the length of the code. With contributions
by E. Artin, G. Hedlund, and Heinz Hopf it was eventually proven that the
motion of a ball on a surface of constant negative curvature was ergodic. The
importance of this result escaped most physicists, one exception being N.M.
Krylov , who understood that a physical billiard was a dynamical system on a
surface of negative curvature, but with the curvature concentrated along the
lines of collision. Sinai, who was the first to show that a physical billiard can
be ergodic, knew Krylov’s work well.

On the other hand, the work of Lord Rayleigh also received vigorous de-
velopment. It prompted many experiments and some theoretical development
by B. Van der Pol , G. Duffing , and D. Hayashi . They found other systems in
which the nonlinear oscillator played a role and classified the possible motions
10 Recall from [II06b] that in differential topology, the techniques of Morse the-

ory give a very direct way of analyzing the topology of a manifold by study-
ing differentiable functions on that manifold. According to the basic insights of
Marston Morse, a differentiable function on a manifold will, in a typical case,
reflect the topology quite directly. Morse theory allows one to find the so–called
CW–structures and handle decompositions on manifolds and to obtain substan-
tial information about their homology. Before Morse, Arthur Cayley and James
Clerk Maxwell developed some of the ideas of Morse theory in the context of
topography. Morse originally applied his theory to geodesics (critical points of
the energy functional on paths). These techniques were later used by Raoul Bott
in his proof of the celebrated Bott periodicity theorem.
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of these systems. This concreteness of experiments, and the possibility of anal-
ysis was too much of temptation for M. L. Cartwright and J.E. Littlewood ,
who set out to prove that many of the structures conjectured by the experi-
mentalists and theoretical physicists did indeed follow from the equations of
motion.

Also, G. Birkhoff had found a ‘remarkable curve’ in a 2D map; it appeared
to be non–differentiable and it would be nice to see if a smooth flow could
generate such a curve. The work of Cartwright and Littlewood lead to the work
of N. Levinson, which in turn provided the basis for the horseshoe construction
of Steve Smale.

In Russia, Aleksandr M. Lyapunov paralleled the methods of Poincaré and
initiated the strong Russian dynamical systems school. A. Andronov11 car-
ried on with the study of nonlinear oscillators and in 1937 introduced together
with Lev S. Pontryagin12 the notion of coarse systems. They were formalizing
the understanding garnered from the study of nonlinear oscillators, the under-
standing that many of the details on how these oscillators work do not affect
the overall picture of the phase–space: there will still be limit cycles if one
changes the dissipation or spring force function by a little bit. And changing
the system a little bit has the great advantage of eliminating exceptional cases
in the mathematical analysis. Coarse systems were the concept that caught
Smale’s attention and enticed him to study dynamical systems (see [CAM05]).

The path traversed from ergodicity to entropy is a little more confusing.
The general character of entropy was understood by Norbert Wiener ,13 who
seemed to have spoken to Claude E. Shannon.14 In 1948 Shannon published
his results on information theory , where he discusses the entropy of the shift
transformation.

In Russia, Andrey N. Kolmogorov went far beyond and suggested a def-
inition of the metric entropy of an area preserving transformation in order
to classify Bernoulli shifts. The suggestion was taken by his student Ya.G.
Sinai and the results published in 1959. In 1967 D.V. Anosov15 and Sinai
11 Recall that both the Andronov–Hopf bifurcation and a crater on the Moon are

named after Aleksandr Andronov.
12 the father of modern optimal control theory (see [II06b])
13 the father of cybernetics
14 the father of information theory
15 Recall that the Anosov map on a manifold M is a certain type of mapping,

from M to itself, with rather clearly marked local directions of ‘expansion’ and
‘contraction’. More precisely:

• If a differentiable map f on M has a hyperbolic structure on the tangent bundle,
then it is called an Anosov map. Examples include the Bernoulli map, and Arnold
cat map.

• If the Anosov map is a diffeomorphism, then it is called an Anosov diffeomor-
phism. Anosov proved that Anosov diffeomorphisms are structurally stable.

• If a flow on a manifold splits the tangent bundle into three invariant subbundles,
with one subbundle that is exponentially contracting, and one that is exponen-
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applied the notion of entropy to the study of dynamical systems. It was in the
context of studying the entropy associated to a dynamical system that Sinai
introduced Markov partitions (in 1968), which allow one to relate dynamical
systems and statistical mechanics; this has been a very fruitful relationship.
It adds measure notions to the topological framework laid down in Smale’s
dynamical systems paper. Markov partitions divide the phase–space of the
dynamical system into nice little boxes that map into each other. Each box
is labelled by a code and the dynamics on the phase–space maps the codes
around, inducing a symbolic dynamics. From the number of boxes needed to
cover all the space, Sinai was able to define the notion of entropy of a dynam-
ical system. However, the relations with statistical mechanics became explicit
in the work of David Ruelle.16 Ruelle understood that the topology of the
orbits could be specified by a symbolic code, and that one could associate an
‘energy’ to each orbit. The energies could be formally combined in a partition
function (see [II06b]) to generate the invariant measure of the system.

1.3.2 Smale’s Topological Horseshoe and Chaos of Stretching and
Folding

The first deliberate, coordinated attempt to understand how global system’s
behavior might differ from its local behavior, came from topologist Steve
Smale from the University of California at Berkeley. A young physicist, mak-
ing a small talk, asked what Smale was working on. The answer stunned
him: “Oscillators.” It was absurd. Oscillators (pendulums, springs, or electric
circuits) where the sort of problem that a physicist finished off early in his
training. They were easy. Why would a great mathematician be studying ele-
mentary physics? However, Smale was looking at nonlinear oscillators, chaotic
oscillators – and seing things that physicists had learned no to see [Gle87].

Smale’s 1966 Fields Medal honored a famous piece of work in high–
dimensional topology, proving Poincaré conjecture for all dimensions greater
than 4; he later generalized the ideas in a 107 page paper that established the
H–cobordism theorem (this seminal result provides algebraic algebraic topo-
logical criteria for establishing that higher–dimensional manifolds are diffeo-
morphic).

tially expanding, and a third, non–expanding, non–contracting 1D sub–bundle,
then the flow is called an Anosov flow .

16 David Ruelle is a mathematical physicist working on statistical physics and dy-
namical systems. Together with Floris Takens, he coined the term strange at-
tractor , and founded a modern theory of turbulence. Namely, in a seminal paper
[RT71] they argued that, as a function of an external parameter, the route to
chaos in a fluid flow is a transition sequence leading from stationary (S) to
single periodic (P ), double periodic (QP2), triple periodic (QP3) and, possibly,
quadruply periodic (QP4) motions, before the flow becomes chaotic (C).
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After having made great strides in topology, Smale then turned to the
study of nonlinear dynamical systems, where he made significant advances as
well.17 His first contribution is the famous horseshoe map [Sch81] that started–
off significant research in dynamical systems and chaos theory.18 Smale also
outlined a mathematical research program carried out by many others. Smale
is also known for injecting Morse theory into mathematical economics, as well
as recent explorations of various theories of computation. In 1998 he compiled
a list of 18 problems in mathematics to be solved in the 21st century. This
list was compiled in the spirit of Hilbert’s famous list of problems produced
in 1900. In fact, Smale’s list includes some of the original Hilbert problems.
Smale’s problems include the Jacobian conjecture and the Riemann hypoth-
esis, both of which are still unsolved.

The Smale horseshoe map (see Figure 1.16) is any member of a class of
chaotic maps of the square into itself. This topological transformation pro-
vided a basis for understanding the chaotic properties of dynamical systems.
Its basis are simple: A space is stretched in one direction, squeezed in another,
and then folded. When the process is repeated, it produces something like a
many–layered pastry dough, in which a pair of points that end up close to-
gether may have begun far apart, while two initially nearby points can end
completely far apart.19

17 In the fall of 1961 Steven Smale was invited to Kiev where he met V.I. Arnol’d,
(one of the fathers of modern geometrical mechanics [II06b]), D.V. Anosov, Sinai,
and Novikov. He lectured there, and spent a lot of time with Anosov. He suggested
a series of conjectures, most of which Anosov proved within a year. It was Anosov
who showed that there are dynamical systems for which all points (as opposed
to a nonwandering set) admit the hyperbolic structure, and it was in honor of
this result that Smale named them Axiom–A systems. In Kiev Smale found a
receptive audience that had been thinking about these problems. Smale’s result
catalyzed their thoughts and initiated a chain of developments that persisted into
the 1970’s.

18 In his landmark 1967 Bulletin survey article entitled ‘Differentiable dynamical
systems’ [Sch81], Smale presented his program for hyperbolic dynamical systems
and stability, complete with a superb collection of problems. The major theorem
of the paper was the Ω−Stability Theorem: the global foliation of invariant sets
of the map into disjoint stable and unstable parts, whose proof was a tour de force
in the new dynamical methods. Some other important ideas of this paper are the
existence of a horseshoe and enumeration and ordering of all its orbits, as well as
the use of zeta functions to study dynamical systems. The emphasis of the paper
is on the global properties of the dynamical system, on how to understand the
topology of the orbits. Smale’s account takes us from a local differential equation
(in the form of vector fields) to the global topological description in terms of
horseshoes.

19 Originally, Smale had hoped to explain all dynamical systems in terms of stretch-
ing and squeezing – with no folding, at least no folding that would drastically
undermine a system’s stability. But folding turned out to be necessary, and folding
allowed sharp changes in dynamical behavior [Gle87].
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Fig. 1.16. The Smale horseshoe map consists of a sequence of operations on the
unit square. First, stretch in the y−direction by more than a factor of two, then
squeeze (compress) in the x−direction by more than a factor of two. Finally, fold
the resulting rectangle and fit it back onto the square, overlapping at the top and
bottom, and not quite reaching the ends to the left and right (and with a gap in the
middle), as illustrated in the diagram. The shape of the stretched and folded map
gives the horseshoe map its name. Note that it is vital to the construction process
for the map to overlap and leave the middle and vertical edges of the initial unit
square uncovered.

The horseshoe map was introduced by Smale while studying the behavior
of the orbits of the relaxation Van der Pol oscillator . The action of the map is
defined geometrically by squishing the square, then stretching the result into
a long strip, and finally folding the strip into the shape of a horseshoe.

Fig. 1.17. The Smale horseshoe map f , defined by stretching, folding and squeezing
of the system’s phase–space.

Most points eventually leave the square under the action of the map f .
They go to the side caps where they will, under iteration, converge to a fixed–
point in one of the caps. The points that remain in the square under repeated
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iteration form a fractal set and are part of the invariant set of the map f (see
Figure 1.17).

The stretching, folding and squeezing of the horseshoe map are the essential
elements that must be present in any chaotic system. In the horseshoe map
the squeezing and stretching are uniform. They compensate each other so that
the area of the square does not change. The folding is done neatly, so that the
orbits that remain forever in the square can be simply described.

Repeating this generates the horseshoe attractor. If one looks at a cross
section of the final structure, it is seen to correspond to a Cantor set .

The Smale horseshoe map is the set of basic topological operations for
constructing an attractor consist of stretching (which gives sensitivity to ini-
tial conditions) and folding (which gives the attraction). Since trajectories in
phase–space cannot cross, the repeated stretching and folding operations re-
sult in an object of great topological complexity. For any horseshoe map we
have:

• There is an infinite number of periodic orbits;
• Periodic orbits of arbitrarily long period exist;
• The number or periodic orbits grows exponentially with the period; and
• Close to any point of the fractal invariant set there is a point of a periodic

orbit.

More precisely, the horseshoe map f is a diffeomorphism defined from a
region S of the plane into itself. The region S is a square capped by two
semi–disks. The action of f is defined through the composition of three ge-
ometrically defined transformations. First the square is contracted along the
vertical direction by a factor a < 1/2. The caps are contracted so as to remain
semi-disks attached to the resulting rectangle. Contracting by a factor smaller
than one half assures that there will be a gap between the branches of the
horseshoe. Next the rectangle is stretched by a factor of 1/a; the caps remain
unchanged. Finally the resulting strip is folded into a horseshoe–shape and
placed back into S.

The interesting part of the dynamics is the image of the square into itself.
Once that part is defined, the map can be extended to a diffeomorphism by
defining its action on the caps. The caps are made to contract and eventually
map inside one of the caps (the left one in the figure). The extension of f to
the caps adds a fixed–point to the non–wandering set of the map. To keep
the class of horseshoe maps simple, the curved region of the horseshoe should
not map back into the square.

The horseshoe map is one–to–one (1–1, or injection): any point in the
domain has a unique image, even though not all points of the domain are the
image of a point. The inverse of the horseshoe map, denoted by f−1, cannot
have as its domain the entire region S, instead it must be restricted to the
image of S under f , that is, the domain of f−1 is f(S).

By folding the contracted and stretched square in different ways, other
types of horseshoe maps are possible (see Figure 1.18). The contracted square
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Fig. 1.18. Other types of horseshoe maps can be made by folding the contracted
and stretched square in different ways.

cannot overlap itself to assure that it remains 1–1. When the action on the
square is extended to a diffeomorphism, the extension cannot always be done
on the plane. For example, the map on the right needs to be extended to a
diffeomorphism of the sphere by using a ‘cap’ that wraps around the equator.

The horseshoe map is an Axiom A diffeomorphism that serves as a model
for the general behavior at a transverse homoclinic point , where the stable
and unstable manifolds of a periodic point intersect.

The horseshoe map was designed by Smale to reproduce the chaotic dy-
namics of a flow in the neighborhood of a given periodic orbit . The neighbor-
hood is chosen to be a small disk perpendicular to the orbit. As the system
evolves, points in this disk remain close to the given periodic orbit, tracing
out orbits that eventually intersect the disk once again. Other orbits diverge.

The behavior of all the orbits in the disk can be determined by considering
what happens to the disk. The intersection of the disk with the given peri-
odic orbit comes back to itself every period of the orbit and so do points in
its neighborhood. When this neighborhood returns, its shape is transformed.
Among the points back inside the disk are some points that will leave the disk
neighborhood and others that will continue to return. The set of points that
never leaves the neighborhood of the given periodic orbit form a fractal.

A symbolic name can be given to all the orbits that remain in the neigh-
borhood. The initial neighborhood disk can be divided into a small number
of regions. Knowing the sequence in which the orbit visits these regions al-
lows the orbit to be pinpointed exactly. The visitation sequence of the orbits
provide the so–called symbolic dynamics20

20 Symbolic dynamics is the practice of modelling a dynamical system by a space
consisting of infinite sequences of abstract symbols, each sequence corresponding
to a state of the system, and a shift operator corresponding to the dynamics.
Symbolic dynamics originated as a method to study general dynamical systems,
now though, its techniques and ideas have found significant applications in data
storage and transmission, linear algebra, the motions of the planets and many
other areas. The distinct feature in symbolic dynamics is that time is measured
in discrete intervals. So at each time interval the system is in a particular state.
Each state is associated with a symbol and the evolution of the system is described
by an infinite sequence of symbols (see text below).
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It is possible to describe the behavior of all initial conditions of the horse-
shoe map. An initial point u0 = x, y gets mapped into the point u1 = f(u0).
Its iterate is the point u2 = f(u1) = f2(u0), and repeated iteration generates
the orbit u0, u1, u2, ... Under repeated iteration of the horseshoe map, most
orbits end up at the fixed–point in the left cap. This is because the horseshoe
maps the left cap into itself by an affine transformation, which has exactly one
fixed–point. Any orbit that lands on the left cap never leaves it and converges
to the fixed–point in the left cap under iteration. Points in the right cap get
mapped into the left cap on the next iteration, and most points in the square
get mapped into the caps. Under iteration, most points will be part of orbits
that converge to the fixed–point in the left cap, but some points of the square
never leave.

Under forward iterations of the horseshoe map, the original square gets
mapped into a series of horizontal strips. The points in these horizontal strips
come from vertical strips in the original square. Let S0 be the original square,
map it forward n times, and consider only the points that fall back into the
square S0, which is a set of horizontal stripes Hn = fn(S0) ∩ S0. The points
in the horizontal stripes came from the vertical stripes Vn = f−n(Hn), which
are the horizontal strips Hn mapped backwards n times. That is, a point in
Vn will, under n iterations of the horseshoe map, end up in the set Hn of
vertical strips (see Figure 1.19).

Fig. 1.19. Iterated horseshoe map: pre–images of the square region.

Now, if a point is to remain indefinitely in the square, then it must belong
to an invariant set Λ that maps to itself. Whether this set is empty or not has
to be determined. The vertical strips V1 map into the horizontal strips H1,
but not all points of V1 map back into V1. Only the points in the intersection
of V1 and H1 may belong to Λ, as can be checked by following points outside
the intersection for one more iteration. The intersection of the horizontal and
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vertical stripes, Hn ∩Vn, are squares that converge in the limit n→∞ to the
invariant set Λ (see Figure 1.20).

Fig. 1.20. Intersections that converge to the invariant set Λ.

The structure of invariant set Λ can be better understood by introducing
a system of labels for all the intersections, namely a symbolic dynamics. The
intersection Hn ∩ Vn is contained in V1. So any point that is in Λ under
iteration must land in the left vertical strip A of V1, or on the right vertical
strip B. The lower horizontal strip of H1 is the image of A and the upper
horizontal strip is the image of B, so H1 = f(A) ∩ f(B). The strips A and
B can be used to label the four squares in the intersection of V1 and H1 (see
Figure 1.21) as:

ΛA•A = f(A) ∩A, ΛA•B = f(A) ∩B,

ΛB•A = f(B) ∩A, ΛB•B = f(B) ∩B.

The set ΛB•A consist of points from strip A that were in strip B in the previous
iteration. A dot is used to separate the region the point of an orbit is in from
the region the point came from.

Fig. 1.21. The basic domains of the horseshoe map in symbolic dynamics.

This notation can be extended to higher iterates of the horseshoe map.
The vertical strips can be named according to the sequence of visits to strip
A or strip B. For example, the set ABB ⊂ V3 consists of the points from A
that will all land in B in one iteration and remain in B in the iteration after
that:
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ABB = {x ∈ A|f(x) ∈ B and f2(x) ∈ B}.
Working backwards from that trajectory determines a small region, the set
ABB, within V3.

The horizontal strips are named from their vertical strip pre–images. In
this notation, the intersection of V2 and H2 consists of 16 squares, one of
which is

ΛAB•BB = f2(AB) ∩BB.

All the points in ΛAB•BB are in B and will continue to be in B for at least
one more iteration. Their previous trajectory before landing in BB was A
followed by B.

Any one of the intersections ΛP•F of a horizontal strip with a vertical
strip, where P and F are sequences of As and Bs, is an affine transformation
of a small region in V1. If P has k symbols in it, and if f−k(ΛP•F ) and ΛP•F
intersect, then the region ΛP•F will have a fixed–point . This happens when
the sequence P is the same as F . For example, ΛABAB•ABAB ⊂ V4 ∩H4 has
at least one fixed–point. This point is also the same as the fixed–point in
ΛAB•AB . By including more and more ABs in the P and F part of the label
of intersection, the area of the intersection can be made as small as needed.
It converges to a point that is part of a periodic orbit of the horseshoe map.
The periodic orbit can be labelled by the simplest sequence of As and Bs that
labels one of the regions the periodic orbit visits. For every sequence of As
and Bs there is a periodic orbit.

The Smale horseshoe map is the same topological structure as the homo-
clinic tangle. To dynamically introduce homoclinic tangles, let us consider
a classical engineering problem of escape from a potential well. Namely, if
we have a motion, x = x(t), of a damped particle in a well with potential
energy V = x2/2 − x3/3 (see Figure 1.22) excited by a periodic driving
force, F cos(wt) (with the period T = 2π/w), we are dealing with a nonlinear
dynamical system given by [TS01]

ẍ + aẋ + x− x2 = F cos(wt). (1.20)

Now, if the driving is switched off, i.e., F = 0, we have an autonomous 2D–
system with the phase–portrait (and the safe basin of attraction) given in
Figure 1.22 (below). The grey area of escape starts over the hilltop to infinity.
Once we start driving, the system (1.20) becomes 3–dimensional, with its 3D
phase–space. We need to see the basin in a stroboscopic section (see Figure
1.23). The hill–top solution still has an inset and and outset. As the driving
increases, the inset and outset get tangled. They intersect one another an
infinite number of times. The boundary of the safe basin becomes fractal. As
the driving increases even more, the so–called fractal–fingers created by the
homoclinic tangling, make a sudden incursion into the safe basin. At that
point, the integrity of the in–well motions is lost [TS01].

Now, topologically speaking (referring to the Figure 1.24), let X be the
point of intersection, with X ′ ahead of X on one manifold and ahead of X ′′
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Fig. 1.22. Motion of a damped particle in a potential well, driven by a periodic
force F cos(wt),. Up: potential (x − V )−plot, with V = x2/2 − x3/3; down: the
corresponding phase (x − ẋ)−portrait, showing the safe basin of attraction – if the
driving is switched off (F = 0).

Fig. 1.23. Dynamics of a homoclinic tangle. The hill–top solution of a damped
particle in a potential well driven by a periodic force. As the driving increases, the
inset and outset get tangled.

of the other. The map of each of these points TX ′ and TX ′′ must be ahead
of the map of X, TX. The only way this can happen is if the manifold loops
back and crosses itself at a new homoclinic point , i.e., a point where a stable
and an unstable separatrix (invariant manifold) from the same fixed–point
or same family intersect. Another loop must be formed, with T 2X another
homoclinic point. Since T 2X is closer to the hyperbolic point than TX, the
distance between T 2X and TX is less than that between X and TX. Area
preservation requires the area to remain the same, so each new curve (which is
closer than the previous one) must extend further. In effect, the loops become
longer and thinner. The network of curves leading to a dense area of homoclinic
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points is known as a homoclinic tangle or tendril. Homoclinic points appear
where chaotic regions touch in a hyperbolic fixed–point .

Fig. 1.24. More on homoclinic tangle (see text for explanation).

On the other hand, tangles are in general related to n−categories (see
[II05, II06a, II06b]). Recall that in describing dynamical systems (processes)
by means of n−categories, instead of classical starting with a set of things:

we can now start with a category of things and processes between things:

or, a 2−category of things, processes, and processes between processes:
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... and so on. In this way, topological n−categories form the natural framework
for high–dimensional chaos theory .

1.3.3 Lorenz’ Weather Prediction and Chaos

Recall that an attractor is a set of system’s states (i.e., points in the system’s
phase–space), invariant under the dynamics, towards which neighboring states
in a given basin of attraction asymptotically approach in the course of dynamic
evolution.21 An attractor is defined as the smallest unit which cannot be itself
decomposed into two or more attractors with distinct basins of attraction. This
restriction is necessary since a dynamical system may have multiple attractors,
each with its own basin of attraction.

Conservative systems do not have attractors, since the motion is periodic.
For dissipative dynamical systems, however, volumes shrink exponentially, so
attractors have 0 volume in nD phase–space.

In particular, a stable fixed–point surrounded by a dissipative region is
an attractor known as a map sink .22 Regular attractors (corresponding to 0
Lyapunov exponents) act as limit cycles, in which trajectories circle around
a limiting trajectory which they asymptotically approach, but never reach.
The so–called strange attractors23 are bounded regions of phase–space (corre-
sponding to positive Lyapunov characteristic exponents) having zero measure
in the embedding phase–space and a fractal dimension. Trajectories within a
strange attractor appear to skip around randomly.

In 1963, Ed Lorenz from MIT was trying to improve weather forecasting.
Using a primitive computer of those days, he discovered the first chaotic at-
tractor. Lorenz used three Cartesian variables, (x, y, z), to define atmospheric

21 A basin of attraction is a set of points in the system’s phase–space, such that
initial conditions chosen in this set dynamically evolve to a particular attractor.

22 A map sink is a stable fixed–point of a map which, in a dissipative dynamical
system, is an attractor.

23 A strange attractor is an attracting set that has zero measure in the embedding
phase–space and has fractal dimension. Trajectories within a strange attractor
appear to skip around randomly.



1.3 Brief History of Chaos Theory 45

convection. Changing in time, these variables gave him a trajectory in a (Eu-
clidean) 3D–space. From all starts, trajectories settle onto a chaotic, or strange
attractor . 24

More precisely, Lorenz reduced the Navier–Stokes equations for convective
Bénard fluid flow (see section (1.120) below) into three first order coupled
nonlinear differential equations, already introduced above as (1.7) and demon-
strated with these the idea of sensitive dependence upon initial conditions and
chaos (see [Lor63, Spa82]).
We rewrite the celebrated Lorenz equations here as
24 Edward Lorenz is a professor of meteorology at MIT who wrote the first clear

paper on deterministic chaos. The paper was called ‘Deterministic Nonperiodic
Flow’ and it was published in the Journal of Atmospheric Sciences in 1963. Before
that, in 1960, Lorenz began a project to simulate weather patterns on a computer
system called the Royal McBee. Lacking much memory, the computer was unable
to create complex patterns, but it was able to show the interaction between ma-
jor meteorological events such as tornados, hurricanes, easterlies and westerlies.
A variety of factors was represented by a number, and Lorenz could use computer
printouts to analyze the results. After watching his systems develop on the com-
puter, Lorenz began to see patterns emerge, and was able to predict with some
degree of accuracy what would happen next. While carrying out an experiment,
Lorenz made an accidental discovery. He had completed a run, and wanted to
recreate the pattern. Using a printout, Lorenz entered some variables into the
computer and expected the simulation to proceed the same as it had before. To
his surprise, the pattern began to diverge from the previous run, and after a few
‘months’ of simulated time, the pattern was completely different. Lorenz even-
tually discovered why seemingly identical variables could produce such different
results. When Lorenz entered the numbers to recreate the scenario, the printout
provided him with numbers to the thousandth position (such as 0.617). However,
the computer’s internal memory held numbers up to the millionth position (such
as 0.617395); these numbers were used to create the scenario for the initial run.
This small deviation resulted in a completely divergent weather pattern in just
a few months. This discovery creates the groundwork of chaos theory: In a sys-
tem, small deviations can result in large changes. This concept is now known as
a butterfly effect.

Lorenz definition of chaos is: “The property that characterizes a dynamical
system in which most orbits exhibit sensitive dependence.” Dynamical systems
(like the weather) are all around us. They have recurrent behavior (it is always
hotter in summer than winter) but are very difficult to pin down and predict
apart from the very short term. ‘What will the weather be tomorrow?’ – can be
anticipated, but ‘What will the weather be in a months time?’ is an impossible
question to answer.

Lorenz showed that with a set of simple differential equations seemingly very
complex turbulent behavior could be created that would previously have been
considered as random. He further showed that accurate longer range forecasts in
any chaotic system were impossible, thereby overturning the previous orthodoxy.
It had been believed that the more equations you add to describe a system, the
more accurate will be the eventual forecast.
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Fig. 1.25. Bénard cells, showing a typical vortex of a rolling air, with a warm air
rising in a ring and a cool air descending in the center (left). A simple model of
the Bénard cells provided by the celebrated ‘Lorenz–butterfly’ (or, ‘Lorenz–mask’)
strange attractor (right).

ẋ = a(y − x), ẏ = bx− y − xz, ż = xy − cz, (1.21)

where x, y and z are dynamical variables, constituting the 3D phase–space of
the Lorenz system; and a, b and c are the parameters of the system. Originally,
Lorenz used this model to describe the unpredictable behavior of the weather,
where x is the rate of convective overturning (convection is the process by
which heat is transferred by a moving fluid), y is the horizontal temperature
overturning, and z is the vertical temperature overturning; the parameters are:
a ≡ P−proportional to the Prandtl number (ratio of the fluid viscosity of a
substance to its thermal conductivity, usually set at 10), b ≡ R−proportional
to the Rayleigh number (difference in temperature between the top and bot-
tom of the system, usually set at 28), and c ≡ K−a number proportional to
the physical proportions of the region under consideration (width to height ra-
tio of the box which holds the system, usually set at 8/3). The Lorenz system
(1.121) has the properties:

1. Symmetry : (x, y, z) → (−x,−y, z) for all values of the parameters, and
2. The z−axis (x = y = 0) is invariant (i.e., all trajectories that start on it

also end on it).

Nowadays it is well–known that the Lorenz model is a paradigm for low–
dimensional chaos in dynamical systems in synergetics and this model or its
modifications are widely investigated in connection with modelling purposes
in meteorology, hydrodynamics, laser physics, superconductivity, electronics,
oil industry, chemical and biological kinetics, etc.

The 3D phase–portrait of the Lorenz system (1.52) shows the celebrated
‘Lorenz mask ’, a special type of fractal attractor (see Figure 1.52). It depicts
the famous ‘butterfly effect ’, (i.e., sensitive dependence on initial conditions)
– the popular idea in meteorology that ‘the flapping of a butterfly’s wings in
Brazil can set off a tornado in Texas’ (i.e., a tiny difference is amplified until
two outcomes are totally different), so that the long term behavior becomes
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impossible to predict (e.g., long term weather forecasting). The Lorenz mask
has the following characteristics:

1. Trajectory does not intersect itself in three dimensions;
2. Trajectory is not periodic or transient;
3. General form of the shape does not depend on initial conditions; and
4. Exact sequence of loops is very sensitive to the initial conditions.

1.3.4 Feigenbaum’s Constant and Universality

Mitchell Jay Feigenbaum (born December 19, 1944; Philadelphia, USA) is a
mathematical physicist whose pioneering studies in chaos theory led to the
discovery of the Feigenbaum constant .

In 1964 he began graduate studies at the MIT. Enrolling to study electrical
engineering, he changed to physics and was awarded a doctorate in 1970 for
a thesis on dispersion relations under Francis Low. After short positions at
Cornell University and Virginia Polytechnic Institute, he was offered a longer–
term post at Los Alamos National Laboratory to study turbulence. Although
the group was ultimately unable to unravel the intractable theory of turbulent
fluids, his research led him to study chaotic maps.

Many mathematical maps involving a single linear parameter exhibit ap-
parently random behavior known as chaos when the parameter lies in a certain
range. As the parameter is increased towards this region, the map undergoes
bifurcations at precise values of the parameter. At first there is one stable
point, then bifurcating to oscillate between two points, then bifurcating again
to oscillate between four points and so on. In 1975 Feigenbaum, using the
HP-65 computer he was given, discovered that the ratio of the difference be-
tween the values at which such successive period–doubling bifurcations (called
the Feigenbaum cascade) occur tends to a constant of around 4.6692. He was
then able to provide a mathematical proof of the fact, and showed that the
same behavior and the same constant would occur in a wide class of mathe-
matical functions prior to the onset of chaos. For the first time this universal
result enabled mathematicians to take their first huge step to unravelling the
apparently intractable ‘random’ behavior of chaotic systems. This ‘ratio of
convergence’ is now known as the Feigenbaum constant.

More precisely, the Feigenbaum constant δ is a universal constant for func-
tions approaching chaos via successive period doubling bifurcations. It was
discovered by Feigenbaum in 1975, while studying the fixed–points of the it-
erated function f(x) = 1 − μ|x|r, and characterizes the geometric approach
of the bifurcation parameter to its limiting value (see Figure 1.26) as the
parameter μ is increased for fixed x [Fei79].

The Logistic map is a well known example of the maps that Feigenbaum
studied in his famous Universality paper [Fei78].

In 1986 Feigenbaum was awarded the Wolf Prize in Physics. He has been
Toyota Professor at Rockefeller University since 1986.

For details on Feigenbaum universality, see [Gle87].
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Fig. 1.26. Feigenbaum constant: approaching chaos via successive period doubling
bifurcations. The plot on the left is made by iterating equation f(x) = 1 − μ|x|r
with r = 2 several hundred times for a series of discrete but closely spaced values
of μ, discarding the first hundred or so points before the iteration has settled down
to its fixed–points, and then plotting the points remaining. The plot on the right
more directly shows the cycle may be constructed by plotting function fn(x) −
x as a function of μ, showing the resulting curves for n = 1, 2, 4. Simulated in
MathematicaTM .

1.3.5 May’s Population Modelling and Chaos

Let x(t) be the population of the species at time t; then the conservation law
for the population is conceptually given by (see [Mur02])

ẋ = births− deaths + migration, (1.22)

where ẋ = dx/dt. The above conceptual equation gave rise to a series of popu-
lation models. The simplest continuous–time model, due to Thomas Malthus
from 1798 [Mal798],25 has no migration, while the birth and death terms are
proportional to x,

25 The Rev. Thomas Robert Malthus, FRS (February, 1766–December 23, 1834),
was an English demographer and political economist best known for his pes-
simistic but highly influential views. Malthus’s views were largely developed in
reaction to the optimistic views of his father, Daniel Malthus and his associates,
notably Jean-Jacques Rousseau and William Godwin. Malthus’s essay was also in
response to the views of the Marquis de Condorcet. In An Essay on the Principle
of Population, first published in 1798, Malthus made the famous prediction that
population would outrun food supply, leading to a decrease in food per person:
“The power of population is so superior to the power of the earth to produce
subsistence for man, that premature death must in some shape or other visit
the human race. The vices of mankind are active and able ministers of depopula-
tion. They are the precursors in the great army of destruction; and often finish the
dreadful work themselves. But should they fail in this war of extermination, sickly
seasons, epidemics, pestilence, and plague, advance in terrific array, and sweep
off their thousands and tens of thousands. Should success be still incomplete,
gigantic inevitable famine stalks in the rear, and with one mighty blow levels the
population with the food of the world.” This Principle of Population was based
on the idea that population if unchecked increases at a geometric rate, whereas
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ẋ = bx− dx =⇒ x(t) = x0e(b−d)t, (1.23)

where b, d are positive constants and x0 = x(0) is the initial population.
Thus, according to the Malthus model (1.23), if b > d, the population grows
exponentially, while if b < d, it dies out. Clearly, this approach is fairly over-
simplified and apparently fairly unrealistic. (However, if we consider the past
and predicted growth estimates for the total world population from the 1900,
we see that it has actually grown exponentially.)

This simple example shows that it is difficult to make long–term predic-
tions (or, even relatively short–term ones), unless we know sufficient facts
to incorporate in the model to make it a reliable predictor . In the long run,
clearly, there must be some adjustment to such exponential growth. François
Verhulst [Ver838, Ver845]26 proposed that a self–limiting process should op-
erate when a population becomes too large. He proposed the so–called logistic
growth population model,

ẋ = rx(1− x/K), (1.24)

where r,K are positive constants. In the Verhulst logistic model (2.17), the
constant K is the carrying capacity of the environment (usually determined by
the available sustaining resources), while the per capita birth rate rx(1−x/K)
is dependent on x. There are two steady states (where ẋ = 0) for (2.17): (i)

the food supply grows at an arithmetic rate. Only natural causes (eg. accidents
and old age), misery (war, pestilence, and above all famine), moral restraint and
vice (which for Malthus included infanticide, murder, contraception and homo-
sexuality) could check excessive population growth. Thus, Malthus regarded his
Principle of Population as an explanation of the past and the present situation of
humanity, as well as a prediction of our future. The eight major points regarding
evolution found in his 1798 Essay are: (i) Population level is severely limited by
subsistence. (ii) When the means of subsistence increases, population increases.
(iii) Population pressures stimulate increases in productivity. (iv) Increases in
productivity stimulates further population growth. (v) Since this productivity
can never keep up with the potential of population growth for long, there must
be strong checks on population to keep it in line with carrying capacity. (vi) It is
through individual cost/benefit decisions regarding sex, work, and children that
population and production are expanded or contracted. (vii) Positive checks will
come into operation as population exceeds subsistence level. (viii) The nature of
these checks will have significant effect on the rest of the sociocultural system.

Evolutionists John Maynard Smith and Ronald Fisher were both critical of
Malthus’ theory, though it was Fisher who referred to the growth rate r (used
in logistic equation) as the Malthusian parameter . Fisher referred to “...a relic
of creationist philosophy...” in observing the fecundity of nature and deducing
(as Darwin did) that this therefore drove natural selection. Smith doubted that
famine was the great leveller that Malthus insisted it was.

26 François Verhulst (October 28, 1804–February 15, 1849, Brussels, Belgium) was
a mathematician and a doctor in number theory from the University of Ghent in
1825. Verhulst published in 1838 the logistic demographic model (2.17).
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x = 0 (unstable, since linearization about it gives ẋ ≈ rx); and (ii) x =
K (stable, since linearization about it gives d

dt (x − K) ≈ −r(x − K), so
limt→∞ x = K). The carrying capacity K determines the size of the stable
steady state population, while r is a measure of the rate at which it is reached
(i.e., the measure of the dynamics) – thus 1/r is a representative timescale of
the response of the model to any change in the population. The solution of
(2.17) is

x(t) =
x0Kert

[K + x0(ert − 1)]
=⇒ lim

t→∞
x(t) = K.

In general, if we consider a population to be governed by

ẋ = f(x), (1.25)

where typically f(x) is a nonlinear function of x, then the equilibrium solutions
x∗ are solutions of f(x) = 0, and are linearly stable to small perturbations if
ḟ(x∗) < 0, and unstable if ḟ(x∗) > 0 [Mur02].

In the mid 20th century, ecologists realised that many species had no
overlap between successive generations and so population growth happens in
discrete–time steps xt, rather than in continuous–time x(t) as suggested by
the conservative law (1.22) and its Maltus–Verhulst derivations. This leads
to study discrete–time models given by difference equations, or, maps, of the
form

xt+1 = f(xt), (1.26)

where f(xt) is some generic nonlinear function of xt. Clearly, (1.26) is a
discrete–time version of (1.25). However, instead of solving differential equa-
tions, if we know the particular form of f(xt), it is a straightforward matter to
evaluate xt+1 and subsequent generations by simple recursion of (1.26). The
skill in modelling a specific population’s growth dynamics lies in determining
the appropriate form of f(xt) to reflect known observations or facts about the
species in question.

In 1970s, Robert May, a physicist by training, won the Crafoord Prize
for ‘pioneering ecological research in theoretical analysis of the dynamics of
populations, communities and ecosystems’, by proposing a simple logistic map
model for the generic population growth (1.26).27 May’s model of population
growth is the celebrated logistic map [May76, May73, May76],
27 Lord Robert May received his Ph.D. in theoretical physics from University of

Sydney in 1959. He then worked at Harvard University and the University of
Sydney before developing an interest in animal population dynamics and the
relationship between complexity and stability in natural communities. He moved
to Princeton University in 1973 and to Oxford and the Imperial College in 1988.
May was able to make major advances in the field of population biology through
the application of mathematics. His work played a key role in the development
of theoretical ecology through the 1970s and 1980s. He also applied these tools to
the study of disease and to the study of bio–diversity .
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xt+1 = r xt (1− xt), (1.27)

where r is the Malthusian parameter that varies between 0 and 4, and the
initial value of the population x0 = x(0) is restricted to be between 0 and
1. Therefore, in May’s logistic map (1.27), the generic function f(xt) gets a
specific quadratic form

f(xt) = r xt (1− xt).

For r < 3, the xt have a single value. For 3 < r < 3.4, the xt oscillate between
two values (see bifurcation diagram28 on Figure 1.27). As r increases, bifur-
cations occur where the number of iterates doubles. These period doubling
bifurcations continue to a limit point at rlim = 3.569944 at which the period
is 2∞ and the dynamics become chaotic. The r values for the first two bifur-
cations can be found analytically, they are r1 = 3 and r2 = 1 +

√
6. We can

label the successive values of r at which bifurcations occur as r1, r2, ... The

Fig. 1.27. Bifurcation diagram for the logistic map, simulated using
MathematicaTM .

universal number associated with such period doubling sequences is called the
Feigenbaum number ,

δ = lim
k→∞

rk − rk−1

rk+1 − rk
≈ 4.669.

This series of period–doubling bifurcations says that close enough to rlim
the distance between bifurcation points decreases by a factor of δ for each
bifurcation. The complex fractal pattern got in this way shrinks indefinitely.
28 A bifurcation diagram shows the possible long–term values a variable of a system

can get in function of a parameter of the system.
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1.3.6 Hénon’s Special 2D Map and Its Strange Attractor

Michel Hénon (born 1931 in Paris, France) is a mathematician and as-
tronomer. He is currently at the Nice Observatory. In astronomy, Hénon is well
known for his contributions to stellar dynamics, most notably the problem of
globular cluster (see [Gle87]). In late 1960s and early 1970s he was involved
in dynamical evolution of star clusters, in particular the globular clusters. He
developed a numerical technique using Monte Carlo methods, to follow the
dynamical evolution of a spherical star cluster much faster than the so–called
n−body methods. In mathematics, he is well known for the Hénon map, a
simple discrete dynamical system that exhibits chaotic behavior. Lately he
has been involved in the restricted 3−body problem.

His celebrated Hénon map [Hen69] is a discrete–time dynamical system
that is an extension of the logistic map (1.27) and exhibits a chaotic behav-
ior. The map was introduced by Michel Hénon as a simplified model of the
Poincaré section of the Lorenz system (1.121). This 2D–map takes a point
(x, y) in the plane and maps it to a new point defined by equations

xn+1 = yn + 1− ax2
n, yn+1 = bxn,

The map depends on two parameters, a and b, which for the canonical Hénon
map have values of a = 1.4 and b = 0.3 (see Figure 1.28). For the canonical
values the Hénon map is chaotic. For other values of a and b the map may
be chaotic, intermittent, or converge to a periodic orbit. An overview of the

Fig. 1.28. Hénon strange attractor (see text for explanation), simulated using
Dynamics SolverTM .

type of behavior of the map at different parameter values may be obtained
from its orbit (or, bifurcation) diagram (see Figure 1.29). For the canonical
map, an initial point of the plane will either approach a set of points known
as the Hénon strange attractor , or diverge to infinity. The Hénon attractor
is a fractal, smooth in one direction and a Cantor set in another. Numerical
estimates yield a correlation dimension of 1.42±0.02 (Grassberger, 1983) and



1.3 Brief History of Chaos Theory 53

a Hausdorff dimension of 1.261±0.003 (Russel 1980) for the Hénon attractor.
As a dynamical system, the canonical Hénon map is interesting because, unlike
the logistic map, its orbits defy a simple description. The Hénon map maps

Fig. 1.29. Bifurcation diagram of the Hénon strange attractor, simulated using
Dynamics SolverTM .

two points into themselves: these are the invariant points. For the canonical
values of a and b, one of these points is on the attractor: x = 0.631354477...
and y = 0.189406343... This point is unstable. Points close to this fixed–point
and along the slope 1.924 will approach the fixed–point and points along the
slope -0.156 will move away from the fixed–point. These slopes arise from the
linearizations of the stable manifold and unstable manifold of the fixed–point.
The unstable manifold of the fixed–point in the attractor is contained in the
strange attractor of the Hénon map. The Hénon map does not have a strange
attractor for all values of the parameters a and b. For example, by keeping
b fixed at 0.3 the bifurcation diagram shows that for a = 1.25 the Hénon
map has a stable periodic orbit as an attractor. Cvitanovic et al. [CGP88]
showed how the structure of the Hénon strange attractor could be understood
in terms of unstable periodic orbits within the attractor.

For the (slightly modified) Hénon map: xn+1 = ayn+1−x2
n, yn+1 = bxn,

there are three basins of attraction (see Figure 1.30).
The generalized Hénon map is a 3D–system (see Figure 1.31)

xn+1 = a xn − z (yn − x2
n)), yn+1 = z xn + a (yn − x2

n)), zn+1 = zn,

where a = 0.24 is a parameter. It is an area–preserving map, and simulates
the Poincaré map of period orbits in Hamiltonian systems. Repeated ran-
dom initial conditions are used in the simulation and their gray–scale color is
selected at random.

Other Famous 2D Chaotic Maps

1. The standard map:

xn+1 = xn + yn+1/2π, yn+1 = yn + a sin(2πxn).
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Fig. 1.30. Three basins of attraction for the Hénon map xn+1 = ayn + 1 − x2
n,

yn+1 = bxn, with a = 0.475.

Fig. 1.31. Phase–plot of the area–preserving generalized Hénon map, simulated
using Dynamics SolverTM .

2. The circle map:

xn+1 = xn + c + yn+1/2π, yn+1 = byn − a sin(2πxn).

3. The Duffing map:
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xn+1 = yn, yn+1 = −bxn + ayn − y3
n.

4. The Baker map:

xn+1 = bxn, yn+1 = yn/a if yn ≤ a,

xn+1 = (1− c) + cxn, yn+1 = (yn − a)/(1− a) if yn > a.

5. The Kaplan–Yorke map:

xn+1 = axn mod 1, yn+1 = −byn + cos(2πxn).

6. The Ott–Grebogi–Yorke map:

xn+1 = xn + w1 + aP1(xn, yn)mod 1,
yn+1 = yn + w2 + aP2(xn, yn)mod 1,

where the nonlinear functions P1, P2 are sums of sinusoidal functions
A

(i)
rs sin[2π(rx + sy + B

(i)
rs )], with (r, s) = (0, 1), (1, 0), (1, 1), (1,−1), while

A
(i)
rs , B

(i)
rs were selected randomly in the range [0, 1].

1.4 More Chaotic and Attractor Systems

Here we present numerical simulations of several popular chaotic systems (see,
e.g., [Wig90, BCB92, Ach97]). Generally, to observe chaos in continuous time
system, it is known that the dimension of the equation must be three or
higher. That is, there is no chaos in any phase plane (see [Str94]), we need
the third dimension for chaos in continuous dynamics. However, note that
all forced oscillators have actually dimension 3, although they are commonly
written as second–order ODEs.29 On the other hand, in discrete–time systems
like logistic map or Hénon map, we can see chaos even if the dimension is one.

Simple Pendulum

Recall (see [II05, II06a, II06b]) that a simple undamped pendulum (see Figure
1.32), given by equation

θ̈ +
g

l
sin θ = 0, (1.28)

swings forever; it has closed orbits in a 2D phase–space (see Figure 1.33).
The conservative (un–damped) pendulum equation (1.28) does not take

into account the effects of friction and dissipation. On the other hand, a simple
29 Both Newtonian equation of motion and RLC circuit can generate chaos, provided

they have a forcing term. This forcing (driving) term in second–order ODEs is
the motivational reason for development of the jet–bundle formalism for non–
autonomous dynamics (see [II06b]).
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Fig. 1.32. Force diagram of a simple gravity pendulum.

Fig. 1.33. Phase portrait of a simple gravity pendulum.

damped pendulum (see Figure 1.32) is given by modified equation, including
a damping term proportional to the velocity,

θ̈ + γθ̇ +
g

l
sin θ = 0,

with the positive constant damping γ. This pendulum settles to rest (see
Figure 1.34). Its spiralling orbits lead to a point attractor (focus) in a 2D
phase–space. All closed trajectories for periodic solutions are destroyed, and
the trajectories spiral around one of the critical points, corresponding to the
vertical equilibrium of the pendulum. On the phase plane, these critical points
are stable spiral points for the underdamped pendulum, and they are stable
nodes for the overdamped pendulum. The unstable equilibrium at the inverted
vertical position remains an unstable saddle point. It is clear physically that
damping means loss of energy. The dynamical motion of the pendulum decays
due to the friction and the pendulum relaxes to the equilibrium state in the
vertical position.
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Fig. 1.34. A damped gravity pendulum settles to a rest: its phase portrait (up)
shows spiralling orbits that lead to a focus attractor; its time plot (down) shows
three common damping cases.

Finally, a driven pendulum, periodically forced by a force term F cos(wDt),
is given by equation (see our introductory example (1.1))

θ̈ + γθ̇ +
g

l
sin θ = F cos(wDt). (1.29)

It has a 3D phase–space and can exhibit chaos (for certain values of its pa-
rameters, see Figure 1.35).

Van der Pol Oscillator

The unforced Van der Pol oscillator has the form of a second order ODE
(compare with 1.4 above)

ẍ = α (1− x2) ẋ− ω2 x. (1.30)

Its celebrated limit cycle is given in Figure 1.36. The simulation is performed
with zero initial conditions and parameters α = random(0, 3), and ω = 1.
The Van der Pol oscillator was the first relaxation oscillator , used in 1928
as a model of human heartbeat (ω controls how much voltage is injected
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Fig. 1.35. A driven pendulum has a 3D phase–space with angle θ, angular velocity
θ̇ and time t. Dashed lines denote steady states, while solid lines denote transients.
Right–down we see a sample chaotic attractor (adapted and modified from [TS01]).

into the system, and α controls the way in which voltage flows through the
system). The oscillator was also used as a model of an electronic circuit that
appeared in very early radios in the days of vacuum tubes. The tube acts like
a normal resistor when current is high, but acts like a negative resistor if the
current is low. So this circuit pumps up small oscillations, but drags down
large oscillations. α is a constant that affects how nonlinear the system is. For
α equal to zero, the system is actually just a linear oscillator. As α grows the
nonlinearity of the system becomes considerable.

The sinusoidally–forced Van der Pol oscillator is given by equation

ẍ− α (1− x2) ẋ + ω2 x = γ cos(φt), (1.31)

where φ is the forcing frequency and γ is the amplitude of the forcing sinusoid.

Nerve Impulse Propagation

The nerve impulse propagation along the axon of a neuron can be studied
by combining the equations for an excitable membrane with the differential
equations for an electrical core conductor cable, assuming the axon to be an
infinitely long cylinder. A well known approximation of FitzHugh [Fit61] and
Nagumo [NAY60] to describe the propagation of voltage pulses V (x, t) along
the membranes of nerve cells is the set of coupled PDEs

Vxx − Vt = F (V ) + R− I, Rt = c(V + a− bR), (1.32)
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Fig. 1.36. Cascade of 30 unforced Van der Pol oscillators, simulated using
MathematicaTM ; top–down: displacements, velocities and phase–plot (showing the
celebrated limit cycle).

where R(x, t) is the recovery variable, I the external stimulus and a, b, c
are related to the membrane radius, specific resistivity of the fluid inside the
membrane and temperature factor respectively.

When the spatial variation of V , namely Vxx, is negligible, (1.32) reduces
to the Van der Pol oscillator,

V̇ = V − V 3

3
−R + I, Ṙ = c(V + a− bR),

with F (V ) = −V +V 3

3 . Normally the constants in (1.32) satisfy the inequalities
b < 1 and 3a + 2b > 3, though from a purely mathematical point of view
this need not be insisted upon. Then with a periodic (ac) applied membrane
current A1 cosωt and a (dc) bias A0, the Van der Pol equation becomes

V̇ = V − V 3

3
−R + A0 + A1 cosωt, Ṙ = c(V + a− bR). (1.33)

Further, (1.33) can be rewritten as a single second–order ODE by differ-
entiating V̇ with respect to time and using Ṙ for R,
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V̈ − (1− bc)
{

1− V 2

1− bc

}
V̇ − c(b− 1)V +

bc

3
V 3

= c(A0b− a) + A1 cos(ωt + φ), (1.34)

where φ = tan−1 ω
bc . Using the transformation x = (1− bc)−(1/2)V , t −→ t′ =

t + φ
ω , (1.34) can be rewritten as

ẍ + p(x2 − 1)ẋ + ω2
0x + βx3 = f0 + f1 cosωt, where (1.35)

p = (1− bc), ω2
0 = c(1− b), β = bc

(1− bc)
3

,

f0 = c
(A0b− a)√

1− bc
, f1 =

A1√
1− bc

.

Note that (1.35), or its rescaled form

ẍ + p(kx2 + g)ẋ + ω2
0x + βx3 = f0 + f1 cosωt, (1.36)

is the Duffing–Van der Pol equation. In the limit k = 0, we have the Duffing
equation discussed below (with f0 = 0), and in the case β = 0 (g = −1,
k = 1) we have the forced van der Pol equation. Equation (1.36) exhibits
a very rich variety of bifurcations and chaos phenomena, including quasi–
periodicity, phase lockings and so on, depending on whether the potential
V = 1

2ω
2
0x

2 + βx4

4 is i) a double well, ii) a single well or iii) a double hump
[Lak97, Lak03].

Duffing Oscillator

The forced Duffing oscillator [Duf18] has the form similar to (1.31),

ẍ + b ẋ− a x (1− x2) = γ cos(φt). (1.37)

Stroboscopic Poincaré sections of a strange attractor can be seen (Figure
1.37), with the stretch–and–fold action at work. The simulation is performed
with parameters: a = 1, b = 0.2, and γ = 0.3, φ = 1. The Duffing equation is
used to model a double well oscillator such as the magneto–elastic mechanical
system. This system consists of a beam positioned vertically between two
magnets, with the top end fixed, and the bottom end free to swing. The
beam will be attracted to one of the two magnets, and given some velocity
will oscillate about that magnet until friction stops it. Each of the magnets
creates a fixed–point where the beam may come to rest above that magnet and
remain there in equilibrium. However, when this whole system is shaken by a
periodic forcing term, the beam may jump back and forth from one magnet to
the other in a seemingly random manner. Depending on how big the shaking
term is, there may be no stable fixed–points and no stable fixed cycles in the
system.
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Fig. 1.37. Duffing strange attractor, showing stroboscopic Poincaré sections; sim-
ulated using Dynamics SolverTM .

Rossler System

Classical Rossler system is given by equations

ẋ = −y − z, ẏ = x + b y, ż = b + z (x− a). (1.38)

Using the parameter values a = 4 and b = 0.2, the phase–portrait is produced
(see Figure 1.38), showing the celebrated attractor. The system is credited to
O. Rossler and arose from work in chemical kinetics.

Fig. 1.38. The celebrated Rossler attractor, simulated using Dynamics SolverTM .

Chua’s Circuit

Chua’s circuit is a simple electronic circuit that exhibits classic chaotic be-
havior. First introduced in 1983 by Leon O. Chua, its ease of construction has
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made it an ubiquitous real–world example of a chaotic system, leading some
to declare it ‘a paradigm for chaos’. It has been the subject of much study;
hundreds of papers have been published on this topic (see [Chu94]).

Fig. 1.39. Chua’s circuit.

The Chua’s circuit consists of two linear capacitors, two linear resistors,
one linear inductor and a nonlinear resistor (see Figure 1.39). By varying
the various circuit parameters, we can get complicated nonlinear and chaotic
phenomena. Let us consider the case where we vary the conductance G of the
resistor R and keep the other components fixed. In particular, we choose L =
18mH,R0 = 12.5Ohms,C1 = 10nF,C2 = 100nF . The nonlinear resistor
NR (Chua’s diode) is chosen to have a piecewise–linear V − I characteristic
of the form:

i = −

⎧
⎨

⎩

Gbv + Ga −Gb if v > 1,
Gav if |v| < 1,

Gbv + Gb −Ga if v < −1,

with Ga = −0.75757mS, and Gb = −0.40909mS.
Starting from low G−values, the circuit is stable and all trajectories con-

verge towards one of the two stable equilibrium points. As G is increased,
a limit cycle appears due to a Hopf–like bifurcation. In order to observe the
period–doubling route to chaos, we need to further increase G. At the end
of the period–doubling bifurcations, we observe a chaotic attractor. Because
of symmetry, there exists a twin attractor lying in symmetrical position with
respect the the origin. As G is further increased, these two chaotic attractors
collide and form a ‘double scroll’ chaotic attractor.

After normalization, the state equations for the Chua’s circuit read:

ẋ = a(y − x− f(x)), ẏ = x− y + z, ż = −by − cz, (1.39)

where f(x) is a nonlinear function to be manipulated to give various chaotic
behaviors.

By using a specific form of the nonlinearity f(x), a family of multi–spiral
strange attractors have been generated in [Ala99] (see Figure 1.40).



1.4 More Chaotic and Attractor Systems 63

Fig. 1.40. A multi–spiral strange attractor of the Chua’s circuit (modified from
[Ala99]).

Inverted Pendulum

Stability of the inverted driven pendulum given by equation

θ̈ + k θ̇ + (1 + a
√

φ cos(φt)) sin θ = 0,

where θ is the angle, is simulated in Figure 1.41, using the parameter a = 0.33.
It is possible to stabilize a mathematical pendulum around the upper vertical
position by moving sinusoidally the suspension point in the vertical direction.
Furthermore, the perturbed solution may be of two kinds: one goes to the
vertical position while the other becomes periodic (see, e.g., [Ach97]).

Fig. 1.41. Duffing strange attractor, showing stroboscopic Poincaré sections; sim-
ulated using Dynamics SolverTM .

Elastic Pendulum

Elastic pendulum (Figure 1.42) of proper length l, mass m and elastic constant
k is given by equation
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ẍ = x
√

ẏ + cos y − a (x− 1), ÿ = −(2 ẋ ẏ + sin y)/x,

where the parameter a = kl/mg = 0.4. High values of a give raise to a simple
pendulum.

Fig. 1.42. Phase–portrait of an elastic pendulum showing Lissajous curves; simu-
lated using Dynamics SolverTM .

Lorenz–Maxwell–Haken System

In 1975, H. Haken showed [Hak83] that the Lorenz equations (1.52) were
isomorphic to the Maxwell–Haken laser equations

Ė = σ(P − E), Ṗ = β(ED − P ), Ḋ = γ(σ − 1−D − σEP ),

Here, the variables in the Lorenz equations, namely x,y and z correspond to
the slowly varying amplitudes of the electric field E and polarization P and
the inversion D respectively in the Maxwell–Haken equations. The parameters
are related via c = γ

β , a = σ
β and b = σ + 1, where γ is the relaxation rate

of the inversion, β is the relaxation rate of the polarization, σ is the field
relaxation rate, and σ represents the normalized pump power.

Autocatalator System

This 4D autocatalator system from chemical kinetics (see Figure 1.43) is de-
fined as (see, e.g., [BCB92])

ẋ1 = −a x1, ẋ2 = a x1 − b x2 − x2 x2
3, ẋ3 = b x2 − x3 + x2 x2

3, ẋ4 = x3.

The simulation is performed with parameters: a = 0.002, and b = 0.08.
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Fig. 1.43. 3D phase–portrait of the 4D autocatalator system, simulated using
Dynamics SolverTM .

Fig. 1.44. The celebrated conformal Mandelbrot (left) and Julia (right) sets in the
complex plane, simulated using Dynamics SolverTM .

Mandelbrot and Julia Sets

Recall that Mandelbrot and Julia sets (see Figure 1.44) are celebrated fractals.
Recall that fractals are sets with fractional dimension (see Figure 1.45). The
Mandelbrot and Julia sets are defined either by a quadratic conformal z−map
[Man80a, Man80b]

zn+1 = z2
n + c,

or by a real (x, y)−map

xn+1 =
√

xn −
√

yn + c1, yn+1 = 2xn yn + c2,

where c, c1 and c2 are parameters. For almost every c, this conformal trans-
formation generates a fractal (probably, only for c = −2 it is not a fractal).
Julia set Jc with c� 1, the capacity dimension is

dcap = 1 +
|c|2

4 ln 2
+ O(|c|3).
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The set of all points for which Jc is connected is the Mandelbrot set.30

Fig. 1.45. Fractal dimension of curves in R
2: d = logN

log1/r
.

Biomorphic Systems

Closely related to the Mandelbrot and Julia sets are biomorphic systems,
which look like one–celled organisms. The term ‘biomorph’ was proposed by
C. Pickover from IBM [Pic86, Pic87]. Pickover’s biomorphs inhabit the com-
plex plane like the the Mandelbrot and Julia sets and exhibit a protozoan
morphology . Biomorphs began for Pickover as a ‘bug’ in a program intended
to probe the fractal properties of various formulas. He accidentally used an
OR logical operator instead of an AND operator in the conditional test for the
size of z′s real and imaginary parts. The cilia that project from the biomorphs
are a consequence of this ‘error’. Each biomorph is generated by multiple it-
erations of a particular conformal map,
30 The Mandelbrot set has its place in complex–valued dynamics, a field first investi-

gated by the French mathematicians Pierre Fatou [Fat19, Fat22] and Gaston Julia
[Jul18] at the beginning of the 20th century. For general families of holomorphic
functions, the boundary of the Mandelbrot set generalizes to the bifurcation locus,
which is a natural object to study even when the connectedness locus is not use-
ful. A related Mandelbar set was encountered by mathematician John Milnor in
his study of parameter slices of real cubic polynomials; it is not locally connected;
this property is inherited by the connectedness locus of real cubic polynomials.
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zn+1 = f(zn, c),

where c is a parameter. Each iteration takes the output of the previous op-
erations as the input of the next iteration. To generate a biomorph, one first
needs to lay out a grid of points on a rectangle in the complex plane [And01].
The coordinate of each point constitutes the real and imaginary parts of an
initial value, z0, for the iterative process. Each point is also assigned a pixel
on the computer screen. Depending on the outcome of a simple test on the
‘size’ of the real and imaginary parts of the final value, the pixel is colored
either black or white. The biomorphs presented in Figure 1.46 are generated
using the following conformal functions:

1. f(z, c) = z3,
2. f(z, c) = z3 + c, c = 10,
3. f(z, c) = z3 + c, c = 10− 10i,
4. f(z, c) = z5 + c, c = 0.77− 0.77i,
5. f(z, c) = z3 + sin z + c, c = 1− i,
6. f(z, c) = z6 + sin z + c, c = 0.5− 0.5i,
7. f(z, c) = z2 sin z + c, c = 0.78− 0.78i,
8. f(z, c) = zc, c = 5− i,
9. f(z, c) = |z|c sin z, c = 4,

10. f(z, c) = |z|c cos z + c, c = 3 + 3i,
11. f(z, c) = |z|c(cos z + z) + c, c = 3 + 2i.

Fig. 1.46. Pickover’s biomorphs (see text for details).

1.5 Continuous Chaotic Dynamics

The prediction of the behavior of a system when its evolution law is known,
is a problem with an obvious interest in many fields of scientific research.
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Roughly speaking, within this problem two main areas of investigation may
be identified [CFL97]:

A) The definition of the ‘predictability time’. If one knows the initial state
of a system, with a precision δo = |δx(0)|, what is the maximum time
Tp within which one is able to know the system future state with a given
tolerance δmax?

B) The understanding of the relaxation properties. What is the relation
between the mean response of a system to an external perturbation and
the features of its un–perturbed state [Lei78]? Using the terminology of
statistical mechanics, one wants to reduce ‘non–equilibrium’ properties,
such as relaxation and responses, to ‘equilibrium’ ones, such as correlation
functions [KT85].

A remarkable example of type–A problem is the weather forecasting, where
one has to estimate the maximum time for which the prediction is enough
accurate. As an example of type–B problem, of geophysical interest, one can
mention a volcanic eruption which induces a practically instantaneous change
in the temperature. In this case it is relevant to understand how the difference
between the atmospheric state after the eruption and the hypothetical un–
perturbed state without the eruption evolves in time. In practice one wants
to understand how a system absorbs, on average, the perturbation δf(τ) of
a certain quantity f (e.g., the temperature), just looking at the statistical
features, as correlations, of f in the un–perturbed regime. This is the so called
fluctuation/relaxation problem [Lei75].

As far as problem–A is concerned, in the presence of deterministic chaos, a
rather common situation, the distance between two initially close trajectories
diverges exponentially:

|δx(t)| ∼ δo exp(λt), (1.40)

where λ is the maximum Lyapunov exponent of the system [BGS76]. From
(2.23) it follows:

Tp ∼
1
λ

ln
(

δmax
δo

)
. (1.41)

Since the dependence on δmax and δo is very weak, Tp appears to be propor-
tional to the inverse of the Lyapunov exponent. We stress however that (2.24)
is just a naive answer to the predictability problem, since it does not take into
account the following relevant features of the chaotic systems:

i) The Lyapunov exponent is a global quantity, i.e., it measures the average
exponential rate of divergence of nearby trajectories. In general there are
finite-time fluctuations of this rate, described by means of the so called
effective Lyapunov exponent γt(τ). This quantity depends on both the
time delay τ and the time t at which the perturbation acted [PSV87].
Therefore, the predictability time Tp fluctuates, following the γ−variations
[CJP93].
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ii) In systems with many degrees of freedom one has to understand how a
perturbation grows and propagates trough the different degrees of free-
dom. In fact, one can be interested in the prediction on certain variables,
e.g., those associated with large scales in weather forecasting, while the
perturbations act on a different set of variables, e.g., those associated to
small scales.

iii) If one is interested into non–infinitesimal perturbations, and the system
possess many characteristic times, such as the eddy turn–over times in
fully developed turbulence, then Tp is determined by the detailed mech-
anism of propagation of the perturbations through different degrees of
freedom, due to nonlinear effects. In particular, Tp may have no relation
with λ [ABC96].

In addition to these points, when the evolution of a system is ruled by a
set of ODEs,

ẋ = f(x, t), (1.42)

which depend periodically on time,

f(x, t + T ) = f(x, t), (1.43)

one can have a kind of ‘seasonal’ effect, for which the system shows an al-
ternation, roughly periodic, of low and high predictability. This happens, for
example, in the recently studied case of stochastic resonance in a chaotic de-
terministic system, where one observes a roughly periodic sequence of chaotic
and regular evolution intervals [CFP94].

As far as problem–B is concerned, it is possible to show that in a chaotic
system with an invariant measure P (x), there exists a relation between the
mean response 〈δxj(τ)〉P after a time τ from a perturbation δxi(0), and a
suitable correlation function. Namely, one has the following equation [CFL97]

Rij(τ) ≡ 〈δxj(τ)〉P
δxi(0)

=
〈
xj(τ)

∂S(x(0))
∂xi

〉

P

, (1.44)

where S(x) = − lnP (x). Equation (1.44) ensures that the mean relaxation of
the perturbed system is equal to some correlation of the un–perturbed system.
As, in general, one does not know P (x), (1.44) provides only a qualitative
information.

1.5.1 Dynamics and Non–Equilibrium Statistical Mechanics

Recall that statistical mechanics, which was created at the end of the 19-th
century by such people as Maxwell, Boltzmann, and Gibbs, consists of two
rather different parts: equilibrium and non–equilibrium statistical mechanics.
The success of equilibrium statistical mechanics has been spectacular. It has
been developed to a high degree of mathematical sophistication, and applied
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with success to subtle physical problems like the study of critical phenomena.
Equilibrium statistical mechanics also has highly nontrivial connections with
the mathematical theory of smooth dynamical systems and the physical the-
ory of quantum fields. By contrast, the progress of non–equilibrium statistical
mechanics has been much slower. We still depend on the insights of Boltzmann
for our basic understanding of irreversibility, and this understanding remains
rather qualitative. Further progress has been mostly on dissipative phenom-
ena close to equilibrium: Onsager reciprocity relations [Ons35], Green–Kubo
formula [Gre51, Kub57], and related results. Yet, there is currently a strong
revival of non–equilibrium statistical mechanics, based on taking seriously the
complications of the underlying microscopic dynamics.

In this subsection, following [Rue78, Rue98, Rue99], we provide a general
discussion of irreversibility . It is a fact of common observation that the be-
havior of bulk matter is often irreversible: if a warm and a cold body are put
in contact, they will equalize their temperatures, but once they are at the
same temperature they will not spontaneously go back to the warm and cold
situation. Such facts have been organized into a body of knowledge named
thermodynamics. According to thermodynamics, a number called entropy can
be associated with macroscopic systems which are (roughly speaking) locally
in equilibrium. The definition is such that, when the system is isolated, its
entropy can only increase with time or stay constant (the celebrated Second
Law of thermodynamics). A strict increases in entropy corresponds to an irre-
versible process. Such processes are also called dissipative structures, because
they dissipate noble forms of energy (like mechanical energy) into heat. The
flow of a viscous fluid, the passage of an electric current through a conductor,
or a chemical reaction like a combustion are typical dissipative phenomena.
The purpose of non–equilibrium statistical mechanics is to explain irreversibil-
ity on the basis of microscopic dynamics, and to give quantitative predictions
for dissipative phenomena. In what follows we shall assume that the micro-
scopic dynamics is classical. Unfortunately we shall have little to say about
the quantum case.

Dynamics and Entropy

We shall begin with a naive discussion, and then see how we have to modify
it to avoid the difficulties that will arise. The microscopic time evolution (f t)
which we want to consider is determined by an evolution equation

ẋ = F (x), (1.45)

in a phase–space M . More precisely, for an isolated system with Hamiltonian
H = H(q, p), we may rewrite (1.45) as

d

dt

(
p
q

)
=

(
−∂qH
∂pH

)
, (1.46)
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where p, and q are ND for a system with N DOF, so that the phase–space
M is 2ND manifold. Note that we are interested in a macroscopic descrip-
tion of a macroscopic system where N is large, and microscopic details can-
not be observed. In fact many different points (p, q) in phase–space have the
same macroscopic appearance. It appears therefore reasonable to describe a
macroscopic state of our system by a probability measure m(dx) on M . At
equilibrium, m(dx) should be an (f t)-invariant measure. Remember now that
the Hamiltonian time evolution determined by (1.46) preserves the energy
and the volume element dp dq in phase–space. This leads to the choice of the
micro–canonical ensemble [Rue99]

mK(dq dp) =
1

ΩK
δ(H(q, p)−K)dq dp, (1.47)

to describe the equilibrium state of energy K (ΩK is a normalization constant,
and the ergodic hypothesis asserts that mK is ergodic). Note that the support
of mK is the energy shell

MK = {(q, p) : H(q, p) = K}.

If the probability measure m(dq dp) has density m(q, p) with respect to
dq dp, we associate with the state described by this measure the entropy

S(m) = −
∫

dq dpm(q, p) logm(q, p). (1.48)

This is what Lebowitz [Leb93] calls the Gibbs entropy , it is the accepted
expression for the entropy of equilibrium states. There is a minor technical
complication here. While (1.48) gives the right result for the canonical en-
semble one should, for the micro–canonical ensemble, replace the reference
measure dp dq in (1.47) by δ(H(q, p)−K)dq dp. This point is best appreciated
in the light of the theory of equivalence of ensembles in equilibrium statisti-
cal mechanics. For our purposes, the easiest is to replace δ in (1.47) by the
characteristic function of [0, ε] for small ε. The measure mK is then still in-
variant, but no longer ergodic. Note also that the traditional definition of the
entropy has a factor k (Bolzmann constant) in the right–hand side of (1.48),
and it remains reasonable outside of equilibrium, as information theory for
instance would indicate. Writing x instead of (q, p), we know that the density
of m̂ = f t∗m is given by

m̂(x) =
m(f−tx)
Jt(f−tx)

,

where Jt is the Jacobian determinant of f t. We have thus [Rue99]

S(m) = −
∫

dxm(x) logm(x), (1.49)
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S(m̂) = −
∫

dx m̂(x) log m̂(x) = −
∫

dx
m(f−tx)
Jt(f−tx)

log
m(f−tx)
Jt(f−tx)

,

= −
∫

dxm(x) log
m(x)
Jt(x)

= S(m) +
∫

dxm(x) log Jt(x) (1.50)

In the Hamiltonian situation that we are considering for the moment, since the
volume element is preserved by f t, Jt = 1, and therefore S(m̂) = S(m). So,
we have a problem: the entropy seems to remain constant in time. In fact, we
could have expected that there would be a problem because the Hamiltonian
evolution (1.46) has time–reversal invariance (to be discussed later), while we
want to prove an increase of entropy which does not respect time reversal. We
shall now present Boltzmann’s way out of this difficulty.

Classical Boltzmann Theory

Let us cut M into cells ci so that the coordinates p, q have roughly fixed values
in a cell. In particular all points in ci are macroscopically equivalent (but
different ci may be macroscopically indistinguishable). Instead of describing a
macroscopic state by a probability measure m, we may thus give the weights
m(ci). Now, time evolution will usually distort the cells, so that each f tci
will now intersect a large number of cells. If the initial state m occupies N
cells with weights 1/N (taken to be equal for simplicity), the state f∗tm will
occupy (thinly) N t cells with weights 1/N t, where N t may be much larger
than N . If the ci have side h, we have [Rue99]

logN = −m(ci) logm(ci) ≈ −
∫

dxm(x) log(m(x)h2N ) = S(m)− 2N log h,

i.e., the entropy associated with m is roughly logN + 2N log h. The apparent
entropy associated with f t∗m is similarly logN t + 2N log h; it differs from
S(m̂) because the density m̂, which may fluctuate rapidly in a cell, has been
replaced by an average for the computation of the apparent entropy. The en-
tropy increase logN t − logN is due to the fact that the initial state m is
concentrated in a small region of phase–space, and becomes by time evolu-
tion spread (thinly) over a much larger region. The time evolved state, after
a little smoothing (coarse graining), has a strictly larger entropy than the
initial state. This gives a microscopic interpretation of the second law of ther-
modynamics. In specific physical examples (like that of two bodies in contact
with initially different temperatures) one sees that the time evolved state has
correlations (say between the microscopic states of the two bodies, after their
temperatures have equalized) which are macroscopically unobservable. In the
case of a macroscopic system locally close to equilibrium (small regions of
space have a definite temperature, pressure,. . . ) the above classical ideas of
Boltzmann have been expressed in particularly clear and compelling manner
by [Leb93]. He defines a local Boltzmann entropy to be the equilibrium entropy
corresponding to the temperature, pressure,. . . which approximately describe
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locally a non–equilibrium state. The integral over space of the Boltzmann en-
tropy is then what we have called apparent entropy, and is different from the
Gibbs entropy defined by (1.48). These ideas would deserve a fuller discussion,
but here we shall be content to refer to [Leb93], and to Boltzmann’s original
works. There is still some opposition to Boltzmann’s ideas (notably by I. Pri-
gogine and his school, see [Pri62]), but most workers in the area accept them,
and so shall we. We shall however develop a formalism which is both rather
different from and completely compatible with the ideas of Boltzmann and
Lebowitz just discussed.

Description of States by Probability Measures

In the above discussion, we have chosen to describe states by probability mea-
sures. One may object that the state of a (classical) system is represented by
a point in phase–space rather than by a probability measure. But for a many-
particle system like those of interest in statistical mechanics it is practically
impossible to know the position of all the particles, which changes rapidly with
time anyway. The information that we have is macroscopic or statistical and
it is convenient to take as description of our system a probability distribution
ρ on phase–space compatible with the information available to us. Trying to
define this ρ more precisely at this stage leads to the usual kind of difficulties
that arise when one wants to get from a definition what should really come as
a result of theory. For our later purposes it is technically important to work
with states described by probability measures. Eventually, we shall get results
about individual points of phase–space (true almost everywhere with respect
to some measure). From a physical point of view, it would be desirable to
make use here of points of phase–space which are typical for a macroscopic
state of our system. Unfortunately, a serious discussion of this point seems
out of reach in the present state of the theory.

Beyond Boltzmann

There are two reasons why one would want to go beyond the ideas presented
above. One concerns explicit calculations, like that of a rate of entropy pro-
duction; the other concerns situations far from equilibrium. We discuss these
two points successively. If one follows Boltzmann and uses a decomposition
of phase–space into cells to compute entropy changes, the result need not be
monotone in time, and will in general depend on the particular decomposition
used. Only after taking a limit t → ∞ can one let the size of cells tend to
0, and get a result independent of the choice of coarse graining. This leaves
open the problem of computing the entropy production per unit time. The
idea of using local Boltzmann entropies works only for a macroscopic system
locally close to equilibrium, and one may wonder what happens far from equi-
librium. In fact one finds statements in the literature that biological processes
are far from equilibrium (which is true), and that they may violate the sec-
ond law of thermodynamics (which is not true). To see that life processes or
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other processes far from equilibrium cannot violate the second law, we can
imagine a power plant fueled by sea water: it would produce electric cur-
rent and reject colder water in the sea. Inside the plant there would be some
life form or other physico-chemical system functioning far from equilibrium
and violating the second law of thermodynamics. The evidence is that this
is impossible, even though we cannot follow everything that happens inside
the plant in terms of Boltzmann entropies of systems close to equilibrium. In
fact, Boltzmann’s explanation of irreversibility reproduced above applies also
here, and the only unsatisfactory feature is that we do not have an effective
definition of entropy far from equilibrium. The new formalism which we shall
introduce below is quite in agreement with the ideas of Boltzmann which we
have described. We shall however define the physical entropy by (1.48) (Gibbs
entropy). To avoid the conclusion that this entropy does not change in time for
a Hamiltonian time evolution, we shall idealize our physical setup differently,
and in particular introduce a thermostat [Rue99].

Thermostats

Instead of investigating the approach to equilibrium as we have done above
following Boltzmann, we can try to produce and study non–equilibrium steady
states. To keep a finite system outside of equilibrium we subject it to non-
Hamiltonian forces. We consider thus an evolution of the form (1.45), but
not (1.46). Since we no longer have conservation of energy, x(t) cannot be
expected to stay in a bounded region of phase–space. This means that the
system will heat up. Indeed, this is what is observed experimentally: dissipa-
tive systems produce heat. An experimentalist will eliminate excess heat by
use of a thermostat, and if we want to study non–equilibrium steady states
we have to introduce the mathematical equivalent of a thermostat. In the lab,
the system in which we are interested (called small system) would be coupled
with a large system constituting the thermostat. The obvious role of the large
system is to take up the heat produced in the small system. At the same
time, the thermostat allows entropy to be produced in the small system by
a mechanism discussed above: microscopic correlations which exist between
the small and the large system are rendered unobservable by the time evolu-
tion. An exact study of the pair small+large system would lead to the same
problems that we have met above with Boltzmann’s approach. For such an
approach, see Jakšić and Pillet [JP98], where the large system has infinitely
many noninteracting degrees of freedom. Studying the diffusion and loss of
correlations in an infinite interacting system (say a system of particles with
Hamiltonian interactions) appears to be very difficult in general, because the
same particles may interact again and again, and it is hard to keep track of the
correlations resulting from earlier interactions. This difficulty was bypassed by
Lanford when he studied the Boltzmann equation in the Grad limit [Lan75],
because in that limit, two particles that collide once will never see each other
again.. Note however that the thermostats used in the lab are such that their
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state changes as little as possible under the influence of the small system. For
instance the small system will consist of a small amount of fluid, surrounded
by a big chunk of copper constituting the large system: because of the high
thermal conductivity of copper, and the bulk of the large system, the temper-
ature at the fluid-copper interface will remain constant to a good precision.
In conclusion, the experimentalist tries to build an ideal thermostat , and we
might as well do the same. Following [Rue99], we replace thus (1.45) by

ẋ = F (x) + Θ(ω(t), x),

where the effect Θ(ω(t), x) of the thermostat depends on the state x of the
small system, and on the state ω(t) of the thermostat, but the time evolution
t → ω(t) does not depend on the state x of the small system. We may think
of ω(t) as random (corresponding to a random thermostat), but the simplest
choice is to take ω constant, and use Θ(x) = Θ(ω, x) to keep x(t) on a compact
manifold M . For instance if M is the manifold {x : h(x) = K}, we may take

Θ(x) = − (F (x) · h(x))
(gradh(x) · h(x))

gradh(x).

This is the so-called Gaussian thermostat [Hoo86, EM90]. We shall be partic-
ularly interested later in the isokinetic thermostat, which is the special case
where x = (q, p) and h(x) = p/2m (kinetic energy).

Non–Equilibrium Steady States

We assume for the moment that the phase–space of our system is reduced by
the action of a thermostat to be a compact manifold M . The time evolution
equation on M has the same form as (1.45):

ẋ = F (x), (1.51)

where the vector–field F on M now describes both the effect of nonhamiltonian
forces and of the thermostat. Note that (1.51) describes a general smooth
evolution, and one may wonder if anything of physical interest is preserved
at this level of generality. Perhaps surprisingly, the answer is yes, as we see
when we ask what are the physical stationary states for (1.51). We start with
a probability measure m on M such that m(dx) = m(x) dx, where dx is the
volume element for some Riemann metric on M (for simplicity, we shall say
that m is absolutely continuous). At time t, m becomes (f t)∗m, which still is
absolutely continuous. If (f t)∗m has a limit ρ when t→∞, then ρ is invariant
under time evolution, and in general singular with respect to the Riemann
volume element dx (a time evolution of the form (1.51) does not in general
have an absolutely continuous invariant measure). The probability measures

ρ = lim
t→∞

(f t)∗m,
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or more generally [Rue99]

ρ = lim
t→∞

1
t

∫ t

0

dτ (fτ )∗m, (1.52)

(with m absolutely continuous) are natural candidates to describe non–
equilibrium stationary states, or non–equilibrium steady states. Examples of
such measures are the SRB states discussed later.

Entropy Production

We return now to our calculation (1.50) of the entropy production:

S(m̂)− S(m) =
∫

dxm(x) log Jt(x),

where m̂ is the density of m̂ = f t∗m. This is the amount of entropy gained
by the system under the action of the external forces and thermostat in time
t. The amount of entropy produced by the system and given to the external
world in one unit of time is thus (with J = J1)

ef (m) = −
∫

m(dx) log J(x).

Notice that this expression makes sense also when m is a singular measure.
The average entropy production in t units of time is [Rue99]

1
t

t−1∑

k=0

ef (fkm) =
1
t
[S(m)− S(m̂)]. (1.53)

When t→∞, this tends according to (1.52) towards

ef (ρ) = −
∫

ρ(dx) log J(x), (1.54)

which is thus the entropy production in the state ρ (more precisely, the entropy
production per unit time in the non–equilibrium steady state ρ). Using (1.51)
we can also write

ef (ρ) = −
∫

ρ(dx) divF (x). (1.55)

Notice that the entropy S in (1.53) is bounded above (see the above definition
(1.49)), so that ef (ρ) ≥ 0, and in many cases ef (ρ) > 0 as we shall see
later. Notice that for an arbitrary probability measure μ (invariant or not),
ef (μ) may be positive or negative, but the definition (1.52) of ρ makes a
choice of the direction of time, and results in positive entropy production.
It may appear paradoxical that the state ρ, which does not change in time,
constantly gives entropy to the outside world. The solution of the paradox is
that ρ is (normally) a singular measure and therefore has entropy −∞: the
non–equilibrium steady state ρ is thus a bottomless source of entropy.
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Recent Idealization of Non–Equilibrium Processes

We have now reached a new framework idealizing non–equilibrium processes.
Instead of following Boltzmann in his study of approach to equilibrium, we try
to understand the non–equilibrium steady states as given by (1.52). For the
definition of the entropy production ef (ρ) we use the rate of phase–space con-
traction (1.54) or (1.55). Later we shall discuss the SRB states, which provide
a mathematically precise definition of the non–equilibrium steady states. After
that, the idea is to use SRB states to make interesting physical predictions,
making hyperbolicity assumptions (this will be explained later) as strong as
needed to get results. Such a program was advocated early by Ruelle, but
only recently were interesting results actually obtained, the first one being
the fluctuation theorem of Gallavotti and Cohen [GC95a, GC95b].

Diversity of Non–Equilibrium Regimes

Many important non–equilibrium systems are locally close to equilibrium, and
the classical non–equilibrium studies have concentrated on that case, yielding
such results as the Onsager reciprocity relations and the Green-Kubo formula.
Note however that chemical reactions are often far from equilibrium. More
exotic non–equilibrium systems of interest are provided by metastable states.
Since quantum measurements (and the associated collapse of wave packets)
typically involve metastable states, one would like to have a reasonable fun-
damental understanding of those states. Another class of exotic systems are
spin glasses, which are almost part of equilibrium statistical mechanics, but
evolve slowly, with extremely long relaxation times.

Further Discussion of Non–equilibrium steady states

Recall that above we have proposed a definition (1.52) for non–equilibrium
steady states ρ. We now make this definition more precise and analyze it
further. Write [Rue99]

ρ = w.limt→∞
1
t

∫ t

0

dτ (fτ )∗m, (1.56)

m a.c. probability measure, (1.57)

ρ ergodic. (1.58)

In (1.56), w.lim is the weak or vague limit defined by (w.limmt)(Φ) =
lim(mt(Φ)) for all continuous Φ : M → C. The set of probability measures on
M is compact and metrizable for the vague topology. There are thus always
sequences (tk) tending to ∞ such that

ρ = w.limk→∞
1
tk

∫ tk

0

dτ (fτ )∗m
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exists; ρ is automatically (fτ )∗ invariant. By (1.57), we ask that the proba-
bility measure m be a.c. (absolutely continuous) with respect to the Riemann
volume element dx (with respect to any metric) on M . The condition (1.58)
is discussed below. Physically, we consider a system which in the distant past
was in equilibrium with respect to a Hamiltonian time evolution

ẋ = F0(x), (1.59)

and described by the probability measure m on the energy surface M . Ac-
cording to conventional wisdom, m is the micro–canonical ensemble, which
satisfies (1.57), and is ergodic with respect to the time evolution (1.59) when
the ergodic hypothesis is satisfied. Even if the ergodic hypothesis is accepted,
the physical justification of the micro–canonical ensemble remains a delicate
problem, which we shall not further discuss here.. For our purposes, we might
also suppose that m is an ergodic component of the micro–canonical ensemble
or an integral over such ergodic components, provided (1.57) is satisfied. We
assume now that, at some point in the distant past, (1.59) was replaced by
the time evolution

ẋ = F (x), (1.60)

representing nonhamiltonian forces plus a thermostat keeping x on M ; we
write the general solution of (1.60) as x �→ f tx. We are interested in time
averages of f tx for m−almost all x. Suppose therefore that

ρx = w.limt→∞
1
t

∫ t

0

dτ δfτx (1.61)

exists for m−almost all x. In particular, with ρ defined by (1.56), we have

ρ =
∫

m(dx) ρx. (1.62)

If (1.58) holds. Suppose that ρ is not ergodic but that ρ = αρ′ + (1 − α)ρ′′

with ρ′ ergodic and α �= 0. Writing S = {x : ρx = ρ′}, we have m(S) = α and
ρ′ =

∫
m′(dx) ρx with m′ = α−1χS .m. Therefore, (1.56–1.58) hold with ρ, m

replaced by ρ′, m′., (1.62) is equivalent to

ρx = ρ for m−almost all x.

(⇐ is obvious; if⇒ did not hold (1.62) would give a non-trivial decomposition
ρ = αρ′+(1−α)ρ′′ in contradiction with ergodicity). As we have just seen, the
ergodic assumption (1.58) allows us to replace the study of (1.61) by the study
of (1.56), with the condition (1.57). This has interesting consequences, as we
shall see, but note that (1.56–1.58) are not always satisfyable simultaneously
(consider for instance the case F = 0). To study non–equilibrium steady states
we shall modify or strengthen the conditions (1.56–1.58) in various ways. We
may for simplicity replace the continuous time t ∈ R by a discrete time t ∈ Z.
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Uniform Hyperbolicity: Anosov Diffeomorphisms and Flows

Let M be a compact connected manifold. In what follows we shall be concerned
with a time evolution (f t) which either has discrete time t ∈ Z, and is given by
the iterates of a diffeomorphism f of M , or has continuous time t ∈ R, and is
the flow generated by some vector–field F on M . We assume that f or F are
of class C1+α (Hölder continuous first derivatives). The Anosov property is an
assumption of strong chaoticity (in physical terms) or uniform hyperbolicity
(in mathematical terms. For background see for instance Smale [Sch81] or
Bowen [Bow75]). Choose a Riemann metric on M . The diffeomorphism f
is Anosov if there are a continuous Tf−-invariant splitting of the tangent
bundle: TM = Es ⊕ Eu and constants C > 0, θ > 1 such that [Rue99]

for all t ≥ 0 :
‖Tf tξ‖ ≤ Cθ−t if ξ ∈ Es

‖Tf−tξ‖ ≤ Cθ−t if ξ ∈ Eu
. (1.63)

One can show that x �→ Esx, E
u
x are Hölder continuous, but not C1 in general.

The flow (f t) is Anosov if there are a continuous (Tf t)−invariant splitting.
Remember that F is the vector–field generating the flow: F (x) = df tx/dt|t=0.
Therefore R.F is the 1D subbundle in the direction of the flow. TM =
R.F ⊕ Es ⊕ Eu and constants C > 0, θ > 1 such that (1.63) again holds.
In what follows we shall assume that the periodic orbits are dense in M . This
is conjectured to hold automatically for Anosov diffeomorphisms, but there is
a counterexample for flows (see [FW80]). Since M is connected, we are thus
dealing with what is called technically a mixing Anosov diffeomorphism f ,
or a transitive Anosov flow (f t). There is a powerful method, called sym-
bolic dynamics, for the study of Anosov diffeomorphisms and flows. Recall
that symbolic dynamics (see [Sin68a]) is based on the existence of Markov
partitions [Sin68b, Rat69].

Uniform Hyperbolicity: Axiom A Diffeomorphisms and Flows

Smale [[Sch81]] has achieved an important generalization of Anosov dynamical
systems by imposing hyperbolicity only on a subset Ω (the non–wandering
set) of the manifold M . A point x ∈ M is wandering point if there is an
open set O � x such that O ∩ f tO �= ∅ for |t| > 1. The points of M which
are not wandering constitute the non–wandering set Ω. A diffeomorphism
or flow satisfies Axiom A if the following conditions hold (Aa) there is a
continuous (Tf t)−invariant splitting of TΩM (the tangent bundle restricted
to the non–wandering set) verifying the above hyperbolicity conditions. (Ab)
the periodic orbits are dense in Ω. Under these conditions, Ω is a finite union
of disjoint compact (f t)-invariant sets B (called basic sets) on which (f t) is
topologically transitive. (f t) is topologically transitive on B if there is x ∈ B
such that the orbit (f tx) is dense in B.. This result is known as Smale’s spectral
decomposition theorem. If there is an open set U ⊃ B such that ∩t≥0f

tU = B,
the basic set B is called an attractor . The set {x ∈M : limt→+∞ d(f tx,B) =
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0} = �t≥0f
−tU is the basin of attraction of the attractor B. Let B be a basic

set. Given x ∈ B and ε > 0, write [Rue99]

W s
x,ε = {y ∈M : d(f ty, f tx) < ε for t ≥ 0, and limt→+∞ d(f ty, f tx) = 0},

Wu
x,ε = {y ∈M : d(f ty, f tx) < ε for t ≤ 0, and limt→−∞ d(f ty, f tx) = 0}

Then for sufficienty small ε, W s
x,ε and Wu

x,ε are pieces of smooth manifolds,
called locally stable and locally unstable manifold respectively. There are also
globally stable and unstable manifolds defined by

W s
x = {y ∈M : lim

t→+∞
d(f ty, f tx) = 0},

Wu
x = {y ∈M : lim

t→−∞
d(f ty, f tx) = 0},

and tangent to Esx, E
u
x respectively. A basic set B is an attractor if and only if

the stable manifolds W s
x,ε for x ∈ B cover a neighborhood of B. Also, a basic

set B is an attractor if and only if the unstable manifolds Wu
x,ε for x ∈ B

are contained in B (see [BR75]). Markov partitions, symbolic dynamics (see
[Bow70, Bow73]), and shadowing (see [Bow75]) are available on Axiom A basic
sets as they were for Anosov dynamical systems.

SRB States on Axiom A Attractors

Let us cut an attractor B into a finite number of small cells such that the
unstable manifolds are roughly parallel within a cell. Each cell is partitionned
into a continuous family of pieces of local unstable manifolds, and we get
thus a partition (Σα) of B into small pieces of unstable manifolds. If ρ is an
invariant probability measure on B (for the dynamical system (f t)), and if
its conditional measures σα with respect to the partition (Σα) are a.c. with
respect to the Riemann volume dσ on the unstable manifolds, ρ is called an
SRB measure. The study of SRB measures is transformed by use of symbolic
dynamics into a problem of statistical mechanics: one can characterize SRB
states as Gibbs states with respect to a suitable interaction. Such Gibbs states
can in turn be characterized by a variational principle. In the end one has a
variational principle for SRB measures, which we shall now describe. It is
convenient to consider a general basic set B (not necessarily an attractor)
and to define generalized SRB measures. First we need the concept of the
time entropy hf (μ), where f = f1 is the time 1 map for our dynamical
system, and μ an f−invariant probability measure on B. This entropy (or
Kolmogorov–Sinai invariant) has the physical meaning of mean information
production per unit time by the dynamical system (f t) in the state μ (see for
instance [6] for an exact definition). The time entropy hf (μ) should not be
confused with the space entropy S and the entropy production rate ef which
we have discussed above. We also need the concept of expanding Jacobian Ju.
Since Txf maps Eux linearly to Eufx, and volume elements are defined in Eux ,
Eufx by a Riemann metric, we can define a volume expansion rate Ju(x) > 0.
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It can be shown that the function log Ju : B → R is Hölder continuous. We say
that the (f t)−invariant probability measure ρ is a generalized SRB measure
if it makes maximum the function

μ �→ hf (μ)− μ(log Ju). (1.64)

One can show that there is precisely one generalized SRB measure on each
basic set B; it is ergodic and reduces to the unique SRB measure when B is
an attractor. The value of the maximum of (9) is 0 precisely when B is an
attractor, it is < 0 otherwise. If m is a measure absolutely continuous with
respect to the Riemann volume element on M , and if its density m vanishes
outside of the basin of attraction of an attractor B, then [Rue99]

ρ = w.limt→∞
1
t

∫ t

0

dτ (fτ )∗m (1.65)

defines the unique SRB measure on B. We also have

ρ = w.limt→∞
1
t

∫ t

0

dτ δfτx,

when x is in the domain of attraction of B and outside of a set of measure 0
for the Riemann volume. The conditions (1.56–1.58) and also (1.61) are thus
satisfied, and the SRB state ρ is a natural non–equilibrium steady state. Note
that if B is a mixing , i.e., for any two nonempty open sets O1, O2 ⊂ B, there
is T such that O1 ∩ f tO2 �= ∅ for |t| ≥ T . attractor, (10) can be replaced by
the stronger result

ρ = w.limt→∞ (f t)∗m.

See [Sin72, Rue76, BR75] for details.

SRB States Without Uniform Hyperbolicity

Remarkably, the theory of SRB states on Axiom A attractors extends to
much more general situations. Consider a smooth dynamical system (f t) on
the compact manifold M , without any hyperbolicity condition, and let ρ be
an ergodic measure for this system. Recall that the Oseledec theorem [Ose68,
Rue79] permits the definition of Lyapunov exponents λ1 ≤ . . . ≤ λdimM which
are the rates of expansion, ρ−almost everywhere, of vectors in TM . The λi
are real numbers, positive (expansion), negative (contraction), or zero (neutral
case). Pesin theory [Pes76, Pes77] allows the definition of stable and unstable
manifolds ρ−almost everywhere. These are smooth manifolds; the dimension
of the stable manifolds is the number of negative Lyapunov exponents while
the dimension of the unstable manifold is the number of positive Lyapunov
exponents. Consider now a family (Σα) constituted of pieces of (local) unstable
manifolds, and forming, up to a set of ρ−measure 0, a partition of M . As
in Section 4 above we define the conditional measures σα of ρ with respect
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to (Σα). If the measures σα are absolutely continuous with respect to the
Riemann volumes of the corresponding unstable manifolds, we say that ρ
is an SRB measure. For a C2 diffeomorphism, the above definition of SRB
measures is equivalent to the following condition (known as Pesin formula)
for an ergodic measure ρ:

h(ρ) =
∑

positive Lyapunov exponents for ρ,

(see [LS82, LY85] for the nontrivial proof). This is an extension of the result
of Section 4, where the sum of the positive Lyapunov exponents is equal to
ρ(log Ju). Note that in general h(μ) is ≤ the sum of the positive exponents
for the ergodic measure μ (see [Rue78]). Suppose that the time t is discrete
(diffeomorphism case), and that the Lyapunov exponents of the SRB state ρ
are all different from zero: this is a weak (nonuniform) hyperbolicity condition.
In this situation, there is a measurable set S ⊂ M with positive Riemann
volume such that [PS89]

lim
n→∞

1
n

n−1∑

k=0

δfkx = ρ,

for all x ∈ S. This result shows that ρ has the properties required of a non–
equilibrium steady state. One expects that for continuous time (flow case),
if supp ρ is not reduced to a point and if the Lyapunov exponents of the
SRB state ρ except one. There is one zero exponent corresponding to the flow
direction. are different from 0, there is a measurable set S ⊂M with positive
Riemann volume such that [Rue99]

ρ = w.limt→∞
1
t

∫ t

0

dτ δfτx, when x ∈ S.

See [LS82, LY85, Via97] for details.

1.5.2 Statistical Mechanics of Nonlinear Oscillator Chains

Now, consider a model of a finite nonlinear chain of n d−dimensional oscilla-
tors, coupled to two Hamiltonian heat reservoirs initially at different temper-
atures TL,TR, each of which is described by a dD wave equation. A natural
goal is to get a usable expression for the invariant (marginal) state of the
chain analogous to the Boltzmann–Gibbs prescription μ = Z−1 exp (−H/T )
which one has in equilibrium statistical mechanics [BT00]. We assume that
the Hamiltonian H(p, q) of the isolated chain has the form

H(p, q) =
n∑

i=1

p2
i

2
+

n∑

i=1

U (1)(qi)+
n−1∑

i=1

U (2)(qi− qi+1) ≡
n∑

i=1

p2
i

2
+V (q), (1.66)
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where qi and pi are the coordinate and momentum of the ith particle, and
where U (1) and U (2) are Ck confining potentials, i.e., lim|q|→∞ V (q) = +∞.

The coupling between the reservoirs and the chain is assumed to be of
dipole approximation type and it occurs at the boundary only: the first par-
ticle of the chain is coupled to one reservoir and the nth particle to the other
heat reservoir. At time t = 0 each reservoir is assumed to be in thermal equi-
librium, i.e., the initial conditions of the reservoirs are distributed according
to (Gaussian) Gibbs measure with temperature T1 = TL and Tn = TR re-
spectively. Projecting the dynamics onto the phase–space of the chain results
in a set of integro–differential equations which differ from the Hamiltonian
equations of motion by additional force terms in the equations for p1 and pn.
Each of these terms consists of a deterministic integral part independent of
temperature and a Gaussian random part with covariance proportional to the
temperature. Due to the integral (memory) terms, the study of the long–time
limit is a difficult mathematical problem. But by a further appropriate choice
of couplings, the integral parts can be treated as auxiliary variables r1 and rn,
the random parts become Markovian. Thus we get (see [EPR99] for details)
the following system of Markovian stochastic differential equations (SDEs) on
the extended phase–space R

2dn+2d: For x = (p, q, r) we have

q̇1 = p1, ṗ1 = −∇q1V (q) + r1,

q̇j = pj , q̇j = −∇qj
V (q), (j = 2, . . . , n− 1)

q̇n = pn, q̇n = −∇qn
V (q) + rn, (1.67)

dr1 = −γ(r1 − λ2q1)dt + (2γλ2T1)1/2dw1,

drn = −γ(rn − λ2q1)dt + (2γλ2Tn)1/2dwn.

In equation (1.67), w1(t) and wn(t) are independent dD Wiener processes,
and λ2 and γ are constants describing the couplings.

Now introduce a generalized Hamiltonian G(p, q, r) on the extended phase–
space, given by

G(p, q, r) =
n∑

i=1

(
r2
i

2λ2 − riqi

)
+ H(p, q), (1.68)

where H(p, q) is the Hamiltonian of the isolated systems of oscillators given
by (1.66). We also introduce the parameters ε (the mean temperature of the
reservoirs) and η (the relative temperature difference):

ε =
T1 + Tn

2
, η =

T1 − Tn
T1 + Tn

. (1.69)

Using (1.68), the equation (1.67) takes the form [BT00]

q̇ = ∇pG, ṗ = −∇qG, (1.70)

dr = −γλ2∇rGdt + ε1/2(2γλ2D)1/2dw,
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where p = (p1, . . . , pn), q = (q1, . . . , qn), r = (r1, rn) and where D is the
2d× 2d matrix given by

D =
(

1 + η 0
0 1− η

)
.

The function G is a Lyapunov function, non–increasing in time, for the de-
terministic part of the flow (1.70). If the system is in equilibrium, i.e, if
T1 = Tn = ε and η = 0, it is not difficult to check that the generalized
Gibbs measure

με = Z−1 exp (−G(p, q, r)/ε),

is an invariant measure for the Markov process solving (1.70).

1.5.3 Geometrical Modelling of Continuous Dynamics

Here we give a paradigm of geometrical modelling and analysis of complex
continuous dynamical systems (see [II06b] for technical details). This is es-
sentially a recipe how to develop a covariant formalism on smooth manifolds,
given a certain physical, or bio–physical, or psycho–physical, or socio–physical
system, here labelled by a generic name: ‘physical situation’. We present this
recipe in the form of the following five–step algorithm.

(I) So let’s start: given a certain physical situation, the first step in its
predictive modelling and analysis, that is, in applying a powerful differential–
geometric machinery to it, is to associate with this situation two indepen-
dent coordinate systems, constituting two independent smooth Riemannian
manifolds. Let us denote these two coordinate systems and their respective
manifolds as:

• Internal coordinates: xi = xi(t), (i = 1, ...,m), constituting the mD inter-
nal configuration manifold : Mm ≡ {xi}; and

• External coordinates: ye = ye(t), (e = 1, ..., n), constituting the nD exter-
nal configuration manifold : Nn ≡ {ye}.
The main example that we have in mind is a standard robotic or bio-

dynamic (loco)motion system, in which xi denote internal joint coordinates,
while ye denote external Cartesian coordinates of segmental centers of mass.
However, we believe that such developed methodology can fit a generic phys-
ical situation.

Therefore, in this first, engineering step (I) of our differential–geometric
modelling, we associate to the given natural system, not one but two different
and independent smooth configuration manifolds, somewhat like viewing from
two different satellites a certain place on Earth with a football game playing
in it.

(II) Once that we have precisely defined two smooth manifolds, as two in-
dependent views on the given physical situation, we can apply our differential–
geometric modelling to it and give it a natural physical interpretation. More
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precisely, once we have two smooth Riemannian manifolds, Mm ≡ {xi} and
Nn ≡ {ye}, we can formulate two smooth maps between them:31

f : N →M , given by coordinate transformation: xi = f i(ye), (1.71)
and

g : M → N , given by coordinate transformation: ye = ge(xi). (1.72)

If the Jacobian matrices of these two maps are nonsingular (regular), that is
if their Jacobian determinants are nonzero, then these two maps are mutually
inverse, f = g−1, and they represent standard forward and inverse kinematics.

(III) Although, maps f and g define some completely general nonlinear
coordinate (functional) transformations, which are even unknown at the mo-
ment, there is something linear and simple that we know about them (from
calculus). Namely, the corresponding infinitesimal transformations are linear
and homogenous: from (1.71) we have (applying everywhere Einstein’s sum-
mation convention over repeated indices)

dxi =
∂f i

∂ye
dye, (1.73)

while from (1.72) we have

dye =
∂ge

∂xi
dxi. (1.74)

Furthermore, (1.73) implies the linear and homogenous transformation of in-
ternal velocities,

vi ≡ ẋi =
∂f i

∂ye
ẏe, (1.75)

while (1.74) implies the linear and homogenous transformation of external
velocities,

ue ≡ ẏe =
∂ge

∂xi
ẋi. (1.76)

In this way, we have defined two velocity vector–fields, the internal one: vi =
vi(xi, t) and the external one: ue = ue(ye, t), given respectively by the two
nonlinear systems of ODEs, (1.75) and (1.76).32

(IV) The next step in our differential–geometrical modelling/analysis is
to define second derivatives of the manifold maps f and g, that is the two
acceleration vector–fields, which we will denote by ai = ai(xi, ẋi, t) and we =
we(ye, ẏe, t), respectively. However, unlike simple physics in linear Euclidean
spaces, these two acceleration vector–fields on manifolds M and N are not the
simple time derivatives of the corresponding velocity vector–fields (ai �= v̇i

31 This obviously means that we are working in the category of smooth manifolds.
32 Although transformations of differentials and associated velocities are linear and

homogeneous, the systems of ODE’s define nonlinear vector–fields, as they include
Jacobian (functional) matrices.
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and we �= u̇e), due to the existence of the Levi–Civita connections ∇M and
∇N on both M and N . Properly defined, these two acceleration vector–fields
respectively read:

ai = v̇i + Γ ijkv
jvk = ẍi + Γ ijkẋ

j ẋk, and (1.77)

we = u̇e + Γ ehlu
hul = ÿe + Γ ehlẏ

hẏl, (1.78)

where Γ ijk and Γ ehl denote the (second–order) Christoffel symbols of the con-
nections ∇M and ∇N .

Therefore, in the step (III) we gave the first–level model of our physical
situation in the form of two ordinary vector–fields, the first–order vector–
fields (1.75) and (1.76). For some simple situations (e.g., modelling ecological
systems), we could stop at this modelling level. Using physical terminology we
call them velocity vector–fields. Following this, in the step (IV) we have defined
the two second–order vector–fields (1.77) and (1.78), as a connection–base
derivations of the previously defined first–order vector–fields. Using physical
terminology, we call them ‘acceleration vector–fields’.

(V) Finally, following our generic physical terminology, as a natural next
step we would expect to define some kind of generic Newton–Maxwell force–
fields. And we can actually do this, with a little surprise that individual forces
involved in the two force–fields will not be vectors, but rather the dual ob-
jects called 1–forms (or, 1D differential forms). Formally, we define the two
covariant force–fields as

Fi = mgija
j = mgij(v̇j + Γ jikv

ivk) = mgij(ẍj + Γ jikẋ
iẋk), and (1.79)

Ge = mgehw
h = mgeh(u̇h + Γhelu

eul) = mgeh(ÿh + Γhelẏ
eẏl), (1.80)

where m is the mass of each single segment (unique, for simplicity), while gij =
gMij and geh = gNeh are the two Riemannian metric tensors corresponding to the
manifolds M and N . The two force–fields, Fi defined by (1.79) and Ge defined
by (1.80), are generic force–fields corresponding to the manifolds M and N ,
which represent the material cause for the given physical situation. Recall
that they can be physical, bio–physical, psycho–physical or socio–physical
force–fields. Physically speaking, they are the generators of the corresponding
dynamics and kinematics.

Main geometrical relations behind this fundamental paradigm, forming the
covariant force functor33 [II06b], are depicted in Figure 1.47.

1.5.4 Lagrangian Chaos

A problem of great interest concerns the study of the spatial and tempo-
ral structure of the so–called passive fields, indicating by this term passively
33 A functor is a generalized mapping from a domain category (a generalized group)

to a codomain category, that preserves the structure of the domain category (see
[II07b]).
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Fig. 1.47. The covariant force functor, including the main relations used by
differential–geometric modelling of complex continuous systems.

quantities driven by the flow, such as the temperature under certain condi-
tions [Mof83]. The equation for the evolution of a passive scalar field θ(x, t),
advected by a velocity field v(x, t), is

∂tθ +∇ · (v θ) = χ∇2θ, (1.81)

where v(x, t) is a given velocity field and χ is the molecular diffusion coeffi-
cient.

The problem (1.81) can be studied through two different approaches. Ei-
ther one deals at any time with the field θ in the space domain covered by
the fluid, or one deals with the trajectory of each fluid particle. The two ap-
proaches are usually designed as ‘Eulerian’and ‘Lagrangian’, although both
of them are due to Euler [Lam45]. The two points of view are in principle
equivalent.

The motion of a fluid particle is determined by the differential equation

ẋ = v(x, t), (1.82)

which also describes the motion of test particles, for example a powder embed-
ded in the fluid, provided that the particles are neutral and small enough not
to perturb the velocity field, although large enough not to perform a Brownian
motion. Particles of this type are commonly used for flow visualization in fluid
mechanics experiments, see [Tri88]. Let us note that the true equation for the
motion of a material particle in a fluid can be rather complicated [CFP90].

It is now well established that even in regular velocity field the motion
of fluid particles can be very irregular [Hen66, Are84]. In this case initially
nearby trajectories diverge exponentially and one speaks of Lagrangian chaos.
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In general, chaotic behaviors can arise in 2D flow only for time dependent
velocity fields in 2D, while it can be present even for stationary velocity fields
in 3D.

If χ = 0, it is easy to realize that (1.81) is equivalent to (1.82). In fact, we
can write

θ(x, t) = θo(T−tx), (1.83)

where θo(x) = θ(x, t = 0) and T is the formal evolution operator of (1.82) ,

x(t) = T tx(0). (1.84)

Taking into account the molecular diffusion χ, (1.81) is the Fokker–Planck
equation of the Langevin equation [Cha43]

ẋ = v(x, t) + η(t), (1.85)

where η is a Gaussian process with zero mean and variance
〈
ηi(t) ηj(t

′)
〉

= 2χδij δ(t− t′). (1.86)

In the following we will consider only incompressible flow

∇ · v = 0, (1.87)

for which the dynamical system (1.82) is conservative. In 2D, the constraint
(2.29) is automatically satisfied assuming

v1 =
∂ψ

∂x2
, v2 = − ∂ψ

∂x1
, (1.88)

where ψ(x, t) is the stream function. Inserting (2.30) into (1.82) the evolution
equations become

ẋ1 =
∂ψ

∂x2
, ẋ2 = − ∂ψ

∂x1
. (1.89)

Formally (2.31) is a Hamiltonian system with the Hamiltonian given by the
stream function ψ.

Examples of Lagrangian Chaos

As a first example we consider a 3n stationary velocity field, the so–called
ABC flow

v = (A sin z + C cos y, B sinx + A cos z, C sin y + B cosx) , (1.90)

where A, B and C are non zero real parameters. Because of the incompress-
ibility condition, the evolution x(0) → x(t) defines a volume preserving, dy-
namics.
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Arnold [Arn65] argued that (2.33) is a good candidate for chaotic motion.
Let us briefly repeat his elegant argument. For a steady state solution of the
3n Euler equation one has:

∇ · v = 0, v × (∇× v) = ∇α, α =
P

ρ
+

v2

2
, (1.91)

where P is the pressure and ρ the density. As a consequence of the Bernoulli
theorem [LL59], α(x) is constant along a streamline – that is a Lagrangian
trajectory x(t). One can easily verify that chaotic motion can appear only
if α(x) is constant (i.e., ∇α(x) = 0) in a part of the space. Otherwise the
trajectory would be confined on a 2n surface α(x) = constant, where the
motion must be regular as a consequence of general arguments [Ott93]. In
order to satisfy such a constraint, from (1.91) one has the Beltrami condition:

∇× v = γ(x)v. (1.92)

The reader can easily verify that the field v given by (2.33) satisfy (2.35) (in
this case γ(x) = constant). Indeed, numerical experiments by Hénon [Hen66]
provided evidence that Lagrangian motion under velocity (2.33) is chaotic for
typical values of the parameters A, B, and C.

In a 2D incompressible stationary flows the motion of fluid particles is given
by a time independent Hamiltonian system with one degree of freedom and,
since trajectories follow iso-ψ lines, it is impossible to have chaos. However,
for explicit time dependent stream function ψ the system (2.33) can exhibit
chaotic motion [Ott93].

In the particular case of time periodic velocity fields, v(x, t+T ) = v(x, t),
the trajectory of (1.82) can be studied in terms of discrete dynamical systems:
the position x(t+T ) is determined in terms of x(t). The map x(t)→ x(t+T )
will not depend on t thus (1.82) can be written in the form

x(n + 1) = F[x(n)], (1.93)

where now the time is measured in units of the period T . Because of incom-
pressibility, the map (1.93) is conservative:

|detA[x]| = 1, where Aij [x] =
∂Fi[x]
∂xj

. (1.94)

An explicit deduction of the form of F for a general 2n or 3n flow is usually
very difficult. However, in some simple model of can be deduced on the basis
of physical features [AB86, CCT87].

Eulerian Properties and Lagrangian Chaos

In principle, the evolution of the velocity field v is described by partial differ-
ential equations, e.g., Navier–Stokes or Boussinesq equations. However, often
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in weakly turbulent situations, a good approximation of the flow can be geted
by using a Galerkin approach, and reducing the Eulerian problem to a (small)
system of F ordinary differential equations [BF79]. The motion of a fluid
particle is then described by the (n + F )D dynamical system [BLV01]

Q̇ = f(Q, t), with (Q, f ∈ R
F ), (1.95)

ẋ = v(x,Q), with (x, v ∈ R
n), (1.96)

where n is the space dimensionality and Q = (Q1, ...QF ) are the F variables,
usually normal modes, which are a representation of the velocity field v. Note
that the Eulerian equations (1.95) do not depend on the Lagrangian part
(1.96) and can be solved independently.

In order to characterize the degree of chaos, three different Lyapunov ex-
ponents can be defined [FPV88]:

• a) λE for the Eulerian part (1.95);
• b) λL for the Lagrangian part (1.96), where the evolution of the velocity

field is assumed to be known;
• c) λT per for the total system of the n + F equations.

These Lyapunov exponents are defined as [BLV01]:

λE,L,T = lim
t→∞

1
t

ln
|z(t)(E,L,T)|
|z(0)(E,L,T)| , (1.97)

where the evolution of the three tangent vectors z are given by the linearized
stability equations for the Eulerian part, for the Lagrangian part and for the
total system, respectively:

ż
(E)
i =

F∑

j=1

∂fi
∂Qj

∣∣∣∣
Q(t)

zj
(E), (z(E) ∈ R

F ), (1.98)

ż
(L)
i =

n∑

j=1

∂vi
∂xj

∣∣∣∣
x(t)

zj
(L), (z(L) ∈ R

n), (1.99)

ż
(T)
i =

n+F∑

j=1

∂Gi
∂yj

∣∣∣∣
y(t)

zj
(T), (z(T) ∈ R

F+n), (1.100)

and y = (Q1, . . . , QF , x1, . . . , xn) and G = (f1, . . . , fF , v1, . . . , vn). The mean-
ing of these Lyapunov exponents is evident:

• a) λE is the mean exponential rate of the increasing of the uncertainty in
the knowledge of the velocity field (which is, by definition, independent on
the Lagrangian motion);

• b) λL estimates the rate at which the distance δx(t) between two fluid
particles initially close increases with time, when the velocity field is given,
i.e., a particle pair in the same Eulerian realization;
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• c) λT is the rate of growth of the distance between initially close particle
pairs, when the velocity field is not known with infinite precision.

There is no general relation between λE and λL. One could expect that
in presence of a chaotic velocity field the particle motion has to be chaotic.
However, the inequality λL ≥ λE – even if generic – sometimes does not hold,
e.g., in some systems like the Lorenz model [FPV88] and in generic 2n flows
when the Lagrangian motion happens around well defined vortex structures
[BBP94] as discussed in the following. On the contrary, one has [CFP91]

λT = max (λE, λL). (1.101)

Lagrangian Chaos in 2D–Flows

Let us now consider the 2D Navier–Stokes equations with periodic boundary
conditions at low Reynolds numbers, for which we can expand the stream
function ψ in Fourier series and takes into account only the first F terms
[BF79],

ψ = −i

F∑

j=1

k−1
j Q

j
eikjx + c.c., (1.102)

where c.c. indicates the complex conjugate term and Q = (Q1, . . . , QF ) are
the Fourier coefficients. Inserting (1.102) into the Navier–Stokes equations and
by an appropriate time rescaling, we get the system of F ordinary differential
equations

Q̇j = −k2
j Qj +

∑

l,m

AjlmQlQm + fj , (1.103)

in which fj represents an external forcing.
Franceschini and coworkers have studied this truncated model with F = 5

and F = 7 [BF79]. The forcing were restricted to the 3th mode fj = Re δj,3.
For F = 5 and Re < Re1 = 22.85 . . ., there are four stable stationary solutions,
say Q̂, and λE < 0. At Re = Re1, these solutions become unstable, via a
Hopf bifurcation [MM75], and four stable periodic orbits appear, still implying
λE = 0. For Re1 < Re < Re2 = 28.41 . . ., one thus finds the stable limit cycles:

Q(t) = Q̂ + (Re− Re1)1/2δQ(t) + O(Re− Re1), (1.104)

where δQ(t) is periodic with period

T (Re) = T0 + O(Re− Re1) T0 = 0.7328 . . . (1.105)

At Re = Re2, these limit cycles lose stability and there is a period doubling
cascade toward Eulerian chaos.

Let us now discuss the Lagrangian behavior of a fluid particle. For Re <
Re1, the stream function is asymptotically stationary, ψ(x, t) → ψ̂(x), and
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the corresponding 1D Hamiltonian is time-independent, therefore Lagrangian
trajectories are regular. For Re = Re1 + ε the stream function becomes time
dependent [BLV01]

ψ(x, t) = ψ̂(x) +
√

ε δψ(x, t) + O(ε), (1.106)

where ψ̂(x) is given by Q̂ and δψ is periodic in x and in t with period T .
The region of phase–space, here the real 2D space, adjacent to a separatrix
is very sensitive to perturbations, even of very weak intensity. Figure 1.48
shows the structure of the separatrices, i.e., the orbits of infinite periods at
Re = Re1 − 0.05.

Fig. 1.48. Structure of the separatrices in the 5-mode model (1.102) with Re =
Re1 − 0.05 (adapted from [BLV01]).

Indeed, generically in 1D Hamiltonian systems, a periodic perturbation
gives origin to stochastic layers around the separatrices where the motion is
chaotic, as consequence of unfolding and crossing of the stable and unstable
manifolds in domains centered at the hyperbolic fixed–points [Chi79, Ott93].

Chaotic and regular motion for small ε = Re1 −Re can be studied by the
Poincaré map

x(nT ) → x(nT + T ). (1.107)

The period T (ε) is computed numerically. The size of the stochastic layers
rapidly increase with ε. At ε = εc ≈ 0.7 they overlap and it is practically
impossible to distinguish between regular and chaotic zones. At ε > εc there
is always diffusive motion.

We stress that this scenario for the onset of Lagrangian chaos in 2D fluids
is generic and does not depend on the particular truncated model. In fact,
it is only related to the appearance of stochastic layers under the effects of
small time–dependent perturbations in 1D integrable Hamiltonian systems. As
consequence of a general features of 1D Hamiltonian systems we expect that a
stationary stream function becomes time periodic through a Hopf bifurcation
as occurs for all known truncated models of Navier–Stokes equations.
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We have seen that there is no simple relation between Eulerian and La-
grangian behaviors. In the following, we shall discuss two important points
[BLV01]:

• (i) what are the effects on the Lagrangian chaos of the transition to Eule-
rian chaos, i.e., from λE = 0 to λE > 0.

• (ii) whether a chaotic velocity field (λE > 0) always implies an erratic
motion of fluid particles.

The first point can be studied again within the F = 5 modes model (1.103).
Increasing Re, the limit cycles bifurcate to new double period orbits followed
by a period doubling transition to chaos and a strange attractor appears at
Rec ≈ 28.73, where λE becomes positive. These transitions have no signature
on Lagrangian behavior, i.e., the onset of Eulerian chaos has no influence on
Lagrangian properties.

This feature should be valid in most situations, since it is natural to expect
that in generic cases there is a strong separation of the characteristic times
for Eulerian and Lagrangian behaviors.

The second point – the conjecture that a chaotic velocity field always im-
plies chaotic motion of particles – looks very reasonable. Indeed, it appears
to hold in many systems [CFP91]. Nevertheless, one can find a class of sys-
tems where it is false, e.g., the equations (1.95), (1.96) may exhibit Eulerian
chaoticity λE > 0, even if λL = 0 [BBP94].

Consider for example the motion of N point vortices in the plane with
circulations Γi and positions (xi(t), yi(t)) (i = 1, ..N) [Are83]:

Γiẋi =
∂H

∂yi
, Γiẏi = − ∂H

∂xi
, where (1.108)

H = − 1
4π

ΓiΓj ln rij , and r2
ij = (xi − xj)2 + (yi − yj)2. (1.109)

The motion of N point vortices is described in an Eulerian phase–space
with 2ND. Because of the presence of global conserved quantities, a system of
three vortices is integrable and there is no exponential divergence of nearby
trajectories in phase–space. For N ≥ 4, apart from non generic initial condi-
tions and/or values of the parameters Γi, the system is chaotic [Are83].

The motion of a passively advected particle located in (x(t), y(t)) in the
velocity field defined by (2.41) is given

ẋ = − Γi
2π

y − yi
R2
i

, ẏ =
Γi
2π

x− xi
R2
i

, (1.110)

where R2
i = (x− xi)2 + (y − yi)2.

Let us first consider the motion of advected particles in a three-vortices
(integrable) system in which λE = 0. In this case, the stream function for the
advected particle is periodic in time and the expectation is that the advected
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particles may display chaotic behavior. The typical trajectories of passive
particles which have initially been placed respectively in close proximity of a
vortex center or in the background field between the vortices display a very
different behavior. The particle seeded close to the vortex center displays a
regular motion around the vortex and thus λL = 0; by contrast, the particle
in the background field undergoes an irregular and aperiodic trajectory, and
λL is positive.

We now discuss a case where the Eulerian flow is chaotic i.e., N = 4 point
vortices [BLV01]. Let us consider again the trajectory of a passive particle
deployed in proximity of a vortex center. As before, the particle rotates around
the moving vortex. The vortex motion is chaotic; consequently, the particle
position is unpredictable on large times as is the vortex position. Nevertheless,
the Lagrangian Lyapunov exponent for this trajectory is zero (i.e., two initially
close particles around the vortex remain close), even if the Eulerian Lyapunov
exponent is positive, see Figure 1.49.

Fig. 1.49. Particle trajectories in the 4–vortex system. Eulerian dynamics in this
case is chaotic. The left panel shows a regular Lagrangian trajectory while the right
panel shows a chaotic Lagrangian trajectory. The different behavior of the two par-
ticles is due to different initial conditions (adapted from [BLV01]).

This result indicates once more that there is no strict link between Eulerian
and Lagrangian chaoticity.

One may wonder whether a much more complex Eulerian flow, such as
2n turbulence, may give the same scenario for particle advection: i.e., regular
trajectories close to the vortices and chaotic behavior between the vortices.
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It has been shown that this is indeed the case [BBP94] and that the chaotic
nature of the trajectories of advected particles is not strictly determined by
the complex time evolution of the turbulent flow.

We have seen that there is no general relation between Lagrangian and
Eulerian chaos. In the typical situation Lagrangian chaos may appear also
for regular velocity fields. However, it is also possible to have the opposite
situation, with λL = 0 in presence of Eulerian chaos, as in the example of
Lagrangian motion inside vortex structures. As an important consequence
of this discussion we remark that it is not possible to separate Lagrangian
and Eulerian properties in a measured trajectory. Indeed, using the standard
methods for data analysis [GP83a], from Lagrangian trajectories one extracts
the total Lyapunov exponent λT and not λL or λE.

1.6 Standard Map and Hamiltonian Chaos

Chaos as defined in the theory of dynamical systems has been recognized in re-
cent years as a common structural feature of phase–space flows. Its characteri-
zation involves geometric, dynamic, and symbolic aspects. Concepts developed
in the framework of Poincaré–Birkhoff and Kolmogorov–Arnold–Moser theo-
ries describe the transition from regular to chaotic behavior in simple cases,
or locally in phase–space. Their global application to real systems tends to
interfere with non–trivial bifurcation schemes, and computer experimentation
becomes an essential tool for comprehensive insight [Ric01, RSW90].

The prototypic example for Hamiltonian chaos is the standard map M ,
introduced by the plasma physicist B.V. Chirikov [Chi79]. It is an area–
preserving map of a cylinder (or annulus) with coordinates (ϕ, r) onto itself,

M :
(

ϕ
r

)
�→

(
ϕ′

r′

)
=

(
ϕ + 2π(1− r′)

r + μ sinϕ

)
,

where ϕ is understood to be taken modulo 2π. The map has been celebrated
for catching the essence of chaos in conservative systems, at least locally in the
neighborhood of resonances. The number μ plays the role of a perturbation
parameter. For μ = 0, the map is integrable: all lines r = const are invariant
sets, with angular increment Δϕ = 2π(1 − r) = 2πW . For obvious reasons,
W is called winding number . For integer r, it is 0 mod 1; each point of the
line is a fixed–point (see Figure 1.50). For rational r = p/q with p, q coprime,
the line carries a continuum of periodic orbits with period q, winding around
the cylinder p/q times per period. However, when r is irrational, the orbit of
an initial point never returns to it but fills the line densely. This makes for
an important qualitative difference of rational and irrational invariant lines.
The dependence of W on r is called the twist r of the (un–perturbed) map.
Here, τ = W/r = −1. This has an intuitive interpretation: between any two
integer values of r the map is a twist of the cylinder by one full turn. The
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behavior of such twist maps under small perturbations μ was the central
issue of the stability discussion of which Poincaré’s ‘Méthodes Nouvelles’ in
1892 and the discovery of the Kolmogorov–Arnold–Moser (KAM) theorem
(see [AA68]) were the major highlights.

Fig. 1.50. Standard Map: Upper left: 20 trajectories with μ = 0.08; the angle ϕ ∈
[0, 2π] is plotted along the horizontal, the variable r ∈ [0, 2] – along the vertical axis.
Upper middle: the same for μ = 0.15. Upper right: the same for μ = 0.25. Lower left:
beginning of the stable manifold (going from lower–left to upper–right) and unstable
manifold (going from upper–left to lower–right) of the hyperbolic point (ϕ, r) =
9π, 1) for μ = 0.25. Lower middle: the same continued for two more iterations.
Lower right: the same for additional 9 iterations (adapted from [Ric01]).

Consider the upper part of Figure 1.50. For perturbations μ = 0.08, 0.15,
0.25, it shows 20 orbits generated from (almost) randomly chosen initial
points. Three kinds of structures can be discerned: (i) islands, or chains of
islands, surrounding elliptic periodic orbits; (ii) clouds of points centered at
hyperbolic periodic orbits and surrounding the islands; (iii) the two left pic-
tures contain invariant lines extending from left to right, i.e., surrounding the
cylinder, whereas the right picture exhibits ‘global chaos’ in the sense that a
single trajectory can wander along the vertical cylinder axis. These features
illustrate three fundamental theorems that govern the behavior of invariant
sets under small perturbations:

• Poincaré–Birkhoff Theorem: Poincaré’s last theorem, proved by Birkhoff
in 1913, states that of the uncountable infinity of periodic orbits on a
given rational invariant set, only a finite number survives, half of them
elliptic, the other half hyperbolic. More precisely, lines with rational wind-
ing number p/q decay into chains of q islands (sometimes, for reasons of



1.6 Standard Map and Hamiltonian Chaos 97

symmetry, a finite multiple of q). Their centers are elliptic resonances Ek,
(k = 1, ..., q), i.e., fixed–points of the qth iterate Mq of the map. The
Jacobian of Mq at Ek has eigenvalues of the form cos ρ ± i sin ρ, where
cos ρ = 1

2 trace Mq and |trace Mq| < 2. The number ρ is a winding number
of higher order; when points on small islands are parametrized by an an-
gle, ρ is the angular increment between a point and its qth iterate. The
islands of a given chain are separated by hyperbolic fixed–points Hk of
Mq, (k = 1, ..., q); the Jacobian at Hk has eigenvalues λu and λs with
|λu| > 1 and λs = 1/λu. The corresponding eigenvectors eu and es are,
respectively, the unstable and stable directions of the hyperbolic orbits.
Poincaré and Birkhoff found that for arbitrarily small perturbations, this
breakup of rational lines is generic.

• Kolmogorov–Arnold–Moser (KAM) Theorem: It took some 70 years after
Poincaré before the survival of invariant lines under small perturbations
could be established with mathematical certainty [AA68].34 For systems
with n degrees of freedom and sufficiently small and smooth (but otherwise

34 KAM–theorem is a result in dynamical systems about the persistence of quasi-
periodic motions under small perturbations. The theorem partly resolves the
small-divisor problem that arises in the perturbation theory of classical mechanics.
The problem is whether or not a small perturbation of a conservative dynamical
system results in a lasting quasi–periodic orbit. The original breakthrough to this
problem was given by Kolmogorov in 1954. This was rigorously proved and ex-
tended by Arnold (in 1963 for analytic Hamiltonian systems) and Moser (in 1962
for smooth twist maps), and the general result is known as the KAM–theorem.
The KAM–theorem, as it was originally stated, could not be applied to the mo-
tions of the solar system, although Arnold used the methods of KAM to prove the
stability of elliptical orbits in the planar 3–body problem. The KAM–theorem is
usually stated in terms of trajectories in phase–space of an integrable Hamiltonian
system. The motion of an integrable system is confined to a doughnut–shaped sur-
face, an invariant torus. Different initial conditions of the integrable Hamiltonian
system will trace different invariant tori in phase–space. Plotting any of the co-
ordinates of an integrable system would show that they are quasi–periodic. The
KAM–theorem states that if the system is subjected to a weak nonlinear per-
turbation, some of the invariant tori are deformed and others are destroyed. The
ones that survive are those that have ‘sufficiently irrational’ frequencies (this is
known as the non–resonance condition). This implies that the motion continues
to be quasi–periodic, with the independent periods changed (as a consequence of
the non–degeneracy condition). The KAM–theorem specifies quantitatively what
level of perturbation can be applied for this to be true. An important consequence
of the KAM–theorem is that for a large set of initial conditions the motion remains
perpetually quasi–periodic. The methods introduced by Kolmogorov, Arnold, and
Moser have developed into a large body of results related to quasi–periodic mo-
tions. Notably, it has been extended to non–Hamiltonian systems (starting with
Moser), to non–perturbative situations (as in the work of Michael Herman) and to
systems with fast and slow frequencies. The non–resonance and non–degeneracy
conditions of the KAM–theorem become increasingly difficult to satisfy for sys-
tems with more degrees of freedom. As the number of dimensions of the system
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arbitrary) perturbations, the KAM–theorem guarantees the existence of
fD Liouville tori in the (2f − 1)D energy surface. For f = 2, this is an
extremely important stability result because orbits between two invariant
tori are confined: if there is chaos, it cannot be global. For larger f , the
situation is more delicate and still not fully explored.
The KAM–theorem also gives a hint as to which irrational tori are the
most robust. The point is that one may distinguish various degrees of
irrationality. A number W is called ‘more irrational’ than a number W ′ if
rational approximations p/q with q smaller than a given qmax tend to be
worse for W than for W ′:

min
p,q

∣∣∣W − p

q

∣∣∣ > min
p,q

∣∣∣W ′ − p

q

∣∣∣.

The numbers W which qualify in the KAM–theorem for being sufficiently
irrational, are characterized by constants c > 0 and ν ≥ 2 in an estimate∣∣
∣W − p

q

∣∣
∣ ≥ c

qν , for arbitrary integers p and q. The set of W for which
c and ν exist has positive measure. ν cannot be smaller than 2 because
the Liouville theorem asserts that if pk/qk is a continued fraction approx-
imation to W , then there exists a number C (independent of k) such that
|W − pk/qk| < C/q2

k. On the other hand, it is known that quadratic irra-
tionals, i.e., solutions of quadratic equations with integer coefficients, have
periodic continued fraction expansions which implies that the correspond-
ing approximations behave asymptotically as [RSW90]

∣∣∣W − pk
qk

∣∣∣ =
c1
q2
k

+ (−1)k
c2
q4
k

+ O
(
q−6
k

)
.

It is also known that there are no better rational approximations to a
given W than its continued fraction approximations. In this sense, the
quadratic irrationals are the ‘most irrational’ numbers because they have
the smallest possible ν = 2. Furthermore, among the quadratic irrationals,
the so–called noble numbers have the largest possible c1 = 1/

√
5; they are

defined by continued fractions

W = w0 +
1

w1 +
1

w2 +
1

w3 + . . .

= [w0, w1, w2, w3, . . .],

where wk = 1 for k greater than some K. Hence, invariant lines (or
tori) with noble winding numbers tend to be the most robust. And fi-
nally, within the class of noble numbers, the so–called golden number
g = [0, 1, 1, 1, . . .] = 1

2 (
√

5 − 1) = 0.618 034, as well as 1 − g = g2 and

increase the volume occupied by the tori decreases. The KAM–tori that are not
destroyed by perturbation become invariant Cantor sets, termed Cantori .
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1 + g = 1/g are the ‘champions of irrationality’ because they have the
smallest possible c2 = 1/(5

√
5). More generally, the most irrational noble

number between neighboring resonances p1/q1 and p2/q2 (for example,
2/5 and 1/2) is obtained with the so–called Farey construction [Sch91]
pn+1/qn+1 = (pn−1 + pn)/(qn−1 + qn).
It has been found in numerous studies based on the discovery of the KAM–
theorem, that when a Hamiltonian system can in some way be described as
a perturbed twist map, the following scenario holds with growing perturba-
tion. First, many small resonances (chains of q islands) and many irrational
tori (invariant lines) coexist. Then the islands with small q grow; the chaos
bands associated with their hyperbolic orbits swallow islands with large q
and the less irrational tori. At one point, only one noble KAM–torus and
few conspicuous resonances survive, before with further increasing pertur-
bation the last torus decays and gives way to global chaos. More detailed
analysis shows that a decaying KAM–torus leaves traces in the chaotic sea:
invariant Cantor sets which act as ‘permeable barriers’ for the phase–space
flow [Ric01, RSW90].

• Smale–Zehnder Theorem: E. Zehnder (1973) proved that each hyperbolic
point Hk of the Poincaré–Birkhoff scenario is the center of a chaotic band,
in the sense that it contains a Smale horseshoe (see Figure 1.51). To see
this, consider a point P close to Hk on its unstable eigen–direction eu
and let P ′ be its image under the standard map Mq. Now iterate the line
PP ′ with Mq. Step by step, this generates the unstable manifold of Hk,
shown in the lower part of Figure 1.51: starting at the center, the two
parts evolve towards the lower right and the upper left. It is seen from
the succession of the three pictures that the manifold develops a folded
structure of increasing complexity as the iteration goes on.35 Eventually
it densely fills a region of full measure. In the last picture shown here, the
barriers associated with the former golden KAM–torus have not yet been
penetrated, but it is believed that the closure of the unstable manifold is
the entire chaos band connected to Hk.
Similarly, the stable manifold can be generated by backward iteration along
the stable eigen–direction es. The decisive point in Zehnder’s theorem is
the demonstration that the stable and unstable manifolds have transverse
intersections, called homoclinic points (or heteroclinic if the two manifolds
belong to different hyperbolic orbits, but this difference is not important).
Once this is established, it may be concluded that part of the map has the
character of a horseshoe map, hence it contains an invariant set on which
the dynamics is chaotic. Two strips in the neighborhood of the central hy-
perbolic point, one red the other green, each stretched along a folded piece
of the stable manifold and crossing the unstable manifold at a homoclinic
point, are mapped a number of times and returned near the hyperbolic
point in a transverse orientation. In that process they are contracted to-

35 The manifold may not intersect itself because the map is injective.
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wards and expanded along the unstable manifold. The intersection pattern
of the strips contains a thin invariant Cantor set on which an iterate of
the standard map is conjugate to the shift map on bi–infinite sequences
of two symbols. This implies the existence of chaos. Zehnder showed that

Fig. 1.51. Smale horseshoe in the standard map for μ = 0.4; the angle ϕ ∈ [0, 2π]
is plotted along the horizontal, the variable r ∈ [0, 2] – along the vertical axis. Left:
the intersection of the two pairs of strips near the center contains an invariant set
for M3. Right: the same for M4 (adapted from [Ric01]).

this situation is generic even for arbitrarily small perturbations μ, where it
is impossible to give a graphical illustration because the homoclinic tangle
is exponentially thin, and the number of iterations needed to return to
the hyperbolic point very large. The message for our subsequent discus-
sion of the three body problem is that when rational invariant sets of a
twist map are perturbed, they break up into elliptic centers of order and
hyperbolic centers of chaos. The invariant sets constructed on the basis
of Figure 1.51 are of course not the whole story for the chaos band con-
nected with the central hyperbolic point. We have shown the two perhaps
most obvious horseshoes for this case, but an infinity of other horseshoes
may be identified in the same chaotic region, using the same strategy with
other homoclinic intersections. Each of them has a fractal dimension not
much larger than 1, whereas the entire chaos band – the closure of the
stable or unstable manifolds – is believed to have dimension 2. This has
not yet been proven. Moreover, the computation of Lyapunov exponents
is easy for a single horseshoe, but averaging them over the chaotic region
is numerically delicate, analytically hopeless. So there remain important
open questions [Ric01, RSW90].
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1.7 Chaotic Dynamics of Binary Systems

Recall that binary systems, like cellular automata and neural networks, are
described, in general, by a set of N binary variables Si = 0, 1, (i = 1, . . . , N),
or in short S, that evolve according to dynamical rules. The natural metric
for these systems is the Hamming distance

dH (S − S′) ≡
N∑

i=1

|Si − S′
i|.

The space {S} has 2N possible states and so the topology constructed from
dH is discrete. Generally one is interested in studying these dynamical systems
in the limit N → ∞ since that is where interesting statistical properties
appear, such as phase transitions, and it is possible to use powerful techniques
like mean–field theory . Furthermore, numerical simulations which need to be
done for finite, but large N , are understood as approximations of a system
with infinite variables, much in the same way as floating point variables in
computers are finite approximations of real numbers which generally have an
infinite number of digits. Nevertheless, for N →∞, dH is no longer a distance
and the topology is ill defined in that limit. That makes our understanding
of binary systems quite different from that of dynamical systems in R

d or in
differentiable manifolds where one works with the usual topology of the real
numbers. Here we will overcome this situation by extending the phase–space
{S} to have an infinite number of states while preserving the equal status that
the Hamming distance confers to each of the variables. That is to say, all the
variables Si give the same contribution to the distance for any i [WZ98].

Let us consider the Cartesian product of infinite copies of {S} and call
this space Ω. We denote the elements of Ω by

S = (S (0) ,S (1) ,S (2) , ...) .

We make Ω a topological space by introducing the following base:

Nn (S) = {S′ ∈ Ω|S′ (m) = S (m) , for all m < n} , (1.111)

with n = 1, 2, . . . . These base sets are closely related to the cylinders in one–
sided shift spaces and Ω is homeomorphic to the space of symbols of the
symbolic dynamics with 2N symbols (see, e.g., [Wig90]). It follows that Ω is
a cantor set. In symbolic dynamics the topology is usually derived from the
metric

d (S, S′) =
∞∑

n=0

1
2n

dn (S − S′) , where (1.112)

dn (S − S′) ≡
N∑

i=1

|Si(n)− S′
i(n)| (1.113)
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is the Hamming distance of the nth copy of {S}. One can check that if S (m) =
S′ (m) for all m < n, then d (S, S′) < N+1

2n−1 , so that (1.111) and (1.112) define
the same topology.

Here and in the following our purpose is to study dynamical systems in
Ω generated by a function F : Ω −→ Ω. This function may be continuous or
discontinuous, unless explicitly stated below. Allowing discontinuous functions
in principle opens the door to a richer variety of systems, which include neural
networks and cellular automata.

Following [WZ98], we begin by generalizing in a natural way the definitions
of chaos in subsets of R

N to Ω.
F has sensitive dependence on initial conditions on A ⊂ Ω if there is n ∈ N

for all S ∈ A and for all Nm (S) there is S′ ∈ Nm (S) ∩ A and k ∈ N such
that F k (S′) /∈ Nn

(
F k (S)

)
.

Let A ⊂ Ω be a closed invariant set. Function F : Ω −→ Ω is topologically
transitive on A ⊂ Ω if for any open sets U, V ⊂ A there is n ∈ Z � Fn (U) ∩
V �= ∅. In the last expression, if F is non invertible we understand F−k(U)
with k > 0, as the set of all points S ∈ Ω such that F k(S) ∈ U .

Let A ⊂ Ω be a compact set. Function F : A −→ A is chaotic on A if F
has sensitive dependence on initial conditions and is topologically transitive
on A.

A closed subset M⊂ Ω is called a trapping region if F (M) ⊂M.
If F is a continuous function in Ω, Fn (M) is compact and closed for

all n ∈ N. Since every closed subset of a compact set is compact, it follows
that M is compact and since F is continuous Fn (M) is compact. Since Ω is
Hausdorff every compact subset of it is closed, so Fn (M) is closed (see, e.g.,
[Mun75]).

The map F : Ω −→ Ω has an attractor if it admits an asymptotically
stable transitive set, i.e., if there exists a trapping region M such that

Λ ≡
⋂

n≥0

Fn (M)

and F is topologically transitive on Λ.36

If F is a continuous function in Ω, Λ is compact and closed. If F is con-
tinuous, Λ is an intersection of closed sets, so it is closed. Since every closed
subset of a compact space Ω is compact, it follows that Λ is compact.

Λ is called a chaotic attractor if function F is chaotic on Λ.
Let F be a continuous function in Ω, if Λ is a chaotic attractor then it

is perfect. As Λ is closed, it remains to prove that every point in Λ is an
accumulation point of Λ. By contradiction, let S0 ∈ Λ be an isolated point,
then there exists n ∈ N � Nn (S0)∩Λ = {S0}. Then, by topological transitivity
Λ has an isolated orbit (the orbit of S0) which implies that it is not sensitive
to initial conditions on Λ.
36 The trapping region is defined in the Ω space while in the theory of dynamical

systems on manifolds, it is defined on the manifold
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If F is a continuous function in Ω, and Λ is a chaotic attractor then it is
a Cantor set .

1.7.1 Examples of Dynamical Maps

Here we consider some examples of dynamical maps f : Ω −→ Ω. The first
one is the one–side shift map σ of symbolic dynamics which we introduce to
familiarize the reader with the notation.

One–Sided Shift Map σ

The continuous map σ defined by

σ (S (0) ,S (1) , ...) = (S (1) ,S (2) , ...) ,

is chaotic in Ω (see [Dev89, KH95, Rob83]).
Note that σ is non–invertible and its action loses the information carried

by the binary state S (0). The meaning and usefulness of this map is quite
clear in the context of symbolic dynamics when the Conley–Moser conditions
are satisfied [Mos73]. There one studies, in general, a non–invertible function
f : Ξ −→ Ξ where Ξ is a Cantor set embedded in IRN . The set Ξ is divided
in 2N sectors Iα α = 0, 1, ..., 2N . Then it is possible to establish a topologi-
cal conjugation between f and σ through a homeomorphism ψ, so that the
following diagram commutes [Wig90]:

Ξ
f−→ Ξ

ψ ↓ ↓ ψ
Ω

σ−→ Ω

Moreover, let S = ψ (x), then S (n) is the binary decomposition of the label
α, such that fn (x) ∈ Iα.

Chaotic Maps with Non–Trivial Attractors in Ω

The shift map can be modified to create maps which are homeomorphic to
the shift map on an asymptotically stable transitive subset of the space of
symbols. In the following, we introduce two very simple examples. Firstly,
take the space of symbols Ω with N = 2, homeomorphic to Ξ×Ξ where Ξ is
the space of symbols with N = 1, that is the space of semi–infinite sequences
S = (S0, S1, S2, ...). Then consider the function fc : Ξ ×Ξ → Ξ ×Ξ given by
fc = σ × ζ. Where σ is the usual shift function and ζ is a right inverse of the
shift function defined as follows [WZ98]:

ζ (S0, S1, S2, ...) = (0, S0, S1, S2, ...) .

It is easy to check that ζ is a continuous function, and of course so is the shift:
so fc is continuous. The set Ξ×{0} is an asymptotically stable transitive set,
on which the restriction of fc is the shift map σ.
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As another example, consider the space Ω with N = 1. It can be split
into the disjoint union of two Cantor sets Ω = Λ0 � Λ1. Where Λ0 is the
set of sequences such that S0 = 0 and an analogous fashion for Λ1. Take the
continuous function fπ = π ◦ σ, where σ is the shift map and π projects Ω
in Λ0 such that:

π (S0, S1, S2, ...) = (0, S1, S2, ...) .

Then the action of fπ is given by,

fπ (S0, S1, S2, ...) = (0, S2, S3, ...) .

It is easy to check that Λ0 is a chaotic attractor of fπ.

Chaotic Maps in Ω Induced Through Chaotic Maps in Cantor Subsets of R
N

Here, we consider a homeomorphism which relates a Cantor set χ ⊂ R
N to

the space Ω and allows one to construct chaotic maps in Ω from chaotic maps
in χ through topological conjugation. Let χ ⊂ R

N be the Cantor set that
results from taking the Cartesian product of N Cantor sets χi;

χ =
N⊗

i=1

χi,

where the ith component χi is constructed by suppressing from the interval
[0, 1] the open middle 1/ai part, i = 1, . . . , N , ai > 1, and repeating this
procedure iteratively with the sub–intervals. Now, we define a map φ : Ω −→ χ
by [WZ98]:

φi (S) =
∞∑

n=1

(ln−1 − ln)Si (n− 1) , where

ln =
1
2n

(
1− 1

ai

)n
,

is the length of each of the remaining 2n intervals at the nth step of the
construction of χi. If Ω is endowed with the metric (1.112) and χ ⊂ R

N with
the standard Euclidean metric, is easy to show that φ is a homeomorphism.

Now, if we have a map f : R
N −→ R

N which is chaotic in χ we can
construct a map F : Ω −→ Ω which is chaotic in Ω, and is defined through
the commutation of the following diagram:

χ
f−→ χ

φ ↑ ↑ φ
Ω

F−→ Ω

This leads to an interesting practical application of the homeomorphism
φ, to realize computer simulations of chaotic systems on Cantor sets. If, for
example, one iterates the logistic map
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f (x) = μx (1− x) , for μ ≥ 4,

with a floating-point variable, the truncation errors nudge the trajectory away
from the Cantor set and eventually x→ −∞. The homeomorphism φ suggests
a natural solution to this, which is to iterate the truncated binary states
rather than the floating–point variable. To iterate the dynamics, one computes
xi = φi(S) for all i = 1, . . . , N by assuming that the truncated bits are all
equal to zero, then applies f to get x′ = f(x). Since x′ generally does not
belong to the Cantor set (because of truncation errors), in the process of
constructing S′ = φ−1(x′), at some n one will find that this point does not
belong to either the interval corresponding to Si(n) = 0 or to Si(n) = 1. This
truncation error can be corrected by moving to the extremity of the interval
which lies closest to x′

i. In this way, truncation errors are not allowed to draw
the trajectory away from the Cantor set χ ⊂ R

N .

Binary Systems with Memory

Now we will define a map Γ : Ω −→ Ω which is very useful to analyze
binary systems with causal deterministic dynamics on N bits, such as neural
networks, cellular automata, and neural networks with memory (see, e.g.,
[SK86]). Let

γi : Ω −→ {0, 1} , (i = 1, ..., N), (1.114)

be a set of continuous or discontinuous functions. The map Γ : Ω −→ Ω is
then defined by:

Γi (S) = (γi (S) , Si (0) , Si (1) , . . . ) ,
or, short–hand, Γ (S) = (γ (S) , S) . (1.115)

Such maps have the following properties.
The shift map (1.114) is a left inverse of Γ since from (1.115) σ◦Γ (S) = S.

If Ω has an attracting set Λ ⊂ Ω, then σ is also a right inverse in the restriction
of Γ to Λ, so that, Γ |−1

Λ = σ. For all S ∈ Λ there is S′ ∈ Λ such that
Γ (S′) = S. Since

Γ (S′) = (γ (S′) , S′) = S, and S = (S(0), S1) ,

where S1 ≡ (S(1),S(2), . . . ), one sees that S′ = S1. Thus,

Γ ◦ σ (S) = Γ (S1) = Γ (S′) = S.

Γ has an attracting set Λ contained properly in Ω. Given S there are 2N

states S′ = (S′(0), S) of which only one, Γ (S) = (γ(S), S), belongs to Γ (Ω).
Therefore the set

Λ ≡
⋂

n≥0

Γn (Ω)

is a proper subset of Ω [WZ98].
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If Γ is continuous, then it is not sensitive to initial conditions. Γ is a
continuous map on a compact set, so it is uniformly continuous. Therefore
there exists a δ > 0 such that for any S ∈ Ω,

d(S′, S) < δ ⇒ γ(S) = γ(S′) ⇒ d(Γ (S), Γ (S′)) < δ/2,

where the distance function is given by (1.112). Applying the same argument
to each iterate Γ k(S) shows that d(Γ k(S), Γ k(S′)) < δ/2k, which contradicts
sensitivity to initial conditions.

If Γ is continuous, then the attractor Λ is finite. We know that Λ exists.
The property then follows from the previous one. Indeed, if Γ is not sensitive
to initial conditions, then there is a n > 0 such that for all S ∈ Ω,S′ ∈ Nn(S),

lim
k→∞

d
(
Γ k(S)− Γ k(S′)

)
= 0.

The set A ⊂ Ω defined by S ∈ A iff for all m > n,S(m) = 0, has a finite
number of elements, namely 2N×n. The whole space Ω is the union of the
n−neighborhoods of each element of A, and as we just showed the map Γ
is contracting in each such neighborhood, so the number of points in the
attractor cannot be greater than the number of elements of A, namely 2N×n.

Discrete–time neural networks and cellular automata are binary dynami-
cal systems in which the values of the state variables Si, i = 1, . . . , N , at time
t depend on the state variables at time t − 1. These systems are described
by a function Γ such that the functions γi depend only on the components
S (0). Therefore, all points S′ ∈ Nn(S) for n > 0 have the same evolution
so that these systems are not sensitive to initial conditions. One can recover
a very rough approximation of sensitive dependence on initial conditions by
considering the growth of Hamming distance with time, rather than the met-
ric (1.112) of symbolic dynamics. However, one cannot describe the behavior
of these systems to be approximately chaotic: They are well known to have
attractors that consist of a collection of periodic limit–cycles, and the points
of these limit–cycles are scattered over configuration space without any effec-
tive lower–dimensional structure. In particular, given any one point on the
attractor there is usually no other point ‘nearby’, even in the weak sense of
the Hamming distance, that also belongs to the attractor. This fact makes
most practical uses of chaos theory in prediction and control inapplicable.

Compact Topology for Neural Networks and Cellular Automata

Since discrete neural networks and cellular automata in general are systems
in which all the variables have the same type of interactions, it is natural to
consider the Hamming distance as the metric (it is in fact the most widely
used metric in the literature, see e.g., [CKS05] and the references therein). We
have already seen that the topological structure which the Hamming distance
confers to the phase–space does not conduce to chaotic behavior in the sense
that we understand it even if we extend the phase–space to Ω. However, not
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all the neural network and cellular automata models confer the same type
of interactions to neurons, so the use the Hamming distance for the metric
is not so compelling. The use of a different metric can lead to a completely
different topology. The resulting system will in general display a very different
dynamical behavior. For example, the map

xn+1 = αxn

produces quite different dynamical behaviors for xn ∈ R and xn ∈ S1.
So, let us consider systems which evolve according to the rule

Ri (t + 1) = fi (R (t)) , (1.116)

Ri = 0, 1; (i = 1, ...,M) and take for the metric

d (S, S′) =
M∑

n=0

1
2n

dn (S − S′) . (1.117)

These systems include neural networks and cellular automata as particular
examples, but where the weight of the different neurons drops off as 2−n. The
metric (1.117) remains well defined in the limit M → ∞ and once again we
get the space Ω. In fact (1.116) and (1.117) with M → ∞ are equivalent to
(1.112) and (1.113) with N = 1 and S1 (n) = Rn. As we will see in the next
subsection, these systems can have a correlation dimension which is less than
or equal to one.

1.7.2 Correlation Dimension of an Attractor

Recall that in the theory of dynamical systems in R
N one is interested in

calculating the fractal dimension of the attractor in which the system evolves.
To do so, following the method of [GP83a, GP83b] one defines the correlation
function C (ρ) as the average of the number of neighbors St, St′ , with St =
F t (S), which have a distance smaller than ρ. Since in R

N the volume of a
sphere of radius ρ grows like ρN , one identifies the correlation dimension Da of
the attractor with the growth rate in C (ρ) ∼ ρDa . This leads to the definition
of the correlation dimension as [WZ98]

Da = lim
ρ,ρ′→0

(
log (C (ρ))− log (C (ρ′))

log (ρ)− log (ρ′)

)
. (1.118)

In order to have an analogous methodology to compute correlation dimensions
in Ω, it is necessary to know how many states S′ are within a distance less
than ρ from a given point S. Since Ω is homogeneous we can take S = 0. To do
the calculation we make Ω into a finite space by truncating the semi–infinite
sequence to only T slices, and take the limit T →∞ in the end, that is:
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C (ρ) = lim
T→∞

1
2NT

∑

{S}
Θ (ρ− d (S, 0)) ,

where the distance is given by (1.112). Expressing Θ(x) in terms of its Fourier
transform

ω (k) = πδ (k)− i

k
, we have

C (ρ) = lim
T→∞

1
2NT

1
2π

∫ +∞

−∞
dk ω (k) eikρ

∑

{S}
e−ikd(S,0).

The sum over {S} can be evaluated easily obtaining

∑

{S}
e−ikd(S,0) = 2NT e−ikN

(
T∏

n=0

cos
k

2n+1

)N

.

Using the identity sin k/k =
∏∞
n=0 cos k

2n+1 we get the integral

C (ρ) =
1
2π

∫ +∞

−∞
dk ω (k)

(
sin k

k

)N
eik(ρ−N),

which may be evaluated by standard complex–variable methods, to get the
final result for the correlation function in Ω,

C (ρ) =
1

2NN !

[ρ/2]∑

k=0

(−1)k
(
N
k

)
(ρ− 2k)N . (1.119)

So we see that the scaling in Ω is not a power law as in R
N . However in

the definition of the attractor dimension one is interested in calculating C (ρ)
for ρ→ 0. For ρ ≤ 2 equation (1.119) has the form

C (ρ) =
1

2NN !
ρN .

Therefore, the same techniques applied in R
N can be used in Ω, in particular

an effective ‘attractor dimension’ is given by (1.118).

1.8 Spatio–Temporal Chaos and Turbulence in PDEs

1.8.1 Turbulence

Recall that chaos theory , of which turbulence is the most extreme form, started
in 1963, when Ed Lorenz from MIT took the Navier–Stokes equations from
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viscous fluid dynamics and reduced them into three first–order coupled non-
linear ODEs, to demonstrate the idea of sensitive dependence upon initial
conditions and associated chaotic behavior .

It is well–known that the viscous fluid evolves according to the nonlinear
Navier–Stokes PDEs37

u̇ + u ·∇u +∇p/ρ = νΔu + f , (1.120)

where u = u(xi, t), (i = 1, 2, 3) is the fluid 3D velocity, p = p(xi, t) is
the pressure field, ρ, ν are the fluid density and viscosity coefficient, while
f = f(xi, t) is the nonlinear external energy source. To simplify the problem,
we can impose to f the so–called Reynolds condition, 〈f · u〉 = ε, where ε is
the average rate of energy injection.

Fluid dynamicists believe that Navier–Stokes equations (1.120) accurately
describe turbulence. A mathematical proof of the global regularity of the so-
lutions to the Navier–Stokes equations is a very challenging problem and yet
such a proof or disproof does not solve the problem of turbulence. However, it
may help understanding turbulence. Turbulence is more of a dynamical sys-
tem problem. We will see below that studies on chaos in PDEs indicate that
turbulence can have Bernoulli shift dynamics which results in the wandering
of a turbulent solution in a fat domain in the phase space; thus, turbulence
can not be averaged. The hope is that turbulence can be controlled [Li04].

The first demonstration of existence of an unstable recurrent pattern in
a 3D turbulent hydrodynamic flow was performed in [KK01], using the full
numerical simulation, a 15,422-dimensional discretization of the 3D Plane
Couette turbulence at the Reynolds number Re = 400.38 The authors found
37 Recall that the Navier–Stokes equations, named after C.L. Navier and G.G.

Stokes, are a set of PDEs that describe the motion of liquids and gases, based on
the fact that changes in momentum of the particles of a fluid are the product of
changes in pressure and dissipative viscous forces acting inside the fluid. These
viscous forces originate in molecular interactions and dictate how viscous a fluid
is, so the Navier–Stokes PDEs represent a dynamical statement of the balance
of forces acting at any given region of the fluid. They describe the physics of a
large number of phenomena of academic and economic interest (they are useful
to model weather, ocean currents, water flow in a pipe, motion of stars inside a
galaxy, flow around an airfoil (wing); they are also used in the design of aircraft
and cars, the study of blood flow, the design of power stations, the analysis of
the effects of pollution, etc).

38 Recall that the Reynolds number Re is the most important dimensionless num-
ber in fluid dynamics and provides a criterion for determining dynamical similar-
ity . Where two similar objects in perhaps different fluids with possibly different
flowrates have similar fluid flow around them, they are said to be dynamically
similar. Re is the ratio of inertial forces to viscous forces and is used for deter-
mining whether a flow will be laminar or turbulent. Laminar flow occurs at low
Reynolds numbers, where viscous forces are dominant, and is characterized by
smooth, constant fluid motion, while turbulent flow, on the other hand, occurs at
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an important unstable spatio–temporally periodic solution, a single unstable
recurrent pattern.

Classical Chaos in Lorenz and Laser ODEs

Before we focus on the turbulent geometry of the Navier–Stokes PDEs (1.120),
let us briefly review the Lorenz reduced system of nonlinear ODEs

ẋ = a(y − x), ẏ = bx− y − xz, ż = xy − cz, (1.121)

where x, y and z are dynamical variables, constituting the 3D phase–space of
the Lorenz flow ; and a, b and c are the parameters of the system. Originally,
Lorenz used this model to describe the unpredictable behavior of the weather,
where x is the rate of convective overturning (convection is the process by
which heat is transferred by a moving fluid), y is the horizontal temperature
overturning, and z is the vertical temperature overturning; the parameters are:
a ≡ P−proportional to the Prandtl number (ratio of the fluid viscosity of a
substance to its thermal conductivity, usually set at 10), b ≡ R−proportional
to the Rayleigh number (difference in temperature between the top and bot-
tom of the system, usually set at 28), and c ≡ K−a number proportional to
the physical proportions of the region under consideration (width to height ra-
tio of the box which holds the system, usually set at 8/3). The Lorenz system
(1.121) has the properties:

1. symmetry : (x, y, z) → (−x,−y, z) for all values of the parameters, and
2. the z−axis (x = y = 0) is invariant (i.e., all trajectories that start on it

also end on it).

Nowadays, it is well–known that the Lorenz model is a paradigm for low–
dimensional chaos in dynamical systems in synergetics and this model or its
modifications are widely investigated in connection with modelling purposes
in meteorology, hydrodynamics, laser physics, superconductivity, electronics,
oil industry, chemical and biological kinetics, etc.

The 3D phase–portrait of the Lorenz system (1.52) shows the celebrated
‘Lorenz mask ’, a special type of strange attractor (see Figure 1.52), depicting
the famous butterfly effect , (i.e., sensitive dependence on initial conditions).
The Lorenz mask has the following characteristics:

1. Trajectory does not intersect itself in three dimensions,

high Res and is dominated by inertial forces, producing random eddies, vortices
and other flow fluctuations. The transition between laminar and turbulent flow is
often indicated by a critical Reynolds number (Recrit), which depends on the ex-
act flow configuration and must be determined experimentally. Within a certain
range around this point there is a region of gradual transition where the flow is
neither fully laminar nor fully turbulent, and predictions of fluid behavior can be
difficult.
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Fig. 1.52. The celebrated ‘Lorenz–mask’ strange attractor, obtained by simulating
the equations (1.121) in MathematicaTM .

2. Trajectory is not periodic or transient,
3. General form of the shape does not depend on initial conditions, and
4. Exact sequence of loops is very sensitive to the initial conditions.

In 1975, H. Haken showed in [Hak83, Hak93] that the Lorenz equations
(1.52) were isomorphic to the Maxwell–Haken laser equations, that were the
starting point for Haken’s synergetics,

Ė = σ(P − E), Ṗ = β(ED − P ), Ḋ = γ(σ − 1−D − σEP ),

Here, the variables in the Lorenz equations, namely x,y and z correspond to
the slowly varying amplitudes of the electric field E and polarization P and
the inversion D respectively in the Maxwell–Haken equations. The parameters
are related via c = γ

β , a = σ
β and b = σ + 1, where γ is the relaxation rate

of the inversion, β is the relaxation rate of the polarization, σ is the field
relaxation rate, and σ represents the normalized pump power.

Turbulent Flow

Recall that in fluid dynamics, turbulent flow is a flow regime characterized
by low momentum diffusion, high momentum convection, and rapid variation
of pressure and velocity in space and time. Flow that is not turbulent is
called laminar flow . Also, recall that the Reynolds number Re characterizes
whether flow conditions lead to laminar or turbulent flow. The structure of
turbulent flow was first described by A. Kolmogorov. Consider the flow of
water over a simple smooth object, such as a sphere. At very low speeds
the flow is laminar, i.e., the flow is locally smooth (though it may involve
vortices on a large scale). As the speed increases, at some point the transition
is made to turbulent (or, chaotic) flow. In turbulent flow, unsteady vortices39

appear on many scales and interact with each other. Drag due to boundary
39 Recall that a vortex can be any circular or rotary flow that possesses vorticity.

Vortex represents a spiral whirling motion (i.e., a spinning turbulent flow) with
closed streamlines. The shape of media or mass rotating rapidly around a center
forms a vortex. It is a flow involving rotation about an arbitrary axis.
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layer skin friction increases. The structure and location of boundary layer
separation often changes, sometimes resulting in a reduction of overall drag.
Because laminar–turbulent transition is governed by Reynolds number, the
same transition occurs if the size of the object is gradually increased, or the
viscosity of the fluid is decreased, or if the density of the fluid is increased.

Vorticity Dynamics

Vorticity ω = ω(xi, t), (i = 1, 2, 3) is a geometrical concept used in fluid
dynamics, which is related to the amount of ‘circulation’ or ‘rotation’ in a
fluid. More precisely, vorticity is the circulation per unit area at a point in
the flow field, or formally, ω = ∇×u, where u = u(xi, t) is the fluid velocity.
It is a vector quantity, whose direction is (roughly speaking) along the axis of
the swirl. The movement of a fluid can be said to be vortical if the fluid moves
around in a circle, or in a helix, or if it tends to spin around some axis. Such
motion can also be called solenoidal. In the atmospheric sciences, vorticity
is a property that characterizes large–scale rotation of air masses. Since the
atmospheric circulation is nearly horizontal, the 3D vorticity is nearly vertical,
and it is common to use the vertical component as a scalar vorticity.

A vortex can be seen in the spiraling motion of air or liquid around a
center of rotation. Circular current of water of conflicting tides form vortex
shapes. Turbulent flow makes many vortices. A good example of a vortex is
the atmospheric phenomenon of a whirlwind or a tornado. This whirling air
mass mostly takes the form of a helix, column, or spiral. Tornadoes develop
from severe thunderstorms, usually spawned from squall lines and supercell
thunderstorms, though they sometimes happen as a result of a hurricane.40

Another example is a meso-vortex on the scale of a few miles (smaller than
a hurricane but larger than a tornado). On a much smaller scale, a vortex is
usually formed as water goes down a drain, as in a sink or a toilet. This occurs
in water as the revolving mass forms a whirlpool.41 This whirlpool is caused
by water flowing out of a small opening in the bottom of a basin or reservoir.
This swirling flow structure within a region of fluid flow opens downward
from the water surface. In the hydrodynamic interpretation of the behavior of
electromagnetic fields, the acceleration of electric fluid in a particular direction
creates a positive vortex of magnetic fluid. This in turn creates around itself
a corresponding negative vortex of electric fluid.
40 Recall that a hurricane is a much larger, swirling body of clouds produced by

evaporating warm ocean water and influenced by the Earth’s rotation. In partic-
ular, polar vortex is a persistent, large–scale cyclone centered near the Earth’s
poles, in the middle and upper troposphere and the stratosphere. Similar, but far
greater, vortices are also seen on other planets, such as the permanent Great Red
Spot on Jupiter and the intermittent Great Dark Spot on Neptune.

41 Recall that a whirlpool is a swirling body of water produced by ocean tides or by
a hole underneath the vortex, where water drains out, as in a bathtub.
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Dynamical Similarity and Eddies

In order for two flows to be similar they must have the same geometry
and equal Reynolds numbers. When comparing fluid behavior at homologous
points in a model and a full–scale flow, we have Re∗ = Re, where quantities
marked with ∗ concern the flow around the model and the other the real flow.
This allows us to perform experiments with reduced models in water channels
or wind tunnels, and correlate the data to the real flows. Note that true dy-
namic similarity may require matching other dimensionless numbers as well,
such as the Mach number used in compressible flows, or the Froude number
that governs free-surface flows.

In a turbulent flow, there is a range of scales of the fluid motions, sometimes
called eddies. A single packet of fluid moving with a bulk velocity is called an
eddy . The size of the largest scales (eddies) are set by the overall geometry of
the flow. For instance, in an industrial smoke–stack, the largest scales of fluid
motion are as big as the diameter of the stack itself. The size of the smallest
scales is set by Re. As Re increases, smaller and smaller scales of the flow are
visible. In the smoke–stack, the smoke may appear to have many very small
bumps or eddies, in addition to large bulky eddies. In this sense, Re is an
indicator of the range of scales in the flow. The higher the Reynolds number,
the greater the range of scales.

In their first edition of Fluid Mechanics [LL59], Landau and Lifschitz pro-
posed a route to turbulence in spatio–temporal fluid systems. Since then, much
work, in dynamical systems, experimental fluid dynamics, and many other
fields has been done concerning the routes to turbulence. Ever since the dis-
covery of chaos in low–dimensional systems, researchers have been trying to
use the concept of chaos to understand turbulence [RT71]. recall that there
are two types of fluid motions: laminar flows and turbulent flows. Laminar
flows look regular, and turbulent flows are non–laminar and look irregular.
Chaos is more precise, for example, in terms of the so–called Bernoulli shift
dynamics. On the other hand, even in low–dimensional systems, there are so-
lutions which look irregular for a while, and then look regular again. Such a
dynamics is often called a transient chaos.

Low–dimensional chaos is the starting point of a long journey toward un-
derstanding turbulence. To have a better connection between chaos and tur-
bulence, one has to study chaos in PDEs [Li04].

1.8.2 Sine–Gordon Equation

Consider the simple perturbed sine–Gordon equation [Li04c]

utt = c2uxx + sinu + ε[−aut + cos t sin3 u], (1.122)

subject to periodic boundary condition

u(t, x + 2π) = u(t, x) ,
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as well as even or odd constraint,

u(t,−x) = u(t, x), or u(t,−x) = −u(t, x) ,

where u is a real–valued function of two real variables (t, x), c is a real constant,
ε ≥ 0 is a small perturbation parameter, and a > 0 is an external parameter.
One can view (1.122) as a flow (u, ut) defined in the phase–space manifold
M ≡ H1×L2, where H1 and L2 are the Sobolev spaces on [0, 2π]. A point in
the phase–space manifold M corresponds to two profiles, (u(x), ut(x)). [Li04c]
has proved that there exists a homoclinic orbit (u, ut) = h(t, x) asymptotic to
(u, ut) = (0, 0). Let us define two orbits segments

η0 : (u, ut) = (0, 0) , and η1 : (u, ut) = h(t, x) , (t ∈ [−T, T ] ).

When T is large enough, η1 is almost the entire homoclinic orbit (chopped off
in a small neighborhood of (u, ut) = (0, 0)). To any binary sequence

a = {· · · a−2a−1a0, a1a2 · · · } , (ak ∈ {0, 1}), (1.123)

one can associate a pseudo–orbit

ηa = {· · · ηa−2
ηa−1

ηa0 , ηa1ηa2 · · · } .

The pseudo–orbit ηa is not a true orbit but rather ‘almost an orbit’. One
can prove that for any such pseudo–orbit ηa, there is a unique true orbit in
its neighborhood [Li04c]. Therefore, each binary sequence labels a true orbit.
All these true orbits together form a chaos. In order to talk about sensitive
dependence on initial data, one can introduce the product topology by defining
the neighborhood basis of a binary sequence

a∗ = {· · · a∗−2a
∗
−1a

∗
0, a

∗
1a

∗
2 · · · } as ΩN = {a : an = a∗n , |n| ≤ N} .

The Bernoulli shift on the binary sequence (1.123) moves the comma one step
to the right. Two binary sequences in the neighborhood ΩN will be of order
Ω1 away after N iterations of the Bernoulli shift. Since the binary sequences
label the orbits, the orbits will exhibit the same feature. In fact, the Bernoulli
shift is topologically conjugate to the perturbed sine–Gordon flow.

Replacing a homoclinic orbit by its fattened version – a homoclinic tube,
or by a heteroclinic cycle, or by a heteroclinically tubular cycle; one can still
obtain the same Bernoulli shift dynamics. Also, adding diffusive perturbation
εbutxx to (1.122), one can still prove the existence of homoclinics or hetero-
clinics, but the Bernoulli shift result has not been established [Li04c].

1.8.3 Complex Ginzburg–Landau Equation

Consider the complex–valued Ginzburg–Landau equation [Li04a, Li04b],

iqt = qxx + 2[|q|2 − ω2] + iε[qxx − αq + β] , (1.124)
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which is subject to periodic boundary condition and even constraint

q(t, x + 2π) = q(t, x) , q(t,−x) = q(t, x) ,

where q is a complex-valued function of two real variables (t, x), (ω, α, β) are
positive constants, and ε ≥ 0 is a small perturbation parameter. In this case,
one can prove the existence of homoclinic orbits [Li04a]. But the Bernoulli
shift dynamics was established under generic assumptions [Li04b].

A real fluid example is the amplitude equation of Faraday water wave,
which is also a complex Ginzburg–Landau equation [Li04d],

iqt = qxx + 2[|q|2 − ω2] + iε[qxx − αq + βq̄] , (1.125)

subject to the same boundary condition as (1.124). For the first time, one can
prove the existence of homoclinic orbits for a water wave equation (1.125).
The Bernoulli shift dynamics was also established under generic assumptions
[Li04d]. That is, one can prove the existence of chaos in water waves under
generic assumptions.

The nature of the complex Ginzburg–Landau equation is a parabolic equa-
tion which is near a hyperbolic equation. The same is true for the perturbed
sine–Gordon equation with the diffusive term εbutxx added. They contain ef-
fects of diffusion, dispersion, and nonlinearity. The Navier–Stokes equations
1.120 are diffusion–advection equations. The advective term is missing from
the perturbed sine–Gordon equation and the complex Ginzburg–Landau equa-
tion. Turbulence happens when the diffusion is weak, i.e., in the near hyper-
bolic regime. One should hope that turbulence should share some of the fea-
tures of chaos in the perturbed sine–Gordon equation. There is a popular myth
that turbulence is fundamentally different from chaos because turbulence con-
tains many unstable modes. In both the perturbed sine–Gordon equation and
the complex Ginzburg–Landau equation, one can incorporate as many unsta-
ble modes as one likes, the resulting Bernoulli shift dynamics is still the same.
On a computer, the solution with more unstable modes may look rougher,
but it is still chaos [Li04].

In a word, dynamics of strongly nonlinear classical fields is ‘turbulent’,
not ‘laminar’. On the other hand, field theories such as 4-dimensional QCD
or gravity have many dimensions, symmetries, tensorial indices. They are far
too complicated for exploratory forays into this forbidding terrain. Instead,
we consider a simple spatio–temporally chaotic nonlinear system of physical
interest [CCP96].

1.8.4 Kuramoto–Sivashinsky System

One of the simplest and extensively studied spatially extended dynamical
systems is the Kuramoto–Sivashinsky (KS) system [Kur76, Siv77]

ut = (u2)x − uxx − νuxxxx, (1.126)
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which arises as an amplitude equation for interfacial instabilities in a vari-
ety of contexts. The so–called flame front u(x, t) has compact support, with
x ∈ [0, 2π] a periodic space coordinate. The u2 term makes this a nonlinear
system, t ≥ 0 is the time, and ν is a 4–order ‘viscosity’ damping parameter
that irons out any sharp features. Numerical simulations demonstrate that as
the viscosity decreases (or the size of the system increases), the flame front
becomes increasingly unstable and turbulent. The task of the theory is to de-
scribe this spatio-temporal turbulence and yield quantitative predictions for
its measurable consequences.

For any finite spatial resolution, the KS system (1.126) follows approxi-
mately for a finite time a pattern belonging to a finite alphabet of admissible
patterns, and the long term dynamics can be thought of as a walk through
the space of such patterns, just as chaotic dynamics with a low dimensional
attractor can be thought of as a succession of nearly periodic (but unstable)
motions. The periodic orbit gives the machinery that converts this intuitive
picture into precise calculation scheme that extracts asymptotic time predic-
tions from the short time dynamics. For extended systems the theory gives
a description of the asymptotics of partial differential equations in terms of
recurrent spatio–temporal patterns.

The KS periodic orbit calculations of Lyapunov exponents and escape
rates [CCP96] demonstrate that the periodic orbit theory predicts observable
averages for deterministic but classically chaotic spatio–temporal systems.
The main problem today is not how to compute such averages – periodic orbit
theory as well as direct numerical simulations can handle that – but rather
that there is no consensus on what the sensible experimental observables worth
are predicting [Cvi00].

1.8.5 Burgers Dynamical System

Consider the following Burgers dynamical system on a functional manifold
M ⊂ Ck(R; R):

ut = uux + uxx, (1.127)

where u ∈ M, t ∈ R is an evolution parameter. The flow of (1.127) on M
can be recast into a set of 2–forms {α} ⊂ Λ2(J(R2; R)) upon the adjoint
jet–manifold J(R2; R) (see [II07b]) as follows [BPS98]:

{α} =
{
du(0) ∧ dt− u(1)dx ∧ dt = α1, du(0) ∧ dx + u(0)du(0) ∧ dt

+du(1) ∧ dt = α2 :
(
x, t;u(0), u(1)

)τ ∈M4 ⊂ J1(R2; R)
}

,
(1.128)

where M4 is some finite–dimensional submanifold in J1(R2; R)) with coor-
dinates (x, t, u(0) = u, u(1) = ux). The set of 2–forms (1.128) generates the
closed ideal I(α), since

dα1 = dx ∧ α2 − u(0)dx ∧ α1, dα2 = 0, (1.129)
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the integral submanifold M̄ = {x, t ∈ R} ⊂M4 being defined by the condition
I(α) = 0. We now look for a reduced ‘curvature’ 1–form Γ ∈ Λ1(M4) ⊗ G,
belonging to some not yet determined Lie algebra G. This 1–form can be
represented using (1.128), as follows:

Γ = b(x)(u(0), u(1))dx + b(t)(u(0), u(1))dt, (1.130)

where elements b(x), b(t) ∈ G satisfy such determining equations [BPS98]

∂b(x)

∂u(0) = g2,
∂b(x)

∂u(1) = 0, ∂b(t)

∂u(0) = g1 + g2u
(0),

∂b(t)

∂u(1) = g2, [b(x), b(t)] = −u(1)g1.
(1.131)

The set (1.131) has the following unique solution

b(x) = A0 + A1u
(0),

b(t) = u(1)A1 + u(0)2

2 A1 + [A1, A0]u(0) + A2,
(1.132)

where Aj ∈ G, j = 0, 2, are some constant elements on M of a Lie algebra G
under search, obeying the Lie structure equations (see [II07b]):

[A0, A2] = 0,

[A0, [A1, A0]] + [A1, A2] = 0,

[A1, [A1, A0]] + 1
2 [A0, A1] = 0.

(1.133)

From (1.131) one can see that the curvature 2–form Ω ∈ spanR{A1, [A0, A1] :
Aj ∈ G, j = 0, 1}. Therefore, reducing via the Ambrose–Singer theorem the
associated principal fibred frame space P (M ;G = GL(n)) to the principal
fibre bundle P (M ;G(h)), where G(h) ⊂ G is the corresponding holonomy Lie
group of the connection Γ on P , we need to satisfy the following conditions
for the set G(h) ⊂ G to be a Lie subalgebra in G : ∇mx ∇nt Ω ∈ G(h) for all
m,n ∈ Z+.

Let us try now to close the above transfinitive procedure requiring that
[BPS98]

G(h) = G(h)0 = spanR{∇mx ∇nxΩ ∈ G : m + n = 0} (1.134)

This means that

G(h)0 = spanR{A1, A3 = [A0, A1]}. (1.135)

To enjoy the set of relations (1.133) we need to use expansions over the basis
(1.135) of the external elements A0, A2 ∈ G(h):

A0 = q01A1 + q13A3, A2 = q21A1 + q23A3. (1.136)
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Substituting expansions (1.136) into (1.133), we get that q01 = q23 = λ, q21 =
−λ2/2 and q03 = −2 for some arbitrary real parameter λ ∈ R, that is G(h) =
spanR{A1, A3}, where

[A1, A3] = A3/2; A0 = λA1 − 2A3, A2 = −λ2A1/2 + λA3. (1.137)

As a result of (1.137) we can state that the holonomy Lie algebra G(h) is a
real 2D one, assuming the following (2× 2)−matrix representation [BPS98]:

A1 =
(

1/4 0
0 −1/4

)
, A3 =

(
0 1
0 0

)
,

A0 =
(
λ/4 −2
0 −λ/4

)
, A2 =

(
−λ2/8 λ

0 λ2/8

)
.

(1.138)

Thereby from (1.130), (1.132) and (1.138) we obtain the reduced curvature
1–form Γ ∈ Λ1(M)⊗ G,

Γ = (A0 + uA1)dx + ((ux + u2/2)A1 − uA3 + A2)dt, (1.139)

generating parallel transport of vectors from the representation space Y of the
holonomy Lie algebra G(h):

dy + Γy = 0 (1.140)

upon the integral submanifold M̄ ⊂M4 of the ideal I(α), generated by the set
of 2–forms (1.128). The result (1.140) means also that the Burgers dynamical
system (1.127) is endowed with the standard Lax type representation, having
the spectral parameter λ ∈ R necessary for its integrability in quadratures.

1.8.6 2D Kuramoto–Sivashinsky Equation

A major goal in the study of spatio-temporal chaos (STC) [CH93] is to obtain
quantitative connections between the chaotic dynamics of a system at small
scales and the apparent stochastic behavior at large scales. The Kuramoto–
Sivashinsky (KS) PDE [SM80]

∂th = −∇2h−∇4h + (∇h)2 (1.141)

has been used as a paradigm in efforts to elucidate the micro–macro connec-
tions [Yak81, Zal89].

The qualitative behavior of the KS equation is quite simple. Cellular struc-
tures are generated at scales of the order  0 = 2

√
2π due to the linear in-

stability. These cells then interact chaotically with each other via the non-
linear spatial coupling to form the STC steady state at scales much larger
than  0. The characterization of the STC state has been studied extensively
in one spatial dimension [Yak81, Zal89, SKJ92, CH95]. It was conjectured
early by Yakhot [Yak81], based partially on symmetry grounds, that the large
scale behavior of the 1D KS equation is equivalent to that of the 1D noisy
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Burgers equation, also known as the Karder–Parisi–Zhang equation (KPZ)
[FNS77]. This conjecture has since been validated by detailed numerical stud-
ies [Zal89, SKJ92]. More recently, an explicit coarse-graining procedure was
used by Chow and Hwa [CH95] to derive a set of coupled effective equations
describing the interaction between the chaotic cellular dynamics and the long
wavelength fluctuations of the h−field. From this description, the large scale
(KPZ–like) behavior of the 1D-KS system can be predicted quantitatively
from the knowledge of various response functions at the ‘mesoscopic scale’ of
several  0’s.

The behavior of the 2D-KS equation is not as well understood. The sim-
plest scenario is the generalization of Yakhot’s conjecture to 2D, with the
large scale behavior described by the 2D-KPZ equation, [BCH99]

∂th = ν∇2h +
λ

2
(∇h)2 + η(r, t), (1.142)

where ν > 0 can be interpreted as a stabilizing ‘surface tension’ for the height
profile h, and η a stochastic noise with

〈η(r, t)η(r′, t′)〉 = 2Dδ2(r − r′)δ(t− t′).

For ν > 0, the asymptotic scaling properties of (1.142) are described by
‘strong–coupling’ behavior with algebraic (rather than logarithmic) scaling in
the roughness of h and super–diffusive dynamics, summarized by the scaling
form

〈[h(r, t) − h(0, t)]2〉 = |r|2αf(|r|z/t),

with anomalous exponents α ≈ 0.4 and z = 2 − α ≈ 1.6. The length scale
at which the asymptotic regime is reached is given by  × ∼ e8π/g, where
g ≡ λ2D/ν3. At scales below  ×, the effect of the nonlinear term in (1.142)
can be accounted for adequately via perturbation theory. The system behaves
in this ‘weak–coupling’ regime as a linear stochastic diffusion equation with
additive logarithmic corrections [NT92].

Previous studies of the 2D-KS equation [PJL92, LP92, JHP93] found be-
havior consistent with linear diffusion with logarithmic corrections but had
different interpretations. [JHP93] performed a numerical analysis akin to Za-
leski’s on the 1D-KS [Zal89], and concluded that their results were consistent
with the weak-coupling regime of the 2D-KPZ equation, with (in principle)
a crossover to strong–coupling beyond a length of  × ≈ 1026 0, for g = 0.4.
Procaccia et al. [PJL92, LP92] used a comparative Dyson–Wyld diagrammatic
analysis of the two equations to argue that 2D-KS and 2D-KPZ cannot belong
to the same universality class.42 They maintained instead that the asymptotic
42 Their argument is contingent upon an equality (Eq. (23) of [PJL92]) relating the

difference of two integration constants (called C1 and C2) and the bare coefficient
of the diffusion term. The nonlocal solution is tenable if the equality is satisfied.
They claim that the constants, which come from Wyld diagrammatic calculations,



120 1 Basics of Nonlinear and Chaotic Dynamics

behavior of the 2D-KS equation is described by a ‘nonlocal’ solution, consist-
ing of diffusion with multiplicative logarithmic corrections.43 We feel that the
ensuing debate [LP94] failed to rule out either interpretation.

It is very difficult to distinguish between the above two scenarios numer-
ically, as one must resolve different forms of logarithmic corrections to the
(already logarithmic) correlation function of the linear diffusion equation.
Theoretically, there is no a priori reason why simple symmetry considera-
tions such as Yakhot’s should be valid in two and higher dimensions. Unlike
in 1D where there are only scalar density fluctuations, the 2D case is com-
plicated because three or more large–k modes can couple and contribute to
low–k fluctuations. Such nonlocal interactions in k may not be adequately
accounted for in the type of analysis performed in [Zal89, JHP93], which
numerically impose KPZ dynamics and then test for self–consistency.

In this section, following [BCH99], we perform a systematic symmetry
analysis, taking into account the possibility of large–k coupling. Specifically,
we extend the coarse graining procedure of [CH95] to two dimensions to de-
rive a set of coupled equations describing the local arrangement of cells, and
study their effect on the macroscopic dynamics of the h−field. The resulting
behavior depends crucially on the small scale arrangement of the cells. In
the simplest case, the strong–coupling 2D-KPZ behavior is recovered. Nev-
ertheless, more complicated behaviors are allowed if the microscopic cellular
arrangement exhibits spontaneous rotational symmetry breaking . A number
of possible scenarios are listed for this case. To determine which of the al-
lowed scenarios is selected by the 2D-KS equation, we performed numerical
measurements of the cellular dynamics at the mesoscopic scale of 4 to 16  0’s.
Our results disfavor the occurrence of the more exotic scenarios, leaving the
strong–coupling 2D-KPZ behavior as the most likely possibility.

As in 1D, we coarse grain over a region of size L × L, where L is several
times the typical cellular size  0. h(r, t) is separated into fast cellular modes
h> and slow long wavelength modes h<. Inserting

h(r, t) = h<(r, t) + h>(r, t)

are determined uniquely by the (∇h)2nonlinearity and therefore the same for both
the KS and KPZ equations. However, the calculation involved integration of the
‘full’ response and correlation functions over the entire range of k. We note that
these functions should be different for large values of k’s where the microscopic
dynamics matter. Consequently the constants C1 and C2 need not be the same
for the KS and KPZ equations.

43 The nonlocal solution of Ref. [PJL92] has the same form as that of the g = 0
fixed point of the 2D-KPZ equation. For the latter, multiplicative logarithmic
correction to diffusion arises from the ‘asymptotic freedom’ of the system as
g → 0−. The conjectured exponents of the logarithmic correction factor follow
naturally from the non-renormalization of ν of the KPZ equation to all orders in
λ.
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into (1.141), we get the following equations for the fast and slow modes
[BCH99]:

∂th> = −∇2h> −∇4h> + (∇h>)2> + 2(∇h> · ∇h<) (1.143)
∂th< = −∇2h< + (∇h<)2 + w(r, t) + O(∇4h<). (1.144)

where w(r, t) ≡ (∇h>)2< is the only contribution of the fast modes on the
dynamics of h<. It can be interpreted as the ‘drift rate’ of h< over a regime
of L × L centered at r. To specify the dynamics of h<, it is necessary to
obtain the dynamics of w from the fast mode equation (1.143). Due to the
structure of the nonlinear term, we must consider the tensor W, with elements
Wij = 2 ∂ih> · ∂jh> , where the over–line denotes a spatial average over the
coarse–graining scale L. It is convenient to introduce the curvature tensor K,
with elements Kij = 2∂i∂jh<. In this notation, w = 1

2Tr W and κ ≡ ∇2h< =
1
2Tr K. Taking the time derivative of Wij and using (1.143), we get

∂tW = F [W] + W · K + K ·W (1.145)

where F [W] contains purely fast mode dynamics and will be described shortly.
The forms of the last two terms in Eq. (1.145) are fixed by the Galilean
invariance of the KS equation and are exact.

Equation (1.145) can be made more transparent by rewriting the two ten-
sors as

W = w · 1 + w̃ · Q(φ) and K = κ · 1 + κ̃ · Q(θ),

where 1 is the identity matrix and Q(α) is a unit traceless matrix, represented
by an angle α, e.g.,

Q12(α) = Q21(α) = sin(2α)andQ11(α) = −Q22(α) = cos(2α).

Adopting vector notation ψ = (w̃ cos 2φ, w̃ sin 2φ) and χ = (κ̃ cos 2θ, κ̃ sin
2θ), equation (1.145) can be rewritten as [BCH99]

∂tw = f [w] + 2κw + 2χ ·ψ (1.146)
∂tψ = ϕ [ψ] + κψ + wχ, (1.147)

to leading order, with f and ϕ obtained from the appropriate decomposition
of F.

Equations (1.146) and (1.147), together with the slow mode equation
(1.144), form a closed set of coarse grained equations which specifies the dy-
namics of h< once the effective forms of the small scale dynamics, i.e., f and
ϕ are given. These equations are constructed from symmetry considerations,
and can be regarded as the more complete generalization of Yakhot’s conjec-
ture for two dimensions. We first discuss the physical meaning of the coarse
grained variables appearing in W and K.

The tensor K describes the local curvature of the slow modes h<. With
κ̃ = 0, we have a symmetric paraboloid — a ‘valley’ if κ > 0 or a ‘hill’ if κ < 0.
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With κ = 0, we have a ‘saddle’, with κ̃ and θ specifying the strength and the
orientation. The tensor W characterizes the local packing of the cells. As in the
1D case [CH95], w gives the local cell density. The traceless component of W
describes the local anisotropy in cell packing. Fluctuations in the anisotropic
part of the curvature K will affect the local cell packing. For example, the cell
density at the bottom of a valley will be higher and a saddle configuration in
h< will induce anisotropy. Equations (1.146) and (1.147) describe these effects
of curvature quantitatively, much like the relation between stress and strain
in elastic systems. Cell packing in turn influences the slow mode dynamics via
the w term in (1.144). The anisotropic parts of K and W are invariant upon
a rotation by 180◦. Thus, we can view the vector field ψ(r, t) as a ‘nematic’
order parameter describing the local cellular orientation, and χ as an applied
field biasing ψ towards a specific orientation.

If we turn off the applied field κ and χ in (1.146) and (1.147), we have
∂tw = f [w] and ∂tψ = ϕ [ψ] for each coarse–grained region; thus f and
ϕ describe the small scale dynamics. Even for a coarse–grained region of a
few  0’s, the small scale dynamics of h are already chaotic. The fields w(t)
and ψ(t) are ‘projections’ of this small scale chaotic dynamics. They can
be quantitatively characterized numerically as we will present shortly. Before
doing so, we first construct some possible scenarios.

We expect that the h−field has on average a finite drift rate, i.e., a finite
time–averaged value of w. The simplest dynamics of w is then [BCH99]

∂tw(r, t) = f [w] = −α(w − w0) + ξ(r, t),

where ξ is a stochastic forcing mimicking the chaotic small scale dynamics,
and w0 is a constant. This yields w(r, t → ∞) → w0. The behavior of ψ is
less straightforward. On symmetry grounds, the dynamics can take on the
following form

∂tψ = ϕ [ψ] = −α̃ψ + β̃ |ψ|2 ψ + ζ(r, t), (1.148)

where ζ is a vector stochastic forcing.
In the simplest scenario (where α̃ > 0, the O

(
ψ3

)
term need not be

included), we have
∂tψ = −α̃ψ + ζ(r, t)

to leading order, with ζ being a vectorial stochastic forcing. Equation (1.147)
then yields (in the hydrodynamic limit) ψ ! (2w0/α̃)χ, where we took the
asymptotic result w = w0 and assumed that the typical curvature κ is small.
Note that in this scenario, the cellular orientation passively follows the curva-
ture. In particular, there is no orientational anisotropy on average if there is
no external forcing. Inserting this result and f [w] into (1.146), we find in the
hydrodynamic limit

w ! w0 +
2w0

α
∇2h< +

ξ

α
+ O((∂i∂jh<)2). (1.149)
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Substituting (1.149) into (1.144) yields an equation for h< of the KPZ form
(1.142) to leading order, with ν = (2w0/α)−1 and η(r, t) = ξ(r, t)/α, we have

∂th< � ν∇2h< + (∇h<)2 + η(r, t), (1.150)

where

ν =
w0

α
− 1, η(r, t) =

ξ(r, t)

α
(1.151)

Dynamics of the KPZ universality class will be obtained if ν > 0 and the
noise ξ is uncorrelated between different coarse–graining regions. Unlike the
constant α however, there is no a priori reason why the constant α̃ cannot be
negative. This would be the case if the microscopic chaotic dynamics has a
preference for the spontaneous breaking of local isotropy. If α̃ ≤ 0, then the dy-
namics of ψ would be more complicated. Higher order terms, e.g., |ψ|2ψ, will
be needed for stability. The minimal equation for (1.147) becomes [BCH99]

∂tψ = −α̃ψ − β̃ |ψ|2 ψ + γ∇2ψ + w0χ + ζ(r, t) (1.152)

where β̃ is a positive constant, and the γ term describes the coupling of neigh-
boring coarse grained regions. Equation (1.152) describes the relaxational dy-
namics of a nematic liquid crystal under an applied ‘field’ χ. Its behavior
depends crucially on the dynamics of the phase field, φ, which is the Gold-
stone mode associated with symmetry breaking. The latter in turn depends
on the parameters of (1.152), particularly the coupling constant γ and the
amplitude of the noise ζ. The possibilities along with the effects on h< are:

Case (i). If the noise ζ dominates over the spatial coupling γ, then the local
anisotropy will be destroyed at large scales due to the proliferation of topolog-
ical defects (disclinations) in φ. Isotropy is restored and the KPZ universality
class is recovered.

Case (ii). If the spatial coupling is large, then the direction of ψ may
‘phase–lock’ with the direction of χ, as manifested by 〈(θ − φ)2〉 � 1. Solv-
ing for the steady state of w in this case gives: w ! w0 + w0

α κ + w̃0
α κ̃,

leading to a slow mode equation which is explicitly not KPZ–like since
κ̃ =

[
(hxx − hyy)2 + 4hxy

]1/2. (In the KPZ case, κ̃ comes in at second or-
der and is presumed irrelevant; see (1.149)).

Case (iii). For intermediate parameters, there may exist a ‘spin wave’ phase
characterized by 〈φ(r)φ(0)〉 = a log |r|. Here, ‘spin wave’ fluctuations would
add a long range component to the effective KPZ noise, since 〈cos(φ(r) −
φ(0))〉 ∼ r−a. For sufficiently small a, it would yield dynamics that are not in
the KPZ universality class.

For more details, see [BCH99].
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1.9 Basics of Chaos Control

1.9.1 Feedback and Non–Feedback Algorithms for Chaos Control

Although the presence of chaotic behavior is generic and robust for suitable
nonlinearities, ranges of parameters and external forces, there are practical
situations where one wishes to avoid or control chaos so as to improve the
performance of the dynamical system. Also, although chaos is sometimes use-
ful as in a mixing process or in heat transfer, it is often unwanted or un-
desirable. For example, increased drag in flow systems, erratic fibrillations
of heart beats, extreme weather patterns and complicated circuit oscillations
are situations where chaos is harmful. Clearly, the ability to control chaos,
that is to convert chaotic oscillations into desired regular ones with a periodic
time dependence would be beneficial in working with a particular system.
The possibility of purposeful selection and stabilization of particular orbits
in a normally chaotic system, using minimal, predetermined efforts, provides
a unique opportunity to maximize the output of a dynamical system. It is
thus of great practical importance to develop suitable control methods and to
analyze their efficacy.

Let us consider a general nD nonlinear dynamical system,

ẋ = F (x, p, t), (1.153)

where x = (x1, x2, x3, ..., xn) represents the n state variables and p is a control
or external parameter. Let x(t) be a chaotic solution of (1.153). Different
control algorithms are essentially based on the fact that one would like to
effect the most minimal changes to the original system so that it will not be
grossly deformed. From this point of view, controlling methods or algorithms
can be broadly classified into two categories:

(i) feedback methods, and
(ii) non–feedback algorithms.
Feedback methods essentially make use of the intrinsic properties of chaotic

systems, including their sensitivity to initial conditions, to stabilize orbits al-
ready existing in the systems. Some of the prominent methods are the follow-
ing (see, [Lak97, Lak03, Sch88, II06b]):

1. Adaptive control algorithm;
2. Nonlinear control algorithm;
3. Ott–Grebogi–Yorke (OGY) method of stabilizing unstable periodic orbits;
4. Singer’s method of stabilizing unstable periodic orbits; and
5. Various control engineering approaches.

In contrast to feedback control techniques, non–feedback methods make
use of a small perturbing external force such as a small driving force, a small
noise term, a small constant bias or a weak modulation to some system param-
eter. These methods modify the underlying chaotic dynamical system weakly
so that stable solutions appear. Some of the important controlling methods
of this type are the following.
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1. Parametric perturbation method
2. Addition of a weak periodic signal, constant bias or noise
3. Entrainment–open loop control
4. Oscillator absorber method.

Here is a typical example of adaptive control algorithm. We can control the
chaotic orbit Xs = (xs, ys) of the Van der Pol oscillator (1.35) by introducing
the following dynamics on the parameter A1:

ẋ = x− x3

3
− y + A0 + A1 cosωt, ẏ = c(x + a− by),

Ȧ1 = −ε[(x− xs)− (y − ys)], ε << 1.

On the other hand, recall from [II06b] that a generic SISO nonlinear system

ẋ = f(x) + g(x)u y = h(x) (1.154)

is said to have relative degree r at a point xo if
(i) LgL

k
fh(x) = 0 for all x in a neighborhood of xo and all k < r − 1

(ii) LgL
r−1
f h(xo) �= 0, where Lg denotes the Lie derivative in the direction

of the vector–field g.
Now, the Van der Pol oscillator (1.30) has the state space form

ẋ = f(x) + g(x)u =
[

x2

2ωζ (1− μx2
1)x2 − ω2x1

]
+
[

0
1

]
u. (1.155)

Suppose the output function is chosen as

y = h(x) = x1. (1.156)

In this case we have

Lgh(x) =
∂h

∂x
g(x) =

[
1 0

] [0
1

]
= 0, and (1.157)

Lfh(x) =
∂h

∂x
f(x) =

[
1 0

]
[

x2

2ωζ (1− μx2
1)x2 − ω2x1

]
= x2. (1.158)

Moreover

LgLfh(x) =
∂(Lfh)

∂x
g(x) =

[
0 1

]
[

0
1

]
= 1 (1.159)

and thus we see that the Van der Pol oscillator system has relative degree 2
at any point xo.

