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Preface

The study of complex systems pervades all of science, from cell biology to ecol-
ogy, from computer science to meteorology. A paradigm of a complex system
is a network, where complexity may come from different sources: topological
structure, network evolution, connection and node diversity, and/or dynamical
evolution. Network structures are being found pervasively throughout natu-
ral and engineered systems, and the modern study of networks is requiring
ideas from computer science, physics, dynamical systems, statistics and biol-
ogy. Networks consist of nodes which are interconnected by a mesh of links.
The macroscopic behavior of a network is determined by both the dynamical
rules governing the nodes and the flow occurring along the links.

Computer and communications networks are among society’s most im-
portant infrastructures. The emergence of a global Communication Network
during the past decade changed the way we live and work. The physical in-
frastructure and the logical network of the Internet grew like a living creature
producing one of the most sophisticated systems humanity ever built. At the
same time the components of the networking technology went trough enor-
mous engineering assisted evolution. Routers and communication lines are
orders of magnitude faster and more complicated than a decade ago, while
previously separate technologies such as telephone and mobile communication
systems got integrated under the umbrella of the Internet Protocol. While
each and every part of the system evolves toward an enormous complexity, in
a paradoxical way, all these details are hiding beneath the Internet Protocol
allowing us to disregard most of the underlying details from a modeling point
of view.

The Internet is a giant (global) network of networks without central control
or administration: its design is guided by the end-to-end principle. Transmis-
sion Control Protocol/Internet Protocol (TCP/IP) is the predominant trans-
port protocol used in today’s Internet. TCP/IP is a protocol used by source
computers to inject packets into the Internet, and used by Internet routers
to store-and-forward packets among multiple routers along a path, and then
finally to forward the packet to its destination computer. TCP/IP is an end-



VI Preface

to-end protocol operating on logical connections between pairs of computers.
A better understanding of the TCP/IP network structure, its topology and
dynamics, is essential for optimal design, efficient protection, robustness, and
modeling the Intetnet. This book is a first collection on the new and emerging
filed of nonlinear dynamics of TCP/IP networks. It has fourteen chapters.
The book opens with the chapter “Nonlinear Dynamics of TCP and its Im-
plications to Network Performance,” written by András Veres and Miklós
Boda. The authors demonstrate that the TCP protocol, while competing for
networking resources, generates complex non-linear dynamics. An important
message of this work is that random traffic behavior is not exclusively due
to “random” effects, but also due to complex behavior of the TCP proto-
col. The TCP protocol, although driven by deterministic rules, may produce
time-series seemingly indistinguishable from stochastic processes.

In the second chapter “Dynamics of Congestion Control” A. Gilbert an-
alyzes synchronous behavior in communication networks. Many experiments
and the intuitive explanations of these experiments show that TCP sources
competing for bandwidth on a congested link will synchronize through the
weak coupling inherent in congestion control. Intuitively speaking, a popula-
tion of sources will synchronize because they all experience loss at roughly the
same time, they all scale back their transmission rate in the presence of these
losses, and then they increase their transmission rate until the next bout of
congestion. In this paper, the author explores: (1) the conditions under which
periodic aggregate behavior can occur, (2) whether there is evidence that it is
occurring in the Internet today, and if so, (3) whether there are simple ways
to prevent it.

In the third chapter “Statistical Properties of Chaos in Communication
Networks” written by G. Vattay, K. Diriczi, A. Fekete, L. Kocarev, M. Maródi
and J. Stéger, the authors demonstrate that the packet sending dynamics in
computer networks can be chaotic. In particular, chaotic properties of the
TCP congestion avoidance mechanism are investigated. The analysis focuses
on the origin of the complex behavior appearing in deterministic TCP/IP
networks. From the traffic modeling point of view the understanding of the
mechanism generating chaos is essential, since present models are unable to
cope with this phenomena.

N. S. V. Rao, J. Gao and L. O. Chua in the fourth chapter “On Dynam-
ics of Transport Protocols Over Wide-Area Internet Connections” present a
state-space model of TCP and show that its dynamics embed a tent-like map
which generates chaotic trajectories under certain conditions. Moreover, in
this chapter the authors show that Internet dynamics are equally dominated
by the stochastically of Internet traffic and the deterministic chaos due to the
non-linear TCP dynamics, and are best characterized by anomalous diffusions
defined by a large diffusion exponent.

G. Simon, P. Pollner, P. Hága and I. Csabai in “Dynamical Properties of
Externally Driven TCP traffic” study the effect of periodically sent user data-
gram protocol (UDP) packets on a single persistent TCP connection, and on
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an aggregate flow consisting of two persistent TCP connections. The authors
also introduce the problem of measuring a system whose characteristics are
changing as a result of the measuring process, and present a comprehensive
study of the influence of active probing on realistic time-varying TCP traffic.

In the sixth chapter “Data Traffic, Topology and Congestion” D. K. Ar-
rowsmith, R. J. Mondrag, and M. Woolf use of intermittency in iterated maps
to provide various relevant statistical types of binary data will be described.
The dynamical modeling of packet traffic using intermittency maps is intro-
duced together with the dynamics of Transmission Control Protocols. Regular
and scale-free network topologies are used for Internet packet traffic model-
ing and the congestion behavior of packet lifetimes on these networks under
increasing load is investigated.

The treatment of non-Poisson fractal-like time-series describing packet
traffic featuring a bursty behavior and a high variability over a range of time
scales is discussed by G. Setti, R. Rovatti and G. Mazzini in “Chaos-Based
Generation of Artificial Self-Similar Traffic”. One-dimensional chaotic maps
have been shown to be able to reproduce such intermittent processes and the
construction of simple models for realistic traffic sources can be considered
a substantial contribution of the theory of complex dynamics to the grow-
ing field of implementation of new network control units. In this chapter, the
authors establish theoretical ground for the formal development behind the
chaos-based modeling of network traffic and other similar phenomena.

The eight chapter “Macroscopic Dynamics in Large-Scale Data Networks”
by J. Yuan and K. Mills, the authors study space-time characteristics of con-
gestion in large networks, and analyze system behavior as a coherent whole.
This chapter also demonstrates the macroscopic effect of distributed-denial-of-
service flooding attacks, and shows how the technique developed by authors
could provide significant information to detect and defend against such at-
tacks.

G. Chen, Z. Fan, and X. Li in the ninth chapter “Modeling the Complex
Internet Topology” develop a novel multi-local-world (MLW) model with a
localization property for better description of the Internet. Clearly, the Inter-
net can be considered as a collection of many interconnected subnetworks. If
a subnetwork in the Internet is viewed as a “local-world,” then the Internet
consists of several interconnected “local-worlds.” This new mode is based on
a carefully study of the Internet AS graphs, with a comparison to the BA
model.

In the tenth chapter “Evolution of the Internet Topology and Traffic Dy-
namics of Data Packets” K. Goh, B. Kahng, and D. Kim investigate how
the connection profile of the Internet at the autonomous systems (ASes) level
evolves, finding that it is extremely dynamic and can be described in the
framework of the multiplicative stochastic process. Extracting relevant pa-
rameters for the growth dynamics of the Internet topology, the authors are
able to predict the connectivity (degree) exponent of the Internet AS map
successfully.
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H. Zhang, M. Liu, V. Vukadinović, and L. Trajković in “Modeling TCP/RED:
a Dynamical Approach” study interaction between Transmission Control Pro-
tocol (TCP) and Random Early Detection (RED) gateways using dynamical
models. The communication network is viewed as a discrete-time feedback
control system where TCP adjusts its window size depending on whether or
not it has detected a packet loss during the previous round trip time (RTT)
interval. In this chapter, the authors describe a discrete-time nonlinear dy-
namical model for interaction between TCP and RED gateways. The model,
constructed using an iterative map, captures a detailed dynamical behavior of
TCP/RED, including slow start, fast retransmit, and timeout events common
in TCP.

In the twelfth chapter “Nonlinear Instabilities in TCP-RED” the authors
P. Ranjan, E. H. Abed and R. J. La present a novel modeling paradigm
of dynamical negotiation between clients running TCP (Transmission Con-
trol Protocol) and routers with RED (Random Early Detection) active queue
management scheme. Basic aim of this modeling is to understand the inher-
ent nonlinearity in their interaction and how it manifests itself in the form of
parametric sensitivities observed in practise. The model proposed here is used
to study network dynamics over large parameter variations. Both smooth bi-
furcation like period doubling and non-smooth bifurcation like border collision
are shown to occur as system parameters are varied.

In the next chapter “Synchronization in Complex Networks” the authors L.
Kocarev and G. Vattay study synchronization in complex networks topologies;
in particular they analyze synchronization properties of classical and power-
law random graph models.

In the fourteenth chapter “Dynamic Complexity in the Internet Traffic” M.
Takayasu reports on observation and simulation results showing the evidence
of the phase transition in the Internet between congested and non-congested
phases accompanying critical fluctuations at the phase transition point. The
input mean flow density into the Internet is regarded as the control parameter
of this phase transition. Results show power-law distribution of congestion
duration time, divergence of correlation length of jams, and discontinuity in
the differential coefficient of the probability of jam occurrence at the critical
point.

San Diego, Budapest, Ljupco Kocarev
November 2004 Gábor Vattay
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Gábor Vattay, K. Diriczi, A. Fekete, L. Kocarev, M. Maródi, J. Stéger . 49
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Nonlinear Dynamics of TCP and its
Implications to Network Performance

András Veres and Miklós Boda

Traffic Lab, Ericsson Research, Budapest Andras.Veres@ericsson.com,
miklos.boda@nkth.gov.hu

1 Introduction

TCP flows continuously intertwine in the Internet competing with each other
for service capacity and buffer space in bottleneck routers. The window based
flow and congestion control algorithms implemented in end-hosts control com-
petition between traffic flows. Previous work has modeled TCP competition
from a macroscopic point of view that is the average TCP flow rate have been
derived as a function of delay, loss and service rate [9][15]. In this paper, we
introduce a novel approach to model the competition between multiple TCP
connections sharing a common bottleneck buffer. We demonstrate that the
end-to-end congestion control used by the TCP protocol, while competing for
networking resources, generates complex non-linear dynamics. An important
message of this work is that random traffic behavior is not exclusively due to
“random” effects, but also due to complex behavior of TCP. The TCP proto-
col, although driven by deterministic, rules may produce time-series seemingly
indistinguishable from stochastic processes. On the other hand, non-linear
systems have unique properties and they are able to produce a diversity of
phenomena.

In this paper, some of these properties and phenomena are demonstrated
and analyzed. We have built a test network consisting of real hosts and proto-
col implementations where we can create several configurations representing
different network scenarios in a simplified setting. The dynamics of this system
can be characterized from two aspects.

First, the dynamics of the system are investigated in the time domain that
is the frequency and duration of traffic bursts injected by the TCP protocol is
analyzed. The efficiency of router buffering depends on short scale bursts in
the order of the buffer emptying timescale, while end-users are more concerned
by long timescale variations of the traffic rate.

Second, we analyze the dynamics in the phase space, where we observe co-
dependence of the system variables while the time dimension is hidden. This
analysis helps to analyze, for example, periodicity and non-periodicity. The

L. Kocarev and G. Vattay (Eds.): Compl. Dyn. in Com. Networks, UCS 5, pp. 1–20, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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phase space analysis also enables the investigation of the system sensitivity. A
system of high sensitivity can be easily perturbed by small interactions, in such
systems the effect of small interactions can grow to large-scale changes. High
sensitivity might also make it possible to apply “smart network management”,
which means that the network performance is improved by precise, minute
interventions.

The observed and analyzed phenomena are the product of complex proto-
col mechanisms as they are competing for the network resources. Competition
is unavoidable, and TCP algorithm is the glue that keeps the Internet together.
It is thus important to better understand the properties of the competition
and the performance impacts of them. Ultimately better understanding can
lead to better networks.

2 TCP Congestion Control

The TCP protocol [16][6] provides reliable data delivery between two comput-
ers using data acknowledgements and retransmissions. The protocol is rather
complex and it has numerous variants. In this section, we explain the most
important mechanisms with a focus on how TCP rate control works.

TCP uses the so-called window based congestion control to control its
data transfer rate over the interconnecting networks. The congestion window
(cwnd) controls the amount of data that can be outstanding unacknowledged
in the network at any time. So if the window is x bytes, then at most x
bytes can be delivered maximum during the end-to-end round-trip time RTT
between the two computers. The rate of a TCP connection is thus controlled
by 8 ∗ x/RTT .

TCP does not have explicit information about the optimal congestion win-
dow it should use, so it uses implicit information instead by means of detecting
packet losses and estimating the round-trip delay. TCP assumes that packet
losses are indications of network congestion. When a packet loss happens and
the acknowledgement packet (Ack) does not arrive before the time-out kicks
in, TCP reduces its window (and thus reduces its speed). In between losses,
TCP gradually increases its sending rate. If the congestion window is small,
TCP increases fast; it increases by one packet after it received an acknowl-
edgement packet of each sent packet (slow-start phase). After it has reached
the so-called slow-start threshold, it increases by one packet every round-trip
time (congestion avoidance phase).

There are several optimizations of this basic algorithm, like fast retransmit,
fast recovery, or selective acknowledgements, just to name the most important
ones [19] [17] [18]. The fast retransmit/recovery modifications accelerate TCPs
recovery time from packet losses. According to these mechanisms, after a
packet loss, TPC does not have to wait for a time-out and then go to slow
start, instead, it drops its rate by half and continues with congestion avoidance
from there (Figure 1).



Nonlinear Dynamics of TCP and its Implications to Network Performance 3

0 20 40 60 80 100
0

10

20

30

40

w
in

d
ow

[p
a
ck

et
s]

time [sec]

Fig. 1: Window process of a single TCP.

3 The Basic Lab Model and TCP Dynamics

Our goal is to investigate TCP download dynamics in a simplified model where
we can capture the important aspects of TCP rate control. See Figure 2. We
built this model using real networking components in a laboratory.

The model consists of two end-hosts, both running Linux kernel version
2.4. One of them was a TCP server and the other one was the client. In
between the two hosts there is a router, which acts as a bottleneck between
the two hosts. In the router we can set the service rate and the maximum
buffer size. In the real world the two hosts can be far from each other: the
propagation delay in our lab experiment is emulated by the NISTNet [11]
network emulator which can delay every packet by an arbitrarily set duration.

Client Server

Buffer size B
Service rate C

Drop probability P

Fig. 2: Testlab configuration

To observe the TCP dynamics we monitored the packets sent and received
by the server. Every packet was logged with a precise timestamp. As we dis-
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cussed before, a key variable of TCP dynamics is the TCP window or the
number of outstanding unacknowledged bytes. We used the tcptrace [20] util-
ity which calculates the window size as a function of time from the earlier
recorded packet logs.

In this first experiment we set the bottleneck rate to 80 kbps, buffer size 20
packets and propagation delay 100 ms. We start a single TCP download from
the server to the client. The calculated window as a function of time is shown
in Figure 1. Observe the orderly behavior, which starts with a slow-start then
is followed by a periodic sequence of congestion avoidance and window halving
after a buffer overflow. This simple case demonstrates how TCP adapts to a
static network situation. A more interesting case is when TCP has to share
the network with other traffic, e.g., with another TCP download. This case is
shown in Figure 3a. We can see that the periodic behavior remains. The two
TCPs start at the same time and lose packets near the same time. The reason
is that when the bottleneck buffer is near full both TCPs will have a high
chance to lose a packet. This phenomenon is called TCP synchronization.

One can modify several parameters in the above model. We can change
the rate, the size of the buffer, the number of TCP connections, etc. Here we
change the rate and see how it affects the window process. The window pro-
cesses are shown in Figure 3. The periodic behavior vanishes as we reach speed
of 1200 kbps where the process becomes seemingly random. What happens is
that at higher speed the packets are scheduled at with smaller time between
them. In every real-life systems there are inherent sources of different kinds of
noises, for example, an interrupt may delay the service of a packet by a minute
amount of time. As the service speed increases and the gap between served
packets gets closer to the devices’ inherent noise levels, the system becomes
unstable. This intuitive explanation obviously deserves more discussion.

In order to investigate the sensitivity of a system we artificially perturb
the system by a single packet in the middle of the usual TCP download. This
small, 40 byte packet will occupy the bottleneck server by some time (e.g.,
at 1000 kbps this delay will be 40 ∗ 8/1000000 = 3.2msec. Figure 4 shows
the window dynamics at two different speeds, in each case we sent in a single
small disturbing packet. The result shows that the periodic system is kicked
out from the orderly behavior, but some time later it turns back to order.
In case of a seemingly random system we do not see any particular change.
Based on the above observations, we can formulate several related questions.

• Can we characterize orderly and random behavior in some way?
• What are the statistical properties of the TCP flow rates?
• Can we measure the sensitivity of the system to external perturbations?
• Can we control a sensitive system, or at least what impact sensitivity may

have on end-to-end performance?
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Fig. 3: TCP congestion window dynamics at increasing speeds. Each figure shows
both TCP window processes one on top of the other.

4 System Trajectories

One can observe the system’s evolution not only as a function of time, but
also by drawing the trajectory of the system as it moves in the phase space.
If the system is periodic, then the corresponding trajectory will be a loop and
vice versa, if the system evolution can be represented by a loop in the phase
space, the system is periodic. This method is thus very appealing to examine
the periodicity of a multi-TCP system.

Even in this 2-TCP system the number of state variables that completely
describe the system is very large (e.g., the whereabouts of previously sent
packets, internal variables of the sending and receiving TCPs), it is not pos-
sible to draw them on a single piece of paper but it is possible to properly
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(a) Rate 200 kbps

(b) Rate 1200 kbps

Fig. 4: Impact of a perturbing packet (which happens exactly at 60 sec) on TCP
window dynamics at different service rates.

choose a section of the phase space. We chose the TCP congestion window
(cwnd) size because it has a close relation with the sending rate of TCP.

In [14] the authors propose to use the time shifted past values
[xt, xt−δt, xt−2δt, . . . ] of an easily measurable quantity for complex systems to
equivalently reconstruct the underlying multidimensional trajectories if there
is no access to all the state variables. The choice of δt can be nearly arbitrary
in a wide range. The result is a multidimensional vector that is projected to
the 2D plane simply by averaging the values X̂ = 1/n(xt + xt−δt + . . . ). The
method described above is used for the cwnd values:

x[i] =
1
n

n6
j=1

cwndx[i− j] (1)
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y[i] =
1
n

n6
j=1

cwndy[i− j] (2)

Here x and y denote the two TCPs. n controls the scale over which the conges-
tion windows are averaged, the larger the value is, the more hidden dimensions
can be reconstructed. The method has two other benefits:

• The number of possible points on the (x, y) plane is increased from W 2

where W is the number of possible cwnd values to (nW − n)2 (if cwnd is
counted in packets).

• Consecutive results x[i] and x[i+1] are placed close to each other, actually
no further than (2 ∗W − 2)/n. Thus using this construction the generated
graph can be made as smooth as required.

A nice property of the graph is that it preserves the periodicity property:
periodic trajectories are displayed as closed loops in (x, y). (If we choose n
equal to the period, then we get a single data point - a degenerate loop.)

(a) Stable trajectory (b) The grey trace shows
the impact of perturba-
tion

Fig. 5: Trajectories of a stable, periodic system of two TCPs sharing a single link
(testbed measurement).

The periodicity and the effect of the perturbation on the system can be
also demonstrated by displaying the trajectory of the system in the state
space. The left graph of Figure 5 shows the trajectory of a stable periodic
system before the perturbation. It can be seen that the periodic behavior
is represented by a closed loop. On the right hand side, the trajectory of
the system is shown right after the perturbation is started. The effect of the
perturbation is represented by a short detour off the closed loop, but the
system returns to the same pattern as in the left graph.
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Figure 6 shows the result of the above method for other network configura-
tions. In order to reduce the blur caused by transients and the impact of noise
and help to differentiate orderly behavior from pure random trajectories, we
applied darker shades to those points of the figure that are more frequently
visited than others. With this method now we can clearly visualize stable tra-
jectories as shapes appearing in front of the light shaded noise (right hand
figures). Figure 6b is a complex loop which corresponds to a periodic pattern
at rate 800 kbps, close to the edge of non-periodicity. Then at a certain speed
(Figure 6c) we get a fine structured graph behind the noise, while at even
higher speed we see no more than blurry shapes (Figure 6f).

The configuration seen in Figure 6d is interesting because there we do not
experience periodicity or at best the period is very large. Still, this configura-
tion has an orderly pattern of the trajectory, which is clearly distinguishable
from the noise. We have seen that the clearly periodic system was immune to
small perturbations, and the periodic pattern reappears after a short detour.
Thus, for the complex trajectory of Figure 6d it makes sense to investigate
whether the hidden order in the trajectory is robust against random pertur-
bations. To investigate this question, we add random noise to the system by
dropping randomly 0.1% and 1% of the packets on the link after the bottle-
neck buffer. The resulting graphs (after filtering) are shown in Figure 7. The
pattern diminishes if the additional noise is high. We shall investigate how
we can characterize the sensitivity of a system to perturbations later in this
paper.

We have shown that by observing trajectories one can differentiate period-
icity and non-periodicity as well in the same system under different settings.
Does periodic or non-periodic behavior make any difference from a perfor-
mance point of view? Also important to ask whether periodic or non-periodic
behavior is the typical? The latter question is most difficult to answer, since
they depend on many factors. Periodicity is mostly present if there is stable,
constant load on a system with just a few TCP connections sharing a clear
bottleneck. This scenario is typical if someone downloads long files over an ac-
cess network that is slower than the backbone speeds (e.g., someone runs a file
sharing application over DSL or cable modem) and the system configuration
leads to a periodic pattern. Non-periodic behavior is more typical in case the
traffic demands are dynamic (Web browsing) or there are many connections
sharing the bottleneck (e.g., corporate/university leased line).

The first question, whether trajectories make any difference or not, has a
more important implication and it leads to the problem of the sensitivity of
the system.

5 Sensitivity

In this section, we demonstrate that in TCP congestion control can show large
sensitivity, which means that very small perturbations in the system may
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(a) Rate 800 kbps (b) Rate 800 kbps, noise re-
duced

(c) Rate 960 kbps (d) Rate 960 kbps, noise
reduced

(e) Rate 1200 kbps (f) Rate 1200 kbps, noise
reduced

Fig. 6: TCP window trajectories at increasing speeds. Right hand figures are filtered.
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(a) No additional noise (b) Additional 0.1% ran-
dom loss

(c) Additional 1% ran-
dom loss

Fig. 7: The impact of external noise on the trajectories.

cause that the trajectory departs from the original, unperturbed, system’s
trajectory within a very short time. The distance can grow to the range of
the signal itself. This is one of the major properties of chaotic systems.

To eliminate the noise coming from operating systems so that all the per-
turbations in the experiment are under our control, we used simulations in-
stead of testbed measurements in this section. We used the NS simulation
software [10]. The simulation model copies the testbed setup, but simulation
allows some extra freedom, so we increase the number of simultaneous TCP
sessions to 30. (C = 1 Mbps, d = 15 ms, B = 60 packets). First, we let
the system evolve for a while, then at t = 50 s we artificially increased the
congestion window of one of the TCPs with one packet. Then we plotted the
spatio-temporal graph of both systems, see the original system in Figure 8
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(top) and the perturbed system in Figure 8 (middle). The length of the plot
is 100s so the perturbation is done right at the middle of the plot. If we com-
pare the two systems, first the differences are invisible, but a few seconds
later the two systems look completely different. To make this more visible, we
plotted the difference of the two systems in a way that each dot was colored
according to the distance defined as d(i, t) = |worig(i, t)−wpert(i, t)|, where i
and t is the id. of the TCP and the time respectively, worig(i, t) is the cwnd
of ith TCP in the original system at time t and wpert(i, t) is the same for
the perturbed system. See Figure 8 (bottom). The first part is white, which
means that the two systems are identical, then a few dim dots appear and a
few seconds later the difference looks like the original plots.

Fig. 8: Spatio-tempral graph of 30 TCP window processes sharing a single bot-
tleneck. Time flows from left to right, light shades represent large windows, dark
shaded represent low windows. Spatio-temporal graph of the original system (top).
Spatio-temporal graph of the perturbed system (middle). Difference between the
two systems (bottom).

To quantify how fast this divergence happens, we define the distance be-
tween the two systems at time t as the Euclidean distance in the cwnd space:

E(t) =

3442 N6
i=1

(worig(i, t)− wpert(i, t))2. (3)

See Figure 9.
The rate at which the systems diverge after a small perturbation of the

ith TCP )i at time t0 can be described by the so called Lyapunov exponent ,
which we approximate by measuring the time Δt it takes for the two systems
to reach a given distance E(t0 + Δt) > Ê, then:

λ(t0, i) ≈ 1
Δt

ln |E(t0 + Δt)
)i

| (4)
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40.0 50.0 60.0 70.0 80.0 90.0 100.0
t[s]

0.0

10.0

20.0
E

Fig. 9: Divergence of the original and the perturbed systems.

For the experiment we chose Ê = 10 and )i = 1. The motivation to calculate
an exponent is that trajectories diverge at an exponential rate. However, as
the two systems cannot get arbitrarily far from each other (as the phase space
is limited) only the increasing part of Figure 9 should be considered, this
explains the choice of Ê = 10.

The Lyapunov exponent is the rate at which the two systems diverge from
each other every time unit. This value of course depends on which TCP we
perturb and when the interference is done. In other words, to which direction
in phase space we push the system and at what part of the phase space the
system is at the time of perturbation. There are cases when even an otherwise
sensitive system is not affected by a small interference. A negative exponent
characterizes this case. If sensitive points (λ > 0) are dense on the trajectory
then the attractor is called chaotic.

To arrive at a more general numerical result for a given system we calculate
the exponent at many different points of the trajectory (t0) and for all 30
TCPs. Then for each t0 we choose the most sensitive direction where the
largest λ is measured and average these values over time to get the average
maximum exponent of the trajectory (see Figure 10):

λ = E
�
max

i
λ(t0, i)

�
(5)
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30.0 50.0 70.0 90.0 110.0 130.0
t0[s]

0.0

2.0

4.0

6.0

L

Fig. 10: Lyapunov exponents at different points of the trajectory and for all 30
TCPs, maximum exponents along the trajectory are connected with a line (average
maximum λ ≈ 1.11).

In the experiment we got λ ≈ 1.11, which means that after a perturbation
the difference between the two systems increase at an average rate of eλ ≈ 3.03
every second.

6 Controllability

We have shown that it is possible to perturb a network using small interven-
tions. The question is whether it is possible to control it as well? Here we
mean whether it is possible or not to improve the performance of a network
using small interactions. If the answer is yes, then it could make it possible
to design better networks.

There have been many proposals before to actively control the network
using smart algorithms. One class of these algorithms improves the end-to-
end performance by applying direct control of how the network resources are
distributed among the competing flows. Generalized Processor Sharing (GPS)
[13] is one of the most sophisticated of such algorithms. GPS implements
separate buffers for each flow and controls the sending of packets from these
buffers using a strict rule according to some shares defined by the network
management. These direct methods although very effective are complex and
they are usually implemented in small speed routers.
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Another class of control algorithms applies heuristics based on assump-
tions on the usual behavior of the controlled traffic. The most important of
these algorithms is Random Early Detection (RED) [4]. RED assumes that
TCP flows will react to early signals of congestion and applies a control rule
that drops packets with a certain small probability before the buffer reaches
saturation. The idea of RED is to keep the buffer at an optimal level contin-
uously. Since the packet drops are randomized, it is also argued that possible
synchronization effects are eliminated with RED, and fairness among TCP
flows is improved.

If one knows a full dynamical description of a system, e.g., the shape of
the attractor and the level of sensitivity along the attractor, then, at least
theoretically, one could decide upon the best possible control algorithm. The
objective of this control algorithm can be manifold, for example, it may max-
imize the fairness while minimize the level of intervention.

The above reasoning is purely theoretic, since it is impossible to derive a
complete dynamical description of a network shared by many flows, routers,
short and long TCP downloads etc. Nevertheless, we may try to assess whether
it is possible at all or not to effectively control a network using as small
intervention as possible. In order to do this we need to have a fully repeatable
model where we can try out different interventions under exactly the same
circumstances. Our goal is to improve the fairness in this network. We define
fairness as the standard deviation (S) of the time needed to download a certain
file. If S is small then all TCPs receive almost the same service rate.

We run the same simulation experiment as before using 30 TCPs, but now
we try to find the best possible intervention. First, we run the system without
any action and calculate S. The result of this first experiment is denoted by
S0 Then we rerun the simulation and drop a single packet in the buffer. The
result is denoted by S1

n, where 1 means that the router dropped 1 packet
and n means that exactly the nth arriving packet to the buffer was dropped.
The size of the files is 100 packets, so without retransmissions altogether
30 ∗ 100 = 3000 packets are transmitted by the buffer, so n can take a value
between 1 and 3000.

Instead of just one packet, we may try to drop several packets, in which
case the fairness measure looks like Si

n1,n2,...ni
where n1, n2, ...ni shows the

list of packets to be dropped.
The objective of the router is then to find the best list of n1, n2, ...ni.

Obviously, as i increases, the size of the problem explodes exponentially. We
propose an almost greedy search algorithm to search for some local optima in
this space. The algorithm has the following rules:

• Step 0. Set drop list empty. L = {}.
• Step 1. Randomly choose D new positions and temporarily append them

to the list one-by-one. For each new position run a simulation and calculate
Si
L.
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• Step 3. Choose the best from the D random positions and permanently
append it to the list L.

• Step 4. With P probability remove one element from L.
• Go to Step 1 or exit if some limit condition is reached.

The above algorithm will try several drop positions randomly before in-
creasing the number of drops. Remember that we would like to keep the
number of drops at minimum. Also, to avoid being stuck in a local optimum,
an earlier drop position is removed from the list with a certain probability,
this is controlled by the parameter P .

In the actual experiment we set P = 0.1 and D = 1000, so we try approxi-
mately one-third of all possible new positions in each step. The result is shown
in Figure 11. We can observe that the initial standard deviation of approxi-
mately 3 seconds can be reduced below 1 second by appropriately dropping
just 4 packets. On the other hand, the wide band of variance results at each
step indicates that one can do equally significant harm as one can do good
at any time that is the variances range up to almost 5 seconds independently
of the contents of the actual loss list. Consequently this network is rather
difficult to control effectively, since a single wrongly placed packet drop can
ruin the whole objective.
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Fig. 11: Variance of download times. Each dot represents the result of a simulation
run for a certain loss list L.
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7 Traffic Burstiness at Different Timescales

As we have shown TCP dynamics can be quite different depending on the
circumstances. The end-user, or the network operator, however, is not so much
interested in whether connections follow a periodic or a random pattern. For
them the time dependent properties are more important. If the TCP download
rate has fast timescale fluctuations, in other words bursty, the network buffers
are more stressed compared to smooth or even uncorrelated random arrivals.
For the end-user the large timescale fluctuations are more important, nobody
likes to see a download slow down for longer periods of times.

Common traffic modeling assumption is that TCP has only short timescale
fluctuations [12], and large timescale fluctuations are due to heavy tailed file
size distributions [1][2]. In contrast, real life can produce interesting phenom-
ena and not just in extreme situations. We chose the seemingly random con-
figuration of two TCPs (at 1200 kbps) with different buffer settings (5, 10
and 20 packets). Figure 12a-c show three test runs in the testbed, where we
recorded the number of packets transmitted by one of the TCPs during con-
secutive 100 ms. When the buffer size is 10 packets, the traffic looks random
and shows short timescale variations. On the other hand, when the buffer
size is 5 and 20 packets, we see long, alternating periods of high and low
transmission rates.

One way to characterize the variations of TCP rates at different timescales
is the variance-time plot (VT). Let X denote the number of packets transmit-
ted during a time period of 100 ms. Let X (m)(k) = 1/m

7km
i=(k−1)m+1 X(i)

denote the m aggregated series of X . The VT plot shows the variance of X (m)

versus m on a logarithmic scale.
The slope of the VT plot summarizes the variations at different timescales

in a single graph. As a comparison short-range dependent processes asymp-
totically drop with slope β = −1 as m→∞. The VT plots of the TCP rates
are shown in Figure 13.

The VT plots representing the 5 and 20 buffer cases show that the vari-
ances drop at a significantly lower (β > −1), and almost constant rate over
a significant time range from 100 msec (0 on log scale) up to 1000 sec (4 on
log scale). This almost scale independent property is frequently modeled by
parsimonious, self-similar processes [7][8].

We must note that we do not claim this process to be self-similar, which
is anyway a purely mathematical model and should fit the process asymptot-
ically not just in a limited time range. Nevertheless, when modeling network
traffic, we are interested in a model that can capture some key statistical
properties over relevant timescales. The relevant timescale in traffic theory
is usually limited because traffic cannot be considered to be stationary over
longer timescales.

Guo et al. [5] analyse a similar scenario using a Markov chain based model
and arrives at a similar conclusion. The authors derive that self-similarity can
arise in TCP traffic if the blocking probability reaches a certain value. The
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Fig. 12: TCP rate processes at different buffer sizes (service rate 1200 kbps, delay
100 ms).



18 András Veres and Miklós Boda

0.0 1.0 2.0 3.0 4.0 5.0
−3.0

−2.0

−1.0

0.0

1.0

5b
20b
10b

log10(m)

lo
g
1
0
(V

a
r[

m
])

Fig. 13: Variance-time plots for different buffer sizes (service rate 1200 kbps, delay
100 ms).

work by Figueiredo et al. [3] further develops the model to include the con-
gestion avoidance phase and not just the exponential backoff phase of TCP
congestion control. The significant difference between their methodology and
ours is that both papers approach the same problem from a stochastic per-
spective. Our work, although it takes a significantly different, deterministic
modeling approach, actually supports the validity of the approach discussed
in [5] and [3]. The complex, non-linear nature of TCP blurs the borderline be-
tween deterministic and stochastic techniques in traffic modeling. On the one
hand, it makes it possible to use either stochastic or deterministic modeling
techniques in the analysis of a system, but it calls for extra care to be taken
before drawing conclusions.

8 Conclusions

In this paper, we have analyzed TCP dynamics from several aspects. We have
built a testbed where we experimented with different network configurations.
We have recorded periodic and non-periodic dynamics in the same system at
different settings. We have defined a method to draw the system trajectory
that helps to identify orderly and apparently random behavior visually. The
trajectory has been characterized from an important aspect namely the sen-
sitivity of the system to small perturbations. We have proposed a sequence
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of directed simulations and calculations to investigate the sensitivity of the
system. We have demonstrated that TCP congestion control can create time-
series with slowly decaying variances such as self-similar processes. We have
analyzed the possibility of improving the end-to-end performance of such a
system by using only minute control actions and have shown that although
control is possible, the complexity of the system is so large that actual appli-
cation is a topic for future research.
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1 Introduction

One reason for the success of TCP and its widespread usage in the Internet
is its ability to control network congestion. A TCP source uses implicit noti-
fication of network congestion (via packet loss) to control the rate at which
it sends data. The rate is controlled by increasing or decreasing the window
of outstanding, unacknowledged data. In particular, TCP uses “additive in-
crease and multiplicative decrease” to increase the rate linearly during times
of no packet loss, and to decrease the rate geometrically when loss occurs. As
a consequence, the rate at which a TCP source transmits tends to be periodic
over time. For example, Figure 1 shows the periodic behavior of a single TCP
source in an otherwise idle network.

When many TCP sources compete for the buffers in a congested router,
packet loss will cause each flow to exhibit periodic behavior. A question worth
asking is: will the aggregate behavior of all of the flows also be periodic? For
example, consider Figure 2(a) which shows a number of periodic TCP flows.
If these flows were to pass through a single router over a shared link, will the
aggregate flow be smooth (as in Figure 2(b)) or periodic (as in Figure 2(c))?
The consequences of periodic aggregate behavior can be a dramatic loss of
network capacity. For example, the average data rate in the output link of
Figure 2(c) is significantly lower than that of Figure 2(b).

Many experiments [11] and the intuitive explanations of these experiments
show that TCP sources competing for bandwidth on a congested link will syn-
chronize through the weak coupling inherent in congestion control. Intuitively
speaking, a population of sources will synchronize because they all experience
loss at roughly the same time, they all scale back their transmission rate in
the presence of these losses, and then they increase their transmission rate un-
til the next bout of congestion. While much mathematical analysis has been

L. Kocarev and G. Vattay (Eds.): Compl. Dyn. in Com. Networks, UCS 5, pp. 21–47, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1: Periodic oscillation shown by a single TCP connection
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Fig. 2: Multiple TCP connections; (a)topology, (b) flat aggregate rate, (c) periodi-
cally oscillating aggregate rate

done on systems of coupled oscillators and synchronization in biological sys-
tems [10], little mathematical analysis has been done on feedback mechanisms
and the coupling of populations of sources in data networks. So in this pa-
per, we set out to explore: (1) the conditions under which periodic aggregate
behavior can occur, (2) whether there is evidence that it is occurring in the
Internet today, and if so, (3) whether there are simple ways to prevent it.

One mechanism that has been proposed to reduce periodic aggregate be-
havior is to use a drop-policy in the buffers of the routers. In particular, it
is a goal of RED [6] to “desynchronize” the flows sharing a congested router
buffer so that the periodic behavior of each individual flow is not synchro-
nized with the others. RED discards packets randomly in an attempt to cause
different TCP sources to reduce (and hence increase) their rates at different
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times. Intuition suggests that if the flows are not oscillating in phase, then
their aggregate behavior will be smooth (like in Figure 2(b)) and hence link
utilization will be high.

We start by understanding how periodic aggregate behavior comes about.
In section 2 we present a simple analytical model of TCP that captures (in a
very simplified way) the congestion control algorithm that provides feedback
to the sources. We conjecture that periodic behavior, should it exist, arises
primarily from the feedback control mechanism not from queueing in the
network, and so our model does not model queues. Later, in section 3, we test
these assumptions using simulation.

As we will see, the analytical model predicts that aggregate periodic be-
havior is not only likely to occur, but that a population of TCP sources will
converge exponentially quickly towards an invariant periodic pattern. Fur-
thermore, the model suggests that the periodic behavior is remarkably stable
even in networks in which different sources are at different distances from the
congested router, and when packets experience variable queueing delays on
their way to the congested router. The simple model also leads to a predic-
tion that periodic aggregate behavior will not be eliminated by randomized
drop-policies such as RED. In section 3 we explore whether periodic behavior
actually occurs in a simulated network with and without RED.

2 Mathematical Model

2.1 Description

We model a TCP connection as a source with an infinitely long file to transmit
to a receiver across a bottleneck link. There are N sources or connections
sharing the bottleneck link which has capacity C. In the absence of congestion
or feedback from the bottleneck, each source increases its sending rate linearly
over time (i.e., dxi(t)/dt = 1 where xi(t) is the rate of source i at time t).
The system of sources experiences congestion when the total rate A(t) =7N

i=1 xi(t) reaches the link capacity C. At each congestion epoch when A(t) =
C, a fraction r of the N sources (chosen uniformly at random) experiences
losses and these r sources receive a notification of congestion. Each source
upon congestion notification, resets its transmission rate to zero. We assume
that these events signaling congestion and reseting the transmission rate occur
instantaneously when the aggregate rate reaches the link capacity. After reset,
the rates of the sources continue to grow linearly until the system reaches
the next congestion epoch, at which point the process repeats with another
random fraction r of sources experiencing losses and adjusting their rates. This
model assumes that there is an entity at the bottleneck link that can measure
the instantaneous aggregate rate, signal, and reset the sources instantaneously.
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2.2 Mean-field Approximation

Rather than following the possible states of all N sources, we assume that
N is large enough for us to employ a mean-field approximation for the sys-
tem. We describe the state of the system at time t by a density ρ(x, t) that
represents the percentage of sources with transmission rate x at time t. We
let ρ(x, t) take on any real positive value, not necessarily an integer multiple
of 1/N . Furthermore, we approximate the result of each reset upon ρ(x, t) as
removing a uniform percentage r of the sources at rate x and time t (i.e., that
the approximate effect upon the population of sources is the mean or expected
effect) and resetting the rates of that percentage r by placing a point mass of
weight r at rate x = 0. If ρ(x, t−n ) represents the distribution of sources imme-
diately before the nth congestion epoch, then the mean-field approximation
gives us the representation

ρ(x, t+n ) = rδ0(x) + (1− r)ρ(x, t−n ),

for the distribution of source rates immediately following the reset of the
sources. In addition, the linear increase of the sources’ rates between con-
gestion epochs tells us that the configuration ρ(x, t + δt) of the system at
time t + δt is simply the translation of the distribution at time t by δt,
ρ(x, t + δt) = ρ(x− δt, t).

We demonstrate that:

1. there is a configuration ρ∗ of the source rates that is invariant under the
reset operation at each congestion epoch; i.e., the distribution of source
rates immediately following a reset is the same as the distribution after
the preceding congestion epoch,

2. there is a constant time interval Δt = rC/N between congestion epochs,
3. the aggregate rate of the sources A(t) is a Δt-periodic function that os-

cillates between a maximum value C and a minimum value (1− r)C with
an average of C − rC/2, and

4. any initial configuration of the sources will tend to this invariant expo-
nentially fast in r.

See Figure 3 for a picture of this configuration, where the mean field approx-
imation is plotted in black for N = 50 connections and r = 1/4.

Invariant Configurations

The invariant distribution of source rates has two important properties. First,
it consists of distinct populations of sources, each population with one rate,
rather than constraining all N sources to transmit at the same rate. These
distinct populations point out a slight misnomer in the term “synchronization”
commonly used to describe this phenomenon. The sources do not synchronize
their rates with respect to one another, they conspire in groups to produce
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Fig. 3: The invariant configuration of sources for the mean-field approximation and
a simulated instance of the model with N = 50 sources, the fraction r = 1/4 of the
sources reset randomly at each epoch, the bottleneck link capacity C = 1, and the
epoch duration Δt = r/N = 0.002. The distribution of 50 sources after 1000 cycles
in a realization of the toy model is also plotted in grey.

an aggregate periodic rate, and so the term “aggregate periodic behavior”
is a more accurate description of this phenomenon. The sizes of the rate
populations do decay exponentially, showing that many of the sources transmit
at the lowest rate while very few sources transmit at a high rate.

Theorem 1. There is a unique density ρ∗ that describes the state of N sources
(for N large) immediately after resetting the rates of rN sources (chosen
uniformly at random) to zero such that after the next reset, reached at time
Δt = rC/N after the first reset, ρ∗ is restored. This density is given by

ρ∗(x) =

�
r
7∞

l=0(1− r)lδ0(x− lΔt), x ≥ 0,
0, x < 0.

In addition, the aggregate rate A(t) is a periodic function with period Δt =
rC/N , oscillating between a maximum value of C and (1 − r)C.
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Proof. The aggregate rate at time t is A(t) = N
�
xρ(x, t) dx where the density

ρ(x, t) describes the state the system is in at time t and the capacity constraint
gives us the time t−n at which the rate reaches capacity C

C = A(t−n ) = N

�
xρ(x, tn) dx.

We obtain an iterated map on the density ρ(x, t) and aggregate rate A(t).
Assume that t+n is the time immediately after the nth reset, then the iterated
map is

ρ(x, t+n ) = rδ0(x) + (1− r)ρ(x −Δtn+1, t
−
n+1)

A(t−n+1) = C = A(t+n ) + NΔtn+1

A(t+n ) = A(t+n+1) = (1− r)C

where Δtn+1 = tn+1 − tn. The last two conditions on the aggregate rate tell
us that if a density ρ∗(x) exists, then Δt satisfies (1− r)C +NΔt = C or that
Δt = rC/N .

The global attractor for the iterated map on ρ(x, t) must therefore satisfy

ρ∗(x) =

�
rδ0(x) + (1− r)ρ∗(x −Δt), x ≥ 0,
0, x < 0.

Observe that we can translate this condition into a condition on ρ̄∗, the
Laplace transform of ρ∗, and then we can expand in a uniformly convergent
power series

ρ̄∗(s) =
r

1− (1− r)e−sΔt
= r

∞6
l=0

(1− r)le−slΔt.

Next we compute the inverse Laplace transform of ρ̄∗(s) by inverting each
term in the power series term-by-term, giving us

ρ∗(x) = r

∞6
l=0

(1− r)lδ0(x− lΔt),

when x ≥ 0 and ρ(x) = 0 for x < 0.

Note that if we take an iterative approach, we find the following theorem:

Theorem 2. If a fraction r of a system of N sources whose states are initially
described by the density ρ(x, 0) follows the dynamics outlined above, then the
density ρ(x, t) converges weakly to the global attractor ρ∗(x), independent of
the initial conditions of the system. The density at time tn after the nth reset
is

ρ(x, tn) = r

∞6
l=0

(1 − r)lδ0(x − lΔt) + (1− r)nρ(x − tn, 0)

and the congestion epoch length is Δt = rC/N , after the first congestion epoch
(whose length depends on the initial state of the system).
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The careful reader might argue that allowing even an infinitesimal per-
centage of the sources’ rates to grow arbitrarily large is not a physically rel-
evant result. Let us now assume that the sources’ rates cannot grow larger
than a maximum rate D. That is, once a source increases its transmission
rate to D, its rate remains fixed there until it experiences a loss. We have
to assume that C/N < D < C to avoid trivial and physically meaningless
situations. We express this condition upon the source rate distribution math-
ematically by placing a point mass at rate x = D whose weight is the total
percentage of source rates that at time t are larger than x = D and leaving
unchanged the distribution for smaller rates. Let L be the largest integer such
that LΔt ≤ D < (L + 1)Δt for Δt = rC/N . Then we may conclude using ar-
guments similar to the above theorems that there is an invariant distribution
ρ̃∗ for D-bounded sources.

Corollary 1. The invariant distribution for D-bounded sources has the form

ρ̃∗(x) = r

L6
l=0

(1 − r)lδ0(x − lΔt) + m(r, L)δ0(x−D) (1)

where m(r, L) = r
7∞

l=L+1(1 − r)l = (1 − r)L+1 is the percentage of sources
at rate D.

Stability of Invariant Configurations

The second important property the invariant configuration possesses is stabil-
ity. To explore the stability of the invariant distribution, we define a perturba-
tion of the system at the ith congestion epoch to be a random deviation from
the time the ith reset occurs. We choose )i uniformly at random in [−), )] and
jitter the duration of the ith epoch Δti = Δt+)i/N . The time Δt between the
(i− 1)st reset and when the sources next reach link capacity C is still rC/N ,
we simply randomly perturb when this reset occurs as we do in a queueing
policy that attempts to inject a small amount of randomness into the loss
process. At the new time ti, we reset a uniformly chosen random fraction r
of the sources and let the system evolve again until the total rate exceeds
capacity C. We repeat this process for each congestion epoch (drawing an
independent ) each time) and show that the perturbed system remains close
to the unperturbed system (which, we emphasize, is converging exponentially
fast to the invariant distribution independent of the initial conditions). The
perturbed system differs from its original trajectory with respect to its rates
by a maximum value of ) and with respect to its congestion epoch durations
by )/N . On average, the perturbed system does not stray from its original
course, as the perturbation ) is a random variable with mean 0.

We work with the more physically meaningful rate-bounded model as in
Corollary 1 and assume )/N < D − LΔt for ease of calculation (if not, then
the summation in Eqn. (1) ends at l = L + 1).
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Lemma 1. If we jitter the duration of the ith congestion epoch by )i/N for )i
a uniformly distributed value in [−), )], then only the duration of the (i + 1)st
epoch is affected and Δti+1 = Δt− (1− r))i/N , where Δt = rC/N .

Proof. Because we reset the source rates after an epoch duration Δti = Δt +
)i/N , the total rate immediately before reset is allowed to grow to A(t−i ) =
C + )i and immediately following reset is A(t+i ) = (1 − r)(C + )i). We let
the system of sources evolve as before until their total rate reaches capacity
C. The duration of the (i + 1)st epoch is the time interval given by C =
A(t+i ) + NΔti+1 = (1 − r)(C + )i) + NΔti+1 or Δti+1 = rC−(1−r)!i

N . At this
time (with no jitter), we reset a fraction r of the source rates and proceed
as usual. Because at the (i + 1)st epoch, the total rate is C and we use the
same evolution procedure and reset policy at the (i+2)nd epoch, the duration
Δti+2 = rC/N remains unaffected by the perturbation at the ith epoch.

Note that if we jitter the (i + 1)st epoch duration by )i+1/N , then the
total rate before reset is A(t−i+1) = C + )i+1 (and this rate is not affected by
the jitter at the ith epoch). We may then apply the lemma to the (i + 1)st
epoch. Applying this lemma inductively, we may conclude:

Theorem 3. If we jitter each congestion epoch duration independently and
let the system evolve, these perturbations do not propagate and force the sys-
tem away from the invariant configuration with respect to the duration of the
epochs. That is, the duration of each epoch varies only by )/N , the amount by
which we perturb the duration, and on average Δti = Δt = rC/N .

These calculations do not tell us if the rates of the perturbed system
remain close to those of the original system however. We return to the setting
of Lemma A.1 and assume that the system has evolved long enough in time
to have the form immediately after a reset

ρ(x, t) = r

L6
l=0

(1− r)lδ0(x− lΔt) + m̃n(r, L)δ0(x−D)

where the mass m̃n(r, L) at the rate bound x = D is

m̃n(r, L) = r

n6
l=L+1

(1− r)l + (1 − r)n+1

� ∞

0

ρ(x, 0) dx.

Lemma 2. If we jitter the duration of the ith congestion epoch by )i/N for
)i a uniformly distributed value in [−), )], then the source rates change by
max{(1− r))i/N, r)i/N}.
Proof. The reader is asked to verify that if Δti = Δt + )i/N and Δti+1 =
Δt− (1− r))i/N , then before the (i+ 1)st reset, the first rate population is at
rate Δt−(1−r))i/N while all the others are at rate kΔt+)i/N−(1−r))i/N =
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kΔt + r)i/N . In addition, for k < L − 1 iterations after the perturbation at
the ith epoch, the source rates have wandered from their original trajectory
by at most max{(1 − r))i/N, r)i/N}. After L − 1 iterations proceeding the
perturbation, the system returns to its initial trajectory.

By applying this lemma inductively, we may conclude:

Theorem 4. If we perturb each congestion epoch duration independently and
let the system evolve, then the maximum deviation of the source rates from
integer multiples of Δt = rC/N is r/N

7L
k=0 )k, for )k i.i.d. uniform random

variables on [−), )].
We observe that if the maximum source rate D is on the order of C, then L
is approximately N/r. Hence the maximum deviation is roughly rL)/N = )
and on average this deviation is zero since ) is a uniformly distributed random
variable with mean zero.

Extensions and Generalizations

Several aspects of this mathematical model are only simple abstractions of
more complex realistic behavior. To generate a less artificial picture of the
behavior of a system of N sources, we must change both the manner in which
the sources increase their rates and the rate reset policy in the face of conges-
tion. However, neither modification changes the gross behavior of the system
and so we feel reasonably confident drawing conclusions from the behavior of
the simple abstract model.

The rate increase profile in this simple mathematical model does not reflect
the complex behavior of the rate increase in TCP with its slow-start and
congestion avoidance phases. However, if we impose a more complicated rate
increase dxi/dt, we do not change the overall behavior of the sources although
we do change the details. The congestion epoch duration is different and is
given by

A(t−n+1) = C = (1− r)C + N

� tn+1

tn

dxi(s)
dt

ds

but with the same reset policy, the system evolves as before. The source rate
distribution moves according to the expression ρ(x, t) = ρ(x− � t

0
dxi(s)
dt ds, 0).

Similarly, if we choose a different reset policy, perhaps setting the rates to zero
of those sources with higher rates, we change the congestion epoch duration
slightly and the percentage of sources at a given rate no longer decays expo-
nentially. In fact, if we adopt a “deterministic” reset policy where we reset
the N/q sources with the highest rates, we will get q distinct rate populations
of equal size and a constant epoch duration depending on q.

Finally, the mean-field approximation is just that, only an approximation
of the true behavior of the mathematical model (itself an approximation).
However, a more careful analysis of the behavior of N sources under the action
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of this random dynamical system, not assuming that N is large, reveals that
the mean-field approximation is an excellent approximation of the system (see
Figure 3).

2.3 Two Sources, a Special Case

Let us begin with two sources x and y. We denote the rates of the sources at
time t by x(t) and y(t). Accordingly, the initial rates are x0 = x(0) and y0 =
y(0) with x0+y0 < C, the total capacity of the bottleneck link. The aggregate
rate at the bottleneck link is A(t) = x(t) + y(t). Each source increases its
sending rate linearly (i.e., x(t) = x0 + t) until the aggregate rate reaches the
capacity rate C. At which point, one of the sources is reset; i.e., its sending
rate is reset to zero. We will explore three scenarios: the source with the larger
rate is always reset when the system reaches capacity, the smaller source is
always reset, and one source is chosen at random and reset. Note that if both
sources are always reset, the network immediately synchronizes.

Theorem 5. If the source with the larger rate is always reset when the ag-
gregate rate exceeds capacity C, then the aggregate rate synchronizes as time
t→∞. Furthermore, this effect is independent of the initial states x0 and y0
of the sources. More formally, if Δtn = tn − tn−1 denotes the time between
the nth and the (n− 1)st reset of the system, Δtn → C/3 as n→∞.

Proof. Let us assume without loss of generality that x0 > y0 so that x is the
larger source initially. We first show that the time Δtn between resets n and
n− 1 satisfies the recurrence relation

C = 2Δtn + Δtn−1 (2)

with Δt2 = 1/4C + 1/4x0 − 1/4y0. This relation imposes the form

Δtn = αnC +
(−1)n

2n
x0 − (−1)n

2n
y0 (3)

with αn = 1/2− αn−1/2 upon Δtn.
We proceed by induction and observe that the first reset occurs at time

t1 when C = A(t1) = x0 + t1 + y0 + t1, or when t1 = 1/2C − 1/2x0 − 1/2y0.
At which point, x is reset and the rates immediately after reset are x(t+1 ) = 0
and y(t+1 ) = y0 + t1. The second reset takes place at t2 when C = A(t2) =
t2 − t1 + y0 + t2, or at time t2 = 3/4C − 1/4x0 − 3/4y0. At time t2, y is
the larger source and is reset so that x(t+2 ) = t2 − t1 = Δt2 and y(t+2 ) = 0
immediately after reset. Therefore, the difference in time between resets is
Δt2 = 1/4C + 1/4x0 − 1/4y0.

Next, we assume (without loss of generality) that x(t+n−1) = 0 and
y(t+n−1) = Δtn−1; i.e., x is reset at time tn−1 and that y was reset at time tn−2.
Then we reach capacity at time tn when C = tn− tn−1 +Δtn−1 + tn− tn−1 =
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2Δtn +Δtn−1. In other words, Δtn = 1/2C−1/2Δtn−1 and source y is reseat
at time tn, two congestion epochs after its reset at tn−2. Since

Δtn−1 = αn−1C +
(−1)n−1

2n−1
x0 − (−1)n−1

2n−1
y0, (4)

Δtn satisfies

Δtn =
�1

2
− αn−1

2

%
C − (−1)n−1

2n−1
x0 +

(−1)n−1

2n−1
y0 (5)

= αnC +
(−1)n

2n
x0 − (−1)n

2n
y0 (6)

with αn = 1/2− αn−1/2.
In the limit as n→∞, Δt tends to C/3 independent of x0 and y0. In other

words, the system resets at increasingly regular intervals with each source reset
every other congestion epoch. Furthermore, the initial conditions x0 and y0
affect only the rate of convergence of Δtn.

Next we show that if the source with the smaller rate is always reset, the
system never synchronizes and tends to a “deadlocked” steady-state where
one source sends at rate C and prevents the second from sending at all. This
result is a form of chronic congestion and an extreme form of unfairness!

Theorem 6. If the source with the smaller rate is always reset when the ag-
gregate rate exceeds capacity C, then the aggregate rate tends to the capacity
C as t → ∞ with the larger source sending at rate C and the smaller source
contirbuting nothing to the total rate. The nth reset tn tends to C − x0 (if x
is the source which has the larger rate initially) and Δtn , the time between
resets, tends to zero.

Proof. Assume without loss of generality that x0 > y0. We first show that
source y remains the smaller source and is always reset. In general, the rates
are

x(t) = t0 + t and y(t) = tn − tn−1 (7)

for tn−1 ≤ t ≤ tn and the nth reset occurs at time tn = C/2 + tn−1/2− x0/2
with t1 = C/2− x0/2− y0/2.

As in Theorem 5, the first reset occurs at time t1 = C/2 − x0/2 − y0/2;
at which time the smaller source y is reset. Immediately after the reset, the
rates are x(t+1 ) = x0 + t1 and y(t+1 ) = 0. The second reset occurs at time t2
when C = x0 + 2t2− t1, or t2 = 3/4C − 3/4x0− 1/4y0. Hence the length Δt2
of the second congestion epoch is Δt2 = 1/4C − 1/4x0 + 1/4y0.

We proceed by induction and assume that at tn−1, y is reset and that
x has never been reset so that the sources reach capacity at time tn where
C = x0 + tn + tn − tn−1. Thus, tn obeys the recurrence relation

tn =
1
2
C +

tn−1

2
− x0

2
with t1 = C/2− x0/2− y0/2 (8)
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and in its closed form

tn =
 
1− 1

2n
%
C −  

1− 1
2n

%
x0 − 1

2n
y0.

At time tn, source y is reset and the rates at any time t between tn and tn+1

are x(t) = x0+t and y(t) = t−tn. We may now conclude that tn → C−x0 and
that Δtn → 0 as n→∞. In other words, regardless of the initial rates of the
sources, with such an unfair penalty upon the smaller source, the system not
only never synchronizes, it tends to an extreme form of chronic congestion.

Finally we exmaine the scenario in which one source is chosen at random
and reset when the system reaches capacity. We show that independent of
the inital conditions, the time between resets tends on average to a constant
fraction of the capacity C. This fraction depends on the probability of favor-
ing one source over another and in the uniform case (i.e., the probability of
choosing the larger or the smaller source is equally likely), the fraction is less
than in the first scenario where the larger source is always reset.

Theorem 7. If the larger source is reset with probability p and the smaller
source with probability 1− p when the aggregate rate exceeds capacity C, then
in the limit as n→∞,

e(Δtn) =
p

1 + 2p
C.

That is, the average interval length between resets is p
1+2pC independent of

the initial states of the sources. Furthermore, the limiting distribution Δt =
limn→∞ Δtn of the congestion epoch durations is not concentrated at the
mean value.

Proof. Observe that in the previous two scenarios that Δtn has the form
Δtn = αnC ± 2−nx0 ± 2−ny0 where

αn =

�
1
2 − αn−1

2 , if reset larger source,
αn−1
2 , if reset smaller source.

(9)

The signs decorating the initial values x0 and y0 do not play a role in the
limiting behavior of Δtn because the magnitude of the initial values’ contri-
butions decreases rapidly. Hence, the time between resets in the random case
has the form Δtn = αnC ± 2−nx0 ± 2−ny0 where

αn =

�
1
2 − αn−1

2 , with probability p,
αn−1
2 , with probability 1− p

(10)

and αn is initialized α2 = 1/4.
We can easily check that

e(αn) =
p

2
− pe(αn−1)

2
+

(1− p)e(αn−1)
2
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and that in the limit limn→∞ e(αn) = p
1+2p ; that is, e(Δtn)→ p

1+2pC.
For p = 1/2, the average length of the congestion epoch is C/4. In addition,

one may check that αn has mass 2−n+2 at the values 2k+1
2n for k = 0, . . . , 2n−2−

1 by iterating the recurrence relation for αn. The expected value of αn is
simply

e(αn) =
2n−2−16
k=0

2k + 1
2n

1
2n−2

=

�
2n−2

%2
2n2n−2

==
1
4

for all n and the variance

Var(αn) = e(α2
n)− e2(αn) (11)

=
2n−2−16
k=0

1
2n−2

�2k + 1
2n

%2
−

�
2n−2−16
k=0

1
2n−2

2k + 1
2n

&2

(12)

=
�−1

3

%
4−n +

1
48

(13)

→ 1
48

as n→∞. (14)

For p ∈ (0, 1/2), the structure of αn is more complicated; αn consists of
point masses at the values 2k+1

2n for k = 0, . . . , 2n−2 − 1 but the masses at
these points are no longer equal, they are products of p and 1− p depending
on the value of k. More precisely, each point mass mn,k in αn at the point
2k+1
2n “spawns” two point masses mn+1,2k and mn+1,2k+1 at the points 2(2k)+1

2n+1

and 2(2k+1)+1
2n+1 in αn+1 such that

mn+1,2k = Wmn,k and mn+1,2k+1 = (1 −W )mn,k

where W = p if k is even and W = 1−p is k is odd. (Note that this construction
is very similar to that of Bernoulli measures, with an added twist [4].) Clearly,
αn is not concentrated at its mean in the limit as n→∞.

We pause to make several observations. We recover the result in the first
scenario if we set p = 1 (i.e., with probability one, the larger source is reset)
so that Δtn → C/3 with probability one. In addition, if p = 0 (i.e., with prob-
ability one, the smaller source is reset), we capture the second scenario with
Δtn → 0 with probability one. If we adopt the point of view that chronic con-
gestion is to be avoided and that the optimal network behavior is congestion
epochs as long as possible, always resetting the larger source gives the longest
possible congestion epochs of length C/3 and a (uniformly) random strategy
is sub-optimal, giving average congestion epochs of length C/4. However, the
maximum possible congestion epoch with a random strategy is C/2.

Let us interpret the results on the congestion epoch length for N = 2
sources in light of our previous section. Theorem 1 tells us that for N = 2,
Δt = rC/2 is the congestion epoch length. In order to achieve Δt = C/3
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where the larger source is always reset, using a mean field approximation, we
must reset r = 2/3 of the sources. In other words, to achieve the “efficiency”
of always resetting the larger source, we must reset two-thirds of the sources
each time the link capacity is reached. Also, to reach the average congestion
epoch length of Δt = C/4 where one source is reset at random, we must
reset r = 1/2 of the sources, as one would expect. However, the density
ρ∗(x) = 1/2

7
2lδ0(x − lC/4) describing the mean field approximation for

the two sources is quite different from the true description of the sources’
states!

3 Simulation Results

In the previous section we proposed a simple analytical model for congestion
control that predicts periodic aggregate behavior; in this section we explore
whether the model is relevant and its conclusions accurate.

We start with two simulation results in Figure 4. The graphs show the
evolution of packet arrival rates and queue occupancies at a bottleneck link
shared by 50 TCP sources sending an infinitely long file. On the top are
results for a drop-tail policy; on the bottom are those for RED. In both cases
there is strong aggregate periodic behavior, made more clear by the strong
component in the discrete Fourier transform of the arrival rate (below each
figure). The more pronounced periodic behavior caused by RED is counter
to the commonly held intuition that a randomized drop-policy would prevent
periodic behavior by “desynchronizing” TCP sources.

The example above represents just one scenario in which periodic aggregate
behavior occurs; one in which all the sources are at the same distance from
the congested link. Later in this section we demonstrate evidence of periodic
behavior in a variety of settings; and then validate our model by showing that
it seems to capture the essential characteristics of the TCP congestion control
mechanism.

3.1 Simulation Setup

We use ns-2[2, 9] for all our simulations, with TCP Reno sources and the
topology shown in Figure 5. Fifty clients (at the nodes D1, D2, . . . DN , with
N = 50) on one side of a bottlenecked router retrieve an infinite-length file
from a server, S, on the other side. Hence, there are 50 TCP connections,
sharing a single oversubscribed 1.5 Mbps link between the nodes M2 and
M3. Each connection starts at some random time between 0 and 300 seconds,
lasting the duration of the simulation (4200 seconds). Figure 5 shows the data
rate and propagation delays for each link. In our simulations, we choose the
propagation delays between each endpoint Di, i = 1, 2, . . . , 50 and the node
M3 to be either a single value of 20 msec (which we call “fixed RTT”), or pick
them at random and uniformly over the range 0 to 1 seconds (which we call
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Fig. 4: Packet arrival and buffer occupancies with fixed RTT; drop-tail(top) and
RED(bottom)
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Fig. 5: Simulation setup

“variable RTT”). We compare both drop-tail and RED in our simulations;
the parameters we used for RED are below. We use the same notation for the
parameters as in [6].

1. Queue occupancy is measured in number of packets.
2. Dropping probability is NOT increased slowly when average queue length

exceeds maxthresh.
3. When the algorithm decides to drop a packet, it drops from the tail.
4. The algorithm doesn’t favor any packet based on its type(control or data)

or size.
5. minth = 5 (minimum threshold of average queue size)
6. maxth = 15 (maximum threshold of average queue size)
7. qw = 0.002 (queue weight given to current queue size sample)
8. pb = 0.1 (Maximum probability of dropping a packet)

3.2 Packet Arrival Rate and Queue Occupancy

We see in Figure 4 that the aggregate arrival rate shows periodic behavior with
fixed RTTs with both drop-tail and RED. One might question the validity of
this simulation because the fixed RTT value (1340 msec) is large, which means
the time for the aggregate rate to reach its maximum will dwarf any variation
caused by queueing delay and, for the case of RED, any randomness in packet
drops. However, Figure 6 shows that the periodic aggregate behavior still
occurs when the RTT is reduced by an order of magnitude. For an RTT of
140ms with both drop-tail and RED, the aggregate rate still fluctuates with
a period of about 2 seconds, and as before the periodicity is more prominent
with RED.
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Fig. 7: Packet arrival and buffer occupancies with variable RTTs and RED

We now test whether the periodic behavior is reduced when each con-
nection has a different RTT. Intuition may suggest that variable RTTs will
“break” periodicity even though their packets may be dropped simultaneously,
because each source will react to congestion signals (packet loss) at different
times. However, Figure 7 shows that with variable RTTs and RED the pe-
riodic behavior still exists. Drop-tail leads to similar periodic behavior, but
with a slightly weaker periodic component. Although the pattern looks more
irregular, mainly due to variability in reaction times, the FFT of the aggre-
gate arrival rate shows a very strong periodic component at approximately 19
seconds.

Having seen the close proximity between the behavior predicted by the
model and simulation, we ask the following question: Is the similarity simply
a coincidence or a consequence of valid assumptions made by the model? We
try to answer this question in the next two subsections by testing two key
assumptions of the model:

Assumption #1 the model assumes that the sources respond immediately to
congestion, and

Assumption #2 the model assumes that an almost-constant random fraction,
r, of the sources are reset to the same state at each congestion epoch.
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3.3 Assumption #1: Immediate Response to Congestion

The congestion control mechanism of TCP relies on sources reacting to net-
work congestion signaled by packet loss and timeouts. On the face of it, the
assumption of an instantaneous feedback-response appears rather unrealistic,
because it must take some amount of time for the buffer occupancy to build
up and for the source to recognize the packet drop(s). However, with drop-tail,
the delay due to buffering simply introduces a small fixed delay in the feed-
back. In RED, randomness acts over a small time interval, so we can either
completely ignore it or regard it as a small random perturbation.
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Fig. 8: Distribution of time interval between packet drops for fixed RTT and drop-
tail

The time for the sources to “recognize” the packet drops and to react (or,
the variability among sources with respect to this time, as in variable RTT
settings) does not make the model irrelevant. The time it takes for a source
to react is roughly one RTT and this time is short compared to the time for
the aggregate rate to ramp up to the peak value, which is several RTTs long.
We can reach the same conclusion even for variable RTTs. Among the sources
to be reset, those with smaller RTT react sooner but they are more likely
to have larger cwnd (since they build up more quickly). Hence, their reset
contributes a large fraction of the decrease in the aggregate rate after the
congestion. Similarly, a smaller decrease in the aggregate rate follows when
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the sources with the largest RTTs are reset (since those sources are likely to
have the smallest cwnds). There is a trade-off in the size of the decrease of
the aggregate rate; sources with larger RTTs effect a smaller decrease in the
aggregate rate but their effect takes longer to manifest. Therefore, we can
treat the variability caused by the “late” reactions as a perturbation, and the
system’s reaction to congestion is largely dominated by the connections with
small RTT’s, which occurs quickly1.

One might think that with drops occuring one after another and not all at
the same time during a congestion epoch, we can make the sources react at dif-
ferent times, but we find that packet drops occur in bursts of short duration,
followed by longer periods in which no drops occur. For example, Figure 8
shows the empirical distribution of time between adjacent packet drops (for
fixed RTT with drop-tail). We can see the large peak around very small val-
ues (* 1 second), and another set of much lower peaks around larger values
(6 ∼ 9 seconds), with a clear demarcation between the two. This indicates
that the packet drops tend to occur in bursts (with short inter-drop times),
separated by large time intervals. Other simulations show similar character-
istics, although the demarcation between the two groups of inter-drop times
become less clear with variable RTTs.

Had the burst of drops been of almost zero-length, we could safely assume
that the response to feedback is essentially immediate, and so would corre-
spond to the model. Instead we model the small (but non-zero) bursts as small
perturbations from an “immediate” feedback-response, and use the perturba-
tion analysis in section 2 which says that the invariant periodic configuration
is stable.

Furthermore, from the clear demarcation of inter-drop times, we can see
that the separation between bursts is unambiguous. We found that the du-
ration of bursts is around 1 to 2 seconds for all the settings mentioned in
the paper. As an aside, unlike the earlier claim[6] that RED will spread out
packet drops in time by introducing randomness in selecting which packet to
drop, the intra-burst inter-drop time distribution for RED is not much differ-
ent from drop-tail. Analytical results [8] for batch Poisson arrival processes
in an open-loop queueing system show similar results (although the model fo-
cuses on queueing details rather than on feedback to sources) and the authors
conjecture that RED has little “desynchronization” effect.

