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around the world for the promotion of the study of complex systems and its application
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to further international research and understanding of complex systems. Complex sys-
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questions can be studied in general, and they are also relevant to all traditional fields of
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molecules formed out of atoms, and the weather formed from air flows are all examples
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institutional boundaries, NECSI works closely with faculty of MIT, Harvard and Bran-
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Preface

Recent advances in science and technology have led to a rapid increase in the 

complexity of most engineered systems. In many notable cases, this change has been a 

qualitative one rather than merely one of magnitude. A new class of Complex 

Engineered Systems (CES) has emerged as a result of technologies such as the 

Internet, GPS, wireless networking, micro-robotics, MEMS, fiber-optics and 

nanotechnology. These engineered systems are composed of many heterogeneous 

subsystems and are characterized by observable complex behaviors that emerge as a 

result of nonlinear spatio-temporal interactions among the subsystems at several 

levels of organization and abstraction. Examples of such systems include the World-

Wide Web, air and ground traffic networks, distributed manufacturing environments, 

and globally distributed supply networks, as well as new paradigms such as self-

organizing sensor networks, self-configuring robots, swarms of autonomous aircraft, 

smart materials and structures, and self-organizing computers. Understanding, 

designing, building and controlling such complex systems is going to be a central 

challenge for engineers in the coming decades. 

 A fertile source of ideas and methods for CES are natural complex systems such 

as brains, insect colonies, immune systems, and ecosystems, as well as human 

systems such as societies, economies and markets. The issues that these systems have 

evolved to address are precisely the same as those confronted by complex engineered 

systems today: Scalability, adaptability, self-organization, resilience, robustness, 

durability, reliability, self-monitoring, and self-repair. The existing paradigms of goal-

oriented design, centralized control and reductionistic analysis fail completely when 

faced with systems that have millions of components and billions of interactions 

distributed over an extended area. It is instructive to note that the most successful 

complex engineered systems — the Internet and the World Wide Web — are self-

organizing and have almost no centralized control or planning. The issue is whether 

this self-organized paradigm can be extended to other systems, and with what 

consequences.

 A primary obstacle to the systematic study of complex engineered systems is the 

lack of an appropriate technical framework — an essential terminology, a set of 

central concepts, and a consensus on important issues. The emerging discipline of 

complex systems research offers the possibility of such a framework using well-

developed concepts such as chaos, fractals, power laws, self-similarity, emergence, 

self-organization, networks, adaptation, evolution, etc. One advantage of such an 

approach is to put natural and complex engineered systems within the same discipline, 

thus allowing a "closing of the loop" whereby the study of natural complex systems 

leads to better methods for complex engineered systems, while experience with 



building and manipulating complex engineered systems enhances understanding of 

how natural complex systems function. 

 The objective of this book is to demonstrate, for the first time, the potential of 

complex systems perspectives to understanding and improving the design, 

implementation, and dynamics of complex engineered systems. The book will consist 

of an opening chapter (Chapter 1) that lays out the case for CES and discusses the 

relevant issues, followed by 15 chapters covering specific issues or applications. 

Dan Braha 

March 2006 Ali Minai 

Yaneer Bar-Yan 

VIII            Preface 

Cambridge,  MA,  USA 
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1. Introduction 

Human history is often seen as an inexorable march towards greater complexity — in 
ideas, artifacts, social, political and economic systems, technology, and in the 
structure of life itself. While we do not have detailed knowledge of ancient times, it is 
reasonable to conclude that the average resident of New York City today faces a 
world of much greater complexity than the average denizen of Carthage or Tikal. A 
careful consideration of this change, however, suggests that most of it has occurred 
recently, and has been driven primarily by the emergence of technology as a force in 
human life. In the 4000 years separating the Indus Valley Civilization from 18th