However, if the output function is, for instance

y = h(x) = sinx2 (1.160)

then Lgh(x) = cosx2. The system has relative degree 1 at any point xo,
provided that (xo)2 �= (2k + 1)π/2. If the point xo is such that this condition
is violated, no relative degree can be defined.

Both adaptive and nonlinear control methods can be naturally extended
to other chaotic systems, e.g., Lorenz attractor (see Figure 1.53).
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Fig. 1.53. Nonlinear control of the Lorenz system: targeting of unstable upper
and lower states in the Lorenz attractor (after applying random perturbations,
see [Pet96]), using a MIMO nonlinear controller (see [II06b]); simulated using
MatlabTM .

Hybrid Systems and Homotopy ODEs

Consider a hybrid dynamical system of variable structure, given by an nD
ODE–system (see [MWH01])

ẋ = f(t, x), (1.161)

where x = x(t) ∈ R
n and f = f(t, x) : R

+ × R
n → R

n. Let the domain
G ⊂ R

+ × R
n, on which the vector–field f(t, x) is defined, be divided into

two subdomains, G+ and G−, by means of a smooth (n − 1)−manifold M .
In G+ ∪M , let there be given a vector–field f+(t, x), and in G− ∪M, let
there be given a vector–field f−(t, x). Assume that both f+ = f+(t, x) and
f− = f−(t, x) are continuous in t and smooth in x. For the system (1.161),
let

f =
{

f+ when x ∈ G+

f− when x ∈ G− .

Under these conditions, a solution x(t) of ODE (1.161) is well–defined while
passing through G until the manifold M is reached.

Upon reaching the manifold M , in physical systems with inertia, the tran-
sition

from ẋ = f−(t, x) to ẋ = f+(t, x)

does not take place instantly on reaching M , but after some delay. Due to
this delay, the solution x(t) oscillates about M , x(t) being displaced along M
with some mean velocity.

As the delay tends to zero, the limiting motion and velocity along M are
determined by the linear homotopy ODE

ẋ = f0(t, x) ≡ (1− α) f−(t, x) + α f+(t, x), (1.162)
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where x ∈M and α ∈ [0, 1] is such that the linear homotopy segment f0(t, x)
is tangential to M at the point x, i.e., f0(t, x) ∈ TxM , where TxM is the
tangent space to the manifold M at the point x.

The vector–field f0(t, x) of the system (1.162) can be constructed as fol-
lows: at the point x ∈ M, f−(t, x) and f+(t, x) are given and their ends are
joined by the linear homotopy segment. The point of intersection between this
segment and TxM is the end of the required vector–field f0(t, x). The vector
function x(t) which satisfies (1.161) in G− and G+, and (1.162) when x ∈M,
can be considered as a solution of (1.161) in a general sense.

However, there are cases in which the solution x(t) cannot consist of a fi-
nite or even countable number of arcs, each of which passes through G− or G+

satisfying (1.161), or moves along the manifold M and satisfies the homotopic
ODE (1.162). To cover such cases, assume that the vector–field f = f(t, x) in
ODE (1.161) is a Lebesgue–measurable function in a domain G ⊂ R

+ × R
n,

and that for any closed bounded domain D ⊂ G there exists a summable func-
tion K(t) such that almost everywhere in D we have |f(t, x)| ≤ K(t). Then
the absolutely continuous vector function x(t) is called the generalized solu-
tion of the ODE (1.161) in the sense of Filippov (see [MWH01]) if for almost
all t, the vector ẋ = ẋ(t) belongs to the least convex closed set containing all
the limiting values of the vector–field f(t, x∗), where x∗ tends towards x in an
arbitrary manner, and the values of the function f(t, x∗) on a set of measure
zero in R

n are ignored.
Such hybrid systems of variable structure occur in the study of nonlinear

electric networks (endowed with electronic switches, relays, diodes, rectifiers,
etc.), in models of both natural and artificial neural networks, as well as in
feedback control systems (usually with continuous–time plants and digital
controllers/filters).

1.9.2 Exploiting Critical Sensitivity

The fact that some dynamical systems showing the necessary conditions
for chaotic behavior possess such a critical dependence on the initial con-
ditions was known since the end of the last century. However, only in the
last thirty years, experimental observations have pointed out that, in fact,
chaotic systems are common in nature. They can be found, e.g., in chemistry
(Belouzov–Zhabotinski reaction), in nonlinear optics (lasers), in electronics
(Chua–Matsumoto circuit), in fluid dynamics (Rayleigh–Bénard convection),
etc. Many natural phenomena can also be characterized as being chaotic. They
can be found in meteorology, solar system, heart and brain of living organisms
and so on.

Due to their critical dependence on the initial conditions, and due to the
fact that, in general, experimental initial conditions are never known perfectly,
these systems are intrinsically unpredictable. Indeed, the prediction trajectory
emerging from an initial condition and the real trajectory emerging from the
real initial condition diverge exponentially in course of time, so that the error
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in the prediction (the distance between prediction and real trajectories) grows
exponentially in time, until making the system’s real trajectory completely
different from the predicted one at long times.

For many years, this feature made chaos undesirable, and most experi-
mentalists considered such characteristic as something to be strongly avoided.
Besides their critical sensitivity to initial conditions, chaotic systems exhibit
two other important properties. Firstly, there is an infinite number of unstable
periodic orbits embedded in the underlying chaotic set. In other words, the
skeleton of a chaotic attractor is a collection of an infinite number of peri-
odic orbits, each one being unstable. Secondly, the dynamics in the chaotic
attractor is ergodic, which implies that during its temporal evolution the sys-
tem ergodically visits small neighborhood of every point in each one of the
unstable periodic orbits embedded within the chaotic attractor.

A relevant consequence of these properties is that a chaotic dynamics can
be seen as shadowing some periodic behavior at a given time, and erratically
jumping from one to another periodic orbit. The idea of controlling chaos is
then when a trajectory approaches ergodically a desired periodic orbit em-
bedded in the attractor, one applies small perturbations to stabilize such an
orbit. If one switches on the stabilizing perturbations, the trajectory moves
to the neighborhood of the desired periodic orbit that can now be stabilized.
This fact has suggested the idea that the critical sensitivity of a chaotic sys-
tem to changes (perturbations) in its initial conditions may be, in fact, very
desirable in practical experimental situations. Indeed, if it is true that a small
perturbation can give rise to a very large response in the course of time, it is
also true that a judicious choice of such a perturbation can direct the trajec-
tory to wherever one wants in the attractor, and to produce a series of desired
dynamical states. This is exactly the idea of targeting [BGL00].

The important point here is that, because of chaos, one is able to produce
an infinite number of desired dynamical behaviors (either periodic and not pe-
riodic) using the same chaotic system, with the only help of tiny perturbations
chosen properly. We stress that this is not the case for a non–chaotic dynamics,
wherein the perturbations to be done for producing a desired behavior must,
in general, be of the same order of magnitude as the un–perturbed evolution
of the dynamical variables.

The idea of chaos control was enunciated in 1990 at the University of
Maryland, by E. Ott, C. Grebogi and J.A. Yorke [OGY90], widely referred to
as Ott–Grebogi–Yorke (OGY, for short). In OGY–paper [OGY90], the ideas
for controlling chaos were outlined and a method for stabilizing an unstable
periodic orbit was suggested, as a proof of principle. The main idea consisted
in waiting for a natural passage of the chaotic orbit close to the desired peri-
odic behavior, and then applying a small judiciously chosen perturbation, in
order to stabilize such periodic dynamics (which would be, in fact, unstable for
the un–perturbed system). Through this mechanism, one can use a given lab-
oratory system for producing an infinite number of different periodic behavior
(the infinite number of its unstable periodic orbits), with a great flexibility in
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switching from one to another behavior. Much more, by constructing appro-
priate goal dynamics, compatible with the chaotic attractor, an operator may
apply small perturbations to produce any kind of desired dynamics, even not
periodic, with practical application in the coding process of signals.

A branch of the theory of dynamical systems has been developed with
the aim of formalizing and quantitatively characterizing the sensitivity to
initial conditions. The largest Lyapunov exponent λ (together with the related
Kaplan–Yorke dimension dKY ) and the Kolmogorov–Sinai entropy hKS are
the two indicators for measuring the rate of error growth and information
produced by the dynamical system [ER85].

1.9.3 Lyapunov Exponents and Kaplan–Yorke Dimension

The characteristic Lyapunov exponents are somehow an extension of the linear
stability analysis to the case of aperiodic motions. Roughly speaking, they
measure the typical rate of exponential divergence of nearby trajectories. In
this sense they give information on the rate of growth of a very small error
on the initial state of a system [BCF02].

Consider an nD dynamical system given by the set of ODEs of the form

ẋ = f(x), (1.163)

where x = (x1, . . . , xn) ∈ R
n and f : R

n → R
n. Recall that since the r.h.s

of equation (1.163) does not depend on t explicitly, the system is called au-
tonomous. We assume that f is smooth enough that the evolution is well–
defined for time intervals of arbitrary extension, and that the motion occurs
in a bounded region R of the system phase–space M . We intend to study the
separation between two trajectories in M , x(t) and x′(t), starting from two
close initial conditions, x(0) and x′(0) = x(0)+δx(0) in R0 ⊂M , respectively.

As long as the difference between the trajectories, δx(t) = x′(t) − x(t),
remains infinitesimal, it can be regarded as a vector, z(t), in the tangent space
TxM of M . The time evolution of z(t) is given by the linearized differential
equations:

żi(t) =
∂fi
∂xj

∣∣∣
∣
x(t)

zj(t).

Under rather general hypothesis, Oseledets [Ose68] proved that for almost
all initial conditions x(0) ∈ R, there exists an orthonormal basis {ei} in the
tangent space TxM such that, for large times,

z(t) = ciei exp(λit), (1.164)

where the coefficients {ci} depend on z(0). The exponents λ1 ≥ λ2 ≥ · · · ≥ λd
are called characteristic Lyapunov exponents. If the dynamical system has an
ergodic invariant measure on M , the spectrum of LEs {λi} does not depend
on the initial conditions, except for a set of measure zero with respect to the
natural invariant measure.
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Equation (1.164) describes how a dD spherical region R = Sn ⊂ M , with
radius ε centered in x(0), deforms, with time, into an ellipsoid of semi–axes
εi(t) = ε exp(λit), directed along the ei vectors. Furthermore, for a generic
small perturbation δx(0), the distance between the reference and the per-
turbed trajectory behaves as

|δx(t)| ∼ |δx(0)| exp(λ1t) [1 + O (exp−(λ1 − λ2)t)] .

If λ1 > 0 we have a rapid (exponential) amplification of an error on the initial
condition. In such a case, the system is chaotic and, unpredictable on the long
times. Indeed, if the initial error amounts to δ0 = |δx(0)|, and we purpose to
predict the states of the system with a certain tolerance Δ, then the prediction
is reliable just up to a predictability time given by

Tp ∼
1
λ1

ln
(

Δ

δ0

)
.

This equation shows that Tp is basically determined by the positive leading
Lyapunov exponent , since its dependence on δ0 and Δ is logarithmically weak.
Because of its preeminent role, λ1 is often referred as ‘the leading positive
Lyapunov exponent’, and denoted by λ.

Therefore, Lyapunov exponents are average rates of expansion or contrac-
tion along the principal axes. For the ith principal axis, the corresponding
Lyapunov exponent is defined as

λi = lim
t→∞

{(1/t) ln[Li(t)/Li(0)]}, (1.165)

where Li(t) is the radius of the ellipsoid along the ith principal axis at time t.
For technical details on calculating Lyapunov exponents from any time series
data, see [Wol98].

An initial volume V0 of the phase–space region R0 evolves on average as

V (t) = V0e(λ1+λ2+···+λ2n)t, (1.166)

and therefore the rate of change of V (t) is simply

V̇ (t) =
2n∑

i=1

λiV (t).

In the case of a 2D phase area A, evolving as A(t) = A0e(λ1+λ2)t, a Lya-
punov dimension dL is defined as

dL = lim
ε→0

[
d(ln(N(ε)))
d(ln(1/ε))

]
,

where N(ε) is the number of squares with sides of length ε required to cover
A(t), and d represents an ordinary capacity dimension,



1.9 Basics of Chaos Control 131

dc = lim
ε→0

(
lnN

ln(1/ε)

)
.

Lyapunov dimension can be extended to the case of nD phase–space by
means of the Kaplan–Yorke dimension [Kap00, YAS96, OGY90]) as

dKY = j +
λ1 + λ2 + · · ·+ λj

|λj+1|
,

where the λi are ordered (λ1 being the largest) and j is the index of the
smallest nonnegative Lyapunov exponent.

1.9.4 Kolmogorov–Sinai Entropy

The LE, λ, gives a first quantitative information on how rapidly we loose the
ability of predicting the evolution of a system [BCF02]. A state, initially de-
termined with an error δx(0), after a time enough larger than 1/λ, may be
found almost everywhere in the region of motion R ∈M . In this respect, the
Kolmogorov–Sinai (KS) entropy, hKS , supplies a more refined information.
The error on the initial state is due to the maximal resolution we use for ob-
serving the system. For simplicity, let us assume the same resolution ε for each
degree of freedom. We build a partition of the phase–space M with cells of
volume εd, so that the state of the system at t = t0 is found in a region R0 of
volume V0 = εd around x(t0). Now we consider the trajectories starting from
V0 at t0 and sampled at discrete times tj = j τ (j = 1, 2, 3, . . . , t). Since we are
considering motions that evolve in a bounded region R ⊂ M , all the trajec-
tories visit a finite number of different cells, each one identified by a symbol.
In this way a unique sequence of symbols {s(0), s(1), s(2), . . . } is associated
with a given trajectory x(t). In a chaotic system, although each evolution
x(t) is univocally determined by x(t0), a great number of different symbolic
sequences originates by the same initial cell, because of the divergence of
nearby trajectories. The total number of the admissible symbolic sequences,
Ñ(ε, t), increases exponentially with a rate given by the topological entropy

hT = lim
ε→0

lim
t→∞

1
t

ln Ñ(ε, t) .

However, if we consider only the number of sequences Neff (ε, t) ≤ Ñ(ε, t)
which appear with very high probability in the long time limit – those that
can be numerically or experimentally detected and that are associated with
the natural measure – we arrive at a more physical quantity, namely the
Kolmogorov–Sinai entropy [ER85]:

hKS = lim
ε→0

lim
t→∞

1
t

lnNeff (ε, t) ≤ hT . (1.167)

hKS quantifies the long time exponential rate of growth of the number of
the effective coarse-grained trajectories of a system. This suggests a link with
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information theory where the Shannon entropy measures the mean asymptotic
growth of the number of the typical sequences – the ensemble of which has
probability almost one – emitted by a source.

We may wonder what is the number of cells where, at a time t > t0, the
points that evolved from R0 can be found, i.e., we wish to know how big is the
coarse–grained volume V (ε, t), occupied by the states evolved from the volume
V0 of the region R0, if the minimum volume we can observe is Vmin = εd. As
stated above (4.45), we have

V (t) ∼ V0 exp(t
d∑

i=1

λi).

However, this is true only in the limit ε → 0. In this (unrealistic) limit,
V (t) = V0 for a conservative system (where

∑d
i=1 λi = 0) and V (t) < V0

for a dissipative system (where
∑d
i=1 λi < 0). As a consequence of limited

resolution power, in the evolution of the volume V0 = εd the effect of the
contracting directions (associated with the negative Lyapunov exponents) is
completely lost. We can experience only the effect of the expanding directions,
associated with the positive Lyapunov exponents. As a consequence, in the
typical case, the coarse grained volume behaves as

V (ε, t) ∼ V0 e(
∑

λi>0 λi) t,

when V0 is small enough. Since Neff (ε, t) ∝ V (ε, t)/V0, one has

hKS =
∑

λi>0

λi.

This argument can be made more rigorous with a proper mathematical def-
inition of the metric entropy. In this case one derives the Pesin relation
[Pes77, ER85]

hKS ≤
∑

λi>0

λi. (1.168)

Because of its relation with the Lyapunov exponents – or by the definition
(1.167) – it is clear that also hKS is a fine-grained and global characterization
of a dynamical system.

The metric entropy is an invariant characteristic quantity of a dynamical
system, i.e., given two systems with invariant measures, their KS–entropies
exist and they are equal iff the systems are isomorphic [Bil65].

1.9.5 Chaos Control by Ott, Grebogi and Yorke (OGY)

Besides the occurrence of chaos in a large variety of natural processes, chaos
may also occur because one may wish to design a physical, biological or chemi-
cal experiment, or to project an industrial plant to behave in a chaotic manner.
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The OGY–idea is that chaos may indeed be desirable since it can be controlled
by using small perturbation to some accessible parameter.

The major key ingredient for the OGY–control of chaos is the observation
that a chaotic set, on which the trajectory of the chaotic process lives, has
embedded within it a large number of unstable low–period periodic orbits. In
addition, because of ergodicity, the trajectory visits or accesses the neighbor-
hood of each one of these periodic orbits. Some of these periodic orbits may
correspond to a desired system’s performance according to some criterion.
The second ingredient is the realization that chaos, while signifying sensitive
dependence on small changes to the current state and henceforth rendering
unpredictable the system state in the long time, also implies that the system’s
behavior can be altered by using small perturbations. Then, the accessibility
of the chaotic systems to many different periodic orbits combined with its
sensitivity to small perturbations allows for the control and the manipulation
of the chaotic process. Specifically, the OGY approach is then as follows. One
first determines some of the unstable low–period periodic orbits that are em-
bedded in the chaotic set. One then examines the location and the stability
of these orbits and chooses one which yields the desired system performance.
Finally, one applies small control to stabilize this desired periodic orbit. How-
ever, all this can be done from data by using nonlinear time series analysis
for the observation, understanding and control of the system. This is particu-
larly important since chaotic systems are rather complicated and the detailed
knowledge of the equations of the process is often unknown [BGL00].

Simple Example of Chaos Control: a 1D Map. The basic idea of
controlling chaos can be understood [Lai94] by considering May’s classical
logistic map [May76] (1.27)

xn+1 = f(xn, r) = rxn(1− xn),

where x is restricted to the unit interval [0, 1], and r is a control parameter.
It is known that this map develops chaos via the period–doubling bifurcation
route. For 0 < r < 1, the asymptotic state of the map (or the attractor of
the map) is x = 0; for 1 < r < 3, the attractor is a nonzero fixed–point
xF = 1 − 1/r; for 3 < r < 1 +

√
6, this fixed–point is unstable and the

attractor is a stable period-2 orbit. As r is increased further, a sequence of
period–doubling bifurcations occurs in which successive period–doubled orbits
become stable. The period–doubling cascade accumulates at r = r∞ ≈ 3.57,
after which chaos can arise.

Consider the case r = 3.8 for which the system is apparently chaotic. An
important characteristic of a chaotic attractor is that there exists an infinite
number of unstable periodic orbits embedded within it. For example, there
are a fixed–point xF ≈ 0.7368 and a period-2 orbit with components x(1) ≈
0.3737 and x(2) = 0.8894, where x(1) = f(x(2)) and x(2) = f(x(1)).

Now suppose we want to avoid chaos at r = 3.8. In particular, we want
trajectories resulting from a randomly chosen initial condition x0 to be as close
as possible to the period-2 orbit, assuming that this period−2 orbit gives the
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best system performance. Of course, we can choose the desired asymptotic
state of the map to be any of the infinite number of unstable periodic orbits.
Suppose that the parameter r can be finely tuned in a small range around
the value r0 = 3.8, i.e., r is allowed to vary in the range [r0 − δ, r0 + δ],
where δ << 1. Due to the nature of the chaotic attractor, a trajectory that
begins from an arbitrary value of x0 will fall, with probability one, into the
neighborhood of the desired period-2 orbit at some later time. The trajectory
would diverge quickly from the period-2 orbit if we do not intervene. Our task
is to program the variation of the control parameter so that the trajectory
stays in the neighborhood of the period-2 orbit as long as the control is present.
In general, the small parameter perturbations will be time dependent [BGL00].

The logistic map in the neighborhood of a periodic orbit can be ap-
proximated by a linear equation expanded around the periodic orbit. De-
note the target period-m orbit to be controlled as x(i), i = 1, ...,m, where
x(i + 1) = f(x(i)) and x(m + 1) = x(1). Assume that at time n, the trajec-
tory falls into the neighborhood of component i of the period-m orbit. The
linearized dynamics in the neighborhood of component i + 1 is then

xn+1 − x(i + 1) =
∂f

∂x
[xn − x(i)] +

∂f

∂r
Δrn

= r0[1− 2x(i)][xn − x(i)] + x(i)[1− x(i)]Δrn,

where the partial derivatives are evaluated at x = x(i) and r = r0. We require
xn+1 to stay in the neighborhood of m. Hence, we set xn+1 − x(i + 1) = 0,
which gives

Δrn = r0
[2x(i)− 1][xn − x(i)]

x(i)[1− x(i)]
. (1.169)

Equation (1.169) holds only when the trajectory xn enters a small neigh-
borhood of the period-m orbit, i.e., when |xn − x(i)| << 1, and hence the
required parameter perturbation Δrn is small. Let the length of a small inter-
val defining the neighborhood around each component of the period-m orbit
be 2ε. In general, the required maximum parameter perturbation δ is pro-
portional to ε. Since ε can be chosen to be arbitrarily small, δ also can be
made arbitrarily small. The average transient time before a trajectory en-
ters the neighborhood of the target periodic orbit depends on ε (or δ). When
the trajectory is outside the neighborhood of the target periodic orbit, we do
not apply any parameter perturbation, so the system evolves at its nominal
parameter value r0. Hence we set Δrn = 0 when Δrn > δ. The parameter
perturbation Δrn depends on xn and is time–dependent.

The above strategy for controlling the orbit is very flexible for stabilizing
different periodic orbits at different times. Suppose we first stabilize a chaotic
trajectory around a period-2 orbit. Then we might wish to stabilize the fixed–
point of the logistic map, assuming that the fixed–point would correspond
to a better system performance at a later time. To achieve this change of
control, we simply turn off the parameter control with respect to the period-
2 orbit. Without control, the trajectory will diverge from the period-2 orbit
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exponentially. We let the system evolve at the parameter value r0. Due to
the nature of chaos, there comes a time when the chaotic trajectory enters
a small neighborhood of the fixed–point. At this time we turn on a new set
of parameter perturbations calculated with respect to the fixed–point. The
trajectory can then be stabilized around the fixed–point [Lai94].

In the presence of external noise, a controlled trajectory will occasionally
be ‘kicked’ out of the neighborhood of the periodic orbit. If this behavior
occurs, we turn off the parameter perturbation and let the system evolve by
itself. With probability one the chaotic trajectory will enter the neighborhood
of the target periodic orbit and be controlled again. The effect of the noise
is to turn a controlled periodic trajectory into an intermittent one in which
chaotic phases (uncontrolled trajectories) are interspersed with laminar phases
(controlled periodic trajectories). It is easy to verify that the averaged length
of the laminar phase increases as the noise amplitude decreases [Lai94].

1.9.6 Floquet Stability Analysis and OGY Control

Controlling chaos, or stabilization of unstable periodic orbits of chaotic sys-
tems, has established to a field of large interest since the seed paper of Ott,
Grebogi, Yorke [OGY90]. The idea is to stabilize by a feedback calculated at
each Poincaré section, which reduces the control problem to stabilization of
an unstable fixed–point of an iterated map. The feedback can, as in OGY
scheme, be chosen proportional to the distance to the desired fixed–point, or
proportional to the difference in phase–space position between actual and last
but one Poincaré section. This difference control scheme [BDG93], being a
time–discrete counterpart of the Pyragas approach [Pyr92, Pyr95], allows for
stabilization of inaccurately known fixed–points, and can be extended by a
memory term to overcome stability restrictions and to allow for for tracking
of drifting fixed–points [CMP98a].

In this section the stability of perturbations x(t) around an unstable pe-
riodic orbit being subject to a Poincaré–based control scheme is analyzed by
means of Floquet theory [HL93]. This approach allows to investigate view-
points that have not been accessible by considering only the iteration dynam-
ics between the Poincaré sections. Among these are primary the discussion of
small measurement delays and variable impulse lengths. The impulse length
is for both OGY and difference control usually a fixed parameter; and the it-
erated dynamics is uniquely defined only as long as this impulse length is not
varied. The influence of the impulse length has not been point of consideration
before; if reported at all, usually for both OGY and difference control a rel-
ative length of approximately 1/3 is chosen without any reported sensitivity
[Cla02b].

The linearized ODEs of both schemes are invariant under translation in
time, t→ t+T . Therefore we can expand the solutions after periodic solutions
u(t + T ) = u(t) according to

x(t) = eγTuγ(t).
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The necessary condition for stability of the solution is Re(γ) < 0; and x(t) ≡ 0
refers to motion along the orbit.

Whereas for the Pyragas control method (in which the delayed state feed-
back enforces a time–continuous description) a Floquet stability analysis is
known [JBO97], here the focus is on the time–discrete control schemes.

Time–Continuous Stability Analysis of OGY Control

Due to the mathematically elegant and practical convenient description and
application of OGY control in the Poincaré section up to now there seems
to have been no need to calculate explicitly the Floquet multiplicator for a
stability analysis. However, this allows a novel viewpoint on the differences
between the local dynamics around an instable periodic orbit of a dynamical
system being subject to Pyragas and OGY control.

For the 1D case, one has the dynamical system [Cla02b]

ẋ(t) = λx(t) + μεx(t− (t mod T )).

In the first time interval between t = 0 and t = T the differential equation
reads

ẋ(t) = λx(t)− μεx(0), for 0 < t < T.

Integration of this differential equation yields

x(t) =
(
(1− με

λ
)eλt +

με

λ

)
x(0).

This gives us an iterated dynamics (here we label the beginning of the time
period again with t)

x(t + T ) =
(
(1− με

λ
)eλT +

με

λ

)
x(t).

The Floquet multiplier of an orbit therefore is

eγT = (1− με

λ
)eλT +

με

λ
.

Influence of the Duration of the Control Impulse on OGY Control

The time–discrete viewpoint now allows to investigate the influence of timing
questions on control. First we consider the case that the control impulse is
applied timely in the Poincaré section, but only for a finite period T ·p within
the orbit period (0 < p < 1).

This situation is described by the differential equation [Cla02b]

ẋ(t) = λx(t)μεx(t− (t mod T )) ·Θ((t mod T )− p).

Here Θ is a step function (Θ(x) = 1 for x > 0 and Θ(x) = 0 elsewhere). In
the first time interval between t = 0 and t = T · p the differential equation
reads
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ẋ(t) = λx(t) + μεx(0), for 0 < t < T · p.
Integration of this differential equation yields

x(t) =
(
(1 +

με

λ
)eλt − με

λ

)
x(0), x(T · p) =

(
(1 +

με

λ
)eλT ·p − με

λ

)
x(0).

In the second interval between t = T · p and t = T the differential equation is
the same as without control,

ẋ(t) = λx(t), for T · p < t < T.

From this one has immediately

x(t) = eλ(t−T ·p)x(T · p).
If the beginning of the integration period again is denoted by t, this defines
an iteration dynamics,

x(t + T ) = eλ(1−p)T
(
(1 +

με

λ
)eλT ·p − με

λ

)
x(t) =

((
1 +

με

λ

)
eλT − με

λ
eλ(1−p)T

)
,

and the Floquet multiplier of an orbit is given by

eγT = (1− με

λ
)eλT +

με

λ
eλ(1−p)T = eλT

(
1− με

λ
(1− e−λpT )

)
. (1.170)

One finds that in zero order the ‘strength’ of control is given by the product
p · με; in fact there is a weak linear correction in p. For λpT ≤ 1 one has

eγT = eλT (1+μεpT +
1
2
μελp2T 2 +o(p3)) = eλT (1+μεpT (1− 1

2
λpT +o(p2))),

i.e., to get a constant strength of control, one has to fulfill the condition

μεpT =
1

1− λT
2 p

= 1 +
λT

2
p + o(p2).

The result is, apart from a weak linear correction for OGY control the length
of the impulse can be chosen arbitrarily, and the ‘strength’ of control in zero
order is given by the time integral over the control impulse.

Floquet Stability Analysis of Difference Control

Again the starting point is the linearized equation of motion around the pe-
riodic orbit when control is applied. For difference control now there is a
dependency on two past time steps,

ẋ(t) = λx(t) + μεx(t− (t mod T ))− μεx(t− T − (t mod T )). (1.171)

Although the r.h.s of (1.171) depends on x at three different times, it can be
nevertheless integrated exactly, which is mainly due to the fact that the two
past times (of the two last Poincaré crossings) have a fixed time difference
being equal to the orbit length. This allows not only for an exact solution,
but also offers a correspondence to the time–discrete dynamics and the matrix
picture used in time–delayed coordinates [CMP98a, CS98, CMP98b].
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Stability Analysis of Difference Control

Now also for difference control the experimentally more common situation of
a finite but small measurement delay T ·s is considered, together with a finite
impulse length T ·p (here 0 < p < 1 and 0 < (s + p) < 1) [Cla02b].

In the first time interval between t = 0 and t = T ·s the ODE reads

ẋ(t) = λx(t), for 0 < t < T · s.

The integration gives x(T · s) = eλT ·sx(0).
For the second interval between t = T · s and t = T · (s + p) we have

ẋ(t) = λx(t)−μεx(0) = λx(t)+με(x(0)−x(−T )), for T ·s < t < T ·(s+p).

Integration of this ODE yields

x(t) = −με

λ
(x(0)− x(−T )) +

με

λ
(x(0)− x(−T )) + eλsTx(0)eλ(t−sT )

x(T (s + p)) = −με

λ
(x(0)− x(−T ))

με

λ
(x(0)− x(−T )) + eλpT + eλ(s+p)Tx(0).

For the third interval, the ODE is homogeneous again and one has

x(t) = eλ(t−(s+p)T )x(T · (s + p)), for T · (s + p) < t < T.

Insertion gives

x(T ) = x(0)eλT
(
1 +

με

λ
e−λsT (1− e−λpT )

)
− x(−T )eλT

με

λ
e−λsT (1− e−λpT )

or, in time–delayed coordinates of the last and last but one Poincaré crossing
[Cla02b]

(
xn+1

xn

)
=

(
eλT

(
1+ με(1−e−λpT )

λeλsT

)
−eλT με(1−e−λpT )

λeλsT

1 0

)(
xn

xn−1

)
.

If we identify with the coefficients of the time–discrete case, λd = eλT and
μdεd = e−λsT (1 − eλpT )μελ , the dynamics in the Poincaré iteration t = nT
becomes identical with the pure discrete description; this again illustrates
the power of the concept of the Poincaré map. Due to the low degree of
the characteristic polynomial, one in principle can explicitly diagonalize the
iteration matrix, allowing for a closed expression for the nth power of the
iteration matrix. As for the stability analysis only the eigenvalues are needed,
this straightforward calculation is excluded here.

For the Floquet multiplier one has [Cla02b]

e2γT = eγT eλT
(
1 +

με

λ
e−λsT (1− e−λpT )

)
− eλT

με

λ
e−λsT (1− e−λpT ).

This quadratic equation yields two Floquet multipliers,
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eγT =
1
2
eλT

(
1 +

με

λ
e−λsT (1− e−λpT )

)

± 1
2

√(
eλT

(
1 +

με

λ
e−λsT (1− e−λpT )

))2

+ 4eλT
με

λ
e−λsT (1− e−λpT ).

For s = 0 one gets the special cases discussed above.

1.9.7 Blind Chaos Control

One of the most surprising successes of chaos theory has been in biology:
the experimentally demonstrated ability to control the timing of spikes of
electrical activity in complex and apparently chaotic systems such as heart
tissue [GSD92] and brain tissue [SJD94]. In these experiments, PPF control, a
modified formulation of OGY control [OGY90], was applied to set the timing
of external stimuli; the controlled system showed stable periodic trajectories
instead of the irregular inter–spike intervals seen in the uncontrolled system.
The mechanism of control in these experiments was interpreted originally as
analogous to that of OGY control: unstable periodic orbits riddle the chaotic
attractor and the electrical stimuli place the system’s state on the stable
manifold of one of these periodic orbits [Kap00].

Alternative possible mechanisms for the experimental observations have
been described by Zeng and Glass [GZ94] and Christini and Collins [CC95].
These authors point out that the controlling external stimuli serve to trun-
cate the inter–spike interval to a maximum value. When applied, the control
stimulus sets the next interval sn+1 to be on the line

sn+1 = Asn + C. (1.172)

We will call this relationship the ‘control line.’ Zeng and Glass showed that
if the uncontrolled relationship between inter–spike intervals is a chaotic 1D
function, sn+1 = f(sn), then the control system effectively flattens the top
of this map and the controlled dynamics may have fixed points or other pe-
riodic orbits [GZ94]. Christini and Collins showed that behavior analogous
to the fixed–point control seen in the biological experiments can be accom-
plished even in completely random systems [CC95]. Since neither chaotic 1D
systems nor random systems have a stable manifold, the interval–truncation
interpretation of the biological experiments is different than the OGY inter-
pretation. The interval–truncation method differs also from OGY and related
control methods in that the perturbing control input is a fixed–size stimulus
whose timing can be treated as a continuous parameter. This type of input is
conventional in cardiology (e.g., [HCT97]).

Kaplan demonstrated in [Kap00] that the state–truncation interpretation
was applicable in cases where there was a stable manifold of a periodic orbit
as well as in cases where there were only unstable manifolds. He found that
superior control could be achieved by intentionally placing the system’s state
off of any stable manifold. That suggested a powerful scheme for the rapid
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experimental identification of fixed points and other periodic orbits in systems
where inter–spike intervals were of interest.

The chaos control in [GSD92] and [SJD94] was implemented in two stages.
First, inter–spike intervals sn from the uncontrolled, ‘natural’ system were
observed. Modelling the system as a function of two variables

sn+1 = f(sn, sn−1),

the location s� of a putative unstable flip-saddle type fixed–point and the
corresponding stable eigenvalue λs were estimated from the data44 [CK97].
The linear approximation to the stable manifold lies on a line given by (1.172)
with

A = λs and C = (1− λs)s�.

Second, using estimated values of A and C, the control system was turned on.
Following each observed interval sn, the maximum allowed value of the next
inter–spike interval was computed as

Sn+1 = Asn + C.

If the next interval naturally was shorter than Sn+1 no control stimulus was
applied to the system. Otherwise, an external stimulus was provided to trun-
cate the inter–spike interval at sn+1 = Sn+1.

In practice, the values of s� and λs for a real fixed–point of the natural
system are known only imperfectly from the data. Insofar as the estimates
are inaccurate, the control system does not place the state on the true stable
manifold. Therefore, we will analyze the controlled system without presuming
that A and C in (1.172) correspond to the stable manifold.

If the natural dynamics of the system is modelled by

sn+1 = f(sn, sn−1),

then the dynamics of the controlled system is given by [Kap00]

sn+1 = min
{

f(sn, sn−1) : Natural Dynamics ,
Asn + C : Control Line .

(1.173)

We can study the dynamics of the controlled system close to a natural
fixed–point, s�, by approximating the natural dynamics linearly as45

sn+1 = f(sn, sn−1) = (λs + λu)sn − λsλusn−1 + s�(1 + λsλu − λs − λu).

Since the controlled system (1.173) is nonlinear even when f() is linear, it
is difficult to analyze its behavior by algebraic iteration. Nonetheless, the
controlled system can be studied in terms of 1D maps.
44 Since the fixed–point is unstable, there is also an unstable eigenvalue λu.
45 Equation (1.174) is simply the linear equation sn+1 = asn + bsn−1 + c with a, b,

and c set to give eigenvalues λs and λu and fixed–point s�.
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Following any inter–spike interval when the controlling stimulus has been
applied, the system’s state (sn, sn−1) will lie somewhere on the control line.
From this time onward the state will lie on an image of the control line even
if additional stimuli are applied during future inter–spike intervals.

The stability of the controlled dynamics fixed–point and the size of its
basin of attraction can be analyzed in terms of the control line and its image.
When the previous inter–spike interval has been terminated by a control stim-
ulus, the state lies somewhere on the control line. If the controlled dynamics
are to have a stable fixed–point, this must be at the controller fixed–point x�

where the control line intersects the line of identity. However, the controller
fixed–point need not be a fixed–point of the controlled dynamics. For example,
if the image of the controller fixed–point is below the controller fixed–point,
then the inter–spike interval following a stimulus will be terminated naturally.

For the controller fixed–point to be a fixed–point of the controlled dynam-
ics, we require that the natural image of the controller fixed–point be at or
above the controller fixed–point. Thus the dynamics of the controlled system,
close to x�, are given simply by

sn+1 = Asn + C (1.174)

The fixed–point of these dynamics is stable so long as −1 < A < 1. In the
case of a flip saddle, we therefore have a simple recipe for successful state-
truncation control: position x� below the natural fixed–point s� and set −1 <
A < 1.

Fixed points of the controlled dynamics can exist for natural dynamics
other than flip saddles. This can be seen using the following reasoning: Let
ξ be the difference between the controller fixed–point and the natural fixed–
point: s� = x� + ξ. Then the natural image of the controller fixed–point can
be found from (1.174) to be [Kap00]

sn+1 = (λs + λu)x� − λsλux
� + (1 + λsλu − λs − λu)(x� + ξ). (1.175)

The condition that
sn+1 ≥ x� (1.176)

will be satisfied depending only on λs, λu, and ξ = s� − x�. This means that
for any flip saddle, so long as x� < s�, the point x� will be a fixed–point of
the controlled dynamics and will be stable so long as −1 < A < 1.

Equations (1.175) and (1.176) imply that control can lead to a stable
fixed–point for any type of fixed–point except those for which both λu and λs
are greater than 1 (so long as −1 < A < 1). Since the required relationship
between x� and s� for a stable fixed–point of the controlled dynamics depends
on the eigenvalues, it is convenient to divide the fixed points into four classes,
as given in Table 1.1.

Beyond the issue of the stability of the fixed–point of the controlled dy-
namics, there is the question of the size of the fixed–point’s basin of attraction.
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Type of FP λu λs x� Locat.

Flip saddle λu < −1 −1 < λs < 1 x� < s�

Saddle λu > 1 −1 < λs < 1 x� > s�

Single–flip repeller λu > 1 λs < −1 x� > s�

Double–flip repeller λu < −1 λs < −1 x� < s�

Spiral (complex λ) |λu| > 1 |λs| > 1 x� < s�

Table 1.1. Cases which lead to a stable fixed–point for the controlled dynamics. In
all cases, it is assumed that |A| < 1. (For the cases where λs < −1, the subscript
s in λs is misleading in that the corresponding manifold is unstable. For the spiral,
there is no stable manifold (adapted from [Kap00]).)

Although the local stability of the fixed–point is guaranteed for the cases in
Table 1.1 for −1 < A < 1, the basin of attraction of this fixed–point may be
small or large depending on A, C, s�, λu and λs.

The endpoints of the basin of attraction can be derived analytically
[Kap00]. The size of the basin of attraction will often be zero when A and C
are chosen to match the stable manifold of the natural system. Therefore, in
order to make the basin large, it is advantageous intentionally to misplace the
control line and to put x� in the direction indicated in Table 1.1. In addition,
control may be enhanced by setting A �= λs, for instance A = 0.

If the relationship between x� and s� is reversed from that given in Table
1.1, the controlled dynamics will not have a stable fixed points. To some
extent, these can also be studied using 1D maps. The flip saddle and double–
flip repeller can display stable period–2 orbits and chaos. For the non–flip
saddle and single–flip repeller, control is unstable when x� < s�.

The fact that control may be successful or even enhanced when A and C
are not matched to λs and s� suggests that it may be useful to reverse the
experimental procedure often followed in chaos control. Rather than first iden-
tifying the parameters of the natural unstable fixed points and then applying
the control, one can blindly attempt control and then deduce the natural dy-
namics from the behavior of the controlled system. This use of PPF control
is reminiscent of pioneering studies that used periodic stimulation to demon-
strate the complex dynamics of biological preparations [GGS81].

As an example, consider the Hénon map:

sn+1 = 1.4 + 0.3sn−1 − s2
n.

This system has two distinct fixed points. There is a flip–saddle at s� = 0.884
with λu = −1.924 and λs = 0.156 and a non–flip saddle at s� = −1.584 with
λu = 3.26 and λs = −0.092. In addition, there is an unstable flip–saddle orbit
of period 2 following the sequence 1.366 → −0.666 → 1.366. There are no
real orbits of period 3, but there is an unstable orbit of period 4 following the
sequence .893 → .305 → 1.575 → −.989 → .893. These facts can be deduced
by algebraic analysis of the equations.
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In an experiment using the controlled system, the control parameter
x� = C/(1 − A) can be varied. The theory presented above indicates that
the controlled system should undergo a bifurcation as x� passes through s�.
For each value of x�, the controlled system was iterated from a random initial
condition and the values of sn plotted after allowing a transient to decay. A
bifurcation from a stable fixed–point to a stable period 2 as x� passes through
the flip–saddle value of s� = 0.884. A different type bifurcation occurs at the
non–flip saddle fixed–point at s� = −1.584. To the left of the bifurcation
point, the iterates are diverging to −∞ and are not plotted.

Adding gaussian dynamical noise (of standard deviation 0.05) does not
substantially alter the bifurcation diagram, suggesting that examination of
the truncation control bifurcation diagram may be a practical way to read off
the location of the unstable fixed points in an experimental preparation.

Unstable periodic orbits can be difficult to find in uncontrolled dynamics
because there is typically little data near such orbits. Application of PPF
control, even blindly, can stabilize such orbits and dramatically improve the
ability to locate them. This, and the robustness of the control, may prove
particularly useful in biological experiments where orbits may drift in time as
the properties of the system change [Kap00].

1.9.8 Jerk Functions of Simple Chaotic Flows

Recall that the celebrated Lorenz equations (1.121) can be rewritten as

ẋ = −ax + ay, ẏ = −xz + bx− y, ż = xy − cz. (1.177)

Note that there are seven terms in the phase–flow of these equations, two
of which are nonlinear (xz and xy); also, there are three parameters, for
which Lorenz found chaos with a = 10, b = 28, and c = 8/3. The number of
independent parameters is generally d + 1 less than the number of terms for
a d−dimensional system, since each of the variables (x, y, and z in this case)
and time (t) can be arbitrarily rescaled [SL00]. The Lorenz system has been
extensively studied, and there is an entire book [Spa82] devoted to it.

Although the Lorenz system is often taken as the prototypical chaotic flow,
it is not the algebraically simplest such system [SL00]. Recall that in 1976,
Rössler [Ros76] proposed his equations (1.38), rewritten here as

ẋ = −y − z, ẏ = x + ay, ż = b + xz − cz. (1.178)

Rössler phase–flow also has seven terms and two parameters, which Rössler
took as a = b = 0.2 and b = 5.7, but only a single quadratic nonlinearity (xz).

In 1994, Sprott [Spr94] embarked on an extensive search for autonomous
three–dimensional chaotic systems with fewer than seven terms and a sin-
gle quadratic nonlinearity and systems with fewer than six terms and two
quadratic nonlinearities. The brute–force method [Spr93a, Spr93b] involved
the numerical solution of a huge number (about 108) systems of autonomous
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ODEs with randomly chosen real coefficients and initial conditions. The cri-
terion for chaos was the existence of a leading Lyapunov exponent. He found
fourteen algebraically distinct cases with six terms and one nonlinearity, and
five cases with five terms and two nonlinearities. One case was volume conserv-
ing (conservative), and all the others were volume–contracting (dissipative),
implying the existence of a strange attractor. Sprott provided a table of the
spectrum of Lyapunov exponents, the related Kaplan–Yorke dimension, and
the types and eigenvalues of the unstable fixed–points for each of the nineteen
cases [SL00].

Subsequently, Hoover [Hoo95] pointed out that the conservative case found
by Sprott in [Spr94]

ẋ = y, ẏ = −x + yz, ż = 1− y2, (1.179)

is a special case of the Nosé–Hoover thermostated dynamic system that had
earlier been shown [PHV86] to exhibit time–reversible Hamiltonian chaos.

In response to Sprott’s work, Gottlieb [Got96] pointed out that the con-
servative system (1.179) could be recast in the explicit third–order form

...
x = −ẋ + ẍ(x + ẍ)/ẋ,

which he called a ‘jerk function’ since it involves a third derivative of ẍ,
which in a mechanical system is the time rate of change of the acceleration,
also called the ‘jerk’ [Sch78]. It is known that any explicit ODE can be cast
in the form of a system of coupled first–order ODEs, but the converse does
not hold in general. Even if one can reduce the dynamical system to a jerk
form for each of the phase–space variables, the resulting differential equations
may look quite different. Gottlieb asked the provocative question ‘What is the
simplest jerk function that gives chaos?’

One response was provided by Linz [Lin97] who showed that both the
original Rössler model and the Lorenz model can be reduced to jerk forms.
The Rössler model (1.178) can be rewritten (in a slightly modified form) as

...
x + (c− ε + εx− ẋ)ẍ + [1− εc− (1 + ε2)x + εẋ]ẋ + (εx + c)x + ε = 0,

where ε = 0.2 and c = 5.7 gives chaos. Note that the jerk form of the Rössler
equation is a rather complicated quadratic polynomial with 10 terms.

The Lorenz model in (1.177) can be written as

...
x + (1 + σ + b− ẋ/x)ẍ+ [b(1 + σ + x2)− (1 + σ)ẋ/x]ẋ− bσ(r− 1− x2)x = 0.

The jerk form of the Lorenz equation is not a polynomial since it contains
terms proportional to ẋ/x as is typical of dynamical systems with multiple
nonlinearities. Its jerk form contains eight terms.

Linz [Lin97] showed that Sprott’s case R model (see [Spr94]) can be written
as a polynomial with only five terms and a single quadratic nonlinearity
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...
x + ẍ− xẋ + ax + b = 0,

with chaos for a = 0.9 and b = 0.4.
Sprott [Spr97] also took up Gottlieb’s challenge and embarked on an ex-

tensive numerical search for chaos in systems of the explicit form

...
x = J(ẍ, ẋ, x),

where the jerk function J is a simple quadratic or cubic polynomial. He found
a variety of cases, including two with three terms and two quadratic nonlin-
earities in their jerk function,

...
x + axẍ− ẋ2 + x = 0,

with a = 0.645 and ...
x + axẍ− xẋ + x = 0,

with a = −0.113, and a particularly simple case with three terms and a single
quadratic nonlinearity ...

x + aẍ± ẋ2 + x = 0, (1.180)

with a = 2.017. For this value of a, the Lyapunov exponents are
(0.0550, 0, -2.0720) and the Kaplan–Yorke dimension is dKY = 2.0265.

Equation (1.180) is simpler than any previously discovered case. The range
of the parameter a over which chaos occurs is quite narrow (2.0168 . . . < a <
2.0577 . . .). It also has a relatively small basin of attraction, so that initial
conditions must be chosen carefully. One choice of initial conditions that lies
in the basin of attraction is (x, y, z) = (0, 0,±1), where the sign is chosen
according to the sign of the ±ẋ2 term.

All above systems share a common route to chaos. The control parameter a
can be considered a damping rate for the nonlinear oscillator. For large values
of a, there are one or more stable equilibrium points. As a decreases, a Hopf
bifurcation (see [CD98]) occurs in which the equilibrium becomes unstable,
and a stable limit cycle is born. The limit cycle grows in size until it bifurcates
into a more complicated limit cycle with two loops, which then bifurcates
into four loops, and so forth, in a sequence of period doublings until chaos
finally onsets. A further decrease in a causes the chaotic attractor to grow in
size, passing through infinitely many periodic windows, and finally becoming
unbounded when the attractor grows to touch the boundary of its basin of
attraction (a ‘crisis’).

Recently, Malasoma [Mal00] joined the search for simple chaotic jerk func-
tions and found a cubic case as simple as (1.180) but of a different form

...
x + aẍ− xẋ2 + x = 0,

which exhibits chaos for a = 2.05. For this value of a, the Lyapunov exponents
are (0.0541, 0,−2.1041), and the Kaplan–Yorke dimension is dKY = 2.0257.
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This case follows the usual period–doubling route to chaos, culminating in
a boundary crisis and unbounded solutions as a is lowered. The range of a
over which chaos occurs is very narrow, (2.0278 . . . < a < 2.0840 . . .). There is
also a second extraordinarily small window of chaos for (0.0753514 . . . < a <
0.0753624 . . .), which is five thousand times smaller than the previous case.
Malasoma points out that this system is invariant under the parity transfor-
mation x→ −x and speculates that this system is the simplest such example.

Both Linz and Sprott pointed out that if the jerk function is considered
the time derivative of an acceleration of a particle of mass m, then Newton’s
second law implies a force F whose time derivative is Ḟ = mJ . If the force
has an explicit dependence on only ẋ, x, and time, it is considered to be
‘Newtonian jerky’. The condition for F = F (ẋ, x, t) is that J depends only
linearly on ẍ. In such a case the force in general includes a memory term of
the form

M =
∫ t

0

G(x(τ)) dτ ,

which depends on the dynamical history of the motion.
The jerk papers by Linz [Lin97] and Sprott [Spr97] appeared in the same

issue of the American Journal of Physics and prompted von Baeyer [Bae98] to
comment: “The articles with those funny titles are not only perfectly serious,
but they also illustrate in a particularly vivid way the revolution that is trans-
forming the ancient study of mechanics into a new science – one that is not
just narrowly concerned with the motion of physical bodies, but that deals
with changes of all kinds.” He goes on to say that the method of searching
for chaos in a large class of systems “is not just empty mathematical formal-
ism. Rather it illustrates the arrival of a new level of abstraction in physical
science. . . At that higher level of abstraction, dynamics has returned to the
classical Aristotelian goal of trying to understand all change.”

1.9.9 Example: Chaos Control in Molecular Dynamics

Recall that classically modelled molecular dynamics are often characterized by
the presence of chaotic behavior. A central issue in these studies is the role of a
control variable. A small variation of this variable can cause a transition from
the periodic or quasi–periodic regime to the chaotic regime. For example, the
molecular energy can serve as a control variable. It was shown in [BRR95] that
the isotopic mass could be viewed as a discrete control variable and related
effects were also evident in quantum calculations.

In this approach the variation of the control variable or parameters changes
the route taken by the dynamics of the system. It was shown that a small time–
dependent perturbation of the control parameters could convert a chaotic at-
tractor to any of a large number of possible attracting periodic orbits [Ott93].
The control parameter could stabilize the chaotic dynamics about some peri-
odic orbit.
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In [BRR95], a general method to control molecular systems has been pro-
posed by employing optimally designed laser pulses. This approach is capable
of designing the time–dependent laser pulse shapes to permit the steering of
intramolecular dynamics to desired physical objectives. Such objectives in-
clude selective bond breaking through infrared excitation [SR91, SR90, SR91]
and through electronic excitation between multiple surfaces [TR85, KRG89],
control of curve-crossing reactions [GNR92, CBS91], selective electronic ex-
citation in condensed media [GNR91, GNR93, SB89], control of the electric
susceptibility of a molecular gas [SSR93] and selective rotational excitation
[JLR90]. The pulse shape design is obtained by minimization of a design cost
functional with respect to the control field pulse which corresponds to the op-
timization of the particular objective. Also, multiple solutions of the optimal
control equations exist, which gives flexibility for adding further terms in the
cost functional or changing certain design parameters so that the particular
objective is better reached.

In this section, following [BRR95, BRR95], we will explore optimal con-
trol properties of nonlinear classical Hamiltonians under certain constraints
in order to suppress their chaotic behavior. This approach to molecular dy-
namics simulations reduces the computational cost and instabilities especially
associated with the treatment of the Lagrange multipliers.

Conventional optimal control with an ensemble of N trajectories would
call for the introduction of rN Lagrange constraint functions where r is the
dimension of the phase–space. In contrast the new method only requires the
same number r of Lagrange multipliers as the dimension of the phase–space of
a single molecule. The reduction of Lagrange multipliers is achieved by only
following the control of the average trajectory. Here we present the application
of these ideas to the classical control of chaotic Hamiltonian dynamics, where
control is realized by a small external interaction. An important application
of this approach is to finding regular orbits amongst a dense set of irregular
trajectories.

Hamiltonian Chaotic Dynamics

The methodology introduced below is quit general, but to aid its presenta-
tion we develop it in the context of controlling the motion of a particular
Hamiltonian [BRR95]

H =
1
2
(P 2

1 + P 2
2 + R4

1 + R4
2)−KR2

1R
2
2, (1.181)

where K is a coupling constant between R1 and R2. The Hamiltonian in (5.1)
presents certain characteristics such as scaling, where the motion of the system
at any energy can be determined from E = 1 by simple scaling relations.

This latter scaling property can be shown through Poincaré sections and
from this approach it is also possible to see the transition to chaos. The
Poincaré section is constructed as follows. The Hamiltonian is associated with
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a 4D phase–space (R1, R2, P1, P2). We can reduce this to a two dimensional
phase–space by fixing the energy and one variable, for instance R1 = 0. With
this method, the Poincaré sections permit us to establish the character of the
system motion at each desired energy and value of the parameter K. When
we increase K, the cross term in this Hamiltonian increases its impact over
the un–coupled quartic terms. Thus, for a fixed energy, K can be used as a
perturbation control parameter, showing the scaling properties of the energy
at different values of K.

Optimal Control Algorithm

The dynamics equation for the Hamiltonian at very strong coupling constant,
in the chaotic regime, can be modified by the a small perturbation from an
external interaction field. This external perturbation can guide the chaotic
motion towards the average trajectory of an ensemble or draw the system
towards a periodic or quasi–periodic orbit(if it exists). Based on this control
idea, we introduce an interaction term for controlling the chaotic motion as
[BRR95]

Hint(R(t), ε(t)) = (R1(t)− ηR2(t))ε(t) (1.182)

where η is a parameter. This term is similar to previous work in the control of
chaos, where the parameter η is zero [SR91]. It is physically desirable to keep
this external interaction small; an intense external interaction could itself lead
to chaotic motion.

Let us define a set of N trajectories corresponding to the initial conditions
as a vector w(t) = [w1(t), w2(t)...w4N (t)] where the first N values are the
positions for R1(t), N + 1 to 2N the positions of R2(t), 2N + 1 to 3N the
values for P1(t) and the last values 3N+1 to 4N for P2(t). With this definition
the classical dynamics is governed by Hamiltonian’s equations,

ẇ1(t) = g1(w(t), ε(t)),
ẇ2(t) = g2(w(t), ε(t)),

... ... (1.183)

ẇ4N (t) = g4N (w(t), ε(t)),

which depend on the dynamical observables and the time dependent field
ε(t). The functions gi(w(t), ε(t)) may be readily identified as momentum or
coordinate derivatives of the Hamiltonian. Alteration of the external control
interaction ε(t) can steer about the classical dynamics and change its charac-
teristic behavior.

The classical average of the coordinates and momenta are [BRR95]

〈zi(t)〉 =
1
N

iN∑

j=(i−1)N+1

wj(t), (i = 1..4), (1.184)
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and the average approximate energy as a function of time is

El(t) =
1
N

(l+2)N∑

j=(l+1)N+1

w2
j (t)
2

+
1
N

lN∑

j=(l−1)N+1

V (wj(t)), (1.185)

where l = 1 and 2 labels the two degrees of freedom and V (wj(t)) represents
the un–coupled quartic term in the (5.1). This energy is approximate because
it does not account for the nonlinear coupling term. With these definitions,
we can proceed to define the control cost functional.

In the formulation of the classical optimal control problem, we first identify
the physical objective and constraints. The objective at time T is to control
the ensemble of trajectories by requiring that they are confined to a small
region in the phase–space. In addition to the final time goal, another physical
objective is to require that the chaotic trajectories evolve to either be close
to the average trajectory Zi(t) = 〈zi(t)〉 or be confined around an imposed
fiducial trajectory Zi(t). This fiducial trajectory may be a periodic or quasi–
periodic trajectory. The cost functional, in quadratic form, that represents
the objective and cost is [BRR95]

J [w, ε] =
4∑

i=1

σi(〈zi(T )〉 − γi)
2 +

1
N

4∑

i=1

iN∑

j=(i−1)N+1

"i(wj(T )− Zi(T ))2

+
1
N

∫ T

0

dt
4∑

i=1

iN∑

j=(i−1)N+1

Wi(wj(t)− Zi(t))2 + ωe

∫ T

0

dtε(t)2, (1.186)

where Wi, ωe, σi and "i are positive weights, which balance the importance
of each term in the cost functional. The notation J [w, ε] indicated the func-
tional dependence on w(t), ε(t) for 0 ≤ t ≤ T . γi is the a specified constant
target for each average variable in the phase–space. This cost functional can
be decomposed into a sum of four terms where each of them represents the
component average in the phase–space. J [w, ε] is to be minimized with respect
to the external interaction subject to satisfying the equations of motion. This
latter constraint can be satisfied by introducing Lagrange multipliers, λi(t),
to get an unconstrained functional

J̄ [w, ε] = J [w, ε]− 1
N

∫ T

0

dt

4∑

i=1

λi(t)[
iN∑

j=(i−1)N+1

ẇj(t)− gj(w(t), ε(t))].

(1.187)
Note that there are four Lagrange multipliers corresponding to constraints on
the average equation of motion. These four Lagrange multipliers are intro-
duced to be consistent with the cost functional (1.186) that represent the sum
of four terms over each average component on the phase–space. The classical
variational problem for the N initial conditions is given by
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ε(t) → ε(t) + δε(t), wj(t) → wj(t) + δwj(t), λi(t) → λi(t) + δλi(t).

The variation of λi(t) yields the average Hamiltonian equations of motion.
The variation of wj(t) and ε(t), gives the following equations

δJ̄ [w, ε] =
4∑

i=1

λi(T )δ〈zi(T )〉 − 2
4∑

i=1

σi[〈zi(T )〉 − γi]δ〈zi(T )〉 (1.188)

− 2
N

4∑

i=1

iN∑

j=(i−1)N+1

"i[wj(T )− Zi(T )][δwj(T )− δZi(T )]

+
∫ T

0

dt
4∑

i=1

iN∑

j=(i−1)N+1

{λ̇i(t)δ〈zi(t)〉+
2Wi

N
[wj(t)− Zi(t)][δwj(t)− δZi(t)]

+
λi(t)
N

4N∑

k=1

∂gj(w(t), ε(t))
∂wk(t)

δwk(t)}

+
∫ T

0

dt[2ωeε(t) +
1
N

4∑

i=1

iN∑

j=(i−1)N+1

λi(t)
∂gj(w(t), ε(t))

∂ε(t)
]δε(t),

where δ〈zi(t)〉 is given by

δ〈zi(t)〉 =
1
N

iN∑

j=(i−1)N+1

δwj(t),

and take account all the variations for each initial condition at each instant of
time t. The variation of Zi(t) is equal to zero if the target trajectory is a fiducial
trajectory (constant trajectory in the control process) and δZi(t) = δ〈zi(t)〉
if we consider the control evolution over its average trajectory. These two
methods to control the chaotic behavior will be explained below.

The final conditions at time T ,

λi(T )δ〈zi(T )〉 = 2σi[〈zi(T )〉 − γi]δ〈zi(T )〉 (1.189)

+
2
N

iN∑

j=(i−1)N+1

"i[wj(T )− Zi(T )][δwj(T )− δZi(T )]

are obtained through (1.188). The second variational equation for the La-
grange multipliers is derived from the second part of (1.188),

∫ T

0

dt
4∑

i=1

iN∑

j=(i−1)N+1

{λ̇i(t)δ〈zi(t)〉+
2Wi

N
[wj(t)− Zi(t)][δwj(t)− δZi(t)]

+
λi(t)
N

4N∑

k=1

∂gj(w(t), ε(t))
∂wk(t)

δwk(t)} = 0. (1.190)
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The gradient with respect to the field is given by

δJ̄ [w, ε]
δε(t)

= 2ωeε(t) +
1
N

4∑

i=1

iN∑

j=(i−1)N+1

λi(t)
∂gj(w(t), ε(t))

∂ε(t)
, (1.191)

and the minimum field solution is

ε(t) = − 1
2Nωe

4∑

i=1

iN∑

j=(i−1)N+1

λi(t)
∂gj(w(t), ε(t))

∂ε(t)
. (1.192)

This minimum solution links Hamilton’s equations with (1.190) for the La-
grange multipliers. In order to integrate the equations for the Lagrange mul-
tipliers we need to know the classical evolution for each component wj(t) and
the final condition of the Lagrange multipliers at time T . These final con-
ditions for the Lagrange multipliers in (1.189) are given by the objective in
the control dynamics. The solution (if it exists) of these coupled equations
prescribes the external control field interaction ε(t).

In order to find a solution of the (1.190), the Lagrange multipliers were
chosen to satisfy the following equation

4∑

i=1

λ̇i(t)δ〈zi(t)〉 = − 1
N

4∑

i=1

iN∑

j=(i−1)N+1

{2Wi[wj(t)− Zi(t)][δwj(t)− δZi(t)]

+ λi(t)
4N∑

k=1

∂gj(w(t), ε(t))
∂wk(t)

δwk(t)}, (1.193)

where each Lagrange multiplier gives information about the status of the av-
erage or fiducial trajectory Zi(t). The values of the Lagrange multipliers at
each instant of time directs how the external field must evolve. The general-
ization of these equations is obvious when we increase the dimensionality of
the system. Equations (1.193) are over–specified, and a physically motivated
assumption on the nature of the solutions must be introduced to close the
equations.

There is considerable flexibility in the choice of Lagrange multipliers and
within this control formalism we will address two different ways to control
the chaotic trajectories. The basic role of the Lagrange multipliers is to guide
the physical system towards a desirable solution. We shall take advantage of
these observations to develop the two approaches towards control of chaotic
trajectories. The first method represents the desire to achieve control around
the mean trajectory. In this case the control dynamics searches the phase–
space, using the variational principle, finding the mean trajectory and the
control field works to keep the ensemble around this trajectory. The second
method directs the formerly chaotic trajectories towards a periodic or quasi–
periodic orbit or other specified fiducial trajectory.
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Following the Mean Trajectory

In this case the fiducial trajectory Zi(t) is not fixed, and can change at each
cycle of cost functional minimization. Here the choice is the average trajectory,
Zi(t) = 〈zi(t)〉. Substituting the equations of motion into (1.193) and (1.191),
we have [BRR95]

λ̇1(t)δ〈z1(t)〉 =
1
N

N∑

j=1

δwj(t){2λ3(t)[3wj(t)2 −Kw2
j+N (t)]

−4Kλ4(t)wj(t)wj+N (t)}

−2W1

N

N∑

j=1

[wj(t)− 〈z1(t)〉][δwj(t)− δ〈z1(t)〉], (1.194)

λ̇2(t)δ〈z2(t)〉 =
1
N

N∑

j=1

δwj+N (t){2λ4(t)[3w2
j+N (t)−Kw2

j (t)]

−4Kλ3(t)wj(t)wj+N (t)}

−2W2

N

N∑

j=1

[wj+N (t)− 〈z2(t)〉][δwj+N (t)− δ〈z2(t)〉],

λ̇3(t)δ〈z3(t)〉 = −λ1(t)δ〈z3(t)〉 −
2W3

N

N∑

j=1

[wj+2N (t)

−〈z3(t)〉][δwj+2N (t)− δ〈z3(t)〉],

λ̇4(t)δ〈z4(t)〉 = −λ2(t)δ〈z4(t)〉 −
2W4

N

N∑

j=1

[wj+3N (t)

−〈z4(t)〉][δwj+3N (t)− δ〈z4(t)〉],

and the gradient of the cost functional with respect of the external field is

δJ̄ [w(t), ε(t)]
δε(t)

= 2ωeε(t)− λ3(t) + ηλ4(t). (1.195)

This equation only depends on the values of the Lagrange multipliers, λ3(t),
λ4(t), that represent the driving force. In this approach the control dynamics
equations to be solved result from (1.195), (1.194) and the final conditions for
the Lagrange multipliers are given by (1.189).

When the classical trajectories are very close or are attracted to a regular
orbit, then these control equations for the Lagrange multipliers can be closed
and written as

λ̇1(t) = 2λ3(t)[3〈z1(t)〉2 −K〈z2(t)〉2]− 4Kλ4(t)〈z1(t)〉〈z2(t)〉,
λ̇2(t) = 2λ4(t)[3〈z2(t)〉2 −K〈z1(t)〉2]− 4Kλ3(t)〈z1(t)〉〈z2(t)〉,
λ̇3(t) = −λ1(t), λ̇4(t) = −λ2(t). (1.196)
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This gives the control dynamics equations for one effective classical trajectory,
in this case the average trajectory. Thus, the system to solve is (1.195) and
(1.196) with boundary conditions (1.189).

Following a Fixed Trajectory

This case treats the desire to draw the chaotic trajectories around a specified
fiducial trajectory. This trajectory is the target trajectory, Zi(t). In the present
case the choice of this trajectory is the average trajectory produced from the
original ensemble evolving from the initial conditions. The control dynamics
equations are [BRR95]

λ̇1(t)δ〈z1(t)〉 =
1
N

N∑

j=1

δwj(t){2λ3(t)[3wj(t)2 −Kw2
j+N (t)]

−4Kλ4(t)wj(t)wj+N (t)}

−2W1

N

N∑

j=1

[wj(t)− Z1(t)]δwj(t),

λ̇2(t)δ〈z2(t)〉 =
1
N

N∑

j=1

δwj+N (t){2λ4(t)[3w2
j+N (t)−Kw2

j (t)]

−4Kλ3(t)wj(t)wj+N (t)}

−2W2

N

N∑

j=1

[wj+N (t)− Z2(t)]δwj+N (t),

λ̇3(t)δ〈z3(t)〉 = −λ1(t)δ〈z3(t)〉 −
2W3

N

N∑

j=1

[wj+2N (t)− Z3(t)]δwj+2N ,(1.197)

λ̇4(t)δ〈z4(t)〉 = −λ2(t)δ〈z4(t)〉 −
2W4

N

N∑

j=1

[wj+3N (t)− Z4(t)]δwj+3N ,

with the final conditions for the Lagrange multipliers as

λi(T )δ〈zi(T )〉 = 2σi[〈zi(T )〉 − γi]δ〈zi(T )〉 +
2

N

iN∑

j=(i−1)N+1

�i[wj(T ) − Zi(T )]δwj(T ).

(1.198)

In this case the system of equations to solve are (1.195), (1.197) and the
boundary conditions (1.198).

Once again, the self consistency of (1.197) needs to be addressed and here
we seek the non-chaotic result of each trajectory closely following the corre-
sponding initially specified mean Zi(t). Then for this one classical trajectory,
we get the following equations
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λ̇1(t) = 2λ3(t)[3〈z1(t)〉2 −K〈z2(t)〉2]
−4Kλ4(t)〈z1(t)〉〈z2(t)〉 − 2W1[〈z1(t)〉 − Z1(t)],

λ̇2(t) = 2λ4(t)[3〈z2(t)〉2 −K〈z1(t)〉2]
−4Kλ3(t)〈z1(t)〉〈z2(t)〉 − 2W2[〈z2(t)〉 − Z2(t)],

λ̇3(t) = −λ1(t)− 2W3[〈z3(t)〉 − Z3(t)], (1.199)
λ̇4(t) = −λ2(t)− 2W4[〈z4(t)〉 − Z4(t)].

This case expresses the desire and assumption that the formally chaotic tra-
jectories are tightly drawn around the fiducial trajectory. The system to solve
is (1.199), (1.195) and (1.198).

Utilizing these two methods to control the irregular motion using optimal
control theory, we present two different algorithms in order to find the optimal
solution ε(t). The first algorithm returns to the variational principle over all
classical trajectories as in (1.193). This evaluation of the Lagrange multipliers
takes account the single variation of each component in the phase–space. The
procedure is implemented by evaluating the trajectory variations as

δwj(t) ! wj(t)− woldj (t) (1.200)

at each instant of time from two successive steps of the minimization process
(woldj (t) is the value in the previous minimization step). This first algorithm
is a rigorous test (accepting the finite difference nature of (1.200)) of the
arguments leading to the approximate Lagrange equations (1.196) and (1.199).

The second algorithm accepts the approximate form of (1.196) and (1.199)
to ultimately yield the field ε(t). Although the average trajectory is used in
this approach, the full dynamical equations for wj(t) are followed and used to
evaluate the cost functional J [w, ε] attesting to the quality of the results.

Computational Method

The optimal control of N classical trajectories is given by the solution of the
(1.194), (1.189) and (1.195) for following the average trajectory, and (1.197),
(1.198) and (1.195) for a fixed fiducial trajectory.

The following iterative scheme is adopted to find the external control field
ε(t) that meets the physical objectives, for N classical trajectories:

a) Make an initial guess for the external interaction ε(t).
b) Integrate the equation of motion (1.183) forward in time for all initial

conditions.
c) Calculate the cost functional and boundary conditions for the Lagrange

multipliers λ(T ).
d) Integrate the Lagrange multiplier λ(t) equation backwards in time.
f) Calculate the gradient and save all the classical trajectories as the ‘old’

configuration.
g) Upgrade the new external interaction as [BRR95]
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εnew(t) = ε(t)− α
δJ̄

δε(t)
,

where α is a suitable small positive constant. This process is repeated until
the cost functional and field converge. In one of the algorithmic approaches
we need to calculate the variation of wj(t) as

δwj(t) ! wj(t)− woldj (t),

where woldj (t) is the previous value. In this case at the beginning of the min-
imization procedure, we choose one classical trajectory at random from the
set of initial conditions as the ‘old’ configuration.

The procedure starts by examining a Poincaré section and choosing one
point and giving a random distribution around this point (e.g., R2± |δ|, P2±
|δ|), where δ is a random number between 0 and 1 × 10−3 (or another small
number). After two cycles (one cycle is defined as the apparent quasi–period
of the R1(t) motion at the beginning of the simulation), the system starts its
chaotic behavior and the motion is bounded. The approximate energy for each
degree of freedom reflects the irregular behavior with strong coupling between
them. In five cycles the system is completely irregular, and the objective is to
control this irregular motion by keeping the classical trajectories close during
a time interval of 5 cycles; no demand is made on the behavior greater than
5 cycles, although, it is also possible to apply this method for more that 5
cycles [BRR95].

1.10 Spatio-Temporal Chaos Control

Excitable media denotes a class of systems that share a set of features which
make their dynamical behavior qualitatively similar. These features include
(i) the existence of two characteristic dynamical states, comprising a stable
resting state and a meta-stable excited state, (ii) a threshold value associated
with one of the dynamical variables characterizing the system, on exceeding
which, the system switches from the resting state to the excited state, and
(iii) a recovery period following an excitation, during which the response of
the system to a supra-threshold stimulus is diminished, if not completely ab-
sent [KS98]. Natural systems which exhibit such features include, in biology,
cells such as neurons, cardiac myocytes and pancreatic beta cells, all of which
are vital to the function of a complex living organism. Other examples of
dynamical phenomena associated with excitable media include cAMP waves
observed during aggregation of slime mold, calcium waves observed in Xeno-
pus oocytes, muscle contractions during childbirth in uterine tissue, chemical
waves observed in the Belusov–Zhabotinsky reaction and concentration pat-
terns in CO–oxidation reaction on Pt(110) surface. Excitation in such systems
is observed as the characteristic action potential , where a variable associated
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with the system (e.g., membrane potential , in the case of biological cells) in-
creases very fast from its resting value to the peak value corresponding to the
excited state, followed by a slower process during which it gradually returns
to the resting state [SS07].

The simplest model system capable of exhibiting all these features is the
generic Fitzhugh–Nagumo model :

ė = e(1− e)(e− b)− g, ġ = ε(ke− g), (1.201)

which, having only two variables, is obviously incapable of exhibiting chaos.
However, when several such sets are coupled together diffusively to simulate a
spatially extended media (e.g., a piece of biological tissue made up of a large
number of cells), the resulting high–dimensional dynamical system can display
chaotic behavior. The genesis of this spatio-temporal chaos lies in the distinct
property of interacting waves in excitable media, which mutually annihilate
on colliding. This is a result of the fact that an excitation wavefront is followed
by a region whose cells are all in the recovery period, and which, therefore,
cannot be stimulated by another excitation wavefront, as for example when
two waves cross each other.46 Interaction between such waves result in the
creation of spatial patterns, referred to variously as reentrant excitations (in
1D), vortices or spiral waves (in 2D) and scroll waves (in 3D), which form
when an excitation wavefront is broken as the wave propagates across partially
recovered tissue or encounters an inexcitable obstacle [JAD99]. The free ends
of the wavefront gradually curl around to form spiral waves. Once formed,
such waves become self-sustained sources of high–frequency excitation in the
medium, and usually can only be terminated through external intervention.
The existence of nonlinear properties of wave propagation in several excitable
media (e.g., the dependence of the action potential duration, as well as the
velocity of the excitation wave, on the distance of a wave from the preceding
excitation wave) can lead to complex non–chaotic spatio-temporal rhythms,
which are important targets of control as they are often associated with clinical
arrhythmias (i.e., disturbances in the natural rhythm of the heart). Thus,
spiral waves are associated with periodic as well as quasi-periodic patterns of
temporal activity.

In this section, following [SS07], we shall not be discussing the many
schemes proposed to terminate single spiral waves, but instead, focus on the
control of spatiotemporally chaotic patterns seen in excitable media (in 2 or 3
dimensions), that occur when under certain conditions, spiral or scroll waves
become unstable and break up. Various mechanisms of such breakup have
been identified,47 including meandering of the spiral focus. If the meandering
is sufficiently high, the spiral wave can collide with itself and break up sponta-
neously, resulting in the creation of multiple smaller spirals (see Figure 1.54).

46 Unlike waves in ordinary diffusive media which dissipate as they propagate fur-
ther, excitation waves are self–regenerating.

47 For a discussion of the multiple scenarios of spiral wave breakup, see [FCH02].
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The process continues until the spatial extent of the system is spanned by sev-
eral coexisting spiral waves that activate different regions without any degree
of coherence. This state of spiral turbulence marks the onset of spatio-temporal
chaos, as indicated by the Lyapunov spectrum and Kaplan–Yorke dimension
[PPS02].

Fig. 1.54. Onset of spatio-temporal chaos in the 2D Panfilov model. The initial
condition is a broken plane wave that is allowed to curl around into a spiral wave
(left). Meandering of the spiral focus causes wave-breaks to occur (center) that
eventually result in spiral turbulence, with multiple independent sources of high-
frequency excitation (right) (adapted and modified from [SS07]).

Controlling spatio-temporal chaos in excitable media has certain special
features. Unlike other chaotic systems, here the response to a control signal is
not proportional to the signal strength because of the existence of a threshold.
As a result, an excitable system shows discontinuous response to control. For
instance, regions that have not yet recovered from a previous excitation or
where the control signal is below the threshold, will not be affected by the
control stimulus at all. Also, the focus of control in excitable media is to elim-
inate all activity rather than to stabilize unstable periodic behavior. This is
because the problem of chaos termination has great practical importance in
the clinical context, as the spatiotemporally chaotic state has been associated
with the cardiac problem of ventricular fibrillation (VF). VF involves incoher-
ent activation of the heart that results in the cessation of pumping of blood,
and is fatal within minutes in the absence of external intervention. At present,
the only effective treatment is electrical defibrillation, which involves applying
very strong electrical shocks across the heart muscles, either externally using
a defibrillator or internally through implanted devices. The principle of op-
eration for such devices is to overwhelm the natural cardiac dynamics, so as
to drive all the different regions of the heart to rest simultaneously, at which
time the cardiac pacemaker can take over once again. Although the exact
mechanism by which this is achieved is still not completely understood, the
danger of using such large amplitude control (involving ∼ kV externally and
∼ 100V internally) is that, not only is it excruciatingly painful to the patient,
but by causing damage to portions of cardiac tissue which subsequently result
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in scars, it can potentially increase the likelihood of future arrhythmias. (i.e.,
abnormalities in the heart’s natural rhythm). Therefore, devising a low–power
control method for spatio-temporal chaos in excitable media promises a safer
treatment for people at risk from potentially fatal cardiac arrhythmias.

In this section, we present most of the recent control methods that have
been proposed for terminating spatio-temporal chaos in excitable media.48.
These methods are also often applicable to the related class of systems known
as oscillatory media, described by complex Landau–Ginzburg equation [AK02],
which also exhibit spiral waves and spatio-temporal chaos through spiral
breakup. We have broadly classified all control schemes into three types, de-
pending on the nature of application of the control signal. If every region of
the media is subjected to the signal (which, in general, can differ from region
to region) it is termed as global chaos control ; on the other hand, if the control
signal is applied only at a small, localized region from which its effects spread
throughout the media, this is called local chaos control . Between these two
extremes lie control schemes where perturbations are applied simultaneously
to a number of spatially distant regions. We have termed these methods as
non-global, spatially extended chaos control . While global control may be the
easiest to understand, involving as it does the principle of synchronizing the
activity of all regions, it is also the most difficult to implement in any practical
situation. On the other hand, local control will be the easiest to implement
(requiring a single control point) but hardest to achieve [SS07].

1.10.1 Models of Spatio-Temporal Chaos in Excitable Media

The generic Fitzhugh-Nagumo model for excitable media (1.201) exhibits a
structure that is common to most models used in the papers discussed here.
Typically, the dynamics is described by a fast variable, e(x, t), and a slow
variable, g(x, t), the ratio of timescales being given by ε. For biological cells,
the fast variable is often associated with the transmembrane potential, while
the slow (recovery) variable represents an effective membrane conductance
that replaces the complexity of several different types of ion channels. For the
spatially extended system, the fast variable of neighboring cells are coupled
diffusively. There are several models belonging to this general class of excitable
media which display breakup of spiral waves (in 2D) and scroll waves (in 3D),
including the one proposed by Panfilov [PH93, Pan98]

∂te = ∇2e− f(e)− g, ∂tg = ε(e, g)(ke− g). (1.202)

Here, f(e) is the function specifying the initiation of the action potential and
is piecewise linear: f(e) = C1e, for e < e1, f(e) = −C2e + a, for e1 ≤ e ≤ e2,
and f(e) = C3(e−1), for e > e2. The physically appropriate parameters given
in [Pan98] are e1 = 0.0026, e2 = 0.837, C1 = 20, C2 = 3, C3 = 15, a = 0.06
and k = 3. The function ε(e, g) determines the time scale for the dynamics
48 An earlier review, discussing methods proposed till 2002, can be found in [GHO02]
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of the recovery variable: ε(e, g) = ε1 for e < e2, ε(e, g) = ε2 for e > e2, and
ε(e, g) = ε3 for e < e1 and g < g1 with g1 = 1.8, ε1 = 1/75, ε2 = 1.0, and
ε3 = 0.3 For details of the functional form of f(e) and relevant parameter
values, see [Pan98].

Simpler variants that also display spiral wave breakup in 2D include (i)
the Barkley model [BKT90]:

∂te = ∇2e + ε−1e(1− e)(e− g + b

a
), ∂tg = e− g, (1.203)

the appropriate parameter values being given in [ASM03], are a = 1.1, b = 0.19
and ε = 0.02, for which the spatially extended system exhibits expanding spi-
ral waves (see Figure 1 in [ASM03]); and (ii) the Bär–Eiswirth model [BE93],
which differs from (1.203) only in having ∂g/∂t = f(e)− g. Here f(e) = 0 for
e < 1/3, f(e) = 1−6.75e(e−1)2 for 1/3 ≤ e ≤ 1, and f(e) = 1 for e > 1. The
parameters chosen are a = 0.84, b = 0.12 and ε = 0.074, in which the system
shows turbulence [BE93]. The Aliev–Panfilov model [AP96] is a modified form
of the Panfilov model , that takes into account nonlinear effects such as the
dependence of the action potential duration on the distance of the wavefront
to the preceding wave-back. It has been used for control in [SF03, SK05] and
is given by

∂te = ∇2e−K(e− a)(e− 1)− eg, (1.204)

∂tg = (ε +
μ1g

μ2 + e
)(−ke[e− b− 1]− g).

The parameters are chosen to be K = 8, ε = 0.01, μ1 = 0.11, μ2 = 0.3,
b = 0.1, for which spiral chaos is observed at a = 0.1 [Pan99].

The Karma model [SS07] is defined as

∂te = τe
−1[−e + (e∗ − gM ){1− tanh(e− eh)}

e2

2
] + D∇2e, (1.205)

∂tg = τg
−1[

1− g(1− e−Re)
1− e−Re

Θ(e− en)− g{1−Θ(e− en)}],

Θ(x) = 0 for x ≤ 0, Θ(x) = 1 otherwise, is the Heaviside step function, and the
parameters Re and M control the restitution and dispersion effects, respec-
tively. Increasing Re makes the restitution curve steeper and makes alternans
more likely, while increasing M weakens dispersion. The diffusion coefficient
parameter can be chosen to be D = 1 cm2 s−1. The other parameters can be
taken to be τe = 2.5 ms, τg = 250 ms, e∗ = 1.5415, eh = 3, en = 1, M = 4 and
Re = 1.5, the last two values chosen to make both restitution and dispersion
significant.

All the preceding models tend to disregard several complex features of ac-
tual biological cells, e.g., the different types of ion channels that allow passage
of electrically charged ions across the cellular membrane. There exists a class
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of models inspired by the Hodgkin–Huxley formulation [HH52] describing ac-
tion potential generation in the squid giant axon, which explicitly takes such
details into account. While the simple models described above do reproduce
generic features of several excitable media seen in nature, the more realistic
models describe many properties of specific systems, e.g., cardiac tissue. The
general form of such models are described by a PDE for the transmembrane
potential V ,

∂tV +
Iion
C

= D∇2V,

where C is the membrane capacitance density and D is the diffusion constant,
which, if the medium is isotropic, is a scalar. Iion is the instantaneous total
ionic-current density, and different realistic models essentially differ in its
formulation. For example, in the Luo–Rudy I model [LR91] of guinea pig
ventricular cells, Iion is assumed to be composed of six different ionic current
densities, which are themselves determined by several time–dependent ion–
channel gating variables whose time–evolution is governed by ODEs of the
form:

ξ̇ =
ξ∞ − ξ

τ ξ
.

Here, ξ∞ = αξ/(αξ + βξ) is the steady state value of ξ and τ ξ = 1
αξ+βξ

is its time constant. The voltage–dependent rate constants, αξ and βξ, are
complicated functions of V obtained by fitting experimental data.

1.10.2 Global Chaos Control

The first attempt at controlling chaotic activity in excitable media dates back
almost to the beginning of the field of chaos control itself, when proportional
perturbation feedback (PPF) control was used to stabilize cardiac arrhythmia
in a piece of tissue from rabbit heart [GSD92]. This method applied small elec-
trical stimuli, at intervals calculated using a feedback protocol, to stabilize an
unstable periodic rhythm. Unlike in the original proposal for controlling chaos
[OGY90], where the location of the stable manifold of the desired unstable pe-
riodic orbit (UPO) was moved using small perturbations, in the PPF method
it is the state of the system that is moved onto the stable manifold. However,
it has been later pointed out that PPF does not necessarily require the exis-
tence of UPOs (and, by extension, deterministic chaos) and can be used even
in systems with stochastic dynamics [CC95]. Later, PPF method was used to
control atrial fibrillation in human heart [DSS90]. However, the effectiveness
of such control in suppressing spatio-temporal chaos, when applied only at a
local region, has been questioned, especially as other experimental attempts
in feedback control have not been able to terminate fibrillation by applying
control stimuli at a single spatial location [GHO02].

More successful, at least in numerical simulations, have been schemes
where control stimuli is applied throughout the system. Such global control
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Fig. 1.55. Global control of the 2D Panfilov model starting from a spatiotemporally
chaotic state (top left). Pseudo-gray-scale plots of excitability e show the result of
applying a pulse of amplitude A = 0.833 between t = 11 ms and 27.5 ms (top
centre) that eventually leads to elimination of all activity (top right). Applying the
pulse between t = 11 ms and 33 ms (bottom left) results in some regions becoming
active again after the control pulse ends (bottom center) eventually re-initiating
spiral waves (bottom right) (adapted and modified from [SS07]).

schemes either apply small perturbations to the dynamical variables (e or g) or
one of the parameters (usually the excitation threshold). The general scheme
involves introducing an external control signal A into the model equations,
e.g., in the Panfilov model (1.202),

∂te = ∇2e− f(e)− g + A,

for a control duration τ . If A is a small, positive perturbation, added to the
fast variable, the result is an effective reduction of the threshold, thereby
making simultaneous excitation of different regions more likely. In general, A
can be periodic, consisting of a sequence of pulses. While in general, increas-
ing the amplitude, or the duration, increases the likelihood of suppressing
spatio-temporal chaos, it is not a simple, monotonic relationship. Depending
on the initial state at which the control signal is applied, even a high ampli-
tude (or long duration) control signal may not be able to uniformly excite all
regions simultaneously. As a result, when the control signal is withdrawn, the
inhomogeneous activation results in a few regions becoming active again and
restarting the spatio-temporal chaotic behavior.

Most global control schemes are variations or modifications of the above
scheme. [OC99] have shown that a low–amplitude signal used to change the
value of the slow variable at the front and back of an excitation wave can result
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in different wavefront and wave-back velocities which destabilizes the trav-
elling wave, eventually terminating all activity, and, hence, spatio-temporal
chaos. [GPJ98] have investigated the termination of spiral wave breakup by
using both short and long-duration pulses applied on the fast variable, in 2D
and 3D systems. This study concluded that while short duration pulses af-
fected only the fast variable, long duration pulses affected both fast and slow
variables and that the latter is more efficient, i.e., uses less power, in termi-
nating spatio-temporal chaos. The external control signal can also be periodic
(A = Fsin(ωt)), in which case the critical amplitude Fc required for terminat-
ing activity has been found to be a function of the signal frequency ω [SF03].
In the Aliev–Panfilov model, the smallest value of Fc has been found to occur
at a frequency close to that corresponding to the oscillatory instability due to
nonlinear nature of wave propagation in this model.

Other schemes have proposed applying perturbations to the parameter
controlling the excitation threshold, b. Applying a control pulse on this pa-
rameter (b = bf , during duration of control pulse;b = b0, otherwise) has been
shown to cause splitting of an excitation wave into a pair of forward and
backward moving waves [WM02]. Splitting of a spiral wave causes the two
newly created spirals to annihilate each other on collision. For a spatiotem-
porally chaotic state, a sequence of such pulses may cause termination of all
excitation, there being an optimal time interval between pulses that results
in fastest control. Another control scheme that also applies perturbation to
the threshold parameter is the uniform periodic forcing method suggested
by [ASM03, ASM06] for controlling scroll wave turbulence in 3D excitable
media. Such turbulence results from negative tension between scroll wave fila-
ments, i.e., the line joining the phase singularities about which the scroll wave
rotates. In this control method, the threshold is varied in periodic manner
(b = b0 + bfcos(ωt)) and the result depends on the relation between the con-
trol frequency ω and the spiral rotation frequency. If the former is higher than
the latter, sufficiently strong forcing is seen to eliminate turbulence; otherwise,
turbulence suppression is not achieved. The mechanism underlying termina-
tion has been suggested to be the effective increase of filament tension due to
rapid forcing, such that, the originally negative tension between scroll wave
filaments is changed to positive tension. This results in expanding scroll wave
filaments to instead shrink and collapse, eliminating spatio-temporal chaotic
activity. In a variant method, the threshold parameter has been perturbed
by spatially uncorrelated Gaussian noise, rather than a periodic signal, which
also results in suppression of scroll wave turbulence [ASS04].

As already mentioned, global control, although easy to understand, is dif-
ficult to achieve in experimental systems. A few cases in which such control
could be implemented include the case of eliminating spiral wave patterns in
populations of the Dictyostelium amoebae by spraying a fine mist of cAMP
onto the agar surface over which the amoebae cells grow [LGC01]. Another
experimental system where global control has been implemented is the photo-
sensitive Belusov–Zhabotinsky reaction, where a light pulse shining over the
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entire system is used as a control signal [MP97]. Indeed, conventional defibril-
lation can be thought of as a kind of global control, where a large amplitude
control signal is used to synchronize the phase of activity at all points by
either exciting a previously unexcited region (advancing the phase) or slowing
the recovery of an already excited region (delaying the phase).

1.10.3 Non-Global Spatially Extended Control

The control methods discussed so far apply control signal to all points in
the system. As the chaotic activity is spatially extended, one may naively
expect that any control scheme also has to be global. However, we will now
discuss some schemes that, while being spatially extended, do not require the
application of control stimuli at all points of the system.

Applying Control over a Mesh

The control method of [SPP01] involving supra-threshold stimulation along
a grid of points is based on the observation that spatio-temporal chaos in
excitable media is a long–lived transient that lasts long enough to establish
a non–equilibrium statistical steady state displaying spiral turbulence. The
lifetime of this transient, τL, increases rapidly with linear size of the system,
L, e.g., increasing from 850 ms to 3200 ms as L increases from 100 to 128
in the 2D Panfilov model. This accords with the well-known observation that
small mammals do not get life–threatening VF spontaneously whereas large
mammals do [Win87] and has been experimentally verified by trying to initiate
VF in swine ventricular tissue while gradually reducing its mass [KGI97]. A
related observation is that non–conducting boundaries tend to absorb spiral
excitations, which results in spiral waves not lasting for appreciable periods
in small systems.

The essential idea of the control scheme is that a domain can be divided
into electrically disconnected regions by creating boundaries composed of re-
covering cells between them. These boundaries can be created by triggering
excitation across a thin strip. For 2D media, the simulation domain (of size
L×L) is divided into K2 smaller blocks by a network of lines with the block
size (L/K×L/K) small enough so that spiral waves cannot form. For control
in a 3D system, the mesh is used only on one of the faces of the simulation
box. Control is achieved by applying a supra-threshold stimulation via the
mesh for a duration τ . A network of excited and subsequently recovering cells
then divides the simulation domain into square blocks whose length in each
direction is fixed at a constant value L/K for the duration of control. The net-
work effectively simulates non-conducting boundary conditions (for the block
bounded by the mesh) for the duration of its recovery period, in so far as
it absorbs spirals formed inside this block. Note that τ need not be large at
all because the individual blocks into which the mesh divides the system (of
linear size L/K) are so small that they do not sustain long spatiotemporally
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chaotic transients. Nor does K, which is related to the mesh density, have to
be very large since the transient lifetime, τL, decreases rapidly with decreas-
ing L. The method has been applied to multiple excitable models, including
the Panfilov and Luo–Rudy models [SS07].

An alternative method [SK05] for controlling spiral turbulence that also
uses a grid of control points has been demonstrated for the Aliev–Panfilov
model. Two layers of excitable media are considered, where the first layer
represents the 2D excitable media exhibiting spatio-temporal chaos that is
to be controlled, and the second layer is a grid structure also made up of
excitable media. The two layers are coupled using the fast variable but with
asymmetric coupling constants, (i.e., d12 �= d21):

∂te1 = ∇2e1 −K(e1 − a)(e1 − 1)− e1g1 + d12(e2 − e1),
∂te2 = D∇2e2 −K(e2 − a)(e2 − 1)− e2g2 + d21(e1 − e2),

with excitation pulses travelling
√

D times faster in the second layer compared
to the first. As the second layer consists only of grid lines, it is incapable of
exhibiting chaotic behavior in the uncoupled state. For large d21 it can be
driven into a state that reflects the spatio-temporal chaos of the first layer.
However, if d12 >> d21, If the coupling from the second layer to the first layer
is sufficiently stronger than the other way round, the stable dynamics of the
second layer (manifested as a single rotating spiral) overcomes the spiral chaos
in the first layer, and drives it to an ordered state characterized by mutually
synchronized spiral waves.

Applying Control over an Array of Points

An alternative method of spatially extended control is to apply perturbations
at a series of points arranged in a regular array. [RFK99] had proposed using
such an arrangement for applying a time–delayed feedback control scheme.
However, this scheme does not control spatio-temporal chaos, that is oscilla-
tory instability of wave propagation in excitable media from breaking up spi-
ral waves. It should therefore be applied before the onset of spatio-temporal
chaos.

Note that simulating a travelling wave using the array is found to be more
effective at controlling spatio-temporal chaos than the simultaneous activation
of all control points. The latter results in only incomplete excitation of the
system, and after the control is stopped, regions with inhomogeneous activ-
ity remain that eventually re-initiate the spatio-temporal chaos. On the other
hand, using a travelling wave allows the control signal to engage all high–
frequency sources of excitation in the spiral turbulence regime, ultimately
resulting in complete elimination of chaos. If, however, the control had only
been applied locally the resulting wave could only have interacted with neigh-
boring spiral waves and the effects of such control would not have been felt
throughout the system. The efficacy of the control scheme depends upon the
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spacing between the control points, as well as the number of simulated travel-
ling waves. Travelling waves have been used to control spatio-temporal chaos,
although in the global control context with a spatiotemporally periodic sig-
nal being applied continuously for a certain duration, over the entire system
[SS07].

1.10.4 Local Chaos Control

We now turn to the possibility of controlling spatio-temporal chaos by apply-
ing control at only a small localized region of the spatially extended system.
Virtually all the proposed local control methods use overdrive pacing , gener-
ating a series of waves with frequency higher than any of the existing excita-
tions in the spiral turbulent state. As low–frequency activity is progressively
invaded by faster excitation, the waves generated by the control stimulation
gradually sweep the chaotic activity to the system boundary where they are
absorbed. Although we cannot speak of a single frequency source in the case
of chaos, the relevant timescale is that of the spiral waves and is related to the
recovery period of the medium. Control is manifested as a gradually growing
region in which the waves generated by the control signal dominate, until the
region expands to encompass the entire system. The time required to achieve
termination depends on the frequency difference between the control stimula-
tion and that of the chaotic activity, with control being achieved faster when
this difference is greater.

Stamp [SOC02] has looked at the possibility of using low–amplitude, high–
frequency pacing using a series of pulses to terminate spiral turbulence. How-
ever, using a series of pulses (having various waveform shapes) has met with
only limited success in suppressing spatio-temporal chaos. By contrast, a peri-
odic stimulation protocol [ZHH03] has successfully controlled chaos in the 2D
Panfilov model. The key mechanism underlying such control is the periodic
alternation between positive and negative stimulation. A more general control
scheme uses biphasic pacing , i.e., applying a series of positive and negative
pulses, that shortens the recovery period around the region of control stimula-
tion, and thus allows the generation of very high–frequency waves than would
have been possible using positive stimulation alone. A simple argument shows
why a negative rectangular pulse decreases the recovery period for an excitable
system. The stimulation vertically displaces the e−nullcline and therefore, the
maximum value of g that can be attained is reduced. Consequently, the system
will recover faster from the recovery period.

To understand how negative stimulation affects the response behavior of
the spatially extended system, the so–called pacing response diagrams [SS07]
can be used, indicating the relation between the control stimulation frequency
f and the effective frequency feff , measured by applying a series of pulses
at one site and then recording the number of pulses that reach another site
located at a distance without being blocked by a region in the recovery period.
Depending on the relative value of f−1 and the recovery period, we observe
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instances of n : m response, i.e., m responses evoked by n stimuli. If, for any
range of f , the corresponding feff is significantly higher than the effective
frequency of spatio-temporal chaos, then termination of spiral turbulence is
possible. It has been shown that there are ranges of stimulation frequencies
that give rise to effective frequencies that dominate chaotic activity. As a
result, the periodic waves emerging from the stimulation region gradually im-
pose control over the regions exhibiting chaos. Note that, there is a tradeoff
involved here. If feff is only slightly higher than the chaos frequency, control
takes too long. On the other hand, if it is too high the waves suffer conduc-
tion block at inhomogeneities produced by chaotic activity which reduces the
effective frequency, and therefore, control fails.

Recently, another local control scheme has been proposed [ZCW05] that
periodically perturbs the model parameter governing the threshold. In fact, it
is the local control analog of the global control scheme proposed by [ASM03]
discussed above. As in the other methods discussed here, the local stimulation
generates high-frequency waves that propagate into the medium and suppress
spiral or scroll waves. Unlike the global control scheme, bf >> b0, so that
the threshold can be negative for a part of the time. This means that the
regions in resting state can become spontaneously excited, which allow very
high-frequency waves to be generated.

For more details on spatio-temporal chaos control, see [SS07].

1.10.5 Spatio-Temporal Chaos–Control in the Heart

Recall that a characteristic feature of excitable media is the formation of spiral
waves and their subsequent breakup into spatio-temporal chaos. An example
of obvious importance is the propagation of waves of electrical excitation
along the heart wall, initiating the muscular contractions that enable the
heart to pump blood. In fact, spiral turbulence has been identified by several
investigators as the underlying cause of certain arrhythmias, i.e., abnormal
cardiac rhythms, including ventricular fibrillation (VF) [GPJ98], a potentially
fatal condition in which different regions of the heart are no longer activated
coherently. As a result, the heart effectively stops pumping blood, resulting
in death within a few minutes, if untreated. Current methods of defibrillatory
treatment involve applying large electrical shocks to the entire heart in an
attempt to drive it to the normal state. However, this is not only painful but
also dangerous, as the resulting damage to heart tissue can form scars that
act as substrates for future cardiac arrhythmias. Devising a low–amplitude
control mechanism for spatio-temporal chaos in excitable media is therefore
not only an exciting theoretical challenge but of potential significance for the
treatment of VF. In this section. Following [BS04], we present a robust chaos–
control method, using low–amplitude biphasic pacing.

Most of the methods proposed for controlling spatio-temporal chaos in ex-
citable media involve applying perturbations either globally or over a spatially
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extended system of control points covering a significant proportion of the en-
tire system [OC99, RFK99, SPP01]. However, in most real situations this may
not be a feasible option. Further, in the specific context of controlling VF, a
local control scheme has the advantage that it can be readily implemented
with existing hardware of the Implantable Cardioverter–Defibrillator (ICD).
This is a device implanted into patients at high risk from VF that monitors
the heart rhythm and applies electrical treatment, when necessary, through
electrodes laced on the heart wall. A low–energy control method involving
ICDs should therefore aim towards achieving control of spatio-temporal chaos
by applying small perturbations from a few local sources.

As a model for ventricular activation the modified Fitzhugh–Nagumo equa-
tions (1.202) proposed by Panfilov [PH93] are used. For simplicity we assume
an isotropic medium; in this case the model is defined by the two equations
governing the excitability e and recovery g variables [BS04],

∂te = ∇2e− f(e)− g, ∂tg = ε(e, g)(ke− g). (1.206)

The function f(e), which specifies fast processes (e.g., the initiation of exci-
tation, i.e., the action potential) is piecewise linear,

f(e) = C1e, for e < e1,

f(e) = −C2e + a, for e1 ≤ e ≤ e2,

f(e) = C3(e− 1), for e > e2.

The function ε(e, g), which determines the dynamics of the recovery variable,
is

ε(e, g) = ε1 for e < e2,

ε(e, g) = ε2 for e > e2, and
ε(e, g) = ε3 for e < e1 and g < g1.

We use the physically appropriate parameter values given in [SPP01].
The model (1.206) has been solved in [BS04] using a forward–Euler in-

tegration scheme. The system was discretized on a 2D grid of points with
spacing δx = 0.5 dimensionless units. The standard five-point difference sten-
cil was used for the 2D Laplacian. The spatial grid consisted of L×L points.
On the edges of the simulation region no–flux Neumann boundary conditions
were used.

To achieve control of spatio-temporal chaos, a periodic perturbation,
AF (2πft), was locally applied of amplitude A and frequency f . F can repre-
sent any periodic function, e.g., a series of pulses having a fixed amplitude and
duration, applied at periodic intervals defined by the stimulation frequency
f . The control mechanism can be understood as a process of overdriving the
chaos by a source of periodic excitation having a significantly higher frequency.
As noted in [Lee97, XQW99], in a competition between two sources of high
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frequency stimulation, the outcome is independent of the nature of the wave
generation at either source, and is decided solely on the basis of their rela-
tive frequencies. This follows from the property of an excitable medium that
waves annihilate when they collide with each other [KA83]. The lower fre-
quency source is eventually entrained by the other source and will no longer
generate waves when the higher frequency source is withdrawn. Although we
cannot speak of a single frequency source in the case of chaos, the relevant
timescale is that of spiral waves which is limited by the refractory period of
the medium, τ ref , the time interval during which an excited cell cannot be
stimulated until it has recovered its resting state properties. To achieve con-
trol, one must use a periodic source with frequency f > τ−1

ref . This is almost
impossible to achieve by using with purely excitatory stimuli as reported in
[SPP01]; the effect of locally applying such perturbations is essentially limited
by refractoriness to the immediate neighborhood of the stimulation point. As
the effective frequency of a train of purely excitatory pulses cannot be higher
than that of the spiral waves, and the area over which control is imposed is
inversely related to the absolute difference of the two frequencies.

A simple argument shows why a negative rectangular pulse decreases the
refractory period for the Panfilov model in the absence of the diffusion term.
The stimulation vertically displaces the e−nullcline of (1.206) and therefore,
the maximum value of g that can be attained is reduced. Consequently, the
system will recover faster from the refractory state. To illustrate this, let us
assume that the stimulation is applied when e > e2. Then, the dynamics
reduces to [BS04]

ė = −C3(e− 1)− g, ġ = ε2(ke− g).

In this region of the (e, g)−plane, for sufficiently high g, the trajectory will
be along the e−nullcline, i.e., ė ! 0. If a pulse stimulation of amplitude A is
initiated at t = 0 (say), when e = e(0), g = g(0), at a subsequent time t,

e(t) = 1 +
A− g(t)

C3
, and g(t) =

a

b
− [

a

b
− g(0)]exp(−bt),

where a = ε2k(1 +
A

C3
), b = ε2[1 + (k/C3)].

The negative stimulation has to be kept on till the system crosses into the
region where ė < 0, after which no further increase of g can occur, as dictated
by the dynamics of (1.206). Now, the time required by the system to enter
this region in phase–space where ė < 0 is

1
b
ln

a/b− g(0)
a/b− φ

, where φ = C3(1− e2) + A.

Therefore, this time is reduced when A < 0 and contributes to the decrease
of the refractory period. Note that g(0) > φ, as the stimulation is applied
when the cell is not yet excitable. By looking at the trajectory, the significant
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decrease of the refractory period if self–evident. If the negative stimulation is
kept on till the system crosses into the region where ė < 0, the system dynam-
ics drives it to the e < 0 portion. As a result, the maximum value of g attained
will be much smaller than normal, and consequently, the system will recover
from the refractory state faster than normal. Besides, note that, the above
discussion also indicates that a rectangular pulse will be more effective than
a gradually increasing waveform, e.g., a sinusoidal wave (as used in [ZHH03]),
provided the energy of stimulation is same in both cases, as the former allows
a much smaller maximum value of g. Therefore, phase plane analysis of the
response to negative stimulation allows us to design waveshapes for maximum
efficiency in controlling spiral turbulence.

To understand how negative stimulation affects the response behavior of
the spatially extended system, we first look at a 1D system, specifically into
the relation between the stimulation frequency f and effective frequency feff ,
measured by applying a series of pulses at one site and then recording the
number of pulses that reach another site located at a distance without being
blocked by any refractory region. Depending on the relative value of f and
τ ref , we observe instances of n : m response, i.e., m responses evoked by
n stimuli. From the resulting effective frequencies feff , we can see that for
purely excitatory stimulation, the relative refractory period can be reduced by
increasing the amplitude A. However, this reduction is far more pronounced
when the positive stimulation is alternated with negative stimulation, i.e., a
negative stimulation is applied between every pair of positive pulses. There
is an optimal time interval between applying the positive and negative pulses
that maximally decreases the refractory period by as much as 50%. The high-
est effective frequencies correspond to a stimulation frequency in the range
0.1 − 0.25, agreeing with the optimal time period of 2–5 time units between
positive and negative stimulation.

A response diagram similar to the 1D case is also seen for stimulation
in a 2D medium. A small region consisting of n × n points at the center of
the simulation domain is chosen as the stimulation point. For the simulations
reported here n = 6; for a smaller n, one requires a perturbation of larger
amplitude to achieve a similar response. To understand control in two di-
mensions, we find out the characteristic time scale of spatio-temporal chaotic
activity by obtaining its power spectral density. There is a peak at a frequency
fc ! 0.0427 [BS04] and there are ranges of stimulation frequencies that give
rise to effective frequencies higher than this value. As a result, the periodic
waves emerging from the stimulation point will gradually impose control over
the regions exhibiting chaos. If f is only slightly higher than fc control takes
very long; if it is too high i.e., close to the refractory limit, the waves suf-
fer conduction block at inhomogeneities produced by chaotic activity that
reduces the effective frequency, and control fails. Note that, at lower frequen-
cies the range of stimulation frequencies for which feff > fc, is smaller than
at higher frequencies. We also compare the performance of sinusoidal waves
with rectangular pulses, adjusting the amplitudes so that they have the same
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energy. The former is much less effective than the latter at lower stimulation
frequencies, which is the preferred operating region for the control method.

The effectiveness of overdrive control is limited by the size of the system
sought to be controlled. As shown in [BS04], away from the control site, the
generated waves are blocked by refractory regions, with the probability of
block increasing as a function of distance from the site of stimulation.49 To
see whether the control method is effective in reasonably large systems, we
used it to terminate chaos in the 2D Panfilov model , with L = 500.50 Figure
1.10.5 shows a sequence of images illustrating the evolution of chaos control
when a sequence of biphasic rectangular pulses are applied at the center.
The time necessary to achieve the controlled state, when the waves from the
stimulation point pervade the entire system, depends slightly on the initial
state of the system when the control is switched on. Not surprisingly, we find
that the stimulation frequency used to impose control in Figure 1.10.5 belongs
to a range for which feff > fc [BS04].

Fig. 1.56. Control of spatio-temporal chaos in the 2D Panfilov model (L = 500) by
applying biphasic pulses with amplitude A = 18.9 and frequency f = 0.13 at the
center of the simulation domain (adapted and modified from [BS04]).

Although most of the simulations were performed with the Panfilov model,
the arguments involving phase plane analysis apply in general to excitable me-
dia having a cubic–type nonlinearity. To ensure that our explanation is not
49 The profile of the stimulated wave changes as it propagates along the medium,

from biphasic at the stimulation source to gradually becoming indistinguishable
from a purely excitatory stimulation. As a result, far away from the source of
stimulation, the response cannot have a frequency higher than ∼ τ−1

ref .
50 The initial condition used for this purpose is a broken plane wave which is allowed

to evolve for 5000 time units into a state displaying spiral turbulence.
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sensitively model dependent we obtained similar stimulation response dia-
grams for the Karma model [Kar93].

Some local control schemes envisage stimulating at special locations, e.g.,
close to the tip of the spiral wave, thereby driving the spiral wave towards the
edges of the system where they are absorbed [KPV95]. However, aside from the
fact that spatio-temporal chaos involves a large number of coexisting spirals,
in a practical situation it may not be possible to have a choice regarding the
location of the stimulation point. We should therefore look for a robust control
method which is not critically sensitive to the position of the control point
in the medium. There have been some proposals to use periodic stimulation
for controlling spatio-temporal chaos. For example, recently [ZHH03] have
controlled some excitable media models by applying sinusoidal stimulation at
the center of the simulation domain. Looking in detail into the mechanism of
this type of control, we have come to the conclusion that the key feature is the
alternation between positive and negative stimulation, i.e., biphasic pacing,
and it is, therefore, a special case of the general scheme presented in [BS04].

Previous explanations of why biphasic stimulation is better than purely
excitatory stimulation (that use only positive pulses), have concentrated on
the response to very large amplitude electrical shocks typically used in con-
ventional defibrillation [KL99, AT01] and have involved details of cardiac cell
ion channels [JT00]. The present section gives the simplest and most general
picture for understanding the efficacy of the biphasic scheme using very low
amplitude perturbation, as it does not depend on the details of ion channels
responsible for cellular excitation. This also allows us to provide guidelines
about the optimal wave–shape for controlling VF through periodic stimula-
tion.

For more details on spatio-temporal chaos control, see [BS04].
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Phase Transitions and Synergetics

The dynamical edge of chaos physically corresponds to the popular phase
transitions. In this Chapter we present the basic principles of phase transi-
tions, which are used in synergetics. After the introduction and classification
of equilibrium phase transitions, a brief on Landau’s theory is given (provid-
ing a background for order–parameters and synergetics). The concept is sub-
sequently generalized into non–equilibrium phase transitions, together with
important examples of oscillatory, fractal and noise–induced transitions. This
core Chapter of the book also introduces the concept of partition function,
together with its general, path–integral description. After that the basic ele-
ments of Haken’s synergetics are presented, and subsequently developed into
synergetics of attractor neural networks.

2.1 Introduction to Phase Transitions

Recall that in thermodynamics, a phase transition (or phase change) is the
transformation of a thermodynamic system from one phase to another (see
Figure 2.1). The distinguishing characteristic of a phase transition is an abrupt
change in one or more physical properties, in particular the heat capacity, with
a small change in a thermodynamic variable such as the temperature.

2.1.1 Equilibrium Phase Transitions

In thermodynamics, a phase transition represents the transformation of a sys-
tem from one phase to another. Here the therm phase denotes a set of states of
a macroscopic physical system that have relatively uniform chemical compo-
sition and physical properties (i.e., density, crystal structure, index of refrac-
tion, and so forth.) The most familiar examples of phases are solids, liquids,
and gases. Less familiar phases include plasmas, Bose–Einstein condensates
and fermionic condensates and the paramagnetic and ferromagnetic phases of
magnetic materials.
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Fig. 2.1. Thermodynamic (or, equilibrium) phase transitions. Left: the term phase
transition is most commonly used to describe transitions between solid, liquid and
gaseous states of matter, in rare cases including plasma. Right: the transitions be-
tween the solid, liquid, and gaseous phases of a single component, due to the effects
of temperature and/or pressure (adapted and modified from [Wik07].)

In essence, all thermodynamic properties of a system (entropy, heat capac-
ity, magnetization, compressibility, and so forth) may be expressed in terms
of the free energy potential F and its partial derivatives. For example, the
entropy S is the first derivative of the free energy F with respect to the tem-
perature T , i.e., S = −∂F/∂T , while the specific heat capacity C is the second
derivative, C = T ∂S/∂T . As long as the free energy F remains analytic, all
the thermodynamic properties will be well–behaved.

Now, the distinguishing characteristic of a phase transition is an abrupt
sudden change in one or more physical properties, in particular the specific
heat c, with a small change in a thermodynamic variable such as the temper-
ature T . Standard examples of phase transitions are (see e.g., [LL78, Wik07]):

1. The transitions between the solid, liquid, and gaseous phases (boiling,
melting, sublimation, etc.)

2. The transition between the ferromagnetic and paramagnetic phases of
magnetic materials at the Curie point.

3. The emergence of superconductivity in certain metals when cooled below
a critical temperature.

4. Quantum condensation of bosonic fluids, such as Bose–Einstein conden-
sation and the superfluid transition in liquid helium.

5. The breaking of symmetries in the laws of physics during the early history
of the universe as its temperature cooled.

When a system goes from one phase to another, there will generally be a
stage where the free energy is non–analytic. This is known as a phase tran-
sition. Familiar examples of phase transitions are melting (solid to liquid),
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freezing (liquid to solid), boiling (liquid to gas), and condensation (gas to
liquid). Due to this non–analyticity, the free energies on either side of the
transition are two different functions, so one or more thermodynamic prop-
erties will behave very differently after the transition. The property most
commonly examined in this context is the heat capacity. During a transition,
the heat capacity may become infinite, jump abruptly to a different value, or
exhibit a ‘kink’ or discontinuity in its derivative1.

Therefore, phase transitions come about when the free energy of a sys-
tem is non–analytic for some choice of thermodynamic variables. This non–
analyticity generally stems from the interactions of an extremely large number
of particles in a system, and does not appear in systems that are too small.

2.1.2 Classification of Phase Transitions

Ehrenfest Classification

The first attempt at classifying phase transitions was the Ehrenfest classifi-
cation scheme, which grouped phase transitions based on the degree of non-
analyticity involved. Though useful, Ehrenfest’s classification is flawed, as we
will discuss in the next section.

Under this scheme, phase transitions were labelled by the lowest partial
derivative of the free energy that is discontinuous at the transition. First–order
phase transitions exhibit a discontinuity in the first derivative of the free en-
ergy with respect to a thermodynamic variable. The various solid⇒liquid⇒gas
transitions are classified as first–order transitions, as the density, which is the
first partial derivative of the free energy with respect to chemical potential,
changes discontinuously across the transitions2. Second–order phase transi-
tions have a discontinuity in a second derivative of the free energy. These
include the ferromagnetic phase transition in materials such as iron, where
the magnetization, which is the first derivative of the free energy with the
applied magnetic field strength, increases continuously from zero as the tem-
perature is lowered below the Curie temperature. The magnetic susceptibility,
the second derivative of the free energy with the field, changes discontinuously.
Under the Ehrenfest classification scheme, there could in principle be third,
fourth, and higher–order phase transitions.
1 In practice, each type of phase is distinguished by a handful of relevant ther-

modynamic properties. For example, the distinguishing feature of a solid is its
rigidity; unlike a liquid or a gas, a solid does not easily change its shape. Liquids
are distinct from gases because they have much lower compressibility: a gas in a
large container fills the container, whereas a liquid forms a puddle in the bottom.
Not all the properties of solids, liquids, and gases are distinct; for example, it is
not useful to compare their magnetic properties. On the other hand, the ferro-
magnetic phase of a magnetic material is distinguished from the paramagnetic
phase by the presence of bulk magnetization without an applied magnetic field.

2 The pressure must be continuous across the phase boundary in equilibrium.
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Modern Classification

The Ehrenfest scheme is an inaccurate method of classifying phase transitions,
for it is based on the mean–field theory of phases, which is inaccurate in
the vicinity of phase transitions, as it neglects the role of thermodynamic
fluctuations. For instance, it predicts a finite discontinuity in the heat capacity
at the ferromagnetic transition, which is implied by Ehrenfest’s definition of
second–order transitions. In real ferromagnets, the heat capacity diverges to
infinity at the transition.

In the modern classification scheme, phase transitions are divided into two
broad categories, named similarly to the Ehrenfest classes:

• The first–order phase transitions , or, discontinuous phase transitions, are
those that involve a latent heat. During such a transition, a system ei-
ther absorbs or releases a fixed (and typically large) amount of energy.
Because energy cannot be instantaneously transferred between the system
and its environment, first–order transitions are associated with mixed–
phase regimes in which some parts of the system have completed the tran-
sition and others have not. This phenomenon is familiar to anyone who has
boiled a pot of water: the water does not instantly turn into gas, but forms
a turbulent mixture of water and water vapor bubbles. Mixed–phase sys-
tems are difficult to study, because their dynamics are violent and hard to
control. However, many important phase transitions fall in this category,
including the solid⇒liquid⇒gas transitions.

• The second–order phase transitions are the continuous phase transitions .
These have no associated latent heat. Examples of second–order phase
transitions are the ferromagnetic transition, the superfluid transition, and
Bose–Einstein condensation.

2.1.3 Basic Properties of Phase Transitions

Critical Points

In systems containing liquid and gaseous phases, there exist a special combi-
nation of pressure and temperature, known as the critical point , at which the
transition between liquid and gas becomes a second–order transition. Near the
critical point, the fluid is sufficiently hot and compressed that the distinction
between the liquid and gaseous phases is almost non–existent.

This is associated with the phenomenon of critical opalescence, a milky
appearance of the liquid, due to density fluctuations at all possible wavelengths
(including those of visible light).

Symmetry

Phase transitions often (but not always) take place between phases with differ-
ent symmetry. Consider, for example, the transition between a fluid (i.e., liquid
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or gas) and a crystalline solid. A fluid, which is composed of atoms arranged
in a disordered but homogenous manner, possesses continuous translational
symmetry: each point inside the fluid has the same properties as any other
point. A crystalline solid, on the other hand, is made up of atoms arranged in
a regular lattice. Each point in the solid is not similar to other points, unless
those points are displaced by an amount equal to some lattice spacing.

Generally, we may speak of one phase in a phase transition as being more
symmetrical than the other. The transition from the more symmetrical phase
to the less symmetrical one is a symmetry–breaking process. In the fluid–
solid transition, for example, we say that continuous translation symmetry is
broken.

The ferromagnetic transition is another example of a symmetry–breaking
transition, in this case the symmetry under reversal of the direction of elec-
tric currents and magnetic field lines. This symmetry is referred to as ‘up–
down symmetry’ or ‘time–reversal symmetry’. It is broken in the ferromagnetic
phase due to the formation of magnetic domains containing aligned magnetic
moments. Inside each domain, there is a magnetic field pointing in a fixed
direction chosen spontaneously during the phase transition. The name time–
reversal symmetry comes from the fact that electric currents reverse direction
when the time coordinate is reversed.

The presence of symmetry–breaking (or nonbreaking) is important to the
behavior of phase transitions. It was pointed out by Landau that, given any
state of a system, one may unequivocally say whether or not it possesses a
given symmetry [LL78]. Therefore, it cannot be possible to analytically deform
a state in one phase into a phase possessing a different symmetry. This means,
for example, that it is impossible for the solid–liquid phase boundary to end
in a critical point like the liquid–gas boundary. However, symmetry–breaking
transitions can still be either first or second order.

Typically, the more symmetrical phase is on the high–temperature side of a
phase transition, and the less symmetrical phase on the low–temperature side.
This is certainly the case for the solid–fluid and ferromagnetic transitions.
This happens because the Hamiltonian of a system usually exhibits all the
possible symmetries of the system, whereas the low–energy states lack some
of these symmetries (this phenomenon is known as spontaneous symmetry
breaking.) At low temperatures, the system tends to be confined to the low–
energy states. At higher temperatures, thermal fluctuations allow the system
to access states in a broader range of energy, and thus more of the symmetries
of the Hamiltonian.

When symmetry is broken, one needs to introduce one or more extra vari-
ables to describe the state of the system. For example, in the ferromagnetic
phase one must provide the net magnetization, whose direction was sponta-
neously chosen when the system cooled below the Curie point. Such variables
are instances of order parameters. However, note that order parameters can
also be defined for symmetry–nonbreaking transitions.
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Symmetry–breaking phase transitions play an important role in cosmol-
ogy. It has been speculated that, in the hot early universe, the vacuum (i.e.,
the various quantum fields that fill space) possessed a large number of sym-
metries. As the universe expanded and cooled, the vacuum underwent a series
of symmetry–breaking phase transitions. For example, the electroweak tran-
sition broke the SU(2) × U(1) symmetry of the electroweak field into the
U(1) symmetry of the present–day electromagnetic field. This transition is
important to understanding the asymmetry between the amount of matter
and antimatter in the present–day universe.

Critical Exponents and Universality Classes

Continuous phase transitions are easier to study than first–order transitions
due to the absence of latent heat, and they have been discovered to have
many interesting properties. The phenomena associated with continuous phase
transitions are called critical phenomena, due to their association with critical
points.

It turns out that continuous phase transitions can be characterized by
parameters known as critical exponents. For instance, let us examine the be-
havior of the heat capacity near such a transition. We vary the temperature T
of the system while keeping all the other thermodynamic variables fixed, and
find that the transition occurs at some critical temperature Tc. When T is near
Tc, the heat capacity C typically has a power law behavior: C ∼ |Tc − T |−α .
Here, the constant α is the critical exponent associated with the heat capacity.
It is not difficult to see that it must be less than 1 in order for the transition to
have no latent heat. Its actual value depends on the type of phase transition
we are considering. For -1 < α < 0, the heat capacity has a ‘kink’ at the
transition temperature. This is the behavior of liquid helium at the ‘lambda
transition’ from a normal state to the superfluid state, for which experiments
have found α = −0.013± 0.003. For 0 < α < 1, the heat capacity diverges at
the transition temperature (though, since α < 1, the divergence is not strong
enough to produce a latent heat.) An example of such behavior is the 3D
ferromagnetic phase transition. In the 3D Ising model for uniaxial magnets,
detailed theoretical studies have yielded the exponent α ∼ 0.110.

Some model systems do not obey this power law behavior. For example,
mean–field theory predicts a finite discontinuity of the heat capacity at the
transition temperature, and the 2D Ising model has a logarithmic divergence.
However, these systems are an exception to the rule. Real phase transitions
exhibit power law behavior.

Several other critical exponents – β, γ, δ, ν, and η – are defined, examining
the power law behavior of a measurable physical quantity near the phase
transition.

It is a remarkable fact that phase transitions arising in different systems
often possess the same set of critical exponents. This phenomenon is known
as universality. For example, the critical exponents at the liquid–gas criti-
cal point have been found to be independent of the chemical composition
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of the fluid. More amazingly, they are an exact match for the critical expo-
nents of the ferromagnetic phase transition in uniaxial magnets. Such systems
are said to be in the same universality class. Universality is a prediction of
the renormalization group theory of phase transitions, which states that the
thermodynamic properties of a system near a phase transition depend only
on a small number of features, such as dimensionality and symmetry, and is
insensitive to the underlying microscopic properties of the system.

2.1.4 Landau’s Theory of Phase Transitions

Landau’s theory of phase transitions is a simple but powerful empirical ther-
modynamic theory by which the behavior of crystals at phase transitions can
be described. It is based simply on a power series expansion of the free energy
of the crystal with respect to one or a few prominent parameters distorting
the symmetry of the crystal. The symmetry of the distortion decides which
terms may be present, and which not. For example, odd terms on the power
series expansion often are not allowed because the energy of the system is
symmetric with respect to positive or negative distortion. With Landau’s the-
ory, the thermodynamics of the crystal (free energy, entropy, heat capacity)
can be directly linked to it’s structural state (volume, deviation from high
symmetry, etc.), and both can be described as they change as a function of
temperature or pressure.

More precisely, in Landau’s theory, the probability (density) distribution
function f is exponentially related to the potential F ,

f ≈ e−F(T ), (2.1)

if F is considered as a function of the order parameter o. Therefore, the most
probable order parameter is determined by the requirement F = min.

When M↑ elementary magnets point upwards and M↓ elementary magnets
point downwards, the magnetization order parameter o is given by

o = (M↑ −M↓)m, (2.2)

where m is the magnetic moment of a single elementary magnet.
We expand the potential F = F(o, T ) into a power series of o,

F(o, T ) = F(0, T ) + F ′(0, T )o + · · ·+ 1
4!
F ′′′′(0, T )o4 + · · · , (2.3)

and discus F as a function of o. In a number of cases F ′ = F ′′′ = 0, due to
inversion symmetry. In this case, F has the form

F(o, T ) = F(0, T ) +
σ

2
o2 +

β

4
o4, (2.4)

where β > 0, and σ = a(T−Tc), (a > 0), i.e., it changes its sign at the critical
temperature T = Tc.
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Recall that the (negative) first partial derivative of the free energy poten-
tial F with respect to the control parameter – temperature T is the entropy

S = −∂F(q, T )
∂T

. (2.5)

For T > Tc, σ > 0, and the minimum of F lies at o = o0 = 0, and

S = S0 = −∂F(0, T )
∂T

.

Also recall that the second partial derivative of F with respect to T is the
specific heat capacity (besides the factor T )

C = T
∂S

∂T
. (2.6)

One may readily check that S is continuous at T = Tc for σ = 0. However,
when we calculate the specific heat we get two different expressions above and
below the critical temperature and thus a discontinuity at T = Tc.

Closely related to the Landau’s theory of phase transitions is Ginzburg–
Landau model of superconductivity (named after Nobel Laureates Vitaly L.
Ginzburg and Lev D. Landau). It does not purport to explain the microscopic
mechanisms giving rise to superconductivity. Instead, it examines the macro-
scopic properties of a superconductor with the aid of general thermodynamic
arguments. Based on Landau’s previously–established theory of second–order
phase transitions, Landau and Ginzburg argued that the free energy F of a su-
perconductor near the superconducting transition can be expressed in terms
of a complex order parameter ψ, which describes how deep into the super-
conducting phase the system is. By minimizing the free energy with respect
to fluctuations in the order parameter and the vector potential, one arrives
at the Ginzburg–Landau equation, which is a generalization of the nonlinear
Schrödinger equation.

2.1.5 Example: Order Parameters in Magnetite Phase Transition

The mechanism of the phase transition in magnetite (Fe3O4) at TV = 122
K, discovered by Verwey [Ver39], has remained a big puzzle in the condensed
matter physics for almost 70 years. Developments in experimental and the-
oretical methods during last years enabled to reveal subtle changes in the
crystal and electronic structure below TV [RAP01, LYA04]. A simple charge
ordering picture in which metal–insulator transition is induced by electro-
static interactions was replaced by a highly complex scenario in which lattice,
charge, spin and orbital degrees of freedom are involved. Recent theoretical
studies revealed the important role of the local electron interactions and or-
bital correlations in the t2g states on iron ions [LYA04].
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The electronic interactions are complemented by the lattice deformation,
which breaks the cubic symmetry and induces a low–temperature (LT) mon-
oclinic phase driven by the electron–phonon interactions. In the work of
[PPO06, PPO07], the phonon spectrum of magnetite has been analyzed us-
ing the ab initio computational technique [PLK97]. We have identified two
primary order parameters (OPs) at kX = 2π

a (0, 0, 1) and kΔ = 2π
a (0, 0, 1

2 )
with the X3 and Δ5 symmetry, respectively, which both play important role
in the Verwey transition (VT): (i) the Δ5 mode is responsible for the dou-
bling of the unit cell along the c direction in the monoclinic phase, while (ii)
the X3 phonon induces the metal–insulator transition by its coupling to the
electronic states near the Fermi energy [PPO06]. Due to the electron–phonon
interaction the above OPs are combinations of the electron (charge–orbital)
and lattice components. This explains why the phonon soft mode has not been
observed. Instead, low–energy critical fluctuations of OPs were found by the
diffuse neutron scattering [FSY75]. The condensation of the OPs below TV
explains the crystal symmetry change as well as the charge-orbital ordering.

The group theory predicts also secondary OPs, which do not effect the
symmetry below TV but modify the properties of magnetite close to a transi-
tion point. At the Γ point, the T2g mode can be classified as the secondary OP,
and its coupling to the shear strain explains the softening of the C44 elastic
constant [SNM05]. The lowest T2g optic mode, marked in Fig. 1, could con-
tribute quantitatively to the free energy, but it does not play any significant
role for the VT.

In this section, following [PPO07], we analyze the Landau free energy for
the VT, and discuss a solution corresponding to the LT monoclinic phase. We
derive also the temperature dependence of C44.

Free Energy

The Landau free energy can be expanded into a series of the components of the
OPs. The invariant terms describing couplings between the OPs were derived
using the group theory methods [SH02]. The only nonzero components of the
primary OPs X3 and Δ5 are denoted by g and q, respectively. We include also
the secondary OP with the T2g symmetry (η) and shear–strain (ε). The free
energy can be written in the form [PPO07]

F = F0 +
α1

2
g2 +

β1

4
g4 +

γ1

6
g6 +

α2

2
q2 +

β2

4
q4 +

δ1

2
g2q2 (2.7)

+
α3

2
η2 +

α4

2
ε2 +

δ2

2
ηg2 +

δ3

2
εg2 + δ4ηε,

were F0 is the part of the potential, which does not change through the
transition. We assume that β1 > 0, β2 > 0 and γ1 > 0 to ensure the stability
of the potential at high temperatures. For the second–order terms we assume
standard temperature behavior αi = ai(T −Tci) near the critical temperature
Tci for i = 1, 2, 3, which would correspond to a continuous phase transition.
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The coefficient α4 is the shear elastic constant at high temperatures (C0
44).

The coupling between the primary OPs is biquadratic, between the secondary
and primary OPs has the linear–quadratic form, and the coupling between the
components of the secondary OP is of the bilinear type. Taking first derivatives
of F over all OPs we get [PPO07]

∂F
∂g

= g(α1 + β1g
2 + γ1g

4 + δ1q
2 + δ2η + δ3ε) = 0,

∂F
∂q

= q(α2 + β2q
2 + δ1g

2) = 0,

∂F
∂η

= α3η + δ4ε +
δ2

2
g2 = 0,

∂F
∂ε

= α4ε + δ4η +
δ3

2
g2 = 0.

The solution g = q = η = ε = 0 corresponds to the high–temperature cubic
symmetry (Fd3̄m). We obtain the dependence between g and q,

q2 = −δ1g
2 + α2

β2

, (2.8)

which has three possible solutions: (i) g = 0 and q2 = −α2
β2

if α2 < 0 (Pbcm),
(ii) q = 0 and g2 = −α2

δ1
if α2 > 0 and δ1 > 0 or α2 < 0 and δ1 > 0 (Pmna),

(iii) g �= 0 and q �= 0 (P2/c). In the brackets we put the space group sym-
bols, which characterize the low–symmetry phases. The solution (iii) which
corresponds to the experimentally observed LT monoclinic phase requires si-
multaneous condensation of both primary OPs. The necessary condition for
this is a negative value of δ1. Indeed, it has been established by the ab initio
studies that the total energy is lowered when the crystal is distorted by both
X3 and Δ5 modes [PPO07]. For δ1 < 0, (2.8) has a non–zero solution provided
that |δ1|g2 > α2. It implies that for α2 > 0 (T > Tc2), the phase transition
occurs when the OP g exceeds a critical value α2

|δ1| , so it has a discontinuous
(first–order) character.

From above relations we get [PPO07]

η =
δ3δ4 − δ2α4

2α3α4 − 2δ2
4

g2 ≡ λ1g
2, ε =

δ2δ4 − δ3α3

2α3α4 − 2δ2
4

g2 ≡ λ2g
2,

which shows that η �= 0 and ε �= 0 only if g �= 0. Eliminating q, η and ε, the
potential F can be written as a function of g

F = F ′
0 +

α

2
g2 +

β

4
g4 +

γ1

6
g6,

where the renormalized coefficients are
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F ′
0 = F0 −

α2
2

4β2

, α = α1 −
α2δ1

β2

,

β = β1 −
δ2
1

β2

+ 2α3λ
2
1 + 2α4λ

2
2 + 2δ2λ1 + 2δ3λ2 + 4δ4λ1λ2.

The zero–order and second–order terms depend on the parameters belonging
to the primary OPs. The secondary OPs modify only the forth–order term.
In this notation, the solution which minimizes the potential F reads

g2
o =

−β +
√

β2 − 4γα
2γ

, q2
o = −δ1g

2
o + α2

β2

,

ηo = λ1g
2
o , εo = λ2g

2
o .

To study the softening of C44, we have expressed the free energy as a
function of ε only. In these calculations we have omitted the sixth–order term,
which usually has a small contribution near the transition point. The elastic
constant C44 is obtained using the standard definition

C44(T ) =
∂2F
∂ε2

= C0
44 −

δ2

α′
3

− δ2
3

β′
1

, where (2.9)

δ = δ4 −
δ2δ3

2β′
1

, α′
3 = α3 −

δ2
2

2β′
1

= a3(T − T ′
c3), β′

1 = β1 −
δ2
1

β2

,

with T ′
c3 = Tc3 + δ2

2/2β
′
1. The second and third term in (2.9) are negative

at high temperatures, so both contribute to the softening of C44. It means
that all couplings included in (2.7) are involved in this behavior. The main
temperature dependence is caused by the second term, but also the last term
in (2.9) may depend on temperature. Omitting the last term, (2.9) can be
written in the form [PPO07]

C44 = C0
44

T − T0

T − T ′
c3

, (2.10)

where T0 = T ′
c3 + δ2/C0

44a3.
For more technical details, see [PPO07] and references therein.

2.1.6 Universal Mandelbrot Set as a Phase–Transition Model

The problem of stability of time evolution is one of the most important in
physics. Usually one can make the motion stable or unstable by changing some
parameters which characterize Hamiltonian of the system. Stability regions
can be represented on the phase diagram and transitions between them are
described by catastrophe theory [Tho89, Arn78]. It can seem that a physical
system or a mechanism can be taken from one domain of stability to any
other by continuous and quasi–static variation of these parameters, i.e., that
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the phase diagram is connected. However sometimes this expectation is wrong,
because domains of stability can be separated by points where our system is
getting totally destroyed. Unfortunately today it is too difficult to explore
the full phase diagram for generic physical system with many parameters.
Therefore, following [LL03], it was proposed in [DM06] to consider as a simpler
model the discrete dynamics of one complex variable. The phase diagram in
this case is known as Universal Mandelbrot Set (UMS). MS is a well–known
object in mathematics (see [Wik07, Fer23], as well as Figure 1.44 above), but
its theory is too formal and not well adjusted to the use in the phase transition
theory. In this section, following [Mor07], we will make MS more practical for
physical applications.

Structure of MS

First of all we remind the definition of MS and UMS from [DM06], which
different from conventional definition in mathematical literature, see below.
Mandelbrot Set (MS) is a set of points in the complex c plane. MS includes a
point c if the map x→ f(x, c) has stable periodic orbits. As shown in Figure2.2
MS consists of many clusters connected by trails, which in turn consist of
smaller clusters and so on. Each cluster is linear connected and can be divided
into elementary domains where only one periodic orbit is stable. Different
elementary domains can merge and even overlap. Boundary of elementary
domain of nth order, i.e., of a domain where an nth order orbit is stable, is a
real curve c(α) given by the system:

{
Gn(x, c) = 0
F ′
n(x, c) + 1 = eiα

, with

Fn(x, c) = f◦n(x, c)− x,

Gn(x, c) =
Fn(x, c)∏
mGm(x, c)

, (n = 1, ...,m).

Indeed, when Gn(x, c) vanishes then x belongs to the orbit of exactly the
nth order. This orbit is stable if | ∂∂xf◦n(x, c)| < 1, what implies the above
equation. The solution of this system may give us more than a single nth
order domain. Domains of different orders merge at the points c where

Resultantx (Gn(x, c), Gk(x, c)) = 0. (2.11)

Clearly, two orbits and thereafter domains merge only if n is divisor of k, so
it is reasonable to consider only Resultantx(Gn, Gmn) = 0, with m = 2, 3 . . .
and Discriminantx(Gn) for k = n.

Physically MS is a phase diagram of discrete dynamic of one complex
variable. It is clear from Figure 2.2 that one should distinguish between three
types of connectivity in different places of phase diagram. The first is linear
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connectivity: the possibility to connect any two points with a continuous line.
The second type is weak connectivity: it means that only a closure of our set
has linear connectivity. The third type we call strong connectivity: it means
that any two interior points are connected with a thick tube.

Entire MS on Figure 2.2 is weakly3 but not linearly connected and its
clusters are linearly, but not strongly connected. Universal Mandelbrot Set
(UMS) is unification of MS of different 1c−parametric families. When we rise
from MS to UMS we add more parameters to the base function. Thus entire
UMS could become strongly connected, but it is unclear whether this really
happens.

Fig. 2.2. The simplest examples of Mandelbrot sets MS(x2 + c) and MS(x3 + c),
constructed by Fractal Explorer [Fer23]. The picture explains the terms ‘clus-
ters’,‘elementary domain’ and ‘trails’. It is difficult to see any clusters except for
the central one in the main figure, therefore one of the smaller clusters is shown in
a separate enlarged picture to the left (adapted and modified from [Mor07]).

To explore MS of different functions we need to draw it. The method of MS
construction which we can derive from the definition of MS is following. We
are constructing the domains where different orbits are stable. We can build
them using the fact that if orbit is stable then absolute value of derivative df

dx
is less than one.

Simplification of the Resultant Condition

In this section we prove that the resultant condition (2.11) can be substituted
a by much simpler one [Mor07]:

Resultantx
(
Gn(x), (F ′

n + 1− eiα)
)

= 0, α =
2π
m

k.

To prove this equation, it is enough to find the points where

Resultantx(Fn,
Fnm(x)
Fn(x)

) = 0.

3 MS is usually claimed to be locally connected [Wik07], i.e., any arbitrary small
vicinity of a point of MS contains a piece of some cluster. In our opinion weak
connectivity is another feature, especially important for physical applications.
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Then:

Resultantx(Fn,
Fnm(x)
Fn(x)

) = Resultantx(Fn,
F ′
nm(x)
F ′
n(x)

) = 0.

By definition of F (x),

Fnm(x) = Fn(m−1) (Fn(x) + x) + Fn(x).

Then:

F ′
nm(x)
F ′
n(x)

=
F ′
n(m−1)(x)

F ′
n(x)

(F ′
n(x) + 1) + 1 =

F ′
n(m−1)(x)

F ′
n(x)

eiα + 1 =

= (. . . ((eiα + 1)eiα + 1)eiα + 1) . . .) + 1 =
m−1∑

l=0

eliα =
emiα − 1
eiα − 1

.

Thus (2.11) implies that emiα − 1 = 0 and therefore α = 2πk
m .

This theorem is a generalization of a well known fact for the central car-
dioid domain of MS(x2 + c) (see for example [Wik07]). This also provides a
convenient parametrization of generic MS.

A Fast Method for MS simulation

Historically MS was introduced in a different way from our formulation. We
call it M̃S. It depends not only on the family of functions, but also on a point
x0. If c belongs to the M̃S(f, x0) then

lim
n→∞

f◦n(x0) �= ∞

In the literature one usually puts x0 = 0 independently of the shape of f(x).

Such ˜MS(f, 0) �=MS(f), except for the families like f = xa + c. Existing
computer programs [Fer23] generate M̃S(f, 0), and can not be used to draw
the proper MS(f). Fortunately there is a simple relation [Mor07]:

MS(f) =
⋃

xcr

M̃S(f, xcr).

where union is over all critical points of f(x), f ′(xcr) = 0. Equation (2.1.6)
is closely related to hyperbolic and local connectivity conjectures [Wik07]. It
is also equivalent to the following two statements about the phase portrait in
the complex x plane:

(I) If liml→∞ f◦l(xcr) �=∞ then there is a stable periodic orbit O of finite
order which attracts xcr. It implies that

MS(f) ⊇
⋃

xcr

M̃S(f, xcr).
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(II) If O is a stable periodic orbit, then a critical point xcr exists, which
is attracted to O. This implies that

MS(f) ⊆
⋃

xcr

M̃S(f, xcr).

The statement (I) says that if liml→∞ f◦l(xcr) �= ∞ then this limit exists
and is a stable orbit with finite period, i.e., that there are no such things as
strange attractors in discrete dynamics of one complex variable. This state-
ment is unproved but we have no counter–examples.

The statement (II) is much easier. If x0 is a stable fixed point, then it
is surrounded by a disk–like domain, where |f ′(x)| < 1. Its boundary is
parametrized by f ′(x) = eiα and inside this area there is a point where
f ′(x) = 0, i.e., some critical point xcr of f . It is important that this en-
tire surrounding of x0 – and thus this xcr – lie inside the attraction domain
of x0:

|f(xcr)− f(x)| < |xcr − x|,
i.e., we found xcr which is attracted to x0. This argument can be easily ex-
tended to higher order orbits and can be used to prove (II). Equation (2.1.6)
leads to a simple upgrade of programs, which construct MS.

Reducing MS(x3 + c) to MS(x2 + c)

As application of our results we consider the 2C−parametric section of UMS
for the family

f(x) = a · x3 + (1− a) · x2 + c,

which interpolates between MS(x3+c) at a = 1 and MS(x2+c) at a = 0. We
extend consideration of [DM07a] to non–trivial second order clusters which
were beyond the reach of the methods used in that paper.

For more details on MS, see [Mor07].

2.1.7 Oscillatory Phase Transition

Coherent oscillations are observed in neural systems such as the visual cor-
tex and the hippocampus. The synchronization of the oscillators is considered
to play important roles in neural information processing [GKE89]. There are
mainly two viewpoints in the research of the oscillatory activity in neural
systems. In the first viewpoint, the activity of each neuron is expressed by
the firing rate, and the coherent oscillation appears owing to the interaction
of the excitatory and inhibitory neurons. Wilson–Cowan and Amari found
first oscillatory behavior theoretically in interacting neurons [WC72, Ama72].
Recently, [RRR02] proposed a more elaborate model to explain various EEG
rhythms and epileptic seizures. If the spatial freedom is taken into considera-
tion, the excitation wave can propagate. Wilson–Cowan performed numerical
simulations of two layers of excitable neurons and inhibitory neurons [WC72].
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In the second viewpoint, each neuron is regarded as an oscillator. Coherent os-
cillation appears as the global synchronization of the coupled oscillators. The
global synchronization in general coupled oscillators was first studied by Win-
free [Win67]. Kuramoto proposed a globally coupled phase oscillator model as
a solvable model for the global synchronization [Kur84]. The leaky–integrate–
fire model is one of the simplest models for a single neuron and often used to
study dynamical behaviors of neural networks. Each neuron receives an input
via synaptic connections from other neurons and it fires when the input goes
over a threshold and sends out impulses to other neurons. In that sense, the
coupling is instantaneous, and then the model is called pulse–coupled oscilla-
tors. Mirollo and Strogatz studied a globally coupled system of the integrate–
and–fire neurons, and showed that perfect synchronization occurs in a finite
time [MS90]. The synchronization of pulse coupled oscillators has been studied
in deterministic systems by many researchers [TMS93, GR93, VAE94]. If each
oscillator’s behavior is stochastic, the model is generalized to a noisy phase os-
cillator model and a noisy integrate–and–fire model. In the stochastic system,
the coherent oscillation appears as an analogue of the phase transition in the
statistical mechanics. Globally coupled noisy phase oscillators were studied
in [SK86, Kur91, Sak02, KS03], and globally coupled noisy integrate–and–fire
model were studied in [BH99, Bru00, HNT01]. The globally coupled system
is a useful model for the detailed analyzes, however, local or non–local inter-
actions are more plausible, since neurons interact with other neurons via long
axons or gap junctions. The non–locally coupled system of the deterministic
integrate–and–fire neurons was also studied [GE01]. In this section, following
[Sak04], we study a non–locally coupled noisy integrate–and–fire model with
the direct numerical simulation of the Fokker–Planck equation.

The equation for a noisy integrate–and–fire neuron is written as

ẋ = 1− bx + I0 + ξ(t), (2.12)

where x is a variable corresponding to the membrane potential, b is a positive
parameter, I0 denotes an external input, and ξ(t) is the Gaussian white noise
satisfying 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′). If x reaches a threshold 1, x jumps back to
0. If b < 1+ I0, each neuron fires spontaneously. The Fokker–Planck equation
for the Langevin equation (2.12) is [Sak04]

∂tP = − ∂

∂x
(1− bx + I0)P (x) + D

∂2P

∂x2
+ δ(x)J0(t), (2.13)

where J0(t) = −D(∂P/∂x)x=1 is the firing rate. The stationary distribution
P0(x) for the Fokker–Planck equation (2.13) is written as [Ric77]

P0(x) = P0(0)e{(ax−(1/2)bx2}/D, for x < 0, (2.14)

= P0(0)e{(ax−(1/2)bx2}/D

[

1−
∫ x
0

e{−az+(1/2)bz2}/Ddz
∫ 1

0
e{−az+(1/2)bz2}/Ddz

]

, for 0 < x < 1,
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where a = 1 + I0 and P (0) is determined from the normalization condition∫ 1

−∞ P0(x)dx = 1. The firing rate J0 is determined as

J0 = DP0(0)/
∫ 1

0

e{−az+(1/2)bz2}/Ddz.

We have performed direct numerical simulation of (2.13) with the finite dif-
ference method with Δx = 0.0002 and Δt = 2.5× 10−5, and checked that the
stationary probability distribution (2.14) is successfully obtained.

We assume a non–locally coupled system composed of the noisy integrate–
and–fire neurons. Each neuron interacts with other neurons via synaptic con-
nections. Time delay exists generally for the synaptic connections. A model
equation of the interacting noisy integrate–and–fire neurons is written as
[Sak04]

ẋi = 1− bxi + Ii + ξi(t),

where xi denotes the dimensionless membrane potential for the ith neuron,
ξi(t) denotes the noise term which is assumed to be mutually independent,
i.e., 〈ξi(t)ξj(t′)〉 = 2Dδi,jδ(t− t′), and Ii is the input to the ith neuron by the
mutual interaction. The input Ii to the ith neuron from the other neurons is
given by

Ii =
∑

j

∑

k

gi,j
1
τ

e−(t−tjk)/τ , (2.15)

where tjk is the time of the kth firing for the jth neuron, gi,j denotes the
interaction strength from the jth neuron to the ith neuron, and τ denotes a
decay constant. The sum is taken only for t > tjk. The effect of the firing of
the jth neuron to the ith neuron decays continuously with τ . If τ → 0, the
coupling becomes instantaneous. Equation (2.15) is equivalent to

İi = −{Ii −
∑

j

∑

k

gi,jδ(t− tjk)}/τ .

If there are infinitely many neurons at each position y, we can define the
number density of neurons with membrane potential x clearly at each position.
The number density is expressed as n(x, y, t) at position y and time t. The
non–locally coupled system can be studied with a mean–field approach. In the
mean–field approach, the number density is proportional to the probability
distribution P (x, y, t) for the probability variable x. The average value of δ(t−
tjk) expresses the average firing rate at time t at the position y. It is expressed
as J0(y, t) = −D(∂n/∂x)x=1. The number density n(x, y, t) therefore obeys
the Fokker–Planck type equation [Sak04]

∂tn(x, y) = − ∂

∂x
(1− bx + I(y, t))n(x, y) + D

∂2n

∂x2
+ δ(x)J0(y, t),

İ(y, t) = −{I(y, t)− J(y, t)}/τ ,

J(y, t) =
∫

g(y, y′)J0(y′, t)dy′,
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where g(y, y′) is the coupling strength from the neuron located at y′ to the
one at y, and I(y), J0(y) are respectively the input and the firing rate for the
neuron at y.

We have assumed that the time delay for the signal to transmit between
y′ and y can be neglected and g(y, y′) depends only on the distance |y − y′|,
i.e., g(y, y′) = g(|y − y′|). As two simple examples of the non-local coupling,
we use

g1(y, y′) = c exp(−κ|y − y′|) − d, g2(y, y′) = c exp(−κ|y − y′|) − d exp(−κ′|y − y′|).

These forms of the coupling imply that the interaction is excitable locally, but
the interaction strength decreases with the distance |y − y′|, and it becomes
inhibitory when |y−y′| is large. This Mexican–hat coupling was used in several
neural models [Ama77], especially to study the competitive dynamics in neural
systems. Although two layer models of excitatory neuron layer and inhibitory
neuron layer may be more realistic, we consider the above simpler one–layer
model. The inhibitory interaction approaches a constant value −d for the
coupling g1, and 0 for the coupling g2. The system size is assumed to be L =
10 as a simple example, and the periodic boundary conditions for the space
variable y are imposed. We choose the damping constants κ and κ′, as the
exponential function decays to almost 0 for the distance |y−y′| ∼ L. Therefore,
the dynamical behaviors do not depend on the system size L qualitatively in
the second model. But the dynamical behaviors depend on the system size L
in the first model, because the range of the inhibitory interaction is infinite
in the model.

There is a stationary and uniform solution n(x, y, t) = n0(x) and I(y, t) =
I0 in the non–locally coupled equation. The uniform solution satisfies

n0(x) = n0(0)e{ax−(1/2)bx2}/D, for x < 0,

= n0(0)e{ax−(1/2)bx2}/D

[

1−
∫ x
0

e{−az+(1/2)bz2}/Ddz
∫ 1

0
e{−az+(1/2)bz2}/Ddz

]

, for 0 < x < 1,

where the parameter a is determined by the self-consistent condition

a = 1− g0D(∂n0(x)/∂x)x=1, where g0 =
∫

g(y, y′)dy′.

To study the linear stability of the stationary and uniform solution, we
consider small deviations δn(x, y, t) = n(x, y, t)− n0(x) and δI(y, t) = I − I0
from the uniform solution. The small deviations can be expressed with the
Fourier series as

δn(x, y, t) =
∑

δnk(x, t) exp(iky) and δI(y, t) =
∑

δIk exp(iky)

under the periodic boundary conditions, where k = 2πm/L. The perturba-
tions δnk and δIk obey coupled linear equations [Sak04]
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∂δnk(x, t)

∂t
= − ∂

∂x
{(1 − bx + I0)δnk(x, t) + δIk(t)n0(x)} + D

∂2δnk
∂x2

+ δ(x)δJ0(t),

dδIk(t)

dt
= −{δIk(t) − g′δJ0k(t)}/τ, where (2.16)

δJ0k(t) = −D(∂nk/∂x)x=1andg′ =

∫
g(y, y′)eik(y

′−y)dy′.

For L is sufficiently large, g′ = 2cκ/(κ2 +k2)−dLδk,0 for the coupling g1 and
g′ = 2cκ/(κ2 + k2)− 2dκ′/(κ′2 + k2) for the coupling g2. The stability of the
stationary state is determined by the real part of the eigenvalues of the linear
equation (10). But, the stationary solution n0(x) is a nontrivial function of
x, and it is not so easy to obtain the eigenvalues. Here we have evaluated
the real part of the largest eigenvalue of the linear equation for various k
by direct numerical simulations of (2.16). The dynamical behavior in the long
time evolution of (2.16) is approximately expressed with the largest eigenvalue
λ, that is, δnk and δIk ∼ eλt for t 	 1. We have numerically calculated
the linear growth rate of the norm {

∫
(δnk)2dx + (δIk)2}1/2 (which grows as

e(Reλ)t for t	 1) every time–interval 0.001. Since the norm grows to infinity
or decays to zero in the natural time evolution of the linear equation, we have
renormalized the variables every time–interval 0.001, as the norm is 1 by the
rescaling cδnk → δnk and cδIk → δIk with a constant c.

Since the pulse propagates one round L with period T = 3.23, the ve-
locity of the travelling pulse is L/T ∼ 3.1. A regular limit cycle oscillation
with period T is observed at each point. The directions depend on the ini-
tial conditions. The travelling pulse state is an ordered state in the non-
locally coupled system. The locally excitable interaction facilitates the lo-
cal synchronization of the firing, but the global inhibition suppresses the
complete synchronization. As a result of the frustration, a travelling pulse
appears. The pulse state is different form the travelling pulse observed in
an excitable system, since the uniform state is unstable in our system and
the pulse state is spontaneously generated from the stationary asynchronous
state. The input I(y, t) to the neuron at position y exhibits regular limit cycle
oscillation.

As a second example, we consider a non–locally coupled system with the
coupling function

g2(y) = 1.8 exp(−4|y|)− 0.48 exp(−|y|).

A supercritical phase transition occurs at D ∼ 0.0155, which is also con-
sistent with the linear stability analysis. Near the critical value, the ampli-
tude of the oscillation is small and the wavy state seems to be sinusoidal. As
D is decreased, the oscillation amplitude increases and the sinusoidal waves
change into pulse trains gradually. Pulses are created periodically near x ∼ 6
and they are propagating alternatively in different directions. The inversely–
propagating pulses collide at x ∼ 1 and they disappear. Namely, there are a
pacemaker region (a source region) and a sink region of travelling pulses in
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this solution. This type of wavy state including a pacemaker region and the
simple pulse-train state are bistable.

In summary, we have studied the non–locally noisy integrate–and–fire
model with the Fokker–Planck equation. We have found that a travelling
pulse appears as a result of oscillatory phase transitions. We found also a
pulse-train state by changing the form of the interaction. The wavy states ap-
pear as a phase transition from a asynchronous state when the noise strength
is decreased. We have investigated a 1D system for the sake of simplicity of
numerical simulations, but we can generalize the model equation to a 2D sys-
tem easily. Our non–locally coupled integrate–and–fire model might be too
simple, however, the wavy state is one of the typical dissipative structures
far from equilibrium. Therefore, the spontaneously generated waves might be
observed as some kind of brain waves also in real neural systems. For more
details, see [Sak04].

2.1.8 Partition Function and Its Path–Integral Description

Recall that in statistical mechanics, the partition function Z is used for sta-
tistical description of a system in thermodynamic equilibrium. Z depends on
the physical system under consideration and is a function of temperature T as
well as other parameters (such as volume V enclosing a gas etc.). The parti-
tion function forms the basis for most calculations in statistical mechanics. It
is most easily formulated in quantum statistical mechanics (see e.g., [Fey72]).

Classical Partition Function

A system subdivided into N subsystems, where each subsystem (e.g., a parti-
cle) can attain any of the energies εj (j = 1, ..., N), has the partition function
given by the sum of its Boltzmann factors,

ζ =
∞∑

j=0

e−βεj ,

where β = 1
kBT

and kB is Boltzmann constant . The interpretation of ζ is that
the probability that the subsystem will have energy εj is e−βεj/ζ. When the
number of energies εj is definite (e.g., particles with spin in a crystal lattice
under an external magnetic field), then the indefinite sum is replaced with a
definite sum. However, the total partition function for the system containing
N subsystems is of the form

Z =
N∏

j=1

ζj = ζ1ζ2ζ3 · ...,

where ζj is the partition function for the jth subsystem. Another approach is
to sum over all system’s total energy states,
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Z =
N∑

r=1

e−βEr , where Ej = n
(j)
1 ε1 + n

(j)
2 ε2 + ...

In case of a system containing N non–interacting subsystems (e.g., a real gas),
the system’s partition function is given by

Z =
1
N !

ζN .

This equation also has the more general form

Z =
1

N !h3N

∫ N∏

i=1

d3qid3pi

N∑

i=1

e−βHi ,

where Hi = Hi(qi, pi) is the ith subsystem’s Hamiltonian, while h3N is a
normalization factor.

Given the partition function Z, the system’s free energy F is defined as

F = −kBT lnZ,

while the average energy U is given by

U =
1
Z

Eie
− Ei

kBT = − d

dβ
(lnZ) .

Liner Harmonic Oscillators in Thermal Equilibrium. The partition
function Z, free energy F , and average energy U of the system of M oscillators
can be found as follows: The oscillators do not interact with each other, but
only with the heat bath. Since each oscillator is independent, one can find Fi
of the ith oscillator and then F =

∑M
i=1 Fi. For each ith oscillator (that can

be in one of N states) we have [Fey72]

Zi =
N∑

n=1

e−
Ei

n
kBT , Fi = −kBT lnZi, Ui =

1
Z

N∑

n=1

Eine
− Ei

n
kBT .

Quantum Partition Function

Partition function Z of a quantum–mechanical system may be written as a
trace over all states (which may be carried out in any basis, as the trace is
basis–independent),

Z = Tr(e−βĤ),

where Ĥ is the system’s Hamiltonian operator. If Ĥ contains a dependence
on a parameter λ, as in Ĥ = Ĥ0 +λÂ, then the statistical average over Â may
be found from the dependence of the partition function on the parameter, by
differentiation,
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< Â >= −β−1 d

dλ
lnZ(β, λ).

However, if one is interested in the average of an operator that does not appear
in the Hamiltonian, one often adds it artificially to the Hamiltonian, calculates
Z as a function of the extra new parameter and sets the parameter equal to
zero after differentiation.

More general, in quantum field theory , we have a generating functional J of
the field φ(q) and the partition function is usually expressed by the Feynman
path integral [Fey72] (see Chapter 4)

Z[J ] =
∫
D[φ]ei(S[φ]+

∫
dNq J(q)φ(q)),

where S = S[φ] is the field action functional .

Vibrations of Coupled Oscillators

In this subsection, following [Fey72], we give both classical and quantum anal-
ysis of vibrations of coupled oscillators. R. Feynman used this method as a
generic model for the crystal lattice.

Consider a crystal lattice with A atoms per unit cell, such that 3A co-
ordinates α must be given to locate each atom. Also let Qα,N denote the
displacement from equilibrium of the coordinate α in the Nth cell. Qα,N+M

is the displacement of an atom in a cell close to N .
The kinetic energy of the lattice is given by

T =
1
2
Qα,NQα,N ,

while its potential energy (in linear approximation) is given by

V =
1
2
CMαβQα,NQβ,N+M .

Classical Problem

The so–called original Hamiltonian is given by

H =
∑

i

pi′2
2mi

+
1
2
Cij ′qi′qj ′,

where the qi′ are the coordinates of the amount of the lattice displacement
from its equilibrium, pi′ = miq̇

i′ are the canonical momenta, and Cij ′ = Cji′
are constants. To eliminate the mass constants mi, let

qi = qi′√mi and Cij =
Cij ′√
mimj

.
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Then

pi =
∂L

∂q̇i
=

pi′√
mi

, (L is the Lagrangian of the system)

and we get the simplified Hamiltonian

H =
1
2

∑

i

p2
i +

1
2
Cijq

iqj .

The Hamilton’s equations of motion now read

q̇i = ∂pi
H = pi, ṗi = −∂qiH = −Cijq

j = q̈i.

We now break the motion of the system into modes, each of which has its
own frequency ω. The total motion of the system is a sum of the motions of
the modes. Let the αth mode have frequency ωα so that

qi(α) = e−iωαta
(α)
i

for the motion of the αth mode, with a
(α)
i independent of time. Then

ω2
αa

(α)
i = Cija

(α)
j .

In this way, the classical problem of vibrations of coupled oscillators has been
reduced to the problem of finding eigenvalues and eigenvectors of the real,
symmetric matrix ‖Cij‖. In order to get the ωα we must solve the character-
istic equation

det
∥
∥Cij − ω2δij

∥
∥ = 0.

Then the eigenvectors a
(α)
i can be found. It is possible to choose the a

(α)
i so

that
a
(α)
i a

(β)
i = δαβ .

The general solution for qi is

qi = Cαq
i
(α),

where the Cα are arbitrary constants. If we take

Qα = Cαe−iωαt,

we get
qi = a

(α)
i Qα.

From this it follows that

a
(j)
i qi = a

(j)
i a

(α)
i Qα = δαjQα = Qj .

Making the change of variables, Qj = a
(j)
i qi, we get H =

∑
αHα, where

Hα =
1
2
p2
α +

1
2
ω2
αQα.

This has the expected solutions: Qα = Cαe−iωαt.
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Quantum–Mechanical Problem

Again we have the original Hamiltonian

H =
∑

i

pi′2
2mi

+
1
2
C

′

ijq
i′qj ′,

where this time

pi′ =
1
i

∂

∂qi′ (in normal units � = 1).

Making the same change of variables as before, we get

Qα = a
(α)
i qi = a

(α)
i

√
miq

i′,

H =
∑

α

Hα, where Hα = −1
2

∂2

∂Q2
α

+
1
2
ω2
αQα.

It follows immediately that the eigenvalues of our original Hamiltonian are

E =
∑

α

(Nα +
1
2
)ωα.

The solution of a quantum–mechanical system of coupled oscillators is trivial
once we have solved the characteristic equation

0 = det
∥
∥Cij − ω2δij

∥
∥ = det

∥∥
∥∥

Cij ′√
mimj

− ω2δij

∥∥
∥∥ .

If we have a solid with 1
3 (1023) atoms we must apparently find the eigenvalues

of a 1023 by 1023 matrix. But if the solid is crystal, the problem is enormously
simplified. The classical Hamiltonian for a crystal is

H =
1
2

∑

α,N

Q̇2
α,N +

1
2

∑

α,β,N,M

CMαβQα,NQβ,N+M ,

and the classical equation of motion for a crystal lattice is (using CMαβ = C−M
βα )

Q̈α,N = −
∑

M,β

CMαβQβ,N+M .

In a given mode, if one cell of the crystal is vibrating in a certain manner,
it is reasonable to expect all cells to vibrate the same way, but with different
phases. So we try

Qα,N = aα(K)e−iωteiK·N ,

where K expresses the relative phase between cells. The eiK·N factor allows
for wave motion. We now want to find the dispersion relations, or ω = ω(K).
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ω2aαeiK·N =
∑

M,β

(CMαβaβe
iK·M )eiK·N .

Let
γαβ(K) =

∑

M

CMαβe
iK·M

(note that γαβ(K) is Hermitian).
Then ω2aα =

∑
β γαβaβ , and we must solve the characteristic equation of

a 3A−by−3A matrix:
det |γαβ − ω2δαβ | = 0.

The solutions of the characteristic equation are

ω(r)(K) = ω(rK),

where r runs from 1 to 3A. The motion of a particular mode can be written

Q
(r)
α,N (K) = arα(K)e−iω(r)(K)r

eiK·N ,

where
arαa

∗r′
α = δrr′ .

Then the general motion can be described by

Qα,N =
∑

K,r

Cr(K)arα(K)e−iω(r)(K)r

eiK·N ,

where Cr(K) are arbitrary constants.
Let Qr(K) = Cr(K)e−iω(r)(K)r

. Qr(K) describe the motion of a particular
mode. Then we have

Qα,N =
∑

K,r

Qr(K)arα(K)eiK·N .

It follows that

Qr(K) ∝
∑

α,N

Qα,Na∗rα (K)e−iK·N , (∝ means ‘proportional to’),

and the Hamiltonian for the system is

H =
1
2

∑

α,N

⎡

⎣Q̇2
α,N +

∑

β,M

CMαβQα,NQβ,N+M

⎤

⎦

=
1
2

∑

K,r

[
|Q̇r(K)|2 + ω2(r)(K)|Qr(K)|2

]
.
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A Cubic Lattice of Harmonic Oscillators

Assume the unit cell to be a cubic lattice with one atom per cell. Each atom be-
haves as an harmonic oscillator, with spring constants kA (nearest neighbors),
and kB (diagonal–, or next–nearest neighbors). This case is fairly simple, and
we can simplify the notation: α = 1, 2, 3.

Q1,N = XN , Q2,N = YN , Q3,N = QN .

We wish to find the 3 natural frequencies associated with each k of the crystal.
To do this, we must find CMαβ and then γαβ . In complex coordinates,

V =
∑

α,β

Vαβ , where Vαβ =
∑

N,M

CMαβQ
∗
α,NQβ,N+M ,

where ∗ denotes complex conjugation. For example,

V11 =
∑

N,M

CM11X
∗
NXN+M .

If we express the displacement of atom N from its normal position as XN ,
then the potential energy from the distortion of the spring between atoms N
and M is

1
2
kM

[
(XN −XN+M ) · M

|M |

]2

,

where kM = kA for N + M a nearest neighbor to N , kM = kB for N + M a
next–nearest neighbor.

In summing over N and M to get the total potential energy we must
divide V by two, for we count each spring twice. If we use complex co-
ordinates, however, we multiply V by two to get the correct equations of
motion:

V =
1

2

∑

N,M

kM

[
(XN − XN+M ) · M

|M |

]2

,

V11 =
1

2

∑

N,M

kM

(
MX

|M |

)2

(X∗
N − X∗

N+M )(XN − XN+M )

=
1

2

∑

N,M

kM

(
MX

|M |

)2

[(X∗
NXN + X∗

N+MXN+M ) − (X∗
NXN+M + XNX∗

N+M )]

=
∑

N,M

kM

(
MX

|M |

)2

[X∗
NXN − XNX∗

N+M ] .

Comparing the above expressions we see that

C0
11 = 2kA + 4kB , C

±(1,0,0)
11 = −kA, and so on.
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In this way, all the CMαβ can be found. We can then calculate

γαβ(K) =
∑

M

CMαβe
iK·M .

We wish to solve
det |γαβ − ω2δαβ | = 0.

For each relative phase K, there are 3 solutions for ω. Thus we get 3N
values of ω and ω(r)(K).

2.1.9 Noise–Induced Non–Equilibrium Phase Transitions

Noise is usually thought of as a phenomenon which perturbs the observation
and creates disorder (see section 4.6.1). This idea is based mainly on our day
to day experience and, in the context of physical theories, on the study of
equilibrium systems. The effect of noise can, however, be quite different in
nonlinear non–equilibrium systems. Several situations have been documented
in the literature, in which the noise actually participates in the creation of
ordered states or is responsible for surprising phenomena through its interac-
tion with the nonlinearities of the system [HL84]. Recently, a quite spectacular
phenomenon was discovered in a specific model of a spatially distributed sys-
tem with multiplicative noise, white in space and time. It was found that
the noise generates an ordered symmetry–breaking state through a genuine
second–order phase transition, whereas no such transition is observed in the
absence of noise [BPT94, BPT97].

Recently it has been shown that a white and Gaussian multiplicative
noise can lead an extended dynamical system (fulfilling appropriate condi-
tions) to undergo a phase transition towards an ordered state, characterized
by a nonzero order parameter and by the breakdown of ergodicity [BPT94].
This result–first got within a Curie–Weiss–like mean–field approximation, and
further extended to consider the simplest correlation function approach–has
been confirmed through extensive numerical simulations [BPT97]. In addi-
tion to its critical nature as a function of the noise intensity σ, the newly
found noise–induced phase transition has the noteworthy feature of being
reentrant : for each value of D above a threshold one, the ordered state exists
only inside a window [σ1, σ2]. At variance with the known case of equilibrium
order⇒disorder transitions that are induced (in the simplest lattice models)
by the nearest–neighbor coupling constant D and rely on the bi–stability of
the local potential, the transition in the case at hand is led by the combined
effects of D and σ through the nonlinearities of the system. Neither the zero–
dimensional system (corresponding to the D = 0 limit) nor the deterministic
one (σ = 0) show any transition.
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General Zero–Dimensional System

To smoothly introduce the subject, we will start from the well–known logistic
equation, and add to it a multiplicative white noise.

Noisy Logistic Equation

Recall that the logistic equation (also called the Verhulst model or logistic
growth curve) is a model of population growth first published by P. Verhulst
in 1845 (see [Wei05]). The model is continuous in time, but a modification of
the continuous equation to a discrete quadratic recurrence equation known as
the logistic map is widely used in chaos theory . The standard logistic equation

ẋ = λx− x2, (2.17)

where the parameter λ is usually constrained to be positive, has a solution

x(t) =
1

1 +
(

1
x0
− 1

)
e−λt

.

Now, if we add a multiplicative zero–mean Gaussian white noise ξ = ξ(t)
with noise intensity σ to (2.17), we get the Langevin SDE (stochastic differ-
ential equation)

ẋ = λx− x2 + x ξ. (2.18)

If we apply the Stratonovitch interpretation to the Langevin equation (2.18),
we get the corresponding Fokker–Planck equation

∂tP (x, t) = −∂t
(
λx− x2

)
P (x, t) +

σ2

2
∂xx ∂xP (x, t) (2.19)

derermining the probability density P (x, t) for the variable x(t). The equation
(2.19) has the stationary probability density

Pst(x) =
1
Z

x
2λ
σ2 −1 exp

(
−2x

σ2

)

(where Z is a normalization constant), with two extrema:

x1 = 0, x2 = λ− σ2

2
.

General Zero–Dimensional Model

Now, following [BPT94, BPT97], we consider the following SDE that gener-
alizes noisy logistic equation (2.18),

ẋ = f(x) + g(x) ξ, (2.20)
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where, as above, ξ = ξ(t) denotes the Gaussian white noise with first two
moments

〈ξ(t) 〉 = 0, 〈ξ(t) ξ(t′)〉 = σ2δ(t− t′).

If we interpret equation (2.20) according to the Stratonovitch interpreta-
tion, we get the corresponding Fokker–Planck equation

∂tP (x, t) = −∂x [f(x) + P (x, t)] +
σ2

2
∂x (g(x) ∂x [g(x)P (x, t)]) ,

with the steady–state solution

Pst(x) =
1
Z

exp

(∫ x

0

f(y)− σ2

2 g(y)g′(y)
σ2

2 g2(y)
dy

)

, (2.21)

where g′(x) stands for the derivative of g(x) with respect to its argument. The
extrema of the steady–state probability density obey the following equation

f(x)− σ2

2
g(x)g′(x) = 0. (2.22)

Note that this equation is not identical to the equation f(x) = 0 for the steady
states in the absence of multiplicative noise. As a result, the most probable
states need not coincide with the deterministic stationary states. More im-
portantly, solutions can appear or existing solutions can be destabilized by
the noise. These changes in the asymptotic behavior of the system have been
generally named noise–induced phase transitions [HL84].

To illustrate this phenomenon, consider the case of a deterministically
stable steady state at x = 0, e.g.,

f(x) = −x + o(x),

perturbed by a multiplicative noise. As is clear from equations (2.6–2.22), a
noise term of the form

g(x) = 1 + x2 + o(x2)

will have a stabilizing effect, since

−(σ2/2)g(x)g′(x) = −σ2x + o(x2),

and it makes the coefficient of x more negative. On the other hand, noise of
the form

g(x) = 1− x2 + o(x2)

i.e., with maximal amplitude at the reference state x = 0, has the tendency to
‘destabilize’ the reference state. In fact, above a critical intensity σ2 > σ2

c = 1,
the stationary probability density will no longer have a maximum at x = 0,
and ‘noise–induced’ maxima can appear. This phenomenon remains possible
even if the deterministic steady–state equation, got by fixing the random value
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of the noise to a constant value λ, namely, f(x) + λg(x) = 0, has a unique
solution for all λ [BPT94, BPT97].

Following the formalism for equilibrium states, it is tempting to introduce
the notion of a ‘stochastic potential’ Ust(x) by writing:

Pst(x) ∼ exp [−Ust(x)] .

One concludes that for a system undergoing a noise–induced transition, e.g.,
for g(x) = 1 − x2 + o(x2), and for σ2 > σ2

c , the stochastic potential has
two minima. Consider now a spatially extended system got by coupling such
units. The coupling is such that it favors the nearest–neighbor units, to stay
at the same maximum of the probability density (minimum of the stochastic
potential). In analogy to what happens for equilibrium models (such as the
Landau–Ginzburg model), one expects that this system will undergo a phase
transition for some critical value of the ‘temperature’ (noise intensity) σ2.
However, it turns out that this is not the case. It was shown in [BPT94,
BPT97] that one needs a noise of precisely the other type, namely g(x) =
1 + x2 + o(x2), to generate a genuine phase transition.

General d−Dimensional System

The general model has been introduced in [BPT94, BPT97]: a dD extended
system of typical linear size L is restricted to a hypercubic lattice of N = Ld

points, whereas time is still regarded as a continuous variable. The state of
the system at time t is given by the set of stochastic variables {xi(t)} (i =
1, . . . , N) defined at the sites ri of this lattice, which obey a system of coupled
ordinary SDEs (with implemented Stratonovich interpretation)

ẋi = f(xi) + g(xi) ηi +
D

2d

∑

j∈n(i)

(xj − xi), (2.23)

Equations (2.23) are the discrete version of the partial SDE which in the
continuum would determine the state of the extended system: we recognize
in the first two terms the generalization of Langevin’s equation for site i to
the case of multiplicative noise (ηi is the colored multiplicative noise acting
on site ri). For the specific example, perhaps the simplest one exhibiting the
transition under analysis,

f(x) = −x(1 + x2)2, g(x) = 1 + x2. (2.24)

The last term in (2.23) is the lattice version of the Laplacian ∇2x of the
extended stochastic variable x(r, t) in a reaction–diffusion scheme. n(i) stands
for the set of 2d sites which form the immediate neighborhood of the site ri,
and the coupling constant D between neighboring lattice sites is the diffusion
coefficient.
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Here we want to investigate the effects of the self–correlation time τ of
the multiplicative noise on the model system just described [MDT00]. To that
end we must assume a specific form for the noises {ηi = ηi(t)}: we choose
Ornstein–Uhlenbeck noise, i.e., Gaussian distributed stochastic variables with
zero mean and exponentially decaying correlations,

〈ηi(t) ηj(t′)〉 = δij(σ2/2τ) exp(−|t− t′|/τ). (2.25)

They arise as solutions of an un–coupled set of Langevin SDEs,

τ η̇i = −ηi + σξi (2.26)

where the {ξi = ξi(t)} are white noises–namely, Gaussian stochastic variables
with zero mean and δ−correlated:

〈ξi(t) ξj(t′)〉 = δijδ(t− t′).

For τ → 0, the Ornstein–Uhlenbeck noise ηi(t) approaches the white–noise
limit ξWi (t) with correlations

〈ξWi (t) ξWj (t′)〉 = σ2δijδ(t− t′).

Mean–Field Approximation

The mean–field approximation here follows closely Curie–Weiss’ mean–field
approach to magnetism (see [MDT00]), and consists in replacing the last term
in (2.23)

Δi ≡
D

2d

∑

j∈n(i)

(xj − xi), (2.27)

by
Δ̄i ≡ D(x̄− xi), (2.28)

where x̄ is the order parameter that will be determined self–consistently. In
other words, the (short–ranged) interactions are substituted by a time– and
space–independent ‘external’ field whose value depends on the state of the sys-
tem. Since in this approximation equations (2.23) get immediately decoupled,
there is no use in keeping the subindex i and we may refer to the systems in
(2.23) and (2.26) as if they were single equations (Hereafter, the primes will
indicate derivatives with respect to x (clearly Δ̄′ = −D)).

If we take the time derivative of (2.23), replace first η̇ in terms of η and ξ
from (2.26) and then η in terms of ẋ and x from (2.23), we get the following
non–Markovian SDE:

τ(ẍ− g′

g
ẋ2) = −

(
1− τ

[
(f + Δ̄)′ − g′

g
(f + Δ̄)

])
ẋ + (f + Δ̄) + σgξ. (2.29)

Now, following [MDT00], we perform an adiabatic elimination of variables,
namely, neglecting ẍ and ẋ2, so that the system’s dynamics becomes governed
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by a Fokker–Planck equation. The resulting equation, being linear in ẋ (but
not in x), can be immediately solved for ẋ, giving

ẋ = Q(x; x̄) + S(x; x̄)ξ, (2.30)

with

Q(x; x̄) ≡ (f + Δ̄)θ, (2.31)
S(x; x̄) ≡ σgθ, (2.32)
θ(x; x̄) ≡ {1− τg[(f + Δ̄)/g]′}−1. (2.33)

The Fokker–Planck equation associated to the SDE (2.30) is

∂tP (x, t; x̄) = −∂x [R1(x; x̄)P (x, t; x̄)] +
1
2
∂2
x [R2(x; x̄)P (x, t; x̄)] , (2.34)

with drift and diffusion coefficients given by

R1(x; x̄) = Q +
1
4
(S2)′ (2.35)

R2(x; x̄) = S2. (2.36)

The solution of the time–independent Fokker–Planck equation leads to the
stationary probability density

Pst(x; x̄) =
1
Z

exp
[∫ x

0

dx′ 2R1(x′; x̄)− ∂x′R2(x′; x̄)
R2(x′; x̄)

]
. (2.37)

The value of x̄ arises from a self–consistency relation, once we equate it
to the average value of the random variable xi in the stationary state

x̄ = 〈x〉 ≡
∫ ∞

−∞
dxxPst(x; x̄) ≡ F (x̄). (2.38)

Now, the condition
dF

dx̄

∣
∣∣∣
x̄=0

= 1 (2.39)

allows us to find the transition line between the ordered and the disordered
phases.

Results

The mean–field approximation of the general dD extended system are the
following (see [MDT00]):

A. As in the white–noise case τ = 0, the ordering phase transition is reentrant
with respect to σ: for a range of values of D that depends on τ , ordered
states can only exist within a window [σ1, σ2]. The fact that this window
shifts to the right for small τ means that, for fixed D, color destroys order
just above σ1 but creates it just above σ2.
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B. For fixed σ > 1 and τ �= 0, ordered states exist only within a window
of values for D. Thus the ordering phase transition is also reentrant with
respect to D. For τ small enough the maximum value of D compatible with
the ordered phase increases rather steeply with σ, reaching a maximum
around σ ∼ 5 and then decreases gently. For τ ≥ 0.1 it becomes evident (in
the ranges of D and σ analyzed) that the region sustaining the ordered
phase is closed , and shrinks to a point for a value slightly larger than
τ = 0.123.

C. For fixed values of σ > 1 and D larger than its minimum for τ = 0, the
system always becomes disordered for τ large enough. The maximum value
of τ consistent with order altogether corresponds to σ ∼ 5 and D ∼ 32. In
other words, ordering is possible only if the multiplicative noise inducing
it has short memory.

D. The fact that the region sustaining the ordered phase finally shrinks to a
point means that even for that small region in the σ−D plane for which
order is induced by color, a further increase in τ destroys it. In other
words, the phase transition is also reentrant with respect to τ . For D large
enough there may exist even two such windows.

Order Parameter

As already mentioned above, the order parameter in this system is m ≡ |x̄|,
namely, the positive solution of the consistency equation (2.38). Consistently
with what has been discussed in (A) and (C), we see that as τ increases the
window of σ values where ordering occurs shrinks until it disappears. One also
notices that at least for this D, the value of σ corresponding to the maximum
order parameter varies very little with τ .

The short–time evolution of 〈x〉 can be obtained multiplying (2.34) by x
and integrating:

d〈x〉
dt

=
∫ ∞

−∞
dxR1(x; x̄)P (x, t; x̄). (2.40)

Let us assume an initial condition such that at early times P (x, t ∼ 0; x̄) =
δ(x− x̄). Equating x̄ = 〈x〉 as before, we get the order parameter equation

d〈x〉
dt

= R1(x̄, x̄). (2.41)

The solution of (2.41) has an initial rising period (it is initially unstable)
reaching very soon a maximum and tending to zero afterwards.

For D/σ2 →∞, equation (2.41) is valid also in the asymptotic regime since
Pst(x) = δ(x−x̄) [BPT97]. According to this criterion, in the D/σ2 →∞ limit
the system undergoes a second–order phase transition if the corresponding
zero-dimensional model presents a linear instability in its short–time dynam-
ics, i.e., if after linearizing (2.41):

〈ẋ〉 = −α〈x〉, (2.42)
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one finds that α < 0. We then see that the trivial (disordered) solution 〈x〉 = 0
is stable only for α > 0. For α < 0 other stable solutions with 〈x〉 �= 0 appear,
and the system develops order through a genuine phase transition. In this
case, 〈x〉 can be regarded as the order parameter. In the white noise limit
τ = 0 this is known to be the case for sufficiently large values of the coupling
D and for a window of values for the noise amplitude σ ∈ [σ1, σ2].

In summary, we have:

A. Multiplicative noise can shift or induce phase transitions in 0D systems.
B. Multiplicative noise can induce phase transitions in spatially extended

systems.
C. Mean–field approximation predicts a minimal coupling strength for the

appearance of noise induced phase transitions.
D. Mean–field approximation predicts, that the phase transition is reentrant,

i.e., the ordered phase is destroyed by even higher noise intensity.
E. Appearance of an ordered phase results from a nontrivial cooperative effect

between multiplicative noise, nonlinearity and diffusion.

2.1.10 Noise–Driven Ferromagnetic Phase Transition

Over the last decade, the dynamics of ferromagnetic systems below their criti-
cal temperatures in a periodically oscillating magnetic field have been studied
both theoretically [TO90, LP90, Ach97, SRM98, KWR01, FTR01, YTY02]
and experimentally [JY95]. The systems exhibit two qualitatively different be-
haviors referred to as symmetry–restoring oscillation (SRO) and symmetry–
breaking oscillation (SBO), depending on the frequency Ω and the amplitude
h of the applied magnetic field. It has been established that there exists a
sharp transition line between SRO and SBO on the (Ω, h) plane, which is
called the dynamical phase transition (DPT). The DPT was first observed
numerically in the deterministic mean–field system for a ferromagnet in a
periodically oscillating field [TO90], and has subsequently been studied in
numerous Monte Carlo simulations of the kinetic Ising system below criti-
cal temperature [LP90, Ach97, SRM98, KWR01]. It has also been observed
experimentally in [JY95].

Recently, the DPT was investigated by introducing the model equation
[FTR01]

ṡ(t) = (Tc − T )s− s3 + h cosΩt.

This equation is a simplified model for the Ising spin system at the temper-
ature T below its critical value Tc in an external periodic magnetic field. By
appropriately scaling the magnetization s, time t, and the applied field, this
equation is written as

ṡ(t) = s− s3 + h cosΩt. (2.43)

The SBO and SRO are observed in (2.43) and the transition line between
them on the (Ω, h) plane is determined analytically [FTR01].
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It is quite interesting to ask whether DPT is observed under another kind
of applied field, especially random field with bounded amplitude. The fun-
damental aim of the present section is to study the dynamics of s(t) with
a dichotomous Markov noise (DMN) F (t) instead of periodically oscillating
external field h cosΩt (see, e.g., [Kam92]).

The equation of motion [OHF06]

ṡ = f(s) + F (t), (2.44)

with a nonlinear function f(s) and the DMN F (t) has been extensively stud-
ied by many authors (see, e.g., [KHL79, BBK02, HR83]). It is well known that
the master equation for the system can be derived, and then transition phe-
nomena of stationary probability densities concerning the intensity of F (t), for
example, are studied, which are referred to as the noise-induced phase transi-
tion [KHL79, HL84]. The asymptotic drift velocity 〈ṡ〉 in the case of f(s) being
periodic functions are also discussed as a specific dynamic property [BBK02].
Furthermore, the mean first–passage time (MFPT) and transition rates are
investigated as another important dynamic property when f(s) is the force
associated with the bistable potential given by (2.44).

Symmetry–Breaking Phase Transition

Model Equation and Noise–Induced Phase Transition

We consider the equation of motion driven by the external field F (t) [OHF06],

ds(t)
dt

= f(s) + F (t), (f(s) = s− s3) (2.45)

where F (t) is a symmetric DMN with taking the values ±H0. Here the proba-
bility p(τ) that F (t) continues to take the identical value +H0 or −H0 longer
than time τ is given by

p(τ) = e−τ/τf . (2.46)

This implies that the correlation time of F (t) is equal to τf/2. Throughout
this section, numerical integrations of (2.45) are carried out by using the Euler
difference scheme with the time increment Δt = 1/100.

Without DMN, s(t) eventually approaches either of the stationary fixed
points ±1, one of which is achieved according to the initial condition s(0) as
shown in Figure 2.3. In the presence of DMN, if H0 < Hc, Hc being defined
by

Hc ≡ 2(1/3)3/2 = 0.3849 · · · , (2.47)

then f(s) + H0 = 0(f(s) −H0 = 0) has three real roots sj+(sj−), (j = 1, 2,
and 3). Each value of sj± is graphically shown in Figure 2.3(a). On the other
hand, if H0 > Hc, then f(s) + H0 = 0 (f(s)−H0 = 0) has only one real root
s+ (s−) given by
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Fig. 2.3. The function f(s) = s − s3 is shown by solid lines. (a) Real roots sj±,
(j = 1, 2, 3) for H0 < Hc and (b) real roots s± for H0 > Hc of the algebraic
equation s − s3 ± H0 = 0. The definition of Hc is graphically represented (adapted
and modified from [OHF06]).

s± =
[
1
2

(
±H0 +

√
H2

0 −H2
c

)]1/3

+
[
1
2

(
±H0 −

√
H2

0 −H2
c

)]1/3

, (2.48)

which are indicated in Figure 2.3(b). Next let us consider the dynamics
described by (2.45) for H0 < Hc and for H0 > Hc, and discuss simi-
larity and difference between the dynamics in the periodically oscillating
field case and those in the present DMN case. A part of our results be-
longs to the context of the noise–induced phase transition and MFPT in
[KHL79, HL84, BBK02, HR83]. In the case of H0 < Hc, three motions numer-
ically integrated are shown in Figures 2.4(a) and (b). Two motions confined
in the ranges s1− < s(t) < s1+ and s3− < s(t) < s3+ are both stable. The
long time average 〈s(t)〉 of each motion does not vanish, and the motion is
called SBM in relation to DPT in the oscillating external field case. On the
other hand, the motion su(t) confined in the range s2+ < su(t) < s2− is un-
stable. The long time average of su(t) vanishes, and in this sense the motion
is called SRM. It should be noted that this unstable SRM is located between
two stable SBM, which has a similar characteristic to SBO of DPT [FTR01].

The motion of s(t) for H0 > Hc is shown in Figures 2.4(c) and (d). One
observes that there exists a stable SRM confined in the range s− < s(t) < s+.
For SRM, the time average of s(t) vanishes, i.e., 〈s(t)〉 = 0. The comparison
between Figures 2.4(b) and (d) suggests that the SRM for H0 > Hc is gen-
erated via the “attractor merging crisis” [Ott93] of the two SBM’s and one
unstable SRM, i.e., the two SBM’s and one unstable SRM disappear and then
one stable SRM takes place at H0 = Hc. This situation is similar to that in
the DPT case. However, in contrast to the DPT case, the transition line on
the (τ−1

f , H0) plane is independent of the correlation time τf of F (t) and the
average 〈s(t)〉 depends discontinuously on H0.
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Fig. 2.4. Figures (a) and (b) show the motions obtained by numerically integrating
(2.45) for H0 = 0.38(< Hc) and τf = 5, where two SBM’s (solid line) and an unstable
SRM (dashed line) are drawn. The unstable SRM is evaluated by replacing t → −t.
On the other hand, Figures (c) and (d) show the motions for H0 = 0.5(> Hc) and
τf = 10 (adapted and modified from [OHF06]).

Stationary Distribution Functions

In this subsection, we discuss the stationary distribution functions for SBM
and SRM. To this aim, we first consider a slightly general nonlinear Langevin
equation of motion driven by DMN [OHF06],

ẋ(t) = f(x) + g(x)F (t), (2.49)

where f(x) and g(x) are generally nonlinear functions of x and F (t) is
DMN [Ris84]. The temporal evolution of the distribution function P (x, F, t)
that x(t) and F (t) respectively take the values x and F (= ±H0) is determined
by [KHL79, HL84]

∂

∂t
P (x, t) = − ∂

∂x
[f(x)P (x, t) + H0g(x)q(x, t)] ,

∂

∂t
q(x, t) = − 2

τf
q(x, t)− ∂

∂x
[f(x)q(x, t) + H0g(x)P (x, t)] , (2.50)

where we put P (x, t) ≡ P (x,+H0, t)+P (x,−H0, t) and q(x, t) ≡ P (x,+H0, t)
− P (x,−H0, t). The stationary distribution P st(x) ≡ P (x,∞) is solved to
yield
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P st(x) = (2.51)

N
g(x)

H2
0g(x)2 − f(x)2

exp

{
− 1

τf

∫ x

dx′
[

1

f(x′) − H0g(x′)
+

1

f(x′) + H0g(x′)

]}
,

provided that each of the equations

ẋ = f(x) + H0g(x), ẋ = f(x)−H0g(x)

has at least one stable fixed point, where N is the normalization constant.
By substituting f(x) = x − x3 and g(x) = 1, ((2.45)), into (2.51), the

stationary distribution function P stSBM (s) for SBM (H0 < Hc) for s3− < s <
s3+ or s1− < s < s1+ is written as

P stSBM (s) ∝ |s2 − s2
1+|−β1+ |s2 − s2

1−|−β1− |s2 − s2
2+|−β2+ , (2.52)

βj± = 1− τ−1
f |(sj± − sk±)(sj± − sl±)|,

where (j, k, l) = (1, 2, 3), (2,3,1), and (3,1,2).
On the other hand, the stationary distribution function P stSRM (s) for the

SRM (H0 > Hc) for s− < s < s+ is obtained as

P stSRM (s) ∝ |s2 − s2
+|

τ
−1
f

3s2+−1
−1 [

(s2 + s2
+ − 1)2 − s2

+s2
]−

τ
−1
f

3s2+−1
−1

× exp

{
τ−1
f s+

(s2
+ − 1/3)

√
3s2

+ − 4

[

arctan

⎛

⎝ 2s− s+√
3s2

+ − 4

⎞

⎠

− arctan

⎛

⎝ 2s + s+√
3s2

+ − 4

⎞

⎠
]}

. (2.53)

As H0 is increased, the form of the stationary distribution function changes
drastically from the forms in (2.52) to (2.53) at H0 = Hc. This phenomenon
which is induced by the disappearance of two pairs of stable and unstable fixed
points [BBK02] is an example of the noise–induced phase transitions [HL84].

It turns out that the transition line between SRM and SBM on the (τ−1
f ,

H0) plane is given by H0 = Hc. Furthermore, the long time average of s(t),
〈s(t)〉, depends discontinuously on H0 at H0 = Hc. These behaviors are quite
different from those of the DPT case driven by periodically oscillating field,
F (t) = h cos(Ωt) [Ach97, FTR01]. The transition point hc for a fixed Ω
between SRO and SBO depends on the frequency Ω, and 〈s(t)〉 is a continuous
function of h.

MFPT Through the Channels

We hereafter discuss the dynamics for H0 slightly above Hc. Let us first con-
sider the behavior obeying the equations [OHF06]
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Fig. 2.5. Three orbits of the equation of motion (2.54) with ε = + for H0 > Hc.
The values of H0 are set to be H0 = 0.386 (dotted line), 0.4 (dashed line), and
0.5 (solid line), where all the initial conditions are chosen as s0 = s− (adapted and
modified from [OHF06]).

ṡ = s− s3 + εH0, (ε = + or−) (2.54)

for H0 > Hc, i.e., F (t) is fixed to be either +H0 or −H0. Equation (2.54) for
H0 > Hc is integrated to yield

t = − 1
2(3s2

ε − 1)
ln

(s− sε)2

s2 + sεs + s2
ε − 1

s2
0 + sεs0 + s2

ε − 1
(s0 − sε)2

(2.55)

+
6sε

2(3s2
ε − 1)

√
3s2
ε − 4

[

arctan

(
2s + sε√
3s2
ε − 4

)

− arctan

(
2s0 + sε√

3s2
ε − 4

)]

,

where s0 = s(0) and sε has been defined in (2.48). Figure 2.5 displays three
orbits given by (2.55) with s0 = s− and ε = +, which shows that s(t) ap-
proaches s+ in the limit t→∞. One observes that s(t) stays for a long time
in the vicinity of s = −1/

√
3 for H0 slightly above Hc. The small region in-

cluding the position s = −1/
√

3 is called the ‘channel’. From the symmetry
of the system, there also exists the channel near s = 1/

√
3 for F (t) = −H0,

as shown in Figure 2.3(b). Let us express the positions sch of the channels as

sch =
{
−1/

√
3, if F (t) = +H0

+1/
√

3, if F (t) = −H0
.

The characteristic time τ ch is then defined as the time span that the state
point s(t) passes through one of the channels for a constant F (t), either +H0

or −H0. τ ch can be estimated by integrating (2.54) around s ! sch as follows.
First, consider the case F (t) = −H0. By setting u(t) = s(t)−sch and assuming
|u| � sch, (2.54) is approximated as [OHF06]
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u̇ = −3schu2 − (H0 −Hc).

This can be integrated to give

u(t) = −
√

H0 −Hc
3sch

tan
[√

3sch(H0 −Hc)t
]

(2.56)

with the initial condition u(0) = 0. τ ch is estimated by the condition u(τ ch) =
∞ and thus

τ ch =
C

(H0 −Hc)1/2
, C =

π

2
√

3sch
. (2.57)

Let us next consider the process that the state point s(t) passes through
the channels under DMN. One finds that the time of passing through channels
increases as H0 approaches Hc. The MFPT τ̄ through channels was calculated
in [HR83] by analyzing the master equation. In the present subsection, we will
derive MFPT in terms of the time scales τf and τ ch from a phenomenological
viewpoint without use of the analysis made in [HR83].

The condition for passing through a channel is that F (t) continues to
take the identical value either +H0 or −H0 for time longer than τ ch. For H0

satisfying τf > τ ch, we obtain p(τ ch) = e−τch/τf ! 1, which implies that
F (t) almost always satisfies the condition for passing through the channel.
Therefore, τ̄ in the case of τf > τ ch is nearly equivalent to τ ch, i.e.,

τ̄ ! C

(H0 −Hc)1/2
. (2.58)

In the case of τf � τ ch, on the other hand, (2.46) gives p(τ ch) � 1. This
fact implies that the probability that F (t) continues to take the identical value
for time longer than τ ch is quite small and hence that τ̄ is much longer than
τ ch because it needs a long time to satisfy the condition for the state point to
pass through the channel. τ̄ in the case of τf � τ ch is explicitly determined as
follows. For a long τ̄ , let us divide τ̄ into subintervals each of which has the time
span τf . The divided individual time series are approximately independent of
each other. Therefore, τf/τ̄ is the probability that the state point passes
through a channel once because τ̄ is MFPT through the channel. On the
other hand, p(τ ch) is identical to the probability for s(t) to pass through the
channel once by definition of the probability. Therefore we get the relation
p(τ ch) ! τf/τ̄ , which leads to

τ̄−1 ! τ−1
f e−τch/τf = τ−1

f exp
[
− C

τf (H0 −Hc)1/2

]
(2.59)

with the constant C defined in (2.57). This expression agrees with the result
obtained in [HR83].

Equation (2.59) reveals that MFPT through the channel depends on H0−
Hc in a stretched exponential form for τf � τ ch, and is quite different from
the asymptotic form (2.58).
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Fig. 2.6. Time series of F (t) schematically indicating the time that s(t) jumps from
s+ to s−. s(t) jumps at the time t∗ in this case, where F (t) takes the value −H0

longer than τ ch for the first time in the time series of F (t) (adapted and modified
from [OHF06]).

Phenomenological Analysis

In order to discuss statistical characteristics of the dynamics passing through
the channels for τf � τ ch, we here develop a phenomenological approach.
The behaviors of s(t) for which we attempt to model are first summarized.
The initial condition of s(t) is set to be in the vicinity of s+. If a time interval
of F (t) satisfying the condition F (t) = −H0 becomes longer than τ ch for
the first time, then s(t) passes through sch and approaches s− in the time
interval. See Figure 2.6. The event in which s(t) jumps from s+ to s− occurs
only in this case. It should be noted that the jumps from s(t) > 0 (s(t) < 0)
to s(t) < 0 (s(t) > 0) are approximately independent of subsequent jumps.

Let us discretize the time t in the form t = kΔt, (k = 1, 2, 3, · · · ) as a
simple approach to develop the phenomenological analysis according to the
process noted above, where Δt is a certain small time step. Then, τ ch is
discretized as τ ch ≡ nchΔt with the corresponding integer nch. F (t) is assumed
to keep the same value for the interval Δt, which is denoted as Fk = F (kΔt).
The conditional probability p that Fj+1 takes the same value as Fj is given
by

p = e−Δt/τf , (2.60)

and the probability q that Fk+1 is different from Fk is therefore given by

q = 1− p. (2.61)

The system is analyzed phenomenologically as follows:

• We introduce the variable sk at a discretized time kΔt which takes two
values ±1.

• sk and Fk are initially set to s0 = +1 and F0 = +H0, respectively.
• sk jumps from +1 (−1) to−1 (+1) only if Fk continues to take the identical

value −H0 (+H0) for a time interval longer than nchΔt.
• sk does not jump from +1 (−1) to −1 (+1) even though Fk continues to

take +H0 (−H0) for any time interval longer than nchΔt.



214 2 Phase Transitions and Synergetics

MFPT τ̄ through the Channel

We first derive the exact expression for the MFPT τ̄ through the channel with
the phenomenological approach. In considering the time series having Fk, τ̄
is evaluated as

τ̄ =
∑

l

lΔt
∑

0≤k≤l
g
(nch)
k,l qkpl−k

∣∣
∣∣∣∣
q=1−p

. (2.62)

Here g
(nch)
k,l is the number of the time sequences {Fj} for 0 ≤ j < l satisfying

that Fj changed its value k times in each {Fj} and sj jumps from +1 to −1
for the first time at t = lΔt.