Based on these observations, we conclude that packet drops at the bottle-
neck in the topologies under consideration tend to occur in bursts. The dura-
tion of each burst is small relative to the period between bursts. Therefore, in
studying the aggregate periodic oscillation caused by TCP connections under
such topologies, an immediate feedback-response mechanism augmented by
the perturbation in timing appears to be a valid abstraction of the system.

1However, the sources with large RTTs can affect the ramp-up time, by slowing
down the progress.
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3.4 Assumption #2: Constant Fraction of Reset Sources

The model assumes that upon each congestion epoch some fraction, r, of
sources set their rate back to zero. Does the feedback-reaction chain [1] in
TCP Reno behave similarly?

In order to estimate r we measure the number of connections that ex-
perience multiple packet drops within a drop burst. Since the durations of
drop bursts are comparable to round-trip times, such flows are most likely to
experience timeout[5] that causes cwnd to be reset to 1. Figure 9 shows the
histograms of these numbers for fixed RTTs, with both drop-tail and RED.
The results suggest that approximately 20 . . .40% of flows experience multiple
packet drops in a congestion epoch, indicating that r ∼ 0.2 . . . 0.4.

Perhaps surprisingly, RED shows peaks at larger values of r than for drop-
tail, which counters the intuition that RED prevents “global synchronization”
by not resetting all the connections to the same state (cwnd = 1), at the same
time. Thus, not only is the assumption inaccurate, since we show that the
periodic behavior does not require the synchronization of sources, but also
RED does not achieve the prevention of periodic behavior that it set out to
do. Worse still, we know from our analytical model that the higher the fraction
r, the faster the convergence to the invariant periodic behavior, and lower the
minimum of the periodic behavior, resulting in lower average utilization of the
link.

Finally, we examine the validity of the assumption that r ∗N (r < 1) TCP
sources are reset at random upon each congestion epoch. In our model, we
assume that the sources are chosen uniformly and randomly across all sources,
but the real system may conform to some other distribution. For example, it
could be close to a deterministic round-robin among the connections, possibly
with overlaps between successive congestion epochs. If our assumption is cor-
rect, then the probability that a connection avoids being reset for k epochs is
r∗(1−r)k. Or, if the selection follows a round-robin rule, the same probability
is one for a specific value of k, and zero for all others.

To test our assumption, we look at the time between packet drops expe-
rienced by each flow, excluding the ones within the same burst (i.e. a slight
underestimate of the “inter-reset time” for each flow). Figure 10 shows that
the distributions of these values are concentrated around integer multiples of
“cycle length” values, with exponential decay. This suggests that our assump-
tion was valid.

3.5 When Does Aggregate Periodic Behavior not Occur?

The simulation results in the previous sections demonstrate that aggregate
periodic behavior arises in a wide variety of settings: fixed or variable RTTs,
drop-tail or RED queueing policies, and long or short RTTs. Because aggre-
gate periodic behavior leads to low network utilization, it is worth exploring
situations in which periodicity appears not to occur. These fall into two cat-
egories:
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1. If the buffer at the bottleneck router is so large that it can almost (but not
completely) accommodate all the N connections sending at their maxi-
mum rate, then the buffer will absorb (and smooth) the periodic behavior.
Figure 11 shows that in this case the aggregate packet arrival rate is almost
flat, except for a few deviations when the buffer overflows, and, instead
of packet arrival rate, the buffer occupancies oscillate with a very long
period.
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Fig. 11: Packet arrival and buffer occupancies with fixed RTT, very large buffer, and
drop-tail

2. Our model and simulations both assume an infinitely long file transfer,
allowing time for the feedback dynamics to be established and stabilize.
But an increasing amount of traffic is sent in short connections (typically
http traffic). In [7], the authors demonstrate that http traffic does not
lead to periodic behavior, and Figure 12 shows similar results from the
same single bottleneck topology (fixed RTT, drop-tail), with “Web-like”
traffic. The 50 TCP clients download Web pages, with temporal and size
distributions following the measurement results in [3]. Our results show
no periodic behavior under either drop-tail or RED. A characteristic of
the Web traffic is that the duration and inter-arrival of connections have
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Fig. 12: Packet arrival and buffer occupancies with fixed RTT and Web-like traffic
and drop-tail

heavy-tailed distribution (i.e. infinite variance), and so there is no “typ-
ical” lifetime of connections that we can study within the framework of
our “toy” TCP model, even with some perturbation (in terms of number
or lifetime of sources).

4 Conclusion

When network links were slower than they are today and traffic dominated by
long file transfers, periodic aggregate behavior was seen as a potential prob-
lem, leading to the development of drop-policies that attempt to desynchro-
nize TCP sources and reduce periodicity. Our simple model suggests that the
concern was well-founded, and that long-lived TCP flows conspire to produce
highly periodic traffic patterns. But it seems that randomized drop-policies
such as RED do little to reduce the periodic behavior. On the contrary, both
our model and simulations suggest that RED makes the periodic behavior
more pronounced, more stable, converge faster, and cause lower overall link
utilization. On one hand it is of value to know that a simple analytical model
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(that captures only the bare characteristics of TCP) correctly predicts peri-
odic behavior. On the other hand, it is disconcerting to discover that periodic
behavior arises so easily and is so difficult to avoid.

It is possible that this observation while interesting, may now be obsolete.
Internet traffic today is dominated by sporadic http flows of short duration
which appear not to last long enough to become synchronized or to exhibit
periodic behavior. So perhaps we can conclude that the problem identified
here, is not and will not be a problem for the Internet.

However it is well understood that if the network continues to be domi-
nated by short-lived flows, TCP cannot effectively control or avoid congestion.
It seems likely that one of two steps will take place: Either flows (whether TCP
or real-time UDP) will get longer, or the congestion control mechanisms of
TCP will be changed to work well with short-lived flows. If longer flows prevail,
our results suggest that quite radical steps are needed to prevent aggregate
periodic behavior; for example, via more radical drop- and reset-policies in
the network and TCP, respectively. Regardless of the paths chosen, our sim-
ple model highlights the importance of analyzing the essence of the feedback
loop in any congestion control component of TCP.
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1 Introduction

The behavior of communication networks, like the Internet is complex in many
ways. This complexity may have many origins, including the topology of the
network, the statistical properties of the traffic, and the rules governing the
operation of the devices that constitute the system.

Several types of complex collective behavior have been observed in various
compononents of communication networks and their models. These include
self-organized criticality [1, 2], self-similar traffic [3], chaos [4], and other kinds
of nonlinear phenomena (see e.g. [5]).

Recently Veres and Boda [4] have demonstrated that Transmission Control
Protocol (TCP) congestion control can be chaotic in certain circumstances.
Chaos in practice means that TCPs influencing each other in a computer net-
work can produce highly complex behavior in time which is sensitive to small
perturbations, yet the equations describing it are deterministic and simple.
Understanding the mechanism and equations that produce chaos in a TCP/IP
(Internet Protocol) network is crucial in traffic modeling. If we can identify
the details of the mechanism then it is possible to build new kinds of net-
work traffic models where the factors important from the point of view of
dynamics and chaos are kept while many unimportant factors are reduced or
simplified. Current TCP models are either too simplistic by assuming peri-
odic behavior or they are entirely stochastic disregarding small details of a
given network which might alter the dynamics completely and even change
its statistical properties. Stochastic models can also break the temporal and
spatial (topological) structure of correlations existing among TCPs3 in an ex-

3Whenever it is not confusing we use the word TCP in two sense: for the set of
rules that govern network dynamics, and also in the sense of devices that operate
according to these algorithms (e.g. network cards).

L. Kocarev and G. Vattay (Eds.): Compl. Dyn. in Com. Networks, UCS 5, pp. 49–68, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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tended network and are not able to give a correct account of possible long
range dependence born between far away TCPs [6]. On the other hand, new
chaos aware TCP and network models can preserve correlations and show
the same level of complexity as it is observed in real network traffic. These
features might turn out to be unavoidable when building reliable models of
large networks where packet level simulation requires astronomical computer
resources and/or simulation time. Moreover, chaos theory itself provides new
tools to quantify this complexity. The complexity of a real network traffic or
its packet level simulation and the complexity of a traffic model can be com-
pared. Despite their inherent simplicity, these tools have never been used in
networking and they might open new prospects in verifying TCP and network
models or can even characterize the actual network state.

2 Preliminaries: TCP Chaos

We think that all these issues mentioned above are so important, that we
should answer at least the basic open questions concerning the chaotic state
of the TCP congestion control mechanism. For example we still do not know
what causes TCP chaos exactly. Accordingly we do not know how generic
its appearance is. For example, it has been argued in Ref. [7] that in the
chaotic examples shown in Ref. [4] the packet loss probability is considerably
higher than 1%. It has been shown [7, 8, 3] that in this case the exponential
backoff mechanism plays an important role and can be responsible for the
complex congestion window dynamics. In this contribution we show that chaos
is not a consequence of high network congestion or loss probability and that
TCPs operating in congestion avoidance mode, never entering into a backoff
state show chaos. In other words chaos is the generic behavior of many TCP
systems, while periodicity and synchronization is rather exceptional.

2.1 Unfairness

Also we have to ask how we can distinguish TCP chaos from stochasticity
and do we gain anything by doing that. To point out the main weakness of
stochastic models and to call for chaos aware models we would like to show
that current stochastic TCP models are even unable to predict the traffic in a
simple scenario like the one shown in Fig. 1 and investigated throughout this
paper. In this setup three TCP flows sharing a common buffer that can store
B packets and a common line with delay T0 and speed C0, then splitting into
three different lines with different delays and speeds. In the actual simulations
B = 100, T0 = 400 ms, T1 = 100 ms, T2 = 150 ms, T3 = 200 ms, T0 = 106 bps
and C1 = C2 = C3 = 107 bps has been chosen. The congestion windows of
the competing TCPs are not limited by the senders or by the receivers. The
injected TCP packets can be lost only at the bottleneck buffer, there are no
random losses on the links or in other buffers. It follows that the traffic is
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Fig. 1: Investigated network model: There are three TCP flows sharing a common
buffer that can store B packets and a common line with delay D0 and speed C0.
Then the common link splits into three different lines with different delays and
speeds. In the actual simulations B = 100, T0 = 400 ms, T1 = 100 ms, T2 = 150 ms,
T3 = 200 ms, C0 = 106 bps and C1 = C2 = C3 = 107 bps has been chosen.

controlled by strict deterministic rules, that is by the TCP Reno algorithm
[9]. Numerical simulations were carried out by Network Simulator (ns) version
2b5 [10].

Based on ideas brought from stochastic TCP modeling a common belief is
that TCP is biased against long round trip time connections and the through-
puts are proportional to ∼ 1/T 2

RTT. This assumption has been proven to be
very good in the presence of random elements in the simulation [11]. In reality,
shown in Fig. 2(a) it can be observed that the congestion window correspond-
ing to the largest round trip time is significantly larger than the others. This
TCP obtains unfairly higher throughput than the other two. The packet loss
rate of the preferred TCP (∼ 5 · 10−5) is also an order of magnitude less than
that of the suppressed ones (∼ 7·10−4). The “winner” TCP behaves seemingly
periodically, while the “losers” seem to be erratic.

Obviously, there is something here which is missed completely by the
stochastic model. Next, we show that this simple scenario is already chaotic
and the deterministic nature of packet losses cannot be disregarded if we
would like to build models that correctly predict the temporal behavior of
congestion windows.

2.2 The TCP Butterfly Effect

The complete state of a TCP can be given by a number of internal variables
at any moment [9]. Such variables are the congestion window, the slow start
threshold, the retransmission timeout, the backoff counter, the duplicate ACK
counter, and so on. However, during the optimal operation of TCP, in conges-
tion avoidance mode, a single variable can be selected which controls almost
completely the behavior of the TCP: that is the congestion window. This
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Fig. 2: (a) A typical part of the congestion window time series is shown for the
simulation of the scenario of Fig.1. (b) The effect of a small perturbation at t = 120 s
on the congestion window development.

variable has also practical importance, since it limits the maximum number
of unacknowledged packets sent by a TCP into the network.

To demonstrate how sensitive this system can be for small perturbations
the same simulation has been run for 120 s and then a perturbation of δwi(0) =
0.01 has been added to all the congestion window values at t = 120 s. The
result is shown in Fig. 2(b). The congestion windows remain unchanged until
t = 120 s. Then the difference between the congestion windows of the two
simulations |δw(τ)| remains the same (∼ 0.01) until the first packet drop
event. Then one of the underprivileged TCPs, whose packet has been lost,
halves its window. As a result, the distance between the original and the
perturbed trajectories grows about an order of magnitude, since the owner
of the lost packet differs in the original and in the perturbed simulations.
At this point it seems that the dominant TCP is not affected at all. Finally,
around t = 240 s the time evolution of the dominant TCP diverges completely
from the original trace due to a permutation of packets, resulting in a loss
event for the dominant TCP. As we can see the rest of the simulation differs
from the original one. Such sensitivity against small perturbations is called
the butterfly effect in chaos theory and gives us the first clue that this system
operating in congestion avoidance is actually chaotic.

3 Characterizing Chaos

Chaos is one of the most studied dynamical phenomena, and there are many
ways of characterizing it. Here we introduce a few basic tools that can help
us to describe the chaotic state of computer networks.
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3.1 Poincaré Sections

One of the most basic tools of chaos theory in visualizing the dynamics is the
Poincaré surface of section. Instead of looking at the continuous time evolution
of trajectories one can select a surface in the phase space and watch only
when the trajectories cross that surface. In case of TCP congestion window
trajectories the evolution between two packet loss events is fairly simple. All
the interesting things happen at the times of packet losses. Therefore the
values of congestion windows taken at the moments of packet losses of any of
the TCPs is a natural choice for a surface of section in general.

w1

w2

w3

Fig. 3: Poincaré section of the phase space. Congestion window values for the three
TCPs at packet loss times.

In Fig. 3 this surface of section is shown for our system. One can see that
the congestion window triplets (w1, w2, w3) taken at times of packet losses
approximately form a two dimensional surface within the three dimensional
congestion window phase space. It is easy to understand why we get such a
surface: packet losses occur when the buffer is full. In the scenario of Fig. 1 the
packets first fill the lines denoted by 0, 1, 2 and 3. The number of packets which
can travel on these lines is given by the bandwidth delay products divided by
the packet size C0Ti/P , where the packet size in our simulations was 512
bytes. The maximum number of packets on the lines and in the buffer might
be approximated by Q = B+C0T0/P + 1

3C0(T1+T2+T3)/P , as all packets go
through link 0, while each packet should choose either one of the three lines
1, 2 or 3. The sum of congestion windows W =

∑
i wi is approximately the

number of packets in the network and packet loss occurs approximately when
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W = Q. This equation defines the “surface of loss” inside the window phase
space. This surface is also indicated in Fig. 3.

In chaotic systems the attractor is often a fractal object. Fractals are sta-
tistically self-similar geometric objects that might be characterized by suitably
defined non-integer valued dimensions. For ordinary fractals this dimension
is less then the Eucledian embedding dimension D of the object [12]. The
fractal dimension of the points on the surface of section can be measured. To
do this we can project the points onto a suitable surface. The points were
projected onto the

7
wi = const . surface and the fractal dimension of this

two dimensional projection was measured. A usual method for measuring the
fractal dimension is when a grid of cells of size ) is put on the object, and the
number of non-empty cells N()) is counted. The box counting dimension is
given by

D0 = − lim
!→0

logN())
log )

. (1)

Using the above expression we can show that the points on the surface form
a non-trivial fractal with box counting dimension D0 = 1.69± 0.02.

Now our qualitative picture of TCP dynamics in congestion avoidance
mode can be summarized as follows. Congestion windows steadily grow be-
tween packet losses. This process can usually be well approximated [13, 14]
with fluid equations of the type

dwi(t)
dt

=
1

TRTT,i(w)
, (2)

where TRTT,i(w) is the round trip time of the ith TCP. Round trip times can
also be approximated as functions of the congestion windows and then the
resulting differential equations (2) can be solved self-consistently. The sum of
congestion windows also grows steadily and the congestion windows cut the
surface of loss at some point. Then one of the congestion windows is halved
according to the TCP algorithm and the position of the point in the phase
space drops below the loss surface and the process starts again.

3.2 Symbolic Description

One can see that the dynamical process between packet losses described above
is relatively simple. The complicated fractal structure of the attractor and the
sensitivity for perturbations should come from the fine details of the packet
loss process. Each time the congestion window trajectory crosses the loss sur-
face a packet loss event happens in one of the TCP flows. One of the symbols
Si = {1, 2, 3} can be assigned to the ith packet loss depending on which TCP
lost the packet. We can consider the sequence of the symbols . . . Si−1SiSi+1 . . .
generated by the time evolution of our TCPs. This symbol sequence is a cod-
ing of the real congestion window evolution. Such symbolic coding plays an
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important role in the theoretical description of chaotic systems. When an in-
finite sequence of symbols codes exactly one or zero real space trajectory the
coding is called Markov partition. In this case the symbol sequences uniquely
code the chaotic dynamics. An equivalent definition of the Markov partition is
when each periodic symbol sequence codes exactly one or zero periodic orbit
of the chaotic system.

In the case of TCP congestion avoidance mode we can demonstrate that
the introduced symbols form a Markov partition. If an infinite periodic se-
quence (such as . . . 122312231223 . . .) is prescribed and two different initial
congestion window triplets

 
(w1, w2, w3) and (w�

1, w
�
2, w

�
3)
'

are taken and they
evolve according to the equations (2), they will reach the loss surface at dif-
ferent points. One can prove that the equations (2) are linearly stable, so they
are not capable to increase the difference between two orbits. When one of
the windows is halved after the trajectory crosses the loss surface, then the
difference between the orbits is halved in that direction while it remains un-
changed in other directions. The time evolution according to Eq. (2) and the
prescribed halvings will decrease the distance between the two orbits in each
period. As all the TCPs should halve their windows at least once in each cycle
the distance between the two initial triplets is at least halved in each period.
This way we can see that two trajectories started from different initial condi-
tions converge exponentially to a common periodic orbit. In the end we get a
unique periodic orbit corresponding to a given periodic code. So far we forced
a given TCP to halve its window according to the prescribed symbol. In the
end we can look at the actual packet flow generated by the window evolution.
The prescribed periodic orbit can be feasible if the resulting packet flow is
in accordance with the prescribed packet loss sequence or it is not feasible if
the resulting packet flow generates losses in a different order than it has been
assumed. This way we can decide if the calculated periodic orbit exists or not.
This procedure ensures that we assign one or zero real periodic orbits to a
periodic sequence and proves the existence of the Markov partition.

4 The Statistical Tool-box of Chaos

The statistical theory of chaos [15] is based on the symbol sequences intro-
duced above. If the dynamics is regular (non-chaotic) then the dynamics is
periodic or quasi periodic while the most important characteristics of chaos
is that it endlessly generates topologically different new trajectories. This is
reflected in the way different systems generate symbol sequences. A length
n symbol sequence can continue in many ways; in average with a number of
symbols to form a length n + 1 sequence. Thus the number of length n + 1
sequences N(n + 1) can be expressed as

N(n + 1) ≈ aN(n), (3)
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Fig. 4: (a) Number of different symbols as a function of symbol length for our system
on a semi-logarithmic plot. The fitted line isN(n) = 1.669×2.586n . (b) Kolmogorov–

Sinai entropy for our system. K1(n) = −P3n

i=1 pi ln pi = 0.885 × n+ 0.078

when the length n is large. In chaotic systems there is more than one possibility
to continue a sequence in average and a > 1 while in regular systems a = 1
for long sequences. Consequently in chaotic systems the number of possible
length n symbols grows exponentially

N(n) ∼ an ∼ eK0n, (4)

and the quantity K0 = ln(a) > 0 is the topological entropy. In non-chaotic
systems the number of sequences grows sub-exponentially and the topological
entropy is zero.

To prove that our TCP system really produces chaos we can measure
its topological entropy. In our case we can have a maximum of 3n different
symbolic sequences of length n. Of course not all of them are realized by the
dynamics since some of them are impossible. For example infinite sequences
consisting of only one or two symbols are excluded since this would imply
that some of the congestion windows are never halved. In Fig. 4(a) we show
the number of realized symbol sequences for different lengths n up to n = 12.
The measurement has been carried out by logging out the symbols (i.e. the
index of the TCP which lost a packet) from an ns simulation of the system.
We generated a sequence of 150.000 consecutive symbols and determined how
many different length n sequences exist in it.

We observed that in average a = 2.586 symbols can follow a given symbol
sequence and the topological entropy is K0 ≈ 0.953. This shows that our
system is strongly chaotic as the number of sequences grows with a large
exponent, yet it is markedly different from a stochastic system, where all
combination of symbols are allowed and would result in a = 3 and a topological
entropy of ln 3.
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The procedure described so far measures the existence of different sym-
bol sequences only. We can characterize chaos further by calculating also
the probability P (S1, S2, . . . , Sn) of the occurrence of the symbol sequence
S1, S2, . . . , Sn. In a system with L symbols (Si = {1, 2, . . . , L}) we can visu-
alize this probability distribution by assigning the number

x =
n6

i=1

(Si − 1)L−i (5)

to each symbol sequence and plotting P (x). In fact 0 ≤ x < 1 is the L-ary
fractional representation of the number represented by the symbols.

In our system we carried out this analysis and the result is plotted in
Fig. 5.

It can be clearly seen that the probability distribution is a fractal in the
space of symbols. In fact, in all chaotic systems we should observe a multifrac-
tal distribution and the topological entropy introduced above is related to the
box counting dimension of this representation. If we cut the [0, 1[ interval into
boxes of size ) = 1/Ln then the number of non-empty boxes is the number of
existing symbols N(n). The box counting dimension is then

D0 = lim
n→∞ logN(n)/ logLn = K0/ lnL.

In our case then the box counting dimension of the multifractal of Fig. 5
is 0.864. Note, that this box counting dimension is not related to the box
counting dimension of the attractor discussed before.

Scaling of moments of the probability distribution give further character-
ization of the multifractal properties in the symbol space. We can define the
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Rényi entropies [16]:

Kq = lim
n→∞

1
n

1
1− q

ln
6
{S}n

P q(S1, S2, . . . , Sn), (6)

where summation {S}n goes over all possible symbol sequences of length n.
The quantity Kq/ lnL again measures the Dq generalized dimension of the
multifractal spectrum of the P (x) histogram. The most important entropy is
the Kolmogorov–Sinai (KS) entropy K1 = limq→1 Kq which gives the scaling
of the Shannon entropy of the probability distribution:

K1(n) = −
6
{S}n

P (S1, S2, . . . , Sn) ln P (S1, S2, . . . , Sn), (7)

K1 = lim
n→∞

1
n
K1(n). (8)

In Fig. 4(b) the Kolmogorov–Sinai entropy is measured for our system.
The Kolmogorov–Sinai entropy in a chaotic system is also related to the

Lyapunov exponent λ of the mapping of the Poincaré section onto itself. If
we consider two nearby trajectories on the Poincaré section—which is the loss
surface in our case—then their initial separation in the phase space δw0 grows
each time the trajectories revisit the section. After n revisits the distance
grows exponentially δwn ≈ eλnδw0 where the average of the exponent lambda
�λ� is the Lyapunov exponent of the Poincaré section. The KS entropy gives
the Lyapunov exponent K1 = �λ� in our system. The positivity of the KS
entropy is another indication of chaos and the exponential sensitivity for the
perturbation of trajectories.

In Fig. 6 we show the full Rényi entropy spectrum for the interval q=[0:20].
One can see that the entropies are positive for the whole range and the spec-
trum. The observed Rényi entropy curve is similar to those observed in typical
hyperbolic chaotic systems. The large (positive) q behavior of the entropies is
determined by the symbolic sequence with the slowest probability decay. Nu-
merically we find that the asymptotic value of Kq is approximately Kq ≈ 0.49
in our system.

Since the structure of the Markov partition for TCPs is simple even for
larger networks, the topological and KS entropies are easy to measure in a
simulation or can even be determined in a real network. These quantities mea-
sure the complexity of the dynamics and by evaluating them we can quantify
complexity and evaluate TCP and network models in general.

5 Cellular Chaos

The results so far confirmed the hypothesis of chaotic dynamics. However, the
variables of TCP in reality are discrete and not continuous. We can demon-
strate this by applying such a small perturbation to congestion windows by
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which we do not change the loss events happening in the system. To investi-
gate this we perturbed the trajectory of Fig. 2(a) by a small vector δw and
traced the difference between the original and the perturbed trajectory. We
found that there exists a set of perturbations, shown in Fig. 7, which van-
ishes after all windows are halved. The maximal perturbation of this type was
found to be approximately |δw| < 0.001. There is a well defined neighborhood
around every phase point which defines the the same behavior of loss dynam-
ics. That is, after all the congestion windows are halved, the time evolution
of congestion windows becomes identical, mainly because the algorithm sets
the window to its integer part. This means that the phase space is not contin-
uous. It is divided into small “attractive cells” in which trajectories converge
in finite time. If a trajectory gets into the cell of another trajectory then they
follow the same trajectory later on.

This property makes TCP chaos very interesting from a theoretical point
of view, since we have a globally chaotic dynamics while the fine details of
the system are non-chaotic. This is not typical in natural occurrences of chaos
but it is potentially important in engineered systems. The most significant
aspect of the cellular structure is that all trajectories should be periodic. If a
trajectory re-enters a cell visited previously then according to the attractive
nature of the dynamics it will follow the same trajectory again and will repeat
itself. Since the phase space can be divided into a finite number of cells a
trajectory should at least repeat itself after visiting all the possible cells.
In reality the repetition of a cell happens much earlier. We can make an
estimate of the typical length and the distribution of the periods of trajectories
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following the theory developed by Grebogi, Ott, and Yorke [17] for chaotic
systems with numerical roundoff.

These calculations assume that the dynamics is mixing, which means that
the expectation value l̄ of period length is large (l̄ & 1). Applying this ap-
proximation, we get the for the following relation:

l̄ =
1

π

8 �p� , (9)

where �p� is the probability of repeating the cell in step n + 1 that was first
visited in step j, with

�p� =
6
i

p2i , (10)

where pi is the probability with which the orbit visits the ith cell (i.e. the
measure of the attractor in that cell).

In the next section we investigate the implications of the periodicity of the
trajectories.

6 Exploring Periodic Orbits

Until now three parallel TCPs were studied in our simulation scenario. In
such situation the number of cells which can be distinguished from each other
in the phase space is in the order of ∼ 1015. Also, the length of a typical
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periodic orbit is enormous and we do not expect to observe them in realistic
simulations.

Therefore, it seems more reasonable to find periodic orbits when only two
TCPs are operating in the network. For this scenario we used the same network
model that we have introduced in Fig. 1 except that the TCP with the largest
round-trip time was removed and the buffer size was set to B = 50.

Applying the tools developed in Sections 3–4 we can study the chaotic
properties of this system. First the Poincaré surface of section is investigated
(Fig. 8). Similarly to the three dimensional case, the sum of the congestion
windows has to approximately satisfy the

∑
i wi = Q condition at packet loss

times, where Q is the maximum number of packets on the lines and in the
buffer. This condition defines the “line of loss” inside the two dimensional
window phase space now. The detailed structure of the Poincaré section is
shown in the inset in Fig. 8. It can be seen that the Poincaré section is not
exactly a line but a narrow grid spreading around the ideal line.

This shape can be explained by the packet drop mechanism at the bottle-
neck buffer.

To measure the complexity of the TCP dynamics in this situation we apply
the symbolic coding that was introduced in Section 3.2. Then, the topological
(Fig. 9(a)) and the Kolmogorov–Sinai (Fig. 9(b)) entropies are estimated.
For topological entropy K0 = 0.54 ± 0.01, while for the KS entropy K1 =
0.440±0.002 have been obtained. Both values indicate strong mixing and the
presence of chaos in the system. However, the maximum number of states is
limited due to the discrete phase space, and TCP must enter into a periodic
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cycle after an initial transient period. If the orbit realized in the simulation
is in fact periodic with some large period, then the number of existing length
n sequences N(n) increases only linearly with n if n is sufficiently large. In
case of two TCP this linear growth is observable above n = 15 (see the inset
in Fig. 9(a)). Also the entropy K1(n) saturates above n = 15 and the KS
entropy K1 goes to zero indicating that the long time behavior of the system
is periodic.

In our 2-TCP scenario periodic orbits were identified. For the given simu-
lation setup the length of the period was found to be independent of the initial
conditions. The length of the period was l = 1744. Using this and Eqs. (10)
and (9) we can estimate the order of magnitude of the number of cells in
this system. The cells can be indexed by the corresponding symbol sequences.
Suppose that we can index uniquely all the cells with symbol sequences of
length n∗. In this case the number of cells is approximately given by eK0n

∗
.

The probability of repeating a cell is then given by

�p� =
6

{S}n∗

P 2(S1, S2, . . . , Sn∗) ≈ e−K2n
∗
, (11)

where K2 is the Rényi entropy for q = 2. Combining (9), the estimate for the
number of cells eK0n

∗
and (11) one obtains

N ≈ eK0n
∗ ≈ �p�−K0/K2 . (12)

On the other hand (9) implies

�p� =
π

8
1
l̄2

, (13)
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and finally:

N ≈
!

8
π
l̄2
(K0/K2

. (14)

Assuming that the obtained period l = 1744 is a good approximation of
the average period and using the values K0 = 0.54 and K2 = 0.39 we get
N ≈ 3 · 109. This is in accordance with expectations, since the area in the
phase space visited by the congestion window trajectories is approximately a
triangle with area 90×90/2 as one can see in Fig. 8, while the area of a cell is
approximately 0.0012 in accordance with the findings of Fig. 7. This implies
that the visited part of the phase space contains approximately 4 · 109 cells.

7 Effects of Parameter Rescaling

In the previous sections we demonstrated that the dynamics computer net-
works connected in a simle way can be chaotic, and due to the discrete nature
of the governing algorithms, the long term behavior is unavoidably periodic.
So far we assumed that all the TCP devices operate in the congestion avoid-
ance state, thus their dynamics between loss events can be well described by
continous time, fluid models, like Eq. (2). In these situations the system is
in a moderately congested state, when the probability of falling into backoff
state is negligible.

Now we study these phenomena further by changing the properties of the
network with a simple rescaling of the parameters. We return to the investi-
gation of the 3 TCP model4, and try to answer the question: How robust are
the phenomena presented in the previous sections? In particular we introduce
the scaling variable λ and use it to adjust the the link parameters C0, Ti

(i = 0, 1, 2, 3) and the buffer size B:

C̃0 = λC0,

T̃i = λTi (i = 0, 1, 2, 3)
B̃ = [λB]

where in case of the buffer size we used the integer part of the rescaled quantity.
By choosing sufficiently small λ we can drive our network into a strongly
congested state, where some of the TCPs stay in the backoff state for long
periods of time. We seek evidences for the qualitative changes caused by tuning
the scaling parameter.

First, we study the unfairness phenomenon presented in Sect. 2, and in-
vestigate it for various λ values. For example, at λ = 0.03 the system falls
into a state when the three TCPs lose packets in a simple periodic manner
(. . . 123123123 . . .). For slightly higher values various situations may arise. In

4Parameter values are as previously, except for T1 = 150 ms, T2 = 200 ms and
T3 = 250 ms.
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Fig. 10: The time evolution of the congestion windows in the 3 TCP case for various
λ values. (a) λ = 0.04, (b) λ = 0.045, (c) λ = 0.05
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Fig. 10 we displayed the time evolution of the congestion window values for
λ = 0.04, 0.045 and 0.05. One can observe that for λ = 0.04 one of the
TCPs performs considerably better than the others, though a second one is
still in congestion avoidance mode (with lower throughput), while the third
remains in backoff/timeout5 for most of the time (Fig. 10(a)). At λ = 0.045
the situation is different. Now there are two TCPs that can get into a mini-
mal activity state (which they do alternatively), while the third one is almost
always in congestion avoidance (Fig. 10(b)). Increasing our scaling parameter
to λ = 0.05 we meet a new situation. Two of the TCPs share the buffer almost
equally and are more or less synchronized, while the third one stays in a low
activity mode, with repeated timeouts (Fig. 10(c)). All this indicates, that a
slight change in the network parameters can significantly modify the resulting
dynamics. As it can be seen, even the “winner” TCP can change with the
change of the scaling parameter λ.

We expect that by decreasing λ the phase space shrinks, and assuming that
the size of the cells does not change, the number of accessible cells decreases
too. Moreover, when one ore more TCPs fall into the backoff state or waits
for timeout repeatedly, then the effective dimension of the phase space is also
reduced. All these suggest, that for sufficiently small values of the scaling
parameter λ one should observe relatively small period lengths (compared to
the original λ = 1 case). To investigate this, we measured the period length l

5For our purposes it is enough to consider cases when the given TCP is in a
state when it only occasionally sends packets into the networks. This can happen
in backoff mode, or when waiting for transmission timeout. In these cases the given
TCP does not show the oscillatory behavior as in congestion avoidance.
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Fig. 12: Entropies of the rescaled system for different λ values. (a) Number of
different symbols of length n as a function of n. (b) Kolmogorov–Sinai entropy

K1(n) = −P2n

i=1 pi ln pi

of the observed cycles in the generated symbol sequences at several λ values.
The results are plotted in Fig. 11. One can see that below the value of λ ≈ 0.3
the obtained period lengths are relatively small, approximately of the order
103. Above this value the lengths seem to diverge, their magnitude increases
significantly to around 105 − 106 in the investigated parameter range.

This phenomenon can be explained if one considers the probability of
falling into one of the minimal activity (backoff/timeout) states. This prob-
ability is very small, indeed negligible for λ > 0.3. Thus for these parameter
values the dynamics competing TCPs uses the whole original phase space,
with all the TCPs operating in congestion avoidance mode. On the contrary,
below λ ≈ 0.3 the probability that one or more TCPs stops operating in
congestion avoidance mode increases to a non-negligible value, which reduces
the accesible phase space. In this case those TCPs that remain in conges-
tion avoidance can still be described by the simple, continous time dynamics
between losses.

Finally, we present some results concerning the Rényi entropies in the
rescaled systems. The measured quantities are displayed in Fig. 12 for the
topological entropy K0, and the Kolmogorov–Sinai entropy K1. One can
clearly see, that for short symbol series the measurements follow the same
curve for a wide range of the scaling parameter λ, while for low parameter
values they deviate. This indicates that when the probability of backoff is low,
the dynamics is governed by rules of very similar complexity. This is a direct
consequence of the rescalability of the equations behind. However, when the
system is driven into a qualitatvively different state, the level of complexity
might change, possibly due to the effects described above.
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8 Conclusions

In this paper we investigated the chaotic properties of TCPs operating in con-
gestion avoidance mode. We showed that chaotic behavior is general even in
the case of low packet loss probability. We demonstrated that the dynamics
can be viewed as a smooth time evolution between packet losses and the rele-
vant features of chaos might be described by the investigation of the Poincaré
section defined by packet loss events. Chaotic dynamics can be characterized
by symbol sequences and we introduced topological and Kolmogorov–Sinai
entropies, whose values confirmed the hypothesis of chaos. Due to the deter-
ministic nature of the system, in contrast to stochastic models, not all possible
symbol sequences are realized, some of them are excluded by the dynamics.
Accordingly the topological entropy is significantly less than its possible max-
imal value lnL. The positive Kolmogorov–Sinai entropy indicates that the
Lyapunov exponent of the system is positive and that the distribution of
symbol sequence probabilities is multifractal. We also proved that due to the
cellular structure of the phase space the long time behavior of the system is
inherently periodic.

In the last part of this contribution, we tested our results by rescaling the
system. It turned out, that the a small change in the parameters can cause
relevant modification of the resulting dynamics and the fairness relations.
Also, we observed the signifant decrease of the period lengths obtained from
the symbolic dynamics. We attribute this to the decrease of the accessible
phase space volume.

We hope that these results can help the design and testing of models of
computer networks.
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1 Introduction

The Transport Control Protocol (TCP) is widely deployed over the Internet
for reliably transporting data [27], and it accounts for a significant portion of
Internet traffic. While TCP has been extremely effective in transporting bulk
data, it has not been as effective in remote control operations, particularly
over long-haul connections. The control of fast mechanical devices using TCP
over wide-area Internet connections could suffer from two problems: (a) lack of
responsiveness of the device, and (b) presence of high frequency components
that produce uncontrolled motions. The conventional controllers designed for
electrical connections with very small delays are particularly vulnerable if
simply transfered over to the Internet. The difficulty is that TCP is known to
exhibit complicated dynamics over various time scales. While such behavior
does not directly affect large bulk transfers, it can have serious negative effects
on the controllability and stability of control loops implemented over wide-
area networks.

The next generation of network applications, such as instrument grids, re-
motely deployed mobile robot teams and interactive simulations distributed
on supercomputers, require stable control mechanisms over wide-area net-
works. Thus it is important to understand the dynamics of TCP at time-
scales appropriate for the application at hand. TCP dynamics may also play
a crucial role in other scenarios that require high throughputs over large time-
scales. For example, the parallel-TCP utilizes the collective dynamics of TCP
to achieve throughput rates that are significantly larger than a single TCP
stream [33, 38]. Our main focus here is on the dynamics at time-scales of
the order of congestion window-size updates, which may vary from a few to
hundreds of milliseconds depending on connection distances and traffic levels.
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TCP dynamics have been studied under various formulations, and its com-
plicated nature been observed in many cases [40]. The work of Veres and Boda
[43] illustrated, using ns-2 simulations, the chaotic dynamics of two or more
competing TCP streams through a single router connected to a link. They il-
lustrated that the congestion window dynamics of two streams generate chaos-
like time series, but did not provide explanations, such as routes to chaos, for
the behavior. In another direction, Ranjan and Abed [28] showed that TCP
interacting with a Random Early Detection (RED) routers exhibits periodic
doubling which eventually leads to chaos in the buffer occupancy rates.

Our objective is to study the dynamics of the Additive Increase and Mul-
tiplicative Decrease (AIMD) congestion control mechanism of TCP over In-
ternet connections. TCP together with its interactions with Internet traffic
constitutes a very complicated dynamical system, which does not appear to
be amenable to concise and tractable models. In particular, a single differ-
ential equation that can be easily studied using standard tools from chaos
theory [26] is not obvious. In this paper, we adopt a multi-faceted approach
to analyzing TCP AIMD dynamics over the Internet:

(i) Using a combination of simulation and analytical modeling, we provide an
explanation for its chaotic dynamics albeit for a simple scenario of single
TCP stream interacting with UDP flows.

(ii) We collect message delay measurements as well as traces of TCP variables
over Internet connections to illustrate the complicated dynamics, and ana-
lyze the latter using time-dependent exponent curves to show the presence
of both chaotic and stochastic components.

Our analytical model is similar in spirit to that of Sparrow [39] which is
composed of two unstable linear systems “glued” together; this system ex-
hibits chaos under certain conditions. We characterize the state space of TCP
using the congestion window size, end-to-end packet delay, the number of
re-transmissions and acknowledgments. We model TCP by a suitable compo-
sition of two unstable regimes each of which generates bounded dynamics with
a very complicated attractor. In regime one, the congestion window-size con-
stantly grows in response to successful packet delivery, while the packet delay
is relatively stable. This regime is followed by the second regime, wherein the
packet delay becomes unstable due to inferred losses, in response to which
the window-size is drastically reduced. TCP trajectories move back and forth
between these two regimes and are cyclic in the absence of delays, buffer size
limits at the routers and hosts, and packet losses. We show that the TCP
dynamics of window-size updates embed a map which is qualitatively similar
to the well-known tent map [2] that generates chaotic trajectories. If the net-
work delays are negligible, the second regime is extremely short-lived resulting
in the familiar saw-tooth behavior of TCP for large flows. The existence of
network delays prolongs the duration of regime two, which when coupled with
the background traffic and small buffers generates very complicated dynamics
under certain conditions.
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We adopt the following informal working definition of chaos (more formal
treatments can be found for example in [44]): (a) time trajectories include
non-periodic orbits; (b) trajectories are very sensitive to input conditions,
namely, trajectories starting at nearby points move significantly farther apart
in time, and (c) the attractor set is very complicated.

We present three types of experimental results to complement our analysis.

(a) Using ns-2 simulations we explicitly illustrate the chaotic behavior by com-
puting the time series of window sizes and packet delays together with their
Fourier spectra and the attractor sets in the Poincare plane. We consider
long message streams where the source has unlimited amount of data to
send, and the simulation results show chaos-like behavior.

(b) We present “indirect” Internet measurements that indicate chaos-like dy-
namic behavior exhibited by TCP both using wireless and wireline connec-
tions. Here we send a fixed size message at regular intervals and measure
the end-to-end delay for each message. These measurements indicate very
complicated end-to-end delay variations for a stream of evenly spaced mes-
sages of fixed size.

(c) We employ the time-dependent exponent curves and logarithmic displace-
ment curves to study TCP AIMD congestion window-size traces collected
over Internet connections. We show that these dynamics have two dom-
inant parts, a stochastic component in response to network traffic and
a deterministic chaotic component due to the non-linearity of protocol.
These dynamics can be largely characterized as anomalous diffusions with
a large exponent.

In Section 2, we describe the state-space of TCP, and its dynamics in
dealing with a bottleneck link and a router with small buffer. In Section 3, we
describe results based on ns-2 simulations, and describe indirect measurements
collected over Internet in Section 4. In Section 5, we describe the traces and
their analysis of TCP variables for Internet connections. Earlier versions of
partial results from Sections 2-4 and 5 appear in [30] and [8], respectively.

2 Dynamics of TCP

In this section we first describe a simplified model of TCP, followed by a
description of its state space variables. Then we show the decomposition of
TCP dynamics into two distinct unstable regimes, which gives rise to chaotic
dynamics.

2.1 Simplified TCP Model

TCP provides a connection-based reliable transport mechanism from a source
to a destination [27]. The sender interacts with the destination to ensure a re-
liable delivery of packets; each received packet is specifically acknowledged by
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Fig. 1: Top left and right plots show w(t) and e(t) vs t, respectively, and bottom
plot shows w(t) − e(t) attractor.
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the destination. At any given time, there are no more than a certain number
of unacknowledged packets, given by the window size, at the source. These
include the packets that are in flight, dropped at a router or destination, lost
on communications links, or whose acknowledgments have been delayed or
lost. The individual packets and their acknowledgments can potentially travel
different paths and delayed by different amounts (indefinitely if they have
been dropped). The packets are put into the proper order at the destination.
The receiver maintains a certain window, called the receive window or buffer,
of packets which are not in the correct order. Packets arriving at the destina-
tion when the receive buffer is full are simply dropped. Source maintains the
flow window which corresponds to the receive buffer. The packet flow rate is
restricted by the flow window which is typically fixed at the time of initiation
of the connection.

source 0

router destination

2.0 Mbps, 10ms

1.7Mbps, 10 ms

2.0 Mbps, 10ms

TCP

source 1

UDP

CBR

Fig. 2: Simulation setup.

The source attempts to adjust its sending rate in response to the traffic
condition on the connection, as per a process called the congestion control.
There are a large number of variations of the basic TCP [7] in the manner the
congestion control is implemented. We restrict our focus to a simplified model
of a basic AIMD version that was originally described in [18]. TCP main-
tains the congestion window w(t) which limits the number of unacknowledged
packets at the source (in addition to the flow window constraint). Since flow
window is fixed in the basic version, the dynamics are due to the congestion
window; note however, if methods such as dynamic right-sizing combined with
parallel streams [31] are applied, the dynamics are not solely dependent on
congestion window.

TCP responds to the network traffic by adjusting w(t) which in turn con-
trols its flow rate. TCP dynamics consist of two phases as shown in the top left
plot of Figure 1 corresponding to the setup in Figure 2: (a) initial slow-start
phase, and (b) the subsequent congestion control phase. During the slow start
phase the window size grows fast until a loss is inferred or a set threshold
Wt is reached. In congestion control phase, w(t) is incremented with each ac-
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knowledgment until a loss occurs, and then it is reduced by half. The value of
w(t) has a significant effect on the packet end-to-end delay (defined formally
in the next section). If w(t) is small most messages will reach the destination
and hence packet delay is fairly stable. At the other extreme, if w(t) is large,
losses and retransmissions occur which increase the end-to-end packet delay.

Consider that the delays are extremely small such that source knows imme-
diately The congestion window size w(t) is recomputed based on the response
to the packets sent. After every acknowledgment of a new packet, w(t) is
recomputed follows:

if w < Wt, then w← w + 1 during slow start
else w ← w + 1/w during congestion control

After a loss is inferred at the source, the window size is reduced by half such
that w ← w/2. The above method is referred to as the AIMD method for
congestion control. We make the assumption that the loss is inferred at the
source almost instantaneously and the acknowledgments are not lost. This is
a simplified description of the congestion control but captures the essential
components of TCP needed here.

In the congestion control phase, there are two distinct regimes denoted by
R1 and R2 as typified in the top left plot of Figure 1. In R1 TCP starts with
a low value of w(t) and keep incrementing as along as the packets are being
acknowledged. When packet loss is inferred due to explicit notification or
time-out, regime R2 is entered, wherein w is drastically reduced, particularly
so in case of multiple losses.

2.2 State-Space Characterization of TCP

In addition to w(t), we characterize the TCP dynamics using three other
variables. Let the time instant t1, called the epoch, correspond to the time a
packet transmission started by TCP for first time for this packet. For epoch
t1, let e(t1) denote the end-to-end delay of the packet under the assumption
that the acknowledgments are not lost. We extrapolate e(t) for t in between
two consecutive epochs t1 ans t2 by e(t) = e(t1). Let r(t) and a(t) denote the
number of retransmissions and acknowledgments, respectively since the start;
note that they both are non-decreasing functions of t. Usually, the sending rate
of TCP is specified by w(t) per round trip time; for simplicity of presentation
we assume that w(t) has been scaled for unit time. Thus the number of packets

sent from the source during time interval [T1, T2] is given by
T2�
T1

w(t)dt.

We consider that TCP is responding to a simple network scenario as in
Figure 3 with a single bottleneck link with maximum packet delivery rate
of wb. The packet transmission through this link is controlled by a drop-
tail router with buffer size Bτ . There is an underlying traffic that arrives at
the router which competes for the link bandwidth and buffer space. Let B(t)
denote the number of elements in the buffer at time t with Bτ −B(t) denoting
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Fig. 3: TCP interacting with a drop-tail router.

the free buffer space. We assume that there is a processing delay of a packet
at the router that increases slowly at a rate µ with the sending rate at the
source.

Consider that there is no competing traffic at the router and source rate
is fixed (by some non-TCP mechanism) such that w(t) = wf ≤ wb. Then no
packets will be dropped and dynamics of w(t) are constant at wb. In general
wb is not known and varies with the competing traffic. Roughly speaking, TCP
attempts to estimate wb, and to keep w(t) lower than the estimated value to
avoid packet losses and retransmissions.

Consider that the delays are extremely small such that source knows imme-
diately after a packet is dropped and also that Bτ = 0. In such case, dynamics
of w(t) for TCP are periodic: in regime R1, w(t) starts around wb/2 and in-
creases with the acknowledgments until it exceeds wb; then it infers a single
packet loss and enters regime R2, where w(t) is reduced by half. Here regime
R2 is very short lived since it is the result of a single instantaneous loss. Now
consider that the delays are non-zero and it takes T1 units of time before the
loss is inferred since the source rate exceeds the available bandwidth. Consider
that w(t1) = wb such that at time t1 the sending rates becomes equal to the
bottleneck bandwidth. TCP sends

n[t1,t1+T1] =

t1+T1�
t1

w(t)dt

packets in the interim period [t1, t1 + T1] of which

nd =

t1+T1�
t1

(w(t) − wb)dt = [n[t1,t1+T1] − wbT1]+

will be dropped, where [x]+ is x if x > 0 and is 0 otherwise. If buffer size is
non-zero, then no packets will be dropped until t = t1 + tBτ such that

Bτ =

t1+tBτ�
t1

[w(t) − wb]+dt

if the entire buffer Bτ is available. Notice that the availability of buffer delays
the time the packet is dropped by tBτ in this case. Thus the number of packets
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dropped will be

nBτ =

t1+T1�
t1+tBtau

[w(t) − wb]+dt (2.1)

for tBτ < T1. If the entire buffer is not available, the computation of the
number of dropped packets is more involved. Let tr denote the time the packet
that left the source at time t1 reaches the buffer. Then let tb ≥ t1 be the earliest
time such that the packet sent from source at tb arrives at full buffer at time
tf such that B(tf ) = Bτ , i.e. earliest time that the packet leaving the source
faces a full buffer. Let wS(t) denote the rate measured at the source with
which the packets will eventually pass through the bottleneck link. Note that
if there is no competing traffic we have the simple relation

wS(t) =
�

w(t) if w(t) ≤ wb

wb if w(t) > wb

Then the number of dropped packets is given by

nb =

tb+T1�
tb

(w(t) − wS(t))dt.

Again note that the available buffer space delays the packet loss by time tb <
TBτ , and since wS(t) ≤ wb we have nb ≥ nBτ . Then after all the nb dropped
packets are accounted for, the resultant window-size is set to w(t1)/2nb for
the regime R2.

2.3 Dynamic Regimes of TCP

Consider that the source is sending an infinitely long message. In case of zero
delays, TCP dynamics in congestion control mode constitute a stable cycle
with period TR1 + TR2 , where TRi is the duration of regime Ri. This stable
cyclic behavior is well-known in TCP literature as shown in the top left plot
of Figure 1 which corresponds to the ns-2 simulation with no background
UDP traffic; despite its ubiquity in literature, we observed such nice periodic
behavior only under very special conditions in simulation. The corresponding
packet end-to-end delay is shown in the top right plot of Figure 1 where
in e(t) increases slowly during TR1 but jumps in large steps briefly due to
retransmissions; nevertheless, it is still cyclic. In the bottom plot of Figure 1,
we show the periodic sampling of e(t) and w(t) corresponding to the Poincare
map in w(t)−e(t) plane. After an initial transient period, the trajectories of
w(t) and e(t) settle into periodic motions, and the corresponding attractor in
w(t)−e(t) plane is represented by a closed curve.

We can conceptualize the dynamic behavior of TCP, in term of the alter-
nating regimes R1 and R2, which are of varying duration in general. For t
corresponding to R1, the dynamics can be approximated locally as follows
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wi+1
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wi+1=w / 2i
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Fig. 4: Examples of map M for zero delays and zero buffer size for various Bτ .

 dw
dt
de
dt
da
dt

 =

1/w da
dt

µda
dt
da
dt


Note that dr

dt (t) = 0 during this period, and the acknowledgments arrive at a
non-zero rate. Computation of Eigenvalues of the Jacobian matrix shows that
at least one of them will have positive real part; hence the system is unstable.
One can intuitively draw such conclusion since the arrival of acknowledgments
constantly increases w(t) at a local rate of 1/w and also increases e(t) at a
slow rate of µ.

Now consider the regime R2 wherein the source infers a packet loss due to
the buffer overflow. The packets sent during (t1, t1+T2) will result in overflow
where w(t1) = wb, for t1 in R1; the exact number dropped packets depends
on the occupancy of the buffer. The behavior can be approximated locally by dw

dt
de
dt
dr
dt

 =


w

2−
dr
dt

η dr
dt
dr
dt


for some η that depends on the delays. In this regions da

dt (t) = 0 and dr
dt > 0.

Intuitively, this is an unstable regime since the packets are dropped which in-
creases e(t) and drastically reduces w(t). This can also be verified by explicitly
computing the Eigenvalues of the Jacobian matrix.

The TCP dynamics are due to the “gluing” together of the regimesR1 and
R2. The above equations in region R1 can be derived by ignoring the control
terms in the fluid models of [22, 16] which are known in the literature. The
dynamics in regionR2 are a direct result of using e(t) as a state variable, which
plays a very critical role in our analysis; we are unaware of earlier works using
this variable and highlighting its role. Note that both regimes are unstable in
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that there is no stationary point in either. Thus the trajectories in one regime
will enter the other and vice versa thereby generating bounded trajectories.
The period behavior is one of the way such trajectories can manifest but the
background traffic coupled with small buffer sizes result in more complicated
trajectories. Such behavior appears not only in the time series of w(t) and e(t)
but also in the attractor and the Fourier spectra of e(t) as will be discussed
in the simulation results in Section 3. Note that as the background traffic
is varied the attractor, which is a simple curve in Figure 1 becomes much
more complicated. The boundary between the two regimes is defined by the
transition between the increasing and decreasing values for w(t). We identify a
particular subset of the state space where w(t) reaches a value that just causes
buffer overflow in regimeR1. Under no delays and buffers this condition is met
when w(t) = wb, and in general is given by nd = 0 in Eq (2.1), which is not
easily visualized. As w(t) is increased beyond this value in R1, TCP will infer
loses and transit to regime R2. The resultant w(t) value in R2 depends on nd

given by w ← w/2nd , which in turn depends on B(t) during the appropriate
period.

To understand the time evolution of w(t) we define w-update map M :
[1,Wmax] +→ [1,Wmax] such that M(wi) = wi+1 gives the earliest changed
value of w(t) since the time the condition w(t) = wi is met. Let wi ∈ Rj for
j = 1, 2 denote that when w(t) = wi, TCP is in regime Rj . Then this map is
specified as follows:

M(wi) =

����
wi + 1/wi if wi ∈ R1, wi+1 ∈ R1

wi/2ni if wi ∈ R1, wi+1 ∈ R2

wi/2ni if wi ∈ R2, wi+1 ∈ R2

wi + 1/wi if wi ∈ R2, wi+1 ∈ R1

where ni is the number of packet losses inferred during the period. In R1 we
have ni = 0 hence it can be represented as a simple map. In R2 it is more
complicated and can be visualized as in Figure 4. For w(t) > wb, there could
be packet losses and but w(t) attains a value higher than wb. This process
can be imagined in terms of a set L along which ni increases together with
w(t). At any point on this set L, corresponding to (wi, ni) the map M is
specified by M(wi) = wi/2ni . The plot of M can be imagined along the set
L × [1, Nmax] so that L forms the x-axis and M(wi+1) is along the y-axis.
Empirical computation of M is shown in Figure 5 as a function of wi alone
based on the simulation results in Section 3; note however that this map
reflects only the limited number of simulated trajectories.

Periodic trajectories can be easily generated as illustrated in Figure 4 in
which the trajectory stays in ni = 0 plane for part of the time and on the
set L for the rest of the time in a cycle. This map shares some of the basic
properties of the tent map [2] in that it has a monotonically increasing part
in ni = 0 plane and a decreasing part in the half plane ni > 0. The map M is
more complicated due to the presence of ni which makes it two-dimensional
in the half plane ni > 0. It is instructive to visualize the map M in terms of a
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family of maps such that Mb : [0,Wmax]× [0, Nmax]→ [0,Wmax]× [0, Nmax], is
the two-dimensional map obtained in case of no background traffic and buffer
size b, 0 ≤ b ≤ B, i.e. entire buffer is available for this TCP stream as shown in
Figure 6. Due to non-zero delay, w(t) exceeds wb at time t1 for a time period
T which will result in the over flow of

n0(T ) =
� t1+T

t1

(w(t) − wb)dt

packets. Then M0(w(t1 + T )) = wi/2n0 whose value depends on T . This map
can be imagined along a locus L0 of all points given by {(w(t1 + t), n0(t)) :
t ∈ [0, T ]}. The map M0 is defined at any point on L0 as M0(w(t1 + t)) =
w(t1+t)/2n0(t). We similarly define the locus Lb when the buffer size is b which
is entirely available. Let tb denote the period during which w(t1) increases
before first packet is dropped such that

b =

t1+tb�
t1

(w(t) − wd)dt.

Then the number of overflown packets is given by

nb(T ) =

t1+tb+T�
t1+tb

(w(t) − wb)+dt.

Then the Mb is defined as Mb(w(t1 + tb + T )) = 2nb(T ) whose value depends
on T . Then we define the original map M by using Mb with the appropriately
available buffer size b. The Poincare iterates {wi} under M depend on the
available buffer space when w(t) is in the regionsR2 and is given by MBτ−B(t).
Any trajectory of w(t) stays in in the plane ni = 0 while incurring loses and
transits to a locus that lies in between L0 and LBτ for a duration determined
by B(t) and the delay to the buffer. Then it reduces w(t) in response to the
resultant loses and thus jumps back onto the plane ni = 0, and this process
repeats.

Unlike the tent map which has period 3 orbits, M starts at a much higher
periodicity, can be shown to have any periodicity as well as aperiodic orbits
using standard arguments such as Sharkovskii’s Theorem [2]. The detailed
study of the dynamics produced by this map are under investigation, but
its general nature indicates that it generates behavior qualitatively similar
to that produced by the tent map. Maps that are qualitatively similar to
M have also been presented in [39] to show the chaotic behavior. The tent-
map has a constant derivative of magnitude 2, and the map M has a slope
of approximately 1/w in R1 but of much higher magnitude in region R2.
Informally speaking, the larger slope in R2 is responsible for the exponential
separation of the nearby trajectories and results in a positive ”aggregate”
Lyapunov exponent under the conditions during which the trajectories stay
in R2 for a significant portion of the time.
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Fig. 7: Long TCP stream with UDP rate of 0.5Mbps. Top left plot is w(t), top right
plot is e(t) and bottom plot is w(t) − e(t) attractor.
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Fig. 8: Long TCP stream with UDP rate of 1.5Mbps. Top left plot is w(t), top right
plot is e(t) and bottom plot is w(t) − e(t) attractor.
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3 Simulations of TCP competing with UDP

In this section, we describe simulation measurements to illustrate the com-
plicated dynamics of TCP AIMD method. We plot various TCP parameters
under controlled scenarios that are not realizable under Internet environments.
Figure 2 shows the network setup used in ns-2 simulations to perform our ex-
periments. Source nodes 0 and 1 generate TCP and UDP traffic, respectively,
that goes to a drop-tail router over 2.0 Mbps links and then to a bottleneck
link of 1.7 Mbps before reaching the destination. Source node 1 generates UDP
traffic at a constant bit rate (CBR) and serves as the background traffic that
the TCP connection must adapt to. To simulate different levels of congestion,
the traffic-generation rate is varied from 0 to 1.5 Mbps in steps of 0.5 Mbps.
This set-up provides an easy way to increase the traffic on the bottleneck link
so that different TCP behaviors can be observed.

The source node is attached to an FTP client that acts as an infinite source
of TCP traffic. The results with no UDP traffic are shown in Figure 1; as dis-
cussed before both w(t) and e(t) are periodic with the attractor described
by a simple curve. For other UDP rates, both w(t) and e(t) did not show
repeated patterns during the observation period, and the attractor became
significantly more complicated. When the UDP rate is 0.5Mbps, the dynam-
ics are more complicated as shown in Figure 7. While the trajectories remain
bounded in the w(t)−e(t) plane, the shapes of the attractors at various UDP
rates appeared quite varied and did not follow any particular evolutionary
pattern. At all UDP loads both w(t) and e(t) had significant periodic compo-
nents but were not actually period – the digression from the periodic nature
increased as the UDP rate is increased. We only showed some typical plots in
Figures 7 and 8 but the general nature of the w(t) and e(t) remained more or
less the same. Since the observation time is limited, it is quite possible that
these plots are small parts of periodic trajectories. But the radical difference
in the attractor shape together with the map M discussed in the last section
provides a strong indication that TCP can generates aperiodic orbits for w(t)
and e(t).

The effects of TCP dynamics are more pronounced in transfers of small
messages such as control signals. To study such effects, we consider a simple
on-off ftp source simulating the square-wave function for the message trans-
fers. A typical case is shown in Figure 9 where the duration of each ftp session
is 0.15 sec with 0.15sec duration between the consecutive sessions (more cases
can be found in [30]). The UDP CBR rate is 1.6Mbps. The top left plot
shows w(t) which is aperiodic during the observation interval. The top right
plot shows e(t) which is also aperiodic but shows much more variation com-
pared to the similar plots in case of long streams; the bottom left plot shows
its magnitude plot of the Fourier coefficients, which shows significant non-
periodic parts. The bottom right plot shows the attractor which is also more
complicated than in the long stream case.
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Fig. 9: Bursty TCP stream with 0.15 sec square wave with UDP rate of 1.6 Mbps.
Top left plot is w(t), top right plot is e(t), bottom left plot is Fourier spectrum of
e(t), and bottom right plot is w(t) − e(t) attractor.
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4 Message Delay Measurements

In this section, we describe Internet measurements corresponding to the end-
to-end delays of fixed size messages. While these measurements do not di-
rectly correspond to TCP variables (unlike in next section) they do highlight
the complicated dynamics of message delays that are of importance to the
applications.
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Fig. 10: Wireline network measurements.

We collected Internet measurements between Oak Ridge National Labo-
ratory (ORNL) and University of Oklahoma (OU) by sending streams each
consisting of messages of fixed size 10K bytes at the regular intervals of 10
seconds. Each message is received at the destination and sent back to the
source. The round-trip time is computed at the source and divided by two to
estimate one way end-to-end delay for the message; this is only an estimate
since the forward and return paths of a TCP stream could be different, and
even in each way different packets may travel different physical paths. Due to
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lack of access to the TCP internal variables, we only consider the end-to-end
delays of the messages rather than the packet-level delays discussed in the
last and next sections. But these two quantities are closely related: the end-
to-end delay for the message is the difference between the time last packet of
the message is received at the destination and the time first packet left the
source. Thus the dynamics of the one will be reflected in the other. Figure 10
corresponds to three streams each with 20 messages. The individual streams
are separated by an hour. Notice that there is a considerable variation in
the end-to-end delay even for the messages send only a second apart. Such
variation is present in measurements collected within a day as well as those
collected on different days. These dynamic variations are very important be-
cause they can play a crucial role in the stability of control loops between the
source and destination.

There are some important differences in these measurements and simu-
lation results of last section. First, the Internet paths from ORNL and OU
consists of the parts of ESnet and Abiline networks, each of which in turn con-
sists of a number of routers and perhaps more than one bottleneck link. Also
the competing traffic is not entirely UDP. Nevertheless, the variations in the
end-to-end delays are indicative of the qualitative behavior of the dynamics.

We now describe measurements collected from a laptop connected to the
Internet over a wireless local-area network. The source node was located at
the exhibit hall of Supercomputing 2001 conference in Denver and the desti-
nation node was at ORNL. Here, each stream consisted of 25 messages each
separated by a minute in time. Such measurements are repeated hourly 13
times during the same day and all results are shown in Figure 11. Here the
source node connected to the wireless network at the exhibit hall which had a
large variation in the background traffic throughout the day. The time scales
of variation are very sensitive to the hour of the day, ranging from hundreds
of milliseconds to hundreds of seconds. In the top left plot of Figure 11 mea-
surements of all 13 hourly streams are shown, and in the other plots some of
the hourly measurements with highest delays are removed. The three orders
of magnitude difference in the time-scales of various plots is mainly due to the
competing traffic, which was low in the morning and at night but was much
higher during the day. It is very interesting to note the end-to-end delays are
very dynamic at every scale. Thus for control application in such scenarios,
both the time-scales as well as the dynamic variations in the end-to-end mes-
sage delays are very important. Simply knowing the traffic levels (and hence
the hourly time scales) is not sufficient to predict the end-to-end delays, since
they showed quite a variability at every time scale.

5 Analysis of Internet TCP Traces

Typical TCP dynamics over the Internet connections are a result of its non-
linear dynamics interacting with the Internet traffic, which is stochastic and
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Fig. 11: Wireless network measurements.
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often self-similar. This leads one to naturally expect the transport dynamics
to be inevitably complicated as indicated by a number of preliminary studies
[5, 43]. While these works demonstrate that the transport dynamics can indeed
be chaotic under certain circumstances, their scope has been often limited
since they rely on simulation results [43], secondary measurements of previous
section or network configurations atypical of Internet [28]. In terms of actual
Internet traffic, however, the question of the chaotic and stochastic nature
of transport dynamics is left open: it is unclear if such dynamics are indeed
commonplace or even relevant to operational networks.

There are two major difficulties in understanding the transport dynamics
over Internet connections. First, it has been technologically hard to collect
high quality measurements of network transport variables on “live” Internet
connections. Second, it is very difficult to analytically handle the interaction
between the deterministic and stochastic parts of transport dynamics. The
deterministic dynamics are due to TCP AIMD congestion control method
as described in Section 2. The stochastic component is due to the often self-
similar traffic [25] with which TCP competes for bandwidth and router buffers.
Roughly speaking, the interaction between the two is in terms of the additions
to TCP congestion window-size in response to acknowledgments, and multi-
plicative decreases in response to inferred losses (ignoring the initial slow-start
phase). Any protocol, however simple its dynamics are, is generally expected
to exhibit apparently complicated dynamics due to its interaction with the
stochastic network traffic. Recall that TCP exhibits chaotic or chaos-like be-
havior even when the competing traffic is much simpler such as a single com-
peting TCP [43] or UDP stream [30]. The difficulty is to understand the dy-
namics when both deterministic and stochastic phenomena are in effect, and
equally importantly to understand their impact on actual Internet streams.

In this section we first utilize the recently developed net100 [23] instru-
ments to collect high quality TCP w(t) traces for actual Internet connections.
We then utilize a simple computational model to study the effects of random
packet losses on w(t). We analyze the measurements using the concepts of time
dependent exponent curves [13, 15, 14] and logarithmic displacement curves
[9]. Our major purpose is to elucidate how the deterministic and stochastic
components of transport dynamics interact with each other on the Internet. It
is of interest to note that recently there have been several important works on
TCP dynamics with the purpose of improving congestion control [6, 21, 17, 19].
In fact, there has been considerable effort in developing new versions and/or
alternatives to TCP so that the network dynamics can be more stable. Con-
ventional ways of analyzing the network dynamics are unable to readily de-
termine whether newer methods result in stable transport dynamics or help
in designing such methods. Our analysis shows two important features in this
direction:

(a) Randomness is an integral part of the transport dynamics and must be
explicitly handled. In particular, the step sizes utilized for adjusting the
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congestion parameters must be suitably varied (e.g. using Robbins-Monro
conditions) to ensure the eventual convergence [32]. This is not the case
for TCP which utilizes fixed step sizes.

(b) The chaotic dynamics of the transport protocols do have a significant
impact on practical transfers, and the protocol design must be cognizant
of its effects. In particular, it might be worthwhile to investigate protocols
that do not contain dominant chaotic regimes, particularly for remote
control and steering applications.

The traditional transport protocols are not designed to explicitly address the
above two issues, but justifiably so since their original purpose is data trans-
port rather than finer control of dynamics.

We have collected a number of w(t) traces using single and two com-
peting TCP streams. This data was collected on two different connections
from ORNL to Georgia Institute of Technology (GaTech) and to Louisiana
State University (LSU). The first connection has high-bandwidth (OC192 at
10Gbps) with relatively low backbone traffic and a round-trip time of about
10 milliseconds. Four traces were collected for this connection, two with a
single TCP stream and the others with two competing TCP streams. The
second connection has much lower bandwidth (10 Mbps) with higher levels
of traffic and a round trip-time of about 26 milliseconds. The sampling time
is approximately 1 millisecond, with an error of 10s of microseconds (due to
a “busy waiting” measurement loop). Eight traces were collected for the sec-
ond connection. The results based on these eight traces are qualitatively very
similar to the ORNL-GaTech traces, and we only discuss the results for the
latter. To appreciate better what these data look like, we have plotted in Fig-
ure 12(a-d) segments of these four datasets. Power spectral analysis of these
data does not show any dominant peaks, and hence, the dynamics are not
simply oscillatory. Since our data was measured on the Internet with “live”
background traffic, it is apparently more complicated and realistic than ns-2
traces [43, 30].

5.1 Time-Dependent Exponent Curves

Next let us analyze data, w(i), i = 1, · · · , n, using the concepts of time
dependent exponent Λ(k) curves [13, 15, 14]. For this purpose, we first employ
the embedding theorem [24, 41, 35, 34] and construct vectors of the form:
Vi = [w(i), w(i+L), ..., w(i+(m−1)L)], where m is the embedding dimension
and L the delay time. The embedding theorem [41, 35] states that when the
embedding dimension m is larger than twice the box counting dimension of
the attractor, then the dynamics of the original system can be studied from a
single scalar time series. We note that the embedding dimension used in [43]
is only two, which has to be considered not large enough (this may call for a
closer examination of their conclusions).

The Λ(k) curves are defined by [13, 15, 14]:
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Fig. 12: Time series of w(t) (in Bytes) for ORNL-GaTech connection. Before plotting
on the figure, the actual value of w(n) has been divided by 104.

Fig. 13: Λ(k) curves for (a) the chaotic Lorenz attractor with m = 4, L = 3 and
sampling time 0.03, and (b) a random process with m = 6, L = 1. Curves numbered
1, · · · , 6 correspond to shells with sizes (2−(i+1)/2, 2−i/2), i = 5, 6, · · · , 10.
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Λ(k) =
�

ln
!�Vi+k − Vj+k�
�Vi − Vj�

(�
(1)

where Vi, i = 1, 2, · · · are vectors constructed from a scalar time series using
the embedding theorem. The computation is carried out for a sequence of
shells, r ≤ �Vi−Vj� ≤ r+Δr, where r and Δr are prescribed small distances.
The angle brackets denote the ensemble average of all possible (Vi, Vj) pairs,
and k is called the evolution time. For true low-dimensional chaotic systems,
the curves Λ(k) for different shells form a common envelope, and the slope
of the envelope is an estimate of the largest positive Lyapunov exponent. An
example is given in Figure 13(a) for the well-known chaotic Lorenz system.
We note the common envelope at the lower left corner of Figure 13(a). The
existence of a common envelope guarantees that a robust positive Lyapunov
exponent will be obtained (by different methods) no matter which shell is used
in the computation. For non-chaotic systems, the common envelope is absent.
As an example, Figure 13(b) shows the Λ(k) curves for a set of uniformly
distributed random variables. Here, we note there is no common envelope
in the lower left corner of Figure 13(b). At this point it is appropriate to
comment that it is often assumed that a numerically estimated positive value
for the Lyapunov exponent and non-integral value for the fractal dimension
is a sufficient indicator of chaos in a time series. This assumption stirred up
a passionate wave of research into many areas in natural and social sciences
as well as engineering, resulting in a scene that chaos is everywhere! Since
Λ(k)/(kδt), where δt is the sampling time, is more or less equivalent to the
largest positive Lyapunov exponent which can be obtained using conventional
ways, we thus see that under this common assumption, random processes or
noise can be easily interpreted as chaos. Hence, Gao and Zheng’s method [13,
15, 14] represents one of the more stringent tests for deterministic chaos.