century Europe, human transportation evolved from the bullock cart to the hansom, 
and the methods of communication used by George Washington did not differ 
significantly from those used by Alexander or Rameses. The world has moved 
radically towards greater complexity in the last two centuries. We have moved from 
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buggies and letter couriers to airplanes and the Internet — an increase in capacity, and 
through its diversity also in complexity, orders of magnitude greater than that 
accumulated through the rest of human history. In addition to creating iconic artifacts 
— the airplane, the car, the computer, the television, etc. — this change has had a 

level systems — traffic networks, power grids, markets, multinational corporations — 
that defy analytical understanding and seem to have a life of their own. This is where 
complexity truly enters our lives. 
 Everyone would agree that a microprocessor, with its millions of electronic 
components, is an extremely complicated system. The same can be said of the U.S. 
economy. Both the microprocessor and the economy are human constructions, but 
there is clearly a significant difference between them. The complicated 
microprocessor was carefully designed and tested by a team of engineers who placed 
every electronic component in its place with the utmost precision, and that is why it 
works. But no one designed the U.S. economy, and no one can claim to entirely 
understand or control it — and yet it works! And while the microprocessor can be 
augmented only through a careful redesign by competent engineers, the economy 
grows (and shrinks) on its own, without explicit control by anyone, and yet shows 
little sign of catastrophic strain. Also, the successful operation of a microprocessor is 
highly dependent on the successful operation of every one of its core sub-components, 
while the efficiency of the economy is much more robust to perturbations and failures 
at the level of its constituent elements. Looking around, one can see many other 
systems with the same characteristics: Communication networks, transportation 
networks, cities, societies, markets, organisms, insect colonies, ecosystems. What is it 
that unites these systems, and makes them different from airplanes and computers? 
And can something be learned from them that would help us build not only better 
airplanes and computers, but also smarter robots, safer buildings, more effective 
disaster response systems, and better planetary probes? What, one might ask, can 
engineers learn from the birds and the bees? A complementary goal is to utilize the 
knowledge of engineering in gaining insight into natural phenomena. For example, the 

highly sophisticated hierarchy of feedback loops—an elementary concept in 
engineering control theory—operating at multiple layers and multiple scales. The 
increased demand for reliable and disturbance-free power systems, in turn, could lead 
to the development of sophisticated self-healing and recovery technologies that 
embody biologically-inspired procedures. More generally, we can ask how we can 
understand the relationship of structure to function in nature through engineering 
concepts, for the benefit of science. Before addressing this question explicitly, it is 
useful to look in greater detail at the systems being considered. These systems—
markets, insect colonies, etc.—have come to be called complex systems [3], not to be 
confused with merely very complicated systems such as microprocessors and aircraft 
carriers. Such a designation is useful because these systems arguably share 
fundamental characteristics [4, 16], and this is where we begin. 

profound effect on the scope of experience by creating massive, connected and multi-

ultra-robustness of inter- and intra- cellular activities may be attributed, in part, to a 
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2. Fundamental Characteristics 

Perhaps the single most important characteristic shared by all complex systems is self-
organization: Self-organization can be described as the spontaneous appearance of 
large-scale organization through limited interactions among simple components. 
Nature is replete with examples of self-organization. From galaxies to tornadoes, from 
canyons to crystals, from ecosystems to cells, self-organization is responsible for 
most, if not all, of the order we see around us. Upon reflection, this is not surprising, 
since most forces in Nature act over short distances and can, therefore, only support 
limited interactions among components such as subatomic particles, molecules, stars, 
and organisms. Yet, large-scale structure is ubiquitous. In a broad sense, some form of 
self-organization must underlie almost everything, though some examples of it seem 
more profound than others (today we are much more surprised and impressed by 
termite nests than by crystals!) But if self-organization is so common, why is it a 
useful concept at all? The answer to this is that, while many natural systems show 
some form of self-organization, almost none of the systems explicitly engineered by 
humans do so. Thus, the effort to understand and build self-organizing systems is, in a 
sense, an attempt to create systems analogous to “natural” ones—with all the 
profound strengths and subtle weaknesses of these systems. Not only does this 
promise a leap in the scope of engineering, it would also allow a better understanding 
of those human systems—such as economies and cities—that do demonstrate self-
organization. The latter are, therefore, both a source of ideas about self-organization 
and a target for the application of these ideas. 
 While many man-made systems fail to exhibit spontaneous self-organization, we 
suggest that self-organization does occur in the human processes associated with 
design. For example, between the time specifications (requirements and constraints) 
are assigned to design teams and the time the artifact achieves its final form. During 
this period, the design process is a highly social process consisting of hundreds of 
designers, customers, and other participants. These actors—each a complex biological 
system in itself! — are involved in creating and refining a shared meaning of 
requirements and potential solutions through continual negotiations, deliberations, 
explanations, evaluations, and revision [16, 23]. Another form of self-organization 
refers to the act of successive changes or improvements made to previously 
implemented man-made systems. This ecology of evolving man-made systems is 
often driven by a multitude of locally-operating, noisy, socio-technical processes, and 