Equation (2.62) is, furthermore, rewritten as

τ̄ = T̂Qnch
(q, p)

∣∣∣
q=1−p

with the differential operator T̂ and the quantity Qnch
(q, p) defined by

T̂ ≡ Δt

(
q

∂

∂q
+ p

∂

∂p

)
(2.63)

and
Qnch

(q, p) ≡
∑

l

∑

0≤k≤l
g
(nch)
k,l qkpl−k. (2.64)

One should note that the q- and p-dependences in Qnch
are crucial and that

q and p are considered to be independent in (2.64).
The explicit form of Qnch

(q, p) is then determined so as to satisfy the
following conditions:

1. In considering any length of time series giving Fk, there exists a time
interval of length nch in the last of the time series, where all the Fk take the
same value −H0, i.e., the condition that sk jumps from +1 to −1 is satisfied.

2. The condition for sk to jump from +1 to −1 is not satisfied before the
last time interval.

One should note that the equality Qn(1 − p, p) = 1 holds for any n, be-
cause the time interval described above always exists somewhere in a long
time series. Particularly, for n = nch, Qnch

(1− p, p) is obviously equal to the
probability that sj changes its sign, which must be unity for H0 > Hc.

The explicit form of Qn(q, p) is given by [OHF06]

Qn(q, p) =
(1− p)qpn−1

(1− p)2 − q2(1− pn−1)
, (2.65)

where the condition Qn(1−p, p) = 1 is easily confined. Applying the operator
(2.63) to the explicit form (2.65) with n = nch yields the relation
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τ̄ = T̂Qnch
(q, p)

∣∣∣
q=1−p

= Δt
2− pnch−1

(1− p)pnch−1

= Δt
2− eΔt/τf e−τch/τf

(1− e−Δt/τf )eΔt/τf e−τch/τf
,

where the last equality is obtained by using Eqs. (2.60) and (2.61) with the
relation τ ch = nchΔt. The exact expression of τ̄ is finally given by

τ̄ = τf

(
2eτch/τf − 1

)
(2.66)

in the limit of Δt→ 0 by keeping τ ch constant. Equation (2.66) qualitatively
agrees for τ ch/τf 	 1 with the result (2.59).

Distribution Function P (τ) for the Passage Time τ

The distribution function P (τ) for the passage time τ through the channel
sch is determined by solving the equation

P (τ) = δ(τ − T̂ )Qnch
(q, p)

∣∣
∣
q=1−p

, (2.67)

where δ(x) is the delta function. The Laplace transform L[P ](z) should be
calculated in order to solve (2.67). By using the series expansion of Qnch

(q, p)
given by (2.64), the Laplace transform of P (τ) is obtained as

L[P ](z) ≡
∫ ∞

0

e−τzP (τ)dτ = e−zT̂Qnch
(q, p)

∣
∣∣
q=1−p

=
∑

l

∑

0≤k≤l
g
(nch)
k,l (e−zΔtq)k(e−zΔtp)l−k

∣∣∣∣
∣∣
q=1−p

. (2.68)

Equation (2.68) implies that L[P ](z) can be obtained by replacing q and p by
e−zΔtq and e−zΔtp in Qnch

(q, p), respectively, i.e.,

L[P (τ)](z) = Qnch
(e−zΔtq, e−zΔtp)

∣∣
q=1−p . (2.69)

Substituting the explicit form (2.65) for n = nch into (2.69) yields the
equation

L[P (τ)](z) =
(τfz + 1)e−(z+τ−1

f )τch

τ2
fz

2 + 2τfz + e−(z+τ−1
f )τch

(2.70)

in the limit of Δt → 0 by keeping τ ch constant. By applying the inverse
Laplace transform to (2.70), the distribution function P (τ) is analytically
evaluated in the series expansion as



216 2 Phase Transitions and Synergetics

P (τ) = τ−1
f e−τ/τf

∞∑

k=0

θ(tk+1)
(−x)k

k!
dk

dxk
cosh

√
x

∣∣∣∣
x=(tk+1)2

=

τ−1
f e−τ/τf

[

θ(t1) cosh(t1)− θ(t2)
t2 sinh(t2)

2
+ θ(t3)

t3
2 cosh(t3)− t3 sinh(t3)

8

− θ(t4)
t4

3 sinh(t4)− 3t42 cosh(t4) + 3t4 sinh(t4)
48

+ · · ·
]

, (2.71)

where tk(τ) ≡ (τ − kτ ch)/τf and θ(t) is the Heaviside function defined by

θ(t) =
{

1 for t ≥ 0
0 for t < 0 . (2.72)

For details of the derivation of (2.71), see [OHF06].
Let us suppose to truncate the expansion (2.71) at k = kc for an arbitrary

kc. It should be noted that (2.71) gives the exact distribution for 0 < τ < kcτ ch
even though the truncation is executed, since all the terms individually include
θ(tk) and so the terms for k > kc do not contribute to P (τ) for τ < kcτ ch. The
analytical result (2.71) is compared with the numerically evaluated distribu-
tion. One observes that the phenomenological analysis quantitatively explains
the statistical property of passing through the channels. The characteristics
obtained from the figure are summarized as follows [OHF06]:

1. There exists a region where P (τ) = 0 for τ < τ ch, which presents the
minimal time of passing through the channels.

2. P (τ) decreases exponentially for τ 	 τ ch, P (τ) ∝ e−ατ with a constant
α.

3. The rate α increases as τf is increased. This tendency is consistent with
the fact that the probability of passing through channels increases as τf is
increased since DMN will often continue to take an identical value longer than
τ ch.

On the other hand, the expansion (2.71) disagrees with the correct value
in an exponential way for τ > kcτ ch. Let us try to obtain the asymptotic
solution of P (τ) for τ 	 τ ch. We have [OHF06]

〈e−z(τ−τch)〉 ! 1
1 + (τ̄ − τ ch)z

for |z| � τ−1
ch , (2.73)

where τ̄ is MFPT given in (2.66). The inverse Laplace transform of (2.73) is
straightforwardly calculated to give

P (τ) ! 1
τ̄ − τ ch

exp
(
−τ − τ ch

τ̄ − τ ch

)
,

which reveals that P (τ) decreases exponentially with the damping rate α =
(τ̄ − τ ch)−1 for τ 	 τ ch.
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Phenomenological Fourier Spectrum

We derive the Fourier spectrum of a time series s(t) by the phenomenological
analysis to focus on the dynamical characteristics in the SRM phase. The
Fourier spectrum Ix(ω) is defined by

Ix(ω) = lim
T→∞

1
T

〈∣∣∣∣∣

∫ T

0

x(t)e−iωtdt

∣∣∣∣∣

2〉

, (2.74)

i.e., the ensemble average of the Fourier transform of a time series x(t).
Let us first consider s0(t) ≡ sgn[s(t)]. Then the time series s0(t) is ex-

pressed as
s0(t) = (−1)n−1, for tn−1 ≤ t < tn (2.75)

with n ≥ 1, where tn denotes the nth time to cross zero for s(t). Hereafter,
t0 is set to be zero without loss of generality. By identifying that τn ≡ tn −
tn−1 is independently distributed according to (2.71), one obtains the Fourier
spectrum of s0(t) by the phenomenological analysis shown (see [OHF06]), in
the form

Is0(ω) =
4

τ̄ω2
'
(

1− 〈e−iωτn〉
1 + 〈e−iωτn〉

)
=

4
τ̄ω2

1− |〈e−iωτn〉|2
|1 + 〈e−iωτn〉|2 (2.76)

where '(X) represents the real part of X, and limN→∞
tN
N = 〈τn〉 = τ̄ is

used.
Substituting the explicit form of 〈e−iωτn〉 given in (2.70) with z = iω into

(2.76) yields

Is0 (ω) =

(
4τf

τ̄ω

)
ω3τ3

f + (4 − e−2τch/τf )ωτf − 2e−τch/τf (ωτf cos ωτch + 2 sin ωτch)

(4 + ω2τ2
f )(ω2τ2

f − 2ωτf e−τch/τf sin ωτch + e−2τch/τf )
.

(2.77)

The above result is confirmed by comparing with the numerically evaluated
Fourier spectrum for the normalized time series s0(t) (see [OHF06]).

Let us finally modify the phenomenological analysis which is compatible
with the numerically evaluated spectrum of the original time series s(t) with-
out normalization. Instead of (2.75), let us define

s̃(t) = (−1)n−1[1− a(t− tn−1)] for tn−1 ≤ t < tn

with n ≥ 1, where a(Δt) incorporates the wave form of the time series passing
through the channel and is assumed to be a(Δt) = 0 for Δt > τ ch. Note that
by setting a(Δt) = 0 also for Δt ≤ τ ch the result of original phenomenological
analysis is recovered. As shown in [OHF06], the Fourier spectrum Is̃(ω) for
s̃(t) as a modification to Is0(ω) is obtained in the form

Is̃(ω) = Is0(ω)
1 + |â(ω)|2 + 2'[â(ω)]

4
, (2.78)



218 2 Phase Transitions and Synergetics

where
â(ω) ≡ 1− iω

∫ τch

0

a(t)e−iωtdt.

By approximating as a(Δt) = 1 + |sch| for 0 < Δt < τ ch, (2.78) reduces to

Is̃(ω) = Is0(ω)
(

1 + s2
ch

2
+

1− s2
ch

2
cosωτ ch

)
. (2.79)

Fore more technical details, see [OHF06].

2.1.11 Phase Transition in a Reaction–Diffusion System

Recently 1D reaction–diffusion systems have received much attention because
they show a variety of interesting critical phenomena such as non–equilibrium
phase transitions [Sch01]. A simple system of this type, which has been studied
widely in related literatures, is the Asymmetric Simple Exclusion Process
(ASEP) [DEH93]. In this 2–states model the particles are injected from the
left site of an open discreet lattice of length L. They diffuse in the system
and at the end of the lattice are extracted from the system. It is known that
depending on the injection and the extraction rates the ASEP shows different
boundary induced phase transitions. Non–equilibrium phase transition may
also happen in the systems with non–conserving dynamics. For instance in
[EKL02] the authors investigate a 3–states model consists of two species of
particles besides vacancies on a lattice with ring geometry. The dynamics of
this model consists of diffusion, creation and annihilation of both species of
the particles. They have found that the phase diagram of the model highly
depends on the annihilation rate of the particles. By changing the annihilation
rate of the particles, the system transfers from a maximal current phase to
a fluid phase. The density of the vacancies changes discontinuously from one
phase to the other phase.

In this section, following [JG07], we study a reaction–diffusion model on
a discrete lattice of length L with periodic boundary condition. Besides the
vacancies there are two different types of particles in the system. Throughout
this paper the vacancies and the particles are denoted by E, A and B. The
dynamics of the system is not conserving. The particles of type A and type B
hop to the left and to the right respectively. The total number of particles of
type B is a conserved quantity and assumed to be equal to M . The density of
these particles is defined as ρB = M

L . In contrast, the total number of particles
of type A is not a conserved quantity due to the creation and annihilation
of them. Only the nearest neighbors interactions are allowed and the model
evolves through the following processes

A∅ −→ ∅A with rate 1,
∅B −→ B∅ with rate 1,
AB −→ BA with rate 1,
A∅ −→ ∅∅ with rate ω,
∅∅ −→ A∅ with rate 1.

(2.80)
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As can be seen the parameter ω determines the annihilation rate for the
particles of type A which besides the number of the particles of type B i.e.,
ρB are the free parameters of the model. One should note that the annihilation
in our model only takes place for one species of particles. Our main aim in
the present work is to study the phase diagram of the model in terms of ω
and the density of the B particles.
In our model if one starts with a lattice without any vacancies the dynamics
of the model prevents it from evolving into other configurations consisting
of vacancies. In this case the system remains in its initial configuration and
the steady state of the system is trivial. In order to study the non-trivial
case we consider those configurations which have at least one vacancy. In
order to find the stationary probability distribution function of the system
we apply the Matrix Product Formalism (MPF) first introduced in [DEH93]
and then generalized in [KS97]. According to this formalism the stationary
probability for any configuration of a system with periodic boundary condition
is proportional to the trace of product of non–commuting operators which
satisfy a quadratic algebra. In our model we have three different states at each
site of the lattice associated with the presence of vacancies, the A particles
and the B particles. We assign three different operators E, A and B to each
state. Now the unnormalized steady state probability of a configuration C is
given by

P (C) =
1
ZL

Tr[
L∏

i=1

Xi], (2.81)

in which Xi = E if the site i is empty, Xi = A if the site i is occupied by a
particle of type A and Xi = B if it is occupied by a particle of type B. The
normalization factor ZL in the denominator of (2.81) is called the partition
function of the system and is given by the sum of unnormalized weights of
all accessible configurations. By applying the MPF one finds the following
quadratic algebra for our model [JG07]

AB = A + B,
AE = E,
EB = E,
E2 = ωE.

(2.82)

Now by defining

E = ω|V 〉〈W | in which 〈W |V 〉 = 1,

one can simply find
AB = A + B,
A|V 〉 = |V 〉,
〈W |B = 〈W |,
E = ω|V 〉〈W |.

(2.83)

The first three relations in (2.83) make a quadratic algebra which is well known
in the related literatures. It is the quadratic algebra of the ASEP when the
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boundary rates are equal to one.4 This algebra has an infinite dimensional
representation given by the following matrices and vectors

A =

⎛

⎜⎜⎜⎜⎜
⎜⎜
⎝

1 1 0 0 · · ·
0 1 1 0
0 0 1 1
0 0 0 1
...

. . .

⎞

⎟⎟⎟⎟⎟
⎟⎟
⎠

, B = AT ,

|V 〉 =

⎛

⎜⎜
⎜⎜⎜
⎝

1
0
0
0
...

⎞

⎟⎟
⎟⎟⎟
⎠

, 〈W | = |V 〉T ,

in which T stands for transpose. In order to find the phase structure of the
system one can calculate the generating function of the partition function
of the system and study its singularities. In what follows we first calculate
the grandcanonical partition function of the system ZL(ξ) by introducing a
fugacity ξ for particles of type B. We then fix the fugacity of the B particles
using the following relation

ρB = lim
L→∞

ξ

L

∂ lnZL(ξ)
∂ξ

. (2.84)

The grandcanonical partition function of the system Z(ξ) can now be calcu-
lated from (2.81) and is given by [JG07]

ZL(ξ) =
∑

C
Tr[

L∏

i=1

Xi] = Tr[(A + ξB + E)L − (A + ξB)L]. (2.85)

One should note that the operator B in (2.81) is replaced with the opera-
tor ξB in which ξ should be fixed using (2.84). As we mentioned above the
stationary state of the system without vacancies is a trivial one, therefore in
(2.85) we have considered those configurations with at least one vacancy. The
generating function for ZL(ξ) can now be calculated using (2.83). Using the
same procedure introduced in [RSS00] and after some straightforward algebra
one finds

G(ξ, λ) =
∞∑

L=0

λL−1ZL(ξ) =
d
dλωU(ξ, λ)

1− ωU(ξ, λ)
, (2.86)

in which
4 The operator A and B should be regarded as the operators associated with the

particles and vacancies respectively.
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U(ξ, λ) =
∞∑

L=0

λL+1〈W |(A + ξB)L|V 〉.

The convergence radius of the formal series (2.86) which is the absolute value
of its nearest singularity to the origin can be written as

R(ξ) = lim
L→∞

ZL(ξ)
−1
L .

This is also the inverse of the largest eigenvalue of ZL(ξ). In the large L limit
using (2.84) this results in the following relation

ρB = ξ
∂

∂ξ
ln

1
R(ξ)

. (2.87)

Therefore one should only find the singularities of (2.86) and decide in which
region of the phase diagram which singularity is the smallest one. In order
to find the singularities of (2.86) one should first calculate U(ξ, λ). This can
easily be done by noting that the matrix A + ξB defined as

A + ξB =

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

1 + ξ 1 0 0 · · ·
ξ 1 + ξ 1 0
0 ξ 1 + ξ 1
0 0 ξ 1 + ξ
...

. . .

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

,

satisfy the following eigenvalue relation

(A + ξB)|θ〉 = (1 + ξ + 2
√

ξCos(θ))|θ〉, (2.88)

for −π ≤ θ ≤ π in which we have defined [JG07]

|θ〉 =

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

Sin(θ)
ξ1/2Sin(2θ)
ξSin(3θ)

ξ3/2Sin(4θ)
ξ2Sin(5θ)

...

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

.

Considering the fact that
∫ π

−π

dθ

π
Sin(θ)Sin(nθ) = δ1,n,

one can easily see that
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|V 〉 =
∫ π

−π

dθ

π
Sin(θ)|θ〉. (2.89)

Now using (2.88)–(2.89) and the fact that 〈W |θ〉 = Sin(θ) one can easily show
that U(ξ, λ) is given by

U(ξ, λ) =
∫ π

−π

dθ

π

λSin(θ)2

1− λ(1 + ξ + 2
√

ξCos(θ))
(2.90)

which is valid for λ < 1
(1+

√
ξ)2

. The integral (2.90) can easily be calculated
using the Cauchy residue theorem by noting that it has three poles in the
complex plane. Two of them are inside the contour which is a circle of unite
radius around the origin and one is outside it. After some calculations one
finds

U(ξ, λ) =
1− λ− λξ −

√
(λ + λξ − 1)2 − 4λ2ξ

2λξ
.

Now that U(ξ, λ) is calculated one can simply find the singularities of (2.86).
It turns out that (2.86) has two different kinds of singularities: a simple root
singularity R1 = ω

(1+ω)(ω+ξ) which come from the denominator of (2.86) and
a square root singularity R2 = 1

(1+
√
ξ)2

. Therefore the model has two different
phases. The relation between the density of B particles and their fugacity in
each phase should be obtained from (2.87). In terms of the density of the B
particles ρB we find

R1 =
1− ρB
1 + ω

and R2 = (1− ρB)2.

Two different scenarios might happen: defining ωc = ρB

1−ρB
we find that for

ω > ωc the nearest singularity to the origin is R1 and for ω < ωc it is R2.
The density of the vacancies can be calculated quit similar to that of the B
particles. It is given by

ρE = ω
∂

∂ω
ln

1
R(ξ)

, (2.91)

in which R(ξ) is again the nearest singularity to the origin in each phase. The
density of the A particles is in turn ρA = 1−ρB−ρE . Let us now investigate the
current of the particles in each phase. Noting that the configurations without
vacancies are inaccessible, the particle current for each species is obtained to
be [JG07]

JA =
Tr[(ξAB + AE)(A + ξB + E)L−2 − (ξAB)(A + ξB)L−2]

Tr[(A + ξB + E)L − (A + ξB)L]
,

JB =
Tr[(ξAB + ξEB)(A + ξB + E)L−2 − (ξAB)(A + ξB)L−2]

Tr[(A + ξB + E)L − (A + ξB)L]
.

These relations can be simplified in the thermodynamic limit and one finds
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JA = R(ξ)(1 + (ξ − 1)ρA),
JB = R(ξ)(ξ + (1− ξ)ρB).

As we mentioned above for ω < ωc the nearest singularity to the origin is
always R2. The particle currents in this case are equal and we find

JA = JB = ρB(1− ρB).

In contrast for ω > ωc the nearest singularity to the origin is always R1 and
it turns out that the currents are not equal. We find JA = ω

(1+ω)2 and JB =
ρB(1− ρB). In what follows we bring the summery of the results concerning
the phase structure of the system

for ω < ωc

⎧
⎨

⎩

ρA = 1− ρB JA = ρB(1− ρB)
ρB = ρB JB = ρB(1− ρB)
ρE = 0

and

for ω > ωc

⎧
⎨

⎩

ρA = 1
1+ω JA = ω

(1+ω)2

ρB = ρB JB = ρB(1− ρB)
ρE = ω

1+ω − ρB

.

As can be seen for ω < ωc the density of vacancies is equal to zero which
means there are only A and B particles on the lattice. Since the density of
the B particles is fixed and equal to ρB the density of A particles should be
1− ρB . In this case, according to (2.80), both A and B particles have simply
ASEP dynamics and therefore their currents should be of the form ρ(1 − ρ)
and that JA = JB . This is in quite agreement with our calculations for JA and
JB . On the other hand for ω > ωc the density of vacancies on the lattice is no
longer zero. At the transition point ωc the density of the vacancies is zero but
it increases linearly in this phase. In terms of the density of the vacancies the
phase transition is a continuous transition. In this phase for ω < 1 we always
have JA > JB while for ω > 1 we have

JA > JB for ρB <
1

1 + ω

and JA < JB for
1

1 + ω
< ρB <

ω

1 + ω
.

In this paper we studied a 3–states model consists of A and B particles besides
the vacancies. The A particles are created and annihilated which is controlled
by ω while the B particles only diffuse on the lattice and have a fixed density
ρB . We found that the system have two phases depending on ρB and ω. The
current of the B particles is always a constant ρB(1 − ρB) throughout the
phase diagram while for the A particles it is given by different expressions in
each phase. As a generalization one could also consider a more general process
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A∅ −→ ∅A with rate α,
∅B −→ B∅ with rate β,
AB −→ BA with rate 1,
A∅ −→ ∅∅ with rate λ,
∅∅ −→ A∅ with rate λ′,

with the quadratic algebra given by [JG07]

AB = A + B,
α A|V 〉 = |V 〉,
β 〈W |B = 〈W |,
E = λ

λ′α |V 〉〈W |.

and apply the same approach used in present section to study its phase dia-
gram.

2.1.12 Phase Transition in Negotiation Dynamics

Statistical physics has recently proved to be a powerful framework to address
issues related to the characterization of the collective social behavior of indi-
viduals, such as culture dissemination, the spreading of linguistic conventions,
and the dynamics of opinion formation [Wei00].

According to the ‘herding behavior’ described in sociology [Cha03], pro-
cesses of opinion formation are usually modelled as simple collective dynamics
in which the agents update their opinions following local majority [Gla63] or
imitation rules [Lig85]. Starting from random initial conditions, the system
self–organizes through an ordering process eventually leading to the emergence
of a global consensus, in which all agents share the same opinion. Deviations
from purely herding behavior are considered by introducing a certain level
of noise. In analogy with kinetic Ising models and contact processes [Odo04],
the presence of noise can induce non–equilibrium phase transitions from the
consensus state to disordered configurations, in which more than one opinion
is present.

The principle of ‘bounded confidence’ [DNA00], on the other hand, consists
in enabling interactions only between agents that share already some cultural
features (defined as discrete objects) [Axe97] or with not too different opinions
(in a continuous space) [DNA00, BKR03]. The overall behavior of the system
depends on the method used to discriminate ‘different’ and ‘similar’ opinions.
By tuning some threshold parameter, transitions are observed concerning the
number of opinions surviving in the (frozen) final state. This can be a situation
of consensus, in which all agents share the same opinion, polarization, in which
a finite number of groups with different opinions survive, or fragmentation,
with a final number of opinions scaling with the system size. For instance, in
the Axelrod model [Axe97] a consensus–to–fragmentation transition occurs as
the variability of cultural features is increased [CMV00].
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In this section, following [BDB07], we present a model of opinion dynam-
ics in which a consensus–polarization–fragmentation non–equilibrium phase
transition is driven by external noise, intended as an ‘irresolute attitude’ of
the agents in making decisions. The primary attribute of the model is that it
is based on a negotiation process, in which memory and feedback play a cen-
tral role. Moreover, apart from the consensus state, no configuration is frozen:
the stationary states with several coexisting opinions are still dynamical, in
the sense that the agents are still able to evolve, in contrast to the Axelrod
model [Axe97].

Let us consider a population of N agents, each one endowed with a mem-
ory, in which an a priori undefined number of opinions can be stored. In
the initial state, agents memories are empty. At each time step, an ordered
pair of neighboring agents is randomly selected. This choice is consistent with
the idea of directed attachment in the socio–psychological literature (see for
instance [Fri90]). The negotiation process is described by a local pairwise in-
teraction rule: a) the first agent selects randomly one of its opinions (or creates
a new opinion if its memory is empty) and conveys it to the second agent;
b) if the memory of the latter contains such an opinion, with probability β
the two agents update their memories erasing all opinions except the one in-
volved in the interaction (agreement), while with probability 1 − β nothing
happens; c) if the memory of the second agent does not contain the uttered
opinion, it adds such an opinion to those already stored in its memory (learn-
ing). Note that, in the special case β = 1, the negotiation rule reduces to
the Naming Game rule [BFC06], a model used to describe the emergence of
a communication system or a set of linguistic conventions in a population of
individuals. In our modelling the parameter β plays roughly the same role
as the probability of acknowledged influence in the socio–psychological liter-
ature [Fri90]. Furthermore, as already stated for other models [Cas05], when
the system is embedded in heterogeneous topologies, different pair selection
criteria influence the dynamics. In the direct strategy , the first agent is picked
up randomly in the population, and the second agent is randomly selected
among its neighbors. The opposite choice is called reverse strategy ; while the
neutral strategy consists in randomly choosing a link, assigning it an order
with equal probability.

At the beginning of the dynamics, a large number of opinions is created,
the total number of different opinions growing rapidly up to O(N). Then, if β
is sufficiently large, the number of opinions decreases until only one is left and
the consensus state is reached (as for the Naming Game in the case β = 1).
In the opposite limit, when β = 0, opinions are never eliminated, therefore
the only possible stationary state is the trivial state in which every agent
possesses all opinions. Thus, a non–equilibrium phase transition is expected
for some critical value βc of the parameter β governing the update efficiency.
In order to find βc, we exploit the following general stability argument. Let
us consider the consensus state, in which all agents possess the same unique
opinion, say A. Its stability may be tested by considering a situation in which
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A and another opinion, say B, are present in the system: each agent can
have either only opinion A or B, or both (AB state). The critical value βc
is provided by the threshold value at which the perturbed configuration with
these three possible states does not converge back to consensus.

The simplest assumption in modelling a population of agents is the homo-
geneous mixing (i.e., mean–field (MF) approximation), where the behavior of
the system is completely described by the following evolution equations for
the densities ni of agents with the opinion i [BDB07]

dnA/dt = −nAnB + βn2
AB +

3β − 1
2

nAnAB ,

dnB/dt = −nAnB + βn2
AB +

3β − 1
2

nBnAB , (2.92)

and nAB = 1− nA − nB . Imposing the steady state condition ṅA = ṅB = 0,
we get three possible solutions: 1) nA = 1, nB = 0, nAB = 0; 2) nA =
0, nB = 1, nAB = 0; and 3) nA = nB = b(β), nAB = 1 − 2b(β) with

b(β) = 1+5β−
√

1+10β+17β2

4β (and b(0) = 0). The study of the solutions’ stability
predicts a phase transition at βc = 1/3. The maximum non–zero eigenvalue of
the linearized system around the consensus solution becomes indeed positive
for β < 1/3, i.e., the consensus becomes unstable, and the population polarizes
in the nA = nB state, with a finite density of undecided agents nAB . The
model therefore displays a first order non–equilibrium transition between the
frozen absorbing consensus state and an active polarized state, in which global
observables are stationary on average, but not frozen, i.e., the population is
split in three dynamically evolving parts (with opinions A, B, and AB), whose
densities fluctuate around the average values b(β) and 1− 2b(β).

We have checked the predictions of (2.92) by numerical simulations of
N agents interacting on a complete graph [BDB07]. The convergence time
tconv required by the system to reach the consensus state indeed diverges at
βc = 1/3, with a power–law behavior (β − βc)−a, a ! 0.3. 5 Very interest-
ingly however, the analytical and numerical analysis of (2.92) predicts that
the relaxation time diverges instead as (β−βc)−1. This apparent discrepancy
arises in fact because (2.92) consider that the agents have at most two differ-
ent opinions at the same time, while this number is unlimited in the original
model (and in fact diverges with N). Numerical simulations reproducing the
two opinions case allow to recover the behavior of tconv predicted from (2.92).
We have also investigated the case of a finite number m of opinions available
to the agents. The analytical result a = 1 holds also for m = 3 (but analytical
analysis for larger m becomes out of reach), whereas preliminary numerical
simulations performed for m = 3, 10 with the largest reachable population size
5 The low value of a, which moreover slightly decreases as the system size increases,

does not allow to exclude a logarithmic divergence. This issue deserves more
investigations that we leave for future work.
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(N = 106) lead to an exponent a ! 0.74 ÷ 0.8. More extensive and system-
atic simulations are in order to determine the possible existence of a series
of universality classes varying the memory size for the agents. In any case,
the models with finite (m opinions) or unlimited memory define at least two
clearly different universality classes for this non–equilibrium phase transition
between consensus and polarized states (see [CG94] for similar findings in the
framework of non–equilibrium q-state systems).

Also, the transition at βc is only the first of a series of transitions: when de-
creasing β < βc, a system starting from empty initial conditions self-organizes
into a fragmented state with an increasing number of opinions. In principle,
this can be shown analytically considering the mean-field evolution equations
for the partial densities when m > 2 opinions are present, and studying, as a
function of β, the sign of the eigenvalues of a (2m − 1) × (2m − 1) stability
matrix for the stationary state with m opinions. For increasing values of m,
such a calculation becomes rapidly very demanding, thus we limit our analysis
to the numerical insights, from which we also get that the number of residual
opinions in the fragmented state follows the exponential law [BDB07]

m(β) ∝ exp [(βc − β)/C],

where C is a constant depending on the initial conditions (not shown).
We now extend the present analysis to more general interactions topolo-

gies, in which agents are placed on the vertices of a network, and the edges
define the possible interaction patterns [BDB07]. When the network is a ho-
mogeneous random one (Erdös–Rényi (ER) graph [ER59]), the degree distri-
bution is peaked around a typical value 〈k〉, and the evolution equations for
the densities when only two opinions are present provide the same transition
value βc = 1/3 and the same exponent −1 for the divergence of tconv as in
MF.

Since any real negotiation process takes place on social groups, whose
topology is generally far from being homogeneous, we have simulated the
model on various uncorrelated heterogeneous networks (using the uncorrelated
configuration model (UCM) [CBP05]), with power–law degree distributions
P (k) ∼ k−γ with exponents γ = 2.5 and γ = 3.

Very interestingly, the model still presents a consensus-polarization tran-
sition, in contrast with other opinion–dynamics models, like for instance the
Axelrod model [KET03], for which the transition disappears for heterogeneous
networks in the thermodynamic limit.

To understand these numerical results, we analyze, as for the fully con-
nected case, the evolution equations for the case of two possible opinions. Such
equations can be written for general correlated complex networks whose topol-
ogy is completely defined by the degree distribution P (k), i.e., the probability
that a node has degree k, and by the degree–degree conditional probability
P (k′|k) that a node of degree k′ is connected to a node of degree k (Markovian
networks). Using partial densities
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nkA = Nk
A/Nk, n

k
B = Nk

B/Nk and nkAB = Nk
AB/Nk,

i.e., the densities on classes of degree k, one derives mean–field type equations
in analogy with epidemic models. Let us consider for definiteness the neutral
pair selection strategy, the equation for nkA is in this case [BDB07]

dnkA
dt

= − 1
〈k〉n

k
Ak

∑

k′

P (k′|k)nk
′

B −
1

2〈k〉n
k
Ak

∑

k′

P (k′|k)nk
′

AB (2.93)

+
3β

2〈k〉kn
k
AB

∑

k′

P (k′|k)nk
′

A + 2
β

2〈k〉kn
k
AB

∑

k′

P (k′|k)nk
′

AB ,

dnkA
dt

= −knkA
〈k〉

∑

k′

P (k′|k)nk
′

B −
knkA
2〈k〉

∑

k′

P (k′|k)nk
′

AB

+
3βknkAB

2〈k〉
∑

k′

P (k′|k)nk
′

A +
βknkAB
〈k〉

∑

k′

P (k′|k)nk
′

AB ,

and similar equations hold for nkB and nkAB . The first term corresponds to the
situation in which an agent of degree k′ and opinion B chooses as second actor
an agent of degree k with opinion A. The second term corresponds to the case
in which an agent of degree k′ with opinions A and B chooses the opinion B,
interacting with an agent of degree k and opinion A. The third term is the
sum of two contributions coming from the complementary interaction; while
the last term accounts for the increase of agents of degree k and opinion A
due to the interaction of pairs of agents with AB opinion in which the first
agent chooses the opinion A.

Now, let us define [BDB07]

Θi =
∑

k′

P (k′|k)nk
′

i , (for i = A,B,AB).

Under the un-correlation hypothesis for the degrees of neighboring nodes, i.e.,
P (k′|k) = k′P (k′)/〈k〉, we get the following relation for the total densities
ni =

∑
k P (k)nki ,

d(nA − nB)
dt

=
3β − 1

2
ΘAB(ΘA −ΘB). (2.94)

If we consider a small perturbation around the consensus state nA = 1, with
nkA 	 nkB for all k, we can argue that

ΘA −ΘB =
∑

k

kP (k)(nkA − nkB)/〈k〉

is still positive, i.e., the consensus state is stable only for β > 1/3. In other
words, the transition point does not change in heterogeneous topologies when
the neutral strategy is assumed. This is in agreement with our numerical
simulations, and in contrast with the other selection strategies.

For more details on negotiation dynamics and its non–equilibrium phase
transitions, see [BDB07].
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2.2 Elements of Haken’s Synergetics

In this section we present the basics of the most powerful tool for high–
dimensional chaos control, which is the synergetics. This powerful scien-
tific tool to extract order from chaos has been developed outside of chaos
theory, with intention to deal with much more complex, high–dimensional,
hierarchical systems, in the realm of synergetics. Synergetics is an inter-
disciplinary field of research that was founded by H. Haken in 1969 (see
[Hak83, Hak93, Hak96, Hak00]). Synergetics deals with complex systems that
are composed of many individual parts (components, elements) that inter-
act with each other and are able to produce spatial, temporal or functional
structures by self–organization. In particular, synergetics searches for general
principles governing self–organization irrespective of the nature of the indi-
vidual parts of the systems that may belong to a variety of disciplines such
as physics (lasers, fluids, plasmas), meteorology, chemistry (pattern forma-
tion by chemical reactions, including flames), biology (morphogenesis, evolu-
tion theory) movement science, brain activities, computer sciences (synergetic
computer), sociology (e.g., city growth) psychology and psychiatry (including
Gestalt psychology).

The aim of synergetics has been to describe processes of spontaneous self–
organization and cooperation in complex systems built from many subsystems
which themselves can be complicated nonlinear objects (like many individual
neuro–muscular components of the human motion system, having their own
excitation and contraction dynamics, embedded in a synergistic way to pro-
duce coordinated human movement). General properties of the subsystems
are their own nonlinear/chaotic dynamics as well as mutual nonlinear/chaotic
interactions. Furthermore, the systems of synergetics are open. The influence
from outside is measured by a certain set of control parameters {σ} (like
amplitudes, frequencies and time characteristics of neuro–muscular driving
forces). Processes of self-organization in synergetics, (like musculo–skeletal co-
ordination in human motion dynamics) are observed as temporal macroscopic
patterns. They are described by a small set of order parameters {o}, similar
to those in Landau’s phase–transition theory (named after Nobel Laureate Lev
D. Landau) of physical systems in thermal equilibrium [Hak83].

Now, recall that the measure for the degree of disorder in any isolated, or
conservative, system (such a system that does not interact with its surround-
ing, i.e., does neither dissipate nor gain energy) is entropy . The second law
of thermodynamics6 states that in every conservative irreversible system the
entropy ever increases to its maximal value, i.e., to the total disorder of the
system (or remains constant for a reversible system).

Example of such a system is conservative Hamiltonian dynamics of human
skeleton in the phase–space Γ defined by all joint angles qi and momenta pi

7,
6 This is the only physical law that implies the arrow of time.
7 If we neglect joints dissipation and muscular driving forces, we are dealing with

pure skeleton conservative dynamics.
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defined by ordinary (conservative) Hamilton’s equations

q̇i = ∂pi
H, ṗi = −∂qiH. (2.95)

The basic fact of the conservative Hamiltonian system is that its phase–flow,
the time evolution of equations (5.1), preserves the phase–space volume (the
so–called Liouville measure), as proposed by the Liouville theorem. This might
look fine at first sight, however, the preservation of phase–space volume causes
structural instability of the conservative Hamiltonian system, i.e., the phase–
space spreading effect, by which small phase regions Rt will tend to get dis-
torted from the initial one R0 during the system evolution. The problem is
much more serious in higher dimensions than in lower dimensions, since there
are so many ‘directions’ in which the region can locally spread. Here we see
the work of the second law of thermodynamics on an irreversible process: the
increase of entropy towards the total disorder/chaos [Pen89]. In this way, the
conservative Hamiltonian systems of the form (5.1) cover the wide range of
dynamics, from completely integrable, to completely ergodic. Biodynamics of
human–like movement is probably somewhere in the middle of this range, the
more DOF included in the model, the closer to the ergodic case. One can eas-
ily imagine that the conservative skeleton–like system with 300 DOF, which
means 600–D system of the form (5.1), which is full of trigonometry (com-
ing from its noncommutative rotational matrices), is probably closer to the
ergodic than to the completely integrable case.

On the other hand, when we manipulate a system from the outside, by the
use of certain control parameters {σ}, we can change its degree of order (see
[Hak83, Hak93]). Consider for example water vapor . At elevated temperature
its molecules move freely without mutual correlation. When temperature is
lowered, a liquid drop is formed, the molecules now keep a mean distance
between each other. Their motion is thus highly correlated. Finally, at still
lower temperature, at the freezing point, water is transformed into ice crystals.
The transitions between the different aggregate states, also called phases, are
quite abrupt. Though the same kind of molecules are involved all the time,
the macroscopic features of the three phases differ drastically.

Similar type of ordering, but not related to the thermal equilibrium con-
ditions, occurs in lasers, mathematically given by Lorenz–like attractor equa-
tions. Lasers are certain types of lamps which are capable of emitting coherent
light. A typical laser consists of a crystal rod filled with gas, with the follow-
ing features important from the synergetics point of view: when the atoms
the laser material consists of are excited or ‘pumped’ from the outside, they
emit light waves. So, the pump power, or pump rate represents the control
parameter σ. At low pump power, the waves are entirely uncorrelated as in a
usual lamp. Could we hear light, it would sound like noise to us [Hak83].

When we increase the pump rate to a critical value σc, the noise disap-
pears and is replaced by a pure tone. This means that the atoms emit a pure
sinusoidal light wave which in turn means that the individual atoms act in a
perfectly correlated way – they become self–organized. When the pump rate
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is increased beyond a second critical value, the laser may periodically emit
very intense and short pulses. In this way the following instability sequence
occurs [Hak83]:

noise �→ {coherent oscillation at frequencyω1} �→
periodic pulses at frequency ω2 which modulate oscillation at frequency ω1

i.e., no oscillation �→ first frequency �→ second frequency.

Under different conditions the light emission may become chaotic or even
turbulent. The frequency spectrum becomes broadened.

The laser played a crucial role in the development of synergetics for various
reasons [Hak83]. In particular, it allowed detailed theoretical and experimental
study of the phenomena occurring within the transition region: lamp ↔ laser,
where a surprising and far–reaching analogy with phase transitions of systems
in thermal equilibrium was discovered. This analogy includes all basic phase–
transition effects: a symmetry breaking instability , critical slowing down and
hysteresis effect .

2.2.1 Phase Transitions and Synergetics

Besides water vapor, a typical example is a ferromagnet [Hak83]. When a fer-
romagnet is heated, it suddenly loses its magnetization. When temperature
is lowered, the magnet suddenly regains its magnetization. What happens on
a microscopic, atomic level, is this: We may visualize the magnet as being
composed of many, elementary (atomic) magnets (called spins). At elevated
temperature, the elementary magnets point in random directions. Their mag-
netic moments, when added up, cancel each other and no macroscopic mag-
netization results. Below a critical value of temperature Tc, the elementary
magnets are lined up, giving rise to a macroscopic magnetization. Thus the
order on the microscopic level is a cause of a new feature of the material on
the macroscopic level. The change of one phase to the other one is called phase
transition.

A thermodynamical description of a ferromagnet is based on analysis of
its free energy potential (in thermal equilibrium conditions). The free energy
F , depends on the control parameter σ = T , the temperature. We seek the
minimum of the potential F for a fixed value of magnetization o, which is
called order parameter in Landau’s theory of phase transitions (see Appendix).

This phenomenon is called a phase transition of second order because the
second derivative (specific heat) of the free energy potential F is discontin-
uous. On the other hand, the entropy S (the first derivative of F) itself is
continuous so that this transition is also referred to as a continuous phase
transition.

In statistical physics one also investigates the temporal change of the order
parameter – magnetization o. Usually, in a more or less phenomenological
manner, one assumes that o obeys an equation of the form
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ȯ = −∂F
∂o

= −σo− βo3. (2.96)

For σ → 0 we observe a phenomenon called critical slowing down, because the
‘particle’ with coordinate o falls down the slope of the ‘potential well’ more
and more slowly. Simple relation (2.96) is called order parameter equation.

We now turn to the case where the free energy potential has the form

F(o, T ) =
σ

2
o2 +

γ

3
o3 +

β

4
o4, (2.97)

(β and γ – positive but σ may change its sign according to σ = a(T−Tc), (a >
0)). When we change the control parameter – temperature T , i.e., the param-
eter σ, we pass through a sequence of deformations of the potential curve.

When lowering temperature, the local minimum first remains at o0 = 0.
When lowering temperature, the ‘particle’ may fall down from o0 to the new
(global) minimum of F at o1. The entropies of the two states, o0 and o1,
differ. This phenomenon is called a phase transition of first order because the
first derivative of the potential F with respect to the control parameter T
is discontinuous. Since the entropy S is discontinuous this transition is also
referred to as a discontinuous phase transition. When we now increase the
temperature, is apparent that the system stays at o1 longer than it had been
before when lowering the control parameter. This represents hysteresis effect .

In the case of the potential (2.97) the order parameter equation gets the
form

ȯ = −σo− γo2 − βo3.

Similar disorder ⇒ order transitions occur also in various non–equilibrium
systems of physics, chemistry, biology, psychology, sociology, as well as in
human motion dynamics. The analogy is subsumed in Table 1.

Table 1. Phase transition analogy
System in thermal equilibrium Non–equilibrium system
Free energy potential F Generalized potential V
Order parameters oi Order parameters oi
ȯi = − ∂F

∂oi
ȯi = − ∂V∂oi

Temperature T Control input u
Entropy S System output y
Specific Heat c System efficiency e

In the case of human motion dynamics, natural control inputs ui are mus-
cular torques Fi, natural system outputs yi are joint coordinates qi and mo-
menta pi, while the system efficiencies ei represent the changes of coordinates
and momenta with changes of corresponding muscular torques for the ith
joint,

eqi =
∂qi

∂Fi
, epi =

∂pi
∂Fi

.
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Order parameters oi represent certain important qualities of the human
motion system, depending on muscular torques as control inputs, similar to
magnetization, and usually defined by equations similar to (2.96) or

ȯi = −σo− γo2 − βo3,

with nonnegative parameters σ, β, γ, and corresponding to the second and first
order phase transitions, respectively. The choice of actual order parameters
is a matter of expert knowledge and purpose of macroscopic system modelling
[Hak83].

2.2.2 Order Parameters in Human/Humanoid Biodynamics

Basic Hamiltonian Model of Biodynamics

To describe the biodynamics of human–like movement, namely our covariant
force law [II05, II06a, II06b]:

Fi = mgija
j , that ‘in plain English’ reads :

force 1–form–field = mass distribution×acceleration vector–field,

we can also start from generalized Hamiltonian vector–field XH describing
the behavior of the human–like locomotor system

q̇i =
∂H

∂pi
+

∂R

∂pi
, (2.98)

ṗi = Fi −
∂H

∂qi
+

∂R

∂qi
, (2.99)

where the vector–field XH is generating time evolution, or phase–flow, of 2n
system variables: n generalized coordinates (joint angles qi) and n generalized
momenta (joint angular momenta pi), H = H(q, p) represents the system’s
conservative energy: kinetic energy + various mechano–chemical potentials,
R = R(q, p) denotes the nonlinear dissipation of energy, and Fi = Fi(t, q, p, σ)
are external control forces (biochemical energy inputs). The system parame-
ters include inertia tensor with mass distribution of all body segments, stiff-
ness and damping tensors for all joints (labelled by index i, which is, for
geometric reasons, written as a subscript on angle variables, and as a super-
script on momentum variables), as well as amplitudes, frequencies and time
characteristics of all active muscular forces (supposed to be acting in all the
joints; if some of the joints are inactive, we have the affine Hamiltonian control
system, see chapter 6).

The equation (2.98) is called the velocity equation, representing the flow
of the system (analogous to current in electrodynamics), while the equation
(2.99) is a Newton–like force equation, representing the effort of the sys-
tem (analogous to voltage). Together, these two functions represent Hamil-
tonian formulation of the biomechanical force–velocity relation of A.V. Hill
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[Hil38]. From engineering perspective, their (inner) product, flow · effort,
represents the total system’s power, equal to the time–rate–of–change of the
total system’s energy (included in H,R and Fi functions). And energy itself
is transformed into the work done by the system.

Now, the reasonably accurate musculo–skeletal biodynamics would include
say a hundred DOF, which means a hundred of joint angles and a hundred
of joint momenta, which further means a hundred of coupled equations of the
form of (2.98–2.99). And the full coupling means that each angle (and mo-
mentum) includes the information of all the other angles (and momenta), the
chain coupling means that each angle (and momentum) includes the infor-
mation of all the previous (i.e., children) angles (and momenta), the nearest
neighbor coupling includes the information of the nearest neighbors, etc.

No matter which coupling we use for modelling the dynamics of human
motion, one thing is certain: the coupling is nonlinear. And we obviously have
to fight chaos within several hundreds of variables.

Wouldn’t it be better if we could somehow be able to obtain a synthetic
information about the whole musculo–skeletal dynamics, synthesizing the hun-
dreds of equations of motion of type (2.98–2.99) into a small number of equa-
tions describing the time evolution of the so–called order parameters? If we
could do something similar to principal component analysis in multivariate
statistics and neural networks, to get something like ‘nonlinear factor dynam-
ics’?

Starting from the basic system (2.98–2.99), on the lowest, microscopic level
of human movement organization, the order parameter equations of macro-
scopic synergetics can be (at least theoretically), either exactly derived along
the lines of mezoscopic synergetics, or phenomenologically stated by the use
of the certain biophysical analogies and nonlinear identification and control
techniques (a highly complex nonlinear system like human locomotor appa-
ratus could be neither identified nor controlled by means of standard linear
engineering techniques).

Mezoscopic Derivation of Order Parameters

Basic Hamiltonian equations (2.98–2.99) are in general quite complicated
and can hardly be solved completely in the whole locomotor phase–space
Γ , spanned by the set of possible joint vectors {qi(t), pi(t)}. We therefore
have to restrict ourselves to local concepts for analyzing the behavior of our
locomotor system. To this end we shall consider a reference musculo–skeletal
state {q0, p0} and its neighborhood. Following the procedures of the mezo-
scopic synergetics (see [Hak83, Hak93]), we assume that the reference state
has the properties of an attractor and is a comparably low–dimensional object
in Γ . In order to explore the behavior of our locomotor system (dependent on
the set of control parameters σ) in the neighborhood of {q0, p0} we look for
the time development of small deviations from the reference state (to make
the formalism as simple as possible, we drop the joint index in this section)
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q(t) = q0 + δq(t), p(t) = p0 + δp(t),

and consider δq(t) and δp(t) as small entities. As a result we may linearize the
equations of δq and δp in the vicinity of the reference state {q0, p0}. We get

∂tδq(t) = L[q0, p0, σ] δq(t), ∂tδp(t) = K[q0, p0, σ] δp(t),

where L[.] and K[.] are linear matrices independent of δq(t) and δp(t), which
can be derived from the basic Hamiltonian vector–field (2.98–2.99) by stan-
dard synergetics methods [Hak83, Hak93, Hak96, Hak00]. We now assume that
we can construct a complete set of eigenvectors {l(j)(t), k(j)(t)} correspond-
ing to (2.96). These eigenvectors allow us to decompose arbitrary deviations
δq(t) and δp(t) into elementary collective deviations along the directions of
the eigenvectors

δq(t) = ξj(t) l
j(t), δp(t) = ζj(t) k

j(t), (2.100)

where ξj(t) and ζj(t) represent the excitations of the system along the di-
rections in the phase–space Γ prescribed by the eigenvectors lj(t) and kj(t),
respectively. These amplitudes are still dependent on the set of control param-
eters {σ}. We note that the introduction of the eigenvectors {lj(t), kj(t)} is of
crucial importance. In the realm of synergetics they are considered as the col-
lective modes or patterns of the system. Whereas the basic Hamiltonian equa-
tion (2.98–2.99) is formulated on the basis of the human locomotor–system
variables (coordinates and momenta) of the single subsystems (joints), we can
now give a new formulation which is based on these collective patterns and
describes the dynamical behavior of the locomotor system in terms of these
different collective patterns. Inserting relations (2.100) into the basic system
(2.98–2.99) we get equations for the amplitudes ξj(t) and ζj(t),

ξ̇i(t) = Aij · ξj(t) +nonlinear terms, ζ̇j(t) = Bij · ζj(t) +nonlinear terms,

where · denotes the scalar product, and it is assumed that the time dependence
of the linear matrices L and K is carried out by the eigenvectors leaving us
with constant matrices A and B.

We now summarize the results by discussing the following time–evolution
formulas for joint coordinates q(t) and momenta p(t),

q(t) = q0 + ξj(t) l
j(t), p(t) = p0 + ζj(t) k

j(t), (2.101)

which describes the time dependence of the phase vectors q(t) and p(t) through
the evolution of the collective patterns. Obviously, the reference musculo–
skeletal state {q0(t), p0(t)} can be called stable when all the possible exci-
tations {ξj(t), ζj(t)} decay during the curse of time. When we now change
the control parameters {σ} some of the {ξj(t), ζj(t)} can become unstable
and start to grow in time. The border between decay and growth in param-
eter space is called a Tablecritical region. Haken has shown that the few
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unstable amplitudes, denoted by uq and up, change very slowly in the vicin-
ity of a critical region, whereas the damped amplitudes, denoted by sq and
sp, quickly decay to values which are completely prescribed by the unsta-
ble modes. This fact is expressed as the Tableslaving principle of synergetics
[Hak83, Hak93, Hak96, Hak00], in our case reading as

sq = sq(uq), sp = sp(up).

These relations allow us to eliminate the stable modes in (2.101), and leave
us with a low–dimensional set of equations for the unstable modes which play
the role of the order parameters. These Tableorder parameter equations then
completely rule the behavior of our microscopic nD musculo–skeletal system
on macroscopic scales near an instability.

The fundamental result of synergetics consists in the observation that on
macroscopic scales new laws can be discovered which exist in their own right
[Hak83]. These laws which are expressed by the order parameter equations
turn out to be independent of the detailed nature of the subsystems and
their interactions. As a consequence this allows us to introduce the concept of
Tablenormal forms [Arn88] as a method to discus instabilities and qualitative
dynamics in the neighborhood of the critical regions. This method of phe-
nomenological synergetics allows us to start qualitative analysis from purely
macroscopic considerations.

Using the so–called Tableadiabatic elimination of fast variables [Hak83],
one tries to identify macroscopic quantities related to global musculo–skeletal
dynamics (similar but different from the mean–field center–of–mass dynamics)
– from experience and classifies them according to time–scale arguments. The
slowest variables are usually identified with the control parameters which are
assumed to be quasi static quantities. The slow macroscopic dynamics of the
system has to be attributed to the order parameters. Very quickly relaxing
variables have to be considered as enslaved modes.

2.2.3 Example: Synergetic Control of Biodynamics

Recall from [II05, II06a, II06b] that the basic microscopic synergetic level of
human musculo–skeletal dynamics (2.98–2.99), can be viewed on the highest,
macroscopic synergetic center–of–mass organization level of human motion
dynamics as a simple Hamilton oscillator , physically representing the damped,
sinusoidally driven pendulum (1.29) of the unit mass and length l

l2q̈ + γq̇ + lg sin q = A cos(pDt).

This equation expresses Newtonian second law of motion with the various
terms on the left representing acceleration, damping, and gravitation. The
angular momentum of the forcing pD, may be different from the natural fre-
quency of the pendulum. In order to minimize the number of adjustable pa-
rameters the equation may be rewritten in dimensionless form as
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q̈ + (1/ν)q̇ + sin q = ε cos(pDt),

where ν is the damping or quality parameter, ε is the forcing amplitude, and
pD is the drive frequency. The low–amplitude natural angular frequency of
the pendulum is unity, and time is regarded as dimensionless. This equation
satisfies the necessary conditions for chaos when it is written as an extended
Hamiltonian system

q̇ = p, ṗ = −(1/ν)p− sin q + ε cosφ, φ̇ = pD. (2.102)

The variable φ is introduced as the phase of the drive term. Three variables
are evident and also two nonlinear coupling terms. Whether the motion is
chaotic depends upon the values of the three parameters: damping, forcing
amplitude and drive frequency. For some values the pendulum locks onto the
driving force, oscillating in a periodic motion whose frequency is the driv-
ing frequency, possibly with some harmonics or subharmonics. But for other
choices of the parameters the pendulum motion is chaotic. One may view the
chaos as resulting from a subtle interplay between the tendency of the pendu-
lum to oscillate at its ‘natural’ frequency and the action of the forcing term.
The transitions between non–chaotic and chaotic states, due to changes in the
parameters, occur in several ways and depend delicately upon the values of
the parameters.

To include (in the simplest possible way) the muscle excitation–contraction
dynamics, and thus make the damped, driven Hamilton oscillator (2.102) a
more realistic macroscopic model for human motion dynamics, we assume
that the time–dependent forcing amplitude ε = ε(t) has the form of a low
pass filter, a characteristic feature of biological systems, given by first–order
transfer function K

Ts+1 . Here K denotes gain of the filter and T its time
constant.

Therefore, macroscopic mechanical model of human motion dynamics gets
the fully–functional form

q̈ + (1/ν)q̇ + sin q = K(1− e−t/T ) cos(pDt),

which can be rewritten in the form of extended Hamilton oscillator

q̇ = p, ṗ = −(1/ν)p− sin q + K(1− e−t/T ) cosφ, φ̇ = pD. (2.103)

Now, to effectively control the macroscopic HML model (2.103), we can
use two standard nonlinear–control techniques:

A. Adaptive Lie–derivative based geometric control; and
B. Adaptive fuzzy–logic based AI control.

2.2.4 Example: Chaotic Psychodynamics of Perception

Perceptual alternation phenomena of ambiguous figures have been studied for
a long time. Figure–ground, perspective (depth) and semantic ambiguities are
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well known (see, e.g., [Att71, Hak91]). When we view the Necker cube, which
is a classic example of perspective alternation, a part of the figure is per-
ceived either as front or back of a cube and our perception switches between
the two different interpretations (see Figure 2.7). In this circumstance the
external stimulus is kept constant, but perception undergoes involuntary and
random–like change. The measurements have been quantified in psychophys-
ical experiments and it becomes evident that the times between such changes
are approximately Gamma distributed [BMA72, BCR82, Hak91].

Fig. 2.7. Perception of the Necker cube with its two alternative interpretations
(modified and adapted from [NNM00]).

Mathematical model approaches to explaining the facts have been made
mainly from three situations based on the synergetics [DT89, DT90, CA93],
the BSB (brain–state–in–a–box) neural network model [KA85, RMS90, MM95],
and the PDP (parallel distributed processing) schema model [RM86, SKW95,
IN96]. Common to these approaches is that top–down designs are applied so
that the model can be manipulable by a few parameters and upon this ba-
sis fluctuating sources are brought in. The major interests seem to be not in
the relation between the whole function and its element (neuron), but in the
model building at the phenomenological level.

So far diverse types of chaotic dynamics have been confirmed at several
hierarchical levels in the real neural systems from single cells to cortical net-
works (e.g. ionic channels, spike trains from cells, EEG) [Arb95].
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Following [NNM00], in this section we present a perception model of am-
biguous patterns based on the chaotic neural network from the viewpoint of
bottom–up approach [NNM97], aiming at the functioning of chaos in dynamic
perceptual processes.

The chaotic neural network (CNN) composed of N chaotic neurons is
described as [ATT90, NKF97] (summation upon repeated indices is always
understood)

Xi(t + 1) = f(ηi(t + 1) + ζi(t + 1)), (2.104)

ηi(t + 1) = wij

t∑

d=0

kdfXj(t− d), (2.105)

ζi(t + 1) = −α

t∑

d=0

kdrXi(t− d)− θi, (2.106)

where Xi : output of neuron i(−1 ≤ Xi ≤ 1), wij : synaptic weight from
neuron j to neuron i, θi : threshold of neuron i, kf (kr) : decay factor for
the feedback (refractoriness) (0 ≤ kf , kr < 1), α : refractory scaling param-
eter, f : output function defined by f(y) = tanh(y/2ε) with the steepness
parameter ε. Owing to the exponentially decaying form of the past influ-
ence, (2.105) and (2.106) can be reduced to

ηi(t + 1) = kfηi(t) + wijXj(t), (2.107)
ζi(t + 1) = krζi(t)− αXi(t) + a, (2.108)

where a is temporally constant a ≡ −θi(1 − kr). All neurons are updated in
parallel, that is, synchronously. The network corresponds to the conventional
Hopfield discrete–time network :

Xi(t + 1) = f [wijXj(t)− θi] , (2.109)

when α = kf = kr = 0 (Hopfield network point (HNP)). The asymptotical
stability and chaos in discrete–time neural networks are theoretically investi-
gated in [MW89, CA97]. The stochastic fluctuation {Fi} is attached to (2.109)
of HNP together with the external stimulus {σi}:

Xi(t + 1) = f [wijXj(t) + σi + Fi(t)] ,

where
{

< Fi(t) >= 0
< Fi(t)Fj(t′) >= D2δtt′δij .

Under external stimuli, (2.104) is influenced as

Xi(t + 1) = f [ηi(t + 1) + ζi(t + 1) + σi] , (2.110)

where {σi} is the effective term by external stimuli. This is a simple and un–
artificial incorporation of stimuli as the changes of neural active potentials.
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The two competitive interpretations are embedded in the network as min-
ima of the energy map (see Figure 2.8):

E = −1
2
wijXiXj ,

at HNP. This is done by using a iterative perception learning rule for p(< N)
patterns {ξμi } ≡ (ξμ1 , · · · , ξ

μ
N ), (μ = 1, · · · , p; ξμi = + 1or − 1) in the form :

wnewij = woldij +
∑

μ

δwμij , with δwμij =
1
N

θ(1− γμi )ξ
μ
i ξ
μ
j ,

where γμi ≡ ξμi wijξ
μ
j ,

and θ(h) is the unit step function. The learning mode is separated from the
performance mode by (2.110).

Fig. 2.8. Conceptual psychodynamic model of [NNM00], illustrating state transi-
tions induced by chaotic activity.

Simulations of the CNN have shown that the neural chaos leads to per-
ceptual alternations as responses to ambiguous stimuli in the chaotic neural
network. Its emergence is based on the simple process in a realistic bottom–
up framework. In the same stage, similar results can not be obtained by
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the stochastic activity. This simulation suggests functional usefulness of the
chaotic activity in perceptual systems even at higher cognitive levels. The
perceptual alternation appears to be an inherent feature built in the chaotic
neuron assembly. It may be interesting to study the brain with the exper-
imental technique (e.g., functional MRI) under the circumstance where the
perceptual alternation is running [NNM00].

2.2.5 Kick Dynamics and Dissipation–Fluctuation Theorem

Deterministic Delayed Kicks

Following [Hak02], we consider the mechanical example of a soccer ball that is
kicked by a soccer player and rolls over grass, whereby its motion will be slowed
down. We start with the Newton’s (second) law of motion, mv̇ = force, and
in order to get rid of superfluous constants, we put temporarily m = 1. The
force on the r.h.s. consists of the damping force -γv(t) of the grass (where γ is
the damping constant) and the sharp force F (t) = sδ(t− σ) of the individual
kick occurring at time t = σ (where s is the strength of the kick, and δ is
the Dirac’s ‘delta’ function). In this way, the (single) kick equation of the ball
motion becomes

v̇ = −γv(t) + sδ(t− σ), (2.111)

with the general solution
v(t) = sG(t− σ),

where G(t− σ) is the Green’s function8

G(t− σ) =
{

0 for t < σ
e−γ(t−σ) for t ≥ σ

.

Now, we can generalize the above to N kicks with individual strengths sj ,
occurring at a sequence of times {σj}, so that the total kicking force becomes

F (t) =
N∑

j=1

sjδ(t− σj).

In this way, we get the multi–kick equation of the ball motion
8 This is the Green’s function of the first order system (2.111). Similarly, the Green’s

function

G(t − σ) =

{
0 for t < σ

(t − σ)e−γ(t−σ) for t ≥ σ

corresponds to the second order system

(
d

dt
+ γ

)2

G(t − σ) = δ(t − σ).
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v̇ = −γv(t) +
N∑

j=1

sjδ(t− σj),

with the general solution

v(t) =
N∑

j=1

sjG(t− σj). (2.112)

As a final generalization, we would imagine that the kicks are continuously
exerted on the ball, so that kicking force becomes

F (t) =
∫ T

t0

s(σ)δ(t− σ)dσ ≡
∫ T

t0

dσF (σ)δ(t− σ),

so that the continuous multi–kick equation of the ball motion becomes

v̇ = −γv(t) +
∫ T

t0

s(σ)δ(t− σ)dσ ≡ −γv(t) +
∫ T

t0

dσF (σ)δ(t− σ),

with the general solution

v(t) =
∫ T

t0

dσF (σ)G(t− σ) =
∫ T

t0

dσF (σ)e−γ(t−σ). (2.113)

Random Kicks and Langevin Equation

We now denote the times at which kicks occur by tj and indicate their direction
in a one–dimensional game by (±1)j , where the choice of the plus or minus
sign is random (e.g., throwing a coin). Thus the kicking force can be written
in the form [Hak02]

F (t) = s
N∑

j=1

δ(t− tj)(±1)j , (2.114)

where for simplicity we assume that all kicks have the same strength s. When
we observe many games, then we may perform an average < ... > over all
these different performances,

< F (t) >= s <
N∑

j=1

δ(t− tj)(±1)j > . (2.115)

Since the direction of the kicks is assumed to be independent of the time at
which the kicks happen, we may split (2.115) into the product

< F (t) >= s <

N∑

j=1

δ(t− tj) >< (±1)j > .
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As the kicks are assumed to happen with equal frequency in both directions,
we get the cancellation

< (±1)j >= 0,

which implies that the average kicking force also vanishes,

< F (t) >= 0.

In order to characterize the strength of the force (2.114), we consider a
quadratic expression in F , e.g., by calculating the correlation function for
two times t, t′,

< F (t)F (t′) >= s2 <
∑

j

δ(t− tj)(±1)j
∑

k

δ(t′ − tk)(±1)k > .

As the ones for j �= k will cancel each other and for j = k will become 1, the
correlation function becomes a single sum

< F (t)F (t′) >= s2 <
∑

j

δ(t− tj)δ(t′ − tk) >, (2.116)

which is usually evaluated by assuming the Poisson process for the times of
the kicks.

Now, proper description of random motion is given by Langevin rate equa-
tion, which describes the Brownian motion: when a particle is immersed in a
fluid, the velocity of this particle is slowed down by a force proportional to its
velocity and the particle undergoes a zig–zag motion (the particle is steadily
pushed by much smaller particles of the liquid in a random way). In physical
terminology, we deal with the behavior of a system (particle) which is coupled
to a heat bath or reservoir (namely the liquid). The heat bath has two effects
[Hak02]:

A. It decelerates the mean motion of the particle; and
B. It causes statistical fluctuation.

The standard Langevin equation has the form

v̇ = −γv(t) + F (t), (2.117)

where F (t) is a fluctuating force with the following properties:

A. Its statistical average (2.115) vanishes; and
B. Its correlation function (2.116) is given by

< F (t)F (t′) >= Qδ(t− t0), (2.118)

where t0 = T/N denotes the mean free time between kicks, and Q = s2/t0
is the random fluctuation.



244 2 Phase Transitions and Synergetics

The general solution of the Langevin equation (2.117) is given by (2.113).
The average velocity vanishes, < v(t) >= 0, as both directions are possible

and cancel each other. Using the integral solution (2.113) we get

< v(t)v(t′) >=<

∫ t

t0

dσ

∫ t′

t0

dσ′F (σ)F (σ′)e−γ(t−σ)e−γ(t
′−σ′) >,

which, in the steady–state, reduces to

< v(t)v(t′) >=
Q

2γ
e−γ(t−σ),

and for equal times

< v(t)2 >=
Q

2γ
.

If we now repeat all the steps performed so far with m �= 1, the final result
reads

< v(t)2 >=
Q

2γm
. (2.119)

Now, according to thermodynamics, the mean kinetic energy of a particle
is given by

m

2
< v(t)2 >=

1
2
kBT, (2.120)

where T is the (absolute) temperature, and kB is the Boltzman’s constant.
Comparing (2.119) and (2.120), we get the important Einstein’s result

Q = 2γkBT,

which says that whenever there is damping, i.e., γ �= 0, then there are random
fluctuations (or noise) Q. In other words, fluctuations or noise are inevitable
in any physical system. For example, in a resistor (with the resistance R) the
electric field E fluctuates with a correlation function (similar to (2.118))

< E(t)E(t′) >= 2RkBTδ(t− t0).

This is the simplest example of the fluctuation–dissipation theorem.

2.3 Synergetics of Recurrent and Attractor Neural
Networks

Recall that recurrent neural networks are neural networks with synaptic feed-
back loops. Provided that we restrict ourselves to large neural systems, we
can apply to their analysis tools from statistical mechanics. Here, we have two
possibilities. Under the common conditions of synaptic symmetry, the stochas-
tic process of evolving neuron states leads towards an equilibrium situation
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where the microscopic state probabilities are known, where the classical tech-
niques of equilibrium statistical mechanics can be applied. On the other hand,
for non–symmetric networks, where the asymptotic (stationary) statistics are
not known, synergetic techniques from non–equilibrium statistical mechanics
are the only tools available for analysis. Here, the ‘natural’ set of macroscopic
order parameters to be calculated can be defined in practice as the smallest
set which will obey closed deterministic equations in the limit of an infinitely
large network.

Being high–dimensional nonlinear systems with extensive feedback, the dy-
namics of recurrent neural networks are generally dominated by a wealth of
different attractors, and the practical use of recurrent neural networks (in both
biology and engineering) lies in the potential for creation and manipulation
of these attractors through adaptation of the network parameters (synapses
and thresholds). Input fed into a recurrent neural network usually serves to
induce a specific initial configuration (or firing pattern) of the neurons, which
serves as a cue, and the ‘output’ is given by the (static or dynamic) attractor
which has been triggered by this cue. The most familiar types of recurrent
neural network models, where the idea of creating and manipulating attrac-
tors has been worked out and applied explicitly, are the so–called attractor
neural networks for associative memory, designed to store and retrieve infor-
mation in the form of neuronal firing patterns and/or sequences of neuronal
firing patterns. Each pattern to be stored is represented as a microscopic state
vector. One then constructs synapses and thresholds such that the dominant
attractors of the network are precisely the pattern vectors (in the case of static
recall), or where, alternatively, they are trajectories in which the patterns are
successively generated microscopic system states. From an initial configura-
tion (the ‘cue’, or input pattern to be recognized) the system is allowed to
evolve in time autonomously, and the final state (or trajectory) reached can be
interpreted as the pattern (or pattern sequence) recognized by network from
the input. For such programmes to work one clearly needs recurrent neural
networks with extensive ergodicity breaking : the state vector will during the
course of the dynamics (at least on finite time–scales) have to be confined
to a restricted region of state space (an ‘ergodic component’), the location of
which is to depend strongly on the initial conditions. Hence our interest will
mainly be in systems with many attractors. This, in turn, has implications at
a theoretical/mathematical level: solving models of recurrent neural networks
with extensively many attractors requires advanced tools from disordered sys-
tems theory, such as statical replica theory and dynamical partition function
analysis.

The equilibrium statistical mechanical techniques can provide much de-
tailed quantitative information on the behavior of recurrent neural networks,
but they obviously have serious restrictions. The first one is that, by defi-
nition, they will only provide information on network properties in the sta-
tionary state. For associative memories, for instance, it is not clear how one
can calculate quantities like sizes of domains of attraction without solving the
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dynamics. The second, and more serious, restriction is that for equilibrium
statistical mechanics to apply the dynamics of the network under study must
obey detailed balance, i.e., absence of microscopic probability currents in the
stationary state. For recurrent networks in which the dynamics take the form
of a stochastic alignment of neuronal firing rates to post–synaptic potentials
which, in turn, depend linearly on the firing rates, this requirement of detailed
balance usually implies symmetry of the synaptic matrix. From a physiologi-
cal point of view this requirement is clearly unacceptable, since it is violated
in any network that obeys Dale’s law as soon as an excitatory neuron is con-
nected to an inhibitory one. Worse still, in any network of graded–response
neurons detailed balance will always be violated, even when the synapses are
symmetric. The situation will become even worse when we turn to networks
of yet more realistic (spike–based) neurons, such as integrate-and-fire ones.
In contrast to this, non–equilibrium statistical mechanical techniques, it will
turn out, do not impose such biologically non–realistic restrictions on neuron
types and synaptic symmetry, and they are consequently the more appropri-
ate avenue for future theoretical research aimed at solving biologically more
realistic models (for details, see [Coo01, SC00, SC01, CKS05]).

2.3.1 Stochastic Dynamics of Neuronal Firing States

Recall that the simplest non–trivial definition of a recurrent neural network
is that where N binary neurons σi ∈ {−1, 1} (in which the states ‘1’ and ‘-1’
represent firing and rest, respectively) respond iteratively and synchronously
to post–synaptic potentials (or local fields) hi(σ), with σ = (σ1, . . . , σN ).
The fields are assumed to depend linearly on the instantaneous neuron states
(summation convention upon repeated indices is always used):

Parallel Dynamics: σi( +1) = sgn [hi(σ( )) + Tηi( )] , hi(σ) = Jijσj+θi.
(2.121)

The stochasticity is in the independent random numbers ηi( ) ∈ R (represent-
ing threshold noise), which are all drawn according to some distribution w(η).
The parameter T is introduced to control the amount of noise. For T = 0
the process (2.121) is deterministic: σi( + 1) = sgn[hi(σ( ))]. The opposite
extreme is choosing T = ∞, here the system evolution is fully random. The
external fields θi represent neural thresholds and/or external stimuli, Jij rep-
resents the synaptic efficacy at the junction j → i (Jij > 0 implies excitation,
Jij < 0 inhibition). Alternatively we could decide that at each iteration step  
only a single randomly drawn neuron σi� is to undergo an update of the type
(2.121):

Sequential Dynamics: i �= i� : σi( + 1) = σi( ),
i = i� : σi( + 1) = sgn [hi(σ( )) + Tηi( )] ,

(2.122)

with the local fields as in (2.121). The stochasticity is now both in the inde-
pendent random numbers ηi( ) (the threshold noise) and in the site i� to be
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updated, drawn randomly from the set {1, . . . , N}. For simplicity we assume
w(−η) = w(η), and define

g(z) = 2

∫ z

0
dη w(η) : g(−z) = −g(z), lim

z→±∞
g(z) = ±1, ∂zg(z) ≥ 0.

Popular choices for the threshold noise distributions are

w(η) = (2π)−
1
2 e−

1
2η

2
: g(z) = Erf[z/

√
2],

w(η) =
1
2
[1− tanh2(η)] : g(z) = tanh(z).

Now, from the microscopic equations (2.121,2.122), which are suitable for
numerical simulations, we can derive an equivalent but mathematically more
convenient description in terms of microscopic state probabilities p�(σ). Equa-
tions (2.121,2.122) state that, if the system state σ( ) is given, a neuron i to
be updated will obey

Prob [σi( + 1)] =
1
2

[1 + σi( + 1) g[βhi(σ( ))]] , (2.123)

with β = T−1. In the case (2.121) this rule applies to all neurons, and thus
we simply get p�+1(σ) =

∏N
i=1

1
2 [1 + σi g[βhi(σ( ))]]. If, on the other hand,

instead of σ( ) only the probability distribution p�(σ) is given, this expression
for p�+1(σ) is to be averaged over the possible states at time  :

Parallel Dynamics : p�+1(σ) =
∑

σ′

W [σ;σ′] p�(σ′), (2.124)

W [σ;σ′] =
N∏

i=1

1
2

[1 + σi g[βhi(σ′)]] .

This is the standard representation of a Markov chain. Also the sequential
process (2.122) can be formulated in terms of probabilities, but here expression
(2.123) applies only to the randomly drawn candidate i�. After averaging over
all possible realisations of the sites i� we get

p�+1(σ) =
1
N

⎧
⎨

⎩
[
∏

j =i
δσj ,σj(�)]

1
2

[1 + σi g[βhi(σ( ))]]

⎫
⎬

⎭
,

with the Kronecker symbol: δij = 1, if i = j and δij = 0, otherwise. If, instead
of σ( ), the probabilities p�(σ) are given, this expression is to be averaged
over the possible states at time  , with the result:

p�+1(σ) =
1

2N
[1 + σi g[βhi(σ)]] p�(σ)

+
1

2N
[1 + σi g[βhi(Fiσ)]] p�(Fiσ),
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with the state-flip operators FiΦ(σ) = Φ(σ1, . . . , σi−1,−σi, σi+1, . . . , σN ).
This equation can again be written in the standard form

p�+1(σ) =
∑

σ′

W [σ;σ′] p�(σ′),

but now with the transition matrix

Sequential Dynamics: W
[
σ; σ′] = δσ,σ′ +

1

N
{wi(Fiσ)δσ,Fiσ′ − wi(σ)δσ,σ′} ,

(2.125)

where δσ,σ′ =
∏

i

δσi,σ′
i

and wi(σ) =
1
2

[1− σi tanh [βhi(σ)]] .

(2.126)
Note that, as soon as T > 0, the two transition matrices W [σ;σ′] in
(2.124,2.125) both describe ergodic systems: from any initial state σ′ one can
reach any final state σ with nonzero probability in a finite number of steps (be-
ing one in the parallel case, and N in the sequential case). It now follows from
the standard theory of stochastic processes (see e.g., [Kam92, Gar85]) that in
both cases the system evolves towards a unique stationary distribution p∞(σ),
where all probabilities p∞(σ) are non–zero [Coo01, SC00, SC01, CKS05].

The above processes have the (mathematically and biologically) less ap-
pealing property that time is measured in discrete units. For the sequential
case we will now assume that the duration of each of the iteration steps is
a continuous random number (for parallel dynamics this would make little
sense, since all updates would still be made in full synchrony). The statistics
of the durations are described by a function π�(t), defined as the probability
that at time t precisely  updates have been made. Upon denoting the previ-
ous discrete-time probabilities as p̂�(σ), our new process (which now includes
the randomness in step duration) will be described by

pt(σ) =
∑

�≥0

π�(t)p̂�(σ) =
∑

�≥0

π�(t)
∑

σ′

W � [σ;σ′] p0(σ′),

and time has become a continuous variable. For π�(t) we make the Poisson
choice,

π�(t) =
1
 +

(
t

Δ
)�e−t/Δ.

From 〈 〉π = t/Δ and 〈 2〉π = t/Δ + t2/Δ2 it follows that Δ is the average
duration of an iteration step, and that the relative deviation in  at a given
t vanishes for Δ → 0 as

√
〈 2〉π − 〈 〉2π/〈 〉π =

√
Δ/t. The nice properties of

the Poisson distribution under temporal derivation allow us to derive:

Δṗt(σ) =
∑

σ′

W [σ;σ′] pt(σ′)− pt(σ).

For sequential dynamics, we choose Δ = 1
N so that, as in the parallel case,

in one time unit each neuron will on average be updated once. The master
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equation corresponding to (2.125) acquires the form wi(σ); (2.126) now play
the role of transition rates. The choice Δ = 1

N implies
√
〈 2〉π − 〈 〉2π/〈 〉π =√

1/Nt, so we will still for N → ∞ no longer have uncertainty in where we
are on the t axis.

Alternatively, we could start with continuous neuronal variables σi (rep-
resenting e.g., firing frequencies or oscillator phases), where i = 1, . . . , N , and
with stochastic equations of the form

σi(t + Δ) = σi(t) + Δfi(σ(t)) +
√

2TΔξi(t). (2.127)

Here, we have introduced (as yet unspecified) deterministic state–dependent
forces fi(σ), and uncorrelated Gaussian distributed random forces ξi(t) (the
noise), with

〈ξi(t)〉 = 0 and 〈ξi(t)ξj(t′)〉 = δijδt,t′ .

As before, the parameter T controls the amount of noise in the system, rang-
ing from T = 0 (deterministic dynamics) to T = ∞ (completely random
dynamics). If we take the limit Δ→ 0 in (2.127) we find a Langevin equation
(with a continuous time variable) [Coo01, SC00, SC01, CKS05]:

σ̇i(t) = fi(σ(t)) + ηi(t). (2.128)

This equation acquires its meaning only as the limit Δ → 0 of (2.127). The
moments of the new noise variables ηi(t) = ξi(t)

√
2T/Δ in (2.128) are given

by
〈ηi(t)〉 = 0 and 〈ηi(t)ηj(t′)〉 = 2Tδijδ(t− t′).

This can be derived from the moments of the ξi(t). For instance:

〈ηi(t)ηj(t′)〉 = lim
Δ→0

2T
Δ
〈ξi(t)ξj(t′)〉

= 2Tδij lim
Δ→0

1
Δ

δt,t′ = 2TCδijδ(t− t′).

The constant C is found by summing over t′, before taking the limit Δ→ 0,
in the above equation:

∫
dt′ 〈ηi(t)ηj(t′)〉 = lim

Δ→0
2T

∞∑

t′=−∞
〈ξi(t)ξj(t′)〉

= 2Tδij lim
Δ→0

∞∑

t′=−∞
δt,t′ = 2Tδij .

Thus C = 1, which indeed implies 〈ηi(t)ηj(t′)〉 = 2Tδijδ(t−t′). More directly,
one can also calculate the moment partition function:
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〈ei
∫
dtψi(t)ηi(t)〉 = lim

Δ→0

∏

i,t

∫
dz√
2π

e−
1
2 z

2+izψi(t)
√

2TΔ (2.129)

= lim
Δ→0

∏

i,t

e−TΔψ
2
i (t) = e−T

∫
dt

∑
i ψ

2
i (t). (2.130)

On the other hand, a mathematically more convenient description of the
process (2.128) is provided by the Fokker–Planck equation for the microscopic
state probability density pt(σ) = 〈δ[σ − σ(t)]〉, which we will now derive.
For the discrete–time process (2.127) we expand the δ−distribution in the
definition of pt+Δ(σ) (in a distributional sense) [Coo01, SC00, SC01, CKS05]:

pt+Δ(σ)− pt(σ) = 〈δ
[
σ − σ(t)−Δf(σ(t))−

√
2TΔξ(t)

]
〉 − 〈δ[σ − σ(t)]〉

= − ∂

∂σi
〈δ[σ − σ(t)]

[
Δfi(σ(t)) +

√
2TΔξi(t)

]
〉

+ TΔ
∂2

∂σi∂σj
〈δ[σ − σ(t)]ξi(t)ξj(t)〉+O(Δ

3
2 ).

The variables σ(t) depend only on noise variables ξj(t′) with t′ < t, so that
for any function A,

〈A[σ(t)]ξi(t)〉 = 〈A[σ(t)]〉〈ξi(t)〉 = 0, and
〈A[σ(t)]ξi(t)ξj(t)〉 = δij〈A[σ(t)]〉.

As a consequence, we have:

1
Δ

[pt+Δ(σ)− pt(σ)] = − ∂

∂σi
〈δ[σ − σ(t)]fi(σ(t))〉

+ T
∂2

∂σ2
i

〈δ[σ − σ(t)]〉+O(Δ
1
2 )

= − ∂

∂σi
[pt(σ)fi(σ)] + T

∂2

∂σ2
i

pt(σ) +O(Δ
1
2 ).

By taking the limit Δ→ 0 we then arrive at the Fokker–Planck equation:

ṗt(σ) = − ∂

∂σi
[pt(σ)fi(σ)] + T

∂2

∂σ2
i

pt(σ). (2.131)

In the case of graded–response neurons, the continuous variable σi repre-
sents the membrane potential of neuron i, and (in their simplest form) the
deterministic forces are given by

fi(σ) = Jij tanh[γσj ]− σi + θi, with γ > 0,

and with the θi representing injected currents. Conventional notation is re-
stored by putting σi → ui. Thus equation (2.128) specializes to
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u̇i(t) = Jij tanh[γuj(t)]− ui(t) + θi + ηi(t). (2.132)

One often chooses T = 0 (i.e., ηi(t) = 0), the rationale being that threshold
noise is already assumed to have been incorporated via the nonlinearity in
(2.132).

In our second example the variables σi represent the phases of coupled
neural oscillators, with forces of the form

fi(σ) = Jij sin(σj − σi) + ωi.

Individual synapses Jij now try to enforce either pair–wise synchronization
(Jij > 0), or pair–wise anti–synchronization (Jij < 0), and the ωi represent
the natural frequencies of the individual oscillators. Conventional notation
dictates σi → ξi, giving [Coo01, SC00, SC01, CKS05]

ξ̇i(t) = ωi + Jij sin[ξj(t)− ξi(t)] + ηi(t). (2.133)

2.3.2 Synaptic Symmetry and Lyapunov Functions

In the deterministic limit T → 0 the rules (2.121) for networks of syn-
chronously evolving binary neurons reduce to the deterministic map

σi( + 1) = sgn [hi(σ( ))] . (2.134)

It turns out that for systems with symmetric interactions, Jij = Jji for all
(ij), one can construct a Lyapunov function, i.e., a function of σ which during
the dynamics decreases monotonically and is bounded from below (see e.g.,
[Kha92]):

Binary & Parallel Dynamics: L[σ] = −
∑

i

|hi(σ)| − σiθi. (2.135)

Clearly, L ≥ −
∑
i[
∑
j |Jij | + |θi|] −

∑
i |θi|. During iteration of (2.134) we

find:

L[σ( + 1)]− L[σ( )] = −
∑

i

|hi(σ( + 1))|

+ σi( + 1)[Jijσj( ) + θi]− θi [σi( + 1)− σi( )]

= −
∑

i

|hi(σ( + 1))|+ σi( )hi(σ( + 1))

= −
∑

i

|hi(σ( + 1))| [1− σi( + 2)σi( )] ≤ 0,

where we have used (2.134) and Jij = Jji. So L decreases monotonically until
a stage is reached where σi( + 2) = σi( ) for all i. Thus, with symmetric
interactions this system will in the deterministic limit always end up in a
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limit cycle with period ≤ 2. A similar result is found for networks with binary
neurons and sequential dynamics. In the limit T → 0 the rules (2.122) reduce
to the map

σi( + 1) = δi,i�sgn [hi(σ( ))] + [1− δi,i� ]σi( ). (2.136)

(in which we still have randomness in the choice of site to be updated). For
systems with symmetric interactions and without self–interactions, i.e., Jii = 0
for all i, we again find a Lyapunov function:

Binary & Sequential Dynamics: L[σ] = −1
2
σiJijσj − σiθi. (2.137)

This quantity is bounded from below, L ≥ −1
2

∑
ij |Jij |−

∑
i |θi|. Upon calling

the site i� selected for update at step  simply i, the change in L during
iteration of (2.136) can be written as [Coo01, SC00, SC01, CKS05]:

L[σ( + 1)]− L[σ( )] = −θi[σi( + 1)− σi( )]

− 1
2
Jik[σi( + 1)σk( + 1)− σi( )σk( )]

− 1
2
Jji[σj( + 1)σi( + 1)− σj( )σi( )]

= [σi( )− σi( + 1)][Jijσj( ) + θi]
= −|hi(σ( ))| [1− σi( )σi( + 1)] ≤ 0.

Here we used (2.136), Jij = Jji, and absence of self–interactions. Thus L
decreases monotonically until σi(t + 1) = σi(t) for all i. With symmetric
synapses, but without diagonal terms, the sequentially evolving binary neu-
rons system will in the deterministic limit always end up in a stationary state.

Now, one can derive similar results for models with continuous variables.
Firstly, in the deterministic limit the graded–response equations (2.132) sim-
plify to

u̇i(t) = Jij tanh[γuj(t)]− ui(t) + θi. (2.138)

Symmetric networks again admit a Lyapunov function (without a need to
eliminate self-interactions):

Graded–Response Dynamics : L[u] = −1
2
Jij tanh(γui) tanh(γuj) +

∑

i

[
γ

∫ ui

0

dv v[1− tanh2(γv)]− θi tanh(γui)
]
.

Clearly, L ≥ −1
2

∑
ij |Jij | −

∑
i |θi|; the term in L[u] with the integral is non–

negative. During the noise–free dynamics (2.138) one can use the identity

∂L

∂ui
= −γu̇i[1− tanh2(γui)],
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valid only when Jij = Jji, to derive [Coo01, SC00, SC01, CKS05]

L̇ =
∂L

∂ui
u̇i = −γ

∑

i

[1− tanh2(γui)] u̇2
i ≤ 0.

Again L is found to decrease monotonically, until u̇i = 0 for all i, i.e., until
we are at a fixed–point.

The coupled oscillator equations (2.133) reduce in the noise–free limit to

ξ̇i(t) = ωi + Jij sin[ξj(t)− ξi(t)]. (2.139)

Note that self-interactions Jii always drop out automatically. For symmet-
ric oscillator networks, a construction of the type followed for the graded–
response equations would lead us to propose

Coupled Oscillators Dynamics: L[ξ] = −1
2
Jij cos[ξi − ξj ]− ωiξi. (2.140)

This function decreases monotonically, due to ∂L/∂ξi = −ξ̇i:

L̇ =
∂L

∂ξi
ξ̇i = −

∑

i

ξ̇
2

i ≤ 0.

Actually, (2.139) describes gradient descent on the surface L[ξ]. However, due
to the term with the natural frequencies ωi the function L[ξ] is not bounded, so
it cannot be a Lyapunov function. This could have been expected; when Jij =
0 for all (i, j), for instance, one finds continually increasing phases, ξi(t) =
ξi(0)+ωit. Removing the ωi, in contrast, gives the bound L ≥ −

∑
j |Jij |. Now

the system must go to a fixed-point. In the special case ωi = ω (N identical
natural frequencies) we can transform away the ωi by putting ξ(t) = ξ̃i(t)+ωt,
and find the relative phases ξ̃i to go to a fixed-point.

2.3.3 Detailed Balance and Equilibrium Statistical Mechanics

The results got above indicate that networks with symmetric synapses are
a special class [Coo01, SC00, SC01, CKS05]. We now show how synaptic
symmetry is closely related to the detailed balance property, and derive a
number of consequences. An ergodic Markov chain of the form (2.124,2.125),
i.e.,

p�+1(σ) =
∑

σ′

W [σ;σ′] p�(σ′), (2.141)

is said to obey detailed balance if its (unique) stationary solution p∞(σ) has
the property

W [σ;σ′] p∞(σ′) = W [σ′;σ] p∞(σ), (for all σ,σ′). (2.142)
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All p∞(σ) which satisfy (2.142) are stationary solutions of (2.141), this is
easily verified by substitution. The converse is not true. Detailed balance
states that, in addition to p∞(σ) being stationary, one has equilibrium: there
is no net probability current between any two microscopic system states.

It is not a trivial matter to investigate systematically for which choices of
the threshold noise distribution w(η) and the synaptic matrix {Jij} detailed
balance holds. It can be shown that, apart from trivial cases (e.g., systems
with self–interactions only) a Gaussian distribution w(η) will not support
detailed balance. Here we will work out details only for the choice w(η) =
1
2 [1 − tanh2(η)], and for T > 0 (where both discrete systems are ergodic).
For parallel dynamics the transition matrix is given in (2.124), now with
g[z] = tanh[z], and the detailed balance condition (2.142) becomes

eβσihi(σ
′)p∞(σ′)

∏
i cosh[βhi(σ′)]

=
eβσ

′
ihi(σ)p∞(σ)

∏
i cosh[βhi(σ)]

, (for all σ,σ′). (2.143)

All p∞(σ) are non-zero (ergodicity), so we may safely put

p∞(σ) = eβ[θiσi+K(σ)]
∏

i

cosh[βhi(σ)],

which, in combination with definition (2.121), simplifies the detailed balance
condition to:

K(σ)−K(σ′) = σi [Jij − Jji]σ′
j , (for all σ,σ′). (2.144)

Averaging (2.144) over all possible σ′ gives K(σ) = 〈K(σ′)〉σ′ for all σ,
i.e., K is a constant, whose value follows from normalizing p∞(σ). So, if
detailed balance holds the equilibrium distribution must be [Coo01, SC00,
SC01, CKS05]:

peq(σ) ∼ eβθiσi

∏

i

cosh[βhi(σ)]. (2.145)

For symmetric systems detailed balance indeed holds: (2.145) solves (2.143),
since K(σ) = K solves the reduced problem (2.144). For non-symmetric sys-
tems, however, there can be no equilibrium. For K(σ) = K the condition
(2.144) becomes

∑
ij σi [Jij − Jji]σ′

j = 0 for all σ,σ′ ∈ {−1, 1}N . For N ≥ 2
the vector pairs (σ,σ′) span the space of all N×N matrices, so Jij−Jji must
be zero. For N = 1 there simply exists no non-symmetric synaptic matrix. In
conclusion: for binary networks with parallel dynamics, interaction symmetry
implies detailed balance, and vice versa.

For sequential dynamics, with w(η) = 1
2 [1− tanh2(η)], the transition ma-

trix is given by (2.125) and the detailed balance condition (2.142) simplifies
to

eβσihi(Fiσ)p∞(Fiσ)
cosh [βhi(Fiσ)]

=
e−βσihi(σ)p∞(σ)

cosh [βhi(σ)]
, (for all σ, i).
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Self–interactions Jii, inducing hi(Fiσ) �= hi(σ), complicate matters. Therefore
we first consider systems where all Jii = 0. All stationary probabilities p∞(σ)
being non–zero (ergodicity), we may write:

p∞(σ) = eβ[θiσi+
1
2σiJijσj+K(σ)]. (2.146)

Using relations like

JklFi(σkσl) = Jklσkσl − 2σi [Jik + Jki]σk,

we can simplify the detailed balance condition to

K(Fiσ)−K(σ) = σi [Jik − Jki]σk, (for all σ, i).

If to this expression we apply the general identity

[1− Fi] f(σ) = 2σi〈σif(σ)〉σi
,

we find for i �= j [Coo01, SC00, SC01, CKS05]:

K(σ) = −2σiσj [Jij − Jji] , (for all σ and all i �= j).

The left–hand side is symmetric under permutation of the pair (i, j), which
implies that the interaction matrix must also be symmetric: Jij = Jji for all
(i, j). We now find the trivial solution K(σ) = K (constant), detailed balance
holds and the corresponding equilibrium distribution is

peq(σ) ∼ e−βH(σ), H(σ) = −1
2
σiJijσj − θiσi.

In conclusion: for binary networks with sequential dynamics, but without self–
interactions, interaction symmetry implies detailed balance, and vice versa. In
the case of self–interactions the situation is more complicated. However, here
one can still show that non-symmetric models with detailed balance must be
pathological, since the requirements can be met only for very specific choices
for the {Jij}.

Now, let us turn to the question of when we find microscopic equilibrium
(stationarity without probability currents) in continuous models described
by a Fokker–Planck equation (2.131). Note that (2.131) can be seen as a
continuity equation for the density of a conserved quantity:

ṗt(σ) +
∂

∂σi
Ji(σ, t) = 0.

The components Ji(σ, t) of the current density are given by

Ji(σ, t) = [fi(σ)− T
∂

∂σi
]pt(σ).
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Stationary distributions p∞(σ) are those which give
∑
i
∂
∂σi

Ji(σ,∞) = 0
(divergence-free currents). Detailed balance implies the stronger statement
Ji(σ,∞) = 0 for all i (zero currents), so

fi(σ) = T
∂ log p∞(σ)

∂σi
, or

fi(σ) = −∂H(σ)
∂σi

, p∞(σ) ∼ e−βH(σ), (2.147)

for some H(σ), i.e., the forces fi(σ) must be conservative. However, one can
have conservative forces without a normalizable equilibrium distribution. Just
take H(σ) = 0, i.e., fi(σ, t) = 0: here we have peq(σ) = C, which is not
normalizable for σ ∈ R

N . For this particular case equation (2.131) is solved
easily:

pt(σ) = [4πTt]−N/2
∫

dσ′ p0(σ′)e−[σ−σ′]2/4Tt,

so the limit limt→∞ pt(σ) does not exist. One can prove the following (see e.g.,
[Zin93]). If the forces are conservative and if p∞(σ) ∼ e−βH(σ) is normalizable,
then it is the unique stationary solution of the Fokker–Planck equation, to
which the system converges for all initial distributions p0 ∈ L1[RN ] which
obey

∫
RN dσ eβH(σ)p2

0(σ) <∞.
Note that conservative forces must obey [Coo01, SC00, SC01, CKS05]

∂fi(σ)
∂σj

− ∂fj(σ)
∂σi

= 0, (for all σ and all i �= j). (2.148)

In the graded–response equations (2.138) the deterministic forces are

fi(u) = Jij tanh[γuj ]− ui + θi, where
∂fi(u)
∂uj

− ∂fj(u)
∂ui

= γ{Jij [1− tanh2[γuj ]− Jji[1− tanh2[γui]}.

At u = 0 this reduces to Jij − Jji, i.e., the interaction matrix must be sym-
metric. For symmetric matrices we find away from u = 0:

∂fi(u)
∂uj

− ∂fj(u)
∂ui

= γJij{tanh2[γui]− tanh2[γuj ]}.

The only way for this to be zero for any u is by having Jij = 0 for all i �= j,
i.e., all neurons are disconnected (in this trivial case the system (2.138) does
indeed obey detailed balance). Network models of interacting graded–response
neurons of the type (2.138) apparently never reach equilibrium, they will
always violate detailed balance and exhibit microscopic probability currents.
In the case of coupled oscillators (2.133), where the deterministic forces are

fi(ξ) = Jij sin[ξj − ξi] + ωi,
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one finds the left-hand side of condition (2.148) to give

∂fi(ξ)
∂ξj

− ∂fj(ξ)
∂ξi

= [Jij − Jji] cos[ξj − ξi].

Requiring this to be zero for any ξ gives the condition Jij = Jji for any
i �= j. We have already seen that symmetric oscillator networks indeed have
conservative forces:

fi(ξ) = −∂H(ξ)/∂ξi, with H(ξ) = −1
2
Jij cos[ξi − ξj ]− ωiξi.

If in addition we choose all ωi = 0 the function H(σ) will also be bounded from
below, and, although p∞(ξ) ∼ e−βH(ξ) is still not normalizable on ξ ∈ R

N , the
full 2π−periodicity of the function H(σ) now allows us to identify ξi+2π ≡ ξi
for all i, so that now ξ ∈ [−π, π]N and

∫
dξ e−βH(ξ) does exist. Thus sym-

metric coupled oscillator networks with zero natural frequencies obey detailed
balance. In the case of non-zero natural frequencies, in contrast, detailed bal-
ance does not hold.

The above results establish the link with equilibrium statistical mechanics
(see e.g., [Yeo92, PB94]). For binary systems with symmetric synapses (in the
sequential case: without self-interactions) and with threshold noise distribu-
tions of the form

w(η) =
1
2
[1− tanh2(η)],

detailed balance holds and we know the equilibrium distributions. For sequen-
tial dynamics it has the Boltzmann form (2.147) and we can apply standard
equilibrium statistical mechanics. The parameter β can formally be identi-
fied with the inverse ‘temperature’ in equilibrium, β = T−1, and the function
H(σ) is the usual Ising–spin Hamiltonian. In particular we can define the
partition function Z and the free energy F [Coo01, SC00, SC01, CKS05]:

peq(σ) =
1
Z

e−βH(σ), H(σ) = −1
2
σiJijσj − θiσi, (2.149)

Z =
∑

σ

e−βH(σ), F = −β−1 logZ. (2.150)

The free energy can be used as the partition function for equilibrium averages.
Taking derivatives with respect to external fields θi and interactions Jij , for
instance, produces 〈σi〉 = −∂F/∂θi and 〈σiσj〉 = −∂F/∂Jij , whereas equi-
librium averages of arbitrary state variable f(σ) can be obtained by adding
suitable partition terms to the Hamiltonian:

H(σ) → H(σ) + λf(σ), 〈f〉 = lim
λ→0

∂F

∂λ
.

In the parallel case (2.145) we can again formally write the equilibrium prob-
ability distribution in the Boltzmann form [Per84] and define a corresponding
partition function Z̃ and a free energy F̃ :
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peq(σ) =
1
Z

e−βH̃(σ), H̃(σ) = −θiσi −
1
β

∑

i

log 2 cosh[βhi(σ)], (2.151)

Z̃ =
∑

σ

e−βH̃(σ), F̃ = −β−1 log Z̃, (2.152)

which again serve to generate averages: H̃(σ) → H̃(σ) + λf(σ), 〈f〉 =
limλ→0 ∂F̃ /∂λ. However, standard thermodynamic relations involving deriva-
tion with respect to β need no longer be valid, and derivation with re-
spect to fields or interactions generates different types of averages, such as
[Coo01, SC00, SC01, CKS05]

−∂F̃

∂θi
= 〈σi〉+ 〈tanh[βhi(σ)]〉, − ∂F̃

∂Jii
= 〈σi tanh[βhi(σ)]〉,

i �= j :
∂F̃

∂Jii
= 〈σi tanh[βhj(σ)]〉+ 〈σj tanh[βhi(σ)]〉.

One can use 〈σi〉 = 〈tanh[βhi(σ)]〉, which can be derived directly from the
equilibrium equation peq(σ) =

∑
σ′ W [σ;σ′]peq(σ), to simplify the first of

these identities.
A connected network of graded–response neurons can never be in an equi-

librium state, so our only model example with continuous neuronal variables
for which we can set up the equilibrium statistical mechanics formalism is the
system of coupled oscillators (2.133) with symmetric synapses and absent (or
uniform) natural frequencies ωi. If we define the phases as ξi ∈ [−π, π] we
have again an equilibrium distribution of the Boltzmann form, and we can
define the standard thermodynamic quantities:

peq(ξ) =
1
Z

e−βH(ξ), H(ξ) = −1
2
Jij cos[ξi − ξj ], (2.153)

Z =
∫ π

−π
· · ·

∫ π

−π
dξ e−βH(ξ), F = −β−1 logZ. (2.154)

These generate equilibrium averages in the usual manner. For instance

〈cos[ξi − ξj ]〉 = − ∂F

∂Jij
,

whereas averages of arbitrary state variables f(ξ) follow, as before, upon in-
troducing suitable partition terms:

H(ξ) → H(ξ) + λf(ξ), 〈f〉 = lim
λ→0

∂F

∂λ
.
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2.3.4 Simple Recurrent Networks with Binary Neurons

Networks with Uniform Synapses

We now turn to a simple toy model to show how equilibrium statistical me-
chanics is used for solving neural network models, and to illustrate similarities
and differences between the different dynamics types [Coo01, SC00, SC01,
CKS05]. We choose uniform infinite-range synapses and zero external fields,
and calculate the free energy for the binary systems (2.121,2.122), parallel
and sequential, and with threshold–noise distribution w(η) = 1

2 [1− tanh2(η)]:

Jij = Jji = J/N, (i �= j), Jii = θi = 0, (for all i).

The free energy is an extensive object, limN→∞ F/N is finite. For the models
(2.121,2.122) we now get:

Binary & Sequential Dynamics:

lim
N→∞

F/N = − lim
N→∞

(βN)−1 log
∑

σ

eβN[ 1
2Jm

2(σ)],

Binary & Parallel Dynamics:

lim
N→∞

F̃ /N = − lim
N→∞

(βN)−1 log
∑

σ

eN [log 2 cosh[βJm(σ)]],

with the average activity m(σ) = 1
N

∑
k σk. We have to count the number of

states σ with a prescribed average activity m = 2n/N − 1 (n is the number
of neurons i with σi = 1), in expressions of the form

1
N

log
∑

σ

eNU [m(σ)] =
1
N

log
N∑

n=0

(
N
n

)
eNU [2n/N−1]

=
1
N

log
∫ 1

−1

dm eN [log 2−c∗(m)+U [m]],

lim
N→∞

1
N

log
∑

σ

eNU [m(σ)] = log 2 + max
m∈[−1,1]

{U [m]− c∗(m)} ,

with the entropic function

c∗(m) =
1
2
(1 + m) log(1 + m) +

1
2
(1−m) log(1−m).

In order to get there we used Stirling’s formula to get the leading term of the
factorials (only terms which are exponential in N survive the limit N →∞),
we converted (for N → ∞) the summation over n into an integration over
m = 2n/N − 1 ∈ [−1, 1], and we carried out the integral over m via saddle–
point integration (see e.g., [Per92]). This leads to a saddle–point problem
whose solution gives the free energies [Coo01, SC00, SC01, CKS05]:
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lim
N→∞

F/N = min
m∈[−1,1]

fseq(m), βfseq(m) = c∗(m)− log 2− 1
2
βJm2.

(2.155)
lim
N→∞

F̃ /N = min
m∈[−1,1]

fpar(m), βfpar(m) = c∗(m)−2 log 2−log cosh[βJm].

(2.156)
The equations from which to solve the minima are easily got by differentiation,
using d

dmc∗(m) = tanh−1(m). For sequential dynamics we find

Binary & Sequential Dynamics: m = tanh[βJm], (2.157)

which is the so–called Curie–Weiss law . For parallel dynamics we find

m = tanh [βJ tanh[βJm]] .

One finds that the solutions of the latter equation again obey a Curie–Weiss
law. The definition m̂ = tanh[β|J |m] transforms it into the coupled equations
m = tanh[β|J |m̂] and m̂ = tanh[β|J |m], from which we derive

0 ≤ [m− m̂]2 = [m− m̂] [tanh[β|J |m̂]− tanh[β|J |m]] ≤ 0.

Since tanh[β|J |m] is a monotonically increasing function of m, this implies
m̂ = m, so

Binary & Parallel Dynamics: m = tanh[β|J |m]. (2.158)

Our study of the toy models has thus been reduced to analyzing the nonlinear
equations (2.157) and (2.158). If J ≥ 0 (excitation) the two types of dynamics
lead to the same behavior. At high noise levels, T > J , both minimisation
problems are solved by m = 0, describing a disorganized (paramagnetic) state.
This can be seen upon writing the right–hand side of (2.157) in integral form
[Coo01, SC00, SC01, CKS05]:

m2 = m tanh[βJm] = βJm2

∫ 1

0

dz [1− tanh2[βJmz]] ≤ βJm2.

So m2[1− βJ ] ≤ 0, which gives m = 0 as soon as βJ < 1. A phase transition
occurs at T = J (a bifurcation of non–trivial solutions of (2.157)), and for
T < J the equations for m are solved by the two non-zero solutions of (2.157),
describing a state where either all neurons tend to be firing (m > 0) or where
they tend to be quiet (m < 0). This becomes clear when we expand (2.157) for
small m: m = βJm+O(m3), so precisely at βJ = 1 one finds a de–stabilization
of the trivial solution m = 0, together with the creation of (two) stable non–
trivial ones. Furthermore, using the identity c∗(tanhx) = x tanhx−log coshx,
we get from (2.155,2.156) the relation limN→∞ F̃ /N = 2 limN→∞ F/N . For
J < 0 (inhibition), however, the two types of dynamics give quite different
results. For sequential dynamics the relevant minimum is located at m = 0
(the paramagnetic state). For parallel dynamics, the minimization problem is
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invariant under J → −J , so the behavior is again of the Curie-Weiss type, with
a paramagnetic state for T > |J |, a phase transition at T = |J |, and order
for T < |J |. This difference between the two types of dynamics for J < 0
is explained by studying dynamics. For the present (toy) model in the limit
N → ∞ the average activity evolves in time according to the deterministic
laws [Coo01, SC00, SC01, CKS05]

ṁ = tanh[βJm]−m, m(t + 1) = tanh[βJm(t)],

for sequential and parallel dynamics, respectively. For J < 0 the sequential
system always decays towards the trivial state m = 0, whereas for sufficiently
large β the parallel system enters the stable limit–cycle m(t) = Mβ(−1)t,
where Mβ is the non-zero solution of (2.158). The concepts of ‘distance’ and
‘local minima’ are quite different for the two dynamics types; in contrast to
the sequential case, parallel dynamics allows the system to make the transition
m→ −m in equilibrium.

Phenomenology of Hopfield Models

Recall that the Hopfield model [Hop82] represents a network of binary neurons
of the type (2.121,2.122), with threshold noise w(η) = 1

2 [1 − tanh2(η)], and
with a specific recipe for the synapses Jij aimed at storing patterns, motivated
by suggestions made in the late nineteen-forties [Heb49]. The original model
was in fact defined more narrowly, as the zero noise limit of the system (2.122),
but the term has since then been accepted to cover a larger network class.
Let us first consider the simplest case and try to store a single pattern ξ ∈
{−1, 1}N in noise–less infinite–range binary networks. Appealing candidates
for interactions and thresholds would be Jij = ξiξj and θi = 0 (for sequential
dynamics we put Jii = 0 for all i). With this choice the Lyapunov function
(2.137) becomes:

Lseq[σ] =
1
2
N − 1

2
[ξiσi]

2.

This system indeed reconstructs dynamically the original pattern ξ from an
input vector σ(0), at least for sequential dynamics. However, en passant we
have created an additional attractor: the state -ξ. This property is shared by
all binary models in which the external fields are zero, where the Hamiltonians
H(σ) (2.149) and H̃(σ) (2.151) are invariant under an overall sign change
σ → −σ. A second feature common to several (but not all) attractor neural
networks is that each initial state will lead to pattern reconstruction, even
nonsensical (random) ones.

The Hopfield model is got by generalizing the previous simple one-
pattern recipe to the case of an arbitrary number p of binary patterns
ξμ = (ξμ1 , . . . , ξ

μ
N ) ∈ {−1, 1}N [Coo01, SC00, SC01, CKS05]:

Jij =
1
N

ξμi ξ
μ
j , θi = 0 (for all i; μ = 1, ..., p), (2.159)

(sequential dynamics : Jii → 0, for all i).
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The prefactor N−1 has been inserted to ensure that the limit N → ∞ will
exist in future expressions. The process of interest is that where, triggered
by correlation between the initial state and a stored pattern ξλ, the state
vector σ evolves towards ξλ. If this happens, pattern ξλ is said to be recalled.
The similarity between a state vector and the stored patterns is measured by
so–called Hopfield overlaps

mμ(σ) =
1
N

ξμi σi. (2.160)

The Hopfield model represents as an associative memory, in which the recall
process is described in terms of overlaps.

Analysis of Hopfield Models Away From Saturation

A binary Hopfield network with parameters given by (2.159) obeys detailed
balance, and the Hamiltonian H(σ) (2.149) (corresponding to sequential dy-
namics) and the pseudo-Hamiltonian H̃(σ) (2.151) (corresponding to parallel
dynamics) become [Coo01, SC00, SC01, CKS05]

H(σ) = −1
2
N

p∑

μ=1

m2
μ(σ) +

1
2
p, (2.161)

H̃(σ) = − 1
β

∑

i

log 2 cosh[βξμi mμ(σ)],

with the overlaps (2.160). Solving the statics implies calculating the free en-
ergies F and F̃ :

F = − 1
β

log
∑

σ

e−βH(σ), F̃ = − 1
β

log
∑

σ

e−βH̃(σ).

Upon introducing the short-hand notation m = (m1, . . . ,mp) and ξi =
(ξ1
i , . . . , ξ

p
i ), both free energies can be expressed in terms of the density of

states D(m) = 2−N
∑

σ δ[m−m(σ)]:

F/N = − 1
β

log 2− 1
βN

log
∫

dm D(m) e
1
2βNm2

+
p

2N
, (2.162)

F̃ /N = − 1
β

log 2− 1
βN

log
∫

dm D(m) e
∑N

i=1 log 2 cosh[βξi·m], (2.163)

using
∫

dm δ[m −m(σ)] = 1. In order to proceed, we need to specify how
the number of patterns p scales with the system size N . In this section we
will follow [AGS85] (equilibrium analysis following sequential dynamics) and
[FK88] (equilibrium analysis following parallel dynamics), and assume p to be
finite. One can now easily calculate the leading contribution to the density
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of states, using the integral representation of the δ−function and keeping in
mind that according to (2.162,2.163) only terms exponential in N will retain
statistical relevance for N →∞:

lim
N→∞

1
N

logD(m) = lim
N→∞

1
N

log
∫

dx eiNx·m〈e−iσiξi·x〉σ

= lim
N→∞

1
N

log
∫

dx eN [ix·m+〈log cos[ξ·x]〉ξ],

with the abbreviation 〈Φ(ξ)〉ξ = limN→∞
1
N

∑N
i=1 Φ(ξi). The leading contri-

bution to both free energies can be expressed as a finite-dimensional integral,
for large N dominated by that saddle–point (extremum) for which the exten-
sive exponent is real and maximal [Coo01, SC00, SC01, CKS05]:

lim
N→∞

F/N = − 1
βN

log
∫

dmdx e−Nβf(m,x) = extrx,m f(m,x),

lim
N→∞

F̃ /N = − 1
βN

log
∫

dmdx e−Nβf̃(m,x) = extrx,m f̃(m,x), with

f(m,x) = − 1
2m

2 − ix ·m− β−1〈log 2 cos [βξ · x]〉ξ,

f̃(m,x) = −β−1〈log 2 cosh [βξ ·m]〉ξ − ix ·m− β−1〈log 2 cos [βξ · x]〉ξ.

The saddle–point equations for f and f̃ are given by:

f : x = im, im = 〈ξ tan [βξ · x]〉ξ,

f̃ : x = i〈ξ tanh [βξ ·m]〉ξ, im = 〈ξ tan [βξ · x]〉ξ.

In saddle-points x turns out to be purely imaginary. However, after a shift
of the integration contours, putting x = ix�(m) + y (where ix�(m) is the
imaginary saddle–point, and where y ∈ R

p) we can eliminate x in favor of
y ∈ R

p which does have a real saddle–point, by construction.(Our functions
to be integrated have no poles, but strictly speaking we still have to verify
that the integration segments linking the original integration regime to the
shifted one will not contribute to the integrals. This is generally a tedious and
distracting task, which is often skipped. For simple models, however (e.g.,
networks with uniform synapses), the verification can be carried out properly,
and all is found to be safe.) We then get

Sequential Dynamics: m = 〈ξ tanh[βξ ·m]〉ξ,

Parallel Dynamics: m = 〈ξ tanh[βξ · [〈ξ′ tanh[βξ′ ·m]〉ξ′ ]]〉ξ,

(compare to e.g., (2.157,2.158)). The solutions of the above two equations will
in general be identical. To see this, let us denote m̂ = 〈ξ tanh [βξ ·m]〉ξ, with
which the saddle point equation for f̃ decouples into:
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m = 〈ξ tanh [βξ · m̂]〉ξ, m̂ = 〈ξ tanh [βξ ·m]〉ξ, so

[m− m̂]2 = 〈[(ξ ·m)− (ξ · m̂)] [tanh(βξ · m̂)− tanh(βξ ·m)]〉ξ.

Since tanh is a monotonicaly–increasing function, we must have [m− m̂] ·ξ =
0 for each ξ that contributes to the averages 〈. . .〉ξ. For all choices of patterns
where the covariance matrix Cμν = 〈ξμξν〉ξ is positive definite, we thus get
m = m̂. The final result is: for both types of dynamics (sequential and parallel)
the overlap order parameters in equilibrium are given by the solution m∗ of

m = 〈ξ tanh [βξ ·m]〉ξ, which minimises (2.164)

f(m) =
1
2
m2 − 1

β
〈log 2 cosh [βξ ·m]〉ξ. (2.165)

The free energies of the ergodic components are limN→∞ F/N = f(m∗) and
limN→∞ F̃ /N = 2f(m∗). Adding partition terms of the form H → H +
λg[m(σ)] to the Hamiltonians allows us identify 〈g[m(σ)]〉eq = limλ→0 ∂F/∂λ
= g[m∗]. Thus, in equilibrium the fluctuations in the overlap order parameters
m(σ) (2.160) vanish for N →∞. Their deterministic values are simply given
by m∗. Note that in the case of sequential dynamics we could also have used
linearization with Gaussian integrals (as used previously for coupled oscillators
with uniform synapses) to arrive at this solution, with p auxiliary integrations,
but that for parallel dynamics this would not have been possible.

Now, in analysis of order parameter equations, we will restrict our further
discussion to the case of randomly drawn patterns, so [Coo01, SC00, SC01,
CKS05]

〈Φ(ξ)〉ξ = 2−p
∑

ξ∈{−1,1}p

Φ(ξ), 〈ξμ〉ξ = 0, 〈ξμξν〉ξ = δμν .

We first establish an upper bound for the temperature for where non–trivial
solutions m∗ could exist, by writing (2.164) in integral form:

mμ = β〈ξμ(ξ ·m)
∫ 1

0

dλ[1− tanh2[βλξ ·m]]〉ξ,

from which we deduce

0 = m2 − β〈(ξ ·m)2
∫ 1

0

dλ[1− tanh2 [βλξ ·m]]〉ξ

≥ m2 − β〈(ξ ·m)2〉ξ = m2(1− β),

For T > 1 the only solution of (2.164) is the paramagnetic state m = 0, which
gives for the free energy per neuron –T log 2 and –2T log 2 (for sequential and
parallel dynamics, respectively). At T = 1 a phase transition occurs, which
follows from expanding (2.164) for small |m| in powers of τ = β − 1:
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mμ = (1 + τ)mμ −
1
3
mνmρmλ〈ξμξνξρξλ〉ξ

+ O(m5, τm3) = mμ[1 + τ −m2 +
2
3
m2
μ] +O(m5, τm3).

The new saddle–point scales as mμ = m̃μτ
1/2 + O(τ3/2), with for each μ:

m̃μ = 0 or 0 = 1− m̃2 + 2
3m̃

2
μ.

The solutions are of the form m̃μ ∈ {−m̃, 0, m̃}. If we denote with n the
number of non-zero components in the vector m̃, we derive from the above
identities: m̃μ = 0 or m̃μ = ±

√
3/
√

3n− 2. These saddle-points are called
mixture states, since they correspond to microscopic configurations correlated
equally with a finite number n of the stored patterns (or their negatives).
Without loss of generality we can always perform gauge transformations on
the set of stored patterns (permutations and reflections), such that the mixture
states acquire the form [Coo01, SC00, SC01, CKS05]

m = mn(

n times
︷ ︸︸ ︷
1, . . . , 1,

p−n times
︷ ︸︸ ︷
0, . . . , 0 ), (2.166)

mn = [
3

3n− 2
]
1
2 (β − 1)1/2 + . . .

These states are in fact saddle–points of the surface f(m) (2.165) for any
finite temperature, as can be verified by substituting (2.166) as an ansatz
into (2.164):

μ ≤ n : mn = 〈ξμ tanh[βmn

∑

ν≤n
ξν ]〉ξ,

μ > n : 0 = 〈ξμ tanh[βmn

∑

ν≤n
ξν ]〉ξ.

The second equation is automatically satisfied since the average factorizes.
The first equation leads to a condition determining the amplitude mn of the
mixture states:

mn = 〈[ 1
n

∑

μ≤n
ξμ] tanh[βmn

∑

ν≤n
ξν ]〉ξ. (2.167)

The corresponding values of f(m), to be denoted by fn, are

fn =
1
2
nm2

n −
1
β
〈log 2 cosh[βmn

∑

ν≤n
ξν ]〉ξ. (2.168)

The relevant question at this stage is whether or not these saddle-points cor-
respond to local minima of the surface f(m) (2.165). The second derivative
of f(m) is given by

∂2f(m)
∂mμ∂mν

= δμν − β〈ξμξν
[
1− tanh2 [βξ ·m]

]
〉ξ, (2.169)
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where a local minimum corresponds to a positive definite second derivative.
In the trivial saddle–point m = 0 this gives simply δμν(1−β), so at T = 1 this
state destabilizes. In a mixture state of the type (2.166) the second derivative
becomes:

D(n)
μν = δμν − β〈ξμξν [1− tanh2[βmn

∑

ρ≤n
ξρ]]〉ξ.

Due to the symmetries in the problem the spectrum of the matrix D(n)

can be calculated. One finds the following eigen–spaces, with

Q = 〈tanh2[βmn

∑

ρ≤n
ξρ]〉ξ and R = 〈ξ1ξ2 tanh2[βmn

∑

ρ≤n
ξρ]〉ξ,

Eigenspace : Eigenvalue :
I : x = (0, . . . , 0, xn+1, . . . , xp), 1− β[1−Q],
II : x = (1, . . . , 1, 0, . . . , 0), 1− β[1−Q + (1− n)R],
III : x = (x1, . . . , xn, 0, . . . , 0),

∑
μ xμ = 0, 1− β[1−Q + R].

The eigen–space III and the quantity R only come into play for n > 1. To find
the smallest eigenvalue we need to know the sign of R. With the abbreviation
Mξ =

∑
ρ≤n ξρ we find [Coo01, SC00, SC01, CKS05]:

n(n − 1)R = 〈M2
ξ tanh2[βmnMξ ]〉ξ − n〈tanh2[βmnMξ ]〉ξ

= 〈[M2
ξ − 〈M2

ξ′ 〉ξ′ ] tanh2[βmn|Mξ |]〉ξ

= 〈[M2
ξ − 〈M2

ξ′ 〉ξ′ ]
{

tanh2[βmn

√
M2

ξ ] − tanh2[βmn

√
〈M2

ξ′ 〉ξ′ ]
}
〉ξ ≥ 0.

We may now identify the conditions for an n−mixture state to be a local
minimum of f(m). For n = 1 the relevant eigenvalue is I, now the quantity Q
simplifies considerably. For n > 1 the relevant eigenvalue is III, here we can
combine Q and R into one single average:

n = 1 : 1− β[1− tanh2[βm1]] > 0
n = 2 : 1− β > 0

n ≥ 3 : 1− β[1− 〈tanh2[βmn

∑n
ρ=3 ξρ]〉ξ] > 0

The n = 1 states, correlated with one pattern only, are the desired solutions.
They are stable for all T < 1, since partial differentiation with respect to β
of the n = 1 amplitude equation (2.167) gives

m1 = tanh[βm1] → 1− β[1− tanh2[βm1]]
= m1[1− tanh2[βm1]](∂m1/∂β)−1,

so that clearly sgn[m1] = sgn[∂m1/∂β]. The n = 2 mixtures are always unsta-
ble. For n ≥ 3 we have to solve the amplitude equations (2.167) numerically
to evaluate their stability. It turns out that only for odd n will there be a
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critical temperature below which the n−mixture states are local minima of
f(m).

We have now solved the model in equilibrium for finite p and N → ∞.
For non–random patterns one simply has to study the bifurcation properties
of equation (2.164) for the new pattern statistics at hand; this is only quali-
tatively different from the random pattern analysis explained above. The oc-
currence of multiple saddle–points corresponding to local minima of the free
energy signals ergodicity breaking. Although among these only the global min-
imum will correspond to the thermodynamic equilibrium state, the non–global
minima correspond to true ergodic components, i.e., on finite time–scales they
will be just as relevant as the global minimum.

2.3.5 Simple Recurrent Networks of Coupled Oscillators

Coupled Oscillators with Uniform Synapses

Models with continuous variables involve integration over states, rather than
summation. For a coupled oscillator network (2.133) with uniform synapses
Jij = J/N and zero frequencies ωi = 0 (which is a simple version of the
model in [Kur84]) we get for the free energy per oscillator [Coo01, SC00,
SC01, CKS05]:

lim
N→∞

F/N = − lim
N→∞

1
βN

log
∫ π

−π
· · ·

∫ π

−π
dξ ×

×e(βJ/2N)[[∑ i cos(ξi)]
2+[

∑
i sin(ξi)]

2].

We would now have to ‘count’ microscopic states with prescribed average
cosines and sines. A faster route exploits auxiliary Gaussian integrals, via the
identity

e
1
2y

2
=

∫
Dz eyz, (2.170)

with the short–hand Dx = (2π)−
1
2 e−

1
2x

2
dx (this alternative would also have

been open to us in the binary case; my aim in this section is to explain both
methods):

lim
N→∞

F/N = − lim
N→∞

1
βN

log
∫ π

−π
· · ·

∫ π

−π
dξ

∫
DxDy ×

×e
√
βJ/N[x∑ i cos(ξi)+y

∑
i sin(ξi)]

= − lim
N→∞

1
βN

log
∫

DxDy

[∫ π

−π
dξ ecos(ξ)

√
βJ(x2+y2)/N

]N

= − lim
N→∞

1
βN

log
∫ ∞

0

dq qe−
1
2Nβ|J|q

2 ×

×
[∫ π

−π
dξ eβ|J|q cos(ξ)

√
rmsgn(J)

]N
,
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where we have transformed to polar coordinates, (x, y) = q
√

β|J |N(cos θ, sin θ),
and where we have already eliminated (constant) terms which will not survive
the limit N → ∞. Thus, saddle–point integration gives us, quite similar to
the previous cases (2.155,2.156):

lim
N→∞

F/N = min
q≥0

f(q),
J > 0 : βf(q) = 1

2β|J |q2 − log[2πI0(β|J |q)]
J < 0 : βf(q) = 1

2β|J |q2 − log[2πI0(iβ|J |q)]
,

(2.171)
in which the In(z) are the Bessel functions (see e.g., [AS72]). The equa-
tions from which to solve the minima are got by differentiation, using
d
dz I0(z) = I1(z):in which the In(z) are the Bessel functions (see e.g., [AS72]).
The equations from which to solve the minima are got by differentiation, using
d
dz I0(z) = I1(z):

J > 0 : q =
I1(β|J |q)
I0(β|J |q)

, J < 0 : q = i
I1(iβ|J |q)
I0(iβ|J |q)

. (2.172)

Again, in both cases the problem has been reduced to studying a single non-
linear equation. The physical meaning of the solution follows from the identity
-2∂F/∂J = 〈N−1

∑
i=j cos(ξi − ξj)〉:

lim
N→∞

〈[ 1
N

∑

i

cos(ξi)]
2〉+ lim

N→∞
〈[ 1
N

∑

i

sin(ξi)]
2〉 = sgn(J) q2.

From this equation it also follows that q ≤ 1. Note: since ∂f(q)/∂q = 0 at
the minimum, one only needs to consider the explicit derivative of f(q) with
respect to J . If the synapses induce anti-synchronization, J < 0, the only
solution of (2.172) (and the minimum in (2.171)) is the trivial state q = 0. This
also follows immediately from the equation which gave the physical meaning of
q. For synchronizing forces, J > 0, on the other hand, we again find the trivial
solution at high noise levels, but a globally synchronized state with q > 0 at
low noise levels. Here a phase transition occurs at T = 1

2J (a bifurcation of
non–trivial solutions of (2.172)), and for T < 1

2J the minimum of (2.171) is
found at two non-zero values for q. The critical noise level is again found upon
expanding the saddle–point equation, using

I0(z) = 1 +O(z2) and I1(z) =
1
2
z +O(z3) : q =

1
2
βJq +O(q3).

Precisely at βJ = 2 one finds a de-stabilization of the trivial solution q = 0,
together with the creation of (two) stable non–trivial ones. Note that, in view
of (2.171), we are only interested in non–negative values of q. One can prove,
using the properties of the Bessel functions, that there are no other (discon-
tinuous) bifurcations of non–trivial solutions of the saddle–point equation.
Note, finally, that the absence of a state with global anti-synchronization for
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J < 0 has the same origin as the absence of an anti-ferromagnetic state for
J < 0 in the previous models with binary neurons. Due to the long-range
nature of the synapses Jij = J/N such states simply cannot exist: whereas
any set of oscillators can be in a fully synchronized state, if two oscillators
are in anti-synchrony it is already impossible for a third to be simultaneously
in anti-synchrony with the first two (since anti-synchrony with one implies
synchrony with the other) [Coo01, SC00, SC01, CKS05].

Coupled Oscillator Attractor Networks

Let us now turn to an alternative realisation of information storage in a re-
current network based upon the creation of attractors [Coo01, SC00, SC01,
CKS05]. We will solve models of coupled neural oscillators of the type (2.133),
with zero natural frequencies (since we wish to use equilibrium techniques),
in which real-valued patterns are stored as stable configurations of oscillator
phases, following [Coo89]. Let us, however, first find out how to store a single
pattern ξ ∈ [−π, π]N in a noise-less infinite-range oscillator network. For sim-
plicity we will draw each component ξi independently at random from [−π, π],
with uniform probability density. This allows us to use asymptotic properties
such as |N−1

∑
j ei�ξj | = O(N− 1

2 ) for any integer  . A sensible choice for the
synapses would be Jij = cos[ξi−ξj ]. To see this we work out the corresponding
Lyapunov function (2.140):

L[ξ] = − 1
2N2

cos[ξi − ξj ] cos[ξi − ξj ],

L[ξ] = − 1
2N2

cos2[ξi − ξj ] = −1
4

+O(N− 1
2 ),

where the factors of N have been inserted to achieve appropriate scaling in
the N →∞ limit. The function L[ξ], which is obviously bounded from below,
must decrease monotonically during the dynamics. To find out whether the
state ξ is a stable fixed–point of the dynamics we have to calculate L and
derivatives of L at ξ = ξ:

∂L

∂ξi

∣∣∣
∣
ξ

=
1

2N2

∑

j

sin[2(ξi − ξj)],

∂2L

∂ξ2
i

∣∣
∣∣
ξ

=
1

N2

∑

j

cos2[ξi − ξj ],

i �= j :
∂2L

∂ξi∂ξj

∣
∣∣∣
ξ

= − 1
N2

cos2[ξi − ξj ].

Clearly limN→∞ L[ξ] = − 1
4 . Putting ξ = ξ + Δξ, with Δξi = O(N0), we find
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L[ξ + Δξ]− L[ξ] = Δξi
∂L

∂ξi
|ξ (2.173)

+
1
2
ΔξiΔξj

∂2L

∂ξi∂ξj
|ξ +O(Δξ3)

=
1

4N

∑

i

Δξ2
i −

1
2N2

ΔξiΔξj cos2[ξi − ξj ] +O(N− 1
2 ,Δξ3)

=
1
4
{ 1
N

∑

i

Δξ2
i − [

1
N

∑

i

Δξi]
2 − [

1
N

Δξi cos(2ξi)]
2

−[
1
N

∑

i

Δξi sin(2ξi)]
2}+O(N− 1

2 ,Δξ3).

In leading order in N the following three vectors in R
N are normalized and

orthogonal:

e1 =
1√
N

(1, 1, . . . , 1), e2 =
√

2√
N

(cos(2ξ1), . . . , cos(2ξN )),

e2 =
√

2√
N

(sin(2ξ1), . . . , sin(2ξN )).

We may therefore use

Δξ2 ≥ (Δξ·1)2 + (Δξ · 2)2 + (Δξ · 3)2,

insertion of which into (2.173) leads to

L[ξ + Δξ]− L[ξ] ≥ [
1

2N

∑

i

Δξi cos(2ξi)]
2

+ [
1

2N

∑

i

Δξi sin(2ξi)]
2 +O(N− 1

2 ,Δξ3).

Thus for large N the second derivative of L is non-negative at ξ = ξ, and the
phase pattern ξ has indeed become a fixed–point attractor of the dynamics
of the noise-free coupled oscillator network. The same is found to be true for
the states ξ = ±ξ + α(1, . . . , 1) (for any α).

We next follow the strategy of the Hopfield model and attempt to simply
extend the above recipe for the synapses to the case of having a finite number
p of phase patterns ξμ = (ξμ1 , . . . , ξ

μ
N ) ∈ [−π, π]N , giving

Jij =
1
N

p∑

μ=1

cos[ξμi − ξμj ], (2.174)

where the factor N , as before, ensures a proper limit N →∞ later. In analogy
with our solution of the Hopfield model we define the following averages over
pattern variables:
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〈g[ξ]〉ξ = lim
N→∞

∑

i

g[ξi], ξi = (ξ1
i , . . . , ξ

p
i ) ∈ [−π, π]p.

We can write the Hamiltonian H(ξ) of (2.153) in the form [Coo01, SC00,
SC01, CKS05]

H(ξ) = − 1
2N

p∑

μ=1

cos[ξμi − ξμj ] cos[ξi − ξj ]

= −N

2

p∑

μ=1

{
mμ
cc(ξ)2 + mμ

cs(ξ)2 + mμ
sc(ξ)2 + mμ

ss(ξ)2
}
,

in which

mμ
cc(ξ) =

1
N

cos(ξμi ) cos(ξi), (2.175)

mμ
cs(ξ) =

1
N

cos(ξμi ) sin(ξi),

mμ
sc(ξ) =

1
N

sin(ξμi ) cos(ξi), (2.176)

mμ
ss(ξ) =

1
N

sin(ξμi ) sin(ξi).

The free energy per oscillator can now be written as

F/N = − 1
βN

log
∫
· · ·

∫
dξ e−βH(ξ) =

− 1
βN

log
∫
· · ·

∫
dξ e

1
2βN

∑
μ

∑
		m

μ
		(ξ)2 ,

with ## ∈ {cc, ss, cs, sc}. Upon introducing the notation m�� = (m1
��, . . . ,m

p
��)

we can again express the free energy in terms of the density of states
D({m��}) = (2π)−N

∫
· · ·

∫
dξ

∏
�� δ[m�� −m��(σ)]:

F/N = − 1
β

log(2π)− 1
βN

log
∫ ∏

��

dm�� D({m��})e
1
2βN

∑
		 m2

		 . (2.177)

Since p is finite, the leading contribution to the density of states (as N →∞),
which will give us the entropy, can be calculated by writing the δ−functions
in integral representation:
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lim
N→∞

1
N

logD({m��}) = lim
N→∞

1
N

log
∫ ∏

��

[
dx�� eiNx		·m		

]
×

∫
. . .

∫
dξ

(2π)N
×

e−i[x
μ
cc cos(ξμ

i ) cos(ξi)+x
μ
cs cos(ξμ

i ) sin(ξi)+x
μ
sc sin(ξμ

i ) cos(ξi)+x
μ
ss sin(ξμ

i ) sin(ξi)]

= extr{x		}{i
∑

��

x�� ·m�� + 〈log
∫

dξ

2π
×

e−i[x
μ
cc cos(ξμ) cos(ξ)+xμ

cs cos(ξμ) sin(ξ)+xμ
sc sin(ξμ) cos(ξ)+xμ

ss sin(ξμ) sin(ξ)]〉ξ}.

The relevant extremum is purely imaginary so we put x�� = iβy�� (see our
previous discussion for the Hopfield model) and, upon inserting the density of
states into our original expression for the free energy per oscillator, arrive at

lim
N→∞

F/N = extr{m		,y		} f({m��,y��}),

f({m��,y��}) = − 1
β

log(2π)− 1
2

∑

��

m2
�� +

∑

��

y�� ·m��

− 1
β
〈log

∫
dξ

2π
eβ[yμ

cc cos(ξμ) cos(ξ)+yμ
cs cos(ξμ) sin(ξ)+yμ

sc sin(ξμ) cos(ξ)+yμ
ss sin(ξμ) sin(ξ)]〉ξ

Taking derivatives with respect to the order parameters m�� gives us y�� =
m��, with which we can eliminate the y��. Derivation with respect to the m��

subsequently gives the saddle–point equations

mμ
cc = (2.178)

〈cos[ξμ]
∫

dξ cos[ξ]eβ cos[ξ][mν
cc cos[ξν ]+mν

sc sin[ξν ]]+β sin[ξ][mν
cs cos[ξν ]+mν

ss sin[ξν ]]

∫
dξ eβ cos[ξ][mν

cc cos[ξν ]+mν
sc sin[ξν ]]+β sin[ξ][mν

cs cos[ξν ]+mν
ss sin[ξν ]]

〉ξ,

mμ
cs = (2.179)

〈cos[ξμ]
∫

dξ sin[ξ]eβ cos[ξ][mν
cc cos[ξν ]+mν

sc sin[ξν ]]+β sin[ξ][mν
cs cos[ξν ]+mν

ss sin[ξν ]]

∫
dξ eβ cos[ξ][mν

cc cos[ξν ]+mν
sc sin[ξν ]]+β sin[ξ][mν

cs cos[ξν ]+mν
ss sin[ξν ]]

〉ξ,

mμ
sc = (2.180)

〈sin[ξμ]
∫

dξ cos[ξ]eβ cos[ξ][mν
cc cos[ξν ]+mν

sc sin[ξν ]]+β sin[ξ][mν
cs cos[ξν ]+mν

ss sin[ξν ]]

∫
dξ eβ cos[ξ][mν

cc cos[ξν ]+mν
sc sin[ξν ]]+β sin[ξ][mν

cs cos[ξν ]+mν
ss sin[ξν ]]

〉ξ,

mμ
ss = (2.181)

〈sin[ξμ]
∫

dξ sin[ξ]eβ cos[ξ][mν
cc cos[ξν ]+mν

sc sin[ξν ]]+β sin[ξ][mν
cs cos[ξν ]+mν

ss sin[ξν ]]

∫
dξ eβ cos[ξ][mν

cc cos[ξν ]+mν
sc sin[ξν ]]+β sin[ξ][mν

cs cos[ξν ]+mν
ss sin[ξν ]]

〉ξ,

The equilibrium values of the observables m��, as defined in (2.175,2.176),
are now given by the solution of the coupled equations (2.178-2.181) which
minimizes
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f({m��}) =
1
2

∑

��

m2
�� −

1
β
〈log

∫
dξ × (2.182)

eβ cos[ξ][mν
cc cos[ξν ]+mν

sc sin[ξν ]]+β sin[ξ][mν
cs cos[ξν ]+mν

ss sin[ξν ]]〉ξ.

We can confirm that the relevant saddle–point must be a minimum by in-
specting the β = 0 limit (infinite noise levels):

lim
β→0

f({m��}) =
1
2

∑

��

m2
�� −

1
β

log(2π).

From now on we will restrict our analysis to phase pattern components
ξμi which have all been drawn independently at random from [−π, π], with
uniform probability density, so that 〈g[ξ]〉ξ = (2π)−p

∫ π
−π . . .

∫ π
−π dξ g[ξ]. At

β = 0 (T =∞) one finds only the trivial state mμ
�� = 0. It can be shown that

there will be no discontinuous transitions to a non–trivial state as the noise
level (temperature) is reduced. The continuous ones follow upon expansion of
the equations (2.178-2.181) for small {m��}, which is found to give (for each
μ and each combination ##):

mμ
�� =

1
4
βmμ

�� +O({m2
��}).

Thus a continuous transition to recall states occurs at T = 1
4 . Full classification

of all solutions of (2.178-2.181) is ruled out. Here we will restrict ourselves
to the most relevant ones, such as the pure states, where mμ

�� = m��δμλ
(for some pattern label λ). Here the oscillator phases are correlated with
only one of the stored phase patterns (if at all). Insertion into the above
expression for f({m��}) shows that for such solutions we have to minimize
[Coo01, SC00, SC01, CKS05]

f({m��}) =
1
2

∑

��

m2
�� −

1
β

∫
dξ

2π
log

∫
dξ × (2.183)

eβ cos[ξ][mcc cos[ξ]+msc sin[ξ]]+β sin[ξ][mcs cos[ξ]+mss sin[ξ]].

We anticipate solutions corresponding to the (partial) recall of the stored
phase pattern ξλ or its mirror image (modulo overall phase shifts ξi → ξi+ δ,
under which the synapses are obviously invariant). Insertion into (2.178-2.181)
of the state

ξi = ξλi + δ gives (mcc,msc,mcs,mss) =
1
2
(cos δ,− sin δ, sin δ, cos δ).

Similarly, insertion into (2.178-2.181) of

ξi = −ξλi + δ gives (mcc,msc,mcs,mss) =
1
2
(cos δ, sin δ, sin δ,− cos δ).

Thus we can identify retrieval states as those solutions which are of the form
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(i) retrieval of ξλ : (mcc,msc,mcs,mss) = m(cos δ,− sin δ, sin δ, cos δ),

(ii) retrieval of − ξλ : (mcc,msc,mcs,mss) = m(cos δ, sin δ, sin δ,− cos δ),

with full recall corresponding to m = 1
2 . Insertion into the saddle–point equa-

tions and into (2.183), followed by an appropriate shift of the integration
variable ξ, shows that the free energy is independent of δ (so the above two
ansätzes solve the saddle–point equations for any δ) and that

m =
1
2

∫
dξ cos[ξ]eβm cos[ξ]

∫
dξ eβm cos[ξ]

, f(m) = m2 − 1
β

log
∫

dξ eβm cos[ξ].

Expansion in powers of m, using log(1 + z) = z − 1
2z

2 + O(z3), reveals that
non-zero minima m indeed bifurcate continuously at T = β−1 = 1

4 :

f(m) +
1
β

log[2π] = (1− 1
4
β)m2 +

1
64

β3m4 +O(m6). (2.184)

Retrieval states are obviously not the only pure states that solve the
saddle–point equations. The function (2.183) is invariant under the follow-
ing discrete (non-commuting) transformations:

I : (mcc,msc,mcs,mss) → (mcc,msc,−mcs,−mss),
II : (mcc,msc,mcs,mss) → (mcs,mss,mcc,msc).

We expect these to induce solutions with specific symmetries. In particular
we anticipate the following symmetric and antisymmetric states:

symmetric under I :(mcc, msc, mcs, mss) =
√

2m(cos δ, sin δ, 0, 0),
antisymmetric under I :(mcc, msc, mcs, mss) =

√
2m(0, 0, cos δ, sin δ),

symmetric under II :(mcc, msc, mcs, mss) = m(cos δ, sin δ, cos δ, sin δ),
antisymmetric under II :(mcc, msc, mcs, mss) = m(cos δ, sin δ,− cos δ,− sin δ).

Insertion into the saddle–point equations and into (2.183) shows in all four
cases the parameter δ is arbitrary and that always

m =
1√
2

∫
dξ

2π
cos[ξ]

∫
dξ cos[ξ]eβm

√
2 cos[ξ] cos[ξ]

∫
dξ eβm

√
2 cos[ξ] cos[ξ]

,

f(m) = m2 − 1
β

∫
dξ

2π
log

∫
dξ eβm

√
2 cos[ξ] cos[ξ].

Expansion in powers of m reveals that non-zero solutions m here again bifur-
cate continuously at T = 1

4 :

f(m) +
1
β

log[2π] = (1− 1
4
β)m2 +

3
2
· 1
64

β3m4 +O(m6). (2.185)

However, comparison with (2.184) shows that the free energy of the pure recall
states is lower. Thus the system will prefer the recall states over the above
solutions with specific symmetries.
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Note, that the free energy and the order parameter equation for the pure
recall states can be written in terms of Bessel functions as follows:

m =
1
2
I1(βm)
I0(βm)

, f(m) = m2 − 1
β

log[2πI0(βm)]

2.3.6 Attractor Neural Networks with Binary Neurons

The simplest non–trivial recurrent neural networks consist of N binary neu-
rons σi ∈ {−1, 1}, which respond stochastically to post-synaptic potentials
(or local fields) hi(σ), with σ = (σ1, . . . , σN ). The fields depend linearly on
the instantaneous neuron states,

hi(σ) = Jijσj + θi,

with the Jij representing synaptic efficacies, and the θi representing external
stimuli and/or neural thresholds [Coo01, SC00, SC01, CKS05].

Closed Macroscopic Laws for Sequential Dynamics

Here, we will first show how for sequential dynamics (where neurons are up-
dated one after the other) one can calculate, from the microscopic stochastic
laws, differential equations for the probability distribution of suitably defined
macroscopic observables. For mathematical convenience our starting point
will be the continuous-time master equation for the microscopic probability
distribution pt(σ)

ṗt(σ) = {wi(Fiσ)pt(Fiσ)− wi(σ)pt(σ)} , (2.186)

wi(σ) =
1
2
[1− σi tanh[βhi(σ)]],

with FiΦ(σ) = Φ(σ1, . . . , σi−1,−σi, σi+1, . . . , σN ).
Let us illustrate the basic ideas with the help of a simple (infinite range)

toy model: Jij = (J/N)ηiξj and θi = 0 (the variables ηi and ξi are arbitrary,
but may not depend on N). For ηi = ξi = 1 we get a network with uniform
synapses. For ηi = ξi ∈ {−1, 1} and J > 0 we recover the Hopfield [Hop82]
model with one stored pattern. Note: the synaptic matrix is non-symmetric
as soon as a pair (ij) exists such that ηiξj �= ηjξi, so in general equilibrium
statistical mechanics will not apply. The local fields become hi(σ) = Jηim(σ)
with m(σ) = 1

N

∑
k ξkσk. Since they depend on the microscopic state σ only

through the value of m, the latter quantity appears to constitute a natural
macroscopic level of description. The probability density of finding the macro-
scopic state m(σ) = m is given by Pt[m] =

∑
σ pt(σ)δ[m −m(σ)]. Its time

derivative follows upon inserting (2.186):
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Ṗt[m] =
∑

σ

pt(σ)wk(σ)
{
δ[m−m(σ) +

2
N

ξkσk]− δ [m−m(σ)]
}

=
∂

∂m

{
∑

σ

pt(σ)δ [m−m(σ)]
2
N

ξkσkwk(σ)

}

+O(
1
N

).

Inserting our expressions for the transition rates wi(σ) and the local fields
hi(σ) gives:

Ṗt[m] =
∂

∂m

{
Pt[m]

[
m− 1

N
ξk tanh[ηkβJm]

]}
+O(N−1).

In the limit N →∞ only the first term survives. The general solution of the
resulting Liouville equation is

Pt[m] =
∫

dm0 P0[m0]δ [m−m(t|m0)] ,

where m(t|m0) is the solution of

ṁ = lim
N→∞

1
N

ξk tanh[ηkβJm]−m, m(0) = m0. (2.187)

This describes deterministic evolution; the only uncertainty in the value of m
is due to uncertainty in initial conditions. If at t = 0 the quantity m is known
exactly, this will remain the case for finite time–scales; m turns out to evolve
in time according to (2.187).

Let us now allow for less trivial choices of the synaptic matrix {Jij} and
try to calculate the evolution in time of a given set of macroscopic observables
Ω(σ) = (Ω1(σ), . . . , Ωn(σ)) in the limit N → ∞. There are no restrictions
yet on the form or the number n of these state variables; these will, however,
arise naturally if we require the observables Ω to obey a closed set of deter-
ministic laws, as we will see. The probability density of finding the system in
macroscopic state Ω is given by [Coo01, SC00, SC01, CKS05]:

Pt [Ω] =
∑

σ

pt(σ)δ [Ω−Ω(σ)] . (2.188)

Its time derivative is got by inserting (2.186). If in those parts of the resulting
expression which contain the operators Fi we perform the transformations
σ → Fiσ, we arrive at

Ṗt [Ω] =
∑

σ

pt(σ)wi(σ) {δ [Ω−Ω(Fiσ)]− δ [Ω−Ω(σ)]} .

If we define
Ωμ(Fiσ) = Ωμ(σ) + Δiμ(σ)
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and make a Taylor expansion in powers of {Δiμ(σ)}, we finally get the so–
called Kramers–Moyal expansion:9

Ṗt [Ω] =
∑

�≥1

(−1)�

 +

n∑

μ1=1

· · ·
n∑

μ�=1

∂�

∂Ωμ1
· · · ∂Ωμ�

{
Pt [Ω]F (�)

μ1···μ�
[Ω; t]

}
.

(2.189)
It involves conditional averages 〈f(σ)〉Ω;t and the ‘discrete derivatives’

Δjμ(σ) = Ωμ(Fjσ)−Ωμ(σ),

F
(l)
μ1···μl

[Ω; t] = 〈wj(σ)Δjμ1
(σ) · · ·Δjμ�

(σ)〉Ω;t,

〈f(σ)〉Ω;t =
∑

σ pt(σ)δ [Ω−Ω(σ)] f(σ)
∑

σ pt(σ)δ [Ω−Ω(σ)]
. (2.190)

Retaining only the  = 1 term in (2.189) would lead us to a Liouville equation,
which describes deterministic flow in Ω space. Including also the  = 2 term
leads us to a Fokker–Planck equation which, in addition to flow, describes
diffusion of the macroscopic probability density. Thus a sufficient condition for
the observables Ω(σ) to evolve in time deterministically in the limit N →∞
is:

lim
N→∞

∑

�≥2

1
 +

n∑

μ1=1

· · ·
n∑

μ�=1

〈|Δjμ1
(σ) · · ·Δjμ�

(σ)|〉Ω;t = 0. (2.191)

In the simple case where all observables Ωμ scale similarly in the sense that all
‘derivatives’ Δjμ = Ωμ(Fiσ) − Ωμ(σ) are of the same order in N (i.e., there
is a monotonic function Δ̃N such that Δjμ = O(Δ̃N ) for all jμ), for instance,
criterion (2.191) becomes:

lim
N→∞

nΔ̃N
√

N = 0. (2.192)

If for a given set of observables condition (2.191) is satisfied, we can for large
N describe the evolution of the macroscopic probability density by a Liouville
equation:

Ṗt [Ω] = − ∂

∂Ωμ

{
Pt [Ω]F (1)

μ [Ω; t]
}

,

whose solution describes deterministic flow,
9 The Kramers–Moyal expansion (2.189) is to be interpreted in a distributional

sense, i.e., only to be used in expressions of the form
∫

dΩt(Ω)G(Ω) with smooth
functions G(Ω), so that all derivatives are well–defined and finite. Furthermore,
(2.189) will only be useful if the Δjμ, which measure the sensitivity of the macro-
scopic quantities to single neuron state changes, are sufficiently small. This is
to be expected: for finite N any observable can only assume a finite number of
possible values; only for N → ∞ may we expect smooth probability distributions
for our macroscopic quantities.
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Pt[Ω] =
∫

dΩ0P0[Ω0]δ[Ω−Ω(t|Ω0)],

with Ω(t|Ω0) given, in turn, as the solution of

Ω̇(t) = F(1) [Ω(t); t] , Ω(0) = Ω0. (2.193)

In taking the limit N → ∞, however, we have to keep in mind that the
resulting deterministic theory is got by taking this limit for finite t. According
to (2.189) the  > 1 terms do come into play for sufficiently large times t; for
N →∞, however, these times diverge by virtue of (2.191).

Now, equation (2.193) will in general not be autonomous; tracing back
the origin of the explicit time dependence in the right–hand side of (2.193)
one finds that to calculate F(1) one needs to know the microscopic probability
density pt(σ). This, in turn, requires solving equation (2.186) (which is exactly
what one tries to avoid). We will now discuss a mechanism via which to
eliminate the offending explicit time dependence, and to turn the observables
Ω(σ) into an autonomous level of description, governed by closed dynamic
laws. The idea is to choose the observables Ω(σ) in such a way that there is
no explicit time dependence in the flow field F(1) [Ω; t] (if possible). According
to (2.190) this implies making sure that there exist functions Φμ [Ω] such that

lim
N→∞

wj(σ)Δjμ(σ) = Φμ [Ω(σ)] , (2.194)

in which case the time dependence of F(1) indeed drops out and the macro-
scopic state vector simply evolves in time according to [Coo01, SC00, SC01,
CKS05]:

Ω̇ = Φ [Ω] , Φ = (Φ1[Ω], . . . , Φn[Ω]).

Clearly, for this closure method to apply, a suitable separable structure of
the synaptic matrix is required. If, for instance, the macroscopic observ-
ables Ωμ depend linearly on the microscopic state variables σ (i.e., Ωμ(σ) =
1
N

∑N
j=1 ωμjσj), we get with the transition rates defined in (2.186):

Ω̇μ = lim
N→∞

1
N

ωμj tanh(βhj(σ))−Ωμ, (2.195)

in which case the only further condition for (2.194) to hold is that all local
fields hk(σ) must (in leading order in N) depend on the microscopic state
σ only through the values of the observables Ω; since the local fields depend
linearly on σ this, in turn, implies that the synaptic matrix must be sepa-
rable: if Jij =

∑
μKiμωμj then indeed hi(σ) =

∑
μKiμΩμ(σ) + θi. Next

we will show how this approach can be applied to networks for which the
matrix of synapses has a separable form (which includes most symmetric and
non–symmetric Hebbian type attractor models). We will restrict ourselves to
models with θi = 0; introducing non–zero thresholds is straightforward and
does not pose new problems.



2.3 Synergetics of Recurrent and Attractor Neural Networks 279

Application to Separable Attractor Networks

We consider the following class of models, in which the interaction matrices
have the form

Jij =
1
N

Q(ξi; ξj), ξi = (ξ1
i , . . . , ξ

p
i ). (2.196)

The components ξμi , representing the information (’patterns’) to be stored or
processed, are assumed to be drawn from a finite discrete set Λ, containing nΛ
elements (they are not allowed to depend on N). The Hopfield model [Hop82]
corresponds to choosing Q(x;y) = x ·y and Λ ≡ {−1, 1}. One now introduces
a partition of the system {1, . . . , N} into npΛ so–called sublattices Iη:

Iη = {i| ξi = η}, {1, . . . , N} =
⋃

η

Iη, (η ∈ Λp).

The number of neurons in sublattice Iη is denoted by |Iη| (this number
will have to be large). If we choose as our macroscopic observables the average
activities (‘magnetizations’) within these sublattices, we are able to express
the local fields hk solely in terms of macroscopic quantities:

mη(σ) =
1
|Iη|

∑

i∈Iη

σi, hk(σ) = pηQ (ξk;η)mη, (2.197)

with the relative sublattice sizes pη = |Iη|/N . If all pη are of the same order
in N (which, for example, is the case if the vectors ξi have been drawn at
random from the set Λp) we may write Δjη = O(npΛN

−1) and use (2.192). The
evolution in time of the sublattice activities is then found to be deterministic
in the N →∞ limit if limN→∞ p/ logN = 0. Furthermore, condition (2.194)
holds, since

wj(σ)Δjη(σ) = tanh[βpη′Q (η;η′)mη′ ]−mη.

This situation is described by (2.195), and that the evolution in time of the
sublattice activities is governed by the following autonomous set of differential
equations [RKH88]:

ṁη = tanh[βpη′Q (η;η′)mη′ ]−mη. (2.198)

We see that, in contrast to the equilibrium techniques as described above,
here there is no need at all to require symmetry of the interaction matrix
or absence of self-interactions. In the symmetric case Q(x;y) = Q(y;x) the
system will approach equilibrium; if the kernel Q is positive definite this can
be shown, for instance, by inspection of the Lyapunov function L{mη}:10

10 Recall that Lyapunov function is a function of the state variables which is bounded
from below and whose value decreases monotonically during the dynamics, see
e.g., [Kha92]. Its existence guarantees evolution towards a stationary state (under
some weak conditions).
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L{mη} =
1
2
pηmηQ(η;η′)mη′pη′

− 1
β

∑

η

pη log cosh[βQ(η;η′)mη′pη′ ],

which is bounded from below and obeys:

L̇ = − [pηṁη]Q(η;η′) [pη′ṁη′ ] ≤ 0. (2.199)

Note that from the sublattice activities, in turn, follow the Hopfield overlaps
mμ(σ),

mμ(σ) =
1
N

ξμi σi = pηημmη. (2.200)

Simple examples of relevant models of the type (2.196), the dynamics of which
are for large N described by equation (2.198), are for instance the ones where
one applies a nonlinear operation Φ to the standard Hopfield–type [Hop82]
(or Hebbian) interactions . This nonlinearity could result from e.g., a clipping
procedure or from retaining only the sign of the Hebbian values:

Jij =
1
N

Φ(ξμi ξ
μ
j ) : e.g.,

Φ(x) =

⎧
⎨

⎩

−K for x ≤ K
x for −K < x < K
K for x ≥ K

, or Φ(x) = sgn(x).

The effect of introducing such nonlinearities is found to be of a quantitative
nature, giving rise to little more than a re-scaling of critical noise levels and
storage capacities. We will illustrate this statement by working out the p = 2
equations for randomly drawn pattern bits ξμi ∈ {−1, 1}, where there are only
four sub-lattices, and where pη = 1

4 for all η (details can be found in e.g.,
[DHS91]). Using Φ(0) = 0 and Φ(−x) = −Φ(x) (as with the above examples)
we get from (2.198):

ṁη = tanh[
1
4
βΦ(2)(mη −m−η)]−mη. (2.201)

Here the choice made for Φ(x) shows up only as a re-scaling of the temperature.
From (2.201) we further get d

dt (mη + m−η) = −(mη + m−η). The system
decays exponentially towards a state where, according to (2.200), mη = −m−η

for all η. If at t = 0 this is already the case, we find (at least for p = 2)
decoupled equations for the sub-lattice activities.

Now, equations (2.198,2.200) suggest that at the level of overlaps there will
be, in turn, closed laws if the kernel Q is bilinear, Q(x;y) =

∑
μν xμAμνyν ,

or [Coo01, SC00, SC01, CKS05]:

Jij =
1
N

ξμi Aμνξ
ν
j , ξi = (ξ1

i , . . . , ξ
p
i ). (2.202)
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We will see that now the ξμi need not be drawn from a finite discrete set
(as long as they do not depend on N). The Hopfield model corresponds to
Aμν = δμν and ξμi ∈ {−1, 1}. The fields hk can now be written in terms of
the overlaps mμ:

hk(σ) = ξk ·Am(σ), m = (m1, . . . ,mp), mμ(σ) =
1
N

ξμi σi.

For this choice of macroscopic variables we find Δjμ = O(N−1), so the evo-
lution of the vector m becomes deterministic for N → ∞ if, according to
(2.192), limN→∞ p/

√
N = 0. Again (2.194) holds, since

wj(σ)Δjμ(σ) =
1
N

ξk tanh [βξk ·Am]−m.

Thus the evolution in time of the overlap vector m is governed by a closed set
of differential equations:

ṁ = 〈ξ tanh [βξ ·Am] 〉ξ −m, 〈Φ(ξ)〉ξ =
∫

dξ ρ(ξ)Φ(ξ), (2.203)

with ρ(ξ) = limN→∞ N−1
∑
i δ[ξ − ξi]. Symmetry of the synapses is not re-

quired. For certain non–symmetric matrices A one finds stable limit–cycle so-
lutions of (2.203). In the symmetric case Aμν = Aνμ the system will approach
equilibrium; the Lyapunov function (2.199) for positive definite matrices A
now becomes:

L{m} =
1
2
m ·Am− 1

β
〈 log cosh [βξ ·Am] 〉ξ.

As a second simple application of the flow equations (2.203) we turn to
the relaxation times corresponding to the attractors of the Hopfield model
(where Aμν = δμν). Expanding (2.203) near a stable fixed–point m∗, i.e.,
m(t) = m∗ + x(t) with |x(t)| � 1, gives the linearized equation

ẋμ = [β〈ξμξν tanh[βξ ·m∗]〉ξ − δμν ]xν +O(x2). (2.204)

The Jacobian of (2.203), which determines the linearized equation (2.204),
turns out to be minus the curvature matrix of the free energy surface at the
fixed-point. The asymptotic relaxation towards any stable attractor is gen-
erally exponential, with a characteristic time τ given by the inverse of the
smallest eigenvalue of the curvature matrix. If, in particular, for the fixed–
point m∗ we substitute an n−mixture state, i.e., mμ = mn (μ ≤ n) and
mμ = 0 (μ > n), and transform (2.204) to the basis where the correspond-
ing curvature matrix D(n) (with eigenvalues Dn

λ) is diagonal, x → x̃, we get
x̃λ(t) = x̃λ(0)e−tD

n
λ + . . .so τ−1 = minλDn

λ , which we have already calculated
in determining the character of the saddle–points of the free-energy surface.
The relaxation time for the n−mixture attractors decreases monotonically
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with the degree of mixing n, for any noise level. At the transition where a
macroscopic state m∗ ceases to correspond to a local minimum of the free en-
ergy surface, it also de–stabilizes in terms of the linearized dynamic equation
(2.204) (as it should). The Jacobian develops a zero eigenvalue, the relaxation
time diverges, and the long–time behavior is no longer got from the linearized
equation. This gives rise to critical slowing down (i.e., power law relaxation
as opposed to exponential relaxation). For instance, at the transition temper-
ature Tc = 1 for the n = 1 (pure) state, we find by expanding (2.203):

ṁμ = mμ[
2
3
m2
μ −m2] +O(m5),

which gives rise to a relaxation towards the trivial fixed–point of the form
m ∼ t−

1
2 .

If one is willing to restrict oneself to the limited class of models (2.202)
(as opposed to the more general class (2.196)) and to the more global level
of description in terms of p overlap parameters mμ instead of npΛ sublattice
activities mη, then there are two rewards. Firstly there will be no restrictions
on the stored pattern components ξμi (for instance, they are allowed to be
real-valued); secondly the number p of patterns stored can be much larger for
the deterministic autonomous dynamical laws to hold (p �

√
N instead of

p � logN , which from a biological point of view is not impressive [Coo01,
SC00, SC01, CKS05].

Closed Macroscopic Laws for Parallel Dynamics

We now turn to the parallel dynamics counterpart of (2.186), i.e., the Markov
chain

p�+1(σ) =
∑

σ′

W [σ;σ′] p�(σ′), (2.205)

W [σ;σ′] =
N∏

i=1

1
2

[1 + σi tanh[βhi(σ′)]] ,

with σi ∈ {−1, 1}, and with local fields hi(σ) defined in the usual way. The
evolution of macroscopic probability densities will here be described by dis-
crete maps, in stead of differential equations.

Let us first see what happens to our previous toy model: Jij = (J/N)ηiξj
and θi = 0. As before we try to describe the dynamics at the (macroscopic)
level of the quantity m(σ) = 1

N

∑
k ξkσk. The evolution of the macroscopic

probability density Pt[m] is got by inserting (2.205):



2.3 Synergetics of Recurrent and Attractor Neural Networks 283

Pt+1[m] =
∑

σσ′

δ [m−m(σ)]W [σ;σ′] pt(σ′)

=
∫

dm′ W̃t [m,m′]Pt[m′], with (2.206)

W̃t [m,m′] =
∑

σσ′ δ [m−m(σ)] δ [m′ −m(σ′)]W [σ;σ′] pt(σ′)
∑

σ′ δ [m′ −m(σ′)] pt(σ′)
.

We now insert our expression for the transition probabilities W [σ;σ′] and
for the local fields. Since the fields depend on the microscopic state σ only
through m(σ), the distribution pt(σ) drops out of the above expression for
W̃t which thereby loses its explicit time–dependence, W̃t [m,m′] → W̃ [m,m′]:

W̃ [m,m′] = e−
∑

i log cosh(βJm′ηi)〈δ [m−m(σ)] eβJm
′ηiσi〉σ

with 〈 . . . 〉σ = 2−N
∑

σ

. . .

Inserting the integral representation for the δ−function allows us to perform
the average:

W̃ [m,m′] =
[
βN

2π

] ∫
dk eNΨ(m,m′,k),

Ψ = iβkm + 〈 log coshβ[Jηm′ − ikξ]〉η,ξ − 〈 log coshβ[Jηm′]〉η.

Since W̃ [m,m′] is (by construction) normalized,
∫

dm W̃ [m,m′] = 1, we
find that for N → ∞ the expectation value with respect to W̃ [m,m′] of
any sufficiently smooth function f(m) will be determined only by the value
m∗(m′) of m in the relevant saddle–point of Ψ :

∫
dm f(m)W̃

[
m, m′] =

∫
dmdk f(m)eNΨ(m,m′,k)

∫
dmdk eNΨ(m,m′,k)

→ f(m∗(m′)), (N → ∞).

Variation of Ψ with respect to k and m gives the two saddle–point equations:

m = 〈ξ tanhβ[Jηm′ − ξk]〉η,ξ, k = 0.

We may now conclude that limN→∞ W̃ [m,m′] = δ [m−m∗(m′)] with m∗(m′)
= 〈ξ tanh(βJηm′)〉η,ξ, and that the macroscopic equation (2.206) becomes
[Coo01, SC00, SC01, CKS05]:

Pt+1[m] =
∫

dm′ δ
[
m− 〈ξ tanh(βJηm′)〉ηξ

]
Pt[m′], (N →∞).

This describes deterministic evolution. If at t = 0 we know m exactly, this
will remain the case for finite time-scales, and m will evolve according to a
discrete version of the sequential dynamics law (2.187):

mt+1 = 〈ξ tanh[βJηmt]〉η,ξ.
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We now try to generalize the above approach to less trivial classes of
models. As for the sequential case we will find in the limit N →∞ closed de-
terministic evolution equations for a more general set of intensive macroscopic
state variables Ω(σ) = (Ω1(σ), . . . , Ωn(σ) if the local fields hi(σ) depend on
the microscopic state σ only through the values of Ω(σ), and if the number
n of these state variables necessary to do so is not too large. The evolution of
the ensemble probability density (2.188) is now got by inserting the Markov
equation (2.205):

Pt+1 [Ω] =
∫

dΩ′ W̃t [Ω,Ω′]Pt [Ω′] , (2.207)

W̃t [Ω,Ω′] =
∑

σσ′ δ [Ω−Ω(σ)] δ [Ω′ −Ω(σ′)]W [σ;σ′] pt(σ′)
∑

σ′ δ [Ω′ −Ω(σ′)] pt(σ′)
(2.208)

= 〈δ [Ω−Ω(σ)] 〈e[βσihi(σ
′)−log cosh(βhi(σ

′))]〉Ω′;t〉σ,

with 〈 . . . 〉σ = 2−N
∑

σ . . ., and with the conditional (or sub-shell) aver-
age defined as in (2.190). It is clear from (2.208) that in order to find au-
tonomous macroscopic laws, i.e., for the distribution pt(σ) to drop out, the
local fields must depend on the microscopic state σ only through the macro-
scopic quantities Ω(σ): hi(σ) = hi[Ω(σ)]. In this case W̃t loses its explicit
time–dependence, W̃t [Ω,Ω′] → W̃ [Ω,Ω′]. Inserting integral representations
for the δ−functions leads to:

W̃ [Ω,Ω′] =
[
βN

2π

]n ∫
dK eNΨ(Ω,Ω′,K),

Ψ = iβK ·Ω +
1
N

log 〈eβ[
∑

i σihi[Ω
′]−iNK·Ω(σ)]〉σ

− 1
N

∑

i

log cosh[βhi[Ω′]].

Using the normalization
∫

dΩ W̃ [Ω,Ω′] = 1, we can write expectation values
with respect to W̃ [Ω,Ω′] of macroscopic quantities f [Ω] as

∫
dΩ f [Ω]W̃ [Ω,Ω′] =

∫
dΩdK f [Ω]eNΨ(Ω,Ω′,K)

∫
dΩdK eNΨ(Ω,Ω′,K)

. (2.209)

For saddle–point arguments to apply in determining the leading order in N
of (2.209), we encounter restrictions on the number n of our macroscopic
quantities (as expected), since n determines the dimension of the integrations
in (2.209). The restrictions can be found by expanding Ψ around its maximum
Ψ∗. After defining x = (Ω,K), of dimension 2n, and after translating the
location of the maximum to the origin, one has [Coo01, SC00, SC01, CKS05]

Ψ(x) = Ψ∗ − 1
2
xμxνHμν + xμxνxρLμνρ +O(x4), giving
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∫
dx g(x)eNΨ(x)

∫
dx g(x)eNΨ(x)

− g(0) =
∫

dx [g(x)− g(0)]e−
1
2Nx·Hx+NxμxνxρLμνρ+O(Nx4)

∫
dx e−

1
2Nx·Hx+NxμxνxρLμνρ+O(Nx4)

=
∫

dy [g(y/
√

N)− g(0)]e−
1
2y·Hy+yμyνyρLμνρ/

√
N+O(y4/N)

∫
dy e−

1
2y·Hy+yμyνyρLμνρ/

√
N+O(y4/N)

=

∫
dy

[
N− 1

2 y ·∇g(0) +O(y2/N)
]
e−

1
2y·Hy

[
1 + yμyνyρLμνρ/

√
N +O(y6/N)

]

∫
dy e−

1
2y·Hy

[
1 + yμyνyρLμνρ/

√
N +O(y6/N)

]

= O(n2/N) +O(n4/N2) + non− dominant terms, (N,n→∞),

with H denoting the Hessian (curvature) matrix of the surface Ψ at the min-
imum Ψ∗. We thus find

lim
N→∞

n/
√

N = 0 : lim
N→∞

∫
dΩ f [Ω]W̃ [Ω,Ω′] = f [Ω∗(Ω′)] ,

where Ω∗(Ω′) denotes the value of Ω in the saddle–point where Ψ is mini-
mized. Variation of Ψ with respect to Ω and K gives the saddle–point equa-
tions:

Ω =
〈Ω(σ)eβ[σihi[Ω

′]−iNK·Ω(σ)]〉σ
〈eβ[σihi[Ω′]−iNK·Ω(σ)]〉σ

, K = 0.

We may now conclude that limN→∞ W̃ [Ω,Ω′] = δ [Ω−Ω∗(Ω′)], with

Ω∗(Ω′) =
〈Ω(σ)eβσihi[Ω

′]〉σ
〈eβσihi[Ω′]〉σ

,

and that for N → ∞ the macroscopic equation (2.207) becomes Pt+1[Ω] =∫
dΩ′ δ[Ω − Ω∗(Ω′)]Pt[Ω′]. This relation again describes deterministic evo-

lution. If at t = 0 we know Ω exactly, this will remain the case for finite
time–scales and Ω will evolve according to

Ω(t + 1) =
〈Ω(σ)eβσihi[Ω(t)]〉σ
〈eβσihi[Ω(t)]〉σ

. (2.210)

As with the sequential case, in taking the limit N → ∞ we have to keep in
mind that the resulting laws apply to finite t, and that for sufficiently large
times terms of higher order in N do come into play. As for the sequential case,
a more rigorous and tedious analysis shows that the restriction n/

√
N → 0

can in fact be weakened to n/N → 0. Finally, for macroscopic quantities
Ω(σ) which are linear in σ, the remaining σ−averages become trivial, so that
[Ber91]:

Ωμ(σ) =
1
N

ωμiσi : Ωμ(t + 1) = lim
N→∞

1
N

ωμi tanh [βhi[Ω(t)]] .
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Application to Separable Attractor Networks

The separable attractor models (2.196), described at the level of sublattice
activities (2.197), indeed have the property that all local fields can be written
in terms of the macroscopic observables. What remains to ensure deterministic
evolution is meeting the condition on the number of sublattices. If all relative
sublattice sizes pη are of the same order in N (as for randomly drawn patterns)
this condition again translates into limN→∞ p/ logN = 0 (as for sequential
dynamics). Since the sublattice activities are linear functions of the σi, their
evolution in time is governed by equation (2.210), which acquires the form:

mη(t + 1) = tanh[βpη′Q (η;η′)mη′(t)]. (2.211)

As for sequential dynamics, symmetry of the interaction matrix does not play
a role.

At the more global level of overlaps mμ(σ) = N−1
∑
i ξ
μ
i σi we, in turn,

get autonomous deterministic laws if the local fields hi(σ) can be expressed in
terms if m(σ) only, as for the models (2.202) (or, more generally, for all models
in which the interactions are of the form Jij =

∑
μ≤p fiμξ

μ
j ), and with the

following restriction on the number p of embedded patterns: limN→∞ p/
√

N =
0 (as with sequential dynamics). For the bilinear models (2.202), the evolution
in time of the overlap vector m (which depends linearly on the σi) is governed
by (2.210), which now translates into the iterative map:

m(t + 1) = 〈ξ tanh[βξ ·Am(t)]〉ξ, (2.212)

with ρ(ξ) as defined in (2.203). Again symmetry of the synapses is not re-
quired. For parallel dynamics it is far more difficult than for sequential dy-
namics to construct Lyapunov functions, and prove that the macroscopic
laws (2.212) for symmetric systems evolve towards a stable fixed–point (as
one would expect), but it can still be done. For non–symmetric systems the
macroscopic laws (2.212) can in principle display all the interesting, but com-
plicated, phenomena of non–conservative nonlinear systems. Nevertheless, it
is also not uncommon that the equations (2.212) for non–symmetric systems
can be mapped by a time–dependent transformation onto the equations for
related symmetric systems (mostly variants of the original Hopfield model).

Note that the fixed–points of the macroscopic equations (2.198) and
(2.203) (derived for sequential dynamics) are identical to those of (2.211)
and (2.212) (derived for parallel dynamics). The stability properties of these
fixed–points, however, need not be the same, and have to be assessed on a
case–by–case basis. For the Hopfield model, i.e., equations (2.203,2.212) with
Aμν = δμν , they are found to be the same, but already for Aμν = −δμν the
two types of dynamics would behave differently [Coo01, SC00, SC01, CKS05].
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2.3.7 Attractor Neural Networks with Continuous Neurons

Closed Macroscopic Laws

We have seen above that models of recurrent neural networks with continuous
neural variables (e.g., graded–response neurons or coupled oscillators) can
often be described by a Fokker–Planck equation for the microscopic state
probability density pt(σ):

ṗt(σ) = − ∂

∂σi
[pt(σ)fi(σ)] + T

∑

i

∂2

∂σ2
i

pt(σ).

Averages over pt(σ) are denoted by 〈G〉 =
∫

dσ pt(σ)G(σ, t). From (2.131)
one gets directly (through integration by parts) an equation for the time
derivative of averages [Coo01, SC00, SC01, CKS05]:

d

dt
〈G〉 = 〈∂G

∂t
〉+ 〈

[
fi(σ) + T

∂

∂σi

]
∂G

∂σi
〉. (2.213)

In particular, if we apply (2.213) to G(σ, t) = δ[Ω − Ω(σ)], for any set of
macroscopic observables Ω(σ) = (Ω1(σ), . . . , Ωn(σ)) (in the spirit of the pre-
vious section), we get a dynamic equation for the macroscopic probability
density Pt(Ω) = 〈δ[Ω−Ω(σ)]〉, which is again of the Fokker–Planck form:

Ṗt(Ω) = − ∂

∂Ωμ

{
Pt(Ω) 〈

[
fi(σ) + T

∂

∂σi

]
∂

∂σi
Ωμ(σ)〉Ω;t

}
(2.214)

+ T
∂2

∂Ωμ∂Ων

{
Pt(Ω) 〈

[
∂

∂σi
Ωμ(σ)

] [
∂

∂σi
Ων(σ)

]
〉Ω;t

}
,

with the conditional (or sub–shell) averages:

〈G(σ)〉Ω,t =
∫

dσ pt(σ)δ[Ω−Ω(σ)]G(σ)∫
dσ pt(σ)δ[Ω−Ω(σ)]

.

From (2.214) we infer that a sufficient condition for the observables Ω(σ)
to evolve in time deterministically (i.e., for having vanishing diffusion matrix
elements in (2.214)) in the limit N →∞ is

lim
N→∞

〈
∑

i

[
∑

μ

∣∣∣
∣

∂

∂σi
Ωμ(σ)

∣∣∣
∣

]2

〉Ω;t = 0. (2.215)

If (2.215) holds, the macroscopic Fokker–Planck equation (2.214) reduces for
N →∞ to a Liouville equation, and the observables Ω(σ) will evolve in time
according to the coupled deterministic equations:

Ω̇μ = lim
N→∞

〈
[
fi(σ) + T

∂

∂σi

]
∂

∂σi
Ωμ(σ)〉Ω;t. (2.216)
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The deterministic macroscopic equation (2.216), together with its associated
condition for validity (2.215) will form the basis for the subsequent analysis.

The general derivation given above went smoothly. However, the equations
(2.216) are not yet closed. It turns out that to achieve closure even for simple
continuous networks we can no longer get away with just a finite (small)
number of macroscopic observables (as with binary neurons). This we will
now illustrate with a simple toy network of graded–response neurons:

u̇i(t) = Jij g[uj(t)]− ui(t) + ηi(t),

with g[z] = 1
2 [tanh(γz) + 1] and with the standard Gaussian white noise ηi(t).

In the language of (2.131) this means

fi(u) = Jijg[uj ]− ui.

We choose uniform synapses Jij = J/N , so fi(u) → (J/N)
∑
j g[uj ] − ui. If

(2.215) were to hold, we would find the deterministic macroscopic laws

Ω̇μ = lim
N→∞

〈
∑

i

[
J

N

∑

j

g[uj ]− ui + T
∂

∂ui
]

∂

∂ui
Ωμ(u)〉Ω;t. (2.217)

In contrast to similar models with binary neurons, choosing as our macroscopic
level of description Ω(u) again simply the average m(u) = N−1

∑
i ui now

leads to an equation which fails to close [Coo01, SC00, SC01, CKS05]:

ṁ = lim
N→∞

J 〈 1
N

∑

j

g[uj ]〉m;t −m.

The term N−1
∑
j g[uj ] cannot be written as a function of N−1

∑
i ui. We

might be tempted to try dealing with this problem by just including the
offending term in our macroscopic set, and choose Ω(u) = (N−1

∑
i ui, N

−1
∑
i g[ui]). This would indeed solve our closure problem for the m−equation,

but we would now find a new closure problem in the equation for the newly
introduced observable. The only way out is to choose an observable function,
namely the distribution of potentials

ρ(u;u) =
1
N

∑

i

δ[u− ui], (2.218)

ρ(u) = 〈ρ(u;u)〉 = 〈 1
N

∑

i

δ[u− ui]〉.

This is to be done with care, in view of our restriction on the number
of observables: we evaluate (2.218) at first only for n specific values uμ
and take the limit n → ∞ only after the limit N → ∞. Thus we define
Ωμ(u) = 1

N

∑
i δ[uμ−ui], condition (2.215) reduces to the familiar expression

limN→∞ n/
√

N = 0, and we get for N → ∞ and n → ∞ (taken in that
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order) from (2.217) a diffusion equation for the distribution of membrane po-
tentials (describing a so–called ‘time–dependent Ornstein–Uhlenbeck process’
[Kam92, Gar85]):

ρ̇(u) = − ∂

∂u

{
ρ(u)

[
J

∫
du′ ρ(u′)g[u′]− u

]}
+ T

∂2

∂u2
ρ(u). (2.219)

The natural solution of (2.219) 11 is the Gaussian distribution

ρt(u) = [2πΣ2(t)]−
1
2 e−

1
2 [u−u(t)]2/Σ2(t), (2.220)

in which Σ = [T + (Σ2
0 − T )e−2t]

1
2 , and u evolves in time according to

d

dt
u = J

∫
Dz g[u + Σz]− u,

with Dz = (2π)−
1
2 e−

1
2 z

2
dz. We can now also calculate the distribution p(s)

of neuronal firing activities si = g[ui] at any time,

p(s) =
∫

du ρ(u) δ[s− g[u]] =
ρ(ginv[s])

∫ 1

0
ds′ ρ(ginv[s′])

.

For our choice g[z] = 1
2 + 1

2 tanh[γz] we have ginv[s] = 1
2γ log[s/(1− s)], so in

combination with (2.220)12

0 < s < 1 : p(s) =
e−

1
2 [(2γ)−1 log[s/(1−s)]−u]2/Σ2

∫ 1

0
ds′ e−

1
2 [(2γ)−1 log[s′/(1−s′)]−u]2/Σ2

.

Application to Graded–Response Attractor Networks

We will now turn to attractor networks with graded–response neurons of the
type (2.132), in which p binary patterns ξμ = (ξμ1 , . . . , ξ

μ
N ) ∈ {−1, 1}N have

been stored via separable Hebbian synapses (2.202): Jij = (2/N)ξμi Aμνξ
ν
j (the

extra factor 2 is inserted for future convenience). Adding suitable thresholds
θi = − 1

2

∑
j Jij to the right–hand sides of (2.132), and choosing the nonlinear-

ity g(z) = 1
2 (1 + tanh[γz]) would then give us [Coo01, SC00, SC01, CKS05]

11 For non-Gaussian initial conditions ρ0(u) the solution of (2.219) would in time
converge towards the Gaussian solution.

12 None of the above results (not even those on the stationary state) could have
been got within equilibrium statistical mechanics, since any network of connected
graded–response neurons will violate detailed balance. Secondly, there appears to
be a qualitative difference between simple networks (e.g., Jij = J/N) of binary
neurons versus those of continuous neurons, in terms of the types of macroscopic
observables needed for deriving closed deterministic laws: a single number m =
N−1 ∑

i σi versus a distribution ρ(σ) = N−1 ∑
i δ[σ − σi] .
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u̇i(t) =
∑

μν

ξμi Aμν
1
N

∑

j

ξνj tanh[γuj(t)]− ui(t) + ηi(t),

so the deterministic forces are fi(u) = N−1
∑
μν ξ

μ
i Aμν

∑
j ξ
ν
j tanh[γuj ]− ui.

Choosing our macroscopic observables Ω(u) such that (2.215) holds, would
lead to the deterministic macroscopic laws

Ω̇μ = lim
N→∞

∑

μν

Aμν〈
[

1
N

ξνj tanh[γuj ]
] [

ξμi
∂

∂ui
Ωμ(u)

]
〉Ω;t (2.221)

+ lim
N→∞

〈
[
T

∂

∂ui
− ui

]
∂

∂ui
Ωμ(u)〉Ω;t.

As with the uniform synapses case, the main problem to be dealt with is how
to choose the Ωμ(u) such that (2.221) closes. It turns out that the canonical
choice is to turn to the distributions of membrane potentials within each of
the 2p sub–lattices, as introduced above :

Iη = {i| ξi = η} : ρη(u;u) =
1
|Iη|

∑

i∈Iη

δ[u− ui], (2.222)

ρη(u) = 〈ρη(u;u)〉,

with η ∈ {−1, 1}p and limN→∞ |Iη|/N = pη. Again we evaluate the distribu-
tions in (2.222) at first only for n specific values uμ and send n → ∞ after
N →∞. Now condition (2.215) reduces to limN→∞ 2p/

√
N = 0. We will keep

p finite, for simplicity. Using identities such as
∑
i . . . =

∑
η

∑
i∈Iη . . . and

i ∈ Iη:

∂

∂ui
ρη(u;u) = −|Iη|−1 ∂

∂u
δ[u− ui],

∂2

∂u2
i

ρη(u;u) = |Iη|−1 ∂2

∂u2
δ[u− ui],

we then get for N → ∞ and n → ∞ (taken in that order) from equation
(2.221) 2p coupled diffusion equations for the distributions ρη(u) of membrane
potentials in each of the 2p sub-lattices Iη:

ρ̇η(u) = − ∂

∂u
{ρη(u)[ημAμνpη′η′ν

∫
du′ ρη′(u′) tanh[γu′]− u]}+ T

∂2

∂u2
ρη(u).

(2.223)
Equation (2.223) is the basis for our further analysis. It can be simplified only
if we make additional assumptions on the system’s initial conditions, such as
δ−distributed or Gaussian distributed ρη(u) at t = 0 (see below); otherwise
it will have to be solved numerically.

It is clear that (2.223) is again of the time–dependent Ornstein–Uhlenbeck
form, and will thus again have Gaussian solutions as the natural ones [Coo01,
SC00, SC01, CKS05]:

ρt,η(u) = [2πΣ2
η(t)]−

1
2 e−

1
2 [u−uη(t)]2/Σ2

η(t),
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in which Ση(t) = [T + (Σ2
η(0) − T )e−2t]

1
2 , and with the uη(t) evolving in

time according to

d

dt
uη = pη′(η ·Aη′)

∫
Dz tanh[γ(uη′ + Ση′z)]− uη. (2.224)

Our problem has thus been reduced successfully to the study of the 2p coupled
scalar equations (2.224). We can also measure the correlation between the
firing activities si(ui) = 1

2 [1 + tanh(γui)] and the pattern components (similar
to the overlaps in the case of binary neurons). If the pattern bits are drawn at
random, i.e., limN→∞ |Iη|/N = pη = 2−p for all η, we can define a ‘graded–
response’ equivalent mμ(u) = 2N−1ξμi si(ui) ∈ [−1, 1] of the Hopfield pattern
overlaps:

mμ(u) =
2
N

ξμi si(u) =
1
N

ξμi tanh(γui) +O(N− 1
2 )

= pη ημ

∫
du ρη(u;u) tanh(γu) +O(N− 1

2 ).

Full recall of pattern μ implies si(ui) = 1
2 [ξμi + 1], giving mμ(u) = 1. Since

the distributions ρη(u) obey deterministic laws for N →∞, the same will be
true for the overlaps m = (m1, . . . ,mp). For the Gaussian solutions (2.224) of
(2.223) we can now proceed to replace the 2p macroscopic laws (2.224), which
reduce to d

dtuη = η ·Am−uη and give uη = uη(0)e−t+η ·A
∫ t
0
ds es−tm(s),

by p integral equations in terms of overlaps only:

mμ(t) = pη ημ

∫
Dz tanh[γ(uη(0)e−t (2.225)

+ η ·A
∫ t

0

ds es−tm(s) + z
√

T + (Σ2
η(0)− T )e−2t)],

with Dz = (2π)−
1
2 e−

1
2 z

2
dz. Here the sub–lattices only come in via the initial

conditions.
The equations describing the asymptotic (stationary) state can be written

entirely without sub-lattices,13

mμ = 〈ξμ
∫

Dz tanh[γ(ξ ·Am+ z
√

T )]〉ξ, (2.226)

ρη(u) = [2πT ]−
1
2 e−

1
2 [u−η·Am]2/T ,

by taking the t → ∞ limit in (2.225), using uη → η ·Am, Ση →
√

T , and
the familiar notation
13 Note the appealing similarity with previous results on networks with binary neu-

rons in equilibrium. For T = 0 the overlap equations (2.226) become identical to
those found for attractor networks with binary neurons and finite p (hence our
choice to insert an extra factor 2 in defining the synapses), with γ replacing the
inverse noise level β in the former.
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〈g(ξ)〉ξ = lim
N→∞

1
N

∑

i

g(ξi) = 2−p
∑

ξ∈{−1,1}p

g(ξ).

For the simplest non–trivial choice, Aμν = δμν (i.e., Jij = (2/N)
∑
μ ξμi ξ

μ
j ,

as in the Hopfield [Hop82] model) equation (2.226) yields the familiar pure
and mixture state solutions. For T = 0 we find a continuous phase transition
from non–recall to pure states of the form mμ = mδμν (for some ν) at γc = 1.
For T > 0 we have in (2.226) an additional Gaussian noise, absent in the
models with binary neurons. Again the pure states are the first non–trivial
solutions to enter the stage. Substituting mμ = mδμν into (2.226) gives

m =
∫

Dz tanh[γ(m+ z
√

T )]. (2.227)

Writing (2.227) as m2 = γm
∫m
0

dk[1 −
∫

Dz tanh2[γ(k + z
√

T )]] ≤ γm2,
reveals that m = 0 as soon as γ < 1. A continuous transition to an m > 0
state occurs when

γ−1 = 1−
∫

Dz tanh2[γz
√

T ].

A parametrization of this transition line in the (γ, T )−plane is given by

γ−1(x) = 1−
∫

Dz tanh2(zx),

T (x) = x2/γ2(x), x ≥ 0.

Discontinuous transitions away from m = 0 (for which there is no evidence)
would have to be calculated numerically. For γ =∞ we get the equation m =
erf[m/

√
2T ], giving a continuous transition to m > 0 at Tc = 2/π ≈ 0.637.

Alternatively the latter number can also be found by taking limx→∞ T (x) in
the above parametrization:

Tc(γ = ∞) = lim
x→∞

x2[1−
∫

Dz tanh2(zx)]2

= lim
x→∞

[
∫

Dz
∂

∂z
tanh(zx)]2 = [2

∫
Dz δ(z)]2 = 2/π.

Let us now turn to dynamics. It follows from (2.226) that the ‘natural’
initial conditions for uη and Ση are of the form: uη(0) = η·k0 and Ση(0) = Σ0

for all η. Equivalently:

t = 0 : ρη(u) = [2πΣ2
0 ]−

1
2 e−

1
2 [u−η·k0]

2/Σ2
0 ,

k0 ∈ R
p, Σ0 ∈ R.

These would also be the typical and natural statistics if we were to prepare
an initial firing state {si} by hand, via manipulation of the potentials {ui}.
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For such initial conditions we can simplify the dynamical equation (2.225) to
[Coo01, SC00, SC01, CKS05]

mμ(t) = 〈 ξμ

∫
Dz tanh[γ(ξ · [k0e−t (2.228)

+ A
∫ t

0

ds es−tm(s)] + z
√

T + (Σ2
0 − T )e−2t)]〉ξ. (2.229)

For the special case of the Hopfield synapses, i.e., Aμν = δμν , it follows from
(2.228) that recall of a given pattern ν is triggered upon choosing k0,μ = k0δμν
(with k0 > 0), since then equation (2.228) generates mμ(t) = m(t)δμν at any
time, with the amplitude m(t) following from

m(t) =
∫

Dz tanh[γ[k0e−t +
∫ t

0

ds es−tm(s) + z
√

T + (Σ2
0 − T )e−2t]],

(2.230)
which is the dynamical counterpart of equation (2.227) (to which indeed it
reduces for t→∞).

We finally specialize further to the case where our Gaussian initial con-
ditions are not only chosen to trigger recall of a single pattern ξν , but in
addition describe uniform membrane potentials within the sub-lattices, i.e.,
k0,μ = k0δμν and Σ0 = 0, so ρη(u) = δ[u − k0ην ]. Here we can derive from
(2.230) at t = 0 the identity m0 = tanh[γk0], which enables us to express k0

as k0 = (2γ)−1 log[(1 + m0)/(1−m0)], and find (2.230) reducing to

m(t) =
∫

Dz tanh[e−t log[
1 + m0

1−m0
]
1
2 + γ[

∫ t

0

ds es−tm(s) + z
√

T (1− e−2t)]].

Compared to the overlap evolution in large networks of binary networks (away
from saturation) one can see richer behavior, e.g., non–monotonicity [Coo01,
SC00, SC01, CKS05].

2.3.8 Correlation– and Response–Functions

We now turn to correlation functions Cij(t, t′) and response functions Gij(t, t′).
These will become the language in which the partition function methods are
formulated, which will enable us to solve the dynamics of recurrent networks
in the (complex) regime near saturation (we take t > t′):

Cij(t, t′) = 〈σi(t)σj(t′)〉, Gij(t, t′) = ∂〈σi(t)〉/∂θj(t′) (2.231)

The {σi} evolve in time according to equations of the form (2.186) (binary
neurons, sequential updates), (2.205) (binary neurons, parallel updates) or
(2.131) (continuous neurons). The θi represent thresholds and/or external
stimuli, which are added to the local fields in the cases (2.186,2.205), or added
to the deterministic forces in the case of a Fokker–Planck equation (2.131).
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We retain θi(t) = θi, except for a perturbation δθj(t′) applied at time t′ in
defining the response function. Calculating averages such as (2.231) requires
determining joint probability distributions involving neuron states at different
times.

Fluctuation–Dissipation Theorems

For networks of binary neurons with discrete time dynamics of the form
p�+1(σ) =

∑
σ′ W [σ;σ′] p�(σ′), the probability of observing a given ‘path’

σ( ′) → σ( ′ + 1) → . . . → σ( − 1) → σ( ) of successive configurations be-
tween step  ′ and step  is given by the product of the corresponding transition
matrix elements (without summation):

Prob[σ( ′), . . . ,σ( )] = W [σ( );σ( − 1)]W [σ( − 1);
σ( − 2)] . . .W [σ( ′ + 1);σ( ′)]p�′(σ( ′)).

This allows us to write [Coo01, SC00, SC01, CKS05]

Cij( ,  ′) =
∑

σ(�′)

· · ·
∑

σ(�)

Prob[σ( ′), . . . ,σ( )]σi( )σj( ′) (2.232)

=
∑

σσ′

σiσ
′
jW

�−�′ [σ;σ′]p�′(σ′),

Gij( ,  ′) =
∑

σσ′σ′′

σiW
�−�′−1[σ;σ

′′
]
[

∂

∂θj
W [σ

′′
;σ′]

]
p�′(σ′). (2.233)

From (2.232) and (2.233) it follows that both Cij( ,  ′) and Gij( ,  ′) will in
the stationary state, i.e., upon substituting p�′(σ′) = p∞(σ′), only depend
on  −  ′: Cij( ,  ′) → Cij( −  ′) and Gij( ,  ′) → Gij( −  ′). For this we
do not require detailed balance. Detailed balance, however, leads to a simple
relation between the response function Gij(τ) and the temporal derivative of
the correlation function Cij(τ).

We now turn to equilibrium systems, i.e., networks with symmetric
synapses (and with all Jii = 0 in the case of sequential dynamics). We calculate
the derivative of the transition matrix that occurs in (2.233) by differentiat-
ing the equilibrium condition peq(σ) =

∑
σ′ W [σ;σ′]peq(σ′) with respect to

external fields:

∂

∂θj
peq(σ) =

∑

σ′

{∂W [σ;σ′]
∂θj

peq(σ′) + W [σ;σ′]
∂

∂θj
peq(σ′)}.

Detailed balance implies peq(σ) = Z−1e−βH(σ) (in the parallel case we sim-
ply substitute the appropriate Hamiltonian H → H̃), giving ∂peq(σ)/∂θj =
−[Z−1∂Z/∂θj + β∂H(σ)/∂θj ]peq(σ), so that
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∑

σ′

∂W [σ;σ′]
∂θj

peq(σ′) = β{
∑

σ′

W [σ;σ′]
∂H(σ′)

∂θj
peq(σ′)− ∂H(σ)

∂θj
peq(σ)},

in which the term containing Z drops out. We now get for the response func-
tion (2.233) in equilibrium the following result:

Gij( ) = (2.234)

β
∑

σσ′

σiW
�−1 [σ;σ′]

{
∑

σ′′

W [σ′;σ′′]
∂H(σ′′)

∂θj
peq(σ′′)− ∂H(σ′)

∂θj
peq(σ′)

}

.

The structure of (2.234) is similar to what follows upon calculating the evolu-
tion of the equilibrium correlation function (2.232) in a single iteration step:

Cij( )− Cij( − 1) =
∑

σσ′

σiW
�−1 [σ;σ′]× (2.235)

× {
∑

σ′′

W [σ′;σ′′]σ′′
j peq(σ′′)− σ′

jpeq(σ′)}.

Finally we calculate the relevant derivatives of the two Hamiltonians

H(σ) = −Jijσiσj + θiσi, and

H̃(σ) = −θiσi − β−1
∑

i

log 2 cosh[βhi(σ)]

(with hi(σ) = Jijσj + θi),

∂H(σ)
∂θj

= −σj ,
∂H̃(σ)
∂θj

= −σj − tanh[βhj(σ)].

For sequential dynamics we hereby arrive directly at a fluctuation–dissipation
theorem. For parallel dynamics we need one more identity (which follows from
the definition of the transition matrix in (2.205) and the detailed balance
property) to transform the tanh occurring in the derivative of H̃:

tanh[βhj(σ′)]peq(σ′) =
∑

σ′′

σ′′
jW [σ′′;σ′] peq(σ′)

=
∑

σ′′

W [σ′;σ′′]σ′′
j peq(σ′′).

For parallel dynamics  and  ′ are the real time labels t and t′, and we get,
with τ = t− t′:

Gij(τ > 0) = −β[Cij(τ + 1)− Cij(τ − 1)], Gij(τ ≤ 0) = 0. (2.236)

For the continuous-time version (2.186) of sequential dynamics the time t is
defined as t =  /N , and the difference equation (2.235) becomes a differential
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equation. For perturbations at time t′ in the definition of the response function
(2.233) to retain a non-vanishing effect at (re-scaled) time t in the limit N →
∞, they will have to be re-scaled as well: δθj(t′) → Nδθj(t′). As a result:

Gij(τ) = −βθ(τ)
d

dτ
Cij(τ). (2.237)

The need to re–scale perturbations in making the transition from discrete to
continuous times has the same origin as the need to re-scale the random forces
in the derivation of the continuous-time Langevin equation from a discrete-
time process. Going from ordinary derivatives to function derivatives (which
is what happens in the continuous–time limit), implies replacing Kronecker
delta’s δt,t′ by Dirac delta-functions according to δt,t′ → Δδ(t− t′), where Δ
is the average duration of an iteration step. Equations (2.236) and (2.237) are
examples of so–called fluctuation–dissipation theorems (FDT).

For systems described by a Fokker–Planck equation (2.131) the simplest
way to calculate correlation- and response-functions is by first returning to
the underlying discrete-time system and leaving the continuous time limit
Δ→ 0 until the end. We saw above that for small but finite time-steps Δ the
underlying discrete-time process is described by [Coo01, SC00, SC01, CKS05]

t =  Δ, p�Δ+Δ(σ) = [1+ΔLσ +O(Δ
3
2 )]p�Δ(σ),

with  = 0, 1, 2, . . . and with the differential operator

Lσ = − ∂

∂σi
[fi(σ)− T

∂

∂σi
].

From this it follows that the conditional probability density p�Δ(σ|σ′,  ′Δ)
for finding state σ at time  Δ, given the system was in state σ′ at time  ′Δ,
must be

p�Δ(σ|σ′,  ′Δ) = [1+ΔLσ +O(Δ
3
2 )]�−�

′
δ[σ − σ′]. (2.238)

Equation (2.238) will be our main building block. Firstly, we will calculate
the correlations:

Cij( Δ,  ′Δ) = 〈σi( Δ)σj( ′Δ)〉

=
∫

dσdσ′ σiσ
′
j p�Δ(σ|σ′,  ′Δ)p�′Δ(σ′)

=
∫

dσ σi[1+ΔLσ +O(Δ
3
2 )]�−�

′
∫

dσ′ σ′
jδ[σ − σ′]p�′Δ(σ′)

=
∫

dσ σi[1+ΔLσ +O(Δ
3
2 )]�−�

′
[σj p�′Δ(σ)] .

At this stage, we can take the limits Δ → 0 and  ,  ′ → ∞, with t =  Δ and
t′ =  ′Δ finite, using limΔ→0[1 + ΔA]k/Δ = ekA:
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Cij(t, t′) =
∫

dσ σi e(t−t′)Lσ [σj pt′(σ)] . (2.239)

Next we turn to the response function. A perturbation applied at time t′ =  ′Δ
to the Langevin forces fi(σ) comes in at the transition σ( ′Δ) → σ( ′Δ + Δ).
As with sequential dynamics binary networks, the perturbation is re-scaled
with the step size Δ to retain significance as Δ→ 0:

Gij( Δ,  ′Δ) =
∂〈σi( Δ)〉
Δ∂θj( ′Δ)

=
∂

Δ∂θj( ′Δ)

∫
dσdσ′ σi p�Δ(σ|σ′,  ′Δ)p�′Δ(σ′)

=
∫

dσdσ′dσ
′′

σi p�Δ(σ|σ′′
,  ′Δ+Δ)

[
∂p�′′Δ+Δ(σ|σ′,  ′Δ)

Δ∂θj

]
p�′Δ(σ′)

=
∫

dσdσ′dσ
′′

σi[1+ΔLσ +O(Δ
3
2 )]�−�

′−1δ[σ − σ
′′
]×

[
1
Δ

∂

∂θj
[1 + ΔLσ′′ +O(Δ

3
2 )]δ[σ

′′ − σ′]
]
p�′Δ(σ′)

= −
∫

dσdσ′dσ
′′

σi[1+ΔLσ +O(Δ
3
2 )]�−�

′−1 ×

δ[σ − σ
′′
]δ[σ

′′ − σ′][
∂

∂σ′
j

+O(Δ
1
2 )] p�′Δ(σ′)

= −
∫

dσ σi[1+ΔLσ +O(Δ
3
2 )]�−�

′−1[
∂

∂σj
+O(Δ

1
2 )] p�′Δ(σ).