Before we move on, we point out a few interesting features of the Λ(k)
curves: (i) For noise, only for k up to the embedding window size (m − 1)L
will Λ(k) increase. This can be easily seen from Figure 13(b). Thus, whenever
Λ(k) increases for a much larger range of k, it is an indication of non-trivial
deterministic structure in the data. (ii) For periodic signals, Λ(k) is essentially
zero for any k. (iii) For quasi-periodic signals, Λ(k) is periodic with an am-
plitude typically smaller than 0.1, hence, for practical purposes, Λ(k) can be
considered very close to 0. (iv) When a chaotic signal is corrupted by noise,
then the Λ(k) curves break themselves away from the common envelope. The
stronger the noise is, the more the Λ(k) curves break away till the envelope is
not defined at all. This feature has actually been used to estimate the amount
of both measurement and dynamic noise [9].

Now we are ready to compute and understand the Λ(k) curves for w(t)
traces. The set of Λ(k) curves, corresponding to Figure 12, are plotted in
Figure 14. In the computations, 3 × 104 points are used, and m = 10, L =
1. The eight curves, from the bottom to top, correspond to shells of sizes
(2−(i+1)/2, 2−i/2), i = 8, 9, · · · , 15. We make the following observations:
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Fig. 14: Λ(k) curves for w(t) data corresponding to Figure 12. In the computations,
3 × 104 points are used, and m = 10, L = 1. Curves from the bottom to top
correspond to shells with sizes (2−(i+1)/2, 2−i/2), i = 8, 9, · · · , 15.

(i) The dynamics are complicated and cannot be described as either periodic
or quasi-periodic motions, since Λ(k) is much larger than 0.

(ii) The dynamics cannot be characterized as pure deterministic chaos, since
in no case can we observe a well-defined linear envelope. Thus the random
component of the dynamics due to competing network traffic is evident
and can not simply be ignored.

(iii)The data is not simply noisy, since otherwise we should have observed that
Λ(k) is almost flat when k > (m−1)L. Thus, the deterministic component
of dynamics which is due to the transport protocol plays an integral role
and must be carefully studied. The features (ii) and (iii) indicate that the
Internet transport dynamic contains both chaotic and stochastic compo-
nents.

(iv)There are considerable differences between the data with only 1 TCP
source and with 2 competing TCP sources. In the latter case, the Λ(k)
curves sharply rise when k just exceeds the embedding window size,
(m − 1)L. On the other hand, Λ(k) for Figure 14(b) with only one TCP
source increases much slower when k just exceeds (m−1)L. Also important
is that the Λ(k) curves in Figure 14(c,d) are much smoother than those
in Figure 14(a,b). Hence, we can say that the deterministic component of
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the dynamics is more visible when there are more than 1 competing TCP
sources (along the lines of [43]).

Fig. 15: A log-log plot of the displacement curves for Figure 12.

5.2 Anomalous Diffusions

Since the increasing part of the Λ(k) curves are not very linear, let us next
examine if in those regions of k, the displacement ||Vi+k−Vj+k|| curves actually
increase with k in a power-law manner,

||Vi+k − Vj+k|| ∼ kα,

where α is called the diffusional exponent. Note that ||Vi+k − Vj+k|| is the
numerator of Eq. (1). For Brownian motions, α = 1/2 [12]. This leads to a
classification of diffusional processes [10]:

(i) α = 1/2: Normal Diffusion.
(ii) α > 1/2: Anomalous Diffusion. This type of diffusion plays a key role in

the study of noise-induced chaos. In fact, in that context, it may be termed
“pre-noise-induced chaos”.

(iii)α < 1/2: Sub-Diffusion. When the diffusional process takes place near a
limit cycle, this behavior is often due to a strong convergent flow to the
limit cycle [11].
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Now it is a simple matter to plot the evolution of ||Vi+k − Vj+k|| with k in
a log-log scale. See Figure 15(a-d). Very interestingly, we have now indeed
observed a bunch of better defined linear lines. Furthermore, the diffusional
exponent is larger than 1/2 for Figure 15(a,c,d). Hence, we can say that the
diffusion is often anomalous. In fact, α is about 1.2 for both Figure 15(c,d)
and about 1.0 for Figure 15(a). Figure 15(b) is an exception: for not too small
shells, α is close to 1/2. However, when the scale or the shell size is very small,
α is about 1.0. This crossover of anomalous diffusion to normal diffusion from
small to fairly large scales suggests that the deterministic component of the
dynamics at small scales is gradually masked by the stochastic component
at large scales. Depending on how noisy the background traffic is, sometimes
this crossover may not happen, as in the case of Figure 15(a). In fact, such
crossover is often inhibited when there are competing TCP sources, as we see
from Figure 15(c,d).

5.3 Random Losses and TCP Dynamics

The presence of randomness in the traces described previously motivates us to
understand the effect of random losses on TCP dynamics. We consider a very
simple computational model where each packet is concluded to be lost with
probability p by TCP. Note that p captures the packet loss from source to
destination as well acknowledgment loss from destination back to source. By
using simple AIMD equations, we computed w(t) traces for different values
of p, and also computed the corresponding time-dependent exponent plots.
For low loss rates, the plots resemble periodic trajectories as shown in the
top plots of Figure 16. For high losses, the plots resemble random trajectories
as shown in the bottom plots of Figure 16. In both these extreme cases,
the Λ curves do not resemble those of a chaotic system such as one shown
for Lorenz system in Figure 13. The chaos-like behavior is displayed in the
medium loss range as shown in Figures 17 and 18 for cases p = 0.1 and p = 0.2.
The expanded initial portions of Λ curves shown in Figure 18 show a clearer
common envelope similar to that of the Lorenz system. Since packet losses on
the Internet connections do have a random component and losses are often at
moderate levels in typical connections, it is not unreasonable to expect TCP
traces to exhibit chaotic components illustrated here. We however note that
data in Figures 16 - 18 is based on a simple computational model, whereas
that in Figure 12 corresponds to actual Internet measurements. In addition, it
is assumed in the former the changes in w(t) occur at exact integer intervals,
whereas in the latter w(t) is sampled at regular millisecond intervals but the
changes could occur within the intervals. Despite the differences in detail, both
the traces illustrate the close interplay between the TCP AIMD dynamics and
the underlying randomness in the network connection.
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Fig. 16: Top plots correspond to w(.) on the left and Λ(.) on the right for p = 0.03.
Bottom plots correspond to w(.) on the left and Λ(.) on the right for p = 0.5.
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Fig. 17: Top plots correspond to w(.) on the left and Λ(.) on the right for p = 0.1.
Bottom plots correspond to w(.) on the left and Λ(.) on the right for p = 0.2.
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Fig. 18: Expanded view of initial parts of Λ(.) for p = 0.1 on the left and p = 0.2 on
the right.

6 Conclusions

We presented analytical and experimental results that indicate the chaotic
behavior of TCP AIMD at certain time scales. We presented a state-space
description of TCP using the window size and end-to-end packet delays. By
composing two almost linear but unstable models, we presented a model for
TCP dynamics. This model shows that TCP generates bounded but highly
complicated dynamics when it interacts with the routers with small buffers.
We discussed ways in which chaotic trajectories can be generated by TCP,
by identifying a tent-like map embedded in the dynamics of TCP. We then
collected TCP traces over Internet connections and analyzed them using ex-
ponential delay curves. We consider this work to be a small step towards
understanding the complicated nature of TCP dynamics over wide area net-
works. While such dynamics do not significantly impact large data transfer
applications, they could be very important in closed-loop control applications
implemented over wide-area networks.

There are several open questions in the area of understanding TCP dynam-
ics. It would be interesting to see the differences in the dynamics generated
by various versions of TCP. Our initial ns simulations of Vegas and Reno
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versions indicate a behavior qualitatively similar to the results presented here
with Tahoe version, but the precise parameter values corresponding to various
behaviors are quite different. Also we assumed here that w(t) can take and
can be initialized with arbitrary real numbers, and it would be interesting to
see the effects of finite precision implementation on the TCP dynamics. Note
however that a simple linear feedback system can exhibit chaotic behavior
when implemented with finite precision [42], and hence it is non trivial to pre-
dict the effects of finite precision on TCP dynamics. It would be particularly
interesting to see the relevance of such effects in ns-2 simulations, which are
finite precision implementations.

Another important issue for further investigation is the practical impli-
cations of the chaotic behavior of TCP on real network applications. It is
clear that dynamics are most important for control applications. By analyz-
ing a number of high quality congestion window-size data measured on the
Internet, we have found that the transport dynamics are best described by
the diffusional processes. The diffusions are often anomalous, especially when
there are competing TCP sources. It is interesting to further examine how one
might suppress the stochasticity of the network by executing more controls
on the network when making measurements, such as using a large number
of competing TCP sources together with a constant UDP flow. Our analysis
motivates that both chaotic and stochastic aspects be paid a close attention
to in designing Internet protocols that are required to provide the desired and
tractable dynamics. In some cases, multiple path methods can be used to in-
crease the effective bandwidth [29] which can then be traded-off with the jitter
by using simple end-filtering. While some chaotic dynamics can be accounted
for using such methods, the area of providing stable control loops over wide
area networks has received very little attention. A stochastic approximation
method was presented in [32] to achieve provably stable throughput over In-
ternet connections; this method does not employ AIMD but uses the classical
Robbins-Monro method to adjust the congestion window sizes. It would be
interesting to see if there are methods that drive TCP dynamics away from
the chaotic regions or control it if chaos become inevitable.

In terms of analysis, a detailed and explicit analysis of the proposed map M
will provide more insights into the TCP dynamics. Also, it would be interesting
to see if the TCP dynamics can be shown to be amenable to standard methods
[26] such as snapback repellers [36, 20], Shilnikov Theorem [37] or delayed
feedback effects [4, 3]. It would be of future interest to apply methods such
as computation of various Lyapunov exponents on the time series [1] data of
window sizes and end-to-end delays, particularly for Internet measurements.
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1 Introduction

One of the most influential achievements of the last sanctuary was the emer-
gence of a decentralized, highly heterogenous, global communication network,
the so called Internet. The current Internet supports various services of web
browsing, transferring of files, interactive shell and multimedia applications,
that became a common activity for many people. The spreading of e-business
and the increasing number of home offices points to a tendency that the com-
munity of future will get increasingly reliant on the firm functioning of the
Internet, and demands quality of service. These facts make the study of the
physical Internet and the phenomena associated to the various layers of its
traffic, a very important topic.

This contribution investigates the dynamics of packet flows obeying the
transmission control protocol (TCP), which is a reliable, end-to-end data
transfer scheme, that carries most of the traffic of todays Internet. The relia-
bility and the success of TCP stems from the feedback mechanism provided by
acknowledgement packets. This feedback is used to explore the actual network
conditions and to adopt to their changes. By the term “externally driven” in
the title we mean the interaction of TCP with “blind”, connectionless flows,
such as a stream of packets that obey the user datagram protocol (UDP),
or the Internet control message protocol (ICMP). This problem is relevant
at least for two practical situations. First for the case of multimedia applica-
tions, that use UDP, and share common network resources with background
TCP traffic (TV and radio channels over the Internet). Second for the case
of active probing measurements that are the main tool for revealing various
characteristics of Internet paths and usually employ UDP or ICMP packets.
Here we will concentrate on the later case, because although active probing is
widely used in practice its impact on the measured TCP background traffic
is not well explored and understood.

The contribution is divided into three main parts. We start the first part
with a brief review of the Reno version of TCP, present simulation method-
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ology and the details of the investigated network model. Then in the second
part we study the effect of periodically sent UDP packets on a single persis-
tent TCP connection, and on an aggregate flow consisting of two persistent
TCP connections. Results are shown for different packet rates and sizes. Fi-
nally in the last part we introduce the problem of measuring a system whose
characteristics are changing as a result of the measuring process, and present
a comprehensive study of the influence of active probing on realistic time-
varying TCP traffic.

1.1 A Short Review of the TCP-Reno Algorithm

The data in a TCP connection is sent in constant sized packets, whose size
depends on the type of the particular application (typically 512, 536 or
1500 Bytes). To ensure the reliability of the connection TCP maintains se-
quence number and timer information and a feedback mechanism through
acknowledgement (ACK) packets. Upon receipt of a data packet with a given
sequence number the client sends back an ACK with the sequence number
of the next expected data packet. Loss of packets is detected either by timer
expire based on round trip time estimation, or if the number of ACKs with
the same next expected sequence number exceeds a threshold (typically 3),
which signals out of order packets. Details of the timer implementations can
be found in [2, 3, 1, 15].

An important variable of the algorithm is the congestion window (W ),
which tells the number of unacknowledged packets injected into the network.
The value of this parameter is continuously adjusted by the algorithm between
1 and the saturation window Ws, to utilize the available bandwidth, and
also to respond quickly to the changes in the network conditions. In real
applications Ws is set in order to avoid situations where the source host sends
data faster than the destination host could process it.

The available bandwidth is probed at the initiation of the connection in the
so-called slow start mode. In this regime the server sends two packets back-
to-back for every received ACK if its sequence number is found in order. This
behavior results in an exponential increase of injected packets that quickly
reaches the available capacity in the network and ends with a packet loss.

After this the algorithm switches into congestion avoidance mode, which is
intended to be the main working regime of a TCP connection. In this mode if
W is a non-integer, a new packet is injected in the network every time an ACK
is received, while for integer W values two packets are sent back-to-back in a
response to a received ACK. This scheme results in an approximately linear
growth of the congestion window variable and of the number of transmitted
packets.

In case of timer expire the algorithm switches to exponential back-off.
This mode is used to keep silent the connection in the case of high network
congestion, until some free capacity develops again. The actual TCP-Reno
algorithm defined in technical standards [18] and its practical implementations
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include lots of fine details that we shall not reproduce here, we only present
a simplified algorithm of the congestion window evolution in the different
working regimes of TCP that we hope is still adequate for the understanding
of its mechanism.

1. Initiation: Let Wt be a threshold window, set W = 1 and Wt = Ws.
2. Slow start: After every acknowledgement of a new packet if W < Wt, set

W = W + 1. If W = Ws, then W remains constant until a packet loss
occurs.

3. Congestion avoidance: After every acknowledgement of a new packet if
W ≥ Wt and Wt < Ws, set W = W + 1/[W ], where [...] denotes the
integer value of its argument. If W = Ws, then W remains constant until
a packet loss occurs.

4. Duplicate acknowledgements: If the number of acknowledgements with the
same sequence number exceeds 3, retransmit the next expected packet, set
Wt = W/2, then set W = Wt. After the retransmission is acknowledged
the algorithm continues in congestion avoidance mode.

5. Exponential back-off: In case of timer expire retransmit the timed-out
packet, set Wt = W/2, then set W = 1 and double the timeout value.
After this the algorithm goes to slow start.

1.2 Method of Investigation and Topology Description

1
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Fig. 1: The investigated network scenario. The edge nodes 1, 2, and 4 are computers
sending and receiving data, while node 3 is a router. The nodes are connected by
slow and fast full-duplex links characterized by bandwidths bs, bf and propagation
delays ds, df while the router is characterized by the number of packets it can store
B.

Wherever it was possible we attempted to provide analytical considera-
tions, however most of our findings are results from simulations. When inves-
tigating a complicated dynamical system like TCP it is essential to consider all
the subtle details of the protocol, thus the only acceptable abstraction seemed
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to be to make the simulations on packet-level. We use the latest release of the
network simulator ns-2.27 [15]. Although bugs in the implementation are re-
ported (and are corrected constantly) in the past, still ns represents the most
widely used and accepted public network simulator. Throughout the text we
tried to give all the details of simulations, so that results could be reproducible
and comparable to future investigations.

The structure of the Internet is best approximated by a hierarchical net-
work of internal routers that forward incoming packets towards their destina-
tion, whereas clients and servers are situated at the periferia. In the absence
of background cross traffic at the routers of the path the performance of a
connection is mostly affected by the characteristics of the bottleneck link (the
link with the smallest bandwidth) and by the end-to-end propagation delay.
We approximate the path of a connection with the simplified model of Fig. 1
described below. The nodes are connected by full-duplex links characterized
by bandwidth b and propagation delay d given in the figure. TCP traffic con-
sisting of 540 Byte data packets flows from node 2 to node 4, whereas 40 Byte
ACKs flow in the reverse direction. The periodic UDP stream originates from
node 1 and terminates in node 4. Both the TCP and the UDP packets queue
together in the first-in first-out (FIFO) buffer of the bottleneck router (node3).
The bottleneck router uses drop-tail policy, which is the most frequent type
in the current Internet, and can store a maximum of B = 40 packets without
a loss. In the simulations we set the saturation window variable Ws of TCP
to a high value that can never be reached in our model network, thus the sat-
urated behavior characterized by the constant maximal congestion window is
not studied here.

2 The Case of a Single Driven TCP Connection

Consider the simple network scenario of Fig. 1 with a single TCP connection
that is initiated at the beginning of the simulation and that has unlimited
data to send. We call such a connection a persistent TCP. Figure 2 shows the
time-evolution of the logged congestion window variable, the number of TCP
packets in the buffer and the packet drop events. After the initial slow-start the
connection settles into the periodic regime of congestion avoidance mode. The
period associated to the connection can be defined by the time elapsed between
two packet drop events. Because of the simplicity of the studied network
scenario and the absence of cross-traffic it is possible to accurately describe
the behavior of a single TCP in the congestion avoidance phase analytically.
We calculate the period (τ) of a single TCP using the following approach. The
evolution of W between the minimal value and the maximal value without a
packet loss (Wmax) is calculated from a fluid-model, where we treat W as a
continuous variable. Since it takes a full round-trip time (RTT ), and a receipt
of 3 duplicate ACKS for the sender to be informed of the packet loss, thus
meanwhile packets are still injected into the network and W is inflated over
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Fig. 2: The performance of a single TCP over the simple scenario of Fig. 1. The
continuous line indicates the logged congestion window variable, the filled pattern
shows the number of TCP packets in the bottleneck buffer, and the negative impulses
signal packet-drop events.

Wmax. When the third duplicate ACK is received TCP retransmits instantly
the lost packet, then halves the window W = Wmax/2 and waits until the
ACK of the retransmitted packet arrives. This again takes a full RTT , until
TCP can continue in congestion avoidance. Thus the period of the TCP to a
good approximation is

τ =
� Wmax

1
2Wmax

RTT (W )dW + 2RTT (Wmax) + 3δt, (1)

where δt = P/bs is the time it takes for a TCP packet of size P to be shifted
out of the bottleneck buffer. In the above formula the additional terms after
the integral take into account the time elapsed until the detection of packet
loss and during fast recovery. The expressions for Wmax and RTT (W ) are
determined by the characteristics of the network path. In our case the maximal
congestion window reads

Wmax = B + Nlink, Nlink =
bs
P

2(df + ds) + 1. (2)

Evaluating this expression with the particular numbers from Fig. 1, we see
that Nlink < B, which means that in the congestion avoidance mode there is
always queuing in the bottleneck buffer. This implies that the rate at which
TCP packets arrive at the receiver will be determined by δt. Since TCP packets
arrive every δt seconds, thus the return of ACKs and the release of new data
packets also goes with this rate. Because the condition Nlink < B holds, thus
the round-trip time as a function of the congestion window is given by

RTT (W ) = P
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which is the sum of the propagation and transmission delays and queuing at
the bottleneck buffer. Putting together (1), and (3) the final formula for the
period of a single TCP in our simple network is

τ =
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Once the period of the TCP is known one can also provide simple expres-
sions for the loss-rate and the throughput of the connection in the congestion
avoidance mode. The loss-rate is simply one packet in each period L = 1/τ ,
while the throughput to a good approximation is
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(5)
In the following table we compare the calculations for the period, loss-rate and
throughput of the TCP to the values found from simulations. The calculated
quantities are indicated by a “c” index. As is apparent from the table one can

Table 1: The performance of the analytic model vs. simulation results.

τ c [s] Lc [1/s] T c [Packet/s] τ [s] L [1/s] T [Packet/s]

7.10 0.141 229.7 7.19 0.144 229.1

develop fairly accurate analytic models for a single TCP connection. However
what happens if a connectionless packet stream is also present in the network,
and TCP must share the limited resources? A TCP connection interacts with
packets from external sources exclusively in the buffers along the path. We
can distinguish two types of interaction.

1. Delaying of a TCP packet due to queueing behind packets from external
sources. These extra delays are equal to qp×Pp/bi, where qp is the number,
and Pp is the size in bits of external packets in the queue before the given
TCP packet, and bi is the bandwidth of the link downstream of the i-th
buffer. This effect introduces phase-shifts in the TCP dynamics.

2. Due to the presence of packets from external sources in the queues, the
buffers may fill up at a different TCP sequence number, than they would
in the absence of these sources. As a result not only the dynamics is phase-
shifted but also the loss events may be redistributed to TCP packets with
different congestion window variable.

These effects are well illustrated in the traces of Fig. 3, that are simulation
results for the congestion window variable in the presence of 50 Byte UDP
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Fig. 3: From top to bottom the figures show traces of the congestion window of
the TCP connection (continuous curves) interacting with UDP packets sent at rates
of Δtp =1 s, 0.2 s, and 0.1 s respectively. For comparison purposes also shown in
every figure is the trace of the congestion window in the absence of external packets
(dashed curves).

packets sent regularly with different inter-departure times Δtp. After we see
that external packets may alter greatly the window dynamics of a TCP, the
next step would be to perform systematic analyses that would reveal the de-
pendence on the rate and the size of the external packets. Since we can not
show traces for all the different values of these quantities, thus we introduce
a simplified description of the dynamics by extracting the times elapsed be-
tween two TCP packet loss events (Δtl). For a simple periodic trace like for
instance the TCP in the absence of the external packets this procedure yields
a single number, while more complex traces are characterised by many dif-
ferent inter-loss periods. This technique has much in common with that of
using the Poincaré section to simplify the description of the time-evolution of
a dynamical system. The results of such an investigation are shown in Fig. 4.
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Fig. 4: The time elapsed between two loss events (a), and the histogram of their
occurences (b) as a function of the interdeparture time of the 50 Byte UDP packets.

A striking observation looking at the figure is that the response of the TCP
does not result in a smooth and continuous dependence on the rate. One can
see that until relatively large rates the Δtl corresponding to the unperturbed
period τ remaines unchanged, however at the same time the traces also de-
velop new discrete inter-loss times. As the rate of UDP packets increases the
statistical weight of the different Δtl values in a trace increases, while the
weight of Δtl = τ decreases. Note that the occurence of different values of
inter-loss times in a trace does not neccessarily mean that the time evolution is
non-periodic, it only implies that the periodicity with the original period τ is
destroyed. Indeed, having looked at many traces we observe that the different
Δtl values are arranged in a periodic pattern, which results in a subperiodic
time evolution with τ(Δtp) > τ . For instance the picture in the middle of Fig.
3 shows a beginning of a trace with periodicity of ≈ 4τ . Note that a subpe-
riodicity that involves many different Δtl values and a period that is greater
than the duration of the TCP connection will appear as completely chaotic
for an observer.

Apart from the rate dependence of the inter-loss time, we also investigated
how the change of the dynamics on small time-scales of a few round-trip times
influences the averaged quantities of throughput and TCP lossrate. The rate
dependence of these quantities for the cases of 50 Byte and 1000 Byte UDP
packets are shown in Fig. 5. As can be seen the global trend is that the lossrate
increases, while the throughput decreases with the rate, however these curves
are quite fluctuating, and are likely not even continuous functions of the rate.
As it is expected a stream with higher packet size but the same rate causes
higher TCP lossrate, and accordingly higher throughput degradation. Given
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Fig. 5: The throughput (a), and the lossrate (b) of the connection normalised to the
unperturbed values as a function of the inverse probe rate, for two different probe
packet sizes.

the complexity of the results it seems to us unlikely that a feasable analytic
model can be developed that would accurately reproduce the observed features
of the window evolution. However the reproduction of the global trends of the
rate and packet size dependence of T and L from a statistical model is more
promising, that we will attempt to develop elsewhere.

3 The Case of Multiple Driven TCP Connections

In the previous section we investigated the response of a single persistent TCP
connection to a stream of regularly sent UDP packets and found that the ex-
ternal packets induce subperiodic window evolution. Here we are interested
in the effect of the external packets on the dynamics of aggregate traffic com-
posed of many parallel TCP connections. The types of interaction of a TCP
listed in Sect. 2 still hold, however in the case of an aggregate traffic the no-
tion of external packets also covers TCP packets from the other connections.
Another difference compared to the single TCP case is, that here the TCP
packet loss events are not only redistributed among different sequence num-
bers of the same connection, but also between the different connections. Since
at a given time the TCPs are characterised by different congestion windows,
thus the redistribution of the packet drop events efficiently modifies the traffic
pattern. We will only show results for the case where the aggregate is com-
posed of two TCPs, because the qualitative behavior that we shall describe
below is found to hold for higher number of parallel TCPs as well.
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Fig. 6: The behavior of aggregate TCP traffic composed of two parallel TCP con-
nections sharing the same network resources in the presence of 50 Byte UDP stream
with inter-departure times, indicated in the corner of the figures. On the left we
show the number of TCP packets in the buffer as a function of time, while in the
right column we give the Fourier spectra of the time-series.

The top trace in Fig. 6 shows the time-series of the number of TCP pack-
ets in the bottleneck buffer without external UDP packets. In this case the
interaction of TCP connections results in synchronisation, and in a periodic
aggreagate traffic. The periodicity is also apparent on the Fourier spectrum
of the trace where we observe a sharp peak and its higher harmonics with
diminishing amplitude. We also made simulations at much higher number of



Dynamical Properties of Externally Driven TCP traffic 113

parallel TCPs and in all cases found synchronization. Thus if the external
packets are also TCP packets from connections between the same end-points,
then their interaction results in a qualitatively different behavior than in the
case of connectionless flows. On the other hand if our TCP besides of another
TCP also interacts with a connectionless stream of packets, then we observe
a similar alteration of the aggregate dynamics as for the single TCP case.

One can see in Fig. 6 that with the increase of the rate of UDP packets
a continuos component appears in the Fourier spectrum that gets more and
more pronounced, and at high rates dominates the spectrum. The continuous
component in the spectrum is a marker of chaos, however investigations of
longer traces reveal that the dynamics is again periodic, only the associated
period is much longer than that of the unperturbed aggreagte TCP traffic.
Note that so far every investigated scenario was complitely deterministic, and
the resulting complicated behavior was due to the complexity of the system.
Simulations with different number of parallel TCPs also revealed that the
aggregate traffic gets more sensitive to UDP packets as the number of connec-
tions is increased. This implies that the same rate of UDP packets, at which
synchronization persist at a low number of TCP connections, destroys the
synchronization in the case of a higher number of TCPs.

The dynamic behavior of chaos at small time-scales and periodicity at large
scales is similar to the “cellular chaos” described in the contribution of Vattay
et al [4]. The difference is that they investigated a system of interacting TCPs
with different source-destination pairs and slightly different minimal round-
trip times, wheras in our case chaos is induced solely by the interaction with
connectionless packet streams.

4 The Impact of Active Probing Measuerements on TCP
Traffic

Active probing is a class of measuring methods that are used to infer various
characteristics of network paths. The common in these methods is that they
involve ICMP or UDP probe packets that are injected into the network, while
a reciever side analyses the returned responses. This general framework admits
the determination of the topology of a network [16], the link-bandwidths on
a path [7, 5], and the statistics of packet size, packet-loss and delay along
a route [6, 17]. These last mentioned quantities are especially important for
quality of service considerations, because together they determine the rate at
which applications can send data on that route.

In general an active probing stream may contain N probe packets of
different sizes Pp(i), i ∈ {1..N} sent with different inter-departure times
Δtp(i) = td(i+1)−td(i), i ∈ {1..N−1}. The actual choice of Pp(i) and Δtp(i)
determines the architecture of the probe stream that may varie according to
the particular quantity under investigation (e.g. bandwidth, distribution or
spectrum of end-to-end delays). In most of the applications it is customary to
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send constant sized packets regularly (Pp(i) ≡ Pp and Δtp(i) ≡ Δtp), how-
ever other architectures are also common. For instance to measure bottleneck
bandwidth one can send packet-pairs with an inter-pair time chosen randomly
from an exponential distribution, while the packets in a pair are sent back-to-
back [8]. Another example is the packet tailgating technique of [9], where pairs
consisting of a packet with the highest possible size immediately followed by
a packet with the smallest possible size are sent to measure the bandwidth of
each link on a path.

Here we only investigate the simplest scenario of regularly sent uniform
sized packets, that can be used for instance to measure time-series and spec-
trum of end-to-end delay. By measuring delay between two end nodes one can
also estimate the amount of TCP traffic queueing in the routers of the path
through the following simple delay model

D(i) =
L6

j=1

!
dj +

Pp

bj

(
+

L6
j=1

!
Pp

qp(i)
bj

+ P
Q(i)
bj

(
, (6)

where D(i) is the end-to-end delay experienced by the i-th probe, dj and bj
are the propagation delay and the bandwidth of the j-th link on the path, Pp

and P are the sizes of probe packets and background TCP packets, and finally
qp(i) and Q(i) stand for the actual number of probe packets and TCP packets
in the queue of the j-th buffer at the instant when the probe packet arrives to
it. The first sum in (6) contains the constant part of the delay (propagation
delays and transmission times), while the second is the fluctuating part.

Since the background traffic fluctuates one can assume that instances can
be found when there is no queuing in the buffers, and in this cases (6) yields
the constant part of the delay. Since queuing delays are always positive or
zero, thus by minimum filtering, one can obtain the constant part, and by its
subtraction also the component due to queuing.

4.1 The Dilemma

In general for a measurement process the desire is to gain the maximum
information about a system without considerably changing its state. In the
previous sections we saw that a periodic stream of connectionless packets
can alter greatly the dynamics of persistent TCP traffic. The question might
arise, can TCP traffic be measured by probes, without drasticly changing its
dynamics?

In our case this dilemma translates to the problem of adjusting two pa-
rameters, the packet size Pp and the inter-departure time Δtp (inverse probe
rate) of the probe packets, while keeping the influence of the probe stream
minimal. From (6) it is clear that one should use the smallest possible probe
packet size, which is constrained by the fixed sizes of protocol headers. On the
other hand the choice of the probe rate is a harder question, because small
rates may be inadequate to achieve good resolution, while high rates introduce
big perturbation of the original TCP flow.
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Fig. 7: On the left results are shown for the unperturbed TCP queue-length time
series of the bottleneck buffer Qu(k) (dashed curves), together with the actual TCP
queue-length time series Q(l) perturbed by the probe stream (continuous curves).
The right side compares the measured end-to-end delay time serie Dm(i) (symbols
connected by dashed line) with the end-to-end delay D(l) calculated from (6). From
top to bottom the traces correspond to inter-departure times of 10 s, 2 s, 0.5 s, 0.1 s,
and 0.05 s respectively. The probe packet size was 50 Bytes.

4.2 Measuring a Single Persistent TCP

To illustrate the dilemma we present simulation results made over the topology
of Fig. 1. A single persistent TCP connection was simulated for 200 seconds,
with and without a probe stream composed of UDP packets sent at various
rates. The compared characteristics are the time series of the unperturbed
TCP queue length in the bottleneck buffer Qu(k) and of the actual TCP
queue length in the presence of the measurement probe stream with a given
rate Q(l). Both of these time-series were generated on an event basis. Every
time a new TCP packet entered the bottleneck buffer, the number of TCP
packets in the queue were logged together with the timestamp of the event.
For the same probe rates we also compared the time series of the measured
end-to-end delay Dm(i) and the end-to-end delay calculated from the model
of (6) D(l). Note that among these time-series only D(l) and Q(l) has the
same number of elements that is also indicated by the common index.

In Fig 7 one can see that in parallel with the gain of information from
measured probe delays, the influence of the probe stream rapidly increases ,
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and is non-negligible even for small rates. It is apparent that (6) is a useful
delay model, however for the satisfactory measurement of TCP dynamics it
is necessary to use a probe rate, at which the state of the TCP connection
is so much perturbed that it does not resemble anymore that of the original
connection.

4.3 Correlation Analysis

To characterize quantitatively the local similarities or differences of the time-
series investigated in the previous subsection, we use the correlation index
C(X,Y ) defined by

C(X,Y ) =
1
N

N6
i=1

(Xi − E(X))(Yi − E(Y ))
D(X)D(Y )

, (7)

where X and Y are two time-series, and E and D denotes respectively their
expectation values and the standard deviations. The correlation index can take
values from the interval [−1, 1], where C(X,Y ) = 1 means that the shape
of the two compared time-series are the same, and C(X,Y ) = 0 means no
correlation. In order to use the correlation index, X and Y must contain equal
number of elements. To achieve this in our case we used linear interpolation of
the time series with less number of elements at points from the time series with
more elements. Using the correlation index we can quantify the qualitative
trends illustrated in Fig. 7 and present results of the probe rate dependence
with high resolution. Note that the value of the correlation index is invariant
to the scaling of the time series along the ordinate axis and to the addition
of a constant, thus one can directly compare the time series of the measured
end-to-end delay and of the actual TCP queue length.

In Fig. 8 results are shown for the probe rate and packet size dependence of
the C(Qu, Q) and C(Dm, Q) correlation indices. For both of the probe packet
sizes the qualitative picture is similar. In the case when only a few probes
are sent during the time of the simulation the perturbation of the probes is
negligible C(Qu, Q) ≈ 1, however the information that we gain about the
underlieing TCP dynamics from the few probes is insufficient C(Dm, Q) ≈ 0.
On the other hand at high probe rates the measurement process gets almost
perfect, but at the same time the perturbation caused by the probes alters so
much the dynamics of the TCP connection that we cannot say anything about
the state of the TCP in the absence of the measurement. At very high rates,
one can observe a decrease of C(Dm, Q) from near 1. This feature is due to
the fact that for high enough rates the contribution of the probe packets to
the queuing delay gets non-negligible compared to the component due to the
TCP traffic. Another notable detail is that the dependence of the correlation
indices, especially of C(Qu, Q) is rather fluctuating, thus very little changes in
the rate induce high variability in the outcome of the success of the measuring
process.
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Fig. 8: The (+) symbols connected by a dashed line indicate the correlation of the
unperturbed and the perturbed TCP queue length time series, while the (X) symbols
connected by a continuous line show the correlation between the measured end-to-
end delay and the actual TCP queue length time series. The results are shown for
100 different probe rates and for probe packet sizes of 50 Bytes (a) and 1000 Bytes
(b).

4.4 Measuring Time-dependent Aggregate TCP Traffic

In the previous subsection we investigated the problem of measuring the traf-
fic of a single persistent TCP connection. That scenario, although interesting
from theoretical point of view, is too abstract to draw conclusions for the
case of realistic Internet traffic. In reality the TCP traffic on a path is an
aggregate composed of many connections that interact with each other and
are characterized by different ON and OFF periods. To account for this we
model the background traffic by a superposition of many individual TCP ses-
sions. The initiation times of the sessions were chosen to be a random variable
distributed uniformly during the time of the simulation. It is observed in real
measurements that Internet traffic is often characterized by self-similarity or
long range dependence [10, 11]. To be able to investigate such a scenario we
choose the durations (ON periods) of the connections from a Pareto distribu-
tion with an average of 100 s and a shape parameter of 1.1.

Note that the strategy of choosing predefined durations of the connections
may not always reflect the reality. In the Internet a TCP connection may end
for several reasons. First it can end because the file that is being downloaded
is transfered completely. In this case the durations are set by the file sizes
and available bandwidth at the time of downloading. Another possibility is
that users decide to end a connection before the downloading could be com-
plete. This can happen for psychological reasons, for instance in the case of
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Fig. 9: The modeling of aggregate TCP traffic. In (a) we show the trace of an unper-
turbed TCP queue length time series of 1200 TCP connections initiated uniformly
between 0 and 2400 s, while the durations of the connections were chosen from a
Pareto distribution with an average of 100 s and a shape parameter of 1.1. The
number of ON connections at a given time for this trace are shown in (b).

congestion, when TCP connections can get into long back-off states. Since in
this study we are interested mostly in trends and qualitative aspects of the
influence of active probing, for the sake of simplicity we do not consider these
fine details of aggregate traffic modeling.

To investigate the success and the influence of measuring the fluctuating
aggregate TCP traffic with probe packets we performed similar correlation
analysis as in the case of the single persistent TCP. Figure 7(a) shows the
results for the correlation indices of C(Qu, Q) and C(Dm, Q), where we adopt
the same notations as in 4.3, except that the queue length time series here
correspond to the aggregate TCP traffic. Simulations were performed for 10
different seeding of the random generators to see the general trends of the
results, whereas for a given seeding we used the same set of random num-
bers to generate the unperturbed and the perturbed background TCP traffic.
Additional details of the simulations are given in the caption of the figure.

One can compare the results of Fig. 10(a) with the case of the single
persistent TCP in Fig. 8. It is apparent that the probe rate dependence of
the correlation between the measured end-to-end delay and the actual TCP
queue length time series is quite similar to the case of the single TCP scenario.
On the other hand the behavior of C(Qu, Q) is markedly different in these
cases, since here we never observe high correlation index near 1. This means
that in the case when many TCP connections interact with each other at any
given time the system is more sensitive to the perturbations, and the effect



Dynamical Properties of Externally Driven TCP traffic 119

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001  0.01  0.1  1  10  100

C
(X

,Y
)

Δtp [s]

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  50  100  150  200  250  300  350  400

|Δ
q|

Time [s]

(b)

Fig. 10: Correlation indices C(Qu, Q) (pluses) and C(Dm, Q) (filled boxes) as a
function of the probe rate for 10 different random number seeding (a). Here the
simulations were made for 400 s with 200 TCP connections, and the parameters of
the Pareto distribution giving the ON periods were 100 s (average) and 1.1 (shape).
The probe stream was composed of 50 Byte UDP packets. In (b) we show the growth
of the perturbation with time at a single low probe rate. The vertical lines indicate
the instants when the UDP probes were sent.

of a few probe packets are already sufficient to alter greatly the trace of the
background traffic. This butterfly-effect is also illustrated in Fig. 10(b), where
we show the absolute value of the difference between the TCP queue length
time series without probes and with probes sent every 40 s. One can see that
after the second probe the error between the two time-series already grows to
the size of the system limited by the buffer size.

One can expect that similar results will be observed in other cases too, as
long as there is queueing in the buffers and at least a few TCP connections in-
teract with each other all the time. Smaller sensitivity and accordingly higher
values of C(Qu, Q) can be expected if the periods of non-zero queue length
come to an end before the perturbation from probe packets could grow consid-
erably. On each event when the queue empties the system looses the memory
of the past and the errors developed before these events can not propagate
into the next period with nonzero queue length.

4.5 The Impact on the Statistical Properties

In the previous subsection we saw that even a few probes could change drasti-
cally the local structure of the aggregate TCP trace. This implies that it seems
impossible to measure a high resolution trace of TCP background traffic using
active probing without considerably changing its state. However in most of
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Fig. 11: In (a) the (+) symbols stand for the mean, and the (X) symbols for the
standard deviations of the TCP queue length time series as a function of the inverse
probe rate. In (b) the filled squares indicate the overall throughput, while the (+)
symbols show the overall loss-rate of the aggregate TCP traffic normalized by the
value found in the absence of the probes. The results in each case are shown for 10
different random number seedings.

the cases we are not interested in the dynamics on small scales, but instead in
statistical properties of the measured traffic, such as the distribution, mean
or standard deviation of the TCP queue length, the overall throughput or
loss-rate.

In the followings we present results for the dependence of these character-
istics on the probe rate. Figure 11 shows the mean and standard deviation of
the TCP queue length time series, and the normalized throughput together
with the loss-rate as the rate of the probes is varied. An immediate difference
compared to the results of the correlation analysis is that in a broad range of
the probe rates these statistical properties are unchanged by the influence of
the probes. One can observe a threshold around Δtp ≈ 0.024s, where sudden
changes occur in the average TCP queue length and in the normalized loss-
rate, whereas the change in the standard deviation of TCP queue length and
in the normalized throughput is much smoother.

We also analyzed the change of the distribution of the TCP queue length
and of the measured probe delay time series. Figure 12 shows the results
for a single random number seeding. As could be expected from Fig. 11(a)
the distribution of the TCP queue length is not altered very much even by
the perturbation of sending the probes every 0.1s. However for higher probe
rates the shape of the distribution shows a qualitatively different picture. One
can also observe that at high probe rate the shape of the measured probe
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Fig. 12: The left group of figures compares the distributions of the unperturbed TCP
queue length (impulses) with that of the TCP queue length perturbed by a probe
stream (boxes). The right group of figures show the distribution of the measured
end-to-end delay time series. The probe rates are indicated in the corner of each
figure.

delay distribution accurately resembles that of the actual TCP queue length
distribution, whereas for low rates the number of samples is insufficient to
obtain a good statistics.

4.6 Implications for Spectral Measurements and Hurst-parameter
Estimation

Active measurements with regularly sent uniform sized probes apart from
measuring the time-series of different characteristics of Internet paths, also
admit the determination of their power-spectrum. Fitting the low frequency
limit of the power spectrum S(f) is one of the few methods to estimate the
degree of self-similarity of a time-series (see for instance [12]). A self-similar
process is characterized by the Hurst exponent 0.5 ≤ H < 1, and its value is
related to the asymptotic shape of the power spectrum at low frequencies, as
S(f) ∼ fβ, where β = 1−2H . The value H = 1 corresponds to the interesting
limiting case of 1/f noise [13, 14]. In previous subsections we saw that the
influence of probes changes the local structure of the background TCP traffic,
but until relatively high rates leaves unchanged the global properties, such
as the average TCP queue length in the bottleneck buffer. Based on these
observation the question may arise, how the measuring process influences the
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Fig. 13: The averaged power spectra of the TCP queue length (a) and of the end-
to-end delay (b) time-series at different probe rates indicated in the figures. The
continuous curves are the power-law fit to the power spectra, fitted in the interval
of frequencies to the left from the vertical lines

shape of the power spectrum, and the Hurst exponent of a self-similar time-
series.

To answer this question we performed 2400s long simulations in the net-
work model of subsection 1.2. The background TCP traffic consisted of 1200
connections initiated uniformly during the simulation time, with Pareto-
distributed ON-periods (average: 100 s, and shape: 1.1). We studied the effect
of probes sent at rates Δtp =10 s, 1 s, 0.1 s, and 0.01 s. The simulations were
repeated for 10 different random number seedings and the final spectra were
averaged over these cases. Figure 13 shows the shape of the power spectra of
TCP queue length with and without probes and the power spectra of the mea-
sured probe delays. The results of the exponents of the power-law fit together
with the calculated Hurst exponents are given in table 2.

Based on the numbers in the table one can draw the following conclu-
sions. As a result of the increasing probe rate the shape of TCP queue length
power spectra flattens, while the shape of the measured delay power spectra
steepen. In order for the measured Hurst exponent be appropriate for the
TCP queue length, one needs to use high rate of probes, however at such
rates the perturbation is already too high, so that the measured Hurst expo-
nent will underestimate the self-similarity of the original (unperturbed) TCP
queue length. This result suggests that the measuring process can influence
the background TCP traffic in a way that lowers its degree of self-similarity.
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Table 2: The β exponents of the low frequency limit power law fit of the power
spectra, and the Hurst exponents calculated from H = −(β − 1)/2 at different
probe rates Δtp. The notations D and Q stand for the measured delay and TCP
queue length time series respectively. The first row of the table gives the result for
the unperturbed case.

Δtp[s] β(D) β(Q) H(D) H(Q)

- - -1.06±0.04 - -
10 -0.13±0.04 -1.06±0.05 0.57±0.02 -
1 -0.74±0.04 -1.08±0.04 0.87±0.02 -

0.1 -0.93±0.04 -0.96±0.05 0.97±0.02 0.98±0.03
0.01 -0.80±0.05 -0.89±0.05 0.9±0.03 0.95±0.03

5 Summary

In this contribution we investigated through packet level simulations the in-
teraction of TCP traffic with a connectionless stream of regularly sent uniform
sized packets. Results indicate that external packets induce sub-periodic con-
gestion window evolution for a single TCP. In contrast to the unperturbed
behavior, where the period is the time elapsed between two TCP packet drops,
in the sub-periodic case multiple drops occur during the period, with differ-
ent inter-loss times. Numerical results are presented for the rate-dependence
of the throughput and loss-rate of the connection. These curves show highly
fluctuating behavior on small scales superimposed on a monotonic trend on
the large scales.

We also studied the interaction of the connectionless packet stream with
an aggregate traffic composed of parallel TCP connections. Interestingly if
only the TCP connections were present in the system the interaction between
them always resulted in synchronization and a periodic aggregate traffic. This
periodicity is gradually destroyed in the presence of connectionless packets
with increasing rate, yielding an aggregate traffic that is chaotic on practical
time-scales but periodic on the longer run.

In the remaining part of this chapter we investigated the problem of mea-
suring TCP traffic by active probing which involves packets from connection-
less streams. It is found that in order to resolve the dynamics of a single TCP
from measured probe delays one is forced to use a high rate of probes at which
the TCP connection is so much altered that it does not resemble anymore the
original trace that one wanted to measure. In other words the influence of
the measuring process on the measurable system is non-negligible. Investiga-
tions of time-varying aggregate TCP traffic reveal that this system is more
sensitive to the perturbation of probes than a single connection, and even a
couple of packets change completely the local structure of the time evolution.
However despite the locally changed dynamics for a broad range of probe
rates the aggregate traffic yields similar results for averaged quantities, like
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the distribution of the TCP queue length, overall throughput and loss-rate.
Active probing is also used to measure the Hurst parameter of self-similar
traffic. Comparing the spectrum of the original TCP traffic with those in the
presence of the probes we revealed that the measuring process underestimates
the degree of self-similarity of the original TCP traffic.
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1 Introduction

We consider the interaction between the topology of a network and the traffic
carried along its channels. The binding elements between the topology and
the traffic dynamics are the routing mechanisms. In a packet-based network,
like the Internet, the transmission of information is carried out in discrete
packets. The path that a packet follows when travelling the network is de-
termined by the routing algorithm. Usually, from the topological properties
of the network and statistical properties of the traffic, the routing algorithm
tries to minimise the packet delivery time and maximise the throughput; this
implies that packet flow affects the behaviour of the routers which in return
regulate the flow. The dynamics of a packet network can also be regulated by
controlling the packet production at the various packet sources and varying
the server capacities. An example is Transmission Control Protocol or TCP,
where the source of traffic adjusts its rate of packet transmission as a function
of the round trip delay time.

Previously, the statistical properties of packet traffic, which are dependent
on the control and routing algorithms, were described by a model where the
traffic input was Poisson-like where the auto-correlation decays exponentially
fast. Traffic with this decay property, of which the Poisson type is a particular
example, is referred to as having Short Range Dependence (SRD). From stud-
ies carried out in the early 1990’s [17] it is known that Poisson-like models
do not capture all the statistical properties of packet traffic. Packet traffic
exhibits spurts of activity over a large number of time scales. These bursts
last from milliseconds to days and they look similar independently of the time
scale. This phenomenon is known as self-similar traffic. One characteristic of
this self-similar traffic is that it has Long Range Dependence (LRD), i.e. the
traffic is strongly correlated at all time scales of engineering interest. This
observation was a surprise as, previously, the properties of packet traffic were
described as SRD processes. We begin in section 2 by briefly discussing some
of the properties of LRD packet traffic.
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Even though some researchers [26, 40] have suggested that the burstiness
in packet traffic is connected to the behaviour of individual users within the
network, the modelling of packet traffic is based on its measured characteristics
more than on the underlying mechanisms responsible for the self-similarity.
The bursty traffic is often described by stochastic methods based on Gaussian
self-similar processes, for example fractional Brownian motion and fractional
Gaussian noise [35, 31, 46, 25] or, on the superposition of on/off sources with
heavy tailed on or off periods [48] and chaotic maps [14, 15, 39]. All these
models describe successfully the burstiness of the traffic but their approach
is very different. In section 3 we introduce a non-linear chaotic map as a
model to generate packet traffic with varying statistical properties. We also
discuss several equivalent deterministic models for packet production models
which have calculational advantages. The packet production dynamics is also
extended to employ the TCP window dynamics [13].

The packet delivery time is the time that elapses between the creation of
a packet at its source s, to the arrival at its destination d. This time is known
as the end-to-end time, packet lifetime or latency. A packet travels through
the network visiting different nodes. If one of the nodes is busy, the packet
is stored in the queue at that node. Eventually, as the node serves its queue,
the packet is forwarded toward its destination. Usually longer routes and/or
congested queues mean longer delivery times. The routing algorithm tries to
reduce the packet delivery time by selecting short, lightly utilised routes. In
such a network, the traffic characteristics are not drastically changed as the
packet transverses the network. The delivery time for a packet from its source
to its destination is finite. As the load increases, the delivery time will typically
increase accordingly. There is a critical load where the delivery time diverges,
or at least increases dramatically. At this point the network is congested.

In a regular-symmetric network, it is possible to predict the traffic load
where congestion occurs (a dynamical characteristic) by only considering the
average of the shortest path lengths from all sources to all destinations (a
topological characteristic) [21, 19, 41, 51]. In section 4 the relevant topologi-
cal characteristics when studying congestion are introduced and the network
dynamics is introduced in section 4.4.

In section 5 we make the connection between the traffic characteristics,
the topology of the network and congestion by looking first at Poisson-like
traffic and then at the differences when the input traffic is LRD. In section 6
we briefly introduce some mechanisms to control LRD traffic, by limiting the
size of the queues [5], by reducing the rate of packet production [45] and by
using TCP-like control [52].

2 Long-Range Dependence

In 1994, LRD was shown to be a feature of Internet packet traffic by Leland et
al., [29]. The LRD behaviour manifests itself along a communication channel
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as bursty activity in the packet rate (no. of packets/unit time) which persists
on all relevant time scales. The bursty traffic makes it much more difficult to
implement effective traffic congestion protocols (e.g. TCP).

The statistical nature of LRD traffic is formally defined in [8]. A key re-
quirement is that the autocorrelation of packet traces, γ(k), where the lag is k,
satisfies a power law decay of the form γ(k) ∼ Ck−β, where β ∈ (0, 1) and C
is constant. Equivalently, γ(k) ∼ Ck−2+2H , where H = 1−β/2 ∈ ( 12 , 1) is the
Hurst parameter. By comparison, Poisson-like traffic has an exponential rate
of decay γ(k) ∼ C �α−k with α > 1 and C � a constant. The Hurst parameter
distinguishes between LRD traffic for H ≈ 1 and the onset of SRD traffic for
H ≈ 1/2, when the autocorrelation decay changes to exponential.
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Fig. 1: The batch averages of packets/unit time for (a) a real LRD traffic trace
(Bellcore data from http://ita.ee.lbl.gov/html/contrib/BC.html), and (b) a Poisson
based trace for the same load. Each for sizes N = 1, 10, 100 and N = 1000. A
relatively large variance is retained in case (a).

The essential contrast between SRD, Poisson-like traffic, arising typically
from traditional voice traffic, and the bursty nature of Internet LRD traffic
is seen in Fig. 1. The effect of scaling is shown for (a) long-range dependent
and (b) short-range dependent traffic for a time series of a random variable
Xn, n = 0, 1, 2, . . . The data is averaged in batch sizes of N = 1, 10, 100 and
N = 1000.
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The standard deviation in the Poisson traffic varies as the square root of
the batch size, or magnification, and we see a ‘smoothing’ of the traffic as N
increases in Fig. 1(b). Thus the mean is an increasingly effective indicator of
the instantaneous load, i.e expected packet rate, in the traffic. By comparison,
for LRD traffic, we see that the variation around the mean remains relatively
high for large N in Fig. 1(a). Even when averaged over longer time intervals
by several orders of magnitude, we can still obtain packet rates which are close
to 0 and 1.

One of the consequences of LRD traffic is that it increases queue lengths
and latency dramatically. The length of a queue fed with LRD traffic sources
decays as a power law, compared with an exponential decay if it is fed with
Poisson traffic sources. The effects of LRD cannot be ‘removed’ by a control
mechanism and LRD needs to be allowed for, both in computer models of
network behaviour and in the routing algorithms used to control data flow
through networks.

3 Packet Production Models

xn

xn+1

dx0

on (1) off (0)

(b)

xnd

on (1) off (0)

(c)

(a)

xn+1

Fig. 2: (a) The graph of the map f (Eq. 1) consists of two segments and each
has a tangency with the line y = x. The iteration of the map f with initial
condition x0 forms a ‘web’ generating the iterative sequence, or orbit, xn, where
xn = f(xn−1), n = 1, 2, . . . . Note that the tangencies at x = 0, 1 give a ‘slow’
change in the values of the sequence xn, and therefore the output yn provides long
sequences of consecutive ‘0’s or ‘1’s. (b) Graph of f for m1 = m2 = 1, this is known
as the Bernoulli shift map and it generates Poisson traffic. If the map parameters
are chosen to satisfy m1 = m2 ∈ {1, 3

2
}, then the map generates SRD traffic.

(c) The traffic on a packet network is represented by a binary sequence of zeros and
ones (Eq. 2).
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Previous simulations of SRD packet traffic generation at each host have
used SRD Poisson (or Markovian) distributions. In this case a packet is created
at a host only if a random number on the unit interval, I = {x|x ∈ [0, 1]}, is
below a discriminator value λ. Hence, for a uniform random distribution the
average rate at which packets are produced at a host is λ.

An alternative to this is to use chaotic maps to model the LRD nature of
real packet traffic. We used the family of maps f = f(m1.m2.d) : I→ I defined
in the unit interval I by xn+1 = f(xn) where

xn+1 =

������
xn + (1− d)

�xn
d

%m1

, xn ∈ [0, d],

xn + d

!
1− xn
1− d

(m2

, xn ∈ (d, 1],

(1)

described in previous papers (see Erramilli et al, [14] ), and related maps in
[47]. Here d ∈ (0, 1) and the parameters m1, m2 ∈ (32 , 2) induce intermittency
at each of the points x = 0 and x = 1, by producing tangencies to the
diagonal in the graph of f . The orbital ‘escape time’ in neighbourhoods of 0
and 1 become power law dependent. If this map is iterated a large number
of times, the values of xn will form a non-uniform continuous distribution on
the interval I. The parameter d is used as a discriminator, as λ is for the
Poisson case. If xn falls between 0 and d, a packet is generated; and if xn falls
between d and 1, no packet is generated. Thus we have a discrete output map
associated with the function in Eq. (1) which is

yn =
�

1 : xn ∈ [0, d] − packet generated ,
0 : xn ∈ (d, 1] − no packet generated .

(2)

The above model, which represents the traffic as a binary sequence is also
known as a packet train model [27] (see Fig. 2(c)). The intermittency behaviour
of the map f induces so-called memory in the digital output yn giving the long
range correlation effects required for the packet traffic. This feature is shown
by the slow decay of variance with respect to n, the size of batched output,
see Fig. 1(a) and [29]. The power-decay of the variance arises from the small
orbital increments of the intermittency map which in turn provides memory
in the digital output. An example of this phenomenon is illustrated in Fig.
2(a) where a sequence of the iterated values x near the origin have small
increments. This effect is stronger for orbits passing even closer to x = 0. The
time of escape (i.e. into the region x > d) of an orbit from a neighbourhood
of the origin has a power-law dependence on its initial position, [47].

The nonlinear nature of f means that in this case the load λ =
λ(m1, m2, d) (i.e. the average value of the output y per iteration) is not
equal to d, but is given by λ =

� d

0
ν(x) dx, where ν is the natural invariant

density distribution of the map f on the interval [0, d]. The distribution ν has
no closed form and is often obtained numerically via the Perron-Frobenius
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operator [32]. Thus the various statistical properties of traffic generated in
this way are determined by the map’s parameters m1, m2 and d including the
auto-correlation behaviour as we shall see in section 3.3.

3.1 Closed Form Map

There are two other important models of the above intermittency type which
have useful mathematical characteristics not available in the standard model
described above. The first extension was introduced by Pruthi [38], and the
closed form model appears, at first sight, to be more intractable than the
original model in Eq. (1). Essentially, the function in (1) is replaced by

xn+1 =

��������

xn

(1 − c1x
m1−1
n )

1
m1−1

, xn ∈ [0, d], (a)

1− 1− xn

(1 − c2(1− xn)m2−1)
1

m2−1
, xn ∈ (d, 1], (b)

(3)

where

c1 =
1− dm1−1

dm1−1
, c2 =

1− (1− d)m2−1

(1 − d)m2−1
. (4)

A Taylor expansion of the functions in Eq. 3 (a) and (b), around the points
x = 0 and x = 1 respectively, give the forms of the equation (1) and so
the leading intermittency effects are the same in both models with leading
exponents m1 and m2. A distinct advantage of (3) is that, somewhat re-
markably, it has a closed form under composition. If the first branch function
is denoted by f1(c1, m1, x) then the n-th iterate can be shown to satisfy
fn
1 (c1, m1, x) = f1(nc1, m1, x). Similarly the second branch function f2 sat-

isfies fn
2 (c2, m2, x) = f2(nc2, m2, x). This enables sojourn times in the “off”

or “on” regions to be calculated explicitly, by solving equations of the type
fn
1 (c1, m1, x) = d, to obtain the number of iterations to the transition point.

We can use the closed iterative form above to calculate the probability of
‘escape’ from an intermittency region. Specifically, we consider the probability
of a sequence of k-consecutive zeroes for the output yn of an intermittency
map f . We will use the closed form map in Eq. (3) and will assume a random
uniform injection into the region [0, d] for x > d, see [37].

If the orbit re-enters the interval [0, d] at the point x̄, then that determines
the sequence length l of zeroes, namely,

l(x̄) =
1
c1

!
1

x̄m−1
− 1

dm−1

(
(5)

Let P (l(x)) be the probability density for at least length l “zero” sequences.
If we are assuming that the initial point density on the interval [0, d] at {x̄}
is P̂ (x̄), then P̂ (x̄)dx̄ = P (l(x̄))dl.
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If we further assume the re-entry density P̂ (x̄) to be uniformly random,
i.e. P̂ (x̄) = P̂ a constant, then

P (l) = P̂

::::dx̄dl
:::: ∼ Cl−

m
m−1 (6)

for small x with C a constant. This is not the case for re-entry to the interval
[0, d] when the full double intermittency is used.

3.2 Piece-wise linear map

A second model which has different mathematical advantages over the original
Erramilli model is a piece-wise version. This was originally introduced by
Wang [47] and has been used subsequently in applications to realise maps with
given autocorrelation profiles [7]. The analogue is constructed with the use of
two sequences. The piecewise linear map p : I→ I is defined by two monotonic
sequences zLi and zRi monotonic decreasing to zero, with zL1 = zR1 = 0.5. The
map p is then defined by requiring that its graph be piecewise linear with nodal
points defined by (zLi , zLi+1), and (1−zRi+1, 1−zRi ), i = 1, 2, . . . . The piecewise
linear map can replicate the intermittency behaviour at x = 0, 1 by choosing
the sequences to decay to zero in an appropriate way. If we let zLi ∼ i−α

and zRi ∼ i−β with α, β > 1, then the exponents for the different types of
smooth and piecewise linear map have analogous asymptotic behaviour at
the intermittency points. We identify the parameters as α = 1 + 1/m1, and
β = 1 + 1/m2. The piece-wise linear map has distinct advantages in that it is
possible to calculate the invariant measure associated with the map, see [7].

3.3 Autocorrelation of the Map Output

We have already seen in Fig. 1 that the movement between strings of the
output values ‘0’ and ‘1’ is rapid in trace (b) and much slower in trace (a).
The intermittency in traffic maps produces increased sojourn times for the
two states. The longer sojourn times are said to introduce memory into the
output which is reflected in a higher correlation between the output binary
sequence and the same sequence with a time-lag k. The autocorrelation vector
of a sequence is the way in which the memory is measured. Let Xt be a scalar
time series of the binary values {0, 1} for t = 0, 1, 2, . . ., and suppose the series
is stationary. We define the autocorrelation of time lag k by

γ(k) =
E(XtXt+k)− E(Xt)E(Xt+k)0

(Var(Xt)Var(Xt+k))
. (7)

Let µ = E(Xt). Note that the values Xt are binary, then E(X2
t ) = E(Xt) = µ

and so Var(Xt) = E(X2
t )−E(Xt)2 = µ(1−µ). Therefore, the autocorrelation

can be re-written
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γ(k) =
E(XtXt+k)− µ2

µ(1 − µ)
(8)

Given 0 ≤ XtXt+k ≤ Xt, it follows that γ(k) ≤ 1. Note also that if there
is no correlation, i.e. the values Xt are independent of each other, then
E(XtXt+k) = E(Xt)E(Xt+k) and γ(k) = 0. Thus, in general, we expect
that the correlation coefficient γ(k) will eventually decay to zero in some way.
Two special types of decay are

(a) power-law decay, where γ(k) ∼ Ck−β , for some constant C and β > 0;
(b) exponential decay, where γ(k) ∼ Cα−k, for some constants C and α > 0.

Bernoulli Map Decay

The piece-wise linear Bernoulli map is given by f(x) = 2xmod 1 on the in-
terval [0, 1]. Given the current state is ‘0’, then 0 ≤ x < 0.5. The probability
of the transfer ‘0→ 0’ is 0.5, since it requires 0 ≤ x < 0.25, and similarly for
‘1→ 1’. Thus we can calculate the autocorrelation exactly and we obtain

γ(k) =

�
1 for k = 0
0 for k > 0.

(9)

Intermittency Map Decay

Only two exact results are known so far for the asymptotic properties of double
intermittency maps considered here. Let the piecewise linear map constructed
from two sequences zi = i−α at x = 0 and wi = 1 − i−β at x = 1, α, β > 1,
then the two intermittencies compete and it can be shown that

γ(k) ∼ K k−c (10)

where c = min{α, β} − 1, K constant, [7]. Thus the correlation for the com-
posite map is determined by the heaviest tail in the correlation decay arising
from the two competing intermittencies.

A similar result is also available for the differentiable case [33]. In this case,
the map is as in Eq. (1) with the extra condition that whenever f iterates
across the line x = d, the formula is replaced by a random uniform injection.
For example, the autocorrelation vector c(n), n ∈ Z+, of the output function
y is known to have asymptotic behaviour γ(k) ∼ Ck−β , with C constant, as
k → ∞. The constant β = (2 −m)/(m − 1) ∈ (0, 1), for m = max{m1, m2},
with m1, m2 ∈ (32 , 2), (see [22, 33, 7]). Furthermore, the Hurst parameter, H ,
is given by

H = 1− β

2
=

3m− 4
2(m− 1)

, (11)

and ranges over the interval ( 12 , 1), as required. Thus m1, m2 = 1.5 corre-
sponds to Poisson-like behaviour and as m1, m2 are increased towards 2, the
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behaviour is increasingly long-range dependent, see [7, 33]. If the transition
simplification is removed then the result that the heaviest tail dominates in
the piece-wise smooth case is still open but the auto-correlation decay is con-
jectured to remain as in Eq. (11).

3.4 Transmission Control Protocol Dynamics

The dynamics of the packet production model can be extended to incorporate
packet window dynamics [13]. If the map is in the ‘on’ state, each iteration of
the map represents a packet generated. One sojourn period in the ‘on’ side of
the map represents a whole file. These files are then windowed using the slow-
start algorithm, adding another dynamical layer to the system. The slow-start
algorithm is as follows:

At a given host i in the network, and time t = n, there is a current state,
xi(n), and a current window size, wi(n), for the number of packets that can
be sent at time t = n. There is also a residual file size, si(n), at node i
which is given by the number of iterates of f such that f si(n)(xi(n)) < d, and
f si(n)+1(xi(n)) > d. The source will send pi(n) = min{wi(n), si(n)} packets.
The full window dynamics therefore takes the form, (see Erramilli et al., [13]):
For x(n) < d, i.e. packet generated-

wi(n + 1) =

�
1, if xi(n− 1) < d,

min{2wi(n), wmax}, otherwise,
(12)

and xi(n + 1) = fpi(n)(xi(n)).
For xi(n) > d, i.e. no packet generated - wi(n + 1) = 0, and xi(n + 1) =

f(xi(n)).
This algorithm applies if all packets in a window are acknowledged before

the retransmission timeout (RTO) limit is reached. If packets take longer than
this to be acknowledged the window of packets is sent again with the RTO
doubled and the window size set to zero. When the map is in the ‘off’ state,
the window size is zero and no packets are sent.

This initial value of RTO is calculated using the exponential averaging
method [42]. This method keeps a running average of all round trip times.
This average is weighted towards more recent round trips, and is used in
calculating the initial RTO.

4 Topology and Models of Networks

Many different topologies appear in communication networks. Square lattices,
toroidal lattices, meshes and hypercubes arise on multiprocessor computers
(e.g. [30]), scale-free networks in the WWW [2] and the Internet [16]. The way
that the elements of the network are connected to each other and the nodal
degree properties have an impact on its functionality. The representation and



136 David K. Arrowsmith, R. J. Mondrag, and M. Woolf

study of the connectivity of a network is carried out using concepts from graph
theory.

A communications network can be represented by a graph G = (V , E),
where V is the set of nodes (vertices) and E is the set of links (edges). The
hosts, routers and switches are represented by nodes and the physical connec-
tions between them are represented by links. The links can have a direction,
but here we are only going to consider undirected links. A node can trans-
fer information to another node in the form of data-packets if there is a link
between them. If there is no direct link between the nodes, then a path in
the network is the sequence of distinct nodes visited when transferring data-
packets from one node to another. We consider networks where there exists
at least one path connecting any pair of nodes of the network.

s d
1 1

1/3 2/3

2/3 1/3

20/3 20/3

20/3 35/3

35/3 20/3

v

w

(a) (b) (c)

Fig. 3: (a) The node degree for node v is 6 and for w, it is 2. (b) Three different
shortest paths between s and d. The length of the path is 3. The number above the
nodes denotes the proportion of shortest paths ps,d(w) that go through that node.
(c) The node medial centrality for the whole network.

The degree, k, of a node is the number of links which have the node as an
end-point [49], or equivalently, the number of nearest neighbours of a node,
see Fig. 3(a). The degree of a node is a local quantity. However, the node
degree distribution of the entire network gives important information about
the global properties of a network and can be used to characterise different
network topologies.

If there is very little traffic on the network and if the journey time from
one node to its neighbour is in unit time, then given any two nodes and to
first approximation, the journey time will be proportional to the length of
the journey, or the path length. A path that goes from source node s, to
destination node d, in the smallest number of hops is called the shortest-path.
The length of the shortest-path 6s,d is the number of nodes visited when going
from s to d. There can be more than one shortest–path between a pair of
nodes. The characteristic path length

6̄ =
1

S(S − 1)

6
s∈V

6
d �=s∈V

6s,d, (13)
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where S is the total number of nodes, is the average shortest-path over all
pairs of nodes (see Fig. 3(b)). Sometimes 6̄ is referred to as the diameter of
the network.

If there is traffic on the network the difference in the journey times of two
shortest paths with the same length can be very different. Not all the journeys
are equal due to the different patterns of usage of the routes. On a network,
there are nodes that are more prominent because they are highly used when
transferring packet-data. A way to measure this “importance” is by using the
concept of betweeness centrality of a node. We will refer to this concept here
as medial centrality The concept of centrality [18] was introduced in social
networks to characterise the prominence of an individual in the context of the
social structure. Given a source s, and destination d, the number of different
shortest-paths is g(s, d). The number of shortest-paths that contain the node
w is g(w; s, d). The proportion of shortest-paths, from s to d, which contain
node w is

ps,d(w) =
g(w; s, d)
g(s, d)

. (14)

Remark: The proportion of shortest-paths and the shortest-path length
are related by

6s,d =
6
w∈W

ps,d(w) − 1, (15)

whereW is the set that contains the nodes visited by the shortest paths from
s to d.

The medial centrality of node w is defined as [24]

CB(w) =
6
s∈V

6
d �=s∈V

ps,d(w) (16)

where the sum is over all possible pairs of nodes with s .= d. The medial
centrality measures how many shortest paths pass a certain node (see Fig.
3(c)). A node with a large CB is “important” because a large amount of
packets flow through it, that is, it carries a large traffic load. If this node fails
or gets congested, the consequences to the network traffic can be very drastic
[24, 55].

4.1 Regular-Symmetric Networks

In a regular network all nodes have the same degree (see Fig. 4). By symmetry,
the medial centrality is constant for all nodes. From Eq. (15) and if CB(w) = c
then

c =
1
S

6
w∈V
CB(w) =

1
S

6
s,d

6s,d − 1. (17)



138 David K. Arrowsmith, R. J. Mondrag, and M. Woolf

(a) (b) (c) (d)

Fig. 4: Four regular-symmetric networks. (a) The ring network and (b) the rect-
angular toroidal network, in which the nodes on one edge of the lattice connect to
nodes on the opposite edge, have degree four. (c) The triangular toroidal network
has degree six and (d) the hexagonal toroidal network has degree three.