Moreover, when engineering is considered as embedded in the socio-economic 
marketplace, the role of self-organization is apparent. Characterizing the real-world
structure, and eventually the dynamics of these complex design/redesign processes, 
may lead to the development of guidelines for coping with complexity. It would also 
suggest ways for improving the multi-agent decision making process, and the search 
for innovative engineered systems. By contrast, the more conventional approaches to 
systems engineering often strive to eliminate self-organization processes in favor of 

complex systems arise. 
reductive piece by piece design characteristic of the way complicated rather than 

frequently involves adaptation processes that lead to more-fit new systems. 
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 The first fundamental insight provided by self-organizing complex systems is that 
non-trivial, large-scale order can be produced by simple processes involving 
interactions operating locally on simple agents or components. This insight, modifies 
the simplistic but common assumption that cause and effect must operate at the same 
scale. Over time, it is possible for the effect of local interactions to aggregate together 
in creating large scale order. The principle of self-organization explains the origin of 
collective patterns in complex systems as well as many aspects of their functioning 
through collective acts and collective response. Indeed, it demonstrates that the 
emergence of large-scale order is a process just as general (and opposite) to the 
process of increasing entropy, and that pattern formation is an integral part of most 
complex systems’ functionality. One might say that, for a complex system, 
“becoming” is “being.” This contrasts sharply with the classical paradigm in 
engineering with its clear distinction between the design and production phase on the 
one hand and the functional phase on the other. Even systems considered to be 
adaptive (such as adaptive controllers or most neural networks) follow this two-phase 
paradigm, allowing adaptation only in the superficial sense of parameter adjustment 
whereas complex systems change not only their parameters but also their fundamental 
structures and processes. Thus, complex systems have been described as “operating 
far from equilibrium” — in our context this implies that they undergo major changes 

engineering.
 The second fundamental insight provided by complex systems is that highly
complex functional systems (more complex than their creators) can only arise through 
evolutionary processes of selection in the context of actual tasks. This insight is based 
both upon the fundamental fallacy of the concepts of spontaneous generation in 
biological and other complex systems, and theorems that prove the inadequacy of 
testing to fully characterize complex systems [3, 6, 7, 16, 17, 27]. This statement 

systems by specification followed by implementation. The increasing tendency to 
spiral and recursive implementation is only a partial adoption of the fundamental need 
to implement parallel in-situ evolutionary processes that are capable of creating much 
more complex systems than those that can be planned by conventional specification 
driven processes. 
 Complex systems emerge and function in complex, dynamic environments, and 
their characteristics reflect this reality. As technology seeks to produce systems that 
can operate in similar situations, it seems appropriate to turn to the principles 
underlying existing complex systems. However, this will require a drastic re-
evaluation of many fundamental assumptions and methods of the classical 
engineering paradigm. This is indeed one of the primary focuses of this book. 