We take the limits Δ→ 0 and  ,  ′ →∞, with t =  Δ and t′ =  ′Δ finite:

Gij(t, t′) = −
∫

dσ σi e(t−t′)Lσ
∂

∂σj
pt′(σ). (2.240)

Equations (2.239) and (2.240) apply to arbitrary systems described by Fokker–
Planck equations. In the case of conservative forces, i.e., fi(σ) = −∂H(σ)/∂σi,
and when the system is in an equilibrium state at time t′ so that Cij(t, t′) =
Cij(t − t′) and Gij(t, t′) = Gij(t − t′), we can take a further step using
pt′(σ) = peq(σ) = Z−1e−βH(σ). In that case, taking the time derivative of
expression (2.239) gives

∂

∂τ
Cij(τ) =

∫
dσ σi eτLσLσ [σj peq(σ)] .

Working out the key term in this expression gives

Lσ[σj peq(σ)] = −
∑

i

∂

∂σi
[fi(σ)− T

∂

∂σi
][σj peq(σ)]

= T
∂

∂σj
peq(σ)−

∑

i

∂

∂σi
[σjJi(σ)],
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with the components of the probability current density Ji(σ) = [fi(σ) −
T ∂
∂σi

]peq(σ). In equilibrium, however, the current is zero by definition, so
only the first term in the above expression survives. Insertion into our previous
equation for ∂Cij(τ)/∂τ , and comparison with (2.240) leads to the FDT for
continuous systems [Coo01, SC00, SC01, CKS05]:

Continuous Dynamics: Gij(τ) = −βθ(τ)
d

dτ
Cij(τ).

We will now calculate the correlation and response functions explicitly, and
verify the validity or otherwise of the FDT relations, for attractor networks
away from saturation.

Simple Attractor Networks with Binary Neurons

We will consider the continuous time version (2.186) of the sequential dy-
namics, with the local fields hi(σ) = Jijσj + θi, and the separable interaction
matrix (2.202). We already solved the dynamics of this model for the case with
zero external fields and away from saturation (i.e., p �

√
N). Having non–

zero, or even time–dependent, external fields does not affect the calculation
much; one adds the external fields to the internal ones and finds the macro-
scopic laws (2.203) for the overlaps with the stored patterns being replaced
by [Coo01, SC00, SC01, CKS05]

ṁ(t) = lim
N→∞

1
N

ξi tanh [βξi ·Am(t) + θi(t)]−m(t), (2.241)

Fluctuations in the local fields are of vanishing order in N (since the fluctua-
tions in m are), so that one can easily derive from the master equation (2.186)
the following expressions for spin averages:

d

dt
〈σi(t)〉 = tanhβ[ξi · Am(t)+ θi(t)]− 〈σi(t)〉, (2.242)

i �= j :
d

dt
〈σi(t)σj(t)〉 = tanhβ[ξi · Am(t)+ θi(t)]〈σj(t)〉

+ tanhβ[ξj · Am(t)+ θj(t)]〈σi(t)〉 − 2〈σi(t)σj(t)〉.

Correlations at different times are calculated by applying (2.242) to situations
where the microscopic state at time t′ is known exactly, i.e., where pt′(σ) =
δσ,σ′ for some σ′:

〈σi(t)〉|σ(t′)=σ′ = σ′
ie

−(t−t′) +
∫ t

t′
ds es−t tanhβ × (2.243)

×[ξi ·Am(s;σ′, t′)+ θi(s)],
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with m(s;σ′, t′) denoting the solution of (2.241) following initial condition
m(t′) = 1

N σ′
iξi. If we multiply both sides of (2.243) by σ′

j and average over
all possible states σ′ at time t′ we get in leading order in N :

〈σi(t)σj(t′)〉 = 〈σi(t′)σj(t′)〉e−(t−t′) +
∫ t

t′
ds es−t〈 tanhβ[ξi ·Am(s;σ(t′), t′)+ θi(s)]σj(t′)〉.

Because of the existence of deterministic laws for the overlaps m in the N →
∞ limit, we know with probability one that during the stochastic process the
actual value m(σ(t′)) must be given by the solution of (2.241), evaluated at
time t′. As a result we get, with Cij(t, t′) = 〈σi(t)σj(t′)〉:

Cij(t, t′) = Cij(t′, t′)e−(t−t′) + (2.244)
∫ t

t′
ds es−t tanhβ[ξi ·Am(s)+ θi(s)]〈σj(t′)〉.

Similarly we get from the solution of (2.242) an equation for the leading order
in N of the response functions, by derivation with respect to external fields:

∂〈σi(t)〉
∂θj(t′)

= βθ(t− t′)
∫ t

−∞
ds es−t

[
1− tanh2 β[ξi ·Am(s) + θi(s)]

]
×

×
[

1
N

(ξi ·Aξk)
∂〈σk(s)〉
∂θj(t′)

+ δijδ(s− t′)
]
, or

Gij(t, t′) = βδijθ(t− t′)e−(t−t′) [1− tanh2 β[ξi ·Am(t′) + θi(t′)]
]
(2.245)

+ βθ(t− t′)
∫ t

t′
ds es−t ×

×
[
1− tanh2 β[ξi ·Am(s) + θi(s)]

] 1
N

(ξi ·Aξk)Gkj(s, t
′).

For t = t′ we retain in leading order in N only the instantaneous single-site
contribution

lim
t′↑t

Gij(t, t′) = βδij
[
1− tanh2 β[ξi ·Am(t) + θi(t)]

]
. (2.246)

This leads to the following ansatz for the scaling with N of the Gij(t, t′),
which can be shown to be correct by insertion into (2.245), in combination
with the correctness at t = t′ following from (2.246):

i = j : Gii(t, t′) = O(1), i �= j : Gij(t, t′) = O(N−1)

Note that this implies 1
N (ξi ·Aξk)Gkj(s, t′) = O( 1

N ). In leading order in N
we now find
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Gij(t, t′) = βδijθ(t− t′)e−(t−t′) [1− tanh2 β[ξi ·Am(t′) + θi(t′)]
]
. (2.247)

For those cases where the macroscopic laws (2.241) describe evolution to a
stationary state m, obviously requiring stationary external fields θi(t) = θi,
we can take the limit t→∞, with t−t′ = τ fixed, in (2.244) and (2.247). Using
the t → ∞ limits of (2.242) we subsequently find time translation invariant
expressions: limt→∞ Cij(t, t− τ) = Cij(τ) and limt→∞ Gij(t, t− τ) = Gij(τ),
with in leading order in N

Cij(τ) = tanhβ[ξi ·Am+ θi] tanhβ[ξj ·Am+ θj ]

+ δije−τ
[
1− tanh2 β[ξi ·Am + θi]

]
,

Gij(τ) = βδijθ(τ)e−τ
[
1− tanh2 β[ξi ·Am + θi]

]
,

for which the fluctuation–dissipation theorem (2.237) holds [Coo01, SC00,
SC01, CKS05]:

Gij(τ) = −βθ(τ)
d

dτ
Cij(τ).

We now turn to the parallel dynamical rules (2.205), with the local fields
hi(σ) = Jijσj + θi, and the interaction matrix (2.202). As before, having
time–dependent external fields amounts simply to adding these fields to the
internal ones, and the dynamic laws (2.212) are found to be replaced by

m(t + 1) = lim
N→∞

1
N

ξi tanh [βξi ·Am(t) + θi(t)] . (2.248)

Fluctuations in the local fields are again of vanishing order in N , and the
parallel dynamics versions of equations (2.242), to be derived from (2.205),
are found to be

〈σi(t+ 1)〉 = tanhβ[ξi ·Am(t)+ θi(t)], (2.249)

i �= j : 〈σi(t+ 1)σj(t+ 1)〉 = (2.250)
tanhβ[ξi ·Am(t)+ θi(t)] tanhβ[ξj ·Am(t)+ θj(t)].

With m(t;σ′, t′) denoting the solution of the map (2.248) following initial
condition m(t′) = 1

N σ′
iξi, we immediately get from equations (2.249,2.250)

the correlation functions:

Cij(t, t) = δij + [1− δij ] tanhβ[ξi ·Am(t− 1)+ θi(t− 1)]×
tanhβ[ξj ·Am(t− 1)+ θj(t− 1)],

t > t′ : Cij(t, t′) = 〈 tanhβ[ξi ·Am(t− 1;σ(t′), t′)+ θi(t− 1)]σj(t′)〉
= tanhβ[ξi ·Am(t− 1)+ θi(t− 1)] tanhβ[ξj ·Am(t′ − 1)+ θj(t′ − 1)].
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From (2.249) also follow equations determining the leading order in N of
the response functions Gij(t, t′), by derivation with respect to the external
fields θj(t′):

t′ > t− 1 : Gij(t, t′) = 0,
t′ = t− 1 : Gij(t, t′) = βδij

[
1− tanh2 β[ξi ·Am(t− 1) + θi(t− 1)]

]
,

t′ < t− 1 : Gij(t, t′) = β
[
1− tanh2 β[ξi ·Am(t− 1) + θi(t− 1)]

]
×

× 1
N (ξi ·Aξk)Gkj(t− 1, t′).

It now follows iteratively that all off–diagonal elements must be of vanishing
order in N : Gij(t, t − 1) = δijGii(t, t − 1) → Gij(t, t − 2) = δijGii(t, t −
2) → . . ., so that in leading order

Gij(t, t′) = βδijδt,t′+1

[
1− tanh2 β[ξi ·Am(t′) + θi(t′)]

]
.

For those cases where the macroscopic laws (2.248) describe evolution to a
stationary state m, with stationary external fields, we can take the limit t→
∞, with t− t′ = τ fixed above. We find time translation invariant expressions:
limt→∞ Cij(t, t − τ) = Cij(τ) and limt→∞ Gij(t, t − τ) = Gij(τ), with in
leading order in N :

Cij(τ) = tanhβ[ξi ·Am+ θi] tanhβ[ξj ·Am+ θj ]

+ δijδτ,0
[
1− tanh2 β[ξi ·Am + θi]

]
,

Gij(τ) = βδijδτ,1
[
1− tanh2 β[ξi ·Am + θi]

]
,

obeying the Fluctuation-Dissipation Theorem (2.236):

Gij(τ > 0) = −β[Cij(τ + 1)− Cij(τ − 1)].

Graded–Response Neurons with Uniform Synapses

Let us finally find out how to calculate correlation and response function
for the simple network (2.132) of graded–response neurons, with (possibly
time–dependent) external forces θi(t), and with uniform synapses Jij = J/N
[Coo01, SC00, SC01, CKS05]:

u̇i(t) =
J

N

∑

j

g[γuj(t)]− ui(t) + θi(t) + ηi(t). (2.251)

For a given realisation of the external forces and the Gaussian noise variables
{ηi(t)} we can formally integrate (2.251) and find

ui(t) = ui(0)e−t +
∫ t

0

ds es−t
[
J

∫
du ρ(u;u(s)) g[γu] + θi(s) + ηi(s)

]
,

(2.252)
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with the distribution of membrane potentials ρ(u;u) = N−1
∑
i δ[u − ui].

The correlation function Cij(t, t′) = 〈ui(t)uj(t′)〉 immediately follows from
(2.252). Without loss of generality we can define t ≥ t′. For absent external
forces (which were only needed in order to define the response function), and
upon using 〈ηi(s)〉 = 0 and 〈ηi(s)ηj(s′)〉 = 2Tδijδ(s− s′), we arrive at

Cij(t, t′) = Tδij(et
′−t − e−t

′−t) +

〈
[
ui(0)e−t + J

∫
du g[γu]

∫ t

0

ds es−tρ(u;u(s))
]
×

×
[

uj(0)e−t
′
+ J

∫
du g[γu]

∫ t′

0

ds′ es
′−t′ρ(u;u(s′))

]

〉.

For N →∞, however, we know the distribution of potentials to evolve deter-
ministically: ρ(u;u(s)) → ρs(u) where ρs(u) is the solution of (2.219). This
allows us to simplify the above expression to

N →∞ : Cij(t, t′) = Tδij(et
′−t − e−t

′−t) (2.253)

+ 〈
[
ui(0)e−t + J

∫
du g[γu]

∫ t

0

ds es−tρs(u)
]
×

×
[

uj(0)e−t
′
+ J

∫
du g[γu]

∫ t′

0

ds′ es
′−t′ρs′(u)

]

〉.

Next we turn to the response function Gij(t, t′) = δ〈ui(t)〉/δξj(t′) (its
definition involves functional rather than scalar differentiation, since time is
continuous). After this differentiation the forces {θi(s)} can be put to zero.
Functional differentiation of (2.252), followed by averaging, then leads us to

Gij(t, t′) = θ(t− t′) δij et
′−t − J

∫
du g[γu]

∂

∂u
×

∫ t

0

ds es−t
1
N

∑

k

lim
θ→0

〈 δ[u− uk(s)]
δuk(s)
δθj(t′)

〉.

In view of (2.252) we make the self-consistent ansatz δuk(s)/δξj(s′) = O(N−1)
for k �= j. This produces

N →∞ : Gij(t, t′) = θ(t− t′) δij et
′−t.

Since equation (2.219) evolves towards a stationary state, we can also take the
limit t→∞, with t−t′ = τ fixed, in (2.253). Assuming non–pathological decay
of the distribution of potentials allows us to put limt→∞

∫ t
0
ds es−tρs(u) = ρ(u)

(the stationary solution of (2.219)), with which we find also (2.253) reducing
to time translation invariant expressions for N → ∞, limt→∞ Cij(t, t − τ) =
Cij(τ) and limt→∞ Gij(t, t− τ) = Gij(τ), in which
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Cij(τ) = Tδije−τ + J2

{∫
du ρ(u)g[γu]

}2

,

Gij(τ) = θ(τ)δije−τ .

Clearly the leading orders in N of these two functions obey the fluctuation-
dissipation theorem:

Gij(τ) = −βθ(τ)
d

dτ
Cij(τ).

As with the binary neuron attractor networks for which we calculated the
correlation and response functions earlier, the impact of detailed balance vi-
olation (occurring when Aμν �= Aνμ in networks with binary neurons and
synapses (2.202), and in all networks with graded–response neurons on the
validity of the fluctuation-dissipation theorems, vanishes for N → ∞, pro-
vided our networks are relatively simple and evolve to a stationary state in
terms of the macroscopic observables (the latter need not necessarily happen.
Detailed balance violation, however, would be noticed in the finite size effects
[CCV98].



3

Geometry and Topology Change in Complex
Systems

While the natural stage for linear dynamics comprises of flat, Euclidean geom-
etry (with the corresponding calculation tools from linear algebra and analy-
sis), the natural stage for nonlinear dynamics is curved, Riemannian geometry
(with the corresponding tools from tensor algebra and analysis). In both cases,
the system’s (kinetic) energy is defined by the metric form, either Euclidean or
Riemannian. The extreme nonlinearity – chaos – corresponds to the topology
change of this curved geometrical stage, usually called configuration manifold.
This Chapter elaborates on geometry and topology change in relation with
complex nonlinearity and chaos.

3.1 Riemannian Geometry of Smooth Manifolds

3.1.1 Riemannian Manifolds: an Intuitive Picture

Smooth Manifolds

The core of modern geometrical dynamics represents the concept of a man-
ifold . A manifold is an abstract mathematical space, which locally (i.e., in
a close–up view) resembles the spaces described by Euclidean geometry , but
which globally (i.e., when viewed as a whole) may have a more complicated
structure. For example, the surface of Earth is a manifold; locally it seems to
be flat, but viewed as a whole from the outer space (globally) it is actually
round. A manifold can be constructed by ‘gluing’ separate Euclidean spaces
together; for example, a world map can be made by gluing many maps of local
regions together, and accounting for the resulting distortions.1

1 On a sphere, the sum of the angles of a triangle is not equal to 180o. A sphere is
not a Euclidean space, but locally the laws of the Euclidean geometry are good
approximations. In a small triangle on the face of the earth, the sum of the angles
is very nearly 180o. A sphere can be represented by a collection of two dimensional
maps, therefore a sphere is a manifold.
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Another example of a manifold is a circle S1. A small piece of a circle
appears to be like a slightly–bent part of a straight line segment, but overall
the circle and the segment are different 1D manifolds (see Figure 3.1). A
circle can be formed by bending a straight line segment and gluing the ends
together.2

Fig. 3.1. The four charts each map part of the circle to an open interval, and
together cover the whole circle.

2 Locally, the circle looks like a line. It is 1D, that is, only one coordinate is needed
to say where a point is on the circle locally. Consider, for instance, the top part of
the circle (Figure 3.1), where the y−coordinate is positive. Any point in this part
can be described by the x−coordinate. So, there is a continuous bijection χtop (a
mapping which is 1–1 both ways), which maps the top part of the circle to the
open interval (−1, 1), by simply projecting onto the first coordinate: χtop(x, y) =
x. Such a function is called a chart . Similarly, there are charts for the bottom,
left , and right parts of the circle. Together, these parts cover the whole circle
and the four charts form an atlas (see the next subsection) for the circle. The top
and right charts overlap: their intersection lies in the quarter of the circle where
both the x− and the y−coordinates are positive. The two charts χtop and χright

map this part bijectively to the interval (0, 1). Thus a function T from (0, 1) to
itself can be constructed, which first inverts the top chart to reach the circle and
then follows the right chart back to the interval:

T (a) = χright

(
χ−1

top(a)
)

= χright

(
a,
√

1 − a2
)

=
√

1 − a2.

Such a function is called a transition map. The top, bottom, left, and right charts
show that the circle is a manifold, but they do not form the only possible atlas.
Charts need not be geometric projections, and the number of charts is a matter of
choice. T and the other transition functions in Figure 3.1 are differentiable on the
interval (0, 1). Therefore, with this atlas the circle is a differentiable, or smooth
manifold.
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The surfaces of a sphere3 and a torus4 are examples of 2D manifolds.
Manifolds are important objects in mathematics, physics and control theory,
because they allow more complicated structures to be expressed and under-
stood in terms of the well–understood properties of simpler Euclidean spaces.

The Cartesian product of manifolds is also a manifold (note that not every
manifold can be written as a product). The dimension of the product manifold
is the sum of the dimensions of its factors. Its topology is the product topology,
and a Cartesian product of charts is a chart for the product manifold. Thus, an
atlas for the product manifold can be constructed using atlases for its factors.
3 The surface of the sphere S2 can be treated in almost the same way as the

circle S1. It can be viewed as a subset of R
3, defined by: S = {(x, y, z) ∈

R
3|x2 +y2 +z2 = 1}. The sphere is 2D, so each chart will map part of the sphere

to an open subset of R
2. Consider the northern hemisphere, which is the part

with positive z coordinate. The function χ defined by χ(x, y, z) = (x, y), maps the
northern hemisphere to the open unit disc by projecting it on the (x, y)−plane.
A similar chart exists for the southern hemisphere. Together with two charts
projecting on the (x, z)−plane and two charts projecting on the (y, z)−plane, an
atlas of six charts is obtained which covers the entire sphere. This can be easily
generalized to an nD sphere Sn = {(x1, x2, ..., xn) ∈ R

n|x2
1 + x2

2 + ... + x2
n = 1}.

An n−sphere Sn can be also constructed by gluing together two copies of R
n.

The transition map between them is defined as R
n\{0} → R

n\{0} : x 	→ x/‖x‖2.
This function is its own inverse, so it can be used in both directions. As the
transition map is a (C∞)−smooth function, this atlas defines a smooth manifold.

4 A torus (pl. tori), denoted by T 2, is a doughnut–shaped surface of revolution
generated by revolving a circle about an axis coplanar with the circle. The sphere
S2 is a special case of the torus obtained when the axis of rotation is a diameter
of the circle. If the axis of rotation does not intersect the circle, the torus has a
hole in the middle and resembles a ring doughnut, a hula hoop or an inflated tire.
The other case, when the axis of rotation is a chord of the circle, produces a sort
of squashed sphere resembling a round cushion.

A torus can be defined parametrically by:

x(u, v) = (R+r cos v) cos u, y(u, v) = (R+r cos v) sin u, z(u, v) = r sin v,

where u, v ∈ [0, 2π], R is the distance from the center of the tube to the center of
the torus, and r is the radius of the tube. According to a broader definition, the
generator of a torus need not be a circle but could also be an ellipse or any other
conic section.

Topologically, a torus is a closed surface defined as product of two circles:
T 2 = S1 × S1. The surface described above, given the relative topology from R

3,
is homeomorphic to a topological torus as long as it does not intersect its own
axis.

One can easily generalize the torus to arbitrary dimensions. An n−torus T n

is defined as a product of n circles: T n = S1 × S1 × · · · × S1. Equivalently,
the n−torus is obtained from the n−cube (the R

n−generalization of the ordinary
cube in R

3) by gluing the opposite faces together.
An n−torus T n is an example of an nD compact manifold . It is also an impor-

tant example of a Lie group (see below).
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If these atlases define a differential structure on the factors, the corresponding
atlas defines a differential structure on the product manifold. The same is
true for any other structure defined on the factors. If one of the factors has a
boundary, the product manifold also has a boundary. Cartesian products may
be used to construct tori and cylinders, for example, as S1×S1 and S1× [0, 1],
respectively.

Manifolds need not be connected (all in ‘one piece’): a pair of separate
circles is also a topological manifold(see below). Manifolds need not be closed :
a line segment without its ends is a manifold. Manifolds need not be finite: a
parabola is a topological manifold.

Manifolds can be viewed using either extrinsic or intrinsic view. In the
extrinsic view , usually used in geometry and topology of surfaces, an nD
manifold M is seen as embedded in an (n + 1)D Euclidean space R

n+1. Such
a manifold is called a ‘codimension 1 space’. With this view it is easy to use
intuition from Euclidean spaces to define additional structure. For example,
in a Euclidean space it is always clear whether a vector at some point is
tangential or normal to some surface through that point. On the other hand,
the intrinsic view of an nD manifold M is an abstract way of considering
M as a topological space by itself, without any need for surrounding (n +
1)D Euclidean space. This view is more flexible and thus it is usually used
in high–dimensional mechanics and physics (where manifolds used represent
configuration and phase spaces of dynamical systems), can make it harder to
imagine what a tangent vector might be.

Additional structures are often defined on manifolds. Examples of mani-
folds with additional structure include:

• differentiable (or, smooth manifolds, on which one can do calculus;
• Riemannian manifolds, on which distances and angles can be defined;
• symplectic manifolds, which serve as the phase space in mechanics and

physics;
• 4D pseudo–Riemannian manifolds which model space–time in general rel-

ativity.

The study of manifolds combines many important areas of mathematics:
it generalizes concepts such as curves and surfaces as well as ideas from linear
algebra and topology. Certain special classes of manifolds also have additional
algebraic structure; they may behave like groups, for instance.

Historically, before the modern concept of a manifold there were several
important results:

A. Carl Friedrich Gauss was arguably the first to consider abstract spaces as
mathematical objects in their own right. His ‘Theorema Egregium’ gives a
method for computing the curvature of a surface S without considering the
ambient Euclidean 3D space R

3 in which the surface lies. Such a surface
would, in modern terminology, be called a manifold.
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B. Non–Euclidean geometry considers spaces where Euclid’s ‘Parallel Postu-
late’ fails. Saccheri first studied them in 1733. Lobachevsky, Bolyai, and
Riemann developed them 100 years later. Their research uncovered two
more types of spaces whose geometric structures differ from that of clas-
sical Euclidean nD space R

n; these gave rise to hyperbolic geometry and
elliptic geometry . In the modern theory of manifolds, these notions corre-
spond to manifolds with negative and positive curvature, respectively.

C. The Euler characteristic is an example of a topological property (or topo-
logical invariant) of a manifold. For a convex polyhedron in Euclidean
3D space R

3, with V vertices, E edges and F faces, Euler showed that
V − E + F = 2. Thus the number 2 is called the Euler characteristic
of the space R

3. The Euler characteristic of other 3D spaces is a useful
topological invariant, which can be extended to higher dimensions using
the so–called Betti numbers. The study of other topological invariants of
manifolds is one of the central themes of topology.

D. Bernhard Riemann was the first to do extensive work generalizing the idea
of a surface to higher dimensions. The name manifold comes from Rie-
mann’s original German term, ‘Mannigfaltigkeit’, which W.K. Clifford
translated as ‘manifoldness’. In his famous Göttingen inaugural lecture
entitled ‘On the Hypotheses which lie at the Bases of Geometry’, Rie-
mann described the set of all possible values of a variable with certain
constraints as a ‘manifoldness’, because the variable can have many val-
ues. He distinguishes between continuous manifoldness and discontinuous
manifoldness, depending on whether the value changes continuously or
not. As continuous examples, Riemann refers to not only colors and the
locations of objects in space, but also the possible shapes of a spatial figure.
Using mathematical induction, Riemann constructs an n times extended
manifoldness, or nD manifoldness, as a continuous stack of (n−1)D man-
ifoldnesses. Riemann’s intuitive notion of a ‘manifoldness’ evolved into
what is today formalized as a manifold.

E. Henri Poincaré studied 3D manifolds at the end of the 19th Century, and
raised a question, today known as the Poincaré conjecture. Hermann Weyl
gave an intrinsic definition for differentiable manifolds in 1912. During
the 1930s, H. Whitney and others clarified the foundational aspects of
the subject, and thus intuitions dating back to the latter half of the 19th
Century became precise, and developed through differential geometry (in
particular, by the Lie group theory introduced by Sophus Lie in 1870, see
below).

Riemannian Manifolds

Now, to measure distances and angles on manifolds, the manifold must be
Riemannian. A Riemannian manifold is an analytic manifold in which each
tangent space is equipped with an inner product g = 〈·, ·〉, in a manner which
varies smoothly from point to point. Given two tangent vectors X and Y, the
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inner product 〈X,Y 〉 gives a real number. The dot (or scalar) product is a
typical example of an inner product. This allows one to define various notions
such as length, angles, areas (or, volumes), curvature, gradients of functions
and divergence of vector–fields. Most familiar curves and surfaces, including
n−spheres and Euclidean space, can be given the structure of a Riemannian
manifold.

Any smooth manifold admits a Riemannian metric, which often helps to
solve problems of differential topology. It also serves as an entry level for the
more complicated structure of pseudo–Riemannian manifolds, which (in four
dimensions) are the main objects of the general relativity theory.5

Every smooth submanifold of R
n (see extrinsic view above) has an induced

Riemannian metric g: the inner product on each tangent space is the restric-
tion of the inner product on R

n. Therefore, one could define a Riemannian
manifold as a metric space which is isometric to a smooth submanifold of R

n

with the induced intrinsic metric, where isometry here is meant in the sense
of preserving the length of curves.

Usually a Riemannian manifold M is defined as a smooth manifold with a
smooth section of positive–definite quadratic forms on the associated tangent
bundle TM . Then one has to work to show that it can be turned to a metric
space.

Even though Riemannian manifolds are usually ‘curved’ (e.g., the space–
time of general relativity), there is still a notion of ‘straight line’ on them:
the geodesics. These are curves which locally join their points along shortest
paths.

In Riemannian manifolds, the notions of geodesic completeness, topological
completeness and metric completeness are the same: that each implies the
other is the content of the Hopf–Rinow Theorem [II07b].

Riemann Surfaces

A Riemann surface, is a 1D complex manifold. Riemann surfaces can be
thought of as ‘deformed versions’ of the complex plane: locally near every
point they look like patches of the complex plane, but the global topology can
be quite different. For example, they can look like a sphere, or a torus, or a
couple of sheets glued together.

The main point of Riemann surfaces is that holomorphic (analytic com-
plex) functions may be defined between them. Riemann surfaces are nowa-
days considered the natural setting for studying the global behavior of these
functions, especially multi–valued functions such as the square root or the
logarithm.

Every Riemann surface is a 2D real analytic manifold (i.e., a surface), but
it contains more structure (specifically, a complex structure) which is needed
5 A pseudo–Riemannian manifold is a variant of Riemannian manifold where the

metric tensor is allowed to have an indefinite signature (as opposed to a positive–
definite one).
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for the unambiguous definition of holomorphic functions. A 2D real manifold
can be turned into a Riemann surface (usually in several inequivalent ways)
iff it is orientable. So the sphere and torus admit complex structures, but the
Möbius strip, Klein bottle and projective plane do not.

Geometrical facts about Riemann surfaces are as ‘nice’ as possible, and
they often provide the intuition and motivation for generalizations to other
curves and manifolds. The Riemann–Roch Theorem is a prime example of this
influence.6

Examples of Riemann surfaces include: the complex plane7, open subsets
of the complex plane8, Riemann sphere9, and many others.

Riemann surfaces naturally arise in string theory as models of string in-
teractions [II07b].

Riemannian Geometry

Riemannian geometry is the study of smooth manifolds with Riemannian
metrics g, i.e., a choice of positive–definite quadratic form g = 〈·, ·〉 on a man-
ifold’s tangent spaces which varies smoothly from point to point. This gives
in particular local ideas of angle, length of curves, and volume. From those
6 Formally, let X be a Hausdorff space. A homeomorphism from an open subset

U ⊂ X to a subset of C is a chart. Two charts f and g whose domains intersect
are said to be compatible if the maps f ◦ g−1 and g ◦ f−1 are holomorphic over
their domains. If A is a collection of compatible charts and if any x ∈ X is in the
domain of some f ∈ A, then we say that A is an atlas. When we endow X with
an atlas A, we say that (X, A) is a Riemann surface.

Different atlases can give rise to essentially the same Riemann surface structure
on X; to avoid this ambiguity, one sometimes demands that the given atlas on X
be maximal, in the sense that it is not contained in any other atlas. Every atlas
A is contained in a unique maximal one by Zorn’s lemma.

7 The complex plane C is perhaps the most trivial Riemann surface. The map
f(z) = z (the identity map) defines a chart for C, and f is an atlas for C. The
map g(z) = z* (the conjugate map) also defines a chart on C and g is an atlas
for C. The charts f and g are not compatible, so this endows C with two distinct
Riemann surface structures.

8 In a fashion analogous to the complex plane, every open subset of the complex
plane can be viewed as a Riemann surface in a natural way. More generally, every
open subset of a Riemann surface is a Riemann surface.

9 The Riemann sphere is a useful visualization of the extended complex plane,
which is the complex plane plus a point at infinity. It is obtained by imagining
that all the rays emanating from the origin of the complex plane eventually meet
again at a point called the point at infinity, in the same way that all the meridians
from the south pole of a sphere get to meet each other at the north pole.

Formally, the Riemann sphere is obtained via a one–point compactification of
the complex plane. This gives it the topology of a 2–sphere. The sphere admits a
unique complex structure turning it into a Riemann surface. The Riemann sphere
can be characterized as the unique simply–connected, compact Riemann surface.
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some other global quantities can be derived by integrating local contributions
[II07b].

The manifold may also be given an affine connection,10 which is roughly
an idea of change from one point to another. If the metric does not ‘vary from
point to point’ under this connection, we say that the metric and connection
are compatible, and we have a Riemann–Cartan manifold. If this connection
is also self–commuting when acting on a scalar function, we say that it is
torsion–free, and the manifold is a Riemannian manifold.

Levi–Civita Connection

In Riemannian geometry, the Levi–Civita connection (named after Tullio
Levi–Civita) is the torsion–free Riemannian connection, i.e., a torsion–free
connection of the tangent bundle, preserving a given Riemannian metric (or,
pseudo–Riemannian metric).11 The fundamental Theorem of Riemannian ge-
ometry states that there is a unique connection which satisfies these proper-
ties.12

In the theory of Riemannian and pseudo–Riemannian manifolds the term
covariant derivative is often used for the Levi–Civita connection. The coordi-
10 Connection (or, covariant derivative) is a way of specifying a derivative of a

vector–field along another vector–field on a manifold. That is an application to
tangent bundles; there are more general connections, used to formulate intrinsic
differential equations. Connections give rise to parallel transport along a curve on
a manifold. A connection also leads to invariants of curvature, and the so–called
torsion.

An affine connection is a connection on the tangent bundle TM of a smooth
manifold M . In general, it might have a non–vanishing torsion.

The curvature of a connected manifold can be characterized intrinsically by
taking a vector at some point and parallel transporting it along a curve on the
manifold. Although comparing vectors at different points is generally not a well–
defined process, an affine connection ∇ is a rule which describes how to legiti-
mately move a vector along a curve on the manifold without changing its direction
(‘keeping the vector parallel’).

11 Formally, let (M, g) be a Riemannian manifold (or pseudo–Riemannian manifold);
then an affine connection is the Levi–Civita connection if it satisfies the following
conditions:

A. Preserves metric g, i.e., for any three vector–fields X, Y, Z ∈ M we have
Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ), where Xg(Y, Z) denotes the derivative
of a function g(Y, Z) along a vector–field X.

B. Torsion–free, i.e., for any two vector–fields X, Y, Z ∈ M we have ∇XY −∇Y X =
[X, Y ], where [X, Y ] is the Lie bracket for vector–fields X and Y .

12 The Levi–Civita connection defines also a derivative along curves, usually denoted
by D. Given a smooth curve (a path) γ = γ(t) : R → M and a vector–field
X = X(t) on γ, its derivative along γ is defined by: DtX = ∇γ̇(t)X. This
equation defines the parallel transport for a vector–field X.
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nate expression of the connection is given by Christoffel symbols.13 Note that
connection is not a tensor, except on jet bundles.

Fundamental Riemannian Tensors

The two basic objects in Riemannian geometry are the metric tensor and
the curvature tensor. The metric tensor g = 〈·, ·〉 is a symmetric second–
order (i.e., (0, 2)) tensor that is used to measure distance in a space. In other
words, given a Riemannian manifold, we make a choice of a (0, 2)−tensor
on the manifold’s tangent spaces.14 At a given point in the manifold, this
tensor takes a pair of vectors in the tangent space to that point, and gives a
real number. This concept is just like a dot product, or inner product. This
function from vectors into the real numbers is required to vary smoothly from
point to point.

On any Riemannian manifold, from its second–order metric tensor g =
〈·, ·〉, one can derive the associated fourth–order Riemann curvature tensor
[II07b]. This tensor is the most standard way to express curvature of Rieman-

13 The Christoffel symbols, named for Elwin Bruno Christoffel (1829–1900), are
coordinate expressions for the Levi–Civita connection derived from the metric
tensor. The Christoffel symbols are used whenever practical calculations involv-
ing geometry must be performed, as they allow very complex calculations to be
performed without confusion. In particular, if we denote the unit vectors on M
as ei = ∂/∂xi, then the Christoffel symbols of the second kind are defined by
Γ k

ij = 〈∇ei ; ej , ek〉. Alternatively, using the metric tensor gik (see below) we get
the explicit expression for the Christoffel symbols in a holonomic coordinate basis:

Γ i
kl =

1

2
gim

(
∂gmk

∂xl
+

∂gml

∂xk
− ∂gkl

∂xm

)
.

In a general, nonholonomic coordinates they include the additional commutation
coefficients. The Christoffel symbols are used to define the covariant derivative
of various tensor–fields, as well as the Riemannian curvature. Also, they figure in
the geodesic equation:

d2xi

dt2
+ Γ i

jk
dxj

dt

dxk

dt
= 0

for the curve xi = xi(t) on the smooth manifold M .
14 The most familiar example is that of basic high–school geometry: the 2D Eu-

clidean metric tensor, in the usual x − y coordinates, reads: g =

[
1 0
0 1

]
. The

associated length of a curve is given by the familiar calculus formula: L =∫ b

a

√
(dx)2 + (dy)2.

The unit sphere in R
3 comes equipped with a natural metric induced from

the ambient Euclidean metric. In standard spherical coordinates (θ, φ) the metric

takes the form: g =

[
1 0
0 sin2 θ

]
, which is usually written as: g = dθ2 + sin2 θ dφ2.
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nian manifolds, or more generally, any manifold with an affine connection,
torsionless or with torsion.15

15 The Riemann curvature tensor is given in terms of a Levi–Civita connection ∇
(more generally, an affine connection, or covariant differentiation, see below) by
the following formula:

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w,

where u, v, w are tangent vector–fields and R(u, v) is a linear transformation of
the tangent space of the manifold; it is linear in each argument. If u = ∂/∂xi and
v = ∂/∂xj are coordinate vector–fields then [u, v] = 0 and therefore the above
formula simplifies to

R(u, v)w = ∇u∇vw −∇v∇uw,

i.e., the curvature tensor measures non–commutativity of the covariant derivative.
The linear transformation w 	→ R(u, v)w is also called the curvature transforma-
tion or endomorphism.

In local coordinates xμ (e.g., in general relativity) the Riemann curvature ten-
sor can be written using the Christoffel symbols of the manifold’s Levi–Civita
connection:

Rρ
σμν = ∂μΓ ρ

νσ − ∂νΓ ρ
μσ + Γ ρ

μλΓ λ
νσ − Γ ρ

νλΓ λ
μσ.

The Riemann curvature tensor has the following symmetries:

R(u, v) = −R(v, u), 〈R(u, v)w, z〉 = −〈R(u, v)z, w〉,
R(u, v)w + R(v, w)u + R(w, u)v = 0.

The last identity was discovered by Ricci, but is often called the first Bianchi
identity or algebraic Bianchi identity, because it looks similar to the Bianchi
identity below. These three identities form a complete list of symmetries of the
curvature tensor, i.e. given any tensor which satisfies the identities above, one can
find a Riemannian manifold with such a curvature tensor at some point. Simple
calculations show that such a tensor has n2(n2 − 1)/12 independent components.

The Bianchi identity involves the covariant derivatives:

∇uR(v, w) + ∇vR(w, u) + ∇wR(u, v) = 0.

A contracted curvature tensor is called the Ricci tensor . It is a symmetric second–
order tensor given by:

Rik =
∂Γ l

ik

∂xl
− ∂Γ l

il

∂xk
+ Γ l

ikΓ m
lm − Γ m

ilΓ
l
km.

Its further contraction gives the Ricci scalar curvature, R = gikRik. The Einstein
tensor Gik is defined in terms of the Ricci tensor Rik and the Ricci scalar R,

Gik = Rik − 1

2
gikR.
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Example: Lagrangian Mechanics

Riemannian manifolds are natural stage for the Lagrangian mechanics, which
is a re–formulation of classical mechanics introduced by Joseph Louis Lagrange
in 1788. In Lagrangian mechanics, the trajectory of an object is derived by
finding the path which minimizes the action, a quantity which is the integral
of the Lagrangian over time. The Lagrangian for classical mechanics L is taken
to be the difference between the kinetic energy T and the potential energy V ,
so L = T − V . This considerably simplifies many physical problems.

For example, consider a bead on a hoop. If one were to calculate the motion
of the bead using Newtonian mechanics , one would have a complicated set of
equations which would take into account the forces that the hoop exerts on
the bead at each moment. The same problem using Lagrangian mechanics is
much simpler. One looks at all the possible motions that the bead could take
on the hoop and mathematically finds the one which minimizes the action.
There are fewer equations since one is not directly calculating the influence
of the hoop on the bead at a given moment.

Lagrange’s Equations

The equations of motion in Lagrangian mechanics are Lagrange’s equa-
tions, also known as Euler–Lagrange equations. Below, we sketch out the
derivation of Lagrange’s equation from Newton’s laws of motion (see next
chapter for details).

Consider a single mechanical particle with mass m and position vector r.
The applied force, F, can be expressed as the gradient (denoted ∇) of a scalar
potential energy function V (r, t):

F = −∇V.

Such a force is independent of third– or higher–order derivatives of r, so
Newton’s Second Law forms a set of 3 second–order ODEs. Therefore, the
motion of the particle can be completely described by 6 independent variables,
or degrees of freedom (DOF). An obvious set of variables is the Cartesian
components of r and their time derivatives, at a given instant of time, that is
position (x, y, z) and velocity (vx, vy, vz).

More generally, we can work with a set of generalized coordinates, qi, (i =
1, ..., n), and their time derivatives, the generalized velocities, q̇i. The position
vector r is related to the generalized coordinates by some transformation equa-
tion: r = r(qi, t). The term ‘generalized coordinates’ is really a leftover from
the period when Cartesian coordinates were the default coordinate system. In
the qi−coordinates the Lagrange’s equations read:

∂L

∂qi
=

d

dt

∂L

∂q̇i
,

where L = T − V is the system’s Lagrangian.
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The time integral of the Lagrangian L, denoted S is called the action:16

S =
∫

Ldt.

Let q0 and q1 be the coordinates at respective initial and final times t0 and t1.
Using the calculus of variations, it can be shown the Lagrange’s equations are
equivalent to the Hamilton’s principle: “The system undergoes the trajectory
between t0 and t1 whose action has a stationary value.” This is formally
written:

δS = 0,

where by ‘stationary’, we mean that the action does not vary to first–order
for infinitesimal deformations of the trajectory, with the end–points (q0, t0)
and (q1, t1) fixed.17

16 The action principle is an assertion about the nature of motion, from which
the trajectory of a dynamical system subject to some forces can be determined.
The path of an object is the one that yields a stationary value for a quantity
called the action. Thus, instead of thinking about an object accelerating in re-
sponse to applied forces, one might think of them picking out the path with a
stationary action. The action is a scalar (a number) with the unit of measure
for Action as Energy × Time. Although equivalent in classical mechanics with
Newton’s laws, the action principle is better suited for generalizations and plays
an important role in modern physics. Indeed, this principle is one of the great
generalizations in physical science. In particular, it is fully appreciated and best
understood within quantum mechanics. Richard Feynman’s path integral formu-
lation of quantum mechanics is based on a stationary–action principle, using path
integrals. Maxwell’s equations can be derived as conditions of stationary action.

17 More generally, a Lagrangian L[ϕi] of a dynamical system is a function of the
dynamical variables ϕi(x) and concisely describes the equations of motion of the
system in coordinates xi, (i = 1, ..., n). The equations of motion are obtained by
means of an action principle, written as

δS
δϕi

= 0,

where the action is a functional

S[ϕi] =

∫
L[ϕi(s)] dnx,

(dnx = dx1...dxn).
The equations of motion obtained by means of the functional derivative are

identical to the usual Euler–Lagrange equations. Dynamical system whose equa-
tions of motion are obtainable by means of an action principle on a suitably
chosen Lagrangian are known as Lagrangian dynamical systems. Examples of La-
grangian dynamical systems range from the (classical version of the) Standard
Model, to Newton’s equations, to purely mathematical problems such as geodesic
equations and the Plateau’s problem.
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The total energy function called Hamiltonian, denoted by H, is obtained
by performing a Legendre transformation on the Lagrangian.18 The Hamilto-
nian is the basis for an alternative formulation of classical mechanics known
as Hamiltonian mechanics (see below).

In 1948, R.P. Feynman invented the path–integral formulation extending
the principle of least action to quantum mechanics for electrons and photons.
In this formulation, particles travel every possible path between the initial and
final states; the probability of a specific final state is obtained by summing
over all possible trajectories leading to it. In the classical regime, the path
integral formulation cleanly reproduces the Hamilton’s principle, as well as
the Fermat’s principle in optics.

3.1.2 Smooth Manifolds and Their (Co)Tangent Bundles

As we have already got the initial feeling, in the heart of geometrical dynamics
is the concept of a manifold (see [Rha84]). To get some dynamical intuition
behind this concept, let us consider a simple 3DOF mechanical system deter-
mined by three generalized coordinates, qi = {q1, q2, q3}. There is a unique
way to represent this system as a 3D manifold, such that to each point of the
manifold there corresponds a definite configuration of the mechanical system
with coordinates qi; therefore, we have a geometrical representation of the
configurations of our mechanical system, called the configuration manifold .

The Lagrangian mechanics is important not just for its broad applications,
but also for its role in advancing deep understanding of physics. Although La-
grange sought to describe classical mechanics, the action principle that is used to
derive the Lagrange’s equation is now recognized to be deeply tied to quantum
mechanics: physical action and quantum–mechanical phase (waves) are related
via Planck’s constant, and the Principle of stationary action can be understood
in terms of constructive interference of wave functions. The same principle, and
the Lagrangian formalism, are tied closely to Noether Theorem, which relates
physical conserved quantities to continuous symmetries of a physical system; and
Lagrangian mechanics and Noether’s Theorem together yield a natural formal-
ism for first quantization by including commutators between certain terms of the
Lagrange’s equations of motion for a physical system.

More specifically, in field theory, occasionally a distinction is made between
the Lagrangian L, of which the action is the time integral S =

∫
Ldt and the

Lagrangian density L, which one integrates over all space–time to get the 4D
action:

S[ϕi] =

∫
L[ϕi(x)] d4x.

The Lagrangian is then the spatial integral of the Lagrangian density.
18 The Hamiltonian is the Legendre transform of the Lagrangian:

H (q, p, t) =
∑

i

q̇ipi − L(q, q̇, t).
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If the mechanical system moves in any way, its coordinates are given as the
functions of the time. Thus, the motion is given by equations of the form:
qi = qi(t). As t varies (i.e., t ∈ R), we observe that the system’s representative
point in the configuration manifold describes a curve and qi = qi(t) are the
equations of this curve.

Fig. 3.2. An intuitive geometrical picture behind the manifold concept (see text).

On the other hand, to get some geometrical intuition behind the concept
of a manifold, consider a set M (see Figure 3.2) which is a candidate for a
manifold. Any point x ∈M19 has its Euclidean chart , given by a 1–1 and onto
map ϕi : M → R

n, with its Euclidean image Vi = ϕi(Ui). More precisely, a
chart ϕi is defined by

ϕi : M ⊃ Ui � x �→ ϕi(x) ∈ Vi ⊂ R
n,

where Ui ⊂M and Vi ⊂ R
n are open sets (see [Arn78, Rha84]).

Clearly, any point x ∈M can have several different charts (see Figure 3.2).
Consider a case of two charts, ϕi, ϕj : M → R

n, having in their images two
open sets, Vij = ϕi(Ui ∩ Uj) and Vji = ϕj(Ui ∩ Uj). Then we have transition
functions ϕij between them,

ϕij = ϕj ◦ ϕ−1
i : Vij → Vji, locally given by ϕij(x) = ϕj(ϕ

−1
i (x)).

If transition functions ϕij exist, then we say that two charts, ϕi and ϕj are
compatible. Transition functions represent a general (nonlinear) transforma-
tions of coordinates, which are the core of classical tensor calculus (Appendix).

A set of compatible charts ϕi : M → R
n, such that each point x ∈M has

its Euclidean image in at least one chart, is called an atlas. Two atlases are
equivalent iff all their charts are compatible (i.e., transition functions exist

19 Note that sometimes we will denote the point in a manifold M by m, and some-
times by x (thus implicitly assuming the existence of coordinates x = (xi)).
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between them), so their union is also an atlas. A manifold structure is a class
of equivalent atlases.

Finally, as charts ϕi : M → R
n were supposed to be 1-1 and onto maps,

they can be either homeomorphisms, in which case we have a topological (C0)
manifold, or diffeomorphisms, in which case we have a smooth (C∞) manifold.

Slightly more precisely, a topological (respectively smooth) manifold is a
separable space M which is locally homeomorphic (resp. diffeomorphic) to
Euclidean space R

n, having the following properties (reflected in Figure 3.2):

A. M is a Hausdorff space: For every pair of points x1, x2 ∈ M , there are
disjoint open subsets U1, U2 ⊂M such that x1 ∈ U1 and x2 ∈ U2.

B. M is second–countable space: There exists a countable basis for the topol-
ogy of M .

C. M is locally Euclidean of dimension n: Every point of M has a neigh-
borhood that is homeomorphic (resp. diffeomorphic) to an open subset of
R
n.

This implies that for any point x ∈ M there is a homeomorphism (resp.
diffeomorphism) ϕ : U → ϕ(U) ⊆ R

n, where U is an open neighborhood of x
in M and ϕ(U) is an open subset in R

n. The pair (U,ϕ) is called a coordinate
chart at a point x ∈M , etc.

Definition of a Smooth Manifold

Given a chart (U,ϕ), we call the set U a coordinate domain, or a coordi-
nate neighborhood of each of its points. If in addition ϕ(U) is an open ball
in R

n, then U is called a coordinate ball . The map ϕ is called a (local)
coordinate map, and the component functions (x1, ..., xn) of ϕ, defined by
ϕ(m) = (x1(m), ..., xn(m)), are called local coordinates on U .

Two charts (U1, ϕ1) and (U2, ϕ2) such that U1 ∩ U2 �= ∅ are called com-
patible if ϕ1(U1 ∩ U2) and ϕ2(U2 ∩ U1) are open subsets of R

n. A family
(Uα, ϕα)α∈A of compatible charts on M such that the Uα form a covering of
M is called an atlas. The maps ϕαβ = ϕβ ◦ ϕ−1

α : ϕα(Uαβ) → ϕβ(Uαβ) are
called the transition maps, for the atlas (Uα, ϕα)α∈A, where Uαβ = Uα ∩ Uβ .

An atlas (Uα, ϕα)α∈A for a manifold M is said to be a C∞−atlas, if all
transition maps ϕαβ : ϕα(Uαβ) → ϕβ(Uαβ) are of class C∞. Two C∞ atlases
are called C∞−equivalent, if their union is again a C∞−atlas for M . An equiv-
alence class of C∞−atlases is called a C∞−structure on M . In other words,
a smooth structure on M is a maximal smooth atlas on M , i.e., such an atlas
that is not contained in any strictly larger smooth atlas. By a C∞−manifold
M , we mean a topological manifold together with a C∞−structure and a chart
on M will be a chart belonging to some atlas of the C∞−structure. Smooth
manifold means C∞−manifold, and the word ‘smooth’ is used synonymously
for C∞ [Rha84].

Sometimes the terms ‘local coordinate system’ or ‘parametrization’ are
used instead of charts. That M is not defined with any particular atlas, but
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with an equivalence class of atlases, is a mathematical formulation of the gen-
eral covariance principle. Every suitable coordinate system is equally good. A
Euclidean chart may well suffice for an open subset of R

n, but this coordinate
system is not to be preferred to the others, which may require many charts
(as with polar coordinates), but are more convenient in other respects.

For example, the atlas of an n−sphere Sn has two charts. If N = (1, 0, ..., 0)
and S = (−1, ..., 0, 0) are the north and south poles of Sn respectively, then
the two charts are given by the stereographic projections from N and S:

ϕ1 : Sn\{N} → R
n, ϕ1(x

1, ..., xn+1) = (x2/(1− x1), . . . , xn+1/(1− x1)), and
ϕ2 : Sn\{S} → R

n, ϕ2(x
1, ..., xn+1) = (x2/(1 + x1), . . . , xn+1/(1 + x1)),

while the overlap map ϕ2 ◦ ϕ−1
1 : R

n\{0} → R
n\{0} is given by the diffeo-

morphism (ϕ2 ◦ ϕ−1
1 )(z) = z/||z||2, for z in R

n\{0}, from R
n\{0} to itself.

Various additional structures can be imposed on R
n, and the corresponding

manifold M will inherit them through its covering by charts. For example, if
a covering by charts takes their values in a Banach space E, then E is called
the model space and M is referred to as a C∞−Banach manifold modelled
on E. Similarly, if a covering by charts takes their values in a Hilbert space
H, then H is called the model space and M is referred to as a C∞−Hilbert
manifold modelled on H. If not otherwise specified, we will consider M to be
an Euclidean manifold, with its covering by charts taking their values in R

n.
For a Hausdorff C∞−manifold the following properties are equivalent

[II07b]: (i) it is paracompact; (ii) it is metrizable; (iii) it admits a Riemannian
metric;20 (iv) each connected component is separable.

Smooth Maps Between Manifolds

A map ϕ : M → N between two manifolds M and N , with M � m �→
ϕ(m) ∈ N , is called a smooth map, or C∞−map, if for each m ∈ M and
each chart (V, ψ) on N with ϕ (m) ∈ V there is a chart (U, φ) on M with
m ∈ U,ϕ (U) ⊆ V , and Φ = ψ ◦ ϕ ◦ φ−1 is C∞.

Let M and N be smooth manifolds and let ϕ : M → N be a smooth map.
The map ϕ is called a covering, or equivalently, M is said to cover N , if ϕ is
surjective and each point n ∈ N admits an open neighborhood V such that
ϕ−1(V ) is a union of disjoint open sets, each diffeomorphic via ϕ to V .

A C∞−map ϕ : M → N is called a C∞−diffeomorphism if ϕ is a bijection,
ϕ−1 : N →M exists and is also C∞. Two manifolds are called diffeomorphic
20 Recall the corresponding properties of a Euclidean metric d. For any three points

x, y, z ∈ R
n, the following axioms are valid:

M1 : d(x, y) > 0, for x �= y; and d(x, y) = 0, for x = y;

M2 : d(x, y) = d(y, x); M3 : d(x, y) ≤ d(x, z) + d(z, y).
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if there exists a diffeomorphism between them. All smooth manifolds and
smooth maps between them form the category M.

(Co)Tangent Bundles of a Smooth Manifold

Intuition Behind a Tangent Bundle

In mechanics, to each nD configuration manifold M there is associated its 2nD
velocity phase–space manifold , denoted by TM and called the tangent bundle
of M (see Figure 3.3). The original smooth manifold M is called the base of
TM . There is an onto map π : TM → M , called the projection. Above each
point x ∈M there is a tangent space TxM = π−1(x) to M at x, which is called
a fibre. The fibre TxM ⊂ TM is the subset of TM , such that the total tangent
bundle, TM =

⊔

m∈M
TxM , is a disjoint union of tangent spaces TxM to M for

all points x ∈ M . From dynamical perspective, the most important quantity
in the tangent bundle concept is the smooth map v : M → TM , which is an
inverse to the projection π, i.e, π ◦ v = IdM , π(v(x)) = x. It is called the
velocity vector–field . Its graph (x, v(x)) represents the cross–section of the
tangent bundle TM . This explains the dynamical term velocity phase–space,
given to the tangent bundle TM of the manifold M .

Fig. 3.3. A sketch of a tangent bundle TM of a smooth manifold M (see text for
explanation).

Definition of a Tangent Bundle

Recall that if [a, b] is a closed interval, a C0−map γ : [a, b] →M is said to be
differentiable at the endpoint a if there is a chart (U, φ) at γ(a) such that the
following limit exists and is finite [II07b]:

d

dt
(φ ◦ γ)(a) ≡ (φ ◦ γ)′(a) = lim

t→a

(φ ◦ γ)(t)− (φ ◦ γ)(a)
t− a

. (3.1)

Generalizing (3.1), we get the notion of the curve on a manifold. For a smooth
manifold M and a point m ∈ M a curve at m is a C0−map γ : I → M from
an interval I ⊂ R into M with 0 ∈ I and γ(0) = m.
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Two curves γ1 and γ2 passing though a point m ∈ U are tangent at m
with respect to the chart (U, φ) if (φ ◦ γ1)′(0) = (φ ◦ γ2)′(0). Thus, two curves
are tangent if they have identical tangent vectors (same direction and speed)
in a local chart on a manifold.

For a smooth manifold M and a point m ∈M, the tangent space TmM to
M at m is the set of equivalence classes of curves at m:

TmM = {[γ]m : γ is a curve at a point m ∈M}.

A C∞−map ϕ : M � m �→ ϕ(m) ∈ N between two manifolds M and
N induces a linear map Tmϕ : TmM → Tϕ(m)N for each point m ∈ M ,
called a tangent map, with the natural projection πM : TM → M, given by
πM (TmM) = m, that takes a tangent vector v to the point m ∈ M at which
the vector v is attached i.e., v ∈ TmM .

For an nD smooth manifold M , its nD tangent bundle TM is the disjoint
union of all its tangent spaces TmM at all points m ∈M , TM =

⊔

m∈M
TmM .

To define the smooth structure on TM , we need to specify how to con-
struct local coordinates on TM . To do this, let (x1(m), ..., xn(m)) be lo-
cal coordinates of a point m on M and let (v1(m), ..., vn(m)) be compo-
nents of a tangent vector in this coordinate system. Then the 2n numbers
(x1(m), ..., xn(m), v1(m), ..., vn(m)) give a local coordinate system on TM .

TM =
⊔

m∈M
TmM defines a family of vector spaces parameterized by M .

The inverse image π−1
M (m) of a point m ∈ M under the natural projection

πM is the tangent space TmM . This space is called the fibre of the tangent
bundle over the point m ∈M [Ste72].

Definition of a Cotangent Bundle

A dual notion to the tangent space TmM to a smooth manifold M at a point
m is its cotangent space T ∗

mM at the same point m. Similarly to the tangent
bundle, for a smooth manifold M of dimension n, its cotangent bundle T ∗M
is the disjoint union of all its cotangent spaces T ∗

mM at all points m ∈M , i.e.,
T ∗M =

⊔

m∈M
T ∗
mM . Therefore, the cotangent bundle of an n−manifold M is

the vector bundle T ∗M = (TM)∗, the (real) dual of the tangent bundle TM .
If M is an n−manifold, then T ∗M is a 2n−manifold. To define the smooth

structure on T ∗M , we need to specify how to construct local coordinates on
T ∗M . To do this, let (x1(m), ..., xn(m)) be local coordinates of a point m on
M and let (p1(m), ..., pn(m)) be components of a covector in this coordinate
system. Then the 2n numbers (x1(m), ..., xn(m), p1(m), ..., pn(m)) give a local
coordinate system on T ∗M . This is the basic idea one uses to prove that indeed
T ∗M is a 2n−manifold.

T ∗M =
⊔

m∈M
T ∗
mM defines a family of vector spaces parameterized by M ,

with the conatural projection, π∗
M : T ∗M →M, given by π∗

M (T ∗
mM) = m, that
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takes a covector p to the point m ∈M at which the covector p is attached i.e.,
p ∈ T ∗

mM . The inverse image π−1
M (m) of a point m ∈M under the conatural

projection π∗
M is the cotangent space T ∗

mM . This space is called the fibre of
the cotangent bundle over the point m ∈M .

In a similar way, a C∞−map ϕ : M → N between two manifolds M and N
induces a linear cotangent map T ∗ϕ : T ∗M → T ∗N between their cotangent
bundles.

All cotangent bundles and their cotangent maps form the category T ∗B.
The category T ∗B is the natural stage for Hamiltonian dynamics.

Now, we can formulate the dual version of the global chain rule. If ϕ : M →
N and ψ : N → P are two smooth maps, then we have T ∗(ψ◦ϕ) = T ∗ψ◦T ∗ϕ.

Vector–Fields and Their Flows on Manifolds

Vector–Fields on M

A vector–field X on U, where U is an open chart in n−manifold M , is a
smooth function from U to M assigning to each point m ∈ U a vector at that
point, i.e., X(m) = (m,X(m)). If X(m) is tangent to M for each m ∈M , X
is said to be a tangent vector–field on M . If X(m) is orthogonal to M (i.e.,
X(p) ∈ M⊥

m) for each X(m) ∈ M , X is said to be a normal vector–field on
M .

In other words, let M be a C∞−manifold. A C∞−vector–field on M is
a C∞−section of the tangent bundle TM of M . Thus a vector–field X on a
manifold M is a C∞−map X : M → TM such that X(m) ∈ TmM for all
points m ∈ M,and πM ◦X = IdM . Therefore, a vector–field assigns to each
point m of M a vector based (i.e., bound) at that point. The set of all C∞

vector–fields on M is denoted by X k(M).
A vector–field X ∈ X k(M) represents a field of direction indicators

[Thi79]: to every point m of M it assigns a vector in the tangent space
TmM at that point. If X is a vector–field on M and (U, φ) is a chart on
M and m ∈ U , then we have X(m) = X(m)φi ∂

∂φi . Following [II07b], we

write X|U = X φi ∂
∂φi .

Let M be a connected n−manifold, and let f : U → R (U an open set
in M) and c ∈ R be such that M = f−1(c) (i.e., M is the level set of the
function f at height c) and ∇f(m) �= 0 for all m ∈ M . Then there exist on
M exactly two smooth unit normal vector–fields N1,2(m) = ± ∇f(m)

|∇f(m)| (here
|X| = (X ·X)1/2 denotes the norm or length of a vector X, and (·) denotes
the scalar product on M) for all m ∈M , called orientations on M .

Let ϕ : M → N be a smooth map. Recall that two vector–fields X ∈
X k(M) and Y ∈ X (N) are called ϕ−related, if Tϕ ◦ X = Y ◦ ϕ holds.
In particular, a diffeomorphism ϕ : M → N induces a linear map between
vector–fields on two manifolds, ϕ∗ : X k(M) → X (N), such that ϕ∗X =
Tϕ ◦X ◦ ϕ−1 : N → TN .
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A C∞ time–dependent vector–field is a C∞−map X : R×M → TM such
that X(t,m) ∈ TmM for all (t,m) ∈ R×M, i.e., Xt(m) = X(t,m).

Integral Curves as Dynamical Trajectories

Recall (3.1.2) that a curve γ at a point m of an n−manifold M is a C0−map
from an open interval I ⊂ R into M such that 0 ∈ I and γ(0) = m. For
such a curve we may assign a tangent vector at each point γ(t), t ∈ I, by
γ̇(t) = Ttγ(1).

Let X be a smooth tangent vector–field on the smooth n−manifold M ,
and let m ∈M . Then there exists an open interval I ⊂ R containing 0 and a
parameterized curve γ : I →M such that:

A. γ(0) = m;
B. γ̇(t) = X(γ(t)) for all t ∈ I; and
C. If β : Ĩ → M is any other parameterized curve in M satisfying (1) and

(2), then Ĩ ⊂ I and β(t) = γ(t) for all t ∈ Ĩ.

A parameterized curve γ : I → M satisfying condition (2) is called an
integral curve of the tangent vector–field X. The unique γ satisfying conditions
(1)–(3) is the maximal integral curve of X through m ∈M .

In other words, let γ : I → M, t �→ γ (t) be a smooth curve in a manifold
M defined on an interval I ⊆ R. γ̇(t) = d

dtγ(t) defines a smooth vector–field
along γ since we have πM ◦ γ̇ = γ. Curve γ is called an integral curve or flow
line of a vector–field X ∈ X k(M) if the tangent vector determined by γ equals
X at every point m ∈M , i.e.,

γ̇ = X ◦ γ.

On a chart (U, φ) with coordinates φ(m) =
(
x1(m), ..., xn(m)

)
, for which

ϕ ◦ γ : t �→ γi (t) and Tϕ ◦X ◦ ϕ−1 : xi �→
(
xi,Xi (m)

)
, this is written

γ̇i(t) = Xi (γ (t)) , for all t ∈ I ⊆ R, (3.2)

which is an ordinary differential equation of first–order in n dimensions.
The velocity γ̇ of the parameterized curve γ (t) is a vector–field along γ

defined by
γ̇(t) = (γ(t), ẋ1(t), . . . ẋn(t)).

Its length |γ̇| : I → R, defined by |γ̇|(t) = |γ̇(t)| for all t ∈ I, is a function
along α. |γ̇| is called speed of γ [Arn78].

Each vector–field X along γ is of the form X(t) = (γ(t),X1(t), . . . , Xn(t)),
where each component Xi is a function along γ. X is smooth if each Xi : I →
M is smooth. The derivative of a smooth vector–field X along a curve γ(t) is
the vector–field Ẋ along γ defined by

Ẋ(t) = (γ(t), Ẋ1(t), . . . Ẋn(t)).



3.1 Riemannian Geometry of Smooth Manifolds 325

Ẋ(t) measures the rate of change of the vector part (X1(t), . . . Xn(t)) of
X(t) along γ. Thus, the acceleration γ̈(t) of a parameterized curve γ(t) is the
vector–field along γ get by differentiating the velocity field γ̇(t).

Differentiation of vector–fields along parameterized curves has the follow-
ing properties. For X and Y smooth vector–fields on M along the parameter-
ized curve γ : I →M and f a smooth function along γ, we have:

A. d
dt (X + Y ) = Ẋ + Ẏ ;

B. d
dt (fX) = ḟX + fẊ; and

C. d
dt (X · Y ) = ẊY + XẎ .

A geodesic in M is a parameterized curve γ : I →M whose acceleration γ̈
is everywhere orthogonal to M ; that is, γ̈(t) ∈ M⊥

α(t) for all t ∈ I ⊂ R. Thus
a geodesic is a curve in M which always goes ‘straight ahead’ in the surface.
Its acceleration serves only to keep it in the surface. It has no component of
acceleration tangent to the surface. Therefore, it also has a constant speed
γ̇(t).

Let v ∈ Mm be a vector on M . Then there exists an open interval I ⊂ R

containing 0 and a geodesic γ : I →M such that:

A. γ(0) = m and γ̇(0) = v; and
B. If β : Ĩ → M is any other geodesic in M with β(0) = m and β̇(0) = v,

then Ĩ ⊂ I and β(t) = γ(t) for all t ∈ Ĩ.

The geodesic γ is now called the maximal geodesic in M passing through
m with initial velocity v.

By definition, a parameterized curve γ : I → M is a geodesic of M iff its
acceleration is everywhere perpendicular to M , i.e., iff γ̈(t) is a multiple of the
orientation N(γ(t)) for all t ∈ I, i.e., γ̈(t) = g(t)N(γ(t)), where g : I → R.
Taking the scalar product of both sides of this equation with N(γ(t)) we find
g = −γ̇Ṅ(γ(t)). Thus γ : I → M is geodesic iff it satisfies the differential
equation

γ̈(t) + Ṅ(γ(t))N(γ(t)) = 0.

This vector equation represents the system of second–order component ODEs

ẍi + Ni(x + 1, . . . , xn)
∂Nj
∂xk

(x + 1, . . . , xn) ẋj ẋk = 0.

The substitution ui = ẋi reduces this second–order differential system (in n
variables xi) to the first–order differential system

ẋi = ui, u̇i = −Ni(x + 1, . . . , xn)
∂Nj
∂xk

(x + 1, . . . , xn) ẋj ẋk

(in 2n variables xi and ui). This first–order system is just the differential
equation for the integral curves of the vector–field X in U ×R (U open chart
in M), in which case X is called a geodesic spray .
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Now, when an integral curve γ(t) is the path a mechanical system Ξ fol-
lows, i.e., the solution of the equations of motion, it is called a trajectory. In
this case the parameter t represents time, so that (3.2) describes motion of
the system Ξ on its configuration manifold M .

If Xi (m) is C0 the existence of a local solution is guaranteed, and a Lips-
chitz condition would imply that it is unique. Therefore, exactly one integral
curve passes through every point, and different integral curves can never cross.
As X ∈ X k(M) is C∞, the following statement about the solution with arbi-
trary initial conditions holds [Thi79, Arn78]:

Theorem. Given a vector–field X ∈ X (M), for all points p ∈ M , there
exist η > 0, a neighborhood V of p, and a function γ : (−η, η) × V → M ,(
t, xi (0)

)
�→ γ

(
t, xi (0)

)
such that

γ̇ = X ◦ γ, γ
(
0, xi (0)

)
= xi (0) for all xi (0) ∈ V ⊆M.

For all |t| < η, the map xi (0) �→ γ
(
t, xi (0)

)
is a diffeomorphism fXt between

V and some open set of M . For proof, see [Die69], I, 10.7.4 and 10.8.
This theorem states that trajectories that are near neighbors cannot sud-

denly be separated. There is a well–known estimate (see [Die69], I, 10.5) ac-
cording to which points cannot diverge faster than exponentially in time if
the derivative of X is uniformly bounded.

An integral curve γ (t) is said to be maximal if it is not a restriction
of an integral curve defined on a larger interval I ⊆ R. It follows from the
existence and uniqueness theorems for ODEs with smooth r.h.s and from
elementary properties of Hausdorff spaces that for any point m ∈ M there
exists a maximal integral curve γm of X, passing for t = 0 through point m,
i.e., γ(0) = m.

Theorem (Local Existence, Uniqueness, and Smoothness) [AM78, II07b].
Let E be a Banach space, U ⊂ E be open, and suppose X : U ⊂ E → E is of
class C∞, k ≥ 1. Then

1. For each x0 ∈ U , there is a curve γ : I → U at x0 such that γ̇(t) =
X (γ(t)) for all t ∈ I.

2. Any two such curves are equal on the intersection of their domains.
3. There is a neighborhood U0 of the point x0 ∈ U , a real number a > 0,

and a C∞ map F : U0 × I → E, where I is the open interval ] − a, a[ , such
that the curve γu : I → E, defined by γu(t) = F (u, t) is a curve at u ∈ E
satisfying the ODEs γ̇u(t) = X (γu(t)) for all t ∈ I.

Proposition (Global Uniqueness). Suppose γ1 and γ2 are two integral
curves of a vector–field X at a point m ∈ M . Then γ1 = γ2 on the inter-
section of their domains [AM78, II07b].

If for every point m ∈ M the curve γm is defined on the entire real axis
R, then the vector–field X is said to be complete.

The support of a vector–field X defined on a manifold M is defined to be
the closure of the set {m ∈ M |X(m) = 0}. A C∞ vector–field with compact
support on a manifold M is complete. In particular, a C∞ vector–field on
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a compact manifold is complete. Completeness corresponds to well–defined
dynamics persisting eternally.

Now, following [AM78, II07b], for the derivative of a C∞ function f : E →
R in the direction X we use the notation X[f ] = df ·X , where df stands for
the derivative map. In standard coordinates on R

n this is a standard gradient

df(x) = ∇f = (∂x1f, ..., ∂xnf), and X[f ] = Xi∂xif.

Let Ft be the flow of X. Then f (Ft(x)) = f (Fs(x)) if t ≥ s.
For example, Newtonian equations for a moving particle of mass m in a

potential field V in R
n are given by q̈i(t) = −(1/m)∇V

(
qi(t)

)
, for a smooth

function V : R
n → R. If there are constants a, b ∈ R, b ≥ 0 such that

(1/m)V (qi) ≥ a − b
∥∥qi

∥∥2
, then every solution exists for all time. To show

this, rewrite the second–order equations as a first–order system q̇i = (1/m) pi,
ṗi = −V (qi) and note that the energy E(qi, pi) = (1/2m) ‖ pi‖2 + V (q) is
a first integral of the motion. Thus, for any solution

(
qi(t), pi(t)

)
we have

E
(
qi(t), pi(t)

)
= E

(
qi(0), pi(0)

)
= V (q(0)).

Let Xt be a C∞ time–dependent vector–field on an n−manifold M , k ≥ 1,
and let m0 be an equilibrium of Xt, that is, Xt(m0) = 0 for all t. Then for
any T there exists a neighborhood V of m0 such that any m ∈ V has integral
curve existing for time t ∈ [−T, T ].

Dynamical Flows on M

The so–called flow Ft of a C∞ vector–field X ∈ X k(M) is the one–parameter
group of diffeomorphisms Ft : M → M such that t �→ Ft (m) is the integral
curve of X with initial condition m for all m ∈ M and t ∈ I ⊆ R. The flow
Ft(m) is C∞ by induction on k. It is defined as [AM78, II07b]:

d

dt
Ft(x) = X(Ft(x)).

Existence and uniqueness theorems for ODEs guarantee that Ft is smooth
in m and t. From uniqueness, we get the flow property :

Ft+s = Ft ◦ Fs

along with the initial conditions F0 = identity. The flow property generalizes
the situation where M = V is a linear space, X(x) = Ax for a (bounded)
linear operator A, and where Ft(x) = etAx – to the nonlinear case. Therefore,
the flow Ft(m) can be defined as a formal exponential

Ft(m) = exp(tX) = (I + tX +
t2

2
X2 + ...) =

∞∑

k=0

Xktk

k!
.

A time–dependent vector–field is a map X : M × R →TM such that
X(m, t) ∈ TmM for each point m ∈ M and t ∈ R. An integral curve of
X is a curve γ(t) in M such that



328 3 Geometry and Topology Change in Complex Systems

γ̇(t) = X (γ (t) , t) , for all t ∈ I ⊆ R.

In this case, the flow is the one–parameter group of diffeomorphisms Ft,s :
M →M such that t �→ Ft,s (m) is the integral curve γ(t) with initial condition
γ(s) = m at t = s. Again, the existence and uniqueness theorem from ODE–
theory applies here, and in particular, uniqueness gives the time–dependent
flow property, i.e., the Chapman–Kolmogorov law

Ft,r = Ft,s ◦ Fs,r.

If X happens to be time independent, the two notions of flows are related by
Ft,s = Ft−s (see [MR99]).

3.1.3 Local Riemannian Geometry

An important class of problems in Riemannian geometry is to understand the
interaction between the curvature and topology on a smooth manifold [II06b,
II07b]. A prime example of this interaction is the Gauss–Bonnet formula on
a closed surface M2, which says

∫

M

K dA = 2π χ(M), (3.3)

where dA is the area element of a metric g on M , K is the Gaussian curvature
of g, and χ(M) is the Euler characteristic of M.

To study the geometry of a smooth manifold we need an additional struc-
ture: the Riemannian metric tensor . The metric is an inner product on each
of the tangent spaces and tells us how to measure angles and distances in-
finitesimally. In local coordinates (x1, x2, · · · , xn), the metric g is given by
gij(x) dxi⊗dxj , where (gij(x)) is a positive definite symmetric matrix at each
point x. For a smooth manifold one can differentiate functions. A Riemannian
metric defines a natural way of differentiating vector–fields: covariant differ-
entiation. In Euclidean space, one can change the order of differentiation.
On a Riemannian manifold the commutator of twice covariant differentiating
vector–fields is in general nonzero and is called the Riemann curvature tensor ,
which is a 4−tensor–field on the manifold.

For surfaces, the Riemann curvature tensor is equivalent to the Gaussian
curvature K, a scalar function. In dimensions 3 or more, the Riemann cur-
vature tensor is inherently a tensor–field. In local coordinates, it is denoted
by Rijkl, which is anti-symmetric in i and k and in j and l, and symmetric
in the pairs {ij} and {kl}. Thus, it can be considered as a bilinear form on
2−forms which is called the curvature operator. We now describe heuristically
the various curvatures associated to the Riemann curvature tensor. Given a
point x ∈Mn and 2−plane Π in the tangent space of M at x, we can define a
surface S in M to be the union of all geodesics passing through x and tangent
to Π. In a neighborhood of x, S is a smooth 2D submanifold of M. We define
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the sectional curvature K(Π) of the 2−plane to be the Gauss curvature of S
at x:

K(Π) = KS(x).

Thus the sectional curvature K of a Riemannian manifold associates to each
2−plane in a tangent space a real number. Given a line L in a tangent space,
we can average the sectional curvatures of all planes through L to get the
Ricci tensor Rc(L). Likewise, given a point x ∈M, we can average the Ricci
curvatures of all lines in the tangent space of x to get the scalar curvature
R(x). In local coordinates, the Ricci tensor is given by Rik = gjlRijkl and the
scalar curvature is given by R = gikRik, where (gij) = (gij)−1 is the inverse
of the metric tensor (gij).

Riemannian Metric on M

Riemann in 1854 observed that around each point m ∈ M one can pick
a special coordinate system (x1, . . . , xn) such that there is a symmetric
(0, 2)−tensor–field gij(m) called the metric tensor defined as (see [Pet99,
Pet98, II06b, II07b])

gij(m) = g(∂xi , ∂xj ) = δij , ∂xkgij(m) = 0.

Thus the metric, at the specified point m ∈ M , in the coordinates
(x1, . . . , xn) looks like the Euclidean metric on R

n. We emphasize that these
conditions only hold at the specified point m ∈M. When passing to different
points it is necessary to pick different coordinates. If a curve γ passes through
m, say, γ(0) = m, then the acceleration at 0 is defined by firstly, writing the
curve out in our special coordinates

γ(t) = (γ1(t), . . . , γn(t)),

secondly, defining the tangent, velocity vector–field, as

γ̇ = γ̇i(t) · ∂xi ,

and finally, the acceleration vector–field as

γ̈(0) = γ̈i(0) · ∂xi .

Here, the background idea is that we have a connection.
Recall that a connection on a smooth manifold M tells us how to parallel

transport a vector at a point x ∈ M to a vector at a point x′ ∈ M along a
curve γ ∈M . Roughly, to parallel transport vectors along curves, it is enough
if we can define parallel transport under an infinitesimal displacement: given
a vector X at x, we would like to define its parallel transported version X̃
after an infinitesimal displacement by εv, where v is a tangent vector to M at
x.
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More precisely, a vector–field X along a parameterized curve α : I →
M in M is tangent to M along α if X(t) ∈ Mα(t) for all for t ∈ I ⊂ R.
However, the derivative Ẋ of such a vector–field is, in general, not tangent to
M . We can, nevertheless, get a vector–field tangent to M by projecting Ẋ(t)
orthogonally onto Mα(t) for each t ∈ I. This process of differentiating and then
projecting onto the tangent space to M defines an operation with the same
properties as differentiation, except that now differentiation of vector–fields
tangent to M induces vector–fields tangent to M . This operation is called
covariant differentiation [Pet99, Pet98, II06b, II07b].

Let γ : I → M be a parameterized curve in M , and let X be a smooth
vector–field tangent to M along α. The absolute covariant derivative of X is
the vector–field ˙̄X tangent to M along α, defined by ˙̄X = Ẋ(t) − [Ẋ(t) ·
N(α(t))]N(α(t)), where N is an orientation on M . Note that ˙̄X is indepen-
dent of the choice of N since replacing N by -N has no effect on the above
formula.

Lie bracket [II06b, II07b] defines a symmetric affine connection ∇ on any
manifold M :

[X,Y ] = ∇XY −∇YX.

In case of a Riemannian manifold M , the connection ∇ is also compatible
with the Riemannian metrics g on M and is called the Levi–Civita connection
on TM .

For a function f ∈ Ck(M,R) and a vector a vector–field X ∈ X k(M) we
always have the Lie derivative [Pet99, Pet98, II06b, II07b]

LXf = ∇Xf = df(X).

But there is no natural definition for ∇XY, where Y ∈ X k(M), unless
one also has a Riemannian metric. Given the tangent field γ̇, the acceleration
can then be computed by using a Leibniz rule on the r.h.s, if we can make
sense of the derivative of ∂xi in the direction of γ̇. This is exactly what the
covariant derivative ∇XY does. If Y ∈ TmM then we can write Y = ai∂xi ,
and therefore

∇XY = LXai∂xi . (3.4)
Since there are several ways of choosing these coordinates, one must check that
the definition does not depend on the choice. Note that for two vector–fields
we define (∇YX)(m) = ∇Y (m)X. In the end we get a connection

∇ : X k(M)×X k(M) → X k(M),

which satisfies (for all f ∈ Ck(M,R) and X,Y,Z ∈ X k(M)):

A. Y → ∇YX is tensorial, i.e., linear and ∇fYX = f∇YX.
B. X → ∇YX is linear.
C. ∇X(fY ) = (∇Xf)Y (m) + f(m)∇XY .
D. ∇XY −∇YX = [X,Y ].
E. LXg(Z, Y ) = g(∇XZ, Y ) + g(Z,∇XY ).
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A semicolon is commonly used to denote covariant differentiation with
respect to a natural basis vector. If X = ∂xi , then the components of ∇XY
in (3.4) are denoted

Y k; i = ∂xiY k + Γ kij Y
j , (3.5)

where Γ kij are Christoffel symbols defined in (3.6) below. Similar relations hold
for higher–order tensor–fields (with as many terms with Christoffel symbols
as is the tensor valence).

Therefore, no matter which coordinates we use, we can now define the
acceleration of a curve in the following way:

γ(t) = (γ1(t), . . . , γn(t)),
γ̇(t) = γ̇i(t)∂xi ,

γ̈(t) = γ̈i(t)∂xi + γ̇i(t)∇γ̇(t)∂xi .

We call γ a geodesic if γ(t) = 0. This is a second–order nonlinear ODE in
a fixed coordinate system (x1, . . . , xn) at the specified point m ∈ M . Thus
we see that given any tangent vector X ∈ TmM, there is a unique geodesic
γX(t) with γ̇X(0) = X. If the manifold M is closed, the geodesic must exist
for all time, but in case the manifold M is open this might not be so. To
see this, take as M any open subset of Euclidean space with the induced
metric.

Given an arbitrary vector–field Y (t) along γ, i.e., Y (t) ∈ Tγ(t)M for
all t, we can also define the derivative Ẏ ≡ dY

dt in the direction of γ̇ by
writing

Y (t) = ai(t)∂xi ,

Ẏ (t) = ȧi(t)∂xi + ai(t)∇γ̇(t)∂xi .

Here the derivative of the tangent field γ̇ is the acceleration γ. The field Y
is said to be parallel iff Ẏ = 0. The equation for a field to be parallel is a
first–order linear ODE, so we see that for any X ∈ Tγ(t0)M there is a unique
parallel field Y (t) defined on the entire domain of γ with the property that
Y (t0) = X. Given two such parallel fields Y,Z ∈ X k(M), we have that

ġ(Y,Z) = Dγ̇g(Y,Z) = g(Ẏ , Z) + g(Y, Ż) = 0.

Thus X and Y are both of constant length and form constant angles along γ.
Hence, ‘parallel translation’ along a curve defines an orthogonal transforma-
tion between the tangent spaces to the manifold along the curve. However, in
contrast to Euclidean space, this parallel translation will depend on the choice
of curve.

An infinitesimal distance between the two nearby local points m and n on
M is defined by an arc–element

ds2 = gij dx
idxj ,
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and realized by the curves xi(s) of shortest distance, called geodesics, ad-
dressed by the Hilbert 4th problem. In local coordinates (x1(s), ..., xn(s)) at a
point m ∈M , the geodesic defining equation is a second–order ODE,

ẍi + Γ ijk ẋ
j ẋk = 0,

where the overdot denotes the derivative with respect to the affine parame-
ter s, ẋi(s) = d

dsx
i(s) is the tangent vector to the base geodesic, while the

Christoffel symbols Γ ijk = Γ ijk(m) of the affine Levi–Civita connection ∇ at
the point m ∈M are defined, in a holonomic coordinate basis ei as

Γ kij = gklΓijl, with gij = (gij)−1 and (3.6)

Γijk =
1
2
(∂xkgij + ∂xjgki − ∂xigjk).

Note that the Christoffel symbols (3.6) do not transform as tensors on the
tangent bundle. They are the components of an object on the second tangent
bundle, a spray. However, they do transform as tensors on the jet space (see
[II06b, II07b]).

In nonholonomic coordinates, (3.6) takes the extended form

Γ ikl =
1
2
gim (∂xlgmk + ∂xk∂gml − ∂xm∂gkl + cmkl + cmlk − cklm) ,

where cklm = gmpc
p
kl are the commutation coefficients of the basis, i.e.,

[ek, el] = cmklem.
The torsion tensor–field T of the connection∇ is the function T : X k(M)×

X k(M) → X k(M) given by

T (X,Y ) = ∇XY −∇YX − [X,Y ].

From the skew symmetry ([X,Y ] = −[Y,X]) of the Lie bracket, follows the
skew symmetry (T (X,Y ) = −T (Y,X)) of the torsion tensor. The mapping T
is said to be f−bilinear since it is linear in both arguments and also satisfies
T (fX, Y ) = fT (X,Y ) for smooth functions f . Since [∂xi , ∂xj ] = 0 for all
1 ≤ i, j ≤ n, it follows that

T (∂xi , ∂xj ) = (Γ kij − Γ kji)∂xk .

Consequently, torsion T is a (1, 2) tensor–field, locally given by

T = T ki j dx
i ⊗ ∂xk ⊗ dxj ,

where the torsion components T ki j are given by

T ki j = Γ kij − Γ kji.

Therefore, the torsion tensor gives a measure of the nonsymmetry of the con-
nection coefficients. Hence, T = 0 if and only if these coefficients are symmetric
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in their subscripts. A connection ∇ with T = 0 is said to be torsion free or
symmetric.

The connection also enables us to define many other classical concepts
from calculus in the setting of Riemannian manifolds. Suppose we have a
function f ∈ Ck(M,R). If the manifold is not equipped with a Riemannian
metric, then we have the differential of f defined by df(X) = LXf, which is a
1−form. The dual concept, the gradient of f, is supposed to be a vector–field.
But we need a metric g to define it. Namely, ∇f is defined by the relationship

g(∇f,X) = df(X).

Having defined the gradient of a function on a Riemannian manifold, we can
then use the connection to define the Hessian as the linear map

∇2f : TM → TM, ∇2f(X) = ∇X∇f.

The corresponding bilinear map is then defined as

∇2f(X,Y ) = g(∇2f(X), Y ).

One can check that this is a symmetric bilinear form. The Laplacian of f , Δf,
is now defined as the trace of the Hessian

Δf = Tr(∇2f(X)) = Tr(∇X∇f),

which is a linear map. It is also called the Laplace–Beltrami operator , since
Beltrami first considered this operator on Riemannian manifolds.

Riemannian metric has the following mechanical interpretation. Let M
be a closed Riemannian manifold with the mechanical metric g = gijv

ivj ≡
〈v, v〉, with vi = ẋi. Consider the Lagrangian function

L : TM → R, (x, v) �→ 1
2
〈v, v〉 − U(x) (3.7)

where U(x) is a smooth function on M called the potential. On a fixed level
of energy E, bigger than the maximum of U , the Lagrangian flow generated
by (3.7) is conjugate to the geodesic flow with metric ḡ = 2(e − U(x))〈v, v〉.
Moreover, the reduced action of the Lagrangian is the distance for g = 〈v, v〉
[Arn78, AM78, II06b, II07b]. Both of these statements are known as the Mau-
pertius action principle.

Geodesics on M

For a Ck, k ≥ 2 curve γ : I → M, we define its length on I as [Pet99, Pet98,
II06b, II07b]

L (γ, I) =
∫

I

|γ̇| dt =
∫

I

√
g (γ̇, γ̇)dt.
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This length is independent of our parametrization of the curve γ. Thus the
curve γ can be reparameterized, in such a way that it has unit velocity. The
distance between two points m1 and m2 on M, d (m1,m2) , can now be defined
as the infimum of the lengths of all curves from m1 to m2, i.e.,

L (γ, I) → min .

This means that the distance measures the shortest way one can travel from
m1 to m2.

If we take a variation V (s, t) : (−ε, ε) × [0,  ] → M of a smooth curve
γ (t) = V (0, t) parameterized by arc–length L and of length  , then the first
derivative of the arc–length function

L(s) =
∫ �

0

|V̇ | dt, is given by

dL(0)
ds

≡ L̇(0) = g (γ̇, X)|�0 −
∫ �

0

g (γ,X) dt, (3.8)

where X (t) = ∂V
∂s (0, t) is the so–called variation vector–field. Equation (3.8)

is called the first variation formula. Given any vector–field X along γ, one
can produce a variation whose variational field is X. If the variation fixes the
endpoints, X (a) = X (b) = 0, then the second term in the formula drops
out, and we note that the length of γ can always be decreased as long as the
acceleration of γ is not everywhere zero. Thus the Euler–Lagrangian equations
for the arc–length functional are the equations for a curve to be a geodesic.

Recall that in local coordinates xi ∈ U , where U is an open subset in the
Riemannian manifold M , the geodesics are defined by the geodesic equation

ẍi + Γ ijkẋ
j ẋk = 0, (3.9)

where overdot means derivative upon the line parameter s, while Γ ijk are
Christoffel symbols of the affine Levi–Civita connection ∇ on M . From (3.9)
it follows that the linear connection homotopy ,

Γ̄ ijk = sΓ ijk + (1− s)Γ ijk, (0 ≤ s ≤ 1),

determines the same geodesics as the original Γ ijk.

Riemannian Curvature on M

The Riemann curvature tensor is a rather ominous tensor of type (1, 3); i.e.,
it has three vector variables and its value is a vector as well. It is defined
through the Lie bracket21 as [Pet99, Pet98, II06b, II07b]

R (X,Y )Z =
(
∇[X,Y ] − [∇X ,∇Y ]

)
Z = ∇[X,Y ]Z −∇X∇Y Z +∇Y∇XZ.

21 If X, Y ∈ X k(M), k ≥ 1 are two vector–fields on M , then



3.1 Riemannian Geometry of Smooth Manifolds 335

This turns out to be a vector valued (1, 3)−tensor–field in the three variables
X,Y,Z ∈ X k(M). We can then create a (0, 4)−tensor,

R (X,Y,Z,W ) = g
(
∇[X,Y ]Z −∇X∇Y Z +∇Y∇XZ,W

)
.

[LX ,LY ] = LX ◦ LY − LY ◦ LX

is a derivation map from Ck+1(M, R) to Ck−1(M, R). Then there is a unique
vector–field, [X, Y ] ∈ X k(M) of X and Y such that L[X,Y ] = [LX ,LY ] and
[X, Y ](f) = X (Y (f)) − Y (X(f)) holds for all functions f ∈ C∞(M, R). This
vector–field is also denoted LXY and is called the Lie derivative of Y with respect
to X, or the Lie bracket of X and Y . In a local chart (U, φ) at a point m ∈ M
with coordinates (x1, ..., xn), for X|U = Xi∂xi and Y |U = Y i∂xi we have

[
Xi∂xi , Y

j∂xj

]
=

(
Xi

(
∂xiY

j
)
− Y i

(
∂xiX

j
))

∂xj ,

since second partials commute. If, also X has flow Ft, then [AM78, II07b]

d

dt
(F ∗

t Y ) = F ∗
t (LXY ) .

In particular, if t = 0, this formula becomes

d

dt
|t=0 (F ∗

t Y ) = LXY.

Then the unique Ck−1 vector–field LXY = [X, Y ] on M defined by

[X, Y ] =
d

dt
|t=0 (F ∗

t Y ) ,

is called the Lie derivative of Y with respect to X, or the Lie bracket of X and Y,
and can be interpreted as the leading order term that results from the sequence
of flows

F−Y
t ◦ F−X

t ◦ F Y
t ◦ F−X

t (m) = ε2[X, Y ](m) + O(ε3), (3.10)

for some real ε > 0. Therefore a Lie bracket can be interpreted as a ‘new direction’
in which the system can flow, by executing the sequence of flows (3.10).

Lie bracket satisfies the following property:

[X, Y ][f ] = X[Y [f ]] − Y [X[f ]],

for all f ∈ Ck+1(U, R), where U is open in M .
An important relationship between flows of vector–fields is given by the

Campbell–Baker–Hausdorff formula:

F Y
t ◦ F X

t = F
X+Y + 1

2 [X,Y ]+ 1
12 ([X,[X,Y ]]−[Y,[X,Y ]])+...

t (3.11)

Essentially, if given the composition of multiple flows along multiple vector–fields,
this formula gives the one flow along one vector–field which results in the same
net flow. One way to prove the Campbell–Baker–Hausdorff formula (3.11) is to
expand the product of two formal exponentials and equate terms in the resulting
formal power series [II06b, II07b].
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Clearly this tensor is skew–symmetric in X and Y , and also in Z and W ∈
X k(M). This was already known to Riemann, but there are some further,
more subtle properties that were discovered a little later by Bianchi. The
Bianchi symmetry condition reads

R(X,Y,Z,W ) = R(Z,W,X, Y ).

The Ricci tensor is the (1, 1)− or (0, 2)−tensor defined by

Ric(X) = R(∂xi ,X)∂xi , Ric(X,Y ) = g(R(∂xi ,X)∂xi , Y ),

for any orthonormal basis (∂xi). In other words, the Ricci curvature is a trace
of the curvature tensor. Similarly one can define the scalar curvature as the
trace

scal(m) = Tr (Ric) = Ric(∂xi , ∂xi).

When the Riemannian manifold has dimension 2, all of these curvatures
are essentially the same. Since dimΛ2TM = 1 and is spanned by X∧Y where
X,Y ∈ X k(M) form an orthonormal basis for TmM, we see that the curvature
tensor depends only on the scalar value

K(m) = R(X,Y,X, Y ),

which also turns out to be the Gaussian curvature. The Ricci tensor is a
homothety

Ric(X) = K(m)X, Ric(Y ) = K(m)Y,

and the scalar curvature is twice the Gauss curvature. In dimension 3 there are
also some redundancies as dimTM = dimΛ2TM = 3. In particular, the Ricci
tensor and the curvature tensor contain the same amount of information.

The sectional curvature is a kind of generalization of the Gauss curvature
whose importance Riemann was already aware of. Given a 2−plane π ⊂ TmM
spanned by an orthonormal basis X,Y ∈ X k(M) it is defined as

sec(π) = R(X,Y,X, Y ).

The remarkable observation by Riemann was that the curvature operator is
a homothety, i.e., looks like R = kI on Λ2TmM iff all sectional curvatures
of planes in TmM are equal to k. This result is not completely trivial, as
the sectional curvature is not the entire quadratic form associated to the
symmetric operator R. In fact, it is not true that sec ≥ 0 implies that the
curvature operator is nonnegative in the sense that all its eigenvalues are
nonnegative. What Riemann did was to show that our special coordinates
(x1, . . . , xn) at m can be chosen to be normal at m, i.e., satisfy the condition

xi = δijx
j , (δijx

j = gij)

on a neighborhood of m. One can show that such coordinates are actually
exponential coordinates together with a choice of an orthonormal basis for
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TmM so as to identify TmM with R
n. In these coordinates one can then

expand the metric as follows:

gij = δij −
1
3
Rikjlx

kxl + O
(
r3
)
.

Now the equations xi = gijx
j evidently give conditions on the curvatures

Rijkl at m.
If Γ ijk(m) = 0, the manifold M is flat at the point m. This means that

the (1, 3) curvature tensor, defined locally at m ∈M as [Pet99, Pet98, II06b,
II07b]

Rlijk = ∂xjΓ lik − ∂xkΓ lij + Γ lrjΓ
r
ik − Γ lrkΓ

r
ij ,

also vanishes at that point, i.e., Rlijk(m) = 0.
Now, the rate of change of a vector–field Ak on the manifold M along the

curve xi(s) is properly defined by the absolute covariant derivative

D

ds
Ak = ẋi∇iAk = ẋi

(
∂xiAk + Γ kij A

j
)

= Ȧk + Γ kij ẋ
iAj .

By applying this result to itself, we can get an expression for the second
covariant derivative of the vector–field Ak along the curve xi(s):

D2

ds2
Ak =

d

ds

(
Ȧk + Γ kij ẋ

iAj
)

+ Γ kij ẋ
i(Ȧj + Γ jmn ẋmAn).

In the local coordinates (x1(s), ..., xn(s)) at a point m ∈M, if δxi = δxi(s)
denotes the geodesic deviation, i.e., the infinitesimal vector describing perpen-
dicular separation between the two neighboring geodesics, passing through two
neighboring points m,n ∈ M , then the Jacobi equation of geodesic deviation
on the manifold M holds [Pet99, Pet98, II06b, II07b]

D2δxi

ds2
+ Rijkl ẋ

j δxk ẋl = 0. (3.12)

This equation describes the relative acceleration between two infinitesimally
close facial geodesics, which is proportional to the facial curvature (measured
by the Riemann tensor Rijkl at a point m ∈M), and to the geodesic deviation
δxi. Solutions of equation (3.12) are called Jacobi fields.

In particular, if the manifold M is a 2D–surface in R
3, the Riemann cur-

vature tensor simplifies into

Rijmn =
1
2
Rgik(gkm gjn − gkn gjm),

where R denotes the scalar Gaussian curvature. Consequently the equation
of geodesic deviation (3.12) also simplifies into

D2

ds2
δxi +

R

2
δxi − R

2
ẋi(gjk ẋj δxk) = 0. (3.13)



338 3 Geometry and Topology Change in Complex Systems

This simplifies even more if we work in a locally Cartesian coordinate sys-
tem; in this case the covariant derivative D2

Ds2 reduces to an ordinary derivative
d2

ds2 and the metric tensor gij reduces to identity matrix Iij , so our 2D equa-
tion of geodesic deviation (3.13) reduces into a simple second–order ODE in
just two coordinates xi (i = 1, 2)

ẍi +
R

2
δxi − R

2
ẋi(Ijk ẋj δxk) = 0.

For more technical details on local Riemannian geometry, see [II07b].

3.1.4 Global Riemannian Geometry

In this subsection we briefly describe the global Riemann geometry. For more
technical details, see [II07b].

The Second Variation Formula

Cartan also establishes another important property of manifolds with non-
positive curvature. First he observes that all spaces of constant zero curva-
ture have torsion–free fundamental groups. This is because any isometry of
finite order on Euclidean space must have a fixed point (the center of mass of
any orbit is necessarily a fixed point). Then he notices that one can geomet-
rically describe the L∞ center of mass of finitely many points {m1, . . . ,mk}
in Euclidean space as the unique minimum for the strictly convex function
[Pet99, Pet98, II06b, II07b]

x→ max
i=1,··· ,k

1
2

{
(d (mi, x))2

}
.

In other words, the center of mass is the center of the ball of smallest radius
containing {m1, . . . ,mk} . Now Cartan’s observation from above was that the
exponential map is expanding and globally distance nondecreasing as a map:

(TmM, Euclidean metric)→ (TmM, with pull–back metric) .

Thus distance functions are convex in nonpositive curvature as well as in
Euclidean space. Hence the above argument can in fact be used to conclude
that any Riemannian manifold of nonpositive curvature must also have torsion
free fundamental group.

Now, let us set up the second variation formula and explain how it is used.
We have already seen the first variation formula and how it can be used to
characterize geodesics. Now suppose that we have a unit speed geodesic γ (t)
parameterized on [0,  ] and consider a variation V (s, t) , where V (0, t) = γ (t).
Synge then shows that (L̈ ≡ d2L

ds2 )
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L̈(0) =
∫ �

0

{g(Ẋ, Ẋ)− (g(Ẋ, γ̇))2 − g(R(X, γ̇)X, γ̇)}dt + g(γ̇, A)|�0 ,

where X (t) = ∂V
∂s (0, t) is the variational vector–field, Ẋ = ∇γ̇X, and A (t) =

∇ ∂V
∂s

X. In the special case where the variation fixes the endpoints, i.e., s →
V (s, a) and s → V (s, b) are constant, the term with A in it falls out. We
can also assume that the variation is perpendicular to the geodesic and then
drop the term g

(
Ẋ, γ̇

)
. Thus, we arrive at the following simple form [Pet99,

Pet98, II06b, II07b]

L̈(0) =
∫ �

0

{g(Ẋ, Ẋ)− g (R (X, γ̇)X, γ̇)}dt =
∫ �

0

{|Ẋ|2 − sec(γ̇, X) |X|2}dt.

Therefore, if the sectional curvature is nonpositive, we immediately observe
that any geodesic locally minimizes length (that is, among close–by curves),
even if it does not minimize globally (for instance γ could be a closed geodesic).
On the other hand, in positive curvature we can see that if a geodesic is too
long, then it cannot minimize even locally. The motivation for this result
comes from the unit sphere, where we can consider geodesics of length > π.
Globally, we know that it would be shorter to go in the opposite direction.
However, if we consider a variation of γ where the variational field looks like
X = sin

(
t · π�

)
E and E is a unit length parallel field along γ which is also

perpendicular to γ, then we get

L̈(0) =
∫ �

0

{∣∣∣Ẋ
∣∣∣
2

− sec (γ̇, X) |X|2
}

dt

=
∫ �

0

{(π

 

)2

· cos2
(
t · π

 

)
− sec (γ̇, X) sin2

(
t · π

 

)}
dt

=
∫ �

0

((π

 

)2

· cos2
(
t · π

 

)
− sin2

(
t · π

 

))
dt = − 1

2 
(
 2 − π2

)
,

which is negative if the length  of the geodesic is greater than π. Therefore,
the variation gives a family of curves that are both close to and shorter than
γ. In the general case, we can then observe that if sec ≥ 1, then for the same
type of variation we get

L̈(0) ≤ − 1
2 

(
 2 − π2

)
.

Thus we can conclude that, if the space is complete, then the diameter must be
≤ π because in this case any two points are joined by a segment, which cannot
minimize if it has length > π. With some minor modifications one can now
conclude that any complete Riemannian manifold (M, g) with sec ≥ k2 > 0
must satisfy diam(M, g) ≤ π·k−1. In particular, M must be compact. Since the
universal covering of M satisfies the same curvature hypothesis, the conclusion
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must also hold for this space; hence M must have compact universal covering
space and finite fundamental group.

In odd dimensions all spaces of constant positive curvature must be ori-
entable, as orientation reversing orthogonal transformation on odd–dimensio-
nal spheres have fixed points. This can now be generalized to manifolds of
varying positive curvature. Synge did it in the following way: Suppose M is
not simply–connected (or not orientable), and use this to find a shortest closed
geodesic in a free homotopy class of curves (that reverses orientation). Now
consider parallel translation around this geodesic. As the tangent field to the
geodesic is itself a parallel field, we see that parallel translation preserves the
orthogonal complement to the geodesic. This complement is now odd dimen-
sional (even dimensional), and by assumption parallel translation preserves
(reverses) the orientation; thus it must have a fixed point. In other words, there
must exist a closed parallel field X perpendicular to the closed geodesic γ. We
can now use the above second variation formula [Pet99, Pet98, II06b, II07b]

L̈(0) =
∫ �

0

{|Ẋ|2 − |X|2 sec (γ̇, X)}dt + g (γ̇, A)|�0 = −
∫ �

0

|X|2 sec (γ̇, X) dt.

Here the boundary term drops out because the variation closes up at the
endpoints, and Ẋ = 0 since we used a parallel field. In case the sectional
curvature is always positive we then see that the above quantity is negative.
But this means that the closed geodesic has nearby closed curves which are
shorter. However, this is in contradiction with the fact that the geodesic was
constructed as a length minimizing curve in a free homotopy class.

In 1941 Myers generalized the diameter bound to the situation where one
only has a lower bound for the Ricci curvature. The idea is that Ric(γ̇, γ̇) =∑n−1
i=1 sec (Ei, γ̇) for any set of vector–fields Ei along γ such that γ̇, E1, . . . ,

En−1 forms an orthonormal frame. Now assume that the fields are parallel
and consider the n − 1 variations coming from the variational vector–fields
sin

(
t · π�

)
Ei. Adding up the contributions from the variational formula ap-

plied to these fields then induces

n−1∑

i=1

L̈(0) =
n−1∑

i=1

∫ �

0

{(π

 

)2

· cos2
(
t · π

 

)
− sec (γ̇, Ei) sin2

(
t · π

 

)}
dt

=
∫ �

0

{
(n− 1)

(π

 

)2

· cos2
(
t · π

 

)
− Ric (γ̇, γ̇) sin2

(
t · π

 

)}
dt.

Therefore, if Ric(γ̇, γ̇) ≥ (n− 1) k2 (this is the Ricci curvature of Snk ), then

n−1∑

i=1

L̈(0) ≤ (n− 1)
∫ �

0

{(π

 

)2

· cos2
(
t · π

 

)
− k2 sin2

(
t · π

 

)}
dt

= − (n− 1)
1
2 

(
 2k2 − π2

)
,
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which is negative when  > π · k−1 (the diameter of Snk ). Thus at least one of
the contributions d

2Li

ds2 (0) must be negative as well, implying that the geodesic
cannot be a segment in this situation.

Gauss–Bonnet Formula

In 1926 Hopf proved that in fact there is a Gauss–Bonnet formula for all even–
dimensional hypersurfaces H2n ⊂ R

2n+1. The idea is that the determinant of
the differential of the Gauss map G : H2n → S2n is the Gaussian curvature
of the hypersurface. Moreover, this is an intrinsically computable quantity. If
we integrate this over the hypersurface, we get [Pet99, Pet98, II06b, II07b]

1
VolS2n

∫

H

det (DG) = deg (G) ,

where deg (G) is the Brouwer degree of the Gauss map. Note that this can also
be done for odd–dimensional surfaces, in particular curves, but in this case
the degree of the Gauss map will depend on the embedding or immersion of
the hypersurface. Instead one gets the so–called winding number. Hopf then
showed, as Dyck had earlier done for surfaces, that deg (G) is always half the
Euler characteristic of H, thus yielding

2
VolS2n

∫

H

det (DG) = χ (H) . (3.14)

Since the l.h.s of this formula is in fact intrinsic, it is natural to conjecture
that such a formula should hold for all manifolds.

Ricci Flow on M

Ricci flow , or the parabolic Einstein equation, was introduced by R. Hamilton
in 1982 [Ham82] in the form

∂tgij = −2Rij . (3.15)

Now, because of the minus sign in the front of the Ricci tensor Rij in this
equation, the solution metric gij to the Ricci flow shrinks in positive Ricci
curvature direction while it expands in the negative Ricci curvature direction.
For example, on the 2−sphere S2, any metric of positive Gaussian curvature
will shrink to a point in finite time. Since the Ricci flow (3.15) does not
preserve volume in general, one often considers the normalized Ricci flow
defined by

∂tgij = −2Rij +
2
n
rgij , (3.16)

where r =
∫

RdV
/ ∫

dV is the average scalar curvature. Under this nor-
malized flow, which is equivalent to the (unnormalized) Ricci flow (3.15) by
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re-parameterizing in time t and scaling the metric in space by a function of
t, the volume of the solution metric is constant in time. Also that Einstein
metrics (i.e., Rij = cgij) are fixed points of (3.16).

Hamilton [Ham82] showed that on a closed Riemannian 3−manifold M3

with initial metric of positive Ricci curvature, the solution g(t) to the nor-
malized Ricci flow (3.16) exists for all time and the metrics g(t) converge
exponentially fast, as time t tends to the infinity, to a constant positive sec-
tional curvature metric g∞ on M3.

Since the Ricci flow lies in the realm of parabolic partial differential equa-
tions, where the prototype is the heat equation, here is a brief review of the
heat equation [CC99].

Let (Mn, g) be a Riemannian manifold. Given a C2 function u : M → R,
its Laplacian is defined in local coordinates

{
xi
}

to be

Δu = Tr
(
∇2u

)
= gij∇i∇ju,

where ∇i = ∇∂xi is its associated covariant derivative (Levi–Civita connec-
tion). We say that a C2 function u : Mn × [0, T ) → R, where T ∈ (0,∞], is a
solution to the heat equation if

∂tu = Δu.

One of the most important properties satisfied by the heat equation is the
maximum principle, which says that for any smooth solution to the heat
equation, whatever pointwise bounds hold at t = 0 also hold for t > 0. Let
u : Mn × [0, T ) → R be a C2 solution to the heat equation on a complete
Riemannian manifold. If C1 ≤ u (x, 0) ≤ C2 for all x ∈M, for some constants
C1, C2 ∈ R, then C1 ≤ u (x, t) ≤ C2 for all x ∈M and t ∈ [0, T ) [CC99].

Now, given a smooth manifold M, a one–parameter family of metrics g (t) ,
where t ∈ [0, T ) for some T > 0, is a solution to the Ricci flow if (3.15) is valid
at all x ∈M and t ∈ [0, T ). The minus sign in the equation (3.15) makes the
Ricci flow a forward heat equation (with the normalization factor 2). In local
geodesic coordinates {xi}, we have [CC99]

gij(x) = δij −
1
3
Ripjqx

pxq + O
(
|x|3

)
, therefore, Δgij (0) = −1

3
Rij ,

where Δ is the standard Euclidean Laplacian. Hence the Ricci flow is like the
heat equation for a Riemannian metric

∂tgij = 6Δgij .

The practical study of the Ricci flow is made possible by the following
short–time existence result: Given any smooth compact Riemannian manifold
(M, go), there exists a unique smooth solution g(t) to the Ricci flow defined
on some time interval t ∈ [0, ε) such that g(0) = go [CC99].

Now, given that short–time existence holds for any smooth initial metric,
one of the main problems concerning the Ricci flow is to determine under
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what conditions the solution to the normalized equation exists for all time
and converges to a constant curvature metric. Results in this direction have
been established under various curvature assumptions, most of them being
some sort of positive curvature. Since the Ricci flow (3.15) does not preserve
volume in general, one often considers, as we mentioned in the Introduction,
the normalized Ricci flow (3.16). Under this flow, the volume of the solution
g(t) is independent of time.

To study the long–time existence of the normalized Ricci flow, it is im-
portant to know what kind of curvature conditions are preserved under the
equation. In general, the Ricci flow tends to preserve some kind of positivity
of curvatures. For example, positive scalar curvature is preserved in all di-
mensions. This follows from applying the maximum principle to the evolution
equation for scalar curvature R, which is

∂tR = ΔR + 2 |Rij |2 .

In dimension 3, positive Ricci curvature is preserved under the Ricci flow. This
is a special feature of dimension 3 and is related to the fact that the Riemann
curvature tensor may be recovered algebraically from the Ricci tensor and
the metric in dimension 3. Positivity of sectional curvature is not preserved
in general. However, the stronger condition of positive curvature operator is
preserved under the Ricci flow [II07b].

3.2 Riemannian Approach to Chaos

In this section, following [CC96], we present the Riemannian approach to
chaos.

During the last two decades or so, there has been a growing evidence of
the independence of the two properties of determinism and predictability of
classical dynamics. In fact, predictability for arbitrary long times requires also
the stability of the motions with respect to variations, however small, of the
initial conditions.

With the exception of integrable systems, the generic situation of classical
dynamical systems describing, say, N particles interacting through physical
potentials, is instability of the trajectories in the Lyapunov sense. Nowadays
such an instability is called intrinsic stochasticity, or chaoticity , of the dy-
namics and is a consequence of nonlinearity of the equations of motion.

Likewise any other kind of instability, dynamical instability brings about
the exponential growth of an initial perturbation, in this case it is the distance
between a reference trajectory and any other trajectory originating in its
close vicinity that locally grows exponentially in time. Quantitatively, the
degree of chaoticity of a dynamical system is characterized by the largest
Lyapunov exponent λ1 that, if positive, measures the mean instability rate of
nearby trajectories averaged along a sufficiently long reference trajectory. The
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exponent λ1 also measures the typical time scale of memory loss of the initial
conditions.

Recall that if
ẋi = Xi(x1 . . . xN ) (3.17)

is a given dynamical system, i.e., a realisation in local coordinates of a one-
parameter group of diffeomorphisms of a manifold M , that is of φt : M →M ,
and if we denote by

ξ̇
i
= J ik [x(t)] ξk (3.18)

the usual tangent dynamics equation, i.e., the realisation of the mapping dφt :
TM → TM , where TM is the tangent bundle of M and [J ik ] is the Jacobian
matrix of [Xi], then the largest Lyapunov exponent λ1 is defined by

λ1 = lim
t→∞

1
t

ln
‖ξ(t)‖
‖ξ(0)‖ (3.19)

and, by setting

Λ[x(t), ξ(t)] = ξT J [x(t)] ξ/ ξT ξ ≡ ξT ξ̇/ξT ξ =
1
2

d

dt
ln(ξT ξ),

this can be formally expressed as a time average

λ1 = lim
t→∞

1
2t

∫ t

0

dτ Λ[x(τ), ξ(τ)]. (3.20)

Even though λ1 is the most important indicator of chaos of classical dynamical
systems, it is used only as a diagnostic tool in numerical simulations. With
the exception of a few simple discrete-time systems (maps of the interval),
no theoretical method exists to compute λ1.22 This situation reveals that a
satisfactory theory of deterministic chaos is still lacking, at least for systems
of physical relevance.

In the conventional chaos theory , dynamical instability is caused by homo-
clinic intersections of perturbed separatrices, however this theory has many
problems: (i) it needs action–angle coordinates , (ii) it works in conditions
of weak perturbation of an integrable system, (iii) to compute quantities like
Mel’nikov integrals one needs the analytic expressions of the unperturbed sep-
aratrices: at large N this is hopeless, moreover the generalization of Poincaré–
Birkhoff theorem is still problematic at N > 2; (iv) finally, there is no com-
putational relationship between homoclinic intersections and Lyapunov expo-
nents. Therefore this theory seems not adequate to treat chaos in Hamiltonian
22 In the paper [Goz83], the authors show the connection between Lyapunov expo-

nents and supersymmetry through a path-integral formulation of both stochastic
and deterministic dynamics. This is a very interesting approach because Lya-
punov exponents are represented as expectation values of some observables, thus
in principle they can be computed by means of standard field-theoretic methods.
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systems with many degrees of freedom at arbitrary degree of nonlinearity, with
potentials that can be hardly transformed in action–angle coordinates, not to
speak of accounting for phenomena like the transition from weak to strong
chaos in Hamiltonian systems [PL90, PC91]. Motivated by the need of under-
standing this transition from weak to strong chaos, recently has been proposed
in [Pet93, CP93, CLP95, CP95, CP96, PV95] to tackle Hamiltonian chaos in
a theoretical framework different from that of homoclinic intersections. This
new method makes use of the well–known possibility of formulating Hamilto-
nian dynamics in the language of Riemannian geometry (see [II07b]) so that
the stability or instability of a geodesic flow depends on curvature properties
of some suitably defined manifold.

In the early 1940s, N. S. Krylov already got a hold of the potential interest
of this differential–geometric framework to account for dynamical instability
and hence for phase space mixing [Kry79]. The follow–up of his intuition can
be found in abstract ergodic theory [Sin89] and in a very few mathematical
works concerning the ergodicity of geodesic flows of physical interest [Kna87,
Gut77]. However, Krylov’s work did not entail anything useful for a more
general understanding of chaos in nonlinear newtonian dynamics because one
soon hits against unsurmountable mathematical obstacles. By filling certain
mathematical gaps with numerical investigations, these obstacles have been
overcome and a rich scenario emerged about the relationship between stability
and curvature

Based on the so–obtained information, this section aims at bringing a sub-
stantial contribution to the development of a Riemannian theory of Hamilto-
nian chaos. The new contribution consists of a method to analytically com-
pute the largest Lyapunov exponent λ1 for physically meaningful Hamiltonian
systems of arbitrary large number of degrees of freedom. A preliminary and
limited account of the results presented here can be found in [CLP95].

3.2.1 Geometrization of Newtonian Dynamics

Let us briefly recall how Newtonian dynamics can be rephrased in the language
of Riemannian geometry. We shall deal with standard autonomous systems,
i.e., described by the Lagrangian function

L = T − V =
1
2
aij q̇iq̇j − V (q1, . . . , qN ) , (3.21)

so that the Hamiltonian function H = T + V ≡ E is a constant of motion.
According to the principle of stationary action – in the form of Maupertuis

– among all the possible iso-energetic paths γ(t) with fixed end points, the
paths that make vanish the first variation of the action functional [CC96]

A =
∫

γ(t)

pi dqi =
∫

γ(t)

∂L

∂q̇i
q̇i dt (3.22)

are natural motions.
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As the kinetic energy T is a homogeneous function of degree two, we have
2T = q̇i∂L/∂q̇i, and Maupertuis’ principle reads

δA = δ

∫

γ(t)

2T dt = 0 . (3.23)

The configuration space M of a system with N degrees of freedom is an ND
differentiable manifold and the lagrangian coordinates (q1, . . . , qN ) can be
used as local coordinates on M . The manifold M is naturally given a proper
Riemannian structure. In fact, let us consider the matrix

gij = 2[E − V (q)]aij ,

so that (3.23) becomes

δ

∫

γ(t)

2T dt = δ

∫

γ(t)

(
gij q̇

iq̇j
)1/2

dt = δ

∫

γ(s)

ds = 0,

thus natural motions are geodesics of M , provided we define ds as its arc-
length. The metric tensor gJ of M is then defined by

gJ = gij dq
i ⊗ dqj ,

where (dq1, . . . , dqN ) is a natural base of T ∗
qM , the cotangent space at the

point q, in the local chart (q1, . . . , qN ). This is known as Jacobi (or kinetic
energy) metric. Denoting by ∇ the canonical Levi–Civita connection, the
geodesic equation

∇γ̇ γ̇ = 0

becomes, in the local chart (q1, . . . , qN ) [II07b]

d2qi

ds2
+ Γ ijk

dqj

ds

dqk

ds
= 0, (3.24)

where the Christoffel symbols are the components of ∇ defined by

Γ ijk = 〈dqi,∇jek〉 =
1
2
gim (∂jgkm + ∂kgmj − ∂mgjk) , (3.25)

where ∂i = ∂/∂qi. Without loss of generality consider gij = 2[E − V (q)]δij ,
from (3.24) we get

d2qi

ds2
+

1
2(E − V )

[
2
∂(E − V )

∂qj

dqj

ds

dqi

ds
− gij

∂(E − V )
∂qj

gkm
dqk

ds

dqm

ds

]
= 0,

and, using ds2 = 2(E−V )2 dt2, we can easily verify that these equations yield

d2qi

dt2
= −∂V

∂qi
, (i = 1, . . . , N).
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which are Newton equations.
As discussed in [Pet93, CP93], there are other possibilities to associate a

Riemannian manifold to a standard Hamiltonian system. Among the others we
mention a structure, defined by Eisenhart [Eis29], that will be used in the fol-
lowing for computational reasons. In this case the ambient space is an enlarged
configuration space-time M×R

2, with local coordinates (q0, q1, . . . , qN , qN+1),
with (q1, . . . , qN ) ∈ M , q0 ∈ R is the time coordinate, qN+1 ∈ R is a coor-
dinate closely related to the action; Eisenhart defines a pseudo–Riemannian
non–degenerate metric g

E
on M × R

2 as

ds2
E

= gμν dq
μ⊗dqν = aij dq

i⊗dqj−2V (q) dq0⊗dq0+dq0⊗dqN+1+dqN+1⊗dq0.
(3.26)

Natural motions are now given by the canonical projection π of the geodesics
of (M ×R

2, gE) on configuration space-time: π : M ×R
2 →M ×R. However,

among all the geodesics of gE we must consider only those for which the
arc-length is positive definite and given by [CC96]

ds2 = gμνdq
μdqν = 2C2dt2, (3.27)

or, equivalently, we have to consider only those geodesics such that the coor-
dinate qN+1 evolves according to

qN+1 = C2t + C2
1 −

∫ t

0

Ldτ, (3.28)

where C and C1 are real constants. Since the values of these constants are
arbitrary, we fix C2 = 1/2 in order that ds2 = dt2 along a physical geodesic.
For a diagonal kinetic energy matrix aij = δij , the non vanishing components
of the connection ∇ are simply

Γ i00 = −ΓN+1
0i = ∂iV,

therefore it is easy to check that also the geodesics of g
E

yield Newton equa-
tions together with the differential versions of (3.28) and of q0 = t (details
can be found in [Pet93, CP93]).

3.2.2 Geometric Description of Dynamical Instability

The actual interest of the Riemannian formulation of dynamics stems from
the possibility of studying the instability of natural motions through the in-
stability of geodesics of a suitable manifold, a circumstance that has several
advantages. First of all a powerful mathematical tool exists to investigate
the stability or instability of a geodesic flow: the Jacobi–Levi-Civita equa-
tion (JLC) for geodesic spread. The JLC equation describes covariantly how
nearby geodesics locally scatter and it is a familiar object both in Riemannian
geometry and theoretical physics (it is of fundamental interest in experimen-
tal General Relativity). Moreover the JLC equation relates the stability or
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instability of a geodesic flow with curvature properties of the ambient mani-
fold, thus opening a wide and largely unexplored field of investigation of the
connections among geometry, topology and geodesic instability, hence chaos.

Jacobi–Levi Civita Equation for Geodesic Spread

A congruence of geodesics is defined as a family of geodesics {γτ (s) =
γ(s, τ) | τ ∈ R} that, originating in some neighbourhood I of any given point
of a manifold, are differentiably parametrized by some parameter τ . Choose a
reference geodesic γ̄(s, τ0), denote by γ̇(s) the field of vectors tangent at s to
γ̄ and denote by J(s) the field of vectors tangent at τ0 to the curves γs(τ) at
fixed s. The field J = (∂γ/∂τ)τ0 is known as geodetic separation field and it
has the property: Lγ̇J = 0, where L is the Lie derivative (see [II07b]). Locally
we can measure the distance between two nearby geodesics by means of J .

The evolution of the geodetic separation field J conveys information about
stability or instability of the reference geodesic γ̄, in fact, if ‖J‖ exponentially
grows with s then the geodesic is unstable in the sense of Lyapunov, otherwise
it is stable [CC96].

The evolution of J is described by [Car92]

∇2J(s)
ds2

+ R(γ̇(s), J(s)) γ̇(s) = 0, (3.29)

known as Jacobi–Levi–Civita (JLC) equation. Here J(s) ∈ Tγ(s)M ;

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ]

is the Riemann–Christoffel curvature tensor; γ̇ = dγ/ds; ∇/ds is the covariant
derivative and γ(s) is a normal geodesic, i.e., such that s is the length. In the
following we assume that J(s) is normal, i.e., 〈J, γ̇〉 = 0 [II07b]. This equa-
tion relates the stability or instability of nearby geodesics to the curvature
properties of the ambient manifold. If the ambient manifold is endowed with
a metric (e.g. Jacobi or Eisenhart) derived from the Lagrangian of a physical
system, then stable or unstable (chaotic) motions will depend on the curva-
ture properties of the manifold. Therefore it is reasonable to guess that some
average global geometric property will provide information, at least, about an
average degree of chaoticity of the dynamics independently of the knowledge
of the trajectories, that is independently of the numerical integration of the
equations of motion.

In local coordinates the JLC equation (3.29) reads as [CC96]

∇2J i

ds2
+ Rijkl

dqj

ds
Jk

dql

ds
= 0, (3.30)

where
Rijkl = 〈dqi, R(e(k), e(l))e(j)〉
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are the components of the curvature tensor, and the covariant derivative is

(∇J i/ds) = dJ i/ds + Γ ijkJ
kdqj/ds.

There are O(N4) of such components, N = dim(M), therefore – even if this
number can be considerably reduced by symmetry considerations – equation
(3.30) appears untractable already at rather small N . It is worth mentioning
that some exception exists. Such is the case of isotropic manifolds for which
(3.30) can be reduced to the simple form

∇2J i

ds2
+ KJ i = 0, (i = 1, . . . , N), (3.31)

where K is the constant value assumed throughout the manifold by the sec-
tional curvature.

The sectional curvature of a manifold is the ND generalization of the
gaussian curvature of 2D surfaces of R

3. Consider two arbitrary vectors X,Y ∈
TxM , where x ∈M is an arbitrary point of M , and define

‖X ∧ Y ‖ = (‖X‖2‖Y ‖2 − 〈X,Y 〉)1/2, (3.32)

if ‖X∧Y ‖ �= 0 the vectors X,Y span a two-dimensional plane π ⊂ TxM , then
the sectional curvature at x relative to the plane π is defined by

K(X,Y ) = K(x, π) =
〈R(Y,X)X,Y 〉
‖X ∧ Y ‖2 , (3.33)

which is only a property of M at x independently of X,Y ∈ π (Gauss’ The-
orema Egregium). For an isotropic manifold K(x, π) is also independent of
the choice of π and thus, according to Schur’s theorem, K turns out also
independent of x ∈M .

Unstable solutions of the equation (3.31) are of the form

J(s) = w(0)(−K)−1/2 sinh
(√
−K s

)
, (3.34)

once the initial conditions are assigned as J(0) = 0 and dJ(0)/ds = w(0) and
K < 0. In abstract ergodic theory geodesic flows on compact manifolds of
constant negative curvature have been considered in classical works [Ano67].
In this case the quantity

√
−K, uniform on the manifold, measures the degree

of instability of nearby geodesics.
While (3.31) holds true only for constant curvature manifolds, a similar

form of general validity can be obtained for JLC equation at N = 2.
In this low-dimensional case (3.30) is exactly rewritten as

d2J

ds2
+

1
2
R(s)J = 0, (3.35)

where a parallely transported frame is used and R(s) is the scalar curvature.
Using Jacobi metric one finds (N = 2): R = )V/W 2 + (∇V )2/W 3, with
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W = E−V , so that for smooth and binding potentials R can be negative only
where )V < 0, i.e., nowhere for nonlinearly coupled oscillators as described
by the Hénon-Heiles model [CP96] or for quartic oscillators [PV95]. )V < 0
is only possible if the potential V has inflection points.

Recent detailed analyses of two-degrees of freedom systems [CP96, PV95]
have shown that chaos can be produced by parametric instability due to a
fluctuating positive curvature along the geodesics.

Let us remember that parametric instability is a generic property of dy-
namical systems with parameters that are periodically or quasi-periodically
varying in time, even if for each value of the varying parameter the system has
stable solutions [NM79]. A harmonic oscillator with periodically modulated
frequency, described by the Mathieu equation, is perhaps the prototype of
such a parametric instability mechanism.

Numerical simulations have shown that all the informations about order
and chaos obtained by standard means (Lyapunov exponent and Poincaré
sections) are fully retrieved by using (3.35). As in the case of tangent dynamics,
(3.35) has to be computed along a reference geodesic (trajectory).

Let us now cope with the large N case. It is convenient to rewrite the JLC
equation (3.30) in the following form [CC96]

∇2J(s)
ds2

+
1

N − 1
[Ric(γ̇(s), γ̇(s))J(s) − Ric(γ̇(s), J(s)) γ̇(s)] (3.36)

+W (γ̇(s), J(s)) γ̇(s) = 0,

where W is the Weyl projective curvature tensor whose components W i
jkl are

given by [Gol65]

W i
jkl = Rijkl −

1
N − 1

(Rjlδik −Rjkδ
i
l), (3.37)

and Ric is the Ricci curvature tensor of components Rij = Rmimj . Weyl’s
projective tensor W (not to be confused with Weyl’s conformal curvature
tensor) measures the deviation from isotropy of a given manifold. For an
isotropic manifold W i

jkl = 0, and we recognize in (3.36) equation (3.31), in fact
in this case Rjlq̇

j q̇l/(N − 1) is just the constant value of sectional curvature.
Remind that the Ricci curvature at x ∈ M is KR(X(b)) = RjlX

i
(b)X

l
(b) =

∑N−1
a=1 K(X(b),X(a)) where X(1), . . . , X(N) form an orthonormal basis of TxM .

Hence we understand that (3.36) retains the structure of (3.31) up to its second
term that now has the meaning of a mean sectional curvature averaged, at any
given point, over the independent orientations of the planes spanned by X(a)

and X(b); this mean sectional curvature is no longer constant along γ(s). The
last term of (3.36) accounts for the local degree of anisotropy of the ambient
manifold.

Let us now consider the following decomposition for the Jacobi field J

J(s) =
∑

i

Ji(s) e(i)(s),
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where {e(1) . . . e(N)} is an orthonormal system of parallely transported vectors.
In this reference frame it is

∇2J

ds2
=

∑

i

d2Ji
ds2

e(i)(s)

and the last term of (3.36) is

W (γ̇, J)γ̇ =
∑

j

〈W (γ̇, J)γ̇, e(j)〉 e(j)

=
∑

j

〈W (γ̇,
∑

i

Jie(i))γ̇, e(j)〉 e(j)

=
∑

ij

〈W (γ̇, e(i))γ̇, e(j)〉Ji e(j) ,

the same decomposition applies to the third term of (3.36) which is finally
rewritten as

d2Jj
ds2

+ kR(s)Jj +
∑

i

(wij + rij)Ji = 0, (3.38)

where

kR = KR/(N − 1), wij = 〈W (γ̇, e(i))γ̇, e(j)〉 and
rij = 〈Ric(γ̇, e(i))γ̇, e(j)〉/(N − 1).

Clearly, kR is independent of the coordinate system. The elements wij still
depend on the dynamics and on the behavior of the vectors e(k)(s), thus, in
order to obtain a stability equation, for the geodesic flow, that depends only on
average curvature properties of the ambient manifold, we try to conveniently
approximate the wij . To this purpose define at any point x ∈M the trilinear
mapping R′ : TxM × TxM × TxM → TxM by

〈R′(X,Y,U), Z〉 = 〈X,U〉〈Y,Z〉 − 〈Y,U〉〈X,Z〉, (3.39)

for all X,Y,U, Z ∈ TxM . It is well known [Car92] that, if and only if M is
isotropic then R = K0R

′, where R is the Riemann curvature tensor of M and
K0 is the constant sectional curvature.

Let us now assume that the ambient manifold is quasi–isotropic manifold ,
i.e., that it looks like an isotropic manifold after a coarse-graining that smears
out all the metric fluctuations, and let us formulate this assumption by putting
R ≈ K(s)R′ and Ric ≈ K(s)g, although K(s) is no longer a constant. Now
we use (3.39) to find

wij ≈ δK(s)[〈γ̇, γ̇〉〈e(i), e(j)〉 − 〈e(i), γ̇〉〈γ̇, e(j)〉],

then we use Ric ∝ g and g(γ̇, J) = 0 to find rij = 0 thus (3.38) becomes
[CC96]
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d2Jj
ds2

+ kR(s)Jj + δK(s)Jj = 0, (3.40)

by δK(s) = K(s) − K we denote the local deviation of sectional curvature
from its coarse–grained value K, thus δK(s) measures the fluctuation of sec-
tional curvature along a geodesic due to the local deviation from isotropy.
The problem is that δK(s) still depends on a moving plane π(s) determined
by γ̇(s) and J(s). In order to get rid of this dependence, consider that if
x ∈ M is an isotropic point then the components of the Ricci tensor are
Rlh = (N − 1)K(x)glh and the scalar curvature is R = N(N − 1)K(x); with
these quantities one constructs the Einstein tensor Glh = Rlh − 1

2glhR whose
divergence vanishes identically (Glh|l = 0) so that it is immediately found
that, if a manifold consists entirely of isotropic points, then ∂K(x)/∂xl = 0
and so ∂KR(x)/∂xl = 0, i.e., the manifold is a space of constant curvature
(Schur’s theorem [Car92]). Conversely, the local variation of Ricci curvature
detects the local loss of isotropy, thus a reasonable approximation of the av-
erage variation δK(s) along a geodesic may be given by the variation of Ricci
curvature.

Next let us model δK(s) along a geodesic by a stochastic process. In fact
K(s) is obtained by summing a large number of terms, each one depending
on different combinations of the components of J and on the the coordinates
qi, moreover, unless we tackle an integrable model, the dynamics is always
chaotic and the functions qi(s) behave irregularly. By invoking a Central–
limit–theorem argument, at large N , δK(s) is expected to behave, in first
approximation, as a gaussian stochastic process. More generally, the proba-
bility distribution P(δK) may be other than gaussian and in practice it could
be determined by computing its cumulants along a geodesic γ(s).

Now we make quantitative the previous statement – about using the vari-
ation of Ricci curvature along a geodesic to estimate δK(s) – by putting

P(δK) ! P(δKR). (3.41)

Both δK and δKR are zero mean variations, so the first moments vanish;
according to (3.41) the following relation for the second moments will hold
[CC96]

〈[K(s)−K]2〉s !
1

N − 1
〈[KR(s)− 〈KR〉s]2〉s, (3.42)

where 〈·〉s stands for proper-time average along a geodesic γ(s). Let us com-
ment about the numerical factor in the r.h.s. of (3.42) where a factor 1

N2 might
be expected. At increasing N the mean square fluctuations of kR drop to zero
as 1

N because kR is the mean of independent quantities, however this cannot
be the case of the mean square fluctuations of K, in fact out of the sum KR of
all the sectional curvatures, in (3.40) only one sectional curvature is ‘picked-
up’ from point to point by δK so that δK remains finite with increasing N .
Therefore, as the second cumulant of δK does not vanish with N , we have to
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keep finite the second cumulant of δKR, what is simply achieved by properly
adjusting the numerical factor in (3.42).

The lowest order approximation of a cumulant expansion of the stochastic
process δK(s) is the gaussian approximation

δK(s) ! 1√
N − 1

〈δ2KR〉1/2s η(s), (3.43)

where η(s) is a random gaussian process with zero mean and unit variance.
Finally, in order to decouple the stability equation from the dynamics, we
replace time averages with static averages computed with a suitable ergodic
invariant measure μ. As we deal with autonomous Hamiltonian systems, a
natural choice is the micro-canonical measure on the constant energy surface
of phase space23

μ ∝ δ(H− E), (3.44)

so that (3.43) becomes

δK(s) ! 1√
N − 1

〈δ2KR〉1/2μ η(s). (3.45)

Similarly, kR(s) in (3.40) is replaced by 〈kR〉μ, in fact at large N the fluctua-
tions of kR – as already noticed above – vanish as 1

N because the coarse-grained
manifold is isotropic, so that we finally have [CC96]

d2ψ

ds2
+ 〈kR〉μ ψ +

1√
N − 1

〈δ2KR〉1/2μ η(s)ψ = 0, (3.46)

where ψ stands for any of the components Jj , since all of them now obey the
same effective equation of motion. The instability growth-rate of ψ measures
the instability growth-rate of ‖J‖2 and thus provides the dynamical instability
exponent in our Riemannian framework. Equation (3.46) is a scalar equation
which, independently of the knowledge of dynamics, provides a measure of
the average degree of instability of the dynamics itself through the behavior
of ψ(s). The peculiar properties of a given Hamiltonian system enter (3.46)
through the global geometric properties 〈kR〉μ and 〈δ2KR〉μ of the ambient
Riemannian manifold (whose geodesics are natural motions) and are sufficient
to determine the average degree of chaoticity of the dynamics. Moreover,
according to (3.44), 〈kR〉μ and 〈δ2KR〉μ are functions of the energy E of the
system – or of the energy density ε = E/N which is the relevant parameter
as N →∞ – so that from (3.46) we can obtain the energy dependence of the
geometric instability exponent.
23 At N ≥ 3, after the Poincaré–Fermi theorem, generic non-integrable systems

have no smooth invariant besides energy, thus the whole constant energy surface
is topologically accessible. One might think that troubles with ergodicity could
be raised by the KAM theorem, but at large N this is not possible because a
positive measure of tori survives a perturbation of amplitude smaller than some
threshold value, and the threshold typically drops to zero as exp(−cN ln N), c is
a constant.
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Stochastic Oscillator Equation

In this subsection we briefly describe how to cope with the stochastic oscillator
problem (which we will enconuter in the following text). For more details, see
[Kam92].

A stochastic differential equation can be put in the general form

F (x,Ω) = 0, (3.47)

where F is an assigned function and the variable Ω is a random process,
defined by a mean, a standard deviation and an autocorrelation function. A
function ξ(Ω) is a solution of this equation if F (ξ(Ω), Ω) = 0 for all Ω. If
equation (3.47) is linear of order n, it is written as

u̇ = A(t, Ω)u, (3.48)

where u ∈ R
n and A is a n×n matrix whose elements are randomly dependent

on time.
For the purposes of our work we are interested in studying the evolution

of the average carried over all the realizations of the process, 〈u(t)〉. Let us
consider the matrix A as the sum

A(t, Ω) = A0(t) + αA1(t, Ω), (3.49)

where the first term is Ω−independent and the second one is randomly fluc-
tuating with zero mean. Let us also assume that A0 is time-independent. If
the parameter α – that determines the fluctuation amplitude – is small we
can treat (3.48) by means of a perturbation expansion. It is convenient to use
the interaction picture, thus we put

u(t) = exp(A0t)v(t), A1(t) = exp(A0t)v(t) exp(−A0t).

Formally one is led to a Dyson expansion for the solution v(t). Then, going
back to the previous variables and averaging, the second order approximation
gives

d

dt
〈u(t)〉 = {A0 + α2

∫ +∞

−∞
〈A1(t) exp(A0τ)A1(t− τ)〉 exp(−A0τ)dτ}〈u(t)〉.

(3.50)
Following the same procedure one can find also the evolution of the second
moments (and by iterating also the evolution of higher moments). In fact,
with the components of u ∈ R

n we can make n2 quantities uνuμ that obey
the differential equation

d

dt
(uνuμ) =

∑

k,λ

Ãνμ,kλ(t)(ukuλ),

where
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Ãνμ,kλ = Aνkδμλ + δνkAμλ. (3.51)
The above presented averaging method can be now applied to this new equa-
tion.

Now, if we consider a random harmonic oscillator, (3.48) has the form

d

dt

(
x
ẋ

)
=

(
0 1
−Ω 0

)(
x
ẋ

)
,

with the random squared frequency Ω = Ω0 + σΩη(t). In particular, we are
interested in working out the second moments equation when the process η(t)
is gaussian and δ-correlated. Using (3.51) one finds that

d

dt

⎛

⎝
x2

ẋ2

xẋ

⎞

⎠ =

⎛

⎝
0 0 2
0 0 −2Ω
−Ω 1 0

⎞

⎠

⎛

⎝
x2

ẋ2

xẋ

⎞

⎠ = A

⎛

⎝
x2

ẋ2

xẋ

⎞

⎠ .

Because of our assumptions for this system, (3.50) is more than a second order
approximation, it is exact. In fact, the Dyson series can be written in compact
form as

⎛

⎝
〈x2(t)〉
〈ẋ2(t)〉
〈x(t)ẋ(t)〉

⎞

⎠ = *〈exp
(∫ t

0

A(t′)dt′
)
〉+

⎛

⎝
〈x2(0)〉
〈ẋ2(0)〉
〈x(0)ẋ(0)〉

⎞

⎠ , (3.52)

where the brackets *. . .+ stand for a chronological product. According to
Wick’s procedure we can rewrite (3.52) as a cumulant expansion, and when
the cumulants of order higher than the second vanish (as is the case of interest
to us) one can easily show that (3.50) is exact.

Likewise in (3.49), the matrix A splits as

A(t) = A0 + σΩη(t)A1 =

⎛

⎝
0 0 2
0 0 −2Ω0

−Ω0 1 0

⎞

⎠ + σΩη(t)

⎛

⎝
0 0 0
0 0 −2
−1 0 0

⎞

⎠ ,

therefore the equation for the averages becomes

d

dt

⎛

⎝
〈x2〉
〈ẋ2〉
〈xẋ〉

⎞

⎠ = {A0 + σ2
Ω

∫ +∞

−∞
〈η(t)η(t− τ)〉B(τ)dτ}

⎛

⎝
〈x2〉
〈ẋ2〉
〈xẋ〉

⎞

⎠ ,

where B(τ) = A1 exp(A0τ)A1 exp(−A0τ). As 〈η(t)η(t− τ)〉 = τδ(τ), with τ
a characteristic time scale of the process, we obtain

d

dt

⎛

⎝
〈x2〉
〈ẋ2〉
〈xẋ〉

⎞

⎠ = {A0 + σ2
ΩτB(0)}

⎛

⎝
〈x2〉
〈ẋ2〉
〈xẋ〉

⎞

⎠ .

From the definition of B(τ) it follows that B(0) = A2
1, then by easy calcula-

tions we find

A0 + σ2
ΩτA2

1 =

⎛

⎝
0 0 2

2σ2
Ωτ 0 −2Ω0

−Ω0 1 0

⎞

⎠ .
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Largest Lyapunov Exponent

By transforming (3.29) into (3.46) the original complexity of the JLC equation
has been considerably reduced: from a tensor equation we have worked out an
effective scalar equation formally representing a stochastic oscillator. In fact
(3.46), with a self-evident notation, is in the form [CC96]

d2ψ

ds2
+ Ω(s)ψ = 0, (3.53)

where Ω(s) is a gaussian stochastic process.
Now, passing from proper time s to physical time t, (3.53) simply reads

d2ψ

dt2
+ Ω(t)ψ = 0, (3.54)

where
Ω(t) = 〈kR〉μ +

1√
N
〈δ2KR〉1/2μ η(t), (3.55)

if the Eisenhart metric is used (because of the affine parametrization of the
arclength with time, (3.27)); if Jacobi metric is used, we have [CC96]

Ω(t) = 〈kR〉μ +

〈

−1
4

(
Ẇ

W

)2

+
1
2

d

dt

(
Ẇ

W

)〉

μ

+
1√
N
〈δ2KR〉1/2μ η(t) (3.56)

(see [Pet93, CP96]), note that d/dt = q̇j(∂/∂qj). Being interested in the large
N limit, we replaced N − 1 with N in (3.55) and (3.56). Obviously, Ricci
curvature has different expressions according to the metric used.

The stochastic process Ω(t) is not completely determined unless its time
correlation function ΓΩ(t1, t2) is given. We consider a stationary and δ−correlated
process Ω(t) so that ΓΩ(t1, t2) = ΓΩ(|t2 − t1|) and

ΓΩ(t) = τ σ2
Ω δ(t) , (3.57)

where τ is a characteristic time scale of the process. In order to estimate τ ,
let us notice that for a geodesic flow on a smooth manifold the assumption of
δ−correlation of Ω(t) will be reasonable only down to some time scale below
which the differentiable character of the geodesics will be felt. In other words,
we have to think that in reality the power spectrum of Ω(t) is flat up to
some high frequency cutoff, let us denote it by ν�; therefore, by representing
the δ function as the limit for ν → ∞ of δν(t) = sin(νt)

πt , a more realistic
representation of the autocorrelation function ΓΩ(t) in (3.57) could be

Γ �Ω(t) = σ2
Ω

1
π

sin(ν�t)
ν�t

≡ τ�σ
2
Ωδν	

(t),

whence τ� = 1/ν�. Notice that
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∫ ∞

0−
ΓΩ(t)dt = τσ2

Ω and
∫ ∞

0−
Γ �Ω(t)dt =

1
2
τ�σ

2
Ω

thus τ = τ�/2. For practical computational reasons it is convenient to use
ΓΩ(t) in the form given by (3.57) (with the implicit assumption that ν� is
sufficiently large), however, being ν� finite, the definition τ = τ�/2 will be
kept. To estimate τ� we proceed as follows. A first time scale, which we will
refer to as τ1, is associated to the time needed to cover the average distance
between two successive conjugate points along a geodesic.24 In fact, at dis-
tances smaller than this one the geodesics are minimal and far from looking
like random walks, whereas at each crossing of a conjugate point the sepa-
ration vector field increases as if the geodesics in the local congruence were
kicked (this is what happens when parametric instability is active). From
Rauch’s comparison theorem [Car92] we know that if sectional curvature K
is bounded as follows: 0 < L ≤ K ≤ H, then the distance d between two
successive conjugate points is bounded by π√

H
< d < π√

L
. We need the lower

bound estimate that, for strongly convex domains,25 is slightly modified to
d > π

2
√
H

.
Hence we define τ1 through

τ1 =
〈

dt

ds

〉
d� =

〈
dt

ds

〉
π

2
√

Ω0 + σ
Ω

, (3.58)

where
〈
dt
ds

〉
is the average of the ratio between proper and physical time

(
〈
dt
ds

〉
= 1 if Eisenhart metric is used) and the upper bound H of K is replaced

by the N -th fraction of a typical peak value of Ricci curvature, which is in
turn estimated as its average Ω0 plus the typical value δK of the (positive)
fluctuation, i.e., in a gaussian approximation δK = σ

Ω
. This time scale is

expected to be the most relevant only as long as curvature is positive and the
fluctuations, compared to the average, are small.

Another time scale, referred to as τ2, is related to local curvature fluctua-
tions. These will be felt on a length scale of the order of, at least, l = 1/√σΩ
(the average fluctuation of curvature radius). The scale l is expected to be
relevant one when the fluctuations are of the same order of magnitude as the
average curvature. When the sectional curvature is positive (resp. negative),
lengths and time intervals – on a scale l – are enlarged (resp. shortened) by a
factor (l2K/6),26 so that the period 2π√

Ω0
has a fluctuation amplitude d2 given

24 The conjugate points are defined by the vanishing of Jacobi field of geodesic
separation.

25 A subset M of a Riemannian manifold is said to be strongly convex if every
minimal geodesic joining two of its points always lies in M. The lowering of the
bound follows from a theorem due to Whitehead, see [CE75].

26 This is a consequence of the possibility of approximating locally the metric of a
manifold by gik � δik − 1

6
Rikjlu

iuk obtained by using normal coordinates and
displacements ui (see, e.g., [Car92]).
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by d2 = l2K
6

2π√
Ω0

; replacing K by its most probable value Ω0 one gets [CC96]

τ2 =
〈

dt

ds

〉
d2 =

〈
dt

ds

〉
l2Ω0

6
2π√
Ω0

!
〈

dt

ds

〉
Ω

1/2
0

σΩ
. (3.59)

Finally τ in (3.57) is obtained by combining τ1 with τ2 as follows

τ−1 = 2τ−1
� = 2

(
τ−1

1 + τ−1
2

)
. (3.60)

The present estimate of τ is very close, though not equal, to the one of
[CLP95].

Whenever Ω(t) in (3.54) has a non–vanishing stochastic component the
solution ψ(t) has an exponentially growing envelope [Kam92] whose growth–
rate provides a measure of the degree of chaoticity. Let us call this quantity
Lyapunov exponent and denote it by λ.

Our exponent λ is defined as

λ = lim
t→∞

1
2t

log
ψ2(t) + ψ̇

2
(t)

ψ2(0) + ψ̇
2
(0)

, (3.61)

where ψ(t) is solution of (3.54).
The ratio (ψ2(t) + ψ̇

2
(t))/(ψ2(0) + ψ̇

2
(0)) is computed by means of a

technique, developed by Van Kampen and sketched in Appendix A, which is
based on the possibility of computing analytically the evolution of the second
moments of ψ and ψ̇, averaged over the realizations of the stochastic process,
from

d

dt

⎛

⎜
⎝
〈ψ2〉
〈ψ̇2〉
〈ψψ̇〉

⎞

⎟
⎠ =

⎛

⎝
0 0 2

2σ2
Ωτ 0 −2Ω0

−Ω0 1 0

⎞

⎠

⎛

⎜
⎝
〈ψ2〉
〈ψ̇2〉
〈ψψ̇〉

⎞

⎟
⎠ (3.62)

where Ω0 and σΩ are respectively the mean and the variance of Ω(t) above
defined. By diagonalizing the matrix in the r.h.s. of (3.62) one finds two com-
plex conjugate eigenvalues, and one real eigenvalue related to the evolution
of 1

2

(
〈ψ2〉+ 〈ψ̇2〉

)
. According to (3.61) the exponent λ is half the real eigen-

value. Simple algebra leads to the final expression [CC96]

λ(Ω0, σΩ , τ) =
1
2

(
Λ− 4Ω0

3Λ

)
,

Λ =

⎛

⎝2σ2
Ωτ +

√(
4Ω0

3

)3

+ (2σ2
Ωτ)2

⎞

⎠

1/3

.

All the quantities Ω0, σΩ and τ can be computed as static averages, therefore –
within the validity limits of the assumptions made above – Eqs. (3.67) provide
an analytic formula to compute the largest Lyapunov exponent independently
of the numerical integration of the dynamics and of the tangent dynamics.
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Lyapunov exponent and Eisenhart metric

Let us consider dynamical systems described by the Lagrangian function
(5.62) with a diagonal kinetic energy matrix, i.e., aij = δij , and let us choose
as ambient manifold the enlarged configuration space-time equipped with the
Eisenhart metric (3.26).

Trivial algebra gives Γ i00 = (∂V/∂qi) and ΓN+1
0i = (−∂V/∂qi) as the only

non-vanishing Christoffel coefficients and hence the Riemann curvature tensor
has only the following non-vanishing components

R0i0j =
∂2V

∂qi∂qj
. (3.64)

The JLC equation (3.29) is thus rewritten in local coordinates as [CC96]

∇
ds

∇
ds

J0 + R0
i0j

dqi

ds
J0 dq

j

ds
+ R0

0ij

dq0

ds
J i

dqj

ds
= 0,

∇
ds

∇
ds

J i + Ri0j0

(
dq0

ds

)2

Jj + Ri00j
dq0

ds
J0 dq

j

ds
+ Rij00

dqj

ds
J0 dq

0

ds
= 0,

∇
ds

∇
ds

JN+1 + RN+1
i0j

dqi

ds
J0 dq

j

ds
+ RN+1

ij0

dqi

ds
Jj

dq0

ds
= 0. (3.65)

As Γ 0
ij = 0 implies ∇J0/ds = dJ0/ds and as R0

ijk = 0, we find that the first
of these equations reads

d2J0

ds2
= 0,

hence J0 does not accelerate and, without loss of generality, we can set J̇0(0) =
J0(0) = 0, this yields (using ∇J i/ds = dJ i/ds + Γ i0k q̇

0Jk + Γ ik0q̇
kJ0)

∇2J i

ds2
=

d2J i

ds2

and the second equation in (3.65) gives, for the projection in configuration
space of the separation vector,

d2J i

ds2
+

∂2V

∂qi∂qk

(
dq0

ds

)2

Jk = 0, (i = 1, ..., N); (3.66)

the third of equations (3.65) describes the passive evolution of JN+1 which
does not contribute the norm of J because gN+1N+1 = 0, so we can disregard
it.

As already mentioned in the previous Section, along the physical geodesics
of gE it is ds2 = (dq0)2 = dt2 therefore (3.66) is exactly the usual tangent
dynamics equation reported in the Introduction, provided that the obvious
identification ξ = (ξq, ξp) ≡ (J, J̇) is made. This clarifies the relationship be-
tween the geometric description of the instability of a geodesic flow and the
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conventional description of dynamical instability. It has been recently shown
[CP96, PV95] that the solutions of the equations (3.66) and (3.35) (where
R is computed with Jacobi metric) are strikingly close one another in the
case of two degrees of freedom systems. This result is reasonable because the
geodesics of (M × R

2, gE) – that are natural motions – project themselves
onto the geodesics of (M, gJ ), and as the extra coordinates q0 and qN+1 do
not contribute to the instability of the geodesic flow , both local and global in-
stability properties must be the same with either Jacobi or Eisenhart metrics,
independently of N .

With Eisenhart metric the only non-vanishing component of the Ricci
tensor is R00 = )V , where ) is the Euclidean Laplacian in configuration
space. Hence Ricci curvature is kR(q) = )V/(N − 1) (remember that we
choose the constant C such that ds2 = dt2 along a physical geodesic) and the
stochastic process Ω(t) in (3.54) is specified by [CC96]

Ω0 = 〈kR〉μ =
1
N
〈)V 〉μ, (3.67a)

σ2
Ω

=
1
N
〈δ2KR〉μ =

1
N

(
〈()V )2〉μ − 〈)V 〉2μ

)
, (3.67b)

2τ =
π
√

Ω0

2
√

Ω0(Ω0 + σ
Ω
) + πσ

Ω

. (3.67c)

Averages of geometric quantities

Let us now sketch how to compute the mean and the variance of any observable
function f(q), a geometric quantity of the chosen ambient manifold, by means
of the micro-canonical measure (3.44), i.e., [CC96]

〈f(q)〉μ =
1

ωE

∫
f(q) δ(H(q, p)− E) dq dp, (3.68)

where
ωE =

∫
δ(H(q, p)− E) dq dp

and q = (q1 . . . qN ), p = (p1 . . . pN ). By using the configurational partition
function ZC(β), given by

ZC(β) =
∫

dq e−β V (q),

where dq =
∏N
i=1 dqi, we can compute the Gibbsian average 〈f〉G of the

observable f as

〈f〉G = [ZC(β)]−1

∫
dq f(q) e−βV (q).

Whenever this average is known, we can obtain the micro-canonical average
of f [LPV67] in the following parametric form [CC96]
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〈f〉μ(ε) →

⎧
⎨

⎩

〈f〉μ(β) = 〈f〉G(β)

ε(β) = 1
2β −

1
N

∂
∂β [logZC(β)] .

(3.69)

By replacing f with the explicit expression for Ricci curvature kR = 1
NKR

we can work out Ω0. Notice that (3.69) is strictly valid in the thermodynamic
limit; at finite N it is

〈f〉μ(β) = 〈f〉G(β) +O(
1
N

).

At variance with the computation of 〈f〉, which is insensitive to the choice
of the probability measure in the N →∞ limit, computing the fluctuations of
f , i.e., of 〈δ2f〉 = 1

N 〈(f − 〈f〉)
2〉, by means of the canonical or micro-canonical

measures yields different results. The relationship between the canonical – i.e.,
computed with the Gibbsian weight e−βH – and the micro-canonical fluctua-
tions is given by the well known formula [LPV67]

〈δ2f〉μ(ε) = 〈δ2f〉G(β)− β2

CV

[
∂〈f〉G(β)

∂β

]2

, (3.70)

where

CV = −β2

N

∂〈E〉
∂β

is the specific heat at constant volume and β = β(ε) is given in implicit form
by the second equation in (3.69).

By replacing f with kR we can work out σ2
Ω .

3.2.3 Examples

The Fermi–Pasta–Ulam β−Model

The FPU β-model is defined by the Hamiltonian [FPU55]

H(p, q) =
N∑

i=1

1
2
p2
i +

N∑

i=1

[
1
2
(qi+1 − qi)2 +

μ

4
(qi+1 − qi)4

]
. (3.71)

This is a paradigmatic model of nonlinear classical many-body systems that
has been extensively studied over the last decades and that stimulated re-
markable developments in nonlinear dynamics, one example: the discovery of
solitons. For a recent review we refer to [For92]. Also the transition between
weak and strong chaos has been first discovered in this model [PL90, PC91]
and then, the effort of understanding the origin of such a threshold has stim-
ulated the development of the geometric theory presented here.

Let us now compute the average Ricci curvature Ω0 and its fluctuations
σΩ . We have seen above that, using Eisenhart metric, kR is given by
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kR =
1
N

N∑

i=1

∂2V (q)
∂q2
i

,

for the FPU β−model this reads

kR = 2 +
6μ
N

N∑

i=1

(qi+1 − qi)
2
, (3.72)

note that kR is always positive.
In order to compute the Gibbssian average of kR and its fluctuations, we

rewrite the configurational partition function as [CC96]

Z̃C(α) =
∫ +∞

−∞

N∏

i=1

dqi exp

{

−β
N∑

i=1

[α
2

(qi+1 − qi)2 +
μ

4
(qi+1 − qi)4

]
}

,

(3.73)
which, in terms of the arbitrary parameter α and of ZC , is expressed as
Z̃C(α) = ZC (αβ, μ/α) and leads to the following identity

〈kR〉(β) = 2− 12μ
βN

1
ZC

[
∂

∂α
Z̃C(α)

]

α=1

. (3.74)

Thus we have to compute

1
NZC

[
∂

∂α
Z̃C(α)

]

α=1

=
1
N

[
∂

∂α
log Z̃C(α)

]

α=1

, (3.75)

using
Z̃C(α) = [z̃C(α)]N f(α),

where f(α) is a quantity O(1), z̃C(α) is the single particle partition function

z̃C(α) = Γ

(
1
2

)(
βμ

2

)−1/4

exp(
1
4
α2θ2)D−1/2(αθ), (3.76)

Γ is the Euler function, D−1/2 is a parabolic cylinder function and

θ =
(

β

2μ

)1/2

. (3.77)

The final result in parametric form of the average Ricci curvature of
(M ×R

2, gE), with the constant energy constraint, is (details can be found in
[CP93])

Ω0(ε) →

⎧
⎪⎪⎨

⎪⎪⎩

〈kR〉(θ) = 2 + 3
θ

D−3/2(θ)

D−1/2(θ)

ε(θ) = 1
8σ

[
3
θ2

+ 1
θ

D−3/2(θ)

D−1/2(θ)

] . (3.78)
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Let us now compute

σ2
Ω(ε) =

1
N
〈δ2KR〉μ(ε) =

1
N
〈(KR − 〈KR〉)2〉μ.

According to (3.70), first the Gibbsian average of this quantity, 〈δ2kR〉G(β) =
1
N 〈(KR − 〈KR〉)2〉G(β), has to be computed and then the correction term
must be added. Now define

Q =
N∑

i=1

(qi+1 − qi)2;

after (3.72),

1
N
〈δ2KR〉G(β) =

1
N
〈(KR − 〈KR〉)2〉G =

36μ2

N
〈(Q− 〈Q〉)2〉G, (3.79)

hence using (3.73)

〈(Q− 〈Q〉)2〉G =
4
β2

[
∂2

∂α2
log Z̃C(α)

]

α=1

, (3.80)

and finally
1
N
〈δ2KR〉G =

144μ2

β2

[
∂2

∂α2
log z̃C(α)

]

α=1

. (3.81)

Simple algebra gives

[
∂2

∂α2
log z̃C(α)

]

α=1

=
θ2

4

{

2− 2θ
D−3/2(θ)
D−1/2(θ)

−
[
D−3/2(θ)
D−1/2(θ)

]2
}

, (3.82)

so that from (3.81) we obtain

1
N
〈δ2KR〉G(θ) =

9
θ2

{

2− 2θ
D−3/2(θ)
D−1/2(θ)

−
[
D−3/2(θ)
D−1/2(θ)

]2
}

. (3.83)

According to the prescription of (3.70), the final result for the fluctuations of
Ricci curvature is [CC96]

σ2
Ω(ε) →

⎧
⎪⎪⎨

⎪⎪⎩

1
N 〈δ

2KR〉μ(θ) = 1
N 〈δ

2KR〉G(θ)− β2

cV (θ)

(
∂〈kR〉(θ)
∂β

)2

ε(θ) = 1
8μ

[
3
θ2

+ 1
θ

D−3/2(θ)

D−1/2(θ)

] (3.84)

where 〈δ2KR〉G(θ) is given by (3.83), the derivative part of the correction
term is
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∂〈kR〉(θ)
∂β

=
3

8μθ3

θD2
−3/2(θ) + 2(θ2 − 1)D−1/2(θ)D−3/2(θ)− 2θD2

−1/2(θ)

D2
−1/2(θ)

,

(3.85)
and the specific heat per particle c

V
is found to be

c
V
(θ) =

1
16D2

−1/2(θ)

{
(12 + 2θ2)D2

−1/2(θ) + 2θD−1/2(θ)D−3/2(θ)

− θ2D−3/2(θ)
[
2θD−1/2(θ) + D−3/2(θ)

]}
. (3.86)

Analytic result for λ1(ε) and its comparison with numeric results

Now we use (3.78) and (3.84) to compute τ according to its definition in
(3.67c), then we substitute Ω0(ε), σ2

Ω(ε) and τ(ε) into (3.67) to obtain the
analytic prediction for λ1(ε) in the limit N →∞.

A Chain of Coupled Rotators

Let us now consider the system described by the Hamiltonian [CC96]

H(p, q) =
N∑

i=1

{
p2
i

2
+ J [1− cos(qi+1 − qi)]

}
. (3.87)

If the canonical coordinates qi and pi are given the meaning of angular coor-
dinates and momenta, this Hamiltonian describes a linear chain of N rotators
constrained to rotate on a plane and coupled by a nearest-neighbor interac-
tion.

This model can be formally obtained by restricting to one spatial di-
mension the classical Heisenberg model whose potential energy is V =
−J

∑
〈i,j〉 Si ·Sj , where the sum is extended only over nearest-neighbor pairs,

J is the coupling constant and each Si has unit module and rotates on a plane.
To each “spin” Si = (cos qi, sin qi) the velocity d

dtSi = (−dqi

dt sin qi,
dqi

dt cos qi)
is associated so that (3.87) follows from H =

∑N
i=1

1
2 Ṡ

2
i − J

∑
〈i,j〉 Si · Sj .

The Hamiltonian (3.87) has two integrable limits. In the limit of vanishing
energy it represents a chain of harmonic oscillators

H(p, q) !
N∑

i=1

{
p2
i

2
+ J(qi+1 − qi)2

}
, (3.88)

whereas in the limit of indefinitely growing energy a system of freely rotating
objects is found because of potential boundedness.

The expression of Ricci curvature KR, computed with Eisenhart metric,
is

KR =
N∑

i=1

∂2V (q)
∂ q2

i

= 2J
N∑

i=1

cos(qi+1 − qi).
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Let us observe that for this model a relation exists between potential energy
V and Ricci curvature KR:

V (q) = JN − KR

2
. (3.89)

This relation binds the fluctuating quantity that enters the analytic formula
for λ1. This constraint does not exist for the sectional curvature thus a-priori
it may be expected that some problem will arise.

The configurational partition function for a chain of coupled rotators is
[CC96]

ZC(β) =
∫ π

−π

N∏

i=1

dqi exp

{

−β

N∑

i=1

J [1− cos(qi+1 − qi)]

}

= exp(−βJN)
∫ π

−π

N∏

i=1

dωi exp(βJ
N∑

i=1

cosωi) (3.90)

= exp(−β JN)[I0(β J)]N (2π)Ng(ω) .

where I0(x) = 1
π

∫ +π

0
ex cos θdθ is the modified Bessel function of index zero;

ωi = qi+1 − qi, i ∈ (1, . . . , N − 1), ωN = q − qN , q = ω depend on the initial
conditions. The function g(ω) contributes with a term of O( 1

N ) thus vanishing
in the thermodynamic limit.

In order to compute Ω0 and σ2
Ω we follow the same procedure adopted for

the FPU model, i.e., we define

Z̃C(α) =
∫ +π

−π

N∏

i=1

dqi exp

{

−β

N∑

i=1

[1− α cos(qi+1 − qi)]

}

= exp(−βJN) [I0(βJα)]N g(ω)(2π)N .

and by observing that

〈kR〉μ(β) =
2

Nβ

[
∂

∂α
log Z̃C(α)

]

α=1

. (3.91)

we find Ω0(ε) in parametric form

Ω0(ε) →

⎧
⎪⎨

⎪⎩

〈kR〉μ(β) = 2J I0(βJ)
I1(βJ)

ε(β) = 1
2β + J

(
1− I1(βJ)

I0(βJ)

)
.

. (3.92)

In order to work out the average of the square fluctuations of Ricci curvature
we use the following identity

1
N
〈δ2KR〉G =

4
β2N

[
∂2

∂α2
log Z̃C(α)

]

α=1

,
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whence

1
N
〈δ2KR〉G = 4J2 βJI2

0 (βJ)− I1(βJ)I0(βJ)− βJI2
1 (βJ)

βJI2
0 (βJ)

.

The computation of the correction term
[
∂〈kR〉(β)
∂β

]2

/∂ε(β)
∂β involves the fol-

lowing derivatives

∂ε(β)
∂β

= − 1
2β
− J2

{

1− 1
βJ

I1(βJ)
I0(βJ)

−
[
I1(βJ)
I0(βJ)

]2
}

,

∂〈kR〉(β)
∂β

= 2J2

{

1− 1
βJ

I1(βJ)
I0(βJ)

−
[
I1(βJ)
I0(βJ)

]2
}

.

Finally, gluing together the different terms, we obtain

σ2
Ω(ε) →

⎧
⎪⎪⎨

⎪⎪⎩

1
N 〈δ

2KR〉(β) = 4J
β

βJI20 (βJ)−I0(βJ)I1(βJ)−βJI21 (βJ)

I20 (βJ)[1+2(βJ)2]−2βJI1(βJ)I0(βJ)−2[βJI1(βJ)]2

ε(β) = 1
2β + J

[
1− I1(βJ)

I0(βJ)

]
.

(3.93)

Analytic result for λ1(ε) and its comparison with numeric results

By inserting into (3.67) the analytic expressions of Ω0(ε) and σ2
Ω(ε) given in

(3.92) and (3.93) – and also τ(ε) which is a function of the latter quantities –
we find λ1(ε).

Using Eisenhart metric, the explicit expression of the sectional curvature
K(v, ξ), relative to the plane spanned by the velocity vector v and a generic
vector ξ⊥v (here we use ξ to denote the geodesic separation vector in order
to avoid confusion with J which is the notation for the coupling constant), is
[CC96]

K(v, ξ) = R0i0k
dq0

dt

ξi

‖ξ‖
dq0

dt

ξk

‖ξ‖ ≡
∂2V

∂qi∂qk
ξiξk

‖ξ‖2 ,

hence we get

K(v, ξ) =
J

‖ξ‖2
N∑

i=1

cos(qi+1 − qi)
[
ξi+1 − ξi

]2
(3.94)

for the coupled rotators model. We realize, by simple inspection of (3.94), that
K can take negative values with non-vanishing probability regardless of the
value of ε, whereas – as long as ε < J – this possibility is lost in the replace-
ment of K by Ricci curvature that we adopted in our theory. In fact, because
of the constraint (3.89), at each point of the manifold it is kR(ε) ≥ 2(J − ε),
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thus our approximation fails in accounting for the presence of negative sec-
tional curvatures at small values of ε. In (3.94) the cosines have different and
variable weights, [ξi+1−ξi]2, that in principle make possible to find somewhere
along a geodesic K < 0 also with only one negative cosine. This is not the case
of k

R
where all the cosines have the same weight. Therefore the probability of

finding K < 0 along a geodesic must be related to the probability of finding an
angular difference greater than π

2 between two nearest-neighboring rotators.
If the energy is sufficiently low this event will be very unlikely, but we can
guess that it will become considerable where the theoretical prediction is not
satisfactory, i.e., when chaos is strong. Notice that the frequent occurrence
of K < 0 along a geodesic adds to parametric instability another instability
mechanism that enforces chaos [(3.34)].

Our strategy is to modify the model for K(s) in some effective way that
takes into account the mentioned difficulty of kR(s) to adequately model K(s).
This will be achieved by suitably ‘re-normalizing’ Ω0 or σ

Ω
to obtain an

effective gaussian process for the behavior of the sectional curvature.
From (3.94) we see that N directions of the vector ξ exist such that the sec-

tional curvatures – relative to the N planes spanned by these vectors together
with v – are just cos(qi+1− qi). Hence the probability P (ε) of occurrence of a
negative value of the cosine is used to estimate the probability of occurrence
of negative sectional curvatures along the geodesics. This probability function
has the following simple expression [CC96]

P (ε) =

∫ π
−π Θ(− cosx)eβJ cos xdx

∫ π
−π eβJ cosxdx

=

∫ 3π
2

π
2

eβJ cos xdx

2πI0(βJ)
, (3.95)

where Θ(x) is the Heaviside unit step function.
The function P (ε) begins to increase at ε ! 0.2, just where the analytic

prediction begins to fail, and when it approaches its asymptotic value of 1
2 ,

around the end of the knee, a good agreement is again found between theory
and numeric results. The simplest way to account for the existence of negative
sectional curvatures is to shift the peak of the distribution P(δKR) toward
the negative axis. This is achieved by the replacement

〈kR(ε)〉 → 〈kR(ε)〉
1 + αP (ε)

. (3.96)

This correction neither has influence when P (ε) ! 0 (below ε ! 0.2) nor when
P (ε) ! 1/2 (because in this case 〈kR(ε)〉 → 0). The value of the parameter α
in (3.96) must be estimated a posteriori in order to obtain the best agreement
between numerical and theoretical data over the whole range of energies.
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3.3 Morse Topology of Smooth Manifolds

Recall that topology is a kind of abstraction of Euclidean geometry , and also
a natural framework for the study of continuity .27 Euclidean geometry is
abstracted by regarding triangles, circles, and squares as being the same basic
object. Continuity enters because in saying this one has in mind a continuous
deformation of a triangle into a square or a circle, or any arbitrary shape. On
the other hand, a disk with a hole in the center is topologically different from
a circle or a square because one cannot create or destroy holes by continuous
deformations. Thus using topological methods one does not expect to be able
to identify a geometrical figure as being a triangle or a square. However, one
does expect to be able to detect the presence of gross features such as holes
or the fact that the figure is made up of two disjoint pieces etc. In this way
topology produces theorems that are usually qualitative in nature – they may
assert, for example, the existence or non–existence of an object. They will not,
in general, give the means for its construction [Nas83, II07b].

3.3.1 Intro to Euler Characteristic and Morse Topology

The Euler Characteristic

The so–called Euler characteristic is a topological invariant , a number that
describes one aspect of a topological space’s shape or structure. It is commonly
denoted by the Greek letter χ. The Euler characteristic was originally defined
for polyhedra and used to prove various theorems about them, including the
classification of the Platonic solids. Leonhard Euler, for whom the concept is
named, was responsible for much of this early work. In modern mathematics,
the Euler characteristic arises from homology theory and connects to many
other topological invariants.

The Euler characteristic χ was classically defined for polyhedra, according
to the formula

χ = V − E + F,

where V,E, and F are respectively the numbers of vertices (corners), edges
and faces in the given polyhedron. Any convex polyhedron is homeomorphic
to a sphere S2, so its Euler characteristic is

χ = V − E + F = 2.
27 Intuitively speaking, a function f : R → R is continuous near a point x in its

domain if its value does not jump there. That is, if we just take δx to be small
enough, the two function values f(x) and f(x + δx) should approach each other
arbitrarily closely. In more rigorous terms, this leads to the following definition:
A function f : R → R is continuous at x ∈ R if for all ε > 0, there exists a δ > 0
such that for all y ∈ R with |y−x| < δ, we have that |f(y)−f(x)| < ε. The whole
function is called continuous if it is continuous at every point x.
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This result is known as Euler’s formula, and can be applied not only to
polyhedra but also to embedded planar graphs. A proof is given inductively
below.

For a tetrahedron (with V = 4, E = 6, F = 4) we have χ = 2.
For a cube (or, hexahedron, with V = 8, E = 12, F = 6) we have χ = 2.
For a octahedron (with V = 6, E = 12, F = 8) we have χ = 2.
For a dodecahedron (with V = 20, E = 30, F = 12) we have χ = 2.
For a icosahedron (with V = 12, E = 30, F = 20) we have χ = 2.
The first rigorous proof of Euler’s formula, was given by a 20-year-old A.

Cauchy.
If M and N are any two topological spaces, then the Euler characteristic

of their disjoint union (denoted by �) is the sum of their Euler characteristics:

χ(M �N) = χ(M) + χ(N).

Also, the Euler characteristic of any product space M ×N is

χ(M ×N) = χ(M) · χ(N).

These addition and multiplication properties are also enjoyed by cardinality
of sets. In this way, the Euler characteristic can be viewed as a generalization
of cardinality.

As a corollary of the so–called Poincaré duality , the Euler characteristic
of any closed odd–dimensional manifold is zero.

The Euler characteristic of a closed orientable surface can be calculated
from its genus g28 as

χ = 2− 2g.

For closed Riemannian manifolds, the Euler characteristic can be found
by integrating the curvature, via the Gauss–Bonnet theorem (3.3). A discrete
analog of the Gauss–Bonnet theorem is Descartes’ theorem that the ‘total
defect’ of a polyhedron, measured in full circles, is the Euler characteristic of
the polyhedron.

For any contractible space its Euler characteristic is 1. This case includes
Euclidean space R

n of any dimension, as well as the solid unit ball in any
Euclidean space: the 1D interval, the 2D disk, the 3D ball, etc.

As was said before, for a sphere S2, χ = 2.
For a torus T 2, χ = 0.
For a double torus, χ = −2.
For a triple torus, χ = −4.
For both a Möbius strip and a Klein bottle, χ = 0.

28 Genus g of a closed orientable surface is the number of tori in a connected sum
decomposition of the surface. Intuitively, it can be depicted as the number of
handles.
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Morse Topology: an Intuitive Picture

On the other hand, Morse theory gives a very direct way of analyzing the
topology of a manifold by studying smooth functions on it. Consider, for
purposes of illustration, a mountainous landscape M . If f is the function
M → R sending each point to its elevation, then the inverse image of a point
in R (a level set) is simply a contour line. Each connected component of a
contour line is either a point, a simple closed curve, or a closed curve with a
double point. Contour lines may also have points of higher order (triple points,
etc.), but these are unstable and may be removed by a slight deformation of
the landscape. Double points in contour lines occur at saddle points, or passes.
Saddle points are points where the surrounding landscape curves up in one
direction and down in the other.

Now, imagine flooding this landscape with water. Then, assuming the
ground is porous, the region covered by water when the water reaches an
elevation of a is f−1(−∞, a], or the points with elevation less than or equal
to a. Consider how the topology of this region changes as the water rises. It
appears, intuitively, that it does not change except when a passes the height
of a critical point; that is, a point where the gradient of f is 0. In other words,
it does not change except when the water either (i) starts filling a basin, (ii)
covers a saddle (a mountain pass), or (iii) submerges a peak.

To each of these three types of critical points: basins, passes, and peaks
(also called minima, saddles, and maxima), one associates a number called
the index . Intuitively speaking, the index of a critical point b is the num-
ber of independent directions around b in which f decreases. Therefore, we
have natural indices of basins, passes, and peaks as 0, 1, and 2, respectively.

Define Ma as f−1(−∞, a]. Leaving the context of topography, one can
make a similar analysis of how the topology of Ma changes as a increases
when M is a torus oriented as in the image above and f is projection on a
vertical axis, taking a point to its height above the plane.
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When a is less than 0, Ma is the empty set. After a passes the level of p
(a critical point of index 0), when 0 < a < f(q), then Ma is a disk, which
is homotopy equivalent to a point, (or, a 0–cell) which has been ‘attached’ to
the empty set. Next, when a exceeds the level of q (a critical point of index
1), and f(q) < a < f(r), then Ma is a cylinder, and is homotopy equivalent
to a disk with a 1–cell attached. Once a passes the level of r (a critical point
of index 1), and f(r) < a < f(s), then Ma is a torus with a disk removed,
which is homotopy equivalent to a cylinder with a 1–cell attached. Finally,
when a is greater than the critical level of s (a critical point of index 2) Ma

is our original torus.
We therefore appear to have the following rule: the topology of Ma does

not change except when a passes the height of a critical point, and when a
passes the height of a critical point of index γ, a γ−cell is attached to Ma.
This does not address the question of what happens when two critical points
are at the same height. That situation can be resolved by a slight perturbation
of f . In the case of a landscape (or, a manifold embedded in Euclidean space),
this perturbation might simply be tilting the landscape slightly, or rotating
the coordinate system.29

The Euler characteristic χ(M) of a manifold M can be defined as

χ(M) =
∑

(−1)γCγ ,

where Cγ is the number of critical points of index γ.

3.3.2 Sets and Topological Spaces

Sets and Maps between Them

Given a map (or, a function) f : A → B, the set A is called the domain of
f , and denoted Dom f . The set B is called the codomain of f , and denoted
Cod f. The codomain is not to be confused with the range of f(A), which is
in general only a subset of B.

A map f : X → Y is called injective or 1–1 or an injection if for every y
in the codomain Y there is at most one x in the domain X with f(x) = y.
Put another way, given x and x′ in X, if f(x) = f(x′), then it follows that
x = x′. A map f : X → Y is called surjective or onto or a surjection if for
every y in the codomain Cod f there is at least one x in the domain X with
f(x) = y. Put another way, the range f(X) is equal to the codomain Y . A map

29 This rule, however, is false as stated. To see this, let M equal R and let f(x) = x3.
Then 0 is a critical point of f , but the topology of Ma does not change when a
passes 0. In fact, the concept of index does not make sense. The problem is that
the second derivative is also 0 at 0. This kind of situation is called a degenerate
critical point . Note that this situation is unstable: by rotating the coordinate
system under the graph, the degenerate critical point either is removed or breaks
up into two non-degenerate critical points.
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is bijective iff it is both injective and surjective. Injective functions are called
the monomorphisms, and surjective functions are called the epimorphisms in
the category of sets (see below).

Two main classes of maps (or, functions) that we will use int this book
are: (i) continuous maps (denoted as C0−class), and (ii) smooth or differen-
tiable maps (denoted as C∞−class). The former class is the core of topology,
the later of differential geometry. They are both used in the core concept of
manifold.

A relation is any subset of a Cartesian product (see below). By definition,
an equivalence relation α on a set X is a relation which is reflexive, symmetrical
and transitive, i.e., relation that satisfies the following three conditions:

A. Reflexivity : each element x ∈ X is equivalent to itself, i.e., xαx,
B. Symmetry : for any two elements x, x′ ∈ X, xαx′ implies x′αx, and
C. Transitivity : a ≤ b and b ≤ c implies a ≤ c.

Similarly, a relation ≤ defines a partial order on a set S if it has the
following properties:

A. Reflexivity : a ≤ a for all a ∈ S,
B. Antisymmetry : a ≤ b and b ≤ a implies a = b, and
C. Transitivity : a ≤ b and b ≤ c implies a ≤ c.

A partially ordered set (or poset) is a set taken together with a partial
order on it. Formally, a partially ordered set is defined as an ordered pair
P = (X,≤), where X is called the ground set of P and ≤ is the partial order
of P .

Recall that a map (or, function) f is a rule that assigns to each element
x in a set A exactly one element, called f(x), in a set B. A map could be
thought of as a machine [[f ]] with x−input (the domain of f is the set of
all possible inputs) and f(x)−output (the range of f is the set of all possible
outputs) [Stu99]

x→ [[f ]] → f(x)

There are four possible ways to represent a function (or map): (i) verbally (by
a description in words); (ii) numerically (by a table of values); (iii) visually (by
a graph); and (iv) algebraically (by an explicit formula). The most common
method for visualizing a function is its graph. If f is a function with domain
A, then its graph is the set of ordered input–output pairs

{(x, f(x)) : x ∈ A}.

A generalization of the graph concept is a concept of a cross–section of a fibre
bundle, which is one of the core geometrical objects for dynamics of complex
systems.

Let f and g be maps with domains A and B. Then the maps f + g, f − g,
fg, and f/g are defined as follows:
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(f + g)(x) = f(x) + g(x) domain = A ∩B,

(f − g)(x) = f(x)− g(x) domain = A ∩B,

(fg)(x) = f(x) g(x) domain = A ∩B,
(

f

g

)
(x) =

f(x)
g(x)

domain = {x ∈ A ∩B : g(x) �= 0}.

Given two maps f and g, the composite map f ◦ g (also called the compo-
sition of f and g) is defined by

(f ◦ g)(x) = f(g(x)).

The (f ◦ g)−machine is composed of the g−machine (first) and then the
f−machine:

x→ [[g]] → g(x) → [[f ]] → f(g(x))

For example, suppose that y = f(u) =
√

u and u = g(x) = x2 + 1. Since y
is a function of u and u is a function of x, it follows that y is ultimately a
function of x. We calculate this by substitution

y = f(u) = f ◦ g = f(g(x)) = f(x2 + 1) =
√

x2 + 1.

If f and g are both differentiable (or smooth, i.e., C∞) maps and h = f ◦g
is the composite map defined by h(x) = f(g(x)), then h is differentiable and
h′ is given by the product:

h′(x) = f ′(g(x)) g′(x).

In Leibniz notation, if y = f(u) and u = g(x) are both differentiable maps,
then

dy

dx
=

dy

du

du

dx
.

The reason for the name chain rule becomes clear if we add another link to
the chain. Suppose that we have one more differentiable map x = h(t). Then,
to calculate the derivative of y with respect to t, we use the chain rule twice,

dy

dt
=

dy

du

du

dx

dx

dt
.

1–1 continuous (i.e., C0) map T with a nonzero Jacobian
∣∣∣ ∂(x,...)∂(u,...)

∣∣∣ that
maps a region S onto a region R, (see [Stu99]) we have the following substi-
tution formulas:

1. for a single integral,
∫

R

f(x) dx =
∫

S

f(x(u))
∂x

∂u
du,



374 3 Geometry and Topology Change in Complex Systems

2. for a double integral,
∫∫

R

f(x, y) dA =
∫∫

S

f(x(u, v), y(u, v))
∣∣∣∣
∂(x, y)
∂(u, v)

∣∣∣∣ dudv,

3. for a triple integral,
∫∫∫

R
f(x, y, z) dV =

∫∫

S
f(x(u, v, w), y(u, v, w), z(u, v, w))

∣
∣
∣∣
∂(x, y, z)

∂(u, v, w)

∣
∣
∣∣ dudvdw

4. similarly for n−tuple integrals.

Topological Spaces

Study of topology starts with the fundamental notion of topological space. Let
X be any set and Y = {Xα} denote a collection, finite or infinite of subsets
of X. Then X and Y form a topological space provided the Xα and Y satisfy:

A. Any finite or infinite subcollection {Zα} ⊂ Xα has the property that
∪Zα ∈ Y , and

B. Any finite subcollection {Zα1 , ..., Zαn
} ⊂ Xα has the property that

∩Zαi
∈ Y .

The set X is then called a topological space and the Xα are called open
sets. The choice of Y satisfying (2) is said to give a topology to X.

Given two topological spaces X and Y , a function (or, a map)
f : X → Y is continuous if the inverse image of an open set in Y is an open
set in X.

The main general idea in topology is to study spaces which can be con-
tinuously deformed into one another, namely the idea of homeomorphism. If
we have two topological spaces X and Y , then a map f : X → Y is called a
homeomorphism iff

A. f is continuous (C0), and
B. There exists an inverse of f , denoted f−1, which is also continuous.

Definition (2) implies that if f is a homeomorphism then so is f−1. Homeomor-
phism is the main topological example of reflexive, symmetrical and transi-
tive relation, i.e., equivalence relation. Homeomorphism divides all topological
spaces up into equivalence classes. In other words, a pair of topological spaces,
X and Y , belong to the same equivalence class if they are homeomorphic.

The second example of topological equivalence relation is homotopy. While
homeomorphism generates equivalence classes whose members are topological
spaces, homotopy generates equivalence classes whose members are continuous
(C0) maps. Consider two continuous maps f, g : X → Y between topological
spaces X and Y . Then the map f is said to be homotopic to the map g if
f can be continuously deformed into g (see below for the precise definition
of homotopy). Homotopy is an equivalence relation which divides the space
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of continuous maps between two topological spaces into equivalence classes
[Nas83].

Another important notions in topology are covering, compactness and con-
nectedness. Given a family of sets {Xα} = X say, then X is a covering of
another set Y if ∪Xα contains Y . If all the Xα happen to be open sets the
covering is called an open covering. Now consider the set Y and all its possible
open coverings. The set Y is compact if for every open covering {Xα} with
∪Xα ⊃ Y there always exists a finite sub-covering {X1, ...,Xn} of Y with
X1 ∪ ... ∪Xn ⊃ Y . Again, we define a set Z to be connected if it cannot be
written as Z = Z1 ∪ Z2, where Z1 and Z2 are both open and Z1 ∩ Z2 is an
empty set.

Let A1, A2, ..., An be closed subspaces of a topological space X such that
X = ∪ni=1Ai. Suppose fi : Ai → Y is a function, 1 ≤ i ≤ n, iff

fi|Ai ∩Aj = fj |Ai ∩Aj , 1 ≤ i, j ≤ n. (3.97)

In this case f is continuous iff each fi is. Using this procedure we can define
a C0−function f : X → Y by cutting up the space X into closed subsets Ai
and defining f on each Ai separately in such a way that f |Ai is obviously
continuous; we then have only to check that the different definitions agree on
the overlaps Ai ∩Aj .

The universal property of the Cartesian product : let pX : X × Y → X,
and pY : X × Y → Y be the projections onto the first and second factors,
respectively. Given any pair of functions f : Z → X and g : Z → Y there is a
unique function h : Z → X×Y such that pX ◦h = f , and pY ◦h = g. Function
h is continuous iff both f and g are. This property characterizes X/α up to
homeomorphism. In particular, to check that a given function h : Z → X is
continuous it will suffice to check that pX ◦ h and pY ◦ h are continuous.

The universal property of the quotient : let α be an equivalence relation on
a topological space X, let X/α denote the space of equivalence classes and
pα : X → X/α the natural projection. Given a function f : X → Y , there is a
function f ′ : X/α→ Y with f ′ ◦ pα = f iff xαx′ implies f(x) = f(x′), for all
x ∈ X. In this case f ′ is continuous iff f is. This property characterizes X/α
up to homeomorphism.

Betti Numbers and the Euler Characteristic

The Betti number of a topological space is, in intuitive terms, a way of count-
ing the maximum number of cuts that can be made without dividing the space
into two pieces. This defines, in fact, what is called the first Betti number.
There is a sequence of Betti numbers defined. Each Betti number is a natural
number, or infinity. For the most reasonable spaces (such as compact man-
ifolds, finite simplicial complexes or CW complexes), the sequence of Betti
numbers is 0 from some points onwards, and consists of natural numbers. For
example, (i) the Betti number sequence for a circle S1 is 1, 1, 0, 0, 0, ...; (ii)
Betti number sequence for a two-torus T 2 is 1, 2, 1, 0, 0, 0, ...; (iii) Betti
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number sequence for a three-torus is 1, 3, 3, 1, 0, 0, 0, ... . (iv) for an n−torus
Tn one should see the binomial coefficients; this is a case of the Künneth
theorem.

For any topological space X, we can define the nth Betti number bn as the
rank of the nth homology group (see next paragraph). The Euler characteristic
can then be defined as the alternating sum

χ = b0 − b1 + b2 − b3 + · · · .

This quantity is well-defined if the Betti numbers are all finite and if they are
zero beyond a certain index n0.

Simplicial Homology

Simplicial homology concerns topological spaces whose building blocks are
n−simplexes, the nD analogs of triangles. By definition, such a space is home-
omorphic to a simplicial complex S (see Figure 3.4); more precisely, the geo-
metric realization of an abstract simplicial complex. Such a homeomorphism
is referred to as a triangulation of the given space. Replacing n−simplexes by
their continuous images in a given topological space gives singular homology.
The simplicial homology of a simplicial complex is naturally isomorphic to
the singular homology of its geometric realization. This implies, in particular,
that the simplicial homology of a space does not depend on the triangulation
chosen for the space. For technical details on simplicial homology and related
(co)homology theories, see [II07b]. Here we give a very short brief, necessary
for the comprehensive reading of the following text.

Fig. 3.4. An example of a simplicial complex with two 1–holes.

Let S be a simplicial complex. A simplicial k−chain is a formal sum of
k−simplices:

N∑

i=1

ciσ
i.

The group of k−chains on S, the free Abelian group (see [II07b]) defined on
the set of k−simplices in S, is denoted Ck. Consider a basis element of Ck, a
k−simplex,
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σ =
〈
v0, v1, ..., vk

〉
.

The so–called boundary operator

∂k : Ck → Ck−1

is a homomorphism defined by:

∂k(σ) =
K∑

i=0

(−1)i
〈
v0, ..., v̂i, ..., vk

〉
,

where the simplex 〈
v0, ..., v̂i, ..., vk

〉

is the ith face of σ obtained by deleting its ith vertex. In Ck, elements of the
subgroup

Zk = ker ∂k

are called cycles, and the subgroup

Bk = im ∂k+1

is said to consist of boundaries. Direct computation shows that Bk lies in Zk.
The boundary of a boundary must be a cycle. In other words, (Ck, ∂k) form a
simplicial chain complex .

The kth homology group Hk of S is now defined to be the quotient space

Hk(S) = Zk/Bk.

A homology group Hk is not trivial if the complex at hand contains k−cycles
which are not boundaries. This indicates that there are k−dimensional holes in
the complex. For example consider the complex obtained by gluing together
two triangles (with no interior) along one edge (see Figure 3.4). This is a
triangulation of the figure eight. The edges of each triangle form a cycle.
These two cycles are by construction not boundaries (there are no 2–chains).
Therefore the figure has two ‘1–holes’.

Holes can be of different dimensions. The rank of the homology groups,
that is, the numbers

βk = rank(Hk(S))

are called the Betti numbers of the space S, and gives a measure of the number
of k−dimensional holes in S.

Topological Invariants of Manifolds

Now, restricting to the topology of nD compact (i.e., closed and bounded)
and connected manifolds, the only cases in which we have a complete under-
standing of topology are n = 0, 1, 2. The only compact and connected 0D
manifold is a point. A 1D compact and connected manifold can either be a
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line element or a circle, and it is intuitively clear (and can easily be proven)
that these two spaces are topologically different. In 2D, there is already an
infinite number of different topologies: a 2D compact and connected surface
can have an arbitrary number of handles and boundaries, and can either be
orientable or non–orientable (see figure 3.5). Again, it is intuitively quite clear
that two surfaces are not homeomorphic if they differ in one of these respects.
On the other hand, it can be proven that any two surfaces for which these
data are the same can be continuously mapped to one another, and hence this
gives a complete classification of the possible topologies of such surfaces.

Fig. 3.5. Three examples of 2D manifolds: (a) The sphere S2 is an orientable man-
ifold without handles or boundaries. (b) An orientable manifold with one boundary
and one handle. (c) The Möbius strip is an unorientable manifold with one boundary
and no handles.

A quantity such as the number of boundaries of a surface is called a topo-
logical invariant. A topological invariant is a number, or more generally any
type of structure, which one can associate to a topological space, and which
does not change under continuous mappings. Topological invariants can be
used to distinguish between topological spaces: if two surfaces have a differ-
ent number of boundaries, they can certainly not be topologically equivalent.
On the other hand, the knowledge of a topological invariant is in general not
enough to decide whether two spaces are homeomorphic: a torus and a sphere
have the same number of boundaries (zero), but are clearly not homeomor-
phic. Only when one has some complete set of topological invariants, such as
the number of handles and boundaries in the 2D case, is it possible to de-
termine whether or not two topological spaces are homeomorphic. In more
than 2D, many topological invariants are known, but for no dimension larger
than two has a complete set of topological invariants been found. In 3D, it is
generally believed that a finite number of countable invariants would suffice
for compact manifolds, but this is not rigorously proven, and in particular
there is at present no generally accepted construction of a complete set. A
very interesting and intimately related problem is the famous Poincaré con-
jecture, stating that if a 3D manifold has a certain set of topological invariants
called its ‘homotopy groups’ equal to those of the 3–sphere S3, it is actually
homeomorphic to the three-sphere. In four or more dimensions, a complete
set of topological invariants would consist of an uncountably infinite number
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of invariants! A general classification of topologies is therefore very hard to
get, but even without such a general classification, each new invariant that
can be constructed gives us a lot of interesting new information. For this rea-
son, the construction of topological invariants of manifolds is one of the most
important issues in topology.

Homotopy

Let I be a compact unit interval I = [0, 1]. A homotopy from X to Y is a
continuous function F : X × I → Y . For each t ∈ I one has Ft : X → Y
defined by Ft(x) = F (x, t) for all x ∈ X. The functions Ft are called the
‘stages’ of the homotopy. If f, g : X → Y are two continuous maps, we say f
is homotopic to g, and write f ! g, if there is a homotopy F : X × I → Y
such that F0 = f and F1 = g. In other words, f can be continuously deformed
into g through the stages Ft. If A ⊂ X is a subspace, then F is a homotopy
relative to A if F (a, t) = F (a, 0), for all a ∈ A, t ∈ I.

The homotopy relation ! is an equivalence relation. To prove that we have
f ! f is obvious; take F (x, t = f(x), for all x ∈ X, t ∈ I. If f ! g and F is a
homotopy from f to g, then G : X × I → Y defined by G(x, t) = F (x, 1− t),
is a homotopy from g to f , i.e., g ! f . If f ! g with homotopy F and g ! f
with homotopy G, then f ! h with homotopy H defined by

H(x, t) =
{

F (x, t), 0 ≤ t ≤ 1/2
G(x, 2t− 1), 1/2 ≤ t ≤ 1 .

To show that H is continuous we use the relation (3.97).
In this way, the set of all C0−functions f : X → Y between two topological

spaces X and Y , called the function space and denoted by Y X , is partitioned
into equivalence classes under the relation!. The equivalence classes are called
homotopy classes, the homotopy class of f is denoted by [f ], and the set of
all homotopy classes is denoted by [X;Y ].

If α is an equivalence relation on a topological space X and F : X×I → Y
is a homotopy such that each stage Ft factors through X/α, i.e., xαx′ implies
Ft(x) = Ft(x′), then F induces a homotopy F ′ : (X/α) × I → Y such that
F ′ ◦ (pα × 1) = F .

Homotopy theory has a range of applications of its own, outside topology
and geometry, as for example in proving Cauchy theorem in complex variable
theory, or in solving nonlinear equations of artificial neural networks.

A pointed set (S, s0) is a set S together with a distinguished point s0 ∈ S.
Similarly, a pointed topological space (X,x0) is a space X together with a
distinguished point x0 ∈ X. When we are concerned with pointed spaces
(X,x0), (Y, y0), etc., we always require that all functions f : X → Y shell
preserve base points, i.e., f(x0) = y0, and that all homotopies F : X × I → Y
be relative to the base point, i.e., F (x0, t) = y0, for all t ∈ I. We denote the
homotopy classes of base point–preserving functions by [X,x0;Y, y0] (where
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homotopies are relative to x0). [X,x0;Y, y0] is a pointed set with base point
f0, the constant function: f0(x) = y0, for all x ∈ X.

A path γ(t) from x0 to x1 in a topological space X is a continuous map
γ : I → X with γ(0) = x0 and γ(1) = x1. Thus XI is the space of all paths
in X with the compact–open topology. We introduce a relation ∼ on X by
saying x0 ∼ x1 iff there is a path γ : I → X from x0 to x1. ∼ is clearly an
equivalence relation, and the set of equivalence classes is denoted by π0(X).
The elements of π0(X) are called the path components, or 0−components of
X. If π0(X) contains just one element, then X is called path connected, or
0−connected. A closed path, or loop in X at the point x0 is a path γ(t) for
which γ(0) = γ(1) = x0. The inverse loop γ−1(t) based at x0 ∈ X is defined
by γ−1(t) = γ(1 − t), for 0 ≤ t ≤ 1. The homotopy of loops is the particular
case of the above defined homotopy of continuous maps.

Functors

In algebraic topology , one attempts to assign to every topological space X
some algebraic object F(X) in such a way that to every C0−function f :
X → Y there is assigned a homomorphism F(f) : F(X) → F(Y ). One
advantage of this procedure is, e.g., that if one is trying to prove the non–
existence of a C0−function f : X → Y with certain properties, one may find
it relatively easy to prove the non–existence of the corresponding algebraic
function F(f) and hence deduce that f could not exist. In other words, F
is to be a ‘homomorphism’ from one category (e.g., T ) to another (e.g., G
or A). Formalization of this notion is a functor , a generic picture projecting
one category into another. See [II07b] for technical details on categories and
functors.

For example, if (X,x0) is a pointed space, then we may regard π0(X) as a
pointed set with the 0−component of x0 as a base point. We use the notation
π0(X,x0) to denote p0(X,x0) thought of as a pointed set. If f : X → Y is
a map then f sends 0−components of X into 0−components of Y and hence
defines a function π0(f) : π0(X) → π0(Y ). Similarly, a base point–preserving
map f : (X,x0) → (Y, y0) induces a map of pointed sets π0(f) : π0(X,x0) →
π0(Y, y0). In this way defined π0 represents a ‘functor’ from the ‘category’ of
topological (point) spaces to the underlying category of (point) sets.

Combination of topology and calculus gives differential topology, or differ-
ential geometry (see [II07b]).

3.3.3 A Brief Intro to Morse Theory

At the same time the variational calculus was discovered, a related technique,
called Morse theory , was introduced into Riemannian geometry. This theory
was developed by M. Morse, first for functions on manifolds in 1925, and
then in 1934, for the loop space. The latter theory, as we shall see, sets up
a very nice connection between the first and second variation formulae from
the previous section and the topology of M.
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The essence of Morse theory is to study the topology of a manifold M
by analyzing the critical points of a smooth, real function f : M → R (see
[Mil63, Mil65a, Mil65]).

Let f : M → R be a smooth function and dim(M) = n. A point p ∈M is
a critical point of f if, in some coordinate system we have

∂f

∂x1

∣∣
∣∣
p

= . . . =
∂f

∂xn

∣∣
∣∣
p

= 0

and p is a non-degenerate critical point if

det

(
∂2f

∂xi ∂xj

∣∣∣∣
p

)

�= 0

A critical value ci ∈ R is the image of a critical point, ci = f(pi). For the rest
of this article all critical points will be assumed to be nondegenerate.

The key result is the Morse lemma: If p ∈ M is a nondegenerate critical
point of f , then

f(x1 . . . xn) = f(p)− x2
1 − . . .− x2

λ + x2
λ+1 + . . . + x2

n

in some coordinate system in a neighborhood U(p). λ is called the index of
the (nondegenerate) critical point p ∈M .

Let (M ;M0,M1) be a cobordism. A smooth, real function f : M → [a, b]
is a Morse function if:
1) f−1(a) = M0;
2) f−1(b) = M1; and
3) all the critical points pi of f are interior (i.e., pi /∈ ∂M) and nondegenerate.