Toroidal Networks

The toroidal rectangular network (H) is based on a square lattice of nodes
in which each node has four neighbours with boundary nodes appropriately
identified, [41, 19, 36, 51]. The finite rectangular lattice Z consists of S = L2

nodes. The position of each node in the lattice is given by the coordinate
vector r = (i, j) where i and j are integers in the range 1 to L. The network
has periodic boundary conditions throughout, and so each coordinate of (i, j)
is effectively reduced - mod L+ 1 to give a toroidal topology. To measure the
distance between a pair of nodes the periodic “Manhattan” metric is used,
which measures the sum of vertical and horizontal displacements between two
nodes.

The average shortest path can be calculated to be 6̄ = L/2.
Useful comparative networks for traffic studies on Manhattan grid are the

hexagonal and triangular networks (see Figure 4 (c & d)). Their embeddings
in the plane show how we can view the three regular networks as satisfying
an edge inclusion property E(H) ⊂ E(R) ⊂ E(T ). Comparative studies of
all three types of network show consistent results [4] on the critical loads, and
the onset of congestion behaviour.

4.2 Random Networks

Random networks have been used to model communications networks. The
reason is that because some of the communication networks tend to have a
complex topology and the interactions defining their structure are apparently
random.

From a set of nodes, a random network is built by connecting every pair of
nodes with probability p. If the total number of nodes is S and if p > 1/S [10]
then, with probability 1, the network is fully connected , or equivalently, there
is at least one path connecting any pair of nodes. This is the only case we
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are going to consider here, as we are interested in connected networks. The
degree distribution of a random graph is well approximated by a binomial
distribution [10]

P (k) =
!
S − 1

k

(
pk(1− p)S−1−k. (18)

The degree distribution tends to be concentrated around some “typical” node
degree, or average node degree k̄, see Fig. 5(a) and [12, 9]. The characteristic
path length scales with the size of the network as

6̄rand ≈ ln(S)
ln(k̄)

(19)
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Fig. 5: (a) Node degree distribution for a random network with S = 1000 and
p = 0.1, and its approximation using the binomial distribution. (b) Medial centrality
distribution of the network.

4.3 Scale-free Networks

Many technological networks are not described by a random or a regular
network; instead they are better described by a network where the degree
distribution is described by a power law [2, 16] where

P (k) ∼ Ck−β , (20)

for β > 1 and C constant. The probability that a node has k edges connected
to it is given by P (k). In practical terms a power law distribution means that
the majority of the nodes will have very few neighbours, but there is a very
small set of the nodes with a very large number of neighbours (see Fig. 6(a)).
Networks with this property are known as scale-free because power-laws are
free of a characteristic scale, that is, there is no characteristic node degree
(see Fig. 6(b)).
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The diameter of a scale-free network scales as 6̄ ∼ C ln(lnS) [11] where S
is the size of the network. This is due to the existence of “far–reaching” links
which are shortcuts when going from a source to a destination. Any node
that contains one of these far-reaching links is going to be highly used when
transferring packet-data, that is, its medial centrality is large.

In 1999, Barabási and Albert [6] showed that it is possible to create a scale-
free network by using two generic mechanisms: growth, the network grows by
attaching a new node with m links to m different nodes present in the network;
and preferential attachment, where new nodes are attached preferentially to
nodes that are already well connected. Barabasi and Albert showed further
that if the probability that a new node will be connected to node i with degree
ki is

Π(i) =
ki7
j kj

. (21)

then the network has a power law link distribution P (k) ∝ k−3.
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Fig. 6: (a) A scale-free network where the size of the node is proportional to its
medial centrality. In this case is clear that there is a correlation between the node
degree and its medial centrality [23]. (b) Degree distribution P (k) vs. node-degree
k.

The Internet

In 1999, an analysis of the Internet topology by Faloutsos et. al [16] suggested
that the distribution of node degrees of the Internet decays as a power-law
P (k) ∝ k−y, with y = 2.22. In 2002, Subramanian et. al [44] reported that
the Internet features a tier structure, where at the top of this tier is the core
of the network. It is well established that a realistic model of the Internet
topology should generate a power law topology with a core structure. There
exist network models that produce power law networks, e.g. Barabási and
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Albert model [6] and Inet-3.0 [50] to mention just two of them, but they do
not reproduce the core structure of the Internet [54].

A node of a network is considered “rich” if it contains a large number of
links or equivalently it has a large node-degree. The core of the Internet consist
of a set of nodes which have a large node degree. We refer to these nodes as the
rich-club. In the Internet, the members of the rich-club are very well connected
to each other. This means that there are a large number of alternative routing
paths between the club members where the average path length inside the
club is very small (1 to 2 hops). The rich-club acts as a super traffic hub
and provides a large selection of shortcuts. Hence scale-free models without
the rich-club structure may underestimate the efficiency and flexibility of the
traffic routing in the Internet. Conversely, networks without the rich-club may
over-estimate the robustness of the network to a node attack, [1, 24] where
the removal of a small percentage of its richest club members can break down
the network integrity.

It is possible to build network topology models which will generate a rich-
club. Recently the Interactive-Growth (IG) model [53] was introduced as a
way to generate networks that contain a rich-club. The model is a modifi-
cation of the Barabási and Albert model and it reflects the evolution of the
Internet, with the addition of new nodes and the addition of new links be-
tween existing nodes. The network is generated by starting with m0 nodes
connected through m0 − 1 links. At each time–step, one of the following two
operations is performed: 1) with probability p ∈ (0, 1), m < m0 new links are
added between m pairs of nodes chosen from the existing nodes, and, 2) with
probability 1− p, one new node is added and connected to m existing nodes.

4.4 Model of Networked Data Traffic

The model considered here has been studied by several authors [36, 19, 21,
20, 41, 45, 51, 3, 5]. The network consists of two types of nodes; router nodes
that store and forward packets; host nodes that store and forward packets
and are also sources and sinks of traffic. Given the network has S nodes, and
a density ρ ∈ [0, 1] of hosts then ρS is the total number of hosts. The host
nodes are randomly distributed in the network.

• Traffic generation: A host creates a packet whose destination is another
host. A host creates a packet using either a uniform random distribution
(Poisson) or a LRD distribution defined by a chaotic map. Each source
generates its traffic independently of the other sources.

• Queue: Each node keeps a queue of unlimited length where the packets
are stored. Any packet that is generated is put at the end of the host’s
queue. If a packet arrives at a router it is put at the end of the hierarchical
router’s queue. The packet is not queued when it arrives at its destination
node.

• Routing: Each node picks a packet at the head of the queue and forwards
the packet to the next node. From the source/destination information that
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each packet carries, the forwarding is done by one of the following routing
algorithms:
1. For regular networks:

– a neighbour closest to the destination node is selected
– if more than one neighbour is at the minimum distance from the

destination, the link to which the smallest number of packets has
been forwarded is selected

– if more than one of these link shares the same minimum number of
packets forwarded then a random selection is used

2. for general networks:
– From the state of the queues and the number of hops from source

to destination, the routing is done by minimising the time–delay by
considering the number of hops and the size of the queues that a
packet visits when crossing the network.

The process of packet generation, hop movement, queue movement and up-
dating of the routing table occurs at one time step.

5 Congestion

The time that elapses between the creation of a packet at source s, from its
creation to its destination d, is known as the delay time τs,d. The average of
the delay

τ̄T =
1

S(S − 1)

6
s,d;τs,d≤T

τs,d,

which is the average for all the packets up to time T , is an important quantity
with which to assess the performance of a network. If the traffic load presented
to the network is low and the queues on the nodes are empty, then, to a first
approximation, the average delay is proportional to the average number of
nodes that the packets visit when travelling. As the traffic load increases, the
queues at the nodes start to build up, the average delay time will increase
accordingly. If the traffic load increases even further, then at the critical load
λc, the queues of some nodes will grow very quickly and the average delay
time will dramatically increase or even diverge. At this critical load, we con-
sider that the network is congested. This critical behaviour is also noticed in
the network throughput. The throughput is defined as the number of packets
reaching their destination per unit time per host. Starting from a low load,
the throughput increases proportionally as the increase of the load, until con-
gestion is reached. At this point the network has its maximum throughput
(see Fig. 7).

If the number of packets at node i at time t is denoted by ni(t), then the
total number of packets in the network is
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N(t) =
S6

i=1

ni(t) =
S6

i=1

Qi(t). (22)

If the network is not congested, and the average delay time is finite, then the
average number of packets on the network, N̄ = (1/T ) limT→∞ N(t), is also
finite. At the congestion point, the queues of the congested nodes increases
rapidly and this implies that the total number of packets on the network
continues to increase.
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Fig. 7: (a) The average lifetime of a packet increases rapidly after the congestion
point. (b) Average throughput of a Manhattan network with S = 100 and ρ = 1.
As the offered load increases the average throughput increase until it reaches the
critical point λc ≈ 0.2. At this load the network is congested.

5.1 Mean Field Approximation

Total Distance Formulation

A simple way of estimating λc, [51], is to look for the total distance that all the
packets at time t have to travel to reach their destination. In the congested
phase if there are queues at all nodes, then the change in total distance is
D(Nt+1)−D(Nt), where N(t) is the number of packets in the queues at time
t, and D(Nt) is the aggregated distance of all packets from their destination
at time t. The increase in the number of packets per unit of time is ρλS. If 6̄ is
the average path length, then the overall added distance is ρλS6̄. By contrast,
the aggregated distance is reduced by S given that every packet at the head
of the queue moves one step closer to its destination. Thus the change in total
distance to destination between time t and t + 1 is

D(Nt+1)−D(Nt) = ρλ6̄S − S. (23)

The critical load λc occurs when the total distance no longer decreases,
D(Nt+1)−D(Nt) = 0, which implies
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λc =
1
ρ6̄

. (24)

This relation refines the results of [41] and [19].

Time-Delayed Formulation

Another possible way to determine the critical load is to use Little’s Law
[20, 41]: “The average number of customers in a queueing system is equal to
the average arrival rate of customers to that system, times the average time
spent in the system” [28]. Little’s law is a flow conservation law which can be
restated as: in a steady state, the number of delivered packets is equal to the
number of generated packets, or

dN(t)
d t

= ρλS − N(t)
τ(t)

. (25)

where ρλS is the average arrival rate to the queues per unit of time, τ(t) is
the average time spent in the system, and N(t)/τ(t) is the number of packets
delivered per unit of time.

Remark: Little’s law does not depend on the arrival distribution of pack-
ets to the queue or the service time distribution of the queues. Also it does
not depend upon the number of queues in the system or upon the queueing
discipline within the system. The law holds only when a steady state exists
below the critical load, as shown in Fig. 8 where the load rates have been
normalised.

If the load is low, the queues at the nodes tend to be empty and the
average delay time is the average shortest path 6̄, that is τ ≈ 6̄. For higher
loads the transit time can be approximated by the average shortest path plus
the average time, T , that a packet spends in the queues

τ ≈ 6̄ + T (N(t), 6̄). (26)

Criticality for Regular-Symmetric Networks

If the traffic is evenly distributed in the network and the network is not
congested, then there exists a steady state solution N ∗ for the number of
packets on the network. Each queue, on average, contains N ∗/S packets and
the delay can be approximated by

τ(t) ≈ 6̄
 
1 + Q̄

'
= 6̄

!
1 +

N∗

S

(
(27)

where on average, a packet visits 6̄ queues with average load Q̄ and T ≈ 6̄Q̄.
From the steady state solution (dN(t)/d t = 0) the total number of packets
in the system is
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Fig. 8: Verification of Little’s law for different networks. In all cases the networks
have S = 100 nodes. The coordinates have been normalised by dividing them by the
critical load of the corresponding network. For the ring network, the law was verified
for two different densities of nodes. The law does not hold if the load is greater than
the critical load (marked with a vertical hash line).

N∗ =
ρλ6̄S

1− ρλ6̄
=

γS

1− γ
(28)

where γ = ρλ6̄ is the normalised load and N∗ is the steady state solution.
The average traffic load generated at node i is

λi =
!

1
ρ6̄(1 + S/N∗)

(
. (29)

As the traffic load increases, the number of packets in the network increases
accordingly. At the congestion point the number of packets on the network
diverges, N∗ →∞, and the critical load is

λc =
1
ρ6̄

, (30)

which is the same as Eq. (24).

General Networks

Fig. 9(a) shows, in phase space, that the transition from the free flow phase to
the congested phase is well approximated by Eq. (30) for the case of regular-
symmetric networks but not for scale-free networks. Equation (30) gives a
good approximation to the critical load because the average queue size for all
nodes is very similar ( Q̄ ≈ N∗/S).
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Fig. 9: (a) Phase diagram showing the change from free–flow to congestion. For
the square toroidal and the regular-symmetric network the phase transition is given
by �cλc = 1/ρ. For ρ > 0.4, the phase transition of the scale free network is well
approximated by �cλc = 1/(1.7ρ). (b) Renormalised phase transition for different
networks topologies. The four networks have S = 100.

In a scale-free network, due to the disproportionate importance of some of
the nodes, if these nodes get congested more readily and hence, all the network
gets congested. An alternative approach is to use the medial centrality [34] to
characterise the node usage. If

ĈB(w) =
CB(w)7
v∈V CB(v)

(31)

is the normalised medial centrality then the average queue size at node i can
be approximated by

Q̄i ≈ ĈB(ni)N∗. (32)

An example of this approximation is shown in Fig. 10.
It is possible to approximate the typical travel time of a packet by adding

the average time that the packets spends in the queues that it visits, that is

τ∗(s, d) ≈
6

v∈R(s,d)

ĈB(v)N∗ (33)

where the sum is over all nodes that the packet visits. The set R(s, d) is the
subset of nodes obtained from the routing table. The total delay time can be
approximated by considering

τ(t) ≈ 6̄ +
1

S(S − 1)

6
s∈V

6
d �=s∈V

6
v∈R(s,d)

ĈB(v)N(t) = 6̄ +DN(t) (34)

where
D =

1
S(S − 1)

6
s∈V

6
d �=s∈V

6
v∈R(s,d)

ĈB(v). (35)
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The approximation to the critical load is given by

λc =
1

ρSD , (36)

(cf. Eq. (30)). As shown in Fig. 9(b), this last equation gives a very good
approximation of the phase transition from free flow phase to congested phase
for the regular-symmetric and scale-free networks. It is not difficult to see why
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1

10

0 10 20 30 40 50 60 70 80 90 100

node

Qi Cb(ni)N*

Fig. 10: Comparison between the average queue size (dotted line) and its approxi-
mation using Eq. (32) (solid line). The network is a scale-free network with S = 100.

Eq. (36) also works for regular-symmetric networks. If the medial centrality
measures how many routes use a particular node, then all nodes are utilised
to the same degree in the regular case. The constant value for the medial
centrality for each node is the same (see Eq. (17)) and is given by

ĈB(w) =
CB(w)7
v∈V CB(v)

=
1
S
. (37)

By substituting this last expression in Eq. (36), we find D = 6̄/S and the
expression for the critical load obtained in Eq. (30) is recovered.

Equation (36) also reproduces behaviour observed by Fuks and Lawniczak
[19] in a rectangular network. The addition of few random links provides
a shortcut between distant parts of the network, but can quickly become
congested. A fuller addition of links such as transferring from a square to
triangular lattice has the more conventional effect of increasing the critical
load, [4].
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5.2 LRD at Criticality

It is known that at the critical load the traffic statistics change from SRD
to LRD [41]. The change of correlations from SRD (exponential) to LRD
(power law) at criticality in phase transitions is a standard feature, and this
phenomena also occurs in road traffic congestion.

The change from Poisson to LRD has been observed by analysing the time
series for delays for 1 hop and 24 hop routes, and also by looking at the time
series of average host and router queues lengths measured at each time tick. As
mentioned before, the Hurst parameter distinguishes SRD traffic from LRD.
The parameter can be obtained by considering the so-called rescaled data.
More precisely, let Xt, t ∈ Z+ denote a discrete time series. The adjusted
range is defined as

R(t, k) = max0≤i≤kRi(t, k)−min0≤i≤kRi(t, k), (38)

where

Ri(t, k) =
t+i6
l=1

Xl −
t6

l=1

Xl − i

k

�
t+k6

l=t+1

Xl −
t6

l=1

Xl

&
(39)

The quantity R(t, k) is normalized by the translated sample standard devia-
tion

S(t, k) =

3442k−1

t+k6
l=t+1

(Xl − X̄t,k)2 (40)

where X̄t,k = k−1
7t+k

l=t+1 Xl. The R/S statisticis then defined to be

R/S =
R(t, k)
S(t, k)

(41)

and it is fitted to the equation

lnE[R/S] = a + H ln k, (42)

with H interpreted as the Hurst parameter. We considered separate R/S plots
for 1 and 24 step journeys in a 32×32 network grid with 164 hosts for Poisson,
and for LRD, sources for a range of load values. The network used had the
same parameters as that used for Fig. 7 so the onset of congestion at a load of
0.3 was expected. At the smaller loads the network remains free of congestion.
This means that time series of packet delays are stationary, and the original
data may be used in measuring a value of H . For the higher values of the load,
including λ = 0.3, congestion does occur, leading to an upward trend in delay
times and queue sizes. In this case, the data are weighted to remove the trend,
creating a stationary series. We observe that for λ = 0.2, H = 0.5 for both
path lengths, indicating that very little LRD is present. This is corroborated
by investigating the probability distributions of delays which both have the
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characteristic shape of exponentially decaying delay times. However, for λ =
0.29 H values are higher for both path lengths at the onset of congestion.
The R/S plots show a kink with the steeper part of the curve corresponding
to H = 0.8 in both cases. Hence the longer delays and lower frequencies do
show significant LRD, but this is not seen at any other load value. Values for
the three higher load values show very similar H values. Note that in these
cases, the time series was weighted to remove the upward trend and the H
values are all close to 0.5. This lack of any LRD seems to be caused by the
phase change to the congested region above λc. The probability distributions
for these higher values show delays shifting towards the length of the run
(1 × 106 time ticks as the network becomes more and more congested). Here
1 and 24 step delays have a long tailed distribution, but this is caused by the
non-stationarity of the data, not power-law autocorrelation decay.

5.3 Congestion and LRD Traffic

In the previous section, it was noted that LRD arose from interaction within
the network and was not intrinsic to the traffic sources. In this section the
Poisson-like sources are replaced with LRD sources, modelled using chaotic
maps.
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Fig. 11: (a) Average packet lifetimes are plotted as a function of the load λ for
Poisson sources and also for LRD sources with increasing average lifetime in the
pre-congestion phase as m increases through m1 = m2 = 1.5, 1.8, and 1.95. (b)
Corresponding throughput for Poisson and LRD traffic are plotted as a function of
the load λ for m = 1.95. Note that the lower peak value in throughput for the LRD
traffic sources reflects the longer average lifetimes below the critical point. The peak
differences diminish to zero as m is decreased to the Poisson-like value m = 1.5.

Fig. 11 gives a comparison of the onset of congestion in two otherwise iden-
tical Manhattan networks with host density ρ = 0.164, one Poisson sourced,
and the other LRD sourced for different values of the Hurst parameter. The
values of the intermittency parameters m1 = m2 = m are kept equal in each
case for simplicity. The critical load for this network is λ = 0.3.
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Fig. 11(a) shows the average lifetime, or end-to-end delay, of a packet
plotted against load λ, the average number of packets generated per host
per unit time. As has been seen previously, there is a phase transition from
the free phase in which lifetimes remain small to a congested phase in which
lifetimes increase rapidly. Fig. 11(a) shows clear evidence of the earlier onset of
congestion in the LRD traffic in comparison with Poisson traffic produced at
the same rate. The data for Fig. 11 are shown for various values of m1 = m2.
Values of m1 = m2 close to the maximum value of m1 = m2 = 2 give the
highest degree of intermittency and hence the greatest contrast with Poisson
traffic sources (corresponding to m1 = m2 = 1.5 in the intermittency model).
The highest value used in our simulations, H = 0.975 has been observed in
statistical investigations of real network traffic data.

Fig. 11(b) shows throughput versus load. The peak in the throughput
occurs at the critical point. The network therefore reaches its peak efficiency at
the critical point. The peak throughput is slightly lower for the LRD sources,
emphasising the longer lifetimes of packets. Although the throughput is only
slightly reduced, the average lifetimes increase by up to a factor of 10. This
earlier onset appears to be the most important feature of LRD congestion
within the context of the model, and has significant implications for shared
backbone data network infrastructures.

The average queue sizes were shown to be closely related to the average
lifetime of packets in [51]. The difference is clear for the average queue size
for a rectangular network with Poisson and LRD traffic. In the LRD case the
queues get congested more readily and as mentioned before this translates into
longer lifetimes of the packets. High values of H for queue length distributions
at hosts and routers have been measured at all post critical loads for Poisson
sources indicating the presence of strong network-induced LRD (see [52]).

6 Control of Queue Sizes

The simplest way to control packet traffic is to limit the length of queues [4].
As grid bar charts of node queue size have shown by Woolf et al. [52], long
queues in the network invariably occur at hosts.

Valverde and Solé [45] introduced a local control mechanism where hosts
modify their rates of packet release depending on the detected local rate of
congestion. The sources adjust their local packet release by querying how busy
their neighbours are. The number of congested neighbours a node can have is

ζ =
6
v∈G

θ(nv(t)) (43)

where G is the set containing the neighbours of node, nv(t) is the number of
packets in node v at time t and θ is the Heaviside function θ(x > 0) = 1 and
θ(x ≤ 0) = 0. The control mechanism consists of adjusting the rate of packet
production λi(t) using
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λi(t + 1) =

�
min{1, λi(t) + µ}, ζ < 4
0 ζ ≥ 4.

(44)

If the neighbouring nodes are not congested the load increases at a rate of
µ, and drops to zero if all the neighbours are congested. This control mecha-
nism is inspired by the “additive increase/multiplicative decrease” [43] used
in TCP packet networks. Valverde and Solé studied this control method in a
Manhattan network with Poisson traffic and unlimited queue capacity. It was
noticed that the packet release and the density of hosts satisfies the relation
λ ∼ ρ−1 (see Eq. 24). On average, the packet release reaches a steady critical
state. This does not mean that the local traffic creation rates are all similar, as
the congestion levels vary widely between nodes. An interesting observation
made by Valverde and Solé is the existence of a synchronization effect in the
congestion state of distinct nodes.

6.1 Control in Scale-free Networks Using TCP

The above model is an oversimplified packet network as the topology of a
real network is, of course, not a regular network. Also, the model does not
allow for packets dropped in transit (as occurs in the Internet) because of the
unlimited queues on the nodes. In this section we introduce a more realistic
model by considering a scale-free network generated using the IG algorithm
with a power law decay index of 2.22. Similarly to the previous simulations,
each node is designated as either a host or a router. Routers have a single
routing queue that receives packets in transit across the network, and releases
them back onto the network at a rate governed by the connectivity of the
node. The difference with the previous examples is that for this network the
simulation is of the fixed-increment time advance type rather than next-event
time advance. This allows the routing queue service rate to be set as Ckα

packets per time tick of the simulation, where k is the degree of the router
node, and C constant. This means that nodes with larger degrees produce
more traffic. The index α has been chosen to be between 1 and 2 here. Hosts
have identical routing queues and function in the same way, but additionally
act as sources. They have transmit buffers that hold packets generated by
LRD and Poisson traffic sources until they have been acknowledged. The exact
mechanism for this is described below.

The control mechanism uses a simplified version of TCP Reno [43] as the
network protocol. This is the predominate protocol used on the Internet at
present. This version is derived from that described in Erramilli et al [13].
It concentrates on the slow-start mechanism because in real networks this
not only affects all connections, but is also the dominant effect for most con-
nections. It also has a more marked effect on the network dynamics than
congestion avoidance.

As in our previous sections, a double intermittency map is used as the basis
for each LRD traffic source, and a uniform random number generator for each
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Poisson source. However, they are used in a slightly different way. One sojourn
period in the ‘on’ side represents a whole file which is then windowed using
the TCP slow start algorithm: at the start of the file the window size is set
to 1. Only a single packet is sent at that time tick. When a packet reaches its
destination an acknowledgement is returned to the source: once this packet
has been acknowledged, the window size is doubled and the next two packets
are sent. When both these packets have been acknowledged, the window size
is doubled again and a new window of packets is sent. The doubling process
is repeated until the end of the file or the maximum window size ( a fixed
value). This is described mathematically in section 3.4 on TCP dynamics.

The routing algorithm uses a pre-calculated look-up table of shortest
paths. All links between nodes are assumed to have unit length. At each
time step packets are forwarded from the head of each routing queue. If an
acknowledgement packet reaches its destination, this triggers the release of
the next window of packets from that host.

A necessary modification of the traffic model was to make server strengths
reflect the degree(and importance) of the node in the network . This has
significant effects in increased throughput without overload, see [52].

Fig. 12 shows a comparison of different server strengths as α is varied. Two
types of source are considered. The same IG network with the same pattern
of hosts is used. Results from LRD sources and Poisson sources differ greatly.
Throughputs (Figs 12(c) and 12(d)) at the lower server strengths (α equal to
1 and 1.1) are qualitatively similar: the throughput matches the load up to
a threshold and then levels out. However, this threshold is more than 50%
higher for the Poisson sources. If the exponent α is increased to a value of 1.5
this threshold can no longer be seen; throughputs for the two source types
are similar. When servers are strongest (α = 2.0) the situation is reversed:
the network with LRD sources has a higher throughput, able to handle the
maximum load applied to it without becoming overloaded.

Figs. 12(a) and 12(b) show average lifetimes for the two source types. At
low loads behaviour is similar to that seen in our earlier work with regular
lattices and open-loop protocols: lifetimes for Poisson sources are much less
than for LRD. In the case of Poisson sources there is a similar transition
from the free state to the congested state. At increasing server strengths the
transition becomes less pronounced. This is due to the increased network
capacity which slows the onset of congestion.

Comparisons have been made between the different topologies and packet
transport algorithms to give four combinations [51, 52]:

– scale-free(produced using the IG model) with a closed-loop algo-
rithm (TCP).

– Manhattan with an open-loop algorithm.
– scale-free(produced using the IG model) with an open-loop algo-

rithm.
– Manhattan network with a closed-loop algorithm.
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Fig. 12: The number of packets that can be served at each time instant is increased
according to a power law nα, where n is the degree of the node and α = 1, 1.1, 1.5, 2.

The network had 1024 nodes in both cases and the host density was taken
to be 589/1024. The index α of the server strength 0.25nα was fixed at 1 for
all four combinations. The host distribution was random for the Manhattan
network; by comparison the IG network connectivity 1 and 2 nodes were
selected to be hosts.

The closed-loop TCP algorithm increases lifetimes for both regular and
scale free networks. The requirement of TCP that packets be acknowledged
before the next window of packets is sent is very restrictive in the sense that
new windows cannot be sent by hosts more frequently than the round trip
times (RTT) or ping times. Congestion is reacted to immediately because it
causes an increase in RTT’s and makes sources back off. Since file sizes are
not that great and window sizes are often reset to 1 due to the round-trip
time maximum RTO limit, throughput can never be that high. This results
in packets being delayed in the transmit buffer and is the primary cause
of increased packet lifetimes. By contrast the open-loop algorithm does not
react to congestion and allows unlimited queues to build up at routers. For
sufficiently high loads open-loop networks become congested and lifetimes
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approach those of the closed-loop networks.In fact a Manhattan network with
an open-loop algorithm has longer lifetimes than an IG network with a closed-
loop algorithm primarily because of the much shorter average path lengths in
the IG network, see [52]. Identical networks using open-loop algorithms have
higher throughputs; the IG network performs more efficiently for both types
of algorithm. Similar behaviour is observed for Poisson sources.

Thus, regular open-loop simulations are fundamentally different to the
closed-loop simulations of IG networks and so detailed comparisons are not
very useful.
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Fig. 13: Effect of varying queue length limit on average packet life time and through-
put for LRD and Poisson sources.

In Fig. 13 packet dropping of real networks by limiting the routing queue
lengths. Very severe packet loss has been modelled here in order to test the
extreme situation. Real networks generally suffer much less packet loss. For
LRD sources Fig. 13(a) average lifetimes are greatly reduced when the queue
limit is decreased. When queue lengths are limited, packets are dropped at
the routers and therefore re-sent more frequently. This causes shorter waits
in the transmit buffer. This can be seen most clearly at the very low queue
length limit. In the case of Poisson sources Fig. 13(b) average lifetimes behave
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quite differently. Lifetimes peak at a load of 0.3 for the queue limit of 5. This
peak shifts to higher values as the queue limit increases. When there is no
queue limit the lifetimes are the same in regular networks. Fig. 13(c) shows
throughputs for LRD sources. These are greatly reduced when a queue limit
is applied. At the smaller queue limits throughput is close to zero. In the case
of Poisson sources (Fig. 13(d)) throughput is similar for the queue limit of
100, but also much less at the lower queue limits. However, throughputs are
still much higher than for the LRD sources. This is caused by the shorter
queues in the case of Poisson sources. Most queue lengths are less than a 100,
meaning that this limit has little effect.

The same IG network has been used, but hosts are now selected randomly
with the same density of 589/1024. Results are similar. The network with
randomly placed hosts always performs slightly better than the one with hosts
placed at the low degree hosts. Average lifetimes are lower and throughput
slightly higher. This shows that the inclusion of a small number of rich nodes
in fact makes little difference.
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20. H. Fukś, A.T. Lawniczak, and S. Volkov. Packet delay in data network models.
ACM Transactions on Modeling and Computer Simulation, 11(3), 2001.

21. K. Fukuda, H. Takayasu, and M. Takayasu. Origin of critical behavior in Eth-
ernet traffic. Physica A, pages 289–301, 2000.

22. A. Giovanardi, G. Mazzini, and R. Rovatti. Chaos based self–similar traffic
generators. Proc. NOLTA, pages 747–750, 2000.

23. K. I. Goh, E. Oh, K. Kahng, and D. Kim. Betweenness centrality correlation in
social networks. Phys. Rev. E, 67:017101, 2003.

24. P. Holme and B. J. Kim. Vertex Overload Breakdown in Evolving Networks.
Physical Review E, 65:066109, 2002.

25. C. Huang, M. Devetsikiotis, I. Lambadaris, and R. Kaye. Fast Simulation for
Self-Similar Traffic in ATM Networks. In Gateway to Globalization, 1995 IEEE
International Conference on Communications, volume 1, pages 438–444, Seattle,
Washington, 1995. IEEE ICC95.

26. B. E. Huberman and R. M. Lukose. Social dilemmas and Internet congestion.
Science, 277:535–537, 1997.

27. R. Jain and S. A. Routhier. Packet trains: Measurements and a new model for
computer network traffic. IEEE Journal on Selected Areas, 4:986–995, 1986.

28. L. Kleinrock. Queueing Systems. v. 1. Theory. John Wiley & Sons, 1975.
29. W. E. Leland, M. S. Taqqu, W. Willinger, and D. Wilson. On the Self-Similar

Nature of Ethernet Traffic (Extended Version). IEEE/ACM Trans on Network-
ing, 2, No 1(1):1–15, Feb. 1994.

30. H. Li and M. Maresca. Polymorphic-torus network. IEEE Transs Comp.,
38(9):1345–1351, 1989.

31. B. Mandelbrot. Self-Similar Error Clusters in Communication Systems and the
Concept of Conditional Stationarity. IEEE Trans. On Communication Technol-
ogy, COM-13:71–90, March 1965.

32. J. L. McCauley. Chaos, Dynamics and Fractals and Algorithmic Approach to
Deterministic Chaos. Cambridge University Press, 1995.

33. R. J. Mondragón. A Model of Packet Traffic using a Random Wall Model. Int.
Jou. of Bif. and Chaos, 9 (7):1381–1392, 1999.

34. R. J. Mondragón. Congestion and centrality. in preparation, 2004.



Data Traffic, Topology and Congestion 157

35. I. Norros. Studies on a model for connectionless traffic, based on fractional
brownian motion. Conf. On Applied Probability in Engineering, Computer and
Communication Sciences, Paris:16–18, June 1993.

36. T. Ohira and R. Sawatari. Phase Transition in Computer Network Traffic Model.
Physical Review E, 58:193–195, 1998.

37. Y. Pomeau and P. Maneville. Intermittent transition to turbulence in dissipative
dynamical systems. Commun. Math. Phys., 74:189–197, 1980.

38. P. Pruthi. An application of chaotic maps to packet traffic modelling. PhD
thesis, KTH, Stockholm, Sweden, Oct. 1995.

39. P. Pruthi and A. Erramilli. Heavy-Tailed ON/OFF Source Behaviour and Self-
Similar Traffic. ICC 95, June 1995.

40. M. Roughan and D. Veitch. A Study of the Daily Variation in the similarity
of Real Data Traffic. Tech. Rep. 0070, SERC, Software Engineering Research
Centre, Level 3, 110 Victoria St, Carlton Vic, 3053, Australia, 1997.
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1 Introduction

The exploitation of the unique features of chaotic dynamics for performance
improvement recently became a widely followed path in several field of Elec-
trical Engineering. This is certainly due to the understanding of the mixed
deterministic/stochastic nature of a chaotic system and to the consequent
adoption of tools from statistical dynamical systems theory for their analy-
sis [1][2]. By means of such a statistical approach it was clarified that the
applications where the use of chaotic dynamics can be more beneficial are
those where the statistical features of the involved signals or quantities are
the dominant factor. Additionally, the same tools are also of great importance
to develop the quantitative models needed to control the statistical features of
the processes generated by discrete-time chaotic systems.

Applications of such chaos-related techniques in the field of information
technology range from chaos-based cryptography [3][4], noise generation [5] or
suppression [6], electromagnetic interference control [7]-[11], and telecommuni-
cation, which has been so far the most fruitful area for applying chaos-related
methodologies (see [12] for a fairly complete survey, as well as [13]-[21] for
a complete description of the application to Direct Sequences Code Division
Multiple Access communication systems).

Beside the appreciable importance of the results achieved for the above
applications, the existence of a plethora of different tasks to which the chaos-
based approach (and the statistical techniques in particular) has been suc-
cessfully applied, highlight the existence of a general scheme, which can in
principle be applied to design a dynamical systems able to optimize the per-
formance for the application under exam. Such a procedure consists of two
phases. In as a first step a model of the target application must be devel-
oped to link specifications (performance and constraints) with the statistical
features of the signals entailed in the considered task. In the second phase,

L. Kocarev and G. Vattay (Eds.): Compl. Dyn. in Com. Networks, UCS 5, pp. 159–190, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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link will be exploited to deepen the comprehension of what improvements are
achievable by the design and use, in the chosen applications framework, of a
chaotic system with controllable statistical features.

Modern Information Technology (IT) offers a perfect environment for the
application of such methodology. IT deals, in fact, with systems made of a
population of active and often intelligent units deeply interconnected and in-
teracting. Examples range from Ethernet-based LANs to frame-relay or ATM
geographic links, from Internet and its protocols to wireless sensor networks,
from distributed memory or processing hierarchies to distributed cooperative
computation. The complexity of the activities carried out in those systems
and the number of independent and often unpredictable entities interacting
with them forces the extensive use of statistical tools for their modeling and
design. Hence, future successful development of related technologies will de-
pend on our ability of modeling stochastic processes of increased complexity
as well as of designing artificial systems able to generate them.

One of the most significant example comes from digital communication
networks where the experimental discovery of self-similar of fractal processes
[22] [23] [24] opened a definite chasm between classical traffic and queuing
analysis and the most recent trends and methods.

As discussed in [25], modeling techniques in this field were forced to evolve
from classical Poisson processes, to renewal processes with finite variance of
inter-arrival times, to Markov chain regulating the transition between some
of those renewal processes. The present state of this evolution is the widely
accepted second-order self-similar model [25][26] from which most of the recent
network traffic analysis originate.

A key step in this analysis was the discovery that complex self-similar
behaviors can be interpreted as the superimposition of elementary binary
(ON/OFF) processes representing the network activity (f.i. presence or ab-
sence of a packet) which features heavy-tailed (i.e. very slowly decaying) dis-
tribution of ON or OFF times [27][28].

Intuitively speaking, self-similarity has to do with invariance of behavior at
different time scales. More formally, we may consider a second-order stationary
process {yi} i = 1, 2, . . . and we may “observe” it at different scales by defining
aggregated quantized trajectories

y
(A)
i =

1
A

A−16
l=0

yAi+l

where A is the aggregation factor and, by definition, the finest scale sequence
remains y

(1)
i = yi. Such (aggregated) process represents the sequence of activ-

ity (ON=1) and inactivity (OFF=0) on the network at different time scales.
Hence, the process is second-order self-similar if a constant β ∈]0, 1[ exists

such that
C
(xA)
2 (0)

C
(A)
2 (0)

∼ x−β C
(A)
2 (τ)

C
(A)
2 (0)

∼ Kτ−β (1)
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with A→ ∞ and x > 0, where the symbol ∼ means “behave asymptotically
as,” and where C

(A)
2 (τ) and C

(A)
2 (0) are the second-order autocorrelation and

variance of the aggregated process. The first condition (1) requires that the
variance do not decay too rapidly when the aggregation scale increases (Slowly
Decaying Variance), while the polynomial decay of the autocorrelation in the
first equation (1) states that the process features Long-Range Dependence
(LRD). Both are peculiar features of self-similar traffic models as opposed
to more classical ones (e.g., Poisson models) that have a decay x−1 of the
variance function (Fast Decaying Variance) and an exponential decay of the
correlation function (Short Range Dependence).

In the literature the parameter β ∈]0, 1[ of (1) is is often replaced by the
Hurst parameter H = (1 − β/2) ∈]0.5, 1[, that represents the degree of the
process “burstiness”. The closer to 1 the H , the more self-similar the process.
If H is close to 0.5 the process shows a smoother (less bursty) behavior when
the time aggregation increases [22] in analogy with what happens for Poisson-
like processes.

Another characteristic of network traffic relates to the time distributions
for which the network is in the ON or OFF state, which are heavy-tailed, i.e.,
polynomially decaying, for at least one of the two states. More formally, at
least one of the ON or OFF time distributions will have a complementary
distribution such that

F (τ) = Pr{t > τ} ≈ τ−αL(τ), 0 < α < 2 (2)

where L(τ) is a slowly varying function at infinity [29] [26]. Note that the
classic Poisson models are characterized by ON and/or OFF sojourn times
which are both light-tailed, i.e. such that the complementary distribution has
the form F (τ) = Pr{t > τ} ≈ γτL(τ), 0 < γ < 1 [30] [26].

The intuitive explanation of the fundamental process generating this non-
trivial behavior can be found in [25] and references therein. Here, we are
conversely more interested in the understanding of the modeling of an artifi-
cial mathematical structure able to reproduce them. More specifically, we will
describe how such an observation can be at least partially systematized in a
general framework addressing a multiplicity of quantized renewal processes
with possibly infinite sojourn time variance, the transitions among which is
administered by a general Markov-like meta-process. The relationship between
sojourn-time statistics and self-similarity is re-discovered and partially gen-
eralized in this framework whose aim is to contribute to the set of formally
grounded tools the necessity of which is widely recognized [25]. Such a new en-
try in our tool-box is based on a suitable generalization of the one-dimensional
chaotic maps used for chaos-based communication optimization [2] and can
be directly used in the already ascertained scenarios.

As an example, they will be used at the end of the chapter to address
the problem of synthesizing ON/OFF process for which both the average and
the strength of self-similarity are given, thus showing how it is sometimes
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possible to conciliate and even exploit the difference between “short-term”
and “long-term” traffic features.

The organization of this chapter is as follows. In section 2 we report the
formal definition of Piecewise-Affine Markov maps and show how it is possible
to give a statistical description of their behavior. More specifically we briefly
recall the path linking the (generalized) Perron-Frobenius operator to a finite
dimensional operator called Symbolic Dynamics Tracking Tensor (SDTT) and
to the tensor-based formulation of the correlation functions whenever the ob-
servables are quantized in a finite number of regions of the state space. We also
give the fundamental result for the factorization of the SDTT and thus for its
decomposition into smaller building blocks, as well as few elementary results
on basic statistical quantities correlated with the process of the quantized
trajectories. Since these maps cannot generate self-similar process we extend
the class of chaotic systems we are dealing with by allowing the Markov par-
tition to be possibly made be an infinite, but countable number of intervals;
this is done in general terms in section 3, while section 4 reports the formal
definition of Piecewise-Affine Pseudo-Markov systems. Then, in section 5 we
briefly highlight the path from the Perron-Frobenius operator to the SDTT
similar to section 2 that could be followed for achieving similar results for the
more general pseudo-Markov case. Then, we develop a closed-form expression
of the simple case of a 2nd-order correlation function, which is given both in
the time domain and in the z-transformed domain. Finally, we concentrate
on systems with 2 macro-states and apply our methods to the explicit com-
putation of correlation functions when the sojourn times are polynomially
distributed, which leads to the desired generation of a quantized process with
a self-similar trends.

This discussion continues on a more applicative ground in section 6 where
we address the generation of self-similar processes for the synthesis of artificial
network traffic. We here show that the link between autocorrelation profiles
and asymptotic trends of the countable structure of the maps can be exploited
to separately adjust first- and second-order characteristics of the processes and
thus designing a realistic traffic generator. Some general conclusion are finally
drawn in a separate Section.

As a final note let us stress that the result presented in the chapter are
mainly rearranged from [2][31][32][33] and [34]. We adopt here a more heuris-
tic, bottom-up approach with the aim to give simpler explanations of the
underlying concepts and to present a ready-to-use collection of results and
references.

2 Chaotic Piecewise Affine Markov Maps and Higher
Order Correlations of Quantized Trajectories

It has now been known for a long time that dynamical systems including non-
linear elements can exhibit non-classical behaviors including very irregular,
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aperiodic, noise-like trajectories, and an extreme sensitivity to initial condi-
tions, which can make two identical systems apparently starting at identical
conditions end up with totally different outputs [1]. These behaviors are gen-
erally named as chaos and, intuitively, are very appealing for different kind
of stochastic process generation [2].

Clearly, achieving such a goal requires specific mathematical tools for deal-
ing with the properties of chaotic systems. While such a theory does not yet
generally exist, if one sufficiently restricts the range of chaotic systems being
considered, many recently introduced tools become available [2].

Following this introduction, we limit ourselves to a very specific class of
nonlinear models, represented by the iteration of so called piece-wise affine
Markov (PWAM) maps [2]. These are discrete-time one dimensional (1-D)
systems in which the state variable x is updated as

xk+1 = M(xk) (3)

where M : [0, 1]→ [0, 1] is such that an interval partition {Xi}, i = 1, . . . p of
[0, 1] exists so that:

1. M is affine on each Xi;
2. either Xi ∩M(Xj) = ∅ or Xi ⊆ M(Xj) for any i, j (which is equivalent

to saying that partition points are mapped into partition points);

If M is properly chosen, the system exhibits chaos4. By setting an initial
condition x0 and by iterating the map M , one can then generate a trajectory
irregularly wandering in [0, 1]. A typical case is shown in figure 1. Plot (a)
shows a chaotic map, where M(x) = 3x for 0 ≤ x < 1/4, to x + 1/2, for 1/4 ≤
x < 1/2 and to −2x+ 2 for 1/2 ≤ x < 1, and plot (b) a typical trajectory. Note
that the map satisfies properties 1 and 2 for the interval partition composed
by the four intervals X1 = [0, 1/4), X2 = [1/4, 1/2), X3 = [1/2, 3/4) and X4 =
[3/4, 1]. If M is chaotic, changing x0 even by an extremely small quantity leads
to a completely different trajectory, which progressively (and exponentially)
increases its distance form the former as k increases. Hence, even in absence
of noise, the behavior of the system is intrinsically unpredictable since the
limited precision with which the state is known at any time prevents long-
term forecasting.

A thorough and engineering-oriented illustration of PWAM chaotic maps
can be found in [2]. Here it is sufficient to observe that the classical tools
of system theory — which are generally based on the observation of system
trajectories over time — are insufficient to get typical behaviors and general
system properties, precisely due to the large variety of trajectories that can
be generated. To overcome this impasse, the introduction of statistical tools
is required. The intuitive idea is to pretend to be observing a huge number of

4More precisely, one wants M to be non-singular and exact following the defini-
tions in [1].
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Fig. 1: Example chaotic map (a) and typical output trajectory (b).

trajectories at the same time, follow their evolution and collect statistics at
every time step in order to extrapolate common features.

More formally, let us indicate with indicate with M k its k-th iterate. Let
D([0, 1]) be the set of probability densities defined on [0, 1] and assume that x0
is randomly drawn according to ρ0 ∈ D([0, 1]). Then, the probability density
regulating the distribution of the random point xk = M(xk−1) = Mk(x0) is
ρk = Pρk−1 = Pkρ0, where P is the Perron-Frobenius Operator (PFO) [1,
chap. 4]. In other terms, while M transforms points into points, P transforms
probability densities into probability densities and we may think, instead of
studying the evolution of the highly-nonlinear, upredicatable chaotic systems
(3), we may turn our attention on the study of a companion dynamical system
whose state variable is the PDF ρk of the state of system (3) and whose
evolution operator is the the PFO.

Interestingly, in spite of M being non-linear, P does always turn out to
be linear, which makes it by far more manageable from a mathematical point
of view. It can also be proven that if M is exact, P is constrictive, so that
starting from any ρ0

5, ρk converges , with a rate 0 < rmix < 1, to a unique
asymptotic density ρ̄, which is called invariant density since ρ̄ = Pρ̄. The
rate of convergence,that depends on the spectral portrait of P [35] is called
the rate of mixing and is also an important quantity for the study of the loss
of statistical dependence of trajectories generated by a chaotic map. More
formally, one usually considers the quantity

E [φ(x0)ψ(xq)] =
�
[0,1]

φ(x)ψ(M q(x))ρ̄(x)dx (4)

where φ, ψ : [0, 1] +→ R are two smooth functions. If one thinks of these func-
tion as physical observables of the system, then (4) quantifies the correlation
between observing φ at time 0 and ψ at time q. For generic exact maps, the
closed form computation of E [φ(x0)ψ(xq)] is an almost impossible task, so

5Provided that ρ0 is sufficiently well behaved [2]
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that one is usually restricted to determine the rate rmix of geometric conver-
gence of (4) to its limit value when q → ∞. In fact, it can be shown that a
constant α > 0 exists such that:::::E [φ(x0)ψ(xq)]−

�
[0,1]

φ(x)ρ̄(x)dx
�
[0,1]

ψρ̄(x)dx

::::: ≤ α sup |φ| sup |ψ| rqmix

(5)
which highlights that the rate of mixing is a very informative quantity since
it provides information on how quickly the system settles into a statistically
regular behavior, and thus how quickly physical observables become uncorre-
lated.

Nevertheless, from an engineering point of view, the mere knowledge of
rmix and α cannot be considered as entirely satisfactory. In fact, using (5) in
the equations expressing the merit figure of a specific signal processing task as
a function of statistical features of the chaotic sequences would simply yield
to a (hopefully tight) performance bound (see f.i. [13]).

On the contrary, the ability of computing the exact values of (4) would
allow to analytically express the same merit figure as a function of the charac-
teristics of M , which is surely the necessary starting point for any performance
optimization procedure.

Our aim in the rest of this section is to show that this goal can be achieved
if we deal with the class of PWAM chaotic maps.

Notice first that from the very definition of Markov maps one readily gets
that the following theorem hold [2].

Theorem 1. An exact Markov map M has a unique invariant density ρ̄ is ρ̄
is piecewise constant on the interval partition {Xi}, namely

ρ̄ =
p6

i=1

ρ̄iχXi (6)

where χXi is the indicator function of Xi.

To proceed further, it is interesting to observe what happens if, instead of
considering any possible initial density ρ0, one limits himself to initial prob-
ability densities which are piecewise constant in {Xi}: all subsequent proba-
bility densities ρ1, . . . , ρ̄ are then compelled to be piecewise constant on the
interval partition. This is noteworthy. In fact, in this case, rather than con-
sidering probability densities, one can consider the finite probability of the
state variable x being at any of the intervals Xi. In other terms, at each time
step k we may substitute to ρk =

7p
i=1 ρkiχXi a vector of p probabilities

Πk = (Πk1, . . . , Πkp)T = (ρk1µ(X1), . . . , ρkpµ(Xp)T , where ·T indicates vec-
tor/matrix transposition. Similarly a finite dimension operator K̄ can be sub-
stituted for the functional operator P. Being K̄ linear and finite-dimensional,
it can be represented by a matrix, named kneading matrix. It has been proven
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that the entries of K̄ can be obtained from M as (see e.g. [2] and references
therein):

K̄ij =
µ(Xi ∩M−1(Xj))

µ(Xi)
(7)

where µ is the usual interval measure, i.e. if Xi = [a, b], then µ(Xi) = b− a.
For instance, the kneading matrix corresponding to the map in figure 1 (a) is:

K̄ =

##
1/3 1/3 1/3 0
0 0 0 1
0 0 1/2 1/2
1/2 1/2 0 0

** . (8)

As an example, suppose that Π0 = (1/2, 0, 0, 1/2). Then Π1 = Π0K̄ =
(5/12, 5/12, 1/6, 0).

It is now interesting to try to give a meaning to the individual entries in
K̄. With reference to usual example map, suppose that it is know only that
the initial condition x0 falls in X1, and nothing else. This is loosely equivalent
to saying that Π0 = (1, 0, 0, 0). What can be said about x1? This point can
obviously fall either in X1, or in X2 or in X3, but not in X4. Furthermore,
from Π0K̄ one can estimate that x1 will fall in X1 with probability 1/3, in X2

with probability 1/3 and in X3 with probability 1/3. In other terms, the entry
K̄ij of K̄ represents the probability by which a trajectory starting in Xi falls
in Xj at the next step.

The process can be iterated. For instance, knowing that x0 falls in X1, one
could build the tree-graph reported in figure 2 (a), by which the probability
of finding xk in any of the partition intervals can easily be obtained. As
an example, note that the probability of finding x2 in X3 turns out to be
1/3 · 1/3 + 1/3 · 1/2 = 5/18. It is obviously convenient to compact infinitely long

X1

X2X1 X3

1/3
1/31/3

X2X1 X3 X4 X3 X4

1/3

1/3
11/3 1/2 1/2

n=0

n=1
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...... ... ... ... ... ... ... ... ... ... ... n=3

x1 x2

x3 x4

1/3
1/3

1/3 1

1/2
1/2

1/2 1/2

(a) (b)

Fig. 2: (a) An example probability tree based on the map in figure 1 (a), and (b)
corresponding state chain

tree-graphs such as that in figure 2 (a) into finite graphs containing loops,
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such as that in figure 2 (b). Note that this graph can be interpreted as a
Markov chain [2][5] or a transition graph for a probabilistic state machine. The
machine is in its discrete state xi when the chaotic system has its continuous
state variable x in the partition interval Xi. The weights assigned to the graph
arrows represent the probabilities by which the machine travels from a state
to another. The idea that a chaotic dynamics could embed a Markov chain
was first conjectured by Kalman [36].

Following this approach, we are first able to easily compute ρ̄. Since K̄ is
a stochastic matrix, if we indicate with Π̄ = (Π̄1, . . . , Π̄p)T the (normalized)
unique eigenvector of K̄ corresponding to a unit eigenvalue, i.e. Π̄ = Π̄K̄, we
easily get that the coefficient defining (6) are given by ρ̄i = Π̄i/µ(Xi). Further-
more, we can determine closed form expressions for more sophisticated and
meaningful statistical quantities such as (4). More formally, let us consider
that observables functions fi exist, which quantize the state at a given time
step qi, i.e we will assume that the function fi : [0, 1] +→ C is constant in
each of p intervals of the maps Markov partition. The p-dimensional vector
fi = (fi1, . . . , fip)T is defined so that fi(Xj) = fij . A different quantization
is adopted at different time steps and different trajectories are associated to
different values depending on which intervals they visit. Hence it is straight-
forward [20][2] to prove the following theorem

Theorem 2. Consider a PWAM map with ρ̄ = 1 and where µ(Xj) = 1/p for
j = 1, . . . , p. Then, for trajectories generated with ρ0 = ρ̄ one has

E [f1(xq1 )f2(xq2 )] =
1
p
fT1 K̄q2−q1f2 (9)

Although important for several applications, the mere use of theorem 2
is not sufficient to give a complete characterization of the process obtained
by quantizing the trajectories generated by PWAM maps. To this aim we
need to compute m-order expectation with m > 2, i.e. terms of the kind
E [

-m
i=1 fi(xqi )], with 0 < q1 < · · · < qm.

To achieve such a goal, we need to deal with multi-index quantities, that we
will call tensors, that generalize vectors and matrixes. Several kind of products
can be defined among tensors and we may now define those that will be of
use in the following discussion.

Given two m-order tensorsA and B with identical index ranges, their inner
product is a scalar defined as

�A,B� =
6

j1,...,jm

Aj1,...,jm Bj1,...,jm

where every index sweeps all its range. The inner product is a commutative
bilinear operator.

Given an m�-order tensor A and an m��-order tensor B, their outer product
is an (m� + m��)-order tensor C = A⊗ B such that
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Cj1,...,jm�+m�� = Aj1,...,jm� Bjm�+1,...,jm�+m��

where every index sweeps all its range. The outer product is a non-commuta-
tive, associative and bilinear operator.

Given the m�-order tensor A and the m��-order tensor B such that the
range of the last index of A is the same of the first index of B, their chain
product is an (m� + m�� − 1)-order tensor C = A ◦ B such that

Cj1,...,jm�+m��−1
= Aj1,...,jm� Bjm� ,...,jm�+m��−1

The chain product is a non-commutative associative bilinear operator.
The tensor products defined above enjoy few distributive properties which

are recalled without proof in the following

Lemma 1. For any four tensors A, B, C and D whose index ranges make the
equalities below well defined, we have

A⊗ (B ◦ C) = (A⊗ B) ◦ C A ◦ (B ⊗ C) = (A ◦ B)⊗ C
�A ⊗ B, C ⊗ D� = �A, C� �B,D�

Notice first that this newly introduced operation between multi-index
quantities allows us to give a more elegant and general expression for (9)
in the case of completely general PWAM maps, as formally stated in the
following theorem [2][37]

Theorem 3. For trajectories generated by a PWAM map with with ρ0 = ρ̄
one has

E [f1(xq1 )f2(xq2 )] =
�
f1 ⊗ f2, Π̄ ◦ K̄q2−q1

�
=

�
f1 ⊗ f2, ρ̄ρρ ◦ µµµ ◦ K̄q2−q1

�
(10)

where ρ̄ρρ = (ρ̄1, . . . , ρ̄p)T and µµµ = (µ(X1), . . . , µ(Xp))T .

Actually, the adoption of tensor-formalism allows to readily compute the
m-th order expectations of the quantized trajectories [17]. In fact, let us rely on
the stationarity of the process and assume q1 = 0 and indicate with P̄q2,...,qm =
P0,q2,...,qm : D([0, 1]) +→ D([0, 1]m) an operator that is formally expressed for
any m− 1 integers q2 < · · · < qm as

P̄q2,...,qm [ρ̄](ξ) = ρ̄(ξ1)
m,
i=2

δ(ξi −M qi−q1(ξ1))

and which represents the joint probability density of the random vector
(x0, xq2 , . . . , xqm). With this we obtain

E

�
m,
i=1

fi(xpi )

�
=

�
[0,1]m

m,
i=1

fi(ξi)P̄p2,...,pm [ρ̄](ξ)dξ =

=
n6

j1,...,jm=1

�
m,
i=1

fiji

�
m×

i=1
Xji

P̄p2,...,pm [ρ̄](ξ)dξ

�
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where the integral term, which represents the probability that a trajectory
starting in Xj1 pass trough Xj2 at time step q2, trough Xj3 at time step q3,
etc, can be collect in a m-order tensor H(q2, . . . , qm)

Hj1,...,jm(q2, . . . , qm) =
�

m×
i=1

Xji

P̄q2,...,qm [ρ̄](ξ)dξ (11)

which will be indicated as the SDTT.
Note now that the terms

-m
i=1 fiji for j1, . . . , jm spanning the range

1, . . . , p, can be also compounded in the m-order tensor F = f1 ⊗ · · · ⊗ fm,
and that

E

�
m,
i=1

fi(xqi )

�
= �F ,H(q2, . . . , qm)� (12)

Since the processes with which we are dealing are stationary it is often conve-
nient to think of the SDTTs as quantities depending on the time lags between
two subsequent observation instants, i.e. on τi = pi+1−pi. In the following we
will use the two notationsH(q2, . . . , qm) andH(τ1, . . . , τm−1) interchangeably.

It can be proved that [17][2], since we adopt PWAM maps, that the SDTT
can be factorized into smaller pieces so that the expression of the m-th order
moment is

E

�
m,
i=1

fi(xqi)

�
=

�F , ρ̄ρρ ◦µµµ ◦ m
i=2K̄qi−qi−1

�
(13)

where K̄ is the kneading matrix defined above and the symbols  represents
the iterative application of the chain-product that is associative.

Under the assumption that let the factorization of the SDTT hold, we also
know that [17][2] if K̄ is primitive (i.e. a power of K̄ exists in which no entry
is null), a family of matrixes A(q) exists such that [17][2] K̄q = 
+A(q), with
A(q) exponentially vanishing as q →∞ and 
 = 1⊗ ρ̄ρρ◦µµµ with 1 = (1, . . . , 1).

With this and few tensor algebra manipulations exploiting the distributiv-
ity of the tensor products we may easily derive that any inner product of the
kind �F ,Hq2,...,qm� can be expressed as a weighted sum of terms of the kind
�F ,A� ◦ A�� ◦ . . .�. As an example for m = 4, we have

E[f1(x0)f2(xq2 )f3(xq3)f4(xq4)] =
�F , ρ̄ρρ ◦ µµµ ◦ (
+A(q2)) ◦ (
+A(q3 − q2)) ◦ (
+A(q4 − q3))� =
�F , ρ̄ρρ ◦ µµµ⊗ ρ̄ρρ ◦ µµµ⊗ ρ̄ρρ ◦µµµ⊗ ρ̄ρρ ◦µµµ�+ �F , ρ̄ρρ ◦µµµ⊗ ρ̄ρρ ◦µµµ⊗ ρ̄ρρ ◦µµµ ◦ A(q4 − q3)�+
�F , ρ̄ρρ ◦ µµµ⊗ ρ̄ρρ ◦ µµµ ◦ A(q3 − q2)⊗ ρ̄ρρ ◦µµµ�+ �F , ρ̄ρρ ◦µµµ ◦ A(p2)⊗ ρ̄ρρ ◦µµµ⊗ ρ̄ρρ ◦µµµ�+
�F , ρ̄ρρ ◦µµµ ◦ A(p2)⊗ ρ̄ρρ ◦µµµ ◦ A(p4 − p3)�+
�F , ρ̄ρρ ◦µµµ ◦ A(p2) ◦ A(p3 − p2)⊗ ρ̄ρρ ◦ µµµ�+
�F , ρ̄ρρ ◦µµµ⊗ ρ̄ρρ ◦ µµµ ◦ A(p3 − p2) ◦ A(p4 − p3)�+
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�F , ρ̄ρρ ◦µµµ ◦ A(p2) ◦ A(p3 − p2) ◦ A(p4 − p3)� =
�f1 ⊗ f2, ρ̄ρρ ◦ µµµ ◦ A(p2)� �f3 ⊗ f4, ρ̄ρρ ◦µµµ ◦ A(p4 − p3)�+
�F , ρ̄ρρ ◦µµµ ◦ A(p2) ◦ A(p3 − p2) ◦ A(p4 − p3)�

where the last equality holds thanks to lemma 1 and if we assume that
E[fi(xqi )] = �fi, ρ̄ρρ ◦µµµ� = 0, i = 1, . . . , 4

As a final comment, we may conclude that the asymptotic properties of
2nd and higher-order expectations depend on the spectral structure of K̄ and
can be expressed for, zero-average quantization symbols, as a sum of exponen-
tially vanishing terms. Such properties can be thus analyzed (and sometime
designed) by elementary linear algebraic methods, so that when such corre-
lation functions are the key factor in the performance of a system in which
a chaotic component has been introduced (such as for DS-CDMA systems
[2][13][19]), this gives us high chances of optimization by means of proper
statistical chaos design.

Nevertheless, none of the PWAM maps introduced so far can be employed
to generate self-similar processes, since terms like t is obviously not(13) cannot
give rise to correlations with a polynomially vanishing trend. To solve the
impasse, we need therefore to generalize the class of maps we are dealing with
as formally stated in the next section.

1a. . . a4 a3 a2 0a

Fig. 3: A piecewise-affine Markov map with an infinite number of Markov intervals
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3 A More General Model of Quantized Chaotic
Trajectories

The impasse generated by the impossibility to generate self-similar process
using the class of PWAM maps considered in the previous section force us
to extend the set of chaotic systems we are dealing with. From now on we
consider more general maps in which the Markov partition is made of a non-
necessarily finite number of intervals. Despite their seeming a quite abstract
exercise, these maps may be of non-negligible interest from the applicative
point of view.

One of the simplest (but far from trivial) examples is a family of maps
defined starting from a sequence of points 1 = a0 > a1 > a2 > . . . such that
limk→∞ ak = 0 and obeying

M(x) =

��
ai + (ai−1 − ai)

x− ai+1

ai − ai+1
if x ∈]ai+1, ai] for i ≥ 1

x− a1
a0 − a1

if x ∈]a1, a0]
(14)

Maps in this family are affine in each interval ]ai+1, ai], M(]ai+1, ai]) =
]ai, ai−1] for i ≥ 1 and that M(]a1, a0]) = [0, 1] =

9∞
i=0]ai+1, ai]. Hence,

they are Piecewise-affine Markov maps with a countable Markov partition.
A possible map within this family is reported in figure 3 in which we also

highlight the qualitative behavior of a typical trajectory of the system. It
jumps steadily from ]ai+1, ai] to ]ai, ai−1] up to ]a1, a0], from which it moves
back to a point spread over the entire [0, 1]. If the time spent in the region
x ≤ a1 is statistically greater than the time spent in the region x > a1 such a
behavior is often indicated as “intermittency” and is a key issue in the theory
of non-linear dynamical systems.

In fact, maps of this kind have been analyzed in detail (see e.g. [38] and
[39]) to reveal that the discrete time signal obtained by the sequence of the
map states has a peculiar autocorrelation trend and thus power-spectrum
profile.

More formally, it was proved that if the trend of the ak for k →∞ is of the
kind k−ζ with ζ > 1 then the autocorrelation function c(τ) decays as τ−ζ+1

for τ →∞ while, if the trend of the ak is of the kind k−1(log k)−ζ with ζ > 1,
then the correlation decay is (log τ)−ζ+1. In terms of power spectrum, such
slow correlation decays may imply a diverging power density for frequencies
approaching 0. For this reason, maps of the kind (14) have been proposed to
generate synthetic 1/fα noise [40] that can be of interest in the time-domain
simulation of electronic circuits [41] when linearized frequency-domain analy-
sis would hide non-negligible effects and other conventional approximated 1/f
noise realizations are deemed insufficient.

As we will see, a variant of this kind of maps will be of use in the last section
of this chapter when its quantized version will be the core for the generation
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of artificial non-Poisson network-traffic with features strictly related with the
ones measured in real-worlds LANs.

If we decide that piecewise-affine Markov maps with a countable Markov
partition cannot stay out of our scope the question of the characterization of
their statistical properties arises naturally.

Note that the introduction of an assumption that forces all the observables
to be constant in each of the intervals of the Markov partition does not have
here the same beneficial effect that we exploited to obtain the results presented
in the previous section.

In fact, when the cardinality of the Markov partition is finite, such an
assumption allows to project the Perron-Frobenius operator onto a finite di-
mensional space and relate statistical properties to the finite spectral portrait
of the kneading matrix. In our case, this is no longer possible since the knead-
ing matrix of a map with a countable Markov partition is itself a countable
matrix whose spectral portrait may be extremely difficult to characterize.

Actually, this increased complexity stems from the identification of the
elements of the Markov partition with the regions in which the observables are
kept constant. In fact, the observable space itself is now infinite-dimensional
and forces a richer characterization of the underlying process.

S1

S2

S3

S3

S3

S2S1

S2

S1

S3

S2

S1

(a) (b)

Fig. 4: (a) A general model for the evolution of a system whose observables assume
constant values on three regions of the state space. (b) A more refined model of the
same evolution detailing the structure of each macro-state.

To avoid this, we may further limit our investigations to those observ-
ables that are constant in certain unions of Markov intervals that we will call
macro-states. If the number of these unions is finite we may hope to retrieve,
at least partially, the regular and finite structure that allowed the complete
characterization of the SDTT for piecewise-affine Markov maps with a finite
Markov partition.
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With this assumption, in fact, from the observables point of view the
system behaves as depicted in figure 4(a) for three macro-states, i.e. it is
perceived in one of the macro-states for a certain time, then it leaves that
region to land, with an assigned probability, in another region in which it
sojourn for a certain amount of time, and so on.

Since each macro-state actually envelopes a possibly countable set of
Markov intervals, the amount of time spent in each macro-state (the sojourn
time) is a random-variable which is, in general, non-geometrically distributed.
With this, the whole system cannot be characterized only by the probability
of moving from one macro-state to another (the analogue of the kneading ma-
trix K̄ introduced in the of previous section) and the characterization of the
observed trajectories, i.e. the derivation of the SDTTs, must take into account
both the transition probabilities between macro-states and the statistics of the
sojourn times in each macro-state.

Regrettably, in general terms, local dynamics (the sojourn times statistics)
and global dynamics (the transitions probabilities) are so intimately inter-
twined that their influence on the SDTT can be hardly separated and man-
aged. To cope with this we need some further assumptions on how Markov
intervals are grouped in macro-states. Namely we will consider as a refer-
ence a model like the one depicted in figure 4(b) in which we identify, within
each macro-state Sj , a union of Markov intervals that can be aggregated in
Sj ⊆ Sj that is mapped again into Sj (the return sub-macro-state) and a

union of Markov intervals that can be aggregated in
→
S j ⊆ Sj from which the

map states moves surely to another macro-state (the exit sub-macro-state).
Given this structure, few other technical assumptions guarantee that local

and global dynamics are coupled loosely enough to recognize that the sys-
tem still features a “memory-one” property, i.e. that the dependency between
certain critical events in its evolution are extremely short-lasting.

These systems are called pseudo-Markov and, in analogy with what hap-
pened with the memory-one property intrinsic in purely Markov maps, we
may construct for them a tensor-based mechanism leading to the expression
of the z-transform of any order SDTTs.

It is worthwhile to stress that the adoption of macro-states with a de-
tailed substructure as well as the focus on statistical properties instead of
trajectory classification also somehow widens, with respect to what is done
in the previous section, the gap between our approach and the classical sym-
bolic dynamic approach (see e.g. [42]). What is highlighted and strengthened
is the link between the evolution of a chaotic system and the theory of re-
newal processes. This idea is not new, has already led to significant results
(e.g. [39][43][44][45]), and is here exploited to a larger extent to cope with
quantized chaotic trajectories.
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4 Piecewise-Affine Pseudo-Markov Systems

One of the possible set of assumptions supporting the idea of a memory-
one property, as far as the sojourn times are concerned, is the one defining
the so-called Piecewise-affine pseudo-Markov Systems (PWAPM). As it can
be expected, these systems are strictly related to the PWAM maps defined
in section 2 of which Pseudo-Markov systems generalize some aspects and
specialize some other features.

As already discussed in the previous section, the general idea is to par-
tition each macro-state into a return and exit subset. To guarantee that the
statistics of the sojourn time in the generic macro-state Sj� depends only on
the previously visited macro-state Sj�� we must constrain the probability of
moving from Sj�� to Sj� and of staying in the latter for a certain amount of

time to be independent of the path that leads from Sj�� to
→
S j�� , i.e. of the

detailed evolution of the system within each macro-state.
We can do so by placing some constraints on the structure of the map.

More formally, in a bottom-down approach we assume that the state space
[0, 1] of the system (3) is partitioned into p disjoint intervals Si that are the
macro-states. Each of these intervals is further partitioned into a (possibly)
countable number of subintervals Xij such that

Sj =
8
k

Xjk

We will additionally assume that the map M is particularly simple when
restricted to the countable set of intervals Xjk, i.e. that for any Xj�k� and
Xj��k�� ,

M(Xj�k�) ∩Xj��k�� =

�
∅
Xj��k��

(15)

and that M is invertible in each Xjk and affine in each Xj�k� ∩M−1(Xj��k�� ) .=
∅. Note that this is a slightly relaxed assumption with respect to the usual
requirements that M is affine in each Xjk which is actually what our example
in figure 3 does.

Nevertheless the main property of classical piecewise-affine Markov Sys-
tems is still available as confirmed by this theorem [31][32]

Theorem 4. If the map M is exact then its unique invariant probability den-
sity ρ̄ is constant in each Xjk.

In the following we will assume that M is exact so that the concept of
invariant density ρ̄ and the associated invariant measure µ̄ are well defined
[2].