Without loss of generality, we can assume that the critical values of f are
distinct, pi �= pj ⇒ ci = f(pi) �= f(pj) = cj (i.e., the Morse function is called
proper).

The Morse number of a cobordism μ(M) is the minimum (over all the
Morse functions defined on M) of the number of critical points,

μ(M) = minf{#of critical points off| f −Morse}.

Thus, the sphere has μ(S3) = 2, the cylinder μ(Σ × I) = 0 and the torus
μ(T 2) = 4.

We have the following general theorem [Mil63, Mil65]:
(i) Every cobordism has a Morse function.
(ii) A Morse function has a finite number of critical points.
(iii) If f : M → R is a Morse function with no critical points, then M is

topologically trivial, M ∼= Σ × [0, 1].
Note that the converse of (iii) is, however, not true. A topologically trivial

manifold (e.g., Σ × I) can have a nontrivial Morse function (i.e. with critical
points). An example is an U−shaped cylinder which has 2 critical points (the
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Morse function is the height function from a plane tangent to bottom of the
cylinder). As a consequence of (iii), topology change can occur only at the
critical points. Since the number of critical points is finite and the critical
values are distinct, we can ‘slice up’ the manifold between the critical points.
Thus, any cobordism can be expressed as a composition of cobordisms with
Morse number μ = 1, these being the building blocks [Ion97].

3.3.4 Morse Theory and Energy Functionals

In other words, if we have a proper function f : M → R, then its Hessian
(as a quadratic form) is in fact well defined at its critical points without
specifying an underlying Riemannian metric. The nullity of f at a critical
point is defined as the dimension of the kernel of ∇2f, while the index is the
number of negative eigenvalues counted with multiplicity. A function is said
to be a Morse function if the nullity at any of its critical points is zero. Note
that this guarantees in particular that all critical points are isolated. The
first fundamental Theorem of Morse theory is that one can determine the
topological structure of a manifold from a Morse function. More specifically,
if one can order the critical points x1, . . . , xk so that f (x1) < · · · < f (xk)
and the index of xi is denoted λi, then M has the structure of a CW complex
with a cell of dimension λi for each i. Note that in case M is closed then x1

must be a minimum and so λ1 = 0, while xk is a maximum and λk = n. The
classical example of Milnor of this Theorem in action is a torus in 3–space
and f the height function.

We are now left with the problem of trying to find appropriate Morse func-
tions. While there are always plenty of such functions, there does not seem to
be a natural way of finding one. However, there are natural choices for Morse
functions on the loop space to a Riemannian manifold. This is, somewhat
inconveniently, infinite–dimensional. Still, one can develop Morse theory as
above for suitable functions, and moreover the loop space of a manifold deter-
mines the topology of the underlying manifold.

If m, p ∈M , then we denote by Ωmp the space of all Ck paths from m to
p. The first observation about this space is that

πi+1 (M) = πi (Ωmp) .

To see this, just fix a path from m to q and then join this path to every curve
in Ωmp. In this way Ωmp is identified with Ωm, the space of loops fixed at m.
For this space the above relationship between the homotopy groups is almost
self-evident.

On the space Ωmp we have two naturally defined functions, the arc–length
and energy functionals:

L (γ, I) =
∫

I

|γ̇| dt, and E (γ, I) =
1
2

∫

I

|γ̇|2 dt.
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While the energy functional is easier to work with, it is the arc–length func-
tional that we are really interested in. In order to make things work out nicely
for the arc–length functional, it is convenient to parameterize all curves on
[0, 1] and proportionally to arc–length. We shall think of Ωmp as an infinite–
dimensional manifold. For each curve γ ∈ Ωmp the natural choice for the
tangent space consists of the vector–fields along γ which vanish at the end-
points of γ. This is because these vector–fields are exactly the variational
fields for curves through γ in Ωmp, i.e., fixed endpoint variations of γ. An
inner product on the tangent space is then naturally defined by

(X,Y ) =
∫ 1

0

g (X,Y ) dt.

Now the first variation formula for arc–length tells us that the gradient for
L at γ is -∇γ̇ γ̇. Actually this cannot be quite right, as -∇γ̇ γ̇ does not vanish
at the endpoints. The real gradient is gotten in the same way we find the
gradient for a function on a surface in space, namely, by projecting it down
into the correct tangent space. In any case we note that the critical points for
L are exactly the geodesics from m to p. The second variation formula tells
us that the Hessian of L at these critical points is given by

∇2L (X) = Ẍ + R (X, γ̇) γ̇,

at least for vector–fields X which are perpendicular to γ. Again we ignore the
fact that we have the same trouble with endpoint conditions as above. We
now need to impose the Morse condition that this Hessian is not allowed to
have any kernel. The vector–fields J for which J̈ + R (J, γ̇) γ̇ = 0 are called
Jacobi fields. Thus we have to Figure out whether there are any Jacobi fields
which vanish at the endpoints of γ. The first observation is that Jacobi fields
must always come from geodesic variations. The Jacobi fields which vanish at
m can therefore be found using the exponential map expm . If the Jacobi field
also has to vanish at p, then p must be a critical value for expm . Now, the
so–called Sard’s Theorem asserts that the set of critical values has measure
zero. For given m ∈M it will therefore be true that the arc–length functional
on Ωmp is a Morse function for almost all p ∈ M. Note that it may not be
possible to choose p = m, the simplest example being the standard sphere.
We are now left with trying to decide what the index should be. This is the
dimension of the largest subspace on which the Hessian is negative definite.
It turns out that this index can also be computed using Jacobi fields and is
in fact always finite. Thus one can calculate the topology of Ωmp, and hence
M, by finding all the geodesics from m to p and then computing their index.

In geometrical situations it is often unrealistic to suppose that one can
calculate the index precisely, but as we shall see it is often possible to given
lower bounds for the index. As an example, note that if M is not simply–
connected, then Ωmp is not connected. Each curve of minimal length in the
path components is a geodesic from m to p which is a local minimum for the
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arc–length functional. Such geodesics evidently have index zero. In particular,
if one can show that all geodesics, except for the minimal ones from m to p,
have index > 0, then the manifold must be simply–connected.

3.3.5 Morse Theory and Riemannian Geometry

Recall that on any smooth manifold M there exist many Riemannian metrics
g. Each of these metrics is locally defined in a particular point q ∈ M as a
symmetric (0, 2) tensor–field such that g|q : TqM × TqM → R is a positively
defined inner product for each point q ∈ M . In an open local chart U ∈ M
containing the point q, this metric is given as g|q �→ gij(q) dqidqj . With each
metric g|q there is associated a local geodesic on M .

Now, two main global geodesics problems on the biodynamical configura-
tion manifold M with the Riemannian metrics g, can be formulated as follows
(compare with subsection 3.3.4 above):

A. Is there a minimal geodesic γ0(t) between two points A and B on M? In
other words, does an arc of geodesic γ0(t) with extremities A,B actually
have minimum length among all rectifiable curves γ(t) = (qi(t), pi(t))
joining A and B?

B. How many geodesic arcs are there joining two points A and B on M?

Locally these problems have a complete answer : each point of the bio-
dynamics manifold M has an open neighborhood V such that for any two
distinct points A,B of V there is exactly one arc of a geodesic contained in
V and joining A and B, and it is the unique minimal geodesic between A and
B.

Recall (see subsection (3.3.4) above), that seven decades ago, Morse con-
sidered the set Ω = Ω(M ;A,B) of piecewise smooth paths on a Rieman-
nian manifold M having fixed extremities A,B, defined as continuous maps
γ : [0, 1] →M such that γ(0) = A, γ(1) = B, and there were a finite number
of points

t0 = 0 < t1 < t2 < · · · < tm−1 < tm = 1, (3.98)

such that in every closed interval [ti, ti+1], γ was a C∞−function. The
parametrization was always chosen such that for tj ≤ t ≤ tj+1,

t− tj =
tj+1 − tj

lj

∫ t

tj

‖ dγ

du
‖ du, with lj =

∫ tj+1

tj

‖ dγ

du
‖ du. (3.99)

In other words, t− tj was proportional to the length of the image of [tj , t] by
γ. Then

L(γ) =
m∑

j=0

lj ,

the length of γ, was a function of γ in Ω. A minimal arc from A to B should
be a path γ for which L(γ) is minimum in Ω, and a geodesic arc from A to
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B should be a path that is a ‘critical point’ for the function L. This at first
has no meaning, since Ω is not a differential manifold; the whole of Morse’s
theory consists in showing that it is possible to substitute for Ω genuine
differential manifolds to which his results on critical points can be applied
([Mor34, II07b]).

To study the geodesics joining two points A,B it is convenient, instead of
working with the length L(γ), to work with the energy of a path γ : [A,B] →
M , defined by ([Die88])

EBA (γ) =
∫ B

A

‖ dγ

du
‖2 du. (3.100)

With the chosen parametrization (3.99), E(γ) = (B − A)L(γ)2, and the ex-
tremals of E are again the geodesics, but the computations are easier with
E.

Morse theory can be divided into several steps (see [Mil63, II07b]).
Step 1 is essentially a presentation of the classical Lagrangian method that

brings to light the analogy with the critical points of a C∞− function on M .
No topology is put on Ω; a variation of a path γ ∈ Ω is a continuous map α
into M , defined in a product ]− ε, ε[× [0, 1] with the following properties:

A. α(0, t) = γ(t);
B. α(u, 0) = A, α(u, 1) = B for -ε < u < ε; and
C. There is a decomposition (3.98) such that α is C∞ in each set

]− ε, ε[× [ti, ti+1].

A variation vector–field t �→W (t) is associated to each variation α, where
W (t) is a tangent vector in the tangent space Tγ(t)M to M , defined by

W (t) = ∂uα(0, t). (3.101)

It is a continuous map of [0, 1] into the tangent bundle TM , smooth in each
interval [ti, ti+1]. These maps are the substitute for the tangent vectors at the
point γ; they form an infinite–dimensional vector space written TΩ(γ).

More generally the interval ] − ε, ε[ can be replaced in the definition of
a variation by a neighborhood of 0 in some R

n, defining an n−parameter
variation.

A critical path γ0 ∈ Ω for a function F : Ω → R is defined by the condition
that for every variation α of γ0 the function

u �→ F (α(u, ·))

is derivable for u = 0 and its derivative is 0.
Step 2 is a modern presentation of the formulas of Riemannian geometry,

giving the first variation and second variation of the energy (3.100) of a path
γ0 ∈ Ω, which form the basis of Jacobi results.
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First consider an arbitrary path ω0 ∈ Ω, its velocity ω̇(t) = dω/dt, and its
acceleration in the Riemannian sense

ω̈(t) = ∇tω̇(t),

where ∇t denotes the Bianchi covariant derivative. They belong to Tω(t)M for
each t ∈ [0, 1], are defined and continuous in each interval [ti, ti+1] in which
ω is smooth, and have limits at both extremities. Now let α be a variation of
ω and t �→W (t) be the corresponding variation vector–field (3.101). The first
variation formula gives the first derivative

1
2

d

du
E(α(u, ·))|u=0 = −

∑

i

(W (ti)|ω̇(ti+)− ω̇(ti−))−
∫ 1

0

(W (t)|ω̈(t)) dt,

where (x|y) denotes the scalar product of two vectors in a tangent space. It
follows from this formula that γ0 ∈ Ω is a critical path for E iff γ is a geodesic.

Next, fix such a geodesic γ and consider a two–parameter variation:

α : U × [0, 1] →M,

where U is a neighborhood of 0 in R
2, so that

α(0, 0, t) = γ(t), ∂u1α(0, 0, t) = W1(t), ∂u2α(0, 0, t) = W2(t),

in which W1 and W2 are in TΩ(γ). The second variation formula gives the
mixed second derivative

1
2

∂2

∂u1∂u2
E(α(u1, u2, ·)))|(0,0) = −

∑

i

(W2(ti)|∇tW1(ti+)−∇tW1(ti−))

−
∫ 1

0

(W2(t)|∇2
tW1(t) + R(V (t) ∧W1(t)) · V (t)) dt, (3.102)

where Z �→ R(X ∧ Y ) ·Z is the curvature of the Levi–Civita connection. The
l.h.s of (3.102) is thus a bilinear symmetric form

(W1,W2) �→ E∗∗(W1,W2)

on the product TΩ(γ)× TΩ(γ). For a one–parameter variation α

E∗∗(W,W ) =
1
2

d2

du2
E(α(u, ·))|u=0,

from which it follows that if γ is a minimal geodesic in Ω, E∗∗(W,W ) ≥ 0 in
TΩ(γ). As usual, we shall speak of E∗∗ indifferently as a symmetric bilinear
form or as a quadratic form W �→ E∗∗(W,W ).

Formula (3.102) naturally leads to the junction with Jacobi work (see
[Die88, II07b]): consider the smooth vector–fields t �→ J(t) along γ ∈ M ,
satisfying the equation
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∇2
tJ(t) + R(V (t) ∧ J(t)) · V (t) = 0 for 0 ≤ t ≤ 1. (3.103)

With respect to a frame along γ moving by parallel translation on M this
relation is equivalent to a system of n linear homogeneous ODEs of order 2
with C∞−coefficients; the solutions J of (3.103) are called the Jacobi fields
along γ and form a vector space of dimension 2n. If for a value a ∈]0, 1] of
the parameter t there exists a Jacobi field along γ that is not identically 0
but vanishes for t = 0 and t = a, then the points A = γ(0) and r = γ(a)
are conjugate along γ with a multiplicity equal to the dimension of the vector
space of Jacobi fields vanishing for t = 0 and t = a.

Jacobi fields on the biodynamical configuration manifold M may also be
defined as variation vector–fields for geodesic variations of the path γ ∈ M :
they are C∞−maps

α : ]− ε, ε[× [0, 1] →M,

such that for any u ∈ ]− ε, ε[ , t �→ α(u, t) is a geodesic and α(0, t) = γ(t).
It can be proved that the Jacobi fields along γ ∈M that vanish at A and

B (hence belong to TΩ(γ)) are exactly the vector–fields J ∈ TΩ(γ) such that

E∗∗(J,W ) = 0

for every W ∈ TΩ(γ). Although TΩ(γ) is infinite–dimensional, the form E∗∗
is again called degenerate if the vector space of the Jacobi fields vanishing at
A and B is note reduced to 0 and the dimension of that vector space is called
the nullity of E∗∗. Therefore, E∗∗ is thus degenerate iff A and B are conjugate
along γ and the nullity of E∗∗ is the multiplicity of B.

Step 3 is the beginning of Morse’s contributions (see [Mil63, II07b]). He
first considered a fixed geodesic γ : [0, 1] →M with extremities A = γ(0), B =
γ(1) and the bilinear symmetric form E∗∗ : TΩ(γ)×TΩ(γ) → R. By analogy
with the finite–dimensional quadratic form, the index of E∗∗ is defined as the
maximum dimension of a vector subspace of TΩ(γ) in which E∗∗ is strictly
negative (i.e., nondegenerate and taking values E∗∗(W,W ) < 0 except for
W = 0). Morse’s central result gives the value of the index of E∗∗ and is
known as the index Theorem.

Suppose a subdivision (3.98) is chosen such that each arc γ([ti−1, ti]) is
contained in an open set Ui ⊂M such that any two points of Ui are joined by
a unique geodesic arc contained in Ui that is minimal ; γ([ti−1, ti]) is such an
arc. In the infinite–dimensional vector space TΩ(γ), consider the two vector
subspaces:

A. TΩ(γ; t0, t1, · · · , tm) consisting of all continuous vector–fields t �→ W (t)
along γ, vanishing for t = 0 and t = 1, such that each restriction
W |[ti−1, ti] is a Jacobi field (hence smooth) along γ([ti−1, ti]); that sub-
space is finite–dimensional;

B. T ′ consisting of the vector–fields t �→ W (t) along γ, such that W (t0) =
0, W (t1) = 0, · · · ,W (tm) = 0.
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TΩ(γ) is then the direct sum TΩ(γ; t0, t1, · · · , tm) ⊕ T ′; these two sub-
spaces are orthogonal for the bilinear form E∗∗, and E∗∗ is strictly positive
in T ′, so that the index of E∗∗ is equal to the index of its restriction to the
subspace TΩ(γ; t0, t1, · · · , tm).

To calculate the nullity and index of E∗∗, due to this decomposition, apply
their definitions either to vector subspaces of TΩ(γ) or to vector subspaces
of TΩ(γ; t0, t1, · · · , tm). The computation of the index of E∗∗ is done by
considering the geodesic arc γτ : [0, τ ] →M , the restriction of γ to [0, τ ], and
its energy

E(γτ ) = τ

∫ τ

0

‖ dγ

du
‖2 du.

Eτ∗∗ is the corresponding quadratic form on TΩ(γτ ), and λ(τ) is its index;
one studies the variation of λ(τ) when tau varies from 0 to 1, and λ(1) is the
index of E∗∗.

The index Theorem says: the index of E∗∗ is the sum of the multiplicities
of the points conjugate to A along B and distinct from B.

We have seen that the dimension of TΩ(γ; t0, t1, · · · , tm) is finite; it follows
that the index of E∗∗ is always finite, and therefore the number of points
conjugate to A along γ is also finite.

Step 4 of Morse theory introduces a topology on the set Ω = Ω(M ;A,B).
On the biodynamical configuration manifold M the usual topology can be
defined by a distance ρ(A,B), the g.l.b. of the lengths of all piecewise smooth
paths joining A and B. For any pair of paths ω1, ω2 in Ω(M ;A,B), consider
the function d(ω1, ω2) ∈M

d(ω1, ω2) = sup
0�t�1

ρ(ω1(t), ω2(t)) +

√∫ 1

0

(ṡ1 − ṡ2)2 dt,

where s1(t) (resp. s2(t)) is the length of the path τ �→ ω1(τ) (resp. τ �→ ω2(τ))
defined in [0, t]. This distance on Ω such that the function ω �→ EBA (ω) is
continuous for that distance.

3.3.6 Morse Topology in Human/Humanoid Biodynamics

Morse Functions and Boundary Operators

Let f : M → R represents a C∞−function on the biodynamical configuration
manifold M . Recall that z = (q, p) ∈ M is the critical point of f if df(z) ≡
df [(q, p)] = 0. In local coordinates (x1, ..., xn) = (q1, ..., qn, p1, ..., pn) in a
neighborhood of z, this means ∂f

∂xi (z) = 0 for i = 1, ..., n. The Hessian of f at
a critical point z defines a symmetric bilinear form ∇df(z) = d2f(z) on TzM ,
in local coordinates (x1, ..., xn) represented by the matrix

(
∂2f

∂xi∂xj

)
. Index

and nullity of this matrix are called index and nullity of the critical point z
of f .
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Now, we assume that all critical points z1, ..., zn of f ∈M are nondegener-
ate in the sense that the Hessians d2f(zi), i = 1, ...,m, have maximal rank. Let
z be such a critical point of f of Morse index s (= number of negative eigen-
values of d2f(zi), counted with multiplicity). The eigenvectors corresponding
to these negative eigenvalues then span a subspace Vz ⊂ TzM of dimension s.
We choose an orthonormal basis e1, ..., es of Vz w.r.t. the Riemannian metric
g on M (induced by the system’s kinetic energy), with dual basis dx1, ..., dxs.
This basis then defines an orientation of Vz which we may also represent by
the s−-form dx1 ∧ ... ∧ dxs. We now let z′ be another critical point of f , of
Morse index s − 1. We consider paths γ(t) of the steepest descent of f from
z to z′, i.e., integral curves of the vector–field -∇f(γ). Thus γ(t) defines the
gradient flow of f [II06b, II07b]

γ̇(t) = −∇f (γ(t)) , with
{

limt→−∞ γ(t) = z,
limt→∞ γ(t) = z′

. (3.104)

A path γ(t) obviously depends on the Riemannian metric g on M as

∇f = gij ∂xif ∂xjf.

From [Sma60, Sma67] it follows that for a generic metric g, the Hessian∇df(y)
has only nondegenerate eigenvalues. Having a metric g induced by the system’s
kinetic energy, we let Ṽy ⊂ TyM be the space spanned by the eigenvectors
corresponding to the s− 1 lowest eigenvalues. Since z′ has Morse index s− 1,
∇df(z′) = d2f(z′) has precisely s − 1 negative eigenvalues. Therefore, Ṽz′ ≡
limt→∞ Ṽγ(t) = Vz′ , while the unit tangent vector of γ at z′, i.e., limt→∞

γ̇(t)
‖γ̇(t)‖ ,

lies in the space of directions corresponding to positive eigenvalues and is
thus orthogonal to Vz′ . Likewise, the unit tangent vector vz of γ at z, while
contained in Vz, is orthogonal to Ṽz, because it corresponds to the largest
one among the s negative eigenvalues of d2f(z). Taking the interior product
i(vz) dx1 ∧ ... ∧ dxs defines an orientation of Ṽz. Since Ṽy depends smoothly
on y, we may transport the orientation of Ṽz to Ṽz′ along γ. We then define
nγ = +1 or -1, depending on whether this orientation of Ṽz′ coincides with the
chosen orientation of Vz′ or not, and further define n(z, z′) =

∑
γ nγ , where

the sum is taken over all such paths γ of the steepest descent from p to p′.
Now, let Ms be the set of critical points of f of Morse index s, and let

Hs
f be the vector space over R spanned by the elements of Ms. We define a

boundary operator

δ : Hs−1
f → Hs

f , by putting, for z′ ∈Ms−1,

δ(z′) =
∑

n∈Ms

n(z′, z) z, and extending δ by linearity.

This operator satisfies δ2 = 0 and therefore defines a cohomology theory.
Using Conley’s continuation principle, Floer [Flo88] showed that the result-
ing cohomology theories resulting from different choices of f are canonically
isomorphic.
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In his QFT–based rewriting the Morse topology, Ed Witten [Wit82] con-
sidered also the operators:

dt = e−tfdetf , their adjoints : d∗t = etfde−tf ,
as well as their Laplacian: Δt = dtd

∗
t + d∗t dt.

For t = 0, Δ0 is the standard Hodge–de Rham Laplacian, whereas for t→∞,
one has the following expansion

Δt = dd∗ + d∗d + t2 ‖df‖2 + t
∑

k,j

∂2h

∂xk∂xj
[i ∂xk , dxj ],

where (∂xk)k=1,...,n is an orthonormal frame at the point under consideration.
This becomes very large for t → ∞, except at the critical points of f , i.e.,
where df = 0. Therefore, the eigenvalues of Δt will concentrate near the
critical points of f for t→∞, and we get an interpolation between de Rham
cohomology and Morse cohomology.

Morse Homology on M

Now, following [Mil99, IP05b, II07b], for any Morse function f on the con-
figuration manifold M we denote by Critp(f) the set of its critical points of
index p and define Cp(f) as a free Abelian group generated by Critp(f). Con-
sider the gradient flow generated by (3.104). Denote by Mf,g(M) the set of
all γ : R →M satisfying (3.104) such that

∫ +∞

−∞

∣∣
∣∣
dγ

dt

∣∣
∣∣

2

dt <∞.

The spaces

Mf,g(x−, x+) = {γ ∈Mf,g(M) | γ(t) → x± as t→ ±∞}

are smooth manifolds of dimension m(x+)−m(x−), where m(x) denotes the
Morse index of a critical point x. Note that

Mf,g(x, y) ∼= Wu
g (x) ∩W s

g (y),

where W s
g (y) and Wu

g (x) are the stable and unstable manifolds of the gradient
flow (3.104). For generic g the intersection above is transverse (Morse–Smale
condition). The group R acts on Mf,g(x, y) by γ �→ γ(·+ t). We denote

M̂f,g(x, y) =Mf,g(x, y)/R.

The manifolds M̂f,g(x, y) can be given a coherent orientation σ (see [Sch93]).
Now, we can define the boundary operator, as
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∂ : Cp(f) → Cp−1(f), ∂x =
∑

y∈Critp−1(f)

n(x, y)y,

where n(x, y) is the number of points in 0D manifold M̂f,g(x, y) counted with
the sign with respect to the orientation σ. The proof of ∂ ◦ ∂ = 0 is based
on gluing and cobordism arguments [Sch93]. Now Morse homology groups are
defined by

HMorse
p (f) = Ker(∂)/Im(∂).

For generic choices of Morse functions f1 and f2 the groups Hp(f1) and Hp(f2)
are isomorphic. Furthermore, they are isomorphic to the singular homology
group of M , i.e.,

HMorse
p (f) ∼= Hsing

p (M),

for generic f [Mil65].
The construction of isomorphism is given (see [Mil99, IP05b, II07b]) as

hαβ : Hp(fα) → Hp(fβ), (3.105)

for generic Morse functions fα, fβ . Consider the ‘connecting trajectories’, i.e.,
the solutions of non–autonomous equation

γ̇ = −∇fαβt , (3.106)

where fαβt is a homotopy connecting fα and fβ such that for some R > 0

fαβt ≡
{

fα for t ≤ −R
fβ for t ≥ R

.

For xα ∈ Critp(fα) and xβ ∈ Critp(fβ) denote

Mfαβ ,g(x
α, xβ) = {γ : γ satisfies (3.106) and lim

t→−∞
γ = xα, lim

t→∞
γ = xβ}.

As before, Mfαβ ,g is a smooth finite–dimensional manifold. Now, define

(hαβ)� : Cp(fα) → Cp(fβ), by

(hαβ)�xα =
∑

xβ∈Critp(fβ)

n(xα, xβ)xβ , for xα ∈ Critp(fα),

where n(xα, xβ) is the algebraic number of points in 0D manifold Mfαβ ,g(xα,
xβ) counted with the signs defined by the orientation of Mfαβ ,g. Homomor-
phisms (hαβ)� commute with ∂ and thus define the homomorphisms hαβ in
homology which, in addition, satisfy hαβ ◦ hβγ = hαγ .

Now, if we fix a Morse function f : M → R instead of a metric g, we
establish the isomorphism (see [Mil99, IP05b, II07b])

hαβ : Hp(gα, f) → Hp(gβ , f)
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between the two Morse homology groups defined by means of two generic
metrics gα and gβ in a similar way, by considering the ‘connecting trajectories’,

γ̇ = −∇g
αβ
t f. (3.107)

Here gαβt is a homotopy connecting gα and gβ such that for some R > 0

gαβt ≡
{

gα for t ≤ −R,
gβ for t ≥ R,

and ∇g is a gradient defined by metric g.
Note that f is decreasing along the trajectories solving autonomous gradi-

ent equation (3.104). Therefore, the boundary operator ∂ preserves the down-
ward filtration given by level sets of f . In other words, if we denote

Critλp(f) = Critp(f) ∩ f−1((−∞, λ]), and

Cλp (f) = free Abelian group generated by Critλp(f),

then the boundary operator ∂ restricts to ∂λ : Cλp (f) → Cλp−1(f). Obviously,
∂λ ◦ ∂λ = 0, thus we can define the relative Morse homology groups

Hλ
p (f) = Ker(∂λ)/Im(∂λ).

Following the standard algebraic construction, we define (relative) Morse
cohomology. We set

Cpλ(f) = Hom(Cλp (f),Z), and

δλ : Cpλ(f) → Cp+1
λ (f), 〈δλa, x〉 = 〈a, ∂λx〉

and define
Hp
λ(f) = Ker(δλ)/Im(δλ).

Since Critp(f) is finite, we have Hλ
p (f) = Hp(f) and Hp

λ(f) = Hp(f).

3.3.7 Cobordism Topology on Smooth Manifolds

Cobordism appeared as a revival of Poincaré’s unsuccessful 1895 attempts
to define homology using only manifolds. Smooth manifolds (without bound-
ary) are again considered as ‘negligible’ when they are boundaries of smooth
manifolds–with–boundary. But there is a big difference, which keeps defini-
tion of ‘addition’ of manifolds from running into the difficulties encountered
by Poincaré; it is now the disjoint union. The (un-oriented) cobordism relation
between two compact smooth manifolds M1,M2 of same dimension n means
that their disjoint union ∂W = M1 �M2 is the boundary ∂W of an (n + 1)D
smooth manifold–with–boundary W . This is an equivalence relation, and the
classes for that relation of nD manifolds form a commutative group Nn in
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which every element has order 2. The direct sum N• = ⊕n≥0Nn is a ring for
the multiplication of classes deduced from the Cartesian product of manifolds.

More precisely, a manifold M is said to be a cobordism from A to B if
there exists a diffeomorphism from a disjoint sum, ϕ ∈ diff(A∗�B, ∂M). Two
cobordisms M(ϕ) and M ′(ϕ′) are equivalent if there is a Φ ∈ diff(M,M ′)
such that ϕ′ = Φ ◦ ϕ. The equivalence class of cobordisms is denoted by
M(A,B) ∈ Cob(A,B) [Sto68, II07b].

Composition cCob of cobordisms comes from gluing of manifolds [BD95].
Let ϕ′ ∈ diff(C∗ �D, ∂N). One can glue cobordism M with N by identifying
B with C∗, (ϕ′)−1 ◦ ϕ ∈ diff(B,C∗). We get the glued cobordism
(M ◦N)(A,D) and a semigroup operation,

c(A,B,D) : Cob(A,B)× Cob(B,D) −→ Cob(A,D).

A surgery is an operation of cutting a manifold M and gluing to cylin-
ders.30 A surgery gives new cobordism: from M(A,B) into N(A,B). The
disjoint sum of M(A,B) with N(C,D) is a cobordism (M �N)(A�C,B�D).
We got a 2–graph of cobordism Cob with Cob0 = Mand, Cob1 = Mand+1,
whose 2–cells from Cob2 are surgery operations.

There is an n−category of cobordisms BO [Lei03, II07b] with:

• 0−cells: 0−manifolds, where ‘manifold’ means ‘compact, smooth, oriented
manifold’. A typical 0−cell is • • • • .

• 1−cells: 1−manifolds with corners, i.e., cobordisms between 0−manifolds,

such as (this being a 1−cell from the 4−point mani-
fold to the 2−point 0−manifold).

30 In geometry and topology, surgery theory is the name given to a collection of tech-
niques used to produce one manifold from another in a ‘controlled’ way. Surgery
refers to cutting out parts of the manifold and replacing it with a part of another
manifold, matching up along the cut or boundary. More technically, the idea is to
start with a well–understood manifold M and perform surgery on it to produce
a manifold M ′ having some desired property, in such a way that the effects on
the homology, homotopy groups, or other interesting topological invariants of the
manifold are known.
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• 2−cells: 2−manifolds with corners, such as the so–called ‘trousers’

• 3−cells, 4−cells,... are defined similarly;
• Composition is gluing of manifolds.

The cobordisms theme was taken a step further by [BD95], when they
started a programme to understand the subtle relations between certain
TMFT models for manifolds of different dimensions, frequently referred to as
the dimensional ladder. This programme is based on higher–dimensional al-
gebra, a generalization of the theory of categories and functors to n−categories
and n−functors. In this framework a topological quantum field theory (TMFT)
becomes an n−functor from the n−category BO of n−cobordisms to the
n−category of n−Hilbert spaces.

3.4 Topology Change in 3D

Recall that topology change has become recently a subject of increasing re-
search interest [GH92b, GH92a, Sor97, MS97]. The image of fluctuating topol-
ogy at the Planck scale is due to Wheeler, who was the first one to point out
the dynamical topology inherent to that scale, the now famous foamlike struc-
ture of space-time [Whe62].

Although from a classical point of view topology change is excluded
[Ger67], in the quantum case this is different due to fluctuations of the metric.
There are many arguments in favor of topology change. In a sum over histories
approach to quantum gravity, the sum over metrics is naturally extended to
a sum over topologies. Another argument comes from the Big–Bang, which
implies a topological transition Ø → S3. This implies that topology change
becomes an essential ingredient of Planck scale physics.

In this article we investigate topology change by using Morse theory and
handle decomposition. Applied to the case of 3–manifolds, this yields the set
of building blocks, i.e., those elementary cobordisms from which any 3–fold
can be built (up to a homeomorphism).
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While finalizing this article, reference [DG98] came to our attention, in
which a similar framework of handle decomposition was used for topology
change.

From the beginning, it is important to make a distinction between a topo-
logical and a Lorentzian cobordism [Yod72, Rei63].

By a topological cobordism we understand a smooth, compact, nD manifold
M whose boundary has 2 disjoint components ∂M = M0 � M1, with M0

and M1 two smooth, closed, (n − 1)D manifolds (possible empty or non-
connected). Two manifolds are topologically cobordant if and only if they
have the same Stiefel–Whitney and Pontrjagin numbers (the oriented case) or
only the Stiefel–Whitney numbers (the non–oriented case) [MS74)].

A Lorentzian cobordism is a topological cobordism (M ; M0,M1) together
with a nonsingular vector field v which is interior normal to M0 and exterior
normal to M1. In this case we can define a nonsingular Lorentz metric gLμν on
M [Ion97]

gLμν = gRμν −
2vμvν

gRαβvαvβ
(3.108)

where gRμν is a Riemann metric on M . This is always possible, since there is a
1–1 correspondence between nonsingular vector fields v and Lorentz metrics
gLμν on M . With respect to gLμν , M0 and M1 are space-like and we will denote
them as the initial and final hyper-surfaces of the cobordism.

Following a celebrated theorem of Geroch [Ger67], topology change implies
either closed timelike curves (CTCs) or singularities in the metric. For the
rest of this article we assume there are no CTCs, and therefore we admit
singularities in the metric, in order to have topology change. A consequence
of the other choice (CTCs, no singularities) for topology change in Kaluza–
Klein theories has been studied in [Ion97].

The first question we ask is: How serious are such singularities? First of
all, we have to point out that these are not curvature singularities (like r = 0
in the Schwarzschild metric). In our case space-time is a smooth manifold
and therefore the curvature is bounded. However, at the singular points the
metric gμν fails to be invertible, this being related to the singularities in the
vector field v which defines the time–flow in (3.108). As Horowitz pointed out
in [Hor91], if we allow degenerate tetrads, the singularities can be very mild,
since the curvature is bounded.

The viewpoint adopted here is the following: until we have a full theory
of quantum gravity we shall leave all the options open, and therefore singular
metrics are a legitimate object to study.

The important result is the following theorem [Sor86b]: Every topological
cobordism admits a metric which is Lorentzian everywhere, except for a finite
number of singularities.
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3.4.1 Attaching Handles

Next, we focus on the structure of the elementary cobordisms (i.e., those with
Morse number μ = 1) [Ion97].

A cobordism (M ;M0,M1) which has a Morse function with a single critical
point of index λ is called an elementary cobordism of index λ (or shortly, a
λ−cobordism). Obviously, a λ−cobordism is an elementary building block.

In any dimension n, there can be only n + 1 types of (non-degenerate, or
Morse) critical points, since λ = 0 . . . n. Moreover, a λ−cobordism is home-
omorphic to one of the (n − λ)−cobordisms (since for given λ, there can
be several λ-cobordism which are not homeomorphic– see below the case of
1-cobordisms in 3 dimensions). This can be easily seen from the following
argument. If f has a critical point p of index λ, then for the Morse function
g = −f , p is a critical point of index n − λ. Thus the (n − λ)−cobordism
represents the same cobordism as a λ−cobordism, but ‘upside–down’, and
therefore it mediates the inverse topological transition Σfinal → Σinitial.

The following is a standard theorem in cobordism theory [Mil65, FR84]:
Any cobordism (M ;M0,M1) can be obtained from the trivial cobordism M0×
I by attaching a finite number of λ−handles.

By attaching a handle to a boundary M0 we understand gluing an n−ball
Dn = Dλ ×Dn−λ via an arbitrary embedding h : Sλ−1 ×Dn−λ →M0.

In order to find the λ−cobordisms we start with the cylinder M0 × I over
an arbitrary boundary and find all the embeddings h : Sλ−1×Dn−λ →M0 for
the boundary of a given λ−handle. The manifold obtained from the cylinder
M0×I after gluing the λ−handle along this embedding will be a λ−cobordism.

Handles in 2D

We start with a ‘warm–up’ example in 2D [Ion97]. The possible boundary for
a 2–manifold is S1 (the only closed 1D manifold), or a disjoint sum of circles
S1 � . . . � S1. Attaching a handle in 2D is equivalent to gluing a disk (i.e. a
2-ball) D2 along different parts of its boundary.

0–Cobordism

In this case we have to attach D2 = D0×D2 via the empty set S−1×D2 = Ø
(since S−1 = Ø).

Starting with a manifold M with boundary ∂M , attaching a 0−handle is
equivalent to creating an S1 boundary out of nothing and therefore the new
boundary will be ∂M � S1. Thus, the 0−cobordism is simply a disk D2 and
the topology transition mediated is Ø→ S1.

1–Cobordism

The same disk D2 = D1 ×D1 is glued now along S0 ×D1 (two disjoint line
segments). There are two different embeddings of the two segments S0 ×D1
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in the boundary of a 2–manifold. The two segments can belong either to the
same S1 component, or to different S1 components of the boundary. In the
first case we have Figure 3.6, while the second case corresponds to Figure 3.7

Fig. 3.6. The first case (adapted and modified from [Ion97]).

Fig. 3.7. The second case (adapted and modified from [Ion97]).

Another possibility is to twist the ribbon D2 before gluing its two ends
on the same S1 component; the resulting manifold is the connected sum of a
Möbius band and a disk. Since we are not interested in non-orientable bound-
aries, we do not consider this case here.

2–Cobordism

This is the reverse of a 0–cobordism. The disk D2 = D2 ×D0 is glued along
its whole S1 ×D0 = S1 boundary (D0 is just a point). Attaching a 2–handle
reduces then to gluing a disk to one of the existing S1 boundaries. Therefore,
the only two elementary cobordisms in 2D are the trousers and the Big–Bang
(or, yarmulke [LS97], see Figure 3.8.

Handles in 3D

Now we can do the same analysis for the 3D case. The general boundary of a
3-manifold is homeomorphic to a genus g surface Σg (or a disjoint sum of such
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Fig. 3.8. the only two elementary cobordisms in 2D are the trousers and the Big–
Bang (or, yarmulke (adapted and modified from [Ion97]).

surfaces). We consider only manifolds with orientable boundaries, therefore
we exclude from the possible boundaries closed 2–manifolds which have the
projective plane RP

2 as a factor.
In order to construct the λ−cobordisms we start with the cylinder Σg × I

and attach to one of the Σg boundaries a λ−handle. The cylinder Σg × I can
be viewed as a hollow genus g handle-body. As a 3–manifold, it has two Σg
boundaries: the exterior one and the interior one, which is shaded in Figure
3.9.

Fig. 3.9. Two Σg boundaries: the exterior one and the interior one (adapted and
modified from [Ion97]).

0–Cobordism

This is similar to the 2D case and represents the creation of an S2 boundary
out of the vacuum (we glue D0 × D3 via the empty set S−1 × D3). The
cobordism is just a three–ball D3 which mediates the transition Ø→ S2.

1–Cobordism

Attach the three–ball D1 ×D2 along S0 ×D2 (two disks) on an arbitrary Σg
boundary. It is equivalent to gluing a solid tube along its two opposite ends.
There are two possible embeddings.
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Fig. 3.10. The wormhole creation: both ends on the same boundary (adapted and
modified from [Ion97]).

(i) Both ends on the same boundary, see Figure 3.10.
(ii) The two disks glued on disjoint boundaries, see Figure 3.11.

Fig. 3.11. The creation of an Einstein–Rosen bridge (connecting two disjoint ‘uni-
verses’) (adapted and modified from [Ion97]).

2–Cobordism

This should be equivalent to one of the 1–cobordisms, as we can check. Attach
D2 × D1 (viewed as a solid cylinder) along its lateral surface S1 × D1. We
have to find different embeddings of this surface in the Σg boundary. This can
be seen in Figure 3.11, where the gluings are done on the interior Σg of the
cylinder Σg×I. The gluings of type (i) sever one of the handles, and thus they
are equivalent to Σg → Σg−1. Type (ii) gluings separate the inner boundary
into two disjoint boundaries, Σg → Σk � Σg−k, with k = 0 . . . g. Type (iii)
reduces to type (i) after a homeomorphism of the Σg boundary.

3–Cobordism

Simply cap an S2 boundary, S2 → Ø; the cobordism is again a 3–ball D3, see
Figure 3.12.

The summary is given in Figure 3.13.
The physical interpretation of these elementary building blocks in 3D is:

i) Big–Bang/Big–Crunch: Ø←→ S2

ii) wormhole creation/annihilation: Σg ←→ Σg+1

iii) Einstein–Rosen bridge creation/annihilation: Σg1 �Σg2 ←→ Σg1+g2
A similar approach, but using spherical modifications instead of handle

decomposition was used in [Yod72, Yod73]; however, the authors omitted the
2–cobordism representing the Einstein–Rosen bridge, Σg1 �Σg2 → Σg1+g2 .
Note that at first sight, it seems that the cobordism Σg1 �Σg2 → Σg1+g2 is a
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Fig. 3.12. Different ways of attaching a 2–handle and the resulting 2–cobordisms:
(i) Σg → Σg−1; (ii) Σg → Σk � Σg−k, (k = 0 . . . g); (iii) this reduces, after a
homeomorphism, to case (i), Σg → Σg−1 (adapted and modified from [Ion97]).

Fig. 3.13. Summary of the 3–cobordism (adapted and modified from [Ion97]).

composite one. Thus, we could try to obtain it from S2�S2 → S2 by applying
on each S2 boundary an appropriate number of wormhole creation cobordisms
Σg → Σg+1. However, this is not so, and a counterexample is given in Figure
3.14.

Consider the building block T 2 � S2 → T 2. It is easy to see that this is
just the connected sum of the cylinder T 2 × I and the 3–ball D3 (any S2

boundary can be obtained by taking the connected sum with D3), namely
(T 2 × I)#D3. On the other hand, we can start with the simplest trousers
S2 � S2 → S2 and glue on two of the boundaries the 1–cobordism S2 → T 2.
The resulting manifold is the connected sum of two solid tori and a three–ball,
i.e. (D2 × S1)#(D2 × S1)#D3. The two cobordisms are not homeomorphic,
since T 2 × I �∼= (D2 × S1)#(D2 × S1). This can be checked by computing the
Euler characteristics of the two cobordisms, χ(T 2 × I) = 0, whereas χ[(D2 ×
S1)#(D2 × S1)] = 2χ(D2 × S1)− 2 = −2. The difference between these two
cobordisms is depicted schematically in Figure 3.14 (both are constructed
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Fig. 3.14. Non-homeomorphic cobordisms (the shaded regions are holes in the solid
tori): (a) (T 2 × I)#D3; (b) (D2 × S1)#(D2 × S1)#D3 (adapted and modified from
[Ion97]).

from a solid torus by removing from its interior a ball D3 and another solid
torus D2 × S1, the difference being in the way the D2 × S1 is removed).

Handles in nD

In general, finding the elementary cobordisms in n dimensions is difficult,
since it requires at least a classification of closed (n − 1)D manifolds, which
are the boundaries. The only manageable cases are the 0 and 1–cobordisms
(and their duals, the n− and (n− 1)−cobordisms). Index 0–cobordism is just
a creation of an Sn−1 boundary, whereas the n−cobordism is the ‘capping’ of
an Sn−1 boundary. Both are equivalent to an n−ball Dn [Ion97].

The 1–handle is more complicated. Intuitively, it is similar to the 1–handle
of the 3D case. We have to attach the Dn = D1 × Dn−1 along an arbitrary
embedding of S0 × Dn−1 (two (n − 1)−balls). This 1–handle is the higher
dimensional analog to the solid tube from the 3D case. Again, the two ends
can be on the same (n− 1) boundary, say V n−1 (wormhole creation), or they
can be on two different boundaries (Einstein–Rosen bridge creation). In the
first case, this is equivalent to taking the connected sum of the initial boundary
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with the nD wormhole Sn−2×S1, see Figure 3.15, with V n−1, Wn−1 arbitrary
closed (n− 1)−manifolds.

Fig. 3.15. Summary on handles in nD (adapted and modified from [Ion97]).

3.4.2 Oriented Cobordism and Surgery Theory

Recall that an oriented manifold X is an oriented cobordism between the
oriented manifolds M and M ′ if ∂X, with the induced orientation, is diffeo-
morphic to the disjoint union of M and −M ′. Here, − denotes orientation
reversal. Cobordism defines an equivalence relation on the space of oriented
manifolds. Thus the manifold X has connected boundary ∂X = M ′, neglect-
ing the change in orientation [Har03].

Given a cobordism X, it is possible to obtain a different cobordism X ′,
with ∂X = ∂X ′, through surgery on X. Suppose X is nD. Intuitively, surgery,
also known as spherical modification, should be thought of as removing an
embedded kD sphere Sk and replacing it with an embedded sphere Sn−k−1 of
dimension n− k − 1. A more precise description is as follows [Wal60, Mil65].

Start with an embedding of φ : Sk × Dn−k → X. The boundary of the
embedding is Sk × Sn−k−1, which is also the boundary of Dk+1 × Sn−k−1.
We may thus remove the interior of the embedding and replace it with the
interior of Dk+1 × Sn−k−1. The result is the manifold

X ′ =
(
X − φ(Sk × 0)

)
+
(
Dk+1 × Sn−k−1

)
,
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where − denotes removal and + denotes an identification of φ(u, θv) with
(θu, v) for each u ∈ Sk, v ∈ Sn−k−1 and 0 < θ ≤ 1. This is usually called a
type (k, n− k − 1) surgery.31 The process is illustrated in Figure 3.16.

Fig. 3.16. Surgery between X and X ′, both with boundary S1. An S1 × D1 is
removed and replaced with a D2 × S0. The change in topology is evident (adapted
and modified from [Har03]).

Handle Decomposition and Causal Continuity

Once we have obtained an interesting cobordism X, it will be useful to consider
its handle decomposition [RS72, Mil65, DG98]. A handle of index k on an
nD manifold X is an n−disc Dn such that X ∩ Dn ⊂ ∂X, and there is a
homeomorphism h : Dk×Dn−k → Dn, such that h(Sk−1×Dn−k) = X ∩Dn,
where ∂Dk = Sk−1. Two simple examples are shown in Figure 3.17. Adding
a handle is closely related to performing a surgery, as we shall see below.

Fig. 3.17. Adding a 1-handle to D2 to obtain a solid torus. Adding a 2-handle to
a solid torus to reobtain the ball (adapted and modified from [Har03]).

A handle decomposition of a cobordism X from M to M ′ is a presentation

X = C0 ∪H1 ∪ · · · ∪Ht,

where C0 = M × [0, 1] and Hk is a handle on the cobordism

Xk−1 = C0 ∪ {∪Hl | l ≤ k − 1}.
31 Note that we are using surgery to modify the cobordism itself. This should not be

confused with the use of surgery to construct cobordisms by modifying manifolds
without boundaries.
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This gives a procedure for constructing X from the trivial cobordism. If ∂X
has a single connected component, M ′, then one may start from the disc
C0 = Dn. The handle decomposition of X is not unique. For example, Figure
2 shows a handle decomposition of a 2–disc as a 2–disc with a 1–handle and a
2–handle added. Handle decompositions are generic by the following theorem
[RS72]: Every cobordism admits a handle decomposition.

Handle decomposition is also closely related to Morse theory [Mil65,
Mil63]. Morse theory is used to define an almost Lorentzian metric on the
cobordism with certain causal properties. Recall that a function f : X → R

has a critical point at p ∈ X if ∂if(p) = 0. The critical point is non-degenerate
if det [∂i∂jf(p)] �= 0. A Morse function on a cobordism X is a function
f : X → R that is constant on each connected component of ∂X and whose
critical points are in the interior of X and non-degenerate. Every cobordism
admits a Morse function, a result that follows from the previous theorem
[Har03].

The index of a non-degenerate critical point p is the number of negative
eigenvalues of the Hessian ∂i∂jf(p). The number of critical points with index
k will be denoted mk(f). The following result is important (this is theorem
3.12 of [Mil65] translated into the language of handles): Given a handle de-
composition of the cobordism X, then X admits a Morse function with exactly
one critical point of index k for each k−handle in the decomposition.

The power of this result is that it gives us an equality for the number of
critical points of a Morse function. This should be contrasted with the well–
known weak Morse inequalities [Mil63] bk ≤ mk(f), where bk are the Betti
numbers of the manifold, X.

Given a Morse function f on X and a Riemannian metric G on X, which
always exists, one may then construct an almost Lorentzian metric [LS97]

gμν = Gρσ∂ρf∂σfGμν − ζ∂μf∂νf,

where ζ > 1 is a real number. This metric is Lorentzian everywhere except
at the critical points and has a well-defined causal structure because f acts
as a time function. The timelike direction is Gμν∂νf . This almost Lorentzian
metric is said to define a Morse space-time.

The final idea we need is that of causal continuity [HS74]. Intuitively, a
space-time is causally discontinuous if the volume of the causal past or future
of some point changes discontinuously under a continuous change in the point.

It is conjectured [DS98] that causally discontinuous space-times do not
contribute to the Lorentzian sum over histories. It was further conjectured
[DS98] that causal continuity should be associated with critical points of index
1 and n − 1 of Morse functions. It was later proven the following theorem
[DGS99, Sor97]: If all Morse functions on a cobordism X contain critical points
of index 1 or (n−1), then the cobordism supports only causally discontinuous
Morse space-times. Conversely, if X admits a Morse function with no critical
points of index 1 or (n − 1), then it does support causally continuous Morse
space-times. Thus, there is a selection rule for topology change. Topology
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change requires a cobordism with a handle decomposition with no 1–handles
or (n− 1)−handles [Har03].

3.5 Topology Change in Quantum Gravity

In this subsection, following [Dow02], we present the current understanding
of topology change in quantum gravity.

3.5.1 A Top–Down Framework for Topology Change

What is meant by a topology change in quantum gravity is a space-time based
on an nD manifold M , with an initial space-like (n − 1)D hypersurface Σ0,
and a final space-like hypersurface Σ1, not diffeomorphic to Σ0. For simplicity
in what follows we take Σ0 and Σ1 to be closed and M compact so that the
boundary of M is the disjoint union of Σ0 and Σ1. This restriction means ef-
fectively that we’re studying topology changes that are localized. For example,
a topology change from R

3 to R
3 with a handle – an S2 × S1 – attached can

be reduced to the compact case because infinity in both cases is topologically
the same.

Following S. Hawking in [Haw78, Haw78b], we will use the path–integral
approach (see Chapter 4) to quantum gravity which can be summarized in the
following formula for the transition amplitude between the Riemannian metric
h0 on (n−1)−manifold Σ0 and the Riemannian metric h1 on (n−1)−manifold
Σ1 [Dow02]

〈h1Σ1|h0Σ0〉 =
∑

M

∫

g

[dg]ω(g) . (3.109)

The sum is over all n−manifolds M , called cobordisms, whose boundary is
the disjoint union of Σ0 and Σ1, and the functional integral is over all metrics
on M which restrict to h0 on Σ0 and h1 on Σ1. Each metric contributes a
weight, ω(g), to the amplitude. It is clear from this that the path–integral
framework lends itself to the study of topology change as it readily accom-
modates the inclusion of topology changing manifolds in the sum. Despite
the fact that we may not be able to turn (3.109) into a mathematically well–
defined object within the top down approach, if even the basic form of this
transition amplitude is correct then we can already draw some conclusions.
We can say that a topology change from Σ0 to Σ1 can only occur if there is
at least one manifold which interpolates between them, in other words if they
are cobordant. This does not place any restriction on topology change in 3+1
space-time dimensions since all closed three–manifolds are cobordant, but it
does in all higher dimensions: not all closed four–manifolds are cobordant, for
example. We can also say that even if cobordisms exist, there must also exist
appropriate metrics on at least one cobordism and so we come to the question
of what the metrics should be. There are many possibilities and just three are
listed here [Dow02]:
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A. Euclidean (i.e., positive definite signature) metrics. This choice is of course
closely associated with Hawking and the whole programme of Euclidean
quantum gravity [GH93]. It is to this tradition and to Hawking’s influence
that we attribute my enduring belief that topology change does occur in
quantum gravity. Indeed, Euclidean (equivalently, Riemannian) metrics
exist on any cobordism and it would seem perverse to exclude different
topologies from the path–integral.

B. Lorentzian (i.e., (−,+,+, · · ·+) signature) metrics. With this choice we
are forced, by a theorem of Geroch [Ger67], to contemplate closed time-like
curves (CTC’s or time machines). Geroch proved that if a Lorentzian met-
ric exists on a topology changing cobordism then it must contain CTC’s or
be time non-orientable. Hawking has been at the forefront of the study of
these causal pathologies, formulating his famous Chronology Protection
Conjecture [Haw92]. Hawking and Gibbons also proved that requiring
an SL(2,C) spin structure for fundamental fermi fields on a Lorentzian
cobordism produces a further restriction on allowed topology changing
transitions [GH92a, GH92b].

C. Causal metrics. By this we mean metrics which give rise to a well–defined
‘partial order’ on the set of space-time events. A partial order is a binary
relation, ≺, on a set P , with the properties:
• (i) transitivity: (∀x, y, z ∈ P )(x ≺ y ≺ z ⇒ x ≺ z)
• (ii) irreflexivity: (∀x ∈ P )(x �≺ x) .
A Lorentzian metric provides a partial order via the identification x ≺
y ⇔ x ∈ J−(y), where the latter condition means that there’s a future
directed curve from x to y whose tangent vector is nowhere space-like (a
‘causal curve’), so long as the metric contains no closed causal curves. The
information contained in the order ≺ is called the ‘causal structure’ of the
space-time. By Geroch’s theorem, we know there are no Lorentzian metrics
on a topology changing cobordism that give rise to a well–defined causal
structure. But, there are metrics on any cobordism which are Lorentzian
almost everywhere which do [Sor89]. These metrics avoid Geroch’s the-
orem by being degenerate at a finite number of points but the causal
structure at the degenerate points is nevertheless meaningful.

3.5.2 Morse Metrics and Elementary Topology Changes

Morse theory gives us a way of breaking a cobordism into a sequence of ele-
mentary topology changes [Yod72, Sor89]. On any cobordism M there exists a
Morse function, f : M → [0, 1], with f |Σ0 = 0, f |Σ1 = 1 such that f possesses
a set of critical points {pk} where ∂af |pk

= 0 and the Hessian, ∂a∂bf |pk
, is in-

vertible. These critical points, or Morse points, of f are isolated and, because
M is compact, there are finitely many of them. The index, λk, of each Morse
point, pk is the number of negative eigenvalues of the Hessian at pk. It is the
number of maxima in the generalized saddle point at pk if f is interpreted as
a height function. For space-time dimension n, there are n+1 possible values
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for the indices, (0, 1, . . . n). A cobordism with a single Morse point is called
an elementary cobordism [Dow02]. Three elementary cobordisms for n = 2
are shown in Figure 3.18. They are the λ = 2 yarmulke in which a circle is

Fig. 3.18. Three elementary cobordisms for n = 2 and λ = 2, 1, 0: the ‘yarmulke’,
‘trousers’ and time–reverse of the ‘yarmulke’ (adapted and modified from [Dow02]).

destroyed, the λ = 1 trousers in which two circles join to form a single cir-
cle and the λ = 0 time reverse of the yarmulke in which a circle is created
from nothing. (The upside–down trousers is in fact also a λ = 1 elementary
cobordism: locally the Morse point looks the same as the regular trousers with
one maximum and one minimum.) For higher space-time dimensions, n, the
generalizations of these are easy to visualize: the index n yarmulke (or its
time reverse of index 0) is half an n−sphere, the index 1 trousers (or its time
reverse of index n− 1) is an n−sphere with three balls deleted creating three
Sn−1 boundaries. For n > 3 qualitatively different types of Morse point exist
with at least two maxima and two minima, i.e. λ �= 0, 1, n− 1, n.

Using a Morse function, f , on M we can construct Morse metrics, which
are Lorentzian everywhere except at the Morse points where they are zero.
The precise form is not important here, but roughly the Morse function is used
as a time function as you’d expect. These Morse metrics are our candidates
for inclusion in the path–integral for quantum gravity.

Now, there is important counter-evidence to the claim that topology
change occurs in quantum gravity. This is work which shows that the ex-
pectation value of the energy–momentum tensor of a massless scalar field
propagating on a (1+1) Morse trousers is singular along the future light cone
of the Morse point [MCD88]. In addition, one can look instead at the in-out
matrix element of the energy momentum tensor and one finds a singularity
along both the future and past light cones of the Morse point (calculation
described in [Sor89]). This last result in particular, if it can be extended to all
Morse metrics on the (1+1)–trousers, can be taken to suggest that in the full
path–integral expression for the transition amplitude, integrating out over the
scalar field first will leave an expression for the effective action for g that is
infinitely sensitive to fluctuations in g. Thus, destructive interference between
nearby metrics will suppress the contribution of any metric on the trousers. To
be sure, this is a heuristic argument that would need to be strengthened but
suppose it is valid. Would this mean, as DeWitt has argued, that all topology
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change is suppressed? The answer is not necessarily, especially if the following
two conjectures hold.

The first conjecture is based on the idea that it is a certain property, called
‘causal discontinuity’, of the causal structure of the (1+1)–trousers that is the
origin of the bad behavior of quantum fields on it. So the conjecture (Sorkin)
is that quantum fields will be singular on causally discontinuous space-times
but well–behaved on causally continuous space-times. The second conjecture
(Borde and Sorkin) is that only Morse metrics containing index 1 or n − 1
points (trousers type) are causally discontinuous.

So what is causal discontinuity? S. Hawking invented this concept in work
with R.K. Sachs [HS74]. That paper is a piece of hard mathematical physics
but there is a physically intuitive way of understanding the concept. Roughly,
a space-time is causally discontinuous if the causal past, or future, of a point
changes discontinuously as the point is moved continuously in space-time. We
can see from Figure 3.19 that it is very plausible that the (1 + 1)–trousers is
causally discontinuous: an observer down in one of the legs will have a causal
past that is contained only in that leg, but as the observer moves up into the
waist region, as they pass the future light cone of the Morse point, their causal
past will suddenly get bigger and include a whole new region contained in the
other leg. Hawking and Sachs conclude their paper by saying, “There is some
reason, but no fully convincing argument, for regarding causal continuity as
a basic macro-physical property.”

Fig. 3.19. The (1 + 1)–trousers with part of the future light cone of the Morse
point, p. The other part goes up the back. The past light cone of the Morse point
also has two parts, one down each leg (adapted and modified from [Dow02]).

3.5.3 ‘Good’ and ‘Bad’ Topology Change

If we assume the two conjectures of the previous section hold, and that the
argument about the consequent suppression of causally discontinuous metrics
in the path–integral is valid, the implication is that cobordisms which admit
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only Morse metrics containing index 1 and/or n− 1 points will be suppressed
in the sum over manifolds. We can use this to draw conclusions about many
interesting topology changing processes in quantum gravity. They divide into
‘good’ ones which can occur and ‘bad’ ones which do not. The results in this
section and the next are taken from a series of papers on topology change
[DG98, DS98, BDG99, DGS99].

Good processes include the pair production of black holes of different sorts
in a variety of scenarios worked on by many people including Hawking (see
the contribution by Simon Ross in this volume). For example, in 4 space-time
dimensions, the manifold of the instanton that is used to calculate the non–
extremal black hole pair production rate [GS91] admits a Morse function with
a single index 2 Morse point. The pair production of Kaluza–Klein monopoles
[DGG94] is also good, as is the nucleation of spherical bubbles of Kaluza-
Klein (n− 5)-branes in magnetic fluxbrane backgrounds [DGG96]. The decay
of the Kaluza–Klein vacuum [Wit82] is good, which is slightly disappointing:
one might have hoped that it would be stabilized by these considerations. We
know, however, that the cobordism for KK vacuum decay is the same as that
for pair production of KK monopoles [DGG95] and so if the latter is a good
process so must the former be.

The Big Bang, or creation of an (n − 1)−sphere from nothing via the
yarmulke, is good. Notice that in this way of treating topology change as a
sequence of elementary changes, the universe, if created from nothing, must
start off as a sphere. No other topology is cobordant to the empty set via
an elementary cobordism. The conifold transition in string theory [GMS95]
where a three–cycle shrinks down to a point and blows up again as a two-
cycle is good. Indeed, the shrinking and blowing up process traces out the
7D cobordism (each stage of the process is a level surface of a corresponding
Morse function) and the fact that it is a three–cycle that degenerates and
a two-cycle that blows up tells us that the index of the cobordism is three
[Dow02].

Bad topology changes include space-time wormholes where an S3 baby
universe is born by branching off a parent universe, the epitome of a trousers
cobordism. Hawking founded the study of baby universes and space-time
wormholes [Haw88] within the Euclidean quantum gravity framework where
our present considerations do not apply. However, if one takes the view that
Euclidean solutions, instantons, are to be thought of as devices for calculating
transition amplitudes which are nevertheless defined as sums over real, causal,
space-times, then the badness of the trousers would be counter-evidence for
the relevance of space-time wormholes.

Another bad topology change is the pair production or annihilation of
topological geons, particles made from non-trivial spatial topology. This deals
a serious blow to the hope that the processes of pair production and annihi-
lation of geons could restore to geons the spin–statistics correlation that they
lack if their number is fixed [DS98b].
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In (1+1) and (2+1) space-time dimensions, all topology changes except for
the yarmulkes and their time-reverses are bad ones. This raises the question, is
this not in conflict with string theory and the finiteness of topology changing
amplitudes in (2 + 1)−quantum gravity [Wit89]? It would seem that the first
order formalism and the metric formalism are genuinely different theories
of gravity and distinguishing between them might be an observational issue
[Dow02].

3.5.4 Borde–Sorkin Conjecture

Having looked at some of the consequences of the conjectures, we can ask
how plausible they are. There is fragmentary evidence for the conjecture that
causal discontinuity leads to badly behaved quantum fields but causally con-
tinuous topology changes allow regular quantum field behavior [Sor89]. A key
investigation that needs to be done is of quantum field theory on a four di-
mensional space-time with an index two point, which is conjectured to be
regular.

On the other hand we are well on the way to proving the Borde–Sorkin
conjecture that Morse space-times are causally continuous if and only if they
contain no index 1 or n − 1 points [Dow02]. We sketch here the basic ideas
involved in the progress made to date. If we think about the causal structure
around the Morse point, p, of the (1 + 1)–trousers, it seems intuitive that the
causal past of p should contain two separate parts, one down each ‘leg’ of
the trousers. And the causal future of the Morse point also divides into two
lobes, one up the front and one up the back of the trousers. It’s also intuitive
that the causal discontinuities of the (1+1)–trousers should be related to the
disconnectedness of the causal past and future of p in the neighborhood of p
[Dow02]. Flattening out the crotch region, we should obtain a causal structure
that looks like that shown in Figure 3.20. There is a special metric for the
(1 + 1)–trousers in which the causal structure can be proved to be exactly as
shown: the past (future) of the Morse point p consists of the two regions P1

and P2 (F1 and F2).
There are two types of causal discontinuity here. The first type is when

an observer starting in P1, say, crosses the past light cone of p into S1, say.
As it does so the causal future of the observer, which at first contains regions
in both F1 and F2, jumps so that it no longer contains any points in F2. The
second type is when an observer in S1, say, crosses the future light cone of p
into F1. As this happens, the causal past of the observer which contained no
points in P2 suddenly grows to contain a whole new region in P2.

The special metric in which this behavior can be demonstrated exactly
generalizes to higher dimensions and all Morse indices. For dimension n and
index λ �= 0, n (no yarmulkes for now), the causal past and future of p are
obtained from figure 3.20 by rotating it around the x-axis by SO(n− λ) and
around the y-axis by SO(λ). We see that when λ = 1 the past of p remains
in two disconnected pieces and when λ = n − 1 the future of p remains in



3.6 A Handle-Body Calculus for Topology Change 411

Fig. 3.20. The causal structure in the neighborhood of the Morse point, p, of the
(1+1)–trousers. The past (future) of p consists of the two regions P1 and P2 (F1 and
F2). The ‘elsewhere’ of p divides into four regions S1, . . . S4 (adapted and modified
from [Dow02]).

two pieces. But when λ �= 1, n− 1 then both the future and past of p become
connected sets.

These suggestive pictures can be turned into a proof that, for these special
metrics, index 1 and n − 1 Morse points produce causal discontinuities and
the other indices do not. We can further show that, not just these special
metrics, but any index 1 and n− 1 Morse metric is causally discontinuous. It
is also true that any Morse metric on the yarmulke is causally continuous. It
remains to be proved that any Morse metric on a λ �= 0, 1, n−1, n elementary
cobordism is causally continuous.

For more technical details on topology change in quantum gravity, see
[Dow02].

3.6 A Handle-Body Calculus for Topology Change

In this section, following [DG98], we a handle-body calculus for generic topol-
ogy change in smooth manifolds.

The question of whether the topology of space can change is a basic one in
the search for a theory of quantum gravity. The theorems of Geroch [Ger67]
and Tipler [Tip70] are widely understood to show that there is no topology
change in classical general relativity, so that we should look to the quantum
theory to see it, if it occurs. Though the definitive statement about the occur-
rence of topology change may well have to wait until we have a fully developed
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theory of quantum gravity it is nevertheless generally believed that topology
change does happen. A general calculus for topology change within the path–
integral approach, based on Morse theory , has been suggested by R. Sorkin
[Sor90]. The paper [DG98] has reviewed this picture, and used it to investigate
certain interesting physical topology–changing processes.

Let an n−geometry (M, g) consist of an nD manifold M and a metric g
on M–strictly, a geometry is an equivalence class of such pairs under diffeo-
morphism. A topology change in n space-time dimensions is a transition from
a Riemannian (n − 1)–geometry (W0, h0) to another Riemannian (n − 1)–
geometry (W1, h1) in which W0 and W1 are non-diffeomorphic.

We call (M,V0, V1) a smooth manifold triad if M is a compact smooth
n−manifold whose boundary is the disjoint union of the two closed submani-
folds V0 and V1, ∂M = V0�V1. Given two closed smooth (n−1)−manifolds, W0

and W1, a topological cobordism from W0 to W1 is a 5–tuple (M,V0, V1, d0, d1)
where (M,V0, V1) is a smooth manifold triad and di : Vi → Wi is a diffeo-
morphism, i = 0, 1. cobordism gives rise to an equivalence relation on the
set of (n− 1) manifolds. We say that W0 and W1 are in the same cobordism
class if a topological cobordism exists between them. A Lorentzian cobordism
from geometry (W0, h0) to (W1, h1) is a 6-tuple (M,V0, V1, d0, d1, g) where
(M,V0, V1, d0, d1) is a topological cobordism and g is a Lorentzian metric on
M such that (d−1

i )∗(g|Vi
) = hi, i = 0, 1 and such that V0 is a past space-like

boundary and V1 is a future space-like boundary. We will often drop the ex-
plicit mention of the diffeomorphisms in what follows and unless otherwise
stated all cobordisms M will be compact [DG98].

A necessary and sufficient condition for a topological cobordism to exist
between a given pair of manifolds is that their Steifel–Whitney and Pontrjagin
numbers coincide when both are oriented or just their Steifel–Whitney num-
bers in the non-oriented case [MS74), Sto68]. Hence the number of cobordism
classes equals that of distinct combinations of Stiefel–Whitney and Pontrjagin
numbers, which has a finite value, depending on the dimension. As it happens,
all 3−manifolds are cobordant, while 4–manifolds divide into four cobordism
classes.

Now that we have explained what we mean by topology changing transi-
tions between two space-like hyper-surfaces, we must decide how to investigate
them. Among the different approaches to quantum gravity, the path–integral
(see Chapter 4) affords the most natural expression for topology changing
transition amplitudes [DG98]

〈W1, h1;W0, h0〉 =
∑

(M,V0,V1,d0,d1)

ω(M,d0, d1)
∫

C
DgeiS[g], (3.110)

where the sum is over topological cobordisms and C is a class of metrics, g,
on M such that (d−1

i )∗(g|Vi
) = hi, i = 0, 1. The weight ω(M,d0, d1) will not

concern us here but is discussed in [Sor97]. Although this formal expression
is far from being defined, and indeed may never be so without recourse to
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a possibly discrete underlying theory, we can already draw some conclusions
from its general form. For example, if W0 and W1 are not (co)bordant then
the amplitude for the topology change is zero.

There are various proposals for the type of metrics over which the func-
tional integral runs for each topological cobordism M . Following Sorkin [Sor97]
we start with the view that the integral should be over all Lorentzian metrics
but this immediately raises a problem. In the event of topology change, the
geometry (M, g) cannot be both Lorentzian and causally ordered. This follows
from the following theorem of Geroch [Ger67]: If a smooth triad (M,V0, V1),
with V0 and V1 closed, admits a time–orientable Lorentzian metric g without
closed time-like curves and such that V0 and V1 are space-like with respect to
g, then V0

∼= V1 and M ∼= V0 × I where I is the unit interval, i.e., there is no
topology change.

So which do we choose to keep: causal order or the equivalence principle?
Following Sorkin [Sor86b] we plump for casual order. For one thing, if we were
instead to insist on globally time–orientable Lorentzian metrics this would rule
out the production of Kaluza–Klein monopole–antimonopole pairs since there
does not exist such a metric on any topological cobordism for this process
[Sor86b, Sor86c]. Also, if causal sets are the correct description of the discrete
substructure of space-time then causal order is more fundamental than met-
ric [Sor97]. Pursuing this route, however, means we must allow singularities
of some sort in the geometries (M, g) that contribute to the amplitude for
a topology changing process. So what singularities are allowed? Sorkin has
suggested that Morse theory (see section 3.3 above) furnishes the appropriate
metrics that are Lorentzian almost everywhere and exist on all topological
cobordisms.

A Morse function on a manifold M is a smooth function f : M → R

such that ∂μf vanishes only at a finite number of points pk where the Hessian
∂μ∂νf |pk

is a non degenerate matrix. The Morse index λk of each critical point
pk is the number of negative eigenvalues of the Hessian matrix evaluated at
pk. The critical values of f are the values it takes at the critical points; we
will often denote them ck = f(pk). The abundance of Morse functions on a
manifold is enough to ensure the following theorem [DFN95, MS74)]: For any
smooth triad, (M,V0, V1), there exists a Morse function f : M → [0, 1] such
that we have the following theorem [DG98]:

A. f−1(0) = V0 and f−1(1) = V1;
B. f has no critical points on ∂M = V0 � V1

Then given any Riemannian metric G on M and a real number ζ > 1, we
can construct an almost Lorentzian metric g associated with f as follows:

gμν = ∂ρf∂σfG
ρσGμν − ζ∂μf∂νf (3.111)

and we call this a Morse metric. It is Lorentzian everywhere except for the
Morse points and Gμν∂νf defines a time-like direction. If moreover Rieman-
nian metrics are given on V0 and V1, we can demand that g has the correct
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restrictions by choosing G appropriately. We summarize these statements as
the following lemma: Let (M,V0, V1, d0, d1) be a topological cobordism be-
tween W0 and W1 and let h0 and h1 be Riemannian metrics on W0 and W1.
Then there exists a Morse metric g on M such that (d−1

i )∗(g|Vi
) = hi, i = 0, 1.

For the proof see [DG98].
Any topological cobordism has an infinite number of Morse metrics asso-

ciated with it. We call each such geometry (M, g) an Almost Lorentzian (AL)
cobordism and restrict the functional integral to be over such cobordisms.
Since these geometries are singular, it will be necessary to extend the defini-
tion of the action S to these cases. In this view the critical points are not to
be sent to infinity as in [Yod72] but rather remain part of the space-time and
indeed the causal order is well defined with the Morse points present.

Now, Sorkin suggested that it might be necessary to impose a stronger
condition on the set of contributing metrics. This observation is motivated by a
very simple example in (1+1) dimensions: quantum field theory on the trousers
cobordism. The (1+1)D trousers admits an everywhere flat AL metric with a
single index one Morse point at the crotch which singularity is the source for an
infinite burst of energy of a scalar quantum field propagating on the trousers
[AD86]. Anderson and DeWitt have argued that this provides evidence against
topology change. But the regular propagation of a quantum field on the (1+1)
‘yarmulke’ topology, a hemisphere mediating the transition ∅ → S1, suggests
that it might be a particular feature of the trousers topology, and not a general
flaw of all nontrivial cobordisms, that causes the un-physical energy burst. A
crucial difference between the trousers and the yarmulke topologies is that
the former has a causal discontinuity whereas the latter does not (roughly
speaking a causal discontinuity is a discontinuous change in the volume of the
causal past or future of a continuously varied point [HS74]). Generalizing this
idea Sorkin conceived the following conjectures:

(i) A quantum field propagating on an AL cobordism (M, g) has an un-
physically singular behavior if and only if (M, g) is causally discontinuous;
and

(ii) An nD AL cobordism (M, g) is causally discontinuous if and only if
the Morse function from which g is constructed has either an index 1 or index
(n− 1) critical point.

3.6.1 Handle-body Decompositions

Define the Morse structure of a Morse function f on M to be a complete
ordered list {(pk, λk) : k = 1, . . . r} of its Morse points and corresponding
Morse indices. As we shall see, a handle-body decomposition of a manifold,
M , implies the existence of Morse functions on M with totally determined
Morse structure. The following definitions follow very closely the first pages
of Kirby’s book [Kir89]. They make extensive use of the concepts of closed
or open n-balls, n−spheres and their respective boundaries, which are listed
here [DG98]:
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Bn = {x ∈ R
n : |x|2 ≤ 1} Sn = {x ∈ R

n+1 : |x|2 = 1}
∂Bn = S(n−1) ∂Sn = ∅
Ḃn = {x ∈ R

n : |x|2 < 1}

By Ȧ we mean the interior of the set A, i.e., the largest open set contained
in A. Note for future reference that when A is a subset of the manifold with
boundary M and ∂M is not empty Ȧ may contain part of it.

A handle-body decomposition of an nD compact manifold M is a nested
sequence of manifolds ∅ = M−1 ⊂ M0 ⊂ M1 ⊂ · · · ⊂ Mr = M where Mk is
obtained by adjoining a λk handle to Mk−1, i.e., Mk = Mk−1+hk

Bλk×Bn−λk

via an embedding, hk : ∂Bλk × Bn−λk ↪→ ∂Mk−1 of the boundary of the
λk handle into the boundary of Mk−1. Note that M0 = Bn in any such
handle-body sequence. This definition involves two operations whereby a pair
of manifolds with boundary can be combined: adjunction (+) and product
(×).

Associated with any smooth handle-body decomposition is a Morse func-
tion f : M → [0, 1] with as many critical points as handles being attached.
For the r+1−handled-body in the definition, the function f would have r+1
non-degenerate critical points, {pk}, k = 0, 1, . . . r, which can be taken to lie
in different level surfaces, i.e., f(p0) < f(p1) < · · · < f(pr). Each critical
point may be located at the center (0, 0) of Bλk ×Bn−λk ; then Bλk × {0} is
the descending manifold and {0}×Bn−λk the ascending manifold. By this we
mean that around pk the function f admits an expansion (Morse lemma, see
[MS74)]):

f(q) = f(pk)− x2
1 − x2

2 − x2
λk

+ x2
λk+1 + · · ·+ x2

n.

The first λk local coordinates parameterize Bλk , the last n − λk local coor-
dinates parameterize Bn−λk and pk is identified as a Morse point of index
λk. In other words, we can define f following the sequence of manifolds. It
is zero at some point of M0, which is the index 0 critical point p0; it then
increases in a regular way except for the critical point associated with each
handle attachment.

The Morse function, f , associated with the handle-body decomposition
given above is 1 on the boundary of M . As such, it is appropriate for the case
of the topology change from the empty set to ∂M . We are interested in the
more general case of topology change from V0 to V1. In that case we have a
manifold, M , whose boundary is the disjoint union of V0 and V1. A generalized
handle-body decomposition of M is a nested sequence V0×B1 = M0 ⊂M1 ⊂
. . .Mr = M where Mk is obtained by attaching a λk handle to Mk−1. But
now there is a restriction on each embedding hk: its image must not intersect
the initial V0 component of the boundary of Mk. In this handle-body calculus,
the addition of each handle can be thought of as an elementary topological
transition from ∂Mk to ∂Mk+1.

A useful property of handle-body decompositions is ‘right distributivity’ of
a Bm. It allows us to deduce from a handle-body decomposition for a manifold
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M a whole series of higher dimensional handle-bodies for the manifolds M ×
Bm. The crucial point is that the new Bm factor does not actively partake
in the induced imbedding ∂Bλ×Bn+m−λ ↪→ ∂(M ×Bm). More explicitly we
have the following lemma: Let M be an nD manifold; then if

M = Bn +
r∑

k=1

Bλk ×Bn−λk

it follows that

M ×Bm = Bn+m +
r∑

k=1

Bλk ×Bn+m−λk .

For the proof, see [DG98].
Given that M ∼= L +h Bλ × Bn−λ through the embedding h : ∂Bλ ×

Bn−λ ↪→ ∂L, we define

h̃ : ∂Bλ × (Bn−λ ×B1) ↪→ ∂L×B1 ⊂ ∂(L×B1)

by
h̃(x, t) = (h(x), t)

where x ∈ ∂Bλ × Bn−λ and t ∈ B1. This new embedding induces a map
f : (L +h Bλ ×Bn−λ)×B1 → L×B1 +h̃ Bλ ×Bn+1−λ given by [DG98]:

f(([z]h, t)) = [(z, t)]h̃ (3.112)

The map f is well defined, independent of class representative, and since
the same holds for its obvious inverse, f is a bijection. It is also a home-
omorphism of topological spaces. It can be shown that f has differentiable
local representatives even at the smoothed corner set [KS77] once it has been
composed with the relevant smoothing maps. Thus f is a diffeomorphism;
it expresses distributivity between adjunction and product of manifolds with
boundary. Figure 3.21 illustrates a simple case of B1 distributivity: the handle-
body for the annulus S1 ×B1 ∼= B2 + B1 ×B1 gives rise to the handle-body
S1 ×B2 ∼= B3 + B1 ×B2.

With the machinery of Morse theory and handle-bodies in hand we can
investigate topology changing processes. First of all the content of the conjec-
tures translates into the following statements. If a smooth triad (M,V0, V1)
has a handle-body decomposition which does not include a B1 × Bn−1 nor
a Bn−1 × B1 handle, then it admits a CCAL metric and according to our
premises M is to be included in the path–integral for the process. On the
other hand, if a smooth triad has a handle-body decomposition which does
contain a 1-handle or an (n − 1)-handle then we cannot draw the contrary
conclusion. For example consider two decompositions of B3 (Figure 3.22):

B3 = B3 + B1 ×B2 + B2 ×B1 (3.113)
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Fig. 3.21. Right B1 distributivity lifting a 2D handle-body, the hollow cylin-
der (bottom-right corner), to a 2D handle-body, the solid torus (top-right corner)
(adapted and modified from [DG98]).

B3 = B3 (3.114)

In view of (3.113) alone we would be wrong to conclude that B3 supports
no CCAL cobordisms for the creation of S2 since (3.114) shows that B3 does
support causally continuous cobordisms.

However, the Morse inequalities [MS74)] do furnish a sufficient, but not
necessary, criterion for automatically discarding certain cobordisms. Consider
the triad (M,V0, V1). Let βλ(M,V0) be the λth Betti number of M relative
to V0 and let μλ denote the number of critical points of index λ of a Morse
function f : M → [0, 1] with f−1(0) = V0 and f−1(1) = V1. Then a weak
version of the Morse inequalities establishes that:

μλ ≥ βλ(M,V0) (3.115)

So if the first or (n−1)th homology of M relative to V0 has non-trivial torsion
free part, any Morse function on M must have index 1 or index (n−1) points.

As an example consider the cobordism B4 × S1 for creation of an
S3 × S1 (V0 is empty here). We can compute its homology using the Kun-
neth formula [GH81] for the homology groups of the product of two spaces
when both have torsion–free homologies, namely Hq(X×Y ) =

∑q
p=0 Hp(X)⊗

Hq−p(Y ). Applying this to B4 × S1 gives [DG98]:

H1(B4 × S1) = H0(B4)⊗H1(S1) + H1(B4)⊗H0(S1)
= Z ⊗ Z + 0⊗ Z = Z

The same, applied to B2 × S3 gives:
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Fig. 3.22. ‘Redundant’ decomposition of the 3–ball (adapted and modified from
[DG98]).

H1(B2 × S3) = H0(B2)⊗H1(S3) + H1(B2)⊗H0(S3)
= Z ⊗ 0 + 0⊗ Z = 0

Thus β1(B4 × S1) = 1, while β1(B2 × S3) = 0. In conjunction with (3.115)
β1(B4×S1) = 1 tells us that there are no Morse functions on B4×S1 without
index 1 critical points and so this cobordism does not admit CCAL metrics.
But for general M a vanishing β1 does not guarantee that there is an allowed
Morse function on M , since there is no reason why Morse functions should
exist that saturate the inequalities. In particular, from β1(B2×S3) = 0 alone
we could not infer that B2 × S3 admits CCAL metrics. It is only in view of
the handle-body decomposition given earlier that we can so conclude.

3.6.2 Instantons in Quantum Gravity

Instantons in quantum gravity are the analogues of tunnelling solutions in
quantum mechanics. When we consider tunnelling of a point particle from an
unstable minimum x∞ to a position x0 of zero momentum, we calculate the
transition amplitude < x0 , 0 |x−∞,−∞ >. One can show that the path–
integral is well approximated by Ae−S where A is a prefactor and S is the
action of the classical Euclidean solution. By analogy, an instanton in gravity
is a solution of the Euclidean Einstein equations that interpolates between an
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initial unstable state U0, approached asymptotically, and a zero–momentum
hyper-surface U1 which is initial data for the post–decay Lorentzian evolu-
tion. The existence of such an instanton is usually taken as strong evidence
that the transition takes place and the amplitude is approximately given by
Ae−S where S is the action of the instanton. We are investigating the sug-
gestion that the path–integral in quantum gravity be defined fundamentally
as a sum over CCAL cobordisms – or over AL cobordisms with causal conti-
nuity enforced dynamically. That means first of all that there must be some
CCAL cobordisms for the transition under consideration. Secondly, it seems
reasonable that there would only be an instanton approximation if the instan-
ton had a background topology that was included in the sum over manifolds
in equation (4.14), i.e., one which admits CCAL metrics. Thus we want to
check that when instantons are invoked as evidence that topology changing
processes occur, the instanton manifolds admit CCAL metrics.

Localised Topology Change

Before turning to our specific examples, we first prove some results necessary
because the processes to be considered are embedded in an ambient asymptot-
ically flat region. We could think of this as the topology change taking place
within a lab with fixed walls say. Clearly our Morse and handle-body technol-
ogy will have to be adapted to apply to these non-compact manifolds. This
will not be difficult because, with the assumption that the topology change is
localised in space, we can reduce the questions to the closed case by, roughly
speaking, closing off space. Once we demonstrate the existence of CCAL met-
rics in the compact cobordism, we open back to the physical manifolds. That
this can be done without disrupting the Morse structure of the metric is the
content of the ‘decompactifying’ lemmas stated below. Their proof is given in
[DG98].

We use the concept of a gradient-like vector–field for a Morse function f
on a manifold M . Defining such a vector–field amounts to covering M with
a congruence of curves, along which f increases, without reference to any
particular Riemannian metric on M . We borrow the definition from [MS74)],
while our construction of a concrete vector–field is a simple generalization
to non-elementary cobordisms of the one given therein. Let f be a Morse
function on the nD manifold M with a set of r Morse points P = {pk}. For
simplicity we assume that each Morse point occurs on a distinct level surface
of f though this assumption can easily be dropped.

A gradient-like vector–field ξ for f is a smooth vector–field on M with
properties:

(i) ξ(f) > 0 ∀q /∈ P
(ii) ξ has coordinates (−2x1, · · · ,−2xλk

, 2xλk+1, · · · , 2xn) in a neighbor-
hood of pk where f admits expansion f(q) = f(pk)−

∑

1≤i≤λk

x2
i +

∑

λk<j≤n
x2
j
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A vector–field satisfying these two conditions can always be found in M .
Indeed, pick an atlas A = (Uα, φα) α = 1, · · ·N so that a single chart Uk
contains the critical point pk and so that, dividing the range {α} as {k, a} k =
1, · · · , r a = r + 1, · · · , N , the following hold:

A. For each k, there is a smaller neighborhood U ′
k ⊂ Uk satisfying

Ū ′
k ∩ Uα =

{
Ū ′
k if k = α
∅ otherwise

and φk(U
′
k) = {x ∈ IRn : |x|2 < ε} for some small ε

where Ū ′
k means the closure of U ′

k.

B. In Uk f has local representative fk(x) ≡ f ◦ φ−1
k (x) = ck −

λk∑

1
x2
i +

n∑

λk+1

x2
i

C. In Ua f has local representative fa(x) ≡ f ◦ φ−1
a (x) = const + x

(a)
1

We now define ξ chart by chart. In Uk we give it the components
ξ(k) = (−2x1, · · · ,−2xλk

, 2xλk+1, · · · , 2xn) and in Ua ξ(a) = (1, 0, · · · , 0).
Then we combine the local representatives ξ(α), through a partition of unity
{θα} for A to obtain a vector–field, ξ =

∑
α θαξ

(α), which clearly satisfies
condition (i) and condition (ii) in the neighborhood U ′

k of pk.
Covering the case of ordinary asymptotic flatness we have the following

two lemmas [DG98]:
1. Consider two non-compact asymptotically flat (n-1)-geometries (U0, h0)

and (U1, h1). Suppose that the closed manifolds V0 and V1 are one-point com-
pactifications of U0 and U1, in the sense that there are points q̃i ∈ Vi and
diffeomorphisms d̃i : Vi − q̃i → Ui, i = 0, 1. Further suppose that there is a
triad (M,V0, V1) with a Morse function f : M → [0, 1] with no index n critical
points. Then we have:

(i) there is an integral curve C of a gradient-like vector–field for f which
traverses M , from V0 to V1 without intercepting any critical point; and

(ii) the manifold L ≡ M − C is a cobordism between U0 and U1 and
there is an AL metric on L which has the same Morse structure as f , is
asymptotically flat and has the correct restrictions, the pull-backs of h0 and
h1, on the boundary ∂L = (V0 − q0) � (V1 − q1) where qi = Vi ∩C.

For asymptotic Kaluza–Klein boundary conditions consider compactifying
R

3 × S1, the topology of a spatial section in the 5D Kaluza–Klein vacuum:
we add a whole circle, one point at infinity of R

3 for each point of S1. In the
reverse process an S1 must be removed to recover the physical boundaries from
the closed manifold. While all points in a manifold are equivalent, in general
not all embedded circles are: given a manifold V , the manifolds V − C and
V − C̃ may not be diffeomorphic if C and C̃ are different embedded circles. In
order to decompactify to Kaluza–Klein boundary conditions, we enlarge our
list of hypotheses with a further condition which guarantees the equivalence
of all subtracted circles in the closed boundary V1.
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2. Consider two asymptotically Kaluza–Klein flat (n-1)-geometries (U0, h0)
and (U1, h1). Suppose that there exist closed manifolds V0 and V1, with V1

connected and simply connected, and diffeomorphisms d̃i : Vi− C̃i → Ui with
C̃i ⊂ Vi diffeomorphic to S1, (i = 0, 1). Further suppose that there is a triad
(M,V0, V1) with a Morse function f : M → [0, 1] with no index n or (n − 1)
critical points. Then we have [DG98]:

(i) There is an ‘integral annulus’ A for the gradient-like vector–field ξ
— by this we mean an S1 worth of integral curves of ξ, i.e., an imbedding
i : B1×S1 ↪→M such that for each point in the circle ψ ∈ [0, 2π) the segment
i(B1 × {ψ}) is an integral curve of ξ — which traverses M , from V0 to V1

without intercepting any critical point.
(ii) The manifold L ≡ M − A is a cobordism between U0 and U1 and

there is an AL metric on L which has the same Morse structure as f , is
asymptotically flat and has correct restrictions, the pull-backs of h0 and h1,
on the boundary ∂L = (V0 − C0) � (V1 − C1) where Ci = Vi ∩A, i=0,1.

Pair–Production of Black Holes

Due to the positive energy theorems, the Minkowski vacuum M4 is sta-
ble with respect to semi-classical decay. However a cylindrically symmet-
ric magnetic field described by the Melvin solution can decay into a pair
of oppositely charged black holes thanks to the extra energy contained in
the field [GS91]. The instanton that governs the decay is the Euclideanised
Ernst solution. To see the topologies associated with the metrics involved,
the reader is encouraged to consult [GS91]. We take them as the starting
point for analyzing the cobordism. They are a space-like hyper-surface of
Melvin, R

3, a post-tunnelling space-like hyper-surface containing a pair of
black holes, S2×S1−{point} and the doubled instanton, or ‘bounce’ topology,
S2×S2−{point}. Removing a point from a 4D closed manifold is equivalent
to removing a closed ball B4: it gives a non-compact manifold. We compactify
by adding the point back in and cut the bounce in half to obtain M ∼= S2×B2.
We then delete an open 4–ball to create the initial boundary. The manifold
M − Ḃ4 is M in Lemma 1, V0

∼= S3 is the initial boundary and V1
∼= S2 × S1

is the final boundary.
Combining Figure 3.23 with right–distributivity gives the following handle-

body decomposition for M :

M = S2 ×B2 ∼= (S2 ×B1)×B1 ∼= (B3 + B2 ×B1)×B1

= B4 + B2 ×B2

Thus there exists a Morse function on M which contains only a Morse point
of index 2. Dowker and Surya gave an earlier proof by explicitly constructing
an allowed Morse function on M that can, in fact, be regarded as associated
with the handle-body decomposition given above. There is an asymptotically
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Fig. 3.23. Handle-body for S2 ×B1: a ball with a hole at the center (adapted and
modified from [DG98]).

flat CCAL metric on the non-compact cobordism L = M −C ∼= S2 × B2 −
Ḃ4 − B1 where C is an integral curve of a gradient-like vector–field of the
Morse function. L is diffeomorphic to the original cobordism, half of (S2 ×
S2−{point}), up to the observation that the initial boundary in L is at some
finite time in the past whereas in the original cobordism it is in the infinite
past.

Fig. 3.24. Levels of a Morse function f in the cobordism S2 → S1 × S1. On the
left, an index 0 point accounts for the creation of S2; on the right an index 1 point
marks the transition to S1 × S1. The function f increases in the direction of the
expanding spheres and then in the direction of the expanding tori. Critical character
of the Morse points is reflected in a same behavior of f along a Cartesian direction
and its opposite (adapted and modified from [DG98]).

We can illustrate the location of the critical points and the critical levels
in a lower dimension, n = 3. The equivalent process would be S2 → S1 × S1,
which is mediated by part of the handle-body B2 × S1 = B3 + B1 ×B2, and
hence contains an unwanted index 1 point. The two critical points lie in the
interior of the solid torus B2 × S1 as depicted in Figure 3.24, a 2D section.
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This construction generalizes to higher dimensions, so that black hole pair
creation is feasible whenever n ≥ 4. Indeed, applying right distributivity of
the B2 ball to Sn−2 = Bn−2 + Bn−2 we obtain:

Sn−2 ×B2 = Bn + Bn−2 ×B2

Thus the cobordism Sn−1 → Sn−2×S1 contains only an index (n−2) critical
point, which respects causal continuity whenever n ≥ 4.

Kaluza–Klein Gravity

In 5D Kaluza–Klein gravity a fifth compact dimension is added to ordinary 4D
space-time. The corresponding metric has fifteen degrees of freedom, which
can be interpreted as one dilaton scalar, four components of the electromag-
netic field and ten components of the space-time 4–metric. The 4D space-time
associated with a given 5–geometry is obtained by reduction along a Killing
vector–field of closed orbits. Both the Kaluza–Klein vacuum and the Kaluza–
Klein version of the Melvin solution have a background topology R

4×S1 and
are semi-classically unstable [DGG95].

The topology change is the same in both cases, from the unstable space-like
hyper-surface R

3×S1 to the starting hyper-surface for post–decay R
2×S2 ∼=

S4−S1. The double instanton has topology R
2×S3 ∼= S5−S1. Once more we

compactify by replacing the circle and then halve the closed S5 bounce to get
M ∼= B5, with ∂B5 = S4. Finally we delete an open thickened circle S1 × Ḃ4

from M to create the initial boundary. This yields M with ∂M = S1×S3�S4.
That is, we have the triple (M,V0, V1) = (B5−S1× Ḃ4, S3×S1, S4). We seek
a handle-body decomposition for B5 which truncates into a cobordism from
S3×S1 to S4. The ‘redundant’ B3 decomposition equation (3.113) and right-
distributivity imply the identity [DG98]:

B5 = B3 ×B2

= (B3 + B1 ×B2

︸ ︷︷ ︸
B2×S1

+B2 ×B1)×B2

= B5 + B1 ×B4

︸ ︷︷ ︸
B4×S1

+B2 ×B3.

The first term, B5, corresponds to the creation of S4 from ∅ and the first
handle addition corresponds to the transition from S4 to ∂(B4×S1) = S3×S1,
i.e., the (closed) KK vacuum space. The second handle addition is therefore
the one that corresponds to the process we are investigating, S3 × S1 → S4.
This means that in the cobordism between S1 × S3 and S4, which involves
only the handle B2 × B3, there is a Morse function with exactly one critical
point of index 2, i.e., no index 1 or 4 points.

The next figure represents a section of the 3D analogue of the cobordism
M . The whole cobordism between S1 × S1 and S2 is generated by revolution
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around the z−axis. The reader can try and picture a cylinder between the
inner boundary and the outer boundary that is orthogonal to the contours
and does not touch the critical point at the center.

Fig. 3.25. Levels of the Morse function that represents the change S1 × S1 → S2.
Notice that this is in fact Figure 3.24 turned inside out: the time reversed cobordism
if time progresses from inner to outer surfaces . Thus the central point, which was
there an index 1 point is here an index 2 point: the Morse function increases in the
z-direction and decreases in the other two (adapted and modified from [DG98]).

This result also generalizes to a countable family of higher–dimensional
cobordisms that mediate the nucleation of various p–branes [DGG96]. In nD
Kaluza–Klein theory the Kerr instanton manifold R

2×Sn−2 ∼= Sn−S1 is the
double of the cobordism that mediates the transition R

n−2×S1 → R
2×Sn−3,

which in the closed case reads Sn−2 × S1 → Sn−1. These are respectively the
boundaries of Bn−1 × S1 and Bn; since

Bn = B3 ×Bn−3 = Bn + B1 ×Bn−1 + B2 ×Bn−2.

Again, it is the second handle addition that corresponds to the process of
interest and we see that there exists a Morse function with only one critical
point of index 2, which respects causal continuity when n ≥ 4.

For more technical details, see [DG98].
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Nonlinear Dynamics of Path Integrals

In this Chapter we develop the action–amplitude formalism of Feynman path
integrals, the essential tool in highly–nonlinear high–dimensional dynamics,
both continuous and discrete, deterministic and stochastic. We start from
the basic facts of the quantum probability concept. Note that the advanced,
sum–over–geometries version of the path integral, has already been used in
the previous Chapter.

4.1 Sum over Histories

The pivot–point of theoretical physics in the last half of a Century has been
the celebrated path integral , a powerful conceptual and computational tool,
first conceived by Richard (Dick) Feynman, and later generalized by Ed Wit-
ten, Stephen Hawking and other pioneers of physical science. Recall that in
the path–integral formalism, we first formulate the specific classical action of a
new theory , and subsequently perform its quantization by means of the associ-
ated transition amplitude. This action–amplitude picture is the core structure
in any new physical theory. Its virtual paths are in general neither determin-
istic nor smooth, although they include bundles and jets of deterministic and
smooth paths, as well as Markov chains. Yet, it is essentially a (broader)
geometrical dynamics, with its Riemannian and symplectic versions, among
many others. At the beginning, it worked only for conservative physical sys-
tems. Today it includes also dissipative structures, as well as various sources
and sinks, geometries and topologies. Its smooth part reveals all celebrated
equations of physics, both classical and quantum. It is the core of modern
quantum gravity and superstring theory. It is arguably the most important
construct of mathematical physics. At the edge of a new millennium, if you
asked a typical theoretical physicist: what will be your main research tool
in the new millennium, they would most probably say: path integral. And
today, we see it moving out from physics, into the realm of social sciences.
Finally, since Feynman’s fairly intuitive invention of the path integral [Fey51],
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a lot of research has been done to make it mathematically rigorous (see e.g.,
[Loo99, Loo00, AFH86, Kla97, SK98a, Kla00]).

4.1.1 Intuition Behind a Path Integral

Classical Probability Concept

Recall that a random variable X is defined by its distribution function f(x).
Its probabilistic description is based on the following rules: (i) P (X = xi) is
the probability that X = xi; and (ii) P (a ≤ X ≤ b) is the probability that X
lies in a closed interval [a, b]. Its statistical description is based on: (i) μX or
E(X) is the mean or expectation of X; and (ii) σX is the standard deviation
of X. There are two cases of random variables: discrete and continuous, each
having its own probability (and statistics) theory.

Discrete Random Variable

A discrete random variable X has only a countable number of values {xi}. Its
distribution function f(xi) has the following properties:

P (X = xi) = f(xi), f(xi) ≥ 0,
∑

i

f(xi) dx = 1.

Statistical description of X is based on its discrete mean value μX and
standard deviation σX , given respectively by

μX = E(X) =
∑

i

xif(xi), σX =
√

E(X2)− μ2
X .

Continuous Random Variable

Here f(x) is a piecewise continuous function such that:

P (a ≤ X ≤ b) =

∫ b

a

f(x) dx, f(x) ≥ 0,

∫ ∞

−∞
f(x) dx =

∫

R

f(x) dx = 1.

Statistical description of X is based on its continuous mean μX and stan-
dard deviation σX , given respectively by

μX = E(X) =
∫ ∞

−∞
xf(x) dx, σX =

√
E(X2)− μ2

X .

Now, let us observe the similarity between the two descriptions. The same
kind of similarity between discrete and continuous quantum spectrum stroke
Dirac when he suggested the combined integral approach, that he denoted

by (see, e.g., [Dra06]):
∫
Σ – meaning ‘both integral and sum at once’, that
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is, integration over the continuous spectrum and summing over the discrete
spectrum.

To emphasize this similarity even further, as well as to set–up the stage
for the path integral, recall the notion of a cumulative distribution function
of a random variable X, that is a function F : R → R, defined by

F (a) = P (X) ≤ a.

In particular, suppose that f(x) is the distribution function of X. Then

F (x) =
∑

xi≤x
f(xi), or F (x) =

∫ ∞

−∞
f(t) dt,

according to as x is a discrete or continuous random variable. In either case,
F (a) ≤ F (b) whenever a ≤ b. Also,

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1,

that is, F (x) is monotonic and its limit to the left is 0 and the limit to the
right is 1. Furthermore, its cumulative probability is given by

P (a ≤ X ≤ b) = F (b)− F (a),

and the Fundamental Theorem of Calculus tells us that, in the continuum
case,

f(x) = ∂xF (x).

General Markov Stochastic Dynamics

Recall that Markov stochastic process is a random process characterized by
a lack of memory , i.e., the statistical properties of the immediate future are
uniquely determined by the present, regardless of the past [Gar85].

For example, a random walk is an example of the Markov chain, i.e., a
discrete–time Markov process, such that the motion of the system in consid-
eration is viewed as a sequence of states, in which the transition from one
state to another depends only on the preceding one, or the probability of the
system being in state k depends only on the previous state k−1. The property
of a Markov chain of prime importance in biomechanics is the existence of an
invariant distribution of states: we start with an initial state x0 whose abso-
lute probability is 1. Ultimately the states should be distributed according to
a specified distribution.

Between the pure deterministic dynamics, in which all DOF of the system
in consideration are explicitly taken into account, leading to classical dynam-
ical equations, for example in Hamiltonian form,

q̇i = ∂pi
H, ṗi = −∂qiH
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– and pure stochastic dynamics (Markov process), there is so–called hybrid
dynamics, particularly Brownian dynamics, in which some of DOF are rep-
resented only through their stochastic influence on others. As an example,
suppose a system of particles interacts with a viscous medium. Instead of
specifying a detailed interaction of each particle with the particles of the vis-
cous medium, we represent the medium as a stochastic force acting on the
particle. The stochastic force reduces the dimensionality of the dynamics.

Recall that the Brownian dynamics represents the phase–space trajecto-
ries of a collection of particles that individually obey Langevin rate equations
in the field of force (i.e., the particles interact with each other via some de-
terministic force). For a free particle, the Langevin equation reads [Gar85]:

mv̇ = R(t) − βv,

where m denotes the mass of the particle and v its velocity. The right–hand
side represent the coupling to a heat bath; the effect of the random force R(t)
is to heat the particle. To balance overheating (on the average), the particle
is subjected to friction β. In humanoid dynamics this is performed with the
Rayleigh–Van der Pol’s dissipation. Formally, the solution to the Langevin
equation can be written as

v(t) = v(0) exp
(
− β

m
t

)
+

1
m

∫ t

0

exp[−(t− τ)β/m]R(τ) dτ ,

where the integral on the right–hand side is a stochastic integral and the so-
lution v(t) is a random variable. The stochastic properties of the solution
depend significantly on the stochastic properties of the random force R(t). In
the Brownian dynamics the random force R(t) is Gaussian distributed. Then
the problem boils down to finding the solution to the Langevin stochastic dif-
ferential equation with the supplementary condition (mean zero and variance)

< R(t) >= 0, < R(t)R(0) >= 2βkBTδ(t),

where < . > denotes the mean value, T is temperature, kB−equipartition (i.e.,
uniform distribution of energy) coefficient, Dirac δ(t)−function.

Algorithm for computer simulation of the Brownian dynamics (for a single
particle) can be written as [Hee90]:

A. Assign an initial position and velocity.
B. Draw a random number from a Gaussian distribution with mean zero and

variance.
C. Integrate the velocity to get vn+1.
D. Add the random component to the velocity.

Another approach to taking account the coupling of the system to a heat
bath is to subject the particles to collisions with virtual particles [Hee90].
Such collisions are imagined to affect only momenta of the particles, hence
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they affect the kinetic energy and introduce fluctuations in the total energy.
Each stochastic collision is assumed to be an instantaneous event affecting
only one particle.

The collision–coupling idea is incorporated into the Hamiltonian dynamics
by adding a stochastic force Ri = Ri(t) to the ṗ equation

q̇i = ∂pi
H, ṗi = −∂qiH + Ri(t).

On the other hand, the so–called Ito stochastic integral represents a kind
of classical Riemann–Stieltjes integral from linear functional analysis, which
is (in 1D case) for an arbitrary time–function G(t) defined as the mean square
limit ∫ t

t0

G(t)dW (t) = ms lim
n→∞

{
n∑

i=1

G(ti−1[W (ti)−W (ti−1]}.

Now, the general ND Markov process can be defined by Ito stochastic
differential equation (SDE),

dxi(t) = Ai[xi(t), t]dt + Bij [xi(t), t] dW j(t),
xi(0) = xi0, (i, j = 1, . . . , N)

or corresponding Ito stochastic integral equation

xi(t) = xi(0) +
∫ t

0

dsAi[xi(s), s] +
∫ t

0

dW j(s)Bij [xi(s), s],

in which xi(t) is the variable of interest, the vector Ai[x(t), t] denotes deter-
ministic drift , the matrix Bij [x(t), t] represents continuous stochastic diffusion
fluctuations, and W j(t) is an N -variable Wiener process (i.e., generalized
Brownian motion) [Wie61], and dW j(t) = W j(t + dt)−W j(t).

Now, there are three well–known special cases of the Chapman–Kolmogorov
equation (see [Gar85]):

A. When both Bij [x(t), t] and W (t) are zero, i.e., in the case of pure deter-
ministic motion, it reduces to the Liouville equation

∂tP (x′, t′|x′′, t′′) = −
∑

i

∂

∂xi
{Ai[x(t), t]P (x′, t′|x′′, t′′)} .

B. When only W (t) is zero, it reduces to the Fokker–Planck equation

∂tP (x′, t′|x′′, t′′) = −
∑

i

∂

∂xi
{Ai[x(t), t]P (x′, t′|x′′, t′′)}

+
1
2

∑

ij

∂2

∂xi∂xj
{Bij [x(t), t]P (x′, t′|x′′, t′′)} .
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C. When both Ai[x(t), t] and Bij [x(t), t] are zero, i.e., the state–space consists
of integers only, it reduces to the Master equation of discontinuous jumps

∂tP (x′, t′|x′′, t′′) =
∫

dx {W (x′|x′′, t)P (x′, t′|x′′, t′′)−W (x′′|x′, t)P (x′, t′|x′′, t′′)} .

The Markov assumption can now be formulated in terms of the condi-
tional probabilities P (xi, ti): if the times ti increase from right to left, the
conditional probability is determined entirely by the knowledge of the most
recent condition. Markov process is generated by a set of conditional prob-
abilities whose probability–density P = P (x′, t′|x′′, t′′) evolution obeys the
general Chapman–Kolmogorov integro–differential equation

∂tP = −
∑

i

∂

∂xi
{Ai[x(t), t]P}

+
1
2

∑

ij

∂2

∂xi∂xj
{Bij [x(t), t]P}+

∫
dx {W (x′|x′′, t)P −W (x′′|x′, t)P}

including deterministic drift, diffusion fluctuations and discontinuous jumps
(given respectively in the first, second and third terms on the r.h.s.).

It is this general Chapman–Kolmogorov integro–differential equation, with
its conditional probability density evolution, P = P (x′, t′|x′′, t′′), that we are
going to model by various forms of the Feynman path integral, providing us
with the physical insight behind the abstract (conditional) probability densi-
ties.

Quantum Probability Concept

An alternative concept of probability, the so–called quantum probability , is
based on the following physical facts (elaborated in detail in this section):

A. The time–dependent Schrödinger equation represents a complex–valued
generalization of the real–valued Fokker–Planck equation for describing
the spatio–temporal probability density function for the system exhibiting
continuous–time Markov stochastic process.

B. The Feynman path integral
∫
Σ is a generalization of the time–dependent

Schrödinger equation, including both continuous–time and discrete–time
Markov stochastic processes.

C. Both Schrödinger equation and path integral give ‘physical description’ of
any system they are modelling in terms of its physical energy, instead of
an abstract probabilistic description of the Fokker–Planck equation.

Therefore, the Feynman path integral
∫
Σ , as a generalization of the time–

dependent Schrödinger equation, gives a unique physical description for the
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general Markov stochastic process, in terms of the physically based generalized
probability density functions, valid both for continuous–time and discrete–
time Markov systems.

Basic consequence: a different way for calculating probabilities. The differ-
ence is rooted in the fact that sum of squares is different from the square of
sums, as is explained in the following text.

Namely, in Dirac–Feynman quantum formalism, each possible route from
the initial system state A to the final system state B is called a history . This
history comprises any kind of a route (see Figure 4.1), ranging from contin-
uous and smooth deterministic (mechanical–like) paths to completely discon-
tinues and random Markov chains (see, e.g., [Gar85]). Each history (labelled
by index i) is quantitatively described by a complex number1 zi called the
‘individual transition amplitude’. Its absolute square, |zi|2, is called the indi-
vidual transition probability . Now, the total transition amplitude is the sum
of all individual transition amplitudes,

∑
i zi, called the sum–over–histories.

The absolute square of this sum–over–histories, |
∑
i zi|2, is the total transition

probability.
In this way, the overall probability of the system’s transition from some

initial state A to some final state B is given not by adding up the probabilities
for each history–route, but by ‘head–to–tail’ adding up the sequence of ampli-
tudes making–up each route first (i.e., performing the sum–over–histories) –
to get the total amplitude as a ‘resultant vector’, and then squaring the total
amplitude to get the overall transition probability.

Quantum Coherent States

Recall that a quantum coherent state is a specific kind of quantum state of
the quantum harmonic oscillator whose dynamics most closely resemble the
oscillating behavior of a classical harmonic oscillator. It was the first example
of quantum dynamics when Erwin Schrödinger derived it in 1926 while search-
ing for solutions of the Schrödinger equation that satisfy the correspondence
principle. The quantum harmonic oscillator and hence, the coherent state,
arise in the quantum theory of a wide range of physical systems. For instance,
a coherent state describes the oscillating motion of the particle in a quadratic
potential well. In the quantum electrodynamics and other bosonic quantum
field theories they were introduced by the 2005 Nobel Prize winning work of
R. Glauber in 1963 [Gla63a, Gla63b]. Here the coherent state of a field de-
scribes an oscillating field, the closest quantum state to a classical sinusoidal
wave such as a continuous laser wave.
1 Recall that a complex number z = x + iy, where i =

√
−1 is the imaginary unit,

x is the real part and y is the imaginary part, can be represented also in its
polar form, z = r(cos θ + i sin θ), where the radius vector in the complex–plane,
r = |z| =

√
x2 + y2, is the modulus or amplitude, and angle θ is the phase; as

well as in its exponential form z = reiθ. In this way, complex numbers actually
represent 2D vectors with usual vector ‘head–to–tail’ addition rule.
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Fig. 4.1. Two ways of physical transition from an initial state A to the correspond-
ing final state B. (a) Classical physics proposes a single deterministic trajectory,
minimizing the total system’s energy. (b) Quantum physics proposes a family of
Markov stochastic histories, namely all possible routes from A to B, both continuous–
time and discrete–time Markov chains, each giving an equal contribution to the total
transition probability.

In classical optics, light is thought of as electromagnetic waves radiating
from a source. Specifically, coherent light is thought of as light that is emitted
by many such sources that are in phase. For instance, a light bulb radiates
light that is the result of waves being emitted at all the points along the
filament. Such light is incoherent because the process is highly random in
space and time. On the other hand, in a laser, light is emitted by a carefully
controlled system in processes that are not random but interconnected by
stimulation and the resulting light is highly ordered, or coherent. Therefore
a coherent state corresponds closely to the quantum state of light emitted by
an ideal laser. Semi–classically we describe such a state by an electric field
oscillating as a stable wave. Contrary to the coherent state, which is the most
wave–like quantum state, the Fock state (e.g., a single photon) is the most
particle–like state. It is indivisible and contains only one quanta of energy.
These two states are examples of the opposite extremes in the concept of
wave–particle duality . A coherent state distributes its quantum–mechanical
uncertainty equally, which means that the phase and amplitude uncertainty
are approximately equal. Conversely, in a single–particle state the phase is
completely uncertain.

Formally, the coherent state |α〉 is defined to be the eigenstate of the
annihilation operator a, i.e., a|α〉 = α|α〉. Note that since a is not Hermitian,
α = |α|eiθ is complex. |α| and θ are called the amplitude and phase of the
state.

Physically, a|α〉 = α|α〉 means that a coherent state is left unchanged
by the detection (or annihilation) of a particle. Consequently, in a coherent
state, one has exactly the same probability to detect a second particle. Note,
this condition is necessary for the coherent state’s Poisson detection statistics.
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Compare this to a single–particle’s Fock state: Once one particle is detected,
we have zero probability of detecting another.

Now, recall that a Bose–Einstein condensate (BEC) is a collection of boson
atoms that are all in the same quantum state. An approximate theoretical
description of its properties can be derived by assuming the BEC is in a
coherent state. However, unlike photons, atoms interact with each other so it
now appears that it is more likely to be one of the squeezed coherent states
(see [BSM97]). In quantum field theory and string theory, a generalization
of coherent states to the case of infinitely many degrees of freedom is used
to define a vacuum state with a different vacuum expectation value from the
original vacuum.

Dirac’s < bra | ket > Transition Amplitude

Now, we are ready to move–on into the realm of quantum mechanics. Re-
call that P. Dirac [Dir49] described behavior of quantum systems in terms
of complex–valued ket–vectors |A > living in the Hilbert space H, and their
duals, bra–covectors < B| (i.e., 1–forms) living in the dual Hilbert space H∗.
The Hermitian inner product of kets and bras, the bra–ket < B|A >, is a
complex number , which is the evaluation of the ket |A > by the bra < B|.
This complex number, say reiθ represents the system’s transition amplitude2

from its initial state A to its final state B3, i.e.,

TransitionAmplitude =< B|A >= reiθ.

That is, there is a process that can mediate a transition of a system from
initial state A to the final state B and the amplitude for this transition equals
< B|A >= reiθ. The absolute square of the amplitude, | < B|A > |2 rep-
resents the transition probability . Therefore, the probability of a transition
event equals the absolute square of a complex number, i.e.,

TransitionProbability = | < B|A > |2 = |reiθ|2.

These complex amplitudes obey the usual laws of probability : when a tran-
sition event can happen in alternative ways then we add the complex numbers,

< B1|A1 > + < B2|A2 >= r1eiθ1 + r2eiθ2 ,

and when it can happen only as a succession of intermediate steps then we
multiply the complex numbers,

< B|A >=< B|c >< c|A >= (r1eiθ1)(r2eiθ2) = r1r2ei(θ1+θ2).

In general,
2 Transition amplitude is otherwise called probability amplitude, or just amplitude.
3 Recall that in quantum mechanics, complex numbers are regarded as the vacuum–

state, or the ground–state, and the entire amplitude < b|a > is a vacuum–to–
vacuum amplitude for a process that includes the creation of the state a, its
transition to b, and the annihilation of b to the vacuum once more.



434 4 Nonlinear Dynamics of Path Integrals

A. The amplitude for n mutually alternative processes equals the sum∑n
k=1 rkeiθk of the amplitudes for the alternatives; and

B. If transition from A to B occurs in a sequence of m steps, then the total
transition amplitude equals the product

∏m
j=1 rjeiθj of the amplitudes of

the steps.

Formally, we have the so–called expansion principle, including both prod-
ucts and sums,4

< B|A >=
n∑

i=1

< B|ci >< ci|A > . (4.1)

Feynman’s Sum–over–Histories

Now, iterating the Dirac’s expansion principle (4.1) over a complete set of all
possible states of the system, leads to the simplest form of the Feynman path
integral , or, sum–over–histories. Imagine that the initial and final states, A
and B, are points on the vertical lines x = 0 and x = n + 1, respectively, in
the x − y plane, and that (c(k)i(k), k) is a given point on the line x = k for
0 < i(k) < m (see Figure 4.2). Suppose that the sum of projectors for each
intermediate state is complete5 Applying the completeness iteratively, we get
the following expression for the transition amplitude:

< B|A >=
∑∑

...
∑

< B|c(1)i(1) >< c(1)i(1)|c(2)i(2) > ... < c(n)i(n)|A >,

where the sum is taken over all i(k) ranging between 1 and m, and k ranging
between 1 and n. Each term in this sum can be construed as a combinatorial
route from A to B in the 2D space of the x − y plane. Thus the transition
amplitude for the system going from some initial state A to some final state
B is seen as a summation of contributions from all the routes connecting A
to B.

Feynman used this description to produce his celebrated path integral ex-
pression for a transition amplitude (see, e.g., [GS98, Sch81]). His path integral
takes the form
4 In Dirac’s language, the completeness of intermediate states becomes the state-

ment that a certain sum of projectors is equal to the identity. Namely, suppose
that

∑
i |ci >< ci| = 1 with < ci|ci >= 1 for each i. Then

< b|a >=< b||a >=< b|
∑

i

|ci >< ci||a >=
∑

i

< b|ci >< ci|a > .

5 We assume that following sum is equal to one, for each k from 1 to n − 1:

|c(k)1 >< c(k)1| + ... + |c(k)m >< c(k)m| = 1.
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Fig. 4.2. Analysis of all possible routes from the source A to the detector B is
simplified to include only double straight lines (in a plane).

TransitionAmplitude =< B|A >=
∫
Σ D[x] eiS[x], (4.2)

where the sum–integral
∫
Σ is taken over all possible routes x = x(t) from the

initial point A = A(tini) to the final point B = B(tfin), and S = S[x] is the
classical action for a particle to travel from A to B along a given extremal
path x. In this way, Feynman took seriously Dirac’s conjecture interpreting
the exponential of the classical action functional (DeiS), resembling a complex
number (reiθ), as an elementary amplitude. By integrating this elementary
amplitude, DeiS , over the infinitude of all possible histories, we get the total
system’s transition amplitude.6

6 For the quantum physics associated with a classical (Newtonian) particle the ac-
tion S is given by the integral along the given route from a to b of the difference
T − V where T is the classical kinetic energy and V is the classical potential
energy of the particle.
The beauty of Feynman’s approach to quantum physics is that it shows the re-
lationship between the classical and the quantum in a particularly transparent
manner. Classical motion corresponds to those regions where all nearby routes
contribute constructively to the summation. This classical path occurs when the
variation of the action is null. To ask for those paths where the variation of the
action is zero is a problem in the calculus of variations, and it leads directly to
Newton’s equations of motion (derived using the Euler–Lagrangian equations).
Thus with the appropriate choice of action, classical and quantum points of view
are unified.
Also, a discretization of the Schrodinger equation

i�
dψ

dt
= − �

2

2m

d2ψ

dx2
+ V ψ,

leads to a sum–over–histories that has a discrete path integral as its solution.
Therefore, the transition amplitude is equivalent to the wave ψ. The particle
travelling on the x−axis is executing a one–step random walk, see Figure 4.3.
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Fig. 4.3. Random walk (a particular case of Markov chain) on the x−axis.

Fig. 4.4. A piecewise linear particle path contributing to the discrete Feynman
propagator.

The Basic Form of a Path Integral

In Feynman’s version of non–relativistic quantum mechanics, the time evolu-
tion ψ(x′, t′) �→ ψ(x′′, t′′) of the wave function ψ = ψ(x, t) of the elementary
1D particle may be described by the integral equation [GS98]

ψ(x′′, t′′) =
∫
K(x′′, x′; t′′, t′)ψ(x′, t′), (4.3)

where the propagator or Feynman kernel K = K(x′′, x′; t′′, t′) is defined
through a limiting procedure,

K(x′′, x′; t′′, t′) = lim
ε→0

A−N
N−1∏

k=1

∫
dxk ei

∑N−1
j=0 εL(xj+1,(xj+1−xj)/ε). (4.4)

The time interval t′′ − t′ has been discretized into N steps of length ε =
(t′′ − t′)/N , and the r.h.s. of (4.4) represents an integral over all piecewise
linear paths x(t) of a ‘virtual’ particle propagating from x′ to x′′, illustrated
in Figure 4.4.

The prefactor A−N is a normalization and L denotes the Lagrangian func-
tion of the particle. Knowing the propagator G is tantamount to having solved
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the quantum dynamics. This is the simplest instance of a path integral, and
is often written schematically as

K(x′, t′;x′′, t′′) =
∫
Σ D[x(t)] eiS[x(t)],

where D[x(t)] is a functional measure on the ‘space of all paths’, and the
exponential weight depends on the classical action S[x(t)] of a path. Recall
also that this procedure can be defined in a mathematically clean way if we
Wick–rotate the time variable t to imaginary values t �→ τ = it, thereby
making all integrals real [RS75].

Adaptive Path Integral

Now, we can extend the Feynman sum–over–histories (4.2), by adding the
synaptic–like weights wi = wi(t) into the measure D[x], to get the adaptive
path integral :

Adaptive TransitionAmplitude =< B|A >w=
∫
Σ D[w, x] eiS[x], (4.5)

where the adaptive measure D[w, x] is defined by the weighted product (of
discrete time steps)

D[w, x] = lim
n→∞

n∏

t=1

wi(t) dxi(t). (4.6)

In (4.298) the synaptic weights wi = wi(t) are updated by the unsupervised
Hebbian–like learning rule [Heb49]:

wi(t + 1) = wi(t) +
σ

η
(wid(t)− wia(t)), (4.7)

where σ = σ(t), η = η(t) represent local signal and noise amplitudes, respec-
tively, while superscripts d and a denote desired and achieved system states,
respectively. Theoretically, equations (4.57–4.290) define an ∞−dimensional
complex–valued neural network.7 Practically, in a computer simulation we can
use 107 ≤ n ≤ 108, approaching the number of neurons in the brain. Such
equations are usually solved using Markov–Chain Monte–Carlo methods on
parallel (cluster) computers (see, e.g., [WW83a, WW83b]).

4.1.2 Basic Path–Integral Calculations

Consider a particle moving in one dimension, the Hamiltonian being of the
usual form:
7 For details on complex–valued neural networks, see e.g., complex–domain exten-

sion of the standard backpropagation learning algorithm [GK92, BP02].
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H =
p2

2m
+ V (q).

The fundamental question in the path integral (path–integral) formulation of
quantum mechanics is: If the particle is at a position q at time t = 0, what is
the transition probability amplitude that it will be at some other position q′

at a later time t = T?
It is easy to get a formal expression for this amplitude in the usual

Schrödinger formulation of quantum mechanics. Let us introduce the eigen-
states of the position operator q̂, which form a complete, orthonormal set,8

q̂ |q〉 = q |q〉 , 〈q′| q〉 = δ(q′ − q),
∫

dq |q〉 〈q| = 1.

Then the initial state is |ψ(0)〉 = |q〉. Letting the state evolve in time and
projecting on the state |q′〉, we get for the amplitude A,9

A = 〈q′|ψ(T )〉 ≡ K(q′, T ; q, 0) = 〈q′| e−iHT |q〉 . (4.8)

This object, for obvious reasons, is known as the propagator from the initial
space-time point (q, 0) to the final point (q′, T ). Clearly, the propagator is
independent of the origin of time: K(q′, T + t; q, t) = K(q′, T ; q, 0).

We will derive an expression for this amplitude in the form of a summa-
tion/integral over all possible paths between the initial and final points. In
so doing, we derive the path–integral from quantum mechanics. Historically,
Feynman came up with the path–integral differently, and showed its equiva-
lence to the usual formulations of quantum mechanics [Mac00].

Let us separate the time evolution in the above amplitude into two smaller
time evolutions, writing e−iHT = e−iH(T−t1)e−iHt1 . The amplitude becomes

A = 〈q′| e−iH(T−t1)e−iHt1 |q〉 .

Inserting a factor 1 in the form of a sum over the position eigenstates gives

A = 〈q′| e−iH(T−t1)
∫

dq1 |q1〉 〈q1|
︸ ︷︷ ︸

=1

e−iHt1 |q〉

=
∫

dq1 K(q′, T ; q1, t1)K(q1, t1; q, 0). (4.9)

This formula is none other than an expression of the quantum mechanical
rule for combining amplitudes: if a process can occur a number of ways, the
amplitudes for each of these ways add. A particle, in propagating from q to
q′, must be somewhere at an intermediate time t1; labelling that intermediate
8 When there is the possibility of an ambiguity, operators will be written with a

“hat”; otherwise the hat will be dropped.
9 Except where noted otherwise, � will be set to 1.
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position q1, we compute the amplitude for propagation via the point q1 [this
is the product of the two propagators in (4.9)] and integrate over all possi-
ble intermediate positions. This result is reminiscent of Young’s double slit
experiment, where the amplitudes for passing through each of the two slits
combine and interfere.

We can repeat the division of the time interval T ; let us divide it up into
a large number N of time intervals of duration δ = T/N . Then we can write
for the propagator

A = 〈q′|
(
e−iHδ

)N |q〉 = 〈q′| e−iHδe−iHδ · · · e−iHδ︸ ︷︷ ︸
N times

|q〉 .

We can again insert a complete set of states between each exponential, yielding

A = 〈q′| e−iHδ
∫

dqN−1 |qN−1〉 〈qN−1| e−iHδ
∫

dqN−2 |qN−2〉 〈qN−2| · · ·

· · ·
∫

dq2 |q2〉 〈q2| e−iHδ
∫

dq1 |q1〉 〈q1| e−iHδ |q〉

=
∫

dq1 · · · dqN−1 〈q′| e−iHδ |qN−1〉 〈qN−1| e−iHδ |qN−2〉 · · · 〈q1| e−iHδ |q〉

≡
∫

dq1 · · · dqN−1KqN ,qN−1KqN−1,qN−2 · · ·Kq2,q1Kq1,q0 ,

where we have defined q0 = q, qN = q′.10 This expression says that the
amplitude is the integral of the amplitude of all N−legged paths, as illustrated
in Figure 4.5.

Apart from mathematical details concerning the limit when N →∞, this
is clearly going to become a sum over all possible paths of the amplitude for
each path:

A =
∑

paths

Apath, where

∑

paths

=
∫

dq1 · · · dqN−1, Apath = KqN ,qN−1KqN−1,qN−2 · · ·Kq2,q1Kq1,q0 .

Let us look at this last expression in detail.
The propagator for one sub-interval is Kqj+1,qj

= 〈qj+1| e−iHδ |qj〉. We can
expand the exponential, since δ is small

Kqj+1,qj
= 〈qj+1|

(
1− iHδ − 1

2
H2δ2 + · · ·

)
|qj〉

= 〈qj+1| qj〉 − iδ 〈qj+1|H |qj〉+ o(δ2). (4.10)

The first term is a delta function, which we can write11

10 Note that these initial and final positions are not integrated over.
11 Please do not confuse the delta function with the time interval, δ.
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Fig. 4.5. Transition amplitude as a sum over all N−legged paths (adapted from
[Mac00]).

〈qj+1| qj〉 = δ(qj+1 − qj) =
∫

dpj
2π

eipj(qj+1−qj). (4.11)

In the second term of (4.10), we can insert a factor 1 in the form of an integral
over momentum eigenstates between H and |qj〉; this gives

−iδ 〈qj+1|
(

p̂2

2m
+ V (q̂)

)∫
dpj
2π

|pj〉 〈pj | qj〉

= −iδ

∫
dpj
2π

(
pj

2

2m
+ V (qj+1)

)
〈qj+1| pj〉 〈pj | qj〉

= −iδ

∫
dpj
2π

(
pj

2

2m
+ V (qj+1)

)
eipj(qj+1−qj), (4.12)

using 〈q| p〉 = exp ipq. In the first line, we view the operator p̂ as operating to
the right, while V (q̂) operates to the left.

The expression (4.12) is asymmetric between qj and qj+1; the origin of
this is our choice of putting the factor 1 to the right of H in the second term
of (4.10). Had we put it to the left instead, we would have obtained V (qj) in
(4.12). To not play favourites, we should choose some sort of average of these
two. In what follows I will simply write V (q̄j) where q̄j = 1

2 (qj + qj+1).12

Combining (4.11) and (4.12), the sub-interval propagator is [Mac00]

Kqj+1,qj
=

∫
dpj
2π

eipj(qj+1−qj)

(
1− iδ

(
pj

2

2m
+ V (q̄j)

)
+ o(δ2)

)

=
∫

dpj
2π

eipj(qj+1−qj)e−iδH(pj ,q̄j)(1 + o(δ2)).

12 The exact choice does not matter in the continuum limit, which we will take
eventually; the above is a common choice.
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There are N such factors in the amplitude. Combining them, and writing
q̇j = (qj+1 − qj)/δ, we get

Apath =
∫ N−1∏

j=0

dpj
2π

exp

⎡

⎣iδ

N−1∑

j=0

(pj q̇j −H(pj , q̄j))

⎤

⎦ , (4.13)

where we have neglected a multiplicative factor of the form (1+o(δ2))N , which
will tend toward one in the continuum limit. Then the propagator becomes

K =
∫

dq1 · · · dqN−1Apath

=
∫ N−1∏

j=1

dqj

∫ N−1∏

j=0

dpj
2π

exp

⎡

⎣iδ

N−1∑

j=0

(pj q̇j −H(pj , q̄j))

⎤

⎦ . (4.14)

Note that there is one momentum integral for each interval (N total), while
there is one position integral for each intermediate position (N − 1 total).

If N →∞, this approximates an integral over all functions p(t), q(t). We
adopt the following notation:

K ≡
∫
D[p(t)]D[q(t)] exp

[

i

∫ T

0

dt (pq̇ −H(p, q))

]

. (4.15)

This result is known as the phase–space path integral . The integral is viewed
as over all functions p(t) and over all functions q(t) where q(0) = q, q(T ) = q′.
But to actually perform an explicit calculation, (4.15) should be viewed as
a shorthand notation for the more ponderous expression (4.14), in the limit
N →∞.

If, as is often the case (and as we have assumed in deriving the above
expression), the Hamiltonian is of the standard form, namely H = p2/2m +
V (q), we can actually carry out the momentum integrals in (4.14). We can
rewrite this expression as

K =

∫ N−1∏

j=1

dqj exp

⎧
⎨

⎩
−iδ

N−1∑

j=0

V (q̄j)

∫ N−1∏

j=0

dpj
2π

exp

⎡

⎣iδ

N−1∑

j=0

(
pj q̇j − pj

2/2m
)
⎤

⎦

⎫
⎬

⎭
.

The p integrals are all Gaussian integrals, and they are uncoupled [Mac00].
One such integral is 13

∫
dp

2π
eiδ(pq̇−p

2/2m) =
√

m

2πiδ
eiδmq̇

2/2.

13 The careful reader may be worried about the convergence of this Gaussian inte-
gral; if so, a factor exp−εp2 can be introduced and the limit ε → 0 taken at the
end.
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The propagator becomes

K =
∫ N−1∏

j=1

dqj exp

⎡

⎣−iδ

N−1∑

j=0

V (q̄j)
N−1∏

j=0

(√
m

2πiδ
exp iδ

mq̇2
j

2

)⎤

⎦

=
( m

2πiδ

)N/2 ∫ N−1∏

j=1

dqj exp

⎡

⎣iδ

N−1∑

j=0

(
mq̇2

j

2
− V (q̄j)

)⎤

⎦ . (4.16)

The argument of the exponential is a discrete approximation of the action of
a path passing through the points q0 = q, q1, · · · , qN−1, qN = q′. As above, we
can write this in the more compact form

K =
∫
D[q(t)]eiS[q(t)]. (4.17)

This is our final result, and is known as the configuration–space path integral .
Again, (4.17) should be viewed as a notation for the more precise expression
(4.16), as N →∞.

Elementary Path–Integral Examples

As a first example, let us compute the propagator K(q′, T ; q, 0) for a free
particle, described by the Hamiltonian H = p2/2m. The propagator can be
computed straightforwardly using ordinary quantum mechanics. To this end,
we write

K = 〈q′| e−iHT |q〉 = 〈q′| e−iT p̂2/2m
∫

dp

2π
|p〉 〈p| q〉 (4.18)

=
∫

dp

2π
e−iTp

2/2m 〈q′| p〉 〈p| q〉 =
∫

dp

2π
e−iT (p2/2m)+i(q′−q)p.

The integral is Gaussian; we obtain

K =
( m

2πiT

)1/2

eim(q′−q)2/2T . (4.19)

Let us now see how the same result can be attained using path–integrals.
The configuration space path–integral (4.17) is

K = lim
N→∞

( m

2πiδ

)N/2 ∫ N−1∏

j=1

dqj exp

⎡

⎣i
mδ

2

N−1∑

j=0

(
qj+1 − qj

δ

)2
⎤

⎦ =

lim
N→∞

( m

2πiδ

)N/2 ∫ N−1∏

j=1

dqj exp{im
2δ

[
(qN − qN−1)2 + (qN−1 − qN−2)2

+ · · · + (q2 − q1)2 + (q1 − q0)2
]
},
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where q0 = q and qN = q′ are the initial and final points. The integrals
are Gaussian, and can be evaluated exactly, although the fact that they are
coupled complicates matters significantly. The result is

K = lim
N→∞

( m

2πiδ

)N/2 1√
N

(
2πiδ
m

)(N−1)/2

eim(q′−q)2/2Nδ

= lim
N→∞

( m

2πiNδ

)1/2

eim(q′−q)2/2Nδ.

But Nδ is the total time interval T , resulting in

K =
( m

2πiT

)1/2

eim(q′−q)2/2T ,

in agreement with (4.19).
A couple of remarks are in order. First, we can write the argument of the

exponential as T · 12m((q′−q)/T )2, which is just the action S[qc] for a particle
moving along the classical path (a straight line in this case) between the initial
and final points.

Secondly, we can restore the factors of � if we want, by ensuring correct
dimensions. The argument of the exponential is the action, so in order to make
it a pure number we must divide by �; furthermore, the propagator has the
dimension of the inner product of two position eigenstates, which is inverse
length; in order that the coefficient have this dimension we must multiply by
�
−1/2. The final result is

K =
( m

2πi�T

)1/2

eiS[qc]/�. (4.20)

This result typifies a couple of important features of calculations in this sub-
ject, which we will see repeatedly in these lectures. First, the propagator
separates into two factors, one of which is the phase exp iS[qc]/�. Second, cal-
culations in the path–integral formalism are typically quite a bit more lengthy
than using standard techniques of quantum mechanics.

As a second example, let us compute the propagator for the harmonic
oscillator using the path–integral method. Let us start with the somewhat–
formal version of the configuration–space path–integral, (4.17):

K(q′, T ; q, 0) =
∫
D[q(t)]eiS[q(t)].

For the harmonic oscillator,

S[q(t)] =
∫ T

0

dt

(
1
2
mq̇2 − 1

2
mω2q2

)
.

The paths over which the integral is to be performed go from q(0) = q to
q(T ) = q′. To do this path–integral, suppose we know the solution of the
classical problem, qc(t):
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q̈c + ω2qc = 0, qc(0) = q, qc(T ) = q′.

We can write q(t) = qc(t)+y(t), and perform a change of variables in the path–
integral to y(t), since integrating over all deviations from the classical path
is equivalent to integrating over all possible paths. Since at each time q and
y differ by a constant, the Jacobian of the transformation is 1. Furthermore,
since qc obeys the correct boundary conditions, the paths y(t) over which we
integrate go from y(0) = 0 to y(T ) = 0. The action for the path qc(t) + y(t)
can be written as a power series in y:

S[qc(t) + y(t)] =
∫ T

0

dt

(
1
2
mq̇2

c −
1
2
mω2qc

2

)

+ (linear in y)
︸ ︷︷ ︸

=0

+
∫ T

0

dt

(
1
2
mẏ2 − 1

2
mω2y2

)
.

The term linear in y vanishes by construction: qc, being the classical path, is
that path for which the action is stationary! So we may write S[qc(t)+y(t)] =
S[qc(t)] + S[y(t)]. We substitute this into (4.17), yielding

K(q′, T ; q, 0) = eiS[qc(t)]

∫
D[y(t)]eiS[y(t)]. (4.21)

As mentioned above, the paths y(t) over which we integrate go from y(0) =
0 to y(T ) = 0: the only appearance of the initial and final positions is in
the classical path, i.e., in the classical action. Once again, the path–integral
separates into two factors. The first is written in terms of the action of the
classical path, and the second is a path–integral over deviations from this
classical path. The second factor is independent of the initial and final points.

This separation into a factor depending on the action of the classical path
and a second one, a path–integral which is independent of the details of the
classical path, is a recurring theme, and an important one. Indeed, it is often
the first factor which contains most of the useful information contained in the
propagator, and it can be deduced without even performing a path–integral.
It can be said that much of the work in the game of path integrals consists in
avoiding having to actually compute one!

As for the evaluation of (4.21), a number of fairly standard techniques are
available. One can calculate the path–integral directly in position space, as was
done above for the harmonic oscillator (see [Sch81], Chapter 6). Alternatively,
one can compute it in Fourier space (writing y(t) =

∑
k ak sin(kπt/T ) and

integrating over the coefficients {ak}). This latter approach is outlined in
[FH65], Section 3.11. The result is

K(q′, T ; q, 0) =
( mω

2πi sinωT

)1/2

eiS[qc(t)]. (4.22)

The classical action can be evaluated straightforwardly (note that this is
not a path–integral problem, nor even a quantum mechanics problem!); the
result is
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S[qc(t)] =
mω

2 sinωT

(
(q′2 + q2) cosωT − 2q′q

)
.

We close this section with two remarks. First, the path–integral for any
quadratic action can be evaluated exactly, essentially since such a path–
integral consists of Gaussian integrals; the general result is given in [Sch81].
Second, the following fact is not difficult to prove: K(q′, T ; q, 0) (whether com-
puted via path–integrals or not) is the amplitude to propagate from one point
to another in a given time interval. But this is the response to the following
question: If a particle is initially at position q, what is its wave function af-
ter the elapse of a time T? Thus, if we consider K as a function of the final
position and time, it is none other than the wave function for a particle with
a specific initial condition. As such, the propagator satisfies the Schrödinger
equation at its final point.

4.1.3 Brief History of Feynman’s Path Integral

Extract from Feynman’s Nobel Lecture

In his Nobel Lecture, December 11, 1965, Richard (Dick) Feynman said that he
and his PhD supervisor, John Wheeler, had found the action A = A[x; ti, tj ],
directly involving the motions of the charges only,14

A[x; ti, tj ] = mi

∫
(ẋiμẋ

i
μ)

1
2 dti +

1
2
eiej

∫ ∫
δ(I2

ij) ẋ
i
μ(ti)ẋ

j
μ(tj) dtidtj

with (i �= j) (4.23)
I2
ij =

[
xiμ(ti)− xjμ(tj)

] [
xiμ(ti)− xjμ(tj)

]
,

where xiμ = xiμ(ti) is the four–vector position of the ith particle as a function
of the proper time ti, while ẋiμ(ti) = dxiμ(ti)/dti is the velocity four–vector.

The first term in the action A[x; ti, tj ] (4.294) is the integral of the proper
time ti, the ordinary action of relativistic mechanics of free particles of mass
mi (summation over μ). The second term in the action A[x; ti, tj ] (4.294)
represents the electrical interaction of the charges. It is summed over each
pair of charges (the factor 1

2 is to count each pair once, the term i = j is
omitted to avoid self–action). The interaction is a double integral over a delta
function of the square of space–time interval I2 between two points on the
paths. Thus, interaction occurs only when this interval vanishes, that is, along
light cones (see [WF49]).

Feynman comments here: “The fact that the interaction is exactly one–
half advanced and half–retarded meant that we could write such a principle of
least action, whereas interaction via retarded waves alone cannot be written
14 Wheeler–Feynman Idea [WF49] “The energy tensor can be regarded only as a

provisional means of representing matter. In reality, matter consists of electrically
charged particles.”
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in such a way. So, all of classical electrodynamics was contained in this very
simple form.”

“...The problem is only to make a quantum theory, which has as its clas-
sical analog, this expression (4.294). Now, there is no unique way to make a
quantum theory from classical mechanics, although all the textbooks make
believe there is. What they would tell you to do, was find the momentum
variables and replace them by (�/i)(∂/∂x), but I couldn’t find a momentum
variable, as there wasn’t any.”

“The character of quantum mechanics of the day was to write things in
the famous Hamiltonian way (in the form of Schrödinger equation), which
described how the wave function changes from instant to instant, and in terms
of the Hamiltonian operator H. If the classical physics could be reduced to a
Hamiltonian form, everything was all right. Now, least action does not imply
a Hamiltonian form if the action is a function of anything more than positions
and velocities at the same moment. If the action is of the form of the integral
of the Lagrangian L = L(ẋ, x), a function of the velocities and positions at
the same time t,

S[x] =
∫

L(ẋ, x) dt, (4.24)

then you can start with the Lagrangian L and then create a Hamiltonian H
and work out the quantum mechanics, more or less uniquely. But the action
A[x; ti, tj ] (4.294) involves the key variables, positions (and velocities), at two
different times ti and tj and therefore, it was not obvious what to do to make
the quantum–mechanical analogue...”

So, Feynman was looking for the action integral in quantum mechanics.
He says: “...I simply turned to Professor Jehle and said, ‘Listen, do you know
any way of doing quantum mechanics, starting with action – where the action
integral comes into the quantum mechanics?” “No”, he said, “but Dirac has
a paper in which the Lagrangian, at least, comes into quantum mechanics.”
What Dirac said was the following: There is in quantum mechanics a very
important quantity which carries the wave function from one time to another,
besides the differential equation but equivalent to it, a kind of a kernel, which
we might call K(x′, x), which carries the wave function ψ(x) known at time
t, to the wave function ψ(x′) at time t + ε,

ψ(x′, t + ε) =
∫

K(x′, x)ψ(x, t) dx.

Dirac points out that this function K was analogous to the quantity in
classical mechanics that you would calculate if you took the exponential of
[iε multiplied by the Lagrangian L(ẋ, x)], imagining that these two positions
x, x′ corresponded to t and t + ε. In other words,

K(x′, x) is analogous to eiεL( x′−x
ε ,x)/�.

So, Feynman continues: “What does he mean, they are analogous; what does
that mean, analogous? What is the use of that?” Professor Jehle said, “You
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Americans! You always want to find a use for everything!” I said that I thought
that Dirac must mean that they were equal. “No”, he explained, “he doesn’t
mean they are equal.” “Well”, I said, “Let’s see what happens if we make
them equal.”

“So, I simply put them equal, taking the simplest example where the
Lagrangian is

L =
1
2
Mẋ2 − V (x),

but soon found I had to put a constant of proportionality N in, suitably
adjusted. When I substituted for K to get

ψ(x′, t + ε) =
∫

N exp
[
iε
�
L(

x′ − x

ε
, x)

]
ψ(x, t) dx (4.25)

and just calculated things out by Taylor series expansion, out came the
Schrödinger equation. So, I turned to Professor Jehle, not really understand-
ing, and said, “Well, you see, Dirac meant that they were proportional.” Pro-
fessor Jehle’s eyes were bugging out – he had taken out a little notebook and
was rapidly copying it down from the blackboard, and said, “No, no, this is an
important discovery. You Americans are always trying to find out how some-
thing can be used. That’s a good way to discover things!” So, I thought I was
finding out what Dirac meant, but, as a matter of fact, had made the discov-
ery that what Dirac thought was analogous, was, in fact, equal. I had then,
at least, the connection between the Lagrangian and quantum mechanics, but
still with wave functions and infinitesimal times.”

“It must have been a day or so later when I was lying in bed thinking about
these things, that I imagined what would happen if I wanted to calculate the
wave function at a finite interval later. I would put one of these factors eiεL in
here, and that would give me the wave functions the next moment, t+ ε, and
then I could substitute that back into (4.296) to get another factor of eiεL and
give me the wave function the next moment, t + 2ε, and so on and so on. In
that way I found myself thinking of a large number of integrals, one after the
other in sequence. In the integrand was the product of the exponentials, which
was the exponential of the sum of terms like εL. Now, L is the Lagrangian
and ε is like the time interval dt, so that if you took a sum of such terms,
that’s exactly like an integral. That’s like Riemann’s formula for the integral∫

Ldt, you just take the value at each point and add them together. We are to
take the limit as ε→ 0. Therefore, the connection between the wave function
of one instant and the wave function of another instant a finite time later
could be get by an infinite number of integrals (because ε goes to zero), of
exponential where S is the action expression (4.295). At last, I had succeeded
in representing quantum mechanics directly in terms of the action S[x].”

Fully satisfied, Feynman comments: “This led later on to the idea of the
transition amplitude for a path: that for each possible way that the particle
can go from one point to another in space–time, there’s an amplitude. That
amplitude is e to the power of [i/� times the action S[x] for the path], i.e.,
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eiS[x]/�. Amplitudes from various paths superpose by addition. This then is
another, a third way, of describing quantum mechanics, which looks quite
different from that of Schrödinger or Heisenberg, but which is equivalent to
them.”

“...Now immediately after making a few checks on this thing, what we
wanted to do, was to substitute the action A[x; ti, tj ] (4.294) for the other
S[x] (4.295). The first trouble was that I could not get the thing to work with
the relativistic case of spin one–half. However, although I could deal with
the matter only nonrelativistically, I could deal with the light or the photon
interactions perfectly well by just putting the interaction terms of (4.294) into
any action, replacing the mass terms by the non–relativistic Ldt = 1

2Mẋ2dt,

A[x; ti, tj ] =
1
2

∑

i

mi

∫
(ẋiμ)

2dti+
1
2

∑

i,j(i=j)
eiej

∫ ∫
δ(I2

ij) ẋ
i
μ(ti)ẋ

j
μ(tj) dtidtj .

When the action has a delay, as it now had, and involved more than one time,
I had to lose the idea of a wave function. That is, I could no longer describe the
program as: given the amplitude for all positions at a certain time to calculate
the amplitude at another time. However, that didn’t cause very much trouble.
It just meant developing a new idea. Instead of wave functions we could talk
about this: that if a source of a certain kind emits a particle, and a detector is
there to receive it, we can give the amplitude that the source will emit and the
detector receive, eiA[x;ti,tj ]/�. We do this without specifying the exact instant
that the source emits or the exact instant that any detector receives, without
trying to specify the state of anything at any particular time in between, but
by just finding the amplitude for the complete experiment. And, then we could
discuss how that amplitude would change if you had a scattering sample in
between, as you rotated and changed angles, and so on, without really having
any wave functions...It was also possible to discover what the old concepts
of energy and momentum would mean with this generalized action. And, so
I believed that I had a quantum theory of classical electrodynamics – or
rather of this new classical electrodynamics described by the action A[x; ti, tj ]
(4.294)...”

Lagrangian Path Integral

Dirac and Feynman first developed the lagrangian approach to functional
integration. To review this approach, we start with the time–dependent
Schrödinger equation

i� ∂tψ(x, t) = −∂x2ψ(x, t) + V (x)ψ(x, t)

appropriate to a particle of mass m moving in a potential V (x), x ∈ . A solu-
tion to this equation can be written as an integral (see e.g., [Kla97, Kla00]),

ψ(x′′, t′′) =
∫

K(x′′, t′′;x′, t′)ψ(x′, t′) dx′ ,
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which represents the wave function ψ(x′′, t′′) at time t′′ as a linear superposi-
tion over the wave function ψ(x′, t′) at the initial time t′, t′ < t′′. The integral
kernel K(x′′, t′′;x′, t′) is known as the propagator , and according to Feynman
[Fey48] it may be given by

K(x′′, t′′;x′, t′) = N
∫
D[x] e(i/�)

∫
[(m/2) ẋ2(t)−V (x(t))] dt,

which is a formal expression symbolizing an integral over a suitable set of
paths. This integral is supposed to run over all continuous paths x(t), t′ ≤
t ≤ t′′, where x(t′′) = x′′ and x(t′) = x′ are fixed end points for all paths.
Note that the integrand involves the classical Lagrangian for the system.

To overcome the convergence problems, Feynman adopted a lattice regular-
ization as a procedure to yield well–defined integrals which was then followed
by a limit as the lattice spacing goes to zero called the continuum limit. With
ε > 0 denoting the lattice spacing, the details regarding the lattice regular-
ization procedure are given by

K(x′′, t′′;x′, t′) = lim
ε→0

(m/2πi�ε)(N+1)/2

∫
· · ·

· · ·
∫

exp{(i/�)
N∑

l=0

[(m/2ε)(xl+1 − xl)2 − ε V (xl) ]}
N∏

l=1

dxl ,

where xN+1 = x′′, x0 = x′, and ε ≡ (t′′ − t′)/(N + 1), N ∈ {1, 2, 3, . . . }. In
this version, at least, we have an expression that has a reasonable chance of
being well defined, provided, that one interprets the conditionally convergent
integrals involved in an appropriate manner. One common and fully acceptable
interpretation adds a convergence factor to the exponent of the preceding
integral in the form −(ε2/2�)

∑N
l=1 x2

l , which is a term that formally makes
no contribution to the final result in the continuum limit save for ensuring
that the integrals involved are now rendered absolutely convergent.

Hamiltonian Path Integral

It is necessary to retrace history at this point to recall the introduction of
the phase–space path integral by Feynman [Fey51, GS98]. In Appendix B to
this article, Feynman introduced a formal expression for the configuration or
q−space propagator given by (see e.g., [Kla97, Kla00])

K(q′′, t′′; q′, t′) =M
∫
D[p]D[q] exp{(i/�)

∫
[ p q̇ −H(p, q) ] dt}.

In this equation one is instructed to integrate over all paths q(t), t′ ≤ t ≤ t′′,
with q(t′′) ≡ q′′ and q(t′) ≡ q′ held fixed, as well as to integrate over all paths
p(t), t′ ≤ t ≤ t′′, without restriction.
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It is widely appreciated that the phase–space path integral is more gen-
erally applicable than the original, Lagrangian, version of the path integral.
For example, the original configuration space path integral is satisfactory for
Lagrangians of the general form

L(x) =
1
2
mẋ2 + A(x) ẋ− V (x) ,

but it is unsuitable, for example, for the case of a relativistic particle with the
Lagrangian

L(x) = −mqrt1− ẋ2

expressed in units where the speed of light is unity. For such a system – as
well as many more general expressions – the phase–space form of the path
integral is to be preferred. In particular, for the relativistic free particle, the
phase–space path integral

M
∫
D[p]D[q] exp{(i/�)

∫
[ p q̇ − qrtp2 + m2 ] dt},

is readily evaluated and induces the correct propagator.

Feynman–Kac Formula

Through his own research, M. Kac was fully aware of Wiener’s theory of
Brownian motion and the associated diffusion equation that describes the
corresponding distribution function. Therefore, it is not surprising that he
was well prepared to give a path integral expression in the sense of Feynman
for an equation similar to the time–dependent Schrödinger equation save for
a rotation of the time variable by −π/2 in the complex–plane, namely, by
the change t → −it (see e.g., [Kla97, Kla00]). In particular, Kac [Kac51]
considered the equation

∂tρ(x, t) = ∂x2ρ(x, t)− V (x) ρ(x, t). (4.26)

This equation is analogous to Schrödinger equation but differs from it in
certain details. Besides certain constants which are different, and the change
t→ −it, the nature of the dependent variable function ρ(x, t) is quite different
from the normal quantum mechanical wave function. For one thing, if the
function ρ is initially real it will remain real as time proceeds. Less obvious
is the fact that if ρ(x, t) ≥ 0 for all x at some time t, then the function will
continue to be nonnegative for all time t. Thus we can interpret ρ(x, t) more
like a probability density; in fact in the special case that V (x) = 0, then ρ(x, t)
is the probability density for a Brownian particle which underlies the Wiener
measure. In this regard, ν is called the diffusion constant.

The fundamental solution of (4.26) with V (x) = 0 is readily given as

W (x, T ; y, 0) =
1

qrt2πνT
exp

(
− (x− y)2

2νT

)
,
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which describes the solution to the diffusion equation subject to the initial
condition

lim
T→0+

W (x, T ; y, 0) = δ(x− y) .

Moreover, it follows that the solution of the diffusion equation for a general
initial condition is given by

ρ(x′′, t′′) =
∫

W (x′′, t′′;x′, t′) ρ(x′, t′) dx′ .

Iteration of this equation N times, with ε = (t′′ − t′)/(N + 1), leads to the
equation

ρ(x′′, t′′) = N ′
∫
· · ·

∫
e−(1/2νε)

∑N
l=0(xl+1−xl)

2
N∏

l=1

dxl ρ(x′, t′) dx′,

where xN+1 ≡ x′′ and x0 ≡ x′. This equation features the imaginary time
propagator for a free particle of unit mass as given formally as

W (x′′, t′′;x′, t′) = N
∫
D[x] e−(1/2ν)

∫
ẋ2 dt,

where N denotes a formal normalization factor.
The similarity of this expression with the Feynman path integral [for

V (x) = 0] is clear, but there is a profound difference between these equa-
tions. In the former (Feynman) case the underlying measure is only finitely
additive, while in the latter (Wiener) case the continuum limit actually de-
fines a genuine measure, i.e., a countably additive measure on paths, which is
a version of the famous Wiener measure. In particular,

W (x′′, t′′;x′, t′) =
∫

dμνW (x),

where μνW denotes a measure on continuous paths x(t), t′ ≤ t ≤ t′′, for which
x(t′′) ≡ x′′ and x(t′) ≡ x′. Such a measure is said to be a pinned Wiener
measure, since it specifies its path values at two time points, i.e., at t = t′ and
at t = t′′ > t′.

We note that Brownian motion paths have the property that with proba-
bility one they are concentrated on continuous paths. However, it is also true
that the time derivative of a Brownian path is almost nowhere defined, which
means that, with probability one, ẋ(t) = ±∞ for all t.

When the potential V (x) �= 0 the propagator associated with (4.26) is
formally given by

W (x′′, t′′;x′, t′) = N
∫
D[x]e−(1/2ν)

∫
ẋ2 dt−

∫
V (x) dt,

an expression which is well defined if V (x) ≥ c, −∞ < c <∞. A mathemati-
cally improved expression makes use of the Wiener measure and reads
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W (x′′, t′′;x′, t′) =
∫

e−
∫
V (x(t)) dt dμνW (x).

This is an elegant relation in that it represents a solution to the differential
equation (4.26) in the form of an integral over Brownian motion paths suitably
weighted by the potential V . Incidentally, since the propagator is evidently a
strictly positive function, it follows that the solution of the differential equa-
tion (4.26) is nonnegative for all time t provided it is nonnegative for any
particular time value.

Itô Formula

Itô [Ito60] proposed another version of a continuous–time regularization that
resolved some of the troublesome issues. In essence, the proposal of Itô takes
the form given by

lim
ν→∞

Nν
∫
D[x] exp{(i/�)

∫
[
1
2
mẋ2 − V (x)] dt} exp{−(1/2ν)

∫
[ẍ2 + ẋ2] dt}.

Note well the alternative form of the auxiliary factor introduced as a regulator.
The additional term ẍ2, the square of the second derivative of x, acts to smooth
out the paths sufficiently well so that in the case of (21) both x(t) and ẋ(t) are
continuous functions, leaving ẍ(t) as the term which does not exist. However,
since only x and ẋ appear in the rest of the integrand, the indicated path
integral can be well defined; this is already a positive contribution all by itself
(see e.g., [Kla97, Kla00]).

4.1.4 Path–Integral Quantization

Canonical versus Path–Integral Quantization

Recall that in the usual, canonical formulation of quantum mechanics, the
system’s phase–space coordinates, q, and momenta, p, are replaced by the
corresponding Hermitian operators in the Hilbert space, with real measurable
eigenvalues, which obey Heisenberg commutation relations.

The path–integral quantization is instead based directly on the notion of
a propagator K(qf , tf ; qi, ti) which is defined such that (see [Ryd96, CL84,
Gun03])

ψ(qf , tf ) =
∫

K(qf , tf ; qi, ti)ψ(qi, ti) dqi, (4.27)

i.e., the wave function ψ(qf , tf ) at final time tf is given by a Huygens principle
in terms of the wave function ψ(qi, ti) at an initial time ti, where we have
to integrate over all the points qi since all can, in principle, send out little
wavelets that would influence the value of the wave function at qf at the later
time tf . This equation is very general and is an expression of causality. We
use the normal units with � = 1.
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According to the usual interpretation of quantum mechanics, ψ(qf , tf ) is
the probability amplitude that the particle is at the point qf and the time tf ,
which means that K(qf , tf ; qi, ti) is the probability amplitude for a transition
from qi and ti to qf and tf . The probability that the particle is observed at
qf at time tf if it began at qi at time ti is

P (qf , tf ; qi, ti) = |K(qf , tf ; qi, ti)|2 .

Let us now divide the time interval between ti and tf into two, with t
as the intermediate time, and q the intermediate point in space. Repeated
application of (4.27) gives

ψ(qf , tf ) =
∫ ∫

K(qf , tf ; q, t) dq K(q, t; qi, ti)ψ(qi, ti) dqi,

from which it follows that

K(qf , tf ; qi, ti) =
∫

dq K(qf , tf ; q, t)K(q, t; qi, ti).

This equation says that the transition from (qi, ti) to (qf , tf ) may be regarded
as the result of the transition from (qi, ti) to all available intermediate points
q followed by a transition from (q, t) to (qf , tf ). This notion of all possible
paths is crucial in the path–integral formulation of quantum mechanics.

Now, recall that the state vector |ψ, t〉S in the Schrödinger picture is re-
lated to that in the Heisenberg picture |ψ〉H by

|ψ, t〉S = e−iHt |ψ〉H ,

or, equivalently,
|ψ〉H = eiHt |ψ, t〉S .

We also define the vector

|q, t〉H = eiHt |q〉S ,

which is the Heisenberg version of the Schrödinger state |q〉. Then, we can
equally well write

ψ(q, t) = 〈q, t |ψ〉H . (4.28)

By completeness of states we can now write

〈qf , tf |ψ〉H =
∫
〈qf , tf |qi, ti〉H 〈qi, ti |ψ〉H dqi,

which with the definition of (4.28) becomes

ψ(qf , tf ) =
∫
〈qf , tf |qi, ti〉H ψ(qi, ti) dqi.
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Comparing with (4.27), we get

K(qf , tf ; qi, ti) = 〈qf , tf |qi, ti〉H .

Now, let us calculate the quantum–mechanics propagator

〈q′, t′ |q, t〉H =
〈
q′|e−iH(t−t′) |q〉

using the path–integral formalism that will incorporate the direct quantization
of the coordinates, without Hilbert space and Hermitian operators.

The first step is to divide up the time interval into n + 1 tiny pieces:
tl = lε + t with t′ = (n + 1)ε + t. Then, by completeness, we can write
(dropping the Heisenberg picture index H from now on)

〈q′, t′ |q, t〉 =
∫

dq1(t1)...
∫

dqn(tn) 〈q′, t′ |qn, tn〉 ×

× 〈qn, tn |qn−1, tn−1〉 ... 〈q1, t1 |q, t〉 . (4.29)

The integral
∫

dq1(t1)...dqn(tn) is an integral over all possible paths, which are
not trajectories in the normal sense, since there is no requirement of continuity,
but rather Markov chains.

Now, for small ε we can write

〈q′, ε |q, 0〉 =
〈
q′|e−iεH(P,Q) |q〉 = δ(q′ − q)− iε 〈q′|H(P,Q) |q〉 ,

where H(P,Q) is the Hamiltonian (e.g., H(P,Q) = 1
2P

2 + V (Q), where P,Q
are the momentum and coordinate operators). Then we have (see [Ryd96,
CL84, Gun03])

〈q′|H(P,Q) |q〉 =
∫

dp

2π
eip(q′−q)H

(
p,

1
2
(q′ + q)

)
.

Putting this into our earlier form we get

〈q′, ε |q, 0〉 !
∫

dp

2π
exp

[
i
{
p(q′ − q)− εH

(
p,

1
2
(q′ + q)

)}]
,

where the 0th order in ε→ δ(q′−q) and the 1st order in ε→ −iε 〈q′|H(P,Q) |q〉.
If we now substitute many such forms into (4.29) we finally get

〈q′, t′ |q, t〉 = lim
n→∞

∫ n∏

i=1

dqi

n+1∏

k=1

dpk
2π

× (4.30)

× exp

⎧
⎨

⎩
i
n+1∑

j=1

[pj(qj − qj−1)]−H

(
pj ,

1
2
(qj + qj+1)

)
(tj − tj−1)]

⎫
⎬

⎭
,
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with q0 = q and qn+1 = q′. Roughly, the above formula says to integrate over
all possible momenta and coordinate values associated with a small interval,
weighted by something that is going to turn into the exponential of the ac-
tion eiS in the limit where ε → 0. It should be stressed that the different qi
and pk integrals are independent, which implies that pk for one interval can
be completely different from the pk′ for some other interval (including the
neighboring intervals). In principle, the integral (4.30) should be defined by
analytic continuation into the complex–plane of, for example, the pk integrals.

Now, if we go to the differential limit where we call tj − tj−1 ≡ dτ and
write (qj−qj−1)

(tj−tj−1)
≡ q̇, then the above formula takes the form

〈q′, t′ |q, t〉 =
∫
D[p]D[q] exp

{

i
∫ t′

t

[pq̇ −H(p, q)] dτ

}

,

where we have used the shorthand notation
∫
D[p]D[q] ≡

∫ ∏

τ

dq(τ)dp(τ)
2π

.

Note that the above integration is an integration over the p and q values at
every time τ . This is what we call a functional integral . We can think of a
given set of choices for all the p(τ) and q(τ) as defining a path in the 6D
phase–space. The most important point of the above result is that we have
get an expression for a quantum–mechanical transition amplitude in terms of
an integral involving only pure complex numbers, without operators.

We can actually perform the above integral for Hamiltonians of the type
H = H(P,Q). We use square completion in the exponential for this, defining
the integral in the complex p plane and continuing to the physical situation.
In particular, we have

∫ ∞

−∞

dp

2π
exp

{
iε(pq̇ − 1

2
p2]

}
=

1√
2πiε

exp
[
1
2
iεq̇2

]
,

(see [Ryd96, CL84, Gun03]) which, substituting into (4.30) gives

〈q′, t′ |q, t〉 = lim
n→∞

∫ ∏

i

dqi√
2πiε

exp{iε
n+1∑

j=1

[
1
2
(
qj − qj−1

ε
)2 − V (

qj + qj+1

2
)]}.

This can be formally written as

〈q′, t′ |q, t〉 =
∫
D[q] eiS[q],

where ∫
D[q] ≡

∫ ∏

i

dqi√
2πiε

,
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while

S[q] =
∫ t′

t

L(q, q̇) dτ

is the standard action with the Lagrangian

L =
1
2
q̇2 − V (q).

Generalization to many degrees of freedom is straightforward:

〈q1
′...qN

′, t′|q1...qN , t〉 =
∫
D[p]D[q] exp

{

i
∫ t′

t

[
N∑

n=1

pnq̇n −H(pn, qn)

]

dτ

}

,

with
∫
D[p]D[q] =

∫ N∏

n=1

dqndpn
2π

.

Here, qn(t) = qn and qn(t′) = qn
′ for all n = 1, ..., N , and we are allowing for

the full Hamiltonian of the system to depend upon all the N momenta and
coordinates collectively.

Elementary Applications

(i) Consider first

〈q′, t′|Q(t0)|q, t〉

=
∫ ∏

dqi(ti) 〈q′, t′|qn, tn〉 ... 〈qi0, ti0|Q(t0)|qi−1, ti−1〉 ... 〈q1, t1|q, t〉 ,

where we choose one of the time interval ends to coincide with t0, i.e., ti0 = t0.
If we operate Q(t0) to the left, then it is replaced by its eigenvalue qi0 = q(t0).
Aside from this one addition, everything else is evaluated just as before and
we will obviously get

〈q′, t′|Q(t0)|q, t〉 =
∫
D[p]D[q] q(t0) exp

{

i
∫ t′

t

[pq̇ −H(p, q)]dτ

}

.

(ii) Next, suppose we want a path–integral expression for
〈q′, t′|Q(t1)Q(t2)|q, t〉 in the case where t1 > t2. For this, we have to insert as
intermediate states |qi1, ti1〉 〈qi1, ti1| with ti1 = t1 and |qi2, ti2〉 〈qi2, ti2| with
ti2 = t2 and since we have ordered the times at which we do the insertions
we must have the first insertion to the left of the 2nd insertion when t1 > t2.
Once these insertions are done, we evaluate 〈qi1, ti1|Q(t1) = 〈qi1, ti1| q(t1) and
〈qi2, ti2|Q(t2) = 〈qi2, ti2| q(t2) and then proceed as before and get

〈q′, t′|Q(t1)Q(t2)|q, t〉 =
∫
D[p]D[q] q(t1) q(t2) exp

{

i
∫ t′

t

[pq̇ −H(p, q)]dτ

}

.
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Now, let us ask what the above integral is equal to if t2 > t1? It is obvious
that what we get for the above integral is 〈q′, t′|Q(t2)Q(t1)|q, t〉 . Clearly, this
generalizes to an arbitrary number of Q operators.

(iii) When we enter into quantum field theory, the Q’s will be replaced
by fields, since it is the fields that play the role of coordinates in the 2nd
quantization conditions.

Sources

The source is represented by modifying the Lagrangian:

L→ L + J(t)q(t).

Let us define |0, t〉J as the ground state (vacuum) vector (in the moving frame,
i.e., with the eiHt included) in the presence of the source. The required tran-
sition amplitude is

Z[J ] ∝ 〈0,+∞|0,−∞〉J ,

where the source J = J(t) plays a role analogous to that of an electromagnetic
current, which acts as a source of the electromagnetic field. In other words, we
can think of the scalar product JμA

μ, where Jμ is the current from a scalar
(or Dirac) field acting as a source of the potential Aμ. In the same way, we
can always define a current J that acts as the source for some arbitrary field
φ. Z[J ] (otherwise denoted by W [J ]) is a functional of the current J , defined
as (see [Ryd96, CL84, Gun03])

Z[J ] ∝
∫
D[p]D[q] exp

{

i
∫ t′

t

[p(τ)q̇(τ)−H(p, q) + J(τ)q(τ)]dτ

}

,

with the normalization condition Z[J = 0] = 1. Here, the argument of the
exponential depends upon the functions q(τ) and p(τ) and we then integrate
over all possible forms of these two functions. So the exponential is a functional
that maps a choice for these two functions into a number. For example, for
a quadratically completable H(p, q), the p integral can be performed as a q
integral

Z[J ] ∝
∫
D[q] exp

{
i
∫ +∞

−∞

(
L + Jq +

1
2
iεq2

)
dτ

}
,

where the addittion to H was chosen in the form of a convergence factor
− 1

2 iεq2.

Fields

Let us now treat the abstract scalar field φ(x) as a coordinate in the sense
that we imagine dividing space up into many little cubes and the average
value of the field φ(x) in that cube is treated as a coordinate for that little
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cube. Then, we go through the multi–coordinate analogue of the procedure
we just considered above and take the continuum limit. The final result is

Z[J ] ∝
∫
D[φ] exp

{
i
∫

d4x

(
L (φ(x)) + J(x)φ(x) +

1
2
iεφ2

)}
,

where for L we would employ the Klein–Gordon Lagrangian form. In the
above, the dx0 integral is the same as dτ , while the d3x integral is sum-
ming over the sub–Lagrangians of all the different little cubes of space and
then taking the continuum limit. L is the Lagrangian density describing
the Lagrangian for each little cube after taking the many–cube limit (see
[Ryd96, CL84, Gun03]) for the full derivation).

We can now introduce interactions, LI . Assuming the simple form of the
Hamiltonian, we have

Z[J ] ∝
∫
D[φ] exp

{
i
∫

d4x (L (φ(x)) + LI (φ(x)) + J(x)φ(x))
}

,

again using the normalization factor required for Z[J = 0] = 1.
For example of Klein Gordon theory, we would use

L = L0 + LI , L0
1
2
[∂μφ∂μφ− μ2φ2], LI = LI(φ),

where ∂μ ≡ ∂xμ and we can freely manipulate indices, as we are working in
Euclidean space 3. In order to define the above Z[J ], we have to include a
convergence factor iεφ2,

L0 →
1
2
[∂μφ∂μφ− μ2φ2 + iεφ2], so that

Z[J ] ∝
∫
D[φ] exp{i

∫
d4x(

1
2
[∂μφ∂μφ− μ2φ2 + iεφ2] + LI(φ(x)) + J(x)φ(x))}

is the appropriate generating function in the free field theory case.

Gauges

In the path integral approach to quantization of the gauge theory, we imple-
ment gauge fixing by restricting in some manner or other the path integral
over gauge fields

∫
D[Aμ]. In other words we will write instead

Z[J ] ∝
∫
D[Aμ] δ (some gauge fixing condition) exp{i

∫
d4xL (Aμ)}.

A common approach would be to start with the gauge condition

L = −1
4
FμνF

μν − 1
2
(∂μAμ)2
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where the electrodynamic field tensor is given by Fμν = ∂μAν − ∂νAμ, and
calculate

Z[J ] ∝
∫
D[Aμ] exp

{
i
∫

d4x [L(Aμ(x)) + Jμ(x)Aμ(x)]
}

as the generating function for the vacuum expectation values of time ordered
products of the Aμ fields. Note that Jμ should be conserved (∂μJμ = 0) in order
for the full expression L(Aμ)+JμA

μ to be gauge–invariant under the integral
sign when Aμ → Aμ+∂μΛ. For a proper approach, see [Ryd96, CL84, Gun03].

Riemannian–Symplectic Geometries

In this subsection, following [SK98b], we describe path integral quantization
on Riemannian–symplectic manifolds. Let q̂j be a set of Cartesian coordinate
canonical operators satisfying the Heisenberg commutation relations [q̂j , q̂k] =
iωjk. Here ωjk = −ωkj is the canonical symplectic structure. We introduce
the canonical coherent states as |q〉 ≡ eiqjωjk q̂

k |0〉, where ωjnω
nk = δkj , and

|0〉 is the ground state of a harmonic oscillator with unit angular frequency.
Any state |ψ〉 is given as a function on phase–space in this representation
by 〈q|ψ〉 = ψ(q). A general operator Â can be represented in the form Â =∫

dq a(q)|q〉〈q|, where a(q) is the lower symbol of the operator and dq is a
properly normalized form of the Liouville measure. The function A(q, q′) =
〈q|Â|q′〉 is the kernel of the operator.

The main object of the path integral formalism is the integral kernel of
the evolution operator

Kt(q, q′) = 〈q|e−itĤ |q′〉 =

q(t)=q∫

q(0)=q′

D[q] ei
∫ t
0 dτ( 1

2 q
jωjk q̇

k−h) . (4.31)

Here Ĥ is the Hamiltonian, and h(q) its symbol. The measure formally implies
a sum over all phase-space paths pinned at the initial and final points, and a
Wiener measure regularization implies the following replacement

D[q] → D[μν(q)] = D[q] e−
1
2ν

∫ t
0 dτ q̇

2
= Nν(t) dμνW (q) . (4.32)

The factor Nν(t) equals 2πeνt/2 for every degree of freedom, dμνW (q) stands
for the Wiener measure, and ν denotes the diffusion constant. We denote by
Kν
t (q, q′) the integral kernel of the evolution operator for a finite ν. The Wiener

measure determines a stochastic process on the flat phase–space. The integral
of the symplectic 1–form

∫
qωdq is a stochastic integral that is interpreted in

the Stratonovich sense. Under general coordinate transformations q = q(q̄),
the Wiener measure describes the same stochastic process on flat space in
the curvilinear coordinates dq2 = dσ(q̄)2, so that the value of the integral is
not changed apart from a possible phase term. After the calculation of the
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integral, the evolution operator kernel is get by taking the limit ν → ∞.
The existence of this limit, and also the covariance under general phase-space
coordinate transformations, can be proved through the operator formalism for
the regularized kernel Kν

t (q, q′).
Note that the integral (4.31) with the Wiener measure inserted can be

regarded as an ordinary Lagrangian path integral with a complex action,
where the configuration space is the original phase–space and the Hamiltonian
h(q) serves as a potential. Making use of this observation it is not hard to
derive the corresponding Schrödinger–like equation

∂tK
ν
t (q, q′) =

[
ν

2

(
∂qj +

i
2
ωjkq

k

)2

− ih(q)

]

Kν
t (q, q′) , (4.33)

subject to the initial condition Kν
t=0(q, q

′) = δ(q − q′), 0 < ν < ∞. One can
show that K̂ν

t → K̂t as ν → ∞ for all t > 0. The covariance under general
coordinate transformations follows from the covariance of the “kinetic” energy
of the Schrödinger operator in (4.33): The Laplace operator is replaced by the
Laplace–Beltrami operator in the new curvilinear coordinates q = q(q̄), so the
solution is not changed, but written in the new coordinates. This is similar
to the covariance of the ordinary Schrödinger equation and the corresponding
Lagrangian path integral relative to general coordinate transformations on
the configuration space: The kinetic energy operator (the Laplace operator)
in the ordinary Schrödinger equation gives a term quadratic in time deriva-
tives in the path integral measure which is sufficient for the general coordinate
covariance. We remark that the regularization procedure based on the mod-
ified Schrödinger equation (4.33) applies to far more general Hamiltonians
than those quadratic in canonical momenta and leading to the conventional
Lagrangian path integral.

4.1.5 Statistical Mechanics via Path Integrals

The Feynman path integral turns out to provide an elegant way of doing
statistical mechanics, as the partition function can be written as a path–
integral.

Recall that the standard partition function is defined as

Z =
∑

j

e−βEj , (4.34)

where β = 1/kBT and Ej is the energy of the state |j〉. We can write

Z =
∑

j

〈j| e−βH |j〉 = Tre−βH .

But recall the definition of the propagator [Mac00]
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K(q′, T ; q, 0) = 〈q′| e−iHT |q〉 .

Suppose we consider T to be a complex parameter, and consider it to be pure
imaginary, so that we can write T = −iβ, where β is real. Then we have

K(q′,−iβ; q, 0) = 〈q′| e−iH(−iβ) |q〉 = 〈q′| e−βH
∑

j

|j〉 〈j|

︸ ︷︷ ︸
=1

|q〉

=
∑

j

e−βEj 〈q′| j〉〈j |q〉 =
∑

j

e−βEj 〈j |q〉 〈q′| j〉.

Putting q′ = q and integrating over q, we get
∫

dq K(q,−iβ; q, 0) =
∑

j

e−βEj 〈j|
∫

dq |q〉 〈q|
︸ ︷︷ ︸

=1

|j〉 = Z. (4.35)

This is the central observation of this section: that the propagator evaluated
at negative imaginary time is related to the partition function [Mac00].

We can easily work out an elementary example such as the harmonic os-
cillator. Recall the path integral for it, (4.22):

K(q′, T ; q, 0) =
( mω

2πi sinωT

)1/2

exp
{
i

mω

2 sinωT

(
(q′2 + q2) cosωT − 2q′q

)}
.

We can put q′ = q and T = −iβ:

K(q,−iβ; q, 0) =
(

mω

2π sinh(βω)

)1/2

exp
{
− mωq2

sinh(βω)
(cosh(βω)− 1)

}
.

The partition function is thus

Z =
∫

dq K(q,−iβ; q, 0) =
(

mω

2π sinh(βω)

)1/2 √
π

mω
sinh(βω) (cosh(βω)− 1)

= [2(cosh(βω)− 1)]−1/2 =
[
eβω/2(1− e−βω)

]−1

=
e−βω/2

1− e−βω
=

∞∑

j=0

e−β(j+1/2)ω.

Putting � back in, we get the standard result:

Z =
∞∑

j=0

e−β(j+1/2)�ω.

We can rewrite the partition function in terms of a path–integral. In ordi-
nary (real) time,

K(q′, T ; q, 0) =
∫
Dq(t) exp

[

i

∫ T

0

dt

(
mq̇2

2
− V (q)

)]

,
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where the integral is over all paths from (q, 0) to (q′, T ). With q′ = q, T → −iβ,

K(q,−iβ; q, 0) =
∫
Dq(t) exp

[

i

∫ −iβ

0

dt

(
mq̇2

2
− V (q)

)]

,

where we now integrate along the negative imaginary time axis (Figure 4.6).

Fig. 4.6. Path in the complex time plane (adapted from [Mac00]).

Let us now define a real variable for this integration, τ = it. τ is called
the imaginary time, since when the time t is imaginary, τ is real. Then the
integral over τ is along its real axis: when t : 0 → −iβ, then τ : 0 → β. We
can write q as a function of the variable τ : q(t) → q(τ); then q̇ = idq/dτ . The
propagator becomes

K(q,−iβ; q, 0) =
∫
Dq(τ) exp−

∫ β

0

dτ

(
m

2

(
dq

dτ

)2

+ V (q)

)

. (4.36)

The integral is over all functions q(τ) such that q(0) = q(β) = q.
The result (4.36) is an ‘imaginary–time’ or Euclidean path integral , defined

by associating to each path an amplitude (statistical weight) exp−SE , where
SE is the so–called Euclidean action, obtained from the usual Minkowski ac-
tion by changing the sign of the potential energy term.

4.1.6 Path Integrals and Green’s Functions

In quantum field theory we are interested in objects such as [Mac00]

〈0|T φ̂(x1)φ̂(x2) · · · φ̂(xn) |0〉 ,
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the vacuum expectation value of a time–ordered product of Heisenberg field
operators. This object is known as a Green’s function,15 or as a correlation
15 Recall that a Green’s function, G(x, s), of a linear operator L acting on distribu-

tions over a manifold M , at a point x0, is any solution of linear operator equation

L G(x, s) = δ(x − s),

where δ(x) is the Dirac delta function at a point x ∈ M . This technique can be
used to solve differential equations of the form

Lu(x) = f(x).

If the kernel of the operator L is nontrivial, then the Green’s function is not
unique. However, in practice, some combination of symmetry , boundary conditions
and/or other externally imposed criteria would give us a unique Green’s function.
Also, Green’s functions in general are distributions (or generalized functions like
the Dirac delta function δ(x)), not necessarily proper functions.

Green’s functions are a useful tool in condensed matter theory, where they
allow the resolution of the diffusion equation, as well as in quantum mechanics,
where the Green’s function of the Hamiltonian is a key concept, with important
links to the concept of density of states. The Green’s functions used in those two
domains are highly similar, due to the analogy in the mathematical structure
of the real–valued diffusion equation and complex–valued Schrödinger equation.
Briefly, if such a function G(x, s) can be found for the operator L, then if we
multiply the equation L G(x, s) = δ(x − s) for the Green’s function by f(s), and
then perform an integration in the s variable, we get

∫
LG(x, s)f(s)ds =

∫
δ(x − s)f(s)ds = f(x).

As the right hand side is actually Lu(x) = f(x), we get

Lu(x) =

∫
LG(x, s)f(s)ds.

Further, because the operator L is linear and acts on the variable x alone (not on
the variable of integration s), we can take the operator L outside of the integration
on the right hand side, getting

Lu(x) = L

(∫
G(x, s)f(s)ds

)
,

which implies

u(x) =

∫
G(x, s)f(s)ds.

Thus, we can obtain the function u(x) through knowledge of the Green’s func-
tion in the first equation, and the source term on the right hand side in second
equation. This process has resulted from the linearity of the operator L.

A convolution with a Green’s function gives solutions to inhomogeneous
differential–integral equations, most commonly a Sturm–Liouville problem. If G
is the Green’s function of an operator L, then the solution for u of the equation
Lu = f is given by
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function. The order of the operators is such that the earliest field is written
last (right-most), the second earliest second last, etc. For example,

T φ̂(x1)φ̂(x2) =
{

φ̂(x1)φ̂(x2), x0
1 > x0

2,

φ̂(x2)φ̂(x1), x0
2 > x0

1,

Green’s functions are related to amplitudes for physical processes such as
scattering and decay processes.

Let us look at the analogous object in quantum mechanics,

G(n)(t1, t2, · · · , tn) = 〈0|T q̂(t1)q̂(t2) · · · q̂(tn) |0〉 .

We will develop a path–integral expression for this.
First, we must recast the path–integral in terms of Heisenberg represen-

tation objects. The operator q̂(t) is the usual Heisenberg operator, defined in
terms of the Schrödinger operator q̂ by

q̂(t) = eiHtq̂e−iHt.

The eigenstates of the Heisenberg operator are |q, t〉: q̂(t) |q, t〉 = q |q, t〉. The
relation with the time–independent eigenstates is |q, t〉 = eiHt |q〉 [Mac00].
Then we can write the path–integral,

K = 〈q′| e−iHT |q〉 = 〈q′, T | q, 0〉 =
∫
D[q]eiS .

We can now calculate the two–point function G(t1, t2), via the path–
integral. We will proceed in two steps. First, we will calculate the following
expression:

〈q′, T |T q̂(t1)q̂(t2) |q, 0〉 .
We will then devise a method for extracting the vacuum contribution to the
initial and final states.

Suppose first that t1 > t2. Then

〈q′, T |T q̂(t1)q̂(t2) |q, 0〉 = 〈q′, T | q̂(t1)q̂(t2) |q, 0〉

=
∫

dq1dq2〈q′, T |q1, t1〉 〈q1, t1| q̂(t1)︸ ︷︷ ︸
〈q1,t1|q1

q̂(t2) |q2, t2〉︸ ︷︷ ︸
q2|q2,t2〉

〈q2, t2| q, 0〉

=
∫

dq1dq2 q1q2〈q′, T |q1, t1〉 〈q1, t1| q2, t2〉 〈q2, t2| q, 0〉.

u(x) =

∫
f(s)G(x, s)ds.

This can be thought of as an expansion of the function f according to a Dirac
delta function basis (projecting f over δ(x−s)) and a superposition of the solution
on each projection. Such an integral is known as a Fredholm integral equation,
the study of which constitutes Fredholm theory .
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Each of these matrix elements is a path–integral:

〈q′, T |T q̂(t1)q̂(t2) |q, 0〉 =
∫

dq1dq2 q1q2

∫ q′,T

q1,t1

D[q]eiS
∫ q1,t1

q2,t2

D[q]eiS
∫ q2,t2

q,0

D[q]eiS .

This expression consists of a first path–integral from the initial position q
to an arbitrary position q2, a second one from there to a second arbitrary
position q1, and a third one from there to the final position q′. So we are
integrating over all paths from q to q′, subject to the restriction that the
paths pass through the intermediate points q1 and q2. We then integrate over
the two arbitrary positions, so that in fact we are integrating over all paths:
we can combine these three path integrals plus the integrations over q1 and
q2 into one path–integral. The factors q1 and q2 in the above integral can be
incorporated into this path–integral by simply including a factor q(t1)q(t2) in
the path–integral. So

〈q′, T | q̂(t1)q̂(t2) |q, 0〉 =
∫ q′,T

q,0

D[q] q(t1)q(t2)eiS , (t1 > t2).

An identical calculation shows that exactly this same final expression is
also valid for t2 < t1: magically, the path–integral does the time ordering
automatically. Thus for all times

〈q′, T |T q̂(t1)q̂(t2) |q, 0〉 =
∫ q′,T

q,0

D[q] q(t1)q(t2)eiS .

As for how to obtain vacuum-to-vacuum matrix elements, our work on
statistical mechanics provides us with a clue. We can expand the states 〈q′, T |
and |q, 0〉 in terms of eigenstates of the Hamiltonian. If we evolve towards a
negative imaginary time, the contribution of all other states will decay away
relative to that of the ground state. We have (resetting the initial time to −T
for convenience)

〈q′, T | q,−T 〉 ∝ 〈0, T | 0,−T 〉,
where on the right the ‘0’ denotes the ground state. The proportionality in-
volves the ground state wave function and an exponential factor

exp[2iE0T ] = exp[−2E0|T |].

We could perform all calculations in a Euclidean theory and analytically
continue to real time when computing physical quantities (many books do
this), but to be closer to physics we can also consider T not to be pure imagi-
nary and negative, but to have a small negative imaginary phase: T = |T |e−iε
(ε > 0). With this,

〈0, T | 0,−T 〉 ∝ 〈q′, T | q,−T 〉 =
∫
D[q] eiS .
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To compute the Green’s functions, we must simply add T q̂(t1)q̂(t2) · · · q̂(tn)
to the matrix element, and the corresponding factor q(t1)q(t2) · · · q(tn) inside
the path–integral:

〈0, T |T q̂(t1)q̂(t2) · · · q̂(tn) |0,−T 〉 ∝
∫
D[q] q(t1)q(t2) · · · q(tn)eiS .

The proportionality sign is a bit awkward; fortunately, we can rid ourselves
of it. To do this, we note that the left hand expression is not exactly what we
want: the vacua |0,±T 〉 differ by a phase. We wish to eliminate this phase; to
this end, the Green’s functions are defined

G(n)(t1, t2, · · · , tn) = 〈0|T q̂(t1)q̂(t2) · · · q̂(tn) |0〉 ≡
〈0, T |T q̂(t1)q̂(t2) · · · q̂(tn) |0,−T 〉

〈0, T | 0,−T 〉 =
∫
D[q] q(t1)q(t2) · · · q(tn)eiS∫

D[q] eiS
,

with no proportionality sign. The wave functions and exponential factors in
the numerator and denominator cancel.

To compute the numerator, we can once again use the trick we used in
perturbation theory in quantum mechanics, namely, adding a source to the
action. We define

Z[J ] =
∫
D[q] ei(S+

∫
dt J(t)q(t))

∫
D[q] eiS

=
〈0| 0〉J
〈0| 0〉J=0

.

If we operate on Z[J ] with i−1δ/δJ(t1), this gives

(
1
i

δ

δJ(t1)
Z[J ]

)∣∣∣∣
J=0

=

(∫
D[q] q(t1)ei(S+

∫
dt J(t)q(t))

∫
D[q] eiS

)∣∣∣∣
∣
J=0

=
∫
D[q] q(t1)eiS∫
Dq eiS

=
〈0, T | q̂(t1) |0,−T 〉
〈0, T | 0,−T 〉 = 〈0| q̂(t1) |0〉 .

(The expectation values are evaluated in the absence of J .)
Repeating this procedure, we obtain a path–integral with several q’s in

the numerator. This ordinary product of q’s in the path–integral corresponds,
as discussed earlier in this section, to a time-ordered product in the matrix
element. So we make the following conclusion:

(
1
i

δ

δJ(t1)
· · · 1

i

δ

δJ(tn)
Z[J ]

)∣∣∣∣
J=0

=
∫
D[q] q(t1) · · · q(tn)eiS∫

D[q]eiS
= 〈0|T q̂(t1) · · · q̂(t1) |0〉 .

For obvious reasons, the functional Z[J ] is called the generating functional
for Green’s functions; it is a very handy tool in quantum field theory and in
statistical mechanics.
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To be able to calculate Z[J ], let us examine the numerator,

N ≡
∫
D[q]ei(S+

∫
dt J(t)q(t)).

Suppose initially that S is the harmonic oscillator action (denoted S0):

S0 =
∫

dt

(
1
2
mq̇2 − 1

2
mω2q2

)
,

Then the corresponding numerator, N0, is the non–Euclidean, or real-time,
version of the propagator K0

E [J ] that we used before. We can calculate N0[J ]
in the same way as K0

E [J ]. Since the calculation repeats much of that of K0
E [J ],

we will be succinct.
By definition,

N0 =
∫
Dq(t) exp

[
i

∫
dt

(
1
2
mq̇2 − 1

2
mω2q2 + Jq

)]
.

We do the path integral over a new variable y, defined by q(t) = qc(t) + y(t),
where qc is the classical solution. Then the path–integral over y is a constant
(independent of J) and we can avoid calculating it. (It will cancel against the
denominator in Z[J ].) Calling it C, we have

N0 = CeiS0J [qc], where

S0J [qc] =
∫

dt

(
1
2
mq̇2

c −
1
2
mω2q2

c + Jqc

)
=

1
2

∫
dtJ(t)qc(t),

using the fact that qc satisfies the equation of motion. We can write the
classical path in terms of the Green’s function (to be determined shortly),
defined by (

d2

dt2
+ ω2

)
G(t, t′) = −iδ(t− t′). (4.37)

Then
qc(t) = −i

∫
dt′G(t, t′)J(t′).

We can now write

N0 = C exp
1
2

∫
dtdt′ J(t)G(t, t′)J(t′).

Dividing by the denominator merely cancels the factor C, giving our final
result [Mac00]:

Z[J ] = exp
1
2

∫
dtdt′ J(t)G(t, t′)J(t′).

We can solve (4.37) for the Green’s function by going into momentum
space; the result is
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G(t, t′) = G(t− t′) =
∫

dk

2π
i

k2 − ω2
e−ik(t−t

′).

However, there are poles on the axis of integration. The Green’s function is
ambiguous until we give it a ‘pole prescription’, i.e., a boundary condition. But
remember that our time T has a small, negative imaginary part. We require
that G go to zero as T →∞. The correct pole prescription then turns out to
be

G(t− t′) =
∫

dk

2π
i

k2 − ω2 + iε
e−ik(t−t

′). (4.38)

We could at this point do a couple of practice calculations to get used to
this formalism. Examples would be to compute perturbatively the generating
functional for an action which has terms beyond quadratic (for example, a q4

term), or to compute some Green’s function in either the quadratic or quartic
theory. But since these objects aren’t really useful in quantum mechanics,
without further delay we will go directly to the case of interest: quantum field
theory.

4.1.7 Monte Carlo Simulation of the Path Integral

The Monte Carlo method came into being roughly around the same time as the
Feynman path integral. Anecdotally, the idea of gaining insight into a complex
phenomenon by making various trials and studying the proportions of the
respective outcomes occurred to Stanislaw Ulam while playing solitaire during
an illness in 1946. The immediate application was, the problem of neutron
diffusion studied in Los Alamos at that time. The name of the procedure first
appeared in print in a classic paper by Metropolis and Ulam in 1949 [MU49],
where the authors explicitly mentioned that the method they presented as
a statistical approach to the study of integro–differential equations would
sometimes be referred to as the Monte Carlo method. In classical statistical
mechanics it quickly became a standard calculational tool.

The object of interest in Monte Carlo evaluations of Feynman’s path in-
tegral is the quantum statistical partition function Z, given, in operator lan-
guage, as the trace of the density operator exp(−βĤ) of the canonical ensem-
ble (β = 1/kBT ) associated with a Hamilton operator describing N particles
of mass mi moving under the influence of a potential V ,

Ĥ =
N∑

i=1

p̂i
2

2mi
+ V (r̂1, . . . , r̂N ).

Expressed as a Feynman integral, the density matrix elements read

〈r| exp(−βĤ)|r′〉 =

r(�β)=r′∫

r(0)=r

Dr(τ) exp

⎧
⎨

⎩
−1

�

�β∫

0

L ({ṙi(τ), ri(τ)}) dτ

⎫
⎬

⎭
,

(4.39)
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where r ≡ {r1, . . . , rN}, L denotes the classical Lagrangian

L ({ṙi(τ), ri(τ)}) =
N∑

i=1

mi

2
ṙ2
i + V (r1, . . . , rN (τ))

expressed in imaginary time τ .16 The particles are assumed to be distinguish-
able. To evaluate the trace, we only need to set r = r′ and integrate over r. To
take into account Bose or Fermi statistics for indistinguishable particles, the
partition function splits into a sum of the direct Boltzmann part and parts
with permuted endpoints.

The right hand side of (4.39) is a path integral for the 3N functions r.
The idea of a Monte Carlo evaluation of this quantity is to sample these
paths stochastically and to get (approximate) information about the quantum
statistics of the system by averaging over the finite set of paths generated in
the sampling process.

Monte Carlo data always come with error bars and, in general, the errors
associated with numerical Monte Carlo data stem from two distinct sources. A
systematic error of Monte Carlo evaluations of the path integral follows from
the need to identify the paths by a finite amount of computer information.
This can be done by discretizing the paths at some set of points in the interval
(0, �β). For a single particle moving in one dimension, the simplest discrete
time approximation for L time slices reads (ε = �β/L)

〈x| exp(−βĤ)|x′〉 =

lim
L→∞

1
A

L−1∏

j=1

[∫
dxj
A

]
exp

⎧
⎨

⎩
−1

�

L∑

j=1

[
m

2
(xj − xj−1)2

ε
+ εV (xj−1)

]
⎫
⎬

⎭
,(4.40)

where A = (2π�ε/m)1/2 and x0 = x and xL = x′. Alternatively, one may
expand the individual paths in terms of an orthogonal function basis, e.g. by
the Fourier decomposition,

x(τ) = x +
(x′ − x)τ

�β
+

∞∑

k=1

ak sin
kπτ

�β
,

and express the density matrix as

〈x| exp(−βĤ)|x′〉 = lim
L′→∞

J exp
{
− m

2�2β
(x− x′)2

}
×

×
∫ L′

∏

k=1

dak exp
{
− a2

k

2σ2
k

}
× exp

⎧
⎨

⎩
−1

�

�β∫

0

V (x(τ))dτ

⎫
⎬

⎭
,

16 There have been attempts to apply the Monte Carlo method to path integrals
also for real time. However, due to the oscillating exponential one then has to deal
with problems of numerical cancellation, and it is much harder to obtain results of
some numerical accuracy. Therefore, we will here restrict myself to Monte Carlo
work in imaginary time.
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where σk = [2�
2β/m(πk)2]1/2 and J is the Jacobian of the transformation

from the integral over all paths to the integral over all Fourier coefficients. A
systematic error then arises from the loss of information by the finite number
L of points xi on the discretized time axis or by the finite number L′ of Fourier
components ak that are taken into account in the Monte Carlo sampling of
the paths.

The other error source of Monte Carlo data is the statistical error due to
the finite number Nm of paths that form the sample used for evaluating the
statistical averages. To make matters worse, the probability of configurations
is, in general highly peaked, making an independent sampling of paths highly
inefficient in most cases. The remedy is to introduce some way of ‘importance
sampling’ where configurations are generated according to their probability
given by the exponential in (4.39). Statistical averages may then be computed
as simple arithmetic means. A way to achieve this is by constructing Markov
chains where transition probabilities between configuration are constructed
that allow to generate a new configuration from a given one such that in the
limit of infinitely many configurations the correct probability distribution of
paths results. A very simple and universally applicable algorithm to set up
such a Markov chain is the Metropolis algorithm introduced in 1953 [MRR53].
Here a new configuration is obtained by looking at some configuration with
only one variable changed and accepting or rejecting it for the sample on the
basis of a simple rule that depends only on the respective energies of the two
configurations. The advantages of importance sampling on the basis of Markov
chains are obtained on the cost that, in general, successive configurations are
not statistically independent but autocorrelated. The crucial quantity is the
integrated autocorrelation time τ int

O of a quantity of interest O = 〈O〉 with
O = (1/Nm)

∑Nm

i=1Oi and Oi computed for each path i in the sample. It enters
the statistical error estimate ΔO for expectation values of O computed from
a Monte Carlo sample of Nm autocorrelated configurations as

ΔO =

√
σ2
O〉

Nm

√
2τ int

O ,

where σ2
Oi

is the variance of Oi.
With Monte Carlo generated samples of Feynman paths one can thus ‘mea-

sure’ thermodynamic properties of quantum systems like the internal energy
and the specific heat, but also gain more detailed information about correla-
tion functions, probability distributions and the like. In the low–temperature
limit, β →∞, quantum mechanical ground state properties are recovered.

The feasibility of evaluating the quantum statistical partition function of
many–particle systems by Monte Carlo sampling of paths was well established
by the early eighties and the method began to be applied to concrete prob-
lems, in particular in the chemical physics literature. It had also become clear
that the method had severe restrictions if numerical accuracy was called for.
In addition to the statistical error inherent to the Monte Carlo method, a
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systematic error was unavoidably introduced by the necessary discretization
of the paths. Attempts to improve the accuracy by algorithmic improvements
to reduce both the systematic and the statistical errors were reported in sub-
sequent years. The literature is abundant and rather than trying to review
the field we will only indicate some pertinent paths of development.

In Fourier PIMC methods, introduced in 1983 in the chemical physics con-
text by Doll and Freeman [DF84, FD84], the systematic error arises from the
fact that only a finite number of Fourier components are taken into account.
Here the systematic error could be reduced by the method of partial averaging
[CFD86].

In discrete time approximations arising from the short–time propagator or,
equivalently, the high–temperature Green’s function various attempts have
been made to find more rapidly converging formulations. Among these are
attempts to include higher terms in an expansion of the Wigner–Kirkwood
type, i.e. an expansion in terms of �

2/2m. Taking into account the first term
of such an expansion would imply to replace the potential term εV (xj−1) in
(4.40) by [RR83, LB87, KTL88]

εV (xj−1) →
ε

x− x′

∫ x′

x

dyV (y).

This improves the convergence of the density matrix (4.40) (from even less
than O(1/L)) to O(1/L2). For the full partition function, the convergence of
the simple discretization scheme is already of order O(1/L2) since due to the
cyclic property of the trace, the discretization εV (xj−1) is then equivalent to a
symmetrized potential term ε(V (xj−1)+V (xj))/2. The convergence behavior
of these formulations follows from the Trotter decomposition formula,

e−(A+B) =
[
e−

A
L e−

B
L

]L
+O(

1
L

) =
[
e−

A
2L e−

B
L e−

A
2L

]L
+O(

1
L2

),

valid for non-commuting operators A and B in a Banach space, identify-
ing A with the kinetic energy β

∑
p̂2
i /2mi and B with the potential energy

βV ({x̂i}). More rapidly converging discretization schemes were investigated
on the basis of higher-order decompositions. Unfortunately, a direct, ‘fractal’
decomposition [Suz90] of the form

e−(A+B) = lim
L→∞

[
eα1

A
L eβ1

B
L eα2

A
L eβ2

B
L . . .

]L
,

∑
αi =

∑
βi = 1,

inevitably leads to negative coefficients for higher decompositions [Suz91] and
is therefore not amenable to Monte Carlo sampling of paths [JS92]. Higher–
order Trotter decomposition schemes involving commutators have proven to
be more successful [RR83, LB87, KTL88]. In particular, a decomposition of
the form

Z = lim
L→∞

Tr
[
e−

A
2L e−

B
2L e−

[[B,A],B]
24L3 e−

B
2L e−

A
2L

]L
,
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derivable by making use of the cyclic property of the trace, is convergent of
order O(1/L4) and amounts to simply replacing the potential εV in (4.40) by
an effective potential

Veff = V +
(β�)2

24mL2
(V ′)2.

Another problem for the numerical accuracy of PIMC simulations arises
from the analog of the critical slowing down problem well–known for local
update algorithms at second–order phase transitions in the simulation of spin
systems and lattice field theory. Since the correlations 〈xjxj+k〉 between vari-
ables xj and xj+k in the discrete time approximation only depend on the
temperature and on the gaps between the energy levels and not, or at least
not appreciably, on the discretization parameter ε, the correlation length ζ
along the discretized time axis always diverges linearly with L when mea-
sured in units of the lattice spacing ε. Hence in the continuum limit of ε→ 0
with β fixed or, equivalently, of L→∞ for local, importance sampling update
algorithms, like the standard Metropolis algorithm, a slowing down occurs be-
cause paths generated in the Monte Carlo process become highly correlated.
Since for simulations using the Metropolis algorithm autocorrelation times di-
verge as τ int

O ∝ Lz with z ≈ 2 the computational effort (CPU time) to achieve
comparable numerical accuracy in the continuum limit L → ∞ diverges as
L× Lz = Lz+1.

To overcome this drawback, ad hoc algorithmic modifications like intro-
ducing collective moves of the path as a whole between local Metropolis up-
dates were introduced then and again. One of the earliest more systematic
and successful attempts to reduce autocorrelations between successive path
configurations was introduced by [PC84]. Rewriting the discretized path in-
tegral, their method essentially amounts to a recursive transformation of the
variables xi in such a way that the kinetic part of the energy can be taken
care of by sampling direct Gaussian random variables and a Metropolis choice
is made for the potential part. The recursive transformation can be done be-
tween some fixed points of the discretized paths, and the method has been
applied in such a way that successively finer discretizations of the path were
introduced between neighbouring points. Invoking the polymer analog of the
discretized path this method was christened the staging algorithm by [SKC85].

The staging algorithm decorrelates successive paths very effectively be-
cause the whole staging section of the path is essentially sampled indepen-
dently. In 1993, another explicitly non–local update was applied to PIMC
simulations [JS93] by transferring the so–called multigrid method known from
the simulation of spin systems. Originating in the theory of numerical solu-
tions of partial differential equations, the idea of the multigrid method is to
introduce a hierarchy of successively coarser grids in order to take into ac-
count long wavelength fluctuations more effectively. Moving variables of the
coarser grids then amounts to a collective move of neighbouring variables of
the finer grids, and the formulation allows to give a recursive description of
how to cycle most effectively through the various levels of the multigrid. Par-
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ticularly successful is the so–called W–cycle. Both the staging algorithm and
the multigrid W–cycle have been shown to beat the slowing down problem in
the continuum limit completely by reducing the exponent z to z ≈ 0 [JS96].

Another cause of severe correlations between paths arises if the probability
density of configurations is sharply peaked with high maxima separated by
regions of very low probability density. In the statistical mechanics of spin
systems this is the case at a first-order phase transition. In PIMC simulations
the problem arises for tunneling situations like, e.g., for a double well potential
with a high potential barrier between the two wells. In these cases, an unbiased
probing of the configuration space becomes difficult because the system tends
to get stuck around one of the probability maxima. A remedy to this problem
is to simulate an auxiliary distribution that is flat between the maxima and to
recover the correct Boltzmann distribution by an appropriate reweighting of
the sample. The procedure is known under the name of umbrella sampling or
multicanonical sampling . It was shown to reduce autocorrelations for PIMC
simulations of a single particle in a 1D double well, and it can also be combined
with multigrid acceleration [JS94].

The statistical error associated with a Monte Carlo estimate of an ob-
servable O cannot only be reduced by reducing autocorrelation times τ int

O . If
the observable can be measured with two different estimators Ui that yield
the same mean U

(L)
i = 〈Ui〉 with O = limL→∞ U

(L)
i , the estimator with the

smaller variance σ2
Ui

is to be preferred. Straighforward differentiation of the
discretized path integral (4.40) leads to an estimator of the energy that ex-
plicitly measures the kinetic and potential parts of the energy by

Uk =
L

2β
− m

2L

∑(
xj − xj−1

ε

)2

+
1
L

L∑

i=1

V (xi).

The variance of this so–called kinetic–energy estimator diverges with L. An-
other estimator can be derived by invoking the path analog of the virial the-
orem

L

2β
− m

2

〈(
xj − xj−1

ε

)2
〉

=
1
2
〈xjV ′(xj)〉,

and the variance of the virial estimator

Uv =
1

2L

L∑

i=1

xiV
′(xi) +

1
L

L∑

i=1

V (xi)

does not depend on L. In the early eighties, investigations of the ‘kinetic’ and
the ‘virial’ estimators focussed on their variances [PR84]. Some years later,
it was pointed out that a correct assessment of the accuracy also has to take
into account the autocorrelations, and it was demonstrated that for a standard
Metropolis simulation of the harmonic oscillator the allegedly less successful
‘kinetic’ estimator gave smaller errors than the ‘virial’ estimator. In 1989 it
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was shown [CB89] that conclusions about the accuracy also depend on the
particular Monte Carlo update algorithm at hand since modifications of the
update scheme such as inclusion of collective moves of the whole path affect the
autocorrelations of the two estimators in a different way. A careful comparison
of the two estimators which disentangles the various factors involved was given
in [JS97]. Here it was also shown that a further reduction of the error may be
achieved by a proper combination of both estimators without extra cost.

Application of the Monte Carlo method to quantum systems is not re-
stricted to direct sampling of Feynman paths but this method has attractive
features. It is not only conceptually suggestive but also allows for algorithmic
improvements that help to make the method useful even when the problems
at hand requires considerable numerical accuracy. However, algorithmic im-
provements like the ones alluded to above have tended to be proposed and
tested mainly for simple, one–particle systems. On the other hand, the power
of the Monte Carlo method is, of course, most welcome in those cases where
analytical methods fail. For more complicated systems, however, evaluation
of the algorithms and control of numerical accuracy is also more difficult.
Only recently, a comparison of the efficiency of Fourier– and discrete–time
path integral Monte Carlo for a cluster of 22 hydrogen molecules was pre-
sented [CGC98]—and debated [DF99, CGC99]. Nevertheless, path integral
Monte Carlo simulations have become an essential tool for the treatment of
strongly interacting quantum systems, like, e.g., the theory of condensed he-
lium [Cep95].

For more details on path–integral Monte carlo techniques, see [Sau01].

4.2 Sum over Geometries and Topologies

Recall that the term quantum gravity (or quantum geometrodynamics, or quan-
tum geometry), is usually understood as a consistent fundamental quantum
description of gravitational space–time geometry whose classical limit is Ein-
stein’s general relativity. Among the possible ramifications of such a theory are
a model for the structure of space–time near the Planck scale, a consistent cal-
culational scheme to calculate gravitational effects at all energies, a description
of quantum geometry near space–time singularities and a non–perturbative
quantum description of 4D black holes. It might also help us in understand-
ing cosmological issues about the beginning and end of the universe, i.e., the
so–called ‘big bang’ and ‘Big–Crunch’ (see e.g., [Pen89, Pen94, Pen97]).

From what we know about the quantum dynamics of other fundamental in-
teractions it seems eminently plausible that also the gravitational excitations
should at very short scales be governed by quantum laws. Now, conventional
perturbative path integral expansions of gravity, as well as perturbative ex-
pansion in the string coupling in the case of unified approaches, both have
difficulty in finding any direct or indirect evidence for quantum gravitational
effects, be they experimental or observational, which could give a feedback for
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model building. The outstanding problems mentioned above require a non–
perturbative treatment; it is not sufficient to know the first few terms of a
perturbation series. The real goal is to search for a non–perturbative defini-
tion of such a theory, where the initial input of any fixed ‘background metric’
is inessential (or even undesirable), and where ‘space–time’ is determined dy-
namically. Whether or not such an approach necessarily requires the inclusion
of higher dimensions and fundamental supersymmetry is currently unknown
(see [AK93, AL98, AJL00a, AJL00b, AJL01a, AJL01b, AJL01d, DL01]).

Such a non–perturbative viewpoint is very much in line with how one
proceeds in classical geometrodynamics, where a metric space–time (M, gμν)
(+ matter) emerges only as a solution to the familiar Einstein equation

Gμν [g] ≡ Rμν [g]−
1
2
gμνR[g] = −8πTμν [Φ], (4.41)

which define the classical dynamics of fields Φ = Φμν on the space M(M), the
space of all metrics g = gμν on a given smooth manifold M . The analogous
question we want to address in the quantum theory is: Can we get ‘quantum
space–time’ as a solution to a set of non–perturbative quantum equations of
motion on a suitable quantum analogue of M(M) or rather, of the space of
geometries, Geom(M) =M(M)/Diff(M)?

Now, this is not a completely straightforward task. Whichever way we
want to proceed non–perturbatively, if we give up the privileged role of a flat,
Minkowskian background space–time on which the quantization is to take
place, we also have to abandon the central role usually played by the Poincaré
group, and with it most standard quantum field–theoretic tools for regular-
ization and renormalization. If one works in a continuum metric formulation
of gravity, the symmetry group of the Einstein–Hilbert action is instead the
group Diff(M) of diffeomorphisms on M , which in terms of local charts are
the smooth invertible coordinate transformations xμ �→ yμ(xμ).

In the following, we will describe a non–perturbative path integral ap-
proach to quantum gravity, defined on the space of all geometries, without
distinguishing any background metric structure [Lol01]. This is closely related
in spirit with the canonical approach of loop quantum gravity [Rov98] and its
more recent incarnations using so–called spin networks (see, e.g., [Ori01]).
‘Non–perturbative’ here means in a covariant context that the path sum or
integral will have to be performed explicitly, and not just evaluated around
its stationary points, which can only be achieved in an appropriate regular-
ization. The method we will employ uses a discrete lattice regularization as
an intermediate step in the construction of the quantum theory.

4.2.1 Simplicial Quantum Geometry

In this section we will explain how one may construct a theory of quantum
gravity from a non–perturbative path integral, using the method of Lorentzian
dynamical triangulations. The method is minimal in the sense of employing
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standard tools from quantum field theory and the theory of critical phenom-
ena and adapting them to the case of generally covariant systems, without
invoking any symmetries beyond those of the classical theory. At an interme-
diate stage of the construction, we use a regularization in terms of simplicial
Regge geometries, that is, piecewise linear manifolds. In this approach, ‘com-
puting the path integral’ amounts to a conceptually simple and geometrically
transparent ‘counting of geometries’, with additional weight factors which are
determined by the EH action. This is done first of all at a regularized level.
Subsequently, one searches for interesting continuum limits of these discrete
models which are possible candidates for theories of quantum gravity, a step
that will always involve a renormalization. From the point of view of statistical
mechanics, one may think of Lorentzian dynamical triangulations as a new
class of statistical models of Lorentzian random surfaces in various dimen-
sions, whose building blocks are flat simplices which carry a ‘time arrow’, and
whose dynamics is entirely governed by their intrinsic geometric properties.

Before describing the details of the construction, it may be helpful to
recall the path integral representation for a 1D non–relativistic particle (see
previous subsection). The time evolution of the particle’s wave function ψ may
be described by the integral equation (4.3) above, where the propagator, or the
Feynman kernel G, is defined through a limiting procedure (4.4). The time
interval t′′− t′ has been discretized into N steps of length ε = (t′′− t′)/N , and
the r.h.s. of (4.4) represents an integral over all piecewise linear paths x(t) of
a ‘virtual’ particle propagating from x′ to x′′, illustrated in Figure 4.4 above.

The prefactor A−N is a normalization and L denotes the Lagrangian func-
tion of the particle. Knowing the propagator G is tantamount to having solved
the quantum dynamics. This is the simplest instance of a path integral, and
is often written schematically as

G(x′, t′;x′′, t′′) =
∫
Σ D[x(t)] eiS[x(t)], (4.42)

where D[x(t)] is a functional measure on the ‘space of all paths’, and the
exponential weight depends on the classical action S[x(t)] of a path. Recall
also that this procedure can be defined in a mathematically clean way if we
Wick–rotate the time variable t to imaginary values t �→ τ = it, thereby
making all integrals real [RS75].

Can a similar strategy work for the case of Einstein geometrodynamics?
As an analogue of the particle’s position we can take the geometry [gij(x)]
(i.e., an equivalence class of spatial metrics) of a constant–time slice. Can one
then define a gravitational propagator

G([g′ij ], [g
′′
ij ]) =

∫
Σ Geom(M)D[gμν ] eiSEH[gμν ] (4.43)

from an initial geometry [g′] to a final geometry [g′′] (Figure 4.7) as a limit
of some discrete construction analogous to that of the non-relativistic particle
(4.4)? And crucially, what would be a suitable class of ‘paths’, that is, space–
times [gμν ] to sum over?
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Fig. 4.7. The time–honoured way [HE79] of illustrating the gravitational path
integral as the propagator from an initial to a final spatial boundary geometry.

Now, to be able to perform the integration
∫
Σ D[gμν ] in a meaningful way,

the strategy we will be following starts from a regularized version of the space
Geom(M) of all geometries. A regularized path integral G(a) can be defined
which depends on an ultraviolet cutoff a and is convergent in a non–trivial
region of the space of coupling constants. Taking the continuum limit corre-
sponds to letting a→ 0. The resulting continuum theory – if it can be shown
to exist – is then investigated with regard to its geometric properties and in
particular its semiclassical limit.

4.2.2 Discrete Gravitational Path Integrals

Trying to construct non–perturbative path integrals for gravity from sums
over discretized geometries, using approach of Lorentzian dynamical triangu-
lations, is not a new idea. Inspired by the successes of lattice gauge theory,
attempts to describe quantum gravity by similar methods have been popular
on and off since the late 70’s. Initially the emphasis was on gauge–theoretic,
first–order formulations of gravity, usually based on (compactified versions
of) the Lorentz group, followed in the 80’s by ‘quantum Regge calculus’, an
attempt to represent the gravitational path integral as an integral over cer-
tain piecewise linear geometries (see [Wil97] and references therein), which
had first made an appearance in approximate descriptions of classical solu-
tions of the Einstein equations. A variant of this approach by the name of
‘dynamical triangulation(s)’ attracted a lot of interest during the 90’s, partly
because it had proved a powerful tool in describing 2D quantum gravity (see
the textbook [ADJ97] and lecture notes [AJL00a] for more details).

The problem is that none of these attempts have so far come up with con-
vincing evidence for the existence of an underlying continuum theory of 4D
quantum gravity. This conclusion is drawn largely on the basis of numerical
simulations, so it is by no means water–tight, although one can make an ar-
gument that the ‘symptoms’ of failure are related in the various approaches
[Lol98]. What goes wrong generically seems to be a dominance in the con-



478 4 Nonlinear Dynamics of Path Integrals

tinuum limit of highly degenerate geometries, whose precise form depends on
the approach chosen. One would expect that non–smooth geometries play a
decisive role, in the same way as it can be shown in the particle case that
the support of the measure in the continuum limit is on a set of nowhere
differentiable paths. However, what seems to happen in the case of the path
integral for 4–geometries is that the structures get are too wild, in the sense
of not generating, even at coarse–grained scales, an effective geometry whose
dimension is anywhere near four.

The schematic phase diagram of Euclidean dynamical triangulations shown
in Figure 4.8 gives an example of what can happen. The picture turns out to
be essentially the same in both three and four dimensions: the model possesses
infinite-volume limits everywhere along the critical line kcrit

3 (k0), which fixes
the bare cosmological constant as a function of the inverse Newton constant
k0 ∼ G−1

N . Along this line, there is a critical point kcrit
0 (which we now know

to be of first–order in d = 3, 4) below which geometries generically have a
very large effective or Hausdorff dimension.17 Above kcrit

0 we find the opposite
phenomenon of ‘polymerization’: a typical element contributing to the state
sum is a thin branched polymer, with one or more dimensions ‘curled up’ such
that its effective dimension is around two.

Fig. 4.8. The phase diagram of 3D and 4D Euclidean dynamical triangulations
(adapted from [AJL00b, AJL01a]).

This problem has to do with the fact that the gravitational action is un-
bounded below, causing potential havoc in Euclidean versions of the path
integral. Namely, what all the above-mentioned approaches have in common
is that they work from the outset with Euclidean geometries, and associated
Boltzmann-type weights exp(−Seu) in the path integral. In other words, they
integrate over ‘space–times’ which know nothing about time, light cones and
17 In terms of geometry, this means that there are a few vertices at which the entire

space–time ‘condenses’ in the sense that almost every other vertex in the simplicial
space–time is about one link-distance away from them.
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Fig. 4.9. Positive (a) and negative (b) space–like deficit angles δ (adapted from
[Lol01, Lol98]).

causality. This is done mainly for technical reasons, since it is difficult to set
up simulations with complex weights and since until recently a suitable Wick
rotation was not known.

‘Lorentzian dynamical triangulations’, first proposed in [AL98] and further
elaborated in [AJL00b, AJL01a] tries to establish a logical connection between
the fact that non–perturbative path integrals were constructed for Euclidean
instead of Lorentzian geometries and their apparent failure to lead to an
interesting continuum theory.

4.2.3 Regge Calculus

The use of simplicial methods in general relativity goes back to the pioneering
work of Regge [Reg61]. In classical applications one tries to approximate a
classical space–time geometry by a triangulation, that is, a piecewise linear
space get by gluing together flat simplicial building blocks, which in dimension
d are dD generalizations of triangles. By ‘flat’ we mean that they are isometric
to a subspace of dD Euclidean or Minkowski space. We will only be interested
in gluings leading to genuine manifolds, which therefore look locally like an Rd.
A nice feature of such simplicial manifolds is that their geometric properties
are completely described by the discrete set {l2i } of the squared lengths of
their edges. Note that this amounts to a description of geometry without
the use of coordinates. There is nothing to prevent us from re–introducing
coordinate patches covering the piecewise linear manifold, for example, on
each individual simplex, with suitable transition functions between patches.
In such a coordinate system the metric tensor will then assume a definite
form. However, for the purposes of formulating the path integral we will not
be interested in doing this, but rather work with the edge lengths, which
constitute a direct, regularized parametrization of the space Geom(M) of
geometries.

How precisely is the intrinsic geometry of a simplicial space, most impor-
tantly, its curvature, encoded in its edge lengths? A useful example to keep in
mind is the case of dimension two, which can easily be visualized. A 2d piece-
wise linear space is a triangulation, and its scalar curvature R(x) coincides
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with the Gaussian curvature (see [II07b]). One way of measuring this curva-
ture is by parallel–transporting a vector around closed curves in the manifold.
In our piecewise–flat manifold such a vector will always return to its original
orientation unless it has surrounded lattice vertices v at which the surround-
ing angles did not add up to 2π, but

∑
i⊃v αi = 2π − δ, for δ �= 0, see Figure

4.9. The so–called deficit angle δ is precisely the rotation angle picked up by
the vector and is a direct measure for the scalar curvature at the vertex. The
operational description to get the scalar curvature in higher dimensions is very
similar, one basically has to sum in each point over the Gaussian curvatures of
all 2D submanifolds. This explains why in Regge calculus the curvature part
of the EH action is given by a sum over building blocks of dimension (d− 2)
which are the objects dual to those local 2d submanifolds. More precisely, the
continuum curvature and volume terms of the action become

1
2

∫

R
ddx

√
|det g|(d)R −→

∑

i∈R
V ol(ith (d− 2)−simplex) δi (4.44)

∫

R
ddx

√
|det g| −→

∑

i∈R
V ol(ith d−simplex) (4.45)

in the simplicial discretization. It is then a simple exercise in trigonometry to
express the volumes and angles appearing in these formulas as functions of
the edge lengths li, both in the Euclidean and the Minkowskian case.

The approach of dynamical triangulations uses a certain class of such
simplicial space–times as an explicit, regularized realization of the space
Geom(M). For a given volume Nd, this class consists of all gluings of manifold–
type of a set of Nd simplicial building blocks of top–dimension d whose edge
lengths are restricted to take either one or one out of two values. In the Eu-
clidean case we set l2i = a2 for all i, and in the Lorentzian case we allow
for both space- and time–like links with l2i ∈ {−a2, a2}, where the geodesic
distance a serves as a short-distance cutoff, which will be taken to zero later.
Coming from the classical theory this may seem a grave restriction at first,
but this is indeed not the case. Firstly, keep in mind that for the purposes of
the quantum theory we want to sample the space of geometries ‘ergodically’ at
a coarse-grained scale of order a. This should be contrasted with the classical
theory where the objective is usually to approximate a given, fixed space–time
to within a length scale a. In the latter case one typically requires a much finer
topology on the space of metrics or geometries. It is also straightforward to see
that no local curvature degrees of freedom are suppressed by fixing the edge
lengths; deficit angles in all directions are still present, although they take on
only a discretized set of values. In this sense, in dynamical triangulations all
geometry is in the gluing of the fundamental building blocks. This is dual to
how quantum Regge calculus is set up, where one usually fixes a triangulation
T and then ‘scans’ the space of geometries by letting the li’s run continuously
over all values compatible with the triangular inequalities.
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In a nutshell, Lorentzian dynamical triangulations give a definite meaning
to the ‘integral over geometries’, namely, as a sum over inequivalent Lorentzian
gluings T over any number Nd of d−simplices,

∫
Σ Geom(M)D[gμν ] eiS[gμν ] LDT−→

∑

T∈T

1
CT

eiSReg(T ), (4.46)

where the symmetry factor CT = |Aut(T )| on the r.h.s. is the order of the
automorphism group of the triangulation, consisting of all maps of T onto
itself which preserve the connectivity of the simplicial lattice. We will specify
below what precise class T of triangulations should appear in the summation.

It follows from the above that in this formulation all curvatures and vol-
umes contributing to the Regge simplicial action come in discrete units. This
can be illustrated by the case of a 2D triangulation with Euclidean signature,
which according to the prescription of dynamical triangulations consists of
equilateral triangles with squared edge lengths +a2. All interior angles of such
a triangle are equal to π/3, which implies that the deficit angle at any vertex
v can take the values 2π−kvπ/3, where kv is the number of triangles meeting
at v. As a consequence, the Einstein–Regge action SReg assumes the simple
form

SReg(T ) = κd−2Nd−2 − κdNd, (4.47)

where the coupling constants κi = κi(λ,GN ) are simple functions of the bare
cosmological and Newton constants in d dimensions. Substituting this into
the path sum in (4.46) leads to

Z(κd−2, κd) =
∑

Nd

e−iκdNd

∑

Nd−2

eiκd−2Nd−2
∑

T |Nd,Nd−2

1
CT

, (4.48)

The point of taking separate sums over the numbers of d− and (d−2)−simpli-
ces in (4.48) is to make explicit that ‘doing the sum’ is tantamount to the
combinatorial problem of counting triangulations of a given volume and num-
ber of simplices of codimension 2 (corresponding to the last summation in
(4.48)).18 It turns out that at least in two space–time dimensions the count-
ing of geometries can be done completely explicitly, turning both Lorentzian
and Euclidean quantum gravity into exactly soluble statistical models.

4.2.4 Lorentzian Path Integral

Now, the simplicial building blocks of the models are taken to be pieces of
Minkowski space, and their edges have squared lengths +a2 or −a2. For ex-
ample, the two types of 4–simplices that are used in Lorentzian dynamical
triangulations in dimension four are shown in Figure 4.10. The first of them
has four time–like and six space–like links (and therefore contains 4 time–like
18 The symmetry factor CT is almost always equal to 1 for large triangulations.
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Fig. 4.10. Two types of Minkowskian 4–simplices in 4D (adapted from [Lol01,
Lol98]).

and 1 space–like tetrahedron), whereas the second one has six time–like and
four space–like links (and contains 5 time–like tetrahedra). Since both are
subspaces of flat space with signature (− + ++), they possess well–defined
light–cone structures everywhere [Lol01, Lol98].

In general, gluings between pairs of d−simplices are only possible when
the metric properties of their (d − 1)−faces match. Having local light cones
implies causal relations between pairs of points in local neighborhoods. Cre-
ating closed time–like curves will be avoided by requiring that all space–times
contributing to the path sum possess a global ‘time’ function t. In terms of
the triangulation this means that the d−simplices are arranged such that their
space–like links all lie in slices of constant integer t, and their time–like links
interpolate between adjacent spatial slices t and t+1. Moreover, with respect
to this time, we will not allow for any spatial topology changes19.

This latter condition is always satisfied in classical applications, where
‘trouser points’ like the one depicted in Figure 4.14 (see previous Chapter)
are ruled out by the requirement of having a non–degenerate Lorentzian metric
defined everywhere on M (it is geometrically obvious that the light cone and
hence gμν must degenerate in at least one point along the ‘crotch’). Another
way of thinking about such configurations (and their time–reversed counter-
parts) is that the causal past (future) of an observer changes discontinuously
as her world–line passes near the singular point. See [Dow02] and references
therein for related discussions about the issue of topology change in quantum
gravity.

There is no a priori reason in the quantum theory to not relax some
of these classical causality constraints. After all, as we stressed right at the
outset, path integral histories are not in general classical solutions, nor can we
attribute any other direct physical meaning to them individually. It might well
be that one can construct models whose path integral configurations violate
causality in this strict sense, but where this notion is somehow recovered in
the resulting continuum theory. What the approach of Lorentzian dynamical
triangulations has demonstrated is that imposing causality constraints will
in general lead to a different continuum theory. This is in contrast with the
intuition one may have that ‘including a few isolated singular points will not
19 Note that if we were in the continuum and had introduced coordinates on space–

time, such a statement would actually be diffeomorphism–invariant.
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make any difference’. On the contrary, tampering with causality in this way
is not innocent at all, as was already anticipated by Teitelboim many years
ago [Tei83].

We want to point out that one cannot conclude from the above that spatial
topology changes or even fluctuations in the space–time topology cannot be
treated in the formulation of dynamical triangulations. However, if one insists
on including geometries of variable topology in a Lorentzian discrete context,
one has to come up with a prescription of how to weigh these singular points
in the path integral, both before and after the Wick rotation [Das02].

Having said this, we next have to address the question of the Wick rotation,
in other words, of how to get rid of the factor of i in the exponent of (4.48).
Without it, this expression is an infinite sum (since the volume can become
arbitrarily large) of complex terms whose convergence properties will be very
difficult to establish. In this situation, a Wick rotation is simply a technical
tool which – in the best of all worlds – enables us to perform the state sum and
determine its continuum limit. The end result will have to be Wick–rotated
back to Lorentzian signature.

Fortunately, Lorentzian dynamical triangulations come with a natural no-
tion of Wick rotation, and the strategy we just outlined can be carried out
explicitly in two space–time dimensions, leading to a unitary theory. In higher
dimensions we do not yet have sufficient analytical control of the continuum
theories to make specific statements about the inverse Wick rotation. Since
we use the Wick rotation at an intermediate step, one can ask whether other
Wick rotations would lead to the same result. Currently this is a somewhat
academic question, since it is in practice difficult to find such alternatives.
In fact, it is quite miraculous we have found a single prescription for Wick–
rotating in our regularized setting, and it does not seem to have a direct
continuum analogue (for more comments on this issue, see [DL01, Das02]).

Our Wick rotation W in any dimension is an injective map from Lorentzian–
to Euclidean–signature simplicial space–times. Using the notation T for a sim-
plicial manifold together with length assignments l2s and l2t to its space– and
time–like links, it is defined by

Tlor = (T, {l2s = a2, l2t = −a2}) W�−→ Teu = (T, {l2s = a2, l2t = a2}). (4.49)

Note that we have not touched the connectivity of the simplicial manifold
T , but only its metric properties, by mapping all time–like links of T into
space–like ones, resulting in a Euclidean ‘space–time’ of equilateral building
blocks. It can be shown [AJL01a] that at the level of the corresponding weight
factors in the path integral this Wick rotation20 has precisely the desired effect
of rotating to the exponentiated Regge action of the ‘Euclideanized’ geometry,
20 To get a genuine Wick rotation and not just a discrete map, one introduces a

complex parameter α in l2t = −αa2. The proper prescription leading to (4.50) is
then an analytic continuation of α from 1 to −1 through the lower–half complex–
plane.
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eiS(T lor) W�−→ e−S(T eu). (4.50)

The Euclideanized path sum after the Wick rotation has the form

Zeu(κd−2, κd) =
∑

T

1
CT

e−κdNd(T )+κd−2Nd−2(T )

=
∑

Nd

e−κdNd

∑

T |Nd

1
CT

eκd−2Nd−2(T )

=
∑

Nd

e−κdNd eκ
crit
d (κd−2)Nd × subleading(Nd). (4.51)

In the last equality we have used that the number of Lorentzian triangulations
of discrete volume Nd to leading order scales exponentially with Nd for large
volumes. This can be shown explicitly in space–time dimension 2 and 3. For
d = 4, there is strong (numerical) evidence for such an exponential bound for
Euclidean triangulations, from which the desired result for the Lorentzian case
follows (since W maps to a strict subset of all Euclidean simplicial manifolds).

From the functional form of the last line of (4.51) one can immediately
read off some qualitative features of the phase diagram, an example of which
appeared already earlier in Figure 4.8. Namely, the sum over geometries Zeu

converges for values κd > κcrit
d of the bare cosmological constant, and diverges

(ie. is not defined) below this critical line. Generically, for all models of dy-
namical triangulations the infinite–volume limit is attained by approaching
the critical line κcrit

d (κd−2) from above, ie. from inside the region of conver-
gence of Zeu. In the process of taking Nd →∞ and the cutoff a→ 0, one gets
a renormalized cosmological constant Λ through

(κd − κcrit
d ) = aμΛ + O(aμ+1). (4.52)

If the scaling is canonical (which means that the dimensionality of the renor-
malized coupling constant is the one expected from the classical theory), the
exponent is given by μ = d. Note that this construction requires a positive
bare cosmological constant in order to make the state sum converge. Moreover,
by virtue of relation (4.52) also the renormalized cosmological constant must
be positive. Other than that, its numerical value is not determined by this
argument, but by comparing observables of the theory which depend on Λ
with actual physical measurements.21 Another interesting observation is that
the inclusion of a sum over topologies in the discretized sum (4.51) would lead
to a super–exponential growth of at least ∝ Nd! of the number of triangula-
tions with the volume Nd. Such a divergence of the path integral cannot be
compensated by an additive renormalization of the cosmological constant of
the kind outlined above.
21 The non–negativity of the renormalized cosmological coupling may be taken as a

first ‘prediction’ of our construction, which in the physical case of four dimensions
is indeed in agreement with current observations.
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There are ways in which one can sum divergent series of this type, for
example, by performing a Borel sum. The problem with these stems from
the fact that two different functions can share the same asymptotic expan-
sion. Therefore, the series in itself is not sufficient to define the underlying
theory uniquely. The non–uniqueness arises because of non–perturbative con-
tributions to the path integral which are not represented in the perturbative
expansion.22 In order to fix these uniquely, an independent, non–perturbative
definition of the theory is necessary. Unfortunately, for dynamically triangu-
lated models of quantum gravity, no such definitions have been found so far.
In the context of 2D (Euclidean) quantum gravity this difficulty is known as
the ‘absence of a physically motivated double-scaling limit’ [AK93].

Lastly, getting an interesting continuum limit may or may not require an
additional fine–tuning of the inverse gravitational coupling κd−2, depending on
the dimension d. In four dimensions, one would expect to find a second-order
transition along the critical line, corresponding to local gravitonic excitations.
The situation in d = 3 is less clear, but results get so far indicate that no fine–
tuning of Newton’s constant is necessary [AJL01b, AJL01d].

Before delving into the details, let me summarize briefly the results that
have been get so far in the approach of Lorentzian dynamical triangulations.
At the regularized level, that is, in the presence of a finite cutoff a for the
edge lengths and an infrared cutoff for large space–time volume, they are
well–defined statistical models of Lorentzian random geometries in d = 2, 3, 4.
In particular, they obey a suitable notion of reflection-positivity and possess
self–adjoint Hamiltonians.

The crucial questions are then to what extent the underlying combinato-
rial problems of counting all dD geometries with certain causal properties can
be solved, whether continuum theories with non–trivial dynamics exist and
how their bare coupling constants get renormalized in the process. What we
know about Lorentzian dynamical triangulations so far is that they lead to
continuum theories of quantum gravity in dimension 2 and 3. In d = 2, there is
a complete analytic solution, which is distinct from the continuum theory pro-
duced by Euclidean dynamical triangulations. Also the matter–coupled model
has been studied. In d = 3, there are numerical and partial analytical results
which show that both a continuum theory exists and that it again differs from
its Euclidean counterpart. Work on a more complete analytic solution which
would give details about the geometric properties of the quantum theory is
under way. In d = 4, the first numerical simulations are currently being set
up. The challenge here is to do this for sufficiently large lattices, to be able
to perform meaningful measurements. So far, we cannot make any statements
about the existence and properties of a continuum theory in this physically
most interesting case.
22 A field–theoretic example would be instantons and renormalons in QCD.
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4.2.5 Non-Perturbative Quantum Gravity

A fascinating and deep question about nature is what one would see if one
could probe space and time at smaller and smaller distances. Already the
19th–century founders of modern geometry contemplated the possibility that
a piece of empty space that looks completely smooth and structure-less to
the naked eye might have an intricate microstructure at a much smaller scale.
Our vastly increased understanding of the physical world acquired during the
20th century has made this a certainty. Two pillars of contemporary physics
support the expectation that as we resolve the fabric of space-time with an
imaginary microscope at ever smaller scales, space-time will turn from an
immutable stage into the actor itself. First, due to Heisenberg’s uncertainty
relations, probing space-time at very short distances is necessarily accompa-
nied by large quantum fluctuations in energy and momentum – the shorter
the distance, the larger the energy–momentum uncertainty. Second, accord-
ing to Einstein’s theory of general relativity, the presence of these energy
fluctuations, like that of any form of energy, will deform the geometry of
the space-time in which it resides, imparting curvature which is detectable
through the bending of light rays and particle trajectories. Taking these two
things together leads to the prediction that the quantum structure of space
and time at the Planck scale must be highly curved and dynamical [AJL06].

A long held ambition of theoretical physicists is to find a consistent de-
scription of this dynamical microstructure within a theory of quantum grav-
ity , which unifies quantum theory and general relativity, and to determine its
ramifications for high–energy physics and cosmology. Given the extraordinary
smallness of the Planck length, how can we achieve progress in describing a
physical situation that cannot be directly probed by experiment in the fore-
seeable future? The way this is usually done is by first postulating additional
dynamical principles or fundamental symmetries at small distances, which are
not accessible to direct experimental verification, second, verifying that these
do not conflict with standard quantum physics or general relativity as one
goes to larger scales, and third, predicting new physical phenomena that can
(at least in principle) be tested, or confirmed indirectly by astrophysical ob-
servations. Examples of fundamental building principles are that the universe
is made up of tiny vibrating strings, or that space-time at the Planck scale is
not a continuum, but consists of tiny discrete grains.

Research into quantum gravity falls broadly into two categories [Kie04,
Smo00]: non-perturbative approaches to quantum gravity, whose primary aim
is to quantize the gravitational degrees of freedom per se, introducing little
or no additional structure such as supersymmetry or extra dimensions, and
string–theoretic approaches, where the quantization of gravity appears almost
as a by-product of a unified higher–dimensional and supersymmetric ‘theory of
everything’, whose fundamental objects are strings and (mem)branes [Wit02,
Zwi04].
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Quantum gravity is quite unlike any other fundamental quantum inter-
action in that it describes the dynamics of an entity that in most physical
situations is considered as fixed and given, namely, that of space-time itself.
Recall that the degrees of freedom of a space-time in classical general rela-
tivity can be described by the space-time metric gμν(x), a local field variable
which determines the values of distance and angle measurements in space-
time, or, equivalently, how space-time is bent and curved locally. Space-time
is classically determined by solving the Einstein equations for gμν(x), subject
to boundary conditions and a particular matter content of the universe or a
piece thereof. In the same manner, in order to determine what space-time is
from a quantum–theoretical point of view, one would like to formulate a quan-
tum analogue of Einstein’s equations, from which quantum space-time should
then emerge as a solution. This should be contrasted with usual quantum field
theory, which describes the dynamics of elementary particles and their interac-
tions on a fixed space-time background, usually that of the flat, 4D Minkowski
space of special relativity. Since at short distances the gravitational forces are
so much weaker than the electromagnetic ones, say, it is usually an excel-
lent approximation to treat the gravitational degrees of freedom as ‘frozen in’
and non-dynamical. The trivial geometric structure of the Minkowski metric
forms merely part of the immutable background structure of how quantum
field theories are formulated. On the other hand, the physical situations that
quantum gravity aims to explain are not in general describable in terms of
linear fluctuations of the metric field around Minkowski space or some other
fixed background metric. These include the quantitative description of ‘empty’
space-time at very short distances of the order of the Planck scale, 10−35 m,
and of the extreme and ultradense state our universe presumably was in when
it was very young. From a technical point of view this implies that in quantum
gravity one has to modify standard quantization techniques which rely (some-
times implicitly) on the presence of a fixed metric background structure. This
is often phrased by saying that gravity must ultimately be quantized in a way
that is both background–independent (i.e., does not distinguish any particular
background metric at the outset) and non-perturbative (i.e., does not simply
describe the dynamics of linear perturbations around some fixed background
space-time). The most promising approach to constructing such a theory of
causal non-perturbative quantum gravity, is the method of causal yynamical
triangulations (CDT) [AJL06].

CDT Quantum Gravity

The CDT approach to quantum gravity is based on the space-time geometrical
generalization of the Feynman path integral. Recall from the previous section
that the basic idea of the quantum–mechanical path integral is to obtain a
solution to the quantum dynamics of a physical system by taking a superpo-
sition of ‘all possible’ configurations of the system, where each configuration
contributes a complex weight exp(iS) to the path integral, which depends on
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the classical action S =
∫

L(t) dt of the configuration, where L denotes the
system’s Lagrangian. For the case of a nonrelativistic particle moving in a
potential, the configurations are literally paths in space, i.e., continuous tra-
jectories x(τ) describing the particle’s position as a function of time τ , which
runs through an interval τ ∈ [0, t]. Superposing (that is, adding or integrating
up) the associated quantum amplitudes exp iSpart[x(τ)] as in (4.53) below,
one obtains a solution to the Schródinger equation of the particle.

It is important to realize that the individual paths x(τ) appearing in the
path integral are not themselves physical trajectories the particle could move
on, and even less solutions to the particle’s classical equations of motion.
Instead, they are so–called virtual paths, that is, a bunch of curves one can
draw between fixed initial and final points xi and xf . The magic of the path
integral

G(xi,xf , t) =
∫
Σpaths:xi→xfD[x]eiS

part[x(τ)] (4.53)

is that the true quantum physics of the particle is encoded precisely in the
superposition of all these virtual paths. In order to extract these physical prop-
erties, one has to evaluate suitable quantum operators Ô on the ensemble of
paths contributing to (4.53). For example, one may be interested in comput-
ing expectation values for the position or the energy of the particle, together
with their quantum fluctuations. Of course, the path integral or propagator
(4.53) also allows us to retrieve the classical behavior of the particle in a par-
ticular limit (in this case, when its mass becomes big), but it contains more
information, describing the full quantum dynamics of the system.

Analogously, a path integral for gravity is a superposition of all virtual
‘paths’ our universe (or a part thereof) can follow as time unfolds. These
paths are simply the different configurations for the metric field variables
gμν(x) mentioned earlier. It is important to realize that a single path is now
no longer an assignment of just three numbers (the coordinates xi of the
particle) to every moment τ in time, but rather the assignment to every τ of a
whole array of numbers (the space-space components gij(x) ≡ gij(x, τ) of the
metric tensor gμν(x)) for each spatial point x. This is simply a consequence
of gravity being a field theory with infinitely many degrees of freedom. The
path integral for gravity can thus be written as [AJL06]

G(gi,gf , t) =
∫
Σspace−times:gi→gfD[g]eiS

grav[gμν(x,τ)], (4.54)

where Sgrav now denotes the classical gravitational action associated with a
space-time metric gμν with initial and final boundary condition gi and gf , sep-
arated by a time distance t. Like in the particle case, the individual space-time
configurations interpolating between the initial and final spatial geometries
have nothing a priori to do with classical space-times, and are much more gen-
eral objects. Again, one would expect to be able to retrieve the full quantum
dynamics of space-time from the path integral (4.54), which is a superposi-
tion of all possible ways in which an empty space-time can be curved. In other
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words, the collective behavior of the virtual space-times contributing to the
gravitational propagator (4.54) should tell us what quantum space-time is.
To extract this geometric information, we will again have to evaluate suitable
quantum operators Ô on the ensemble of geometries contributing to (4.54).
Suffice it to say that making the gravitational path integral well–defined and
extracting the desired physical information is very much more difficult than
in the case of the quantum particle. The way in which CDT proceeds is by
giving a precise prescription of how the path integral (4.54) should be com-
puted, and in particular how the class of virtual paths should be chosen. In
addition, it provides a set of technical tools to extract concrete physical infor-
mation about the quantum geometry thus created by the principle of quantum
superposition.

There are a number of ways in which the path integral of CDT differs
from that of previous approaches. In the first instance, it is genuinely non-
perturbative, in that the contributing geometries can have very large curva-
ture fluctuations at very small scales and thus be arbitrarily far away from
any classical space-time. Our summation is ‘democratic’ in that no particu-
lar space-time geometry is distinguished at the outset. In fact, path integral
histories which have any geometric resemblance to a classical space-time are
so rare that their contribution to the path integral is effectively negligible.23

Secondly, as we will see in the following, the causal structure of the geome-
tries contributing to the path sum plays an important role in the method
of causal dynamical triangulations, and is a key new element in comparison
with previous, so–called Euclidean path–integral approaches to quantum grav-
ity [AJL06].

Space-Time Geometry in CDT

What we need to do next in order to make sense of the expression (4.54)
for the non-perturbative quantum–gravitational propagator is to define the
precise class of space-time geometries (labelled above by gμν) over which the
sum or integral is to be taken. As elsewhere in quantum field theory, one
is immediately confronted with the fact that unless one chooses a careful
regularization for the path integral, it will be wildly divergent and simply not
exist in any meaningful mathematical sense (and thus be useless for extracting
physical information). ‘Regularizing’ means making the path integral finite
by introducing certain cutoff parameters for the contributing configurations,
which at a later stage will be removed in a controlled manner.
23 This is completely analogous to the particle case, where it can be shown rigor-

ously that classical paths ‘form a set of measure zero’ with respect to the Wiener
measure of the path integral [RS75]. Maybe surprisingly, the paths which con-
tribute non-trivially are nowhere differentiable, and thus ‘consist only of corners’.
One expects a similarly nonclassical behavior for the dominant configurations of
the gravitational path integral.
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We start with explaining the nature of the regularized space-times used by
CDT, which are called ‘piecewise flat geometries’. Recall that the dynamical
degrees of freedom of a geometry are the ways in which it is locally curved.
Piecewise flat geometries are simply spaces that are flat (the same as straight
or uncurved, that is, structureless from a geometric point of view) everywhere
apart from small subspaces where curvature is said to be concentrated. This
in a way discretizes curvature and vastly reduces the different number of ways
space-time can be curved. The type of geometry we will use is a triangulated
space, also sometimes called a Regge geometry , after the physicist who first
introduced it into (classical) general relativity [Reg61]. It can be thought of
as a space glued together from elementary building blocks which are (higher–
dimensional generalizations of) triangles, so–called ‘simplices’. The geomet-
ric structure of each simplex is trivial, since it is by itself flat by definition
and therefore carries no curvature. Local curvature only appears along lower–
dimensional interfaces when one starts gluing the simplices together [AJL06].

This can be visualized most easily in the 2D case. Consider a set of identical
equilateral 2D triangles cut out from a piece of cardboard which is perfectly
straight and unbendable (and hence flat). To obtain a larger surface, start
gluing these triangles together by identifying their 1D sides or edges pairwise.
Points where several edges meet are also called vertices. One can obtain a piece
of flat space by arranging the triangles in a regular pattern so that exactly
six triangles and edges meet at each vertex. However, there are many more
ways to create curved spaces by the same gluing procedure. Namely, whenever
the number of triangles meeting at a vertex is smaller or larger than six, this
vertex will carry a positive or negative curvature. By ‘curvature’ we mean the
intrinsic curvature of the 2D surface, i.e. the curvature that can be detected
from within the surface – for example, by studying the trajectories of particles
or light rays –, and is independent of any higher-dimensional space in which
it may be imbedded. This mirrors a property of the physical theory of general
relativity in four dimensions, which likewise depends only on the intrinsic
geometry of space-time. The set-up in higher dimensions is identical, with
the 2D triangles (or ‘two–simplices’) substituted by the corresponding flat
higher–dimensional simplices (three–simplices (or tetrahedra) in dimension
3, four–simplices in dimension 4, etc.). Generally speaking, the fundamental
building blocks in dimension d are glued together pairwise along their (d −
1)−dimensional faces, and their intrinsic curvature is concentrated on the
(d− 2)−dimensional intersections of these faces.

The so–called Regge calculus [Wil97] was originally designed to approxi-
mate smooth classical space-times, or, more precisely, solutions to the Einstein
equations, by these piecewise flat, triangulated spaces. There are two reasons
for why this is a very economical way of describing a space-time. Firstly, only
a finite amount of data is necessary to completely characterize a finite piece
of space-time, namely, the geodesic invariant lengths of all the 1D edges of all
the simplices involved, and the way in which the d−dimensional simplices are
glued together. Secondly, because no coordinate system need ever be intro-



4.2 Sum over Geometries and Topologies 491

duced on the simplices, this formulation does not share the usual coordinate
redundance of Einstein gravity described in terms of the field variables gμν(x).

The use of Regge geometries in the quantum theory is not new, and CDT
builds on previous attempts of both ‘Quantum Regge Calculus’ [Ham00] and
‘Dynamical Triangulations’ [AJ92] to define a theory of quantum gravity from
a non-perturbative Euclidean path integral24. To avoid misunderstandings, it
should be emphasized that the use of triangulated space-times differs in classi-
cal and quantum applications. The objective in the former is to approximate
a single, smooth space-time (which may or may not be known exactly by
some other method) as well as possible. This can be achieved by choosing a
sequence of triangulations, where in each step of the sequence the triangula-
tion is chosen finer than in the previous step (i.e., the typical edge length is
decreased) and therefore can converge to the smooth manifold in a point-wise
sense. In the 2D example, it is quite clear that such an approximation can
be very good when the edge lengths become much smaller than the scale at
which the smooth space-time is curved.

By contrast, the objective of the quantum theory, and that of CDT in
particular, is to approximate the integral (4.54) as well as possible, or, more
precisely, to define it since there is currently no alternative, independent way
of doing the computation. This is a completely different task, since the integral
does not represent a single classical geometry, but a quantum superposition,
where each single contributing space-time is a highly nonclassical object, as
we pointed out earlier. There is no accurate mathematical statement to guide
this construction, but one would expect that the path integral should provide
an ‘ergodic sampling’ of the space of geometries. This may seem like a very
vague characterization, but one is in practice very much constrained by the
requirement of making the regularized path integral mathematically well–
defined and obtaining a sensible classical limit.

The short–distance cutoff a is an important part of our regularization of
the space-time geometries in the gravitational propagator. We will take the
limit a → 0 as part of the search for a so-called continuum limit of the path
integral over the regularized geometries. This has to be done in order to obtain
a final theory which does not depend on many of the arbitrary details which
have gone into constructing the regularized model, which itself constitutes only
an intermediate step in the construction of the theory. Using a finite ‘lattice
spacing’ a and taking a → 0 (while renormalizing the coupling constants of
the theory as a function of a) is a method borrowed from the theory of critical
phenomena and virtually ensures that the end result does not depend on a
24 The essential difference between the two approaches is that in Quantum Regge

Calculus one fixes a triangulation or ‘gluing’, so that the path integral takes the
form of a (multiple) integral over the lengths of the edges of that triangulation,
whereas in Dynamical Triangulations one fixes all edge lengths to a common
value a, in which case the path integral takes the form of a discrete sum over all
inequivalent ways to glue the (then identical-looking) simplicial building blocks
together.
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variety of regularization details. This latter property of ‘universality’ is only
a necessary condition and does by no means guarantee that this construction
leads to a viable theory of quantum gravity, as opposed to e.g., describing the
dynamics of certain 1D polymers.

Ensemble of Virtual Space-Time Geometries

Now that we have introduced the regularized triangulated geometries the
question still remains as to exactly what ensemble of such objects should
be included in the sum over geometries in (4.54). Here is where CDT dif-
fers in a crucial way from previous approaches, and where the notion of
‘causality’ comes into play. We mentioned above that precursors of CDT’s
non-perturbative path integral are ‘Euclidean’ in nature. What this means is
that the integration is not performed over so-called Lorentzian space-times
(which have one time- and three space-directions) but over Euclidean spaces
(which have four spatial directions, and thus no notion of time, light rays
or causality). Classically, Euclidean ‘space-times’ are bizarre and unphysical
entities, in which moving back and forth in time is just as easy as moving
back and forth in space. Their use in the (mainly perturbative) gravitational
path integral was made popular in the late 1970s by the influential work of
S. Hawking and collaborators on black holes and quantum cosmology in the
context of Euclidean quantum gravity [GH93]. The reason for using them in-
stead of Lorentzian space-times of the correct physical signature25 is mainly
technical: in the Euclidean case, the weights exp(iSgrav) are no longer complex
but real numbers, which simplifies a discussion of the convergence properties
of the path integral, and also makes Monte–Carlo simulations possible.26 The
potential catch is that in gravity, unlike in other quantum field theories on
a flat background, there is no obvious relation between a non-perturbative
path integral for Lorentzian and one for Euclidean geometries. In fact, causal
dynamically triangulated gravity in dimensions two [AL98], three [AJL01b]
and four [AJL00b] has for the first time provided concrete evidence that the
two path integrals are genuinely inequivalent and possess completely different
properties.

It would seem straightforward to write down a regularized version of the
gravitational propagator as [AJL06]

Greg(Ti,Tf , t) =
∑

triangulations T:Ti→Tf

eiS
reg[T ], (4.55)

25 The signature refers to the signs of the four eigenvalues of the symmetric matrix
gμν(x); it is (+,+,+,+) in the Euclidean case and (-,+,+,+) in the Lorentzian
case.

26 In order to simplify notation, we will always use the notation exp(iS) to denote
Boltzmann weights, with the implicit understanding that S is a real action when
we talk about Lorentzian signature (and the weight thus a complex phase factor),
and a purely imaginary one in a Euclidean context (and exp(iS) therefore a real
quantity).



4.2 Sum over Geometries and Topologies 493

where T denotes a triangulated space-time, glued from four–simplices, and
with two spatial triangulated boundary geometries Ti and Tf (glued from
three-simplices), between which it interpolates. The gravitational action for a
piecewise flat space-time T schematically takes the form

Sreg(T ) = −1/GN Curvature(T ) + λV olume(T ), (4.56)

and there is a definite prescription for how to compute the curvature and
volume of a given triangulation T in terms of the lengths of its edges and its
connectivity (that is, the way the four–simplices are glued together). The two
coupling constants of the theory appearing in (4.56) are Newton’s constant
GN , governing the strength of gravitational interactions, and the cosmological
constant λ, another constant of nature, which may be responsible for the ‘dark
energy’ pervading our universe [Sah04].

As mentioned in footnote 24, all simplices used in DT are equilateral, and
the path integral assumes the form of a discrete sum over inequivalent ways in
which the simplicial building blocks can be glued together. The only thing that
remains then to be specified in (4.55) is whether any gluing of the building
blocks is to be allowed, or whether further restrictions need to be imposed. One
condition turns out to be essential for making the path integral construction
well–defined. Call N (N4) the number of distinct gluings of N4 four–simplices,
for a particular set of gluing rules. Clearly, this number will grow with N4, but
the important question is whether it will grow exponentially as a function of
N4 or faster, namely, ‘super-exponentially’, for example, like exp(cNν

4 ), with
c > 0 and ν > 1. In the latter case, and noting that N4(T ) is proportional
to Volume(T), there is no way in which the exponential weights exp iSreg[T ]
could ever counterbalance the growth of the number of contributing geometries
(the growth of the entropy of the system). The path integral would then be
too divergent to lead to a fundamental theory of gravity.

These considerations preclude the inclusion in the path integral (4.55)
of a so–called sum–over–topologies.27 Therefore, the topology of the space-
times contributing to the non-perturbative path integral has to be fixed. It is
typically chosen to be a 4D sphere or torus. This state of affairs is somewhat
ironic, because the possibility of including a sum over topologies has often
been praised as an advantage of the path integral formulation over canonical
quantization methods, which employ a 3+1 split of space-time into space and
time. As we have argued, this is only true at a formal level, that is, as long as
one does not perform concrete computations (and therefore has to worry about

27 The topology of a space-time describes the way in which it hangs together. For
example, the topology of a two-dimensional compact and closed surface is com-
pletely characterized by the number of its ‘holes’ or ‘handles’. It could have the
form of a surface of a ball (no holes), of a surface of a torus or bicycle inner
tube (one hole), of a surface of a double-torus or two-hole doughnut (two holes),
and so on. In four dimensions, the labelling of different topologies is much more
involved.
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the convergence or otherwise of an expression like (4.55)). At least from a
Euclidean point of view, there are now no further natural restrictions one may
impose on the geometries, and it is from this starting point that the original
approach of Dynamical Triangulations proceeded [AJ92, AJ95], in order to
study the properties of the theory (hopefully) defined by the continuum limit
of (4.55).

This may be a convenient moment to make some non-technical remarks on
how (C)DT evaluates the path integral and extracts physical information from
it, such as the expectation values of certain geometric observables. A direct
analytical evaluation of (4.55), although available in lower–dimensional mod-
els, is formidably difficult. However, unlike in a variety of other approaches
to quantum gravity, DT possesses a set of powerful and well-developed nu-
merical tools, whose value can hardly be overstated. They have been adapted
from statistical mechanics and the theory of critical phenomena to the case
where the individual configurations are curved geometries, rather than spin
or field configurations on a fixed background space or lattice. The ensemble of
space-times underlying the path integral is simulated by Monte Carlo methods
[NB99], generating a random walk in the space of all configurations accord-
ing to a probability distribution defined by (4.55).28 The limitations of the
computer imply that this procedure can only be implemented on a (possibly
large but) finite space of geometric configurations. This is usually taken into
account by performing the simulations on the ensemble of triangulations of
a fixed discrete volume N4. By repeating the numerical measurements for a
variety of different N4’s, one then tries to extrapolate the results in a system-
atic way to the physically relevant limit N4 →∞. This well-known technique
is known as ‘finite–size scaling’ [AJL06].

Now, what kind of ‘quantum geometry’ does one expect to see with the
help of these tools? If all goes well, the quantum superposition (4.55) of ge-
ometries should be able to reproduce a classical space-time at large scales L,
that is, in the classical limit. However, at small scales l, with a� l� L, one
expects quantum fluctuations to dominate, with a resulting highly nonclassi-
cal behavior of the geometry. To cut a long story short, this was unfortunately
not what was found for the Euclidean dynamically triangulated path integral
studied in the 1990s. This was not immediately realized, but emerged grad-
ually as more numerical simulations were performed [BB96]. It turned out
that the quantum geometry generated by Euclidean DT could be in either
one of two ‘phases’. In the first one the geometry was completely crumpled,
and in the other totally polymerized, that is, degenerated into thin branching
threads. These structures persist also at large scales, and as a result the DT
path integral appears to have no meaningful classical limit, and therefore does
28 For the Euclidean path integral, one can directly use the real weights exp iSreg[T ].

For the Lorentzian case of CDT, in order to obtain a probability distribution
from (4.55), one first has to apply a so-called ‘Wick rotation’ which converts the
complex to real weights [AJL01a].
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not satisfy a necessary criterion for a theory of quantum gravity. (One can
only wonder how long it may have taken to realize this, had one not been in
a state to perform extensive simulations of the model.)

The starting point of CDT was the hypothesis that this failure may have
to do with the un-physical Euclidean nature of the construction, and that
one may be able to rectify the situation by encoding the causal structure of
Lorentzian space-times explicitly in the choices of building blocks and gluing
rules. Several years passed since this initial conjecture, in which CDT’s causal
quantization program was implemented and its viability tested in lower dimen-
sions [AL98, AJL01b]. Namely, superpositions like (4.55) can be defined also
by considering space-times glued from 2D or 3D building blocks. This gives
rise to simplified toy models which share some, but by no means all properties
of the true CDT path integral. On the plus side, they can be tackled both an-
alytically and numerically, and compared with other quantization approaches
to Einstein gravity in two and three space-time dimensions. These extensive
investigations showed unequivocally that the causal, Lorentzian path inte-
gral in all cases gave different results from the corresponding Euclidean path
integral [AJL06].

Sum over Topologies and Quantum Gravity

Many attempts of constructing a non-perturbative path integral for gravity
start from the premise that this should also contain a sum over space-time
topologies, formally written as

Z =
∑

topol.

∫
DgμνeiS[gμν ], (4.57)

with the action
S =

∫
d4x

√
|det g|(κR− λ), (4.58)

where each term in the sum (4.57) is given by the functional integral over
equivalence classes [gμν ] of metrics on a space-time of a particular topology.
This assertion is usually followed by immediately dropping the sum again,
since no way can be found to enumerate the different topologies, let alone
perform the sum explicitly.

Needless to say that this state of affairs is highly unsatisfactory. Whether
or not a sum over topologies should be included is connected to the nature of
the fundamental degrees of freedom governing quantum gravity at the very
shortest scale, about which little is known. Topological excitations seem a
natural enough candidate, and pictures of a multiply–connected space-time
foam for a review and bibliography) may be suggestive to the imagination,
but there is so far little direct or indirect evidence that such structures are
realized in nature.
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Is there then anything we can say about the issue of topology change29,
in the absence of a full–fledged non-perturbative theory of quantum gravity?
If we managed to make sense, mathematically and physically, of the sum over
topologies, how would the final theory be affected by the inclusion? Any theory
predicting finite probabilities for macroscopic topology changes is likely to be
already in contradiction with observational data.

There are to our mind strong indications – at least within the realm of
Euclidean quantum gravity – that the topological sum cannot be made mean-
ingful, simply because it results in too many configurations contributing to
the path integral. This is true even in dimension two, where toy models of
quantum gravity (in the form of generally covariant non-perturbative Eu-
clidean path integrals over geometries) can be defined and solved exactly. In
this case, no difficulty arises with the labelling of topologies, which amounts
to a single parameter g, the genus or number of handles (holes) of the 2D
geometry. The topological expansion in g was the subject of intense study in
the early 1990s, because it is an example of the non-perturbative sum over
world–sheets of a bosonic string, in a 0D target space. The problem in mak-
ing the sum well–defined stems from the factorial growth in V of the number
of inequivalent 2D surfaces of a given volume V . Moreover, the coefficients
in the g−expansion are positive, obstructing Borel–summability, and no way
has been found to define the non-perturbative sum unambiguously.

Given the recent successes in obtaining quantum gravity theories from
state sums over Lorentzian geometries in 2D [AL98] and 3D [AJL01b, Lol01],
the question arises of how a topological sum can be incorporated in these
models and whether any progress can be made in performing the sum. For
quantum gravity in two space-time dimensions the problem is indeed amelio-
rated by going to a Lorentzian signature: consideration of their causal proper-
ties leads to a natural restriction on the topology–changing geometries enter-
ing the regularized path integral, as will be explained below. The combined
sum over topologies and geometries can be performed exactly, and possesses
a well-defined double-scaling limit, involving both the cosmological and the
gravitational coupling constants, Λ and G. For G → 0, standard Lorentzian
quantum gravity without holes is recovered, whereas for values larger than
zero, the presence of holes leads to an observable and non-local scattering of
light rays traversing the space-time. At G = Gmax, the system undergoes a
transition to a phase of ‘handle condensation’. In addition to a further instance
of how Lorentzian-ness and causality lead to path integrals that are better be-
haved than their Euclidean counterparts, this opens up a new playground for
gravity–inspired 2D statistical models.
29 Performing a sum over (space-time) topologies in a path integral with fixed ini-

tial and final boundary conditions implies configurations whose spatial topol-
ogy changes in time. For reviews of the issue of topology change in gravity, see
[Dow02].
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Implementing Topology Change

There is some freedom in how to include topology–changing (1+1)D space-
time configurations in the gravitational path integral. Our implementation
will be minimal in the sense that each hole will be allowed to exist for an in-
finitesimal proper–time interval only. In our discrete, triangulated framework
this will mean that a hole will come into existence at some integer time t and
disappear again at t + 1. The number of allowed holes per time step Δt = 1
(in the continuum limit) will be arbitrary. As in Lorentzian quantum gravity
for fixed topology, all configurations possess a globally defined proper time
variable. For the sake of definiteness, we will work with spatially compact
slices. Therefore, by construction a spatial slice at some integer t will have the
topology S1 of a circle, whereas for all times in the open interval ]t, t + 1[ it
will be split into a constant number g + 1 of S1−components [LW03].

Although this seems the very mildest form of topology change imagin-
able in two dimensions, we will see that generic space-times of this kind are
extremely ill–behaved in their geometric and causal properties, even if there
is only a single hole in the entire space-time. The essential difference with
the Euclidean case is that the presence (almost everywhere) of a Lorentzian
structure allows us to quantify how badly causality is violated (as it neces-
sarily must be in a topology–changing geometry). We will then argue for a
restriction of the state sum to geometries whose causality violations are rela-
tively mild. This is motivated by the search for continuum limits which do not
necessarily exhibit macroscopic acausal and therefore physically unacceptable
behavior (adopting a similar line of argument as one would in 4d).

What we find is an exactly soluble model of 2D gravity with dynamical
topology, with a well–defined double–scaling limit involving both the grav-
itational and cosmological coupling constants. Its acausal properties can be
probed by light rays, and get larger with increasing (renormalized) gravita-
tional constant G. This means that for G �= 0 there is always a non-trivial
effect coming from the ‘infinitesimal’ holes, which may still be compatible
with observation if the measuring instruments that could detect the acausal-
ity were not sufficiently sensitive. However, as we will see, for sufficiently large
G any experimental detection threshold will eventually be exceeded. We in-
terpret this behavior as an a posteriori justification for having restricted the
allowed space-time histories in the first place, in the sense that it seems un-
likely that a model with significantly more general types of holes will possess
any physically acceptable ground state whatsoever.

We first give a qualitative description of space-time geometries with ‘bad’
and ‘not–so–bad’ topology changes, and then present a concrete realization of
the latter within the framework of 2D Lorentzian dynamical triangulations.
The generation of holes of either type is illustrated in Figure 4.11. At time t,
an initial spatial slice S1 splits into g + 1 components, (a1), giving rise to g
saddle points. The components evolve in time until t+Δt, where they re-unite
to a single S1. A difference now arises, depending on which pairs of points are
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Fig. 4.11. A connected spatial slice splits into three components at time t, (a1).
In the first example, two circles at time t + Δt are merged into one by identifying
two points which are time-like separated from the original branching point, (a2) and
(a3). Parallel light rays passing between t and t + Δt are unaffected unless they are
scattered non-locally by the hole to another part of the manifold, as is the central
light ray in (a4). – If one of the merging points is space-like separated from the
branching point at t, a twist (indicated by the arrow in the embedded picture, (b1))
is required before the regluing. In the resulting geometry, the distance between two
parallel light rays which pass on either side of the hole has jumped discontinuously
after the merger, (b2) (adapted and modified from [LW03]).

identified in the process of merging. In the not–so–bad topology change, the
upper saddle point of a hole is by definition time– or light–like related to the
lower saddle point of the same hole, in either component, as indicated in (a2),
(a3) (for simplicity of illustration, we perform the merger only for two of the
components). A merger which is not of this type is illustrated in Figure 4.11,
(b1). The marked point at time t + Δt on the right-most cylinder component
is supposed to lie outside the light cone of the lower saddle point.

To illustrate the qualitative difference between the two cases, we follow
a set of parallel light rays through the resulting space-times, as indicated in
Figure 4.11, (a4) and (b2). In both cases, a light ray which ‘hits the hole’ is
scattered non-trivially to a different part of the manifold. However, in the case
where an additional relative twist of at least one of the cylinder components
is present (in Figure 4.11, (b1) and (b2), the right cylinder has been twisted
by an angle π), there is another non-local effect, consisting in a permutation
of different finite sections of the propagating light front, which will persist
after the hole has disappeared. The effect on the two outer parallel light rays
depicted in Figure 4.11, (b2), is that they are still parallel after time t + Δt,
but their mutual distance will have jumped.
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Note that while the effect of the direct scattering by a single hole will vanish
in the limit as Δt→ 0 (corresponding to the continuum limit in the discretized
model), the effect of globally rearranging parts of space-time with respect to
each other for the ‘bad’ topology changes will persist in the same limit, and
represents an observable, macroscopic violation of causality. We will discard
such configurations from the path integral, since we do not think that these
large-scale causality violations can cancel out in any superposition of such
geometries. Moreover, they completely outnumber the geometries with ‘not–
so–bad’ topology changes. The precise definition of the resulting 2D quantum
gravity model, its continuum limit, and its physical properties will be the
subject of the following subsection.

Lorentzian Quantum Gravity with Holes

We will now discuss how to implement ‘baby holes’ of the type introduced
in the previous section explicitly in the framework of piecewise linear two–
manifolds. Recall that space-time geometries in Lorentzian dynamical trian-
gulations are constructed by gluing together strips of height Δt = 1, where t
is a discrete analogue of proper time. A given strip between integer times t
and t + 1 consists of Nt Minkowskian triangles (each with one space-like and
two time-like edges), and is periodically identified in the spatial direction.

We create a hole of minimal time extension Δt = 1, and associated with a
‘not–so–bad’ topology change, by identifying two time-like links in the same
strip [t, t+1] (these are links interpolating between the slices of constant time
t and t + 1), and cutting them open in the perpendicular direction, thereby
creating two cylinders and a minimal hole in between (see Figure 4.12). This
process generates two curvature singularities, at the beginning and end of the
hole, which after the Wick rotation will be of the standard conical type, and
we will choose their Boltzmann weights accordingly. As anticipated earlier,
the number of possible strip geometries of this type as a function of the total
strip volume scales exponentially, and both the state sum and its continuum
limit are completely well defined [LW03].

As in the original Lorentzian model [AL98], it suffices to examine the
combinatorics of a single strip to determine the bulk behavior of the model in
the continuum limit (as well as the associated quantum Hamiltonian. After
the Wick rotation, the relevant partition function is

Z(λ, κ) =
∑

lin

∑

lout

Gλ,κ(lin, lout; t = 1), (4.59)

where we have performed a sum over both the initial and final boundary
geometries of length lin and lout, and where the propagator Gλ,κ is given by

Gλ,κ(lin, lout; t = 1) = e−λ(lin+lout)
∑

T |lin,lout

e−κg(T ). (4.60)
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Fig. 4.12. Constructing a strip with one hole by identifying two of the time-like
edges between times t and t + 1 of a regular Lorentzian strip and separating them
perpendicularly as indicated, thereby creating a hole between the two integer times
(adapted and modified from [LW03]).

The sum in (4.277) is taken over all triangulated strip geometries with bound-
ary lengths lin and lout, and g ≥ 0 denotes the number of holes of the strip.
In writing (4.277) we have used that the discrete volume of a strip is given by
N ≡ Nt = lin+ lout, as in Lorentzian gravity without topology change. Fixing
lin and lout (and for convenience putting a mark on the entrance loop), the
number

G̃(lin, lout) =
(

lin + lout − 1
lin − 1

)
(4.61)

of distinct (marked) interpolating strip triangulations without holes gives rise
to an overall factor 2N−1. For a given triangulated strip of volume N =
lin + lout, holes are created according to the prescription given above and as
shown in Figure 4.12.

An alternative, planar representation of the creation of a single hole is given
in Figure 4.13, which shows a cut through the strip halfway between times t
and t+1. The N time-like links of the strip appear as dots on the circle (Figure
4.13a). The procedure for several holes is completely analogous. The only
restriction one needs to impose in order to obtain a well-defined two–geometry
with g + 1 cylindrical components is that the g arrows identifying pairs of
points in the corresponding planar diagram should not cross each other. Also,
we will impose the regularity condition that there should be at most one
arrow per point. This avoids some double counting of identical geometries
and eliminates a few geometries with cylinders of the size of the cutoff, and is
not expected to affect the continuum limit in any way. Note also that we are
including some geometries where one or more cylinders degenerate to a point
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either at time t or t + 1; this is merely to simplify some of the combinatorial
formulas and again will not have any consequences for the continuum limit.

Fig. 4.13. Inserting a single hole into a regular strip of length N = 10 (a), as it
appears in a slice of constant time half–way between the two boundaries. The strip
is pinched along a pair of time-like links (appearing as dots), as indicated by the
arrows (b), until a figure eight is obtained (c), after which the strip is separated into
two cylinders as indicated in (d) (adapted and modified from [LW03]).

Our next task is therefore to count the number of ways of inserting g holes
into a strip of volume N , which is equivalent to counting graphs with N points
and g arrows. This is readily done by noting that the number of ways to pick 2g
out of N points, 2g ≤ N , is given by

(
N
2g

)
, since the N points can be regarded

as distinguishable (at large volumes N , a generic triangulated strip without
holes will not have any symmetries). For a given set of 2g points, we then have
to count the number of ways of connecting them by non-intersecting arches.
Fortunately, this is a well-known combinatorial problem whose resolution is
given by the so-called Catalan numbers

A(2g) =
(2g)!

g!(g + 1)!
. (4.62)

The complete formula for the partition function (4.59) is therefore

Z(λ, κ) =
1
2

∞∑

N=0

[N/2]∑

g=0

(
N

2g

)
(2g)!

g!(g + 1)!
e−2κge−(λ−log 2)N . (4.63)
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After an exchange of the two sums, both of them can be performed explicitly,
leading to

Z(λ, κ) =
1

2(1− e−(λ−log 2))
1−

√
1− 4z

2z
, (4.64)

where the second term on the right-hand side30 depends only on the specific
combination

z = e−2κ(eλ−log 2 − 1)−2 (4.65)

of the bare coupling constants κ and λ. The partition function (4.63) is con-
vergent for (real) λ > log 2 and z < 1/4. We are now interested in constructing
a continuum limit of Z. This will necessarily involve an infinite–volume limit
N →∞. It is straightforward to compute the expectation value of the discrete
volume,

〈N〉 = − 1
Z

∂Z

∂λ
=

eλ

(eλ − 2)
√

1− 4z
− 1, (4.66)

from which we deduce that the infinite–volume limit can be obtained by letting
λ approach log 2 from above, just like in standard 2D Lorentzian gravity.
However, this is only consistent if one stays inside the combined region of
convergence of both λ and z. From the explicit form (4.65) of z this is only
possible if one scales the bare inverse gravitational coupling κ in such a way as
to counterbalance the divergence coming from the inverse powers of (eλ−log 2−
1). More specifically, if we make a standard ansatz of canonical scaling for the
cosmological coupling constant,

λ = λcrit + a2Λ + O(a3) ≡ log 2 + a2Λ + O(a3), (4.67)

where Λ denotes the renormalized, dimensionful cosmological constant, we
obtain for any fixed value z = c < 1/4 of z an equation for κ, namely,

κ = −1
2

log
(
c (a2Λ)2

)
+ O(a), (4.68)

which determines the leading–order behavior of κ as a function of the cutoff
a. This relation can now be read as the defining equation for the renormalized
inverse gravitational coupling K,

K = κ− 2 log
1

a
√

Λ
+ O(a), with K =

1
2

log
1
c
. (4.69)

The logarithmic subtraction is what one would expect for the renormalization
of a dimensionless coupling constant. Introducing the renormalized Newton’s
constant G = 1/K, and substituting the expansions (4.67) and (4.69) into
(4.64), one obtains to lowest order in a

30 This term is recognized as the generating function for the Catalan numbers, and
has previously appeared in a statistical model of certain ‘decorated’ 2d Lorentzian
geometries without topology changes.
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Z =
1
a2

e2/G

4Λ

(
1−

√
1− 4 e−2/G

)
=

1
a2

ZR(Λ,G), (4.70)

where we have performed a wave function renormalization to arrive at a finite
renormalized partition function ZR(Λ,G). In summary, we have been led to
(4.70) by taking a well-defined double-scaling limit of both the gravitational
and the cosmological coupling constants, very similar to what has always been
hoped for in 2D Euclidean quantum gravity [LW03].

The physical properties of the resulting continuum theory are governed
by the values of these two couplings. The expectation value of the space-time
volume V = a2N , computed in analogy with (4.66), is given by the inverse
cosmological constant,

〈V 〉 = − 1
ZR

∂ZR

∂Λ
=

1
Λ
, (4.71)

as one may have anticipated. The role of the gravitational constant is exhibited
by computing the expectation value of the number of holes per time interval,

〈g〉 =
1
2
G2 1

ZR
∂ZR

∂G
= −1

2

(
1− 1√

1− 4e−2/G

)
. (4.72)

For small coupling G ≈ 0, there are basically no holes, up to G ≈ 1.33, where
there is an average of a single hole in the entire strip. Beyond this value, the
number of holes increases rapidly and diverges at the boundary G = 2/ log 4
of the allowed interval.

The average genus is an interesting quantity because it relates in a direct
way to an ‘observable’, namely, the part of a light beam that undergoes scat-
tering when passing through a Lorentzian space-time with baby holes. In first
approximation, this is given by

scattered portion of light beam ∝ 〈g〉T
L
, (4.73)

where L is the characteristic linear spatial extension of the quantum universe,
and T is the (continuum) time of propagation of the light beam.

Causality Implies 4D

We will now describe the first piece of evidence which showed that CDT can
reproduce at least some aspects of classical geometry correctly. This concerns
a point where previous related quantization attempts have failed, namely, to
generate a geometric object that can be said to be 4D on sufficiently large
scales. It may come as a surprise that a superposition of locally 4D geome-
tries can give anything that is not again 4D. After all, we have obtained our
geometric building blocks by cutting out small pieces from a 4D flat space.
However, as is illustrated by Euclidean dynamically triangulated models, it is
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perfectly possible that the dimension comes out not as four, and this is indeed
what seems to happen generically. The crumpled and polymeric phases of the
Euclidean model mentioned above are characterized by a so–called Hausdorff
dimension, which takes the values ∞ and 2, respectively.

How can one obtain spaces with such strange dimensionalities? Roughly
speaking, the Hausdorff dimension is obtained by comparing the typical linear
size r of a convex subspace of a given space (e.g. its diameter) with its volume
V (r). If the leading behavior is V (r) ∼ rdH , the space is said to have the
Hausdorff dimension dH . To obtain an effectively infinite-dimensional space
from gluing N4 4D simplices with edge length a, one may consider a sequence
of triangulations whose volume goes to infinity, N4 → ∞, where the gluing
for each fixed N4 is chosen such that every single building block shares a
given vertex. That is, no matter how large N4 gets, all building blocks of the
triangulated space crowd around a single point. This is a procedure which is
compatible with the gluing rules, but gives rise to a space whose dimensionality
diverges, simply because its linear size always stays at the cutoff length a.
Conversely, one can get an effectively 1D space by gluing the 4D building
blocks into a long and thin tube. That is, as N4 → ∞ and a → 0, one keeps
three out of the four directions at a size of the order of the cutoff a, and only
grows the geometry along the fourth direction [AJL06].

This argument shows that there are spaces with ‘exotic’ dimensionality
which can be obtained as limiting cases of regular simplicial manifolds. Of
course, the relevant question for the gravitational path integral is whether
geometries of this nature indeed dominate the path integral in the continuum
limit. This is a genuinely dynamical question which cannot be decided a priori.
It depends on the relative weight of ‘energy’ and ‘entropy’, that is to say, the
Boltzmann weight of a given geometry (which in turn is a function of the
values of the bare coupling constants) and the number of geometries with a
given, fixed Boltzmann weight. Thus it may happen that an exotic geometry
(for example, one of the highly crumpled objects above) has a very large
Boltzmann weight and is therefore ‘energetically favored’, but that there are
relatively speaking far fewer of such objects in the ensemble than there are of
the more ‘normal’ geometries, such that the contribution of the former will
in the end play no role in the path integral in the continuum limit. As we
have seen, this is not what happens in Euclidean dynamically triangulated
models for quantum gravity whose state sums, depending on the values of
the coupling constants, are dominated by exotic geometries which are either
maximally crumpled (dH = ∞) or of the form of so-called branched polymers
(with dH = 2).

The finding that ‘dimensionality’ is turned into a dynamical quantity is a
consequence of the fact that the non-perturbative gravitational path integral
contains highly nonclassical geometries which are curved (and even highly
curved) at the cutoff scale a. It can and indeed does happen that geome-
tries with such an unruly short–scale behavior dominate the path integral as
a → 0. As already remarked earlier, this is exactly what one would expect
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in analogy with the path integral for the particle, which in the continuum
limit is dominated by totally nonclassical paths with ‘infinitely many cor-
ners’. It is important to emphasize that the short-scale picture of geometry
that arises in CDT is completely different from that of the classical theory. If
one looks at a piece of classical space-time, no matter how curved, with an
ever finer resolution, it will always eventually start looking like a piece of flat
space-time, namely, when the observed scale becomes much smaller than the
characteristic scale at which the space is curved. By contrast, a typical ‘quan-
tum space-time’ generated by our non-perturbative path integral construction
will never resemble a flat space, no matter how fine we choose the resolution
of our virtual magnifying glass [AJL06].

Having understood that quantum geometry will necessarily look very non-
classical at short scales, we presumably are still left with many possibilities
for the precise microstructure that is generated by various prescriptions for
setting up the gravitational path integral. Can we formulate criteria for recog-
nizing when a particular prescription stands a chance of leading to the correct
theory of quantum gravity? Fortunately, the answer is yes, and the criteria in
question have to do with reproducing features of classical geometry at suffi-
ciently large scales. As alluded to above, the simplest such test is whether the
quantum geometry has the correct dimension four at large distances. A path
integral which does not pass this test simply does not qualify as a candidate
for a theory of quantum gravity.

The art is then to come up with a path integral which allows for large
short-scale fluctuations in curvature, but in such a way that the resulting large-
scale geometry nevertheless does not degenerate completely, so that a sensible
classical limit may exist. The method of causal dynamical triangulations has
for the first time in the history of the non-perturbative gravitational path
integral given us an explicit example of such a geometry. What has been
found to be crucial in its derivation are certain causal rules one imposes on
the triangular building blocks, which make explicit reference to the Lorentzian
structure of the individual geometries contributing to the path integral. The
new and intriguing physical insight that can therefore be deduced from this
result is that causality at sub-Planckian scales may be responsible for the
fact that our universe is 4D [AJL04, AJL05C]. A related lesson that has
been made explicit by the dynamical triangulations approach in general is
the fact that once geometric excitations are ‘let loose’ in a non-perturbative
formulation of quantum gravity, just about anything can happen. Not even
the dimensionality of (what we thought of as) the space-time emerging from
the quantum superposition has to come out right. At the same time one could
therefore also worry that other non-perturbative quantum gravity approaches
may suffer related pathologies, which have only gone undetected because one
has not been able to determine expectation values like that of the Hausdorff
dimension 〈dH〉 explicitly.

The reader may by now be curious about the precise nature of the causality
conditions present in the CDT approach. They are simply that each space-time
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appearing in the sum over geometries should have a specific form. Namely,
it should be a geometric object which can be obtained by evolving a purely
spatial geometry in time, in such a way that its spatial topology (the way in
which space hangs together) is unchanged as a function of time. An example of
a forbidden space-time is one where an initially connected space splits into two
or several components, or the converse process where several components of a
space reunite into a single one [Dow02]. Space-times with so-called wormholes
also fall into this category and will therefore not be included in the sum over
geometries. So, what is wrong with these geometries? Why do they violate
causality? Let us start by explaining why these geometries are pathological
from a classical point of view . Imagine a 3D space that undergoes a branching
process as time progresses (see Figure 4.14).

Fig. 4.14. At a branching point associated with a spatial topology change, light-
cones get ‘squeezed’.

Initially the space consists of a single piece (or component), which simply
means that any point in the space can be reached from any other point along
a continuous path. At some moment in time, the space splits into two compo-
nents which then remain cut off from each other. Classically this represents a
highly singular process, with nothing to suggest such processes actually occur
in nature.31 From a space-time point of view, something in these processes
goes wrong with the light cone structure. The assignment of light cones to
space-time points cannot be smooth, since there must be at least one point in
space-time (precisely the branching point) where it cannot be decided whether
a light ray arriving from the past should be continued to the future in one
or the other of the two spatial components. Since the light cones define the
causal structure of space-time, this is an example of a geometry where causal-
ity is violated. The classical Einstein equations simply cannot describe such
topology–changing space-times. Two more things should be noted: firstly, the
absence of branching points (and their time inverses, the joining points) from
a Lorentzian geometry is invariant under diffeomorphisms because different
31 If this were the case, we would see whole chunks of space (together with their

contents) suddenly disappear.
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notions of time always share the same overall direction of their ‘time flow’.32

In order to introduce branching points and their associated ‘baby universes’
(those parts of the universe that branch out from the ‘mother universe’, never
to return), one would need to reverse the time flow in entire open regions of
space-time, which cannot be done by an allowed coordinate transformation.
Secondly, in the Euclidean theory, which has no distinguished (class of) time
direction(s), one simply cannot talk about the absence or presence of analo-
gous branching points in a meaningful (i.e., coordinate–invariant) manner.

Returning to our discussion of the quantum theory , the premise of CDT is
to use the Lorentzian structure of its contributing geometries explicitly and
exclude all space-times with topology changes and therefore acausal behav-
ior.33 Although classical considerations of causality have motivated a similar
implementation of causality in CDT, it should be emphasized that such con-
straints on the path integral histories can never be derived conclusively from
the classical theory. After all, the individual path integral geometries are never
going to be smooth classical objects (let alone solutions to the equations of
motion), nor even close to classical geometries. There is hence no obvious rea-
son to forbid any particular quantum fluctuations of the geometry, including
those that include topology changes. In principle, a quantum superposition of
acausal space-times could lead to a quantum space-time where causality by
some mechanism is restored dynamically, at least macroscopically. However,
although this is a theoretical possibility, it is not what one has observed in the
Euclidean version of DT which does not have such causality restrictions, and
which goes wrong already in trying to reconstruct a 4D space. By the same
token, the fact that individual path integral geometries in CDT are causal is
also not by itself sufficient to guarantee that the quantum geometry it gen-
erates has again the same property. Whether this is indeed the case is not
yet known, and requires a more detailed knowledge about the local geometric
structure than is currently available. For example, one would like to ascertain
that at a sufficiently coarse–grained level the quantum geometry possesses a
well–defined light cone structure by defining and measuring suitable quantum
observables.

Quantum Space-Time Generated by CDT?

The dimensionality of space-time is only one of many quantum observables
one may try to evaluate in order to determine the properties of the ground
state geometry generated by CDT at various length scales. It is the coarsest
32 We are not considering the possibility of a complete reversion of the time flow,

which exchanges past and future globally.
33 It is rather straightforward to implement the causality conditions on the triangu-

lated geometries of CDT. Each space-time is built from layers of fixed duration
(one ‘length step’ in proper time), and one implements gluing rules for the sim-
plices which ensure that no change of spatial topology can occur during the step
[AJL01a].
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such variable, because the dimensionality of a space-time, at least in classical
differential geometry, precedes that of specifying a metric structure. Here, one
must keep in mind that an innocent-looking question like ‘what is the value
of the metric tensor gμν at point x?’ is among the most difficult to answer in
a non-perturbative approach like ours. Firstly, although CDT histories come
with a notion of proper time, they do not otherwise carry any natural coor-
dinate system. Even if we introduced coordinate systems on the individual
triangulated space-times, there is no way to mark ‘the same point’ simultane-
ously in all of them. This is a consequence of the fact that individual points
do not have any physical significance in empty space; in the absence of mat-
ter there is simply nothing we could ‘mark’ the point x with. We are thus
forced to phrase any question about local curvature properties, say, in terms
of quantities that are meaningful in the context of a diffeomorphism-invariant
theory, for example, n−point correlation functions where the location of each
of the n points has been averaged over space-time.34

The correlation function that has been studied up to now in CDT mea-
sures the correlation between the volumes Vspace(τ) of spatial slices (slices of
constant time τ) some fixed proper–time distance Δτ apart, that is, a suitably
normalized version of the expectation value [AJL06]

〈Vspace(0)Vspace(Δτ)〉 =
t∑

τ=0

〈Vspace(τ)Vspace(τ + Δτ)〉, (4.74)

where the ensemble average is taken over simplicial space-times with time
extension t and with fixed four–volume [AJL04, AJL05a, AJL05C]. One piece
of evidence for the four–dimensionality of space-time at large distances is the
fact that in order to map the functions 〈Vspace(0)Vspace(Δτ)〉 on top of each
other for different values of the space-time volume N4, the time distance Δτ

has to be rescaled by the power N
1/DH

4 , where the ‘cosmological Hausdorff
dimension’ is DH = 4 within measuring accuracy [AJL04, AJL05C]. This
means that what we would like to call a continuum ‘time’ really scales with
the correct fraction of the total space-time volume. Such a ‘canonical scaling’
is what one would have expected náıvely, but is absolutely not ensured a
priori in the presence of large geometric quantum fluctuations, even though
the individual building blocks at the cutoff scale are 4D.35

Before looking at another striking result on dimensionality to have come
out of CDT, let us review what else we know about the large–scale geometry
of the quantum space-time dynamically generated by CDT. This concerns a
result which enables us to make contact with (quantum) cosmology. Recall

34 Two-point functions of this type have been measured previously in Euclidean DT
[AJK93].

35 Further, independent evidence that the volumes Vspace(τ) of the spatial slices also

scale canonically as N4 is increased, Vspace ∼ N
3/DH
4 , with DH = 4, can be found

in [AJL05C].
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the remarkable fact that almost every aspect of today’s standard model of
cosmology, describing the large–scale structure of our universe, is based on a
radical truncation of (the geometric sector of) Einstein’s theory to a single
global degree of freedom, the so–called scale factor a(τ). It describes the lin-
ear size (or ‘scale’) of the universe as a function of time τ .36 This truncation
is justified if the universe is homogeneous and isotropic at the largest scales,
which means that it looks the same everywhere and in all spatial directions,
something that is usually assumed to be true. An entirely different question is
whether one can extract information about the quantum behavior of the uni-
verse (for example, very close to the big bang where quantum effects should
come into play) by quantizing the classically truncated system of just a single
geometric variable a(τ). One may wonder whether in this way one is not miss-
ing important physics contained in the quantum fluctuations of all the local
gravitational degrees of freedom which the cosmological description ignores
[AJL06].

Having in hand an explicit construction of quantum geometry à la CDT
where no such truncation is present, one can ask what predictions it makes
for the dynamics of the scale factor, and compare those to standard quantum
cosmology. The answer obtained is intriguing: it is indeed possible to extract
an effective action for the scale factor from CDT by integrating out all other
degrees of freedom in the full quantum theory. The resulting action takes the
same functional form as the standard action of a ‘minisuperspace’ cosmology
for a closed universe, up to an overall sign [AJL05a]. The collective effect of the
local gravitational excitations seems to result in the same kind of contribution
as that coming from the scale factor itself, but with the opposite sign. One
way to understand this from an analogous continuum point of view may be in
terms of so–called Faddeev–Popov determinants, which contribute to the ef-
fective action as a result of gauge–fixing [Lol01]. The potentially far–reaching
consequences of this result for quantum cosmology are currently being ex-
plored. What has already been established is that the computer–generated
quantum geometry can in the semiclassical approximation be understood as
a so–called ‘bounce’, a particular type of solution to the Euclidean equation
of motion. On the basis of this, the infamous ‘wave function of the universe’
Ψ0(a) [HH83, Vil03] has been computed in CDT as a function of the scale
factor a [AJL05a].

However, what is also clear from the computer simulations is that the semi-
classical approximation is no longer an adequate description of the observed
behavior of the scale factor when the latter becomes small. This is of course
to be expected and is an indicator for new quantum-gravitational effects ap-
pearing at short distances. Having gathered some nontrivial evidence that
CDT’s quantum geometry reproduces well-known aspects of classical general
36 Recall that our present universe not only expands, but expands at an ever in-

creasing rate, that is, both ȧ(τ) > 0 and á(τ) > 0. A ‘big bang’ or ‘big crunch’
corresponds classically to a singular point where a = 0.
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relativity on sufficiently large scales, the main focus of research has to be on
what the actual quantum modifications of this structure are. This is the place
where new quantum physics will appear, and our effort will go into describing
it in both a qualitative and quantitative manner.

CDT has already given us first insights into what the microstructure of
quantum space-time may be. The evidence comes from yet another way of
probing the effective dimensionality of space-time. The idea is to define a dif-
fusion process (equivalently, a random walk) on the triangulated geometries
in the path integral over space-times, and to deduce geometric information
of the underlying quantum space-time from the behavior of the diffusion as a
function of the diffusion time σ inherent to the process. The beauty of this pro-
cedure is its wide applicability, since diffusion processes cannot just be defined
on smooth manifolds, but on much more general spaces, such as our triangu-
lations and even on fractal structures [BH00]. The quantity we are interested
in is the so-called spectral dimension, which is really the effective dimension
of the carrier space ‘seen’ by the diffusion process. It can be extracted from
the return probability P (σ) which measures the probability of a random walk
to have returned to its origin after diffusion time σ (or σ evolution steps if
the diffusion is implemented discretely). For diffusion on a flat d−dimensional
manifold, we have the exact relation P (σ) = 1/(4πσ)d/2. For general spaces
we define the spectral dimension DS(σ) as the logarithmic derivative37

DS(σ) = −2
d logP (σ)
d log σ

. (4.75)

Note that in general this dimension will depend on σ: small values of σ probe
the small-distance properties of the underlying space, and large values its
large–distance geometry.38 The spectral dimension extracted for the quantum
geometry of CDT is a twofold average over the starting point of the diffu-
sion process (which is initially peaked at a given four–simplex) and over all
geometries contributing to the path integral [AJL05b, AJL05C].

What one observes is indeed a scale-dependence of the space-time dimen-
sion! At large distances it approaches the value four asymptotically, in agree-
ment with the dimension obtained previously from scaling arguments, and
in agreement with our classical expectation. However, as we probe the ge-
ometry at ever shorter distances (and before we enter the region where the
simulations become unreliable due to discretization effects), this dimension
decreases continuously to an extrapolated value of two within measuring ac-
curacy. Such a scale–dependence has never before been observed in statistical
models of quantum gravity and is a clear indication that space-time behaves
highly nonclassically at short distances close to the Planck length. Further
37 The complete expression for the return probability has correction terms because

of the finite size of the computer-generated geometries which we are suppressing
for simplicity. A more detailed discussion can be found in [AJL05C].

38 As usual in a random walk, the linear distance probed will be of the order of
√

σ.
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investigations of a number of critical exponents and dimensions associated
with the geometric structure of spatial slices and ‘sandwiches’ (of time exten-
sion Δτ = 1) [AJL05C] suggest the presence of a fractal microstructure of
quantum space-time, whose details are the subject of ongoing research.

In an independent development, a similar smooth running from four to two
of the spectral dimension has been derived within a renormalization group
approach to quantum gravity in the continuum [LR05], which posits (and
provides some evidence for) the existence of a nontrivial fixed point in the
ultraviolet (i.e. short-distance) regime of quantum gravity [Reu98]. Although
this coincidence by no means proves that either formulation is correct, it is
nevertheless remarkable that the same unexpected result has been obtained
in two very different approaches to quantum gravity. If the result can indeed
be shown to be part and parcel of a viable quantum gravity theory, its impli-
cations for how we view space-time and how we compute quantum processes
of the other fundamental interactions on space-time may be profound. For ex-
ample, it could provide a natural ultraviolet cutoff for scattering amplitudes
in high–energy physics [AJL06].

4.3 Dynamics of Fields and Strings

4.3.1 Topological Quantum Field Theory

Before we come to (super)strings, we give a brief on topological quantum field
theory (TQFT), as developed by Ed Witten, from his original path integral
point of view (see [Wit88b, LL98]). TQFT originated in 1982, when Witten
rewrote classical Morse theory (see [II07b]) in Dick Feynman’s language of
quantum field theory [Wit82]. Witten’s arguments made use of Feynman’s
path integrals and consequently, at first, they were regarded as mathematically
non–rigorous. However, a few years later, A. Floer reformulated a rigorous
Morse–Witten theory [Flo87] (that won a Fields medal for Witten). This trend
in which some mathematical structure is first constructed by quantum field
theory methods and then reformulated in a rigorous mathematical ground
constitutes one of the tendencies in modern physics.

In TQFT our basic topological space is an nD Riemannian manifold M
with a metric gμν . Let us consider on it a set of fields {φi}, and let S[φi] be
a real functional of these fields which is regarded as the action of the theory.
We consider ‘operators’, Oα(φi), which are in general arbitrary functionals of
the fields. In TQFT these functionals are real functionals labelled by some
set of indices α carrying topological or group–theoretical data. The vacuum
expectation value (VEV) of a product of these operators is defined as

〈Oα1Oα2 · · ·Oαp〉 =
∫

[Dφi]Oα1(φi)Oα2(φi) · · ·Oαp(φi) exp (−S[φi]) .

A quantum field theory is considered topological if the following relation is
satisfied:
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δ

δgμν
〈Oα1Oα2 · · ·Oαp

〉 = 0, (4.76)

i.e., if the VEV of some set of selected operators is independent of the metric
gμν on M . If such is the case those operators are called ‘observables’.

There are two ways to guarantee, at least formally, that condition (4.76) is
satisfied. The first one corresponds to the situation in which both, the action
S[φi], as well as the operators Oαi

are metric independent. These TQFTs are
called of Schwarz type. The most important representative is Chern–Simons
gauge theory . The second one corresponds to the case in which there exist a
symmetry, whose infinitesimal form is denoted by δ, satisfying the following
properties:

δOαi = 0, Tμν = δGμν , (4.77)

where Tμν is the SEM–tensor of the theory, i.e.,

Tμν(φi) =
δ

δgμν
S[φi]. (4.78)

The fact that δ in (4.77) is a symmetry of the theory implies that the
transformations δφi of the fields are such that both δA[φi] = 0 and δOαi

(φi) =
0. Conditions (4.77) lead, at least formally, to the following relation for VEVs:

δ

δgμν
〈Oα1Oα2 · · ·Oαp

〉 = −
∫

[Dφi]Oα1(φi)Oα2(φi) · · ·Oαp
(φi)Tμνe

−S[φi]

= −
∫

[Dφi]δ
(
Oα1(φi)Oα2(φi) · · ·Oαp

(φi)Gμν exp (−S[φi])
)

= 0, (4.79)

which implies that the quantum field theory can be regarded as topological.
This second type of TQFTs are called of Witten type. One of its main rep-
resentatives is the theory related to Donaldson invariants, which is a twisted
version of N = 2 supersymmetric Yang–Mills gauge theory . It is important to
remark that the symmetry δ must be a scalar symmetry, i.e., that its symme-
try parameter must be a scalar. The reason is that, being a global symmetry,
this parameter must be covariantly constant and for arbitrary manifolds this
property, if it is satisfied at all, implies strong restrictions unless the parameter
is a scalar.

Most of the TQFTs of cohomological type satisfy the relation:

S[φi] = δΛ(φi), (4.80)

for some functional Λ(φi). This has far–reaching consequences, for it means
that the topological observables of the theory, in particular the partition func-
tion, (path integral) itself are independent of the value of the coupling con-
stant. Indeed, let us consider for example the VEV:

〈Oα1Oα2 · · ·Oαp
〉 =

∫
[Dφi]Oα1(φi)Oα2(φi) · · ·Oαp

(φi) e−
1

g2 S[φi]. (4.81)
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Under a change in the coupling constant, 1/g2 → 1/g2−Δ, one has (assuming
that the observables do not depend on the coupling), up to first–order in Δ:

〈Oα1Oα2 · · ·Oαp
〉 −→ 〈Oα1Oα2 · · ·Oαp

〉

+ Δ

∫
[Dφi]δ

[
Oα1(φi)Oα2(φi) · · ·Oαp(φi)Λ(φi) exp

(
− 1

g2
S[φi]

)]

= 〈Oα1Oα2 · · ·Oαp
〉. (4.82)

Hence, observables can be computed either in the weak coupling limit, g → 0,
or in the strong coupling limit, g →∞.

So far we have presented a rather general definition of TQFT and made a
series of elementary remarks. Now we will analyze some aspects of its struc-
ture. We begin pointing out that given a theory in which (4.77) holds one can
build correlators which correspond to topological invariants (in the sense that
they are invariant under deformations of the metric gμν) just by considering
the operators of the theory which are invariant under the symmetry. We will
call these operators observables. In virtue of (4.79), if one of these operators
can be written as a symmetry transformation of another operator, its presence
in a correlation function will make it vanish. Thus we may identify operators
satisfying (4.77) which differ by an operator which corresponds to a symme-
try transformation of another operator. Let us denote the set of the resulting
classes by {Φ}. By restricting the analysis to the appropriate set of operators,
one has that in fact,

δ2 = 0. (4.83)

Property (4.83) has consequences on the features of TQFT. First, the
symmetry must be odd which implies the presence in the theory of commuting
and anticommuting fields. For example, the tensor Gμν in (4.77) must be
anticommuting. This is the first appearance of an odd non–spinorial field in
TQFT. Those kinds of objects are standard features of cohomological TQFTs.
Second, if we denote by Q the operator which implements this symmetry, the
observables of the theory can be described as the cohomology classes of Q:

{Φ} =
KerQ
ImQ

, Q2 = 0. (4.84)

Equation (4.77) means that in addition to the Poincaré group the theory
possesses a symmetry generated by an odd version of the Poincaré group. The
corresponding odd generators are constructed out of the tensor Gμν in much
the same way as the ordinary Poincaré generators are built out of Tμν . For
example, if Pμ represents the ordinary momentum operator, there exists a
corresponding odd one Gμ such that

Pμ = {Q,Gμ}. (4.85)

Now, let us discuss the structure of the Hilbert space of the theory in
virtue of the symmetries that we have just described. The states of this space
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must correspond to representations of the algebra generated by the operators
in the Poincaré groups and by Q. Furthermore, as follows from our analysis
of operators leading to (4.84), if one is interested only in states |Ψ〉 leading to
topological invariants one must consider states which satisfy

Q|Ψ〉 = 0, (4.86)

and two states which differ by a Q−exact state must be identified. The odd
Poincaré group can be used to generate descendant states out of a state satis-
fying (4.86). The operators Gμ act non–trivially on the states and in fact, out
of a state satisfying (4.86) we can build additional states using this generator.
The simplest case consists of

∫

γ1

Gμ|Ψ〉,

where γ1 is a 1–cycle. One can verify using (4.77) that this new state satisfies
(4.86):

Q

∫

γ1

Gμ|Ψ〉 =
∫

γ1

{Q,Gμ}|Ψ〉 =
∫

γ1

Pμ|Ψ〉 = 0.

Similarly, one may construct other invariants tensoring n operators Gμ and
integrating over n−cycles γn:

∫

γn

Gμ1
Gμ2

...Gμn
|Ψ〉. (4.87)

Notice that since the operator Gμ is odd and its algebra is Poincaré–like the
integrand in this expression is an exterior differential n−form. These states
also satisfy condition (4.86). Therefore, starting from a state |Ψ〉 ∈ kerQ
we have built a set of partners or descendants giving rise to a topological
multiplet. The members of a multiplet have well defined ghost number. If
one assigns ghost number -1 to the operator Gμ the state in (4.87) has ghost
number -n plus the ghost number of |Ψ〉. Now, n is bounded by the dimension
of the manifold X. Among the states constructed in this way there may be
many which are related via another state which is Q−exact, i.e., which can be
written as Q acting on some other state. Let us try to single out representatives
at each level of ghost number in a given topological multiplet.

Consider an (n−1)−cycle which is the boundary of an nD surface, γn−1 =
∂Sn. If one builds a state taking such a cycle one finds (Pμ = −i∂μ),

∫

γn−1

Gμ1
Gμ2

...Gμn−1
|Ψ〉 = i

∫

Sn

P[μ1
Gμ2

Gμ3
...Gμn]|Ψ〉 (4.88)

= iQ
∫

Sn

Gμ1
Gμ2

...Gμn
|Ψ〉,

i.e., it is Q−exact. The square–bracketed subscripts in (4.88) denote that all
indices between them must by antisymmetrized. In (4.88) use has been made
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of (4.85). This result tells us that the representatives we are looking for are
built out of the homology cycles of the manifold X. Given a manifold X,
the homology cycles are equivalence classes among cycles, the equivalence
relation being that two n−cycles are equivalent if they differ by a cycle which
is the boundary of an n + 1 surface. Thus, knowledge on the homology of the
manifold on which the TQFT is defined allows us to classify the representatives
among the operators (4.87). Let us assume that X has dimension d and that
its homology cycles are γin , (in = 1, ..., dn, n = 0, ..., d), where dn is the
dimension of the n−homology group, and d the dimension of X. Then, the
non–trivial partners or descendants of a given |Ψ〉 highest–ghost–number state
are labelled in the following way:

∫

γin

Gμ1
Gμ2

...Gμn
|Ψ〉, (in = 1, ..., dn, n = 0, ..., d).

A similar construction to the one just described can be made for fields.
Starting with a field φ(x) which satisfies,

[Q,φ(x)] = 0, (4.89)

one can construct other fields using the operators Gμ. These fields, which we
call partners are antisymmetric tensors defined as,

φ(n)
μ1μ2...μn

(x) =
1
n!

[Gμ1
, [Gμ2

...[Gμn
, φ(x)}...}}, (n = 1, ..., d).

Using (4.85) and (4.89) one finds that these fields satisfy the so–called topo-
logical descent equations:

dφ(n) = i[Q,φ(n+1)},

where the subindices of the forms have been suppressed for simplicity, and the
highest–ghost–number field φ(x) has been denoted as φ(0)(x). These equations
enclose all the relevant properties of the observables which are constructed
out of them. They constitute a very useful tool to build the observables of the
theory.

4.3.2 TQFT and Seiberg–Witten Theory

Recall that the field of low–dimensional geometry and topology [Ati88b] has
undergone a dramatic phase of progress in the last decade of the 20th Century,
prompted, to a large extend, by new ideas and discoveries in mathematical
physics. The discovery of quantum groups [Dri86] in the study of the Yang–
Baxter equation [Bax82] has reshaped the theory of knots and links [Jon85,
RT91, ZGD91]; the study of conformal field theory and quantum Chern–
Simons theory [Wit89] in physics had a profound impact on the theory of
3–manifolds; and most importantly, investigations of the classical Yang–Mills
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(YM) theory led to the creation of the Donaldson theory of 4–manifolds [FU84,
Don87]. Witten [Wit94] discovered a new set of invariants of 4–manifolds in
the study of the Seiberg–Witten (SW) monopole equations, which have their
origin in supersymmetric gauge theory. The SW theory, while closely related to
Donaldson theory, is much easier to handle. Using SW theory, proofs of many
theorems in Donaldson theory have been simplified, and several important
new results have also been obtained [Tau90, Tau94].

In [ZOC95] a topological quantum field theory was introduced which re-
produces the SW invariants of 4–manifolds. A geometrical interpretation of
the 3D quantum field theory was also given.

SW Invariants and Monopole Equations

Recall that the SW monopole equations are classical field theoretical equations
involving a U(1) gauge field and a complex Weyl spinor on a 4D manifold.
Let X denote the 4–manifold, which is assumed to be oriented and closed.
If X is spin, there exist positive and negative spin bundles S± of rank two.
Introduce a complex line bundle L → X. Let A be a connection on L and
M be a section of the product bundle S+ ⊗ L. Recall that the SW monopole
equations read

F+
kl = − i

2
M̄ΓklM, DAM = 0, (4.90)

where DA is the twisted Dirac operator, Γij = 1
2 [γi, γj ], and F+ represents

the self–dual part of the curvature of L with connection A.
If X is not a spin manifold, then spin bundles do not exist. However, it

is always possible to introduce the so called Spinc bundles S± ⊗ L, with L2

being a line bundle. Then in this more general setting, the SW monopoles
equations look formally the same as (4.90), but the M should be interpreted
as a section of the the SpinC bundle S+ ⊗ L.

Denote byM the moduli space of solutions of the SW monopole equations
up to gauge transformations. Generically, this space is a manifold. Its virtual
dimension is equal to the number of solutions of the following equations

(dψ)+kl +
i
2
(
M̄ΓklN + N̄ΓklM

)
= 0, DAN + ψM = 0,

∇kψk +
i
2
(NM −MN) = 0, (4.91)

where A and M are a given solution of (4.90), ψ ∈ Ω1(X) is a one form,
(dψ)+ ∈ Ω2,+(X) is the self dual part of the two form dψ, and N ∈ S+ ⊗ L.
The first two of the equations in (4.91) are the linearization of the monopole
equations (4.90), while the last one is a gauge fixing condition. Though with
a rather unusual form, it arises naturally from the dual operator governing
gauge transformations
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C : Ω0(X) → Ω1(X)⊕ (S+ ⊗ L), φ �→ (−dφ, iφM).
Let T : Ω1(X)⊕ (S+ ⊗ L) → Ω0(X)⊕Ω2,+(X)⊕ (S− ⊗ L),

be the operator governing equation (4.91), namely, the operator which allows
us to rewrite (4.91) as T (ψ,N) = 0. Then T is an elliptic operator, the
index Ind(T ) of which yields the virtual dimension of M. A straightforward
application of the Atiyah–Singer index Theorem gives

Ind(T ) = −2χ(X) + 3σ(X)
4

+ c1(L)2,

where χ(X) is the Euler character of X, σ(X) its signature index and c1(L)2

is the square of the first Chern class of L evaluated on X in the standard way.
When Ind(T ) equals zero, the moduli space generically consists of a finite

number of points, M = {pt : t = 1, 2, ..., I}. Let εt denote the sign of the
determinant of the operator T at pt, which can be defined with mathematical
rigor. Then the SW invariant of the 4–manifold X is defined by

∑I
1 εt.

The fact that this is indeed an invariant(i.e., independent of the metric) of
X is not very difficult to prove, and we refer to [Wit94] for details. As a matter
of fact, the number of solutions of a system of equations weighted by the sign
of the operator governing the equations(i.e., the analog of T ) is a topological
invariant in general [Wit94]. This point of view has been extensively explored
by Vafa and Witten [VW94] within the framework of topological quantum field
theory in connection with the so called S duality. Here we wish to explore the
SW invariants following a similar line as that taken in [Wit88b, VW94].

Topological Lagrangian

Introduce a Lie super–algebra with an odd generator Q and two even gener-
ators U and δ obeying the following (anti)commutation relations [ZOC95]

[U,Q] = Q, [Q,Q] = 2δ, [Q, δ] = 0. (4.92)

We will call U the ghost number operator, and Q the BRST–operator .
Let A be a connection of L and M ∈ S+ ⊗ L. We define the action of the

super–algebra on these fields by requiring that δ coincide with a gauge trans-
formation with a gauge parameter φ ∈ Ω0(X). The field multiplets associated
with A and M furnishing representations of the super–algebra are (A,ψ, φ),
and (M,N), where ψ ∈ Ω1(X), φ ∈ Ω0(X), and N is a section of S+ ⊗ L.
They transform under the action of the super–algebra according to

[Q,Ai] = ψi, [Q,M ] = N,

[Q,ψi] = −∂iφ, [Q,N ] = iφM, [Q,φ] = 0.

We assume that both A and M have ghost number 0, and thus will be regarded
as bosonic fields when we study their quantum field theory. The ghost numbers
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of other fields can be read off the above transformation rules. We have that
ψ and N are of ghost number 1, thus are fermionic, and φ is of ghost number
2 and bosonic. Note that the multiplet (A,ψ, φ) is what one would get in the
topological field theory for Donaldson invariants except that our gauge group
is U(1), while the existence of M and N is a new feature. Also note that both
M and ψ have the wrong statistics.

In order to construct a quantum field theory which will reproduce the SW
invariants as correlation functions, anti–ghosts and Lagrangian multipliers are
also required. We introduce the anti–ghost multiplet (λ, η) ∈ Ω0(X), such that

[U, λ] = −2λ, [Q,λ] = η, [Q, η] = 0,

and the Lagrangian multipliers (χ,H) ∈ Ω2,+(X), and (μ, ν) ∈ S− ⊗ L such
that

[U,χ] = −χ, [Q,χ] = H, [Q,H] = 0;
[U, μ] = −μ, [Q,μ] = ν, [Q, ν] = iφμ.

With the given fields, we construct the following functional which has
ghost number -1:

V =
∫

X

{
[∇kψk +

i
2
(NM −MN)]λ− χkl

(
Hkl −F+

kl −
i
2
M̄ΓklM

)

− μ̄ (ν − iDAM)− (ν − iDAM)μ
}

, (4.93)

where the indices of the tensorial fields are raised and lowered by a given
metric g on X, and the integration measure is the standard

√
gd4x. Also,

M and μ̄ etc. represent the Hermitian conjugate of the spinorial fields. In a
formal language, M ∈ S+ ⊗ L−1 and μ̄, ν̄, DAM ∈ S− ⊗ L−1. Following the
standard procedure in constructing topological quantum field theory, we take
the classical action of our theory to be [ZOC95]: S = [Q,V ], which has ghost
number 0. One can easily show that S is also BRST invariant, i.e., [Q,S] = 0,
thus it is invariant under the full super–algebra (4.92).

The bosonic Lagrangian multiplier fields H and ν do not have any dy-
namics, and so can be eliminated from the action by using their equations of
motion

Hkl =
1
2

(
F+
kl +

i
2
M̄ΓklM

)
, ν =

1
2
iDAM. (4.94)

Then we arrive at the following expression for the action [ZOC95]

S =

∫

X

{
[−Δφ + MMφ − iNN ]λ − [∇kψk +

i

2
(NM − MN)]η + 2iφμ̄μ

+ (iDAN − γ.ψM)μ − μ̄ (iDAN − γ.ψM)

− χkl

[(
∇kψl −∇lψ

k
)+

+
i

2

(
M̄ΓklN + N̄ΓklM

)
]}

+ S0, (4.95)
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where S0 is given by

S0 =
∫

X

{
1
4
|F+ +

i
2
M̄ΓM |2 +

1
2
|DAM |2

}
.

It is interesting to observe that S0 is nonnegative, and vanishes if and only if
A and M satisfy the SW monopole equations. As pointed out in [Wit94], S0

can be rewritten as

S0 =
∫

X

{
1
4
|F+|2 +

1
4
|M |4 +

1
8
R|M |2 + gijDiMDjM

}
,

where R is the scalar curvature of X associated with the metric g. If R is
nonnegative over the entire X, then the only square integrable solution of the
monopole equations (4.90) is A is a anti-self-dual connection and M = 0.

Quantum Field Theory

We will now investigate the quantum field theory defined by the classical
action (4.95) with the path integral method. Let F collectively denote all the
fields. The partition function of the theory is defined by [ZOC95]

Z =
∫
DF exp(− 1

e2
S),

where e ∈ R is the coupling constant. The integration measure DF is defined
on the space of all the fields. However, since S is invariant under the gauge
transformations, we assume the integration over the gauge field to be per-
formed over the gauge orbits of A. In other words, we fix a gauge for the A
field using, say, a Faddeev–Popov procedure. This can be carried out in the
standard manner, thus there is no need for us to spell out the details here.
The integration measure DF can be shown to be invariant under the super
charge Q. Also, it does not explicitly involve the metric g of X.

Let W be any operator in the theory. Its correlation function is defined by

Z[W ] =
∫
DF exp(− 1

e2
S)W.

It follows from the Q invariance of both the action S and the path integration
measure that for any operator W ,

Z[[Q,W ]] =
∫
DF exp(− 1

e2
S)[Q,W ] = 0.

For the purpose of constructing topological invariants of the 4–manifold
X, we are particularly interested in operators W which are BRST–closed,

[Q,W ] = 0, (4.96)
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but not BRST–exact, i.e., can not be expressed as the (anti)–commutators
of Q with other operators. For such a W , if its variation with respect to the
metric g is BRST exact,

δgW = [Q,W ′], (4.97)

then its correlation function Z[W ] is a topological invariant of X (by that we
really mean that it does not depend on the metric g):

δgZ[W ] =
∫
DF exp(− 1

e2
S)[Q,W ′ − 1

e2
δgV.W ] = 0.

In particular, the partition function Z itself is a topological invariant.
Another important property of the partition function is that it does not

depend on the coupling constant e:

∂Z

∂e2
=

∫
DF 1

e4
exp(− 1

e2
S)[Q,V ] = 0.

Therefore, Z can be computed exactly in the limit when the coupling constant
goes to zero. Such a computation can be carried out in the standard way: Let
Ao, Mo be a solution of the equations of motion of A and M arising from the
action S. We expand the fields A and M around this classical configuration,

A = Ao + ea, M = Mo + em,

where a and m are the quantum fluctuations of A and M respectively. All the
other fields do not acquire background components, thus are purely quantum
mechanical. We scale them by the coupling constant e, by setting N to eN ,
φ to eφ etc.. To the order o(1) in e2, we have

Z =
∑

p

exp(− 1
e2

S
(p)
cl )

∫
DF ′ exp(−S(p)

q ),

where S
(p)
q is the quadratic part of the action in the quantum fields and

depends on the gauge orbit of the classical configuration Ao, Mo, which we
label by p. Explicitly [ZOC95],

S(p)
q =

∫

X

{
[−Δφ + M

o
Moφ− iNN ]λ− [∇kψk +

i
2
(NMo −M

o
N)]η + 2iφμ̄μ

+ (iDAoN − γ.ψMo)μ− μ̄ (iDAoN − γ.ψMo)

− χkl
[(
∇kψl −∇lψk

)+

+
i
2
(
M̄oΓklN + N̄ΓklM

o
)]

+
1
4
|f+ +

i
2
(m̄ΓMo + M̄oΓm)|2 +

1
2
|iDAom + γ.aMo|2

}
,

with f+ the self–dual part of f = da. The classical part of the action is
given by S

(p)
cl = S0|A=Ao,M=Mo .The integration measure DF ′ has exactly



4.3 Dynamics of Fields and Strings 521

the same form as DF but with A replaced by a, and M by m, M̄ by m̄
respectively. Needless to say, the summation over p runs through all gauge
classes of classical configurations.

Let us now examine further features of our quantum field theory. A gauge
class of classical configurations may give a non–zero contribution to the par-
tition function in the limit e2 → 0 only if S

(p)
cl vanishes, and this happens if

and only if Ao and Mo satisfy (4.90). Therefore, the SW monopole equations
are recovered from the quantum field theory.

The equations of motion of the fields ψ and N in the semi–classical ap-
proximation can be easily derived from the quadratic action S

(p)
q , solutions of

which are the zero modes of the quantum fields ψ and N . The equations of
motion read

(dψ)+kl +
i
2
(
M̄oΓklN + N̄ΓklM

o
)

= 0, DAoN + γ.ψM0 = 0,

∇kψk +
i
2
(NM −MN) = 0. (4.98)

Note that they are exactly the same equations which we have already dis-
cussed in (4.91). The first two equations are the linearization of the monopole
equations, while the last is a ‘gauge fixing condition’ for ψ. The dimension of
the space of solutions of these equations is the virtual dimension of the moduli
space M. Thus, within the context of our quantum field theoretical model,
the virtual dimension of M is identified with the number of the zero modes
of the quantum fields ψ and N .

For simplicity we assume that there are no zero modes of ψ and N , i.e., the
moduli space is zero–dimensional. Then no zero modes exist for the other two
fermionic fields χ and μ. To compute the partition function in this case, we first
observe that the quadratic action S

(p)
q is invariant under the supersymmetry

obtained by expanding Q to first order in the quantum fields around the
monopole solution Ao, Mo (equations of motion for the nonpropagating fields
H and ν should also be used.). This supersymmetry transforms the set of
8 real bosonic fields (each complex field is counted as two real ones; the ai
contribute 2 upon gauge fixing.) and the set of 16 fermionic fields to each
other. Thus at a given monopole background we get [ZOC95]

∫
DF ′ exp(−S(p)

q ) =
Pfaff(∇F )
|Pfaff(∇F )| = ε(p),

where ε(p) is +1 or -1. In the above equation, ∇F is the skew symmetric first
order differential operator defining the fermionic part of the action S

(p)
q , which

can be read off from S
(p)
q to be ∇F =

(
0 T
−T ∗ 0

)
. Therefore, ε(p) is the sign

of the determinant of the elliptic operator T at the monopole background Ao,
Mo, and the partition function Z =

∑
p ε

(p) coincides with the SW invariant
of the 4–manifold X.
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When the dimension of the moduli space M is greater than zero, the
partition function Z vanishes identically, due to integration over zero modes
of the fermionic fields. In order to get any non trivial topological invariants
for the underlying manifold X, we need to examine correlations functions of
operators satisfying equations (4.96) and (4.97). A class of such operators
can be constructed following the standard procedure [Wit94]. We define the
following set of operators

Wk,0 =
φk

k!
, Wk,1 = ψWk−1,0,

Wk,2 = FWk−1,0 −
1
2
ψ ∧ ψWk−2,0, (4.99)

Wk,3 = F ∧ ψWk−2,0 −
1
3!

ψ ∧ ψ ∧ ψWk−3,0,

Wk,4 =
1
2
F ∧ FWk−2,0 −

1
2
F ∧ ψ ∧ ψWk−3,0 −

1
4!

ψ ∧ ψ ∧ ψ ∧ ψWk−4,0.

These operators are clearly independent of the metric g of X. Although they
are not BRST invariant except for Wk,0, they obey the following equations
[ZOC95]

dWk,0 = −[Q,Wk,1], dWk,1 = [Q,Wk,2],
dWk,2 = −[Q,Wk,3], dWk,3 = [Q,Wk,4], dWk,4 = 0,

which allow us to construct BRST invariant operators from the the W ’s in
the following way: Let Xi, i = 1, 2, 3, X4 = X, be compact manifolds without
boundary embedded in X. We assume that these submanifolds are homolog-
ically nontrivial. Define

Ôk,0 = Wk,0, Ôk,i =
∫

Xi

Wk,i, (i = 1, 2, 3, 4). (4.100)

As we have already pointed out, Ôk,0 is BRST invariant. It follows from the
descendent equations that

[Q, Ôk,i] =
∫

Xi

[Q,Wk,i] =
∫

Xi

dWk,i−1 = 0.

Therefore the operators Ô indeed have the properties (4.96) and (4.97). Also,
for the boundary ∂K of an i + 1D manifold K embedded in X, we have

∫

∂K

Wk,i =
∫

K

dWk,i = [Q,

∫

K

Wk,i+1],

is BRST trivial. The correlation function of
∫
∂K

Wk,i with any BRST invariant
operator is identically zero. This in particular shows that the Ô’s only depend
on the homological classes of the submanifolds Xi.
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Dimensional Reduction and 3D Field Theory

In this subsection we dimensionally reduce the quantum field theoretical model
for the SW invariant from 4D to 3D, thus to get a new topological quantum
field theory defined on 3−manifolds. Its partition function yields a 3−manifold
invariant, which can be regarded as the SW version of Casson’s invariant
[AM90, Tau94].

We take the 4–manifold X to be of the form Y × [0, 1] with Y being a
compact 3−manifold without boundary. The metric on X will be taken to be

(ds)2 = (dt)2 + gij(x)dxidxj ,

where the ‘time’ t−independent g(x) is the Riemannian metric on Y . We
assume that Y admits a spin structure which is compatible with the Spinc
structure of X, i.e., if we think of Y as embedded in X, then this embedding
induces maps from the Spinc bundles S± ⊗ L of X to S̃ ⊗ L, where S̃ is a
spin bundle and L is a line bundle over Y .

To perform the dimensional reduction, we impose the condition that all
fields are t in dependent. This leads to the following action [ZOC95]

S =
∫ √

gd3x

{
[−Δφ + MMφ− iNN ]λ− [∇kψk +

i
2
(NM −MN)]η + 2iφμ̄μ

+ [i(DA + b)N − (σ.ψ − τ)M ]μ− μ̄ [i(DA + b)N − (σ.ψ − τ)M ]
− 2χk

[
−∂kτ + ∗(∇ψ)k − M̄σkN − N̄σkM

]

+
1
4
| ∗ F − ∂b− M̄σM |2 +

1
2
|(DA + b)M |2

}
, (4.101)

where the k is a 3D index, and σk are the Pauli matrices. The fields b, τ ∈
Ω0(Y ) respectively arose from A0 and ψ0 of the 4D theory, while the meanings
of the other fields are clear. The BRST symmetry in 4D carries over to the 3D
theory. The BRST transformations rules for (Ai, ψi, φ), i = 1, 2, 3, (M,N),
and (λ, η) are the same as before, but for the other fields, we have

[Q, b] = τ , [Q, τ ] = 0,

[Q,χk] =
1
2
(
∗Fk − ∂kb− M̄σkM

)
,

[Q,μ] =
1
2
i(DA + b)M.

The action S is cohomological in the sense that S = [Q,V3], with V3 being
the dimensionally reduced version of V defined by (4.93), and [Q,S] = 0. Thus
it gives rise to a topological field theory upon quantization. The partition
function of the theory

Z =
∫
DF exp(− 1

e2
S),
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can be computed exactly in the limit e2 → 0, as it is coupling constant inde-
pendent. We have, as before,

Z =
∑

p

exp(− 1
e2

S
(p)
cl )

∫
DF ′ exp(−S(p)

q ),

where S
(p)
q is the quadratic part of S expanded around a classical configuration

with the classical parts for the fields A,M, b being Ao,Mo, bo, while those for
all the other fields being zero. The classical action S

(p)
cl is given by

S
(p)
cl =

∫

Y

{
1
4
| ∗ Fo − dbo − M̄oσMo|2 +

1
2
|(DAo + bo)Mo|2

}
,

which can be rewritten as [ZOC95]

S
(p)
cl =

∫

Y

{
1
4
| ∗ Fo − M̄oσMo|2 +

1
2
|DAoMo|2 +

1
2
|dbo|2 +

1
2
|boMo|2

}
.

In order for the classical configuration to have non–vanishing contribu-
tions to the partition function, all the terms in S

(p)
cl should vanish separately.

Therefore,

∗Fo − M̄oσMo = 0, DAoMo = 0, bo = 0, (4.102)

where the last condition requires some explanation. When we have a trivial
solution of the equations (4.102), it can be replaced by the less stringent
condition dbo = 0. However, in a more rigorous treatment of the problem at
hand, we in general perturb the equations (4.102), then the trivial solution
does not arise.

Let us define an operator

T̃ : Ω0(Y )⊕Ω1(Y )⊕ (S̃ ⊗ L) → Ω0(Y )⊕Ω1(Y )⊕ (S̃ ⊗ L),

(τ , ψ,N) �→ (−d∗ψ +
i
2
(NM −MN), ∗(dψ)− dτ − N̄σM −MσN,

iDAN − (σ.ψ − τ)M), (4.103)

where the complex bundle S̃ ⊗ L should be regarded as a real one with twice
the rank. This operator is self–adjoint, and is also obviously elliptic. We will
assume that it is Fredholm as well. In terms of T̃ , the equations of motion
of the fields χi and μ can be expressed as [ZOC95] T̃ (p)(τ , ψ,N) = 0, where
T̃ (p) is the opeartor T̃ with the background fields (Ao,Mo) belonging to the
gauge class p of classical configurations .

When the kernel of T̃ is zero, the partition function Z does not vanish
identically. An easy computation leads to Z =

∑
p ε

(p), where the sum is
over all gauge inequivalent solutions of (4.102), and ε(p) is the sign of the
determinant of T̃ (p).
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A rigorous definition of the sign of the det(T̃ ) can be devised. However, if
we are to compute only the absolute value of Z, then it is sufficient to know
the sign of det(T̃ ) relative to a fixed gauge class of classical configurations.
This can be achieved using the mod− 2 spectral flow of a family of Fredholm
operators T̃t along a path of solutions of (4.102). More explicitly, let (Ao,Mo)
belong to the gauge class of classical configurations p, and (Ão, M̃o) in p̃. We
consider the solution of the SW equation on X = Y × [0, 1] with A0 = 0 and
also satisfying the following conditions

(A,M)|t=0 = (Ao,Mo), (A,M)|t=1 = (Ão, M̃o).

Using this solution in T̃ results in a family of Fredholm operators, which has
zero kernels at t = 0 and 1. The spectral flow of T̃t, denoted by q(p, p̃), is
defined to be the number of eigenvalues which cross zero with a positive slope
minus the number which cross zero with a negative slope. This number is a
well defined quantity, and is given by the index of the operator ∂

∂t − T̃t. In
terms of the spectral flow, we have [ZOC95]

det(T̃ (p))
det(T̃ (p̃))

= (−1)q(p,p̃).

Equations (4.102) can be derived from the functional

Sc−s =
1
2

∫

Y

A ∧ F + i
∫

Y

√
gd3xMDAM.

(It is interesting to observe that this is almost the standard Lagrangian of a
U(1) Chern–Simons theory coupled to spinors, except that we have taken M
to have bosonic statistics.) Sc−s is gauge invariant modulo a constant aris-
ing from the Chern–Simons term upon a gauge transformation. Therefore,
( δSc−s

δA , δSc−s

δM̄
) defines a vector field on the quotient space of all U(1) connec-

tions A tensored with the S̃ × L sections by the U(1) gauge group G, i.e.,
W = (A× (S̃ ⊗ L))/G. Solutions of (4.102) are zeros of this vector field, and
T̃ (p) is the Hessian at the point p ∈ W. Thus the partition Z is nothing else
but the Euler character of W. This geometrical interpretation will be spelt
out more explicitly in the next subsection by re–interpreting the theory using
the Mathai–Quillen formula [MQ86].

Geometrical Interpretation

To elucidate the geometric meaning of the 3D theory obtained in the last
section, we now cast it into the framework of Atiyah and Jeffrey [AJ90].
Let us briefly recall the geometric set up of the Mathai–Quillen formula as
reformulated in [AJ90]. Let P be a Riemannian manifold of dimension 2m +
dimG, and G be a compact Lie group acting on P by isometries. Then P →
P/G is a principle bundle. Let V be a 2m dimensional real vector space, which
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furnishes a representation G → SO(2m). Form the associated vector bundle
P ×G V . Now the Thom form of P ×G V can be expressed [ZOC95]

U =
exp(−x2)

(2π)dimGπm

∫
exp

{
iχφχ

4
+ iχdx− i〈δν, λ〉

− 〈φ,Rλ〉 +〈ν, η〉}DηDχDφDλ, (4.104)

where x = (x1, ..., x2m) is the coordinates of V , φ and λ are bosonic variables
in the Lie algebra g of G, and η and χ are Grassmannian variables valued in
the Lie algebra and the tangent space of the fiber respectively. In the above
equation, C maps any η ∈ g to the element of the vertical part of TP generated
by η; ν is the g - valued one form on P defined by 〈ν(α), η〉 = 〈α,C(η)〉, for
all vector fields α; and R = C∗C. Also, δ is the exterior derivative on P .

Now we choose a G invariant map s : P → V , and pull back the Thom
form U . Then the top form on P in s∗U is the Euler class. If {δp} forms a
basis of the cotangent space of P (note that ν and δs are one forms on P ),
we replace it by a set of Grassmannian variables {ψ} in s∗U , then intergrate
them away. We arrive at

Υ =
1

(2π)dimGπm

∫
exp

{
−|s|2 +

iχφχ

4
+ iχδs− i〈δν, λ〉

− 〈φ,Rλ〉 +〈ψ,Cη〉}DηDχDφDλDψ, (4.105)

the precise relationship of which with the Euler character of P ×G V is
∫

P

Υ = Vol(G)χ(P×G).

It is rather obvious that the action S defined by (4.95) for the 4D theory
can be interpreted as the exponent in the integrand of (4.105), if we identify
P with A × Γ (W+), and V with Ω2,+(X) × Γ (W−), and set s = (F+ +
i
2M̄ΓM,DAM). Here A is the space of all U(1) connections of det(W+), and
Γ (W±) are the sections of S± ⊗ L respectively.

For the 3D theory, we wish to show that the partition function yields the
Euler number of W. However, the tangent bundle of W cannot be regarded
as an associated bundle with the principal bundle, for which for the formulae
(4.104) or (4.105) can readily apply, some further work is required.

Let P be the principal bundle over P/G, V , V ′ be two orthogonal repre-
sentions of G. Suppose there is an embedding from P ×G V ′ to P ×G V via
a G−map γ(p) : V ′ → V for p ∈ P . Denote the resulting quotient bundle as
E. In order to derive the Thom class for E, one needs to choose a section of
E, or equivalently, a G−map s : P → V such that s(p) ∈ (Imγ(p))⊥. Then
the Euler class of E can be expressed as π∗ρ

∗U , where U is the Thom class
of P ×G V , ρ is a G−map: P × V ′ → P × V defined by

ρ(p, τ) = (p, γ(p)τ + s(p)),
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and π∗ is the integration along the fiber for the projection π : P ×V ′ → P/G.
Explicitly, [ZOC95]

π∗ρ
∗(U) =

∫
exp

{
−|γ(p)τ + s(p)|2 + iχφχ + iχδ(γ(p)τ + s(p))

− i〈δν, λ〉 − 〈φ,Rλ〉+ 〈ν, Cη〉 }DχDφDτDηDλ. (4.106)

Consider the exact sequence

0 −→ (A× Γ (W ))×G Ω0(Y )
j−→ (A× Γ (W ))×G (Ω1(Y )× Γ (W )),

where j(A,M) : b �→ (−db, bM) (assuming that M �= 0). Then the tangent
bundle of A×G Γ (W ) can be Regarded as the quotient bundle

(A× Γ (W ))×G (Ω1(Y )× Γ (W ))/Im(j).

We define a vector field on A×G Γ (W ) by

s(A,M) = (∗FA − M̄σM,DAM),

which lies in Im(j)⊥:
∫

Y

(∗FA − M̄σM) ∧ ∗(−db) +
∫

Y

√
gd3x〈DAM, bM〉 = 0, (4.107)

where we have used the short hand notation 〈M1,M2〉 = 1
2 (M1M2 +M2M1).

Formally applying the formula (4.106) to the present infinite–dimensional
situation, we get the Euler class π∗ρ

∗(U) for the tangent bundle T (A ×G
Γ (W )), where ρ is the G−invariant map ρ is defined by

ρ : Ω0(Y ) −→ Ω1(Y )×Γ (W ), ρ(b) = (−db+∗FA−M̄σM, (DA+b)M),

π is the projection (A× Γ (W ))×G Ω0(Y ) −→ A×G Γ (W ), and π∗ signifies
the integration along the fiber. Also U is the Thom form of the bundle

(A× Γ (W ))×G (Ω1(Y )× Γ (W )) −→ A×G Γ (W ).

To get a concrete feel about U , we need to explain the geometry of this
bundle. The metric on Y and the Hermitian metric 〈. , .〉 on Γ (W ) naturally
define a connection. The Maurer–Cartan connection on A −→ A/G is flat
while the Hermitian connection on has the curvature iφμ ∧ μ̄. This gives the
expression of term i(χ, μ)φ(χ, μ) in (4.105) in our case.

In our infinite–dimensional setting, the map C is given by

C : Ω0(Y ) −→ T(A,M)(A× Γ (W )), C(η) = (−dη, iηM),

and its dual is given by
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C∗ : Ω1(Y )× Γ (W ) −→ Ω0(Y ), C∗(ψ,N) = −d∗ψ + 〈N, iM〉.

The one form 〈ν, η〉 on A× Γ (W ) takes the value

〈(ψ,N), Cη〉 = 〈−d∗ψ, η〉+ 〈N, iM〉η

on the vector field (ψ,N). We also easily get R(λ) = −Δλ + 〈M,M〉λ,
where Δ = d∗d. The 〈δν, λ〉 is a two form on A × Γ (W ) whose value on
(ψ1, N1), (ψ2, N2) is -〈N1, N2〉λ.

Combining all the information together, we arrive at the following formula,

π∗ρ
∗(U) =

∫
exp

{
−1

2
|ρ|2 + i(χ, μ)δρ + 2iφμμ̄

+ 〈Δφ, λ〉 − φλ〈M,M〉+ i〈N,N〉λ
+ 〈ν, η〉}DχDφDλDηDb. (4.108)

Note that the 1–form i(χ, μ)δρ on A × Γ (W ) × Ω0(Y ) contacted with the
vector field (φ,N, b) leads to

2χk
[
−∂kτ + ∗(∇ψ)k − M̄σkN − N̄σkM

]
+2〈μ, [i(DA + b)N − (σ.ψ − τ)M ]〉;

and the relation (4.107) gives |ρ|2 = |∗F−M̄σM |2+ |db|2+ |DAM |2+b2|M |2.
Finally we get the Euler character

π∗ρ
∗(U) =

∫
exp(−S)DχDφDλDηDb, (4.109)

where S is the action (4.101) of the 3D theory defined on the manifold Y .
Integrating (4.109) over A×G Γ (W ) leads to the Euler number

∑

[(A,M)]:s(A,M)=0

ε(A,M),

which coincides with the partition function Z of our 3D theory.

4.3.3 Stringy Actions and Amplitudes

Now we give a brief review of modern path–integral methods in superstring
theory (mainly following [DEF99]). Recall that the fundamental quantities
in quantum field theory (QFT) are the transition amplitudes Amp : IN =⇒
OUT, describing processes in which a number IN of incoming particles scatter
to produce a number OUT of outgoing particles. The square modulus of the
transition amplitude yields the probability for this process to take place.
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Fig. 4.15. Basic geometrical objects of string theory: (a) a space with fixed time;
(b) a space–time picture; (c) a point–particle; (d) a world–line of a point–particle;
(e) a closed string; (f) a world–sheet of a closed string; (g) an open string; (h) a
world–sheet of an open string.

Strings

Recall that in string theory, elementary particles are not described as 0–
dimensional points, but instead as 1D strings. If Ms and M(∼ R ×Ms) de-
note the 3D space and 4D space–time manifolds respectively, then we picture
strings as in Figure 4.15.

While the point–particle sweeps out a 1D world–line, the string sweeps
out a world–sheet , i.e., a 2D real surface. For a free string , the topology of
the world–sheet is a cylinder (in the case of a closed string) or a sheet (for an
open string).

Roughly, different elementary particles correspond to different vibration
modes of the string just as different minimal notes correspond to different
vibrational modes of musical string instruments.

It turns out that the physical size of strings is set by gravity, more precisely
the Planck length  P ∼ 10−33 cm. This scale is so small that we effectively
only see point–particles at our distance scales. Thus, for length scales much
larger than  P , we expect to recover a QFT–description of point–particles,
plus typical string corrections that represent physics at the Planck scale.

Interactions

While the string itself is an extended 1D object, the fundamental string inter-
actions are local, just as for point–particles. The interaction takes place when
strings overlap in space at the same time. In case of closed string theories
the interactions have a form depicted in Figure 4.16, while in case of open
string theories the interactions have a form depicted in Figure 4.17. Other
interactions result from combining the interactions defined above.
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Fig. 4.16. Interactions in closed string theories (left 2D–picture and right 3D–
picture).

Fig. 4.17. Interactions in open string theories (left 2D–picture and right 3D–
picture).

In point–particle theories, the fundamental interactions are read off from
the QFT–Lagrangian. An interaction occurs at a geometrical point, where the
world–lines join and cease to be a manifold. In Lorentz–invariant theories
(where manifold M is a flat Minkowski space–time), the interaction point
is Lorentz–invariant. To specify how the point–particles interact, additional
data must be supplied at the interaction point, giving rise to many possible
distinct quantum field theories.

In string theory, the interaction point depends upon the Lorentz frame
chosen to observe the process. In the Figure above, equal time slices are in-
dicated from the point of view of two different Lorentz frames, schematically
indicated by t and t′. The closed string interaction, as seen from frames t and
t′, occurs at times t2 and t′2 and at (distinct) points P and P ′ respectively.

Lorentz invariance of interaction forbids that any point on the world–sheet
be singled out as interaction point. Instead, the interaction results purely from
the joining and splitting of strings. While free closed strings are characterized
by their topology being that of a cylinder, interacting strings are characterized
by the fact that their associated world–sheet is connected to at least 3 strings,
incoming and/or outgoing.

As a result, the free string determines the nature of the interactions com-
pletely, leaving only the string coupling constant undetermined.

The orientation is an additional structure of closed strings, dividing them
into two categories: (i) oriented strings, in which all world–sheets are assumed
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to be orientable; and (ii) non–oriented strings, in which world–sheets are non–
orientable, such as the Möbius strip, Klein bottle, etc.

Fig. 4.18. Boundary components and handles of closed oriented system of M in-
coming strings, interacting through internal loops, to produce N outgoing strings.
Note the striking similarity with MIMO–systems of nonlinear control theory , with
M input processes and N output processes (see [II06b]).

Loop Expansion – Topology of Closed Surfaces

For simplicity, here we consider closed oriented strings only, so that the associ-
ated world–sheet is also oriented. A general string configuration describing the
process in which M incoming strings interact and produce N outgoing strings
looks at the topological level like a closed surface with M + N = E boundary
components and any number of handles (see Figure 4.18). This picture is a
kind of topological generalization of nonlinear control MIMO–systems with
M inputs, N outputs X states.

The internal loops may arise when virtual particle pairs are produced,
just as in quantum field theory. For example, a Feynman diagram in quantum
field theory that involves a loop is shown in Figure 4.19 together with the
corresponding string diagram.

Surfaces associated with closed oriented strings have two topological in-
variants: (i) the number of boundary components E = M + N (which may
be shrunk to punctures, under certain conditions), and (ii) the number h of
handles on the surface, which equals the surface genus.

When E = 0, we just have the topological classification of compact ori-
ented surfaces without boundary. Rendering E > 0 is achieved by removing
E discs from the surface.

Recall that in QFT, an expansion in powers of Planck’s constant � yields
an expansion in the number of loops of the associated Feynman diagram, for
a given number of external states:
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Fig. 4.19. A QFT Feynman diagram that involves an internal loop (left), with the
corresponding string diagram (right).

Fig. 4.20. Number h of handles on the surface of closed oriented strings, which
equals the string–surface genus: (a) h = 0 for sphere S2; (b) h = 1 for torus T 2; (c)
h = 2 for string–surfaces with higher genus, etc.

�
E+h−1 =

⎧
⎨

⎩

�

�
−1

−1

for every propagator
for every vertex

for overall momentum conservation

Thus, in string theory we expect that, for a given number of external strings
E, the topological expansion genus by genus should correspond to a loop
expansion as well.

Recall that in QFT, there are in general many Feynman diagrams that
correspond to an amplitude with a given number of external particles and a
given number of loops. For example, for E = 4 external particles and h = 1
loop in φ3 theory are given in Figure 4.21, together with the same process
in string theory (for closed oriented strings), where it is described by just a
single diagram (right).

Much of recent interest has been focused on the so–called D−branes. A
D−brane is a submanifold of space–time with the property that strings can
end or begin on it.

4.3.4 Transition Amplitudes for Strings

The only way we have today to define string theory is by giving a rule for the
evaluation of transition amplitudes, order by order in the loop expansion, i.e.,
genus by genus. The rule is to assign a relative weight to a given configuration
and then to sum over all configurations [DEF99]. To make this more precise,
we first describe the system’s configuration manifold M (see Figure 4.22).
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Fig. 4.21. Feynman QFT–diagrams for φ3 theory with E = 4 external particles
and h = 1 loop (left), and a single corresponding string diagram (right). In this way
the usual Feynman diagrams of quantum field theory are generalized by arbitrary
Riemannian surfaces.

Fig. 4.22. The embedding map x from the reference surface Σ into the pseudo–
Riemannian configuration manifold M (see text for explanation).

We assume that Σ and M are smooth manifolds, of dimensions 2 and n re-
spectively, and that x is a continuous map from Σ to M . If ξm, (for m = 1, 2),
are local coordinates on Σ and xμ, (μ = 1, . . . , n), are local coordinates on M
then the map x may be described by functions xμ(ξm) which are continuous.

To each system configuration we can associate a weight e−S[x,Σ,M ], (for S ∈
C) and the transition amplitude Amp for specified external strings (incoming
and outgoing) is get by summing over all surfaces Σ and all possible maps x,

Amp =
∑

surfaces Σ

∑

x

e−S[x,Σ,M ] .

We now need to specify each of these ingredients:

(1) We assume M to be an nD Riemannian manifold, with metric g. A special
case is flat Euclidean space–time R

n. The space–time metric is assumed fixed.

ds2 = (dx, dx)g = gμν(x)dxμ ⊗ dxν .

(2) The metric g on M induces a metric on Σ: γ = x∗(g),

γ = γmndξ
m ⊗ dξn, γmn = gμν

∂xμ

∂ξm
∂xν

∂ξn
.
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This metric is non–negative, but depends upon x. It is advantageous to in-
troduce an intrinsic Riemannian metric g on Σ, independently of x; in local
coordinates, we have

g = gmn(ξ)dξm ⊗ dξn.

A natural intrinsic candidate for S is the area of x(Σ), which gives the
so–called Nambu–Goto action39

Area (x (Σ)) =
∫

Σ

dμγ =
∫

Σ

n2ξ
√

det γmn, (4.110)

which depends only upon g and x, but not on g [Got71]. However, the tran-
sition amplitudes derived from the Nambu–Goto action are not well–defined
quantum–mechanically.

Otherwise, we can take as starting point the so–called Polyakov action40

S[x, g] = κ

∫

Σ

(dx, ∗dx)g = κ

∫

Σ

dμgg
mn∂mxμ∂nx

νgμν(x), (4.111)

where κ is the string tension (a positive constant with dimension of inverse
length square). The stationary points of S with respect to g are at g0 = eφγ
for some function φ on Σ, and thus S[x, g0] ∼ Area (x (Σ)).

The Polyakov action leads to well–defined transition amplitudes, get by
integration over the space Met(Σ) of all positive metrics on Σ for a given
topology, as well as over the space of all maps Map(Σ,M). We can define the
path integral

Amp =
∑

topologies
Σ

∫

Met(Σ)

1
N(g)

∫

Map(Σ,M)

D[x] e−S[x,g,g],

where N is a normalization factor, while the measures D[g] and D[x] are
constructed from Diff+(Σ) and Diff(M) invariant L2 norms on Σ and M .
For fixed metric g, the action S is well–known: its stationary points are the
harmonic maps x : Σ → M (see, e.g., [EL78]). However, g here varies and in
fact is to be integrated over. For a general metric g, the action S defines a
nonlinear sigma model , which is renormalizable because the dimension of Σ
is 2. It would not in general be renormalizable in dimension higher than 2,
which is usually regarded as an argument against the existence of fundamental
membrane theories (see [DEF99]).

39 Nambu–Goto action is the starting point of the analysis of string behavior, using
the principles of ordinary Lagrangian mechanics. Just as the Lagrangian for a free
point particle is proportional to its proper time-i.e., the ‘length’ of its world–line,
a relativistic string’s Lagrangian is proportional to the area of the sheet which
the string traces as it travels through space–time.

40 The Polyakov action is the 2D action from conformal field theory , used in string
theory to describe the world–sheet of a moving string.
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The Nambu–Goto action (4.110) and Polyakov action (4.111) represent the
core of the so–called bosonic string theory , the original version of string theory,
developed in the late 1960s. Although it has many attractive features, it also
predicts a particle called the tachyon possessing some unsettling properties,
and it has no fermions. All of its particles are bosons, the matter particles. The
physicists have also calculated that bosonic string theory requires 26 space–
time dimensions: 25 spatial dimensions and one dimension of time. In the early
1970s, supersymmetry was discovered in the context of string theory, and a
new version of string theory called superstring theory (i.e., supersymmetric
string theory) became the real focus, as it includes also fermions, the force
particles. Nevertheless, bosonic string theory remains a very useful ‘toy model’
to understand many general features of perturbative string theory .

4.3.5 Weyl Invariance and Vertex Operator Formulation

The action S is also invariant under Weyl rescalings of the metric g by a
positive function on σ : Σ → R, given by g → e2σg. In general, Weyl invariance
of the full amplitude may be spoiled by anomalies. Assuming Weyl invariance
of the full amplitude, the integral defining Amp may be simplified in two ways.

1) The integration over Met(Σ) effectively collapses to an integration over
the moduli space of surfaces, which is finite dimensional, for each genus h.
2) The boundary components of Σ — characterizing external string states —
may be mapped to regular points on an underlying compact surface without
boundary by conformal transformations. The data, such as momenta and other
quantum numbers of the external states, are mapped into vertex operators.
The amplitudes are now given by the path integral

Amp =
∞∑

h=0

∫

Met(Σ)

D[g]
1

N(g)

∫

Map(Σ,M)

D[x]V1 . . . VN e−S ,

for suitable vertex operators V1, . . . VN .

4.3.6 More General Stringy Actions

Generalizations of the action S given above are possible when M carries extra
structure.

1) M carries a 2−form B ∈ Ω(2)(M). The resulting contribution to the
action is also that of a ‘nonlinear sigma model’

SB [x,B] =
∫

Σ

x∗(B) =
∫

Σ

dxμ ∧ dxνBμν(x)

2) M may carry a dilaton field Φ ∈ Ω(0)(M) so that
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SΦ[x, Φ] =
∫

Σ

dμgRgΦ(x).

where Rg is the Gaussian curvature of Σ for the metric g.
3) There may be a tachyon field T ∈ Ω(0)(M) contributing

ST [x, T ] =
∫

Σ

dμgT (x).

4.3.7 Transition Amplitude for a Single Point Particle

The transition amplitude for a single point–particle could in fact be get in
a way analogous to how we prescribed string amplitudes. Let space–time be
again a Riemannian manifold M , with metric g. The prescription for the
transition amplitude of a particle travelling from a point y ∈M to a point y′

to M is expressible in terms of a sum over all (continuous) paths connecting
y to y′:

Amp(y, y′) =
∑

paths
joining y and y′

e−S[path].

Paths may be parametrized by maps from C = [0, 1] into M with x(0) =
y, x(1) = y′. A simple world–line action for a massless particle is get by
introducing a metric g on [0, 1]

S[x, g] =
1
2

∫

C

dτ g(τ)−1ẋμẋνgμν(x),

which is invariant under Diff+(C) and Diff(M).
Recall that the analogous prescription for the point–particle transition

amplitude is the path integral

Amp(y, y′) =
∫

Met(C)

D[g]
1
N

∫

Map(C,M)

D[x] e−S[x,g].

Note that for string theory, we had a prescription for transition amplitudes
valid for all topologies of the world–sheet. For point–particles, there is only the
topology of the interval C, and we can only describe a single point–particle,
but not interactions with other point–particles. To put those in, we would
have to supply additional information.

Finally, it is very instructive to work out the amplitude Amp by carrying
out the integrations. The only Diff+(C) invariant of g is the length L =∫ 1

0
dτ g(τ); all else is generated by Diff+(C). Defining the normalization

factor to be the volume of Diff(C): N = Vol(Diff(C)) we have D[g] =
D[v] dL and the transition amplitude becomes

Amp(y, y′) =

∫ ∞

0

dL

∫
D[x] e−

1
2L

∫ 1
0 dτ(ẋ,ẋ)g =

∫ ∞

0

dL
〈
y′|e−LΔ|y

〉
=

〈
y′| 1

Δ
|y
〉

.

Thus, the amplitude is just the Green function at (y, y′) for the Laplacian Δ
and corresponds to the propagation of a massless particle (see [DEF99]).
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4.3.8 Witten’s Open String Field Theory

Noncommutative nature of space–time has often appeared in non–perturbative
aspects of string theory. It has been used in a formulation of interacting open
string field theory by Ed Witten [Wit88c, Wit86a]. Witten has written a clas-
sical action of open string field theory in terms of noncommutative geometry,
where the noncommutativity appears in a product of string fields. Later, the
Dirichlet branes (or, D–branes) have been recognized as solitonic objects in
superstring theory [Pol95]. Further, it has been found that the low energy
behavior of the D–branes are well described by supersymmetric Yang–Mills
theory (SYM) [Wit96]. In the situation of some D–branes coinciding, the
space–time coordinates are promoted to matrices which appear as the fields
in SYM. Then the size of the matrices corresponds to the number of the D–
branes, so noncommutativity of the matrices is related to the noncommutative
nature of space–time.

In this subsection, mainly following [Sug00], we review some basic prop-
erties of Witten’s bosonic open string field theory [Wit88c] and its explicit
construction based on a Fock space representation of string field functional
and δ−function overlap vertices [GJ87a, GJ87b, CST86].

Witten introduced a beautiful formulation of open string field theory in
terms of a noncommutative extension of differential geometry, where string
fields, the BRST operator Q and the integration over the string configurations∫

in string field theory are analogs of differential forms, the exterior deriva-
tive d and the integration over the manifold

∫
M

in the differential geometry,
respectively. The ghost number assigned to the string field corresponds to the
degree of the differential form. Also the (noncommutative) product between
the string fields ∗ is interpreted as an analog of the wedge product ∧ between
the differential forms.

The axioms obeyed by the system of
∫

, ∗ and Q are
∫

QA = 0, Q(A ∗B) = (QA) ∗B + (−1)nAA ∗ (QB),

(A ∗B) ∗ C = A ∗ (B ∗ C),
∫

A ∗B = (−1)nAnB

∫
B ∗A,

where A, B and C are arbitrary string fields, whose ghost number is half–
integer valued: The ghost number of A is defined by the integer nA as nA+ 1

2 .
Then Witten discussed the following string–field–theory action

S =
1
Gs

∫ (
1
2
ψ ∗Qψ +

1
3
ψ ∗ ψ ∗ ψ

)
, (4.112)

where Gs is the open string coupling constant and ψ is the string field with
the ghost number -1

2 . The action is invariant under the gauge transformation

δψ = QΛ + ψ ∗ Λ− Λ ∗ ψ,

with the gauge parameter Λ of the ghost number -3
2 .
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Operator Formulation of String Field Theory

The objects defined above can be explicitly constructed by using the operator
formulation, where the string field is represented as a Fock space, and the
integration

∫
as an inner product on the Fock space. It was considered by

[GJ87a, GJ87b] in the case of the Neumann boundary condition. We will
heavily use the notation of [GJ87a, GJ87b]. In the operator formulation, the
action (4.112) is described as

S =
1
Gs

(
1
2 12
〈V2||ψ〉1Q|ψ〉2 +

1
3 123

〈V3||ψ〉1|ψ〉2|ψ〉3
)

, (4.113)

where the structure of the product ∗ in the kinetic and potential terms is en-
coded to that of the overlap vertices 〈V2| and 〈V3| respectively (here, subscripts
put to vectors in the Fock space label the strings concerning the vertices).

As a preparation for giving the explicit form of the overlaps, let us consider
open strings in 26-dimensional space–time with the constant metric Gij in the
Neumann boundary condition. The world sheet action is given by

SWS =
1

4πα′

∫
dτ

∫ π

0

dσGij(∂τXi∂τX
j − ∂σX

i∂σX
j) + Sgh, (4.114)

where Sgh is the action of the bc−ghosts:

Sgh =
i

2π

∫
dτ

∫ π

0

dσ[c+(∂τ − ∂σ)b+ + c−(∂τ + ∂σ)b−]. (4.115)

Under the Neumann boundary condition, the string coordinates have the stan-
dard mode expansions:

Xj(τ , σ) = xj + 2α′τpj + i
√

2α′
∑

n=0

1
n
αjne

−inτ cos(nσ), (4.116)

also the mode expansions of the ghosts are given by

c±(τ , σ) =
∑

n∈Z

cne−in(τ±σ) ≡ c(τ , σ)± iπb(τ , σ),

b±(τ , σ) =
∑

n∈Z

bne−in(τ±σ) ≡ πc(τ , σ)∓ ib(τ , σ).

As a result of the quantization, the modes obey the commutation relatons:

[xi, pj ] = iGij , [αin, α
j
m] = nGijδn+m,0, {bn, cm} = δn+m,0,

while the other therms vanish.
The overlap |VN 〉 = |VN 〉X |VN 〉gh, (N = 1, 2, · · · ) is the state satisfying

the continuity conditions for the string coordinates and the ghosts at the
N−string vertex of the string field theory. The superscripts X and gh show
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the contribution of the sectors of the coordinates and the ghosts respectively.
The continuity conditions for the coordinates are

(X(r)j(σ)−X(r−1)j(π−σ))|VN 〉X = 0, (P (r)
i (σ)+P

(r−1)
i (π−σ))|VN 〉X = 0,

(4.117)
for 0 ≤ σ ≤ π

2 and r = 1, · · · , N . Here Pi(σ) is the momentum conjugate to
the coordinate Xj(σ) at τ = 0, and the superscript (r) labels the string (r)
meeting at the vertex. In the above formulas, we regard r = 0 as r = N be-
cause of the cyclic property of the vertex. For the ghost sector, we impose the
following conditions on the variables c(σ), b(σ) and their conjugate momenta
πc(σ), πb(σ):

(π(r)
c (σ)− π(r−1)

c (π − σ))|VN 〉gh = 0, (b(r)(σ)− b(r−1)(π − σ))|VN 〉gh = 0,

(c(r)(σ) + c(r−1)(π − σ))|VN 〉gh = 0, (π(r)
b (σ) + π

(r−1)
b (π − σ))|VN 〉gh = 0,

for 0 ≤ σ ≤ π
2 and r = 1, · · · , N .

Open Strings in Constant B−Field Background

We consider a constant background of the second–rank antisymmetric tensor
field Bij in addition to the constant metric gij where open strings propagate.
Then the boundary condition at the end points of the open strings changes
from the Neumann type, and thus the open string has a different mode ex-
pansion from the Neumann case (4.116). As a result, the end point is to be
noncommutative, in the picture of the D–branes which implies noncommuta-
tivity of the world volume coordinates on the D–branes. Here we derive the
mode–expanded form of the open string coordinates as a preparation for a
calculation of the overlap vertices in the next section.

We start with the world sheet action

SBWS =
1

4πα′

∫
dτ

∫ π

0

dσ[gij(∂τXi∂τX
j − ∂σX

i∂σX
j)

− 2πα′Bij(∂τXi∂σX
j − ∂σX

i∂τX
j)] + Sgh. (4.118)

Because the term proportional to Bij can be written as a total derivative term,
it does not affect the equation of motion but does the boundary condition,
which requires

gij∂σX
j − 2πα′Bij∂τX

j = 0 (4.119)

on σ = 0, π. This can be rewritten to the convenient form

Eij∂−Xj = (ET )ij∂+Xj , (4.120)
where Eij ≡ gij + 2πα′Bij ,

and ∂± are derivatives with respect to the light cone variables σ± = τ ± σ.
We can easily see that Xj(τ , σ) satisfying the boundary condition (4.120) has
the following mode expansion:
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Xj(τ , σ = x̃j + α′ [(E−1)jkgklplσ− + (E−1T )jkgklplσ+
]

(4.121)

+ i

√
α′

2

∑

n=0

1
n

[
(E−1)jkgklαlne

−inσ−
+ (E−1T )jkgklαlne

−inσ+
]
.

We will get the commutators between the modes from the propagator of the
open strings, which gives another derivation different from the method by
[Ch99] based on the quantization via the Dirac bracket. When performing the
Wick rotation: τ → −iτ and mapping the world sheet to the upper half plane

z = eτ+iσ, z̄ = eτ−iσ(0 ≤ σ ≤ π),

the boundary condition (4.120) becomes

Eij∂z̄X
j = (ET )ij∂zXj , (4.122)

which is imposed on the real axis z = z̄. The propagator 〈Xi(z, z̄)Xj(z′, z̄′)〉
satisfying the boundary condition (4.122)is determined as

〈Xi(z, z̄)Xj(z′, z̄′)〉 = −α′ [gij ln |z − z′| − gij ln |z − z̄′|

+ Gij ln |z − z̄′|2 +
1

2πα′ θ
ij ln

z − z̄′

z̄ − z′
+ Dij ,

where Gij and θij are given by

Gij =
1
2
(ET−1 + E−1)ij = (ET−1gE−1)ij = (E−1gET−1)ij , (4.123)

θij = 2πα′ · 1
2
(ET−1 − E−1)ij = (2πα′)2(ET−1BE−1)ij (4.124)

= −(2πα′)2(E−1BET−1)ij .

Also the constant Dij remains unknown from the boundary condition alone.
However it is an irrelevant parameter, so we can fix an appropriate value. The
mode-expanded form (4.121) is mapped to

Xj(z, z̄) = x̃j − iα′[(E−1)jkpk ln z̄ + (E−1T )jkpk ln z]

+ i

√
α′

2

∑

n=0

1
n

[
(E−1)jkαn,kz̄−n + (E−1T )jkαn,kz−n

]
.

Note that the indices of pl and αln were lowered by the metric gij not Gij .
Recall the definition of the propagator

〈Xi(z, z̄)Xj(z′, z̄′)〉 ≡ R(Xi(z, z̄)Xj(z′, z̄′))−N(Xi(z, z̄)Xj(z′, z̄′)), (4.125)

where R and N stand for the radial ordering and the normal ordering re-
spectively. We take a prescription for the normal ordering which pushes pi
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to the right and x̃j to the left with respect to the zero–modes pi and x̃j . It
corresponds to considering the vacuum satisfying

pj |0〉 = αn,j |0〉 = 0 (n > 0), 〈0|αn,j = 0 (n < 0), (4.126)

which is the standard prescription for calculating the propagator of the mass-
less scalar field in 2D conformal field theory from the operator formalism.
Making use of (4.125), (4.126) and techniques of the contour integration, it is
easy to get the commutators

[αn,i, αm,j ] = nδn+m,0Gij , [x̃i, pj ] = iδij ,

where the first equation holds for all integers with α0,i ≡
√

2α′pi. The constant
Dij is written as α′Dij = −〈0|x̃ix̃j |0〉. Let us fix Dij as α′Dij = − i

2θ
ij ,

which is the convention taken in [SW99]. Then the coordinates x̃i become
noncommutative:

[x̃i, x̃j ] = iθij ,

but the center of mass coordinates xi ≡ x̃i+ 1
2θ
ijpj can be seen to commute

each other.
Now we have the mode–expanded form of the string coordinates and the

commutation relations between the modes, which are

Xj(τ , σ) = xj + 2α′
(
Gjkτ +

1
2πα′ θ

jk(σ − π

2
)
)

pk

+ i
√

2α′
∑

n=0

1
n

e−inτ
[
Gjk cos(nσ)− i

1
2πα′ θ

jk sin(nσ)
]
αn,k,

[αn,i, αm,j ] = nδn+m,0Gij , [xi, pj ] = iδij ,

with all the other commutators vanishing.
Also, due to the formula

∞∑

n=1

2
n

sin(n(σ + σ′)) =
{

π − σ − σ′, (σ + σ′ �= 0, 2π)
0, (σ + σ′ = 0, 2π),

we can see by a direct calculation that the end points of the string become
noncommutative

[Xi(τ , σ),Xj(τ , σ′)] =

⎧
⎨

⎩

iθij , (σ = σ′ = 0)
−iθij , (σ = σ′ = π)
0, (otherwise).

On the other hand, it is noted that the conjugate momenta have the mode
expansion identical with that in the Neumann case:

Pi(τ , σ) =
1

2πα′ (gij∂τ − 2πα′Bij∂σ)Xj(τ , σ)

=
1
π
pi +

1
π
√

2α′

∑

n=0

e−inτ cos(nσ)αn,i.
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Note that the relations (4.123) and (4.124) are in the same form as a T–
duality transformation, although the correspondence is a formal sense, because
we are not considering any compactification of space–time. The generalized
T–duality transformation, namely O(D,D)−transformation, is defined by

E′ = (aE + b)(cE + d)−1, (4.127)

with a, b, c and d being D ×D real matrices. (D is the dimension of space–

time.) The matrix h =

(
a b
c d

)
is O(D,D) matrix, which satisfies

hTJh = J, where J =
(

0 1D
1D 0

)
.

The relations (4.123) and (4.124) correspond to the case of the inversion a =
d = 0, b = c = 1D.

Construction of Overlap Vertices

Here we construct Witten’s open string theory in the constant B−field back-
ground by obtaining the explicit formulas of the overlap vertices. As is un-
derstood from the fact that the action of the ghosts (4.115) contains no back-
ground fields, the ghost sector is not affected by turning on the B−field back-
ground. Thus we may consider the coordinate sector only. First, let us see the
mode-expanded forms of the coordinates and the momenta at τ = 0

Xj(σ) = Gjkyk +
1
π
θjk(σ − π

2
)pk

+ 2
√

α′
∞∑

n=1

[
Gjk cos(nσ)xn,k +

1
2πα′ θ

jk sin(nσ)
1
n
pn,k

]
,

Pi(σ) =
1
π
pi +

1
π
√

α′

∞∑

n=1

cos(nσ)pn,i,

where xj = Gjkyk, the coordinates and the momenta for the oscillator modes
are

xn,k =
i
2

√
2
n

(an,k − a†n,k) =
i√
2n

(αn,k − α−n,k),

pn,k =
√

n

2
(an,k + a†n,k) =

1√
2
(αn,k + α−n,k).

The non-vanishing commutators are given by

[xn,k, pm,l] = iGklδn,m, [yk, pl] = iGkl. (4.128)

We should note that the metric appearing in eqs. (4.128) is Gij , instead of gij .
So it can be seen that if we employ the variables with the lowered space–time
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indices yk, pk, xn,k and pn,k, the metric used in the expression of the overlaps
is Gij not gij .

The continuity condition (4.117) is universal for any background, and the
mode expansion of the momenta Pi(σ)’s is of the same form as in the Neumann
case, thus the continuity conditions for the momenta in terms of the modes
pn,i are identical with those in the Neumann case. Also, since pn,i’s mutually
commute, it is natural to find a solution of the continuity condition, assuming
the following form for the overlap vertices:

|V̂N 〉X1···N = exp

[
i

4πα
θij

N∑

r,s=1

p
(r)
n,iZ

rs
nmp

(s)
m,j

]

|VN 〉X1···N , (4.129)

where |V̂N 〉X1···N and |VN 〉X1···N are the overlaps in the background correspond-
ing to the world sheet actions (4.118) and (4.114) respectively, the explicit
form of the latter is given in appendix A. Clearly the expression (4.129)
satisfies the continuity conditions for the modes of the momenta, and the
coefficients Zrsnm are determined so that the continuity conditions for the co-
ordinates are satisfied [Sug00].

• |Î〉X ≡ |V̂1〉X

For the N = 1 case, we consider the identity overlap |Î〉X ≡ |V̂1〉X . The
continuity conditions for the momenta require that

Pi(σ) + Pi(π − σ) =
2
π
pi +

2
π
√

α′

∑

n=2,4,6,···
cos(nσ)pn,i

should vanish for 0 ≤ σ ≤ π
2 , namely,

pi = 0, pn,i = 0 (n = 2, 4, 6, · · · ), (4.130)

which is satisfied by the overlap in the Neumann case |I〉. In addition, the
conditions for the coordinates are that

Xj(σ)−Xj(π − σ) =
2
π
θjk(σ − π

2
)pk + (4.131)

4
√

α′
∑

n=1,3,5,···
Gjk cos(nσ)xn,k + 4

√
α′

∑

n=2,4,6,···

1
2πα′ θ

jk sin(nσ)
1
n
pn,k,

should vanish for 0 ≤ σ ≤ π
2 . The first and third lines in the r. h. s. can be put

to zero by using (4.130). So what we have to consider is the remaining condi-
tion xn,k = 0 for n = 1, 3, 5, · · · , which however is nothing but the continuity
condition for the coordinates in the Neumann case. It can be understood from
the point that the second line in (4.131) does not depend on θij . Thus it turns
out that the continuity conditions in the case of the B−field turned on are
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satisfied by the identity overlap made in the Neumann case. The solution is
[Sug00]

|Î〉X = |I〉X = exp

[

−1
2
Gij

∞∑

n=0

(−1)na†n,ia
†
n,j

]

|0〉, (4.132)

where also the zero modes yi and pi are written by using the creation and
annihilation operators a†0,i and a0,i as

yi =
i
2

√
2α′(a0,i − a†0,i), pi =

1√
2α′

(a0,i + a†0,i).

• |V̂2〉X12

For the N = 2 case, we are to do the same argument as in the N = 1 case.
The continuity conditions mean that

P
(1)
i (σ) + P

(2)
i (π − σ) =

1
π

(p(1)
i + p

(2)
i ) +

1
π
√

α′

∞∑

n=1

cos(nσ)(p(1)
n,i + (−1)np(2)

n,i),

X(1)j(σ)−X(2)j(π − σ) = Gjk(y(1)
k − y

(2)
k ) +

1
π
θjk(σ − π

2
)(p(1)

k + p
(2)
k )

+ 2
√

α′
∞∑

n=1

[
Gjk cos(nσ)(x(1)

n,k − (−1)nx(2)
n,k)

+
1

2πα′ θ
jk sin(nσ)

1
n

(p(1)
n,k + (−1)np(2)

n,k)
]

should be zero for 0 ≤ σ ≤ π. It turns out again that the conditions for the
modes are identical with those in the Neumann case:

p
(1)
i + p

(2)
i = 0, p

(1)
n,i + (−1)np(2)

n,i = 0,

y
(1)
i − y

(2)
i = 0, x

(1)
n,i − (−1)nx(2)

n,i = 0,

for n ≥ 1. Thus we have the solution [Sug00]

|V̂2〉X12 = |V2〉X12 = exp

[

−Gij
∞∑

n=0

(−1)na(1)†
n,i a

(2)†
n,j

]

|0〉12. (4.133)
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• |V̂4〉X1234

We find a solution of the continuity conditions (4.117) in the N = 4 case
assuming the form

|V̂4〉X1234 = exp

[
i

4πα
θij

4∑

r,s=1

p
(r)
n,iZ

rs
nmp

(s)
m,j

]

|V4〉X1234. (4.134)

When considering the continuity conditions, it is convenient to employ the
Z4−Fourier transformed variables:

Qj1(σ) =
1
2
[iX(1)j(σ)−X(2)j(σ)− iX(3)j(σ) + X(4)j(σ)] ≡ Qj(σ),

Qj2(σ) =
1
2
[−X(1)j(σ) + X(2)j(σ)−X(3)j(σ) + X(4)j(σ)],

Qj3(σ) =
1
2
[−iX(1)j(σ)−X(2)j(σ) + iX(3)j(σ) + X(4)j(σ)] ≡ Q̄j(σ),

Qj4(σ) =
1
2
[X(1)j(σ) + X(2)j(σ) + X(3)j(σ) + X(4)j(σ)].

For the momentum variables we also define the Z4−Fourier transformed vari-
ables P1,i(σ)(≡ Pi(σ)), P2,i(σ), P3,i(σ)(≡ P̄i(σ)) and P4,i(σ) by the same
combinations of P

(r)
i (σ)’s as the above. These variables have the following

mode expansions

Pt,i(σ) =
1

π
√

2α′
Pt,0,i +

1
π
√

α′

∞∑

n=1

cos(nσ)Pt,n,i,

Qjt (σ) = Gjk
√

2α′Qt,0,k +
1
π
θjk(σ − π

2
)

1√
2α′

Pt,0,k (4.135)

+
√

2α′
∞∑

n=1

[
Gjk cos(nσ)Qt,n,k +

1
2πα′ θ

jk sin(nσ)
1
n
Pt,n,k

]
,

where t = 1, 2, 3, 4. From now on, we frequently omit the subscript t for the
t = 1 case, and at the same time we employ the expression with a bar instead
of putting the subscript t for the t = 3 case.

Using those variables, the continuity conditions are written as

Qj4(σ)−Qj4(π − σ) = 0, P4,i(σ) + P4,i(π − σ) = 0,

Qj2(σ) + Qj2(π − σ) = 0, P2,i(σ)− P2,i(π − σ) = 0,
Qj(σ)− iQj(π − σ) = 0, Pi(σ) + iPi(π − σ) = 0,
Q̄j(σ) + iQ̄j(π − σ) = 0, P̄i(σ)− iP̄i(π − σ) = 0 (4.136)

for 0 ≤ σ ≤ π
2 . In terms of the modes, the conditions for the sectors of t = 2

and 4 are identical with the Neumann case
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(1− C)|Q4,k)|V̂4〉X = (1 + C)|P4,k)|V̂4〉X = 0,

(1 + C)|Q2,k)|V̂4〉X = (1− C)|P2,k)|V̂4〉X = 0,

which can be seen from the point that the conditions (4.136) for the sectors
of t = 2 and 4 lead the same relations between the modes as those without
the terms containing θjk. Here we adopted the vector notation for the modes

|Qt,k) =

⎡

⎢
⎣

Qt,0,k
Qt,1,k

...

⎤

⎥
⎦ , |Pt,k) =

⎡

⎢
⎣

Pt,0,k
Pt,1,k

...

⎤

⎥
⎦ ,

and C is a matrix such that (C)nm = (−1)nδnm (n,m ≥ 0). Thus there is
needed no correction containing θij for the sectors of t = 2 and 4, so it is
natural to assume the form of the phase factor in (4.134) as

1
2
θij

4∑

r,s=1

(p(r)
i |Zrs|p

(s)
j ) = θij(Pi|Z|P̄j) (4.137)

with Z being anti–Hermitian.
Next let us consider the conditions for the sectors of t = 1 and 3. We

rewrite the mode expansions of Qj(σ) and Q̄j(σ) as [Sug00]

Qj(σ) = Gjk(
√

2α′Q0,k + 2
√

α′
∞∑

n=1

cos(nσ)Qn,k)

+ θjk

[∫ σ

π/2

dσ′Pi(σ′) +
1

π
√

α′

∑

n=1,3,5,···

1
n

(−1)(n−1)/2Pn,k

]

≡ θjk
∫ σ

π/2

dσ′Pi(σ′) + ΔQj(σ), (4.138)

Q̄j(σ) = Gjk(
√

2α′Q̄0,k + 2
√

α′
∞∑

n=1

cos(nσ)Q̄n,k)

+ θjk

[∫ σ

π/2

dσ′P̄i(σ′) +
1

π
√

α′

∑

n=1,3,5,···

1
n

(−1)(n−1)/2P̄n,k

]

≡ θjk
∫ σ

π/2

dσ′P̄i(σ′) + ΔQ̄j(σ). (4.139)

Using the conditions for Pi(σ) and P̄i(σ) in (4.136), we can reduce the condi-
tions for Qj(σ) and Q̄j(σ) to those for ΔQj(σ) and ΔQ̄j(σ):

ΔQj(σ) =
{

iΔQj(π − σ) (0 ≤ σ ≤ π
2 )

−iΔQj(π − σ) (π2 ≤ σ ≤ π),

ΔQ̄j(σ) =
{
−iΔQ̄j(π − σ) (0 ≤ σ ≤ π

2 )
iΔQ̄j(π − σ) (π2 ≤ σ ≤ π).
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These formulas are translated to the relations between the modes via the
Fourier transformation. The result is expressed in the vector notation as

(1−X)|Qi)|V̂4〉X = (1 + X)|Qi)|V̂4〉X = 0, (4.140)

where the vectors |Qi) and |Qi) stand for

|Qi) =

⎡

⎢
⎢⎢
⎣

Q0,i + i
4α′ Gikθ

kj∑∞
n=0 X0nPn,j

Q1,i

Q2,i

...

⎤

⎥
⎥⎥
⎦

,

|Qi) =

⎡

⎢⎢⎢
⎣

Q̄0,i + i
4α′ Gikθ

kj∑∞
n=0 X0nP̄n,j

Q̄1,i

Q̄2,i

...

⎤

⎥⎥⎥
⎦

.

In (4.140), passing the vectors through the phase factor of the |V̂4〉 and using
the continuity conditions in the Neumann case

(1 + X)|Pi)|V4〉X = (1−X)|P̄i)|V4〉X = 0, (4.141)
(1−X)|Qi)|V4〉X = (1 + X)|Q̄i)|V4〉X = 0,

we get the equations, which the coefficients Znm’s should satisfy,

[(1−X)m0

∞∑

n=0

(Z̄0n + i
π

2
X̄0n)Pn,j +

∞∑

n=1

(1−X)mn
∞∑

n′=0

Z̄nn′Pn′,j ]|V4〉X = 0

[(1 + X)m0

∞∑

n=0

(Z0n − i
π

2
X0n)P̄n,j +

∞∑

n=1

(1 + X)mn
∞∑

n′=0

Znn′ P̄n′,j ]|V4〉X = 0

for m ≥ 0. Now all our remaining task is to solve these equations. It is easy
to see that a solution of them is given by [Sug00]

Zmn = −i
π

2
(1−X)mn + iβ

π

2
Cmn, (m,n ≥ 0, except for m = n = 0),

Z00 = iβ
π

2
,

if we pay attention to (4.141). Here β is an unknown real constant, which is
not fixed by the continuity conditions alone. This ambiguity of the solution
comes from the property of the matrix X: XC = −CX. However it will
become clear that the term containing the constant β does not contribute to
the vertex |V̂4〉X .

Therefore, we have the expression of the phase (4.137)
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θij(Pi|Z|P̄j) = θij [i
π

2
P0,iP̄0,j + iβ

π

2

∞∑

n=0

(−1)nPn,iP̄n,j

− i
π

2

∞∑

m,n=0

Pm,i(1−X)mnP̄n,j ].

Then recalling (4.141) again, the last term in the r. h. s. can be discarded.
Also we can rewrite the term containing β

− θij

4α′ β(Pi|C|P̄j) = +
θij

4α′ β(Pi|XTCX|P̄j) = +
θij

4α′ β(Pi|C|P̄j),

on |V4〉X . The above formula means that the term containing β can be set to
zero on |V4〉X . After all, the form of the 4-string vertex becomes

|V̂4〉X1234 = exp

[

− θij

4α′P0,iP̄0,j

]

|V4〉X1234.

Note that the phase factor has the cyclic symmetric form

− θij

4α′P0,iP̄0,j = i
θij

8α′ (p
(1)
0.i p

(2)
0,j + p

(2)
0.i p

(3)
0,j + p

(3)
0.i p

(4)
0,j + p

(4)
0.i p

(1)
0,j),

which is a property the vertices should have41.

• |V̂3〉X123

We can get the 3-string overlap in the similar manner as in the 4-string case.
First, we introduce the Z3−Fourier transformed variables

Qj1(σ) =
1√
3
[eX(1)j(σ) + ēX(2)j(σ) + X(3)j(σ)] ≡ Qj(σ),

Qj2(σ) =
1√
3
[ēX(1)j(σ) + eX(2)j(σ) + X(3)j(σ)] ≡ Q̄j(σ),

Qj3(σ) =
1√
3
[X(1)j(σ) + X(2)j(σ) + X(3)j(σ)],

where e ≡ ei2π/3, ē ≡ e−i2π/3. The momenta P1,i(σ)(≡ Pi(σ)), P2,i(σ)(≡
P̄i(σ)) and P3,i(σ) are defined in the same way. The mode expansions take
the same form as those in (4.135). In these variables, the continuity conditions
require

Qj(σ)− eQj(π − σ) = 0, Pi(σ) + ePi(π − σ) = 0,
Q̄j(σ)− ēQ̄j(π − σ) = 0, P̄i(σ) + ēP̄i(π − σ) = 0,
Qj3(σ)−Qj3(π − σ) = 0, P3,i(σ) + P3,i(π − σ) = 0

41 Here the momentum p
(r)
0,i is given by p

(r)
0,i =

√
2α′p

(r)
i .
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for 0 ≤ σ ≤ π
2 . The conditions imposed to the modes with respect to the t = 3

component are identical with those in the Neumann case

(1 + C)|P3,i)|V̂3〉X = (1− C)|Q3,i)|V̂3〉X = 0.

Thus the t = 3 component does not couple with θij , so we can find the solution
by determining the single anti–Hermitian matrix Z in the phase factor whose
form is assumed as [Sug00]

1
2
θij

3∑

r,s=1

(p(r)
i |Zrs|p

(s)
j ) = θij(Pi|Z|P̄j). (4.142)

For the sectors of t = 1 and 2, the same argument goes on as in the 4-string
case. Qj(σ) and Q̄j(σ) have the mode expansions same as in eqs. (4.138) and
(4.139). The conditions we have to consider are

ΔQj(σ) =
{

eΔQj(π − σ), (0 ≤ σ ≤ π
2 )

ēΔQj(π − σ), (π2 ≤ σ ≤ π),

ΔQ̄j(σ) =
{

ēΔQ̄j(π − σ), (0 ≤ σ ≤ π
2 )

eΔQ̄j(π − σ), (π2 ≤ σ ≤ π),

which are rewritten as the relations between the modes

(1− Y )|Qi)|V̂3〉X = (1− Y T )|Qi)|V̂3〉X = 0. (4.143)

Recalling the conditions in the Neumann case

(1 + Y )|Pi)|V3〉X = (1 + Y T )|P̄i)|V3〉X = 0, (4.144)
(1− Y )|Qi)|V3〉X = (1− Y T )|Q̄i)|V3〉X = 0,

we end up with the following equations

[(1− Y )m0

∞∑

n=0

(Z̄0n +
π

2
X̄0n)Pn,j +

∞∑

n=1

(1− Y )mn
∞∑

n′=0

Z̄nn′Pn′,j ]|V3〉X = 0,

[(1− Y T )m0

∞∑

n=0

(Z0n − i
π

2
X0n)P̄n,j +

∞∑

n=1

(1− Y T )mn
∞∑

n′=0

Znn′ P̄n′,j ]|V3〉X = 0

for m ≥ 0. It can be easily found out that the expression

Zmn = −i
π√
3
(1 + Y T )mn (m,n ≥ 0, except for m = n = 0),

Z00 = 0,

satisfies the above equations. It should be noted that in this case, because of
CY C = Ȳ �= −Y , it does not contain any unknown constant differently from
the 4–string case.
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Owing to the condition (4.144) we can write the phase factor only in terms
of the zero-modes. Finally we have [Sug00]

|V̂3〉X123 = exp

[

− θij

4
√

3α′P0,iP̄0,j

]

|V3〉X123

= exp

[

i
θij

12α′ (p
(1)
0,i p

(2)
0,j + p

(2)
0,i p

(3)
0,j + p

(3)
0,i p

(1)
0,j)

]

|V3〉X123. (4.145)

It is not clear whether the solutions we have obtained here are unique
or not. However we can show that the phase factors are consistent with the
relations between the overlaps which they should satisfy,

3〈Î|V̂3〉123 = |V̂2〉12, 4〈Î|V̂4〉1234 = |V̂3〉123, 34〈V̂2||V̂3〉123|V̂3〉456 = |V̂4〉1256,

by using the momentum conservation on the vertices (p(1)
i +· · ·+p

(N)
i )|V̂N 〉X1···N

= 0. Furthermore we can see that the phase factors successfully reproduce the
Moyal product structures of the correlators among vertex operators obtained
in the perturbative approach to open string theory in the constant B−field
background [SW99]. These facts convince us that the solutions obtained here
are physically meaningful.

Transformation of String Fields

In the previous section, we have explicitly constructed the overlap vertices
in the operator formulation under the constant B−field background. Then
we have obtained the vertices with a new noncommutative structure of the
Moyal type originating from the constant B−field, in addition to the ordinary
product ∗ of string fields. Denoting the product with the new structure by #,
the action of the string field theory is written as

SB =
1
Gs

∫ (
1
2
ψ # Qψ +

1
3
ψ # ψ # ψ

)

=
1
Gs

(
1
2 12
〈V̂2||ψ〉1Q|ψ〉2 +

1
3 123

〈V̂3||ψ〉1|ψ〉2|ψ〉3
)

, (4.146)

where the BRST charge Q is constructed from the world sheet action (4.118).
The theory (4.146) gives the noncommutative U(1) Yang–Mills theory in the
low energy region in the same sense as Witten’s open string field theory in the
case of the Neumann boundary condition leads to the ordinary U(1) Yang–
Mills theory in the low energy limit.42

42 It can be explicitly seen by repeating a similar calculation as that carried out in
[Dea90].
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In [SW99] the authors argued that open string theory in the constant
B−field background leads to either commutative or noncommutative Yang–
Mills theories, corresponding to the different regularization scheme (the so–
called Pauli–Villars regularization or the point–splitting regularization) in the
world sheet formulation. They discussed a map between the gauge fields in the
commutative and noncommutative Yang–Mills theories. In string field theory
perspective, there also should be a certain transformation (hopefully simpler
than the Yang–Mills case) from the string field ψ in (4.146) to a string field in
a new string field theory which leads to the commutative Yang–Mills theory
in the low energy limit.

Here we get the new string field theory by finding a unitary transformation
which absorbs the noncommutative structure of the Moyal type in the product
# into a redefinition of the string fields. There are used the two vertices |V̂2〉 and
|V̂3〉 in the action (4.146). Recall that the 2–string vertex is in the same form
as in the Neumann case and has no Moyal type noncommutative structure.
First, we consider the phase factor of the 3–string vertex which multiplies in
front of |V3〉 (see (4.145)). Making use of the continuity conditions

P0,i = −2
∞∑

n=1

Y0nPn,i, P̄0,i = −2
∞∑

n=1

Ȳ0nP̄n,i, (4.147)

it can be rewritten as [Sug00]

− θij

4
√

3α′P0,iP̄0,j =
θij

4
√

3α′

∞∑

n=1

(P0,iȲ0nP̄n,j + Pn,iY0nP̄0,j)

= − θij

24α′

∞∑

n=1

X0n[(−p
(2)
0,i − p

(3)
0,i + 2p(1)

0,i )p
(1)
n,j

+ (−p
(3)
0,i − p

(1)
0,i + 2p(2)

0,i )p
(2)
n,j + (−p

(1)
0,i − p

(2)
0,i + 2p(3)

0,i )p
(3)
n,j ]

= − θij

8α′

3∑

r=1

∞∑

n=1

X0np
(r)
0,ip

(r)
n,j ,

where we used the property of the matrix Y : Y0n = −Ȳ0n =
√

3
2 X0n for n ≥ 1

and the momentum conservation on |V3〉: p
(1)
0,i + p

(2)
0,i + p

(3)
0,i = 0. We manage

to represent the phase factor of the Moyal type as a form factorized into the
product of the unitary operators

Ur = exp

(
θij

8α′

∑

n=1,3,5,···
X0np

(r)
0,ip

(r)
n,j

)

. (4.148)

Note that the unitary operator acts to a single string field. So the Moyal type
noncommutativity can be absorbed by the unitary rotation of the string field

123〈V̂3||ψ〉1|ψ〉2|ψ〉3 =123 〈V3|U1U2U3|ψ〉1|ψ〉2|ψ〉3 =123 〈V3||ψ̃〉1|ψ̃〉2|ψ̃〉3,
(4.149)
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with |ψ̃〉r = Ur|ψ〉r. It should be remarked that this manipulation has been
suceeded owing to the factorized expression of the phase factor, which origi-
nates from the continuity conditions relating the zero-modes to the nonzero-
modes (4.147). It is a characteristic feature of string field theory that can not
be found in any local field theories.

Next let us see the kinetic term. In doing so, it is judicious to write the
kinetic term as follows:

12〈V̂2||ψ〉1(Q|ψ〉2) =123 〈V̂3||ψ〉1(QL|I〉2|ψ〉3 + |ψ〉2QL|I〉3), (4.150)

where QL is defined by integrating the BRST current jBRST (σ) with respect
to σ over the left half region

QL =
∫ π/2

0

dσjBRST (σ).

Equation (4.150) is also represented by the product # as

ψ # (Qψ) = ψ # [(QLI) # ψ + ψ # (QLI)]. (4.151)

Here, I stands for the identity element with respect to the #−product, carrying
the ghost number -3

2 , which corresponds to |I〉 in the operator formulation.
As is discussed by [HLR86], in order to show the relation (4.151) we need the
formulas

QRI = −QLI, (QRψ) # ξ = −(−1)nψψ # (QLξ) (4.152)

for arbitrary string fields ψ and ξ, where QR is the integrated BRST current
over the right half region of σ. nψ stands for the ghost number of the string
field ψ minus 1

2 , and takes an integer value. The first formula means that the
identity element is a physical quantity, also the second does the conservation
of the BRST charge. By using these formulas, the first term in the bracket in
r. h. s. of (4.151) becomes

(QLI) # ψ = −(QRI) # ψ = I # (QLψ) = QLψ.

Also, it turns out that the second term is equal to QRψ. Combining these, we
can see that (4.151) holds.

Further, we should remark that because the BRST current does not con-
tain the center of mass coordinate xj , it commute with the momentum pi.
From the continuity condition pi|I〉 = 0, it can be seen that piQL|I〉 = 0.
Expanding the exponential in the expression of the unitary operator (4.148)
and passing the momentum p0,i to the right, we get

UQL|I〉 = QL|I〉. (4.153)
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Now we can write down the result of the kinetic term. As a result of the same
manipulation as in eq. (4.149) and the use of eq. (4.153), we have43

12〈V̂2||ψ〉1(Q|ψ〉2) =123 〈V̂3||ψ〉1(QL|I〉2|ψ〉3 + |ψ〉2QL|I〉3)
=123 〈V3||ψ̃〉1(QL|I〉2|ψ̃〉3 + |ψ̃〉2QL|I〉3) =12 〈V2||ψ̃〉1(Q|ψ̃〉2). (4.154)

Here we have a comment [Sug00]. If we considered the kinetic term itself
without using (4.150), what would be going on? Let us see this. From the
continuity conditions for |V̂2〉X12 = |V2〉X12:

p
(1)
0,i + p

(2)
0,i = 0, p

(1)
n,i + (−1)np(2)

n,i = 0 (n = 1, 2, · · · ),

it could be shown that the 2–string overlap is invariant under the unitary
rotation

U1U2|V2〉12 = |V2〉12.
So we would find the expression for the kinetic term after the rotation

12〈V2||ψ〉1Q|ψ〉2 =12 〈V2||ψ̃〉1Q̃|ψ̃〉2,

where Q̃ is the BRST charge similarity transformed by U

Q̃ = UQU†. (4.155)

However, after some computations of the r. h. s. of (4.155), we could see that
Q̃ has divergent term proportional to

∑

n=1,3,5,···
1

and thus it is not well–defined. It seems that this procedure is not correct
and needs some suitable regularization, which preserves the conformal sym-
metry44. It is considered that the use of eq. (4.150) gives that kind of regu-
larization, which will be justified at the end of the next section.
43 Strictly speaking, in general this formula holds in the case that both of the string

fields |ψ〉 and |ψ̃〉 belong to the Fock space which consists of states excited by finite
number of creation operators. This point is subtle for giving a proof. However, for
the infinitesimal θ case, by keeping arbitrary finite order terms in the expanded
form of the exponential of U , we can make the situation of both |ψ〉 and |ψ̃〉
being inside the Fock space, and thus clearly eq. (4.154) holds. From this fact, it
is plausible to expect that eq. (4.154) is correct in the finite θ case.

44 That divergence comes from the mid–point singularity of the string coordinates
transformed by U . In fact, after some calculations, we have

UXj(σ)U† = Xj(σ) − i
θjk

4
√

2α′

∑

n=1,3,5,···
Xn0pn,k − θjk

4
pk sgn

(
σ − π

2

)
. (4.156)

The last term leads to the mid-point sigularity in the energy–momentum tensor
and the BRST charge Q. It seems that the use of (4.150) corresponds to taking the
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Therefore, the string field theory action (4.146) with the Moyal type
noncommutativity added to the ordinary noncommutativity is equivalently
rewritten as the one with the ordinary noncommutativity alone [Sug00]:

SB =
1
Gs

∫ (
1
2
ψ̃ ∗Qψ̃ +

1
3
ψ̃ ∗ ψ̃ ∗ ψ̃

)

=
1
Gs

(
1
2 12
〈V2||ψ̃〉1Q|ψ̃〉2 +

1
3 123

〈V3||ψ̃〉1|ψ̃〉2|ψ̃〉3
)

. (4.157)

It is noted that the BRST charge Q, which is constructed from the world sheet
action (4.118), has the same form as the one obtained from the action (4.114)
with the relation (4.123). So all the B−dependence has been stuffed into the
string fields except that existing in the metric Gij . Furthermore, recalling that
the relation between the metrics Gij and gij is the same form as the T–duality
inversion transformation, which was pointed out at the end of section 3, we
can make the metric gij appear in the overlap vertices, instead of the metric
Gij . To do so, we consider the following transformation for the modes:

α̂in = (ET−1)ikαn,k, p̂i = (ET−1)ikpk, x̂i = Eikx
k. (4.158)

By this transformation, the commutators become

[α̂in, α̂
j
m] = ngijδn+m,0, [p̂i, x̂j ] = −iδij ,

and the bilinear form of the modes

Gijαn,iαm,j = gijα̂
i
nα̂

j
m, Gijpiαm,j = gij p̂

iα̂jm, Gijpipj = gij p̂
ip̂j .

(4.159)

4.3.9 Topological Strings

The 2D field theories we have constructed are already very similar to string
theories. However, one ingredient from string theory is missing: in string the-
ory, the world–sheet theory does not only involve a path integral over the
maps φi to the target space and their fermionic partners, but also a path
integral over the world–sheet metric hαβ . So far, we have set this metric to a
fixed background value.

We have also encountered a drawback of our construction. Even though
the theories we have found can give us some interesting ‘semi–topological’
information about the target spaces, one would like to be able to define general
nonzero n−point functions at genus g instead of just the partition function

point splitting regularization with respect to the mid–point. Because of the dis-
continuity of the last term in (4.156), it is considered that the transformed string
coordinates have no longer a good picture as a string. It could be understood from
the point that the transformation U drives states around a perturbative vacuum
to those around highly non–perturbative one like coherent states.
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at genus one and the particular correlation functions we calculated at genus
zero.

It turns out that these two remarks are intimately related. In this section
we will go from topological field theory to topological string theory by in-
troducing integrals over all metrics, and in doing so we will find interesting
nonzero correlation functions at any genus (see [Von05]).

Coupling to Topological Gravity

In coupling an ordinary field theory to gravity, one has to perform the following
three steps.

• First of all, one rewrites the Lagrangian of the theory in a covariant way by
replacing all the flat metrics by the dynamical ones, introducing covariant
derivatives and multiplying the measure by a factor of

√
deth.

• Secondly, one introduces an Einstein–Hilbert term as the ‘kinetic’ term
for the metric field, plus possibly extra terms and fields to preserve the
symmetries of the original Lagrangian.

• Finally, one has to integrate the resulting theory over the space of all
metrics.

Here we will not discuss the first two steps in this procedure. As we have
seen in our discussion of topological field theories, the precise form of the La-
grangian only plays a comparatively minor role in determining the properties
of the theory, and we can derive many results without actually considering a
Lagrangian. Therefore, let us just state that it is possible to carry out the ana-
log of the first two steps mentioned above, and construct a Lagrangian with a
‘dynamical’ metric which still possesses the topological Q−symmetry we have
constructed. The reader who is interested in the details of this construction
is referred to the paper [Wit90] and to the lecture notes [DVV91].

The third step, integrating over the space of all metrics, is the one we
will be most interested in here. Naively, by the metric independence of our
theories, integrating their partition functions over the space of all metrics,
and then dividing the results by the volume of the topological ‘gauge group’,
would be equivalent to multiplication by a factor of 1,

Z[h0]
?=

1
Gtop

∫
D[h]Z[h], (4.160)

for any arbitrary background metric h0. There are several reasons why this
naive reasoning might go wrong:

• There may be metric configurations which cannot be reached from a given
metric by continuous changes.

• There may be anomalies in the topological symmetry at the quantum level
preventing the conclusion that all gauge fixed configurations are equiva-
lent.
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• The volume of Gtop is infinite, so even if we could rigorously define a path
integral the above multiplication and division would not be mathematically
well–defined.

For these reasons, we should really be more careful and precisely define
what we mean by the ‘integral over the space of all metrics’. Let us note the
important fact that just like in ordinary string theory (and even before twist-
ing), the 2D sigma models become conformal field theories when we include
the metric in the Lagrangian. This means that we can borrow the technol-
ogy from string theory to integrate over all conformally equivalent metrics.
As is well known, and as we will discuss in more detail later, the conformal
symmetry group is a huge group, and integrating over conformally equivalent
metrics leaves only a nD integral over a set of world–sheet moduli. Therefore,
our strategy will be to use the analogy to ordinary string theory to first do
this integral over all conformally equivalent metrics, and then perform the
integral over the remaining nD moduli space.

In integrating over conformally equivalent metrics, one usually has to
worry about conformal anomalies. However, here a very important fact be-
comes our help. To understand this fact, it is useful to rewrite our twisting
procedure in a somewhat different language (see [Von05]).

Let us consider the SEM–tensor Tαβ , which is the conserved Noether cur-
rent with respect to global translations on C. From conformal field theory,
it is known that Tzz̄ = Tz̄z = 0, and the fact that T is a conserved current,
∂αT

α
β = 0, means that Tzz ≡ T (z) and Tz̄z̄ ≡ T̄ (z̄) are (anti–)holomorphic

in z. One can now expand T (z) in Laurent modes,

T (z) =
∑

Lmz−m−2. (4.161)

The Lm are called the Virasoro generators, and it is a well–known result from
conformal field theory that in the quantum theory their commutation relations
are

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n.

The number c depends on the details of the theory under consideration, and
it is called the central charge. When this central charge is nonzero, one runs
into a technical problem. The reason for this is that the equation of motion
for the metric field reads

δS

δhαβ
= Tαβ = 0.

In conformal field theory, one imposes this equation as a constraint in the
quantum theory. That is, one requires that for physical states |ψ〉,

Lm|ψ〉 = 0 (for all m ∈ Z).

However, this is clearly incompatible with the above commutation relation
unless c = 0. In string theory, this value for c can be achieved by taking
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the target space of the theory to be 10D. If c �= 0 the quantum theory is
problematic to define, and we speak of a ‘conformal anomaly’ [Von05].

The whole above story repeats itself for T̄ (z̄) and its modes L̄m. At this
point there is a crucial difference between open and closed strings. On an
open string, left–moving and right–moving vibrations are related in such a
way that they combine into standing waves. In our complex notation, ‘left–
moving’ translates into ‘z−dependent’ (i.e., holomorphic), and ‘right–moving’
into ‘z̄−dependent’ (i.e., anti–holomorphic). Thus, on an open string all holo-
morphic quantities are related to their anti–holomorphic counterparts. In par-
ticular, T (z) and T̄ (z̄), and their modes Lm and L̄m, turn out to be complex
conjugates. There is therefore only one independent algebra of Virasoro gen-
erators Lm.