To continue our definition of piecewise-affine Pseudo-Markov Systems we
assume that for any Sj two subsets can be distinguished. They are the re-

turning subset Sj and the exiting subset
→
S j . These two subsets are such that
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M(Sj) ⊆ Sj , M(
→
S j) ∩ Sj = ∅, Sj ∪

→
S j = Sj . Note that this implies that

→
S j

and Sj are disjoint since their images through M are disjoint.
They are also union of certain intervals Xjk which are labeled accordingly

so that
Sj =

8
k

Xjk and
→
S j =

8
k

→
Xjk

We will finally assume that the exiting subsets are such that for every
j� .= j�� and k� .= k�� we have

µ̄(
→
Xj�k�) = µ̄(

→
Xj�k��) (16)

M(
→
Xj�k�) ∩ Sj�� = M(

→
Xj�k�� ) ∩ Sj�� (17)

µ̄(
→
Xj�k� ∩M−1(Xj��k)) = µ̄(

→
Xj�k�� ∩M−1(Xj��k)) (18)

where µ̄ is the invariant measure of the map. Despite their apparent tech-
nicality, equations from (16) to (18) have straightforward intuitive meaning
of assessing the indistiguishability between all the subintervals making the
exit part of a macro-state. In fact, (16) requires that all the subintervals are
visited with the same probability, (17) requires that their images over all the
macro-state are the same, and (18) requires that the transition probability to
any other subinterval is always the same.

5 Statistical Characterization of PWAPM Systems

As far as the statistical characterization of quantized trajectories is concerned,
we could follow a path similar to section 2 and assume to quantize the state
of the map with suitable functions fi, i = 1, 2, . . . ,m, corresponding to the
time steps 0, q1, . . . , qm, which are such that fi(Sji) = fiji .

We could again define a SDTT H(q2, . . . , qm) such as

Hj1,j2,...,jm(q2, . . . , qm) =
�

m×
i=1

Sji

P̄p2,...,pm [ρ̄](ξ)dξ

where the integral term is nothing but the probability that a trajectory start-
ing in Sj1 falls in Sj2 at time step q2, in Sj3 at time step q3, etc. Hence we could
write express the m-order expectation of quantized trajectories generated by
a PWAPM system in the form (12), where F = f1 ⊗ · · · ⊗ fm.

It can be shown that, in analogy with what happened in section 2 for
purely Markov systems, the SDTT of PWAPM systems can be decomposed
into smaller and more tractable building blocks that allow its analytical com-
putation. To keep the analytical development as simple as possible, we restrict
here to the most simple case that is suitable for our needs, i.e. the generation
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of a self-similar process. The reader interested to the full development should
refer to [33] and references therein.

Let us therefore consider a PWAPM system with two macro-states S1 =
[0, 1/2[ and S2 = [1/2, 1]. It is worthwhile to stress that although the system
structure is apparently simple, the transitions between the two macro-states
S1 and S2 can be regulated by extremely complex laws depending on the

countable Markov chains in Sj and
→
S j . To exploit this complexity to our

needs, let us first define the matrix M:

Mj�j�� (k) =
µ̄(Sj� ∩

�k
j=1 M

−j(Sj�� ))

µ̄(
→
S j� )

The j�j��-th entry of this matrix contains the probability of moving from Sj�

to Sj�� and staying at least k time steps in Sj�� . For k = 1, and taking into
account definition (7) this joint probability can be obviously rewritten as

Mj�j��(1) =
µ̄(Sj� ∩M−1(Sj�� ))

µ̄(Sj� )

5 µ̄(
→
S j�)

µ̄(Sj� )
= K̄j�j��

5 µ̄(
→
S j� )

µ̄(Sj�)

Obviously, the matrix M(1) collapses into the kneading matrix (7) when the
states Si are made of just one Markov interval Xij . In fact, in this case, our
assumptions will prevent the system from assuming the same state for more

than 1 time step, hence forcing Sj =
→
S j .

To express the correlation we are aiming at it is now convenient to define
two other quantities, namely

Lj�j�� (k) =Mj�j�� (k)−Mj�j�� (k + 1) (19)

jj� (k) =
6
j

∞6
i=k+1

µ̄(
→
S j)Ljj� (i) =

6
j

µ̄(
→
S j)Mjj� (k + 1) (20)

where Lj�j�� is the probability of moving from Sj� to Sj�� and staying in the
latter exactly k time steps, and jj�(k) is nothing but the probability of staying
at least k + 1 time steps in Sj� and then change to any other state so that

jj� (0) = µ̄(
→
S j�).

To compute the entry of the matrix H(k), notice first that its generic
entry Hj�j�� (k) is obviously the probability of observing the system in the
macro state Sj� at a certain time step and observing the system in Sj�� k time
steps after that. As a general remark note that, the system remains in the
macro-state in which we have observed it for a certain amount of time. Then, it
performs a certain number of transition sojourning in each of the intermediate
macro state. Finally, it lands in the macro-state in which we observe it at the
end of the time lag remaining there at least up to the observation instant.

To write an expression for H(k) we may formalize this remark considering
that in the k time steps between the two observations the system may exhibit
0, 1, 2, . . . macro-state transitions and writing
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Hj�j�� (k) =
∞6
l=k

jj�(l)Ij�j�� +
6
l1≥0
l2>0

l1+l2=k

jj�(l1)Mj�j��(l2) +

6
l1≥0

l2,l3>0
l1+l2+l3=k

6
i1

jj�(l1)Lj�i1(l2)Mi1j�� (l3) +

6
l1≥0

l2,l3,l4>0
l1+l2+l3+l4=k

6
i1i2

jj� (l1)Lj�i1(l2)Li1i2(l3)Mi2j�� (l4) + . . . (21)

where I is the identity matrix and the vector term
7∞

l=k jj�(l) accounts for the
probability of beings observed in the same state after k time steps when no
state transition happens, the following terms accounts for 1 state transition,
the following for 2 state transitions, and so on.

We may now define an inner product between vector and matrixes as in:

{A ∗ B}j�j��(k) =
6
i1

∞6
j=−∞

Aj�i1(j)Bi1j�� (k − j)

where the usual product between scalar has been replaced by sequence con-
volution. For a square matrix function we also define A∗p(k) = A(k) ∗ A(k) ∗
· · · ∗ A(k) p times, and A∗0

j�j�� (k) = 1 if j� = j�� and k = 1, and zero otherwise.
With these definitions, the expression of H can be easily rewritten as:

H(k) = diag

� ∞6
l=k

j(l)

&
+

diag j ∗
� ∞6
j=1

L∗(j−1)

�
∗M

 (k) (22)

where the diag(·) function generates a diagonal matrix whose diagonal coin-
cides with the argument vector. Note also that we used convolution instead of
finite sums assuming that all the matrix functions vanish for all negative argu-
ments and that Lj�j�� (0) =Mj�j��(0) = 0 to take into account the conditions
lj > 0 of (21).

We further assume that all the matrix functions we defined are summable
so that the generic z-transform:

Ã(z) =
∞6

j=−∞
A(j)z−j

converges for |z| > 1. With this we may now write the z-transform of H(k) as

H̃(z) =
diag[̃j(z)− z j̃(1)]

1− z
+ diag j̃(z)

� ∞6
j=0

L̃j(z)

�
M̃(z)
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and hence

H̃(z) =
diag[̃j(z)− z j̃(1)]

1− z
+ diag j̃(z)

�
I − L̃(z)

�−1

M̃(z) (23)

Note now that from (19) and (20) we get

M̃(z) =
L̃(z)− L̃(1)

1− z
j̃(z) = zj(0)

L̃(z)− L̃(1)
1− z

so that

H̃(z) = diag
�
− z

1− z
j̃(1) +

zj(0)
(1− z)2

(L̃(z)− L̃(1))
�
×�

I + (I − L̃(z))−1(L̃(z)− L̃(1))

�
To proceed further we assume that M is completely defined by the two

sequences of points

a1j =
1
2

∞6
l=j+1

Δ1(l) a2j = 1− 1
2

∞6
l=j+1

Δ2(l)

depending only on the two probability functions Δ1 and Δ2 whose significance
will be soon clarified.

We also set X1j = [a1j+1, a1j ], X2j = [a2j , a2j+1] and impose M affine in
each Xij and such that M(Xij) = Xij−1 for j > 1 and f(X10) = S2 while
M(X20) = S1. A sketch of the map structure is shown in figure 5

Since M is Markov and affine in each interval Xij we obviously have that
the invariant density is uniform in each of those intervals. From this, from

the map construction, from the fact that
→
S i = Xi0 and from the piecewise-

affinity of M we also get that, after a state transition, the state is uniformly
distributed in the new Si. Note now that as long as x ∈ Si it passes from Xij

to Xij−1 at each time step until it reaches
→
S i. Hence, the probability of staying

exactly k time steps in Si is equal to the probability of landing in Xik−1 after
the state transition. Yet, by construction an noting that

7∞
l=1 Δi(l) = 1, such

a probability is nothing but (aik−1 − aik)/(ai0 − ai∞) = Δi(k).
We may therefore restrict our attention to systems in which

L(k) =
�

0 Δ2(k)
Δ1(k) 0

�
(24)

where Δi(k) has now the significance of probability to stay in the state i ex-
actly for k time steps. Additionally, by using again the fact that

7∞
l=1 Δi(l) =

1, from (19) we also have:

M(1) =
�
0 1
1 0

�
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S2

S1S1

S1

S2S2

S1

S2

a20

a10a11a12

a21 a22 a23

a13
. . .

. . .

Fig. 5: A chaotic map with two macro-states whose sojourn time statistic can be
adjusted at will

and thus, from (19) and defining Ti =
7∞

l=1 lΔi(l), we get:

j(0) =
(1, 1)T

T1 + T2
j̃(1) =

(T1, T2)T

T1 + T2

while simple calculations give

(I − L̃(z))−1 =
1

1− Δ̃1(z)Δ̃2(z)

�
1 Δ̃2(z)

Δ̃1(z) 1

�
The process for which we want to get self-similar features is the one con-

structed by considering the quantization yi = f(xi) of trajectories xi+1 =
M(xi) by means of a real function f such that f(S1) = 1 and f(S2) = 0. We
will obviously deal with the process as well as with its aggregates y

(A)
i . that

represents the sequence of activity (ON=1) and inactivity (OFF=0) on the
network at different time scales. An additional parameter which is very impor-
tant in the characterization of a self-similar traffic source is the activity index
PON = E[yi] = E[y(A)

i ] = T1/(T1+T2) [31], which gives the activity time frac-
tion. To proceed, let us define the vector of the quantization values f = (1, 0)T
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and note that, using the generalization of (10) for the case of non-zero average
process, we have C(k) = fTH(k)f − P 2

ON = (f − PON)TH(k)(f − PON) and
thus

C̃(z) = z(z − 1)−2
�
Δ̃1(z)Δ̃2(z)− 1

%−1

(T1 + T2)−2× (25)�
(Δ̃1(z)− 1)(Δ̃2(z)− 1)(T1 + T2) + (z − 1)(Δ̃1(z)Δ̃2(z)− 1)T1T2

�
To investigate the asymptotic behavior, let us review the following Taube-

rian result [46]:

Theorem 5. Let x̃(z) be the z transform of the sequence xk.

• If a continuous function x : R+ +→ R+ exists such that xk = x(k) and x(t)
is asymptotically equivalent to t2H−2 (H ∈]0.5, 1[) then x̃(e!) converges for
) > 0 while it diverges as )1−2H for )→ 0+.

• If x̃(e!) ∼ )1−2H for )→ 0+ and xk is non-negative and eventually mono-
tonic decreasing then xk ∼ k2H−2 for k →∞.

Proof. Note first that for ) > 0 we have z−1 = e−! < 1 so that x̃(e!) =7∞
k=0 xk

 
z−1

'k surely converges.
Define now the following subset of the real line A(s) = {ξ = k)|0 ≤ ξ ≤ s}

and note that we can rewrite the z-transform as

x̃(e!) =
1
)

lim
s→∞

6
ξ∈A(s)

xξ/!e
−ξ)

which is asymptotically equivalent to the Riemann’s sum of the corresponding
integral with step ). Hence the sum itself can be rewritten in the limit as

x̃(e!) ∼ 1
)

� ∞

0

x

!
ξ

)

(
e−ξdξ

We may now assume that x(t) is negligibly different from the asymptotic
behavior Xt2H−2 for t > t̄. With this, the above asymptotic equivalence can
be recast into

x̃(e!) ∼ 1
)

� t̄!

0

x

!
ξ

)

(
e−ξdξ +

X

)

� ∞

t̄!

!
ξ

)

(2H−2

e−ξdξ =� t̄

0

x(t)e−t!dt−X)1−2H

�
ξ2H−1E2−2H(ξ)

�∞

t̄!

where the exponential integral function is defined as E2−2H(ξ) =�∞
1

e−ξaa2H−2da. One may now check that the exponential integral func-
tion is such that ξ2H−1E2−2H(ξ) → 0 for ξ → ∞ while (t̄))2H−1E2−2H(t̄)) =
t̄2H−1Γ (2H − 1) for )→ 0, Γ (·) being the conventional gamma function.
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Hence, taking the limit of the above expression for )→ 0 one finally obtains

x̃(e!) ∼
� t̄

0

x(t)dt + X)1−2H t̄2H−1Γ (2H − 1) ∼ )1−2H

Conversely, we may exploit basic Tauberian theory (see e.g. [46, Theo-
rem 8.7]) to obtain that, under our assumptions with the exception of the
eventually decrease of xk

n6
i=0

xi ∼ n2H−1L(n)
Γ (2H)

where L(n) is as slowly varying function for n→∞.
By adding the eventually decreasing property we know that L(n) accounts

for no oscillation around the asymptotic trend and are allowed to write

xk ∼
k6

i=0

xi −
k−16
i=0

xi ∼ k2H−2

Γ (2H − 1)

Hence, we analyze the z-transform of Δi in the special case z = e! and
) → 0. In that neighborhood we may obtain an expansion of a generic Δ̃i(z)
noting that Δ̃(1) = 1, that Δ̃�

i(1) = −Ti and that:

Δ̃��
i (z) = z−2

∞6
k=1

k(k − 1)Δi(k)z−k

Hence, the behavior of Δ̃��
i (z) for )→ 0 depends on the asymptotic trend

of k2Δi(k).
If we assume a polynomially vanishing Δi(k) ∼ k2Hi−4, with Hi ∈]0.5, 1[,

we have k2Δi(k) ∼ k2Hi−2 and thus, from Theorem 5, for z = e! and ) → 0
we have Δ̃��

i (z) ∼ )1−2Hi which accounts for an expansion of the kind:

Δ̃i(z) ∼ 1− Ti(z − 1) + Ui(z − 1)3−2Hi

for some constant Ui. With the aim of comparison, let us observe that in
the case of exponentially vanishing function, the same expression hold with
Hi = 0.5.

Note that, if Hi ∈]0.5, 1[ then 3− 2Hi ∈]1, 2[ so that we may characterize
the behavior of the z-transform or either exponentially or polynomially de-
caying Δi(k) with the three parameters Ti, Ui and αi ∈]1, 2] such that, when
z = e! and )→ 0:

Δ̃i(z) ∼ 1− Ti(z − 1) + Ui(z − 1)αi = 1− Ti) + Ui)
αi

where we exploited also the asymptotic equivalence e! − 1 ∼ ). With these
expansions (25) may be recast to:
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C̃(z) ∼ T 2
2U1)

α1−2 + T 2
1U2)

α2−2

(T1 + T2)2

With this, we may set α = mini{αi} to obtain:

C̃(z) ∼ )α−2 1
(T1 + T2)2

6
αi=α

UiT
2
3−i

Note finally that, if α < 2, and the autocovariance is eventually positive
and monotonic, Theorem 5 implies that it obeys:

C(k) ∼ k1−α = k2H−2

where H is related to the slowest asymptotic decay in sojourn time probabili-
ties. Since the autocovariance function has the desired expression (1), we may
conclude that when at least one state has a polynomially decaying sojourn
time probability the PWAPM system is able to produce second-order self-
similar trajectories. The scaling parameter of such trajectories is controlled
by the slowest asymptotic decay in sojourn time probabilities.

6 Self-Similarity & Network traffic

The above results on pseudo-Markov maps with two macro-states can be used
to design a computer network traffic generator. The aim is to have a tool to
generate traffic traces, characterized by synthetic and adjustable parameters,
which can be used to evaluate off-line the performance of queue systems (e.g.,
switches and routers) and network protocols (e.g., protocols for medium access
control or routing). Following the considerations reported in the introduction,
we will model the network activity by means of an ON/OFF discrete-time
process modeled by using a PWAPM map of the kind in figure 5 in which we
associate S1 with the ON condition and S2 with the OFF condition.

As we have shown in section 5 by selecting at least one of the probabilities
Δ1 and Δ2 as polynomially vanishing, the 2nd-order self-similarity condition
reported in the second of (1) holds. As a consequence, to capture the general
network traffic trend, it is sufficient to design a binary PWAPM systems with
at least one macro-state featuring polynomial decay of the sojourn time prob-
ability. Furthermore, the exponent of such a polynomial decay is controlled
by the slowest asymptotic decay in sojourn time probability.

In order to explain the map design procedure let us rename ετ = Δ1(τ)
and ντ = Δ2(τ) the probabilities of remaining in the ON and in the OFF
states for τ steps.

The parameters of the target map are set by means of a Lagrangian-
based iterative technique aiming at minimizing the difference between the
desired sojourn distribution (at least one of the probabilities ετ and ντ must
be polynomially vanishing) and those implied by the structure of the map
itself.

In particular we select two cases for the nominal decays:
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• ε̃τ ∼ Aγτ and ν̃τ ∼ Bτ2H−4 with A,B > 0, 0 < γ < 1, and H the Hurst
parameter;

• ε̃τ ∼ Aτ2H1−4 and ν̃τ ∼ Bτ2H2−4 with A,B > 0 and H = max(H1, H2)
the Hurst parameter.

These two cases permit to design two different kinds of self-similar
maps with two ON/OFF sojourn time distributions: light/heavy-tailed and
heavy/heavy-tailed.

We want to assign PON = E[yi] minimizing the deviation of ετ and ντ from
the nominal decays ε̃τ and ν̃τ . To do so we note that PON = T1/(T1+T2) with
the ON and OFF average times being T1 =

7∞
τ=1 τετ and T2 =

7∞
τ=1 τντ ,

respectively. Hence, we must solve the following minimization problem:

min
∞6
τ=1

!
ετ
ε̃τ
− 1

(2

+
!
ντ
ν̃τ
− 1

(2

(26)

s.t. (PON − 1)
∞6
τ=1

τετ + PON

∞6
τ=1

τντ = 0

s.t.
∞6
τ=1

ετ = 1 ,

∞6
τ=1

ντ = 1 , ετ ≥ 0 , ντ ≥ 0

To this aim, note first that, since when inequality constraints are active
they set the corresponding probability to be zero, the functional form of the
solution of (26) can be obtained by considering only the equality constraints.
With this we obtain that the optimal probabilities

∗
ετ and

∗
ντ may have only

two different functional forms, namely:

∗
ετ =

ε̂τ = ε̃τ +
λ1(PON − 1)τ

2
ε̃2τ +

λ2
2

ε̃2τ if ε̂τ ≥ 0

0 otherwise

∗
ντ =

ν̂τ = ν̃τ +
λ1PONτ

2
ν̃2τ +

λ3
2

ν̃2τ if ν̂τ ≥ 0

0 otherwise

where λ1 is the Lagrange multiplier corresponding to the PON constraint, λ2
is the Lagrange multiplier corresponding to the normalization of the ετ and
λ3 is the Lagrange multiplier corresponding to the normalization of the ντ .

Regrettably, the values of λ1, λ2 and λ3 depend on the indexes for which
ε̂τ < 0 and ν̂τ < 0 and a suitable procedure must be devised to solve the
problem.

To this aim note first that, given the asymptotic positivity of ε̂τ and ν̂τ ,
only a finite number of vanishing entries exist in

∗
ετ and

∗
ντ .

Moreover, any generic minimization problem in a sequence space with
equality and positivity constraints may benefit from the following theorem.
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Theorem 6. Let the sequences {uτ}∞τ=1 and {aiτ}∞τ=1 for i = 1, . . . , n be
given along with the real numbers bi for i = 1, . . . , n. Assume that the solution
∗
u = {∗uτ}∞τ=1 of the minimization problem:

min
∞6
τ=1

(uτ − 1)2

s.t.
∞6
τ=1

aiτuτ − bi = 0 ∀i , uτ ≥ 0

exist. Let also û = {ûτ}∞τ=1 be the solution of the relaxation, without the
constraint uτ ≥ 0, which surely exists. If û .= ∗

u then when ûτ < 0 we have
∗
uτ = 0.

Note that we may rewrite (26) to fit the assumptions of theorem 6 if
we set u2τ−1 = ετ/ε̃τ and u2τ = ντ/ν̃τ that leave the positivity constraints
unchanged.

We may now address the solution of (26) and solve the relaxed problem
where the Lagrange’s multipliers λ1, λ2, and λ3 are determined only by the
satisfaction of the three equality constraints in (26). This procedure must be
iterated until the solution of the relaxed problem has no negative components.
Note that termination is guaranteed from the finiteness of the number of
vanishing probabilities in the solution of (26) and from the fact that, when the
solution of the relaxed problem has no negative components then it coincides
with the solution of the non-relaxed problem.

Once that the two probabilities distributions
∗
ετ and

∗
ντ are known we may

construct a chaotic map M as described in section 5 whose iteration causes
the state x ∈ [0, 1] to switch between the ON condition x ∈ [0, 1/2] and the
OFF condition x ∈]1/2, 1] with the given statistics for the sojourn times.
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H=0.8,PON=0.3
H=0.8 PON=0.5
H=0.8 PON=0.7
H=0.5 PON=0.5

Fig. 6: Light/heavy-tailed chaotic maps for H = 0.5, 0.8 and PON = 0.3, 0.5, 0.8.
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Fig. 7: Heavy/heavy-tailed chaotic maps for H = 0.5, 0.8 and PON = 0.3, 0.5, 0.8.

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000

FON(  ) THEO
...     MEAS

... Asympt
FOFF(  )   THEO

...     MEAS
... Asympt

C   (  )/C    (0)
C   (0)/C    (0)

... Asympt

τ

τ

τ

τ

(A)

(A)

(A)

(A)

2

Fig. 8: ON/OFF sojourn time distributions (theoretical, measured and asymp-
totic), correlation and variance functions (measured and asymptotic) relative to
the light/heavy-tailed chaotic map, with H = 0.8 and PON = 0.3

In particular, to obtain a chaotic map with light/heavy-tailed sojourn
profiles we set: ε̃τ ∼ Aγτ and ν̃τ ∼ Bτ2H−4. Thus, by following the described
map design criterion, we obtain the maps in figure 6, for H = 0.5, 0.8 and
PON = 0.3, 0.5, 0.8.

To obtain a chaotic map with heavy/heavy-tailed sojourn profiles we set:
ε̃τ ∼ Aτ2H1−4 and ν̃τ ∼ Bτ2H2−4. Thus, by following the described map
design criterion, we obtain the maps in figure 7, for H = 0.5, 0.8 and PON =
0.3, 0.5, 0.8.

In order to verify the behavior of the ON/OFF sojourn distributions of the
proposed maps, in figures 8 (light/heavy-tailed) and 9 (heavy/heavy-tailed),
the complementary distributions of the ON time, FON (τ) and of the OFF
time, FOFF (τ) are reported, for H = 0.8 and PON = 0.3. In particular,
the theoretical trends corresponding to

∗
ετ and

∗
ντ (i.e., derived by means
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Fig. 9: ON/OFF sojourn time distributions (theoretical, measured and asymp-
totic), correlation and variance functions (measured and asymptotic) relative to
the heavy/heavy-tailed chaotic map, with H1 = 0.6, H2 = 0.8 and PON = 0.3
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Fig. 10: ON/OFF sojourn time distributions (theoretical and asymptotic) relative
to the light/heavy-tailed chaotic map, with H = 0.8 and PON = 0.3, 0.5, 0.7

of the Lagrange-based iterative procedure described above); the asymptotic
ones corresponding to ε̃τ and ν̃τ (i.e., the target behavior for τ & 1), and
the measured ones (i.e., obtained by iterating the map) are reported for both
systems. The good match between the curves can be verified.

In the same figures also the correlation and variance functions,
C
(A)
2 (τ)/C(A)

2 (0) and C
(τA)
2 (0)/C(A)

2 (0) (x has been substituted by τ to in-
clude this function in the same graph), obtained by iterating the maps, are
reported. Note that the simulated trends match with the theoretical asymp-
totic decay τ−β = τ2H−2.
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Fig. 11: ON/OFF sojourn time distributions (theoretical and asymptotic) relative
to the heavy/heavy-tailed chaotic map, with H1 = 0.6, H2 = 0.8 and PON =
0.3, 0.5, 0.7

In figures 10 and 11 only the ON/OFF sojourn distributions have been
reported (theoretical and asymptotic trend), by considering H = 0.8 and
different PON = 0.3, 0.5, 0.7.

As a final remark, note that, since the described procedure allows to set
PON and H independently, we are able to generate synthetic traffic processes
corresponding to most of the known scenarios.

7 Conclusion

This chapter deals with the development of the formal tools needed to cope
with determination of the statistical features of the process generated by
Piecewise Affine Pseudo Markov systems, that are a suitable generalization
of well-know PWAM maps able to produce self-similar process. The price we
have to pay is that such maps can be characterized by an infinite but countable
number of Markov intervals.

To maintain a perspective that is coherent with what was developed for
PWAM maps, we decided that in the transition from a finite Markov partition
to a countable one, the dimensionality of the space of observable functions
must be kept finite.

As an example of use we applied the methods described in the body of
the paper to the characterization of the self-similar behaviors that may be
exhibited by quantized trajectories of suitably defined chaotic maps. We have
also shown that this characterization can be exploited to give design guidelines
yielding chaos-based synthetic LAN traffic generators that can mimic most of
the traffic conditions of interest.
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1 Introduction

Modern society grows increasingly reliant on the Internet, a network of global
reach that supports many services and clients. However, in such a large-scale
distributed network, meeting quality-of-service requirements presents a dif-
ficult challenge because hotspots of network load move around and traffic
anomalies arise unpredictably in space and time. In this chapter, we will
demonstrate that observing network dynamics at a macroscopic level is likely
to contribute to better network engineering and management.

The Internet is an enormous network of networks without central control or
administration. Millions of computers around the world attach to the Internet
through many autonomous regional networks of routers, which interconnect
through backbone networks of routers in a distributed, hierarchical fashion.
Internet computers exchange data with each other in units called packets,
where each packet is accepted by a router, stored temporarily, and then for-
warded on to a next router. This accept-store-and-forward cycle begins when
a source computer transmits a packet to an entry router and continues until
the packet is forwarded to its intended destination by an exit router. The
Internet’s design is guided by the end-to-end principle [1], which allocates
simple functionality to routers, while pushing complexities of specific applica-
tions and of congestion avoidance mechanisms outside the network and into
attached computers. The implication of this design principle is that Inter-
net routers see no relationship among individual packets, while ”end-to-end”
protocols implemented in Internet-attached computers manage all state asso-
ciated with data exchanges. The basic communication protocol of the Internet
is called TCP/IP (Transmission-Control Protocol/Internet Protocol) [2]. IP is
a ”hop-by-hop” protocol used by source computers to inject packets into the
Internet, and used by Internet routers to store-and-forward packets among
multiple routers along a path, and then finally to forward the packet to its
destination computer. TCP is an end-to-end protocol operating on logical
connections between pairs of computers.

L. Kocarev and G. Vattay (Eds.): Compl. Dyn. in Com. Networks, UCS 5, pp. 191–211, 2005.
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TCP includes a congestion-control algorithm to ensure that a sender does
not transmit more data than the network can handle. The TCP congestion-
control algorithm exhibits a self-organizing property: when a large number of
logical connections share the Internet, underlying interactions among the con-
nections avoid router congestion simultaneously over varying spatial extent;
however, the network-wide effects created by such interactions are difficult
to determine. The spatial-temporal dynamics of Internet traffic is also diffi-
cult to characterize due to highly variable user demands and to unpredictable
resource availability. Further, not every client using the Internet is honest or
co-operative. For example, distributed denial-of-service (DDoS) attacks, which
arise when large numbers of compromised computers send traffic simultane-
ously toward a victim (e.g., a web server or a router) [3], may intermittently
disturb the normal operating condition of the Internet. All these sources of
variability inhibit easy characterization of Internet-wide traffic dynamics.

We suspect that, where many globally distributed data flows simulta-
neously transit a large network, the self-organizing properties of the TCP
congestion-control algorithm might lead to the emergence of collective behav-
ior, as in other complex systems [4]. Collective emergent phenomena often
can be identified when the behavior of an entire system appears more co-
herent and directed than the behavior of individual parts of the system. In
this way, any single data flow across a large network would not face a totally
random condition, but more likely would adapt itself to a steady collective
state, in which the flow could make little change. If such an emergent collec-
tive property occurs in large networks, and if we can describe and visualize
the associated patterns, then perhaps such knowledge can be used to improve
global network performance and to increase resistance to subtly engineered
DDoS attacks.

Since emergent coherent behavior exhibits a spatial-temporal dependence
among collective data flows over a whole network, correlation might be key
to describing emergent patterns. A number of empirical studies on traffic
measurements have convincingly demonstrated that actual Internet traffic ex-
hibits long-range dependence (LRD) [5, 6, 7], which implies the existence of
nontrivial correlation structure at large timescales. However, in these stud-
ies, the LRD found in Internet traffic was not attributed to an emergent,
spontaneous order at the macroscopic (whole network) level. Instead, these
studies attributed LRD to the linear multiplexing of a large number of highly
variable traffic sources [8]. This explanation apparently ignores any nonlinear
relationships that might arise as collective flows compete for network resources
(router buffers and link capacity) over space and time. To understand the po-
tential collective effect in large-scale networks, we conducted our own studies
to identify the reasons behind LRD traffic phenomena [9, 10, 11]. We found
that network size has greater influence than other factors—e.g., high vari-
ability in traffic sources and choice of transport mechanism—on the temporal
dynamics of network congestion. Our findings suggesting the importance of
network size in generating emergent collective behavior led us to consider
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how we might examine both the spatial and temporal dynamics of network
congestion.

Recently, graph wavelets have been proposed for spatial traffic analysis
given knowledge of aggregate traffic measurements extracted at intervals over
all links [12]. This method can provide a highly summarized view of traf-
fic load throughout an entire network. There seems to be no stringent time
limit for producing a snapshot of network-wide load with such spatial traffic
analysis; however, spatial-temporal traffic analysis, which reveals the time-
varying nature of spatial traffic, may have to perform in a timely manner.
Currently, spatial-temporal traffic analysis presents practical difficulties, not
only because large-scale distributed networks exhibit high-dimensional traf-
fic data, but also because mining large amounts of data may strain memory
and computation resources in even the most advanced generation of desktop
computers. Moreover, routers may be heavily utilized, and thus fail to collect
and transfer data, often when the routers are of most interest (due to their
congested nature). Given these practical constraints, it would be appealing to
reduce the amount of data to transfer and process, while retaining the ability
to observe spatial-temporal traffic dynamics. We believe that the emergence
of collective behavior (with its associated global order) could be exploited to
concisely capture spatial-temporal patterns with sparse observation points. In
other words, if emergent behavior arises in a large network, then traffic will
be correlated over wide space-time and, thus, might be characterized by sam-
pling a small number of points. On the other hand, if network traffic exhibits
little space-time correlation, then sampling a small number of points would
not prove particularly revealing.

A recent study of correlations among data flows in a French scientific net-
work, Renater [13], detected the signature of collective behavior. The Renater
study uses methods from random matrix theory (RMT) to analyze cross-
correlations between network flows. In essence, RMT compares a random cor-
relation matrix—a correlation matrix constructed from mutually uncorrelated
time series—against a correlation matrix for the data under investigation. De-
viations between properties of the cross-correlation matrix from the investiga-
tion data and the correlations in the random data convey information about
“genuine” correlations. In the case of the Renater study, the most remark-
able deviations arise about the largest eigenvalue and its corresponding eigen-
vector. The largest eigenvalue is approximately a hundred times larger than
the maximum eigenvalue predicted for uncorrelated time series. The largest
eigenvalue appears to be associated with a strong correlation over the whole
network. In addition, the eigenvector component distribution of the largest
eigenvalue deviates significantly from the Gaussian distribution predicted by
RMT. Further, the Renater study reveals that all components of the eigenvec-
tor corresponding to the largest eigenvalue are positive, which implies their
collective contribution to the strong correlation. Since all network data flows
contribute to the eigenvector, the eigenvector can be viewed as the signature
of a collective behavior for which all flows are correlated.
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In fact, the eigenvector corresponding to the largest eigenvalue provides an
important clue, which led us to a novel method for observing spatial-temporal
dynamics at the macroscopic level [14]. As the macroscopic pattern emerges
from all adaptive behaviors of data flows in various directions, hotspots should
be exposed through their correlation information, as the joining points of sig-
nificantly correlated data flows. Note that the details of the components of the
eigenvector of the largest eigenvalue reveal this information, with the larger
components corresponding to the more correlated flows. Therefore, we define
a weight vector by grouping eigenvector components corresponding to a desti-
nation routing domain together to build up information about the influence of
the domain over the whole network. Contrasting weights of the weight vector
against each other in space and time, we not only can summarize a network-
wide view of traffic load, but can also locate hot spots, and can even observe
how spatial traffic patterns change from one time period to the next.

Using this macroscopic-level method inevitably encounters issues of scale,
that is, gathering data from numerous distributed measurement points, and
consuming computation time and memory when analyzing data. The Re-
nater study assumes complete information from all network connection points,
which proves feasible because the Renater network contains only about 30 in-
terconnected routers. We have figured out how to scale down the coverage
problem by exploiting an emergent collective phenomenon, called the corre-
lation increase [14]. Correlation increases arise from collective response of the
entire network to changes in traffic. This effect has already been observed
in the framework of stock correlations, where cross-correlations become more
pronounced during volatile periods as compared to calm periods [15]. Indeed,
higher values of the largest eigenvalue occur during periods of high market
volatility, which suggests strong collective behavior accompanies high volatil-
ity. This connection has value in our analysis because Internet traffic behavior
appears to be nonstationary [16]. An increase in cross-correlation allows us to
infer a shift in the spatial-temporal traffic pattern of large areas of interest
outside those few areas where measurements are made. This approach could
significantly reduce requirements for data, perhaps to the point where analysis
could occur in real time.

In this chapter, we use simulation results to show how this innovation
could succeed in a large TCP/IP network. We apply our technique to identify
network hotspots and to expose large-scale DDoS attacks in our simulation
environment. The rest of this chapter is structured as five sections. Section
2 delineates a simulation model we developed recently to study space-time
characteristics of congestion in large networks, and to analyze system behav-
ior as a coherent whole. In Section 3, we describe our technique for spatial-
temporal traffic analysis. In Section 4, we show how our technique captures
network-wide patterns shifting over time. Section 5 demonstrates the macro-
scopic effect of DDoS flooding attacks, and shows how our technique could
provide significant information to detect and defend against such attacks. We
present concluding remarks in Section 6.
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2 Modeling a Large-scale TCP/IP Network

Network simulation plays a key role in building an understanding of network
behavior. Choosing a proper level of abstraction for a model depends very
much on the objective. Studying collective phenomena seems to require sim-
ulating networks with a large spatial extent. Appropriate models for such
studies should also include substantial detail representing protocol mecha-
nisms across several layers of functionality (e.g., application, transport, net-
work, and link), yet must also be restricted in space and time in order to
prove computationally tractable. Previously, we adopted a two-tier modeling
approach that maintains the individual identity of packets, producing a full-
duplex “ripple effect” at the packet level, and that also accommodates spatial
correlations in a regular network structure [10, 11]. While our two-tier model
has been applied successfully to qualitatively understand some traffic charac-
teristics in large-scale networks [11, 14], some doubts exist about the realism
inherent in the regular network structure of such a model. In this chapter, we
retain the individual identity of packets but we replace the regular network
structure of our previous two-tier model with a large-scale irregular topology
chosen to resemble the topology of a real network.

2.1 Topology

Here, we transform our regular two-tier model into an irregular four-tier topol-
ogy, as shown in Figure 1. (The host-computer tier is not shown in Figure 1.)
While the network core becomes heterogeneous and hierarchical, (tier-four)
host-computer behavior remains homogeneous at the edge of the network.
The (tier-one) backbone topology, including eleven (backbone) routers (A,
B, . . . K), resembles the original Abilene network, as described elsewhere [12].
Links between backbone routers have varying delays. For example, the longest
link between backbone routers D and F has a 20-ms propagation delay; the
shortest propagation delay (3 ms) exists on the link between backbone routers
J and K. Forty (tier-two) subnets connect to the backbone through subnet
routers, represented by designators such as A1 and B2. Each subnet contains
a variable number of (tier-three) leaf routers, such as A1a and B2b. Each leaf
router supports an equal number (200 in this chapter) of (tier-four) source
hosts, and a variable number (< 800 in this chapter) of (tier-four) receivers,
activated on demand. Link capacities gradually increase from host (tier four)
to backbone, with (tier-one) backbone links being hundreds of times faster
than links to (tier-four) hosts.

2.2 Traffic Sources

There are a total of 22,000 sources in our model, which operates at the packet
level. Each source models traffic generation as an ON/OFF process, which
alternates between wake and sleep periods with average durations λon and
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Fig. 1: Four-tier simulation model with 11 (tier-one) backbone routers, 40 (tier-two)
subnet routers, and 110 (tier-three) leaf routers. The 22,000 (tier-four) source hosts
and the up to 88,000 (tier-four) receivers are not shown.
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λoff , respectively. When awake, a source may send, subject to any restrictions
imposed by TCP, one packet at each time-step to the source’s attached leaf
router. The packet will be placed at the end of the router’s queue. At the
beginning of each ON period, a destination receiver is chosen randomly from
among leaf routers other than the local leaf routers, i.e., all flows must transit
through at least one backbone link. When sleeping, the source does not gen-
erate new packets at each time-step. ON/OFF sources provide a convenient
model of user behavior.

Empirical measurements on the Internet observe a heavy-tailed distribu-
tion of transferred file sizes [7]. Here, we use the Pareto distribution for both
ON and OFF processes with the same shape parameter α [11]. In this chapter,
λon = 50, λoff = 5000 and α = 1.5.

2.3 Routers

Packets, the basic unit of transmission on TCP/IP networks, contain destina-
tion addresses used by routers to correctly forward and source addresses used
by receivers to identity the destination address for reply packets. To store and
forward packets, which in our model travel a constant, shortest path between
a source-destination pair for each flow, all routers maintain a queue of limited
length (160 packets/router here), where arriving packets are stored until they
can be processed: first-in, first-out. For convenience, in this chapter we as-
sume that every discrete simulation time-step is 1 millisecond. However, each
leaf router, subnet router, or backbone router can in turn forward 5, 20, or
160 packets during one millisecond. This simulates capacity differences among
various link classes from leaf-access to backbone in a hierarchically structured
network. With such parameter settings, simulated backbone links are very
lightly loaded.

We select several subnet routers as observation points, e.g., B4, D5, F4,
I1, and J5, which record all outbound flows to destination leaf routers. In
this chapter, we assume that a central collector reliably receives a continuous
stream of measured data from observation points in time to perform analysis
for our various experiments.

3 Representing Macroscopic-Level Traffic Dynamics

In this section, we discuss briefly our approach to represent traffic dynamics
at a macroscopic-level. First, we describe how we represent network flow data.
Second, we outline our use of cross-correlation analysis. Finally, we depict our
technique to summarize network-wide traffic load using a weight vector.

3.1 Representing Network Flow Data

Assume that there are N leaf routers, interconnecting through subnet routers
and backbone routers to form a large-scale distributed network, where L sub-
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net routers are deployed as observation points to log outbound traffic. First,
we need to represent packets flowing between distinct source-destination pairs
at each sampling interval. Let x = (x 1 , x 2 , . . . , xN )T denote the flow vector
of corresponding packet counts, observed in L subnets during a given time in-
terval. Each element of this flow vector is itself a vector defining the number of
packets flowing into the corresponding leaf router from each of the observation
subnets in the distributed network. The method to obtain all flow variables
in this vector is to first enumerate all the destination leaf routers and then
the observation posts by 1 to L, and group these indices by leaf router: the
subnets sending to the first leaf router in the first block, x 1 , and those sending
to the second leaf router in the second block, x 2 , and so forth. Thus, we form
x with subvectors in the order x 1 = (x 11 , x 21 , . . . , xL1 )T , x2 = (x 12 , x 22 ,
. . . , xL2 )T , . . . , xN = (x 1N , x 2N , . . . , xLN )T , where x ij represents packet
flow from the ith observation point (i =1, 2, . . . , L) to the j th leaf router (j
=1, 2, . . . , N ). Each flow variable x ij is normalized as f ij by its mean m ij

and standard deviation σij ,

fij = (xij −mij)/σij . (1)

Then, the normalized flow vector f , corresponding to x , comprises N normal-
ized subvectors, f k (k =1, 2, . . . , N ), where each subvector is formed from
normalized flow variables f ik (i ≤ L and k ≤ N).

3.2 Cross-Correlation Analysis

Cross-correlation analysis is a tool commonly used to analyze multiple time
series. We can compute the equal-time cross-correlation matrix C with ele-
ments

C(ij)(kl) = �fij(t)fkl(t)� , (2)

which measures the correlation between fij and fkl, where �· · ·� denotes a
time average over the period studied. The cross-correlation matrix is real and
symmetric, with each element falling between –1 and 1. Positive values indi-
cate positive correlation, while negative values indicate an inverse correlation.
A zero value denotes lack of correlation.

We can further analyze the correlation matrix C through eigenanalysis
[17]. The equation

Cw =λw (3)

defines eigenvalues and eigenvectors, where λ is a scalar, called the eigen-
value. If C is a square K-by-K matrix, e.g., K = L(N − 1) here, then w
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is the eigenvector, a nonzero K by 1 vector (a column vector). Eigenvalues
and eigenvectors always come in pairs that correspond to each other. This
eigenvalue problem has K real eigenvalues, some of which may repeat. An
eigenvector is a special kind of vector for the matrix it is associated with,
because the action of the underlying operator represented by the matrix takes
a particularly simple form on the eigenvector input: namely, simple rescaling
by a real number multiple. The eigenvector w 1 corresponding to the largest
eigenvalue λ1 often has special significance for many applications. There are
various algorithms for the computation of eigenvalues and eigenvectors [17].
Here, we exploit the MATLAB eig command, which uses the QR algorithm
to obtain solutions [18].

3.3 Defining the Weight Vector

The cross-correlation matrix contains within itself information about under-
lying interactions among various flows. The components of the eigenvector
w1 of the largest eigenvalue λ1 represent the corresponding flows’ influences
on macroscopic behavior, abstracted from the matrix C into the pair (λ1 ,
w1 ). The eigenvector w1 comprises N subvectors, i.e., w1 = (w1

1 , w1
2 ,

. . . , w1
N )T . The kth subvector w1

k , corresponding to the kth leaf router,
is formed from components w1

ik (i ≤ L and k ≤ N ) representing the ith
obsevation point’s contribution to the kth leaf router. We consider the square
of each component, (w1

ik )2, instead of w1
ik itself because

7
i,k

(w1
ik)2 = 1 [19].

We define the weight S k (k = 1, 2, . . . , N ) to be the sum of all (w1
ik )2 in

the kth subvector w1
k , i.e.,

Sk =
L6
i

(w1
ik)2. (4)

S k represents the relative strength of the contributions of the flows towards
the kth leaf router. Thus, the knowledge of weight vector S = (S 1 , S2 , . . . ,
SN ) across varying k constitutes one summary view of network-wide traffic
load. The evolving pattern of spatial-temporal correlation might allow us to
infer where and when network congestion emerges.

4 Capturing Shifting Spatial-temporal Patterns

Internet access is never evenly distributed. Flash-crowds are quite common.
Hot spots might develop and break up more quickly than the network could
be re-provisioned to respond. However, capturing the movement of hot spots
seems very difficult. Here, we try to use our technique to observe the macro-
scopic dynamics of such phenomena.
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To deliberately induce congestion, we let one selected leaf router have an
additional five percent probability for selection as the destination domain.
This is a natural way to change the network-wide traffic demand at longer
timescale. Figure 2 depicts a change in congestion in leaf routers. The vertical
axis represents the congested location within 11 backbone-router zones, each
of which denotes the subset of leaf routers therein. At first, leaf router H4b is
congested (up until time, t, is 400 s). From t = 400 s, C2b is selected as a new
location to induce congestion. This congestion-induction technique offers an
easily interpreted framework to analyze spatial-temporal pattern shifts driven
by varying traffic demand.

Fig. 2: Congested location changing over time from leaf router H4b to leaf router
C2b.

4.1 Timescale of Interest

When focusing on network-wide behavior, the timescale of interest should not
be fine-grained. The microscopic fluctuations observed at shorter timescales
usually reflect local details, while the driving force of traffic demand seems
to vary over much longer timescales. The timescale of interest in our experi-
ments appears at a middle range, similar to the concept of a critical timescale
beyond which traffic fluctuation is supposed to exhibit greater influence than
microscopic fluctuations [20]. At this middle timescale, macroscopic (coherent)
behavior emerges as a connecting link between short-range microscopic fluctu-
ations and the longer-range driving force of variations in traffic demand. This
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coherence is expected to emerge as a result of adaptive behaviors among data
flows in different directions, but then to continue to shift its spatial-temporal
pattern under the force of traffic demand.

We first form an observation system of eleven points (L = 11) by select-
ing one subnet router in each backbone-router zone, instead of observing all
subnets in all backbone-router zones. We observe, at a granularity of 200ms,
every fine-grain flow from these subnet routers to every leaf router (N = 110).
(In a subsequent section, we will try to further reduce observation points.)

Now, we calculate the weight vector S with M data points (M = 200 in this
chapter), which span a first period (M/2 points) and a second period (M/2
points). Selecting an appropriate data length for analysis might be largely
considered a trial-and-error process (or the subject of future work). Here, we
selected M = 200, which seemed to work fine. We tried M = 100 and 300,
which confirmed a data length of 200 more suitable for our experiments. Two
weight vectors are calculated at the aggregated levels T = 0.4 s and T = 2
s, and shown respectively in Figure 3(a) and 3(b). The weight vector with T
= 2 s shows two prominent weights at leaf routers C2b and H4b (SC2b and
SH4b), revealing the network-wide pattern of congestion arising in these two
domains. However, the pattern does not appear when T = 0.4 s. To clarify
the role of timescale here, we further show the sum of SC2b and SH4b at
different aggregated levels in Figure 3(c). We find that the sum of SC2b and
SH4b gradually increases as T increases, up until about T = 2 s.

4.2 Increased Correlation

Figure 4(a) shows the sum of SC2b and SH4b , which is calculated with T = 1.6
s and with the time window, MT (= 200 × 1.6 s = 320 s), sliding ahead every
16 s. The corresponding λ1 shows in Figure 4(b). The time axis indicates
the end of the moving time window. The sum of SC2b and SH4b , and the
largest eigenvalue λ1 undulate almost in the same way, reaching higher values
during the period of pattern shifting than during calm periods. The increased
correlation in the simulation data emerges gradually after the second period
starts, spreading the varying traffic demand to the entire network. During this
transient period, flows in different directions have to adapt their behaviors to
the changing congestion, and the flows continue to react to each other until
they reach collectively a new coherent pattern.

With the measurement and analysis method, as outlined above in Section
3, applied at the appropriate timescale, as cross-correlations become more
pronounced, traffic patterns over the whole system become more visible. In the
remaining experiments, described below, we focus on macroscopic dynamics
at the timescale T = 2 s.

4.3 Spatial-Temporal Pattern

It might prove feasible to design sample-based techniques suitable to iden-
tify network-wide patterns that remain invariant for a long time. However,
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Fig. 3: Two weight vectors at T = 0.4 s (a) and T = 2 s (b), and (c) the sum of
SC2b and SH4b changing at different timescales with L = 11.

when traffic demands vary over a large dynamic space-time range, these same
techniques could fail to detect the more quickly changing patterns. By taking
advantage of increased correlation arising over volatile periods, we might be
able to use a sample-based version of our proposed method to identify shifting
network-wide congestion patterns. In the following, we use only measurements
from five (i.e., L = 5) subnet routers (B4, D5, F4, I1, and J5) to perform our
analysis.

To show how the spatial traffic pattern changes, we calculate the weight
vector S using M data points within a moving time window MT from one
time period to the next. Figure 5 shows the weight vector S evolving with T
= 2 s and with the time window MT (= 200 × 2 s = 400 s) sliding ahead
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Fig. 4: (a) the sum of SC2b and SH4b , and (b) the largest eigenvalue λ1 with T =
1.6 s and L = 11.

every 10 s. The time axis indicates the end of the moving time window. We
can see the enhanced weights of C2b and H4b in the shifting spatial-temporal
pattern. While the new congestion appears at C2b, the existing congestion
at H4b, which was indistinguishable during the previous calm period, also
exposes itself to the weight vector. The five observation points, which are not
near C2b or H4b, really “sense” by themselves the gentle load fluctuation of
these two leaf routers. The load wave seems to bring about a collective re-
sponse in the entire network. This indicates that network-wide traffic appears
correlated, and that spatial-temporal dynamics evolves as a coherent whole at
some appropriate timescale. Therefore, macroscopic-level observation appears
to provide significant information that could be exploited to achieve better
network engineering and management.

With fewer observation points, the increased correlation during transient
periods is very helpful for capturing the network-wide (spatial) pattern of
traffic shifting over time. While both SC2b and SH4b become enhanced dur-
ing periods of shifting pattern, we know, as shown in Figure 2, that the con-
gestion on C2b will persist, and that H4b will gradually recover its normal
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Fig. 5: The spatial-temporal pattern evolving with T = 2 s and L = 5.

condition. If we need distinguish among routers with increasing and diminish-
ing congestion, then other techniques, such as active probing for bandwidth
or delay, might be applied to specific targets identified by our passive method
of network-wide observation.

In larger networks, such as the Internet, it is very difficult, if not impos-
sible, to observe the spatial-temporal pattern of congestion over the whole
top tier, which encompasses on the order of 10,000 autonomous systems. As
discussed in the next section, spatial aggregation, e.g., from the leaf-router
to subnet-router level, can help to implement a coarser space and time ob-
servation. First, however, we try to observe only a selected subset of the top
network tier for the case of shifting congestion illustrated in Figure 2, while
still including leaf-router details. We use measurements from the same five
routers (subnets B4, D5, F4, I1, and J5) as before to form a spatial-temporal
pattern over only three backbone-router zones of C, D, and E (comprising 26
leaf routers). Figure 6 shows the spatial-temporal pattern of the three regions,
and reveals the congestion arising in C2b. This result suggests that our tech-
nique might provide a useful means to observe spatial-temporal dynamics in
selected networks in a timely manner.

5 Monitoring DDoS Flooding Attacks

Distributed denial of service (DDoS) attacks present a very serious threat to
the stability of the Internet. By simply exploiting the tremendous asymmetry
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Fig. 6: The spatial-temporal pattern observed in three backbone-router zones, C, D
and E, with L = 5.

between the large-scale distributed network resources and local capacities at
the victim, a flooding-based DDoS attack can build up an intended congestion
very quickly near an attacked target. DDoS attacks use forged source addresses
and other techniques [21] to conceal the locations of the true attack sources;
thus DDoS attacks are among the most difficult to detect and stop. Today’s
Internet infrastructure is extremely vulnerable to such large-scale coordinated
attacks, which may easily and effectively remove an attack victim from the
Internet, even without exploiting any particular vulnerabilities in network
protocols or weaknesses in system design, implementation, or configuration.

To avoid congestion in the Internet, all flows under end-to-end controls
adapt themselves in a self-organized, distributed manner. This adaptive be-
havior of flows in different directions plays a crucial role in keeping the Internet
stable and in forming macroscopic traffic patterns. During a DDoS attack, the
attack sources do not honor the normal end-to-end congestion control algo-
rithms; rather, they overwhelm the intended victim, causing legitimate, well-
behaved flows to back off, and then ultimately to starve. In addition, large-
scale DDoS attacks also impair transit traffic flows, which happen to share a
portion of the congested network. Such network-wide phenomena might show
themselves in shifting patterns of spatial-temporal traffic.

5.1 Modeling DDoS Attacks

To observe the macroscopic effect of DDoS attacks, we arrange 50 attack
sources in our simulation model, which are distributed uniformly throughout
the network. We enable our attack sources to launch constant-rate attacks
collectively or using a subgroup technique (described further below). In our
experiments, there are a total of 22,000 source nodes, and more than 10,000



206 Jian Yuan and Kevin Mills

simultaneously active TCP connections; thus, DDoS flows cannot be easily
identified from the legitimate background traffic.

Usually, DDoS attacks directed against the network infrastructure can
lead to more widespread damage than those directed against individual web
servers. Here, one leaf router (I1a) will be the attack target. Routers under
attack may fail to collect and transfer measurement data. Usually, it is diffi-
cult to monitor areas of interest without obtaining measurements from those
areas. However, our analysis technique provides the ability to monitor areas of
interest without such local measurements. We assume in our experiments that
the attack on I1a disables the observation point deployed at the subnet-router
I1; thus, we perform our analysis using data from only four observation points
(B4, D5, F4 and J5; L = 4).

5.2 Constant Rate Attack

Constant rate, the simplest attack technique, is typical of known DDoS at-
tacks. We arrange for all the 50 attack sources to launch constant-rate attacks
collectively (that is, simultaneously). Here, we do not have the attack sources
generate attack packets with full force [22], so that they cannot be easily iden-
tified through attack intensity at the source or in intermediate networks. We
assume that the variable H represents the intensity of an attack source. Since
sources can only create one packet every millisecond, the maximum attack
rate is one packet per millisecond, i.e., H ≤ 1 (packet/ms). We experiment
with a constant-rate DDoS attack where H = 1/10, that is, each attack source
creates one attack packet for every 10 milliseconds beginning from t 0 = 500
s.

Figure 7 shows the weight vector S evolving with T = 2 s and with the time
window MT (= 200 × 2 s = 400 s) sliding ahead every 10 s. We find that the
attack really leads to a network-wide shift of spatial-temporal correlation, and
the congestion on the victim (I1a) reveals itself at the enhanced weight of I1a.
Since we observe this phenomenon and get the time and location of the attack
without any help from the suffering victim, the network-wide monitoring could
be used to activate specific detection and filtering mechanisms to isolate and
stop the attack flows.

We also can observe the spatial-temporal pattern of the constant-rate at-
tack at the subnet level by spatially aggregating the destinations of network
flow at the subnet level from current measurements at the leaf-router level.
Figure 8 shows such a coarser observation, where the weight vector S evolves
with T = 2 s and with the time window MT (= 200 × 2 s = 400 s) sliding
ahead every 20 s. Here, we can find that the constant-rate DDoS attack against
I1a also results in the congestion on the subnet I1. With a lower computing
time requirement, the coarser observation at this upper level still reveals a
very useful picture of spatial-temporal dynamics.
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Fig. 7: The spatial-temporal pattern of the constant-rate attack with H = 1/10 and
L = 4.

5.3 Subgroup Attack

Attackers constantly modify attack dynamics to evade detection. Attack dy-
namics can be made very sophisticated should an attacker desire. For exam-
ple, next we divide the 50 attack sources into three subgroups, which are
distributed separately in the left, the middle and the right parts of the larger
network. Once the attack starts at t0 = 500 s, one of the three subgroups is
always active so that the victim experiences continuous denial of service [21].
Given the dynamic nature of such a coordinated attack, it is extremely hard
to detect where attack packets originate, and to stop them at intermediate or
source networks to reduce overall congestion and increase resources available
to legitimate traffic.

Figure 9 shows the weight vector S evolving with T = 2 s and with
the time window MT (= 200 × 2 s = 400 s) sliding ahead every 10 s. We
find that the subgroup attack reveals itself in the shifting spatial-temporal
pattern. Comparing Figures 7 and 9, we find that for our analysis technique
the dynamic nature of the subgroup attack seems advantageous, because the
increased correlation induced by shifts in attack traffic keeps the weight of the
victim I1a salient over a longer time range.
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Fig. 8: The spatial-temporal pattern of H = 1/10 constant-rate attack at the subnet
level with L = 4.

During the subgroup attack, we also observed a smaller portion of the
larger distributed network, aggregated at the subnet level. Figure 10 shows
the spatial-temporal pattern of five backbone-router zones (from G to K),
where the weight vector S evolves with T = 2 s and with the time window
MT (= 200 × 2 s = 400 s) sliding ahead every 20 s, revealing the congestion
arising in the subnet I1. The effects of the subgroup attack remain evident,
while the aggregated, subnet-level observation of only a portion of the network
requires less computing time than for the case of Figure 8.

6 Concluding Remarks

In large-scale networks, such as the Internet, spatial-temporal correlations
emerge from interactions among adaptive transport connections and from
variations in user demands. By exploring the collective dynamics of large-
scale networks, we seek ways to understand spatial-temporal correlations. We
realize that capturing macroscopic patterns in correlations over time may help
us to understand shifting traffic patterns, to identify operating conditions, and
to reveal traffic anomalies.



Macroscopic Dynamics in Large-Scale Data Networks 209

Fig. 9: The spatial-temporal pattern of the subgroup attack with H = 1/5 and L =
4.

Fig. 10: The spatial-temporal pattern of the subgroup attack, observed in five zones
of backbone routers from G to K with L = 4.
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Analyzing spatial-temporal characteristics of traffic in large-scale networks
requires both a suitable analysis method and a means to reduce the amount of
data that must be collected. In particular, routers may be heavily utilized or
under DDoS attack, and thus fail to collect and transfer data, but often also
happen to be the parts of interest to monitor (due to their congested nature).
In this chapter, we describe a novel technique that provides a useful way to
observe network-wide congestion patterns shifting over time. To illustrate this
technique and its potential promise, we reported results from some simulation
experiments.

We applied this technique successfully to identify network hotspots in-
duced deliberately in a large-scale network. In particular, the effect of tran-
sient periods helped us to capture the network-wide traffic pattern shifting
over time. We indicated that the spatial-temporal dynamics of network traffic
appears as a coherent whole at an appropriate timescale.

We demonstrated how to use this novel technique to expose large-scale dis-
tributed denial-of-service (DDoS) attacks. We find that DDoS flooding attacks
lead to a network-wide shift in spatial-temporal correlation, and that conges-
tion on the attack victim reveals itself in these spatial-temporal patterns. The
macroscopic effect of DDoS attacks can provide significant information about
where and when a DDoS attack might be underway, and could trigger further
detection and filtering without any information from the attack victim. In
particular, we find that the dynamic nature of the (more stealthy) subgroup
attack seems to be an advantage in revealing the victim’s plight, because
increased variation in traffic patterns lead to increased correlation, which is
exploited by our analysis technique.

Since observing the whole Internet in detail is impractical, we suggested
a means to efficiently observe selective portions in detail, or to apply spatial
aggregation to observe larger-scale networks with less detail. In either case, our
analysis method lowers computing time requirements, while revealing shifting
traffic patterns over both space and time. If proven successful when applied
to real network measurement data, our proposed technique could become a
powerful tool to monitor spatial-temporal behavior network-wide in real time,
and could ultimately contribute to improvements in network engineering and
management.
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1 Introduction

Internet is one of the most impressive creatures of our civilization; it has
literally changed the ways we do business, communication, education, enter-
tainment, and many other activities today. For example, one can conveniently
contact friends by email and even video conversation based on the Internet.
You may wonder how the Internet delivers emails from one end to the other
end, and how the Internet makes a connection between two computers at
the ends? When you are searching some useful information through the In-
ternet by using a search engine such as Google, have you thought of how it
works? When the so-called Worm virus spreads throughout the Internet, have
you ever thought of how a virus propagates from a few end-hosts to the en-
tire huge network? Technically, all these problems rely on the Internet route
protocols [1], searching algorithms [2], etc., and the virus spreading depends
heavily on the Internet topology [3].

1.1 Historical Background

At the early stage of the Internet development, solving these kinds of prob-
lems was relatively easy because the size of the Internet was small and its
structure was simple. However, as the Internet continues to grow explosively,
in particular during the period of the mid-1990s, it has become more and
more difficult if not impossible to deal with such complicated problems. An
alternative approach is to study the problems based on an abstract model of
the actual structure of the Internet. In this attempt, the Internet topology
is critical and has significant impact on the achieved results. For example, it
was observed [4] that the efficiency of the dynamic multi-casting algorithm
is considerably reduced when it is applied to the Internet model using the
random graph structure as compared to the hierarchical graph structure. It
has also been found [5] that multi-cast resource reservation styles are quite
different in the linear, tree, and star-shape Internet topologies.

L. Kocarev and G. Vattay (Eds.): Compl. Dyn. in Com. Networks, UCS 5, pp. 213–234, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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In the past few years, graph-based methodologies have become a com-
mon tool for analyzing the Internet structure, where the nodes represent au-
tonomous systems or routers and the links denote the interactions among
the nodes. The earliest Internet model was a stochastic model, where a set of
nodes are distributed in a plane uniformly at random, and then a link is added
between each pair of nodes with a constant or a varying probability. The most
popular stochastic model for the generation of an Internet-like structure is the
Waxman model [6], where the probability to connect two nodes from u to v
is given by

P (u, v) = αe−d/(βL)

where 0 < α, β ≤ 1, d is the Euclidean distance from node u to node v, and
L is the maximum distance between any two nodes in the network.

After the Waxman model, regular graphs such as ring, star and grid struc-
tures were also proposed. An obvious benefit to use a deterministic model is
that it makes the analytic studies tractable when comparing the performances
of different algorithms on a network.

Fig. 1: Transit-Stub model of the Internet

Recently, a so-called Transit-Stub model was proposed [7], where three
levels corresponding to transit domains, stub domains, and local area net-
work (LAN) domains, which are attached to the stub nodes, are constructed
in order to reflect the hierarchical domain structure and locality presented in
the Internet. This model begins at the top (Transit domain/WAN) level and
proceeds down to the lowest (LAN) level of the hierarchy. The nodes within
the same level are placed in a rectangular region of the plane and their scales
can change depending on which level they belong to. After a connected sub-
graph is generated, where each node represents a Transit domain, a certain
number of connected subgraphs in which each node represents a Stub domain
are generated for each node in every Transit domain. Eventually, some extra
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links are added between pairs of nodes, where one node comes from a Transit
domain and the other from a Stub domain. The generated graph is illustrated
by Fig. 1.

However, the recent discovery on the Internet structure identifies the real
Internet topology being neither completely random nor completely regular
(hierarchical), but shows a prominent characteristic of self-organization, with
which the degree distribution of nodes follows a power-law form. To mimic
such a scale-invariant feature of the Internet topology, Barabasi and Albert
first proposed a scale-free network model [8], the BA model for brevity. The
BA model responsible for the self-organization characteristic in real networks
mainly involves the following three construction steps:

The initial network consists of m0 isolated nodes, and one of the following
operations is performed at each time step:

(1) Adding new links between the existing nodes
With probability p, m (m ≤ m0) new links are added into the network:
one end of a link is chosen at random, and the other end is selected with
probability ,

(ki) =
ki + 17

l

(kl + 1)
(1)

where ki is the degree of node i.
(2) Re-wiring

With probability q, m links are rewired: First, a node i and a link lij
attached to node i are selected at random, and then this link is replaced
with a new link lij� that connects node i to node j � which is chosen with
probability Π(kj� ) given by (1).

(3) Incremental growth
With probability 1 − p − q, a new node is added into the network: the
new node has m new links connected to the already existing nodes in the
network with probability Π(ki).

In this model, the probabilities satisfy 0 ≤ p < 1, 0 ≤ q < 1 − p, and
0 ≤ p + q < 1.

Using the mean-field theory [8][11], one can find that the degree ki of a
node i changes over time at the rate

∂ki
∂t

= (p− q)m
1

N(t)
+ m

ki + 17
l

(kl + 1)
(2)

where the network size is N(t) = m0 + (1 − p− q)t, and the total number of
links are

7
l

kl = 2(1− q)mt−m.

At the initial time ti, the number of links of node i is ki(ti) = m, thus
ki(t) can be expressed in the form
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ki(t) = [A(p, q,m) + m + 1]
!

t

ti

(1/B(p,q,m)

−A(p, q,m)− 1 (3)

where
A(p, q,m) = (p− q)

�
2m(1−q)
1−p−q + 1

%
B(p, q,m) = 2m(1−q)+1−p−q

m

(4)

If the parameters satisfy q < min(1 − p, (1 − p + m)/(1 + 2m)), then the
connectivity distribution of node i is in a power-law form [8]:

P (k) ∝ (k + A(p, q,m) + 1)−γ

where γ = 1 + B.

In this model, the mechanism responsible for the emergence of the scale-
free topology of the Internet globally works in terms of the preferential attach-
ment. That is, the probability that an existing node receives new links depends
on the total number of links in the whole network. However, the localization
property of real networks cannot be reflected in this model. In particular, in
the Internet, a router favors a connection of shortest distance when placing
new links, which results in that those routers within the same region have
more connections but those in different regions have less links. Consequently,
the routers have larger clustering coefficient within the same region but have
smaller values in different regions. Another example is the World Trade Web
(WTW). In the WTW, it is reported [9] that the globally preferential attach-
ment mechanism does not work for those countries that have less than 20
trade connections with other countries; yet many countries are accelerating
their economy cooperations in various regional economy-cooperative organi-
zations such as EU, ASEAN, and NAFTA. This indicates that preferential
attachment mechanisms only exist within local economy regions of the WTW.

1.2 A Local-World Model

To capture the localization properties of these real networks, a local-world
model for dynamically evolving networks was proposed in [10], which is gen-
erated by the following algorithm:

The initial network has m0 nodes and e0 links, and then the following two
steps are performed:

(1) M nodes are selected from the existing network, which are considered as
the “local world” for the forthcoming nodes.

(2) A new node is added into the network at each time step, which connects
to m nodes in its local world determined by Eq. (1), with the probability

Πlocal(ki) =
M

m0 + t

ki7
j

localkj
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In this model, if m < M < m0 + t, it represents a transition between
power-law and exponential scaling networks. In particular, the original BA
model [11] is a special case of this local-world evolving network model.

Motivated by this promising work, in this chapter, the local-world con-
cept is further developed to model the inter-domain of the Internet. A multi-
local-world (MLW)model with a localization property is proposed for a better
description of the Internet. Clearly, the Internet can be considered as a collec-
tion of many interconnected subnetworks. If a subnetwork in the Internet is
viewed as a “local-world,” then the Internet consists of several interconnected
“local-worlds.” This observation thereby leads to the novel concept and notion
of MLW.

The rest of this chapter is organized as follows: Section 2 first introduces
some experimental results on the router-level and the AS-level of the Internet
topology. The MLW model is then described for modelling the Internet in
Section 3. This new mode is based on a carefully study of the Internet AS
graphs, with a comparison to the BA model. Finally, Section 4 concludes the
chapter.

2 Real Map of the Internet

The structure of the Internet can be considered as a loose coalition of au-
tonomous administration domains. Each domain in the Internet operates with
its own policies, services, and prices. While within each Autonomous Systems
(ASs) domain, It consists of lots of routers. In order to route information
within an AS, an interior routing protocol (i.e., Interior Gateway Protocol
or IGP) is used, and an inter-domain routing protocol (i.e., Exterior Gate-
way Protocol or EGP) is used for the purpose of routing information between
different ASs. The Internet structure is visualized by Fig. 2.

2.1 Different Internet Topologies

Typically, the Internet is studied at two different granularities: (1) at the
router level, routers are represented by nodes and links are the physical con-
nections among them; (2) at the AS level, since each AS is approximately
mapped to an Internet Service Provider (ISP), each AS can be represented by
a single node and two ASs are connected if there exists a BGP peer connection
between them.

Router-level Internet topology : A common tool to map the router-level
Internet topology is traceroute (Unix traceroute or Windows NT tracert.exe),
which uses hop-limited probe, consisting of a hop-limited IP packet and the
corresponding ICMP response, to probe every possible IP address and record
every touched router and the corresponding links. A pioneering work [12]
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Fig. 2: Illustration of the Internet topology

is to use traceroute to trace 5000 hosts, which were selected in a network
accounting database in 1995. After the destinations had been determined, 11
hosts among the 5000, were used as the new sources of routes to trace the
remaining destinations, which eventually produced a graph consisting of 3888
nodes and 4857 edges by ignoring some routes that could not be traced due
to transient routing or other technical problems. The analytical results of the
obtained Internet topology shows that more than 70% of the nodes have degree
1 or 2 and they belong to class Leaf or Relay. However, a limitation of this
method is that it needs to choose a certain number of destinations representing
a subset of the Internet structure to obtain the routing information, leaving
the completeness of the resulting map to a significant dependence on the
chosen destinations before probing.

A technique called intelligent heuristic [13] can overcome this drawback,
which uses a heuristic to decide whether to map the network from a single
node and does not require an initial database of targets for exploring the
network topology. Based on some careful analysis of the collected data, which
consists of nearly 150,000 interfaces and nearly 200,000 links, it was found
[13] that the degree distribution of nodes with connectivity less than 30 has
a power-law form. However, the distribution of nodes with degree larger than
30 is significantly different: it has a faster cut-off than power-law, indicating
that there may exist another law governing the distribution of higher-degree
nodes in the network. In addition, the distribution of numbers of pairs of
nodes within at most d hops of each other in the network follows neither
exponential growth [14] nor a power-law [15]. Recently, there are some analysis
[16] on data collected during October and November 1999, which shows that
the hierarchical characteristic almost does not exist in the router-level of the
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Internet topology. It was also found that the degree distribution of nodes has a
power-law behavior, which however is smoothed by a clear exponential cut-off.
Therefore, the Weibull distribution, instead of the power-law distribution, can
better fit the collected data, agreeing with the result reported in [13]. However,
this approach could not give a complete map of the Internet topology since it
fails to map the details of the Stub networks, although it can capture the map
of Transit portion of the Internet. It is then suggested [17] that probing from
a large number of sources may be able to improve the performance regarding
the completeness of the traceroute-style probes.

Recently, BGP has been used for routing tables to determine the destina-
tions of traceroutes [18]. A directed probing technique [19] is to interpret BGP
tables thereby identifying relevant traceroutes and pruning the remainders.
The path reduction technique can be used to identify redundant traceroutes,
so as to map the route-level Internet topology. An advantage of using these
two techniques is that it can significantly reduce the number of required traces
without sacrificing the accuracy. Actually, comparing to the brute-force all-to-
all approach, this method of combining directed probing technique with path
reduction technique can reduce the number of required traces significantly
by three orders of magnitude. Some analytical results on the collected data
during December 2001 and January 2002 have shown that the Weibull distri-
bution can better fit the complementary cumulative distribution function of
router outdegree than the Pareto (power-law) distribution.

However, because ISPs generally regard their router-level topologies as
confidential, and there also exist some technical problems such as multiple
alias interfaces, it is still a challenging task today to map a relatively complete
router-level Internet topology.

AS-level Internet topology : The BGP routing tables of each AS con-
tains a spanning tree from that node to every reachable AS. Therefore, the
addition and deletion of an ISP in the network can be reflected by the BGP
routing tables. It indicates that the AS-level Internet topology can be con-
structed by investigating the BGP routing tables. This method is used by the
National Laboratory for Applied Network Research (NLANR) to collect BGP-
related information [20]. Starting from November 1997, NLANR has collected
1253 daily instances of the BGP routing tables from the Oregon route server.

Based on the collected data during 1997 and 1999, there is a study [21] of
some statistical properties of the Internet topology such as average connec-
tivity, average clustering coefficient, and average path-length, suggesting that
the “betweenness” of a network may be a unique invariant variable when the
network suffers from evolving dynamics.

It has also been observed [22] that the Internet topology exhibits power-
laws of the general form y = xa for the following four relationships:

(1) The out-degree dv of a node v is proportional to the rank of the node, rv,
to the power of a constant R, that is, dv ∝ rRv .
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(2) The frequency of nodes, fd, with an out-degree d, is proportional to the
out-degree to the power of a constant o, that is, dv ∝ rov.

(3) The total number of pairs of nodes, P (h), within h hops, is proportional to
the number of hops to the power of a constant H , that is, P (h) ∝ hH , h*
δ, where δ is the diameter of the network.

(4) The eigenvalues λi of the network are proportional, to the order i, to the
power of a constant ε, that is, λi ∝ iε.

These four factors for different Internet topology models have been exam-
ined [23]. It was found that the factors (1) and (2) are the key contributors. It
indicates that a model that can generate Internet-like topology should involve
at least two key mechanisms: one is the preferential attachment rule and the
other is the incremental growth mechanism.

In another study [24] of the four factors, it led to a proposal of a new
Internet topology generator: Inet. This scheme can generate a topology that
well approximate the actual Internet AS-level topology.

Considering the mechanism of BGP routing works, an instantaneous snap-
shot of the BGP routing table may not discover links belonging to less pre-
ferred or non-advertised paths. Therefore, the AS-level Internet graph ob-
tained from the data collected by Oregon route server may provide a very
incomplete pattern of the physical connectivity that exist in the actual In-
ternet. By merging the data collected by NLANR and the BGP peering rela-
tionship information from 70 different ASs that maintain Looking Glass sites
[25], a more complete Internet AS-level map was suggested [26]. Based on
the enriched dataset, it was found that the actual Internet does not follow a
strict power-law, and the event of “death of links” during the evolvement of
the Internet cannot be neglected in the consideration of the actual Internet
AS topology. It was confirmed [16] that the actual Internet indeed deviates
from the strict power-law behavior. Lately, it was recommended [27] that the
power-law should be a necessary but not a sufficient condition for a topology
to be realistic for the Internet.

It should be noticed that the method of analyzing the BGP tables to con-
struct the AS-level Internet structure suffers from several limitations. BGP
connectivity does not reflect the redundancy of different parts of the network.
Also, it does not capture public or private exchange points within the in-
frastructure or short-term AS path variation. On the other hand, the current
used BGP, evolving from earlier distance vector routing algorithms, suffers
from a potential routing table oscillations. For example, it was reported [28]
that the event of losing connectivity in the Internet occurs frequently. There-
fore, the existing constructed topology maps using BGP data are incomplete.
Recently, the skitter tool was used to explore the Internet topology at the IP
address granularity [29]. The skitter monitor uses active probing techniques to
measure the Internet path to a destination by sending a sequence of Internet
Control Message Protocol (ICMP), similar to the traceroute utility. To obtain
a more complete Internet map, the destinations are chosen from different lists
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such as DNS clients, Ipv4 space, and web servers. Combining the BGP routing
tables with the IP address database, IP address paths can be converted to the
AS paths, yielding an AS core structure. Figure 3 shows an example of the
AS graph during the first week of August 2001.

Fig. 3: AS core graph of the Internet during the first week of August 2001 [29]

It can be seen from Fig. 3 that most links of large ISPs in Asia and Europe
were within their own continents or connected to those in the America, and
the links between ISPs within Asia and Europe are very few. It strongly indi-
cates that the AS-level topology of the Internet has a prominent localization
property.

3 MODELLING THE INTERNET

The previous section has reviewed the actual Internet map at the router level
and the AS level. In this section, a multi-local-world (MLW) model is devel-
oped to better describe the Internet topology on the basis of AS level gran-
ularities. The factors discussed in the following five subsections have been
carefully studied based on the collected Internet AS-graph data.

On the Birth and Death of ASs

Define an AS as being “born” when a new ISP joins the Internet and as being
“dead” when it never appears again after it disappeared. According to the
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data collected by the Oregon router server, the number of ASs in the Internet
increased from 4320 in November 1998 to 9520 in November 2000. It implies
that the Internet on the basis of AS-level granularity does grow. During this
period, although there were so many dead ASs at each time unit (e.g., day,
month, or year), the number of dead ASs was always small as compared with
the number of born ASs at the same time. For example, the born AS number
is about 200 in November 1998 while less than 50 ASs died at the same time.
It indicates that the birth rate of ASs are larger than the death rate at the
same instant. For simplicity, the event of death of ASs is not considered in
the new MLW model.

On the Birth and Death of Links

When a new AS is added into the network, it creates a certain number of links
to the existing nodes in the network. On the other hand, there also appear
new interconnections between the already existing nodes, which is called the
“birth” of emerging links. A reason could be that a customer usually wants
to have an extra access service for fault tolerance, or to avoid possible traffic
congestion. Meanwhile, a link between two nodes may be disconnected, which
is called the “death” of the deleted link, if it never appears again after it is
deleted. On the other hand, the end of the deleted link with lower connectiv-
ities has no links with the other existing nodes within a short time duration.
Thus, the number of “dead” links does not include those disappeared links
that have an end with lower connectivities.

The analysis on the Internet AS topology data shows that the event of
“death” of links should not be neglected, as did in the BA model, because the
death rate of links is comparable with its birth rate. In fact, for the actual
Internet, in some cases the number of dead links can even be larger than that
of the born links. For example, in November 2000, the number of dead links
is about 1300 which was 800 more than the born links in that month. For this
reason, both “birth” and “death” of links will be included in the MLW model.

On the Re-wiring Mechanism

An ISP in the Internet may rewire one of its links to connect the nodes
with higher connectivity in order to gain more benefits, for example, reducing
the distance from it to other nodes in the network. However, recent research
shows [20] that the re-wiring mechanism may not be a significant factor in
the evolution of the Internet AS topology. Therefore, the MLW model will not
consider this mechanism.

On the Preferential Attachment Rules

When a new node joins the network, an existing node i in the network receives
a link from the new node with a certain probability, which may depend linearly
on the connectivity of node i, in the form
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(ki) =

ki7
l

kl
(5)

where ki is the degree of node i at the time step ti, and
7
l

kl is the total

degree of all nodes in the network.
The probability

-
(ki) can also be a nonlinear function of the degree of

node i, in the form ,
(ki) =

kpi7
l

kpi
(6)

where the parameter p > 0.
An investigation of the actual Internet AS topology data shows [21] that

the newly added nodes actually create new links by a linear preferential at-
tachment rule, which was lately confirmed by another study [30]. Therefore,
in the MLW model, the linear preferential attachment rule is used to quantify
the probability of a node receiving a new link from a newly added node or
from an existing one.

On the other hand, the links attached to a node with lower degrees may
be more likely being removed, because ISPs always tend to delete those infre-
quently used links so as to reduce the maintenance cost. Combining with the
linear preferential attachment rule when adding a link between two nodes, the
probability of a link attached to node i being deleted may be expressed as

Π �(ki) =
1

N(t)− 1
(1−Π(ki)) (7)

where N(t) is the number of nodes in the network at the time step t. This
term will be normalized such that

7
i Π

�(ki) = 1. Note that this form has
been used in [31] to model networks with the scale-free feature.

On the Localization Effect in the Internet

At the AS level, the Internet hierarchy can be schematically divided into in-
ternational connections, national backbones, regional networks, and local area
networks. The nodes in the regional networks are tightly connected, leading
to a high clustering coefficient within the networks. These highly clustered
regional networks are then interconnected sparsely by national backbones or
international connections.

When a new node j is being determined to join a regional network, the
nodes in other regional networks, even those with very large degrees, will have
very little impact on the decision of this newly added node. In other words,
the ability that a node i in this regional network can capture a new link from
the newly added node may depend primarily on its position relative to the
other nodes within the same regional network, but not to the entire multi-
regional Internet. This regional network is called a “local-world,” while the
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entire Internet can be considered as a collection of many local-worlds. In the
MLW model, the probability with which a node i in a local-world Ω receives
a new link from the newly added node is described by,

(ki) =
ki + α7

j∈Ω
(kj + α)

(8)

where Ω means the Ωth local-world in which the node i locates, and the
parameter α > 0 represents the “attractiveness” of node i, which is used to
govern the probability for those “young” nodes to get new links.

Similarly, the probability of a link attached to node i being deleted can be
rewritten as

Π �(ki) =
1

NΩ(t)− 1
(1−Π(ki)) (9)

where NΩ(t) represents the number of nodes within the Ωth local-world in
the network, and Π(ki) is determined by Eq. (8).

On the other hand, the local-worlds in the whole network are connected
sparsely. As a result, the deletion of links between different local-worlds may
render some local-worlds being isolated. More importantly, those links re-
moved from the network may most likely come from the nodes within the
same local-world. Therefore, only links among nodes within the same local-
world are allowed to be removed in the MLW model.

3.1 The MLW Model for the Internet

The proposed MLW model is generated by the following scheme:

Start with m isolated local-worlds, in which suppose that there are m0

nodes and e0 links equally in each local-world. At each step, then, perform
one of the following five operations at random:

(i) With probability p, a new local-world is created, which contains m0 nodes
and e0 links. Meanwhile, a unique identifier is generated to identify this
new local-world.

(ii) With probability q, a new node is added to an existing local-world, which
has m1 links to the nodes within the same local-world. To do this, first,
a local-world Ω is selected at random, and then a node in the local-world
Ω is chosen with a probability given by (8), with which the new node
connects to the selected nodes. This process is repeated m1 times.

(iii)With probability r, m2 links are added to a chosen local-world. To do
this, first, a local-world Ω is selected at random, and then one end of a
link is chosen randomly while the other end of the link is selected with a
probability given by (8). This process is repeated m2 times.
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(iv)With probability s, m3 links are deleted within a chosen local-world. To
do this, first, a local-world Ω is selected at random, and then one end of
a link is chosen randomly while the other end of the link is selected with
a probability given by (9). This process is repeated m3 times.

(v) With probability u, a selected local-world has m4 links to the other existing
local-worlds. To do this, randomly select a local-world and a node in this
local-world with a probability given by (8), which acts as one end of a
link. Then, another node of the link, which is in another local-world chosen
at random, is selected with the probability given by (8). This process is
repeated m4 times.

In this model, the parameters (probabilities) have to satisfy 0 < q < 1,
0 ≤ p, r, s, u < 1 and p + q + r + s + u = 1.

The schematic diagram of the MLW model is illustrated by Fig. 4.

In Fig. 4: (a) The original network has m = 3 local-worlds (marked by
capital A, B, and C), and there are m0 = 3 nodes (represented by the black
circles) and e0 = 3 links in each local-world. (b) A new local-world D is cre-
ated, depending on the probability p. This new local-world consists of m0 = 3
nodes and e0 = 3 links. (c)-(d) A new node j joins the network. First, it se-
lects the local-world C where it will locate, and then connects an existing node
(m1 = 1) in this local-world with preferential attachment with a probability
given by (8). (e) Local-world C is chosen, also at random, and then m2 = 1
links are added to this local-world. One end of a link is selected randomly,
and the other end of the link is chosen with a probability given by (8). (f) A
local-world is randomly chosen, and then m3 = 1 link is deleted within this
chosen local-world D. An end of a link is selected at random, and then the
other end of the link is chosen with a probability given by (9). (g) Depending
on the probability u, m4 = 2 link is added between two nodes located in two
different local-worlds, respectively. Both ends of the link are chosen with pref-
erential attachment according to a probability given by (8). (h) At the next
time step, one of the five possible operations listed above will be performed,
depending on the corresponding probability of occurrence. Hence, a new node
may be added to the network.

3.2 Degree Distribution of the MLW Model

Using the mean-field theory [8][11], one can obtain the degree distribution of
a node i in the Ωth local-world, which can be derived analytically as follows.

(i) With probability p, create a new local-world:
In this case, the degree of a node i in an existing local-world Ω does not
change over time since the original nodes in the newly created local-world
have no links with any other nodes in the existing local-worlds. Thus,
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Fig. 4: Schematic illustration of the MLW model
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∂ki
∂t

(
(i)

= 0 (10)

(ii) With probability q, add a new node to join the local-world Ω:!
∂ki
∂t

(
(ii)

=
m1q

m + tp

ki + α7
j∈Ω

(kj + α)
(11)

The term on the right-hand side of the above corresponds to the random
selection of a local-world, and a node selection with preferential attachment
according to the probability given by (8). Since there are m1 links between
the new node and the existing nodes, the coefficient is equal to m1.

(iii) With probability r, add m2 links to the local-world Ω:

!
∂ki
∂t

(
(iii)

=
rm2

m + tp

 1
NΩ(t)

+
!

1− 1
NΩ(t)

(
ki + α7

j∈Ω
(kj + α)

 (12)

The first term above means the random selection of a node i within a
local-world, which is also chosen randomly; the second term represents
the preferential selection within the same local-world.

(iv) With probability s, delete m3 links within a randomly chosen local-world
Ω:  

∂ki

∂t

'
(iv)

= − sm3
m+tp

�
1

NΩ(t)

+
�

1− 1
NΩ(t)

%
1

NΩ(t)−1

�
1− ki+αP

j∈Ω

(kj+α)

&�
(13)

The term of the right-hand side implies that the decrease of degree of
node i in the local-world Ω comes from two sources: one is that it acts as
a randomly chosen end of a deleted link, the other is that it is the end of
a deleted link selected with a probability given by (9).

(v) With probability u, add m4 links between two local-worlds in the network:

!
∂ki
∂t

(
(v)

= um4

 2
m + tp

ki + α7
j∈Ω

(kj + α)
− 1

m + tp

1
m + tp

ki + α7
j∈Ω

(kj + α)


(14)

At time step t the total degree of any local-world Ω in the network, on
average, is6

j∈Ω
kj = 2t(pe0 + qm1 + rm2 − sm3 + um4)/(m + tp) (15)

And the number of nodes in the local-world Ω, on average, is

NΩ(t) = m0 + qt/(m + tp) (16)
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Next, let

c = 2(pe0 + qm1 + rm2 − sm3 + um4) + qα

By combining Eqs. (10)–(16) together, one has

∂ki
∂t

=
qm1

c

ki
t

+
qm1α

c

1
t

+
rm2(q + m0p− p)

(q + m0p)c
ki
t

+
!

rm2

(q + m0p)
+

rm2(q + +m0p− p)α
(q + m0p)c

(
1
t

− rm2m

(q + m0p)c
(ki + α)

t2
+

sm3p

(q + m0p)c
ki
t

+
!

sm3pα

(q + m0p)c
− 2sm3

(q + m0p)

(
1
t

+
sm3m

(q + m0p)c
(ki + α)

t2
+

2um4

c

ki
t

+
2um4α

c

1
t
− um4

c

(ki + α)
t(m + tp)

=
!
qm1

c
+

rm2(q + m0p− p)
(q + m0p)c

+
sm3p

(q + m0p)c
+

2um4

c

(
ki
t

+
!
qαm1

c
+

rm2

(q + m0p)
+

rm2(q + m0p− p)α
(q + m0p)c

(
1
t

+
!

sm3pα

(q + m0p)c
− 2sm3

(q + m0p)
+

2um4α

c

(
1
t

(for large t):

Define

a =
qm1

c
+

rm2(q + m0p− p)
(q + m0p)c

+
sm3p

(q + m0p)c
+

2um4

c
,

b =
qαm1

c
+

rm2

(q + m0p)
+

rm2(q + m0p− p)α
(q + m0p)c

+
sm3pα

(q + m0p)c
− 2sm3

(q + m0p)
+

2um4α

c

Therefore,
∂ki
∂t

= a
ki
t

+ b
1
t

(17)

Since a .= 0, using the initial condition ki(ti) = m1, one obtains

ki(t) = − b

a
+

!
m1 +

b

a

(!
t

ti

(a

(18)
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Define the unit of time in the MLW model as (one local-world cre-
ation)/(one node increment)/(one link deletion)/(one new link within a local-
world)/(one new link between two local-worlds). Then, the probability density
of ti is

Pi(ti) = 1/(3m + t(1 + 2p))

so that

P (ki(t) < k) = P

�
ti >

!
m1 + b/a

k + b/a

(1/a

t

&

= 1− 1
(3m + t(1 + 2p))

!
m1 + b/a

k + b/a

(1/a

t (19)

Using P (k) = ∂(P (ki(t)<k)
∂k , one has

P (k) =
t

a(3m + t(1 + 2p))
(m1 + b/a)1/a (k + b/a)−γ (20)

where γ = 1 + 1/a.
To predict real networks, whose power-law exponents are typically between

2 and 3 using the MLW model, the following conditions have to be satisfied:�
(m1 + b/a) > 0
a < 1 (21)

Obviously, if one takes rm2 ≥ 2sm3, then condition (21) can be guaran-
teed. Note that the power-law exponent increases with the increasing of attrac-
tiveness of nodes in the MLW model, which indicates that the attractiveness
of nodes in a network may play an important role although the underlying
mechanism is somewhat ambiguous.

3.3 Some Special Cases of the MLW Model

Now, consider the following special cases of the MLW model.

Case A: When m = 1, q = 1, and p = r = s = u = 0, the network has
only one local-world, and the power-law exponent is γ = 3 + α/m1. This
reduces to the original BA model [11].
Case B: If a network consists of only one local-world, and the evolution of

the network only includes the events of addition of node and links, namely,
if m = 1, p = 0, s = u = 0, then the exponent γ = 3 +αq/((m1 −m2)q +
m2). This indicates that the event of addition of links between two existing
nodes in the network also has a significant impact on the scale-free feature
of this evolving network. However, the exponent keeps unchanged if one
takes α = 0, which may indicate that the attractiveness of nodes plays a
more important role than the addition of links between two existing nodes
in the development of the network.
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Case C: If a network consists of a fixed number of local-worlds, and the
events of addition and deletion of links between two nodes in the same
local-world do not occur, then p = 0, r = 0, s = 0. In this case, the
power-law exponent is γ = 2 + (m1 + α)q/((m1 − 2m4) + 2m4).
Case D: If rm2 = 2 sm3 in the MLW model, then b = αa, so that P (k) ∝

(k + α)−γ , different from P (k) ∝ k−γ in the original BA model. This
clearly indicates that the attractiveness of nodes is very important to the
evolvement of the network.

To visualize a generated graph by using the MLW model, a simulation is
demonstrated here. Randomly assign a sub-region to every local-world in the
plane, which the entire network occupies. Within the assigned sub-region, the
nodes belonging to the corresponding local-world are distributed randomly.
Figure 5 shows an example of the graph generated by using the MLW model,
where the network consists of 150 nodes and includes 4 local-worlds.

Fig. 5: An example of the graph generated by using the MLW model

In order to model the Internet topology using the MLW model, some real
Internet AS graph data shown in Table I, collected by 8 steadily maintained
Oregon servers from November 1998 to November 2000 [26], will be used.

Table I. Internet AS map collected by 8 steady Oregon servers
November 1998 November 2000

AS number 4292 9536
Link number 7298 17,291
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During that period of time, there were many ASs and many links between
ASs joining or leaving the Internet. Table II shows such “born” and “dead”
numbers of ASs and links.

Table II. Birth and death of ASs and links
Birth number Death number

ASs 6696 1,452
Links 20,253 10,260

In that real Internet, when a new AS joined the network, it had only one
link to the existing nodes in most cases. Also, the nodes with degree 1 were
removed from the network with higher probability than the others. Thus, one
may set m1 = 1 in the MLW model. On the other hand, the ratio between the
number of born links and dead links during November 1998 and November
2000, is about 2. Hence, in the MLW model, one can obtain approximately:

rm2 + um4

sm3
= 2

If one chooses p = 0, α = 0, s = 2/11, and m1 = m2 = m3 = m4 = 1, then
by considering the fact that the power-law exponent of the Internet was about
2.2 during that period of time, one obtains q = 5/11, r = 4/33, u = 8/33.

To compare the MLW model with the original BA (OBA) model [11] and
the extended BA (EBA) model [8], let m0 = 2, m = 2 for the OBA model,
and m0 = 2, m = 1, p = 0, q = 0.6 for the EBA model.

Table III. Statistical properties of the Internet in 1997–1999
Year 1997 1998 1999
N 3112 3834 5287
E 5450 6990 10,100
k̄ 3.5(1) 3.6(1) 3.8(1)
C̄ 0.18(3) 0.21(3) 0.24(3)
d̄ 3.8(1) 3.8(1) 3.7(1)

Statistical properties of the Internet topology such as average degree, av-
erage clustering coefficient, and average path length are used to evaluate the
three different models, i.e., the OBA, EBA, and MLW models. The collected
topology data during 1997 and 1999 [21] are shown in Table III, where N
represents the number of nodes, E is the number of connections, k̄ means the
average degree, C̄ stands for the average clustering coefficient, and d̄ repre-
sents the average path length.

A comparison of the results obtained from the three models are shown in
Table IV against the actual Internet topology in November 1998.
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Table IV. Comparison results for the three models studied
OBA Model EBA Model MLW Model Real map in Nov. 1998

N 3834 3834 3834 3834
k̄ 2.41 5.13 4.75 3.6
C̄ 0.09 0.11 0.24 0.21
d̄ 6.43 1.68 5.01 3.8
γ 3 2.2 2.2 2.2

One can clearly see from Table IV that the OBA model cannot be used
to describe the Internet topology, since it can only predict the real networks
with power-law exponent being equal to 3. The EBA model can capture the
power-law characteristic of the Internet, but it does not satisfy basic statistical
properties. For example, for the average clustering coefficient, the EBA model
gives 0.11 while the MLW model gives 0.24, which has a smaller error in
comparison against the actual Internet. For the MLW model, as expected, it
is better than both the OBA and the EBA models in modelling the Internet
AS-level topology, since it can capture the localization property and can reflect
the impact of the event of links deletion on the evolvement of the Internet.

4 Conclusions

In this chapter, a multi-local-world (MLW) model has been proposed for the
Internet AS-level topology, which is developed based on some careful studies
of several intrinsic mechanisms that may be responsible for the emergence of
the scale-free characteristic of the Internet. Using the real data collected by
NLANR in November 1998, three different models (the original BA model, the
extended BA model, and the new MLW model) have been compared, for some
basic properties such as the average degree, average clustering coefficient, and
average path length. The comparison has clearly demonstrated that the MLW
model is the best model for describing the Internet topology.

However, it should be noted that only the inter-domain data of the Internet
topology collected in November 1998 was used in this investigation, although
it has led to the conclusion that the MLW model is superior to both the
original BA model and extended BA model. The main reason that the MLW
model can better fit the real Internet data than the other two models is that it
can capture the localization property and the impact of the links deletion on
the evolving Internet. In order to reach a more convincing conclusion about
the nature of the Internet topology, a more complete Internet map is needed
and a large database, if available, will be more desirable.
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1 Introduction

In recent years, the Internet has become one of the most influential media
in our daily life, going beyond in its role as the basic infrastructure in the
technological world. Explosive growth in the number of users and hence the
amount of traffic poses a number of problems which are not only important in
practice for, e.g., maintaining it free from any undesired congestion and mal-
functioning, but also of theoretical interests as an interdisciplinary topic [1].
Such interests, also stimulated by other disciplines like biology, sociology, and
statistical physics, have blossomed into a broader framework of network sci-
ence [2, 3, 4]. The Internet is a primary example of complex networks. It
consists of a large number of very heterogeneous units interconnected with
various connection bandwidths, however, it is neither regular nor completely
random. In their landmark paper, Faloutsos et al. [5] showed that the Internet
at the autonomous systems (ASes) level is a scale-free (SF) network [6], mean-
ing that the node degree k, the number of connections a node has, follows a
power-law distribution,

pd(k) ∼ k−γ , (1)

in node degree k, the number of connections a node has. The degree exponent
γ is subsequently measured and confirmed in a number of studies to be γ ≈ 2.1
(Fig. 1). The power-law degree distribution implies presence of a few nodes
having a hugh number of connections, called hubs, while most other nodes
have a few number of connections.

Emergence of such a heterogeneous degree distribution calls for explana-
tion and understanding of the basic mechanism underlying the growth of the
Internet. Once revealed, it can be used to predict what the Internet will be
like in the future, as well as how it has evolved into the present shape. In this
manuscript, we will address this issue, showing that it can be described by a
simple toy model based on the multiplicative stochastic process. By extracting
relevant parameters for the stochastic process from the time history of the AS

L. Kocarev and G. Vattay (Eds.): Compl. Dyn. in Com. Networks, UCS 5, pp. 235–250, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1: The degree distribution of the Internet at the autonomous systems level. The
data are sampled in January each year, 1998 (×), 2000 (�), 2002 (✷), and 2004 (◦),
from the Oregon route views project. The data are logarithmically binned, and the
dashed straight line has the slope −2.1, drawn for the eye.

map archived in the Oregon route views project, we can predict the degree
exponent of the Internet accurately.

While the power-law degree distribution is intriguing, it gives only a global
snapshot of the Internet structure. The degree-degree correlation function is a
quantity which gives more detailed local information of the Internet structure.
In this manuscript, we also study the mean degree of the nearest neighbors of
nodes with degree k, denoted as �knn�(k), associated with the degree-degree
correlation. We show that the behavior of the mean degree function of the
Internet is nontrivial. The behavior of the mean-degree function cannot be
explained by the toy model with the multiplicative stochastic process only. We
improve the toy model by introducing the rule of adaptive rewirings of links.
The adaptation model can also generate the clustering coefficient as large as
the one obtained from the real-world Internet. However, the adaptation model
is not complete yet to reproduce the joint probability P (k, k�) that two nodes
with degree k and k� are connected.

The Internet is not a quiet object. Data packets are sent and received
over it constantly, causing momentary local congestion from time to time.
To avoid such undesired congestion, the capacity, or the bandwidth, of the
routers should be as large as it can handle the traffic. We will introduce
a rough measure of such capacity, called the load and denoted as 6. The
distribution of the load reflects the high level of heterogeneity of the Internet:
It also follows a power law,

pl(6) ∼ 6−δ, (2)

with the load exponent δ ≈ 2.0. We will discuss the implication of the power-
law behavior of the load distribution.
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2 Internet Evolution as a Multiplicative Stochastic
Process

The mechanism of the emergence of SF network is mostly captured by the
Barabási-Albert (BA) model [7] which assumes the linear growth in numbers
of nodes and links in time and the preferential attachment (PA) in establishing
links from a new node to other previously existing ones. The PA means that
the more links a node already has, the more likely it is to get another from
a new node. Precisely, the probability Πi(t) that a node i will receive a link
from the new node created at time t is linearly proportional to its present
degree ki(t), i.e.,

Πi(t) =
ki(t)7
j kj(t)

. (3)

The degree exponent γ = 3 for the BA model. In the generalized version which
can tune γ continuously, ki in Eq.(3) is replaced by ki − a, with a a constant
related to γ by a = �k�(3 − γ)/2, �k� being the mean degree. The empirical
evidence of the PA in the Internet has been reported [8, 9]. As we will see, how-
ever, the assumption that the numbers of nodes and links increase linearly in
time does not apply to the real situation of the Internet. Rather, the numbers
of nodes and links increase exponentially but with different rates. Further-
more, the interconnections between nodes are being updated continually in
the Internet, which was not incorporated in the original BA model.

Huberman and Adamic (HA) [10] proposed another scenario for SF net-
works. They argued that the fluctuation effect arising in the process of con-
necting and disconnecting links between nodes is an essential feature to de-
scribe the dynamics of the Internet topology correctly. In the HA model, the
total number of nodes N(t) increases exponentially with time as

N(t) = N(0) exp(αt). (4)

Next, they assumed that the degree ki at a node i evolves through the multi-
plicative stochastic process,

ki(t + 1) = ki(t)[1 + ζi(t + 1)], (5)

where ζi(t) is the growth rate of the degree ki at time t, which fluctuates from
time to time. Thus, one may divide the growth rate ζi(t) into two parts,

ζi(t) = g0,i + ξi(t), (6)

where g0,i is the mean value over time, and ξi(t) the rest part, represent-
ing fluctuations over time. ξi(t) is assumed to be a white noise satisfying
�ξi(t)� = 0 and �ξi(t)ξj(t�)� = σ20,iδt,t�δi,j , where σ20,i is the variance. Here �· · · �
is the sample average and δa,b is the Kronecker delta symbol. For later conve-
nience, we denote the logarithm of the growth factor as Gi(t) ≡ ln[1 + ζi(t)].
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Then a simple application of the central limit theorem ensures that the prob-
ability distribution of ki(t)/ki(t0), t0 being a reference time, follows the log-
normal distribution for sufficiently large t. To get the degree distribution,
one needs to collect all contributions from different ages τi, growth rates g0,i,
standard deviations σ0,i and initial degree ki(t0). HA further assumed that
ζi are identically distributed so that g0,i = g0 and σ0,i = σ0 for all i. Then
the conditional probability for degree, Pd(k, τ | k0), that ki(t0 + τ) = k, given
ki(t0) = k0 is given by

Pd(k, τ | k0) =
1

k
0

2πσ2effτ
exp

�
− (ln (k/k0)− geffτ)2

2σ2effτ

�
, (7)

where geff ≡ �Gi(t)� and σ2eff ≡
�
(Gi(t)− �Gi(t)�)2

�
. geff and σ2eff are related

to g0 and σ20 as geff ≈ g0 − σ20/2 and σ2eff ≈ σ20 , respectively [11]. Since the
density of nodes with age τ is proportional to ρ(τ) ∼ exp(−ατ), the degree
distribution collected over all ages becomes

pd(k) =
�

dτρ(τ)Pd(k, τ | k0). (8)

The integration is evaluated by the steepest descent method in the limit
k/k0 →∞ to give pd(k) ∼ k−γ with

γ = 1− geff
σ2eff

+

0
g2eff + 2ασ2eff

σ2eff
. (9)

Therefore, it is instructive to know the effective values of geff and σeff to
determine the degree exponent. In the next section, we will measure such
parameters from the real evolutionary history of the Internet AS map and
check if the HA scenario holds.

3 Growth Dynamics of the Internet

A number of projects exists aiming to map the world-wide topology of the
Internet. One such is the Route Views project initiated at the University of
Oregon [12], the data of which were also archived at the National Laboratory
of Applied Network Research (NLANR) [13]. Among the daily data from
November 1997 to January 2000, we sample one AS map a month, with the
total period of 26 months, and analyze them for various quantities. First we
measure the growth rate of the number of ASes α. We also measure directly the
growth rate of the number of links β, which can be crosschecked for consistency
later.

In Fig. 2(a) and (b), we show the total number of ASes N(t) and the total
number of links L(t) as a function of time t. The straight line in log-linear
plot means N(t) and L(t) indeed grow exponentially. The growth rates are
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Fig. 2: The time evolution of the number of ASes N(t) (a), the number of links
between ASes L(t) (b), the degree of the hub kh(t) (c), and the number of ASes
among those existed at time t = 0 that have survived until t, N0(t) (d). Note that
the ordinates in (a), (b) and (c) are in logarithmic scale, indicating the exponential
increase of corresponding quantities. The fitted line has a slope 0.029 in (a), 0.034
in (b), and 0.043 (0.030) for the dotted (dashed) one in (c).

determined to be α ≈ 0.029 and β ≈ 0.034. We also find that the newly
appeared AS would connect to only one or two existing ASes so that the
average number of links the new AS establishes is knew ≈ 1.35. Fig. 2(c)
shows the growth of the degree of the hub, the node with the largest degree.
It shows a change of growth rate around t ≈ 14. N0(t), the number of ASes
among those existed at time t = 0 that have survived until t, is also shown in
Fig. 2(d).

The measurement of g0 and σ0 is nontrivial due to the presence of large
fluctuations. To this end, we measure the degree growth rate of a node i,
Gi(t), defined earlier as Gi(t) ≡ ln[1 + ζi(t)] = ln[ki(t)/ki(t − 1)]. To keep
Gi(t) well-defined for all t, we consider only the nodes existing for the entire
time range 0 ≤ t ≤ 26, the set composed of which is denoted by S hereafter.
By the existence of a node we mean that its degree is nonzero, since one
cannot identify an AS with no connection. For each i (i ∈ S), let gi = �Gi(t)�t
and σ2i =

�
(Gi(t)− gi)2

�
t
, where �· · ·�t means the temporal average over the

period 16 < t ≤ 26 (T = 10). If the HA scenario holds, the histogram of {gi}
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Fig. 3: The normalized histogram of gi (a) and σ2
i (b). In (a), the data is fitted with

a Gaussian with the mean 0.016 and the standard deviation 0.04. In (b), the data is
fitted with an exponential decay exp(−x/xc) with the characteristic scale xc ≈ 0.02.
The measured value of the average is σ2 ≈ 0.017.

for all nodes would follow the Gaussian distribution with the mean geff and
the variance σ2

eff/T . We show such histogram in Fig. 3, the fit of which to the
Gaussian gives the mean g as 0.016 and the standard deviation σg as 0.04.
The measured values of {σ2

i } give the mean value σ2 ≈ 0.017.
It is most likely that g and σ2 would have a distribution over nodes. As

HA assumed, however, we try to approximate the growth process by a single
process whose effective mean growth rate and standard deviation are geff and
σeff , respectively. Then Eq. (7) should hold for all i and all t with a suitable
choice of those parameters. For this purpose, we consider the distribution
P [ki(t)/ki(t0)] in terms of the scaled variables x and y defined as

x ≡ ln[ki(t)/ki(t0)]− gd(t− t0)0
2σ2d(t− t0)

, (10)

and
y ≡ P [ki(t)/ki(t0)][ki(t)/ki(t0)]

.
2πσ2d(t− t0), (11)

where we set t0 = 0 and gd and σd are parameters to be chosen. From
Eq. (7), with suitably chosen parameters gd and σd, the distribution for dif-
ferent time t would collapse onto a single curve, ln y = −x2. We show such
data in Fig. 4. While the data collapse breaks down for large x, the best
collapse can be accomplished by choosing the parameters gd = 0.016 and
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Fig. 4: Plot of P [ki(t)/ki(t0)] versus ki(t)/ki(t0) for different times t > 16 in terms
of the scaled variables y and x defined in Eqs. (10) and (11). Larger deviations for
large x indicate the drawback of the HA approach.

σd = 0.14, which should be identified with geff and σeff , respectively. The ef-
fective growth parameters found in this way are in accordance with the ones
estimated before as g = 0.016 and σ2 = 0.017. As noted earlier, the consis-
tency of estimated parameters can be checked as, for example, it should satisfy
β = max(α, geff + σ2eff), for which we have β = 0.034 and geff + σ2eff = 0.035,
being reasonably consistent with each other. Thus we conclude the parame-
ters geff = 0.016 and σeff = 0.14 can be regarded as the effective parameters
of the degree growth dynamics of the Internet AS map as a single process.
Applying those values together with α = 0.029 found earlier into Eq. (10), we
found γ ≈ 2.1, which is in excellent agreement with the directly measured one
shown in Fig. 1.

4 Degree Correlation and Modular Structure

It is known that the degrees of the two nodes located at the ends of a link
are correlated each other. As the first step, the degree-degree correlation can
be quantified in terms of the mean degree of the neighbors of a given node
with degree k as a function of k, denoted by �knn�(k) [8]. Then the mean de-
gree function �knn�(k) can be written in terms of the conditional probability
P (k�|k) that given a node with degree k is present, another node with de-
gree k� is connected to it. That is �knn�(k) =

7
k� k�P (k�|k). The conditional

probability is then expressed in terms of the joint probability, P (k�, k), as
P (k�|k) = P (k�, k)/kpd(k). Meanwhile, for the BA model, the joint probabil-
ity that nodes of degree k� (ancestor) and k (descendent) are connected scales
as [14]
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Fig. 5: (a) The conditional probability P (k|k�) for the dangling nodes with k� = 1
(diamonds) and the hub (circles). Data points with filled (open) symbols are from
the Internet AS as of January, 2000 (the simulation of the adaptation model). The
dashed (dotted) straight line has a slope −2.1 (−1.1), drawn for a guide to the
eye. (b) The average degree of nearest neighbors of a node whose degree is k,
�knn�(k) =

P
k� k

�P (k�|k), as a function of k from the adaptation model (diamond),
HA model (cross) and the Internet (circle).

P (k�, k) ∼ k�−(γ−1)k−2. (12)

Then the function �knn�(k) is written as [14, 3]

�knn�(k) =
6
k�

k�P (k�|k)

=
6
k�

k�P (k�, k)
kpd(k)

∼
6
k�

k�k�−(γ−1)k−2

k1−γ

∼ k−3+γ . (13)

More generally, the behavior of the average neighbor degree function is ex-
pressed by another power law as

�knn�(k) ∼ k−ν . (14)

For the Internet, if Eq.(12) holds, �knn�(k) would decay as ∼ k−0.9, i.e., ν ≈
0.9. However, it decays with ν ≈ 0.5 for the real-world Internet [8], suggesting
that the joint probability does not behave in the way of the BA model does.

On the other hand, the degree-degree correlation can also be described
in terms of the assortativity coefficient introduced by Newman [15], which is
defined as
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r =
�k1k2� − �(k1 + k2)/2�2

�(k21 + k22)/2� − �(k1 + k2)/2�2 , (15)

where k1 and k2 are the degree of two end nodes, respectively, of a link, and
�· · · � denotes the average over all links. It is nothing but the Pearson corre-
lation coefficient for the degrees of two end nodes over all links, normalized
−1 to 1. r is negative when the function �knn�(k) exhibits decreasing behavior
like the case of the Internet, while it is positive when the function increases
with k as occurring in social networks. In fact, the assortativity coefficient
r was introduced to characterize social networks. We find the assortativity
coefficient of the Internet to be r = −0.18 as of Jan. 2001.

The Internet has modules within it. Such modular structures arise due to
regional control systems, and often form in a hierarchical way [16]. Recently,
it was argued that such modular and hierarchical structures can be described
in terms of the clustering coefficient. Let Ci be the local clustering coefficient
of a node i, defined as Ci = 2ei/ki(ki − 1), where ei is the number of links
present among the neighbors of node i, out of its maximum possible number
ki(ki − 1)/2. The clustering coefficient of a network, C, is the average of Ci

over all nodes. C(k) means the clustering function of a node with degree k,
i.e., Ci averaged over nodes with degree k. When a network is modular and
hierarchical, the clustering function follows a power law,

C(k) ∼ k−β , (16)

for large k, and C is independent of system size N , while C depends on N as
C ∼ N−1 for the BA model [17, 18].

For the Internet, the clustering coefficient is measured to be CAS ≈ 0.25,
which is different from the value obtained from the HA model, CHA ≈ 0.01(1).
The clustering function CAS(k) also behaves differently from what the HA
model predicts as shown in Fig. 6.
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(a) (b)

Fig. 7: Shown is the adaptive rewiring rule. A node (white) detaches one of its links
from a node (gray) in (a), and attaches it to one of the nodes (gray) with degree 3,
larger than 2 of the detached node, in (b).

5 Adaptation Model

Using the measured values, α, geff , and σeff , and modifying the HA idea, we
construct a stochastic model evolving through the following four rules:

• (i) Geometrical growth: At time t, geometrically increased number of
new nodes, αN(t − 1), are introduced in the system, and following the
fact �knew�t ≈ 1.34, each of them connects to one or two existing nodes
according to the PA rule.

• (ii) Accelerated growth: Each existing node increases its degree by the
factor g0 ≈ geff + σ2eff/2. These new internal links are also connected fol-
lowing the PA rule.

• (iii) Fluctuations: Each node disconnects existing links randomly (resp.
connects new links following the PA rule) when the noise (ξi(t) in Eq.(4))
is chosen to be negative (resp. positive). The variance of the noise is given
as σ20 ≈ σ2eff .

• (iv) Adaptation: When connecting in step (iii), the PA rule is applied
only within the subset of the existing nodes consisting of those having more
degree than the one previously disconnected. This last constraint accounts
for the adaptation process in our model, which is the distinct feature from
the HA model. The adaptive rewiring rule is depicted in Fig. 7.

Through this adaptation process, the model can reproduce generic features
of the Internet topologies which are as follows. First, the degree exponent is
measured to be γmodel ≈ 2.2, close to the empirical result γAS ≈ 2.2(1). Sec-
ond, the clustering coefficient is measured to be Cmodel ≈ 0.15(7), comparable
to the empirical value CAS ≈ 0.25. Note that without the adaptation rule, we
only get C ≈ 0.01(1). The clustering function C(k) also behaves in a similar
pattern to that of the real-world Internet shown in Fig. 6, that is, decaying in
a similar fashion for large k, but the overall curve shifts upward and the con-
stant behavior for small k appears. Third, the mean degree function �knn�(k)
also behaves similarly to that of the real-world networks as shown in Fig. 5,
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Fig. 8: The load at each node due to a unit packet transfer from the node s to the
node t, �s→t

i . In this diagram, only the nodes along the shortest paths between (s, t)
are shown. The quantity in parentheses is the corresponding value of the load due
to the packet from t to s, �t→s

i .

but it also shifts upward overall. In short, the behaviors of C(k) and �knn�(k)
of the adaptation model are much closer to those of the real Internet AS map
than those of the HA model. However, the discrepancies are still significant.

6 Load Distribution of the Internet

To a large extent, the Internet is the medium of communication. The contin-
uous communication between hosts generates certain amount of data traffic.
To make the best use of it, we have to avoid congestions, from which we suffer
possible delays and the loss of information. What’s worse, one doesn’t know
when and how much a host will generate the traffic. Absent is the central reg-
ulation in the Internet, hence each node should do its best for its own ends. To
give a measure of such activity, we define the load 6i as the amount of capacity
or bandwidth that a node i can handle in unit time [19]. Not knowing the level
of traffic, one assumes that every node sends a unit packet to everyone else
in unit time. One further assumes that the packets are transfered from the
source to the target only along the shortest paths between them, and divided
evenly upon encountering any branching point. To be precise, let 6s→t

i be the
amount of packet sent from s (source) to t (target) that passes through the
node i (see Fig. 8). Then the load of a node i, 6i, is the accumulated sum of
6s→t
i for all s and t, 6i =

7
s�=t 6

s→t
i . In other words, the load of a node i gives

us the information how much the capacity of the node should be in order to
maintain the whole network in a free-flow state. However, due to local fluctu-
ation effect of the concentration of data packets, the traffic could be congested
even for the capacity of each node being taken as its load. To calculate load
on each node, we use the modified version of the breath-first search algorithm
introduced by Newman [20] and independently by Brandes [21], which can
evaluate {6i} in time of order O(N 2) for sparse binary graphs. The algorithm
works as follows:
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Fig. 9: The scatter plot of the load versus the degree of each node for the AS map
as of January 2000. The slope of the dashed line is 1.06, drawn for the eye.

(1) The shortest paths to a node i from every other node are identified by
using the breadth-first search and each node j is labeled by the distance
dij from the source node i.

(2) A variable fj preset to the initial value 1 except for the source node i is
assigned to each node j. This will account for the contribution to load due
to a unit packet fired from the node i to j. For the source node i, fi is
initially preset to 0 since we do not consider a packet transfer to itself.

(3) Going through the nodes j in descending order of their distance from i, the
value of fj is added to the corresponding variable on the predecessor node
of j. Here predecessors of a node j are the nodes connected to j, being
closer to the source node i than j. If j has more than one predecessor,
then fj is divided equally by the number of predecessors and each fraction
is passed to each predecessor.

(4) When we have completed all nodes in this way, the variable fj represents
the number of packets (out of total N−1) that run through the node j. In
our convention, the value fj includes the contributions of the end points of
each path. To get the load for all paths, fj ’s are added to the load 6j and
the entire calculation is repeated for each of the N possible source node i.

For a number of SF networks in nature and society, the load distribution
is also found to follow a power law, Eq. (2) [22]. The Internet AS map is of
no exception and the load exponent δ of the power law is estimated to be
approximately δ ≈ 2.0 [22, 23]. The power-law load distribution means that
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Fig. 10: The mass-distance relation M(d) for the Internet in the years 1998 (×),
2000 (◦), 2002 (✷), and 2004 (	) (a) and the snapshot of the shortest pathways of
length 10 as of January 2000 (b)

a few ASes should handle an extraordinarily large amount of load while most
others may do only a little.

The load of a node is highly correlated with its degree. The Pearson corre-
lation coefficient between the two quantities is as high as 0.98. This suggests
a scaling relation between the load and the degree of a node as

6 ∼ kη (17)

and the scaling exponent η is estimated as η = 1.06± 0.03 for January 2000
AS map (Fig. 9). In fact, if one assumes that the ranks of each node for the
degree and the load are the same, then one can show that the exponent η
depends on γ and δ as η = (γ − 1)/(δ − 1) with γ ≈ 2.1 and δ ≈ 2.0, and we
have η ≈ 1, 1, which is consistent with the direct measurement.

Since data packets are normally transferred along the shortest pathway
between two nodes in the Internet, it would be interesting to investigate the
generic topological feature of the shortest pathways between them. Along
the shortest pathways, we count the total number of nodesM(d) lying on the
shortest pathways separated by the distance d, averaged over all pairs of nodes
separated by the same distance d. Adopting from the fractal theory, M(d) is
called the “mass-distance” relation. We find that the mass, the total number
of nodes lying on the pathways, increases linearly with increasing d, but the
increasing rate is roughly 4 larger than 1. If the shortest pathway is singly
connected, then the proportionality coefficient would be 1. The fact that it
increases linearly in d means that the shortest pathway topology is effectively
tree, but that its coefficient is significantly larger than 1. That means that
there are many alternative pathways as shown in Fig. 10(b).
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Fig. 11: Time evolution of the load versus N(t) at the ASes of degree-rank 1(◦), 2
(✷), 3 (✸), 4 (�), and 5 (×). The dashed line for larger N has slope 1.8, drawn for
the eye.

The time evolution of the load at each AS is also of interest. Practically,
how the load scales with the total number of AS (the size of the AS map) is
an important information for the network management. In Fig. 11, we show
6i(t) versus N(t) for 5 ASes with the highest rank in degree, i.e., 5 ASes that
have largest degrees at t = 0. The data of {6i(t)} shows large fluctuations in
time. Interestingly, the fluctuation is moderate for the hub, implying that the
connections of the hub is rather stable. The load at the hub is found to scale
with N(t) as 6h(t) ∼ N(t)µ, but the scaling shows a crossover from µ ≈ 2.4
to µ ≈ 1.8 around t ≈ 14, as it did for the degree.

7 Summary

We have studied the temporal evolution of the Internet AS map and showed
that it can be described in the framework of multiplicative stochastic process
for the degree growth dynamics. We measured the values of relevant param-
eters from the history of the AS map monitored by the Oregon Route Views
project. With those values, the AS number growth rate α = 0.029, the ef-
fective degree growth rate geff = 0.019, and its effective standard deviation
σeff = 0.14 are obtained. Using these values, we were able to predict the degree
exponent γ as γ ≈ 2.1, which is in excellent agreement with the previously
reported empirical values γmeasured = 2.1 ∼ 2.2. We also studied the degree-
degree correlation of the Internet in terms of the quantity �knn�(k), the mean
degree of the neighbors of nodes with degree k and the assortativity coef-
ficient. The modularity of the Internet was also examined by measuring the
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Fig. 12: The plot of the joint probabilities P (k�, k) for the Internet as of January,
2000 (a) and the adaptation model (b). The concentration denotes the value of
log10[P (k, k�)/Prandom(k, k�)], where Prandom(k, k�) is the joint probability of the
randomized networks generated for the purpose of reference. They are generated by
the switching method [24] conserving the degree sequence.

clustering function C(k). We found that the degree-degree correlation and the
modularity cannot be explained by the HA model only with the multiplicative
process. We modified the HA model by introducing the adaptive rewiring of
links in the process of attaching links. While the adaptation model seems to be
successful for reproducing C(k) and �knn�(k) of the Internet AS roughly, it is
not satisfactory yet to describe the real world Internet. For example, the joint
probability P (k, k�) that two nodes with degrees k and k� are connected via
an edge cannot be reproduced by the adaptation model as shown in Fig. 12.
The concentration profile of the joint probability for the adaptation model
shows different pattern compared to that of the real Internet. Thus, further
refinement of the adaptation model reflecting the evolution of the Internet
map is needed.

In the second part of the paper, we introduced a quantity called the load
as the accumulated sum of the fraction of packets that passes through a given
node when a unit packet is transmitted between each pair of nodes along the
shortest paths between the two. It can be thought of as the amount of traffic
that a node should handle to keep the whole network away from the unwelcome
congestion and maintain free-flow state, giving a measure of desired capacity
of the nodes. The load distribution also follows a power law. The load and
the degree of an AS are highly correlated with each other. The analysis of the
temporal change of the load reveals that the load at the hub scales with the
system size as N1.8. Finally, we note that the contents of this article partly
overlaps with our previous studies published in [19, 22, 25].

This work is supported by the KOSEF grants No. R14-2002-059-01000-0
in the ABRL program.
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1 Introduction

Today’s Internet applications, such as World Wide Web, file transfer, Usenet
news, and remote login, are delivered via Transmission Control Protocol
(TCP). With an increasing number and variety of Internet applications, con-
gestion control becomes a key issue. Active Queue Management (AQM) in-
teracts with TCP congestion control mechanisms and plays an important role
in meeting today’s increasing demand for performance of Internet applica-
tions. Random Early Detection (RED), a widely deployed AQM algorithm, is
a gateway-based congestion control mechanism. An accurate model of TCP
with RED may help understand and predict the dynamical behavior of the
network. In addition, the model may help analyze the stability margins of the
system and provide design guidelines for selecting network parameters. The
design guidelines are important to network designers who aim to improve net-
work robustness. Therefore, modeling TCP with RED is an important step
toward improving the service provided to Internet users and the network ef-
ficiency.

Modeling TCP performance has gained increased attention during the last
few years, due to the benefits that TCP models offer to the networking com-
munity. Analytical TCP models enable researchers to closely examine the
existing congestion control algorithms, address their shortcomings, and pro-
pose methods for improvement. They may also be used to compare various
TCP flavors and implementations, and to determine their performance under
various operating conditions. Moreover, these models help examine the inter-
actions between TCP and the queuing algorithms implemented in network
routers. Hence, they help improve the existing and design better algorithms,
such as AQM techniques. Finally, such models offer the possibility of defining
TCP-friendly behavior in terms of throughput for non-TCP flows that coexist
with TCP connections in the same network.

The goal of TCP modeling is to investigate the nonlinear phenomena in
a TCP/RED system. We use an iterative map to model the system. We de-

L. Kocarev and G. Vattay (Eds.): Compl. Dyn. in Com. Networks, UCS 5, pp. 251–278, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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rive a second-order discrete-time model to capture the interactions of TCP
congestion control algorithm with the RED mechanism. We use the concepts
proposed in [31] and construct a nonlinear dynamical model of TCP/RED
that employs two state variables: the window size and the average queue size.
The change of window size reflects the dynamics of TCP congestion control,
while the average queue size captures the queue dynamics in RED gateway.
The novelty of the proposed model is in capturing detailed dynamical behav-
ior of TCP/RED. The proposed model considers slow start phase and takes
into account timeout events common in TCP.

This article is organized as follows: In Section 2, we briefly describe TCP
congestion control and the RED algorithm. In Section 3 we survey related
work. A nonlinear second-order discrete-time model named S-model is intro-
duced in Section 4. In Section 5, we compare its performance to the ns-2
simulation results and to an existing model. Conclusions are given in Sec-
tion 6.

2 TCP and RED Algorithms

In this section, we describe TCP congestion control mechanisms and the RED
algorithm.

2.1 TCP Congestion Control Algorithms

To adjust the window size, the TCP congestion control mechanism employs
four algorithms: slow start, congestion avoidance, fast retransmit, and fast
recovery, as shown in Fig. 1. They were introduced by Jacobson [18], [19] and
are described in RFCs 1122 [4] and 2581 [1]. We briefly describe here their
basic characteristics.

In order to avoid congesting the network with large bursts of data, an
established TCP connection first employs the slow start algorithm to detect
the available bandwidth in the network. Typically, a TCP sender initializes
its congestion window (cwnd) to one or two segments, depending on the TCP
implementation. Upon receipt of each acknowledgment (ACK) that acknowl-
edges receipt of new data by the receiver, TCP increments cwnd by one seg-
ment size.

When cwnd exceeds a threshold (ssthresh), the sender’s mechanism leaves
the slow start and enters the congestion avoidance phase. During the conges-
tion avoidance, cwnd is incremented by one segment size per round trip time
(RTT). A timer is set every time a sender sends a packet. A packet loss is
detected by the timeout mechanism if the timer expires before the receipt of
the packet has been acknowledged. If a packet loss is detected by the timeout
mechanism, the TCP sender adjusts its ssthresh and switches back to the slow
start.
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Fig. 1: Evolution of the window size in TCP Reno. It consists of slow start, congestion
avoidance, fast retransmit, and fast recovery phase.

The fast retransmit algorithm is used for recovery from losses detected
by triple duplicate ACKs. Whenever a TCP receiver receives an out-of-order
segment, it immediately sends a duplicate ACK, which informs the sender
of the sequence number of the packet that the receiver expects. The receipt
of triple duplicate ACKs (four consecutive ACKs acknowledging the same
packet) is used as an indication of packet loss. The TCP sender reacts to
the packet loss by halving cwnd and re-transmitting the lost packet, without
waiting for the retransmission timer to expire.

The fast recovery algorithm is used to control data transmission after fast
retransmission of the lost packet. During this phase, the TCP sender increases
its cwnd for each duplicate ACK received. The fast recovery algorithm rec-
ognizes each duplicate ACK as an indication that one packet has left the
channel and has reached the destination. Since the number of outstanding
packets has decreased by one, TCP sender is allowed to increment its cwnd.
When a non-duplicate ACK is received, TCP switches from the fast recovery
to the congestion avoidance phase.

2.2 TCP Implementations

Older TCP implementation, released in the early 1980s, employed a simple
window-based congestion control specified in RFC 793 [34]. TCP Tahoe, re-
leased in the late 1980s, employed the slow start, congestion avoidance, and
fast retransmit algorithms. TCP Reno, introduced in the early 1990s, added
the fast recovery algorithm.
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Using ns-2 simulations, Fall and Floyd [11] demonstrated that TCP Reno
exhibits poor performance in terms of link utilization whenever multiple pack-
ets are dropped from a single window of data. To alleviate this problem, they
introduced two modifications to TCP Reno: TCP New-Reno and TCP SACK
[23]. A large number of Internet Web servers still use TCP Reno and its vari-
ants [32].

Other TCP implementations, such as TCP Vegas [5] and TCP West-
wood [7], use various techniques to avoid congestion. They adjust the con-
gestion window size based on estimates of the throughput at the bottleneck.

2.3 RED Algorithm

A traditional DropTail queue management mechanism discards the packets
that arrive when the buffer is full. However, this method has two drawbacks.
First, it may allow few connections to monopolize the queue space so that
other flows are starved. Second, DropTail allows queues to be full for a long
period of time. During that period, incoming packets are dropped in bursts.
This causes severe reduction in throughput of TCP flows. One solution, rec-
ommended in RFC 2309 [2], is to deploy active queue management (AQM)
algorithms. The purpose of AQM is to react on incipient congestion, before the
buffer overflows. Active queue management allows responsive flows, such as
TCP flows, to react timely and reduce their sending rates in order to prevent
congestion and severe packet losses.

The most popular active queue management algorithm is Random Early
Detection (RED), proposed by Floyd and Jacobson [14]. The RED mechanism
calculates exponentially weighted moving average of the queue size. Let wq be
the weight factor and qk+1 be the current queue size. At every packet arrival,
RED gateway updates the average queue size as:

q̄k+1 = (1− wq)q̄k + wq · qk+1. (1)

The average queue size is compared to two parameters: minimum queue
threshold qmin and maximum queue threshold qmax. If the average queue size
is smaller than qmin, the packet is admitted to the queue. If it exceeds qmax,
the packet is marked or dropped. If the average queue size is between qmin

and qmax, the packet is dropped with a drop probability p that is a function
of the average queue size:

pk+1 =


0 if q̄k+1 ≤ qmin

1 if q̄k+1 ≥ qmax
q̄k+1−qmin

qmax−qmin
pmax otherwise

, (2)

where pmax is the maximum packet drop probability. The relationship between
the drop probability and the average queue size is shown in Fig. 2.
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Fig. 2: RED drop probability as a function of the average queue size.

3 Modeling Methodologies

From the viewpoint of flow characteristics, analytical TCP models can be clas-
sified in three categories based on the duration of the TCP flows, which deter-
mines the dominant TCP congestion control algorithms to be modeled, and
the aspects of TCP performance that can be captured by the model [20]. The
first category models short-lived flows, where TCP performance is strongly
affected by the connection establishment and slow start phases [27]. These
models typically approximate average latency or completion time, i.e., the
time it takes to transfer a certain amount of data. The second category models
long-lived flows that characterize the steady-state performance of bulk TCP
transfers during the congestion avoidance phase [26], [29], [31], [37]. These
models approximate aspects such as the average throughput and window size
evolution. The final category includes models for flows of arbitrary duration,
i.e., those that can accommodate both short and long-lived flows [6], [8].

From the control theoretic point of view, the developed models of TCP and
TCP/RED [16], [17], [21], [22], [28], [35], [36] can be classified into two types:
averaged models and iterative map models. An averaged model is described
by a set of continuous differential equations. It neglects the detailed dynamics
and only captures the “low frequency characteristics” of the system. It can
be used to analyze the steady-state performance and to predict low frequency
slow-scale bifurcation behavior, such as Hopf bifurcations. Examples of such
models are given in [16], [17], [21]. In contrast, an iterative map model has
a discrete-time form and employs a set of difference equations. It provides
relatively complete dynamical information. Iterative maps are adequate to
explore nonlinear phenomena, such as period-doubling and saddle-node bifur-
cations, which may appear across a wide spectrum of frequencies and cause
the existence of solutions in the high frequency range. Examples of iterative
maps are given in [22], [35], [36].



256 Hui Zhang, Mingjian Liu, Vladimir Vukadinović, and Ljiljana Trajković

3.1 Survey of Related TCP/RED Models

Several models have been proposed recently in order to analyze and under-
stand the performance of packet networks. A simple steady-state model of
TCP Reno, introduced in [31], models the steady-state sending rate as a func-
tion of the loss rate and the round trip time (RTT) of a bulk data transfer
TCP flow. The model not only captures the essence of TCP’s fast retransmit
and congestion avoidance, but it also takes into account the effect of timeout
mechanism, which is important from a modeling perspective. Measurements
demonstrated that the proposed model was adequate over a range of loss rates.

A simplified first-order discrete-time nonlinear dynamical model was devel-
oped for TCP with RED control in [22], [35], [36]. An exponentially weighted
average queue size has been used as the state variable. The model describes
the system dynamics over large parameter variations, and employs sampling
the buffer occupancy at certain time instances. This dynamical model was
used to investigate the stability, bifurcation, and routes to chaos in a net-
work for various system parameters. Based on the developed model, the au-
thors demonstrated that nonlinear phenomena, such as bifurcation and chaos,
might occur if the system parameters were not properly selected. However,
this discrete-time model neglects the dynamics of TCP. The derived map is:

qavek+1 =


(1− w)qavek if qavek ≥ qaveu

(1− w)qavek + w ·B if qavek ≤ qavel

(1− w)qavek + w(N ·K√
pk
− C·d

M ) otherwise
, (3)

where
qavek+1

.= average queue size in round k + 1
qavek

.= average queue size in round k
qaveu

.= upper bound of average queue size
qavel

.= lower bound of average queue size
pk

.= drop probability at round k
w

.= queue weight in RED algorithm
B

.= buffer size
N

.= number of TCP connections
K

.= constant [1,
0

8/3]
C

.= link capacity
d

.= round trip propagation delay
M

.= packet size.

In [28], a second-order nonlinear dynamical model was developed to ex-
amine the interactions of a set of TCP flows with RED routers. The model
employs fluid-flow and stochastic differential equations. Window size and av-
erage queue length are used as state variables. From a set of coupled ordinary
differential equations, the authors develop a numerical algorithm to obtain the
transient behavior of average queue length, round trip time, and throughput
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of TCP flows. This model is described by nonlinear differential equations that
employ the average values of network variables:

Ẇ (t) = 1
R(t) − W (t)W (t−R(t))

2R(t−R(t)) p(t−R(t))

q̇(t) = N(t)
R(t)W (t)− C

, (4)

where
W (t) .= expectation of TCP window size
q(t) .= expectation of queue length
R(t) .= round trip time
N(t) .= load factor (number of TCP sessions)
p(t) .= probability of packet mark/drop
C

.= link capacity.

A third-order dynamical model that describes the interaction of TCP flows
with an RED-controlled queue was developed in [21]. The state variables of
the model are average queue length, instantaneous queue length, and through-
put. TCP sources are idealized to operate only in congestion avoidance phase
where congestion window follows the rule of linear increase and multiplicative
decrease. This dynamical model is used to explore various parameter settings
and observe transient and equilibrium behavior of the system. The validity of
the model is verified by comparison with simulation results. The interaction
between TCP and RED is modeled as:

d
dt s̄(t) = λ̄(t−R/2)β(q̄(t)− s̄(t))
d
dt q̄(t) = λ̄(t−R/2)(1− πK(q̄(t)))(1 − p(s̄(t))) − µ(1− π0(q̄(t)))
d
dt λ̄(t) = −PL(t−R/2)

2m λ̄(t)λ̄(t−R) + (1− PL(t−R/2)) m
R2

λ̄(t−R)

λ̄(t)

PL(t) = p(s̄(t)) + πK(q̄(t)) − p(s̄(t))πK(q̄(t))

, (5)

where
s̄(t) .= expectation of the exponentially averaged queue length
q̄(t) .= expectation instantaneous queue length
λ̄(t) .= expectation of TCP sending rate
PL(t) .= loss probability in the queue at time t
πK(q̄(t)) .= steady-state probability for the queue to be full
π0(q̄(t)) .= steady-state probability for the queue to be empty
p

.= drop probability
R

.= round trip time
β

.= queue weight in RED algorithm
m

.= number of identical TCP sources.

In [16], [17], the authors obtained a second-order linear model for TCP
and RED by linearizing a fluid-based nonlinear TCP model. Window size and
average queue length are used as state variables of the system. The authors
performed analysis of TCP interactions with RED from a control theoretic
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viewpoint. They presented design guidelines for choosing RED parameters
that lead to local stability of the system. In addition, they proposed two
alternative controllers to improve the transient behavior and stability of the
system: a proportional (P) controller that possesses good transient response
but suffers from steady-state errors in queue regulation, and a proportional-
integral (PI) controller that exhibits zero steady-state regulation error and
acceptable transient behavior. An important contribution of this paper is a
good example how to use classical control theory to solve problems in complex
communication systems. The model linearized around the operating point is
described as:

δẆ (t) = − N
R2

0·C (δW (t) + δW (t−R0))− 1
R2

0·C (δq(t)− δq(t−R0))

−R0·C2

2N2 δp(t− C)
δq̇(t) = N

R0
δW (t)− 1

R0
δq(t)

, (6)

where
δW .= W −W0

δq .= q − q0
δp .= p− p0
W0, q0, p0

.= the set of operating points
W

.= expectation of TCP window size
q

.= expectation of queue length
R0

.= round trip time
C

.= link capacity
Tp

.= propagation delay
N .= load factor (number of TCP sessions)
p

.= probability of packet mark/drop.

A multi-link multi-source model [25] was used to study the stability of a
general TCP/AQM system. A local stability condition were derived for the
case of a single link with heterogeneous sources and the stability region of
TCP/RED. The state variables of this model are window size, instantaneous
queue length, and average queue length. large link capacities. Finally, they
devised a new distributed congestion control algorithm that maintains local
stability for arbitrary delay, capacity, and traffic load. They provided prelim-
inary simulation results to illustrate the model’s behavior.

4 Discrete-time Dynamical Model of TCP/RED

The basic idea behind RED is to sense impending congestion before it occurs
and to try to provide feedback to senders by either dropping or marking
packets. Hence, from the control theoretic point of view, the network may be
considered as a complex feedback control system. TCP adjusts its sending rate
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depending on whether or not it has detected a packet drop in the previous
RTT interval. The drop probability of RED can be considered as a control
law of the network system. Its discontinuity is the main reason for oscillations
and chaos in the system. Hence, it is natural to model the network system as
a discrete-time model. In this article, we model the TCP/RED system using
a “stroboscopic map”, which is the most widely used type of discrete-time
maps for modeling power converters [3], [9], [10], [39]. This map is obtained
by periodically sampling the system state. In our study, the sampling period is
one RTT. Since window size and queue size behave as step functions of RTT,
one RTT is the sampling period that captures their changes [13]. Higher
sampling rate would not significantly improve the accuracy of the model. On
the other hand, lower sampling rate would ignore the changes and affect the
model accuracy.

State variables employed in the proposed S-model are window size and
average queue size. These state variables capture the detailed behavior of
TCP/RED. Variations of the window size reflect the dynamics of TCP con-
gestion control. The window size increases exponentially and linearly in slow
start and congestion avoidance phases, respectively. It multiplicatively de-
creases when loss occurs. The average queue size captures the queue dynamics
in RED because it is updated upon every packet arrival. In our study, we do
not consider instantaneous queue size as an independent state variable.

4.1 TCP/RED Model

We consider a simple network shown in Fig. 3. It consists of one TCP source,
two routers, and a destination. RED is employed in Router 1. A TCP Reno
connection is established between the source and the destination. Data pack-
ets are sent from the source to the destination, while traffic in the opposite
direction consists of ACK packets only.

Source Router 1 Router 2 Destination 

Bottleneck 

Fig. 3: Topology of the modeled and simulated network.

We made several assumptions in order to construct an approximate model.
We assume that ACK packets are never lost. The connection is long-lived and
the source always has sufficient data to send. Round trip propagation delay
d between the source and destination and the data packet size M are kept
constant. The link that connects the two routers is the only bottleneck in the
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network. We also assume that the timeout is caused only by packet loss and
that the duration of the timeout period is 5 RTTs [13]. The state variables of
the system are sampled at the end of every RTT period. We assume that the
queue size is constant during each sampling period. The model includes three
cases, depending on the number of packets lost in the previous RTT period:
no loss, single loss, and multiple packet losses.

4.2 Case 1: No Loss

Let Wk, qk, and q̄ be the window size, queue size, and average queue size at
the end of the sampling period k. If no packet is dropped during the last RTT
period, TCP Reno increases its window size. The window size is increased
exponentially in the slow start phase and linearly in the congestion avoidance
phase:

Wk+1 =
�

min(2Wk, ssthresh) if Wk < ssthresh
min(Wk + 1, rwnd) if Wk ≥ ssthresh

, (7)

where rwnd is the receiver’s advertised window size, i.e., the largest window
size that the receiver could accept in one round. Usually, rwnd is greater than
window size. In this case, rwnd does not affect the variations of window size. In
case when window size increases linearly and reaches the value rwnd, window
size is kept at rwnd until loss occurs in the network.

In order to calculate the average queue size given by Eq. (1), we need to
find the queue size at the sampling period k + 1. This queue size depends
on the queue size in the previous period, the current window size, and the
number of packets that have left the queue during the previous sampling
period. Therefore, the current queue size is:

qk+1 = qk + Wk+1 − C·RTTk+1
M

qk+1 = qk + Wk+1 − C
M (d + qk·M

C )
qk+1 = Wk+1 − C·d

M

, (8)

where
qk+1

.= instantaneous queue size in round k + 1
qk

.= instantaneous queue size in round k
Wk+1

.= current TCP window size in round k + 1
RTTk+1

.= round trip time in round k + 1
C

.= link capacity
M

.= packet size
d

.= round trip propagation delay.

Substituting qk+1 in (1) gives the average queue size:

q̄k+1 = (1− wq)q̄k + wq ·max(Wk+1 − C · d
M

, 0). (9)
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RED updates the average queue size at every packet arrival. Hence, q̄ is
updated Wk+1 times during the current sampling period. We assume that the
queue size is constant during each period and that q̄ is given as:

q̄k+1 = (1− wq)Wk+1 q̄k + (1 − (1− wq)Wk+1) ·max(Wk+1 − C · d
M

, 0). (10)

Finally, if pkWk < 0.5, which implies that no packet loss occurred in the
previous sampling period, the state variables of the model are:

Wk+1 =
�

min(2Wk, ssthresh) if Wk < ssthresh
min(Wk + 1, rwnd) if Wk ≥ ssthresh

q̄k+1 = (1− wq)Wk+1 q̄k + (1− (1− wq)Wk+1) ·max(Wk+1 − C·d
M , 0).