On a closed string on the other hand, which is the situation we have been
studying so far, left– and right–moving waves are completely independent.
This means that all holomorphic and anti–holomorphic quantities, and in
particular T (z) and T̄ (z̄), are independent. One therefore has two sets of
Virasoro generators, Lm and L̄m.

Let us now analyze the problem of central charge in the twisted theo-
ries. To twist the theory, we have used the U(1)−symmetries. Any global
U(1)−symmetry of our theory has a conserved current Jα. The fact that it
is conserved again means that Jz ≡ J(z) is holomorphic and Jz̄ ≡ J̄(z̄) is
anti–holomorphic. Once again, on an open string J and J̄ will be related, but
in the closed string theory we are studying they will be independent functions.
In particular, this means that we can view a global U(1)−symmetry as re-
ally consisting of two independent, left– and right–moving, U(1)−symmetries,
with generators FL and FR.

Note that the sum of U(1)−symmetries FV + FA only acts on objects
with a + index. That is, it acts purely on left–moving quantities. Similarly,
FV −FA acts purely on right–moving quantities. From our discussion above, it
is therefore natural to identify these two symmetries with the two components
of a single global U(1) symmetry:

FV =
1
2
(FL + FR) FA =

1
2
(FL − FR).

A more detailed construction shows that this can indeed be done.
Let us expand the left–moving conserved U(1)−current into Laurent

modes,
J(z) =

∑
Jmz−m−1. (4.162)

The commutation relations of these modes with one another and with the
Virasoro modes can be calculated, either by writing down all of the modes in
terms of the fields of the theory, or by using more abstract knowledge from
the theory of superconformal symmetry algebras. In either case, one finds
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[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n[Lm, Jn]

= −nJm+n[Jm, Jn] =
c

3
mδm+n.

Note that the same central charge c appears in the J− and in the L−commu-
tators. This turns out to be crucial.

Following the standard Noether procedure, we can now construct a con-
served charge by integrating the conserved current J(z) over a space–like slice
of the z−plane. In string theory, the physical time direction is the radial di-
rection in the z−plane, so a space–like slice is just a curve around the origin.
The integral is therefore calculated using the Cauchy Theorem,

FL =
∮

z=0

J(z)dz = 2πiJ0.

In the quantum theory, it will be this operator that generates the U(1)L
− symmetry. Now recall that to twist the theory we want to introduce new
Lorentz rotation generators,

MA = M − FV = M − 1
2
(FL + FR)MB = M − FA = M − 1

2
(FL − FR).

A well–known result from string theory (see [Von05]) is that the generator of
Lorentz rotations is M = 2πi(L0 − L̄0). Therefore, we find that the twisting
procedure in this new language amounts to

A : L0,A = L0 −
1
2
J0, L̄0,A = L̄0 +

1
2
J̄0,

B : L0,B = L0 −
1
2
J0, L̄0,B = L̄0 −

1
2
J̄0.

Let us now focus on the left–moving sector; we see that for both twistings
the new Lorentz rotation generator is the difference of L0 and 1

2J0. The new
Lorentz generator should also correspond to a conserved 2–tensor, and from
(4.161) and (4.162) there is a very natural way to get such a current:

T̃ (z) = T (z) +
1
2
∂J(z), (4.163)

which clearly satisfies ∂̄T̃ = 0 and

L̃m = Lm −
1
2
(m + 1)Jm, (4.164)

so in particular we find that L̃0 can serve as L0,A or L0,B . We should apply
the same procedure (with a minus sign in the A−model case) in the right–
moving sector. Equations (4.163) and (4.164) tell us how to implement the
twisting procedure not only on the conserved charges, but on the whole N = 2
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superconformal algebra – or at least on the part consisting of the J− and
L−modes, but a further investigation shows that this is the only part that
changes. We have motivated, but not rigorously derived (4.163); for a complete
justification the reader is referred to the original papers [LVW89] and [CV91].

Now, we come to the crucial point. The algebra that the new modes L̃m
satisfy can be directly calculated from (4.163), and we find

[L̃m, L̃n] = (m− n)L̃m+n.

That is, there is no central charge left. This means that we do not have any
restriction on the dimension of the theory, and topological strings will actually
be well–defined in target spaces of any dimension.

From this result, we see that we can integrate our partition function over
conformally equivalent metrics without having to worry about the conformal
anomaly represented by the nonzero central charge. After having integrated
over this large part of the space of all metrics, it turns out that there is a
nD integral left to do. In particular, it is known that one can always find a
conformal transformation which in the neighborhood of a chosen point puts
the metric in the form hαβ = ηαβ , with η the usual flat metric with diagonal
entries ±1. (Or, +1 in the Euclidean setting.) On the other hand, when one
considers the global situation, it turns out that one cannot always enforce this
gauge condition everywhere. For example, if the world–sheet is a torus, there
is a left–over complex parameter τ that cannot be gauged away. The easiest
way to visualize this parameter (see [Von05]) is by drawing the resulting torus
in the complex–plane and rescaling it in such a way that one of its edges runs
from 0 to 1; the other edge then runs from 0 to τ , see Figure 4.23. It seems
intuitively clear that a conformal transformation – which should leave all
angles fixed – will never deform τ , and even though intuition often fails when
considering conformal mappings, in this case this can indeed be proven. Thus,
τ is really a modular parameter which we need to integrate over. Another
fairly intuitive result is that any locally flat torus can, after a rescaling, be
drawn in this form, so τ indeed is the only modulus of the torus.

Fig. 4.23. The only modulus τ of a torus T 2.
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More generally, one can show that a Riemann surface of genus g has mg =
3(g−1) complex modular parameters. As usual, this is the virtual dimension of
the moduli space. If g > 1, one can show that this virtual dimension equals the
actual dimension. For g = 0, the sphere, we have a negative virtual dimension
mg = −3, but the actual dimension is 0: there is always a flat metric on a
surface which is topologically a sphere (just consider the sphere as a plane
with a point added at infinity), and after having chosen this metric there are
no remaining parameters such as τ in the torus case. For g = 1, the virtual
dimension is mg = 0, but as we have seen the actual dimension is 1.

We can explain these discrepancies using the fact that, after we have used
the conformal invariance to fix the metric to be flat, the sphere and the torus
have leftover symmetries. In the case of the sphere, it is well known in string
theory that one can use these extra symmetries to fix the positions of three
labelled points. In the case of the torus, after fixing the metric to be flat
we still have rigid translations of the torus left, which we can use to fix the
position of a single labelled point. To see how this leads to a difference between
the virtual and the actual dimensions, let us for example consider tori with
n labelled points on them. Since the virtual dimension of the moduli space
of tori without labelled points is 0, the virtual dimension of the moduli space
of tori with n labelled points is n. One may expect that at some point (and
in fact, this happens already when n = 1), one reaches a sufficiently generic
situation where the virtual dimension really is the actual dimension. However,
even in this case we can fix one of the positions using the remaining conformal
(translational) symmetry, so the positions of the points only represent n − 1
moduli. Hence, there must be an nth modulus of a different kind, which is
exactly the shape parameter τ that we have encountered above. In the limiting
case where n = 0, this parameter survives, thus causing the difference between
the virtual and the real dimension of the moduli space.

For the sphere, the reasoning is somewhat more formal: we analogously
expect to have three ‘extra’ moduli when n = 0. In fact, three extra parameters
are present, but they do not show up as moduli. They must be viewed as the
three parameters which need to be added to the problem to find a 0D moduli
space.

Since the cases g = 0, 1 are thus somewhat special, let us begin by studying
the theory on a Riemann surface with g > 1. To arrive at the topological
string correlation functions, after gauge fixing we have to integrate over the
remaining moduli space of complex dimension 3(g − 1). To do this, we need
to fix a measure on this moduli space. That is, given a set of 6(g− 1) tangent
vectors to the moduli space, we want to produce a number which represents
the size of the volume element spanned by these vectors, see Figure 4.24. We
should do this in a way which is invariant under coordinate redefinitions of
both the moduli space and the world–sheet. Is there a ‘natural’ way to do
this?

To answer this question, let us first ask how we can describe the tan-
gent vectors to the moduli space (see [Von05]). In two dimensions, conformal
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Fig. 4.24. A measure on the moduli space M assigns a number to every set of three
tangent vectors. This number is interpreted as the volume of the element spanned
by these vectors.

transformations are equivalent to holomorphic transformations: z �→ f(z). It
thus seems natural to assume that the moduli space we have left labels dif-
ferent complex structures on Σ, and indeed this can be shown to be the case.
Therefore, a tangent vector to the moduli space is an infinitesimal change of
complex structure, and these changes can be parameterized by holomorphic
1–forms with anti–holomorphic vector indices,

dz �→ dz + εμzz̄(z)dz̄.

The dimension counting above tells us that there are 3(g − 1) independent
(μi)zz̄, plus their 3(g−1) complex conjugates which change dz̄. So the tangent
space is spanned by these μi(z, z̄), μ̄i(z, z̄). How do we get a number out of
a set of these objects? Since μi has a z and a z̄ index, it seems natural to
integrate it over Σ. However, the z−index is an upper index, so we need to
lower it first with some tensor with two z−indices. It turns out that a good
choice is to use the Q−partner Gzz of the SEM–tensor component Tzz, and
thus to define the integration over moduli space as

∫

Mg

3g=3∏

i=1

(
dmidm̄i

∫

Σ

Gzz(μi)
z
z̄

∫

Σ

Gz̄z̄(μ̄i)
z̄
z

)
. (4.165)

Note that by construction, this integral is also invariant under a change of
basis of the moduli space. There are several reasons why using Gzz is a nat-
ural choice. First of all, this choice is analogous to what one does in bosonic
string theory. There, one integrates over the moduli space using exactly the
same formula, but with G replaced by the conformal ghost b. This ghost is
the BRST–partner of the SEM–tensor in exactly the same way as G is the
Q−partner of T . Secondly, one can make the not unrelated observation that
since {Q,G} = T, we can still use the standard arguments to show indepen-
dence of the theory of the parameters in a Lagrangian of the form L = {Q,V }.
The only difference is that now we also have to commute Q through G to make
it act on the vacuum, but since Tαβ itself is the derivative of the action with
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respect to the metric hαβ , the terms we get in this way amount to integrat-
ing a total derivative over the moduli space. Therefore, apart from possible
boundary terms these contributions vanish. Note that this reasoning also gives
us an argument for using Gzz instead of Tzz (which is more or less the only
other reasonable option) in (4.165): if we had chosen Tzz then all path inte-
grals would have been over total derivatives on the moduli space, and apart
from boundary contributions the whole theory would have become trivial.

If we consider the vector and axial charges of the full path integral mea-
sure, including the new path integral over the world–sheet metric h, we find
a surprising result. Since the world–sheet metric does not transform under
R−symmetry, naively one might expect that its measure does not either.
However, this is clearly not correct since one should also take into account the
explicit G−insertions in (4.165) that do transform under R−symmetry. From
the N = 2 superconformal algebra (or, more down–to–earth, from expressing
the operators in terms of the fields), it follows that the product of G and Ḡ
has vector charge zero and axial charge 2. Therefore, the total vector charge
of the measure remains zero, and the axial charge gets an extra contribution
of 6(g− 1), so we find a total axial R−charge of 6(g− 1)− 2m(g− 1). From
this, we see that the case of complex target space dimension 3 is very spe-
cial: here, the axial charge of the measure vanishes for any g, and hence the
partition function is nonzero at every genus. If m > 3 and g > 1, the total
axial charge of the measure is negative, and we have seen that we cannot can-
cel such a charge with local operators. Therefore, for these theories only the
partition function at g = 1 and a specific set of correlation functions at genus
zero give nonzero results. Moreover, for m = 2 and m = 1, the results can be
shown to be trivial by other arguments. Therefore, a Calabi–Yau threefold is
by far the most interesting target space for a topological string theory. It is
a ‘happy coincidence’ (see [Von05]) that this is exactly the dimension we are
most interested in from the string theory perspective.

Finally, let us come back to the special cases of genus 0 and 1. At genus
zero, the Riemann surface has a single point as its moduli space, so there are
no extra integrals or G−insertions to worry about. Therefore, we can copy the
topological field theory result saying that we have to introduce local operators
with total degree (m,m) in the theory. The only remnant of the fact that we
are integrating over metrics is that we should also somehow fix the remaining
three symmetries of the sphere. The most straightforward way to do this is to
consider 3–point functions with insertions on three labelled points. As a gauge
choice, we can then for example require these points to be at the points 0, 1
and∞ in the compactified complex–plane. For example, in the A−model on a
Calabi–Yau threefold, the 3–point function of three operators corresponding
to (1, 1)−forms would thus give a nonzero result.

In the case of the torus, we have seen that there is one ‘unexpected’ mod-
ular parameter over which we have to integrate. This means we have to insert
one G− and one Ḡ−operator in the measure, which spoils the absence of the
axial anomaly we had for g = 1 in the topological field theory case. However,
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we also must fix the one remaining translational symmetry, which we can do
by inserting a local operator at a labelled point. Thus, we can restore the axial
R−charge to its zero value by choosing this to be an operator of degree (1, 1).

Summarizing, we have found that in topological string theory on a target
Calabi–Yau 3–fold, we have a non–vanishing 3–point function of total degree
(3,3) at genus zero; a non–vanishing 1–point function of degree (1,1) at genus
one, and a non–vanishing partition (‘zero–point’) function at all genera g > 1.

Nonlocal Operators

In one respect, what we have achieved is great progress: we can now for any
genus define a nonzero partition function (or for low genus a correlation func-
tion) of the topological string theory. On the other hand, we would also like to
define correlation functions of an arbitrary number of operators at these gen-
era. As we have seen, the insertion of extra local operators in the correlation
functions is not possible, since any such insertion will spoil our carefully con-
structed absence of R−symmetry anomalies. Therefore, we have to introduce
nonlocal operators.

There is one class of nonlocal operators which immediately becomes mind.
Before we saw, using the descent equations, that for every local operator we
can define a corresponding 1–form and a 2–form operator. If we check the axial
and vector charges of these operators, we find that if we start with an operator
of degree (1, 1), the 2–form operator we end up with actually has vanishing
axial and vector charges. This has two important consequences. First of all,
we can add the integral of this operator to our action [Von05],

S[t] = S0 + ta
∫
O(2)
a ,

without spoiling the axial and vector symmetry of the theory. Secondly, we
can insert the integrated operator into correlation functions,

〈
∫
O(2)

1 · · ·
∫
O(2)
n 〉

and still get a nonzero result by the vanishing of the axial and vector charges.
These two statements are related: one obtains such correlators by differenti-
ating S[t] with respect to the appropriate t’s, and then setting all ta = 0.

A few remarks are in place here. First of all, recall that the integration over
the insertion points of the operators can be viewed as part of the integration
over the moduli space of Riemann surfaces, where now we label a certain
number of points on the Riemann surface. From this point of view, the g = 0, 1
cases fit naturally into the same framework. We could unite the descendant
fields into a world–sheet super–field ,

Φa = O(0)
a +O(1)

aα θ
α +O(2)

aαβθ
αθβ



564 4 Nonlinear Dynamics of Path Integrals

where we formally replaced each dz and dz̄ by corresponding fermionic coor-
dinates θz and θz̄. Now, one can write the above correlators as integrals over
n copies of this super–space,

∫ n∏

s=1

d2zsd
2θs 〈Φa1(z1, θ1) · · ·Φan

(zn, θn)〉

The integration prescription at genus 0 and 1 tells us to fix 3 and 1 points
respectively, so we need to remove this number of super–space integrals. Then,
integrating over the other super–space coordinates, the genus 0 correlators
indeed become

〈O(0)
a1 O

(0)
a2 O

(0)
a3

∫
O(2)
a4 · · ·

∫
O(2)
an
〉

From this prescription we note that these expressions are symmetric in the
exchange of all ai and aj . In particular, this means that the genus zero 3–point
functions at arbitrary t,

cabc[t] = 〈O(0)
a O

(0)
b O(0)

c 〉[t]

have symmetric derivatives:

∂cabc
∂td

=
∂cabd
∂tc

,

and similarly with permuted indices. These equations can be viewed as inte-
grability conditions, and using the Poincaré lemma we see that they imply
that

cijk[t] =
∂Z0[t]

∂ti∂tj∂tk
.

for some function Z0[t]. Following the general philosophy that n−point func-
tions are nth derivatives of the t−dependent partition function, we see that
Z0[t] can be naturally thought of as the partition function at genus zero. Sim-
ilarly, the partition function at genus 1 can be defined by integrating up the
one-point functions once.

The quantities we have calculated above should be semi–topological in-
variants, meaning that they only depend on ‘half’ of the moduli (either the
Kähler ones or the complex structure ones) of the target space. For example,
in the A−model we find the Gromov–Witten invariants. In the B−model, it
turns out that F0[t] = lnZ0[t] is actually a quantity we already knew: it is the
prepotential of the Calabi–Yau manifold. A discussion of why this is the case
can be found in the paper [BCO94]. The higher genus partition functions can
be thought of as ‘quantum corrections’ to the prepotential.

Finally, there is a type of operator we have not discussed at all so far.
Recall that in the topological string theory, the metric itself is now a dynam-
ical field. We could not include the metric in our physical operators, since
this would spoil the topological invariance. However, the metric is part of a
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Q−multiplet, and the highest field in this multiplet is a scalar field which is
usually labelled ϕ. (It should not be confused with the fields φi.) We can get
more correlation functions by inserting operators ϕk and the operators related
to them by the descent equations into the correlation functions. These opera-
tors are called ‘gravitational descendants’. Even the case where the power is
k = 0 is nontrivial; it does not insert any operator, but it does label a certain
point, and hence changes the moduli space one integrates over. This operator
is called the ‘puncture operator’.

All of this seems to lead to an enormous amount of semi-topological target
space invariants that can be calculated, but there are many recursion relations
between the several correlators. This is similar to how we showed before that
all correlators for the cohomological field theories follow from the 2–and 3–
point functions on the sphere. Here, it turns out that the set of all correlators
has a structure which is related to the theory of integrable hierarchies. Unfor-
tunately, a discussion of this is outside the scope of both these lectures and
the author’s current knowledge.

The Holomorphic Anomaly

We have now defined the partition function and correlation functions of topo-
logical string theory, but even though the expressions we obtained are much
simpler than the path integrals for ordinary quantum field or string theories,
it would still be very hard to explicitly calculate them. Fortunately, it turns
out that the t−dependent partition and correlation functions are actually
‘nearly holomorphic’ in t, and this is a great aid in exactly calculating these
quantities.

Let us make this ‘near holomorphy’ more precise. As we have seen, cal-
culating correlation functions of primary operators in topological string the-
ories amounts to taking t−derivatives of the corresponding perturbed parti-
tion function Z[t] and consequently setting t = 0. Recall that Z[t] is defined
through adding terms to the action of the form

ta
∫

Σ

O(2)
a , (4.166)

Let us for definiteness consider the B−twisted model. We want to show that
the above term is QB−exact. For simplicity, we assume that O(2)

a is a bosonic
operator, but what we are about to say can by inserting a few signs straight-
forwardly be generalized to the fermionic case. From the descent equations we
studied above, we know that

(O(2)
a )+− = −{G+, [G−,O(0)

a ]}, (4.167)

where G+ is the charge corresponding to the current Gzz, and G− the one
corresponding to Gz̄z̄. We can in fact express G± in terms of the N = (2, 2)
supercharges Q. So, according to [Von05], we have
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H = 2πi(L0 + L̄0) =
1
2
{Q+, Q̄+} −

1
2
{Q−, Q̄−}P

= 2πi(L0 − L̄0) =
1
2
{Q+, Q̄+}+

1
2
{Q−, Q̄−}.

Thus, we find that the left– and right–moving SEM charges satisfy

T+ = 2πiL0 =
1
2
{Q+, Q̄+}T− = 2πiL̄0 = −1

2
{Q−, Q̄−}.

To find G in the B−model, we should write these charges as commutators
with respect to QB = Q̄+ + Q̄−, which gives

T+ =
1
2
{QB ,Q+}T− = −1

2
{QB ,Q−},

so we arrive at the conclusion that for the B−model,

G+ =
1
2
Q+G− = −1

2
Q−.

Now, we can rewrite (4.167) as

(O(2)
a )+− = −{G+, [G−,O(0)

a ]} =
1
4
{Q+, [Q−,O(0)

a ]} (4.168)

=
1
8
{Q̄B , [(Q− −Q+),O(0)

a ]},

which proves our claim that O(2)
a is QB−exact.

An N = (2, 2) sigma model with a real action does, apart from the term
(4.166), also contain a term

tā
∫

Σ

Ō(2)
a , (4.169)

where tā is the complex conjugate of ta. It is not immediately clear that Ō(2)
a

is a physical operator: we have seen that physical operators in the B−model
correspond to forms that are ∂̄−closed, but the complex conjugate of such a
form is ∂−closed. However, by taking the complex conjugate of (4.168), we
see that

(Ō(2)
a )+− =

1
8
{QB , [(Q̄− − Q̄+), Ō(0)

a ]},

so not only is the operator QB−closed, it is even QB−exact. This means that
we can add terms of the form (4.169) to the action, and taking tā−derivatives
inserts QB−exact terms in the correlation functions. Naively, we would ex-
pect this to give a zero result, so all the physical quantities seem to be
t−independent, and thus holomorphic in t. We will see in a moment that
this naive expectation turns out to be almost right, but not quite.

However, before doing so, let us comment briefly on the generalization of
the above argument in the case of the A−model. It seems that a straight-
forward generalization of the argument fails, since QA is its own complex
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conjugate, and the complex conjugate of the de Rham operator is also the
same operator. However, note that the N = (2, 2)−theory has a different kind
of ‘conjugation symmetry’: we can exchange the two supersymmetries, or in
other words, exchange θ+ with θ̄

+ and θ− with θ̄
−. This exchanges QA with

an operator which we might denote as QĀ ≡ Q+ + Q̄−. Using the above
argument, we then find that the physical operators O(2)

a are QĀ−exact, and
that their conjugates in the new sense are QA−exact. We can now add these
conjugates to the action with parameters tā, and we again naively find in-
dependence of these parameters. In this case it is less natural to choose ta

and tā to be complex conjugates, but we are free to choose this particular
‘background point’ and study how the theory behaves if we then vary ta and
tā independently.

Now, let us see how the naive argument showing independence of the the-
ory of tā fails. In fact, the argument above would certainly hold for topological
field theories. However, in topological string theories (see [Von05]), we have
to worry about the insertions in the path integral of

G · μi ≡
∫

d2z Gzz (μi)
z
z̄,

and their complex conjugates, when commuting the QB towards the vacuum
and making sure it gives a zero answer. Indeed, the QB−commutator of the
above factor is not zero, but it gives

{QB , G · μi} = T · μi.

Now recall that Tαβ = ∂hαβS. We did not give a very precise definition
of μi above, but we know that it parameterizes the change in the metric
under an infinitesimal change of the coordinates mi on the moduli space.
One can make this intuition precise, and then finds the following ‘chain rule’:
T · μi = ∂miS. Inserting this into the partition function, we find that

∂Fg
∂tā

=

∫

Mg

3g−3∏

i=1

dmidm̄i
∑

j,k

∂2

∂mj∂m̄k

〈

(
∏

l =j

∫
μl ·G)(

∏

l =k

∫
μ̄l · Ḡ)

∫
Ō(2)
a

〉

,

where Fg = lnZg is the free energy at genus g, and the reason Fg appears in
the above equation instead of Zg is, as usual in quantum field theory, that the
expectation values in the r.h.s. are normalized such that 〈1〉 = 1, and so the
l.h.s. should be normalized accordingly and equal Z−1

g ∂āZg = ∂āFg [Von05].
Thus, as we have claimed before, we are integrating a total derivative

over the moduli space of genus g surfaces. If the moduli space did not have
a boundary, this would indeed give zero, but in fact the moduli space does
have a boundary. It consists of the moduli which make the genus g surface
degenerate. This can happen in two ways: an internal cycle of the genus g
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surface can be pinched, leaving a single surface of genus g − 1, as in Figure
4.25 (a), or the surface can split up into two surfaces of genus g1 and g2 =
g − g1, as depicted in Figure 4.25 (b). By carefully considering the boundary
contributions to the integral for these two types of boundaries, it was shown
in [BCO94] that

∂Fg
∂tā

=
1
2
cāb̄c̄e

2KGb̄dGc̄e

(

DdDeFg−1 +
g−1∑

r=1

DdFrDeFg−r

)

,

where G is the so–called Zamolodchikov metric on the space parameterized by
the coupling constants ta, tā; K is its Kähler potential, and the Da are covari-
ant derivatives on this space. The coefficients cāb̄c̄ are the 3–point functions
on the sphere of the operators Ō(0)

a . We will not derive the above formula in
detail, but the reader should notice that the contributions from the two types
of boundary are quite clear.

Fig. 4.25. At the boundary of the moduli space of genus g surfaces, the surfaces
degenerate because certain cycles are pinched. This either lowers the genus of the
surface (a) or breaks the surface into two lower genus ones (b) (see text for expla-
nation).

Using this formula, one can inductively determine the tā dependence on
the partition functions if the holomorphic ta−dependence is known. Holomor-
phic functions on complex spaces (or more generally holomorphic sections of
complex vector bundles) are quite rare: usually, there is only a nD space of
such functions. The same turns out to hold for our topological string partition
functions: even though they are not quite holomorphic, their anti–holomorphic
behavior is determined by the holomorphic dependence on the coordinates,
and as a result there is a finite number of coefficients which determines them.

Thus, just from the above structure and without doing any path integrals,
one can already determine the topological string partition functions up to a
finite number of constants. This leads to a feasible program for completely
determining the topological string partition function for a given target space
and at given genus. From the holomorphic anomaly equation, one first has to
find the general form of the partition function. Then, all one has left to do is
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to fix the unknown constants. Here, the fact that in the A−model the parti-
tion function counts a number of points becomes our help: by requiring that
the A−model partition functions are integral, one can often fix the unknown
constants and completely determine the t−dependent partition function. In
practice, the procedure is still quite elaborate, so we will not describe any
examples here, but several have been worked out in detail in the literature.
Once again, the pioneering work for this can be found in the paper [BCO94].

4.3.10 Geometrical Transitions

Conifolds

Recall that a conifold is a generalization of the notion of a manifold. Unlike
manifolds, a conifold can (or, should) contain conical singularities i.e., points
whose neighborhood looks like a cone with a certain base. The base is usually
a 5D manifold.

In string theory, a conifold transition represents such an evolution of the
Calabi–Yau manifold in which its fabric rips and repairs itself, yet with mild
and acceptable physical consequences in the context of string theory. How-
ever, the tears involved are more severe than those in an ‘weaker’ flop transi-
tion (see [Gre00]). The geometrically singular conifolds were shown to lead to
completely smooth physics of strings. The divergences are ‘smeared out’ by
D3–branes wrapped on the shrinking 3–sphere S3, as originally pointed out
by A. Strominger, who, together with D. Morrison and B. Greene have also
found that the topology near the conifold singularity can undergo a topolog-
ical phase–transition. It is believed that nearly all Calabi–Yau manifolds can
be connected via these ‘critical transitions’.

More precisely, the conifold is the simplest example of a non–compact
Calabi–Yau 3–fold: it is the set of solutions to the equation

x1x2 − x3x4 = 0

in C
4. The resulting manifold is a cone, meaning in this case that any real

multiple of a solution to this equation is again a solution. The point (0, 0, 0, 0)
is the ‘tip’ of this cone, and it is a singular point of the solution space. Note
that by writing

x1 = z1 + iz2, x2 = z1 − iz2, x3 = z3 + iz4, x4 = −z3 + iz4,

where the zi are still complex numbers, one can also write the equation as

z2
1 + z2

2 + z2
3 + z2

4 = 0.

Writing each zi as ai + ibi, with ai and bi real, we get the two equations

|a|2 − |b|2 = 0, a · b = 0. (4.170)
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Here a · b =
∑
i aibi and |a|2 = a · a. Since the geometry is a cone, let us focus

on a ‘slice’ of this cone given by

|a|2 + |b|2 = 2r2,

for some r ∈ R. On this slice, the first equation in (4.170) becomes

|a|2 = r2, (4.171)

which is the equation defining a 3–sphere S3 of radius r. The same holds for
b, so both a and b lie on 3–spheres. However, we also have to take the second
equation in (4.170) into account. Let us suppose that we fix an a satisfying
(4.171). Then b has to lie on a 3–sphere, but also on the plane through the
origin defined by a · b = 0. That is, b lies on a 2–sphere. This holds for every
a, so the slice we are considering is a fibration of 2–spheres over the 3–sphere.
With a little more work, one can show that this fibration is trivial, so the
conifold is a cone over S2 × S3.

Since the conifold is a singular geometry, we would like to find geometries
which approximate it, but which are non–singular. There are two interesting
ways in which this can be done. The simplest way is to replace the defining
equation by

x1x2 − x3x4 = μ2. (4.172)

From the two equations constraining a and b, we now see that |a|2 ≥ μ2. In
other words, the parameter r should be at least μ. At r = μ, the a−sphere
still has finite radius μ, but the b−sphere shrinks to zero size. This geometry
is called the deformed conifold. Even though this is not clear from the picture,
from the equation (4.172) one can straightforwardly show that it is nonsin-
gular. One can also show that it is topologically equivalent to the cotangent
bundle on the 3–sphere, T ∗S3. Here, the S3 on which the cotangent bundle is
defined is exactly the S3 at the ‘tip’ of the deformed conifold.

The second way to change the conifold geometry arises from studying the
two equations

x1A + x3B = 0, x4A + x2B = 0. (4.173)

Here, we require A and B to be homogeneous complex coordinates on a CP 1,
i.e.,

(A,B) �= (0, 0), (A,B) ∼ (λA, λB)

where λ is any nonzero complex number. If one of the xi is nonzero, say x1,
one can solve for A or B, e.g., A = −x3B

x1
, and insert this in the other equation

to get
x1x2 − x3x4 = 0

which is the conifold equation. However, if all xi are zero, any A and B
solve the system of equations (4.173). In other words, we have constructed a
geometry which away from the former singularity is completely the same as
the conifold, but the singularity itself is replaced by a CP 1, which topologically
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is the same as an S2. From the defining equations one can again show that
the resulting geometry is nonsingular, so we have now replaced our conifold
geometry by the so–called resolved conifold.

Topological D–branes

Since topological string theories are in many ways similar to an ordinary
(bosonic) string theories, one natural question which arises is: are there also
open topological strings which can end on D–branes? To answer the above
question rigorously, we would have to study boundary conditions on world–
sheets with boundaries which preserve the Q−symmetry.

In the A−model, one can only construct 3D–branes wrapping so–called
‘Lagrangian’ submanifolds of M . Here, ‘Lagrangian’ means that the Kähler
form ω vanishes on this submanifold. In the B−model, one can construct
D–branes of any even dimension, as long as these branes wrap holomorphic
submanifolds of M .

Just like in ordinary string theory, when we consider open topological
strings ending on a D–brane, there should be a field theory on the brane
world–volume describing the low–energy physics of the open strings. Moreover,
since we are studying topological theories, one may expect such a theory to
inherit the property that it only depends on a restricted amount of data of the
manifolds involved. A key example is the case of the A−model on the deformed
conifold, M = T ∗S3, where we wrap ND–branes on the S3 in the base. (One
can show that this is indeed a Lagrangian submanifold.) In ordinary string
theory, the world–volume theory on ND–branes has a U(N) gauge symmetry,
so putting the ingredients together we can make the guess that the world–
volume theory is a 3D topological field theory with U(N) gauge symmetry.
There is really only one candidate for such a theory: the Chern–Simons gauge
theory . Recall that it consists of a single U(N) gauge field, and has the action

S =
k

4π

∫

S3
Tr

(
A ∧ dA +

2
3
A ∧A ∧A

)
. (4.174)

Before the invention of D–branes, E. Witten showed that this is indeed the
theory one gets. In fact, he showed even more: this theory actually describes
the full topological string–field theory on the D–branes, even without going
to a low–energy limit [Wit95].

Let us briefly outline the argument that gives this result. In his paper,
Witten derived the open string–field theory action for the open A−model
topological string; it reads

S =
∫

Tr
(
A ∗QAA+

2
3
A ∗ A ∗ A

)
.

The form of this action is very similar to Chern–Simons theory, but its in-
terpretation is completely different: A is a string–field (a wave function on
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the space of all maps from an open string to the space–time manifold), QA
is the topological symmetry generator, which has a natural action on the
string–field, and ∗ is a certain noncommutative product. Witten shows that
the topological properties of the theory imply that only the constant maps
contribute, so A becomes a field on M – and since open strings can only
end on D–branes, it actually becomes a field on S3. Moreover, recall that QA
can be interpreted as a de Rham differential. Using these observations and the
precise definition of the star product one can indeed show that the string–field
theory action reduces to Chern–Simons theory on S3.

4.3.11 Topological Strings and Black Hole Attractors

Topological string theory is naturally related to black hole dynamics. Namely,
critical string theory compactified on Calabi–Yau manifolds has played a cen-
tral role in both the mathematical and physical development of modern string
theory. The physical relevance of the data provided by the topological string
ĉ = 6 (of A and B types) has been that it computes F−type terms in the corre-
sponding four dimensional theory [BCO94, AGN94]. These higher–derivative
F−type terms for Type II superstring on a Calabi–Yau manifold are of the
general form ∫

d4xd4θ(WabW
ab)gFg(XΛ), (4.175)

where Wab is the graviphoton super–field of the N = 2 super–gravity and XΛ

are the vector multiplet fields. The lowest component of W is F the gravipho-
ton field strength and the highest one is the Riemann tensor. The lowest
components of XΛ are the complex scalars parameterizing Calabi–Yau mod-
uli and their highest components are the associated U(1) vector–fields. These
terms contribute to multiple graviphoton–graviton scattering. (4.175) includes
(after θ integrations) an R2F 2g−2 term. The topological string partition func-
tion Ztop represents the canonical ensemble for multi–particle spinning five
dimensional black holes [BMP97, KKV99].

Recently, [OSV04] proposed a simple and direct relationship between the
second–quantized topological string partition function Ztop and black hole
partition function ZBH in four dimensions of the form

ZBH(pΛ, φΛ) = |Ztop(XΛ)|2, where XΛ = pΛ +
i
π
φΛ

in a certain Kähler gauge. The l.h.s. here is evaluated as a function of integer
magnetic charges pΛ and continuous electric potentials φΛ, which are conju-
gate to integer electric charges qΛ. The r.h.s. is the holomorphic square of the
partition function for a gas of topological strings on a Calabi–Yau whose mod-
uli are those associated to the charges/potentials (pΛ, φΛ) via the attractor
equations [OSV04]. Both sides of (4.176) are defined in a perturbation expan-
sion in 1/Q, where Q is the graviphoton charge carried by the black hole.45

45 The string coupling gs is in a hypermultiplet and decouples from the computation.
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The non–perturbative completion of either side of (4.176) might in principle
be defined as the partition function of the holographic CFT dual to the black
hole, as in [SV96b]. Then we have the triple equality,

ZCFT = ZBH = |Ztop|2.

The existence of fundamental connection between 4D black holes and the
topological string might have been anticipated from the following observation.
Calabi–Yau spaces have two types of moduli: Kähler and complex structure.
The world–sheet twisting which produces the A (B) model topological string
from the critical superstring eliminates all dependence on the complex struc-
ture (Kähler) moduli at the perturbative level. Hence the perturbative topo-
logical string depends on only half the moduli. Black hole entropy on the other
hand, insofar as it is an intrinsic property of the black hole, cannot depend
on any externally specified moduli. What happens at leading order is that
the moduli in vector multiplets are driven to attractor values at the horizon
which depend only on the black hole charges and not on their asymptotically
specified values. Hypermultiplet vevs on the other hand are not fixed by an
attractor mechanism but simply drop out of the entropy formula. It is natural
to assume this is valid to all orders in a 1/Q expansion. Hence the perturbative
topological string and the large black hole partition functions depend on only
half the Calabi–Yau moduli. It would be surprising if string theory produced
two functions on the same space that were not simply related. Indeed [OSV04]
argued that they were simply related as in (4.176).

Supergravity Area–Entropy Formula

Recall that a well–known hypothesis by J. Bekenstein and S. Hawking states
that the entropy of a black hole is proportional to the area of its horizon (see
[HE79]). This area is a function of the black hole mass, or in the extremal case,
of its charges. Here we review the leading semiclassical area–entropy formula
for a general N = 2, d = 4 extremal black hole characterized by magnetic
and electric charges (pΛ, qΛ), recently reviewed in [OSV04]. The asymptotic
values of the moduli in vector multiplets, parameterized by complex projective
coordinates XΛ, (Λ = 0, 1, . . . , nV ) in the black hole solution, are arbitrary.
These moduli couple to the electromagnetic fields and accordingly vary as a
function of the radius. At the horizon they approach an attractor point whose
location in the moduli space depends only on the charges. The locations of
these attractor points can be found by looking for supersymmetric solutions
with constant moduli. They are determined by the attractor equations,

pΛ = Re[CXΛ], qΛ = Re[CF0Λ], (4.176)

where F0Λ = ∂F0/∂X
Λ are the holomorphic periods, and the subscript 0

distinguishes these from the string loop corrected periods to appear in the
next subsection. Both (pΛ, qΛ) and (XΛ, F0Λ) transform as vectors under the
Sp(2n + 2;Z) duality group.
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The (2nv+2) real equations (4.176) determine the (nv+2) complex quan-
tities (C,XΛ) up to Kähler transformations, which act as

K → K − f(X)− f̄(X̄), XΛ → efXΛ, F0 → e2fF0, C → e−fC,

where the Kähler potential K is given by

e−K = i(X̄ΛF0Λ −XΛF̄0Λ).

We could at this point set C = 1 and fix the Kähler gauge but later we
shall find other gauges useful. It is easy to see that (as required) the charges
(pΛ, qΛ) determined by the attractor equations (4.176) are invariant under
Kähler transformations. Given the horizon attractor values of the moduli de-
termined by (4.176) the Bekenstein–Hawking entropy SBH may be written
as

SBH =
1
4
Area = π|Q|2,

where Q = Qm + iQe is a complex combination of the magnetic and electric
graviphoton charges and

|Q|2 =
i
2
(
qΛC̄X̄Λ − pΛC̄F̄0Λ

)
=

CC̄

4
e−K .

The normalization of Q here is chosen so that |Q| equals the radius of the two
sphere at the horizon.

It is useful to rephrase the above results in the context of type IIB super-
strings in terms of geometry of Calabi–Yau. In this case the attractor equations
fix the complex geometry of the Calabi–Yau. The electric/magentic charges
correlate with three cycles of Calabi–Yau. Choosing a symplectic basis for the
three cycles gives a choice of the splitting to electric and magnetic charges.
Let AΛ denote a basis for the electric three cycles, BΣ the dual basis for the
magnetic charges and Ω the holomorphic 3–form at the attractor point. Ω is
fixed up to an overall multiplication by a complex number Ω → λΩ. There is
a unique choice of λ such that the resulting Ω has the property that

pΛ =
∫

AΛ

ReΩ = Re[CXΛ], qΛ =
∫

BΛ

ReΩ = Re[CF0Λ],

where ReΩ =
1
2
(Ω + Ω).

In terms of this choice, the black hole entropy can be written as

SBH =
π

4

∫

CY

Ω ∧Ω.
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Higher–Order Corrections

F−term corrections to the action are encoded in a string loop corrected holo-
morphic prepotential

F (XΛ,W 2) =
∞∑

h=0

Fh(XΛ)W 2h, (4.177)

where Fh can be computed by topological string amplitudes (as we review in
the next section) and W 2 involves the square of the anti–self dual graviphoton
field strength. This obeys the homogeneity equation

XΛ∂ΛF (XΛ,W 2) + W∂WF (XΛ,W 2) = 2F (XΛ,W 2). (4.178)

Near the black hole horizon, the attractor value of W 2 obeys C2W 2 = 256,
and therefore the exact attractor equations read

pΛ = Re[CXΛ], qΛ = Re
[
CFΛ

(
XΛ,

256
C2

)]
. (4.179)

This is essentially the only possibility consistent with symplectic invariance.
It has been then argued that the entropy as a function of the charges is

SBH =
πi
2

(qΛC̄X̄Λ − pΛC̄F̄Λ) +
π

2
Im[C3∂CF ], (4.180)

where FΛ, XΛ and C are expressed in terms of the charges using (4.179).

Topological Strings

Partition Functions for Black Hole and Topological Strings. The
notion of topological string was introduced in [Wit90]. Subsequently a con-
nection between them and superstring was discovered: It was shown in
[BCO94, AGN94], that the superstring loop corrected F−terms (4.177) can
be computed as topological string amplitudes. The purpose of this subsec-
tion is to translate the super–gravity notation of the previous section to the
topological string notation.

The second quantized partition function for the topological string may be
written

Ztop(tA, gtop) = exp
[
Ftop(tA, gtop)

]
, where

Ftop(tA, gtop) =
∑

h

g2h−2
top Ftop,h(tA),

and Ftop,h is the h−loop topological string amplitude. The Kähler moduli are
expressed in the flat coordinates
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tA =
XA

X0
= θA + irA,

where rA are the Kähler classes of the Calabi–Yau M and θA are periodic
θA ∼ θA + 1.

We would like to determine relations between super–gravity quantities
and topological string quantities. Using the homogeneity property (4.178) and
the expansion (4.177), the holomorphic prepotential in super–gravity can be
expressed as

F (CXΛ, 256) = (CX0)2F
(

XΛ

X0
,

256
(CX0)2

)

=
∞∑

h=0

(CX0)2−2hfh(tA), (4.181)

where fh(tA) is related to Fh(XΛ) in (4.177) as

fh(tA) = 162hFh

(
XΛ

X0

)
.

This suggests an identification of the form fh(tA) ∼ Ftop,h(tA) and gtop ∼
(CX0)−1. For later purposes, we need precise relations between super–gravity
and topological string quantities, including numerical coefficients. These can
be determined by studying the limit of a large Calabi–Yau space.

In the super–gravity notation, the genus 0 and 1 terms in the large volume
are given by

F
(
CXΛ, 256

)
= C2DABC

XAXBXC

X0
− 1

6
c2A

XA

X0
+ · · ·

= (CX0)2DABCtAtBtC − 1
6
c2At

A + · · · ,

where c2A =
∫

M

c2 ∧ αA,

with c2 being the second Chern class of M , and CABC = −6DABC are the
4–cycle intersection numbers. These terms are normalized so that the mixed
entropy SBH is given by (4.180). On the other hand, the topological string
amplitude in this limit is given by

Ftop = − (2π)3i
g2
top

DABCtAtBtC − πi
12

c2At
A + · · · (4.182)

The normalization here is fixed by the holomorphic anomaly equations in
[BCO94], which are nonlinear equations for Ftop,h.

Comparing the one–loop terms in (4.181) and (4.182), which are indepen-
dent of gtop, we find
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F (CXΛ, 256) = −2i
π
Ftop(tA, gtop).

Given this, we can compare the genus 0 terms to find

gtop = ± 4πi
CX0

.

This implies

lnZBH = −π Im
[
F (CXΛ, 256)

]
= Ftop + F̄top and

ZBH(φΛ, pΛ) = |Ztop(tA, gtop)|2, with

tA =
pA + iφA/π
p0 + iφ0/π

, gtop = ± 4πi
p0 + iφ0/π

.

Supergravity Approach to ZBH . The above relation

ZBH = |Ztop|2 (4.183)

can have a simpler super–gravity derivation [OSV04].
A main ingredient in this derivation is the observation that the N = 2

super–gravity coupled to vector multiplets can be written as the action

S =
∫

d4xd4θ (super−−volume form) + h.c. =
∫

d4x
√
−gR + ..., (4.184)

where the super–volume form in the above depends non–trivially on curvature
of the fields. This reproduces the ordinary action after integrating over d4θ and
picking up the θ4 term in the super–volume. In the context of black holes the
boundary terms accompanying (4.184) give the classical black hole entropy.

We now become the derivation of (4.183). As was observed in [BCO94,
AGN94], topological string computes the terms

F =
∞∑

h=0

∫
d4xd4θFh(X)(W 2)g + c.c. (4.185)

There are various terms one can get from the above action after integrating
over d4θ. Let us concentrate on one of the terms which turns out to be the
relevant one for us: Take the top components of XΛ and W 2, and absorb the
d4θ integral from the super–volume measure as in (4.184). We will work in
the gauge X0 ∼ 1 and thus C ∼ 1/gtop. As noted before in the near–horizon
black hole geometry in this gauge the top component W 2 ∼ 1/C2 ∼ g2

top and
the XΛ are fixed by the attractor mechanism. Thus, we have the black hole
free energy
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lnZBH =
∞∑

h=0

g2h
topFtop,h(XΛ/X0)

∫
d4xd4θ + c.c.

=
∞∑

g=0

(gtop)2h−2Ftop,h(XΛ/X0) + c.c.

= 2 Re Ftop, (using
∫

d4xd4θ ∼ 1/g2
top).

Upon exponentiation this leads to (4.183).
Here we have shown that if we consider one absorption of θ4 term in (4.185)

upon d4θ integral we get the desired result. That there be no other terms is
not obvious. For example another way to absorb the θ’s would have given the
familiar term R2F 2g−2 where F is the graviphoton field. However, such terms
do not contribute in the black hole background. It would be nice to find a
simple way to argue why these terms do not contribute and that we are left
with this simple absorption of the θ integrals.

4.4 Chaos Field Theory

In [Cvi00], Cvitanovic re–examined the path–integral formulation and the role
that the classical solutions play in quantization of strongly nonlinear fields.
In the path integral formulation of a field theory the dominant contributions
come from saddle–points, the classical solutions of equations of motion. Usu-
ally one imagines one dominant saddle point, the ‘vacuum’ (see Figure 4.26,
(a)).

The Feynman diagrams of quantum electrodynamics (QED) and quan-
tum chromodynamics (QCD), associated to their path integrals, give us a
visual and intuitive scheme to calculate the correction terms to this starting
semiclassical, Gaussian saddlepoint approximation. But there might be other
saddles (Figure 4.26, (b)). That field theories might have a rich repertoire of
classical solutions became apparent with the discovery of instantons [BPS75],
analytic solutions of the classical SU(2) Yang–Mills relation, and the realiza-
tion that the associated instanton vacua receive contributions from countable
∞’s of saddles. What is not clear is whether these are the important classical
saddles. Cvitanovic asks the question: could it be that the strongly nonlinear
theories are dominated by altogether different classical solutions?

The search for the classical solutions of nonlinear field theories such as the
Yang–Mills and gravity has so far been neither very successful nor very sys-
tematic. In modern field theories the main emphasis has been on symmetries
(compactly collected in action functionals that define the theories) as guiding
principles in writing down the actions. But writing down a differential equa-
tion is only the start of the story; even for systems as simple as 3 coupled
ordinary differential equations one in general has no clue what the nature of
the long time solutions might be.
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Fig. 4.26. Path integrals and chaos field theory (see text for explanation).

These are hard problems, and in explorations of modern field theories
the dynamics tends to be is neglected, and understandably so, because the
wealth of the classical solutions of nonlinear systems can be truly bewil-
dering. If the classical behavior of these theories is anything like that of
the field theories that describe the classical world – the hydrodynamics, the
magneto–hydrodynamics, the Burgers dynamical system (1.127), Ginzburg–
Landau equation (1.124), or Kuramoto–Sivashinsky equation (1.126), there
should be very many solutions, with very few of the important ones analytical
in form; the strongly nonlinear classical field theories are turbulent, after all.
Furthermore, there is not a dimmest hope that such solutions are either beau-
tiful or analytic, and there is not much enthusiasm for grinding out numerical
solutions as long as one lacks ideas as what to do with them.

By late 1970’s it was generally understood that even the simplest nonlinear
systems exhibit chaos. Chaos is the norm also for generic Hamiltonian flows,
and for path integrals that implies that instead of a few, or countably few
saddles (Figure 4.26, (c)), classical solutions populate fractal sets of saddles
(Figure 4.26, (d)). For the path–integral formulation of quantum mechanics
such solutions were discovered and accounted for by [Gut90] in late 1960’s.
In this framework the spectrum of the theory is computed from a set of its
unstable classical periodic solutions and quantum corrections. The new aspect
is that the individual saddles for classically chaotic systems are nothing like
the harmonic oscillator degrees of freedom, the quarks and gluons of QCD
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– they are all unstable and highly nontrivial, accessible only by numerical
techniques.

So, if one is to develop a semiclassical field theory of systems that are
classically chaotic or turbulent, the problem one faces is twofold [Cvi00]

A. Determine, classify, and order by relative importance the classical solu-
tions of nonlinear field theories.

B. Develop methods for calculating perturbative corrections to the corre-
sponding classical saddles.

4.5 Non–Physical Applications of Path Integrals

4.5.1 Stochastic Optimal Control

A path–integral based optimal control model for nonlinear stochastic sys-
tems has recently been developed in [Kap05]. The author addressed the role
of noise and the issue of efficient computation in stochastic optimal control
problems. He considered a class of nonlinear control problems that can be
formulated as a path integral and where the noise plays the role of tempera-
ture. The path integral displays symmetry breaking and there exist a critical
noise value that separates regimes where optimal control yields qualitatively
different solutions. The path integral can be computed efficiently by Monte
Carlo integration or by Laplace approximation, and can therefore be used to
solve high dimensional stochastic control problems.

Recall that optimal control of nonlinear systems in the presence of noise is
a very general problem that occurs in many areas of science and engineering.
It underlies autonomous system behavior, such as the control of movement and
planning of actions of animals and robots, but also optimization of financial
investment policies and control of chemical plants. The problem is stated as:
given that the system is in this configuration at this time, what is the optimal
course of action to reach a goal state at some future time. The cost of each
time course of actions consists typically of a path contribution, that specifies
the amount of work or other cost of the trajectory, and an end cost, that
specifies to what extend the trajectory reaches the goal state.

Also recall that in the absence of noise, the optimal control problem can be
solved in two ways: using (i) the Pontryagin Maximum Principle (PMP, see
previous subsection), which represents a pair of ordinary differential equations
that are similar to the Hamiltonian equations; or (ii) the Hamilton–Jacobi–
Bellman (HJB) equation, which is a partial differential equation (PDE)
[BK64].

In the presence of Wiener noise, the PMP formalism is replaced by a set of
stochastic differential equations (SDEs), which become difficult to solve (com-
pare with [YZ99]). The inclusion of noise in the HJB framework is mathemat-
ically quite straightforward, yielding the so–called stochastic HJB equation
[Ste93]. However, its solution requires a discretization of space and time and
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the computation becomes intractable in both memory requirement and CPU
time in high dimensions. As a result, deterministic control can be computed
efficiently using the PMP approach, but stochastic control is intractable due
to the curse of dimensionality.

For small noise, one expects that optimal stochastic control resembles op-
timal deterministic control, but for larger noise, the optimal stochastic control
can be entirely different from the deterministic control [RN03]. However, there
is currently no good understanding how noise affects optimal control.

In this subsection, we address both the issue of efficient computation and
the role of noise in stochastic optimal control. We consider a class of nonlinear
stochastic control problems, that can be formulated as a statistical mechanics
problem. This class of control problems includes arbitrary dynamical systems,
but with a limited control mechanism. It contains linear–quadratic [Ste93]
control as a special case. We show that under certain conditions on the noise,
the HJB equation can be written as a linear PDE

−∂tψ = Hψ, (4.186)

with H a (non–Hermitian) operator. Equation (4.186) must be solved subject
to a boundary condition at the end time. As a result of the linearity of (4.186),
the solution can be obtained in terms of a diffusion process evolving forward
in time, and can be written as a path integral. The path–integral has a direct
interpretation as a free energy, where noise plays the role of temperature.

This link between stochastic optimal control and a free energy has an im-
mediate consequence that phenomena that allow for a free energy description,
typically display phase transitions. [Kap05] has argued that for stochastic op-
timal control one can identify a critical noise value that separates regimes
where the optimal control has been qualitatively different. He showed how
the Laplace approximation can be combined with Monte Carlo sampling to
efficiently calculate the optimal control.

Path–Integral Formalism

Let xi be an nD stochastic variable that is subject to the SDE

dxi = (bi(xi, t) + ui)dt + dξi (4.187)

with dξi being an nD Wiener process with
〈
dξidξj

〉
= νijdt, and functions νij

independent of xi, ui and time t. The term bi(xi, t) is an arbitrary nD function
of xi and t, and ui represents an nD vector of control variables. Given the
value of xi at an initial time t, the stochastic optimal control problem is to
find the control path ui(·) that minimizes

C(xi, t, ui(·)) =
〈
φ(xi(tf )) +

∫ tf

t

dτ(
1
2
ui(τ)Rui(τ) + V (xi(τ), τ))

〉

xi

,

(4.188)
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with R a matrix, V (xi, t) a time–dependent potential, and φ(xi) the end cost.
The brackets 〈〉xi denote expectation value with respect to the stochastic
trajectories (4.187) that start at xi.

One defines the optimal cost–to–go function from any time t and state xi

as
J(xi, t) = min

ui(·)
C(xi, t, ui(·)).

J satisfies the following stochastic HJB equation [Kap05]

−∂tJ(xi, t) = min
ui

(
1
2
uiRui + V + (bi + ui)∂xiJ(xi, t) +

1
2
νij∂xixjJ(xi, t)

)

= −1
2
R−1∂xiJ(xi, t)∂xiJ + V + bi∂xiJ(xi, t) +

1
2
νij∂xixjJ(xi, t), (4.189)

where bi = (bi)T , and ui = (ui)T , and

ui = −R−1∂xiJ(xi, t) (4.190)

is the optimal control at the point (xi, t). The HJB equation is nonlinear in
J and must be solved with end boundary condition J(xi, tf ) = φ(xi).

Let us define ψ(xi, t) through the Log Transform

J(xi, t) = −λ logψ(xi, t), (4.191)

and assume that there exists a scalar λ such that

λδij = (Rν)ij , (4.192)

with δij the Kronecker delta. In the one dimensional case, such a λ can always
be found. In the higher dimensional case, this restricts the matrices R ∝
(νij)

−1. Equation (4.192) reduces the dependence of optimal control on the
nD noise matrix to a scalar value λ that will play the role of temperature,
while (4.189) reduces to the linear equation (4.186) with

H = −V

λ
+ bi∂xi +

1
2
νij∂xixjJ(xi, t).

Let ρ(yi, τ |xi, t) with ρ(yi, t|xi, t) = δ(yi − xi) describe a diffusion process
for τ > t defined by the Fokker–Planck equation

∂τρ = H†ρ = −V

λ
ρ− ∂xi(biρ) +

1
2
νij∂xixjJ(xi, t)ρ (4.193)

with H† the Hermitian–conjugate of H. Then A(τ) =
∫

dyiρ(yi, τ |xi, t)ψ(yi, τ)
is independent of τ and in particular A(t) = A(tf ). It immediately follows that

ψ(xi, t) =
∫

dyiρ(yi, tf |xi, t) exp(−φ(yi)/λ) (4.194)
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We arrive at the important conclusion that ψ(xi, t) can be computed either
by backward integration using (4.186) or by forward integration of a diffusion
process given by (4.193).

We can write the integral in (4.194) as a path integral. Following [Kap05]
we can divide the time interval t→ tf in n1 intervals and write ρ(yi, tf |xi, t) =∏n1
i=1 ρ(xii, ti|xii−1, ti−1) and let n1 →∞. The result is

ψ(xi, t) =
∫

[dxi]xi exp
(
− 1

λ
S(xi(t→ tf ))

)
(4.195)

with
∫

[dxi]xi an integral over all paths xi(t→ tf ) that start at xi and with

S(xi(t→ tf )) = φ(xi(tf )+
∫ tf

t

dτ(
1
2
(ẋi−bi(xi, τ))R(ẋi−bi(xi, τ))+V (xi, τ))

(4.196)
the Action associated with a path. From (4.191) and (4.195), the cost–to–go
J(x, t) becomes a log partition sum (i.e., a free energy) with temperature λ.

Monte Carlo Sampling

The path integral (4.195) can be estimated by stochastic integration from t
to tf of the diffusion process (4.193) in which particles get annihilated at a
rate V (xi, t)/λ [Kap05]:

xi = xi + bi(xi, t)dt + dξi, with probability 1− V dt/λ

xi = †, with probability V dt/λ (4.197)

where † denotes that the particle is taken out of the simulation. Denote the
trajectories by xiα(t→ tf ), (α = 1, . . . , N). Then, ψ(xi, t) and ui are estimated
as

ψ̂(xi, t) =
∑

α∈alive

wα, uidt =
1

ψ̂(xi, t)

N∑

α∈alive

wαdξ
i
α(t), (4.198)

with wα =
1
N

exp(−φ(xiα(tf ))/λ),

where ‘alive’ denotes the subset of trajectories that do not get killed along the
way by the † operation. The normalization 1/N ensures that the annihilation
process is properly taken into account. Equation (4.198) states that optimal
control at time t is obtained by averaging the initial directions of the noise
component of the trajectories dξiα(t), weighted by their success at tf .

The above sampling procedure can be quite inefficient, when many tra-
jectories get annihilated. One of the simplest procedures to improve it is by
importance sampling. We replace the diffusion process that yields ρ(yi, tf |xi, t)
by another diffusion process, that will yield ρ′(yi, tf |xi, t) = exp(−S′/λ). Then
(4.195) becomes,
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ψ(xi, t) =
∫

[dxi]xi exp (−S′/λ) exp (−(S − S′)/λ) .

The idea is to chose ρ′ such as to make the sampling of the path integral
as efficient as possible. Following [Kap05], here we use the Laplace approx-
imation, which is given by the k deterministic trajectories xβ(t → tf ) that
minimize the Action

J(xi, t) ≈ −λ log
k∑

β=1

exp(−S(xiβ(t→ tf )/λ).

The Laplace approximation ignores all fluctuations around the modes and
becomes exact in the limit λ → 0. The Laplace approximation can be com-
puted efficiently, requiring O(n2m2) operations, where m is the number of
time discretization.

For each Laplace trajectory, we can define a diffusion processes ρ′β accord-
ing to (4.197) with bi(xi, t) = xiβ(t). The estimators for ψ and ui are given
again by (4.198), but with weights

wα =
1
N

exp
(
−
(
S(xiα(t→ tf ))− S′

β(x
i
α(t→ tf ))

)
/λ

)
.

S is the original Action (4.196) and S′
β is the new Action for the Laplace

guided diffusion. When there are multiple Laplace trajectories one should
include all of these in the sample.

4.5.2 Nonlinear Dynamics of Option Pricing

Classical theory of option pricing is based on the results found in 1973 by
Black and Scholes [BS04] and, independently, Merton [Mer73]. Their pio-
neering work starts from the basic assumption that the asset prices follow
the dynamics of a particular stochastic process (geometrical Brownian mo-
tion), so that they have a lognormal distribution [Hul00, PB99]. In the case
of an efficient market with no arbitrage possibilities, no dividends and con-
stant volatilities, they found that the price of each financial derivative is ruled
by an ordinary partial differential equation, known as the (Nobel–Prize win-
ning) Black–Scholes–Merton (BSM) formula. In the most simple case of a
so–called European option, the BSM equation can be explicitly solved to get
an analytical formula for the price of the option [Hul00, PB99]. When we con-
sider other financial derivatives, which are commonly traded in real markets
and allow anticipated exercise and/or depend on the history of the under-
lying asset, the BSM formula fails to give an analytical result. Appropriate
numerical procedures have been developed in the literature to price exotic
financial derivatives with path–dependent features, as discussed in detail in
[Hul00, WDH93, PBS01]. The aim of this work is to give a contribution to
the problem of efficient option pricing in financial analysis, showing how it is
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possible to use path integral methods to develop a fast and precise algorithm
for the evaluation of option prices.

Following recent studies on the application of the path integral approach
to the financial market as appeared in the econophysics literature (see [Mat02]
for a comprehensive list of references), in [MNM02] the authors proposed an
original, efficient path integral algorithm to price financial derivatives, includ-
ing those with path–dependent and early exercise features, and to compare the
results with those get with the standard procedures known in the literature.

Theory and Simulations of Option Pricing

Classical Theory and Path–Dependent Options

The basic ingredient for the development of a theory of option pricing is a
suitable model for the time evolution of the asset prices. The assumption of
the BSM model is that the price S of an asset is driven by a Brownian motion
and verifies the stochastic differential equation (SDE) [Hul00, PB99]

dS = μSdt + σSdw, (4.199)

which, by means of the Itô lemma, can be cast in the form of an arithmetic
Brownian motion for the logarithm of S

d(lnS) = Adt + σdw, (4.200)

where σ is the volatility , A =
(
μ− σ2/2

)
, μ is the drift parameter and w is

the realization of a Wiener process. Due to the properties of a Wiener process,
(4.200) may be written as

d(lnS) = Adt + σε
√

dt, (4.201)

where ε follows from a standardized normal distribution with mean 0 and
variance 1. Thus, in terms of the logarithms of the asset prices z′ = lnS′, z =
lnS, the conditional transition probability p(z′|z) to have at the time t′ a
price S′ under the hypothesis that the price was S at the time t < t′ is given
by [PB99, BRT99]

p(z′|z) =
1

√
2π(t′ − t)σ2

exp
{
− [z′ − (z + A(t′ − t))]2

2σ2(t′ − t)

}
, (4.202)

which is a gaussian distribution with mean z+A(t′−t) and variance σ2(t′−t).
If we require the options to be exercised only at specific times ti, i = 1, · · · , n,
the asset price, between two consequent times ti−1 and ti, will follow (4.201)
and the related transition probability will be

p(zi|zi−1) =
1√

2πΔtσ2
exp

{
− [zi − (zi−1 + AΔt)]2

2σ2Δt

}
, (4.203)
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with Δt = ti − ti−1.
A time–evolution model for the asset price is strictly necessary in a theory

of option pricing because the fair price at time t = 0 of an option O, without
possibility of anticipated exercise before the expiration date or maturity T (a
so–called European option), is given by the scaled expectation value [Hul00]

O(0) = e−rTE[O(T )], (4.204)

where r is the risk–free interest and E[·] indicates the mean value, which can
be computed only if a model for the asset underlying the option is understood.
For example, the value O of an European call option at the maturity T will be
max{ST −X, 0}, where X is the strike price, while for an European put option
the value O at the maturity will be max{X−ST , 0}. It is worth emphasizing,
for what follows, that the case of an European option is particularly simple,
since in such a situation the price of the option can be evaluated by means
of analytical formulae, which are get by solving the BSM partial differential
equation with the appropriate boundary conditions [Hul00, PB99]. On the
other hand, many further kinds of options are present in the financial mar-
kets, such as American options (options which can be exercised at any time
up to the expiration date) and exotic options [Hul00], i.e., derivatives with
complicated payoffs or whose value depend on the whole time evolution of the
underlying asset and not just on its value at the end. For such options with
path-dependent and early exercise features no exact solutions are available
and pricing them correctly is a great challenge.

In the case of options with possibility of anticipated exercise before the
expiration date, the above discussion needs to be generalized, by introducing
a slicing of the time interval T . Let us consider, for definiteness, the case of
an option which can be exercised within the maturity but only at the times
t1 = Δt, t2 = 2Δt, . . . , tn = nΔt = T. At each time slice ti−1 the value Oi−1

of the option will be the maximum between its expectation value at the time
ti scaled with e−rΔt and its value in the case of anticipated exercise OYi−1. If
Si−1 denotes the price of the underlying asset at the time ti−1, we can thus
write for each i = 1, . . . , n

Oi−1(Si−1) = max
{
OYi−1(Si−1), e−rΔtE[Oi|Si−1]

}
, (4.205)

where E[Oi|Si−1] is the conditional expectation value of Oi, i.e., its expec-
tation value under the hypothesis of having the price Si−1 at the time ti−1.
In this way, to get the actual price O0, it is necessary to proceed backward
in time and calculate On−1, . . . ,O1, where the value On of the option at ma-
turity is nothing but OYn (Sn). It is therefore clear that evaluating the price
of an option with early exercise features means to simulate the evolution of
the underlying asset price (to get the OYi ) and to calculate a (usually large)
number of expectation conditional probabilities.
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Standard Numerical Procedures

To value derivatives when analytical formulae are not available, appropriate
numerical techniques have to be advocated. They involve the use of Monte
Carlo (MC) simulation, binomial trees (and their improvements) and finite–
difference methods [Hul00, WDH93].

A natural way to simulate price paths is to discretize (4.201) as

lnS(t + Δt)− lnS(t) = AΔt + σε
√

Δt,

or, equivalently,

S(t + Δt) = S(t) exp
[
AΔt + σε

√
Δt

]
, (4.206)

which is correct for any Δt > 0, even if finite. Given the spot price S0, i.e., the
price of the asset at time t = 0, one can extract from a standardized normal
distribution a value εk, (k = 1, . . . , n) for the random variable ε to simulate
one possible path followed by the price by means of (4.206):

S(kΔt) = S((k − 1)Δt) exp
[
AΔt + σεk

√
Δt

]
.

Iterating the procedure m times, one can simulate m price paths {(S0, S
(j)
1 ,

S
(j)
2 , . . . , S

(j)
n ≡ S

(j)
T ) : j = 1, . . . ,m} and evaluate the price of the option. In

such a MC simulation of the stochastic dynamics of asset price (Monte Carlo
random walk) the mean values E[Oi|Si−1], i = 1, . . . , n are given by

E[Oi|Si−1] =
O(1)
i +O(2)

i + · · ·+O(m)
i

m
,

with no need to calculate transition probabilities because, through the extrac-
tion of the possible ε values, the paths are automatically weighted according
to the probability distribution function of (4.203). Unfortunately, this method
leads to an estimated value whose numerical error is proportional to m−1/2.
Thus, even if it is powerful because of the possibility to control the paths
and to impose additional constrains (as it is usually required by exotic and
path-dependent options), the MC random walk is extremely time consum-
ing when precise predictions are required and appropriate variance reduction
procedures have to be used to save CPU time [Hul00]. This difficulty can be
overcome by means of the method of the binomial trees and its extensions
(see [Hul00] and references therein), whose main idea stands in a determinis-
tic choice of the possible paths to limit the number of intermediate points. At
each time step the price Si is assumed to have only two choices: increase to
the value uSi, u > 1 or decrease to dSi, 0 < d < 1, where the parameters u and
d are given in terms of σ and Δt in such a way to give the correct values for
the mean and variance of stock price changes over the time interval Δt. Also
finite difference methods are known in the literature [Hul00] as an alterna-
tive to time-consuming MC simulations. They give the value of the derivative
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by solving the differential equation satisfied by the derivative, by converting
it into a difference equation. Although tree approaches and finite difference
methods are known to be faster than the MC random walk, they are difficult
to apply when a detailed control of the history of the derivative is required
and are also computationally time consuming when a number of stochastic
variables is involved [Hul00]. It follows that the development of efficient and
fast computational algorithms to price financial derivatives is still a key issue
in financial analysis.

Option Pricing via Path Integrals

Recall that the path integral method is an integral formulation of the dynamics
of a stochastic process. It is a suitable framework for the calculation of the
transition probabilities associated to a given stochastic process, which is seen
as the convolution of an infinite sequence of infinitesimal short-time steps
[BRT99]. For the problem of option pricing, the path–integral method can be
employed for the explicit calculation of the expectation values of the quantities
of financial interest, given by integrals of the form [BRT99]

E[Oi|Si−1] =
∫

dzip(zi|zi−1)Oi(ezi), (4.207)

where z = lnS and p(zi|zi−1) is the transition probability. E[Oi|Si−1] is the
conditional expectation value of some functional Oi of the stochastic process.
For example, for an European call option at the maturity T the quantity of
interest will be max {ST −X, 0}, X being the strike price. As already empha-
sized, and discussed in the literature [Hul00, WDH93, PBS01, RT02, Mat02],
the computational complexity associated to this calculation is generally great:
in the case of exotic options, with path-dependent and early exercise features,
integrals of the type (4.207) cannot be analytically solved. As a consequence,
we demand two things from a path integral framework: a very quick way to
estimate the transition probability associated to a stochastic process (4.201)
and a clever choice of the integration points with which evaluate the integrals
(4.207). In particular, our aim is to develop an efficient calculation of the
probability distribution without losing information on the path followed by
the asset price during its time evolution.

Transition Probability

The probability distribution function related to a SDE verifies the Chapman–
Kolmogorov equation [PB99]

p(z′′|z′) =
∫

dzp(z′′|z)p(z|z′), (4.208)

which states that the probability (density) of a transition from the value
z′ (at time t′) to the value z′′ (at time t′′) is the ‘summation’ over all the
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possible intermediate values z of the probability of separate and consequent
transitions z′ → z, z → z′′. As a consequence, if we consider a finite time
interval [t′, t′′] and we apply a time slicing, by considering n + 1 subintervals
of length Δt = (t′′ − t′)/n + 1, we can write, by iteration of (4.208)

p(z′′|z′) =
∫ +∞

−∞
· · ·

∫ +∞

−∞
dz1 · · · dznp(z′′|zn)p(zn|zn−1) · · · p(z1|z′),

which, thanks to (4.202), can be written as [MNM02]
∫ +∞

−∞
· · · (4.209)

· · ·
∫ +∞

−∞
dz1 · · · dzn

1
√

(2πσ2Δt)n+1
exp

{

− 1
2σ2Δt

n+1∑

k=1

[zk − (zk−1 + AΔt)]2
}

.

In the limit n → ∞, Δt → 0 such that (n + 1)Δt = (t′′ − t′) (infinite se-
quence of infinitesimal time steps), the expression (4.209), as explicitly shown
in [BRT99], exhibits a Lagrangian structure and it is possible to express the
transition probability in the path integral formalism as a convolution of the
form [BRT99]

p(z′′, t′′|z′, t′) =
∫

C
D[σ−1z̃] exp

{

−
∫ t′′

t′
L(z̃(τ), ˙̃z(τ); τ)dτ

}

,

where L is the Lagrangian, given by

L(z̃(τ), ˙̃z(τ); τ) =
1

2σ2

[ ˙̃z(τ)−A
]2

,

and the integral is performed (with functional measure D[·]) over the paths
z̃(·) belonging to C, i.e., all the continuous functions with constrains z̃(t′) ≡
z′, z̃(t′′) ≡ z′′. As carefully discussed in [BRT99], a path integral is well
defined only if both a continuous formal expression and a discretization rule
are given. As done in many applications, the Itô prescription is adopted here
(see subsection 4.1.3 above).

A first, naive evaluation of the transition probability (4.209) can be per-
formed via Monte Carlo simulation, by writing (4.209) as

p(z′′, t′′|z′, t′) =
∫ +∞

−∞
· · ·

∫ +∞

−∞

n∏

i

dgi
1√

2πσ2Δt
exp

{
− 1

2σ2Δt
[z′′ − (zn + AΔt)]2

}
, (4.210)

in terms of the variables gi defined by the relation

dgk =
dzk√

2πσ2Δt
exp

{
− 1

2σ2Δt
[zk − (zk−1 + AΔt)]2

}
, (4.211)
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and extracting each gi from a gaussian distribution of mean zk−1 + AΔt and
variance σ2Δt. However, as we will see, this method requires a large number
of calls to get a good precision. This is due to the fact that each gi is related to
the previous gi−1, so that this implementation of the path integral approach
can be seen to be equivalent to a naive MC simulation of random walks, with
no variance reduction.

By means of appropriate manipulations [Sch81] of the integrand entering
(4.209), it is possible, as shown in the following, to get a path integral ex-
pression which will contain a factorized integral with a constant kernel and a
consequent variance reduction. If we define z′′ = zn+1 and yk = zk − kAΔt,
k = 1, . . . , n, we can express the transition probability distribution as

∫ +∞

−∞
· · ·

∫ +∞

−∞
dy1 · · · dyn

1
√

(2πσ2Δt)n+1
· exp

{

− 1
2σ2Δt

n+1∑

k=1

[yk − yk−1]2
}

,

(4.212)
in order to get rid of the contribution of the drift parameter. Now let us
extract from the argument of the exponential function a quadratic form

n+1∑

k=1

[yk − yk−1]2 = y2
0 − 2y1y0 + y2

1 + y2
1 − 2y1y2 + . . . + y2

n+1

= ytMy + [y2
0 − 2y1y0 + y2

n+1 − 2ynyn+1], (4.213)

by introducing the nD array y and the nxn matrix M defined as [MNM02]

y =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

y1

y2

...

...
yn

⎞

⎟⎟
⎟⎟⎟⎟
⎠

, M =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

2 −1 0 · · · · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
0 · · · −1 2 −1 0
0 · · · · · · −1 2 −1
0 · · · · · · · · · −1 2

⎞

⎟⎟
⎟⎟⎟⎟
⎠

, (4.214)

where M is a real, symmetric, non singular and tridiagonal matrix. In terms
of the eigenvalues mi of the matrix M , the contribution in (4.213) can be
written as

ytMy = wtOtMOw = wtMdw =
n∑

i=1

miw
2
i , (4.215)

by introducing the orthogonal matrix O which diagonalizes M , with wi =
Oijyj . Because of the orthogonality of O, the Jacobian

J = det
∣
∣∣∣
dwi
dyk

∣
∣∣∣ = det |Oki|,

of the transformation yk → wk equals 1, so that
∏n
i=1 dwi =

∏n
i=1 dyi. After

some algebra, (4.213) can be written as
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n+1∑

k=1

[yk − yk−1]2 =
n∑

i=1

miw
2
i + y2

0 − 2y1y0 + y2
n+1 − 2ynyn+1 =

n∑

i=1

mi

[
wi −

(y0O1i + yn+1Oni)
mi

]2

+ y2
0 + y2

n+1 −
n∑

i=1

(y0O1i + yn+1Oni)2

mi
.

(4.216)
Now, if we introduce new variables hi obeying the relation

dhi =
√

mi

2πσ2Δt
exp

{

− mi

2σ2Δt

[
wi −

(y0O1i + yn+1Oni)
mi

]2
}

dwi, (4.217)

it is possible to express the finite–time probability distribution p(z′′|z′) as
[MNM02]

∫ +∞

−∞
· · ·

∫ +∞

−∞

n∏

i=1

dyi
1

√
(2πσ2Δt)n+1

exp

{

− 1

2σ2Δt

n+1∑

k=1

[yk − yk−1]
2

}

=

∫ +∞

−∞
· · ·

∫ +∞

−∞

n∏

i=1

dwi
1

√
(2πσ2Δt)n+1

e−(y2
0+y2

n+1)/2σ2Δt

× exp

{

− 1

2σ2Δt

n∑

i=1

[

mi

(
wi −

(y0O1i + yn+1Oni)

mi

)2

− (y0O1i + yn+1Oni)
2

mi

]}

=

∫ +∞

−∞
· · ·
∫ +∞

−∞

n∏

i=1

dhi
1

√
2πσ2Δt det(M)

(4.218)

× exp

{

− 1

2σ2Δt

[

y2
0 + y2

n+1 +
n∑

i=1

(y0O1i + yn+1Oni)
2

mi

]}

.

The probability distribution function, as given by (4.218), is an integral whose
kernel is a constant function (with respect to the integration variables) and
which can be factorized into the n integrals

∫ +∞

−∞
dhi exp

{
− 1

2σ2Δt

(y0O1i + yn+1Oni)2

mi

}
, (4.219)

given in terms of the hi, which are gaussian variables that can be extracted
from a normal distribution with mean (y0O1i + yn+1Oni)2/mi and variance
σ2Δt/mi. Differently to the first, naive implementation of the path integral,
now each hi is no longer dependent on the previous hi−1, and importance
sampling over the paths is automatically accounted for.

It is worth noticing that, by means of the extraction of the random vari-
ables hi, we are creating price paths, since at each intermediate time ti the
asset price is given by

Si = exp {
n∑

k=1

Oikhk + iAΔt}. (4.220)



592 4 Nonlinear Dynamics of Path Integrals

Therefore, this path integral algorithm can be easily adapted to the cases in
which the derivative to be valued has, in the time interval [0, T ], additional
constraints, as in the case of interesting path–dependent options, such as Asian
and barrier options [Hul00].

Integration Points

The above illustrated method represents a powerful and fast tool to calcu-
late the transition probability in the path integral framework and it can be
employed if we need to value a generic option with maturity T and with pos-
sibility of anticipated exercise at times ti = iΔt (nΔt = T ) [MNM02]. As a
consequence of this time slicing, one must numerically evaluate n − 1 mean
values of the type (9), in order to check at any time ti, and for any value of the
stock price, whether early exercise is more convenient with respect to holding
the option for a future time. To keep under control the computational com-
plexity and the time of execution, it is mandatory to limit as far as possible
the number of points for the integral evaluation. This means that we would
like to have a linear growth of the number of integration points with the time.
Let us suppose to evaluate each mean value

E[Oi|Si−1] =
∫

dzi p(zi|zi−1)Oi(ezi),

with p integration points, i.e., considering only p fixed values for zi. To this
end, we can create a grid of possible prices, according to the dynamics of the
stochastic process as given by (4.201)

z(t + Δt)− z(t) = lnS(t + Δt)− lnS(t) = AΔt + εσ
√

Δt. (4.221)

Starting from z0, we thus evaluate the expectation value E[O1|S0] with p =
2m+ 1,m ∈ N values of z1 centered on the mean value E[z1] = z0 +AΔt and
which differ from each other of a quantity of the order of σ

√
Δt

zj1 = z0 + AΔt + jσ
√

Δt, (j = −m, . . . ,+m).

Going on like this, we can evaluate each expectation value E[O2|zj1] get from
each one of the z1’s created above with p values for z2 centered around the
mean value

E[z2|zj1] = zj1 + AΔt = z0 + 2AΔt + jσ
√

Δt.

Iterating the procedure until the maturity, we create a deterministic grid
of points such that, at a given time ti, there are (p − 1)i + 1 values of zi, in
agreement with the request of linear growth. This procedure of selection of
integration points, together with the calculation of the transition probability
previously described, is the basis of the path integral simulation of the price
of a generic option.
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By applying the results derived above, we have at disposal an efficient path
integral algorithm both for the calculation of transition probabilities and the
evaluation of option prices. In [MNM02] the application of the above path–
integral method to European and American options in the BSM model was
illustrated and comparisons with the results were get with the standard proce-
dures known in the literature were shown. First, the path integral simulation
of the probability distribution of the logarithm of the stock prices, p(lnS),
as a function of the logarithm of the stock price, for a BSM–like stochastic
model, was given by (4.200). Once the transition probability has been com-
puted, the price of an option could be computed in a path integral approach
as the conditional expectation value of a given functional of the stochastic
process. For example, the price of an European call option was given by

C = e−r(T−t)
∫ +∞

−∞
dzf p(zf , T |zi, t)max[ezf −X, 0], (4.222)

while for an European put it will be

P = e−r(T−t)
∫ +∞

−∞
dzf p(zf , T |zi, t)max[X − ezf , 0], (4.223)

where r is the risk–free interest rate. Therefore just 1D integrals need to be
evaluated and they can be precisely computed with standard quadrature rules.

Continuum Limit and American Options

In the specific case of an American option, the possibility of exercise at any
time up to the expiration date allows to develop, within the path integral
formalism, a specific algorithm, which, as shown in the following, is precise
and very quick [MNM02].

Given the time slicing considered above, the case of American options
requires the limit Δt→ 0 which, putting σ → 0, leads to a delta–like transition
probability

p(z, t + Δt|zt, t) ≈ δ(z − zt −AΔt).

This means that, apart from volatility effects, the price zi at time ti will have
a value remarkably close to the expected value z̄ = zi−1 + AΔt, given by the
drift growth. In order to take care of the volatility effects, a possible solution
is to estimate the integral of interest, i.e.,

E[Oi|Si−1] =
∫ +∞

−∞
dz p(z|zi−1)Oi(ez), (4.224)

by inserting in (4.224) the analytical expression for the p(z|zi−1) transition
probability
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p(z|zi−1) =
1√

2πΔtσ2
exp

{
− (z − zi−1 −AΔt)2

2σ2Δt

}

=
1√

2πΔtσ2
exp

{
− (z − z̄)2

2σ2Δt

}
,

together with a Taylor expansion of the kernel function Oi(ez) = f(z) around
the expected value z̄. Hence, up to the second–order in z − z̄, the kernel
function becomes

f(z) = f(z̄) + (z − z̄)f ′(z̄) +
1
2
f ′′(z̄)(z − z̄)2 + O((z − z̄)3),

which induces

E[Oi|Si−1] = f(z̄) +
σ2

2
f ′′(z̄),+ . . . ,

since the first derivative does not give contribution to (4.224), being the inte-
gral of an odd function over the whole z range. The second derivative can be
numerically estimated as

f ′′(z̄) =
1
δ2
σ

[f(z̄ + δσ)− 2f(z̄) + f(z̄ − δσ)],

with δσ = O(σ
√

Δt), as dictated by the dynamics of the stochastic process.

4.5.3 Dynamics of Complex Networks

Recall that many systems in nature, such as neural nets, food webs, metabolic
systems, co–authorship of papers, the worldwide web, etc. can be represented
as complex networks, or small–world networks (see, e.g., [WS98, DM03]). In
particular, it has been recognized that many networks have scale–free topol-
ogy; the distribution of the degree obeys the power law, P (k) ∼ k−γ . The
study of the scale–free network now attracts the interests of many researchers
in mathematics, physics, engineering and biology [Ich04].

Another important aspect of complex networks is their dynamics, describ-
ing e.g., the spreading of viruses in the Internet, change of populations in
a food web, and synchronization of neurons in a brain. In particular, [Ich04]
studied the synchronization of the random network of oscillators. His work fol-
lows the previous studies (see [Str00]) that showed that mean–field type syn-
chronization, that Kuramoto observed in globally–coupled oscillators [Kur84],
appeared also in the small–world networks.

Continuum Limit of the Kuramoto Net

Ichinomiya started with the standard network with N nodes, described by a
variant of the Kuramoto model. Namely, at each node, there exists an oscillator
and the phase of each oscillator θi is evolving according to
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θ̇i = ωi + K
∑

j

aij sin(θj − θi), (4.225)

where K is the coupling constant, aij is 1 if the nodes i and j are connected,
and 0 otherwise; ωi is a random number, whose distribution is given by the
function N(ω).

For the analytic study, it is convenient to use the continuum limit equation.
We define P (k) as the distribution of nodes with degree k, and ρ(k, ω; t, θ) the
density of oscillators with phase θ at time t, for given ω and k. We assume
that ρ(k, ω; t, θ) is normalized as

∫ 2π

0

ρ(k, ω; t, θ)dθ = 1.

For simplicity, we also assume N(ω) = N(−ω). Thus, we suppose that the
collective oscillation corresponds to the stable solution, ρ̇ = 0.

Now we construct the continuum limit equation for the network of os-
cillators. The evolution of ρ is determined by the continuity equation ∂tρ =
−∂θ(ρv), where v is defined by the continuum limit of the r.h.s of (4.225). Be-
cause one randomly selected edge connects to the node of degree k, frequency
ω, phase θ with the probability kP (k)N(ω)ρ(k, ω; t, θ)/

∫
dkkP (k), ρ(k, ω; t, θ)

obeys the equation

∂tρ(k, ω; t, θ) = −∂θ[ρ(k, ω; t, θ) (ω +

+
Kk

∫
dω′ ∫ dk′ ∫ dθ′N(ω′)P (k′)k′ρ(k′, ω′; t, θ′) sin(θ − θ′)∫

dk′P (k′)k′ )].

The mean–field solution of this equation was studied by [Ich04].

Path–Integral Approach to Complex Networks

Recently, [Ich05] introduced the path–integral (see subsection 4.4.6 above)
approach in studying the dynamics of complex networks. He considered the
stochastic generalization of the Kuramoto network (4.225), given by

ẋi = fi(xi) +
N∑

j=1

aijg(xi, xj) + ξi(t), (4.226)

where fi = fi(xi) and gij = g(xi, xj) are functions of network activations xi,
ξi(t) is a random force that satisfies 〈ξi(t) = 0〉, 〈ξi(t)ξj(t

′
)〉 = δijδ(t− t

′
)σ2.

He assumed xi = xi,0 at t = 0. In order to discuss the dynamics of this system,
he introduced the so–called Matrin–Siggia–Rose (MSR) generating functional
Z given by [Dom78]

Z[{lik}, {l̄ik}] =
(

1
π

)NNt
〈∫ N∏

i=1

Nt∏

k=0

dxikdx̄ike−S exp(likxik + l̄ikx̄ik)J

〉

,



596 4 Nonlinear Dynamics of Path Integrals

where the action S is given by

S =
∑

ik

[
σ2Δt

2
x̄2

ik + ix̄ik{xik − xi,k−1 − Δt(fi(xi,k−1) +
∑

j

aijg(xi,k−1, xj,k−1))}],

and 〈· · · 〉 represents the average over the ensemble of networks. J is the
functional Jacobian term,

J = exp

⎛

⎝−Δt

2

∑

ijk

∂(fi(xik) + aijg(xik, xjk))
∂xik

⎞

⎠ .

Ichinomiya considered such a form of the network model in which

aij =
{

1 with probability pij ,
0 with probability 1− pij .

Note that pij can be a function of variables such as i or j. For example, in
the 1D chain model, pij is 1 if |i − j| = 1, else it is 0. The average over all
networks can be expressed as

〈

exp

⎡

⎣
∑

ik

iΔtx̄ik
∑

j

aijg(xi,k−1, xj,k−1)

⎤

⎦
〉

=

∏

ij

[

pij exp

{
∑

k

iΔtx̄ikg(xi,k−1, xj,k−1)

}

+ 1− pij

]

,

so we get

〈e−S〉 = exp(−S0)
∏

ij

[

pij exp

{
∑

k

iΔtx̄ikg(xi,k−1, xj,k−1)

}

+ 1− pij

]

,

where S0 =
∑

ik

σ2Δt

2
x̄2
ik + ix̄ik{xik − xi,k−1 −Δtfi(xi,k−1)}.

This expression can be applied to the dynamics of any complex network model.
[Ich05] applied this model to analysis of the Kuramoto transition in random
sparse networks.

4.5.4 Path–Integral Dynamics of Neural Networks

Let us return to the simplest setting in which to study the problem: single
pattern recall in an attractor neural network with N binary neurons and
p = αN stored patterns in the non–trivial regime, where α > 0. We choose
parallel dynamics, i.e., (2.205), with Hebbian synapses of the form (2.202)
with Aμν = δμν , i.e., Jij = N−1

∑p
μ ξμi ξ

μ
j , giving us the parallel dynamics
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version of the Hopfield model [Hop82]. Our interest is in the recall overlap
m(σ) = N−1

∑
i σiξ

1
i between system state and pattern one. We saw above

that for N → ∞ the fluctuations in the values of the recall overlap m will
vanish, and that for initial states where all σi(0) are drawn independently the
overlap m will obey:

m(t+ 1) =
∫

dz Pt(z) tanh[β(m(t)+ z)] : (4.227)

Pt(z) = lim
N→∞

1
N

∑

i

〈δ[z − 1
N

ξ1
i ξ
μ
i ξ
μ
j σj(t)]〉,

and that all complications in a dynamical analysis of the α > 0 regime are
concentrated in the calculation of the distribution Pt(z) of the (generally non–
trivial) interference noise.

As a simple Gaussian approximation one could just assume [Ama77,
Ama78] that the σi remain uncorrelated at all times, i.e., Prob[σi(t) = ±ξ1

i ] =
1
2 [1±m(t)] for all t ≥ 0, such that the argument given above for t = 0 (leading
to a Gaussian P (z)) would hold generally, and where the map (4.227) would
describe the overlap evolution at all times:

Pt(z) = [2πα]−
1
2 e−

1
2 z

2/α :

m(t + 1) =
∫

Dz tanh[β(m(t) + z
√

α)],

with the Gaussian measure Dz = (2π)−
1
2 e−

1
2 z

2
dz. This equation, however,

must be generally incorrect. Rather than taking all σi to be independent, a
weaker assumption would be to just assume the interference noise distribution
Pt(z) to be a zero-average Gaussian one, at any time, with statistically inde-
pendent noise variables z at different times. One can then derive (for N →∞
and fully connected networks) an evolution equation for the width Σ(t), giving
[AM88]:

m(t+ 1) =
∫

Dz tanh[β(m(t) + zΣ(t))] :

Pt(z) = [2πΣ2(t)]−
1
2 e−

1
2 z

2/Σ2(t) :
Σ2(t+ 1) = α + 2αm(t+ 1)m(t)h[m(t), Σ(t)]

+ Σ2(t)h2[m(t), Σ(t)], with

h[m,Σ] = β

[
1−

∫
Dz tanh2[β(m + zΣ)]

]
.

These equations describe correctly the qualitative features of recall dynamics,
and are found to work well when retrieval actually occurs. A final refinement of
the Gaussian approach [Oka95] consisted in allowing for correlations between
the noise variables z at different times (while still describing them by Gaussian
distributions). This results in a hierarchy of macroscopic equations, which
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improve upon the previous Gaussian theories and even predict the correct
stationary state and phase diagrams, but still fail to be correct at intermediate
times.

In view of the non–Gaussian shape of the interference noise distribution,
several attempts have been made at constructing non–Gaussian approxima-
tions. In all cases the aim is to arrive at a theory involving only macroscopic
observables with a single time-argument. For a fully connected network with
binary neurons and parallel dynamics a more accurate ansatz for Pt(z) would
be the sum of two Gaussian functions. In [HO90] the following choice was
proposed:

Pt(z) = P+
t (z) + P−

t (z),

P±
t (z) = lim

N→∞

1
N

∑

i

δσi(t),±ξ1i 〈δ[z −
1
N

ξ1
i ξ
μ
i ξ
μ
j σj(t)]〉

P±
t (z) =

1±m(t)
2Σ(t)

√
2π

e−
1
2 [z∓d(t)]2/Σ2(t),

followed by a self–consistent calculation of d(t) (representing an effective ‘re-
tarded self–interaction’, since it has an effect equivalent to adding hi(σ(t)) →
hi(σ(t)) + d(t)σi(t)), and of the width Σ(t) of the two distributions P±

t (z),
together with

m(t+ 1) =
1
2
[1+m(t)]

∫
Dz tanh[β(m(t)+ d(t)+ zΣ(t))]

+
1
2
[1−m(t)]

∫
Dz tanh[β(m(t)− d(t)+ zΣ(t))].

The resulting three–parameter theory, in the form of closed dynamic equa-
tions for {m, d,Σ}, is found to give a nice (but not perfect) agreement with
numerical simulations.

A different philosophy was followed in [CS94] (for sequential dynam-
ics). First (as yet exact) equations are derived for the evolution of the two
macroscopic observables m(σ) = m1(σ) and r(σ) = α−1

∑
μ>1 m2

μ(σ), with
mμ(σ) = N−1

∑
i ξ

1
iσi, which are both found to involve Pt(z):

ṁ =
∫

dz Pt(z) tanh[β(m+ z)],

ṙ =
1
α

∫
dz Pt(z)z tanh[β(m+ z)] + 1− r.

Next one closes these equations by hand, using a maximum–entropy (or, ‘Oc-
cam’s Razor’) argument: instead of calculating Pt(z) from (4.227) with the
real (unknown) microscopic distribution pt(σ), it is calculated upon assigning
equal probabilities to all states σ with m(σ) = m and r(σ) = r, followed
by averaging over all realisations of the stored patterns with μ > 1. In or-
der words: one assumes (i) that the microscopic states visited by the system
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are ‘typical’ within the appropriate (m, r) sub-shells of state space, and (ii)
that one can average over the disorder. Assumption (ii) is harmless, the most
important step is (i). This procedure results in an explicit (non-Gaussian) ex-
pression for the noise distribution in terms of (m, r) only, a closed 2–parameter
theory which is exact for short times and in equilibrium, accurate predictions
of the macroscopic flow in the (m, r)−plane, but (again) deviations in pre-
dicted time-dependencies at intermediate times. This theory, and its perfor-
mance, was later improved by applying the same ideas to a derivation of a
dynamic equation for the function Pt(z) itself (rather than for m and r only).

If we now use the powerful path–integral formalism (see [II06b]), instead
of working with the probability pt(σ) of finding a microscopic state σ at time
t in order to calculate the statistics of a set of macroscopic observables Ω(σ)
at time t, we turn to the probability Prob[σ(0), . . . ,σ(tm)] of finding a micro-
scopic path σ(0) → σ(1) → . . .→ σ(tm). W also add time–dependent external
sources to the local fields, hi(σ) → hi(σ)+θi(t), in order to probe the networks
via perturbations and define a response function. The idea is to concentrate on
the moment partition function Z[ψ], which, like Prob[σ(0), . . . ,σ(tm)], fully
captures the statistics of paths:

Z[ψ] = 〈e−i
∑ tm

t=0 ψi(t)σi(t)〉.

It generates averages of the relevant observables, including those involving
neuron states at different times, such as correlation functions Cij(t, t′) =
〈σi(t)σj(t′)〉 and response functions Gij(t, t′) = ∂〈σi(t)〉/∂θj(t′), upon dif-
ferentiation with respect to the dummy variables {ψi(t)}:

〈σi(t)〉 = i lim
ψ→0

∂Z[ψ]
∂ψi(t)

, Cij(t, t′) = − lim
ψ→0

∂2Z[ψ]
∂ψi(t)∂ψj(t′)

,

Gij(t, t′) = i lim
ψ→0

∂2Z[ψ]
∂ψi(t)∂θj(t′)

.

Next one assumes (correctly) that for N → ∞ only the statistical proper-
ties of the stored patterns will influence the macroscopic quantities, so that
the partition function Z[ψ] can be averaged over all pattern realisations,
i.e., Z[ψ] → Z[ψ]. As in replica theories (the canonical tool to deal with
complexity in equilibrium) one carries out the disorder average before the
average over the statistics of the neuron states, resulting for N → ∞ in
what can be interpreted as a theory describing a single ‘effective’ binary neu-
ron σ(t), with an effective local field h(t) and the dynamics Prob[σ(t +
1) = ±1] = 1

2 [1 ± tanh[βh(t)]]. However, this effective local field is found
to generally depend on past states of the neuron, and on zero-average but
temporally correlated Gaussian noise contributions ξ(t):

h(t|{σ}, {ξ}) = m(t) + θ(t) + α
∑

t′<t

R(t, t′)σ(t′) +
√

αξ(t). (4.228)
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The first comprehensive neural network studies along these lines, dealing
with fully connected networks, were applied to asymmetrically and symmet-
rically extremely diluted networks [KZ91, WS91]. More recent applications
include sequence processing networks [DCS98].46 For N → ∞ the differ-
ences between different models are found to show up only in the actual form
taken by the effective local field (4.228), i.e., in the dependence of the ‘re-
tarded self-interaction’ kernel R(t, t′) and the covariance matrix 〈ξ(t)ξ(t′)〉
of the interference–induced Gaussian noise on the macroscopic objects C =
{C(s, s′) = limN→∞

1
NCii(s, s′)} and G = {G(s, s′) = limN→∞

1
NGii(s, s′)}.

For instance [Coo01, SC00, SC01, CKS05]:

model synapses Jij R(t, t′) 〈ξ(t)ξ(t′)〉
− − −−−− −−−−−− −−−−−− −−−−−−

fully connected, 1
N

ξμ
i ξμ

j [(1 − G)−1G](t, t′) [(1 − G)−1C(1 − G†)−1](t, t′)
static patterns

fully connected, 1
N

ξμ+1
i ξμ

j 0
∑

n≥0[(G†)nCGn](t, t′)
pattern sequence

symm extr diluted,
cij

c
ξμ

i ξμ
j G(t, t′) C(t, t′)

static patterns

asymm extr diluted,
cij

c
ξμ

i ξμ
j 0 C(t, t′)

static patterns

with the cij drawn at random according to P (cij) = c
N δcij ,1 + (1− c

N )δcij ,0

(either symmetrically, i.e., cij = cji, or independently) and where cii = 0,
limN→∞ c/N = 0, and c → ∞. In all cases the observables (overlaps and
correlation– and response–functions) are to be solved from the following closed
equations, involving the statistics of the single effective neuron experiencing
the field (4.228):

m(t) = 〈σ(t)〉, C(t, t′) = 〈σ(t)σ(t′)〉, G(t, t′) = ∂〈σ(t)〉/∂θ(t′).

It is now clear that Gaussian theories can at most produce exact results for
asymmetric networks. Any degree of symmetry in the synapses is found to
induce a non–zero retarded self–interaction, via the kernel K(t, t′), which con-
stitutes a non–Gaussian contribution to the local fields. Exact closed macro-
scopic theories apparently require a number of macroscopic observables which
grows as O(t2) in order to predict the dynamics up to time t. In the case of
sequential dynamics the picture is found to be very similar to the one above;
instead of discrete time labels t ∈ {0, 1, . . . , tm}, path summations and ma-
trices, there one has a real time variable t ∈ [0, tm], path–integrals, integral
operators, and partition–functions.

Partition–Function Analysis for Binary Neurons

First we will define parallel dynamics, i.e., (2.205), driven as usual by local
fields of the form hi(σ; t) = Jijσj + θi(t), but with a more general choice of
46 In the case of sequence recall the overlap m is defined with respect to the ‘moving’

target, i.e., m(t) = 1
N

σi(t)ξ
t
i
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Hebbian synapses, in which we allow for a possible random dilution (to reduce
repetition in our subsequent derivations):

Jij =
cij
c

ξμi ξ
μ
j , with p = αc. (4.229)

Architectural properties are reflected in the variables cij ∈ {0, 1}, whereas
information storage is to be effected by the remainder in (4.229), involving p
randomly and independently drawn patterns ξμ = (ξμ1 , . . . , ξ

μ
N ) ∈ {−1, 1}N .

I will deal both with symmetric and with asymmetric architectures (always
putting cii = 0), in which the variables cij are drawn randomly according to

cij = cji, (for all i < j), P (cij) =
c

N
δcij ,1 + (1− c

N
)δcij ,0,

(for all i = j), P (cij) =
c

N
δcij ,1 + (1− c

N
)δcij ,0.

Thus ckl is statistically independent of cij as soon as (k, l) /∈ {(i, j), (j, i)}. In
leading order in N one has 〈

∑
j cij〉 = c for all i, so c gives the average number

of neurons contributing to the field of any given neuron. In view of this, the
number p of patterns to be stored can be expected to scale as p = αc. The
connectivity parameter c is chosen to diverge with N , i.e., limN→∞ c−1 = 0.
If c = N we get the fully connected (parallel dynamics) Hopfield model.
Extremely diluted networks are got when limN→∞ c/N = 0.

For simplicity, we make the so–called ‘condensed ansatz’: we assume that
the system state has an O(N0) overlap only with a single pattern, say μ = 1.
This situation is induced by initial conditions: we take a randomly drawn
σ(0), generated by

p(σ(0)) =
∏

i

{
1
2
[1 + m0]δσi(0),ξ1i

+
1
2
[1−m0]δσi(0),−ξ1i

}
,

so
1
N

ξ1
i 〈σi(0)〉 = m0.

The patterns μ > 1, as well as the architecture variables cij , are viewed as
disorder. One assumes that for N → ∞ the macroscopic behavior of the
system is ‘self–averaging’, i.e., only dependent on the statistical properties of
the disorder (rather than on its microscopic realisation). Averages over the
disorder are written as · · ·. We next define the disorder–averaged partition
function:

Z[ψ] = 〈e−i
∑

t ψi(t)σi(t)〉, (4.230)

in which the time t runs from t = 0 to some (finite) upper limit tm. Note
that Z[0] = 1. With a modest amount of foresight we define the macroscopic
site-averaged and disorder–averaged objects m(t) = N−1ξ1

i 〈σi(t)〉, C(t, t′) =
N−1〈σi(t)σi(t′)〉 and G(t, t′) = N−1∂〈σi(t)〉/∂θi(t′). They can be obtained
from (4.230) as follows:
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m(t) = lim
ψ→0

i

N
ξ1
j

∂Z[ψ]
∂ψj(t)

, C(t, t′) = − lim
ψ→0

1
N

∂2Z[ψ]
∂ψj(t)∂ψj(t′)

,

G(t, t′) = lim
ψ→0

i

N

∂2Z[ψ]
∂ψj(t)∂θj(t′)

.

Now, as in equilibrium replica calculations, the hope here is that progress
can be made by carrying out the disorder averages first. In equilibrium calcu-
lations we use the replica trick to convert our disorder averages into feasible
ones; here the idea is to isolate the local fields at different times and different
sites by inserting appropriate δ−distributions:

1 =
∏

it

∫
dhi(t)δ[hi(t)− Jijσj(t)− θi(t)]

=
∫
{dhdĥ}ei

∑
it ĥi(t)[hi(t)−Jijσj(t)−θi(t)],

with {dhdĥ} =
∏
it[dĥi(t)dhi(t)/2π], giving

Z[ψ] =
∫
{dhdĥ}ei

∑
it ĥi(t)[hi(t)−θi(t)] ×

×〈e−i
∑

it ψi(t)σi(t)
[
e−i

∑
it ĥi(t)Jijσj(t)

]
〉pf ,

in which 〈 . . . 〉pf refers to averages over a constrained stochastic process of
the type (2.205), but with prescribed fields {hi(t)} at all sites and at all
times. Note that with such prescribed fields the probability of partition a
path {σ(0), . . . ,σ(tm)} is given by

Prob[σ(0), . . . ,σ(tm)|{hi(t)}] =
p(σ(0))e

∑
it[βσi(t+1)hi(t)−log 2 cosh[βhi(t)]], so

Z[ψ] =
∫
{dhdĥ}

∑

σ(0)

· · ·
∑

σ(tm)

p(σ(0))eNF [{σ},{ĥ}] ×

×
∏

it

eiĥi(t)[hi(t)−θi(t)]−iψi(t)σi(t)+βσi(t+1)hi(t)−log 2 cosh[βhi(t)],

with F [{σ}, {ĥ}] =
1
N

log [e−i
∑

it ĥi(t)Jijσj(t)]. (4.231)

We concentrate on the term F [. . .] (with the disorder), of which we need only
know the limit N → ∞, since only terms inside Z[ψ] which are exponential
in N will retain statistical relevance. In the disorder–average of (4.231) every
site i plays an equivalent role, so the leading order in N of (4.231) should
depend only on site–averaged functions of the {σi(t), ĥi(t)}, with no reference
to any special direction except the one defined by pattern ξ1. The simplest
such functions with a single time variable are
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a(t; {σ}) =
1
N

ξ1
iσi(t), k(t; {ĥ}) =

1
N

ξ1
i ĥi(t),

whereas the simplest ones with two time variables would appear to be

q(t, t′; {σ}) =
1
N

σi(t)σi(t′), Q(t, t′; {ĥ}) =
1
N

ĥi(t)ĥi(t′),

K(t, t′; {σ, ĥ}) =
1
N

ĥi(t)σi(t′).

It will turn out that all models of the type (4.229), have the crucial property
that above are in fact the only functions to appear in the leading order of
(4.231):

F [. . .] = Φ[{a(t; . . .), k(t; . . .), q(t, t′; . . .), Q(t, t′; . . .),K(t, t′; . . .)}] + . . . ,

for N →∞ and some as yet unknown function Φ[. . .]. This allows us to proceed
with the evaluation of Z[ψ]. We can introduce suitable δ-distributions (taking
care that all exponents scale linearly with N , to secure statistical relevance).
Thus we insert

1 =
tm∏

t=0

∫
da(t) δ[a(t)− a(t; {σ})]

=
[
N

2π

]tm+1 ∫
dadâ eiN

∑
t â(t)[a(t)− 1

N ξ
1
jσj(t)],

1 =
tm∏

t=0

∫
dk(t) δ[k(t)− k(t; {ĥ})]

=
[
N

2π

]tm+1 ∫
dkdk̂ eiN

∑
t k̂(t)[k(t)− 1

N ξ
1
j ĥj(t)],

1 =
tm∏

t,t′=0

∫
dq(t, t′) δ[q(t, t′)− q(t, t′; {σ})]

=
[
N

2π

](tm+1)2 ∫
dqdq̂ eiN

∑
t,t′ q̂(t,t

′)[q(t,t′)− 1
N σj(t)σj(t

′)],

1 =
tm∏

t,t′=0

∫
dQ(t, t′) δ[Q(t, t′)−Q(t, t′; {ĥ})]

=
[
N

2π

](tm+1)2 ∫
dQdQ̂ eiN

∑
t,t′ Q̂(t,t′)[Q(t,t′)− 1

N ĥj(t)ĥj(t
′)],
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1 =
tm∏

t,t′=0

∫
dK(t, t′) δ[K(t, t′)−K(t, t′; {σ, ĥ})]

=
[
N

2π

](tm+1)2 ∫
dKdK̂ eiN

∑
t,t′ K̂(t,t′)[K(t,t′)− 1

N ĥj(t)σj(t
′)].

Using the short–hand

Ψ [a, â,k, k̂,q, q̂,Q, Q̂,K, K̂] = i
∑

t

[â(t)a(t) + k̂(t)k(t)]

+ i
∑

t,t′

[q̂(t, t′)q(t, t′) + Q̂(t, t′)Q(t, t′) + K̂(t, t′)K(t, t′)]

then leads us to Z[ψ] =

∫
dadâdkdk̂dqdq̂dQdQ̂dKdK̂ ×

eNΨ [a,â,k,k̂,q,q̂,Q,Q̂,K,K̂]+NΦ[a,k,q,Q,K]+O(...)

×
∫

{dhdĥ}
∑

σ(0)

· · ·
∑

σ(tm)

p(σ(0)) ×

∏

it

eiĥi(t)[hi(t)−θi(t)]−iψi(t)σi(t)+βσi(t+1)hi(t)−log 2 cosh[βhi(t)] ×

∏

i

e−iξ1
i

∑
t[â(t)σi(t)+k̂(t)ĥi(t)]−i

∑
t,t′ [q̂(t,t′)σi(t)σi(t

′)+Q̂(t,t′)ĥi(t)ĥi(t
′)+K̂(t,t′)ĥi(t)σi(t

′)],

in which the term denoted as O(. . .) covers both the non–dominant orders in
(4.231) and the O(logN) relics of the various pre–factors [N/2π] in the above
integral representations of the δ−distributions (note: tm was assumed fixed).
We now see explicitly that the summations and integrations over neuron states
and local fields fully factorize over the N sites. A simple transformation

{σi(t), hi(t), ĥi(t)} → {ξ1
iσi(t), ξ

1
ihi(t), ξ

1
i ĥi(t)}

brings the result into the form [Coo01, SC00, SC01, CKS05]

eN Ξ[â,k̂,q̂,Q̂,K̂] =

∫
{dhdĥ}

∑

σ(0)

· · ·
∑

σ(tm)

p(σ(0)) ×

×
∏

it

eiĥi(t)[hi(t)−ξ1
i θi(t)]−iξ1

i ψi(t)σi(t)+βσi(t+1)hi(t)−log 2 cosh[βhi(t)] ×

∏

i

e−iξ1
i

∑
t[â(t)σi(t)+k̂(t)ĥi(t)]−i

∑
t,t′ [q̂(t,t′)σi(t)σi(t

′)+Q̂(t,t′)ĥi(t)ĥi(t
′)+K̂(t,t′)ĥi(t)σi(t

′)],

in which

{dhdĥ} =
∏

t

[dh(t)dĥ(t)/2π], π0(σ) =
1
2
[1 + m0]δσ,1 +

1
2
[1−m0]δσ,−1.
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At this stage Z[ψ] acquires the form of an integral to be evaluated via the
saddle–point (or ‘steepest descent’) method,

Z[{ψ(t)}] =
∫

dadâdkdk̂dqdq̂dQdQ̂dKdK̂ eN{Ψ [...]+Φ[...]+Ξ[...]}+O(...).

(4.232)
The disorder–averaged partition function (4.232) is for N →∞ dominated

by the physical saddle–point of the macroscopic surface

Ψ [a, â,k, k̂,q, q̂,Q, Q̂,K, K̂] + Φ[a,k,q,Q,K] + Ξ[â, k̂, q̂, Q̂, K̂]. (4.233)

It will be advantageous at this stage to define the following effective measure:

〈f [{σ}, {h}, {ĥ}]〉� = (4.234)

1
N

{∫
{dhdĥ}

∑
σ(0)···σ(tm) Mi[{σ}, {h}, {ĥ}] f [{σ}, {h}, {ĥ}]

∫
{dhdĥ}

∑
σ(0)···σ(tm) Mi[{σ}, {h}, {ĥ}]

}

,

with

Mi[{σ}, {h}, {ĥ}] =

π0(σ(0)) e
∑

t{iĥ(t)[h(t)−ξ
1
i θi(t)]−iξ1iψi(t)σ(t)+βσ(t+1)h(t)−log 2 cosh[βh(t)]}

×e−i
∑

t[â(t)σ(t)+k̂(t)ĥ(t)]−i
∑

t,t′ [q̂(t,t
′)σ(t)σ(t′)+Q̂(t,t′)ĥ(t)ĥ(t′)+K̂(t,t′)ĥ(t)σ(t′)],

in which the values to be inserted for {m̂(t), k̂(t), q̂(t, t′), Q̂(t, t′), K̂(t, t′)} are
given by the saddle–point of (4.233). Variation of (4.233) with respect to all
the original macroscopic objects occurring as arguments (those without the
‘hats’) gives the following set of saddle–point equations:

â(t) = i
∂Φ

∂a(t)
, k̂(t) = i

∂Φ

∂k(t)
, q̂(t, t′) = i

∂Φ

∂q(t, t′)
,

Q̂(t, t′) = i
∂Φ

∂Q(t, t′)
, K̂(t, t′) = i

∂Φ

∂K(t, t′)
.

Variation of (4.233) with respect to the conjugate macroscopic objects (those
with the ‘hats’), in turn, and usage of our newly introduced short-hand nota-
tion 〈 . . . 〉�, gives:

a(t) = 〈σ(t)〉�, k(t) = 〈ĥ(t)〉�, q(t, t′) = 〈σ(t)σ(t′)〉�,
Q(t, t′) = 〈ĥ(t)ĥ(t′)〉�, K(t, t′) = 〈ĥ(t)σ(t′)〉�

The above coupled equations have to be solved simultaneously, once we have
calculated the term Φ[. . .] that depends on the synapses. This appears to be a
formidable task; it can, however, be simplified considerably upon first deriving
the physical meaning of the above macroscopic quantities. We use identities
such as
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∂Ξ[. . .]
∂ψj(t)

= − i

N
ξ1
j

[∫
{dhdĥ}

∑
σ(0)···σ(tm) Mj [{σ}, {h}, {ĥ}]σ(t)

∫
{dhdĥ}

∑
σ(0)···σ(tm) Mj [{σ}, {h}, {ĥ}]

]

,

∂Ξ[. . .]
∂θj(t)

= − i

N
ξ1
j

[∫
{dhdĥ}

∑
σ(0)···σ(tm) Mj [{σ}, {h}, {ĥ}]ĥ(t)

∫
{dhdĥ}

∑
σ(0)···σ(tm) Mj [{σ}, {h}, {ĥ}]

]

,

∂2Ξ[. . .]
∂ψj(t)∂ψj(t′)

= − 1
N

[∫
{dhdĥ}

∑
σ(0)···σ(tm) Mj [{σ}, {h}, {ĥ}]σ(t)σ(t′)

∫
{dhdĥ}

∑
σ(0)···σ(tm) Mj [{σ}, {h}, {ĥ}]

]

−N

[
∂Ξ[. . .]
∂ψj(t)

] [
∂Ξ[. . .]
∂ψj(t′)

]
,

∂2Ξ[. . .]
∂θj(t)∂θj(t′)

= − 1
N

[∫
{dhdĥ}

∑
σ(0)···σ(tm) Mj [{σ}, {h}, {ĥ}]ĥ(t)ĥ(t′)

∫
{dhdĥ}

∑
σ(0)···σ(tm) Mj [{σ}, {h}, {ĥ}]

]

−N

[
∂Ξ[. . .]
∂θj(t)

] [
∂Ξ[. . .]
∂θj(t′)

]
,

∂2Ξ[. . .]
∂ψj(t)∂θj(t′)

= − i

N

[∫
{dhdĥ}

∑
σ(0)···σ(tm) Mj [{σ}, {h}, {ĥ}]σ(t)ĥ(t′)

∫
{dhdĥ}

∑
σ(0)···σ(tm) Mj [{σ}, {h}, {ĥ}]

]

−N

[
∂Ξ[. . .]
∂ψj(t)

] [
∂Ξ[. . .]
∂θj(t′)

]
,

and using the short–hand notation (4.234) wherever possible. Note that the
external fields {ψi(t), θi(t)} occur only in the function Ξ[. . .], not in Ψ [. . .] or
Φ[. . .], and that overall constants in Z[ψ] can always be recovered a posteriori,
using Z[0] = 1:

m(t) = lim
ψ→0

i

N

∑

i

ξ1
i

∫
da . . . dK̂

[
N∂Ξ
∂ψi(t)

]
eN [Ψ+Φ+Ξ]+O(...)

∫
da . . . dK̂ eN [Ψ+Φ+Ξ]+O(...)

= lim
ψ→0

〈σ(t)〉�,

C(t, t′) =

− lim
ψ→0

1
N

∑

i

∫
da . . . dK̂

[
N∂2Ξ

∂ψi(t)∂ψi(t
′) + N∂Ξ

∂ψi(t)
N∂Ξ
∂ψi(t

′)

]
eN [Ψ+Φ+Ξ]+O(...)

∫
da . . . dK̂ eN [Ψ+Φ+Ξ]+O(...)

= lim
ψ→0

〈σ(t)σ(t′)〉�,
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iG(t, t′) =

− lim
ψ→0

1
N

∑

i

∫
da . . . dK̂

[
N∂2Ξ

∂ψi(t)∂θi(t′)
+ N∂Ξ
∂ψi(t)

N∂Ξ
∂θi(t′)

]
eN [Ψ+Φ+Ξ]+O(...)

∫
da . . . dK̂ eN [Ψ+Φ+Ξ]+O(...)

= lim
ψ→0

〈σ(t)ĥ(t′)〉�.

Finally we get useful identities from the seemingly trivial statements

N−1
∑
i ξ

1
i ∂Z[0]/∂θi(t) = 0 and N−1

∑
i ∂

2Z[0]/∂θi(t)∂θi(t′) = 0,

0 = lim
ψ→0

i

N

∑

i

ξ1
i

∫
da . . . dK̂

[
N∂Ξ
∂θi(t)

]
eN [Ψ+Φ+Ξ]+O(...)

∫
da . . . dK̂ eN [Ψ+Φ+Ξ]+O(...)

= lim
ψ→0

〈ĥ(t)〉�,

0 = − lim
ψ→0

1
N

∑

i

∫
da . . . dK̂

[
N∂2Ξ

∂θi(t)∂θi(t′)
+ N∂Ξ
∂θi(t)

N∂Ξ
∂θi(t′)

]
eN [Ψ+Φ+Ξ]+O(...)

∫
da . . . dK̂ eN [Ψ+Φ+Ξ]+O(...)

= lim
ψ→0

〈ĥ(t)ĥ(t′)〉�.

The above identities simplify our problem considerably. The dummy fields
ψi(t) have served their purpose and will now be put to zero, as a result we
can now identify our macroscopic observables at the relevant saddle–point as:

a(t) = m(t), k(t) = 0, q(t, t′) = C(t, t′),
Q(t, t′) = 0, K(t, t′) = iG(t′, t).

Finally we make a convenient choice for the external fields, θi(t) = ξ1
i θ(t),

with which the effective measure 〈 . . . 〉� simplifies to

〈f [{σ}, {h}, {ĥ}]〉� =

∫
{dhdĥ}

∑
σ(0)···σ(tm) M [{σ}, {h}, {ĥ}] f [{σ}, {h}, {ĥ}]

∫
{dhdĥ}

∑
σ(0)···σ(tm) M [{σ}, {h}, {ĥ}]

,

(4.235)

with M [{σ}, {h}, {ĥ}] =

π0(σ(0)) e
∑

t{iĥ(t)[h(t)−θ(t)]+βσ(t+1)h(t)−log 2 cosh[βh(t)]}−i
∑

t[â(t)σ(t)+k̂(t)ĥ(t)]

×e−i
∑

t,t′ [q̂(t,t
′)σ(t)σ(t′)+Q̂(t,t′)ĥ(t)ĥ(t′)+K̂(t,t′)ĥ(t)σ(t′)].

Our final task is calculating the leading order of

F [{σ}, {ĥ}] ==
1
N

log
[
e−i

∑
it ĥi(t)Jijσj(t)

]
. (4.236)
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Parallel Hopfield Network Near Saturation

The fully connected Hopfield [Hop82] network (here with parallel dynamics) is
got upon choosing c = N in the recipe (4.229), i.e., cij = 1− δij and p = αN .
The disorder average thus involves only the patterns with μ > 1. Now (4.236)
gives

F [. . .] =
1
N

log
[
e−iN

−1
∑

t ξ
μ
i ξ

μ
j ĥi(t)σj(t)

]
(4.237)

= iα
∑

t

K(t, t; {σ, ĥ})− i
∑

t

a(t)k(t) +

α log
[
e−i

∑
t[ξiĥi(t)/

√
N ][ξiσi(t)/

√
N ]
]

+O(N−1).

We concentrate on the last term:
[
e−i

∑
t[ξiĥi(t)/

√
N ][ξiσi(t)/

√
N ]

]
=

∫
dxdy e−ix·y ×

×
∏

t

{

δ[x(t) − ξiσi(t)√
N

] δ[y(t) − ξiĥi(t)√
N

]

}

=

∫
dxdydx̂dŷ

(2π)2(tm+1)
ei[x̂·x+ŷ·y−x·y]

[
e
− i√

N
ξi

∑
t[x̂(t)σi(t)+ŷ(t)ĥi(t)]

]

=

∫
dxdydx̂dŷ

(2π)2(tm+1)
e
i[x̂·x+ŷ·y−x·y]+

∑
i log cos

[
1√
N

∑
t[x̂(t)σi(t)+ŷ(t)ĥi(t)]

]

=

∫
dxdydx̂dŷ

(2π)2(tm+1)
ei[x̂·x+ŷ·y−x·y]− 1

2N

∑
i{

∑
t[x̂(t)σi(t)+ŷ(t)ĥi(t)]}2+O(N−1) =

∫
dxdydx̂dŷ

(2π)2(tm+1)
ei[x̂·x+ŷ·y−x·y]− 1

2
∑

t,t′ [x̂(t)x̂(t
′)q(t,t′)+2x̂(t)ŷ(t′)K(t′,t)+ŷ(t)ŷ(t′)Q(t,t′)].

Together with (4.237) we have now shown that the disorder average (4.236)
is indeed, in leading order in N , with

Φ[a,k,q,Q,K] =

iα
∑

t

K(t, t)− ia · k + α log
∫

dxdydx̂dŷ
(2π)2(tm+1)

ei[x̂·x+ŷ·y−x·y]− 1
2 [x̂·qx̂+2ŷ·Kx̂+ŷ·Qŷ]

= iα
∑

t

K(t, t)− ia · k + α log
∫

dudv
(2π)tm+1

e−
1
2 [u·qu+2v·Ku−2iu·v+v·Qv].

Now, for the single–time observables, this gives â(t) = k(t) and k̂(t) = a(t),
and for the two–time ones:
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q̂(t, t′) = −1
2
αi

∫
dudv u(t)u(t′)e−

1
2 [u·qu+2v·Ku−2iu·v+v·Qv]

∫
dudv e−

1
2 [u·qu+2v·Ku−2iu·v+v·Qv]

,

Q̂(t, t′) = −1
2
αi

∫
dudv v(t)v(t′)e−

1
2 [u·qu+2v·Ku−2iu·v+v·Qv]

∫
dudv e−

1
2 [u·qu+2v·Ku−2iu·v+v·Qv]

,

K̂(t, t′) = −αi

∫
dudv v(t)u(t′)e−

1
2 [u·qu+2v·Ku−2iu·v+v·Qv]

∫
dudv e−

1
2 [u·qu+2v·Ku−2iu·v+v·Qv]

− αδt,t′ .

At the physical saddle–point we can now express all non–zero objects in terms
of the observables m(t), C(t, t′) and G(t, t′), with a clear physical meaning.
Thus we find â(t) = 0, k̂(t) = m(t), and

q̂(t, t′) = −1
2
αi

∫
dudv u(t)u(t′)e−

1
2 [u·Cu−2iu·[1−G]v]

∫
dudv e−

1
2 [u·Cu−2iu·[1−G]v]

= 0,

Q̂(t, t′) = −1
2
αi

∫
dudv v(t)v(t′)e−

1
2 [u·Cu−2iu·[1−G]v]

∫
dudv e−

1
2 [u·Cu−2iu·[1−G]v]

= −1
2
αi

[
(1−G)−1C(1−G†)−1

]
(t, t′),

K̂(t, t′) + αδt,t′ = −αi

∫
dudv v(t)u(t′)e−

1
2 [u·Cu−2iu·[1−G]v]

∫
dudv e−

1
2 [u·Cu−2iu·[1−G]v]

= α(1−G)−1(t, t′),

with G†(t, t′) = G(t′, t), and using standard manipulations of Gaussian inte-
grals. Note that we can use the identity (1 − G)−1 − 1 =

∑
�≥0 G� − 1 =

∑
�>0 G� = G(1−G)−1 to compactify the last equation to

K̂(t, t′) = α[G(1−G)−1](t, t′). (4.238)

We have now expressed all our objects in terms of the disorder–averaged
recall Hopfield overlap m = {m(t)} and the disorder–averaged single–site
correlation– and response–functions C = {C(t, t′)} and G = {G(t, t′)}. We
can next simplify the effective measure (4.235), which plays a crucial role
in the remaining saddle–point equations. Inserting â(t) = q̂(t, t′) = 0 and
k̂(t) = m(t) into (4.235), first of all, gives us

M [{σ}, {h}, {ĥ}] = π0(σ(0)) × (4.239)

e
∑

t{iĥ(t)[h(t)−m(t)−θ(t)−
∑

t′ K̂(t,t′)σ(t′)]+βσ(t+1)h(t)−log 2 cosh[βh(t)]}−i
∑

t,t′ Q̂(t,t′)ĥ(t)ĥ(t′).

Secondly, causality ensures that G(t, t′) = 0 for t ≤ t′, from which, in
combination with (4.238), it follows that the same must be true for the kernel
K̂(t, t′), since

K̂(t, t′) = α[G(1−G)−1](t, t′) = α
{
G + G2 + G3 + . . .

}
(t, t′).
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This, in turn, guarantees that the function M [. . .] in (4.239) is already nor-
malised: ∫

{dhdĥ}
∑

σ(0)···σ(tm)

M [{σ}, {h}, {ĥ}] = 1.

One can prove this iteratively. After summation over σ(tm) (which due to
causality cannot occur in the term with the kernel K̂(t, t′)) one is left with
just a single occurrence of the field h(tm) in the exponent, integration over
which reduces to δ[ĥ(tm)], which then eliminates the conjugate field ĥ(tm).
This cycle of operations is next applied to the variables at time tm − 1, etc.
The effective measure (4.235) can now be written simply as

〈f [{σ}, {h}, {ĥ}]〉� =
∑

σ(0)···σ(tm)

∫
{dhdĥ} M [{σ}, {h}, {ĥ}] f [{σ}, {h}, {ĥ}],

with M [. . .] as given in (4.239). The remaining saddle–point equations to be
solved, which can be slightly simplified by using the identity

〈σ(t)ĥ(t′)〉� = i∂〈σ(t)〉�/∂θ(t′), are
m(t) = 〈σ(t)〉�, C(t, t′) = 〈σ(t)σ(t′)〉�, G(t, t′) = ∂〈σ(t)〉�/∂θ(t′).

Here we observe that we only need to insert functions of spin states into the
effective measure 〈 . . . 〉� (rather than fields or conjugate fields), so the effective
measure can again be simplified. We get

〈f [{σ}]〉� =
∑

σ(0)···σ(tm)

Prob[{σ}] f [{σ}], with

Prob[{σ}] = π0(σ(0))
∫
{dφ} P [{φ}]× (4.240)

×
∏

t

[
1
2
[1 + σ(t + 1) tanh[βh(t|{σ}, {φ})]

]
],

in which π0(σ(0)) = 1
2 [1 + σ(0)m0], and

h(t|{σ}, {φ}) = m(t) + θ(t) + α
∑

t′<t

[G(1−G)−1](t, t′)σ(t′) + α
1
2 φ(t), (4.241)

P [{φ}] =
e−

1
2

∑
t,t′ φ(t)[(1−G†)C−1(1−G)](t,t′)φ(t′)

(2π)(tm+1)/2det−
1
2 [(1−G†)C−1(1−G)]

.

We recognize (4.240) as describing an effective single neuron, with the usual
dynamics Prob[σ(t + 1) = ±1] = 1

2 [1±tanh[βh(t)]], but with the fields (4.241).
This result is indeed of the form (4.228), with a retarded self–interaction kernel
R(t, t′) and covariance matrix 〈φ(t)φ(t′)〉 of the Gaussian φ(t) given by
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R(t, t′) = [G(1−G)−1](t, t′),
〈φ(t)φ(t′)〉 = [(1−G)−1C(1−G†)−1](t, t′).

For α→ 0 we loose all the complicated terms in the local fields, and recover the
type of simple expression we found earlier for finite p: m(t + 1) = tanh[β(m(t)
+ θ(t))].

Note that always C(t, t) = 〈σ2(t)〉� = 1 and G(t, t′) = R(t, t′) = 0 for
t ≤ t′. As a result the covariance matrix of the Gaussian fields can be written
as

〈φ(t)φ(t′)〉 = [(1−G)−1C(1−G†)−1](t, t′)

=
∑

s,s′≥0

[δt,s+R(t, s)]C(s, s′)[δs′,t′ +R(t′, s′)]

=
t∑

s=0

t′∑

s′= 0

[δt,s+R(t, s)]C(s, s′)[δs′,t′ +R(t′, s′)].

Considering arbitrary positive integer powers of the response function imme-
diately shows that

(G�)(t, t′) = 0, if t′ > t−  , which gives

R(t, t′) =
∑

�>0

(G�)(t, t′) =
t−t′∑

�=1

(G�)(t, t′).

Similarly we get from (1−G)−1 = 1 + R that for t′ ≥ t: (1−G)−1(t, t′) = δt,t′ .
To suppress notation we will simply put h(t|..) instead of h(t|{σ}, {φ}); this
need not cause any ambiguity. We notice that summation over neuron vari-
ables σ(s) and integration over Gaussian variables φ(s) with time arguments
s higher than than those occurring in the function to be averaged can always
be carried out immediately, giving (for t > 0 and t′ < t):

m(t) =
∑

σ(0)...σ(t−1)

π0(σ(0))
∫
{dφ}P [{φ}] tanh[βh(t− 1|..)]×

×
t−2∏

s=0

1
2

[1 + σ(s + 1) tanh[βh(s|..)]] ,

G(t, t′) = β{C(t, t′ + 1)−
∑

σ(0)...σ(t−1)

π0(σ(0))×

×
∫
{dφ}P [{φ}] tanh[βh(t− 1|..)] tanh[βh(t′|..)]

×
t−2∏

s=0

1
2

[1 + σ(s + 1) tanh[βh(s|..)]]},
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which we get directly for t′ = t − 1, and which follows for times t′ < t − 1
upon using the identity

σ[1− tanh2(x)] = [1 + σ tanh(x)][σ − tanh(x)].

For the correlations we distinguish between t′ = t− 1 and t′ < t− 1,

C(t, t− 1) =
∑

σ(0)...σ(t−2)

π0(σ(0))
∫
{dφ}P [{φ}] tanh[βh(t− 1|..)]×

× tanh[βh(t− 2|..)]
t−3∏

s=0

1
2

[1 + σ(s + 1) tanh[βh(s|..)]] ,

whereas for t′ < t− 1 we have

C(t, t′) =
∑

σ(0)...σ(t−1)

π0(σ(0))
∫
{dφ}P [{φ}] tanh[βh(t− 1|..)]×

× σ(t′)
t−2∏

s=0

1
2

[1 + σ(s + 1) tanh[βh(s|..)]] .

Now, the field at t = 0 is h(0|..) = m0 + θ(0) + α
1
2 φ(0), since the retarded

self–interaction does not yet come into play. The distribution of φ(0) is fully
characterized by its variance 〈φ2(0)〉 = C(0, 0) = 1. Therefore, with Dz =
(2π)−

1
2 e−

1
2 z

2
dz, we immediately find

m(1) =
∫

Dz tanh[β(m0 + θ(0)+ z
√

α)], C(1, 0) = m0m(1),

G(1, 0) = β

{
1−

∫
Dz tanh2[β(m0 + θ(0) + z

√
α)]

}
.

For the self–interaction kernel this implies that R(1, 0) = G(1, 0). We now
move on to t = 2,

m(2) =
1
2

∑

σ(0)

∫
dφ(0)dφ(1)P [φ(0), φ(1)] tanh[βh(1|..)][1+σ(0)m0],

C(2, 1) =
1
2

∑

σ(0)

∫
dφ(1)dφ(0)P [φ(0), φ(1)] ×

× tanh[βh(1|..)] tanh[βh(0|..)][1+σ(0)m0]

C(2, 0) =
1
2

∑

σ(0)σ(1)

∫
{dφ}P [{φ}] tanh[βh(1|..)]×

σ(0)
1
2

[1 + σ(1) tanh[βh(0|..)]] [1+σ(0)m0],
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G(2, 1) = β{1− 1
2

∑

σ(0)

∫
dφ(0)dφ(1)P [φ(0), φ(1)] ×

× tanh2[βh(1|..)][1 + σ(0)m0]},

G(2, 0) = β{C(2, 1)− 1
2

∑

σ(0)

∫
dφ(0)dφ(1)P [φ(0), φ(1)] ×

× tanh[βh(1|..)] tanh[βh(0|..)][1 + σ(0)m0]} = 0.

We already know that 〈φ2(0)〉 = 1; the remaining two moments we need
in order to determine P [φ(0), φ(1)] read [Coo01, SC00, SC01, CKS05]

〈φ(1)φ(0)〉 =
1∑

s=0

[δ1,s+ δ0,sR(1, 0)]C(s, 0) = C(1, 0) + G(1, 0),

〈φ2(1)〉 =
1∑

s=0

1∑

s′=1

[δ1,s+ δ0,sR(1, 0)]C(s, s′)[δs′,1 + δs′,0R(1, 0)]

= G2(1, 0) + 2C(0, 1)G(1, 0) + 1.

We now know P [φ(0), φ(1)] and can work out all macroscopic objects with
t = 2 explicitly, if we wish. I will not do this here in full, but only point at
the emerging pattern of all calculations at a given time t depending only on
macroscopic quantities that have been calculated at times t′ < t, which allows
for iterative solution. Let us just work out m(2) explicitly, in order to compare
the first two recall overlaps m(1) and m(2) with the values found in simulations
and in approximate theories. We note that calculating m(2) only requires the
field φ(1), for which we found 〈φ2(1)〉 = G2(1, 0) + 2C(0, 1)G(1, 0) + 1:

m(2) =
1
2

∑

σ(0)

∫
dφ(1)P [φ(1)] tanh[β(m(1)+ θ(1)

+αG(1, 0)σ(0)+α
1
2 φ(1))][1+σ(0)m0]

=
1
2
[1+m0]

∫
Dz tanh[β(m(1)+ θ(1)+αG(1, 0)

+ z
√

α[G2(1, 0) + 2m0 m(1) G(1, 0) + 1])]

+
1
2
[1−m0]

∫
Dz tanh[β(m(1)+ θ(1)− αG(1, 0)

+ z
√

α[G2(1, 0) + 2m0 m(1) G(1, 0) + 1])]

Here we give a comparison of some of the approximate theories, the (exact)
partition function (i.e., path–integral) formalism, and numerical simulations,
for the case θ(t) = 0 on the fully connected networks. The evolution of the
recall overlap in the first two time–steps has been described as follows:
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Naive Gaussian Approx: m(1) =
∫

Dz tanh[β(m(0) + z
√

α)]

m(2) =
∫

Dz tanh[β(m(1) + z
√

α)]

Amari-Maginu Theory: m(1) =
∫

Dz tanh[β(m(0) + z
√

α)]

m(2) =
∫

Dz tanh[β(m(1) + zΣ
√

α)]

Σ2 = 1 + 2m(0)m(1)G + G2

G = β
[
1 −

∫
Dz tanh2[β(m(0) + z

√
α)]

]

Exact Solution: m(1) =
∫

Dz tanh[β(m(0) + z
√

α)]

m(2) = 1
2
[1 + m0]

∫
Dz tanh[β(m(1) + αG + zΣ

√
α)]

+ 1
2
[1 − m0]

∫
Dz tanh[β(m(1) − αG + zΣ

√
α)]

Σ2 = 1 + 2m(0)m(1)G + G2

G = β
[
1 −

∫
Dz tanh2[β(m(0) + z

√
α)]

]

We can now appreciate why the more advanced Gaussian approximation
(Amari–Maginu theory, [AM88]) works well when the system state is close to
the target attractor. This theory gets the moments of the Gaussian part of
the interference noise distribution at t = 1 exactly right, but not the discrete
part, whereas close to the attractor both the response function G(1, 0) and
one of the two pre–factors 1

2 [1±m0] in the exact expression for m(2) will be
very small, and the latter will therefore indeed approach a Gaussian shape.
One can also see why the non–Gaussian approximation of [HO90] made sense:
in the calculation of m(2) the interference noise distribution can indeed be
written as the sum of two Gaussian ones (although for t > 2 this will cease to
be true).

Extremely Diluted Attractor Networks Near Saturation

The extremely diluted attractor networks were first studied in [DGZ87] (asym-
metric dilution) and [WS91] (symmetric dilution). These models are got upon
choosing limN→∞ c/N = 0 (while still c → ∞) in definition (4.229) of the
Hebbian synapses. The disorder average now involves both the patterns with
μ > 1 and the realisation of the ‘wiring’ variables cij ∈ {0, 1}. Again, in work-
ing out the key function (4.236) we will show that for N → ∞ the outcome
can be written in terms of the above macroscopic quantities. We carry out
the average over the spatial structure variables {cij} first:

F [. . .] =
1
N

log
[
e−

i
c cijξ

μ
i ξ

μ
j

∑
t ĥi(t)σj(t)

]

=
1
N

log
∏

i<j

e−
i
c ξ

μ
i ξ

μ
j [cij

∑
t ĥi(t)σj(t)+cji

∑
t ĥj(t)σi(t)].

Now we have to distinguish between symmetric and asymmetric dilution. First
we deal with the case of symmetric dilution: cij = cji for all i �= j. The average
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over the cij is trivial:
∏

i<j

e
− i

c
cij

∑
μ ξ

μ
i

ξ
μ
j

∑
t[ĥi(t)σj(t)+ĥj(t)σi(t)]

=
∏

i<j

{
1 +

c

N
[e

− i
c

ξ
μ
i

ξ
μ
j

∑
t[ĥi(t)σj(t)+ĥj(t)σi(t)] − 1]

}

=
∏

i<j

e
− i

N
ξ

μ
i

ξ
μ
j

∑
t[ĥi(t)σj(t)+ĥj(t)σi(t)]− 1

2cN
[ξμ

i
ξ

μ
j

∑
t[ĥi(t)σj(t)+ĥj(t)σi(t)]]2+O( 1

N
√

c
)+O( c

N2 )
.

We separate in the exponent the terms where μ = ν in the quadratic term
(being of the form

∑
μν . . .), and the terms with μ = 1. We get (note: p = αc):

F [. . .] = −i
∑

t

a(t)k(t) −
1

2
α
∑

st

[q(s, t)Q(s, t) +K(s, t)K(t, s)] + O(c
− 1

2 ) + O(c/N) +

1

N
log{e−

i
N

∑
t[ξ

μ
i

ĥi(t)][ξμ
j

σj(t)]− 1
4cN

∑
st ξ

μ
i

ξ
μ
j

ξν
i

ξν
j
[ĥi(s)σj(s)+ĥj(s)σi(s)][ĥi(t)σj(t)+ĥj(t)σi(t)]}.

Our ‘condensed ansatz’ implies that for μ > 1: N− 1
2 ξμi σi(t) = O(1) and

N− 1
2 ξμi ĥi(t) = O(1). Thus the first term in the exponent containing the dis-

order is O(c), contributing O(c/N) to F [. . .]. We therefore retain only the
second term in the exponent. However, the same argument applies to the
second term. There all contributions can be seen as uncorrelated in leading
order, so that

∑
i=j

∑
μ=ν . . . = O(Np), giving a non-leading O(N−1) cumu-

lative contribution to F [. . .]. Thus, provided limN→∞ c−1 = limN→∞ c/N = 0
(which we assumed), we have shown that the disorder average (4.236) is again,
in leading order in N , with

Symmetric Case: Φ[a,k,q,Q,K] = −ia · k − 1

2
α
∑

st

[q(s, t)Q(s, t) + K(s, t)K(t, s)].

Next, we deal with the asymmetric case, where cij and cji are independent.
Again, the average over the cij is trivial; here it gives

∏

i<j

{
e−

i
c cijξ

μ
i ξ

μ
j

∑
t ĥi(t)σj(t)e−

i
c cjiξ

μ
i ξ

μ
j

∑
t ĥj(t)σi(t)

}

=
∏

i<j

{
1 +

c

N
[e−

i
c ξ

μ
i ξ

μ
j

∑
t ĥi(t)σj(t) − 1]

}{
1 +

c

N
[e−

i
c ξ

μ
i ξ

μ
j

∑
t ĥj(t)σi(t) − 1]

}

=
∏

i<j

{

1− c

N
[
i

c
ξμi ξ

μ
j

∑

t

ĥi(t)σj(t) +
1

2c2
[ξμi ξ

μ
j

∑

t

ĥi(t)σj(t)]2 +O(c−
3
2 )]

}

×
{

1− c

N
[
i

c
ξμi ξ

μ
j

∑

t

ĥj(t)σi(t) +
1

2c2
[ξμi ξ

μ
j

∑

t

ĥj(t)σi(t)]2 +O(c−
3
2 )]

}

=
∏

i<j

e−
i
N ξ

μ
i ξ

μ
j

∑
t[ĥi(t)σj(t)+ĥj(t)σi(t)]− 1

2cN [ξμ
i ξ

μ
j

∑
t ĥi(t)σ

j(t)]2 −
1

2cN
[ξμi ξ

μ
j

∑

t

ĥj(t)σi(t)]2 +O(
1

N
√

c
) +O(

c

N2
)
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Again, we separate in the exponent the terms where μ = ν in the quadratic
term and the terms with μ = 1 and get

F [. . .] = −i
∑

t

a(t)k(t)− 1
2
α
∑

st

q(s, t)Q(s, t) +O(c−
1
2 ) +O(c/n)

+
1
N

log
{

e−
i
N

∑
t[ξ

μ
i ĥi(t)][ξ

μ
j σj(t)]− 1

2cN ξ
μ
i ξ

μ
j ξ

ν
i ξ

ν
j

∑
st ĥi(s)σj(s)ĥi(t)σj(t)

}
.

The scaling arguments given in the symmetric case, based on our ‘con-
densed ansatz’, apply again, and tell us that the remaining terms with the
disorder are of vanishing order in N . We have again shown that the disorder
average (4.236) is, in leading order in N with

Asymmetric Case: Φ[a,k,q,Q,K] = −ia · k− 1
2
α
∑

st

q(s, t)Q(s, t).

Now, asymmetric dilution corresponds to Δ = 0, i.e., there is no retarded
self–interaction, and the response function no longer plays a role. We now
only retain h(t| . . .) = m(t) + θ(t) + α

1
2 φ(t), with 〈φ2(t)〉 = C(1, 1) = 1. We

now get

m(t+ 1) =
∑

σ(0)...σ(t)

π0(σ(0))
∫
{dφ}P [{φ}] tanh[βh(t| . . .)]×

×
t−1∏

s=0

1
2

[1 + σ(s + 1) tanh[βh(s| . . .)]] =
∫

Dz tanh[β(m(t)+ θ(t)+ z
√

α)].

Similarly, for t > t′ equations for correlation and response functions reduce
to

C(t, t′) =
∫

dφadφb e−
1
2

φ2
a+φ2

b−2C(t−1,t′−1)φaφb

1−C2(t−1,t′−1)

2π
√

1− C2(t− 1, t′ − 1)
×

× tanh[β(m(t− 1)+ θ(t− 1)+φa
√

α)]×
× tanh[β(m(t′ − 1)+ θ(t′ − 1)+φb

√
α)],

G(t, t′) = βδt,t′+1

{
1−

∫
Dz tanh2[β(m(t− 1) + θ(t− 1) + z

√
α)]

}
.

Let us also inspect the stationary state m(t) = m, for θ(t) = 0. One easily
proves that m = 0 as soon as T > 1, using

m2 = βm

∫ m

0

dk[1−
∫

Dz tanh2[β(k + z
√

α)]] ≤ βm2.

A continuous bifurcation occurs from the m = 0 state to an m > 0 state when
T = 1 −

∫
Dz tanh2[βz

√
α]. A parametrization of this transition line in the

(α, T )−plane is given by
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T (x) = 1−
∫

Dz tanh2(zx), α(x) = x2T 2(x), for x ≥ 0.

For α = 0 we just jet m = tanh(βm) so Tc = 1. For T = 0 we get the
equation m = erf[m/

√
2α], giving a continuous transition to m > 0 solutions

at αc = 2/π ≈ 0.637. The remaining question concerns the nature of the
m = 0 state. Inserting m(t) = θ(t) = 0 (for all t) into C(t, t′) tells us that
C(t, t′) = f [C(t − 1, t′ − 1)] for t > t′ > 0, with ‘initial conditions’ C(t, 0) =
m(t)m0, where

f [C] =
∫

dφadφb
2π
√

1− C2
e−

1
2

φ2
a+φ2

b−2Cφaφb

1−C2 tanh[β
√

αφa] tanh[β
√

αφb].

In the m = 0 regime we have C(t, 0) = 0 for any t > 0, inducing C(t, t′) = 0
for any t > t′, due to f [0] = 0. Thus we conclude that C(t, t′) = δt,t′ in the
m = 0 phase, i.e., this phase is para–magnetic rather than of a spin–glass
type.

On the other hand, physics of networks with symmetric dilution is more
complicated situation. In spite of the extreme dilution, the interaction sym-
metry makes sure that the spins still have a sufficient number of common
ancestors for complicated correlations to build up in finite time. We have

h(t|{σ}, {φ}) = m(t)+ θ(t)+α
∑

t′<t

G(t, t′)σ(t′)+α
1
2 φ(t),

P [{φ}] =
e−

1
2

∑
t,t′ φ(t)C

−1(t,t′)φ(t′)

(2π)(tm+1)/2det
1
2 C

.

Thus the effective single neuron problem is found to be exactly of the form
found also for the Gaussian model defined above (which, in turn, maps onto
the parallel dynamics Sherrington–Kirkpatrick model (SK model) [SK75])
with the synapses Jij = J0ξiξj/N + Jzij/

√
N (in which the zij are sym-

metric zero–average and unit–variance Gaussian variables, and Jii = 0 for all
i), with the identification:

J →
√

α, with J0 → 1.

Since one can show that for J0 > 0 the parallel dynamics SK model gives the
same equilibrium state as the sequential one, we can now immediately write
down the stationary solution of our dynamic equations which corresponds to
the FDT regime, with q = limτ→∞ limt→∞ C(t, t + τ):

q =
∫

Dz tanh2[β(m+ z
√

αq)], m =
∫

Dz tanh[β(m+ z
√

αq)].

4.5.5 Cerebellum as a Neural Path–Integral

Recall that human motion is naturally driven by synergistic action of more
than 600 skeletal muscles. While the muscles generate driving torques in
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the moving joints, subcortical neural system performs both local and global
(loco)motion control: first reflexly controlling contractions of individual mus-
cles, and then orchestrating all the muscles into synergetic actions in order
to produce efficient movements. While the local reflex control of individual
muscles is performed on the spinal control level, the global integration of all
the muscles into coordinated movements is performed within the cerebellum.

All hierarchical subcortical neuro–muscular physiology, from the bottom
level of a single muscle fiber, to the top level of cerebellar muscular synergy,
acts as a temporal < out|in > reaction, in such a way that the higher level
acts as a command/control space for the lower level, itself representing an
abstract image of the lower one:

A. At the muscular level, we have excitation–contraction dynamics [Hat77a,
Hat78, Hat77b], in which < out|in > is given by the following sequence
of nonlinear diffusion processes: neural-action-potential � synaptic-
potential
�muscular-action-potential�excitation-contraction-coupling � muscle-
tension-generating [Iva91, II06a]. Its purpose is the generation of muscular
forces, to be transferred into driving torques within the joint anatomical
geometry.

B. At the spinal level, < out|in > is given by autogenetic–reflex stimulus–
response control [Hou79]. Here we have a neural image of all individual
muscles. The main purpose of the spinal control level is to give both pos-
itive and negative feedbacks to stabilize generated muscular forces within
the ‘homeostatic’ (or, more appropriately, ‘homeokinetic’) limits. The in-
dividual muscular actions are combined into flexor–extensor (or agonist–
antagonist) pairs, mutually controlling each other. This is the mechanism
of reciprocal innervation of agonists and inhibition of antagonists. It has a
purely mechanical purpose to form the so–called equivalent muscular actu-
ators (EMAs), which would generate driving torques Ti(t) for all movable
joints.

C. At the cerebellar level, < out|in > is given by sensory–motor integration
[HBB96]. Here we have an abstracted image of all autogenetic reflexes.
The main purpose of the cerebellar control level is integration and fine
tuning of the action of all active EMAs into a synchronized movement, by
supervising the individual autogenetic reflex circuits. At the same time,
to be able to perform in new and unknown conditions, the cerebellum
is continuously adapting its own neural circuitry by unsupervised (self–
organizing) learning. Its action is subconscious and automatic, both in
humans and in animals.

Naturally, we can ask the question: Can we assign a single < out|in >
measure to all these neuro–muscular stimulus–response reactions? We think
that we can do it; so in this Letter, we propose the concept of adaptive sensory–
motor transition amplitude as a unique measure for this temporal < out|in >
relation. Conceptually, this < out|in > −amplitude can be formulated as the
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‘neural path integral ’:

< out|in >≡ 〈motor|sensory〉
amplitude

=
∫
D[w, x] eiS[x]. (4.242)

Here, the integral is taken over all activated (or, ‘fired’) neural pathways
xi = xi(t) of the cerebellum, connecting its input sensory−state with its out-
put motor−state, symbolically described by adaptive neural measure D[w, x],
defined by the weighted product (of discrete time steps)

D[w, x] = lim
n→∞

n∏

t=1

wi(t) dxi(t),

in which the synaptic weights wi = wi(t), included in all active neural path-
ways xi = xi(t), are updated by the unsupervised Hebbian–like learning rule
4.290, namely

wi(t + 1) = wi(t) +
σ

η
(wid(t)− wia(t)), (4.243)

where σ = σ(t), η = η(t) represent local neural signal and noise ampli-
tudes, respectively, while superscripts d and a denote desired and achieved
neural states, respectively. Theoretically, equations (4.242–4.243) define an
∞−dimensional neural network. Practically, in a computer simulation we can
use 107 ≤ n ≤ 108, roughly corresponding to the number of neurons in the
cerebellum.

The exponent term S[x] in equation (4.242) represents the autogenetic–
reflex action, describing reflexly–induced motion of all active EMAs, from
their initial stimulus−state to their final response−state, along the family of
extremal (i.e., Euler–Lagrangian) paths ximin(t). (S[x] is properly derived in
(4.246–4.247) below.)

Spinal Autogenetic Reflex Control

Recall (from Introduction) that at the spinal control level we have the autoge-
netic reflex motor servo [Hou79], providing the local, reflex feedback loops for
individual muscular contractions. A voluntary contraction force F of human
skeletal muscle is reflexly excited (positive feedback +F−1) by the responses
of its spindle receptors to stretch and is reflexly inhibited (negative feedback
-F−1) by the responses of its Golgi tendon organs to contraction. Stretch and
unloading reflexes are mediated by combined actions of several autogenetic
neural pathways, forming the motor servo.

In other words, branches of the afferent fibers also synapse with with in-
terneurons that inhibit motor neurons controlling the antagonistic muscles
– reciprocal inhibition. Consequently, the stretch stimulus causes the antago-
nists to relax so that they cannot resists the shortening of the stretched muscle
caused by the main reflex arc. Similarly, firing of the Golgi tendon receptors
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causes inhibition of the muscle contracting too strong and simultaneous re-
ciprocal activation of its antagonist. Both mechanisms of reciprocal inhibition
and activation performed by the autogenetic circuits +F−1 and -F−1, serve
to generate the well–tuned EMA–driving torques Ti.

Now, once we have properly defined the symplectic musculo–skeletal
dynamics [Iva04] on the biomechanical (momentum) phase–space manifold
T ∗MN , we can proceed in formalizing its hierarchical subcortical neural con-
trol. By introducing the coupling Hamiltonians Hm = Hm(q, p), selectively
corresponding only to the M ≤ N active joints, we define the affine Hamil-
tonian control function Haff : T ∗MN → R, in local canonical coordinates on
T ∗MN given by (adapted from [NS90] for the biomechanical purpose)

Haff (q, p) = H0(q, p)−Hm(q, p)Tm, (m = 1, . . . , M ≤ N), (4.244)

where Tm = Tm(t, q, p) are affine feedback torque one–forms, different from the
initial driving torques Ti acting in all the joints. Using the affine Hamiltonian
function (5.63), we get the affine Hamiltonian servo–system [Iva04],

q̇i =
∂H0(q, p)

∂pi
− ∂Hm(q, p)

∂pi
Tm, (4.245)

ṗi = −∂H0(q, p)
∂qi

+
∂Hm(q, p)

∂qi
Tm,

qi(0) = qi0, pi(0) = p0
i , (i = 1, . . . , N ; m = 1, . . . , M ≤ N).

The affine Hamiltonian control system (4.245) gives our formal description for
the autogenetic spinal motor–servo for all M ≤ N activated (i.e., working)
EMAs.

Cerebellum – the Comparator

Having, thus, defined the spinal reflex control level, we proceed to model the
top subcortical commander/controller, the cerebellum. It is a brain region
anatomically located at the bottom rear of the head (the hindbrain), directly
above the brainstem, which is important for a number of subconscious and
automatic motor functions, including motor learning. It processes information
received from the motor cortex, as well as from proprioceptors and visual
and equilibrium pathways, and gives ‘instructions’ to the motor cortex and
other subcortical motor centers (like the basal nuclei), which result in proper
balance and posture, as well as smooth, coordinated skeletal movements, like
walking, running, jumping, driving, typing, playing the piano, etc. Patients
with cerebellar dysfunction have problems with precise movements, such as
walking and balance, and hand and arm movements. The cerebellum looks
similar in all animals, from fish to mice to humans. This has been taken
as evidence that it performs a common function, such as regulating motor
learning and the timing of movements, in all animals. Studies of simple forms
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of motor learning in the vestibulo–ocular reflex and eye–blink conditioning are
demonstrating that timing and amplitude of learned movements are encoded
by the cerebellum.

The cerebellum is responsible for coordinating precisely timed < out|in >
activity by integrating motor output with ongoing sensory feedback. It re-
ceives extensive projections from sensory–motor areas of the cortex and the
periphery and directs it back to premotor and motor cortex [Ghe90, Ghe91].
This suggests a role in sensory–motor integration and the timing and execu-
tion of human movements. The cerebellum stores patterns of motor control
for frequently performed movements, and therefore, its circuits are changed
by experience and training. It was termed the adjustable pattern generator
in the work of J. Houk and collaborators [HBB96]. Also, it has become the
inspiring ‘brain–model’ in the recent robotic research [SA98, Sch98].

Fig. 4.27. Schematic < out|in > organization of the primary cerebellar circuit.
In essence, excitatory inputs, conveyed by collateral axons of Mossy and Climbing
fibers activate directly neurones in the Deep cerebellar nuclei. The activity of these
latter is also modulated by the inhibitory action of the cerebellar cortex, mediated
by the Purkinje cells.

Comparing the number of its neurons (107 − 108), to the size of conven-
tional neural networks, suggests that artificial neural nets cannot satisfactorily
model the function of this sophisticated ‘super–bio–computer’, as its dimen-
sionality is virtually infinite. Despite a lot of research dedicated to its structure
and function (see [HBB96] and references there cited), the real nature of the
cerebellum still remains a ‘mystery’.

The main function of the cerebellum as a motor controller is depicted in
Figure 4.28. A coordinated movement is easy to recognize, but we know little
about how it is achieved. In search of the neural basis of coordination, a model
of spinocerebellar interactions was recently presented in [AG05], in which the
structural and functional organizing principle is a division of the cerebellum
into discrete micro–complexes. Each micro–complex is the recipient of a spe-
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Fig. 4.28. The cerebellum as a motor controller.

cific motor error signal – that is, a signal that conveys information about
an inappropriate movement. These signals are encoded by spinal reflex cir-
cuits and conveyed to the cerebellar cortex through climbing fibre afferents.
This organization reveals salient features of cerebellar information process-
ing, but also highlights the importance of systems level analysis for a fuller
understanding of the neural mechanisms that underlie behavior.

Hamiltonian Action and Neural Path Integral

Here, we propose a quantum–like adaptive control approach to modelling the
‘cerebellar mystery’. Corresponding to the affine Hamiltonian control function
(5.63) we define the affine Hamiltonian control action,

Saff [q, p] =
∫ tout

tin

dτ
[
piq̇

i −Haff (q, p)
]
. (4.246)

From the affine Hamiltonian action (4.246) we further derive the associ-
ated expression for the neural phase–space path integral (in normal units),
representing the cerebellar sensory–motor amplitude < out|in >,

〈
qiout, p

out
i |qiin, pini

〉
=

∫
D[w, q, p] eiSaff [q,p] (4.247)

=
∫
D[w, q, p] exp

{
i
∫ tout

tin

dτ
[
piq̇

i −Haff (q, p)
]}

,

with
∫
D[w, q, p] =

∫ n∏

τ=1

wi(τ)dpi(τ)dqi(τ)
2π

,

where wi = wi(t) denote the cerebellar synaptic weights positioned along
its neural pathways, being continuously updated using the Hebbian–like self–
organizing learning rule (4.243). Given the transition amplitude < out|in >
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(4.247), the cerebellar sensory–motor transition probability is defined as its
absolute square, | < out|in > |2.

In (4.247), qiin = qiin(t), qiout = qiout(t); pini = pini (t), pouti = pouti (t); tin ≤
t ≤ tout, for all discrete time steps, t = 1, ..., n → ∞, and we are allow-
ing for the affine Hamiltonian Haff (q, p) to depend upon all the (M ≤ N)
EMA–angles and angular momenta collectively. Here, we actually systemat-
ically took a discretized differential time limit of the form tσ − tσ−1 ≡ dτ

(both σ and τ denote discrete time steps) and wrote (qi
σ−qi

σ−1)

(tσ−tσ−1)
≡ q̇i. For

technical details regarding the path integral calculations on Riemannian and
symplectic manifolds (including the standard regularization procedures), see
[Kla97, Kla00].

Now, motor learning occurring in the cerebellum can be observed using
functional MR imaging, showing changes in the cerebellar action potential,
related to the motor tasks (see, e.g., [MA02]). To account for these electro–
physiological currents, we need to add the source term Ji(t)qi(t) to the affine
Hamiltonian action (4.246), (the current Ji = Ji(t) acts as a source JiA

i of
the cerebellar electrical potential Ai = Ai(t)),

Saff [q, p, J ] =
∫ tout

tin

dτ
[
piq̇

i −Haff (q, p) + Jiq
i
]
,

which, subsequently gives the cerebellar path integral with the action potential
source, coming either from the motor cortex or from other subcortical areas.

Note that the standard Wick rotation: t �→ it (see [Kla97, Kla00]), makes
all our path integrals real, i.e.,

∫
D[w, q, p] eiSaff [q,p] Wick−−−→

∫
D[w, q, p] e−Saff [q,p],

while their subsequent discretization gives the standard thermodynamic par-
tition functions,

Z =
∑

j

e−wjE
j/T , (4.248)

where Ej is the energy eigenvalue corresponding to the affine Hamiltonian
Haff (q, p), T is the temperature–like environmental control parameter, and
the sum runs over all energy eigenstates (labelled by the index j). From
(4.248), we can further calculate all statistical and thermodynamic system
properties (see [Fey72]), as for example, transition entropy S = kB lnZ, etc.

4.5.6 Dissipative Quantum Brain Model

The conservative brain model was originally formulated within the framework
of the quantum field theory (QFT) by [RU67] and subsequently developed
in [STU78, STU79, JY95, JPY96]. The conservative brain model has been
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recently extended to the dissipative quantum dynamics in the work of G.
Vitiello and collaborators [Vit95, AV00, PV99, Vit01, PV03, PV04].

The motivations at the basis of the formulation of the quantum brain
model by Umezawa and Ricciardi trace back to the laboratory observations
leading Lashley to remark (in 1940) that “masses of excitations... within gen-
eral fields of activity, without regard to particular nerve cells are involved in
the determination of behavior” [Las42, Pri91]. In 1960’s, K. Pribram, also
motivated by experimental observations, started to formulate his holographic
hypothesis. According to W. Freeman [Fre90, Fre96, Fre00], “information ap-
pears indeed in such observations to be spatially uniform in much the way
that the information density is uniform in a hologram”. While the activity of
the single neuron is experimentally observed in form of discrete and stochastic
pulse trains and point processes, the ‘macroscopic’ activity of large assembly
of neurons appears to be spatially coherent and highly structured in phase
and amplitude.

Motivated by such an experimental situation, Umezawa and Ricciardi for-
mulated in [RU67] the quantum brain model as a many–body physics problem,
using the formalism of QFT with spontaneous breakdown of symmetry (which
had been successfully tested in condensed matter experiments). Such a for-
malism provides the only available theoretical tool capable to describe long–
range correlations such as the ones observed in the brain – presenting almost
simultaneous responses in several regions to some external stimuli. The under-
standing of these long–range correlations in terms of modern biochemical and
electrochemical processes is still lacking, which suggests that these responses
could not be explained in terms of single neuron activity [Pri71, Pri91].

Lagrangian dynamics in QFT is, in general, invariant under some group
G of continuous transformations, as proposed by the famous Noether the-
orem. Now, spontaneous symmetry breakdown, one of the corner–stones of
Haken’s synergetics [Hak83, Hak93], occurs when the minimum energy state
(the ground, or vacuum, state) of the system is not invariant under the full
group G, but under one of its subgroups. Then it can be shown [IZ80, Ume93]
that collective modes, the so–called Nambu–Goldstone (NG) boson modes, are
dynamically generated. Propagating over the whole system, these modes are
the carriers of the long–range correlation, in which the order manifests itself as
a global property dynamically generated. The long–range correlation modes
are responsible for keeping the ordered pattern: they are coherently condensed
in the ground state (similar to e.g., in the crystal case, where they keep the
atoms trapped in their lattice sites). The long–range correlation thus forms
a sort of net, extending over all the system volume, which traps the system
components in the ordered pattern. This explains the “holistic” macroscopic
collective behavior of the system components.

More precisely, according to the Goldstone theorem in QFT [IZ80, Ume93],
the spontaneous breakdown of the symmetry implies the existence of long–
range correlation NG–modes in the ground state of the system. These modes
are massless modes in the infinite volume limit, but they may acquire a finite,
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non-zero mass due to boundary or impurity effects [ARV02]. In the quantum
brain model these modes are called dipole–wave–quanta (DWQ). The density
of their condensation in the ground states acts as a code classifying the state
and the memory there recorded. States with different code values are unitarily
inequivalent states, i.e., there is no unitary transformation relating states of
different codes.47

Now, in formulating a proper mathematical model of brain, the conserva-
tive dynamics is not realistic: we cannot avoid to take into consideration the
dissipative character of brain dynamics, since the brain is an intrinsically open
system, continuously interacting with the environment. As Vitiello observed
in [Vit01, PV03, PV04], the very same fact of “getting an information” intro-
duces a partition in the time coordinate, so that one may distinguish between
before “getting the information” (the past) and after “getting the informa-
tion” (the future): the arrow of time is in this way introduced. ...“Now you
know it!” is the familiar warning to mean that now, i.e. after having received
a certain information, you are not the same person as before getting it. It has
been shown that the psychological arrow of time (arising as an effect of mem-
ory recording) points in the same direction of the thermodynamical arrow of
time (increasing entropy direction) and of the cosmological arrow of time (the
expanding Universe direction) [AMV00].

The canonical quantization procedure of a dissipative system requires to
include in the formalism also the system representing the environment (usually
the heat bath) in which the system is embedded. One possible way to do
that is to depict the environment as the time–reversal image of the system
[CRV92]: the environment is thus described as the double of the system in the
time–reversed dynamics (the system image in the mirror of time).

Within the framework of dissipative QFT, the brain system is described in
terms of an infinite collection of damped harmonic oscillators Aκ (the simplest
prototype of a dissipative system) representing the DWQ [Vit95]. Now, the
collection of damped harmonic oscillators is ruled by the Hamiltonian [Vit95,
CRV92]

H = H0 + HI , with
H0 = �Ωκ(A†

κAκ − Ã†
κÃκ), HI = i�Γκ(A†

κÃ
†
κ −AκÃκ),

where Ωκ is the frequency and Γκ is the damping constant. The Ãκ modes are
the ‘time–reversed mirror image’ (i.e., the ‘mirror modes’) of the Aκ modes.
They are the doubled modes, representing the environment modes, in such
a way that κ generically labels their degrees–of–freedom. In particular, we
consider the damped harmonic oscillator (DHO)

47 We remark that the spontaneous breakdown of symmetry is possible since in QFT
there exist infinitely many ground states or vacua which are physically distinct
(technically speaking, they are “unitarily inequivalent”). In quantum mechanics
(QM), on the contrary, all the vacua are physically equivalent and thus there
cannot be symmetry breakdown.
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mẍ + γẋ + κx = 0, (4.249)

as a simple prototype for dissipative systems (with intention that thus get
results also apply to more general systems). The damped oscillator (4.249) is a
non–Hamiltonian system and therefore the customary canonical quantization
procedure cannot be followed. However, one can face the problem by resorting
to well known tools such as the density matrix ρ and the Wigner function
W = W (x, p, t).

Let us start with the special case of a conservative particle in the absence
of friction γ, with the standard Hamiltonian,

H = −(�∂x)2/2m + V (x).

Recall (from the previous subsection) that the density matrix equation of
motion, i.e., quantum Liouville equation, is given by

i�ρ̇ = [H, ρ]. (4.250)

The density matrix function ρ is defined by

〈x +
1
2
y|ρ(t)|x− 1

2
y〉 = ψ∗(x +

1
2
y, t)ψ(x− 1

2
y, t) ≡W (x, y, t),

with the associated standard expression for the Wigner function (see, e.g.,
[II07b]),

W (p, x, t) =
1

2π�

∫
W (x, y, t) e(−i py

� )dy.

Now, in the coordinate x−representation, by introducing the notation

x± = x± 1
2
y, (4.251)

the Liouville equation (4.250) can be expanded as

i� ∂t〈x+|ρ(t)|x−〉 = (4.252)
{
− �

2

2m

[
∂2
x+
− ∂2

x−

]
+ [V (x+)− V (x−)]

}
〈x+|ρ(t)|x−〉,

while the Wigner function W (p, x, t) is now given by

i� ∂tW (x, y, t) = HoW (x, y, t), with

Ho =
1
m

pxpy + V (x +
1
2
y)− V (x− 1

2
y), (4.253)

and px = −i�∂x, py = −i�∂y.

The new Hamiltonian Ho (4.253) may be get from the corresponding La-
grangian
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Lo = mẋẏ − V (x +
1
2
y) + V (x− 1

2
y). (4.254)

In this way, Vitiello concluded that the density matrix and the Wigner func-
tion formalism required, even in the conservative case (with zero mechanical
resistance γ), the introduction of a ‘doubled’ set of coordinates, x±, or, alter-
natively, x and y. One may understand this as related to the introduction of
the ‘couple’ of indices necessary to label the density matrix elements (4.252).

Let us now consider the case of the particle interacting with a thermal
bath at temperature T . Let f denote the random force on the particle at the
position x due to the bath. The interaction Hamiltonian between the bath
and the particle is written as

Hint = −fx. (4.255)

Now, in the Feynman–Vernon formalism (see [Fey72]), the effective action
A[x, y] for the particle is given by

A[x, y] =
∫ tf

ti

Lo(ẋ, ẏ, x, y) dt + I[x, y],

with Lo defined by (4.254) and

e
i
�
I[x,y] = 〈(e−

i
�

∫ tf
ti
f(t)x−(t)dt)−(e

i
�

∫ tf
ti
f(t)x+(t)dt)+〉, (4.256)

where the symbol 〈.〉 denotes the average with respect to the thermal bath;
‘(.)+’ and ‘(.)−’ denote time ordering and anti–time ordering, respectively;
the coordinates x± are defined as in (4.251). If the interaction between the
bath and the coordinate x (4.255) were turned off, then the operator f of the
bath would develop in time according to

f(t) = eiHγt/�fe−iHγt/�,

where Hγ is the Hamiltonian of the isolated bath (decoupled from the coor-
dinate x). f(t) is then the force operator of the bath to be used in (4.256).

The interaction I[x, y] between the bath and the particle has been evalu-
ated in [SVW95] for a linear passive damping due to thermal bath by following
Feynman–Vernon and Schwinger. The final result from [SVW95] is:

I[x, y] =
1
2

∫ tf

ti

dt [x(t)F rety (t) + y(t)F advx (t)]

+
i

2�

∫ tf

ti

∫ tf

ti

dtdsN(t− s)y(t)y(s),

where the retarded force on y, F rety , and the advanced force on x, F advx , are
given in terms of the retarded and advanced Green functions Gret(t− s) and
Gadv(t− s) by
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F rety (t) =
∫ tf

ti

dsGret(t− s)y(s), F advx (t) =
∫ tf

ti

dsGadv(t− s)x(s),

respectively. In (4.257), N(t − s) is the quantum noise in the fluctuating
random force given by

N(t− s) =
1
2
〈f(t)f(s) + f(s)f(t)〉.

The real and the imaginary part of the action are given respectively by

Re (A[x, y]) =
∫ tf

ti

Ldt, (4.257)

L = mẋẏ −
[
V (x +

1
2
y)− V (x− 1

2
y)
]

+
1
2
[
xF rety + yF advx

]
, (4.258)

and Im (A[x, y]) =
1
2�

∫ tf

ti

∫ tf

ti

N(t− s)y(t)y(s) dtds. (4.259)

Equations (4.257–4.259), are exact results for linear passive damping due
to the bath. They show that in the classical limit ‘� → 0’ nonzero y yields
an ‘unlikely process’ in view of the large imaginary part of the action im-
plicit in (4.259). Nonzero y, indeed, may lead to a negative real exponent in
the evolution operator, which in the limit � → 0 may produce a negligible
contribution to the probability amplitude. On the contrary, at quantum level
nonzero y accounts for quantum noise effects in the fluctuating random force
in the system–environment coupling arising from the imaginary part of the
action (see [SVW95]).

When in (4.258) we use

F rety = γẏ and F advx = −γẋ we get,

L(ẋ, ẏ, x, y) = mẋẏ − V

(
x +

1
2
y

)
+ V

(
x− 1

2
y

)
+

γ

2
(xẏ − yẋ). (4.260)

By using

V

(
x± 1

2
y

)
=

1
2
κ(x± 1

2
y)2

in (4.260), the DHO equation (4.249) and its complementary equation for the
y coordinate

mÿ − γẏ + κy = 0. (4.261)

are derived. The y−oscillator is the time–reversed image of the x−oscillator
(4.249). From the manifolds of solutions to equations (4.249) and (4.261), we
could choose those for which the y coordinate is constrained to be zero, they
simplify to

mẍ + γẋ + κx = 0, y = 0.
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Thus we get the classical damped oscillator equation from a Lagrangian theory
at the expense of introducing an ‘extra’ coordinate y, later constrained to
vanish. Note that the constraint y(t) = 0 is not in violation of the equations
of motion since it is a true solution to (4.249) and (4.261).

Therefore, the general scheme of the dissipative quantum brain model can
be summarized as follows. The starting point is that the brain is permanently
coupled to the environment. Of course, the specific details of such a coupling
may be very intricate and changeable so that they are difficult to be measured
and known. One possible strategy is to average the effects of the coupling and
represent them, at some degree of accuracy, by means of some ‘effective’ inter-
action. Another possibility is to take into account the environmental influence
on the brain by a suitable choice of the brain vacuum state. Such a choice is
triggered by the external input (breakdown of the symmetry), and it actually
is the end point of the internal (spontaneous) dynamical process of the brain
(self–organization). The chosen vacuum thus carries the signature (memory)
of the reciprocal brain–environment influence at a given time under given
boundary conditions. A change in the brain–environment reciprocal influence
then would correspond to a change in the choice of the brain vacuum: the
brain state evolution or ‘story’ is thus the story of the trade of the brain with
the surrounding world. The theory should then provide the equations describ-
ing the brain evolution ‘through the vacua’, each vacuum for each instant of
time of its history.

The brain evolution is thus similar to a time–ordered sequence of pho-
tograms: each photogram represents the ‘picture’ of the brain at a given in-
stant of time. Putting together these photograms in ‘temporal order’ one gets
a movie, i.e. the story (the evolution) of open brain, which includes the brain–
environment interaction effects.

The evolution of a memory specified by a given code value, say N , can be
then represented as a trajectory of given initial condition running over time–
dependent vacuum states, denoted by |0(t) >N , each one minimizing the free
energy functional. These trajectories are known to be classical trajectories
in the infinite volume limit: transition from one representation to another
inequivalent one would be strictly forbidden in a quantum dynamics.

Since we have now two–modes (i.e., non–tilde and tilde modes), the mem-
ory state |0(t) >N turns out to be a two–mode coherent state. This is known
to be an entangled state, i.e., it cannot be factorized into two single–mode
states, the non–tilde and the tilde one. The physical meaning of such an en-
tanglement between non-tilde and tilde modes is in the fact that the brain
dynamics is permanently a dissipative dynamics. The entanglement, which is
an unavoidable mathematical result of dissipation, represents the impossibility
of cutting the links between the brain and the external world.48

48 We remark that the entanglement is permanent in the large volume limit. Due to
boundary effects, however, a unitary transformation could disentangle the tilde
and non–tilde sectors: this may result in a pathological state for the brain. It is
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In the dissipative brain model, noise and chaos turn out to be natural in-
gredients of the model. In particular, in the infinite volume limit the chaotic
behavior of the trajectories in memory space may account for the high per-
ceptive resolution in the recognition of the perceptual inputs. Indeed, small
differences in the codes associated to external inputs may lead to diverging
differences in the corresponding memory paths. On the other side, it also hap-
pens that codes differing only in a finite number of their components (in the
momentum space) may easily be recognized as being the ‘same’ code, which
makes possible that ‘almost similar’ inputs are recognized by the brain as
‘equal’ inputs (as in pattern recognition).

Therefore, the brain may be viewed as a complex system with (infinitely)
many macroscopic configurations (the memory states). Dissipation is recog-
nized to be the root of such a complexity.

QED Brain

In this subsection, mainly following [Sta95], we formulate a quantum elec-
trodynamics brain model. Recall that quantum electrodynamics (extended to
cover the magnetic properties of nuclei) is the theory that controls, as far as
we know, the properties of the tissues and the aqueous (ionic) solutions that
constitute our brains. This theory is our paradigm basic physical theory, and
the one best understood by physicists. It describes accurately, as far as we
know, the huge range of actual physical phenomena involving the materials
encountered in daily life. It is also related to classical electrodynamics in a
particularly beautiful and useful way.

In the low–energy regime of interest here it should be sufficient to consider
just the classical part of the photon interaction defined in [Sta83]. Then the
explicit expression for the unitary operator that describes the evolution from
time t1 to time t2 of the quantum electromagnetic field in the presence of a set
L = {Li} of specified classical charged–particle trajectories, with trajectory
Li specified by the function xi(t) and carrying charge ei, is [Sta95]

U [L; t2, t1] = exp < a∗ · J(L) > exp < −J∗(L) · a > exp[−(J∗(L) · J(L)/2)],

where, for any X and Y ,

< X · Y >≡
∫

d4k(2π)−42πδ+(k2)X(k) · Y (k),

known that forced isolation of a subject produces pathological states of various
kinds. We also observe that the tilde mode is not just a mathematical fiction.
It corresponds to a real excitation mode (quasi–particle) of the brain arising as
an effect of its interaction with the environment: the couples of non–tilde/tilde
dwq quanta represent the correlation modes dynamically created in the brain
as a response to the brain–environment reciprocal influence. It is the interaction
between tilde and non–tilde modes that controls the irreversible time evolution
of the brain: these collective modes are confined to live in the brain. They vanish
as soon as the links between the brain and the environment are cut.
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(X · Y ) ≡
∫

d4k(2π)−4i(k2 + iε)−1X(k) · Y (k),

and X · Y = XμY
μ = XμYμ. Also,

Jμ(L; k) ≡
∑

i

−iei

∫

Li

dxμ exp(ikx).

The integral along the trajectory Li is
∫

Li

dxμ exp(ikx) ≡
∫ t2

t1

dt(dxiμ(t)/dt) exp(ikx).

The a∗(k) and a(k) are the photon creation and annihilation operators:

[a(k), a∗(k′)] = (2π)3δ3(k − k′)2k0.

The operator U [L; t2, t1] acting on the photon vacuum state creates the
coherent photon state that is the quantum–theoretic analog of the classical
electromagnetic field generated by classical point particles moving on the set
of trajectories L = {Li} between times t1 and t2.

The U [L; t2, t1] can be decomposed into commuting contributions from the
various values of k. The general coherent state can be written [Sta95]

|q, p >≡ exp i(< q · P > − < p ·Q >)|0 >,

where |0 > is the photon vacuum state and

Q(k) = (ak + a∗k)/
√

2 and P (k) = i(ak − a∗k)/
√

2,

and q(k) and p(k) are two functions defined (and square integrable) on the
mass shell k2 = 0, k0 ≥ 0. The inner product of two coherent states is

< q, p|q′, p′ >= exp−(< q − q′ · q − q′ > + < p − p′ · p − p′ > +2i < p − p′ · q + q′ >)/4.

There is a decomposition of unity

I =
∏

d4k(2π)−42πδ+(k2)
∫

dqkdpk/π

× exp(iqkPk − ipkQk)|0k >< 0k| exp−(iqkPk − ipkQk).

Here meaning can be given by quantizing in a box, so that that the variable
k is discretized. Equivalently,

I =
∫

dμ(q, p)|q, p >< q, p|,

where μ(q, p) is the appropriate measure on the functions q(k) and p(k). Then
if the state |Ψ >< Ψ | were to jump to |q, p >< q, p| with probability density
< q, p|Ψ >< Ψ |q, p >, the resulting mixture would be [Sta95]
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∫
dμ(q, p)|q, p >< q, p|Ψ >< Ψ |q, p >< q, p|,

whose trace is
∫

dμ(q, p) < q, p|Ψ >< Ψ |q, p >=< Ψ |Ψ > .

To represent the limited capacity of consciousness let us assume, in this
model, that the states of consciousness associated with a brain can be ex-
pressed in terms of a relatively small subset of the modes of the electromag-
netic field in the brain cavity. Let us assume that events occurring outside
the brain are keeping the state of the universe outside the brain cavity in a
single state, so that the state of the brain can also be represented by a single
state. The brain is represented, in the path–integral method of Feynman, by
a superposition of the trajectories of the particles in it, with each element
of the superposition accompanied by the coherent–state electromagnetic field
that this set of trajectories generates. Let the state of the electromagnetic
field restricted to the modes that represent consciousness be called |Ψ(t) >.
Using the decomposition of unity one can write

|Ψ(t) >=
∫

dμ(q, p)|q, p >< q, p|Ψ(t) > .

Hence the state at time t can be represented by the function < q, p|Ψ(t) >,
which is a complex-valued function over the set of arguments {q1, p1, q2, p2, ...,
qn, pn}, where n is the number of modes associated with |Ψ >. Thus in this
model the contents of the consciousness associated with a brain is represented
in terms of this function defined over a 2nD space: the ith conscious event is
represented by the transition

|Ψi(ti+1) >−→ |Ψi+1(ti+1) >= Pi|Ψi(ti+1) >,

where Pi is a projection operator.
For each allowed value of k the pair of numbers (qk, pk) represents the state

of motion of the kth mode of the electromagnetic field. Each of these modes is
defined by a particular wave pattern that extends over the whole brain cavity.
This pattern is an oscillating structure something like a sine wave or a cosine
wave. Each mode is fed by the motions of all of the charged particles in the
brain. Thus each mode is a representation of a certain integrated aspect of
the activity of the brain, and the collection of values q1, p1, ..., pn is a compact
representation of certain aspects the over–all activity of the brain.

The state |q, p > represents the conjunction, or collection over the set of
all allowed values of k, of the various states |qk, pk >. The function

V (q, p, t) =< q, p|Ψ(t) >< Ψ(t)|q, p >

satisfies 0 ≤ V (q, p, t) ≤ 1, and it represents, according to orthodox thinking,
the ‘probability’ that a system that is represented by a general state |Ψ(t) >
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just before the time t will be observed to be in the classically describable state
|q, p > if the observation occurs at time t. The coherent states |q, p > can, for
various mathematical and physical reasons, be regarded as the ‘most classical’
of the possible states of the electromagnetic quantum field.

To formulate a causal dynamics in which the state of consciousness itself
controls the selection of the next state of consciousness one must specify a rule
that determines, in terms of the evolving state |Ψi(t) > up to time ti+1, both
the time ti+1 when the next selection event occurs, and the state |Ψi+1(ti+1) >
that is selected and actualized by that event.

In the absence of interactions, and under certain ideal conditions of con-
finement, the deterministic normal law of evolution entails that in each mode
k there is an independent rotation in the (qk, pk) plane with a characteristic
angular velocity ωk = k0. Due to the effects of the motions of the particles
there will be, added to this, a flow of probability that will tend to concentrate
the probability in the neighborhoods of a certain set of ‘optimal’ classical
states |q, p >. The reason is that the function of brain dynamics is to pro-
duce some single template for action, and to be effective this template must
be a ‘classical’ state, because, according to orthodox ideas, only these can be
dynamically robust in the room temperature brain. According to the semi–
classical description of the brain dynamics, only one of these classical–type
states will be present, but according to quantum theory there must be a su-
perposition of many such classical–type states, unless collapses occurs at lower
(i.e., microscopic) levels. The assumption here is that no collapses occur at
the lower brain levels: there is absolutely no empirical evidence, or theoretical
reason, for the occurrence of such lower–level brain events.

So in this model the probability will begin to concentrate around vari-
ous locally optimal coherent states, and hence around the various (generally)
isolated points (q, p) in the 2nD space at which the quantity [Sta95]

V (q, p, t) =< q, p|Ψi(t) >< Ψi(t)|q, p >

reaches a local maximum. Each of these points (q, p) represents a locally–
optimal solution (at time t) to the search problem: as far as the myopic local
mechanical process can see the state |q, p > specifies an analog-computed
‘best’ template for action in the circumstances in which the organism finds
itself. This action can be either intentional (it tends to create in the future a
certain state of the body/brain/environment complex) or attentional (it tends
to gather information), and the latter action is a special case of the former. As
discussed in [Sta93], the intentional and attentional character of these actions
is a consequence of the fact that the template for action actualized by the
quantum brain event is represented as a projected body–world schema, i.e.,
as the brains projected representation of the body that it is controlling and
the environment in which it is situated.

Let a certain time ti+1 > ti be defined by an (urgency) energy factor
E(t) = �(ti+1−ti)−1. Let the value of (q, p) at the largest of the local–maxima
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of V (q, p, ti+1) be called (q(ti+1), p(ti+1))max. Then the simplest possible rea-
sonable selection rule would be given by the formula

Pi = |(q(ti+1), p(ti+1))max >< (q(ti+1), p(ti+1))max|,

which entails that

|Ψi+1 >< Ψi+1|
< Ψi+1|Ψi+1 >

= |(q(ti+1), p(ti+1))max >< (q(ti+1), p(ti+1))max|.

This rule could produce a tremendous speed up of the search process.
Instead of waiting until all the probability gets concentrated in one state
|q, p >, or into a set of isolated states |qi, pi > [or choosing the state randomly,
in accordance with the probability function V (q, p, ti+1), which could often
lead to a disastrous result], this simplest selection process would pick the
state |q, p > with the largest value of V (q, p, t) at the time t = ti+1. This
process does not involve the complex notion of picking a random number,
which is a physically impossible feat that is difficult even to define.

One important feature of this selection process is that it involves the state
Ψ(t) as a whole: the whole function V (q, p, ti+1) must be known in order to
determine where its maximum lies. This kind of selection process is not avail-
able in the semi–classical ontology, in which only one classically describable
state exists at the macroscopic level. That is because this single classically de-
scribable macro–state state (e.g., some one actual state |q, p, ti+1 >) contains
no information about what the probabilities associated either with itself or
with the other alternative possibilities would have been if the collapse had not
occurred earlier, at some micro-level, and reduced the earlier state to some
single classically describable state, in which, for example, the action potential
along each nerve is specified by a well defined classically describable electro-
magnetic field. There is no rational reason in quantum mechanics for such a
micro–level event to occur. Indeed, the only reason to postulate the occur-
rence of such premature reductions is to assuage the classical intuition that
the action–potential pulse along each nerve ‘ought to be classically describable
even when it is not observed’, instead of being controlled, when unobserved,
by the local deterministic equations of quantum field theory. But the validity
of this classical intuition is questionable if it severely curtails the ability of
the brain to function optimally.

A second important feature of this selection process is that the actualized
state Ψi+1 is the state of the entire aspect of the brain that is connected
to consciousness. So the feel of the conscious event will involve that aspect
of the brain, taken as a whole. The ‘I’ part of the state Ψ(t) is its slowly
changing part. This part is being continually re–actualized by the sequence
of events, and hence specifies the slowly changing background part of the
felt experience. It is this persisting stable background part of the sequence
of templates for action that is providing the over–all guidance for the entire
sequence of selection events that is controlling the on–going brain process
itself [Sta95].
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A somewhat more sophisticated search procedure would be to find the
state |(q, p)max >, as before, but to identify it as merely a candidate that
is to be examined for its concordance with the objectives imbedded in the
current template. This is what a good search procedure ought to do: first pick
out the top candidate by means of a mechanical process, but then evaluate
this candidate by a more refined procedure that could block its acceptance if
it does not meet specified criteria.

It may at first seem strange to imagine that nature could operate in such
a sophisticated way. But it must be remembered that the generation of a
truly random sequence is itself a very sophisticated (and indeed physically
impossible) process, and that what the physical sciences have understood, so
far, is only the mechanical part of nature’s two–part process. Here it is the
not–well–understood selection process that is under consideration. We have
imposed on this attempt to understand the selection process the naturalistic
requirement that the whole process be expressible in natural terms, i.e., that
the universal process be a causal self–controlling evolution of the Hilbert–
space state–vector in which all aspects of nature, including our conscious
experiences, are efficacious.

It may be useful to describe the main features of this model in simple
terms. If we imagine the brain to be, for example, a uniform rectangular box
then each mode k would correspond to wave form that is periodic in all three
directions: it would be formed as a combination of products of sine waves and
cosine waves, and would cover the whole box–shaped brain. (More realistic
conditions are needed, but this is a simple prototype.) Classically there would
be an amplitude for this wave, and in the absence of interactions with the
charged particles this amplitude would undergo a simple periodic motion in
time. In analogy with the coordinate and momentum variables of an oscillating
pendulum there are two variables, qk and pk, that describe the motion of the
amplitude of the mode k. With a proper choice of scales for the variables qk
and pk the motion of the amplitude of mode k if it were not coupled to the
charges would be a circular motion in the (qk, pk)−plane. The classical theory
would say that the physical system, mode k, would be represented by a point in
qk, pk space. But quantum theory says that the physical system, mode k, must
be represented by a wave (i.e., by a wave ψ−function) in (qk, pk) space. The
reason is that interference effects between the values of this wave (function)
at different points (qk, pk) can be exhibited, and therefore it is not possible
to say the full reality is represented by any single value of (qk, pk): one must
acknowledge the reality of the whole wave. It is possible to associate something
like a ‘probability density’ with this wave, but the corresponding probability
cannot be concentrated at a point: in units where Planck’s constant is unity
the bulk of the probability cannot be squeezed into a region of the (qk, pk)
plane of area less that unity.

The mode k has certain natural states called ‘coherent states’, |qk, pk >.
Each of these is represented in (qk, pk)−space by a wave function that has
a ‘probability density’ that falls off exponentially as one moves in any direc-
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tion away from the center–point (qk, pk) at which the probability density is
maximum. These coherent states are in many ways the ‘most classical’ wave
functions allowed by quantum theory [Gla63a, Gla63b], and a central idea of
the present model is to specify that it is to one of these ‘most classical’ states
that the mode-k component of the electromagnetic field will jump, or collapse,
when an observation occurs. This specification represents a certain ‘maximal’
principle: the second process, which is supposed to pick out and actualize
some classically describable reality, is required to pick out and actualize one
of these ‘most classical’ of the quantum states. If this selection/actualization
process really exists in nature then the classically describable states that are
actualized by this process should be ‘natural classical states’ from some point
of view. The coherent states satisfy this requirement. This strong, specific pos-
tulate should be easier to disprove, if it is incorrect, than a vague or loosely
defined one.

If we consider a system consisting of a collection of modes k, then the
generalization of the single coherent state |qk, pk > is the product of these
states, |q, p >. Classically this system would be described by specifying the
values all of the classical variables qk and pk as functions of time. But the ‘best’
that can be done quantum mechanically is to specify that at certain times ti
the system is in one of the coherent states |q, p >. However, the equations
of local quantum field theory (here quantum electrodynamics) entail that if
the system starts in such a state then the system will, if no ‘observation’
occurs, soon evolve into a superposition (i.e., a linear combination) of many
such states. But the next ‘observation’ will then reduce it again to some
classically describable state. In the present model each a human observation
is identified as a human conscious experience. Indeed, these are the same
observations that the pragmatic Copenhagen interpretation of Bohr refers
to, basically. The ‘happening’ in a human brain that corresponds to such an
observation is, according to the present model, the selection and actualization
of the corresponding coherent state |q, p >.

The quantity V (q, p, ti+1) defined above is, according to orthodox quan-
tum theory, the predicted probability that a system that is in the state Ψ(ti+1)
at time ti+1 will be observed to be in state |q, p > if the observation occurs
at time ti+1. In the present model the function V (q, p, ti+1) is used to specify
not a fundamentally stochastic (i.e., random or chance–controlled) process
but rather the causal process of the selection and actualization of some par-
ticular state |q, p >. And this causal process is controlled by features of the
quantum brain that are specified by the Hilbert space representation of the
conscious process itself. This process is a nonlocal process that rides on the
local brain process, and it is the nonlocal selection process that, according to
the principles of quantum theory, is required to enter whenever an observation
occurs.
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4.5.7 Action–Amplitude Psychodynamics

In this section, which is written in the fashion of the quantum brain, we present
the top level of natural biodynamics, using geometrical generalization of the
Feynman path integral . To formulate the basics of force–field psychodynamics,
we use the action–amplitude picture of the BODY � MIND adjunction:

↓ Deterministic (causal) world of Human BODY ↓

Action : S[qn] =

∫ tout

tin

(Ek − Ep + Wrk + Src±) dt

−−−−−−−−−−−−−−−−−−−
Amplitude : 〈out|in〉 =

∫
Σ D[wnqn] eiS[qn]

↑ Probabilistic (fuzzy) world of Human MIND ↑

In the action integral, Ek, Ep,Wrk and Src± denote the kinetic end po-
tential energies, work done by dissipative/driving forces and other energy

sources/sinks, respectively. In the amplitude integral, the peculiar sign
∫
Σ de-

notes integration along smooth paths and summation along discrete Markov
chains; i is the imaginary unit, wn are synaptic–like weights, while D is the
Feynman path differential (defined below) calculated along the configuration
trajectories qn. The action S[qn], through the least action principle δS = 0,
leads to all biodynamic equations considered so far (in generalized Lagrangian
and Hamiltonian form). At the same time, the action S[qn] figures in the ex-

ponent of the path integral
∫
Σ , defining the probability transition amplitude

〈out|in〉. In this way, the whole body dynamics is incorporated in the mind dy-
namics. This adaptive path integral represents an infinite–dimensional neural
network , suggesting an infinite capacity of human brain/mind.

For a long time the cortical systems for language and actions were be-
lieved to be independent modules. However, according to the recent research
of [Pul05], as these systems are reciprocally connected with each other, in-
formation about language and actions might interact in distributed neuronal
assemblies. A critical case is that of action words that are semantically related
to different parts of the body (e.g. ‘pick’, ‘kick’, ‘lick’,...). The author suggests
that the comprehension of these words might specifically, rapidly and auto-
matically activate the motor system in a somatotopic manner, and that their
comprehension rely on activity in the action system.

Motivational Cognition in the Life Space Foam

Applications of nonlinear dynamical systems in psychology have been encour-
aging, if not universally effective [Met97]. Its historical antecedents can be
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traced back to Piaget’s [PHE92] and Vygotsky’s [Vyg82] interpretations of
the dynamic relations between action and thought, Lewin’s theory of social
dynamics and cognitive–affective development [Lew97], and [Ber47] theory of
self–adjusting, goal–driven motor action.

Now, both the original Lewinian force–field theory in psychology (see
[Lew51, Gol99]) and modern decision–field dynamics (see [BT93, RBT01,
BD02]) are based on the classical Lewinian concept of an individual’s life
space.49 As a topological construct, Lewinian life space represents a person’s
psychological environment that contains regions separated by dynamical per-
meable boundaries. As a field construct, on the other hand, the life space
is not empty: each of its regions is characterized by valence (ranging from
positive or negative and resulting from an interaction between the person’s
needs and the dynamics of their environment). Need is an energy construct,
according to Lewin. It creates tension in the person, which, in combination
with other tensions, initiates and sustains behavior. Needs vary from the most
primitive urges to the most idiosyncratic intentions and can be both internally
generated (e.g., thirst or hunger) and stimulus–induced (e.g., an urge to buy
something in response to a TV advertisement). Valences are, in essence, per-
sonal values dynamically derived from the person’s needs and attached to
various regions in their life space. As a field, the life space generates forces
pulling the person towards positively–valenced regions and pushing them away
from regions with negative valence. Lewin’s term for these forces is vectors.
Combinations of multiple vectors in the life space cause the person to move
from one region towards another. This movement is termed locomotion and
it may range from overt behavior to cognitive shifts (e.g., between alterna-
tives in a decision–making process). Locomotion normally results in crossing
the boundaries between regions. When their permeability is degraded, these
boundaries become barriers that restrain locomotion. Life space model, thus,
offers a meta–theoretical language to describe a wide range of behaviors, from
goal–directed action to intrapersonal conflicts and multi–alternative decision–
making.

In order to formalize the Lewinian life–space concept, a set of action princi-
ples need to be associated to Lewinian force–fields, (loco)motion paths (rep-
resenting mental abstractions of biomechanical paths [II05]) and life space
geometry. As an extension of the Lewinian concept, in this section we recall
[IA07] a new concept of life–space foam (LSF, see Figure 4.29). According
to this new concept, Lewin’s life space can be represented as a geometrical
functor with globally smooth macro–dynamics, which is at the same time
underpinned by wildly fluctuating, non–smooth, local micro–dynamics, de-
49 The work presented in this subsection has been developed in collaboration with

Dr. Eugene Aidman, Senior Research Scientist, Human Systems Integration, Land
Operations Division, Defence Science & Technology Organisation, Australia.
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scribable by Feynman’s: (i) sum–over–histories
∫
Σ
paths , (ii) sum–over–fields∫

Σ
fields , and (iii) sum–over–geometries

∫
Σ
geom.

LSF is thus a two–level geometrodynamical functor , representing these two
distinct types of dynamics within the Lewinian life space. At its macroscopic
spatio–temporal level, LSF appears as a ‘nice & smooth’ geometrical functor
with globally predictable dynamics – formally, a smooth n−dimensional man-
ifold M with local Riemannian metrics gij(x), smooth force–fields and smooth
(loco)motion paths, as conceptualized in the Lewinian theory. To model the
global and smooth macro–level LSF–paths, fields and geometry, we use the
general physics–like principle of the least action.

Now, the apparent smoothness of the macro–level LSF is achieved by the
existence of another level underneath it. This micro–level LSF is actually
a collection of wildly fluctuating force–fields, (loco)motion paths, curved re-
gional geometries and topologies with holes. The micro–level LSF is proposed
as an extension of the Lewinian concept: it is characterized by uncertainties
and fluctuations, enabled by microscopic time–level, microscopic transition
paths, microscopic force–fields, local geometries and varying topologies with
holes. To model these fluctuating microscopic LSF–structures, we use three
instances of adaptive path integral , defining a multi–phase and multi–path
(also multi–field and multi–geometry) transition process from intention to
the goal–driven action.

Fig. 4.29. Diagram of the life space foam: Lewinian life space with an adaptive
path integral acting inside it and generating microscopic fluctuation dynamics.

We use the new LSF concept to develop modelling framework for motiva-
tional dynamics (MD) and induced cognitive dynamics (CD).

According to Heckhausen (see [Hec77]), motivation can be thought of as a
process of energizing and directing the action. The process of energizing can be
represented by Lewin’s force–field analysis and Vygotsky’s motive formation
(see [Vyg82, AL91]), while the process of directing can be represented by
hierarchical action control (see [Ber47, Ber96, Kuh85]).



640 4 Nonlinear Dynamics of Path Integrals

Motivation processes both precede and coincide with every goal–directed
action. Usually these motivation processes include the sequence of the follow-
ing four feedforward phases [Vyg82, AL91]: (*)

A. Intention Formation F , including: decision making, commitment building,
etc.

B. Action Initiation I, including: handling conflict of motives, resistance to
alternatives, etc.

C. Maintaining the Action M, including: resistance to fatigue, distractions,
etc.

D. Termination T , including parking and avoiding addiction, i.e., staying in
control.

With each of the phases {F , I,M, T } in (*), we can associate a transition
propagator – an ensemble of (possibly crossing) feedforward paths propagat-
ing through the ‘wood of obstacles’ (including topological holes in the LSF,
see Figure 4.30), so that the complete transition functor T A is a product
of propagators (as well as sum over paths). All the phases–propagators are
controlled by a unique Monitor feedback process.

Fig. 4.30. Transition–propagator corresponding to each of the motivational phases
{F , I,M, T }, consisting of an ensemble of feedforward paths propagating through
the ‘wood of obstacles’. The paths affected by driving and restraining force–fields, as
well as by the local LSF–geometry. Transition goes from Intention, occurring at a
sample time instant t0, to Action, occurring at some later time t1. Each propagator
is controlled by its own Monitor feedback. All together they form the transition
functor T A.