(11)

4.3 Case 2: One Packet Loss

If 0.5 ≤ pkWk < 1.5, which implies that one packet loss occurred in the
previous RTT period, the congestion control mechanism of TCP Reno halves
the window size in the current sampling period:

Wk+1 =
1
2
Wk. (12)

The average queue size is updated in a manner similar to Case 1:

Wk+1 = 1
2Wk

q̄k+1 = (1− wq)Wk+1 q̄k + (1− (1− wq)Wk+1) ·max(Wk+1 − C·d
M , 0)

. (13)

4.4 Case 3: At Least Two Packet Losses

In this case pkWk ≥ 1.5, which implies that at least two packets are lost in the
previous RTT period. When multiple packets are lost from the same window,
TCP Reno may not be able to send a sufficient number of new packets in
order to receive three duplicate ACKs for each packet lost. TCP source will
often have to wait for the timeout before retransmitting the lost packet [11].
During the timeout period, the source does not send packets into the network.
In S-model, window size is equivalent to the number of packets that are sent
by the source during one RTT period. Hence, we assume that the window size
is zero during the timeout period.

RED mechanism updates the average queue size for each packet arrival.
However, during timeout period there are no packet arrivals. Average queue
size is not updated and has the same value as in the previous RTT period.
RED takes this “idle time” period into account when it updates the average
queue size upon the next packet arrival. However, S-model does not take
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into account the “idle time”. TCP/RED system during the timeout period is
modeled as:

Wk+1 = 0
q̄k+1 = q̄k

. (14)

The pseudo code describing the S-model is shown in Algorithm 1.

Algorithm 1 S-model

Initialization:
q̄0 ← 0
q0 ← 0
p0 ← 0
for every round
calculate the product of pkWk

if pkWk < 0.5 then
compare Wk with ssthresh
if Wk < ssthresh then

Wk+1 ← min(2Wk, ssthresh)
q̄k+1 ← (1− wq)Wk+1 q̄k + (1− (1 − wq)Wk+1) max(Wk+1 − Cd

M , 0)
else

Wk+1 ← min(Wk + 1, rwnd)
q̄k+1 ← (1− wq)Wk+1 q̄k + (1− (1 − wq)Wk+1) max(Wk+1 − Cd

M , 0)
end if
calculate the drop probability using Eq. (2)

else if 0.5 ≤ pkWk < 1.5 then
Wk+1 ← 1

2Wk

q̄k+1 ← (1− wq)Wk+1 q̄k + (1− (1 − wq)Wk+1) max(Wk+1 − Cd
M , 0)

calculate the drop probability using Eq. (2)
else

Wk+1 ← 0
q̄k+1 ← q̄k

end if

end

4.5 Properties of the S-model

The proposed second-order discrete model captures interactions between TCP
Reno congestion control algorithm and RED mechanism. It models the dy-
namics of the TCP/RED system. Unlike past models [21], [22], [31], [35], [36],
the S-model includes the slow start phase. It also takes into account timeout,
common in TCP [31], which models [21], [22], [35], [36] ignore. However, the
S-model does not capture all details of the fast recovery phase. Congestion
window size in the S-model is not increased for each duplicate ACK received
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after retransmitting the lost packet. Instead of “inflating” the window we as-
sume that TCP sender switches to the congestion avoidance phase without
performing slow start. Evolution of the window size in the S-model is shown
in Fig. 4.

Time

SS - Slow start

CA - Congestion avoidance

FR - Fast recovery

Co
ng

es
tio

n
w

in
do

w
siz

e

SS CA CA SS

Timeout

ssthresh

Fast retransmit

ssthresh = cwnd / 2
cwnd = ssthresh

Fig. 4: Evolution of the window size in the proposed model. The fast recovery phase
has been simplified.

The S-model captures the most important characteristics of the RED algo-
rithm. The average queue size is updated after each packet arrival, i.e., Wk+1

times in the sampling period k+1. In contrast, models presented in [22], [35],
[36] update the average queue size only once in every RTT period. However,
in deriving the new model, we have also made simplifications in the RED
algorithm: we ignored the counter that counts the number of packet arrivals
since the last packet drop. RED uses this counter to modify drop probability
(2). We have also ignored the “idle time” period, since it has no significant
impact on the dynamics of the system.

5 S-Model Validation and Comparison

In order to verify the accuracy of the S-model , we compare its performance
with the ns-2 simulation results. The topology of the simulated network is
shown in Fig. 5. It consists of one source, one sink, and two routers: R1 and
R2. RED is employed in router R1. The link between R1 and R2 is the only
bottleneck in the network. Its capacity is 1.54 Mbps and propagation delay
is 10 ms. The capacity of the links between the source and R1 and between



264 Hui Zhang, Mingjian Liu, Vladimir Vukadinović, and Ljiljana Trajković

R2 and the sink is 100 Mbps. This is sufficient to guarantee no congestion in
these links. Their propagation delay is 0 ms. We compared window size and
average queue size in the S-model and the ns-2 simulation results.

S1 R1 R2 D1 
100 Mbps 
0 ms delay 

1.54 Mbps 
10 ms delay 

100 Mbps 
0 ms delay 

Fig. 5: Topology of the simulated network.

The model validation is divided into four stages. First, we used default
ns-2 RED parameters. Second, we choose various queue weights wq while
keeping other system parameters constant. In the third scenario, we varied
the maximum drop probability pmax. Finally, we varied the minimum and
maximum queue thresholds qmin and qmax simultaneously, while keeping their
ratio qmax/qmin= 3. In each simulation scenario, we observed system behavior
and measured average RTT, sending rate, and drop probability.

We also compared the proposed S-model with a discrete-time nonlinear
dynamical model of TCP Reno with RED gateway proposed in [22], [35], [36],
named here M-model. The M-model is a first-order discrete-time dynamical
model with the average queue size as the state variable.

The default RED parameters are shown in Table 1. Other system param-
eters for the proposed S-model and the M-model are shown in Table 2.

Table 1: Default ns-2 RED parameters.

Packet size M (bytes) 500
Maximum drop probability (pmax) 0.1
Minimum queue threshold (qmin) (packets) 5
Maximum queue threshold (qmax) (packets) 15
Queue weight (wq) 0.002

5.1 Default RED Parameters

In order to verify that the S-model can capture the detailed information of
the system behavior, we evaluated the waveforms of the two state variables:
window size and average queue size.

The waveforms of the window size for various time scales are shown in
Fig. 6. The S-model and ns-2 simulation results are quite similar, especially
during the steady-state response.

The waveforms of the average queue size for various time scales are shown
in Fig. 7. The average queue size using the S-model is approximately one
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Fig. 6: Evolution of the window size with default RED parameters: (a) S-model
and (b) zoom-in, (c) ns-2 simulation results and (d) zoom-in. Waveforms show good
match between the S-model and the ns-2 simulation results.
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Table 2: System parameters.

S-model M-model

Link capacity C (bit/s) 1.54e+6 1.54e+6
Packet size M (bytes) 500 500
Round trip propagation delay d (ms) 22.8 22.8
Buffer size B (packets) 100
Slow start threshold size ssthresh (packets) 20
Number of TCP connection N 1 1

Constant K
p

3/2

packet size larger than the average queue size obtained by the ns-2 simulations.
This difference is due to introduced simplifications. The new model employs
packet-marking/drop probability calculated by Eq. (2), while RED algorithm
adopts a smooth packet-drop probability pa that increases slowly as the count
increases:

pa ← pb/(1− count · pb), (15)

where pb is the drop probability given by Eq. (2) and count measures the
number of packets that have arrived since the last dropped packet. In the S-
model, pb is used as the final drop probability and the counter is ignored. Since
pb < pa, the average queue size of the S-model is larger than that obtained
via ns-2 simulations.

The statistics for the two state variables (window size and average queue
size) and comparison with ns-2 simulation results are shown in Table 3.

The M-model matches closely the ns-2 results shown in Figs. 7(c) and (d).
The time waveform of the average queue size for the M-model is shown in
Fig. 8. After the transient state, the average queue size reaches a constant
value (5.71 packets), while the average queue size in ns-2 simulations varies
around its fixed point. To the contrary, the proposed S-model captures the
dynamical characteristic of the average queue size.

Table 3: State variables: S-model and ns-2 simulation results.

Window size (packets) Average queue size (packets)

S-model ns-2 Δ (%) S-model ns-2 Δ (%)

Average 15.35 15.01 2.25 7.24 5.95 21.63
Max 30 31.38 -1.20 7.69 8.14 -5.60
Min 2 2 0 0.12 0.05 77.45
Max (steady-state) 21 21.86 -3.93 7.69 6.51 18.16
Min (steady-state) 10 9 11.11 7.02 5.41 29.79
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Fig. 7: Evolution of the average queue size with default RED parameters: (a) S-model
and (b) zoom-in, (c) ns-2 simulation result and (d) zoom-in. The average queue size
obtained using the S-model is higher than the average queue size obtained using
ns-2 simulations.
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Fig. 8: Average queue size in the M-model with default RED parameters.

5.2 Queue Weight wq

The S-model was also verified for various queue weight wq. The average queue
size during the steady-state for various values of wq is shown in Fig. 9. When
the queue weight increases, the average queue size slightly decreases in both
the S-model and in ns-2 simulation results.

The S-model was also validated for average RTT, sending rate, and packet
loss rate. Results are summarized in Table 4. Values obtained using the S-
model and ns-2 are quite similar. Small variations in queue weight have sig-
nificant influence on RTT and packet loss rate.

As shown in Table 4, we also evaluated the M-model for the same system
variables: average RTT, sending rate, and packet drop rate. Except for wq =
0.001, when S-model performs better, the discrepancy in predicting RTT for
two models are similar. In all cases, the S-model more accurately predicts the
sending and drop rates.

5.3 Drop Probability pmax

We also evaluated the S-model for various pmax. When the maximum drop
probability is set to a very small value, RED algorithm has small influence on
the system behavior. In this case, the system behaves as TCP with DropTail,
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Fig. 9: Comparison of the average queue size for various wq.

which leads to bursty packet losses and longer queuing delays. However, if
the value of pmax is close to one, high drop rate will cause the system to
become unstable. Simulation results are shown in Fig. 9. The average queue
size decreases as the maximum drop rate increases. Results obtained from the
S-model and ns-2 simulation results show the same trend.

Validation results for the average RTT, sending rate, and drop rate are
listed in Table 5. They show that system variables in S-model and in ns-2
simulations change in a similar manner. As expected, when the maximum
drop probability increases, the actual drop rate increases. At the same time,
the average RTT decreases indicating a lower queuing delay.

The average RTT, sending rate, and drop rate for the M-model are also
summarized in Table 5. Under various drop probabilities pmax, the S-model
better estimates the average RTT, the sending rate, and the drop rate.

5.4 Thresholds qmin and qmax

The S-model is also evaluated for various queue thresholds. Values of qmin and
qmax are varied simultaneously, while maintaining the ratio qmax/qmin=3, as
recommended in [2]. Simulation results for the average queue size are shown
in Fig. 9.
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Fig. 10: Comparison of the average queue size for various pmax.

The average queue size increases when thresholds qmax and qmin increase.
At the same time, the average RTT increases and the drop rate decreases, as
shown in Table 6.

A comparison with the M-model suggests that the proposed S-model is
more accurate in predicting average RTT, sending rate, and drop rate.

5.5 Validation Summary

The S-model was evaluated by comparing the waveforms of its two state vari-
ables (window size and average queue size) to the ns-2 simulation results.
While the window sizes match well, the steady-state values of the average
queue size differ. Nevertheless, the average queue size of the S-model and ns-2
results have similar trend as the system parameters wq, pmax, qmin, and qmax

vary.
The difference in average queue size between the S-model and ns-2 is due

to simplifications to the RED’s packet discarding algorithm: S-model employs
probability pb (Eq. 2) as the final drop probability, while RED in ns-2 uses
pa (Eq. 15). If a modified drop probability pa = αpb is used, the window
size and the average queue size would evolve as shown in Figs. 12(a) and (b),
respectively. Comparison shows that the average queue size matches well the
ns-2 simulation results for modified drop probabilities with α = 1.8.
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Table 4: System variables for various wq.

Parameters Average RTT (ms)

weight (wq) S-model Δ (%) M-model Δ (%) ns-2

0.001 40.3 11.63 45.8 26.87 36.1
0.002 39.9 10.83 41.3 14.72 36.0
0.004 39.4 8.80 39.4 8.84 36.2
0.006 39.0 8.93 38.8 8.38 35.8
0.008 39.0 8.90 38.5 7.54 35.8
0.01 38.9 8.96 38.3 7.28 35.7

Sending rate (packets/s)

weight (wq) S-model Δ (%) M-model Δ (%) ns-2

0.001 384.99 0.07 325.89 -15.29 384.71
0.002 384.98 0.06 355.26 -7.67 384.77
0.004 385.11 0.08 370.04 -3.83 384.79
0.006 385.08 0.09 374.90 -2.55 384.73
0.008 385.10 0.11 377.25 -1.93 384.68
0.01 385.02 0.08 378.37 -1.65 384.70

Drop rate (%)

weight (wq) S-model Δ (%) M-model Δ (%) ns-2

0.001 0.55 1.29 0.67 23.39 0.54
0.002 0.56 2.56 0.70 28.21 0.55
0.004 0.59 6.12 0.71 27.70 0.56
0.006 0.60 7.91 0.71 27.70 0.56
0.008 0.61 11.11 0.71 29.33 0.55
0.01 0.61 11.72 0.71 30.04 0.55

6 Conclusions

TCP/RED system can be viewed as a complex feedback control system where
TCP adjusts its sending rate depending on the packet loss probability deter-
mined by RED. In this article, we have introduced a second-order discrete
model for interaction between TCP Reno and RED algorithms. We used an
iterative map to construct the discrete-time model of the system. The S-
model captures the dynamical behavior of TCP/RED and may be used to
study its nonlinear behavior. Unlike other models, it takes into account the
TCP slow start and timeout events. We evaluated the model by comparing its
performance to the ns-2 simulation results and an existing TCP/RED model.
Validation of the proposed model illustrates the performance of the model for
various RED parameters.
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Table 5: System variables for various pmax.

Parameters Average RTT (ms)

pmax S-model Δ (%) M-model Δ (%) ns-2

0.05 44.3 16.27 43.4 13.91 38.1
0.1 39.9 10.83 41.3 14.72 36.0
0.25 36.5 5.80 39.9 15.65 34.5
0.5 35.3 3.80 39.4 15.88 34.0
0.75 34.8 -0.85 39.2 11.68 35.1

Sending rate (packets/s)

pmax S-model Δ (%) M-model Δ (%) ns-2

0.05 385.13 0.11 354.23 -7.92 384.70
0.1 384.98 0.06 355.26 -7.67 384.77
0.25 384.93 0.05 356.02 -7.46 384.73
0.5 384.98 1.48 356.27 -6.09 379.37
0.75 384.63 7.60 356.33 -0.34 357.55

Drop rate (%)

pmax S-model Δ (%) M-model Δ (%) ns-2

0.05 0.45 -11.76 0.63 23.53 0.51
0.1 0.56 2.56 0.70 28.21 0.55
0.25 0.65 11.28 0.74 26.50 0.59
0.5 0.73 19.09 0.76 23.98 0.61
0.75 0.74 14.37 0.77 19.01 0.65
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1 Introduction

With the growing size and popularity of the Internet, congestion control has
emerged as an important problem. Poor management of congestion can ren-
der a network partly or fully inaccessible and significantly degrade the per-
formance of networking applications. Researchers have proposed various ap-
proaches for addressing this issue. One approach is to keep the network simple
and place most of the required intelligence at the end hosts by implementing
a more sophisticated end-user rate control allocation [7]. Another approach is
to control the congestion level at each router through Active Queue Manage-
ment (AQM) mechanisms, e.g., Random Early Detection (RED) [11], Ran-
dom Early Marking (REM) [3], and Virtual Queue (VQ) [12]. A common goal
of these AQM mechanisms is to detect early signs of congestion and provide
feedback to the adaptive sources so that congestion can be avoided without
causing a significant degradation in network performance.

The RED mechanism, proposed by Floyd and Jacobson [11], attempts to
control the congestion level at a bottleneck by monitoring and updating the
average queue size. The basic idea of RED is to sense impending congestion
before it happens and provide feedback to the sources by either dropping
or marking their packets. The packet marking/dropping probability is the
control administered by the RED gateways when they detect queue build-
up beyond a certain threshold. Although the RED mechanism is conceptually
very simple and easy to understand, its interaction with Transmission Control
Protocol (TCP) connections has been found to be rather complex and is not
well understood. Most of the rules for setting the parameters of the RED
mechanism are based on limited empirical data and come from networking
experience. These rules have been evolving, as our understanding of the effects
of controller parameters increases. There are reports that discourage wide
deployment of RED (e.g., [24]), arguing that there is insufficient consensus
on how to select controller parameter values, and that RED does not provide
a drastic improvement in performance.

L. Kocarev and G. Vattay (Eds.): Compl. Dyn. in Com. Networks, UCS 5, pp. 279–308, 2005.
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As noted above, the behavior of a network with TCP at the end nodes and
RED at the routers is not well understood, and indeed has been found to at
times exhibit erratic behavior. To improve the understanding of TCP-RED
network dynamics in congested regimes, we follow a nonlinear modeling and
analysis framework. In congested regimes, when the number of connections is
large the stochastic nature of incoming traffic is of less importance, and the
network can be approximated as a deterministic system. This allows us to use
nonlinear analysis and detailed simulations to explore network behavior over
a wide range of parameter values. The major difference between the present
work and earlier deterministic studies of TCP-RED is that here we are able to
model the generic nonlinear effects of TCP beyond linear operating regimes.

We use a deterministic nonlinear dynamical model of a simple network with
TCP connections and a RED gateway. The basic model that we consider was
originally proposed by Firoiu and Borden [8]. We modify their model with a
simpler TCP throughput function [14, 23] to facilitate the analysis while keep-
ing the dominant nonlinearity. It is also shown that the model proposed in [8]
can be rewritten as a first-order discrete-time nonlinear dynamical model. This
modeling framework is very much in the spirit of self-clocked models proposed
by Jacobson [17]. Our work goes beyond a simple linear stability analysis, and
studies regions where nonlinear instabilities occur due to nonlinearity of the
throughput function combined with buffer space limits becoming active. The
effect of these nonlinearities and the dynamics of network protocols in the
large have not been explored thoroughly. We show that the model exhibits a
rich variety of bifurcation behavior, leading to irregular network operation. As
parameters are varied, the system dynamics are shown to transition between
a stable fixed point and oscillatory or chaotic behavior via a period doubling
bifurcation.

Motivated by the observation of period doubling bifurcation as basic in-
stability initiation mechanism, we also illustrate a simple delayed feedback
control algorithm to control instabilities [1, 29]. The basic idea behind this
control is to modulate one of the control parameters by feeding back a function
of the difference between the state and the desired fixed point [27]. Our control
only enhances the stability of operating point without actually changing it.
This can be contrasted with other approaches like adaptive RED (ARED) [10]
where control itself oscillates in time using additive increase and multiplicative
decrease (AIMD) algorithm.

The rest of the chapter is organized as follows. Section 3 presents the non-
linear first-order discrete-time model that is used in the analysis. In Section
4, the fixed point of the model is determined and an associated period dou-
bling bifurcation is analyzed. The border collision bifurcation from the period
doubled orbit is studied in Section 5. Section 6 contains numerical examples
illustrating bifurcations and nonlinear instabilities in the model. An analytical
study of sufficient conditions for chaotic behavior is given in Section 7. We
describe our control algorithm in Section 8.
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2 Background on TCP and RED

In this section we first briefly explain the main protocols, the interaction of
which is the main subject of this chapter.

2.1 Transmission Control Protocol

Transmission Control Protocol (TCP) is the most popular form of congestion
control protocol adopted by responsive end user applications. The transmis-
sion rate of a TCP connection is controlled by its congestion window size that
determines the maximum number of outstanding packets that have not been
acknowledged. TCP operates in two different modes. When a TCP connec-
tion is first initiated, it starts in Slow Start (SS) mode. In SS the connection
increases its congestion window size by one for each acknowledged packet un-
til it receives the first congestion notification, e.g., packet drop or marking,
at which time it switches to Congestion Avoidance (CA) mode. In CA the
congestion window size is increased by one during the course of a round-trip
time (RTT) if the connection does not receive any congestion notification.
When a connection receives a congestion notification, the congestion window
size is reduced to half of the current value. This is often referred to as the
Additive-Increase-Multiplicative-Decrease (AIMD) mechanism.

Due to its popularity and important role in proper management of conges-
tion inside the network, the behavior of TCP has been much studied and it
is well understood in the context of single flow. It has been shown that given
the RTT R and packet loss probability p, the stationary throughput of a TCP
Reno connection can be approximated by

T (p,R) =
MK√
pR

+ o

!
1√
p

(
, (1)

where K is some constant in
�
1,

.
8
3

�
(see [14, 23, 28, 31]), when packet

losses are detected through triple-duplicate acknowledgements. We will use
this formula for TCP throughput in our analysis, assuming TCP flows are in
congestion avoidance (CA) mode unless mentioned otherwise.

2.2 Random Early Detection

Random Early Detection (RED) is one of the first active queue management
(AQM) mechanisms proposed by Floyd and Jacobson [11]. A RED gateway
estimates the congestion level by monitoring and updating its average queue
size. In order to maintain a relatively small (average) queue size, rather than
waiting until the buffer overflows it drops a packet with a certain probability
to provide an early signal of impending congestion when the average queue
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size exceeds a threshold. This packet dropping probability p is a function of
the average queue size qave of the following form [11]:1

p(qave) =


0 if qave < qmin

1 if qave > qmax
qave−qmin

qmax−qmin
pmax otherwise

, (2)

where qmin and qmax are the lower and upper threshold values, and pmax is
the selected drop probability when qave = qmax. The average queue size is
updated at the time of packet arrival according to the exponential averaging

qavenew = (1− w)qaveold + w · qcurr , (3)

where qcurr is the current queue size, i.e., the queue size at the time of arrival,
and w is the exponential averaging weight, which determines the time constant
of the averaging mechanism and how fast the RED mechanism can react to
a time-varying load. On one hand, the averaging weight w should be selected
small enough so that transient, temporary congestion does not result in an
oscillation of the packet drop probability. On the other hand, the averaging
weight should be set large enough so that the RED mechanism can react to
changes in load in a timely manner. These are two conflicting goals, and the
selection of the parameters will affect the interaction of the RED mechanism
with adaptive sources, such as TCP. In this chapter, however, we show that the
averaging weight cannot be set arbitrarily large without causing an oscillatory
behavior at the bottlenecks, which affects TCP performance.

3 Discrete-Time Feedback Model for TCP-RED

D 1S 1

S I D I

R1 R2
Ccapacity

delay d

Fig. 1: Topology of the network.

We consider a simple network, where a single bottleneck link is shared
by many connections. This is shown in Fig. 1. This can be viewed as a net-
work, where there exists a dominant bottleneck shared by connections, e.g., a

1In practice a RED gateway drops a packet with a modified probability in order
to lead to a more uniform drop pattern [11].



Nonlinear Instabilities in TCP-RED 283

bottleneck intercontinental Internet link. Let I, I = {1, · · · ,N }, denote the
set of connections. The set of connections is assumed to remain fixed for the
time period of interest. The capacity of the shared link is denoted by C. We
assume that the RED queue management mechanism is implemented at each
node in order to control the average queue size at the router. If an Explicit
Congestion Notification (ECN) mechanism is implemented, the RED gateway
marks the packet by setting the ECN bit in the IP header of the packet if the
transport layer is ECN capable. This is indicated in the packet through an
ECN Capable Transport (ECT) bit in the IP header. If the source is not ECN
capable, the RED gateway drops the packet [9]. The goal of the controller is
to keep the aggregate transmission rate of the connections close to the link
capacity, while maintaining a reasonably small average queue size between
qmin and qmax.

All connections are assumed to be a long-lived TCP Reno connections. We
assume that the connections are uniform and have the same round-trip prop-
agation delay (without any queueing delay), which is denoted by d. However,
rather than interpreting this assumption as a requirement that the connec-
tions must have the same propagation delay, one should consider the delay
d as the effective delay that represents the overall propagation delay of the
connections, or this could describe a case where the bottleneck link has a large
propagation delay that dominates the round-trip delays of the connections,
e.g., an intercontinental Internet link. We denote the rate or throughput of a
connection by x, and the packet size by M .2

A network with an AQM mechanism can be modeled as a feedback system,
where sources adjust their transmission rates based on feedback from the AQM
mechanism in the form of marked or dropped packets [9, 11]. We use a dynamic
discrete-time feedback system model, first introduced by Firoiu and Borden
[8], to analyze the interaction of a RED gateway with TCP connections.

The control system is defined as follows. At period k, k = 1, 2, . . . , the
RED controller at the router provides the feedback signal pk in the form of
a packet drop probability. This feedback signal is a function of the average
queue size qavek evaluated at period k. Due to a feedback delay introduced by
the RTT, the packet drop probability pk at period k, k ≥ 1, determines the
throughput of the connections and the queue size qk+1 at period k + 1, based
on system constraints (such as capacity constraints). The queue size qk+1 at
period k + 1 is used to compute the average queue size qavek+1 at period k + 1
according to the exponential averaging rule in (3). Then, the average queue
size qavek+1 is used to calculate the packet drop probability pk+1 at period k+1,
which is the control variable of the AQM mechanism. This can be expressed
mathematically as

2For the simplicity of analysis we assume that all connections use the same packet
size. Again, this should be interpreted as the average packet size of the connections
rather than a strict requirement.
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plant function: qk+1 = G(pk) (4)
averaging function: qavek+1 = A(qavek , qk+1) (5)

control function: pk+1 = H(qavek+1) (6)

where A(qavek , qk+1) is the averaging function

A(qavek , qk+1) = (1− w)qavek + w · qk+1 (7)

as given in (3), and the RED control function H(qavek+1) = p(qavek+1) as given in
(2). The exact form of the plant function G(·) depends on system parameters
such as the number N of connections, the nature of the connections, round-
trip delays d, etc. We describe the plant function subsection 3.1.

Let us first motivate our discrete-time model and explain the relationship
with some of previously proposed models. Since the queue size and average
queue size are updated upon packet arrivals, the queue dynamics at a RED
gateway evolve at a faster time scale than RTT of connections. However,
because the reaction times of TCP connections are fundamentally limited by
their RTTs, the average queue size should not change much over the course of
one RTT in order to allow the connections enough time to react to the current
level of feedback signal and filter out oscillations due to transient congestion in
order for RED mechanism to work properly as mentioned earlier. Therefore,
the detailed dynamics of the interaction over one round-trip time will be
averaged out by the RED averaging mechanism and will not play a significant
role.

This observation has been verified in [34] using a discrete-time stochastic
model, where a period is assumed to be a RTT of connections. They show that
as the number of flows becomes large, both queue and average queue sizes
converge to deterministic processes (i.e., macro-scale model) with details of
TCP dynamics filtered out. These results suggest that when modeling a large
number of TCP connections the detailed dynamics of interaction with the
RED can be simplified using a macro-scale model that captures the larger time
scale dynamics roughly at the time scale of round-trip times of the connections.
Similar results have also been obtained using stochastic differential equations
[4]. In addition, our results in [32] suggest that the model used here can
be interpreted as the underlying discrete-time model corresponding to the
system given by delay-differential equations in [4, 15, 22] which attempt to
approximate packet level dynamics using differential equations.

Let us denote the duration of a period in our discrete-time model by Tperiod

and the number of packets the link can transmit in a period by nperiod. Since
a period in our model is much larger than typical inter-arrival times of packets
as explained above, the exponential averaging weight in (7) is approximately
w ≈ 1 − (1 − wred)nperiod ≈ nperiod · wred if wred * 1, where wred is the
exponential averaging weight at a RED gateway.
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3.1 Plant Function

In this subsection we describe the plant function (4) that will be used for
our analysis. In order to compute the plant function we assume the following:
Given the packet drop probability at period k the aggregate throughput of
the connections is given by the stationary throughput formula in (1). In this

chapter we follow [28] in taking K =
.

3
2 . The exact value of K is not crucial

to our analysis.
We use this simple approximation for TCP throughput to facilitate our

analysis. However, our qualitative results do not depend on this particular
form of TCP throughput approximation, and are consequences of the nonlin-
ear dependence of TCP throughput on drop probability p, of which (1) is one
instance. Similar results to those obtained here hold for more detailed TCP
throughput function models.

Since the aggregate throughput of connections cannot be larger than the
link capacity, this determines the queue size at the next period k+1 as follows.
First, we can compute the steady-state packet drop probability pu such that
the bandwidth capacity constraint is satisfied,6

i∈I
T (pu, d) = N · MK√

pud
= C . (8)

This is the smallest probability that results in a queue size of zero at the next
period, and for all pk > pu, the queue size is zero at the next period. Hence,
if pk ≥ pu, we know that the throughput of the TCP connections is given by
MK√
pkd

and the queue size at period k + 1 is zero, i.e., qk+1 = 0. From (8) we
can derive that

pu =
!
NMK

dC

(2

, (9)

and the corresponding average queue size qaveu such that for any qavek ≥ qaveu ,
qk+1 is identically zero is given by

qaveu =

�
pu(qmax−qmin)

pmax
+ qmin if pmax ≥ pu

qmax otherwise

Suppose first that the buffer size B is infinite. If pk < pu, the bottleneck
link capacity is fully utilized. Thus, if pk < pu one can obtain the queue size
qk+1 at period k + 1 as the solution of the following equation:

MK
√
pk(d + qk+1·M

C )
=

C

N
. (10)

The interpretation of (10) is as follows. Assuming symmetric TCP connec-
tions, the bottleneck link capacity is equally divided among the TCP con-
nections. In this case, the throughput of a TCP connection will be given by
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T (pk, R(qk+1)) = MK√
pk(d+

qk+1M

C )
= C

N . Hence, the queue occupancy qk+1 is

given by

qk+1 =
C

M

!
MKN√

pkC
− d

(
(11)

Now let the buffer be of finite size B. From (11) we see that qk+1 is a
strictly decreasing function of pk, and hence we can compute the largest pk
such that the queue size qk+1 equals the buffer size B. This probability, which

we denote by pl, is given by
�

NMK
dC+BM

%2
. The corresponding average queue

size qavel is

qavel =
pl(qmax − qmin)

pmax
+ qmin .

It is obvious that for all pk ≤ pl, i.e., qavek ≤ qavel , we have qk+1 = B. From
(8) and (11) we have the full definition of the plant function

G(pk) =


0 , if pk ≥ pu

B , if pk ≤ pl
NK√
pk
− Cd

M , otherwise
(12)

= qk+1

This type of plant function has been verified by ns-2 simulation by Firoiu and
Borden [8] using a particular TCP throughput function similar to that used
here.

From (4)-(6) and (12), we obtain the mapping

qavek+1

= (1− w)qavek + w ·A(G(H(qavek )))

=

��
(1 −w)qavek if qavek ≥ qaveu

(1 −w)qavek + w ·B if qavek ≤ qavel

(1 −w)qavek + w ·
�

NK√
pk
− Cd

M

%
otherwise

:= g(qavek , ρ) , (13)

where ρ summarizes the system parameters, including the exponential aver-
aging weight w, and pk = qave

k −qmin

qmax−qmin
pmax from (2). This mapping gives the

dynamical relationship of the average queue size at period k + 1 to the aver-
age queue size at period k as shown in Fig. 2. There are three segments in
this map showing either increasing and decreasing behaviors of average queue
size in different regimes. Most of the interesting dynamics occur due to the
middle segment of the map. There are two types of forces in this segment,
one of which arises from averaging and the other arises from the RED control
action. Their relative contributions in the queue occupancy in the next period
are determined by the averaging parameter w. This interaction of averaging
and RED control law is crucial to the kind of instabilities and instability
cascades that occur as a system or RED parameter is slowly varied.
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Fig. 2: First Return Map for TCP-RED

4 Fixed Point and Its Bifurcation

A fixed point of the mapping g(·) is an average queue size q∗ such that q∗ =
g(q∗, ρ). If the RED parameters are properly configured, then the average
queue size should remain between qmin and qmax.

Assumption 1 pmax > pu, where pu is the largest probability that yields the
full utilization, defined in (9).

This is natural from a practical point of view since it disallows a disconnected
RED law wherein the drop probability jumps from pmax to 1.

Under Assumption 1, solving (13) for a fixed point q∗ leads to a third order
polynomial, which does not depend on the exponential averaging weight w
because neither the “queue law” nor the “feedback control law” is a function
of w. The corresponding probability p∗ of the fixed point q∗ is given as the
square of the positive real solution of the polynomial

CM

ν
y3 + (CMqmin + dC2)y −NMKC = 0 , (14)

where ν = pmax/(qmax − qmin).
The linear stability of the fixed point q∗ can be studied by considering the

associated eigenvalue:

∂

∂qavek

g(qavek , ρ)
::::
q∗

= 1− w − wNK

2
√
ν(q∗ − qmin)

3
2

:= λ(q∗(ρ), ρ) , (15)

The linear stability condition is |λ(q∗(ρ), ρ)| < 1, or
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2
√
ν(q∗ − qmin)

3
2

:::: < 1 . (16)

In order to simplify the analysis, we reduce the number of parameters in
the model by performing a normalization.

4.1 Normalization scheme

Define the parameter γ as

γ :=
qmax − qmin

pmaxB
=

1
νB

> 0

The normalized state variables and RED queue thresholds are defined as

qnk :=
qavek

B
, qnmin :=

qmin

B

qnl :=
qavel

B
=

�
NK

B + dC
M

&2

γ + qnmin

qnu :=
qaveu

B
= pu · γ + qnmin

qnk+1 =

������������

(1− w)qnk , if qnk > qnu
(1− w)qnk + w , if qnk < qnl

(1− w)qnk + w

 NK

B

r
qn
k

−qn
min

γ

− dC
MB


otherwise

:= f(qnk , ρ) (17)

Eq. (17) maps the unit interval into itself.

4.2 Bifurcation analysis

Local stability of an one-dimensional map in the neighborhood of a fixed point
is determined by the eigenvalue of the linearized map evaluated there. For the
normalized map (17), this eigenvalue is

∂f(qnk , ρ)
∂qnk

::::
qk

n=qn∗
= 1− w − wNK

2B(qn∗ − qnmin)
3
2

√
γ

:= λ(ρ) (18)

where qn∗ is the fixed point of the normalized map. The linear stability crite-
rion (|λ(ρ)| < 1 [16]) is
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:::::1− w − wNK

2B(qn∗ − qnmin)
3
2

√
γ

::::: < 1 (19)

Note that the eigenvalue depends on the fixed point. Of significant interest
here are the parameter settings which may lead to loss of stability of the fixed
point, giving rise to nonlinear instabilities through a system bifurcation. Nu-
merical simulations of the system show the presence of oscillatory regimes as
control and system parameters are varied, and indicate that a period doubling
bifurcation occurs from the fixed point with the variation of any of the system
or control parameters. Thus, we are led to consider cases in which the eigen-
value given by (18) becomes −1, giving a period doubling bifurcation (PDB)
leading to oscillatory behavior in the system. To demonstrate existence of such
bifurcations, it is easiest to focus on the exponential averaging parameter w
as the distinguished bifurcation parameter. The critical value of w is one for
which the eigenvalue given by (18) is −1. The critical value can be expressed
in a closed form as follows:

wcrit =
2

1 + nK

2(q∗e−qmin)
3
2

.
qmax−qmin

pmax

(20)

where q∗e is a fixed point of the system whose corresponding probability is
given as a square of the solution from (14).

Period doubling bifurcation can be supercritical or subcritical. In the su-
percritical case, attracting period two orbits emerge from the fixed point on
the unstable side of the fixed point. In the subcritical case, repelling period
two orbits emerge on the stable side. The ramifications of these two types of
period doubling bifurcation for system behavior are very different, with super-
critical bifurcation leading to a steady oscillatory behavior near the original
fixed point, and subcritical bifurcation leading to divergent oscillations. It is
possible to determine analytically which of these two cases will arise [16]. To
do so, we need to compute the second and third derivatives of the normalized
map

∂2f

∂qnk
2

::::
qk

n=qn∗
=

3wNK

4B(qn∗ − qnmin)
5
2

√
γ (21)

∂3f

∂qnk
3

::::
qk

n=qn∗
=

−15wNK

8B(qn∗ − qnmin)
7
2

√
γ (22)

to analyze the nature of this bifurcation. The quantity

S =

�
1
2

!
∂2f

∂qnk
2

(2

+
1
3

!
∂3f

∂qnk
3

(&
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(evaluated at the fixed point and the selected parameter values) determines
the nature of a period doubling bifurcation (see [13], pp.158). A positive
S implies that the bifurcation is supercritical, and a negative S implies a
subcritical bifurcation. For the system given by (17), S is

S =
wNK

√
γ

B(qn∗ − qnmin)
7
2

�
9
32

wNK
√
γ

B(qn∗ − qnmin)
3
2
− 5

8

�
. (23)

The expression for S in (23) shows that it may change sign giving rise to a
subcritical bifurcation if the parameters are in certain ranges. This should be
kept in mind when designing a TCP-RED system to avoid any unexpected
oscillations in router queues.

First, suppose that the system and control parameters are fixed, except
for the averaging weight w. Then, from (15) we see that the eigenvalue is a
linearly decreasing function of w, becoming more negative as w is increased.
Now consider the critical averaging weight w∗ to be a function of N , and
denote it as w∗(N). Then

w∗(N) =
2

1 + NK

2
√
ν(q∗−qmin)

3
2

.

The next lemma states that the largest value of the averaging weight that can
be used without resulting in loss of stability is an increasing function of N .3

Lemma 1. The critical parameter value w∗(N) is an increasing function of
N .

This lemma tells us that when the load is light, the averaging weight
must be selected small in order to avoid an oscillatory behavior in the queue
size due to a period doubling bifurcation. The importance of the bifurcation
point is that the system quickly becomes very unstable in the sense that the
queue size oscillates widely, often resulting in an empty queue, reducing the
system throughput and increasing the RTT variance of TCP connections.
One can show in a similar manner that the initial period doubling bifurcation
point w∗(·) is a decreasing function of the round-trip propagation delay d and
qmin and an increasing function of qmax when these parameters are varied in
isolation while other parameters are fixed.

Below, some analytical properties of the map (17) are given and proved,
in preparation for the study of possible instability routes in the next section.

Assumption 2 Assume that the left derivative of the normalized map in (17)
is negative for qnk = qnu .

This assumption is not very restricting. It simply asserts that as the (nor-
malized) average queue size qnk increases from qnl to qnu the average queue size

3For the rest of the chapter we limit our interests to the region where q∗ ≤ qmax.
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in the next period computed according to the map in (17) decreases with qnk .
This assumption will be true if the negative feedback component of the RED
is larger than the contribution retained by the averaging mechanism in the
middle segment of the map shown in Fig. 2.

Lemma 2. The map given by (17) is piecewise monotone under Assumptions
1 and 2.

Next, we analyze the parametric dependence of TCP-RED system and
show that it is smooth in parameter with respect to w.

Lemma 3. The map given by (17) depends smoothly on w.

We refer the reader to [30] for a proof of Lemmas 2 and 3. Properties of
TCP-RED map outlined by these lemmas will be used in the next section
to leverage Border Collision bifurcation (BCB) theory to the understand the
dynamics in different regions.

5 Border Collision Bifurcation (BCB)

In this section we use the border collision bifurcation theory [5, 6] to analyze
the bifurcations due to the variation of parameter w. BCBs occur for piecewise
smooth maps, and involve a nonsmooth bifurcation occurring when a param-
eter change results in a fixed point (or other operating condition) crossing a
border between two regions of smoothly defined dynamics in state space.

If a fixed point collides with the border(s) with a change in the parame-
ters, there is a discontinuous change in the derivative ∂f

∂x of map f(x), and
the resulting phenomenon is called border collision bifurcation. This kind of
bifurcation has been reported widely in economics [26], mechanical systems,
and power electronic models [5, 6, 26].

Border collision is a local bifurcation and hence it can be studied by char-
acterizing the local properties of a map in the neighborhood of the colliding
border. It is shown in [26] that a normal form which is an affine approximation
of f in the border neighborhood is sufficient to quantify the possible border
collision bifurcations. This normal form is

G(x, µ) =
�

ax + ψ, if x ≤ 0
bx + ψ, if x ≥ 0 (24)

where

a = lim
x→xb

∂

∂x
f(x, ψ∗) , b = lim

x→xb
+

∂

∂x
f(x, ψ∗) (25)

and ψ∗ is the parameter for which border collision happens. It can be assumed
to be 0 without any loss of generality.
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There are various types of bifurcation scenarios possible depending on the
values of coefficients a and b in the normal form given in (25). For the sake
of simplicity, we will discuss only the case relevant to the observed phenom-
ena in our model and provide a numerical proof by computing the one sided
coefficients (eigenvalues) for the same.

The following lemma from [5] shows that the border has a crucial role if a
certain bifurcation sequence occurs.

Lemma 4. If a fixed point of the map given by (17) undergoes a smooth
(eigenvalue = −1) period doubling bifurcation at w1 and the resulting pe-
riod two orbit also goes through a smooth period doubling for w2 > w1, then
under the piecewise monotonicity condition, the periodic orbit must collide
with the border for some w ∈ [w1 w2].

We will see this kind of smooth and nonsmooth bifurcations in the next section
when we present numerical examples.

For our model, the case of interest in border collision theory is when

0 < a < 1 and b < −1 (26)

This is mentioned as case 8 in [26]. It is shown that in this case a fixed point
attractor can bifurcate into a periodic attractor or a chaotic attractor as ψ is
varied from negative to positive. This is the exact phenomenon we observe for
our model when the bifurcation parameter w is varied and a stable period two
orbit transitions to chaos. Essentially, if we take the second iterate of our map,
it exhibits a fixed point bifurcating into a chaotic orbit. Existence of chaos
can be confirmed by computing the Lyapunov exponents [31]. A numerical
example that provides evidence for our claim is given in the next section.

6 Numerical Examples

The behavior of the map in (13) can be explored numerically in parameter
space to look for interesting dynamical phenomena. When the eigenvalue exits
the unit circle, the fixed point becomes unstable. Depending on the nature of
the ensuing bifurcation, there can be new fixed points, higher period orbits, or
chaos. There is also a possibility of an orbit (original fixed point or a bifurcated
orbit) colliding with either border qaveu or qavel , leading to a rich set of possible
bifurcations.

In this section we numerically validate our analysis using bifurcation di-
agrams. A bifurcation diagram shows the qualitative changes in the nature
and the number of fixed points of a dynamical system as parameters are qua-
sistatically varied. The horizontal axis is the parameter that is being varied,
and the vertical axis represents a measure of the steady states (fixed points
or higher period orbits). For generating the bifurcation diagrams, in each run
we randomly select four initial average queue sizes, qave1 (0), qave2 (0), qave3 (0)
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and qave4 (0), and these average queue sizes evolve according to the map g(·)
in (13), i.e.,

qavei (k) = g(qavei (k − 1), ρ) , for k = 1, · · · , 1, 000
and i = 1, 2, 3, and 4 .

We plot qavei (k), k = 991, · · · , 1, 000 and i = 1, 2, 3, and 4. Hence, if there
is a single stable fixed point or attractor q∗ of the system at some value of
the parameter, all qavei (k) will converge to q∗ and there will be only one point
along the vertical line at the value of the parameter. However, if there are two
stable fixed points, q̃ave1 and q̃ave2 , with a period of two, i.e., g(q̃avei , ρ) .= q̃avei

and g(g(q̃avei , ρ)) = q̃avei , i = 1, 2, then there will be two points along the
vertical lines and the average queue size will alternate between q̃ave1 and q̃ave2 .

Next, we study the effects of various system and control parameters on
average and queue behavior as each of these parameters is varied while the
others are fixed. More specifically, we study how the averaging weight w, lower
threshold qmin, the number of connections N , and the round-trip propagation
delay d affect system stability, queue behavior and their sensitivity to these
parameters.

6.1 Effect of Exponential Averaging Weight

We use the following parameters for the numerical examples presented in this
subsection:

qmax = 750, qmin = 250, C = 75 Mbps,
K =

0
3/2, B = 3,750 packets, M = 4,000 bits,

N = 250, d = 0.1 sec, w = bifurcation parameter

The bifurcation plots in Fig. 3 and 4, show the effect of varying the averag-
ing weight w for different values of pmax, namely pmax = 0.1 and pmax = 0.03.
Fig. 3(a) and 4(a) show the exponentially averaged queue sizes, and Fig. 3(b)
and 4(b) plot the actual queue sizes. For small w, these plots have a fixed point,
which shows up as a straight line until some critical value of w is reached, at
which point the straight line splits into two. The emergence of two stable
fixed points of period two is a consequence of a period doubling bifurcation.
This is the first indication of oscillatory behavior appearing in the system due
to the inherent nonlinearity of the interaction between RED mechanism and
TCP, as opposed to a discontinuity in “queue or control law” which has been
suggested in the past. This period two oscillation starts batching load at the
router as shown in the plots.

Increasing w further results in one of the period two fixed points colliding
with the upper border of the map, giving a chaos type phenomenon. This is
basically a bifurcation sequence expressed briefly as 1→ 2→ chaos. This is a
case of border collision bifurcation as shown in the analysis earlier. It can be
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Fig. 3: Bifurcation diagram of average and actual queue length with respect to the
averaging weight w (pmax = 0.1).
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Fig. 4: Bifurcation diagram of average and actual queue length with respect to the
averaging weight w (pmax = 0.03).

seen that when the bifurcation diagram for qavek collides with the border qaveu ,
the queue empties, underutilizing the bottleneck link capacity. The implication
of a relatively small oscillation in the average queue length is rather serious
for the queue length since the buffer starts getting empty and overly filled in
every alternate cycle. This dynamical phenomenon is common to both plots
in Fig. 3 and 4. We note that the distance between the initial period doubling
bifurcation point and the border collision bifurcation point is short in both
cases. This suggests that an effective way of controlling the instability may be
to control the first period doubling bifurcation point.

To illustrate the period doubling bifurcation in the system we compute the
eigenvalue for the fixed point as w is varied. It can be seen that this eigenvalue
leaves unit circle along negative real line indicating a period doubling bifurca-
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Table 1: Eigenvalues computed for different values of parameter w to illustrate PDB,
qave

u = 0.102222.

w qnk λ(qnk , w) Legend

0.1561 0.092028 -0.978111 Close to PDB
0.1572 0.092028 -0.992051 Closer to PDB
0.1583 0.092028 -1.005990 After PDB
0.1594 0.092028 -1.019929 After PDB

Table 2: Eigenvalues computed for different values of parameter w to illustrate BCB,
qnu = 0.102222.

w qnk qnk−1 qnk−2 qnk−3

0.1620 0.100108 0.086412 0.100108 0.086412
0.1631 0.085846 0.101330 0.085846 0.101330
0.1642 0.102193 0.085488 0.102283 0.085447

w λ2(k, k − 1) λ2(k − 2, k − 3) Legend

0.1620 0.786415 0.786415 Before BCB
0.1631 0.729421 0.729421 Before BCB
0.1642 0.692157 -1.815238 After BCB

tion. We also track the unstable fixed point and compute the corresponding
eigenvalue to show that it indeed crosses the unit circle as shown in Table 1.
We also notice that both stable and unstable fixed point (qn∗ = 0.092028) is
smaller than qaveu = 0.102222 for the normalized model. Hence, it lies on the
same side of the border even after smooth period doubling bifurcation.

To provide evidence for our claim for a BCB, we further compute the
eigenvalue of a period two orbit of the map numerically and show that indeed
one sided eigenvalues obey the condition given in (26). This computation is
done for the set of parameters corresponding to Fig. 3. We define λ2(i, j) =
λ(qni ) ∗ λ(qnj ).

In Table 2, the first and second rows show the four consecutive states
(the exponentially averaged queue size at the router) corresponding to the
parameter w just before the BCB but after PDB. We note that all the states
stay on the same side of the border with eigenvalue corresponding to a period-
two orbit being less than unity. This implies the existence of stable period-2
orbit.

The third row depicts the same data just after a border collision bifurcation
from a fixed point to chaos for the second iterate. Comparing the states with
the border (qnu ) reveals that qnk−2 and qnk−3 lie on different sides of the border.
The eigenvalues corresponding to these two points, i.e., λ2(k − 2, k − 3), is
negative. This eigenvalue λ2(k − 2, k − 3) can be used to approximate b in
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(25) in this case. Similarly the eigenvalue corresponding to qnk−1 and qnk , i.e.,
λ2(k, k − 1), can be used to approximate a in (25). Since a lies between 0
and 1 as shown in Table 2, and b is smaller than -1, these values satisfy the
condition given by (26). Note the eigenvalues change discontinuously as w is
varied. This supports our contention that there is a border collision bifurcation
in the system through which the system may become chaotic. It also stresses
the role played by a border. We also note that there is a possibility of other rich
nonlinear instabilities with different periodicity based on different parameter
settings.
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Fig. 5: Lyapunov exponent computed for average queue length with respect to the
averaging weight w (pmax = 0.1).

We also plot the Lyapunov exponents for the bifurcation scenario in Fig. 3
where pmax = 0.1. This is useful since a positive Lyapunov exponent indicates
the presence of chaotic behavior (page 110, [2]). Fig. 5 shows that for small w
the exponent is negative, which corresponds to the single stable fixed point.
It slowly increases to zero near the period doubling bifurcation, and then
becomes negative again due to a stable period two orbit. Finally, it jumps to
a positive value when one of the period two fixed points collides with one of
the borders.

7 Chaotic Behavior

The purpose of this section is to give an analytical proof of the presence of
chaos in the TCP-RED dynamic model. The tool we use is a well known
theorem of Sharkovsky [33] which was also proved by Li and Yorke [20] and
goes by the name “period three implies chaos.” It applies to continuous one-
dimensional maps, and thus can be applied to piecewise smooth but continu-
ous systems such as the system studied here.
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The main result of Li and Yorke [20] is as follows.

Theorem 1. Let J be an interval and let F : J → J be continuous. Assume
that there is a point a� ∈ J for which the points b� = F (a�), c� = F 2(a�) and
d� = F 3(a�), satisfy

d� ≤ a� < b� < c� or d� ≥ a� > b� > c�

Then
T1: for every k = 1, 2, . . . there is a periodic point in J having period k; and,
furthermore,
T2: there is an uncountable set S ⊂ J (containing no periodic points), which
satisfies the following conditions:
(A) For every p, q ∈ S with p .= q,

lim supn→∞ |Fn(p)− Fn(q)| > 0
and

lim infn→∞ |Fn(p)− Fn(q)| = 0
(B) For every p ∈ S and periodic point q ∈ J ,

lim supn→∞ |Fn(p)− Fn(q)| > 0

In our case J = [0 B], and F is given by the function g(·, ·) which defines
the TCP-RED map in (13). It is also clear that the TCP-RED map is contin-
uous by construction as long as Assumption 1 is in force. Also, note that the
existence of a period three orbit, i.e., d� = a� > b� > c� or d� = a� < b� < c�,
is a special case of the hypotheses of the theorem and proves the existence of
chaos.

We have proved earlier [30] that the map (13) is strictly increasing for
0 ≤ qave ≤ qavel and for qaveu ≤ qave ≤ B but it can be strictly decreasing in
the segment where qavel ≤ qave ≤ qaveu under certain conditions.

To apply the theorem, we need to choose a starting point a� and iterate
on it using the map g three times and then apply the conditions stated in the
theorem. We select a� = qave

u

(1−w) . This choice is made based on earlier numeri-
cal studies (Matlab) which showed a strong tendency toward bifurcation and
chaos when the system state qavek nears qaveu . With this choice for a�, we find
that b� = g(a�) = (1 − w)a� = qaveu and c� = g2(a�) = g(qaveu ) = (1 − w)qaveu .
Looking at Fig. 2, it is clear that there are two possible cases for the location
of c�: either qavel < c� (Case I) or qavel ≥ c� (Case II). If w is small, then
c� = (1−w)qaveu will be close to qaveu and therefore Case I will hold. However,
conditions for Theorem 1 to apply will be found below for both Case I and
Case II.

Case I: Let qavel < (1 − w)qaveu (this corresponds to (1 − w)qaveu lying in the
interval [qavel , qaveu ]. Then
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Fig. 6: a. First return map and period three condition for w = 2−7, b. for w = 2−5.8,
c.for w = 2−5.3 and d. for w = 2−5

g3(a�) = (1− w)2qaveu + w

 NK.
pmax((1−w)qave

u −qmin)
(qmax−qmin)

− dC

M


Hence the criterion d� ≥ a� > b� > c� of Theorem 1 ensuring existence of chaos
gives

(1− w)2qaveu + w

 NK.
pmax((1−w)qave

u −qmin)
(qmax−qmin)

− dC

M

 ≥ a� (27)

Case II: Alternatively, suppose qavel ≥ (1 − w)qaveu . Then g3(a�) = (1 −
w)2qaveu + wB. Now the criterion d� ≥ a� > b� > c� of Theorem 1 ensuring
existence of chaos in this case gives g3(a�)−a� ≥ 0, which reduces to following
simple condition.
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(1− w)2qaveu + wB ≥ qaveu

(1 − w)
⇒ (1− w)3qaveu + w(1 − w)B ≥ qaveu

⇒ w(1 − w)B − (1 − (1− w)3)qaveu ≥ 0
⇒ w(1 − w)B − (1 − 1 + 3w − 3w2 + w3)qaveu ≥ 0

⇒ qaveu ≤ (1− w)B
(3− 3w + w2)

(28)

Summarizing, we have the following lemma. Here, “chaotic in the sense of Li
and Yorke” means satisfying the conclusions of Theorem 1.

Theorem 2. The TCP-RED system given by (13) is chaotic in the sense
of Li and Yorke if either (27) and qavel < (1 − w)qaveu hold, or (28) and
qavel ≥ (1− w)qaveu hold.

The progression of nonlinear instabilities towards period-three and chaos
is illustrated in Fig. 6. It is shown that as exponential averaging weight w is
increased initially the condition given by Case-I holds, and for larger values
of w condition given by Case-II is satisfied.

8 Feedback Control of Instabilities

In this section, we illustrate a simple delayed feedback control algorithm to
control instabilities [1, 29]. The basic idea behind this control is to modulate
one of control parameters by feeding back a function of the difference between
the state and the desired fixed point [27]. This will delay the occurrence of
bifurcation. We will also describe a nonlinear control strategy that can be
used to achieve stabilization without changing the critical parameter value,
and a combination of linear and nonlinear control terms achieve both a delay in
parameter space and stabilization of ensuing bifurcations and hence reduction
in the amplitude of oscillations.

8.1 Washout Filter Based Control

The washout filter mechanism has been successfully utilized to control a num-
ber of bifurcations in nonlinear models with uncertainty [1]. This approach for
TCP-RED systems differs considerably from other schemes where the control
scheme tries to keep the operating point invariant under significant parametric
variations [3, 10]. For example, the adaptive RED (ARED) scheme also mod-
ulates a control parameter, namely pmax, to adapt to dynamically changing
operating conditions, using an additive increase and multiplicative decrease
algorithm [10]. However, the adaptation is done based on the difference be-
tween the current average queue size and fixed target queue size, and hence
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keeps system operation independent of other parameter variations. An inher-
ent problem with such an approach is that the range over which it is effective
may be severely limited in the parameter space [19].

A simple discrete time high-pass filter can be used as an analogue of
washout filter in continuous time. Consider the following high-pass filter dis-
cussed in [1].

G(z) =
1− z−1

1− τz−1

This can have the following time domain implementation:

zk+1 = xk + (1 − τ)zk
yk = xk − τzk (29)

where {xk} is the input sequence to the washout filter, {yk} is the output
sequence, and the washout filter constant τ should satisfy 0 < τ < 2. At
steady state, zk+1 = zk and xeq − τ · zeq = 0. Hence, from (29), we have
yk ≡ 0 and the output of the washout filter vanishes at the steady state.

Now, we can consider a scalar nonlinear dynamical system with washout
filter control:

xk+1 = f(xk, uk) (30)

where uk is a scalar control input. If washout filter is put in the feedback loop
with feedback function h(·), we have following modified system:

xk+1 = f(xk, uk)
zk+1 = xk + (1− τ)zk

yk = xk − τzk

uk = h(yk)

where h : R→ R is any smooth function such that h(0) = 0. It can be shown
that this type of feedback control does not modify the equilibrium point of
the original system under no control, i.e., uk = 0 [1]. However, with a proper
choice of feedback function h(·) and washout filter constant, it can enhance
the stability of the original equilibrium point without the need for accurate
knowledge of the system model or equilibrium value.

8.2 Application to TCP-RED

In this section we look at the stabilization of map in (13) with linear control
terms in the neighborhood of fixed point q∗, i.e., q∗ = f(q∗, ρ). For this we
need to compute the linearization of the map (xn+1 = Axn + bun) around the
intended fixed point of the system.
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∂f(qavek+1, ρ)
∂qavek+1

::::
qave

k+1=q∗
= 1− w − 0.5wNK

(q∗ − qmin)
3
2

:= λ0(ρ) (31)

Depending on the RED parameter to be modulated, b(pmax) = ∂f
∂pmax

or
b(qmax) = ∂f

∂qmax
can be computed.

b(pmax) = − 0.5wNK.
(qave

k −qmin)

(qmax−qmin)
p1.5max

(32)

b(qmax) =
0.5wNK0

(qavek − qmin)(qmax − qmin)pmax

(33)

It is clear from above that b(·) .= 0 for nominal range of parameters. For
one dimensional system with nonzero eigenvalue, both left (l) and right (r)
eigenvectors are 1.

From above two observations we conclude that l · b(·) .= 0. This has conse-
quences for linear stabilizability due to Popov-Belevitch-Hautus (PBH) eigen-
vector test for controllability of modes of linear time invariant systems [18],
and tells us that linear stabilizing feedback exists in this case. This also means
that cubic feedback exists, which we study in Section 8.5.

In the view of PBH test for controllability and wash out filter described
above, we can view the averaged queue size of RED as input to the state
estimation filter that provides the estimate yk. This estimate can be used to
construct the control depending on the functional form of h. In this section
we consider only the linear control law, i.e., uk = kl · yk, because in linear
analysis all the nonlinear terms vanish when the system is linearized at the
fixed point. Throughout this section we assume that we modulate qmax unless
stated otherwise. In this framework, the TCP-RED system given by (13) when
augmented by washout filter, can be rewritten as follows:

zk+1 = qavek + (1 − τ)zk (34)
uk = h(qavek − τzk) (35)

qavek+1 =

����
(1− w)qavek if qavek > qaveu

(1− w)qavek + wB if qavek < qavel

(1− w)qavek + w( NKr
(qave

k
−qmin)pmax

(qwo
max−qmin)

− dC
M ) otherwise

(36)

where qwo
max = min{B2 ,max{α · qmin, qmax + uk}}. We upper limit qmax to 0.5

B due to the consideration of GENTLE mode of RED and lower limit it to
α · qmin, where 1 < α < 2.

8.3 Stability Analysis with Washout Filter

In this section we analyze the stability of washout enabled TCP-RED given
by (36). Clearly, [ q

∗

τ , q∗] is the fixed pointof the new system given by (34) -
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(36) for τ .= 0. The Jacobian matrix evaluated at the fixed point [ q
∗

τ , q∗] is
given by

A =

�
1− τ 1

b
∂h(qave

k −τzk)
∂zk

∂f(qave
k ,ρ)

∂qave
k

+ b
∂h(qave

k −τzk)
∂qave

k

&
(37)

where b = b(qmax) given in (33).
If we evaluate (37) at the fixed point [ q

∗
τ , q∗] with linear control, i.e.,

uk = kl(qavek − τ · zk), (37) simplifies to

A =
!

1− τ 1
−τbkl λ0 + bkl

(
(38)

where λ0 = ∂f(qave
k ,ρ)

∂qave
k

:::
qave

k =q∗
from (31).

Next we recall Jury’s stability test for second order discrete-time systems:

Lemma 5. (Jury’s stability test for second order systems [21]) A necessary
and sufficient condition for the zeros of the polynomial

p(λ) = a2λ
2 + a1λ + a0

(a2 > 0) to lie within unit circle is

p(1) > 0, p(−1) > 0 and |a0| < a2

The characteristic equation for matrix in (38) is given by

λ2 − λ((1 − τ)) + λ0 + bkl) + (1 − τ)λ0 + bkl = 0

Using Jury’s test for stability, the conditions for linear asymptotic stability
are given as follows.

τ(1 − λ0) > 0 (39)
2 + 2bkl + 2λ0 − τ(1 + λ0) > 0

⇒ kl >
(τ−2)(1+λ0)

2b for b > 0 (40)
|λ0(1− τ) + bkl| < 1

⇒ −1−λ0(1−τ)
b < kl <

1−λ0(1−τ)
b for b > 0 (41)

Similar inequalities can be formulated for linear stability in the case of b < 0,
e.g., pmax is modulated. As we see here the stability region for pair (τ, kl) is
made up of three straight lines in (τ, k) plane, which are described below:

(l1) : k =
(1 + λ0)τ

2b
− 1 + λ0

b
(42)

(l2) : k =
λ0τ

b
− (1 + λ0)

b
(43)

(l3) : k =
λ0τ

b
+

(1− λ0)
b

(44)
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Fig. 7: Control Region for washout augmented TCP-RED

Under the generic assumption of λ0 < −1 and b > 0, we can see that
lines (l2) and (l3) are parallel as they have the same slope. Lines (l1) and (l3)
intersect each other at (τ0, k0) = ( 4

1−λ0
, (1+λ0)

2

(1−λ0)b
). Similarly, lines (l1) and (l2)

intersect each other at (τ1, k1) = (0, (1+λ0)
b ).

Proposition 8.1 For a (τ, k) pair to be stabilizing, it must lie within the
triangle with the vertices (0, (1+λ0)

b ), (0, (1−λ0)
b ), and ( 4

1−λ0
, (1+λ0)

2

(1−λ0)b
)

The parameter that will be modulated for control will determine the value
of b, e.g., b < 0 for pmax and b > 0 for qmax. Gain kl needs to be chosen
accordingly. Washout filter parameter τ is chosen such that 0 < τ < 2, and
λ0 < −1 in the regime after period doubling bifurcation. This shows that,
theoretically, it is possible to control the average queue size of RED locally
near critical parameter value, although allowable range for parameters such
as pmax or qmax is limited by physical constraints in the real system. Also,
these control gains need to be limited so as to not cross the basin of attraction
for the fixed point. Hence, though local stabilization near the critical value of
a parameter is possible, it may not be possible to stabilize in an arbitrarily
large parameter range. Next, using Jury’s test we compute the parameter
range where stabilization is possible for a fixed value of kl as exponential
averaging weight w is varied. Similar results can be obtained for round-trip
propagation delay d, and the number of active connections N .
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8.4 Stabilization with Respect to Exponential Averaging Weight

Stabilization with respect to exponential averaging weight w is simpler to an-
alyze since the fixed point is independent of w and the eigenvalue λ0 decreases
linearly with w from (31). Hence, due to linear stabilizability of the original
system, i.e., l · b .= 0, it is possible to stabilize the RED averaged queue by
picking appropriate kl and τ that obey the conditions given by (39) - (41).
Here we are interested in investigating the possibility of local linear stabiliz-
ing over all values of 0 < w < 1. It turns out that due to some interesting
properties of λ0 and b = b(qmax) as given by (33) it is possible to pick a (τ, kl)
pair to stabilize the system for all possible values of w > wcrit, where wcrit

is the value of w at which first period doubling bifurcation happens in the
uncontrolled system and is given by (20).

From (31) and (33) one can show that (1−λ0)
b(qmax)

is independent of w. This
provides important insight into the locus of triangular stability region as given
by Proposition 8.1. It shows that one of the vertices (0, (1−λ0)

b ) is invariant of
w. We now need to understand the behavior of λ0 and b(qmax) and that of

λ0
b(qmax)

as w is varied in unit interval. It is clear from (31) that λ0 decreases
linearly as a function of w. Similarly, b(qmax) as given by (33) increases linearly
with w, and λ0

b(qmax)
is strictly decreasing with w, which can be seen directly by

differentiating the expression. This means that all three constraint lines given
by (42) - (44) become steeper with increasing w. This leads to decreasing area
of stability triangle shown in Fig. 7. Finally, we use the fact that w is bounded
by one from above and evaluate the worst case stability region. Clearly, the
eigenvalue remains finite for w=1. Evaluating the vertices for w = 1 will
provide the smallest triangle. Hence, if the stabilizing pair (τ, kl) lies within
this triangle, then it does for all other values of w > wcrit.

Theorem 3. TCP-RED system along with washout filter for a given washout
control parameter and linear control gain pair (τ, kl) and all other parameters
held fixed, will be stable for wcrit < w < 1 where wcrit is the value of w cor-
responding to the first period doubling bifurcation, if (τ, kl) lies within the tri-
angle with vertices (0, (1+λ0(w=1))

b ), (0, (1−λ0(w=1))
b ), ( 4

1−λ0(w=1) ,
(1+λ0(w=1))2

(1−λ0(w=1))b )
with b = b(qmax).

Now, that we know about the linear stabilizability of the TCP-RED sys-
tem, it is possible to use explicit nonlinear control terms to increase the control
robustness or to reduce the amplitude of ensuing oscillations.

8.5 Nonlinear Control

It is possible to use small nonlinear control terms to further enhance the
stability of a system going through a period doubling bifurcation. We first
introduce the following hypothesis:
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Hypothesis 1 Eq. (13) has a period-1 orbit at x∗(ρ∗) where x∗(ρ∗) is the
fixed point at the critical parameter value ρ∗. Furthermore, the linearization
of (13) at x∗(ρ∗) possesses a simple eigenvalue λ1(ρ) with λ1(ρ∗) = −1 and
λ

�
1(ρ∗) .= 0, where λ

�
1(·) is the derivative of λ1(·) with respect to ρ.

This hypothesis can be easily verified for TCP-RED map given by (13). Now
we recall the nonlinear control theorem given in [1] for local control of period
doubling bifurcation.

Theorem 4. Under hypothesis 1 and for l · b .= 0, i.e., when the critical
eigenvalue is controllable for linearized system, there is a feedback u(xk) with
u(xk−x∗(ρ∗) = 0) = 0, i.e., feedback control vanishes at the fixed point, which
solves the local period doubling bifurcation control problem. Moreover, this can
be accomplished with third order terms in u(xk), leaving the critical eigenvalue
unaffected.

Above theorem suggests a cubic control by itself can stabilize the system
or a mixed control with linear terms can be used to enhance the stability
of bifurcation in an extended parameter domain. This allows us to consider
different functional forms for the control in (36). All these forms have been
shown to enhance the stability of the fixed point, thus delaying the system
bifurcations [1]. It is also important that only the error terms xk−x∗(ρ∗) from
the nominal operating point is used to preserve the original operating point.

uk = kcyk
3 Cubic Control Law

uk = klyk + kcyk
3 Mixed Control Law

The stability analysis done in [1] also suggests that kl and kc be based on the
computation of l and b. Clearly, we do not need a quadratic control due to
critical eigendirection being linearly controllable. Cubic control can be used
to change the nature of emerging period doubling orbit in the presence of
uncertainty. According to the theoretical results in [1] it is possible to enhance
the nonlinear stability terms by using just the cubic control terms. It is shown
that stability coefficient β2, which decides the nature of bifurcation in the
absence of any control, equals

β2 = −2

�
1
2

!
∂2f

∂qnk
2

(2

+
1
3

!
∂3f

∂qnk
3

(&
. (45)

This coefficient β2, when evaluated for the linearized system, decides if the
bifurcation will be super (β2 < 0) or subcritical (β2 > 0) [13]. With the cubic
control terms β2 is changed by the following value:

Δ = −4Cu(r, r, r)lb (46)

where Cu(r, r, r) can be assigned any real value by an appropriate choice of
cubic feedback to stabilize the ensuing bifurcation.
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Along with the linear feedback term there is a sound reason to use small
cubic terms in order to stabilize. The theorem from [1] supports this idea due
to the fact that by using cubic term it is possible to stabilize the bifurca-
tions with changes in parameters. There are indeed several reasons for using
nonlinear feedback controls.

The effect of linear feedback control designed to stabilize the linearized
version of the original system is difficult to determine. More precisely, when
the bifurcation reappear at a different value of the bifurcation parameter, for
instance, when the feedback control gain is small, the stability of this new
bifurcation is not easily determined. Hence, using only a linear stabilizing
feedback may be unacceptable if the goal is to stabilize a bifurcation and
not merely to stabilize an equilibrium point for a fixed parameter value. In
addition, in some cases a linear feedback that locally stabilizes an equilibrium
point may result in globally unbounded behavior, whereas nonlinear feedback
exists which stabilizes the equilibrium both locally and globally [25].

8.6 Numerical Example

In this section we study the effect of washout filter-aided control on RED by
numerical simulations.
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Fig. 8: (a) Bifurcation diagram with and without control with respect to round
trip delay d (with pmax modulation). Bifurcation diagrams in ’.’ and ’o’ are plotted
without and with control, respectively. (b) Allowed (τ, kl) region lies below the line
with ’Δ’ for stability.

Fig. 8 plots the bifurcation diagram with respect to d and the stability
region of (τ, kl). Here we modulate pmax for feedback control, and only linear
feedback control is used. The values of parameters used in the numerical
example are as follows:
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qmax = 747, qmin = 249, c=40 Mbps, K =
0

3/2,
B = 3, 735, w = 2−6, M = 4 kbits, N = 129,
kl = −15/b, τ = 0.2, d = bifurcation parameter

As shown in the fig 8(a) the washout filter-aided control delays the bifur-
cation. However, once the bifurcation takes place with feedback control, the
system becomes even more unstable than the system without feedback con-
trol. This demonstrates the need for nonlinear feedback control as explained
in the previous subsection.
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1 Introduction

The study of complex systems pervades all of science, from cell biology to ecol-
ogy, from computer science to meteorology. A paradigm of a complex system
is a network [1] where complexity may come from different sources: topological
structure, network evolution, connection and node diversity, and/or dynami-
cal evolution. Examples of networks include food webs [2, 3], electrical power
grids, cellular and metabolic networks, the World-Wide Web [4], the Internet
backbone [5], neural networks, and co-authorship and citation networks of sci-
entists. These networks consist of nodes which are interconnected by a mesh
of links. The macroscopic behavior of a network is determined by both the
dynamical rules governing the nodes and the flow occurring along the links.

Real networks of interacting dynamical systems – be they neurons, power
stations or lasers – are complex. Many real-world networks are small-world [6]
and/or scale-free networks [7]. The presence of a power-law connectivity distri-
bution, for example, makes the Internet a scale-free network. The research on
complex networks has been focused so far on the their topological structure [8].
However, most networks offer support for various dynamical processes. In this
paper we propose to study one aspect of dynamical processes in non-trivial
complex network topologies, namely their synchronization behaviors.

The general question of network synchronizability, for many aspects, is
still an open and outstanding research problem [9]. There are, in general, two
classes of results which give criteria under which a network of oscillators syn-
chronizes. The first class of results uses Lyapunovs direct method by construct-
ing a Lyapunov function which decreases along trajectories and gives analyti-
cal criteria for local or global synchronization. For example, in [10], the authors
gave sufficient conditions for an array of linearly coupled systems to synchro-
nize. A typical result states that the array will synchronize if the nonzero
eigenvalues of the coupling matrix have real parts that are negative enough.
The work in [10] has been extended and generalized in [11, 12, 13, 14, 15].
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The second class of results uses linearized equations around the synchro-
nization manifold and computes numerically the Lyapunov exponents of the
variational equations. In this context, an important contribution has been
given by Pecora and Carroll in [16], where, for a network of coupled chaotic
oscillators, they derived the so-called Master Stability Equation (MSE), and
introduced the corresponding Master Stability Function (MSF). Consequently,
the stability analysis of the synchronous manifold [16] for the network under
consideration can be decomposed in two sub-problems. The first sub-problem
consists of deriving the MSF for the network nodes, i.e. to study in which
region, of the complex plane the MSE admits a negative largest Lyapunov
exponent (LE). The second sub-problem is to verify whether the eigenval-
ues of the so-called connectivity matrix [17] of the network, apart from the
zero-eigenvalue, lie in the synchronization region(s) (see also [16, 17, 18]).
This approach is particularly relevant because the MSE depends only on the
nodes local dynamics and on the coupling matrix [17]. It turns out that the
mathematical problem has the same dimension as the single network node.
For example, when considering a network of coupled Rössler systems [19], the
master stability equation has dimension three.

Recently, the synchronization phenomenon in scale-free dynamical net-
works has been investigated in [20, 21]. Robustness and/or fragileness of
the networks’ synchrony is discussed. Networks’ synchronization and de-
synchronization processes in a scale-free network are illustrated by a pro-
totype composing of Henon maps. A new general method to determine global
stability of total synchronization in networks with different topologies is pro-
posed in [22, 23]. This method combines the Lyapunov function approach with
graph theoretical reasoning. In particular, the method is applied to the study
of synchronization in rings of 2K-nearest neighbor coupled oscillators. This
method is extended to the blinking model of small-world networks where, in
addition to the fixed 2K-nearest neighbor interactions, all the remaining links
are rapidly switched on and off independently of each other.

In this work, at first as a motivation, we study synchronization properties
of a simple TCP/IP network. Recently, a new class of models has been in-
troduced, which appears to be the most promising approach for scalable and
accurate performance analysis of large TCP/IP networks. This new approach,
often called ‘fluid models’, adopts an abstract deterministic description of the
average network dynamics through a set of ordinary differential equations. For
a large class of systems (described with a set of ordinary differential equations)
the synchronization region may have following forms: an interval (β1,+∞), an
interval (β1, α1), or an empty set. Since large TCP/IP networks have typically
complex topologies (power-law, scale-fee and/or hybrid models), we study syn-
chronization in complex networks topologies. Section 2 is devoted to the anal-
ysis of synchronization properties of classical and power-law random graph
models. We prove that random graphs networks synchronize. In section 3 we
study synchronization properties of hybrid networks. We prove that although
local graph networks do not synchronize for large N , adding only a small
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number of global edges makes these hybrid networks to synchronize. We close
our paper with conclusion.

1.1 Synchronization in TCP/IP Networks

Traditional approaches to performance evaluation of telecommunication net-
works in general, and of packet networks in particular, have normally relied on
attempts to describe as closely as possible the dynamics of network elements
over a discrete state-space. Discrete models are a natural choice, since the
operations of traffic sources, switches, and protocols, are normally governed
by finite-state machines, whose dynamics determine the IP network perfor-
mance. However, discrete models, requiring the description of the dynamics
of the different network elements over their discrete state spaces, suffer from
limited scalability, thus allowing only the performance analysis of rather small
networking setups. This is the reason why only toy topologies are normally
considered in IP network performance studies, and models almost invariably
concentrate on a very limited subset of the network protocol stack.

A new class of semi-analytical models has recently been introduced, which
appears to be the most promising approach for scalable and accurate perfor-
mance analysis of large IP networks. This new approach, often called ‘fluid
models’, adopts an abstract deterministic description of the average network
dynamics through a set of ordinary differential equations [24, 25, 26, 27, 28],
thus neglecting the short term, packet-by-packet description of the stochastic
network dynamics. The resulting set of differential equations is then solved
numerically, obtaining estimates of the time-dependent network behavior.

The most attractive property of fluid models resides in the fact that their
complexity (i.e., the number of differential equations to be solved) is inde-
pendent of the number of TCP flows and of link capacities, when considering
traffic scenarios comprising only long-lived TCP flows (commonly called ‘ele-
phants’). In addition, fluid models have been recently proved to capture the
limiting behavior of TCP elephants in single bottleneck topologies when the
number of TCP flows grows very large [26, 29, 30, 31].

In [26, 27] a fluid model is proposed to describe the dynamics of the aver-
age window for TCP elephants traversing a network of drop-tail routers. The
behavior of such a network is pulsing: congestion epochs in which some buffers
are overloaded (and overflow) are interleaved to periods of time in which no
buffer is overloaded, and no loss is experienced, due to the fact that previous
losses forced TCP sources to reduce their sending rate. In such a setup, a
careful analysis of the average TCP window dynamics at congestion epochs
is necessary, whereas sources can be simply assumed to increase their rate at
constant speed between congestion epochs. This behavior allows the develop-
ment of fluid equations and an efficient methodology to solve them. Ingenious
queueing theory arguments are exploited to evaluate the loss probability dur-
ing congestion epochs, and to study the synchronization effect among sources
that share the same bottleneck link. In this fluid model, the TCP algorithm
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is approximated by the continuous time Additive Increase–Multiplicative De-
crease (AIMD) model. We give a short introduction to the AIMD model next.
A more detailed description of AIMD model can be found in [26, 27].

The traffic load offered by a TCP is controlled by the so called congestion
window variable. The congestion window limits the maximal number of data
packets sent by the TCP during a round-trip time period. After a short tran-
sient period (slow start), the development of the congestion window of the ith
TCP w(i), between two consecutive packet loss events, can be approximated
by the following differential equation:

dw(i)

dt
=

1

T
(i)
RTT(w)

, (1)

where T
(i)
RTT denotes the round-trip time of the ith TCP connection. Note, that

(1) is applicable only if the packet loss ratio is modest (< 1− 2%).
In the Internet, the packets might be buffered at the routers, which can

affect the round-trip time, encountered by the packets. That is why the round-
trip time can depend on the congestion windows (w). If the buffering delays
are negligible, the round-trip times can be considered to be constants, and (1)
can be solved easily:

w(i)(t) = w(i)(0) + t/T
(i)
RTT (2)

(Additive Increase).
By Little’s law, the stationary mean of the throughput X̄(i) can be ex-

pressed by the mean of the congestion window w̄(i):

Pw̄(i) = T
(i)
RTTX̄

(i), (3)

where the coefficients are the packet size P in bits and the round-trip time
T
(i)
RTT. A heuristic, but reasonable assumption of the AIMD model is that Lit-

tle’s law would apply to instantaneous values as well: Pw(i)(t) = T
(i)
RTTX

(i)(t).
Eqs. (1) and (2) are valid only between packet loss events. Let us denote

the set of TCPs which share the link e ∈ E by Ie, the nth packet loss event
by T e

n, the throughput of TCP i ∈ Ie at T e
n by X

(i)
n = X(i)(T e

n) and the nth
inter-loss period by τen = T e

n − T e
n−1. Using the fact that losses occur at link

e ∈ E as soon as the link capacity is reached:

6
i∈Ie

�
X(i)

n +
P

T
(i)
RTT

2 τ
e
n+1

&
= Ce. (4)

From (4), the “virtual” inter-congestion time τ en+1 can be expressed:

τen+1 =
Ce −

7
i∈Ie

X
(i)
n7

i∈Ie
P/T

(i)
RTT

2 . (5)



Synchronization in Complex Networks 313

Eq. (5) is only “virtual” inter-congestion time, since only the minimum of
τen+1 is realized at network level:

τn+1 = min
e∈E

τen+1. (6)

At a congestion event, some of the TCPs, which share the congested
link(s), experience packet losses. The packet losses are modeled by the 0, 1
valued stationary stochastic processes ξ

(i)
n ≡ ξ(i). The mean of process ξ(i) is

called synchronization rate of session i, p(i) = E ξ(i). Here the homogeneous
situation is considered, i.e. p(i) = p.

Fig. 1: The throughputs as function of the time. On the left: The TCPs oscillate
independently, on the right: high synchronization rate

According to the AIMD model, the ith TCP, which utilizes the congested
link, losses a data packet, if the random value of ξ(i) is 1 at a congestion
epoch. Since every TCP halves its congestion window at a packet loss event
(Multiplicative Decrease), the evolution of the throughput can be given by:

X
(i)
n+1 =

�
1− χIB (i) (1− β) ξ(i)n+1

%�
X(i)

n +
P

T
(i)
RTT

2 τn+1

&
, (7)

where IB is the set of TCPs, which share the bottleneck link(s),

χIB (i) =

�
1, if i ∈ IB

0, if i /∈ IB

is the characteristic function of set IB , and β = 1/2.
We now consider a simple network, consists of two TCP flows which share

a common link with capacity c. In this configuration the computer A sends
data to the computer B on the first TCP route. The computer C sends data
to the computer D on the second TCP route. Between A and B there are two
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links, with capacity c1, which are used only by the first TCP. Between C and
D there are two links, with capacity c2, which are used only by the second
TCP. Finally, there is a common link, with capacity C, which is shared by
first and second TCP.

Figure 1 shows the result of a numerical simulation, for which we assume
the following simple scenario: the routers have no buffer capacity, there is no
delay, and the RTT times are assumed constant over the time. In this figure,
x1 is the first TCP throughput and x2 is the second TCP throughput. One
can see clearly the synchronization effect on the right figure.

1.2 Synchronization in Networks

Let us consider a network comprising N identical nodes, each being a (chaotic)
oscillator. Let xi be the m-dimensional vector of dynamical variables for the
i-th node. Let the dynamics of each node be described by:

ẋ = f(x)− σL⊗Hx, (8)

where f describes the oscillator equations, σ is the overall strength of coupling,
and the N ×N matrix L is the Laplacian matrix representing the connection
topology of the network: lij = −1 if nodes i and j are connected, lii = ki if
node i is connected to ki other nodes, and lij = 0 otherwise. The coupling
matrix H = (hij) contains the information about which variables are utilized
in the coupling and is defined as hii = 1, if the i-th component is coupled,
and hii = 0, otherwise.

The matrix L, which will be our main concern, is positive semi-definite and
symmetric. Its smallest eigenvalue is γ0 = 0. Denote by γk the k-th smallest
eigenvalue of L, respecting the multiplicities, k = l, 2, . . . , N . In particular,
γN , is the maximal eigenvalue of L. In this case MSF depends only on one
parameter, α. We denote by S ⊆ IR the region where the master stability
function (MSF) is negative and call it synchronization region. For the system
(8), the synchronization region S may have one of the following forms: S = ∅,
S = (β1,∞), and S = (β1, α1).

In the remaining of this manuscript we will focus on the second and third
scenarios since they are generic for a typical dynamical system. It is easy to
see that for the second scenario the condition of stable synchronous state is
σγ2 > β1, while for the third this condition reads γN/γ2 <| α1/β1 |. Therefore,
for a large class of (chaotic) oscillators there exist two classes of networks;
class-A: networks for which the condition of stable synchronous state is σγ2 >
a, and class-B: networks for which this condition reads γN/γ2 < b, where
a = β1 and b =| α1/β1 | are constant that depend on f , the synchronous
state x1 = x2 = . . . = xN and the matrix H, but not on the Laplacian
matrix L. For typical oscillators b > 1.
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2 Synchronization in random graphs

2.1 Preliminaries

A graph is an ordered pair of disjoint sets (V,E) such that E is a subset of the
set of unordered pairs of V . The set V is the set of vertices and E is the set
of edges. If G is a graph then V = V (G) is the vertex set of G and E = E(G)
is the edge set. The edge {x, y} is said to join the vertices x and y and is
denoted by xy. Thus xy and yx means exactly the same edge; the vertices x
and y are the endvertices of this edge. If xy ∈ E(G) then x and y are adjacent
or neighboring vertices of G and the vertices x and y are incident with edge
xy.

The order of G is the number of vertices; it is denoted by |G|, where |·|
denotes the number of elements (cardinality) of a set. The size is the number
of edges; it is denoted by e(G). We write GN for an arbitrary graph of order
N . Similarly G(N,m) denotes an arbitrary graph of order N and size m.

The set of vertices adjacent to a vertex x ∈ G is denoted by Γ (x). The
degree of x is d(x) = |Γ (x)|. The minimum degree of the vertices of a graph G
is denoted by δ(G) and the maximum degree by Δ(G). If δ(G) = Δ(G) = k,
that is every vertex of G has degree k then G is said to be k-regular graph. If
V (G) = {x1, x2, . . . , xN}, then δ(G) = d(x1) ≤ d(x2) ≤ . . . ≤ d(xN ) = Δ(G)
is a degree sequence of G. The average degree or simply degree of a graph is
d(G) =

7
i d(xi)/N = 2e(G)/ |G|. The degree distribution pd(k) denotes the

fraction of vertices that have degree equal to k.
The size of a graph of order N is at least 0 and most N(N − 1)/2. Clearly

for every m, 0 ≤ m ≤ N(N − 1)/2, there is a graph G(N,m). A graph of
order N and size N(N − 1)/2 is called a complete n-graph and is denoted by
KN . A path is a graph P of the form:

V (P ) = {x0, x1, . . . , xl}, E(P ) = {x0x1, x1x2, . . . , xl−1xl}.

This path is usually denoted by x0x1 . . . xl. The vertices x0 and xl are end-
vertices of P and l = e(P ) is the length of P . We say that P is a path from
x0 to xl or an x0 − xl path.

A walk W in G is an altering sequence os vertices and edges, say x0, α1,
x1, α2, . . ., αl, xl, where αi = xi−1xi, 1 ≤ i ≤ l. For simplicity we write
W = x0x1 . . . xl. Note that a path is a walk with distinct vertices. If a walk
W = x0x1 . . . xl is such that l ≥ 3, x0 = xl, and the vertices xi, 0 < i < l, are
distinct from each other and x0 then W is said to be a cycle. The symbol Pl

denotes an arbitrary path of length l and Cl denotes a cycle of length l.
Given vertices x, y, their distance d(x, y) is the minimum length of an x−y

path. If there is no x − y path then d(x, y) = ∞. A graph is connected if for
every pair {x, y} of distinct vertices there is a path from x to y. The diameter
of the graph G is diam(G) = maxx,y d(x, y). The radius of the graph G is
rad(G) = minx maxy d(x, y).
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There are several ways to associate a matrix to a graph. The usual ad-
jacency matrix A associated with a (simple) graph has eigenvalues quite
sensitive to the maximum degree (which is a local property). The combi-
natorial Laplacian L = d − A with D denoting the diagonal degree ma-
trix is a major tool for enumerating spanning trees and has numerous ap-
plications [32]. Another matrix associated with a graph is the (normalized)
Laplacian L̃ = i− d−1/2Ad−1/2 which controls the expansion/isoperimetrical
properties (which are global) and essentially determines the mixing rate of a
random walk on the graph [33]. The traditional random matrices and random
graphs are regular or almost regular so the spectra of all the above three ma-
trices are basically the same (with possibly a scaling factor or a linear shift).
However, for graphs with power law distribution, the above three matrices
can have very different distributions [34].

Recall γ1 = 0 ≤ γ2 ≤ . . . ≤ γN , repeated according to their multiplic-
ities, are eigenvalues of the matrix L. These eigenvalues are called Laplace
eigenvalues of the graph G. Laplace eigenvalues of the complete graph KN

are γ1(KN ) = 0 and γk(KN ) = N for 2 ≤ k ≤ N . The Laplace eigenvalues of
the N -cycle CN are the numbers

2− 2 cos
!

2kπ
N

(
, k = 0, . . . , N − 1.

It is easy to see that 0 is always an eigenvalue of L, and than (1, 1, . . . , 1)T

is the corresponding eigenvector. More precisely, we have the following de-
scription of the multiplicity of 0 as an eigenvalue of L.

Theorem 1. The multiplicity of 0 as an eigenvalue of L is equal to the num-
ber of connected components of G.

This implies if γ2 > 0 then the graph is connected. The following inequalities
hold

Theorem 2.

γ2(G) ≤ N

N − 1
δ(G) ≤ N

N − 1
Δ(G) ≤ γN (G) ≤ 2Δ(G). (9)

The proof of the above two theorems can be found, for example, in [35, 36].

2.2 Synchronization in Classical Random Networks

We turn now to random graphs. The primary model for the classical random
graphs is the Erdös-Rényi model Gq, in which edge is independently chosen
with the probability q for some given q > 0. Let G(N, q) be a random graph
on N vertices.

For the model of a random graph we take a sequence of probability spaces
(Γ (N, q))N , where q is a real number between 0 and 1, and N is an integer.
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We shall assume that q is fixed, but in general it may depend on N . The
probability space Γ (N, q) consists of all labelled simple graphs on N vertices,
and an edge between an arbitrary pair of vertices appears with probability
q, i.e. Γ (N, q) has 2M elements, where M = N(N − 1)/2, and each graph in
Γ (N, q) with m edges has the probability equal to qm(1−q)M−m. By PN,q(X)
we will denote the probability of an event X ⊆ Γ (N, q) in the probability space
Γ (N, q). Let ρ(G) mean that the graph G has the property ρ. We say that
almost every graph has property ρ (or ρ happens asymptotically almost surely
(a.a.s)), if

lim
N→∞

PN,q{G ∈ Γ (N, q) | ρ(G)} = 1.

Theorem 3. Let G(N, q) be a random graph on N vertices. For sufficiently
large N , the class-A network G(N, q) almost surely synchronize for arbi-
trary small coupling σ. For sufficiently large N , almost every class-B network
G(N, q) with b > 1 is synchronizable.

Proof. The proof of the theorem follows from the following result [37]. Let q
be a fixed real number between 0 and 1. For almost every graph and every
ε > 0

qN −
0

(2 + ε)pqN logN < γ2(G) < qN −
0

(2− ε)pqN logN, (10)

and

qN +
0

(2 − ε)pqN logN < γN (G) < qN +
0

(2 + ε)pqN logN. (11)

Therefore, for large N , γ2 ≈ N , while γN/γ2 approaches 1. Now, for class-A
networks the condition for synchronization reads σ > a/N and σ can be chosen
arbitrary small. For class-B networks with b > 1, since γN/γ2 approaches 1,
when N →∞, it follows that the network almost surely synchronizes.

2.3 Synchronization in Power-Law Networks

There are several approaches for studying power-law graphs. In the the first
approach, one constructs power-law graphs with prescribed degree sequence.
Bender and Canfield [38] introduced a model, so called configuration model,
to construct a random graph with a prescribed degree sequence. This model
was refined by Bollobas [36]. Recently, Molloy and Reed [39, 40] used the
configuration model to show that if some conditions are satisfied, then the
graph almost surely has a giant component. The advantage of the configura-
tion model is to generate graphs exactly with the prescribed degrees. However,
there are several disadvantages of the configuration model. The analysis of the
configuration model is much more complicated due to the dependency of the
edges. A random graph from the configuration model is in fact a multi-graph
instead of a simple graph. The probability of having multiple edges increases
rapidly when the degrees increase.
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Another line of approach is evolution models, in which one generates a
vertex/edge at a time, starting from a node or a small graph. We briefly
mention several such evolution models. Barabasi and Albert [7] describe the
following graph evolution process. Starting with a small initial graph, at each
time step they add a new node and an edge between the new node and each
of m random nodes in the existing graph, where m is a parameter of the
model. The random nodes are not chosen uniformly. Instead, the probability
of picking a node is weighted according to its existing degree (the edges are
assumed to be undirected). Using heuristic analysis with the assumption that
the discrete degree distribution is differentiable, they derive a power law for
the degree distribution with a power of 3, regardless of m. A power law with
power 3 for the degree distribution of this model was independently derived
and proved by Bollobas et al. [41]. Kumar at el. [42] proposed three evolution
models: “linear growth copying”, “exponential growth copying”, and “linear
growth variants”. Aiello et al. described a general random graph evolution
process in [43] for generating directed power law graphs with given expected
in-degrees and out-degrees. Recently, Cooper and Frieze [44] independently
analyzed the above evolution of adding either new vertices or new edges and
derived power law degree distribution for vertices of small degrees.

In this section we consider a random model introduced recently by Chung
and Lu [45], which produces graphs with a given expected degree sequence.
Therefore, this model does not produce the graph with exact given degree
sequence. Instead, it yields a random graph with given expected degree se-
quence.

We consider the following class of random graphs with a given expected
degree sequence

w = (w1, w2, . . . , wn).

The vertex vi is assigned vertex weight wi. The edges are chosen independently
and randomly according to the vertex weights as follows. The probability pij
that there is an edge between vi and vj is proportional to the product wiwj

where i and j are not required to be distinct. There are possible loops at vi
with probability proportional to w2

i , i.e.,

pij =
wiwj7
k wk

, (12)

and we assume maxi w2
i <

7
k wk. This assumption ensures that pij ≤ 1 for

all i and j. We denote a random graph with a given expected degree sequence
w by G(w). For example, a typical random graph G(N, q) (see the previous
section) on N vertices and edge density q is just a random graph with expected
degree sequence (qN, qN, . . . , qN). The random graph G(w) is different from
the random graphs with an exact degree sequence such as the configuration
model. We will use di to denote the actual degree of vi in a random graph
G in G(w), where the weight wi denotes the expected degree. The following
proposition is proven in [45].
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Proposition 1. With probability 1− 2/N , all vertices vi satisfy

2
0

wi logN ≤ dvi − wi ≤ 2
3

logN +

/!
2
3

logN

(2

+ 4wi logN. (13)

Now we give some definitions. The expected average degree d of a random
graph G in G(w) is defined to be

d =
1
N

6
wi. (14)

For a subset S of vertices, the volume of S, denoted by Vol(S), is the sum of
expected degrees in S:

Vol(S) =
6
vi∈S

wi.

In particular, the volume Vol(G) of G(w) is just Vol(G) =
7

i wi = Nd.
If a graph strictly follows the power law, then the average degree as well as

its connectivity will be completely determined by the exponent of the power
law (see [46]). However, for most realistic graphs, the power law holds only for
a certain range of degrees, namely, for the degrees which not too small and not
too large. We will consider the following model with the consideration that
most examples of massive graphs satisfying power law have exponent β > 2.

In this paper we consider the model M(N, β, d,m), where N is the number
of vertices, β > 2 is the power of the power law, d is the expected average
degree, and m is is the expected maximum degree (or an upper bound for the
range of degrees that obey the power law), such that m2 = o(Nd). We assume
that the i-th vertex vi has expected degree

wi = ci−
1

β−1 ,

for i0 ≤ i < N + i0. Here c depends on the average degree d and i0 depends
on the maximum expected degree m. It is easy to compute that the number
of vertices of expected degree between k and k + 1 is of order c�k−β(β − 1) as
required by the power law. To determine c, we consider

Vol(G) =
6
i

wi ≈ c
β − 1
β − 2

N1− 1
β−1 .

Since Nd ≈ Vol(G), we have

c =
β − 2
β − 1

dN
1

β−1 .

From
m = ci

− 1
β−1

0 ,
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it follows

i0 = N

�
d

m

(β − 2)
(β − 1)

�β−1

.

Let k be the expected minimum degree. Then

k =
β − 2
β − 1

d

�
1 +

!
d

m

(β − 2)
(β − 1)

(β−1
�− 1

β−1

,

which can be written as

k ≈ d

�
1 +

!
d

m

(β−1
�− 1

β−1

.

Assuming further that d* m, we have k ≈ d.

Theorem 4. Let M(N, β, d,m) be a random power-law graph on N ver-
tices. For sufficiently large N , if d grows with N , then the class-A network
M(N, β, d,m) almost surely synchronize for arbitrary small coupling σ. Oth-
erwise, if d < ∞, then a class-A network synchronizes only if σ > a/d. For
sufficiently large N , almost every class-B network M(N, β, d,m) is synchro-
nizable only if limN→∞ m/d < b, assuming that d grows with N . Otherwise,
if d <∞, then a class-B network does not synchronize.

Proof. ¿From equations (9) and (13) it follows that for large N γN (M) ≈
Δ ≈ m. We now show that γ2(M) ≈ d.

For the considered model d can be in any range greater than 1: it does
not have to grow with N [47]. It is proven in [48] that the function γ2(G) is
non-decreasing for graphs with the same set of vertices. i.e. γ2(G1) ≤ γ2(G2) if
G1 ⊆ G2 and G1, G2 have the same set of vertices. Let G2 be our M(N, β, d,m)
random graph and G1 be a d-regular random graph which has the same set
of vertices as G2. Then γ2(M) ≥ γ2(G1).

According to [50] the isoperimetric number of almost every d-regular ran-
dom graph satisfies i ≥ d/2 − √k ln 2 for large enough d. According to [49],
γ2 satisfies i ≤0

γ2(2d− γ2). Therefore, we have

γ2(G1) ≥ d−
1

3
4
d2 − d(ln 2−

√
d ln 2).

From equations (9) and (13) it follows that for large N , γ2(M) < d. Com-
bining the last two inequalities, we find that γ2(M) ≈ d.

If d grows as N →∞, we conclude that the class-A network M(N, β, d,m)
almost surely synchronize for arbitrary small coupling σ. On the other hand,
if d < ∞, then a class-A network synchronizes only if σ > a/d. ¿From
γN/γ2 ≈ m/d, we see that for sufficiently large N , almost every class-B net-
work M(N, β, d,m) is synchronizable only if limN→∞ m/d < b.
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Note, however, that if σ1 and σ2 are the values of the coupling parameter
for which synchronization is achieved in models G(N, q) and M(N, β, d,m),
respectively, then σ1 < σ2. In addition, note also that the limes limN→∞ m/d
can have any values from the set [1,∞). Therefore, random model G(N, q)
synchronies better than the model M(N, β, d,m).

3 Synchronization in Hybrid Networks

It has been observed that many realistic networks possess the so-called small
world phenomenon, with two distinguishing properties: small distance between
any pair of nodes, and the clustering effect that two nodes are more likely to
be adjacent if they share a neighbor. In this section, we consider a hybrid
graph model proposed by Chung and Lu [51], which has both aspects of the
small world phenomenon. Roughly speaking, a hybrid graph is a union of a
global graph (consisting of “long edges” providing small distances) and a local
graph (consisting of “short edges” respecting local connections).

Examples of local graphs include paths and cycles. More generally, we
define a local graph as follows: consider a lattice graph where the vertices are
in a d-dimensional lattice where each vertex is a d-dimensional vector in the
hypercube [0, r]d with integer entries. Suppose each vertex is connected to its
nearest neighbors. This graph, also known as the grid graph, has diameter D,
which as a function of the number of vertices N , and has maximum vertex
degree Δ = 2d.

Theorem 5. When N → ∞ local graphs for both class-A and class-B oscil-
lators do not synchronize.

Proof. It is know that, see for example [12],

γ2 <
2d ln(N − 1)

2(D − 2)− ln(N − 1)
,

if 2(D − 2) − ln(N − 1) > 0. Therefore, γ2 → 0 as N → ∞ for the grid
graphs. This is also true when the vertices are connected to neighbors in
an arbitrary local neighborhood. On the other hand, γN ≤ 2Δ(G) = 4d.
Therefore, γN/γ2 →∞ as N →∞.

A hybrid graph consists of two parts: a global graph and a local graph. The
edge set of the hybrid graph is a disjoint union of the edge set of the global
graph G and that of the local graph L. We consider two cases: classical random
graph model G(N, q) described in the section III.B and power-law random
graph model M(N, β, d,m) described in the section III.C. For local graph
L we consider the grid graph, although other choices are also possible. For
example, Chung and Lu use two parameters to describe the local connectivity.
For any fixed two integers k ≥ 2 and l ≥ 2, a graph L is called “locally (k, l)-
connected” if for any edge uv, there are at least l edge-disjoint paths with
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length at most k joining from u to v (including the edge uv). For example,
the grid graph Cn Cn is locally (3, 3)-connected as well as locally (5, 9)-
connected. For any two points u and v, the probability of choosing an edge
between u and v is denoted by p(u, v), defined as follows: p(u, v) = 1 if uv is
an edge of L, p(u, v) = q for a classical random graph, and p(u, v) = wuwvρ
for a power-law graph.

Let now consider a hybrid network for which equation of the motion can
be written as:

ẋ = f (x)− σ(LL + LG)⊗Hx, (15)

where LL is the matrix describing the local graph L, and LG is the coupling
matric of the global graph G. Let Ntotal = N(N−1)/2 be the total number of
edges (links) in a network with N nodes and NL be the total number of local
edges. Then NG = Ntotal−NL is the number of all possible global edges. Let
pNG, where 0 ≤ p ≤ 1, be a number of global edges.

Theorem 6. Assume N is large enough and let G be a global graph (classical
random graph model or power-law model). Then for class-A networks, given
a, there exist a number p, such that σc(p) * σc(0), where σc(p) = a/γ2(p),
γ2(p) is the second eigenvalue of the matrix LL + LG, and γ2(0) is the second
eigenvalue of the matrix L. For class-B networks, given b > 1, there exist a
number p, such that γN (p)/γ2(p) < b, where γ2(p) and γN (p) are the second
and the N -th eigenvalue, respectively, of the matrix LL + LG.

Proof. Since for p = 1, the matrix LL + LG is fully connected, it follows
that γi(1) = N , i ≥ 1; hence γ2(1) = N . On the other hand, we know that
γ2(0) is a small number. It is proven in [48] that the function γ2(G) is non-
decreasing for graphs with the same set of vertices. i.e. γ2(G1) ≤ γ2(G2) if
G1 ⊆ G2 and G1, G2 have the same set of vertices. Therefore, γ2(p) is non-
decreasing function of p. Similar argument holds for class-B networks, for
which γN (p)/γ2(p) is non-decreasing function of p. Thus, for both classes of
networks (class-A and class-B), there exists a critical value of p, pc, such that
for p > pc, almost all networks (15) are synchronizable.

We now present an example. Let the local graph L be a circle and N = 128.
It is easy to compute that γ2 = 0.00241 and γN/γ2 = 1659.75.

Assume that the global graph is a classical random graph model. Consider
first class-A oscillators for which a = 1 and σ ≤ 10. Since γ2 = 0.00241,
the local network L of 128 oscillators does not synchronize. The dependence
of γ2 on p is shown in Figure 1. Since σγ2 > a, it follows that the hybrid
graph L + G synchronizes if γ2 > a/σ = 0.1. ¿From Fig. 1 one easily finds
that γ2 > 0.1 already for p = 0.005. We consider now a network of class-B
oscillators for which b = 40. Since γN/γ2 = 1659.75, the local network L does
not synchronize. The dependence of γN/γ2 on p is shown in Figure 2. Since the
condition for synchronization is γN/γ2 < b, it follows that the hybrid graph
L + G synchronizes for p = 0.01. Therefore, adding only a small number of
global edges makes the oscillators synchronize.
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Fig. 2: γ2 versus p for the hybrid model with N = 128, in which the local graph is
a circle and the global graph is a classical random graph model.
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Fig. 3: γ2/γN versus p for the hybrid model with N = 128, in which the local graph
is a circle and the global graph is a classical random graph model.
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Fig. 4: γ2 versus p for the hybrid model with N = 128 and m = 5, in which the local
graph is a circle and the global graph is a power-law graph model.
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Fig. 5: γ2/γN versus p for the hybrid model with N = 128 and m = 5, in which the
local graph is a circle and the global graph is a power-law graph model.
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Assume now that the global graph is a power-law graph model. Numeri-
cally we consider the model generated in the following way. First, we choose m
nodes at random from all N nodes with equal probabilities and assign them
to be centers. Second, we add links (global edges) by connecting one node
chosen at random from all N nodes to another node randomly chosen from
the m centers. Third, when all centers are fully connected with other nodes,
we start uniformly to add links between the rest of the nodes. The dependence
of of γ2 and γN/γ2 on p for such model is shown in Figure 3 and Figure 4,
respectively for m = 5. From these figures and our numerical experiments, we
may conclude: (i) γN (p) increases reaching the maximum values N for smaller
value of m; thus, γN reaches the value N in the fastest way for m = 1, and
(ii) γ2 is not effected by m. Therefore, the random model with m centers only
influences synchronization property of class-B networks: if one adds global
edges using the model with centers, the network becomes more difficult to
synchronize. Thus, for example, class-B network with b = 40 will synchronize
for p = 0.08 > 0.01.

4 Conclusion

In this chapter we have studied synchronization in networks with different
topologies. We summarize the main conclusions of this chapter as follows:

• For a large class of oscillators there exist two classes of networks; class-A:
networks for which the condition of stable synchronous state is σγ2 > a,
and class-B: networks for which this condition reads γN/γ2 < b, where
a and b are constant that depend on local dynamics, synchronous state
and the coupling matrix, but not on the Laplacian matrix of the graph
describing the topology of the network.

• Let G(N, q) be a classic random graph (Erdös-Rényi model) on N vertices.
We proved that for sufficiently large N , the class-A network G(N, q) almost
surely synchronize for arbitrary small coupling σ. For sufficiently large N ,
almost every class-B network G(N, q) with b > 1 is synchronizable.

• Let M(N, β, d,m) be a random power-law graph on N vertices. We proved
that for sufficiently large N , if d grows with N , then the class-A network
M(N, β, d,m) almost surely synchronize for arbitrary small coupling σ.
Otherwise, if d <∞, then a class-A network synchronizes only of σ > a/d.
For sufficiently large N , almost every class-B network M(N, β, d,m) is
synchronizable only of limN→∞ m/d < b, assuming that d grows with N .
Otherwise, if d <∞, then a class-B network does not synchronize.

• Hybrid graphs are synchronizable, while oscillators in local graphs do not
synchronize.
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The Internet is one of the most enormous autonomously distributed network
systems created by human being. There is no central control in the Internet
system, However, the Internet protocols enable information transmission in
the widely opened and flexible network.

The Internet is found to have a similar universal macroscopic behavior to
those of natural materials, a dynamic phase transition. In this chapter, we
report our observation and simulation results showing the evidence for the
phase transition in the Internet between congested and non-congested phases
accompanying critical fluctuations at the phase transition point.

The input mean flow density into the Internet is regarded as the control
parameter of this phase transition. Phenomenal results show power-law distri-
bution of congestion duration time, divergence of correlation length of jams,
and discontinuity in the differential coefficient of the probability of jam oc-
currence at the critical point. Also the 1/f power spectrum is confirmed both
by observation and by numerical simulations at the critical point. Our ob-
servation results show that the transmission efficiency become the highest at
the critical point where fluctuations become largest. By introducing a minor
revision to transmission protocols it is possible to improve the traffic efficiency
drastically. The physics viewpoint of introducing phase transition asserts new
kind of system controlling ideas to the prospective advanced information net-
work.

1 Introduction

Our daily life is supported by massive traffic systems, for examples, urban
automobile traffics [1, 2, 3, 4, 5, 6], dynamical transport systems of information
transmission, and more over, the world wide currency traffics in the financial
market of recent works on econophysics [7, 8, 9, 10].

Although each use of such traffic systems is based on human intention,
massive traffics cancel individuality, and their statistics are likely to follow
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universal laws similar to those established for natural systems [11, 12, 13]. In
this chapter we focus on the Internet traffic.

In the early stage of the Internet the traffics were rather sparse and con-
gestion was not an attractive issue until 1990’s [14, 15]. As the increase of both
number of users and transporting file-sizes, information congestion became a
hot topic in the latest 15 years [16, 17, 18, 19, 20, 21, 22, 23].

Fig. 1: The structure of the Internet

The Internet is physically consisted of three typical components as schemat-
ically shown in Fig.1: The first elements are computers at the peripheral parts
of the network. They are called in various ways such as user computers, hosts,
senders or destinations”. These are the computers using at our office and home
transferring e-mails or seeking for profitable sites at World Wide Web. The
second elements are called routers, gateways or nodes. They are the internal
computers of the network, which have function of relay stations of packet
transportation. The last components are called cables or links which connect
these peripheral and internal computers.

Information in the Internet is transported by the basic protocols called
TCP/IP which ensures information delivery in the autonomously distributed
computer networks[24]. The information emitted from a host computer is di-
vided into a series of numbered packets. A typical packet size is about 1
Kilo-byte and it has header information of both addresses of the destina-
tion and the sender. Neighboring routers periodically exchange information
of neighboring connections called the routing tables in order to update their
circumstance of connection. When a packet comes into a router from a link
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the header information is retrieved by the router, and an adequate output
link is chosen by referring the routing table, which is estimated as the closest
to the destination. After all packets are reached at the destination computer,
the information is re-constructed from packets to the original form.

Though the bandwidth of links and the performance of routers are revised
by replacing them with new elements, the number of users and the size of
transferring data are increasing even more rapidly. As a result, we often en-
counter congestion, or traffic jam of packets. We experience such congestion
when accessing to a popular website. Sometimes it takes quite longer time to
open a window, which implies that the packets encountered congestion.

Fig. 2: Schematic view of a router

Let us give more precise vision of what is happening in the internet at
the congestion period: As we mentioned above a router is a relay station and
it autonomously decides the way of sending a packet following the ”First-In-
First-Out” rule. When a router receives a packet while previous packet is in
the process, the latter packet goes into a memory queue waiting for process.
In the case that many packets almost simultaneously arrive at a router, the
queue length of packets becomes longer, and as a result, a packet spends non-
negligible time at the router. Summation of these staying time at each router
along the path reflects the congestion level of the packets on the way to the
destination. If all memory buffers are occupied at a router, the information
of spilled out packets are simply discarded as schematically shown in Fig.2.
We call this feature as packet loss. In such a case the lost packets are re-
transmitted from the host computer following the TCP as will be described
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in detail in section 5. To be more precise another type of congestion can be
found in Ethernet cables by collision of packets[25, 26].

Fig. 3: Schematic input-output relation of the Internet

The general property of traffic congestion can be characterized by the
nonlinear input-output relation as schematically shown in Fig.3. In the case
input rate of packets is small, the output rate at the destination host is nearly
equal to the input rate. This state is called the non-congestion phase. For
higher input density the output rate decays due to packet re-transmission
caused by packet loss. This state is called the congested phase. It is interesting
that the maximum output rate is attained at the threshold of these two states
where packet loss rate appears. The input rate and output rate are nearly
equal at the threshold, however, the network is very unstable and sensitive
to a perturbation and a jam occurs easily. As a result we can observe fractal
properties such as the 1/f power spectrum and power law distributions at the
threshold input rate as described in the following sections.

2 Statistical Model of Simple Queue

Basically, the critical phenomena is essential in any kind of traffic systems with
queues at the buffers following ”First-in-First-out” rule. Even the simplest
theoretical model of a single queue shows phase transition behaviors [23]. The
simplest queue is composed of three parts: the input gate, the buffer and
the output gate. Let us consider an imaginary buffer that can store infinite
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number of packets. In each discrete time step, a random natural number of
packets, I(t), are enqueued into the buffer. We consider the case that the
output flow, F (t), has a maximum value Fmax in each time step reflecting the
router’s processing speed.

Fig. 4: Examples of fluctuation of a buffer queue length for (a) small mean input,
(b) critical mean input, and (c) large mean input

The output flow dynamics from the buffer is given as follows;

F (t) = Fmax, if B(t− 1) + I(t) ≥ Fmax,

F (t) = B(t− 1) + I(t), if B(t− 1) + I(t) < Fmax,

where B(t) represents the number of packets in the buffer which takes a non-
negative numbers as defined by

B(t) = max{B(t− 1) + I(t)− Fmax, 0}. (1)

This simple buffer dynamics shows a critical behavior similar to the mean
field percolation model qualitetively[27]. Fig.4 shows examples of queue length
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sequences for three different conditions; (a) �I(t)� < Fmax, (b) �I(t)� = Fmax,
and (c) �I(t)� > Fmax.

In the case of �I(t)� = Fmax, the injection flow and output flow balance.
Under such circumstance the queue length B(t) fluctuates randomly according
to the time similar to the 1-dimension Brownian motion with reflection wall
at B(t) = 0. For the case �I(t)� < Fmax, only a small positive deviation
near B(t) = 0 can be observed in B(t) as if there are attractive forces to the
B(t) = 0. On the other hand, B(t) shows a trend to go infinity as t→∞ for
the case of �I(t)� > Fmax. If we focus on the probability P∞ of having infinite
duration time of maximum flow F (t) = Fmax, we can observe finite probability
of P∞ for �I(t)� > Fmax. And at �I(t)� = Fmax, the cumulative probability
of duration time, P (≥ t), of taking F (t) = Fmax, which follows the same
distribution as duration time of taking B(t) ≥ Fmax, becomes P (≥ t) ∝ t−1/2

since it corresponds to the distribution of first recurrence time in random walk
model [28]. As expected by the random work theory the power-spectra of the
time sequence for the queue length B(t) and output flow F (t) follow f−2 and
f−1/2, respectively.

In case that the buffer has a finite capacity, we confirm that the power ex-
ponent of P (≥ t) for �I(t)� = Fmax does not change but it has an exponential
cut off at a finite time scale and the power-spectrum becomes a white noise for
smaller wave numbers. Though these qualitative behaviors are simillar to the
observation results of real traffic as we show in the next section, 1/f power
spectrum is not observed in this simple model, which is often observed in real
Internet traffic. The dynamics of 1/f power spectrum is obtained from more
heterogeneous complexity.

3 Observation of the Internet Flow

From 1997 to 1998 we connected a monitor computer to a link (Ethernet,
10Mbps) between two routers of Wide Area Network (WAN) and we observed
size and time stamp of all packets going through the cable, both upstream
and downstream by using ”tcpdump” command. We recorded 9 sets of 4 hours
information density fluctuation, with a bin size of 0.1 seconds[29, 30].

An example of flow density fluctuations is shown in Fig.5. We notice that
spike-like fluctuations always exist in short time scale and there are large
density modulations in long time scale. The data does not look stationary
for the whole scale of 4 hours, however, we find quicker decay around several
hundred second at maximum in locally observed auto-correlation function.
Therefore, we can treat the data as quasi-stationary in the time scale of several
hundred seconds and divide the data into subsets consist of several hundred
seconds time series. In the following analysis we set a subset bin size as 500
seconds determined by our data in the above way.

The characteristic of a subset is classified as following three typical cases:
Non-congested case, as we see in subset (a) in Fig.5, flow density is rela-
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Fig. 5: An examples of real traffic flow for succesive 4 hours

tively low, and there are high density pulses appearing rather randomly. The
fluctuations can be modeled nicely by the classical traffic model based on a
Poissonian white noise.

Intermediate case, as we see in subset (b) in Fig.5, flow density is in-
termediate, and there are both large and small fluctuations. The estimated
correlation time scale is much longer than the former case and we can confirm
critical behaviors as discussed in detail in the following.

Congested case, as we see in subset (c) in Fig.5, flow density is fluctuating
randomly near the bandwidth (1200 Kilo byte per second). In our observation,
we cannot detect lost packets directly, however, it is reasonable to expect that
there is much information loss occurred in period (c). The fluctuation around
the mean flow density can be modeled also by a white noise.

The corresponding probability densities of flow density for these three cases
are plotted in Fig.6. In the non-congested subset (a), the probability density
has a large peak at a very low flow density, and the distribution decay sharply
at larger flow density as shown by dotted line in Fig.6. In the congested subset
(c), the probability distribution has a high peak at a large flow density a little
below the physical upper limit. The interesting distribution is observed at the
intermediate case (b), which gives a nearly flat wide distribution.

The fact that the widening of the distribution at the subset (b) is the
key ingredient consistent with the existence of phase transition, which is very
different from simple shift of the peak position in the distribution according
to the increment of the mean flow density. This broadening of the probability
density function can be characterized by observing the half-value width of the
probability density as a function of the mean flow density of each subset of
size 500 seconds box. In Fig.7, the horizontal axis shows the mean flow density
of subset, vertical axis shows the half-value width of the probability density.
The half-value width of the distribution increases sharply untill a certain mean
flow density value. The peak of the half-value width become maximum at the
mean flow density of subset (b).

It is well established in the study of physics that the autocorrelation length
takes the largest value at the critical point of a phase transition. This general
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Fig. 6: Probability densities of flow density for the congested case (a)(dotted line),
the intermediate case (b)(dashed line),and the congested case (c)(solid line).

Fig. 7: Half-value width of the probability density as a function of the mean flow
density
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Fig. 8: Correlation length as a function of the mean flow density

property is also confirmed in the congested subsets of the Internet as shown
in Fig.8. The autocorrelation function of a subset generally shows slow decay
for a short time scale and it decays exponentially from certain time scale. We
estimate the correlation length defined by the starting time scale of observing
exponential decay in the autocorrelation. As expected the correlation length
takes large values for intermediate flow densities and becomes maximum at
the critical flow density which we estimated by the largest half-width of the
probability density.

Apparently, this peak point gives the critical flow density of the phase tran-
sition of the Internet traffic. The above two analysis can be applied generally
for estimating the critical flow density from given flow density fluctuation
data. The critical mean flow density is about the half of the bandwidth in this
case.

It is also well-known that some physical quantities follow power law distri-
butions at the critical point in a general phase transition of the second order,
or a continuous phase transition. In order to extract a power-law nature at
the critical point, we introduce a quantity called the congestion duration time
by defining a threshold value[31]. When the flow density takes a value higher
than a threshold value, we regard that packets are caught in congestion at
that time. We set the threshold value to be (mean value)+2(mean deviation).
Then most of the peak positions of the flow density distributions are smaller
than this threshold value when the mean density is below the critical point.
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Fig. 9: The cumulative distribution of congestion duration time in log-log scale.
The non-congested case (a)(dotted line), the intermediate case(dashed line), and
the congested case (c)(solid line)

We observe successive time that the flow density keeps exceeding the thresh-
old value for L seconds, and we plot the cumulative distribution of L, P (≥ L),
for each subset. Here, we plotted three lines corresponding to (a), (b) and (c)
in Fig.9.

In the case of (a), a quick exponential decay is observed showing that
congestion occurs independently like a Poisson process and the congestion
state does not exist for long time. For the subset whose mean flow density is
nearly critical, the case of (b), we get a power-law distribution with exponent
close to −1. This is another evidence of the critical behaviors and it is known
that this exponent is consistent with the so-called 1/f fluctuations [19]. In
the congested box of (c), the probability of finding large jams becomes higher
as expected naturally and a plateau appears for larger value of L. It should
be noted that each curve in Fig.9 is obtained from 5000 data points in each
subset without taking any ensemble average. Namely, the statistics of each
subset is very stable with this bin size.

In order to confirm the critical behaviors more clearly we show an exam-
ple of information flow fluctuation near the critical flow density in Fig.10. An
enlargement of a part of the fluctuations gives statistically self similar fluc-
tuations as the original scale, and a more enlargement gives also self similar
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Fig. 10: Self-similarity of critical flow fluctuation

fluctuations. Here, the bottom figure is 100 times enlarged from the top figure.
This is the fractal property at the critical point.

This scale-invariant property can also be confirmed by observing the power
spectrum of the fluctuations. As shown in Fig.11 the power spectrum is ap-
proximated by a straight line with slope −1 in the log-log plot. Namely, the
Internet traffic follows the 1/f fluctuations at the critical point. The time
range holding the 1/f spectrum is from a second up to a few hours.

In the present case the mean flow density for each subset of time plays
an important role in characterizing the condition of subsets. Therefore let us
call the mean flow density of a subset as a control parameter of the system,
and the non-congested, intermediate, and congested subsets as non-congested
phase, critical point, and congested phase, respectively by the common phase
transition terminology.

In the physics systems accompanying static phase transition, the control
parameter can be really controlable like temperature in spin systems, or prob-
ability of existing a particle in percolation, however, the mean flow density in
the Internet is not a fixed parameter since it strongly depends on the massive
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Fig. 11: Power spectrum of the critical flow

Fig. 12: Fluctuations of control parameter arround the critical density. ρ denotes
the mean flow density and ρc denotes the critical value. Zero line parallel to the
hrizontal axis shows the critical value of 580 kilo-byte/sec estimated from our data.
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users attitude. This type of phase transition is dynamical and the control pa-
rameter fluctuates rather spontaneously from time to time. In Fig.12 we show
temporal fluctuation of control parameter around critical points. Horizontal
axis shows sequence of subsets(time) and vertical axis shows the mean flow
density of subsets around the critical pointρc.

In order to observe the whole view of phase transition both below and
above the critical point, it is important to avoid choosing a link which is con-
tinuously too sparse or too crowded. Also we checked the traffic properties by
the data obtained from several different links and confirmed that all the re-
sults are consistent with the above description, however, the estimated critical
mean flow density is quite different. The critical mean flow density strongly
depends on the neighboring physical circumstance. In our observation, the
critical flow density is always around 50 − 60 % of the minimum bandwidth
of neighboring links. More observation is needed to clarify the relation be-
tween the critical flow density and the maximum flow densities of the local
environments.

It is now evident that all results from the Internet flow observation are con-
sistent with the theory of the phase transition accompanying critical behaviors
between two phases of non-congested and congested traffics. The whole be-
haviors of this phase transition look similar to those of ordinary second order
phase transitions in physical systems in equilibrium, however, there is one
novel difference that the present system is essentially dynamical and it is not
stationary in long time sacle.

4 Ping Experiment and Visualization of the Internet
Traffics

So far we have confirmed temporal critical behaviors observed at a link in
the Internet. In this section, we pay attention to the development of spatial
congestion such as contagion of congestion in the network.

A global congestion property can be observed indirectly by using the ping
command in the UNIX operating system [19, 32]. This command is designed
for confirmation of whether the destination computer is active or not. Namely,
if a host sends a ping packet (ICMP echo request packet) to a destination,
the destination computer immediately sends back a reply packet(ICMP echo
reply packet) to the host like an echo.

A ping packet has the size of 64 bytes including the information of a
departure time stamp. By comparing the arrival time and the departure time
stamp the round trip time (RTT) can be calculated. From the round trip
times of the echo packet we estimate the level of congestion along the path. If
the path is crowded then a packet spends more time in buffers along the path
so that RTT quantitatively reflects the state of congestion along the Internet
path.
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We performed an experiment of sending pings periodically (evey 0.1 sec-
onds for 8 hours) to a destination host and observed the time series of fluctua-
tions of the round trip time that is expected to be proportional to the level of
congestion. In this experiment we choose a destination carefully since a packet
route to a destination in the Internet is not always stable and symmetric [33].
In order to avoid such problem and to make sure that ping packets follow
the same route during the round trip we check the packet route by using the
UNIX command traceroute for every 10 minutes. traceroute memorizes a list
of IP address along the path. The lost packet at a router during the trip is
measured as a maximum RTT.

We observed time-series of round-trip-time along a path in the Internet,
and we found that the traffic degree of a path is well characterized by the three
typical state, non-congested state, congested state and critical state. Examples
of round-trip-time series obtained from the ping experiment is shown in Fig.13.

Top figure of Fig.13 shows a time series of RTT obtained from a path at
non-congested state. Middle figure of Fig.13 shows a series of RTT obtained
from a path at critical state. Bottom figure of Fig.13 shows a series of RTT
obtained from a path at congested state.

The corresponding power spectra for Fig.13 are shown in Fig.14. If traffic
in a path is in non-congested state and congested state (top and bottom
figure, respectively) the power spectra of the fluctuation follow white noise in
low frequency range. When traffic in a path is at the critical state a clear 1/f
power spectrum can be observed, as shown in middle figure of Fig.14.

In order to analyze the congestion duration time, L, of RTT sequence,
we set a threshold RTT as (mean value)+2(mean deviation) as we did in the
analysis of packet flow densitiy. Then, we observe the duration time lengths
L of congestion which exceed the threshold value in RTT data and obtain
the cumulative distribution P (≥ L) of congestion duration time as shown by
cross in Fig.15 for non-congested state, and Fig.16 for congested state. One
can explain Fig.15 type of exponential decay by considering Poisson process
but Fig.16 can never been explained in the same manner.

Let us introduce a simple theoretical explanation for both types of interval
distributions by introducing a phase transition model to the Internet traffic.
The dashed lines in Fig.15 and Fig.16, which fit nicely to the observation
results, are explained by the following theory.

We consider two macroscopic stochastic features in congestion process of
network in a discrete time step:

1. Congestion propagates from one router to adjacent routers by a probabil-
ity p(reproduction process).

2. Congestion at a router is spontaneously eased by a probability q (annihi-
lation process).
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As we regard a congested router as a particle and a sparse router as an
empty site, such a stochastic model on a lattice is well-known under the name
of Contact Process(CP) [34]. If the reproduction rate p is too large compared
with the annihilation rate q, the system converges to a trivial fixed point in
which the system is occupied with particles. This state is called the survival
state. On the contrary, if the annihilation rate q is high compared with the
reproduction rate p, the system converges to a condition in which all sites
are empty. This state is called the extinction phase. It is known that a phase
transition occurs at a condition between two phases of extinction and survival
with the ratio p/q as a control parameter.

Let us define W∞ as a probability that offsprings starting from a single
particle survives after infinite time. It is known that W∞ = 0 below the critical
point, and W∞ takes finite value for the case of above the critical point. The
CP is the simplest non-trivial stochastic model showing the extinction-survival
phase transition, and it is known to have wide universality class, which means
many models having different evolution rules converge to the CP by repeating
coarse-graining operations of the renormalization [35].

By considering a mean-field approximation of CP the probability distri-
bution of duration time of congestion is estimated as follows. Let us consider
a survival probability of a particle’s offsprings after L time steps be W (≥ L).
Then W (≥ t) and W (≥ t + 1) are related as follows:

W (≥ t + 1) = (1− p− q)W (≥ t) + p[1− (1 −W (≥ t))2], (2)

where the first term of right-hand side shows the probability that a particle
does not reproduce nor annihilate in the first time step and will survive for
L time steps. The second term denotes the case that the particle reproduces
another particle in the first time step and either of the particles exists for L
time steps. Approximating the equation by taking the continuum limit, Eq.(2)
can be solved as

W (≥ t) ∝ δ

1− e−pδ(t+t0)
, δ = 1− q

p
, (3)

where t0 is a constant. At the critical point, δ = 0, W (≥ t) becomes a power
law as follows:

W (≥ t) ∝ 1
t
. (4)

W (≥ t)is to be compared with the distribution of congestion duration time.
We can reproduce our observation results by choosing adequate parameters
of t0 and δ in Eq.(3). The dotted line in Fig.15 is fitted by parameters below
the critical point(δ < 0), and that of Fig.16 is fitted by parameters above the
critical point(δ > 0). Since the congestion duration time follows a power-law
as W (≥ t) ∝ 1/t at the critical point, corresponding power-spectrum can be
numerically calculated as 1/f noise as already seen in middle figure in Fig.14.

We extend the ping experiment to visualize the space-time behavior of
congestion along a path of 2 end hosts [36]. We prepare two end hosts at a
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Fig. 13: Fluctuations of round trip time by ping experiment for non-congested state,
for critical state, and for congested state, from the top to the bottom.
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Fig. 14: Power Spectrum for non-congested state, critical state, and congested state,
from the top to the bottom
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Fig. 15: Cumulative distribution of congestion duration time for the non-congested
state: Real data analysis in cross, and theoritical analysis in dashed line.

Fig. 16: Cumulative distribution of congestion duration time for cogested state: Real
data analysis in cross, and theoritical analysis in dashed line.
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Fig. 17: Spatial-temporal pattern of Internet congestion for a non-congested path,
a critical path, and a congested path, from top to bottom
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distance. From both ends we send ping packets simultaneously to all routers
along the path. By subtracting the time difference of round trip times of
adjacent routers, we estimate how much time is spent at each router, and that
estimated time is considered to be proportional to the queue length inside the
router. We emit ping packets every 0.1 second from both ends and calculate
the congestion level of each router along the path. We check our experiment
carefully not to create congestion by comparing the number of ping packets
with that of background packet flows. Fig.17 represents the result of this
tomography of Internet congestion. The horizontal axis denotes time for the
period of 14 seconds. The vertical axis is the router numbers along the path in
order; router 1 to router 10 from bottom to the top. The darkness shows the
degree of congestion; from light congestion to heavy congestion. The top figure
shows a typical pattern of a non-congestion phase. Here, congested states
appear and disappear rather randomly among routers and each congested
state continues only a few seconds. In the critical case the congestion pattern
makes clusters in the space-time configuration. By watching carefully we can
find contagion of congestion among neighboring routers with time scale of a
few seconds. Correlation coefficient of congestion among neighboring routers
become high around the critical state[36].

5 Numerical Simulation Results of the Internet Traffics

We started the numerical simulation study of the Internet packet transmission
in 1996[37], since in the real traffic observation we are not able to control the
important parameter of input rate. As shown in the following we obtain non
trivial critical behaviors due to the TCP feedback controls and all basic traffic
can be realized in a very simple network topology with independent white
noise inputs [38, 39].

The TCP involves following 3 basic flow control algorithms to insure the
high reliability in packet transmission; window-based flow control for a con-
nection, re-transmission algorithm, and transmission rate controls such as
slow start and congestion avoidance. These algorithms are complicated in de-
tails but basically they work for accelerate and brake the transmission rate
according to the traffic flow of the path in the Internet.

Let us explain the essence of standard TCP protocol and how it works:
When a host computer sends information, the information is embedded in a
series of numbered packets then it establishes a connection between a desti-
nation host. At first the origin host sends one packet. When the traffic is not
congested and the packet reaches to the destination without loss, the destina-
tion sends an Acknowledgement packet(ACK packet in short) requesting the
next sequence number(packet number 2) to the sender. If the sender receives
an ACK packet in certain waiting time, then the origin sends two packets
next. By receiving two ACK packets requesting sequence number 3 and 4 suc-
cessfully within a waiting time, then the sender sends four packets, then eight
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packets, sixteen packets, and so on. So, in each time the sender doubles the
number of sending packets(window size) until the number reaches the given
maximum number. The brake works when congestion is detected. If a packet
is lost by an overflow at a router, then the window size is set to 1. And if
more packet loss occurs, the host computer refrains from sending a packet for
a period. In this way the traffic flow density controlled by TCP tends to be
around the critical point.

Fig. 18: Network structure of the numerical simulation

The packet motion following TCP is investigated by numerical simulations
using a free software called ns-2[40]. This simulator is widely used for the
study of Internet since it reproduces the details of the protocols. We assume
a simple network structure consisted of 4 routers as schematically shown in
Fig.18. Hosts are connected to the peripheral routers and they are assumed to
make a connection with a given probability to a randomly chosen destination
following the TCP.

In the simulation we give the rate for creating a new connection to a
destination as a control parameter, and in each connection, 100 data packets
are sent. The queue length of each router is set to be 100 in the simulation.

Fig.19 shows the input-output relation obtained by our numerical simula-
tion. Input rate is given by the number of connection per second, and output
is given by the number of finished connections during the simulation. The out-
put increases linearly for small input, and it becomes maximal at the critical
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Fig. 19: Input-output relation by the TCP simulation

input rate, and the output decreases rapidly for larger input rate. This result
is in perfect agreement with the schematic figure shown in Fig.3. Here, we
plotted results of 3 common variations of TCP, and the results make no big
difference.

The basic congestion properties of the simulation are the same as we ob-
serve in the real system. At the critical point we can confirm the 1/f power
spectrum, the flat broad probability distribution of flow density, and a power-
law distribution of congestion duration time, etc. In Fig.20 we show the distri-
bution of congestion duration time obtained by TCP simulation. We confirm
the feature for the distribution is consistent with the real traffic. For the low
density input case, jam duration time follows exponential function, and, for
the high input rate, we obtain a function with plateau in long duration time
range. At the critical input rate, we confirm a straight line with slope -1 in
the log-log plot, which is also consistent with the observation results of real
traffic. Also, by observing the packet loss rate, we confirm sudden increase
around the critical point likewise the probability for the infinite size of cluster
in percolation. On the other hand, the packet loss rate is almost zero for be-
low the critical point. From the characteristic of phase transition, we confirm
that the critical point is most efficient in packet transmission since the output
becomes maximum value and the packet loss rate is small, statistically.
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Fig. 20: Cumulative distribution of congestion duration time by the TCP simulation

We can deduce the following results from this simplified numerical sim-
ulation which can reproduce almost all basic phase transition properties as
demonstrated.

1. The complicated network topology in the real system is not essential for
the basic statistical properties of congestion.

2. Human activity is not relevant in our simulation as hosts make connections
with randomly chosen destinations.

3. File size distributions are not playing an important role as we found that
realistic phase transition properties can be obtained even with a fixed file
size.

We showed the theoretical result in section 2 that the simplest single queue
model without TCP can show a similar congestion phase transition, however,
the power spectrum of output flow follows not 1/f but 1/f 0.5 at the critical
point [23]. The exponent of the congestion duration time distribution also
follows a power law with exponent −0.5, not −1.

From theoretical viewpoints the 1/f spectrum has been analyzed in various
ways. A macroscopic model of congestion(CT) can explain the 1/f behaviors
at the critical point as we showed in previous section[19]. Also a microscopic
model of competitive output on an Etheret cable proves that an exponential
increase of waiting time at packet-losses is responsible for the 1/f spectrum
[25, 26]. Both of these models show phase transition behaviors, and the 1/f
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spectrum appears only at the critical point. There are models that produce
critical fluctuations automatically.

A general model of random time sequence called the Self-Modulation Pro-
cess(SMP) model is also known to produce random fluctuations with the 1/f
power spectrum [41, 42]. This model is based on a general moving average and
its application to information traffics is now being developed. Consider a set
of points whose t-th interval is denoted by X(t). Then the basic formulation
of SMP is shown as follows:

X(t + 1) = γ(t)X(t) + R(t), (5)

where γ(t) denotes a random value satisfying �γ(t)� = 1, and R(t) denotes
a small random value, R(t) ≈ 0. By solving the equation, we obtain the
cumulative distribution for X(t), Prob(≥ X), and the power spectrum for the
fluctuation of X(t), S(f), as follows:

Prob(≥ X) ∝ 1
X

, (6)

S(f) ∝ 1
f
. (7)

Applying this model to the real traffic, δt is recommended to be set around
the TCP re-transmission timer, and X(t) can be considered as the congestion
duration time. The auto-correlation for X(t+ 1)/X(t) is expected to be zero,
following the model[42].

6 An Attempt to Revise TCP : Introduction of LEAP

Here we clarify the reason for rapid decrease of the output in the congested
phase. In Fig.21 the vertical axis shows the averaged number of required pack-
ets in order to send the given 100 data packets in a connection as a function
of the input rate. From this figure we find that the number of extra or wasted
packets increases rapidly for input rate larger than the critical point. There are
two types of wasted packets. One is the case that data packets really dropped
from the router on the way to the destination. In this case re-transmission
is needed to reconstruct the data at the destination. The other type is the
case that data packets reached successfully to the destination, however, the
TCP misunderstood them to be lost and re-transmited the packets. This situ-
ation occures at the sender host by timeout of ACK packet’s arrival or loss of
ACK packet on the return path. These wasted packets are called duplicate
packets shown in the lower part in Fig.21.

In order to avoid sending duplicate packets, we revise the TCP in the
following way. When the host does not receive ACK packet within the waiting
time, the host sends the next data packet assuming that the first data packet
has reached the destination. Therefore, a duplicate packet will be re-sent only
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Fig. 21: Number of transmitting packets to send 100 data packets by the TCP
simulation

Fig. 22: Comparison of packet transmission rules for (1)TCP and (2) LEAP
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if there is an ACK packet requesting the sequential number. This modification
of TCP is named LEAP as the host leaps retransmitting the duplicate packets.

Fig.22(2) gives an example how this modified rule, LEAP, works comparing
with nomal TCP, Fig.22(1). Assume that the window size is 4 and a host
sends data packets number 1, 2, 3, and 4. If the packets 1,2 and 3 reach
the destination successfully, then the destination computer sends ACKs with
requesting numbers 2, 3 and 4, respectively. We also assume that all of these
ACK packets are lost by congestion.

In this situation the normal TCP, shown in (1), re-sends the data packet
1 when the waiting time expires. As soon as the data packet 1 reaches the
destination, the destination sends an ACK with number 4 since it already
have received data 1, 2 and 3. Then normal TCP sends two succesive packets
number 4 and 5.

On the other hand, in the same situation, LEAP works differently, as shown
in (2). Instead of resending 1 by timeout of the waiting time, the host sends
the data packet 5. When the destination computer receives the data packet
5, then it replies ACK number 4, since data packet 4 is still missing. If the
host recieved ACK requesting number 4, then the host sends packets number
4 and 6. Namely, LEAP re-sends a data packet only when it is requested by
an ACK.

Fig. 23: Number of duplicate recieved packets for sending 100 packets by LEAP
compared with normal TCP
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In this way we can avoide sending the duplicate packets. Fig.23 demon-
strates a drastic decrease of the number of duplicated packets by LEAP. The
number of duplicate packets can not be zero, because there still exist cases
that data packets are involved in heavy congestion and those packets spent
considerably long time at queues of routers, but did not discarded. This prob-
lem occurs by an inappropriate way of defining the waiting time. The duplicate
packet number will become zero if the waiting time estimation can be revised.

Fig. 24: Input-output relation by LEAP

Although our new protocol LEAP is just a very minor modification of
ordinary TCP, the result is very much promising. Fig.24 shows the input-
output relation by LEAP. As known from this figure the critical flow density
shifts at about 20% larger input density, and the peak output increases about
5%. In the heavily congested state we confirmed the output flow increases
about 80% compared to the normal TCP cases. Traffic control of congested
phase is generally not easy, but this result shows a surprising success of totally
new way of controlling traffics by shifting the critical point to the higher
density.

The biggest merit of the LEAP is that the modification of TCP is quite
small and implementation to a real system is rather easy. We have started
applying LEAP to real systems and we will inform our research results in
advance.
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7 Discussions

Historically self-similar properties of information traffics were firstly discov-
ered by the pioneering work done by Leland et al in 1994 [17]. They observed
the packet flow density fluctuation in an Ethernet of Local Area Network
(LAN) and found that the flow density fluctuation has a self-similar nature
such as the 1/f fluctuations. The reason for such fractal fluctuation has been
considered to be due to the human activities of using the Internet [21].

On the other hands, in our view of phase transition, their results can be
understood as a special case of our observation that the local traffic of the ob-
serving point is adequately congested and the mean flow densities are always
fluctuating near the critical point. The origins of the critical behaviors and
1/f power spectrum in traffic density flow are in various source of network
dynamics in different time scale; TCP feedback control[38, 39], Ethernet colli-
sion avoidance dynamics[25, 26], and congestion contageon among neighboring
routers[19, 23]. Our simulation results of using ns-2 advocate that human be-
haviors at the ends and complex network topology are not relevant to the
critical behaviors since the qualitative characteristics are realized by simple
toplogy of network and random inputs. As discussed in the preceding sections
the most efficient condition for the Internet is at the critical point between
congested and non-congested states. The best control is not to keep the sys-
tem beyond the critical point since the packet drop rate suddenly increases
and throughput of the traffic decreases rapidly above the critical point. We
call this new type of system control as the Critical Flow Control.

The new method LEAP is an end-control that end-users or peripheral
computers are the targets. There are other approaches, such as router control
by tuning queue length. Also, like automobile with computerized-navigation,
it might be possible to avoid congestion by using dynamical intelligent routing
tables that controls packet motion in the real time.

Therefore, traffic control of heavily congested phase is a challenging task
not only for the Internet, but also for general traffic systems. For future study
of information network, an interesting aspect is that the 1/f power spectrum
is observed at the critical point with the highest performance. It is well known
that the brain waves and heart beat intervals are generally showing the 1/f
fluctuations. This may imply that information traffic control of the brain is
ideally designed and the Critical Flow Control might already been installed.
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