In this subsection we propose an adaptive path integral formulation for the
motivational–transition functor T A. In essence, we sum/integrate over differ-
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ent paths and make a product (composition) of different phases–propagators.
Recall that this is the most general description of the general Markov stochas-
tic process.

We will also attempt to demonstrate the utility of the same LSF–formalisms
in representing cognitive functions, such as memory, learning and decision
making. For example, in the classical Stimulus encoding → Search →
Decision → Response sequence [Ste69, Ash94], the environmental input–
triggered sensory memory and working memory (WM) can be interpreted
as operating at the micro–level force–field under the executive control of the
Monitor feedback, whereas search can be formalized as a control mechanism
guiding retrieval from the long–term memory (LTM, itself shaped by learning)
and filtering material relevant to decision making into the WM. The essential
measure of these mental processes, the processing speed (essentially deter-
mined by Sternberg’s reaction–time) can be represented by our (loco)motion
speed ẋ.

Six Faces of the Life Space Foam

The LSF has three forms of appearance: paths + field + geometries, acting
on both macro–level and micro–level, which is six modes in total. In this sec-
tion, we develop three least action principles for the macro–LSF–level and
three adaptive path integrals for the micro–LSF–level. While developing our
psycho–physical formalism, we will address the behavioral issues of motiva-
tional fatigue, learning, memory and decision making.

General Formalism

At both macro– and micro–levels, the total LSF represents a union of transi-
tion paths, force–fields and geometries, formally written as

LSFtotal := LSFpaths
⋃

LSFfields
⋃

LSFgeom (4.262)

≡
∫
Σ paths +

∫
Σ fields +

∫
Σ geom .

Corresponding to each of the three LSF–subspaces in (4.262) we formulate:

A. The least action principle, to model deterministic and predictive, macro–
level MD & CD, giving a unique, global, causal and smooth path–field–
geometry on the macroscopic spatio–temporal level; and

B. Associated adaptive path integral to model uncertain, fluctuating and
probabilistic, micro–level MD & CD, as an ensemble of local paths–fields–
geometries on the microscopic spatio–temporal level, to which the global
macro–level MD & CD represents both time and ensemble average (which
are equal according to the ergodic hypothesis).

In the proposed formalism, transition paths xi(t) are affected by the force–
fields ϕk(t), which are themselves affected by geometry with metric gij .
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Global Macro–Level of LSFtotal. In general, at the macroscopic LSF–
level we first formulate the total action S[Φ], the central quantity in our for-
malism that has psycho–physical dimensions of Energy × Time = Effort,
with immediate cognitive and motivational applications: the greater the action
– the higher the speed of cognitive processes and the lower the macroscopic fa-
tigue (which includes all sources of physical, cognitive and emotional fatigue
that influence motivational dynamics). The action S[Φ] depends on macro-
scopic paths, fields and geometries, commonly denoted by an abstract field
symbol Φi. The action S[Φ] is formally defined as a temporal integral from
the initial time instant tini to the final time instant tfin,

S[Φ] =
∫ tfin

tini

L[Φ] dt, (4.263)

with Lagrangian density given by

L[Φ] =
∫

dnxL(Φi, ∂xjΦi),

where the integral is taken over all n coordinates xj = xj(t) of the LSF,
and ∂xjΦi are time and space partial derivatives of the Φi−variables over
coordinates.

Second, we formulate the least action principle as a minimal variation δ
of the action S[Φ]

δS[Φ] = 0, (4.264)

which, using techniques from the calculus of variations gives, in the form
of the so–called Euler–Lagrangian equations, a shortest (loco)motion path,
an extreme force–field, and a life–space geometry of minimal curvature (and
without holes). In this way, we effectively derive a unique globally smooth
transition functor

T A : INTENTIONtini
� ACTIONtfin

, (4.265)

performed at a macroscopic (global) time–level from some initial time tini to
the final time tfin.

In this way, we get macro–objects in the global LSF: a single path de-
scribed Newtonian–like equation of motion, a single force–field described by
Maxwellian–like field equations, and a single obstacle–free Riemannian geom-
etry (with global topology without holes).

For example, recall that in the period 1945–1949, John Wheeler and
Richard Feynman developed their action–at–a–distance electrodynamics
[WF49], in complete experimental agreement with the classical Maxwell’s elec-
tromagnetic theory, but at the same time avoiding the complications of di-
vergent self–interaction of the Maxwell’s theory as well as eliminating its infi-
nite number of field degrees–of–freedom. In Wheeler–Feynman view, “Matter
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consists of electrically charged particles,” so they found a form for the ac-
tion directly involving the motions of the charges only, which upon variation
would give the Newtonian–like equations of motion of these charges. Here is
the expression for this action in the flat space–time, which is in the core of
quantum electrodynamics:

S[x; ti, tj ] =
1
2
mi

∫
(ẋiμ)

2 dti +
1
2
eiej

∫ ∫
δ(I2

ij) ẋ
i
μ(ti)ẋ

j
μ(tj) dtidtj

with (4.266)
I2
ij =

[
xiμ(ti)− xjμ(tj)

] [
xiμ(ti)− xjμ(tj)

]
,

where xiμ = xiμ(ti) is the four–vector position of the ith particle as a function
of the proper time ti, while ẋiμ(ti) = dxiμ/dti is the velocity four–vector. The
first term in the action (4.266) is the ordinary mechanical action in Euclidean
space, while the second term defines the electrical interaction of the charges,
representing the Maxwell–like field (it is summed over each pair of charges;
the factor 1

2 is to count each pair once, while the term i = j is omitted to
avoid self–action; the interaction is a double integral over a delta function of
the square of space–time interval I2 between two points on the paths; thus,
interaction occurs only when this interval vanishes, that is, along light cones
[WF49]).

Now, from the point of view of Lewinian geometrical force–fields and
(loco)motion paths, we can give the following life–space interpretation to the
Wheeler–Feynman action (4.266). The mechanical–like locomotion term oc-
curring at the single time t, needs a covariant generalization from the flat 4D
Euclidean space to the nD smooth Riemannian manifold, so it becomes (see
e.g., [II06b])

S[x] =
1
2

∫ tfin

tini

gij ẋ
iẋj dt,

where gij is the Riemannian metric tensor that generates the total ‘kinetic
energy’ of (loco)motions in the life space.

The second term in (4.266) gives the sophisticated definition of Lewinian
force–fields that drive the psychological (loco)motions, if we interpret electri-
cal charges ei occurring at different times ti as motivational charges – needs.

Local Micro–Level of LSFtotal. After having properly defined macro–
level MD & CD, with a unique transition map F (including a unique mo-
tion path, driving field and smooth geometry), we move down to the micro-
scopic LSF–level of rapidly fluctuating MD & CD, where we cannot define
a unique and smooth path–field–geometry. The most we can do at this level
of fluctuating uncertainty, is to formulate an adaptive path integral and cal-
culate overall probability amplitudes for ensembles of local transitions from
one LSF–point to the neighboring one. This probabilistic transition micro–
dynamics functor is defined by a multi–path (field and geometry, respectively)
and multi–phase transition amplitude 〈Action|Intention〉 of corresponding to
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the globally–smooth transition map (4.265). This absolute square of this prob-
ability amplitude gives the transition probability of occurring the final state
of Action given the initial state of Intention,

P (Action|Intention) = |〈Action|Intention〉|2.

The total transition amplitude from the state of Intention to the state of
Action is defined on LSFtotal

T A ≡ 〈Action|Intention〉total : INTENTIONt0 � ACTIONt1 , (4.267)

given by adaptive generalization of the Feynman’s path integral [II07b]. The
transition map (4.267) calculates the overall probability amplitude along a
multitude of wildly fluctuating paths, fields and geometries, performing the
microscopic transition from the micro–state INTENTIONt0 occurring at
initial micro–time instant t0 to the micro–state ACTIONt1 at some later
micro–time instant t1, such that all micro–time instants fit inside the global
transition interval t0, t1, ..., ts ∈ [tini, tfin]. It is symbolically written as

〈Action|Intention〉total :=
∫
Σ D[wΦ] eiS[Φ], (4.268)

where the Lebesgue integration is performed over all continuous Φicon =
paths + field + geometries, while summation is performed over all discrete
processes and regional topologies Φjdis). The symbolic differential D[wΦ] in the
general path integral (4.288), represents an adaptive path measure, defined as
a weighted product

D[wΦ] = lim
N→∞

N∏

s=1

wsdΦ
i
s, (i = 1, ..., n = con + dis), (4.269)

which is in practice satisfied with a large N corresponding to infinitesi-
mal temporal division of the four motivational phases (*). Technically, the
path integral (4.288) calculates the amplitude for the transition functor
T A : Intention � Action.

In the exponent of the path integral (4.288) we have the action S[Φ] and
the imaginary unit i =

√
−1 (i can be converted into the real number −1

using the so–called Wick rotation, see next subsection).
In this way, we get a range of micro–objects in the local LSF at the short

time–level: ensembles of rapidly fluctuating, noisy and crossing paths, force–
fields, local geometries with obstacles and topologies with holes. However,
by averaging process, both in time and along ensembles of paths, fields and
geometries, we recover the corresponding global MD & CD variables.

Infinite–Dimensional Neural Network. The adaptive path integral
(4.288) incorporates the local learning process according to the standard for-
mula: New V alue = Old V alue+Innovation. The general weights ws = ws(t)
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in (4.269) are updated by the MONITOR feedback during the transition pro-
cess, according to one of the two standard neural learning schemes, in which
the micro–time level is traversed in discrete steps, i.e., if t = t0, t1, ..., ts then
t + 1 = t1, t2, ..., ts+1:

A. A self–organized, unsupervised (e.g., Hebbian–like [Heb49]) learning rule:

ws(t + 1) = ws(t) +
σ

η
(wds(t)− was (t)), (4.270)

where σ = σ(t), η = η(t) denote signal and noise, respectively, while su-
perscripts d and a denote desired and achieved micro–states, respectively;
or

B. A certain form of a supervised gradient descent learning :

ws(t + 1) = ws(t)− η∇J(t), (4.271)

where η is a small constant, called the step size, or the learning rate and
∇J(n) denotes the gradient of the ‘performance hyper–surface’ at the
t−th iteration.

Both Hebbian and supervised learning are used for the local decision making
process (see below) occurring at the intention formation faze F .

In this way, local micro–level of LSFtotal represents an infinite–dimensional
neural network. In the cognitive psychology framework, our adaptive path in-
tegral (4.288) can be interpreted as semantic integration (see [BF71, Ash94]).

Motion and Decision Making in LSFpaths

On the macro–level in the subspace LSFpaths we have the (loco)motion action
principle

δS[x] = 0,

with the Newtonian–like action S[x] given by

S[x] =
∫ tfin

tini

dt [
1
2
gij ẋ

iẋj + ϕi(xi)], (4.272)

where overdot denotes time derivative, so that ẋi represents processing speed,
or (loco)motion velocity vector. The first bracket term in (4.272) represents
the kinetic energy T ,

T =
1
2
gij ẋ

iẋj ,

generated by the Riemannian metric tensor gij , while the second bracket
term, ϕi(xi), denotes the family of potential force–fields, driving the (loco)mo-
tions xi = xi(t) (the strengths of the fields ϕi(xi) depend on their positions xi

in LSF, see LSFfields below). The corresponding Euler–Lagrangian equation
gives the Newtonian–like equation of motion
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d

dt
Tẋi − Txi = −ϕixi , (4.273)

(subscripts denote the partial derivatives), which can be put into the standard
Lagrangian form

d

dt
Lẋi = Lxi , with L = T − ϕi(xi).

In the next subsection we use the micro–level implications of the action S[x]
as given by (4.272), for dynamical descriptions of the local decision–making
process.

On the micro–level in the subspace LSFpaths, instead of a single path de-
fined by the Newtonian–like equation of motion (4.273), we have an ensemble
of fluctuating and crossing paths with weighted probabilities (of the unit total
sum). This ensemble of micro–paths is defined by the simplest instance of our
adaptive path integral (4.288), similar to the Feynman’s original sum over
histories,

〈Action|Intention〉paths =
∫
Σ D[wx] eiS[x], (4.274)

where D[wx] is a functional measure on the space of all weighted paths, and
the exponential depends on the action S[x] given by (4.272). This procedure
can be redefined in a mathematically cleaner way if we Wick–rotate the time
variable t to imaginary values t �→ τ = it, thereby making all integrals real:∫

Σ D[wx] eiS[x] ⇒Wick

∫
Σ D[wx] e−S[x]. (4.275)

Discretization of (4.275) gives the thermodynamic–like partition function

Z =
∑

j

e−wjE
j/T , (4.276)

where Ej is the motion energy eigenvalue (reflecting each possible motiva-
tional energetic state), T is the temperature–like environmental control pa-
rameter, and the sum runs over all motion energy eigenstates (labelled by
the index j). From (4.276), we can further calculate all thermodynamic–like
and statistical properties of MD & CD (see e.g., [Fey72]), as for example,
transition entropy S = kB lnZ, etc.

From cognitive perspective, our adaptive path integral (4.274) calcu-
lates all (alternative) pathways of information flow during the transition
Intention→ Action.

In the language of transition–propagators, the integral over histories
(4.274) can be decomposed into the product of propagators (i.e., Fredholm
kernels or Green functions) corresponding to the cascade of the four motiva-
tional phases (*)

〈Action|Intention〉paths =
∫
Σ dxFdxIdxMdxT K(F , I)K(I,M)K(M, T ),

(4.277)
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satisfying the Schrödinger–like equation

i ∂t〈Action|Intention〉paths = HAction 〈Action|Intention〉paths, (4.278)

where HAction represents the Hamiltonian (total energy) function available at
the state of Action. Here our ‘golden rule’ is: the higher the HAction, the lower
the microscopic fatigue.

In the connectionist language, our propagator expressions (4.277–4.278)
represent activation dynamics, to which our Monitor process gives a kind of
backpropagation feedback, a version of the basic supervised learning (4.291).

Mechanisms of Decision–Making under Uncertainty. The basic
question about our local decision making process, occurring under uncer-
tainty at the intention formation faze F , is: Which alternative to choose?
(see [RBT01, Gro82, Gro99, Gro88, Ash94]). In our path–integral language
this reads: Which path (alternative) should be given the highest probability
weight w? Naturally, this problem is iteratively solved by the learning pro-
cess (4.270–4.291), controlled by the MONITOR feedback, which we term
algorithmic approach.

In addition, here we analyze qualitative mechanics of the local decision
making process under uncertainty, as a heuristic approach. This qualitative
analysis is based on the micro–level interpretation of the Newtonian–like ac-
tion S[x], given by (4.272) and figuring both processing speed ẋ and LTM
(i.e., the force–field ϕ(x), see next subsection). Here we consider three differ-
ent cases:

A. If the potential ϕ(x) is not very dependent upon position x(t), then the
more direct paths contribute the most, as longer paths, with higher mean
square velocities [ẋ(t)]2 make the exponent more negative (after Wick
rotation (4.275)).

B. On the other hand, suppose that ϕ(x) does indeed depend on position x.
For simplicity, let the potential increase for the larger values of x. Then
a direct path does not necessarily give the largest contribution to the
overall transition probability, because the integrated value of the potential
is higher than over another paths.

C. Finally, consider a path that deviates widely from the direct path. Then
ϕ(x) decreases over that path, but at the same time the velocity ẋ in-
creases. In this case, we expect that the increased velocity ẋ would more
than compensate for the decreased potential over the path.

Therefore, the most important path (i.e., the path with the highest weight w)
would be one for which any smaller integrated value of the surrounding field
potential ϕ(x) is more than compensated for by an increase in kinetic–like
energy m

2 ẋ2. In principle, this is neither the most direct path, nor the longest
path, but rather a middle way between the two. Formally, it is the path along
which the average Lagrangian is minimal,

<
m

2
ẋ2 + ϕ(x) >−→ min, (4.279)
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i.e., the path that requires minimal memory (both LTM and WM, see LSFfields
below) and processing speed. This mechanical result is consistent with the ‘fil-
ter theory’ of selective attention [Bro58], proposed in an attempt to explain a
range of the existing experimental results. This theory postulates a low level
filter that allows only a limited number of percepts to reach the brain at any
time. In this theory, the importance of conscious, directed attention is mini-
mized. The type of attention involving low level filtering corresponds to the
concept of early selection [Bro58].

Although we termed this ‘heuristic approach’ in the sense that we can
instantly feel both the processing speed ẋ and the LTM field ϕ(x) involved,
there is clearly a psycho–physical rule in the background, namely the averaging
minimum relation (4.279).

From the decision making point of view, all possible paths (alternatives)
represent the consequences of decision making. They are, by default, short–
term consequences, as they are modelled in the micro–time–level. However, the
path integral formalism allows calculation of the long–term consequences, just
by extending the integration time, tfin →∞. Besides, this averaging decision
mechanics – choosing the optimal path – actually performs the ‘averaging lift’
in the LSF: from micro– to the macro–level.

Force–Fields and Memory in LSFfields

At the macro–level in the subspace LSFfields we formulate the force–field
action principle

δS[ϕ] = 0, (4.280)

with the action S[ϕ] dependent on Lewinian force–fields ϕi = ϕi(x) (i =
1, ..., N), defined as a temporal integral

S[ϕ] =
∫ tfin

tini

L[ϕ] dt, (4.281)

with Lagrangian density given by

L[ϕ] =
∫

dnxL(ϕi, ∂xjϕi),

where the integral is taken over all n coordinates xj = xj(t) of the LSF, and
∂xjϕi are partial derivatives of the field variables over coordinates.

On the micro–level in the subspace LSFfields we have the Feynman–type
sum over fields ϕi (i = 1, ..., N) given by the adaptive path integral

〈Action|Intention〉fields =
∫
Σ D[wϕ] eiS[ϕ] ⇒Wick

∫
Σ D[wϕ] e−S[ϕ], (4.282)

with action S[ϕ] given by temporal integral (4.281). (Choosing special forms
of the force–field action S[ϕ] in (4.282) defines micro–level MD & CD, in the
LSFfields space, that is similar to standard quantum–field equations, see e.g.,
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[II06b].) The corresponding partition function has the form similar to (4.276),
but with field energy levels.

Regarding topology of the force fields, we have in place n−categorical
Lagrangian–field structure on the Riemannian LSF manifold M ,

Φi : [0, 1] →M, Φi : Φi0 �→ Φi1,

generalized from the recursive homotopy dynamics [II06b], using

d

dt
fẋi = fxi −→ ∂μ

(
∂L
∂μΦi

)
=

∂L
∂Φi

,

with [x0, x1] −→ [Φi0, Φ
i
1].

Relationship between Memory and Force–Fields. As already men-
tioned, the subspace LSFfields is related to our memory storage [Ash94].
Its global macro–level represents the long–term memory (LTM), defined by
the least action principle (4.280), related to cognitive economy in the model
of semantic memory [Rat78, Col05]. Its local micro–level represents work-
ing memory (WM), a limited–capacity ‘bottleneck’ defined by the adaptive
path integral (4.282). According to our formalism, each of Miller’s 7± 2 units
[Mil56] of the local WM are adaptively stored and averaged to give the global
LTM capacity (similar to the physical notion of potential). This averaging
memory lift, from WM to LTM represents retroactive interference, while the
opposite direction, given by the path integral (4.282) itself, represents proac-
tive interference. Both retroactive and proactive interferences are examples of
the impact of cognitive contexts on memory. Motivational contexts can exert
their influence, too. For example, a reduction in task–related recall following
the completion of the task is one of the clearest examples of force–field influ-
ences on memory: the amount of details remembered of a task declines as the
force–field tension to complete the task is reduced by actually completing it.

Once defined, the global LTM potential ϕ = ϕ(x) is then affecting the
locomotion transition paths through the path action principle (4.272), as well
as general learning (4.270–4.291) and decision making process (4.279).

On the other hand, the two levels of LSFfields fit nicely into the two levels
of processing framework, as presented by [CL72], as an alternative to theories
of separate stages for sensory, working and long–term memory. According to
the levels of processing framework, stimulus information is processed at mul-
tiple levels simultaneously depending upon its characteristics. In this frame-
work, our macro–level memory field, defined by the fields action principle
(4.280), corresponds to the shallow memory, while our micro–level memory
field, defined by the adaptive path integral (4.282), corresponds to the deep
memory.

Geometries, Topologies and Noise in LSFgeom

On the macro–level in the subspace LSFgeom representing an n−dimensional
smooth manifold M with the global Riemannian metric tensor gij , we formu-
late the geometrical action principle
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δS[gij ] = 0,

where S = S[gij ] is the n−dimensional geodesic action on M ,

S[gij ] =
∫

dnx
√

gij dxidxj . (4.283)

The corresponding Euler–Lagrangian equation gives the geodesic equation of
the shortest path in the manifold M ,

ẍi + Γ ijk ẋ
j ẋk = 0,

where the symbol Γ ijk denotes the so–called affine connection which is the
source of curvature, which is geometrical description for noise (see [Ing97,
Ing98]). The higher the local curvatures of the LSF–manifold M , the greater
the noise in the life space. This noise is the source of our micro–level fluctua-
tions. It can be internal or external; in both cases it curves our micro–LSF.

Otherwise, if instead we choose an n−dimensional Hilbert–like action (see
[MTW73]),

S[gij ] =
∫

dnx
√

det |gij |R, (4.284)

where R is the scalar curvature (derived from Γ ijk), we get the n−dimensional
Einstein–like equation:

Gij = 8πTij ,

where Gij is the Einstein–like tensor representing geometry of the LSF
manifold M (Gij is the trace–reversed Ricci tensor Rij , which is itself the
trace of the Riemann curvature tensor of the manifold M), while Tij is
the n−dimensional stress–energy–momentum tensor. This equation explicitly
states that psycho–physics of the LSF is proportional to its geometry. Tij
is important quantity, representing motivational energy, geometry–imposed
stress and momentum of (loco)motion. As before, we have our ‘golden rule’:
the greater the Tij−components, the higher the speed of cognitive processes
and the lower the macroscopic fatigue.

The choice between the geodesic action (4.283) and the Hilbert action
(4.284) depends on our interpretation of time. If time is not included in the
LSF manifold M (non–relativistic approach) then we choose the geodesic ac-
tion. If time is included in the LSF manifold M (making it a relativistic–like
n−dimensional space–time) then the Hilbert action is preferred. The first ap-
proach is more related to the information processing and the working memory.
The later, space–time approach can be related to the long–term memory: we
usually recall events closely associated with the times of their happening.

On the micro–level in the subspace LSFgeom we have the adaptive sum
over geometries, represented by the path integral over all local (regional) Rie-
mannian metrics gij = gij(x) varying from point to point on M (modulo
diffeomorphisms),
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〈Action|Intention〉geom =
∫
Σ D[wgij ] eiS[gij ] ⇒Wick

∫
Σ D[wgij ] e−S[gij ],

(4.285)
where D[gij ] is diffeomorphism equivalence class of gij(x) ∈M .

To include the topological structure (e.g., a number of holes) in M , we can
extend (4.285) as

〈Action|Intention〉geom/top =
∑

topol.

∫
Σ D[wgij ] eiS[gij ], (4.286)

where the topological sum is taken over all connectedness–components of
M determined by the Euler characteristic χ of M . This type of integral
defines the theory of fluctuating geometries, a propagator between (n −
1)−dimensional boundaries of the n−dimensional manifold M . One has to
contribute a meaning to the integration over geometries. A key ingredient in
doing so is to approximate (using simplicial approximation and Regge calcu-
lus [MTW73]) in a natural way the smooth structures of the manifold M by
piecewise linear structures (mostly using topological simplices Δ). In this way,
after the Wick–rotation (4.275), the integral (4.285–4.286) becomes a simple
statistical system, given by partition function Z =

∑
Δ

1
CΔ

e−SΔ , where the
summation is over all triangulations Δ of the manifold M , while CT is the
order of the automorphism group of the performed triangulation.

Micro–Level Geometry: the source of noise and stress in LSF. The
subspace LSFgeom is the source of noise, fluctuations and obstacles, as well as
psycho–physical stress. Its micro–level is adaptive, reflecting the human ability
to efficiently act within the noisy environment and under the stress conditions.
By averaging it produces smooth geometry of certain curvature, which is at
the same time the smooth psycho–physics. This macro–level geometry directly
affects the memory fields and indirectly affects the (loco)motion transition
paths.

The Mental Force Law. As an effective summary of this section, we
state that the psychodynamic transition functor T A : INTENTIONtini

�
ACTIONtfin

, defined by the generic path integral (4.288), can be interpreted
as a mental force law , analogous to our musculo–skeletal covariant force law ,
Fi = mgija

j , and its associated covariant force functor F∗ : TT ∗M → TTM
[II05].

4.5.8 Joint Action Psychodynamics

Cognitive neuroscience investigations, including fMRI studies of human co-
action, suggest that cognitive and neural processes supporting co-action in-
clude joint attention, action observation, task sharing, and action coordination
[FFG05, KJ03, SBK06]. For example, when two actors are given a joint con-
trol task (e.g., tracking a moving target on screen) and potentially conflicting
controls (e.g., one person in charge acceleration, the other – deceleration),
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their joint performance depends on how well they can anticipate each other’s
actions. In particular, better coordination is achieved when individuals receive
real-time feedback about the timing of each other’s actions [SBK06].

To model the dynamics of this joint action, we associate each of the ac-
tors with an n−dimensional (nD, for short) Riemannian Life-Space manifold,
that is a set of their own time dependent trajectories, Mα = {xi(ti)} and
Mβ = {yj(tj)}, respectively. Following [IA07], we use the modelling machin-
ery consisting of the joint psycho–physical action (4.294) and the correspond-
ing adaptive path integral (4.288), visualized by the Feynman–like 1–loop
diagram.50

Recently [IA07] we have suggested a generalized motivational/cognitive
action, generating Lewinian force–fields [Lew51, Lew97] on smooth manifolds,
extending and adapting classical Wheeler–Feynman action–at–a–distance elec-
trodynamics [WF49]. Applying this approach to human co–action, we propose
a two–term joint action:

A[x, y; ti, tj ] =
1
2

∫

ti

∫

tj

αiβj δ(I
2
ij) ẋi(ti) ẏj(tj) dtidtj +

1
2

∫

t

gij ẋ
i(t)ẋj(t) dt

with I2
ij =

[
xi(ti)− yj(tj)

]2
, (4.287)

where IN ≤ ti, tj , t ≤ OUT , while ẋi(ti) = dxi/dti and ẏj(tj) = dyj/dtj are
the corresponding nD (loco)motion velocities.

The first term in (4.294) represents potential energy between the cogni-
tive/motivational interaction of the two agents αi and βj . It is a double inte-
gral over a delta function of the square of interval I2 between two points on
the paths in their Life–Spaces; thus, interaction occurs only when this inter-
val, representing the motivational cognitive distance between the two agents,
vanishes. Note that the cognitive (loco)motions of the two agents αi[xi(ti)]
and βj [yj(tj)], generally occur at different times ti and tj unless ti = tj , when
cognitive synchronization occurs.

The second term in (4.294) represents kinetic energy of the physical inter-
action. Namely, when the cognitive synchronization in the first term actually
takes place, the second term of physical kinetic energy is activated in the
common manifold, which is one of the agents’ Life Spaces, say Mα = {xi(ti)}.

The adaptive path integral (see [IA07]) represents an infinite–dimensional
neural network, corresponding to the psycho–physical action (4.294), reads

〈OUT |IN〉 :=
∫
Σ D[w, x, y] eiA[x,y;ti,tj ], (4.288)

where the Lebesgue integration is performed over all continuous paths xi =
xi(ti) and yj = yj(tj), while summation is performed over all associated

50 The work presented in this subsection has been developed in collaboration with
Dr Eugene Aidman and Mr Leong Yen, both Senior Research Scientists, Land
Operations Division, Defence Science & Technology Organisation, Australia.
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discrete Markov fluctuations and jumps. The symbolic differential in the path
integral (4.288) represents an adaptive path measure, defined as a weighted
product

D[w, x, y] = lim
N→∞

N∏

s=1

wsijdx
idyj , (i, j = 1, ..., n). (4.289)

The adaptive path integral (4.288) incorporates the local Bernstein’s adap-
tation process [Ber47, Ber96] according to Bernstein’s discriminator concept

desired state SW (t+1) = current state IW (t) + adjustment step ΔW (t).

The robustness of biological motor control systems in handling excess de-
grees of freedom has been attributed to a combination of tight hierarchical
central planning and multiple levels of sensory feedback-based self-regulation
that are relatively autonomous in their operation [BLT]. These two processes
are connected through a top-down process of action script delegation and a
bottom-up emergency escalation mechanisms. There is a complex interplay be-
tween the continuous sensory feedback and motion/action planning to achieve
effective operation in uncertain environments (in movement on uneven terrain
cluttered with obstacles, for example).

Complementing Bernstein’s motor control principles is Brooks’ concept
of computational subsumption architectures [Bro85, Bro90], which provides a
method for structuring reactive systems from the bottom up using layered
sets of behaviors. Each layer implements a particular goal of the agent, which
subsumes that of the underlying layers.

For example, a robot’s lowest layer could be “avoid an object”, on top
of it would be the layer “wander around”, which in turn lies under “explore
the world”. The top layer in such a case could represent the ultimate goal
of “creating a map”. This way, the lowest layers can work as fast-responding
mechanisms (i.e., reflexes), while the higher layers control the main direction
to be taken in order to achieve a more abstract goal.

The substrate for this architecture comprises a network of finite state ma-
chines augmented with timing elements. The subsumption compiler compiles
augmented finite state machine (AFSM) descriptions into a special-purpose
scheduler to simulate parallelism and a set of finite state machine simulation
routines. Their networked behavior can be described conceptually as:

final state w(t+1) = current state w(t) + adjustment behavior f(Δw(t)).

The Bernstein weights, or Brooks nodes, wsij = wsij(t) in (4.298) are up-
dated by the Bernstein loop during the joint transition process, according to
one of the two standard neural learning schemes, in which the micro–time level
is traversed in discrete steps, i.e., if t = t0, t1, ..., ts then t+ 1 = t1, t2, ..., ts+1:

A. A self–organized , unsupervised (e.g., Hebbian–like [Heb49]) learning rule:
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wsij(t + 1) = wsij(t) +
σ

η
(ws,dij (t)− ws,aij (t)), (4.290)

where σ = σ(t), η = η(t) denote signal and noise, respectively, while new
superscripts d and a denote desired micro–states and achieved micro–
states, respectively; or

B. A certain form of a supervised gradient descent learning :

wsij(t + 1) = wsij(t)− η∇J(t), (4.291)

where η is a small constant, called the step size, or the learning rate,
and ∇J(n) denotes the gradient of the ‘performance hyper–surface’ at
the t−th iteration.

Both Hebbian and supervised learning51 are untilled in local decision mak-
ing processes, e.g., at the intention formation phase (see [IA07]). Overall,
the model presents a set of formalisms to represent time-critical aspects of
collective performance in tactical teams. Its applications include hypotheses
generation for real and simulation experiments on team performance, both in
human teams (e.g., emergency crews) and hybrid human-machine teams (e.g.,
human-robotic crews). It is of particular value to the latter, as the increas-
ing autonomy of robotic platforms poses non-trivial challenges, not only for
the design of their operator interfaces, but also for the design of the teams
themselves and their concept of operations.

4.5.9 General Adaptation Psychodynamics

Imagine three agents, αi = αi(ti), βj = βj (tj) and γk = γk (tk), continually
evolving and adapting in their own times ti, tj and tk, performing a goal–
driven interaction, that is a joint action of driving a car, so that αi does the
steering, βj does the accelerating and γk does the braking.

To model this joint agents action, we associate to each of them an
n−dimensional (nD, for short) configuration manifold, that is a set of their
own–time dependent trajectories, Mα = {xi(ti)}, Mβ = {yj(tj)} and My =
{zk(tk)}, respectively. Their associated tangent bundles contain their individ-
ual velocities, TMα = {ẋi(ti) = dxi/dti}, TMβ = {ẏj(tj) = dyj/dtj} and
TMy = {żk(tk) = dzk/dtk}.

The joint action happens in the common 3nD Finsler manifold MJ =
Mα ∪Mβ ∪My, parameterized by the local joint coordinates dependent on
the common time t. That is, MJ = {qr(t), r = 1, ..., 3n}. Geometry of the

51 Note that we could also use a reward–based, reinforcement learning rule [SB98],
in which system learns its optimal policy :

innovation(t) = |reward(t) − penalty(t)|.
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joint manifold MJ is defined by the Finsler metric function ds = F (qr, dqr),
defined by

F 2(q, q̇) = grs(q, q̇)q̇r q̇s, (where grs is the Riemann metric tensor)
(4.292)

and the Finsler tensor Crst(q, q̇), defined by (see [Run59, II07b])

Crst(q, q̇) =
1
4
∂3F 2(q, q̇)
∂q̇r∂q̇s∂q̇t

=
1
2

∂grs
∂q̇r∂q̇s

. (4.293)

From the Finsler definitions (4.292)–(4.293), it follows that the partial inter-
action manifolds, Mα ∪Mβ , Mβ ∪My and Mα ∪My have Riemannian struc-
tures with the corresponding interaction kinetic energies, Tαβ = 1

2gij ẋ
iẏj ,

Tαγ = 1
2gikẋ

iżk and Tβγ = 1
2gjkẏ

j żk

Now, following [IA07], we use the modelling machinery consisting of:
1. Adaptive joint action (4.294)–(4.296) at the top-master level, describing

the externally-appearing deterministic, continuous and smooth dynamics,
and
2. Corresponding adaptive path integral (4.288) at the bottom-slave level,

describing a wildly fluctuating dynamics including both continuous trajecto-
ries and Markov chains.

At the master level, the adaptive joint action reads

A[ti, tj , tk; t]

=
1
2

∫

ti

∫

tj

∫

tk

αi(ti)βj (tj) γk (tk)δ(I2
ijk) ẋi(ti) ẏj(tj) żk(tk) dtidtjdtk (4.294)

+
1
2

∫

t

WM
rs (t, q, q̇) q̇r q̇s dt (where IN ≤ ti, tj , tk, t ≤ OUT )(4.295)

with I2
ijk = [xi(ti)− yj(tj)]2 + [yj(tj)− zk(tk)]2 + [zk(tk)− xi(ti)]2, (4.296)

The first term (4.294) in the joint action, contains the cognitive intention
Lagrangian of the three agents coming into the joint action. It is a triple inte-
gral over their own timescales. The actual physical action (given by the second
term (4.295)) would happen only if their timescales synchronize, that is in the
case ti = tj = tk. Otherwise, (4.294) is just the sum of their individual kinetic
potentials. The sub-term δ(I2

ijk), given by (4.296) is the delta function of their
mutual “cognitive distance” I2

ijk that vanishes upon the synchronization.
The second action term (4.295) represents adaptive kinetic energy of their

physical interaction. Namely, when the previous “cognitive synchronization”
in the first term actually occurs, the second term of physical kinetic energy is
activated in the common time t. Then we have the joint physical motions of
the three agents, αi, βj and γk, physically moving in the joint Finsler coordi-
nates {qr(t), r = 1, ..., 3n}, along the common timescale t, in their joint 3nD
manifold MJ . This joint kinetic energy is adaptive, represented by “master
joint synaptic weights” WM

rs (t, q, q̇), which is the Riemannian metric tensor
(4.292) allowed to evolve in time.
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At the slave level, the adaptive path integral (see [IA07]), representing
an infinite–dimensional neural network, corresponding to the adaptive joint
action (4.294), reads

〈OUT |IN〉 :=
∫
Σ D[w;x, y, z; q] eiA[ti,tj ,tk;t], (4.297)

where the Lebesgue integration is performed over all continuous paths xi =
xi(ti), yj = yj(tj), zk = zk(tk) and qr = qr(t) while the summation is
performed over all associated discrete Markov fluctuations and jumps. The
symbolic differential in the path integral (4.288) represents an adaptive path
measure, defined as a weighted product

D[w; x, y, z; q] = lim
N→∞

N∏

S=1

wS
ijkrdxidyjdzkdqr, (i, j, k = 1, ..., n; r = 1, ..., 3n). (4.298)

The “slave synaptic weights” wSijkr = wSijkr(t) in (4.298) are updated ac-
cording to a self–organized , unsupervised (e.g., Hebbian–like [Heb49]) learn-
ing rule (4.290), or a certain form of a supervised gradient descent learning
(4.291), which are both naturally used for the local decision making process
occurring at the intention formation faze (see [IA07]). In the cognitive psy-
chology framework, our adaptive path integral (4.288) can be interpreted as
semantic integration (see [BF71, Ash94]).



5

Complex Nonlinearity: Combining It All
Together

This last Chapter puts all the previously developed techniques together and

presents the unified form of complex nonlinearity. Here we have chaos, phase

transitions, geometrical dynamics and topology change, all working together

in the general path–integral form:

〈phase out|phase in〉 =

∫

topology change
Σ D[x] eiS[x]

The concluding section is devoted to discussion of hard vs. soft complexity,
using the synergetic example of human bio-mechanics.

5.1 Geometrical Dynamics, Hamiltonian Chaos, and
Phase Transitions

Recall that on the basis of the ergodic hypothesis, statistical mechanics de-
scribes the physics of many-degrees of freedom systems by replacing time aver-
ages of the relevant observables with ensemble averages. Therefore, instead of
using statistical ensembles, we can investigate the Hamiltonian (microscopic)
dynamics of a system undergoing a phase transition. The reason for tackling
dynamics is twofold. First, there are observables, like Lyapunov exponents,
that are intrinsically dynamical. Second, the geometrization of Hamiltonian
dynamics in terms of Riemannian geometry provides new observables and,
in general, an interesting framework to investigate the phenomenon of phase
transitions [CCC97, Pet07]. The geometrical formulation of the dynamics of
conservative systems [AM78] was first used by [Kry79] in his studies on the
dynamical foundations of statistical mechanics and subsequently became a
standard tool to study abstract systems in ergodic theory.
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Consider classical many particle systems with N DOF (particles, classi-
cal spins, quasi-particles such as phonons, and so on), confined in a finite
volume (therein free to move, or defined on a lattice), described by standard
Hamiltonians [Pet07]

H(p, q) =
N∑

i=1

1
2
p2
i + V (q1, . . . , qN ), (5.1)

where the q’s and the p’s are, respectively, the coordinates and the conjugate
momenta of the system. Our emphasis is on systems with a large number of
degrees of freedom. The dynamics of the system (2.95) is defined in the 2ND
phase space spanned by the q’s and the p’s.

Since the formulation of the kinetic theory of gases and then with the
birth of statistical mechanics, Hamiltonian dynamics has had to cope with an
intrinsic dynamical instability , which is usually called Hamiltonian chaos, a
phenomenon that makes finite the predictability time scale of the dynamics.
Cauchy’s theorem of existence and uniqueness of the solutions of the dif-
ferential equations of motion formalizes the deterministic nature of classical
mechanics; however, predictability stems from the combination of determinism
and stability of the solutions of the equations of motion. Roughly speaking,
stability means that in phase space the trajectories group into bundles with-
out any significant spread as time passes, or with an at most linearly growing
spread with time. In other words, small variations of the initial conditions have
limited consequences on the future evolution of the trajectories, which remain
close to one another or at most separate in a nonexplosive fashion. Conversely,
Hamiltonian chaos is synonymous with unpredictability of a deterministic but
unstable Hamiltonian dynamics. A locally exponential magnification with time
of the distance between initially close phase space trajectories is the hallmark
of deterministic chaos [Pet07].

More specificaly, the geometrization of the dynamics of N DOF systems
defined by a Lagrangian L = T − V , in which the kinetic energy is quadratic
in the velocities,

T =
1
2
aij q̇

iq̇j ,

stems from the fact that the natural motions are the extrema of the Hamil-
tonian action

SH =
∫

Ldt,

or of the Maupertuis’ action

SM = 2
∫

T dt.

In particular, from the Lagrangian
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L = T − V =
N∑

i=1

1
2
q̇2
i − V (q1, . . . , qN ), (5.2)

the equations of motion are derived in the Newtonian form

q̈i = −∂V

∂qi
, i = 1, . . . , N. (5.3)

In fact also the geodesics (a line of stationary or minimum length joining
the points A and B) of Riemannian and pseudo-Riemannian manifolds are
the extrema of the arc–length functional

 =
∫ B

A

ds, with ds2 = gijdq
idqj ,

hence a suitable choice of the metric tensor allows for the identification of
the arc-length with either SH or SM , and of the geodesics with the natural
motions of the dynamical system. Starting from SM the ‘mechanical manifold’
is the accessible configuration space endowed with the Jacobi metric

(gJ )ij = [E − V ({q})] aij ,

where V (q) is the potential energy and E is the total energy. Then Newton’s
equations (5.3) are retrieved from the geodesic equations

d2qi

ds2
+ Γ ijk

dqj

ds

dqk

ds
= 0, (5.4)

where Γ ijk are the so–called Christoffel symbols of the affine Levi-Civita con-
nection of the Riemannian manifold in question (see, e.g., [II07b]).

A description of the extrema of Hamilton’s action SH as geodesics of a
‘mechanical manifold’ can be obtained using the Eisenhart metric [Eis29]
on an enlarged configuration space-time ({q0 ≡ t, q1, . . . , qN} plus one real
coordinate qN+1), whose arc-length is

ds2 = −2V (q)(dq0)2 + aijdq
idqj + 2dq0dqN+1. (5.5)

The manifold has a Lorentzian structure and the dynamical trajectories are
those geodesics satisfying the condition ds2 = Cdt2, where C is a positive
constant. In the geometrical framework, the (in)stability of the trajectories is
the (in)stability of the geodesics, and it is completely determined by the cur-
vature properties of the underlying manifold according to the Jacobi equation
of geodesic deviation [II07b]

D2J i

ds2
+ Rijkm

dqj

ds
Jk

dqm

ds
= 0, (5.6)

whose solution J , usually called Jacobi variation field , locally measures the
distance between nearby geodesics; D/ds stands for the covariant derivative
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along a geodesic and Rijkm are the components of the Riemann curvature
tensor .

No matter in which metric equation (5.6) is explicitly computed, it requires
the simultaneous numerical integration of both the equations of motion and
the (in)stability equation. Using the Eisenhart metric (5.5) the relevant part
of the Jacobi equation (5.6) is [CCP96, CCC97]

d2J i

dt2
+ Ri0k0J

k = 0, i = 1, . . . , N (5.7)

where the only non-vanishing components of the curvature tensor are

Ri0k0 = ∂2V/∂qi∂qj .

Equation (5.7) is the standard tangent dynamics equation which is commonly
used to measure Lyapunov exponents in standard Hamiltonian systems. Hav-
ing recognized its geometric origin, a geometric reasoning was developed in
[CCP96] to derive from (5.7) an effective scalar stability equation that in-
dependently of the knowledge of dynamical trajectories provides an average
measure of their degree of instability. This is based on two main assumptions:

(i) The ambient manifold is almost isotropic, i.e., the components of the
curvature tensor – that for an isotropic manifold (i.e., of constant curvature)
are [CCC97]

Rijkm = κ0(gikgjm − gimgjk), κ0 = const

can be approximated by

Rijkm ≈ κ(t)(gikgjm − gimgjk)

along a generic geodesic γ(t); and
(ii) that in the large N limit the ‘effective curvature’ κ(t) can be modeled

by a Gaussian and δ−correlated stochastic process. The mean κ0 and variance
σκ of κ(t) are given by the average and the r.m.s. fluctuation of the Ricci
curvature kR = KR/N along a geodesic: κ0 = 〈KR〉/N , and σ2

κ = 〈(KR −
〈KR〉)2〉/N, respectively. The Ricci curvature along a geodesic is defined as
[CCC97]

KR = Rij
dqi

dt

dqj

dt
/(

dqk

dt

dqk
dt

),

where Rij = Rkikj is the Ricci tensor , which in the case of Eisenhart metric
reduces to

KR ≡ ΔV =
N∑

i=1

∂2V/∂q2
i .

The final result is the replacement of (5.7) with the effective stability equa-
tion which is independent of the dynamics and is in the form of a stochastic
oscillator equation [CCP96]
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d2ψ

dt2
+ κ(t)ψ = 0, (5.8)

where ψ2 ∝ |J |2. The exponential growth rate λ of the solutions of (5.8), which
is therefore an estimate of the largest Lyapunov exponent , can be computed
exactly:

λ =
Λ

2
− 2κ0

3Λ
, Λ =

(

2σ2
κτ +

√
64κ3

0

27
+ 4σ4

κτ
2

) 1
3

, (5.9)

where τ = π
√

κ0/(2
√

κ0(κ0 + σκ) + πσκ); in the limit σκ/κ0 � 1 one finds
λ ∝ σ2

κ [CCC97].
In this geometrical picture chaos is mainly originated by the parametric

instability (which occurs when the parameters of a differential equation are
suitably varied in time [Arn78]) activated by the fluctuating curvature ‘felt’ by
the geodesics. On the other hand, the average curvature properties are statisti-
cal quantities like thermodynamic observables. This means that there exists a
non-trivial relationship between dynamical properties (Lyapunov exponents)
and suitable static observables. Generic thermodynamic observables have a
non-analytic behavior as the system undergoes a phase transition. Hence the
following question arises naturally: “Is there any peculiarity in the geometric
properties associated with the dynamics, and thus in the chaotic dynamics
itself, of systems which exhibit an equilibrium phase transition?” And in par-
ticular, do the curvature fluctuations and/or the Lyapunov exponent show
any remarkable behavior in correspondence with the phase transition itself?

The remarkable properties of geodesic flows on hyperbolic manifolds (with
negative curvature) have been known to mathematicians since the first decades
of last century; it was Krylov who thought of using these results to account
for the fast phase–space mixing of gases and thus for a dynamical justification
of the ergodic hypothesis in finite times [Kry79]. Krylov’s work has been very
influential on the development of the so–called abstract ergodic theory [Sin89],
where Anosov flows [Ano67] (e.g., geodesic flows on compact manifolds with
negative curvature) play a prominent role. Ergodicity and mixing of these
flows have been thoroughly investigated. To give an example, Sinai proved
ergodicity and mixing for two hard spheres by just showing that such a system
is equivalent to a geodesic flow on a negatively–curved compact manifold
[Sin89].

A slightly more general version of the oscillator equation (5.8) is the ef-
fective instability equation [Pet07]

d2ψ

ds2
+ 〈kR〉μ ψ + 〈δ2kR〉1/2μ η(s)ψ = 0, (5.10)

where ψ is such that ‖ψ2(t)‖ ∼ ‖J2(t)‖, kR is the Ricci curvature of the
mechanical manifold, 〈·〉μ stands for averaging on it, and η(s) is a Gaussian–
distributed Markov process. This equation is independent of the dynamics, it
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holds only if some suitable geometric conditions, which we call quasi-isotropy ,
are fulfilled by the given system of interest, and it puts in evidence the exis-
tence of another mechanism, besides hyperbolicity, to make chaos: the vari-
ability of the curvature probed by a geodesic activates parametric instability .

In particuclar, in [CCC97] this question was addressed by considering a
system of planar classical ‘spins’ (rotators) Si = (cosϕi, sinϕi) defined on a
d−dimensional lattice Z

d. The Hamiltonian is

H(ϕ, π) =
1
2

∑

i

π2
i + V (ϕi) , (5.11)

where ϕi and πi are the canonically conjugated angle and angular momentum
of the ‘spin’ on the i-th lattice site. The interaction is given by (〈ij〉 stands
for nearest-neighbor sites)

V = −
∑

〈ij〉∈Zd

(
cos(ϕi − ϕj)− 1

)
, (5.12)

which is the Heisenberg XY potential. Cases of d = 2, 3 were considered. The
potential (5.12) is invariant under the action of the continuous group O(2),
hence — in the limit N → ∞ — a second order phase transition was expect
only in d = 3 and a Kosterlitz–Thouless transition in d = 2.

Let us now turn to the hidden geometrical dynamics and in particular to
the complex landscape of the ambient manifold whose deviation from isotropy
(quantified by σκ) is directly responsible for dynamical chaos. In [CCC97] the
evidence was found for a remarkable feature of the curvature fluctuations: a
singular (cusp–like) behavior of σκ(T ) shows up in correspondence with the
second order phase transition and σκ(T ) is sharply peaked at Tc, whereas
in absence of symmetry breaking (d = 2) no singular behavior of σκ(T ) is
present. This behavior of the curvature fluctuations is very intriguing. In fact
a singular behavior of the curvature fluctuations can be reproduced in abstract
geometric models which undergo a transition between different topologies at a
critical value of a parameter that can be varied continuously. Let us consider
for instance the families of surfaces of revolution immersed in R

3 defined as
follows: Fε = (fε(u) cos v, fε(u) sin v, u), where u, v are local coordinates on
the surface (v ∈ [0, 2π] and u belongs to the domain of definition of fε),

fε(u) = ±
√

ε + u2 − u4 , ε ∈ [εmin,+∞), andεmin = −1
4
.

There is a critical value of the parameter, ε = εc = 0, corresponding to a
change in the topology of the surfaces. In particular the manifolds Fε are
diffeomorphic to a torus T

2 when ε < 0 and to a sphere S
2 when ε > 0. In the

next section, we will show how to compute the Euler–Poincaré characteristic
χ by means of the Gauss–Bonnet theorem [II07b], one finds χ(Fε) = 0 if ε < 0,
and χ(Fε) = 2 otherwise.



5.1 Geometrical Dynamics, Hamiltonian Chaos, and Phase Transitions 663

In order to grasp why topology affects the degree of instability of the
dynamics, let us consider the tangent dynamics equation (5.7)

d2J i

dt2
+
(

∂2V

∂qi∂ql

)

q(t)

J l = 0, (5.13)

and remembering that in the neighborhood of any critical point qc, by the
Morse lemma, there always exists a coordinate system for which [Pet07]

V (q̃) = V (qc)− q̃2
1 − · · · − q̃2

k + q̃2
k+1 + · · ·+ q̃2

N , (5.14)

where k is the index of the critical point, i.e., the number of negative eigen-
values of the Hessian of V , let us note that in the neighborhood of a critical
point, (5.14) yields ∂2V/∂i∂ql = ±δil, which, substituted into (5.13), gives k
unstable directions that contribute to the exponential growth of the norm of
the tangent vector J . In other words, the neighborhoods of critical points are
‘scatterers’ of the trajectories, which enhance chaos by adding to parametric
instability another instability mechanism, reminiscent of local hyperbolicity.
However, if in the case of the chain of coupled rotators a nontrivial topology is
responsible for the enhancement of chaos, with respect to the prediction based
only on the quasi–isotropy assumption, things seem to go in the opposite di-
rection for the mean–field XY model, though also in this case configuration–
space topology is highly nontrivial. This is to say that a lot of interesting work
remains to be done.

We can surmise that a first step forward, beyond the restrictive assumption
of quasi–isotropy and encompassing the role of nontrivial topology, should lead
to a generalization of the instability equation (5.10) that could be of the form

d2

ds2

(
ψ
φ

)
+
(

κ(s) α
β γ

)(
ψ
φ

)
= 0, (5.15)

where κ(s) = 〈kR〉μ ψ + 〈δ2kR〉1/2μ η(s) and where α, β, γ are functions, to be
specified by the future developments of the theory, accounting for the relative
frequency of encounters of neighborhoods of critical points, for the average
number of unstable directions, and for the interplay between the two insta-
bility mechanisms (parametric modulations can have also stabilizing effects,
as is the case of the reversed pendulum stabilized by a fast oscillation of its
pivotal point). Then the instability exponent from (5.15) would be the average
growth rate of ‖ψ2‖+ ‖ψ̇2‖+ ‖φ2‖+ ‖φ̇2‖.

Now, let M be a generic member of the family Fε, and let us define the
fluctuations of the Gaussian curvature K as

σ2 = 〈K2〉 − 〈K〉2 = A−1

∫

M

K2 dS −A−2(
∫

M

K dS)2,

where A is the area of M and dS is the invariant surface element. This fam-
ily of surfaces exhibits a singular behavior in the curvature fluctuation σ as
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ε→ εc. This is remarkably similar to the cusp–like behavior of the Ricci cur-
vature fluctuations σκ(T ) of the XY model in d = 3 that are peaked at Tc.1

At heuristic level, these results suggest that a phase transition might corre-
spond to a major topology change in the manifolds underlying the motion.
We conjecture that the family of ‘mechanical manifolds’ (each one being in
1− 1 correspondence with a value of T ) splits, at Tc, into two subfamilies of
manifolds that are not diffeomorphic (being perhaps of different cohomology
type) [CCC97].

5.2 Topology and Phase Transitions

Suitable topology changes of equipotential submanifolds of configuration space
can entail thermodynamic phase transitions. The method used in [FPS00],
though applied to a particular model, is of general validity and it is of prospec-
tive interest to the study of phase transitions in those systems that challenge
the conventional approaches, as it might be the case of finite systems (like
atomic and molecular clusters), of off-lattice polymers and proteins, of glasses
and in general of amorphous and disordered materials. Let us begin by giving
a theoretical argument and then proceed by numerically proving its truth for
the 2d lattice ϕ4 model. Consider classical many particle systems described
by standard Hamiltonians (2.95), that is

H(p, q) =
N∑

i=1

1
2
p2
i + V (q) (5.16)

where the (p, q) ≡ (p1, . . . , pN , q1, . . . , qN ) coordinates assume continuous2

values and V (q) is bounded below. The statistical behavior of physical systems
described by standard Hamiltonians (5.16) is encompassed, in the canonical
ensemble, by the partition function (that is, the path integral), in phase–space
[II07b]

ZN =
∫
D[p]D[q] exp

{

i
∫ t′

t

[pq̇ −H(p, q)] dτ

}

, (5.17)

where we have used the shorthand notation
∫
D[p]D[q] ≡

∫ ∏

τ

dq(τ)dp(τ)
2π

.

1 The values σκ(T ) are time averages instead of integrals over the ‘mechanical
manifolds’, but, despite a numerical trajectory usually samples a small part of
the manifold, numerical time averages of σκ can give very good estimates of static
averages (see [CCP96]).

2 Discrete variables systems, like spin systems, require a much more abstract con-
text to relate phase transitions with topology changes; suitable vector bundles
must be considered (see [Ras79]).
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The phase–space path integral (5.17) can be calculated as [FPS00],

ZN (β) =
∫ N∏

i=1

dpidq
ie−βH(p,q) =

(
π

β

)N
2
∫ N∏

i=1

dqie−βV (q)

=
(

π

β

)N
2
∫ ∞

0

dv e−βv
∫

Σv

dσ

‖∇V ‖, , (5.18)

where the last term is written using the so–called co–area formula [Fed69],
and v labels the equipotential hypersurfaces Σv of the configuration manifold,

Σv = {(q1, . . . , qN ) ∈ R
N |V (q1, . . . , qN ) = v}.

Equation (5.18) shows that for Hamiltonians (5.16) the relevant statistical
information is contained in the canonical configurational partition function

ZCN =
∫ ∏

dqiV (q)e−βV (q),

Remarkably, ZCN is decomposed, in the last term of (5.18), into an infinite
summation of geometric integrals,

∫

Σv

dσ /‖∇V ‖,

defined on the {Σv}v∈R. Once the microscopic interaction potential V (q) is
given, the configuration space of the system is automatically foliated into
the family {Σv}v∈R of these equipotential hypersurfaces. Now, from standard
statistical mechanical arguments we know that, at any given value of the
inverse temperature β, the larger the number N of particles the closer to
Σv ≡ Σuβ

are the microstates that significantly contribute to the averages,
computed through ZN (β), of thermodynamic observables. The hypersurface
Σuβ

is the one associated with

uβ = (ZCN )−1

∫ ∏
dqiV (q)e−βV (q),

the average potential energy computed at a given β. Thus, at any β, if N is
very large the effective support of the canonical measure shrinks very close
to a single Σv = Σuβ

. Hence, and on the basis of what was previously found
in [CCC97, CCP99], the following topological hypothesis was formulated in
[FPS00]: the basic origin of a phase transition lies in a suitable topology
change of the {Σv}, occurring at some vc. This topology change induces the
singular behavior of the thermodynamic observables at a phase transition. By
change of topology here is meant that {Σv}v<vc

are not diffeomorphic to the
{Σv}v>vc

.3 In other words, the claim is that the canonical measure should
3 Recall that a diffeomorphism is a 1 − 1 differentiable map with differentiable

inverse.
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‘feel” a big and sudden change (if any) of the topology of the equipotential
hypersurfaces of its underlying support, the consequence being the appear-
ance of the typical signals of a phase transition, i.e., almost singular (at finite
N) energy or temperature dependences of the averages of appropriate ob-
servables. The larger N , the narrower is the effective support of the measure
and hence the sharper can be the mentioned signals, until true singularities
appear in the N → ∞ limit. This point of view has the interesting conse-
quence that (also at finite N) in principle different mathematical objects,
i.e., manifolds of different cohomology type, could be associated to different
thermodynamical phases, whereas from the point of view of measure theory
[YL52] the only mathematical property available to signal the appearance of a
phase transition is the loss of analyticity of the grand-canonical and canonical
averages, a fact which is compatible with analytic statistical measures only in
the mathematical N →∞ limit. In order to prove or disprove the conjectured
role of topology, we have to explicitly work out adequate information about
the topology of the members of the family {Σv}v∈R for some given physical
system. Below it is shown how this goal is practically achieved by means of
numerical computations. As it is conjectured that the counterpart of a phase
transition is a breaking of diffeomorphicity among the surfaces Σv, it is appro-
priate to choose a diffeomorphism invariant to probe if and how the topology
of the Σv changes as a function of v. This is a very challenging task because we
have to deal with high dimensional manifolds. Fortunately, such a topological
invariant exists, the Euler characteristic of a smooth manifold.

5.2.1 Computation of the Euler Characteristic

Recall that the Euler characteristic is a diffeomorphism invariant, expressing
fundamental topological information [GP74]. In order to make the reader ac-
quainted with it, we remind that a way to analyze a geometrical object is to
fragment it into other more familiar objects and then to examine how these
pieces fit together. Take for example a surface Σ in the Euclidean three di-
mensional space. Slice Σ into pieces that are curved triangles (this is called a
triangulation of the surface). Then count the number F of faces of the trian-
gles, the number E of edges, and the number V of vertices on the tesselated
surface. Now, no matter how we triangulate a compact surface Σ, its Euler
characteristic

χ(Σ) = F − E + V

will always equal a constant which is characteristic of the surface and which
is invariant under diffeomorphisms φ : Σ → Σ′. This is the Euler character-
istic of Σ. At higher dimensions this can be again defined by using higher
dimensional generalizations of triangles (simplexes) and by defining the Euler
characteristic of the n-dimensional manifold Σ to be

χ(Σ) =
n∑

k=0

(−1)k(#of ′′faces of dimension k′′).
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In differential topology a more standard definition of χ(Σ) is

χ(Σ) =
n∑

k=0

(−1)kbk(Σ), (5.19)

where also the numbers bk – the Betti numbers of Σ – are diffeomorphism
invariants.4 While it would be hopeless to try to practically compute χ(Σ)
from (5.19) in the case of non-trivial physical models at large dimension, there
is a possibility given by a powerful theorem, the Gauss–Bonnet–Hopf theorem,
that relates χ(Σ) with the total Gauss–Kronecker curvature of the manifold
(see, e.g., [II07b])

χ(Σ) = γ

∫

Σ

KG dσ (5.20)

which is valid for even dimensional hypersurfaces of Euclidean spaces R
N [here

dim(Σ) = n ≡ N − 1], and where: γ = 2/V ol(Sn1 ) is twice the inverse of the
volume of an n-dimensional sphere of unit radius; KG is the Gauss–Kronecker
curvature of the manifold;

dσ =
√

det(g)dx1dx2 · · · dxn

is the invariant volume measure of Σ and g is the Riemannian metric in-
duced from R

N . Let us briefly sketch the meaning and definition of the Gauss-
Kronecker curvature. The study of the way in which an n-surface Σ curves
around in R

N is measured by the way the normal direction changes as we
move from point to point on the surface. The rate of change of the normal
direction ξ at a point x ∈ Σ in direction v is described by the shape operator
(or, Lie derivative)

Lx(v) = −∇vξ,

where v is a tangent vector at x and ∇v is the directional derivative, hence
Lx(v) = −(∇ξ1 · v, . . . ,∇ξn+1 · v); gradients and vectors are represented in
R
N . As Lx is an operator of the tangent space at x into itself, there are n in-

dependent eigenvalues [Tho79] κ1(x), . . . , κn(x) which are called the principal
curvatures of Σ at x. Their product is the Gauss–Kronecker curvature,

KG(x) =
n∏

i=1

κi(x) = det(Lx).

The practical computation of KG for the equipotential hypersurfaces Σv pro-
ceeds as follows. Let ξ = ∇V/‖∇V‖ be the unit normal vector to Σv at a
given point x, and let {v1, . . . ,vn} be any basis for the tangent space of Σv
at x. Then [Tho79]

4 The Betti numbers bk are the dimensions of the de Rham’s cohomology vector
spaces Hk(Σ; R) (therefore the bk are integers).
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KG(x) =
(−1)n

‖∇V ‖n

∣∣∣∣∣
∣∣∣∣

⎛

⎜⎜
⎜
⎝

∇v1∇V
...

∇vn
∇V

∇V

⎞

⎟⎟
⎟
⎠

∣∣∣∣∣
∣∣∣∣

∣∣∣∣∣
∣∣∣∣

⎛

⎜⎜
⎜
⎝

v1

...
vn
∇V

⎞

⎟⎟
⎟
⎠

∣∣∣∣∣
∣∣∣∣

−1

. (5.21)

Let us now consider the family of {Σv}v∈R associated with a particular physi-
cal system and show how things work in practice. We consider the so–called ϕ4

model on a d−dimensional lattice Z
d with d = 1, 2, described by the potential

function

V =
∑

i∈Zd

(
−μ2

2
q2
i +

λ

4
q4
i

)
+

∑

〈ik〉∈Zd

1
2
J(qi − qk)2 (5.22)

where 〈ik〉 stands for nearest–neighbor sites. This system has a discrete
Z2−symmetry and short–range interactions; therefore, according to the
Mermin–Wagner theorem, in d = 1 there is no phase transition whereas in
d = 2 there is a symmetry–breaking transition of the same universality class
of the 2d Ising model. Independently of any statistical measure, let us now
probe, by computing χ(Σv) vs. v according to (5.20), if and how the topology
of the hypersurfaces Σv varies with v [FPS00].

5.2.2 Topological Hypothesis

Here we start with the observation that the topology change driven by a
continuously varying parameter in a family of two dimensional–surfaces is
accompanied by a sharp peak in the variance of the Gaussian curvature. This
is confirmed by computing the variance of the curvature of the level sets
of a generic function in the neighborhood of one of its critical points. This
is an example at large dimension. In other words, the tempting idea was
that of attributing to the deeper level of configuration space topology the
responsibility for the appearance of the strong and sudden ‘structural’ change
necessary to entail a phase transition. An important step forward in this
direction was obtained by studying the Ricci curvature fluctuations of the
configuration–space manifolds (Mu, g) of one and two dimensional lattice ϕ4

models equipped with different Riemannian metrics g(k), having nothing to
do with the ‘dynamical’ metric [Pet07]

gij = 2[E − V (q)]δij ,

In the manifolds (Mu, g
(k)), Mu is defined by the potential function V (q) of

the model, i.e.,

Mu = {q = (q1, . . . , qN ) ∈ R
N |V (q) ≤ u},

and the metrics g(k) used are arbitrary and independent of V (q). The re-
sults strongly support the idea that at the phase transition point in the two-
dimensional model, something happens that is to some extent independent of
the metric structure imposed on the configuration–space submanifolds Mu.
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This is resumed in the formulation of a topological hypothesis. Concisely,
consider the microcanonical volume [Pet07]

Ω(E) =
∫ E

0

dη
(2πη)N/2

ηΓ (N2 )

∫ E−η

0

du

∫

Σu

dσ

‖∇V ‖ ; (5.23)

the larger N the closer to some Σu are the microscopic configurations that sig-
nificantly contribute to the statistical averages, and therefore the idea is that
in order to observe the development of singular behaviors of thermodynamic
observables computed through Ω(E) in (5.23), it is necessary that a value
uc exist such that Σu<uc

are not diffeomorphic to (have a different topology
from) the Σu>uc

.
We give a direct and remarkable confirmation of this working hypothesis.

Confirmation is achieved by means of the numerical computation, again for
the one- and two-dimensional lattice ϕ4 models, of a topological invariant of
the equipotential hypersurfaces of configuration space, i.e.,

Σu = V −1(u) ≡ {q = (q1, . . . , qN ) ∈ R
N |V (q) = u}.

The topologic invariant, a diffeomorphism invariant, is the Euler–Poincaré
characteristic χ(Σu) of equipotential hypersurfaces computed through the
Gauss–Bonnet–Hopf formula

χ(Σu) = γ

∫

Σu

KG dσ,

where γ = 2/vol(Sn1 ) is twice the inverse of the volume of an even n-
dimensional sphere of unit radius, n = N − 1; KG is the Gauss–Kronecker
curvature of the manifold;

dσ =
√

det(g)dx1dx2 · · · dxn

is the invariant volume measure of Σu; and g is the Riemannian metric induced
from R

N .
Two things are evident from the numerical computations: the first is that

the u−pattern of χ(Σu) clearly makes a big difference between presence and
absence of a phase transition; moreover, it unambiguously locates the tran-
sition point. The second fact is that topology changes considerably even in
the absence of a phase transition; it is its way of changing with u that is
suddenly modified at the transition point. What we are after is the possible
deepening of our mathematical understanding of the origin of phase transi-
tions. In fact, the topological properties of configuration space submanifolds,
both of equipotential hypersurfaces Σu and of the regions Mu bounded by
them, are already determined when the microscopic potential V is assigned
and are completely independent of the statistical measures. The appearance
of singularities in the thermodynamic observables could then be the effect of
a deeper cause: a suitable topological transition in configuration space.
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In particular, it has been unveiled the existence of a quantitative connec-
tion between geometry and topology of the energy landscape in phase space,
or in configuration space, and thermodynamic entropy defined as [Pet07]

SN (E) = (kB/N) log[
∫

ΣE

dσ /‖∇H‖] :

S(E) ≈ kB

N
log

[

vol(N−1
1 )

N∑

i=0

bi(ΣE) +
∫

ΣE

dσ
R(E)
2NN !

]

+ r(E), (5.24)

where bi(ΣE) are the Betti numbers of the constant energy hypersurfaces
in phase space. Betti numbers are fundamental topological invariants of a
manifold. Another version of this formula reads

S(v) ≈ kB

N
log

[

vol(N−1
1 )

(

μ0 +
N−1∑

i=1

2μi(Mv) + μN

)

+ R̃(E(v))

]

+ r(E(v)),

(5.25)
which now holds in configuration space and where the μi(Mv) are the Morse
indexes (in 1− 1 correspondence with topology changes) of the submanifolds
Mv of configuration space. These formulas are approximate, but following a
different reasoning, and using the definition

S
(−)
N (v) = kB/N log[

∫

Mv

dNq],

also an exact formula can be derived, which reads [Pet07]

S
(−)
N (v) =

kB

N
log

⎡

⎣vol[Mv \
N (v)⋃

i=1

Γ (x(i)
c )] +

N∑

i=0

wi μi(Mv) + R(N, v)

⎤

⎦ ,

(5.26)
where the first term in the square brackets is the configuration–space volume
minus the sum of volumes of certain neighborhoods of the critical points of the
interaction potential, the second term is a weighed sum of the Morse indexes,
and the third term is a smooth function. Since the above formula provides
an exact relation between a thermodynamic function and some quantities
peculiar to the mathematics that we are using, it is of special interest. In fact,
it is thanks to this formula that we can convince ourselves that topology is
relevant to phase transitions [Pet07].

5.3 A Theorem on Topological Origin of Phase
Transitions

Recall that two given manifolds Σv and Σv′ have the same topology if they
can be continuously and differentiably deformed one into the other, that is if
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they are diffeomorphic. Thus by topology change we mean ‘loss of diffeomor-
phicity’. In this respect, the so–called topological theorem [FP04] says that
non–analyticity is the ‘shadow’ of a more fundamental phenomenon occurring
in configuration space: a topology change within the family of equipotential
hypersurfaces

Σv = {(q1, . . . , qN ) ∈ R
N | V (q1, . . . , qN ) = v},

where V and qi are the microscopic interaction potential and coordinates re-
spectively. This topological approach to PTs stems from the numerical study
of the Hamiltonian dynamical counterpart of phase transitions, and precisely
from the observation of discontinuous or cuspy patterns displayed by the
largest Lyapunov exponent at the transition energy [CPC00] (or, transition
temperature). Lyapunov exponents measure the strength of dynamical chaos
and cannot be measured in laboratory experiments, at variance with thermo-
dynamic observables, thus, being genuine dynamical observables they are only
measurable in numerical simulations of the microscopic dynamics. To get a
hold of the reason why the largest Lyapunov exponent λ1 should probe con-
figuration space topology, let us first remember that for standard Hamiltonian
systems, described by

H =
N∑

i=1

1
2
p2
i + V (q1, . . . , qN ),

λ1 is computed by solving the tangent dynamics equation [FP04]

d2ξi
dt2

+
(

∂2V

∂qi∂qj

)

q(t)

ξj = 0, (5.27)

where q(t) = [q1(t), .., qN (t)], and then

λ1 = lim
t→∞

1/2t log(ΣNi=1[ξ̇
2

i (t) + ξ2
i (t)]/Σ

N
i=1[ξ̇

2

i (0) + ξ2
i (0)]).

If there are critical points of V in configuration space, that is points qc =
[q1, . . . , qN ] such that ∇V (q)|q=qc

= 0, according to the Morse Lemma
[Hir76], in the neighborhood of any critical point qc there always exists a
coordinate system q̃(t) = [q̃1(t), .., q̃N (t)] for which

V (q̃) = V (qc)− q̃2
1 − · · · − q̃2

k + q̃2
k+1 + · · ·+ q̃2

N , (5.28)

where k is the index of the critical point , i.e., the number of negative eigen-
values of the Hessian of V . In the neighborhood of a critical point, (5.28)
yields

∂2V/∂qi∂qj = ±δij ,

which, substituted into (5.27), gives k unstable directions which contribute5 to
the exponential growth of the norm of the tangent vector ξ. This means that
5 Because chaos stems also from a different mechanism, see [CPC00].
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the strength of dynamical chaos, measured by the largest Lyapunov exponent
λ1, is affected by the existence of critical points of V . In particular, let us
consider the possibility of a sudden variation, with the potential energy v, of
the number of critical points (or of their indexes) in configuration space at
some value vc, it is then reasonable to expect that the pattern of λ1(v) – as
well as that of λ1(E) since v = v(E) – will be consequently affected, thus
displaying jumps or cusps or other ‘singular’ patterns at vc (this heuristic
argument has been given evidence in the case of the XY–mean–field model,
see [CPC00, CPC03]). On the other hand, Morse theory [Hir76] teaches us
that the existence of critical points of V is associated with topology changes of
the affects also the topology of the hypersurfaces {Σv}v∈R, provided that V is
a good Morse function (that is: bounded below, with no vanishing eigenvalues
of its Hessian matrix). Thus the existence of critical points of the potential V
makes possible a conceptual link between dynamics and configuration space
topology, which, on the basis of both direct and indirect evidence for a few
particular models, has been formulated [CPC00] as a topological hypothesis
about the relevance of topology for PTs phenomena.

More precisely, let VN (q1, . . . , qN ) : RN → R, be a smooth, bounded from
below, finite-range and confining potential6. Denote by Σv = V −1(v), v ∈ R,
its level sets, or equipotential hypersurfaces, in configuration space. Then let
v̄ = v/N be the potential energy per degree of freedom. If there exists N0, and
if for any pair of values v̄ and v̄′ belonging to a given interval Iv̄ = [v̄0, v̄1] and
for any N > N0 then the sequence of the Helmoltz free energies {FN (β)}N∈N

– where β = 1/T (T is the temperature) and β ∈ Iβ = (β(v̄0), β(v̄1)) –
is uniformly convergent at least in C2(Iβ) [the space of twice differentiable
functions in the interval Iβ ], so that limN→∞ FN ∈ C2(Iβ) and neither first
nor second order phase transitions can occur in the (inverse) temperature
interval (β(v̄0), β(v̄1)), where the inverse temperature is defined as

β(v̄) = ∂S
(−)
N (v̄)/∂v̄, while S

(−)
N (v̄) = N−1 log

∫

V (q)≤v̄N
dNq

is one of the possible definitions of the microcanonical configurational entropy.
The intensive variable v̄ has been introduced to ease the comparison between
quantities computed at different N -values [FP04].

This theorem means that a topology change of the {Σv}v∈R at some vc is
a necessary condition for a phase transition to take place at the corresponding
energy or temperature value. The topology changes implied here are those de-
scribed within the framework of Morse theory through attachment of handles
[Hir76, BM67].

Note that the topological condition of diffeomorphicity among all the hy-
persurfaces ΣNv̄ with v̄ ∈ [v̄0, v̄1] has an analytical consequence: the absence
of critical points of V in the interval [v̄0, v̄1]. For the proof, performed in the

6 These requirements for V are fulfilled by standard interatomic and intermolecular
interaction potentials, as well as by classical spin potentials.
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spirit of the Yang-Lee theorem [YL52] and using Bott’s ‘critical neck theorem’,
see [FP04] and references therein.

5.4 Phase Transitions, Topology and the Spherical
Model

Phase transitions (PTs) remain one of the most intriguing and interesting
phenomena in physics. Recall that mathematically, a PT is signaled by the loss
of analyticity of some thermodynamic function [YL52] in the thermodynamic
limit.

Recently, a new characterization of PTs has been proposed, that conjec-
tures that “at their deepest level PTs of a system are due to a change of the
topology of suitable submanifolds in its configuration space” [CPC03]. PTs
“would at a deeper level be related to a particular change in the topology of
the configuration space of the system” [CPC00]. This is known as the Topolog-
ical Hypothesis (TH) [CPC00]. In this new method one studies the topology
of the configuration space Γ of the potential energy V (x) of a system with N
degrees of freedom, determining the changes that take place in the manifolds

Mv = {x ∈ Γ : V (x)/N < v}

as the parameter v is increased. A topological transition (TT) is said to take
place at c if Mc−ε and Mc+ε are not homeomorphic. The idea is that somehow
TTs may be related to PTs.

The necessity of TTs at a phase transition point has been demonstrated
for short ranged, confining models [FP04]. In the XY model [CPC03] TTs
are found both in the mean field (MF) and unidimensional short range (SR)
versions, whereas a PT is present only in the MF case. This led to a refinement
of the TH: only sufficiently ‘strong’ TTs would be able to induce a PT. It was
found that in the MF version a macroscopic change of the Euler characteristic
happens at exactly the same point vc where a PT appears. Several other
models seem to be in agreement with this behavior [Gua04a]. But recently it
was proved for a nonconfining potential that no topological criterion seems to
be sufficient to induce a PT [Gua04b]. We show below that the same happens
for the spherical model, which is a confining, short ranged potential.

In the spherical model it has been found that there is a direct correlation
between the TT and the PT, in its mean field version [RS04]. Interestingly, in
the case of non-vanishing external field there is no PT, but the configuration
space displays a TT at energies that cannot be thermodynamically reached.

In this section, following [RGus05], we study the original Berlin–Kac spher-
ical model [BK52] for spins placed on a d−dimensional lattice, interacting with
their first neighbors. Using tools from topology theory we were able, for the
case of vanishing field, to determine its topology exactly (up to homology).
We show that the PT occurring for d ≥ 3 cannot be related to any discontinu-
ity in the homology of the manifolds at vc. For non-vanishing field we cannot
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characterize the topology completely for all v, but show that a very abrupt
change in the topology happens that does not have a corresponding PT. At
variance with the MF version, the value of v at which this topological change
occurs is thermodynamically accessible.

The spherical model is defined by a set of N spins εi lying on a d dimen-
sional hyper-cubic lattice and interacting through the potential [RGus05]

V = −1
2

∑

<ij>

Jij εiεj −H
∑

i

εi,

where Jij = J gives the strength of the interaction between nearest-neighbor
spins i and j, and H is an external field. The spin variables are real and
constrained to lie on the sphere SN−1 (i.e.,

∑
i ε

2
i = N). Periodic boundary

conditions are imposed on the lattice.
In [BK52] it is shown that, at zero field, a continuous PT appears at a

critical temperature Tc(d) for d ≥ 3, which is a strictly increasing function of
d (see Table 1). On the other hand, no PT is possible in an external field.

As in previous works, the thermodynamic function we use to relate the
statistical mechanical and topological approaches is the average potential en-
ergy per particle 〈v〉. Straightforwardly generalizing the results of [BK52] we
obtain Tc and 〈vc〉 for all dimensions (see Table 1). Although the specific de-
tails of 〈v〉 depend on d, some features are common to all hyper-cubic lattices:
〈v〉 → 0 for T →∞ and 〈v〉 → −d (its lower bound) when T → 0.

d kTc/J 〈vc〉/J

3 3.9573 -1.0216

4 6.4537 -0.7728

5 8.6468 -0.6759

6 10.7411 -0.6283

Table 5.1. Critical temperatures Tc and mean potential energies per particle 〈vc〉
for hyper-cubic lattices in d dimensions. Values obtained from analytical expressions
in [BK52].

In the topological approach one looks for changes in the topology of Mv as
v is increased. A topological change happens at a certain value vT if the man-
ifolds MvT −ε and MvT +ε are not homeomorphic [Hat02] for arbitrarily small
ε. To make a connection with statistical mechanics Casetti et al. [CPC00]
proposed the nontrivial ansatz that, at the phase transition, vT can be iden-
tified with 〈vc〉, the thermodynamical average critical potential energy per
particle. To study the topology of the configuration space of the spherical
model it is most convenient to write the potential using the coordinates xi
that diagonalize the interaction matrix through an orthogonal transformation
[RGus05]:
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V = −1
2

N∑

i=1

λix
2
i −

√
Nx1H (5.29)

where we set J = 1, and λi (i = 1, · · · , N) are the eigenvalues of the in-
teraction matrix, ordered from largest to smallest. We define the sets Cj ,
j = 0, · · · , N̂ , where N̂ + 1 is the number of distinct eigenvalues. Cj is the
set containing the indices of the eigenvalues that have the (j + 1)th largest
value. Therefore, |Cj | gives the degeneracy associated to the (j + 1)th largest
eigenvalue. The Frobenius–Perron theorem ensures that the largest eigenvalue
is not degenerated, i. e. C0 = {1}.

The critical points of this potential on the sphere

Γ = SN−1 = {x ∈ R
N :

N∑

j=1

x2
j = N}

are found using Lagrange multipliers. Along with the spherical constraint, the
critical point equations are [RGus05]:

x1(2μ + λ1) +
√

NH = 0, (5.30)
xi(2μ + λi) = 0, (i = 2, · · · , N),

where μ is the Lagrangian multiplier that results from enforcing the spherical
constraint. From these equations and Eq. (5.29) N̂ + 1 critical values of v are
obtained, denoted vk = −λl/2, with l ∈ Ck, and k = 0, · · · , N̂ (ordered from
smallest to largest). Notice that the degeneracy of the eigenvalues causes that
the corresponding critical points be in fact critical submanifolds. This implies
that in the directions tangent to the critical submanifolds the Hessian van-
ishes, which in turn implies that the potential is not a proper Morse function.
Nevertheless, using Bott’s extension of Morse theory the Euler characteris-
tic can be found exactly. More precisely, the Hessian has

∑j−1
i=0 |Ci| negative

eigenvalues when restricted to the submanifold normal to the jth critical sub-
manifold. However, profiting from the symmetries of the spherical model we
took a more direct route to study its topology. As we show below, for van-
ishing external field it is possible to characterize completely the topology of
the Mv, by explicitly giving the values of all the Betti numbers of the mani-
folds. Within Morse theory one can only obtain the alternate sum of the Betti
numbers (i.e. the Euler characteristic), or bounds for them [Mil65].

For H = 0 the critical manifolds Σvj
, j = 0, · · · , N̂ , are given by [RGus05]

Σvj
= {x ∈ Γ :

∑

i∈Cj

x2
i = N}

(see (5.30)). These are (hyper)spheres whose dimension is given by the de-
generacy of the corresponding eigenvalues. To understand the nature of the
topological change that happens at the critical values of v it is necessary to
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know the topology of the Mv for v between two critical values. We show below
that in the interval (vj , vj+1) all the manifolds Mv are homotopy equivalent
to SD−1, where D is the number of eigenvalues larger than −2v. In fact we
prove that SD−1 is a deformation retract of Mv, which in turn implies their
homotopy equivalence [Hat02].

A submanifold S ⊂ M is a deformation retract of a manifold M if there
exists a series of maps fν : M →M with ν ∈ [0, 1], such that f0 = I, f1(M) =
S and fν |S = I for all ν. The map when considered as f : M × [0, 1] → M
must be continuous. Let us take v ∈ (vj , vj+1). The deformation retract that
takes the manifold Mv onto its submanifold SD−1 = {x ∈Mv :

∑D
i=1 x2

i = N}
is given by x(ν) = (fν1 (x), · · · , fνN (x)) with [RGus05]

fνi (x) =

⎧
⎪⎨

⎪⎩

xi

√
1 + ν

∑N
k=D+1 x2

k/
∑D
k=1 x2

k for i ≤ D

xi
√

1− ν for i > D

(5.31)

This map can easily be shown to be continuous at all points x ∈Mv. The
properties for ν = 0 and ν = 1 are evidently fulfilled. It is also easy to see that
the retraction fν does not map any points outside Mv, since the image points
always lie on the sphere SN−1, and their potential energy does not exceed v.
It can also be seen that no points are mapped outside Mv, as follows. It is
easy to see that the image points always lie on the sphere SN−1, but it must
also be checked that their potential energy does not exceed v. For this, let us
define a trajectory as the set of points resulting of applying all the maps fν

to a single point in Mv. The potential energy of the points in the trajectory,
V ν(x) = V (x(ν)) is a linear function of ν. Thus, it must be bounded by the
potential energy of the endpoints. The initial point, ν = 0 has V (x) < v by
definition. The final point is on the sphere SD−1, where [RGus05]

V (x ∈ SD−1)
N

=
D∑

k=1

−λk
2

x2
k

N
<

D∑

k=1

v
x2
k

N
= v,

using the definition of v. We have used the fact that the trajectory is continu-
ous, which depends on the continuity of the map, that can be readily checked.
Indeed, (5.31) implies that the map can only be discontinuous in points xd
such that xi = 0 for i ≤ D, but these points satisfy

V (xd)
N

=
N∑

k=D+1

−λk
2

x2
k

N
≥

N∑

k=D+1

v
x2
k

N
= v

and thus they are outside Mv.
Homotopy equivalence implies that the Betti numbers of the Mv with

v ∈ (vj , vj+1) are the same of SD−1: bi(Mv) = 1 for i = 0 and i = D − 1
and bi(Mv) = 0 otherwise. Thus at each vj a topological transition occurs
that changes the topology of the phase space from one homotopy equivalent
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to SD−|Cj |−1 to one homotopy equivalent to SD−1. In terms of the Betti
numbers, each transition changes two of them from 0 to 1 and from 1 to 0.
Thus, at variance with other models, the magnitude of the Betti numbers is
not a useful quantity in order to characterize the TT. It is better to look
at changes in D − 1, the highest index of the Betti number that changes at
each transition, , i.e. the dimension of the deformation retract of the mani-
folds. Furthermore, as we have shown that the manifolds Mv are homotopy
equivalent to (hyper)spheres, the information about their dimension D − 1
completely characterizes their topology. Thus D is the relevant quantity to
be studied. As shown above, the increase of D at each TT is given by the
degeneracy of the corresponding eigenvalue.

In Bott’s extended Morse theory , we define the order of the critical sub-
manifolds as the number of negative eigenvalues of the Hessian of V −
μ(
∑N
i=1 x2

i −N) when restricted to the submanifold normal to the jth critical
submanifold. If the degeneracy |Cj | is o(N), given that D =

∑j
i=0 |Ci|, in the

N → ∞ limit D is equivalent to the order of the critical manifolds, which
is defined as the number of negative eigenvalues of the Hessian (

∑j−1
i=0 |Ci|)

when restricted to the submanifold normal to the jth critical submanifold
[RGus05].

Furthermore, the Hessian of the potential has
∑j−1
i=0 |Ci| negative eigenval-

ues when restricted to the submanifold normal to the jth critical submanifold.
In particular, if the degeneracy |Cj | is o(N), given that D =

∑j
i=0 |Ci|, in the

N →∞ limit D is equivalent to the order of the critical manifolds, defined as
the number of negative eigenvalues of the Hessian of the normal submanifold.
This generalizes to degenerate manifolds the definition of order of a saddle
point.

For the spherical model it can be shown that the spectrum of eigenvalues is
continuous in the infinite N limit. Thus, the set of N̂ + 1 critical energies will
be dense in [−d, d], the interval of allowed potential energies. Consequently
the model has a continuum of TTs. In this limit, and considering that D is
O(N), Because of this, for infinite size systems it is convenient to introduce
a use the continuous and normalized version of D, d(v) = D/N , and also a
degeneracy density , c(v). They are related by c(v) = ∂d(v)

∂v . In the following
we search for singularities in these functions or their derivatives which could
point to particularly strong TTs.

The spectrum of the adjacency matrix is given by [BK52]

λp = 2
d∑

i=1

cos(2πpi/N1/d), pi = 0, · · · , N1/d − 1. (5.32)

In the N →∞ limit, the degeneracy density is



678 5 Complex Nonlinearity: Combining It All Together

c(v) = (2π)d
∫ 2π

0

(Πd
i=1dωi)δ(v + λ(ω)/2)

=
∫ ∞

0

dx

π
cos(x v)(J0(x))d, (5.33)

where

λ(ω) = 2
d∑

i=1

cos(ωi).

It can be shown [RGus05] that the integral converges uniformly for all values
of d and therefore c(v) is a continuous function. The derivatives with respect
to v can be obtained by performing the derivative inside the integral. But,
as this is only valid if the resulting integral converges, this procedure allows
us to obtain only the first 3(d − 1)/24 derivatives. All these derivatives are
continuous except for the last, which is discontinuous only at the following
points: at odd values of v if d is odd, at even values of v/2 if d/2 is odd and
at odd values of v/2 if d/2 is even. But these values are clearly different from
the ones at which a PT takes place, for all values of d. The manifolds Mv

display TTs at the points 〈vc〉 where PTs occur, since there is a continuum of
TTs. These TTs, however, are not particularly abrupt. This non coincidence
between the levels where a special TT (vT ) and a PT (〈vc〉) take place has
also been observed in the φ4 mean field model [AAR04].

The only possibility left to look for a relationship between TT’s (in the
sense of a discontinuity of some function of the topology) and PT’s would
be in the higher derivatives of c(v), which cannot be studied by interchang-
ing the integral and derivative operations. This possibility seems to us rather
unreasonable, because it would imply not only that the derivative where dis-
continuities are to be looked for depends on the dimension of the lattice, but
also that those discontinuities present in lower order derivatives should be
disregarded.

We have thus shown that discontinuities in the derivatives of c(v) are not
sufficient to induce the PT present in the model. Nevertheless, it could be
expected that if, for some model, discontinuities were present in c(v) itself,
this could be enough to induce a PT.

In the following, adding an external field H to the system, we give a
counterexample to this possibility. Although this model presents no PT, we
find discontinuities in its function c(v). that this is not the case. Furthermore,
we show in the following that, even though in the case of a nonzero external
field there appear discontinuities in the function c(v) itself, no connection
between such TTs and PTs can exist, simply because the model does not
display any PTs at all. Furthermore, we will show in the following that adding
an external field H the model displays discontinuities in the function c(v)
itself. Nevertheless in this case the model does not have a phase transition
and consequently no connection between this singular TT and a PT can exist.
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With H �= 0 it is not so easy to find the homotopy type of the submanifolds
Mv, because of the breaking of the symmetry introduced by the field term
in the Hamiltonian. Nevertheless, using Morse theory it is at least possible
to establish the homotopy type of the submanifolds up to above the second
smallest critical energy, where an abrupt topological change is shown to take
place.

According to Morse theory, if there is one nondegenerate critical point at
c ∈ (a, b), the manifold Mc+ε is homeomorphic to Mc−ε ∪ ek, where ek is a
k−cell. In other words, at the critical point, a k−cell (i.e. a kD open disk) is
attached to the manifold, where k is the index of the critical point, defined
as the number of negative eigenvalues of the Hessian at that point.

From the critical point equations (5.30) we obtain that the smallest crit-
ical energy is v+ = −(λ1/2 + H), and the next is v− = −(λ1/2 − H)
[RGus05]. The Hessian of the potential on the sphere at the critical points
x± = (±

√
N, 0, · · · , 0) is a diagonal matrix with V ±

ii = λ1 ±H − λi (i > 1).
Therefore, at these two points the Hessian is not singular, which implies that
x± are nondegenerate critical points. But λ1 is the largest eigenvalue, there-
fore for v+ all the eigenvalues Vii are positive. This was to be expected because
this is the absolute minimum of the potential. Topologically this means that
for v < v− Mv is homotopy equivalent to a disk. For v = v− the index of the
critical point depends on the field: if λ2 < λ1 −H, v− is a minimum. Thus,
denoting the next critical value by v2, if v2 is the next critical point, Mv for
v ∈ (v−, v2) is homotopy equivalent to the union of two disjoint disks on the
sphere. However, for large values of N the topological scenario is different.
Since in this limit the spectrum of the adjacency matrix becomes dense, a
certain number k of its eigenvalues will fall into the interval (v+, v−). This
number becomes the order of the critical point at v−, and gives the dimension
of the k-cell that is attached to the disk. The manifold Mv for v ∈ (v−, v2)
is therefore homotopy equivalent to a sphere of k dimensions. For large N , k
becomes proportional to N . In the interval (v+, v−) the manifolds Mv have
the homotopy type of a point. At v− an abrupt change in the topology takes
place, and the Mv have now the homotopy type of a sphere with a macroscopic
number of dimensions.

For higher values of V , the critical values are given by vj = −λj/2 +
H2/2(λ1 − λj), but only for j such that λ1 − λj > H. This is consistent
with the absence of critical values between v+ and v−. The critical values vj
correspond to critical submanifolds, given by [RGus05]

{∈ Γ : x1 =
√

NH/(λj − λ1),
∑

k∈Cj

x2
k = 1−H2/(λj − λ1)2}.

Notice that, at variance with the case of vanishing H, there is a threshold
energy below which the critical values have been suppressed. The critical
submanifolds occurring at each vj are again hyper-spheres whose dimension
is given by the degeneracy of the corresponding eigenvalue λj . For all critical



680 5 Complex Nonlinearity: Combining It All Together

values we have calculated the order of the critical manifolds, d(v), as well
as the relative degeneracy, c(v), for a few values of d (see Fig. 2). The main
difference with the results for H = 0 is that now the connection between the
order and the topology of the different manifolds is less obvious, and we have
not been able to identify the homotopy types for all values of v. Nevertheless
we have found exactly the topological change that takes place at v−, and have
shown that it is macroscopic. It may come as a surprise that this very abrupt
change does not have a PT associated to it.

The use of tools from algebraic topology allowed us to characterize ex-
actly the homology of the successive manifolds of the configuration space of
the short range spherical model. We have shown that even though there is a
continuum of topological transitions, a function of the topology can be defined
whose derivatives display some discontinuities which could be associated to
PTs. For vanishing field, however, they are not sufficient to induce a PT. We
also explored the possibility that discontinuities in the function itself could
be able to induce a PT. For the case of non–vanishing field we have shown
that, even though such discontinuities are present, they do not have an asso-
ciated PT. These results seem to be against the ubiquity of the topological
hypothesis, at least in its present form.

We have shown that the manifolds of the configuration space of the short
range spherical model display a continuum of topological transitions. Hence
the necessity condition implied by the theorem in [FP04] is trivially met. Also,
strong discontinuities have been found either in a function of the topology or
in its derivatives. Although these discontinuities represent abrupt changes in
the topology we have shown that they are not associated to PTs. Conversely,
at the points where PTs take place no abrupt changes are observed in the
topology. These are the first results on a short range confining potential to
challenge the sufficiency of a topological mechanism in the origin of a phase
transition, as proposed by the topological hypothesis in its present form.

5.5 Topology Change and Causal Continuity

In this section, following [DS98], we elaborate on Topology Change and Causal
Continuity in the path–integral framework.

It is widely believed that any complete theory of quantum gravity must
incorporate topology change. Indeed, within the particle picture of quan-
tum gravity [Sor86a] the frozen topology framework for a generic spatial
3–manifold leads to the problem of spin–statistics violations and such wild
varieties of quantum sectors that it seems that a frozen topology is unmain-
tainable. There is one result, however, that has been cited as counter–evidence
for topology change: that of the singular propagation of a quantum field on a
trousers space-time in (1 + 1) dimensions. We will see how it may be possible
to incorporate this result naturally in a framework which nevertheless allows
topology change in general.
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The most natural way of accommodating topology changing processes in
quantum gravity is using the path–integral (path–integral) approach, although
there have also been some efforts in this direction within the Hamiltonian
picture [BK99]. We take a history in quantum gravity to be a pair (M, g),
where M is a smooth nD manifold and g is a time–oriented Lorentzian metric
on M .7 The amplitude for the transition from an initial space (V0, q0) to
a final space (V1, q1), where the Vi are closed (n − 1)−manifolds and the
qi are Riemannian (n − 1)−metrics, receives contributions from all compact
interpolating histories (M, g), satisfying the boundary conditions [DS98]

∂M = Vi � Vf , g|Vi,f
= qi,f ,

where � denotes disjoint union and V0 and V1 are initial and final space-
like boundaries of (M, g). We call the manifold M such that ∂M= Vi � Vf a
topological cobordism and (M, g) a Lorentzian cobordism. We will say that a
topological cobordism or a history is topology changing if M is not a product
V0 × I, where I is the unit interval. We will use the terminology topology–
changing transition to refer to the transition from V0 to V1 when V0 and V1

are not diffeomorphic, without reference to any particular cobordism.
When V0 and V1 are not diffeomorphic, the existence of a topological

cobordism, M , is equivalent to the equality of the Stiefel–Whitney numbers
of V0 and V1 and is not guaranteed in arbitrary dimensions. If a topological
cobordism does not exist we would certainly conclude that that transition is
forbidden. In (3+1) and lower dimensions, however, a topological cobordism
always exists. Then, given a topological cobordism, M , a Lorentzian cobor-
dism based on M will exist iff [Rei63, Sor86b]: (1) n is even and χ(M) = 0,
or (2) n is odd and χ(V0) = χ(V1). In (3+1) dimensions, a topological cobor-
dism with χ(M) = 0 always exists and thus any 3D V0 and V1 are Lorentz
cobordant.

The theorem of Geroch [Ger67], extended to n–space-time dimensions,
tells us that if a time oriented Lorentzian metric exists on a topology chang-
ing topological cobordism M then that metric must contain closed time-like
curves. We consider these to be a worse pathology than the alternative which
is to allow certain singularities in the metric i.e., to weaken the restriction
that the metric be Lorentzian everywhere, and which, following the proposal
of Sorkin [Sor97], is what we will choose to do in this section. The singularities
which we need to admit in order to be able to consider all possible topologi-
cal cobordisms are rather mild. Given any topological cobordism (M ;V0, V1),
there exists an almost everywhere Lorentzian metric g on M which has sin-
gularities which take the form of degeneracies where the metric vanishes at
(finitely many) isolated points. These degeneracies each take one of (n + 1)
standard forms described by Morse theory as we shall relate. Allowing such
singular metrics seems natural in light of the fact that within the path inte-
gral formulation, paths are not always required to be smooth; in fact they are
7 Strictly speaking, a history is a geometry and only represented by (M, g).
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known to be distributional. Moreover, such degeneracies are allowed within a
vielbien formulation of gravity.

By allowing such mildly singular Lorentz cobordisms in the path–integral
no topological cobordism is excluded and, in particular, every transition in
3+1 dimensions is viable at this level of the kinematics. We will refer to
these cobordisms as Morse cobordisms. However it seems that dynamically
some Morse cobordisms may be more equal than others. The (1 + 1)D case
gives us an idea about a possible class of physically desirable histories. For a
massless scalar quantum field on a fixed (flat) metric on the (1 + 1)–trousers
topology there is an infinite burst of energy from the crotch singularity that
propagates along the future light cone of the singularity. This tends to suggest
that such a history would be suppressed in a full path–integral for (1 + 1)
quantum gravity. By contrast, the singular behavior of a quantum field on
the background of a flat metric on the (1 + 1) yarmulke cobordism (i.e., a
hemisphere representing creation/destruction of an S1 from/to nothing) is of a
significantly different nature, in the sense that when integrated over the future
null directions the stress–energy is finite. The singularity in the yarmulke case
is therefore effectively ‘squelched’, while it propagates in the trousers. Indeed,
there is a suppression of the trousers cobordism in the path–integral and an
enhancement by an equal factor of the yarmulke cobordism (over the trivial
cylinder) and separate from the suppression due to the backgrounds not being
classical solutions [DS98].

What features of the trousers and yarmulke might account for the different
behavior of quantum fields in these backgrounds? A closer look shows that in
the Morse cobordism on the trousers manifold an observer encounters a dis-
continuity in the volume of her causal past as she traverses from the leg region
into the body. Since such a discontinuity is absent in the yarmulke topology
and cylinder topologies, Sorkin has conjectured that there may be an intimate
connection between the discontinuity in the volume of the causal past/future
of an observer (a causal discontinuity) and the physically undesirable infinite
burst of energy for a scalar field propagating in such a background. And then
further, that this could signal a suppression of the amplitude for a causally
discontinuous spacetime in the full path–integral in quantum gravity [DS98].

5.5.1 Morse Theory and Surgery

Suppose M is an nD, compact, smooth, connected manifold such that ∂M has
two disjoint (n−1)D components, V0 and V1, which are closed and correspond
to the initial and final boundaries of the spacetime, respectively.

Any such M admits a Morse function f : M → [0, 1], with f |Vi
= 0,

f |Vf
= 1 such that f possesses a set of critical points {pk} (∂af(pk) = 0)

which are nondegenerate (i.e., the Hessian ∂a∂f at these points is invertible).
It follows that the critical points of f are isolated and that because M is
compact, there are only a finite number of them.



5.5 Topology Change and Causal Continuity 683

Using this Morse function and any Riemannian metric hab on M , we may
then construct an almost everywhere Lorentzian metric on M with a finite
number of isolated degeneracies [DS98]

gab = hab(hcd∂cf∂df)− ζ∂af∂bf, (5.34)

where the constant ζ > 1. Clearly, gab is degenerate (zero) precisely at the
critical points of f . We refer to these points as Morse singularities. Expressing
a metric on M in terms of its Morse functions f relates the latter to the causal
structure of the spacetime in an intimate manner, as we will see.

We now make the proposal that in the path–integral, for the amplitude
for a topology changing process, for each topological cobordism, only metrics
that can be expressed in the form (5.34) i.e., which can be constructed from
some Morse function and some Riemannian metric) will be included. We call
such metrics the Morse metrics. Note that since a Riemannian metric and
Morse function always exist on a given topological cobordism, no cobordism
is ruled out of the path–integral at this kinematical level.

A comment is in order here to relate this proposal to previous work on
Lorentzian topology change and Morse theory. In work by [Yod72] the at-
titude was taken that the Morse singularities should not be considered as
part of spacetime, in other words that the Morse points themselves were to
be removed by sending them to infinity. In contrast, here we are suggesting
that the Morse points should remain as part of the spacetime. Amongst other
things, this entails extending the usual gravitational action to Morse metrics.
Keeping the Morse points still allows a well-defined causal structure even at
the Morse points and hence a well-defined causal ordering of all the spacetime
points. This is something which ties in well with the idea that the fundamental
underlying structure is a causal set.

Morse functions

Before proceeding any further, we briefly review some relevant properties of
Morse functions which we will employ later. Morse Lemma reads: If p ∈ M
is a critical point of a Morse function f : M → [0, 1], then there exists local
coordinates x1, x2 · · ·xn in some neighborhood of p in terms of which f is
given, in that neighborhood, by

f(x1, ...xn) = c− x2
1 − x2

2 · · · − x2
λ + x2

λ+1 · · ·+ x2
n

for 0 ≤ λ ≤ n and c = const.
The number of negative signs λ in the above expression is the number of

maxima of f at the point p and is referred to as the Morse index of f at p. For
example, the height function on the (1 + 1)–yarmulke topology has index 0
at the bottom point, while that on its time reversed counterpart has index 2.
The height function on the trousers topology on the other hand has a Morse
point of index 1 at the crotch as does its time reverse.
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A vector field ξ(p) : f → R on M is gradient-like for f if (a) ξ(p)(f) > 0
for every non-critical point p of f (b) For every index λ critical point pc,
the components of ξ(p) in terms of the local coordinates x1 · · ·xn about a
neighborhood of pc are (−x1, · · · − xλ,+xλ+1, · · ·xn). Note that (a) ensures
that for p not critical ξ(p) points in the direction of increasing f , while (b)
ensures that ξ(p) is well behaved at the critical point, i.e., ξ(pc) = 0.

The Morse number of M on the other hand is defined to be the minimum
over all Morse functions f : M → [0, 1] of the number of critical points
of f . Thus, for example, although the cylinder topology in (1 + 1)D allows
Morse functions with any even number of critical points, its Morse number is
nevertheless zero. We then refer to a topological cobordism of Morse number
0 as a trivial cobordism and that with Morse number 1 as an elementary
cobordism. We have the following lemma: Any cobordism can be expressed as
a composition of elementary cobordisms [MS74)].

This decomposition is however not unique, as can be seen in the case of
two dimensional closed universe S2, shown in figure (5.1). Here we see that
S2 could be decomposed into (a) two elementary cobordisms, yarmulke and
its time reverse, or (b) into four elementary cobordisms, namely, the yarmulke
and an upside down trousers topology with two time reversed yarmulkes, one
capping each leg. Clearly, the causal structure of the two resulting histories is
very different.

Before introducing surgery we define Dk to be an open k ball and Bk to
be the closed k ball (and B1 = I).

A surgery of type λ on an n − 1 dimensional manifold V is defined to
be the following operation: Remove a thickened embedded (λ − 1)–sphere,
Sλ−1 × Dn−λ from V and replace it with a thickened (n− λ− 1)–sphere,
Sn−λ−1×Bλ by identifying the boundaries using a diffeomorphism, d : Sλ−1×
Sn−λ−1 → Sn−λ−1 × Sλ−1.

In performing a surgery, effectively, a (λ− 1)−sphere is ‘destroyed’ and an
(n− λ− 1)−sphere is ‘created’ in this process.8 We then have the following
theorem (which only depends on surgery type): If an n− 1 dimensional man-
ifold V1 can be obtained from another (n − 1)D manifold V0 by a surgery of
type λ, then there exists an elementary cobordism M , called the trace of a
surgery, with boundary V0 � V1 and a Morse function f on M , f : M → [0, 1]
which has exactly one Morse point of index λ [MS74)].

As an example, consider V0 = S2 and V1 = S1 × S1 or a wormhole.
Performing a type 1 surgery on S2 can result in the manifold S1 × S1, where
an S0 is ‘destroyed’ and an S1 is ‘created’. The above theorem then says that
there exists an elementary cobordism M with boundary S2 � S1 × S1 and
a Morse function f on M with a single critical point of index λ = 1. The
8 Note that this is not a unique operation — there may be many inequivalent ways

to embed an Sλ−1 in V e.g., an S1 may be knotted in three dimensions) as well
as isotopically distinct gluing diffeomorphisms.
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Fig. 5.1. Two ways of decomposing S2 into elementary cobordisms.

Fig. 5.2. ‘Tracing out’ a type 1 surgery on S2, whereby an S0 is destroyed and an
S1 is created to give the torus S1 × S1.

manifold M may be visualized as shown in figure (5.2). We now explain how
to construct the trace of a general surgery.

A λ surgery that turns V0 into V1 gives us an embedding i : Sλ−1 →
V0 and a neighborhood, N , of that embedded sphere whose closure, N̄ , is
diffeomorphic to Sλ−1 ×Bn−λ. Indeed, we have a diffeomorphism

d : ∂(N̄) → Sλ−1 × Sn−λ−1,

the ‘surgery diffeomorphism.’ Now Sλ−1×Sn−λ−1 is the boundary of Sλ−1×
Bn−λ and we can extend d to a diffeomorphism, d̃ : N̄ → Sλ−1 ×Bn−λ such
that d̃ restricts to d on the boundary. d̃ is unique up to isotopy since Bn−λ is
topologically trivial.
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We construct the trace of the surgery by gluing together the two manifolds
M1 = V0 × I and M2 = Bλ × Bn−λ using a diffeomorphism from part of the
boundary of one to part of the boundary of the other in the following way.
(N̄ , 1) is part of ∂M1 and is diffeomorphic via d̃ to Sλ−1 × Bn−λ which is
part of the boundary of M2. We identify all points x ∈ (N̄ , 1) and d̃(x). The
resultant manifold clearly has one disjoint boundary component which is V0.
That the other boundary is diffeomorphic to V1, i.e. the result of the surgery
on V0, takes a little more thought to see. Roughly speaking, in doing the
gluing by d̃ we are eliminating N̄ from V0 and replacing it with the rest of the
boundary of M2 (the complement of Im(d̃) in ∂M2) i.e. Bλ×Sn−λ−1 exactly
as in the original surgery.

Thus the trace of a surgery is a manifold with boundary with the property
that one part of the boundary is the original manifold and the other part of
the boundary is the surgically altered manifold (up to diffeomorphisms).

Finally, defining an (n−1)D submanifold, Vt, of M to be a regular level of
a Morse function, f on M , if Vt = f−1(a) for some 0 ≤ a ≤ 1 and Vt contains
no Morse point, the converse to above theorem is: If the region between two
regular levels, V0 and V1 of a Morse function on a manifold M contains only
one critical point of index λ then V0 and V1 are related by a type λ surgery
and M is diffeomorphic to the trace of that surgery and such that in this
region of M an Sλ−1 is destroyed and an Sn−λ−1 is created.

We therefore see that there is a 1 − 1 correspondence between the type
λ of a surgery on an n − 1D manifold V0 and the index λ of an elementary
cobordism from V0 to V1.

As an example, consider V0 = S2 and V1 = S1 × S1 or a wormhole.
Performing a type 1 surgery on S2 can result in the manifold S1 × S1, where
an S0 is ‘destroyed’ and an S1 is ‘created’. The above theorem then says that
there exists an elementary cobordism M diffeomorphic to the trace of this
surgery, with boundary S2 � S1 × S1 and a Morse function f on M with a
single critical point of index λ = 1. The ‘traced’ surgery may be visualized as
shown in figure (5.2).

Examples

The nD yarmulke cobordism and its time reverse hold a special place in our
analysis since they are easy to characterize. If f : M → [0, 1] has a single
Morse point of index 0 then M is the trace of the surgery of type 0 in which
an S−1 ≡ Φ is destroyed and an Sn−1 is created. If M is connected this implies
that M ∼= Bn. In other words, a cobordism can have a single index 0 point
if and only if it is the yarmulke. This means that when a component of the
universe is created from nothing (as opposed to being created by branching
off from an already existing universe) its initial topology must be that of
a sphere, no matter what the dimension: the big bang always results in an
initially spherical universe. This might be thought of as a ‘prediction’ of this
way of treating topology change. A similar argument for the time reversed
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case implies a connected cobordism can have a single Morse point of index
n iff it is the time reversed yarmulke and the universe must be topologically
spherical before it can finally disappear in a big crunch.

The trousers and its higher dimensional analogues are also important ex-
amples. There exists a Morse function on the (1+1)–trousers topology which
possesses a single Morse point of index 1 and the trousers is therefore the
trace of a surgery of type 1 in which an embedded S0×D1 is deleted from the
initial S1 �S1 and replaced with a B1×S0 to form a single S1. In (n− 1)+1
dimensions, the higher dimensional trousers (the manifold Sn with three open
balls removed) for the process Sn−1 �Sn−1 → Sn−1 has an index 1 point and
is the trace of a type 1 surgery in which an S0 × Dn−2, i.e., two balls, are
removed and an Sn−2 ×B1, or wormhole, added. In these processes, parts of
the universe which were spatially far apart suddenly become close (in these
cases the parts of the universe are originally in disconnected components of
the universe, but this isn’t the defining characteristic of index 1 points). An
index n− 1 point is the time reverse of this and corresponds to a type n− 1
surgery in which a wormhole is removed (or cut) and the ends ‘capped off’
with two balls, so that neighboring parts of the universe suddenly become
distant.

It seems intuitively clear from these examples that there is something
causally peculiar about the index 1 and n− 1 points and in the next section
we give a precise statement of a conjecture that encapsulates this.

5.5.2 Causal Discontinuity

Borde and Sorkin have conjectured that (M, gab) contains a causal discon-
tinuity if and only if the Morse function f contains an index 1 or an index
n−1 Morse point. What do we mean by causal discontinuity? There are many
equivalent conditions for a Lorentzian spacetime to be causally discontinuous
[HS74] and we define a Morse metric to be causally discontinuous iff the space-
time minus the Morse points (which is Lorentzian) is. Roughly speaking, a
causal discontinuity results in the causal past or future of a point in spacetime
jumping discontinuously as the point is continuously moved around. We see
that behavior in the (1+1)−trousers. Clearly the same kind of thing will hap-
pen in the higher dimensional trousers, but not in the yarmulkes. Furthermore
in the cases of index λ �= 1, n− 1, the spheres that are created and destroyed
are all connected and so it seems that neighboring parts of the universe remain
close and distant ones remain far part.

To lend further plausibility to the conjecture we will work out an example,
the index 1 point in 1+1 dimensions, in detail. Choose a neighborhood of the
Morse point p in which the Morse function has the standard form [DS98]:

f(x, y) = f(p)− x2 + y2 (5.35)

in terms of some local coordinates (x, y). We take the flat Riemannian metric
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ds2
R = hμνdx

μdxν = dx2 + dy2 (5.36)

Define the Morse metric gμν as in equation 5.34 with ζ = 2 and ∂μf =
(−2x, 2y) to obtain

ds2
L = −4(xdx− ydy)2 + 4(xdy + ydx)2 (5.37)

This metric is actually flat since 2(xdx−ydy) = d(x2−y2) and 2(xdy+ydx) =
2d(xy). The hyperbolae xy = c, c constant, are the integral curves of the vector
field ξμ = hμν∂νf and the spatial ‘surfaces’ of constant f are the hyperbolae
x2 − y2 = d, d constant.

What are the null curves in the neighborhood of p? We have ds2
L = 0

which implies

d(x2 − y2) = ±2d(xy) (5.38)
x2 − y2 = ±2xy + b (5.39)

The null curves that pass through p are given by b = 0 so that there are four
solutions: y = (±1±

√
2)x. These are the straight lines through p at angles π8 ,

3π
8 , 5π

8 , 7π
8 , to the x-axis. These are the past and future light ‘cones’ of p. The

null curves which don’t pass through p are given by the hyperbolae x′y′ = c′

and x′2 − y′2 = d′ where (x′, y′) are rotated coordinates

x′ = cos
π

8
x + sin

π

8
y (5.40)

y′ = −sin
π

8
x + cos

π

8
y. (5.41)

The higher dimensional case can be similarly analyzed. Now we have
[DS98]

f(x,y) = f(p)− x2
1 − · · · − x2

λ + y2
1 + · · ·+ y2

n−λ (5.42)

Take the Cartesian metric in the local coordinates and let r2 = x2
1 + . . . x2

λ

and ρ2 = y2
1 + . . . y2

n−λ so

ds2
R = dr2 + r2dΩ2

λ−1 + dρ2 + ρ2dΩ2
n−λ−1 (5.43)

The Morse metric we construct from these and ζ = 2 is

ds2
L = 4(r2 + ρ2)[r2dΩ2

λ−1 + ρ2dΩ2
n−λ−1] (5.44)

+4(ρdr + rdρ)2 − 4(rdr − ρdρ)2 (5.45)

This is not flat for n ≥ 3. We can now solve ds2
L = 0 for a fixed point on

the (λ − 1)-sphere and (n − λ − 1)-sphere and find that the past and future
light cones of p have base Sλ−1×Sn−λ−1. Note that this base is disconnected
for λ = 1 or n − 1. The light cones of other points are more complicated to
calculate but a similar argument to that for the 1 + 1 example shows that
there is a causal discontinuity for λ = 1 or n− 1.
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From now on we will assume that the Borde–Sorkin conjecture holds. Thus,
we can search for causally continuous histories on M by asking if it admits
any Morse function f which has no index 1 or n− 1 critical points: a history
corresponding to such an f would be causally continuous. If on the other
hand, such an f does not exist, i.e., all Morse functions on M have critical
points of index either 1 or n−1, then M does not support causally continuous
histories.

We should remind ourselves that for a given Morse function f on M the
number of index λ critical points mλ, is not a topological invariant; in general
different Morse functions will possess different sets of critical points. However
there are lower bounds on the mλ depending on the homology type of M . For
the topological cobordism (M,V0, V1) we have the Morse relation [DS98],

∑

λ
(mλ − βλ(M,V0))tλ = (1 + t)R(t), (5.46)

where βλ(M,V0) are the Betti numbers of M relative to V0 and R(t) is a
polynomial in the variable t which has positive coefficients [NS83, FDN92].
Letting t = −1, we immediately get the relative Euler characteristic of M in
terms of the Morse numbers,

χ(M,V0) =
∑

λ
(−1)λmλ. (5.47)

Another consequence of (5.46) is,

mλ ≥ βλ(M,V0) ∀λ, (5.48)

which places a lower bound on the mλ.

5.5.3 General 4D Topology Change

As we have noted, in nD critical points of index 0 and n correspond to a
big bang and big crunch, which allow causally continuous histories. It is only
for n ≥ 4 that other types of causally continuous histories can exist. For
example, in 4 dimensions, elementary cobordisms with index 1 or 3 critical
points correspond to causally discontinuous histories while those of index 2
are causally continuous.

For n = 4, we have already mentioned that any two 3 manifolds V0 and
V1 are cobordant, i.e., there is a 4 dimensional M such that ∂M = V0 � V1.
However, we can ask whether, given a particular pair {V0, V1}, a cobordism
M exists which admits a causally continuous metric. If not, then the Sorkin
conjecture would imply that the transition V0 → V1 would be suppressed. In
other words, does a cobordism M exist which admits a Morse function with
no index 1 or 3 points? The answer to this is supplied by a well known re-
sult in 3 manifold theory, the Lickorish–Wallace theorem, which states that
any 3−manifold V1 can be obtained from any other V0 by performing a series
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of type 2 surgeries on V0. Thus, by Theorem 1 there exists an interpolating
cobordism M which is the trace of this sequence of surgeries and which there-
fore admits a Morse function with only index 2 points, so that M admits a
causally continuous metric.

This result has the immediate consequence that even if the Sorkin and
Borde–Sorkin conjectures hold and causally discontinuous histories are sup-
pressed in the path–integral, no topological transition V0 → V1 would be ruled
out in 3+1 dimensions. Thus, in this sense, there is no ‘causal’ obstruction to
any transition V0 → V1 in 3+1 dimensions, just as there is no topological (nor
Lorentzian) obstruction in 3+1 dimensions.

This is somewhat disappointing, however, since there are some transitions
that we might hope would be suppressed. An important example is the process
in which a single prime 3-manifold is produced. Quantized primes or topolog-
ical geons occur as particles in canonical quantum gravity similar to the way
skyrmions and other kinks appear in quantum field theory (see [Sor86a]). We
would therefore not expect single geon production from the vacuum. How-
ever, the restriction of causal continuity will not be enough to rule this out
and we’ll have to wait for more dynamical arguments. This situation is in
contrast to that for the Kaluza–Klein monopole where there’s a purely topo-
logical obstruction to the existence of a cobordism for the creation of a single
monopole [Sor86b] (though that case is strictly not within the regime of our
discussion since the topology change involved is not local but changes the
boundary conditions at infinity).

This result, however, says nothing about the status of any particular topo-
logical cobordism in the path–integral. In other words, it may not be true that
a given topological cobordism, M , admits a causally continuous Morse metric
[DS98].

5.5.4 A Black Hole Example

The pair creation of black holes has been investigated by studying Euclidean
solutions of the equations of motion which satisfy the appropriate boundary
conditions for the solution to be an instanton for false vacuum decay. One
does not have to subscribe to the Euclidean path–integral approach to quan-
tum gravity in order to believe that the instanton calculations are sensible.
Indeed, we take the attitude that the instantons are not ‘physical’ but only
machinery useful for approximately calculating amplitudes and that the func-
tional integral is actually over Morse metrics. The issue of whether quantum
fields can propagate in a non-singular way on these Morse geometries is there-
fore relevant and the question arises as to whether causally continuous Morse
metrics can live on the instanton manifold.

The doubled instanton, or bounce, corresponding to the pair creation and
annihilation of non-extremal black holes has the topology S2×S2−pt [GS91].
Let us compactify this to S2 × S2. The fact that S2 × S2 is closed implies
that it will include at least one universe creation and one universe destruction,
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corresponding to Morse index 0 and 4 points, respectively. This can be seen
from the Betti numbers, β0 = β4 = 1, β1 = β3 = 0 and β2 = 2 so the Morse
inequalities imply that m0 ≥ 1 and m4 ≥ 1. Although β1 = β3 = 0 we cannot
conclude that there exists a Morse function that saturates the bounds of the
inequalities (see the next section for an example). We will prove that such a
Morse function exists (with m0 = m4 = 1, m1 = m3 = 0 and m2 = 2) by
explicit construction on the half-instanton, S2 ×B2.

Let (θ, φ) be standard polar coordinates on S2 and (r, ψ) polar coordinates
on B2, where θ ∈ [0, π], φ ∈ [0, 2π], 0 ≤ r ≤ 1 and ψ ∈ [0, 2π]. The boundary
of S2×B2 is S2×S1 so that S2×B2 corresponds to the creation from nothing
of an S2 × S1 wormhole.

Define the function [DS98],

f(θ, φ, r, ψ) =
1
3
(1 + r2 + cos(1− r2)θ). (5.49)

Now, f : S2 × B2 → [0, 1]. The level surface f−1(1) satisfies the condition
r = 1. This is easily seen to be the boundary S2×S1 of S2×B2. On the other
hand, the level surface f−1(0) satisfies the condition r = 0, θ = π which is a
point on S2 ×B2.

We find the critical points of f by noting that

∂rf =
2
3
r +

2
3
rθ sin(1− r2)θ and ∂θf = −1

3
(1− r2) sin(1− r2)θ,

while ∂φf = ∂ψf = 0 everywhere. Thus, there are only two (and therefore
isolated) critical points of f , i.e., p1 = (r = 0, θ = π) and p2 = (r = 0, θ = 0)
which are not on the boundary. In order to show the critical points are non-
degenerate and to determine their indices we make use of the Morse Lemma
and rewrite f in suitable local coordinate patches.
Near p1: At p1, f = 0. In the neighborhood of p1, we may write θ = π − ε
where ε and r are both small and of the same order (note that the topology
of this neighborhood is just B2 ×B2). Then,

cos (1− r2)θ ≈ cos (π − ε) (5.50)

≈ −1 +
1
2
ε2. (5.51)

and putting x1 = r√
3

sinψ, x2 = r√
3

cosψ, x3 = ε√
6

sinφ and x4 = ε√
6

cosφ,
we see that

f ≈ x2
1 + x2

2 + x2
3 + x2

4. (5.52)

Thus, p1 is an index 0 point.
Near p2: At p2, f = 2

3 . In the neighborhood of p2, r and θ are small and of
the same order. Then,

f ≈ 2
3

+
1
3
r2 − 1

6
θ2, (5.53)
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and using y1 = θ√
6

sinφ and y2 = θ√
6

cosφ, y3 = r√
3

sinψ, y4 = r√
3

cosψ, we
see that

f ≈ 2
3
− y2

1 − y2
2 + y2

3 + y2
4 . (5.54)

So p2 is an index 2 point.
The existence of such a Morse function with two critical points, one of

index 0 and the other of index 2, shows that the black hole pair production
topology can support histories that are causally continuous. The index 0 point
is the creation of an S3 from nothing and the index 2 point is the transition
from S3 to S2 × S1. That this is means that a Morse function with the same
Morse points exists on the original non-compact cobordism, half of S2×S2−
{point} was later shown in [DG98]. This result is evidence of consistency
between the conclusion that the existence of an instanton implies that the
process has a finite rate (approximated by ẽ−I where I is the Euclidean action)
and the idea that only causally continuous Morse histories contribute to the
path–integral [DS98].

We note that a simple generalization of the above Morse function shows
that the higher dimensional black hole pair creation-annihilation topological
cobordism Sn−2×B2 admits a Morse function with one index 0 point and an
index (n− 2) point and so supports histories that are causally continuous for
any dimension n > 4 (though the actual instanton solution is unknown). It is
also interesting that there is another simple cobordism for the transition from
S3 to S2 × S1 which is B3 × S1 with an embedded open four-ball deleted.
This, however, by virtue of the Morse inequalities, admits no Morse function
without an index 1 point and so is causally discontinuous. In some sense, this
second causally discontinuous process is the way one might naturally imagine
a wormhole forming: two distant regions of space coming ‘close in hyperspace’
and touching to form the wormhole. The index 2 cobordism for creation of a
wormhole is harder to visualize.

5.5.5 Topology Change and Path Integrals

We have described a rather natural framework for considering topology change
within the path–integral for quantum gravity based on Morse theory. Two key
conjectures lead to the proposal that only causally continuous cobordisms be
included in the Sum and that these are identified with Morse metrics with
no index 1 or n− 1 points. The Lickorish–Wallace theorem on surgery on 3–
manifolds together with the Borde–Sorkin conjecture means that any topology
changing transition in (3+1)D is achievable by a causally continuous cobor-
dism. The higher dimensional statement is not known. We have shown that
the black hole pair production instanton S2 × S2 admits causally continuous
Morse metrics whereas the ‘U–tube’ cobordism for pair production of topo-
logical geons of any sort is necessarily causally discontinuous [DS98].

A possible resolution that might save the geon spin–statistics result, is
that there must be a weakness in the sequence of conjectures to which we
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have drawn attention and which form the framework in which causal conti-
nuity becomes so central. The Borde–Sorkin conjecture, that a Morse metric
is causally continuous iff it contains no index 1 or (n − 1) points, seems to
be the most solid. The Sorkin conjecture that infinite energy/particle produc-
tion would occur in a Morse spacetime iff it contained a causal discontinuity
seems plausible but would need to be verified by more examples than the
1+1 dimensional trousers and yarmulke studied so far. In particular, the first
example of a causally continuous spacetime that is not the yarmulke occurs
in 3+1 dimensions. Work on this second conjecture will be easier once the
first is proved since then simple examples of causally continuous metrics can
be written down using the Morse construction. Then finally, there is the idea
that the singular behavior of quantum fields on a causally discontinuous back-
ground is a signal that it is infinitely suppressed in the path–integral. What
one means by this is the following. Consider a scalar field minimally coupled
to gravity. The path integral is [DS98]

∑

all topologies

∫
[dg][dφ]expi

∫ √−gR+i
∫ √−g(∂φ)2 , (5.55)

where we have omitted the explicit statement about boundary conditions. We
may integrate out the scalar field degrees of freedom, i.e.,

∫
[dφ]expi

∫ √−g(∂φ)2 = F [g]. (5.56)

The functional F [g] which is the path integral for a scalar field in a fixed
background can now be regarded as an overall weight in the path integral
over metrics,

∑

all topologies

∫
[dg]F [g]expi

∫ √−gR. (5.57)

The idea is that F [g] is zero if g is causally discontinuous.
Perhaps, however, all the conjectures do hold at the continuum level and

the simplest loophole of all is that the path–integral should be defined funda-
mentally as a sum over whatever discrete structure will prove to underly the
differentiable manifold of general relativity. If it is a causal set then all quan-
tities calculated will be regulated. The elimination altogether of the causally
discontinuous cobordisms would then be too severe a truncation, and even if
they are still suppressed, they might give a non-trivial contribution.

For more details, see [DS98].

5.6 ‘Hard’ vs. ‘Soft’ Complexity: A Bio-Mechanical
Example

In this concluding section we discuss the ‘hard’ vs. ‘soft’ approaches to com-
plexity, using a paradigmatic example of a complex system: human/humanoid
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bio-mechanics (see subsection 2.2.2 above). Namely, recently, we have pro-
posed the following complexity conjecture (see [IS08]): In a combined bio-
mechanical system, where the action of Newtonian laws cannot be neglected,
it is the mechanical part that determines the lower limit of complexity of the
combined system, commonly defined as the number of mechanical DOF . The
biological part of such system, as being ‘more intelligent’, naturally serves as
a ‘controller’ for the ‘non–intelligent’ mechanical ‘plant’. Although, in some
special cases, the behavior of the combined system might have a ‘simple’
output, the realistic internal state–space analysis shows that the total sys-
tem complexity represents either the superposition, or a kind of ‘macroscopic
entanglement ’ of the two partial complexities. Neither ‘mutual cancelling’
nor ‘averaging’ of the mechanical degrees of freedom generally occurs in such
bio-mechanical system. The combined system has both dynamical and con-
trol complexities. The ‘realistic’ computational model of such system also has
its own computational complexity . We have demonstrated the validity of the
above conjecture using the example of the physiologically realistic computer
model. We have further argued that human motion is the simplest well–defined
example of a general human behavior, and discussed issues of simplicity versus
predictability/controllability in complex systems. Further, we have discussed
self–assembly in relation to conditioned training in human/humanoid motion.
It is argued that there is a significant difference in the observational resolution
of human motion while watching ‘subtle’ movements of human hands playing
a piano versus ‘coarse’ movements of human crowd at a football stadium from
an orbital satellite. Techniques such as cellular automata can model the coarse
crowd motion, but not the subtle hierarchical neural control of the dynamics of
human hands playing a piano. Therefore, we have proposed the observational
resolution as a new measure of bio-mechanical complexity. Finally, we have
noted that there is a possible route to apparent simplicity in bio-mechanics,
in the form of oscillatory synchronization, both external–kinematical, and
internal–control.

5.6.1 Bio-Mechanical Complexity

Human (humanoid) bio-mechanics is a science of human (humanoid) mo-
tion. It is governed by both Newtonian dynamics and biological control laws
[IB05, II05, II06a, II06b]. In its modern computational form, it also obeys
computational rules. Thus, the human/humanoid bio-mechanics includes dy-
namical, control and computational complexities. This study shows that these
three sources of complexity do not cancel each other. Instead, we have either
their superposition or a kind of ‘macro–entanglement’ at work.

The mechanical part of a human bio-mechanical system determines the
lower limit of complexity , which is simply defined by the number of mechanical
degrees of freedom. The biological, in this case neuro–muscular, part of the
combined system efficiently controls the complex dynamics of the mechanical
skeleton.
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The common complexity models are Cellular Automata (CA). It is com-
mon in nature to find systems whose overall behavior is extremely complex,
yet whose fundamental component parts are each very simple. The complexity
is generated by the cooperative effect of many simple identical components.
Much has been discovered about the nature of the components in physical
and biological systems; little is known about the mechanisms by which these
components act together to give the overall complexity observed. According to
S. Wolfram [Wol84, Wol02], what is needed is a general mathematical theory
to describe the nature and generation of complexity.

CA are examples of mathematical systems constructed from many identical
components, each simple, but together capable of complex behavior. From
their analysis one may, on the one hand, develop specific models for particular
systems, and, on the other hand, hope to abstract general principles applicable
to a wide variety of complex systems.

However, our bio-mechanical complexity cannot be explained by CA, for
the following reasons:

A. Human bones neither die nor grow during the simulation period, so there
is an absence of any cancellation of the mechanical degrees of freedom like
in CA.

B. Averaging of these degrees of freedom does not work in general either, as
explained below.

C. Low–dimensional linear physical systems can be successfully modelled us-
ing CA (e.g, modelling a single linear 1D wave equation using a Margolus
rule [B-Y97]). However, we are dealing with a system of 500 nonlinearly–
coupled differential equations (see below), which has a completely different
complexity level 9.

D. Human neural control (as well as humanoid–robotic control) has a nat-
ural hierarchical (multi–level) structure: spinal (reflex) level, cerebellar
(synergetic) level, and cortical (planning) level. A system of this kind of
complexity cannot be efficiently controlled using a single control level.

There are over 200 bones in the human skeleton driven by about 640
muscular actuators (see, e.g., [Mar98]). It is sufficient to have a glimpse at the
structure and function of a single skeletal muscle to get an impression of the
natural complexity at work in bio-mechanics. The efficient ‘orchestration’ of
the whole musculo–skeletal dynamics is naturally performed by several levels
of neural motor control: (i) spinal level of autogenetic reflexes, (ii) cerebellar
level of muscular synergy, and (iii) cortical level of motion planing.

Here we need to emphasize that human joints are significantly more flexible
than humanoid robot joints. Namely, each humanoid joint consists of a pair
of coupled segments with only Eulerian rotational degrees of freedom. On the
9 When solving partial differential equations using CA, in a way we emulate the

classical finite element method (FEM). However, FEM, even in its most recent
(and most expensive software) versions is simply an unsuitable tool for any kind
of serious robotics.
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other hand, in each human synovial joint, besides gross Eulerian rotational
movements (roll, pitch and yaw), we also have some hidden and restricted
translations along (X,Y,Z)−axes. For example, in the knee joint (see Figure
5.3), patella (knee cap) moves for about 7–10 cm from maximal extension to
maximal flexion). It is well–known that even greater are translational ampli-
tudes in the shoulder joint. In other words, within the realm of rigid body
mechanics, a segment of a human arm or leg is not properly represented as
a rigid body fixed at a certain point, but rather as a rigid body hanging on
rope–like ligaments. More generally, the whole skeleton mechanically repre-
sents a system of flexibly coupled rigid bodies. This implies the more complex
kinematics, dynamics and control then in the case of humanoid robots.

Fig. 5.3. Sagittal section through the knee joint.

We can immediately foresee here the increased problems of gait balance,
stability and control [II05, II06b], but we still cannot neglect reality.

Modern unified geometrical basis for both human biomechanics and hu-
manoid robotics represents the constrained SE(3)−group, i.e., the so–called
special Euclidean group of rigid–body motions in 3D space (see [PC05, II05,
II06a, II06b]). In other words, during human movement, in each movable hu-
man joint there is an action of a constrained SE(3)−group. In other words,
constrained SE(3)−group represents general kinematics of human–like joints.
The corresponding nonlinear dynamics problem (resolved mainly for aircraft
and spacecraft dynamics) is called the dynamics on SE(3)−group, while the
associated nonlinear control problem (resolved mainly for general helicopter
control) is called the control on SE(3)−group.

The Euclidean SE(3)−group is defined as a semidirect (noncommutative)
product of 3D rotations and 3D translations, SE(3) := SO(3) � R

3. Its most
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important subgroups are the following:

Subgroup Definition
SO(3), group of rotations in 3D

(a spherical joint)
Set of all proper orthogonal
3× 3− rotational matrices

SE(2), special Euclidean group in 2D
(all planar motions)

Set of all 3× 3−matrices:⎡

⎣
cos θ sin θ rx
− sin θ cos θ ry

0 0 1

⎤

⎦

SO(2), group of rotations in 2D
subgroup of SE(2)− group

(a revolute joint)

Set of all proper orthogonal
2× 2− rotational matrices
included in SE(2)− group

R
3, group of translations in 3D
(all spatial displacements) Euclidean 3D vector space

Using a ‘realistic model’ of human bio-mechanics comprising all above
complexities (see [IB05, Iva04]), as a well–defined example of both a general
bio–physical system and a general human behavior, we propose the following
conjecture: In a combined bio–physical system, where the action of the physi-
cal laws (or engineering rules) cannot be neglected, it is the physical part that
determines the lower limit of the total complexity. This complexity is com-
monly defined as the number of mechanical degrees of freedom. The biological
part of the combined system, as being ‘more intelligent’, naturally serves as
a ‘controller’ for the physical ‘plant’. Although, in some special cases, the
behavior of the combined system might appear ‘simple’ externally (i.e., have
a low–dimensional output space), the realistic internal state–space analysis
shows that the complexity of the total system equals the sum of the com-
plexities of the two parts. Neither ‘mutual cancelling’ nor ‘averaging’ of the
mechanical degrees of freedom generally occurs in such bio–physical system.
We demonstrate the validity of the above conjecture using the example of the
human bio-mechanical system and its realistic computer model. We further
discuss simplicity versus predictability (and controllability) in a complex com-
bined system. Then we identify self–assembly with training in human motion
as a simple and well–defined example of general human behavior, and finally
propose a new measure of complexity: the observational resolution.

Finally, we argue that there is a possible route to bio-mechanical simplicity
in the form of oscillatory synchronization at the cost of long–term training.

5.6.2 Dynamical Complexity in Bio–Mechanics

This subsection briefly describes modern geometrical dynamics of human/
humanoid motion, to familiarize the reader with its complexity.

A physiologically realistic model of the human/humanoid bio-mechanics
was developed in [Iva91, IB05, Iva05a, Iva04, II05] and implemented in a soft-
ware package called Human Biodynamics Engine ‘HBE’ (for the preliminary,
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Lagrangian version of the spinal only ‘HBE–simulator’, see [Iva05c]). The
model was developed using generalized Hamiltonian mechanics and nonlinear
control on Lie groups. It includes 264 active degrees–of–freedom, driven by
132 equivalent muscular actuators10 (each with its own excitation and con-
traction dynamics), as well as two levels of neural–like control (stretch–reflex
and cerebellum–like Lie–derivative stabilizer and target tracker). The cortical
level of motion planning is currently under development, using adaptive fuzzy
logic.

In this bio-mechanical SE(3)−based model (see Figure 5.4), rotational
joint dynamics is considered ‘active’, driven by Newton–Euler type forces and
torques, combined with neuro–muscular stretch–reflex and higher cerebellum
control. Translational dynamics is considered ‘passive’, representing interver-
tebral discs, joint tendons and ligaments as a nonlinear spring–damper system.
The model was initially applied for prediction of spinal injuries [IB03], rep-
resenting the total motion of the human spine as a dynamical chain of 25
constrained SE(3) groups (i.e., special Euclidean groups of rigid body mo-
tion).

Fig. 5.4. Configuration manifold of human/humanoid skeleton, as modelled in the
Human Biodynamics Engine.

Once the constrained SE(3)−based configuration manifold MN is prop-
erly defined, we can define the full neuro–musculo–skeletal dynamics on its
momentum phase–space manifold T ∗MN . The generalized Hamiltonian HBE–
system is given, in a local canonical chart on T ∗MN , by (we skip here the
10 An equivalent muscular actuator is a flexor–extensor pair of muscles, rotating a

body segment (with all the masses attached to it) around a certain Euler axis.
Each equivalent muscular actuator has its excitation dynamics, coming from the
neural stimulus, as well as contraction dynamics, which generate the muscular
torque in that joint. The muscular torque is the driving torque that counteracts
inertial and gravity torques as well as joint elasticity and viscosity.
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symplectic geometry derivations, see [Iva04, IB05, Iva05a, II05] for technical
details)

q̇i =
∂H0

∂pi
+

∂R

∂pi
, (5.58)

ṗi = Ti −
∂H0

∂qi
+

∂R

∂qi
, (5.59)

qi(0) = qi0, pi(0) = p0
i , (5.60)

(i = 1, . . . , N)

including the contravariant velocity equation (5.58) and the covariant force
equation (5.59), with initial joint coordinates qi0 and momenta p0

i . Here the
physical Hamiltonian function H0 : T ∗MN → R represents the total mechan-
ical energy of the human motion

H0(q, p) =
1
2
gij pi pj + V (q), (i, j = 1, . . . , N),

where gij = gij(q,m) denotes the contravariant material metric tensor (as-
sociated with Riemannian metrics g : TMN → R on MN ), relating internal
joint coordinates qi and external Cartesian coordinates xr, and including n
segmental masses mμ

gij(q,m) =
n∑

μ=1

mμδrs
∂qi

∂xr
∂qj

∂xs
,

(i, j = 1, . . . , N), (r, s = 1, . . . , 3n).

R = R(q, p) denotes the Rayleigh nonlinear (usually biquadratic) dissipation
function.

The driving covariant vector fields (i.e., one–forms),
Ti = Ti(t, qiang, p

ang
i , ui), are generalized muscular torques, depending on joint

angles and angular momenta (not on translational coordinates and momenta),
as well as on ui = ui(t, q, p)–corrections from the two neural control lev-
els. Physiologically speaking, the torques Ti in the force equation (5.59) re-
semble neuro–muscular excitation dynamics, TEXCi , and contraction dynam-
ics TCONi , of equivalent antagonistic muscular pairs in the i–th joint, i.e.,
Ti = TMUSi = TEXCi · TCONi (see [Iva04, IB05, Iva05a, II05] for technical
details).

Now, to make the highly nonlinear and high–dimensional system (5.58–
5.60) even closer to bio–physical reality, namely to account for ever–present
external noise as well as imprecision of anthropometric and physiological mea-
surements, we had to add to it [Iva91, IB05]:

A. Stochastic forces, in the form of diffusion fluctuations Bij [qi(t), t] and
discontinuous jumps as N–dimensional Wiener process W j(t); and
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B. Fuzzification of the system parameters (segmental lengths, masses, inertia
moments, joint dampings, tendon elasticities, etc.) and initial conditions
(body configurations),

to get the fuzzy–stochastic HBE system:

dqi =
(

∂H0(q, p, σμ)
∂pi

+
∂R

∂pi

)
dt, (5.61)

dpi = Bij [qi(t), t] dW j(t)+
(
T̄i −

∂H0(q, p, σμ)
∂qi

+
∂R

∂qi

)
dt, (5.62)

qi(0) = q̄i0, pi(0) = p̄0
i ,

where {σ}μ (with μ ≥ 1) denote fuzzy sets of conservative parameters (seg-
ment lengths, masses and moments of inertia), dissipative joint dampings and
actuator parameters (amplitudes and frequencies), while the bar (̄.) over a
variable (.) denotes the corresponding fuzzified variable.

It is clear that the fuzzy–stochastic HBE system (5.61–5.62) is even more
complex and nonlinear and therefore harder to predict/control, compared to
the crisp–deterministic system (5.58–5.59). However, it is much closer to the
reality of human motion.

5.6.3 Control Complexity in Bio–Mechanics

As already stated, control of human motion is naturally and necessarily hi-
erarchical, including three control levels: spinal, cerebellar and cortical. The
first two levels have already been implemented in the software package HBE,
while the cortical level is currently under the development. In this subsection,
we briefly describe these three levels, so that the reader can get a ‘feeling’ for
the control complexity involved.

Spinal–Like Reflex Force Control

The force HBE servo–controller is formulated as an affine control HBE–
system. Introducing the coupling Hamiltonians Hj = Hj(q, p), j = 1, . . . , M
≤ N , corresponding to the system’s active joints, we define an affine Hamil-
tonian function Ha : T ∗MN → R, in local canonical coordinates on T ∗MN

given as
Ha(q, p, u) = H0(q, p)−Hj(q, p)uj , (5.63)

where ui = ui(t, q, p) are feedback–controls. Using (5.63) we come to the affine
Hamiltonian control HBE–system, in deterministic form
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q̇i =
∂H0(q, p)

∂pi
− ∂Hj(q, p)

∂pi
uj +

∂R

∂pi
, (5.64)

ṗi = T̄i −
∂H0(q, p)

∂qi
+

∂Hj(q, p)
∂qi

uj +
∂R

∂qi
,

oi = −∂Ha(q, p, u)
∂ui

= Hj(q, p),

qi(0) = qi0, pi(0) = p0
i ,

(i = 1, . . . , N ; j = 1, . . . , M ≤ N).

and in fuzzy–stochastic form

dqi =
(

∂H0(q, p, σμ)
∂pi

− ∂Hj(q, p, σμ)
∂pi

uj +
∂R(q, p)

∂pi

)
dt,

dpi = Bij [qi(t), t] dW j(t) + (5.65)
(
T̄i −

∂H0(q, p, σμ)
∂qi

+
∂Hj(q, p, σμ)

∂qi
uj +

∂R(q, p)
∂qi

)
dt,

dōi = −∂Ha(q, p, u, σμ)
∂ui

dt = Hj(q, p, σμ) dt,

qi(0) = q̄i0, pi(0) = p̄0
i .

Both affine control HBE–systems (5.64–5.65) resemble an autogenetic mo-
tor servo [Hou79], acting on the spinal–reflex level of the human locomotion
control. A voluntary contraction force F of human skeletal muscle is reflexly
excited (positive feedback +F−1) by the responses of its spindle receptors to
stretch and is reflexly inhibited (negative feedback −F−1) by the responses of
its Golgi tendon organs to contraction. Stretch and unloading reflexes are me-
diated by combined actions of several autogenetic neural pathways, forming
the so–called ‘motor servo.’ The term ‘autogenetic’ means that the stimulus
excites receptors located in the same muscle that is the target of the reflex
response. The most important of these muscle receptors are the primary and
secondary endings in the muscle–spindles, which are sensitive to length change
– positive length feedback +F−1, and the Golgi tendon organs, which are sen-
sitive to contractile force – negative force feedback −F−1.

The gain G of the length feedback +F−1 can be expressed as the positional
stiffness (the ratio G ≈ S = dF/dx of the force–F change to the length–x
change) of the muscle system. The greater the stiffness S, the less the muscle
will be disturbed by a change in load. The autogenetic circuits +F−1 and
−F−1 appear to function as servoregulatory loops that convey continuously
graded amounts of excitation and inhibition to the large alpha skeletomotor
neurons. Small gamma fusimotor neurons innervate the contractile poles of
muscle spindles and function to modulate spindle–receptor discharge.
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Cerebellum–Like Velocity and Jerk Control

Nonlinear velocity and jerk (time derivative of acceleration) servo–controllers,
developed in HBE using the Lie–derivative formalism, resemble self–stabilizing
and adaptive tracking action of the cerebellum [HBB96]. By introducing the
vector–fields f and g, given respectively by

f =
(

∂H0

∂pi
, −∂H0

∂qi

)
, g =

(
−∂Hj

∂pi
,
∂Hj

∂qi

)

we obtain the affine controller in the standard nonlinear MIMO–system form
(see [Isi89, NS90])

ẋi = f(x) + g(x)uj . (5.66)

Finally, using the Lie derivative formalism [Iva04]11 and applying the con-
stant relative degree r to all HB joints, the control law for asymptotic tracking
of the reference outputs ojR = ojR(t) could be formulated as (generalized from
[Isi89])

uj =
ȯ
(r)j
R − L

(r)
f Hj +

∑r
s=1 cs−1(o

(s−1)j
R − L

(s−1)
f Hj)

LgL
(r−1)
f Hj

, (5.67)

where cs−1 are the coefficients of the linear differential equation of order r for
the error function e(t) = xj(t)− ojR(t)

e(r) + cr−1e(r−1) + · · ·+ c1e(1) + c0e = 0.
11 Let F (M) denote the set of all smooth (i.e., C∞) real valued functions f : M → R

on a smooth manifold M , V (M) – the set of all smooth vector–fields on M , and
V ∗(M) – the set of all differential one–forms on M . Also, let the vector–field
ζ ∈ V (M) be given with its local flow φt : M → M such that at a point x ∈ M ,
d
dt
|t=0 φtx = ζ(x), and φ∗

t representing the pull–back by φt. The Lie derivative
differential operator Lζ is defined:

(i) on a function f ∈ F (M) as

Lζ : F (M) → F (M), Lζf =
d

dt
(φ∗

t f)|t=0,

(ii) on a vector–field η ∈ V (M) as

Lζ : V (M) → V (M), Lζη =
d

dt
(φ∗

t η)|t=0 ≡ [ζ, η]

– the Lie bracket , and
(iii) on a one–form α ∈ V ∗(M) as

Lζ : V ∗(M) → V ∗(M), Lζα =
d

dt
(φ∗

t α)|t=0.

In general, for any smooth tensor field T on M , the Lie derivative LζT geomet-
rically represents a directional derivative of T along the flow φt.
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The affine nonlinear MIMO control system (5.66) with the Lie–derivative
control law (5.67) resembles the self–stabilizing and synergistic output track-
ing action of the human cerebellum. To make it adaptive (and thus more
realistic), instead of the ‘rigid’ controller (5.67), we can use the adaptive
Lie–derivative controller , as explained in the seminal paper on geometrical
nonlinear control [SI89, II06b].

Cortical–Like Fuzzy–Topological Control

For the purpose of our cortical control, the dominant, rotational part of the
human configuration manifold MN , could be first, reduced to an N–torus,
and second, transformed to an N–cube (‘hyper–joystick’), using the following
topological techniques (see [II06b, II07b]).

Let S1 denote the constrained unit circle in the complex plane, which is an
Abelian Lie group. Firstly, we propose two reduction homeomorphisms, using
the semidirect product � of the constrained SO(2)−groups:

SO(3) ≈ SO(2) � SO(2) � SO(2) and SO(2) ≈ S1.

Next, let IN be the unit cube [0, 1]N in R
N and ‘∼’ an equivalence relation

on R
N obtained by ‘gluing’ together the opposite sides of IN , preserving their

orientation. Therefore, MN can be represented as the quotient space of R
N

by the space of the integral lattice points in R
N , that is an oriented and

constrained N–dimensional torus TN :

R
N/ZN = IN/ ∼≈

N∏

i=1

S1
i ≡ {(qi, i = 1, . . . , N) : mod2π}

= TN . (5.68)

Its Euler–Poincaré characteristic is (by the De Rham theorem) both for the
configuration manifold TN and its momentum phase–space T ∗TN given by
(see [II07b])

χ(TN , T ∗TN ) =
N∑

p=1

(−1)pbp ,

where bp are the Betti numbers defined as

b0 = 1,

b1 = N, . . . bp =
(
N

p

)
, . . . bN−1 = N,

bN = 1, (0 ≤ p ≤ N).

Conversely by ‘ungluing’ the configuration space we obtain the primary
unit cube. Let ‘∼∗’ denote an equivalent decomposition or ‘ungluing’ rela-
tion. According to Tychonoff’s product–topology theorem [II07b], for every
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such quotient space there exists a ‘selector’ such that their quotient models
are homeomorphic, that is, TN/ ∼∗≈ AN/ ∼∗. Therefore INq represents a
‘selector’ for the configuration torus TN and can be used as an N–directional
‘q̂–command–space’ for the feedback control (FC). Any subset of degrees of
freedom on the configuration torus TN representing the joints included in HB
has its simple, rectangular image in the rectified q̂–command space – selector
INq , and any joint angle qi has its rectified image q̂i.

In the case of an end–effector, q̂i reduces to the position vector in external–
Cartesian coordinates zr (r = 1, . . . , 3). If orientation of the end–effector can
be neglected, this gives a topological solution to the standard inverse kine-
matics problem.

Analogously, all momenta p̂i have their images as rectified momenta p̂i in
the p̂–command space – selector INp . Therefore, the total momentum phase–

space manifold T ∗TN obtains its ‘cortical image’ as the (̂q, p)–command space,
a trivial 2N–dimensional bundle INq × INp .

Now, the simplest way to perform the feedback FC on the cortical (̂q, p)–
command space INq × INp , and also to mimic the cortical–like behavior, is to
use the 2N– dimensional fuzzy–logic controller, in much the same way as in
the popular ‘inverted pendulum’ examples (see [Kos92]).

We propose the fuzzy feedback–control map Ξ that maps all the rectified
joint angles and momenta into the feedback–control one–forms

Ξ : (q̂i(t), p̂i(t)) �→ ui(t, q, p), (5.69)

so that their corresponding universes of discourse, Q̂i = (q̂imax − q̂imin), P̂i =
(p̂maxi − p̂mini ) and i = (umaxi − umini ), respectively, are mapped as

Ξ :
N∏

i=1

Q̂i ×
N∏

i=1

P̂i →
N∏

i=1

i. (5.70)

The 2N–dimensional map Ξ (5.69,5.70) represents a fuzzy inference sys-
tem, defined by (adapted from [IJB99b]):

A. Fuzzification of the crisp rectified and discretized angles, momenta and
controls using Gaussian–bell membership functions

μk(χ) = exp[− (χ−mk)2

2σk
], (k = 1, 2, . . . , 9),

where χ ∈ D is the common symbol for q̂i, p̂i and ui(q, p) and D is the
common symbol for Q̂i, P̂i and i; the mean values mk of the nine partitions
of each universe of discourse D are defined as mk = λkD+χmin, with par-
tition coefficients λk uniformly spanning the range of D, corresponding to
the set of nine linguistic variables L = {NL,NB,NM,NS,ZE,PS, PM ,
PB,PL}; standard deviations are kept constant σk = D/9. Using the
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linguistic vector L, the 9× 9 FAM (fuzzy associative memory) matrix (a
‘linguistic phase–plane’), is heuristically defined for each human joint, in
a symmetrical weighted form

μkl = (kl exp{−50[λk + u(q, p)]2}, (k, l = 1, ..., 9)

with weights
(kl ∈ {0.6, 0.6, 0.7, 0.7, 0.8, 0.8, 0.9, 0.9, 1.0}.

B. Mamdani inference is used on each FAM–matrix μkl for all human joints:
(i) μ(q̂i) and μ(p̂i) are combined inside the fuzzy IF–THEN rules using
AND (Intersection, or Minimum) operator,

μk[ūi(q, p)] = min
l
{μkl(q̂i), μkl(p̂i)}.

(ii) the output sets from different IF–THEN rules are then combined us-
ing OR (Union, or Maximum) operator, to get the final output, fuzzy–
covariant torques,

μ[ui(q, p)] = max
k
{μk[ūi(q, p)]}.

C. Defuzzification of the fuzzy controls μ[ui(q, p)] with the ‘center of gravity’
method

ui(q, p) =
∫

μ[ui(q, p)] dui∫
dui

,

to update the crisp feedback–control one–forms ui = ui(t, q, p).

Now, it is easy to make this top–level controller adaptive, simply by weight-
ing both the above fuzzy–rules and membership functions, by the use of any
standard competitive neural–network (see, e.g., [Kos92]). Operationally, the
construction of the cortical (̂q, p)–command space INq × INp and the 2N–
dimensional feedback map Ξ (5.69,5.70), mimic the regulation of the motor
conditioned reflexes by the motor cortex [HBB96].

5.6.4 Computational Complexity in Bio–Mechanics

A simplified version of the HBE system (5.61,5.62,5.65,5.66,5.67), with crisp
parameters derived from the user anthropometry and physiology data, and
simple random forces added to the crisp dynamics (5.58–5.60), has been de-
veloped at DSTO, Australia (together with a neural–like control described
below), for the purpose of predicting the risk of musculo–skeletal injuries (see
[IB03]). The system considered had 264 DOF (fingers and toes are not mod-
elled), in the form of the set of 528 generalized Hamiltonian equations, with
132 Lie–derivative controllers. This huge set of nonlinearly–coupled nonlinear
differential equations, were derived in Mathematica and then implemented
in ‘Delphi’ compiler for MS Windows, using the specially developed matrix–
symplectic explicit integrator of the 6th order.
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It is practically impossible to integrate such a complex system of differen-
tial equations, even for 1 second, even with the best possible integrator, like
Mathematica integrator NDSolve, the standard trick from modern mechan-
ics and nonlinear control was adopted: dynamical decoupling with simultane-
ous inertial (static) coupling (see [II05]).12 Once Hamiltonian equations are
decoupled, they can be both numerically solved (using a matrix symplectic
integrator) and efficiently controlled (using a linear or polynomial controller
derived by Lie–derivative formalism described above).

A sample ‘HBE’ output is given in Figure 5.5, showing running with the
speed of 6 m/s.

Fig. 5.5. Sample output from the Human Biodynamics Engine: running with the
speed of 6 m/s – 3D animation view–port.

The ‘HBE-simulator’ has been kinematically validated against the stan-
dard biomechanical gait-analysis system ‘Vicon’[Rob37] (see Figure 5.6).

The purpose of the simulator is prediction of the risk of soft spinal and
other musculo-skeletal injuries.13

5.6.5 Simplicity, Predictability and ‘Macro-Entanglement’

Here we argue that the simplification of the complex and realistic bio–
mechanical model described above results in inaccurate prediction and control.
12 The basic idea of geometrical decoupling is to ‘free’ the angular momentum (resp.

angular velocity) and torque variables from the inertia matrix (i.e., metric tensor)
gij , by putting it on the other side of Hamiltonian (resp. Lagrangian) equations
[Isi89, NS90].

13 Note that this subsection discusses the general bio-mechanical complexity issues,
and explains the HBE complexity as an example only.



5.6 ‘Hard’ vs. ‘Soft’ Complexity: A Bio-Mechanical Example 707

Fig. 5.6. Matching the ‘Vicon’ output with the ‘HBE’ output for the right-hip
angular velocity around the dominant X-axis, while walking on a treadmill with a
speed of 4 km/h.

Mutual Cancellation of the Model Components

Cancellation of the skeletal components is technically called ‘amputation’.
Clearly, this is not an option for solving the enormous complexity problem
described in the previous sections. We cannot just cut–off human limbs to
reduce the overall complexity of human motion.

5.6.6 Reduction of Mechanical DOF and Associated Controllers

It is possible to reduce the number of mechanical degrees of freedom, and
therefore the bio-mechanical configuration manifold, by the total factor of
six:

A. By replacing three–axial joints with uniaxial ones, which reduces the sys-
tem’s dimension by a factor of three; and

B. By neglecting all (restricted) joint translations, as is done in robotics,
which reduces the system’s dimension by a factor of two.

It is also possible to simplify the control subsystem:

A. by replacing nonlinear controllers with linear ones; and
B. by reducing a hierarchical, three–level control to the single level.

The overall result of these two simplifications is commonly known as
‘dummy’. It can be very expensive and useful for crash–testing, but it cannot
be used for any human–like performance.
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Averaging of Mechanical DOF

Let us consider the possibility of averaging the degrees of freedom in bio-
mechanics, using a technique similar to Maxwell’s techniques in thermody-
namics and statistical physics. In the past, it has been an old practice in
bio-mechanics to use the body’s ‘center–of–mass’ (CoM) motion as a sim-
ple representative of the full human musculo–skeletal dynamics (see, e.g.,
[McG99]), which is a systematic kinematical procedure of averaging the seg-
mental trajectories. However, at present, it is used only for the low–resolution
global positioning system (GPS) tracking of soldiers. It simply fails in simu-
lating/predicting any realistic human movement, which is well–known to the
researchers in robotics. For example, if we use the Cartesian vector trajectory
of the CoM to simulate the motion of an athlete in a successful ‘high–jump’
event, we will see that the CoM trajectory passes under the bar while at the
same time his whole body passes over the bar, which is represented by all
segmental trajectories. This simple example shows that the averaging of me-
chanical degrees–of–freedom simply does not work if realistic representation
of human motion is needed.

Superposition of Complexities or ‘Macro–Entanglement’

From the standard engineering viewpoint, having two systems (biological and
mechanical) combined as a single ‘working machine’, we can expect that the
total ‘machine’ complexity equals the sum of the two partial ones. For exam-
ple, electrical circuitry has been a standard modelling framework in neuro-
physiology.14 Using the HH–approach for modelling human neuro–muscular
circuitry as electrical circuitry, we get an electro–mechanical model for our
bio-mechanical system, in which the superposition of complexities is clearly
valid.

On the other hand, in a recent research on dissipative quantum brain
modelling, one of the most popular issues has been quantum entanglement15

between the brain and its environment (see [PV03, PV04]) where the brain–
environment system has an entangled ‘memory’ state (identified with its
ground state), that cannot be factorized into two single–mode states.16 Sim-
ilar to this microscopic brain–environment entanglement, we conjecture the
14 Recall that A. Hodkgin and A. Huxley won a Nobel Prize for their circuit model

of a single neuron, the celebrated HH–neuron [HH52]
15 Entanglement is a term used in quantum theory to describe the way that particles

of energy/matter can become correlated to predictably interact with each other
regardless of how far apart they are; this is called a ‘long–range correlation’.

16 In the Vitiello–Pessa dissipative quantum brain model [PV03, PV04], the evolu-
tion of a memory system was represented as a trajectory of given initial condition
running over time–dependent states, each one minimizing the free energy func-
tional.
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existence of a macroscopic neuro–mechanical entanglement between the oper-
ating modes of our neuro–muscular controller and purely mechanical skeleton
(see [Eno01]).

In other words, we suggest that the diffeomorphism between the brain
motion manifold (N−cube) and the body motion manifold MN (which can
be reduced to the constrained N−torus), described as the cortical motion
control , can be considered a ‘long–range correlation’.

Therefore, if the complexity of the two subsystems is not the ‘expected’ su-
perposition of their partial complexities, then we have a macro–entanglement
at work.

5.6.7 Self–Assembly, Synchronization and Resolution

Self–Assembly Versus Training

In the framework of human motion dynamics, self–assembly represents adap-
tive motor control , i.e., physiological motor training performed by iteration of
conditioned reflexes. For this, a combination of supervised and reinforcement
training is commonly used, in which a number of (nonlinear) control param-
eters are iteratively adjusted similar to the weights in neural networks, using
either backpropagation–type or Hebbian–type learning, respectively (see, e.g.,
[Kos92]). Every human motor skill is mastered using this general method.
Once it is mastered, it becomes smooth and energy–efficient, in accordance
with Bernstein’s motor coordination and dexterity (see [Ber67, Ber96]).

Therefore, bio-mechanical self–assembly clearly represents an ‘evolution’ in
the parameter–space of human motion control. One might argue that such an
evolution can be modelled using CA. However, this parameter–space, though
being a dynamical and possibly even a contractible structure, is not an inde-
pendent set of parameters – it is necessarily coupled to the mechanical skeleton
configuration space, the plant to be controlled.

The system of 200 bones and 600 muscles can an produce infinite number
of different movements. In other words, the output–space dimension of a skilled
human motion dynamics equals infinity – there is no upper limit to the number
of possible different human movements, starting with simple walk, run, jump,
throw, play, etc. Even for the simplest motions, like walking, a child needs
about 12 months to master it (and Honda robots took a decade to achieve
this).

Furthermore, as human motion represents a simplest and yet well–defined
example of a general human behavior, it is possible that other human behav-
ioral and performance skills are mastered (i.e., self–assembled) in a similar
way.

Observational Resolution

Similar to a GPS tracking of soldiers’ motion being reduced to the CoM
motion, the observational resolution represents a true criterion underlying



710 5 Complex Nonlinearity: Combining It All Together

the apparent external complexity. For instance, if we ‘zoom–out’ sufficiently
enough to get to the ‘satellite–level’ observation, then the collective motion of
a crowd of 100,000 people looks like a single ‘soliton’. On the other hand, if we
‘zoom–in’ deep to get to the ‘Earth–level’, then the full bio-mechanical system
complexity and possibly an infinite–dimensional output space of a single hu-
man member within the same crowd is seen. There is a significant difference
in the resolution of human motion while watching ‘subtle’ hand movements
playing a piano, or ‘coarse’ movements of the crowd (on a football stadium)
from an orbital satellite. CA can be a good model for the crowd motion,
but certainly not for hierarchical neural control of the dynamics of human
hands playing a piano. Thus, the eventual criterion that determines apparent
complexity is the observational resolution. In other words, the bio-mechanical
complexity is a resolution–dependent variable: the higher the resolution, the
higher the complexity. Note that, although apparently similar, this new con-
cept is radically different from fractals. In case of fractals we have a similar
pattern no matter how much we ‘zoom-in’ or ‘zoom-out’, that is we have
roughly the constant complexity at all self-similar levels. On the other hand,
in case of bio-mechanical observational resolution, each ‘zoom-in’ significantly
increases the complexity. We conjecture that there is an exponential growth
of complexity with increase of the observational resolution. For another ap-
proach to resolution/scale and complexity, defined in terms of the Shannon
entropy from information theory, see [B-Y04].

Synchronization

Finally, there is also a possible route to simplicity in bio-mechanics. Namely,
synchronization and phase–locking are ubiquitous in nature as well as in hu-
man brain (see [HI97, Izh99b, Izh04]). Synchronization can occur in cyclic
forms of human motion (e.g., walking, running, cycling, swimming), both ex-
ternally, in the form of oscillatory dynamics, and internally, in the form of
oscillatory cortical–control . This oscillatory synchronization, e.g., in walking
dynamics, has three possible forms: in–phase, anti–phase, and out–of–phase.
The underlying phase–locking properties determined by type of oscillator (e.g.,
periodic/chaotic, relaxation, bursting17, pulse-coupled, slowly connected, or

17 Periodic bursting behavior in neurons is a recurrent transition between a quiescent
state and a state of repetitive firing. Three main types of neural bursters are: (i)
parabolic bursting (‘circle/circle’), (ii) square–wave bursting (‘fold/homoclinic’),
and (iii) elliptic bursting (‘subHopf/fold cycle’). Most burster models can be
written in the singularly perturbed form:

x = f(x, y), y = μg(x, y),

where x ∈ R
m is a vector of fast variables responsible for repetitive firing (e.g., the

membrane voltage and fast currents). The vector y ∈ R
k is a vector of slow vari-

ables that modulates the firing (e.g., slow (in)activation dynamics and changes
in intracellular Ca2+ concentration). The small parameter μ << 1 is a ratio of
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connections with time delay) involved in the cortical control system (motion
planner). According to Izhikevich–Hoppensteadt work (ibid), phase–locking
is prominent in the brain: it frequently results in coherent activity of neu-
rons and neuronal groups, as seen in recordings of local field potentials and
EEG. In essence, the purpose of brain control of human motion is reduction of
mechanical configuration space; brain achieves this through synchronization.

While cyclic movements indeed present a natural route to oscillatory bio-
mechanical synchronization, both on the dynamical and cortical–control level,
the various forms of synchronized group behavior in sport (such as synchro-
nized swimming, diving, acrobatics) or in military performance represent the
imperfect products of hard training. The synchronized team performance is
achievable, but the cost is a difficult long–term training and sacrifice of one’s
natural characteristics.

For more details on bio–mechanical complexity, see [IS08].

fast/slow time scales. The synchronization dynamics between bursters depends
crucially on their spiking frequencies, i.e., the interactions are most effective when
the presynaptic interspike frequency matches the frequency of postsynaptic os-
cillations. The synchronization dynamics between bursters in the cortical motion
planner induces synchronization dynamics between upper and lower limbs in os-
cillatory motions.
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BMM95. Biró, T.S., Matinyan, S.G., Müller, B.: Chaos and gauge field
theory. World Scientific, Singapore, (1995)

BMP97. Breckenridge. J.C., Myers, R.C., Peet, A.W., Vafa, C.: D–
branes and spinning black holes. Phys. Lett. B 391, 93, (1997)

BMW01. Bridgman, H.A., Malik, K.A., Wands, D.: Cosmic vorticity on
the brane. Phys. Rev. D 63, 084012, (2001)

BMW02. Bridgman, H.A., Malik, K.A., Wands, D.: Cosmological per-
turbations in the bulk and on the brane. Phys. Rev. D 65,
043502, (2002)

BM67. Bott, R., Mather, J.: Topics in Topology and Differential Ge-
ometry. In Battelle Rencontres, Eds. C.M. De Witt and J.A.
Wheeler, (1967)

BO95. Basar, T., Olsder, G.J.: Dynamic Noncooperative Game The-
ory (2nd ed.), Academic Press, New York, (1995)

BOA85. Bondeson, A., Ott, E., Antonsen, T.M.: Quasiperiodically
Forced Damped Pendula and Schrodinger Equations with
Quasi-periodic Potentials: Implications of Their Equivalence.
Phys. Rev. Lett. 55, 2103, (1985)



726 References

BP00. Bousso, R., Polchinski. J.: Quantization of four-form fluxes
and dynamical neutralization of the cosmological constant.
JHEP 06, 006, (2000)

BP02. Benvenuto, N., Piazza, F.: On the complex backpropagation
algorithm. IEEE Trans. Sig. Proc., 40(4), 967–969, (1992)

BP02. Barahona, M., Pecora, L.M.: Synchronization in Small–World
Systems. Phys. Rev. Lett. 89, 054101, (2002)

BP82. Barone, A., Paterno, G.: Physics and Applications of the
Josephson Effect. Wiley, New York, (1982)

BP97. Badii, R. Politi, A: Complexity: Hierarchical Structures and
Scaling in Physics, Cambridge Univ. Press, Cambridge, (1997)

BPM97. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl,
H.Weinfurter, A. Zeilinger, Experimental Quantum Telepor-
tation. Nature 390, 575, (1997)

BPS75. Belavin, A.A., Polyakov, A.M., Swartz, A.S., Tyupkin, Yu.S.:
SU(2) instantpons discovered. Phys. Lett. B 59, 85, (1975)

BPS98. Blackmore, D.L., Prykarpatsky, Y.A., Samulyak, R.V.: The
Integrability of Lie-invariant Geometric Objects Generated
by Ideals in the Grassmann Algebra. J. Nonlin. Math. Phys.,
5(1), 54–67, (1998)

BPT94. Van den Broeck, C., Parrondo, J.M.R., Toral, R.: Noise–
Induced Non–equilibrium Phase Transition. Phys. Rev. Lett.
73, 3395–3398, (1994)

BPT97. Van den Broeck, C., Parrondo, J.M.R., Toral, R., Kawai, R.:
Non–equilibrium phase transitions induced by multiplicative
noise. Phys. Rev. E 55, 4084–4094, (1997)

BPV03. Batista, A.M., de Pinto, S.E., Viana, R.L., Lopes, S.R.: Mode
locking in small–world networks of coupled circle maps. Phys-
ica A 322, 118, (2003)

BR75. Bowen, R., Ruelle, D.: The ergodic theory of Axiom A flows.
Invent. Math. 29, 181–202, (1975)

BRR95. Botina, J., Rabitz, H., Rahman, N.: Optimal control of chaotic
Hamiltonian dynamics. Phys. Rev. A 51, 923–933, (1995)

BRT89. Birmingham, D., Rakowski, M., Thompson, G. BRST quan-
tization of topological field theories. Nucl. Phys. B 315, 577,
(1989)

BRT99. Bennati, E., Rosa-Clot, M., Taddei, S.: A Path Integral Ap-
proach to Derivative Security Pricing: I. Formalism and Ana-
lytical Results, Int. Journ. Theor. Appl. Finance 2, 381, (1999)

BS00. Becskei, A., Serrano, L.: Engineering stability in gene net-
works by autoregulation. Nature, 405, 590–593, (2000)

BS02. Bornholdt, S., Schuster, H.G. (eds): Handbook of Graphs and
Networks. Wiley–VCH, Weinheim, (2002)

BS04. Banos, B., Swann, A.: Potentials for hyper–Kähler metrics
with torsion, Class. Quant. Grav. 21, 3127–3135, (2004)

BS04. Breuer, J., Sinha, S.: Controlling spatio-temporal
chaos in excitable media by local biphasic stimulation.
arXiv:nlin.CD/0406047, (2004)



References 727

BS04. Bashkirov, D., Sardanashvily, G.: Covariant Hamiltonian
Field Theory. Path Integral Quantization. Int. J. Theor. Phys.
43, 1317-1333, (2004)

BS70. Bhatia, N.P., Szego, G.P.: Stability theory of dynamical sys-
tems. Springer–Verlag, Heidelberg, (1979)

BS85. Bamber, D., van Santen. J.P.H.: How many parameters can a
model have and still be testable? J. Math. Psych., 29, 443–
473, (1985)
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CF93. Cariñena, J., Fernández–Núñez, J.: Geometric theory of time-
dependent singular Lagrangians, Fortschr. Phys. 41, 517,
(1993)

CF94. Crane, L., Frenkel, I.: Four dimensional topological quantum
field theory, Hopf categories, and the canonical bases. J. Math.
Phys. 35, 5136–5154, (1994)

CFD86. Coalson, R.D., Freeman, D.L., Doll, J.D.: Partial Averaging
Approach to Fourier. Coefficient Path Integration. J. Chem.
Phys. 85, 4567–4583, (1986)

CFL97. Crisanti, A. Falcioni, M., Lacorata, G., Purini, R., Vulpiani,
A.: Characterization of a periodically driven chaotic dynami-
cal system. J. Phys. A, Math. Gen. 30, 371–383, (1997)

CFP90. Crisanti, A. Falcioni, M., Provenzale, A., Vulpiani, A.: Passive
advection of particles denser than the surrounding fluid. Phys.
Lett. A 150, 79, (1990)

CFP91. Crisanti, A., Falcioni, M., Paladin, G., Vulpiani, A.: La-
grangian Chaos: Transport, Mixing and Diffusion in Fluids.
Riv. Nuovo Cim. 14, 1, (1991)



References 733

CFP94. Crisanti, A., Falcioni, M., Paladin, G., Vulpiani, A.: Stochastic
Resonance in Deterministic Chaotic Systems. J. Phys. A 27,
L597, (1994)

CFR79. Clark, R.A., Ferziger, J.H., Reynolds, W.C.: Evaluation of
Subgrid–Scale Turbulence Models Using an Accurately Simu-
lated Turbulent Flow. J. Fluid. Mech. 91, 1–16, (1979)

CG83. Cohen, M.A., Grossberg, S.: Absolute stability of global pat-
tern formation and parallel memory storage by competitive
neural networks. IEEE Trans. Syst., Man, Cybern., 13(5),
815–826, (1983)

CG94. Crisanti, A., Grassberger, P.: Critical behaviour of non-
equilibrium q-state systems. J. Phys. A: Math. Gen. 27, 6955–
6962, (1994)

CGC98. Chakravarty, C., Gordillo, M.C., Ceperley, D.M.: Comparing
Fourier– and Bisection–Path Integral Monte Carlo. J. Chem.
Phys. 109, 2123, (1998)

CGC99. Chakravarty, C., Gordillo, M.C., Ceperley, D.M.: A Compar-
ison of the Efficiency of Fourier– and Discrete Time–Path In-
tegral Monte Carlo. J. Chem. Phys. 111, 7687, (1999)
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Italy, (1995)

Col02. Collins, P.: Symbolic dynamics from homoclinic tangles. In-
tern. J. Bifur. Chaos, 12(3), 605–617, (2002)

Col05. Collins, P.: Forcing relations for homoclinic orbits of the Smale
horseshoe map, Experimental. Math. 14(1), 75-86, (2005)

Col69. Coleman, S.: Acausality in Theory and Phenomenology in
Particle Physics, ed. A. Zichichi, New York, (1969)

Col77. Coleman, S.: Fate of the false vacuum: Semiclassical theory.
Phys. Rev. D15, 2929–36, (1977)

Col80. Coleman, S., De Luccia, F.: Gravitational Effects on and of
Vacuum Decay. Phys. Rev. D 21, 3305, (1980)

Con63. Conley, C.C.: Some new long period solutions of the plane
restricted body problem of three–bodies, Comm. Pure Appl.
Math., 16, 449–467, (1963)

Con94. Connes, A.: Noncommutative Geometry. Academic Press,
New York, (1994)

Coo01. Coolen, A.C.C.: Statistical Mechanics of Recurrent Neural
Networks. In F. Moss, S. Gielen (eds.) Handbook of Biological
Physics, 4, Elsevier, (2001)



References 739

Coo89. Cook, J.: The mean–field theory of a Q-state neural network
model. J. Phys. A 22, 2057, (1989)

Cop35. Copson, E.T.: Theory of Functions of a Complex Variable.
Oxford Univ. Press, London, (1935)

Cox43. Coxeter, H.S.M.: A geometrical background for de Sitter’s
world. Am. Math. Mont. 50, 217–228, (1943)

Cox92. Cox, E.: Fuzzy Fundamentals, IEEE Spectrum, 58–61, (1992)
Cox94. Cox, E.: The Fuzzy Systems Handbook. AP Professional,

(1994)
Cra04. Crainic, M.: Generalized complex structures and Lie brackets.

math.DG/0412097, (2004)
Cra91. Crawford. J.: Clifford algebra: Notes on the spinor metric and
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mapping. Comm. math. Phys. 67, 137–48, (1979)

DN93. Dixit, A.K., Nalebuff, B.: Thinking Strategically: The Com-
petitive Edge in Business, Politics, and Everyday Life. W.W.
Norton & Company, (1993)

DNA00. G. Deffuant, D. Neau, F. Amblard, G. Weisbuch: Mixing be-
liefs among interacting agents. Adv. Compl. Syst. 3, 87–98,
(2000)

DP80. Dubois, D., Prade, H.: Fuzzy Sets and Systems. Academic
Press, New York, (1980)

DP97. Dodson, C.T.J., Parker, P.E.: A User’s Guide to Algebraic
Topology. Kluwer, Dordrecht, (1997)

DR94. Dittrich, W., Reuter, M.: Classical and Quantum Dynamics.
Springer Verlag, Berlin, (1994)

DR96. DePietri, R., Rovelli, C.: Geometry Eigenvalues and Scalar
Product from Recoupling Theory in Loop Quantum Gravity.
Phys. Rev. D54, 2664–2690, (1996)

DS74. Davey, A., Stewartson, K.: On Three-Dimensional Packets of
Surface Waves. Proc. R. Soc. A 338, 101–110, (1974)

DS98. Dowker, H.F., Surya, S.: Topology change and causal conti-
nuity. Phys. Rev. D 58, 124019, (1998)

DS98b. Dowker, H.F., Sorkin, R.D.: A spin-statistics theorem for cer-
tain topological geons. Class. Quant. Grav. 15, 1153–1167,
(1998)

DSR05. Dullin, H.R., Schmidt, S., Richter, P.H., Grossmann, S.K.:
Extended Phase Diagram of the Lorenz Model. Chaos (to ap-
pear) (2005)

DSS90. Ditto, W.L., Spano, M.L., Savage, H.T., Rauseo, S.N., Heagy,
J., Ott, E.: Experimental observation of a strange nonchaotic
attractor. Phys. Rev. Lett. 65, 533—536, (1990)

DT89. Ditzinger, T., Haken, H.: Oscillations in the perception of am-
biguous patterns: A model based on synergetics. Biol. Cybern.
61, 279–287, (1989)



References 743

DT90. Ditzinger, T., Haken, H.: The impact of fluctuations on the
recognition of ambiguous patterns. Biol. Cybern. 63, 453–456,
(1990)

DT92. Ding, W., Tian, G.: Kähler–Eistein metric and the generalized
Futaki invariant. Inv. Math. 110, 315–335, (1992)

DT95. Denniston, C., Tang, C.: Phases of Josephson Junction Lad-
ders. Phys. Rev. Lett. 75, 3930, (1995)

DTP02. Dauxois, T., Theodorakopoulos, N., Peyrard, M.: Thermody-
namic instabilities in one dimension: correlations, scaling and
solitons. J. Stat. Phys. 107, 869, (2002)

DVV91. Dijkgraaf, R., Verlinde, H., Verlinde, E.: Notes On Topologi-
cal String Theory And 2D Quantum Gravity, in String The-
ory and Quantum Gravity, Proceedings of the Trieste Spring
School 1990, (eds.) M. Green et al., World Scientific, 91–156,
(1991)

DW95. Dormayer, P., Lani–Wayda, B.: Floquet multipliers and sec-
ondary bifurcations in functional differential equations: Nu-
merical and analytical results, Z. Angew. Math. Phys. 46,
823–858, (1995)

Dan67. Danilov, Yu.A.: Group properties of the Maxwell and Navier–
Stokes equations, Khurchatov Inst. Nucl. Energy, Acad. Sci.
USSR, (in Russian) (1967)

Das02. Dasgupta, A.: The real Wick rotations in quantum gravity.
JHEP, 0207, (2002)

Dav02a. Davis, S.C.: Cosmological brane world solutions with bulk
scalar fields. JHEP 0203, 054, (2002a)

Dav02b. Davis, S.C.: Brane cosmology solutions with bulk scalar fields.
JHEP 0203, 058, (2002b)

Dav81. Davydov, A.S.: Biology and Quantum Mechanics. Pergamon
Press, New York, (1981)

Dav89. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge
Univ. Press, (1989)

Dav91. Davydov, A.S.: Solitons in Molecular Systems. (2nd ed),
Kluwer, Dordrecht, Ger, (1991)

DeP97. DePietri, R.: On the relation between the connection and the
loop representation of quantum gravity, Class. and Quantum
Grav. 14, 53–69, (1997)

Dea90. Dearnaley, R.: The Zero-Slope Limit of Witten’s String Field
Theory with Chan-Paton Factors. Nucl. Phys. B334, 217,
(1990)

Deb84. Debreu, G.: Economic theory in the mathematical mode. In
Les Prix Nobel 1983. Reprinted in Am. Ec. Rev. 74, 267–278,
(1984)

Des91. Descartes, R.: Discourse on Method and Meditations on First
Philosophy (tr. by D.A. Cress) Cambridge, (1991)

Deu85. Deutsch, D.: Quantum theory, the Church-Turing principle
and the universal quantum computer. Proc. Roy. Soc. London
A 400, 97, (1985)

Deu89. Deutsch, D.: Quantum Computational Networks Proc. Roy.
Soc. London A 425(1868), 73–90, (1989)



744 References

Deu92. Deutsch, D., Jozsa, R.: Rapid solution of problems by quan-
tum computation. Proc. Roy. Soc. (London), A 439, 553–558,
(1992)

Dev89. Devaney, R.: An Introduction to Chaotic Dynamical Systems.
Addison Wesley Publ. Co. Reading MA, (1989)

Die69. Dieudonne, J.A.: Foundations of Modern Analysis (in four
volumes) Academic Press, New York, (1969)

Die88. Dieudonne, J.A.: A History of Algebraic and Differential
Topology 1900–1960. Birkháuser, Basel, (1988)
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MS95. Müllers, J., Schmid, A.: Resonances in the current-voltage
characteristics of a dissipative Josephson junction. cond-
mat/9508035, (1995)

MS96. Mallet–Paret, J., Sell,G.: The Poincaré–Bendixson theorem
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SZT98. Satarić, M.V., Zeković, S., Tuszynski. J.A., Pokorny. J.:
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mensions, Bull. Amer. Math. Soc., 66, 373–375, (1960)

Sma63. Smagorinsky, J.: General Circulation Experiments with the
Primitive Equations: I. The Basic Equations. Mon. Weath.
Rev. 91, 99–164, (1963)

Sma67. Smale, S.: Differentiable dynamical systems, Bull. Amer.
Math. Soc., 73, 747–817, (1967)

Sma99. van der Smagt, P.: (ed.) Self–Learning Robots. Workshop:
Brainstyle Robotics, IEE, London, (1999)

Smi82. Smith, J.: Evolution and the Theory of Games. Cambridge
Univ. Press, Cambridge, (1982)

Smo00. Smolin, L.: Three roads to quantum gravity, Weidenfeld and
Nicolson, London, UK (2000)

Smo92. Smolin, L.: Did the universe evolve? Class. Quant. Grav. 9,
173–192, 1992.

Smo97a. Smolin, L.: Loops and Strings. Living Reviews, September,
(1997)

Smo97b. Smolin, L.: The Life of the Cosmos. Oxford Univ. Press, Ox-
ford, (1997)

Sni80. S̀niatycki. J.: Geometric Quantization and Quantum Mechan-
ics, Springer-Verlag, Berlin, (1980)



References 817

Sni80. Sniatycki. J.: Geometric Quantization and Quantum Mechan-
ics. Springer-Verlag, Berlin, (1980)

Sny86. Snyder, S.H.: Drugs and the Brain. Scientific American Li-
brary, W.H. Freeman, Co., New York, (1986)

Soc91. Socolovsky, M.: Gauge transformations in fibre bundle theory.
J. Math. Phys. 32, 2522, (1991)

Sok78. Sokol’skii, A.: On the stability of an autonomous Hamiltonian
system. J. Appl. Math. Mech. 38, 741–49, (1978)

Sor86a. Sorkin, R.D.: Introduction to topological geons. In P.G.
Bergmann and 1986 V. de Sabbata, editors, Topological Prop-
erties and Global Structure of Space-Time, pages 249–270,
Erice, Italy, May 1985. Plenum Press, (1986)

Sor86b. Sorkin, R.D.: Topology change and monopole creation. Phys.
Rev. D 33, 978 (1986)

Sor86c. Sorkin, R.D.: Non–Time–Orientable Lorentzian Cobordism
Allows for Pair Creation. Int. J. Theor. Phys. 25, 877–881,
(1986)

Sor89. Sorkin, R.D.: Consequences of space-time topology. In A. Co-
ley, F. Cooperstock, and B. Tupper, editors, Proceedings of
the third Canadian Conference on General Relativity and Rel-
ativistic Astrophysics, Victoria, Canada, May 1989, 137–163.
World Scientific, Singapore, 1990.

Sor89. Sorkin, R.D.: Classical topology and quantum phases: Geons.
In G. Marmo S. de Filippo, M. Marinaro, editor, Geometrical
and Algebraic Aspects of Nonlinear Field Theories, 201–218,
Amalfi, Italy, May 1988. Elsevier, Amsterdam, 1989.

Sor90. Sorkin, R.D.: First steps with causal sets. In R. Cianci,
R. de Ritis, M. Francaviglia, G. Marmo, C. Rubano, and
P. Scudellaro, editors, Proceedings of the ninth Italian Confer-
ence on General Relativity and Gravitational Physics, Capri,
Italy, September 1990, pages 68–90. World Scientific, Singa-
pore, 1991.

Sor91. Sorkin, R.D.: Space-time and causal sets. In J. C. D’Olivo,
E. Nahmad-Achar, M. Rosenbaum, M. P. Ryan, L. F. Urrutia,
and F. Zertuche, editors, Relativity and Gravitation: Classical
and Quantum, Proceedings of the SILARG VII Conference,
Cocoyoc, Mexico, December 1990, pages 150–173. World Sci-
entific, Singapore, 1991.

Sor97. Sorkin, R.D.: Forks in the road, on the way to quantum grav-
ity. Int. J. Theor. Phys. 36, 2759–2781, 1997.

Sor98. Sorkin, R.D.: Indications of causal set cosmology. Int. J.
Theor. Phys. 39, 1731–1736, 2000.

Spa82. Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos, and
Strange Attractors. Springer, New York, (1982)

Spr93a. Sprott, J.C.: Automatic Generation of Strange Attractors.
Comput. & Graphics, 17(3), 325–332, (1993)

Spr93b. Sprott, J.C.: Strange Attractors: Creating Patterns in Chaos.
M&T Books, New York, (1993)

Spr94. Sprott, J.C.: Some Simple Chaotic Flows. Phys. Rev. E, 50(2),
R647–R650, (1994)



818 References

Spr97. Sprott, J.C.: Some Simple Chaotic Jerk Functions. Am. J.
Phys., 65(6), 537–543, (1997)

Sta00. Stanislavsky, A.A.: Memory effects and macroscopic manifes-
tation of randomness. Phys. Rev. E 61, 4752, (2000)

Sta63. Stasheff. J.D.: Homotopy associativity of H−spaces I & II.
Trans. Amer. Math. Soc., 108, 275–292, 293–312, (1963)

Sta80. Starobinsky, A.A.: A New Type of Isotropic Cosmological
Models without Singularity. Phys. Lett. B91, 99, (1980)

Sta83. Starobinsky, A.A.: The Perturbation Spectrum Evolving from
a Nonsingular, Initially de Sitter cosmology, and the Mi-
crowave Background Anisotropy. Sov. Astron. Lett. 9, 302,
(1983)

Sta83. Stapp, H.P.: Exact solution of the infrared problem. Phys.
Phys. Rev. D 28, 1386–1418, (1983)

Sta93. Stapp, H.P.: Mind, Matter and Quantum Mechanics. Spinger-
Verlag, Heidelberg, (1993)

Sta95. Stapp, H.P.: Chance, Choice and Consciousness: The Role of
Mind in the Quantum Brain. arXiv:quant-ph/9511029, (1995)

Sta97. Stark, J.: Invariant Graphs for Forced Systems. Physica D
109, 163-179, (1997)
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one–parameter group of diffeomor-

phisms, 327
open string theories, 529
opinion dynamics, 225
opinion–dynamics, 227
optimal policy, 654
orbit, 16, 22, 38
order, 677, 679
order parameter, 177, 203, 205, 229, 231
order parameter equation, 205, 232, 264
order parameters, 181, 245
ordered symmetry–breaking state, 199
ordering chaos, 7
oriented cobordism, 402
oriented strings, 530
Ornstein–Uhlenbeck noise, 203
Ornstein–Uhlenbeck process, 289
oscillatory cortical–control, 710
oscillatory dynamics, 710
oscillatory synchronization, 694
Oseledec theorem, 81

Ott–Grebogi–Yorke map, 55
output–space dimension, 709
overdrive pacing, 165

pacing response diagrams, 165
Panfilov model, 159, 170
parabolic Einstein equation, 341
parallel transport, 312
parametric instability, 350, 661, 662
partition function, 34, 192, 220, 257,

460
path integral, 425, 580
path–integral approach, 405
path–integral expression, 456
path–integral formalism, 454, 599
path–integral formulation, 317, 453
path–integral quantization, 452
pendulum angle, 3
period doubling bifurcations, 51
period–doubling bifurcation, 47, 133
periodic orbit, 29, 41
periodic orbit theory, 24, 116
periodic solutions, 11
perturbative path integral, 474
perturbative string theory, 535
Pesin formula, 82
phase, 4, 432
phase point, 11
phase portrait, 4, 11
phase space, 308
phase transition, 6, 173, 174, 231
phase transition of first order, 232
phase transition of second order, 231
phase transitions, 472
phase–flow, 10, 16
phase–locking, 710
phase–space, 4
phase–space flow, 30
phase–space path integral, 441, 449
phase–transition effects, 231
phase–transition theory, 229
physical Hamiltonian function, 699
physically desirable histories, 682
Pickover’s biomorphs, 67
pinball game, 1
pinned Wiener measure, 451
Planck length, 529
playground swing, 3
Poincaré, 26, 309
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Poincaré conjecture, 34, 309, 378
Poincaré duality, 369
Poincaré section, 5, 27, 30, 60, 135
Poincaré map, 53
Poincaré section, 24, 52
Poincaré–Bendixson theorem, 6, 11, 27
Poincaré–Birkhoff Theorem, 96
Poincaré–Birkhoff theorem, 344
Poincaré–Fermi theorem, 353
Poincaré–Hopf index theorem, 27
Poincaré section, 147
Poisson detection statistics, 432
Poisson process, 243
polarization, 224
Polyakov action, 534
Pontryagin, 33
Pontryagin Maximum Principle, 580
population models, 48
positional stiffness, 701
positive leading Lyapunov exponent,

130
potential energy, 194, 198
Prandtl number, 46
predictability, 343, 658
predictability time, 130
predictability/controllability, 694
Principle of stationary action, 317
probabilistic description, 426
probability amplitude, 453
probability density, 200
probability density function, 430
probability of acknowledged influence,

225
product topology, 114
product–topology theorem, 703
propagator, 436, 438, 449, 460, 488
protozoan morphology, 66
pruning, 22
pull–back, 702
pulse–coupled oscillators, 188
Pyragas control, 136

quantum behavior, 509
quantum brain, 637
quantum coherent state, 431
quantum entanglement, 708
quantum field theory, 194
quantum gravity, 474
quantum modifications, 510

quantum probability, 430
quantum space-time, 487
quantum statistical mechanics, 192
quantum theory, 507
quantum universe, 503
quantum–mechanics propagator, 454
quasi–isotropic manifold, 351
quasi-isotropy, 662
quotient space, 377

Rössler, 143
random thermostat, 75
random variable, 426
random walk, 427
rate of error growth, 129
Rayleigh–Bénard convection, 18, 127
reaction–diffusion systems, 218
recovery period, 155
rectified, 704
recurrent neural networks, 244
recursive homotopy dynamics, 649
reduced curvature 1–form, 118
reentrant excitations, 156
Regge calculus, 479, 490
Regge geometries, 476
Regge geometry, 490
Regge simplicial action, 481
regular level, 686
reinforcement learning, 654
reinforcement training, 709
relative degree, 125
relaxation oscillator, 57
reliable predictor, 49
repeller, 4, 24
representative point, 318
resting state, 155
return map, 24
reverse strategy, 225
Reynolds number, 109, 111
ribbon, 397
Ricci curvature, 660
Ricci flow, 341
Ricci scalar curvature, 314
Ricci tensor, 314, 329, 336, 660
Riemann, 309
Riemann curvature tensor, 313, 328,

334, 650, 660
Riemann sphere, 311
Riemann surface, 310
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Riemannian geometry, 311
Riemannian manifold, 309
Riemannian manifolds, 308
Riemannian metric tensor, 328
Rossler, 61
Rossler system, 61
route to chaos, 6, 34, 145
route to turbulence, 113
Rudolphine Tables, 27
Ruelle, 34

saddle point, 4
saddle–point integration, 259
Sard’s Theorem, 383
scalar curvature, 329, 336
scalar Gaussian curvature, 337
scale factor, 509
scatterers, 663
Schrödinger equation, 431, 448
Schrödinger picture, 453
scroll waves, 156
Second Law of thermodynamics, 70
second variation formula, 338
second–countable space, 319
second–order phase transition, 199
second–order phase transitions, 176
sectional curvature, 329
self–assembly, 694, 709
self–consistency relation, 204
self–limiting process, 49
self–organized, 653, 656
semantic integration, 656
sensitive dependence on initial

conditions, 102
sensitivity to initial conditions, 5
sensitivity to parameters, 5
sequence of period doublings, 145
servo–controllers, 702
servoregulatory loops, 701
set, 43
Shannon, 33
shape operator, 667
Sherrington–Kirkpatrick model, 617
short–term predictability, 5
short–time evolution, 205
signal, 654
signature, 492
simplicial complexes, 375
simplicial homology, 376

simplicity, 694
Sinai, 33
sine–Gordon equation, 113
singular homology, 376
singularities, 395
Smale, 32
Smale horseshoe, 99
Smale horseshoe map, 35
Smale–Zehnder Theorem, 99
small system, 74
smooth manifold triad, 412
smooth manifolds, 308
solution, 127
source, 466
sources and sinks, 425
space entropy, 80
space–time, 308
spaces, 492
spatio-temporal chaos, 156
specific heat capacity, 174
spectral decomposition, 79
spectral dimension, 510
sphere, 307
spherical modification, 402
spin glass, 77
spin networks, 475
spindle receptors, 701
spiral turbulence, 157
spiral waves, 156
spontaneous rotational symmetry

breaking, 120
squeezing, 4, 35
stability, 11, 343, 658
stable and unstable manifold, 38
stable eigen–direction, 99
stable manifold, 53, 99
staging algorithm, 472
standard Hamiltonian systems, 671
standard Hamiltonians, 658
standard map, 53
state, 8
state vector, 453
stationary probability density, 200
statistical error, 470
Steifel–Whitney and Pontrjagin

numbers, 412
step size, 654
Stiefel–Whitney numbers, 681
stochastic force, 428
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Stochastic forces, 699
stochastic influence, 428
stochastic integral, 428
stochastic oscillator equation, 660
stochastic oscillator problem, 354
stochastic system, 10
strange attractor, 4, 7, 27, 34, 44–46,

60, 110
Stratonovitch interpretation, 200
stream function, 88
stretch–and–fold, 60
stretching, 4, 35
string corrections, 529
string tension, 534
string–field, 571
string–field–theory action, 537
stroboscopic section, 41
structural instability, 230
structural stability, 17
structurally stable, 33
Sturm–Liouville problem, 463
subsumption architectures, 653
sum–over–histories, 431
sum–over–topologies, 493
super–field, 563
super–space, 564
supercell thunderstorms, 112
superposition, 488, 694
superstring theory, 535
supersymmetry, 535
supervised, 709
supervised gradient descent learning,

654, 656
support of a vector–field, 326
surface of Earth, 305
surgery, 402, 684
survival probability, 25
symbolic dynamics, 22, 34, 38, 40, 79,

101
symmetric affine connection, 330
symmetric dilution, 614
symmetry, 463
symmetry breaking instability, 231
symmetry–breaking, 177
symmetry–breaking oscillation, 206
symmetry–breaking transition, 668
symmetry–restoring oscillation, 206
symplectic manifolds, 308
synchronization, 710

synergetics, 229, 238
system parameters, 233
systematic error, 469

tachyon field, 536
Takens, 34
tangent bundle, 310, 322
tangent dynamics equation, 660
tangent dynamics equation , 671
tangent map, 322
tangent space, 309, 321
tangent vector–field, 323
tensor–field, 16
theoretical ecology, 50
theory of quantum gravity, 486
theory of turbulence, 34
thermal equilibrium, 229
thermodynamics, 70
three–body problem, 25, 27
threshold, 155
time averages, 657
time entropy, 80
time–dependent Schrödinger equation,

430
time–dependent vector–field, 324, 327
time–flow, 395
time–ordered product, 463
time–phase plot, 11
time–reversal invariance, 72
time–reversal symmetry, 177
topological cobordism, 395, 412, 681
topological entropy, 2
topological hypothesis, 665, 669, 672
topological invariant, 309, 368, 669
topological manifold, 308
topological property, 309
topological quantum field theory, 511
topological theorem, 671
topological transition, 676
topologically transitive, 102
topology, 26, 368, 493
topology change, 394, 412, 496, 671
topology changing, 681
topology changing processes, 416
topology–changing transition, 681
tornado, 112
torsion, 312
torus, 307, 703
total system complexity, 694
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trace, 686
trajectory, 11, 16, 22
transient chaos, 113
transition amplitude, 405, 425, 431, 433,

447
transition energy, 671
transition functions, 318
transition map, 306
transition probability, 431, 433
transition probability amplitude, 438
transition probability distribution, 590
transition temperature, 671
transitive Anosov flow, 79
trapping region, 102
Trotter decomposition formula, 471
trousers, 394, 397, 398, 400, 407
turbulence, 17, 108, 159
turbulent flow, 111
twist map, 96
two–point function, 464

umbrella sampling, 473
uncorrelated configuration model, 227
undamped pendulum, 55
universality class, 179
unpredictability, 27, 658
unstable eigen–direction, 99
unstable manifold, 53, 99
unstable periodic orbits, 25
unsupervised, 653, 656

vacuum state, 433, 629
Van der Pol, 32
Van der Pol oscillator, 36, 125
vector–field, 16
velocity equation, 233
velocity phase–space manifold, 321
velocity vector–field, 321
ventricular fibrillation, 166

Verhulst model, 200
vertices, 309, 368
virial estimator, 473
virtual particles, 428
virtual paths, 425, 488
visual cortex, 187
volatility, 585
Volume(T), 493
von Neumann, 26
vortex, 111
vortices, 156
vorticity dynamics, 112

W–cycle, 473
wandering point, 79
water vapor, 230
wave–particle duality, 432
Weierstrass, 28
weights, 653
Weyl, 309
Whitney, 309
Wick rotation, 483, 540
Wiener, 33
Wiener measure, 450
Wiener process, 429
Wigner function, 626
winding number, 95
Witten’s TQFT, 511
world–sheet, 529
wormhole creation, 400

Yang–Baxter equation, 515
Yang–Mills gauge theory, 512
Yang–Mills relation, 578
yarmulke, 397, 398, 407, 683
yarmulke cobordism, 682

Zamolodchikov metric, 568
Zorn’s lemma, 311
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