3. Engineering Complex Systems 

The structure of a complex system is not the result of a historic design process, but a 
contingent process of evolution. Thus, it does not reflect the principle of static 
optimality and rational decision-making often used as the basis of engineering design, 

in the context of operational activity, a notion that is anathema in classical 

contrasts fundamentally with the ongoing efforts to design large real-time response 
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but of an evolving fitness constrained by a dynamic (perhaps co-evolving) space of 
possibilities. This is precisely what makes complex systems suitable for operation in 
complex, dynamic environments, but it also means that the criteria used to determine 
the quality and correctness of engineered systems do not apply. It is interesting to 
consider this issue in some detail, since it underlies virtually all the material included 
in this book. 

3.1 The Classical Engineering Process 

The goal of the classical engineering process is to produce efficient and reliable 
systems that meet pre-specified constraints and pre-specified standards of 
performance in pre-specified situations. It is fundamentally a goal-oriented process, 
seeking to achieve known specific ends using well-understood means. The principle 
underlying this process is what one might call the tool paradigm: Every engineered 
system is a tool made to serve the ends of its user. Not surprisingly, the dominant 
themes are predictability, reliability, stability, controllability and precision. After all, a 
tool that cannot be controlled completely by its user or varies greatly in performance 
over time is not very useful.
 Broadly, the classical engineering process may be seen in terms of the following 
steps:

Functional Specification: The first step is usually a specification of what the 
system is expected to do. It is worth noting that this usually includes constraints 
and tolerances that, implicitly, represent a prediction of the circumstances in 
which the system will need to operate. 

Design: This is the main component of the engineering process, where the system 
is designed carefully in terms of its components – often by several teams of 
engineers. The design process may occur at many levels sequentially or 
simultaneously, with different teams working at each level. Today there is 
significant feedback and interaction between these teams, resulting in a process 
with multiple loops and a complex network of influences [14, 15, 23, 34]. In a 
broad sense, however, the process is fundamentally “top-down” since it moves 
logically from a desired functionality towards a design that implements that 
functionality. Levels of design are defined in terms of level of detail. The prime 
motivation at every level is always, “How can subtask X be done using the 
components and methods available?” Each team might ask this question at its 
own level, but in this too, the functions desired at lower (more detailed) levels 
typically flow from the needs already articulated at higher levels, and ultimately 
from the pre-specified functionality desired from the system overall, and the 
component decompositions that preceded it. 

Testing and Validation: Once designed, the system is tested under a set of 
conditions designed to mimic reality to ensure that it performs as needed, to 
discover flaws and to correct them. Both simulation and fabricated prototypes 
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may be used. Today, this process often operates in a loop with the design process, 
and may even involve changes in specifications under extreme circumstances. 
Still, in the traditional engineering process testing intrinsically follows design and 
precedes implementation. This process assumes that both the task specified and 
the environment in which performance is to occur are sufficiently well known to 
be embodied in a reasonable (as measured by time and effort) number of tests. 
Once the system is tested and validated, it is deemed to meet the specifications to 
which it was built. We note that the inadequacy of conventional sequential 
specification, design and testing for highly complex systems is manifest today in 
that many systems — e.g., software — undergo additional field-testing (e.g. 
market-testing), where prototypes of the system are made available to customers 
for testing in actual applications. The results are then fed back into the design 
process. However, as common bugs in even highly tested systems show, the 
testing process for complex systems is never complete [6, 14, 34]. 

Manufacturing: Once the system has been designed and tested, exact copies of it 
are manufactured in appropriate numbers, ranging from a few to millions or even 
billions. The users of these copies purchase them in the expectation that each 
copy functions precisely like the original design, and satisfies the desired 
functionality. Thus, the skill and diligence expended by the engineers on 
designing and testing the system becomes the guarantor of the system’s reliability 
to the end-user. This is true even in the very exceptional cases (such as the space 

of many mass-produced components. 

The process described above, with minor variations, underlies the production of 
almost all modern engineered artifacts from automobiles to paint, from computers to 
houses, and from widgets to satellites. The basic mode can be described in a sentence: 
Given a problem to solve, figure out how to do it once, and then do it the same way 
each time. Like the scientific method, this “engineering method” has developed over 
thousands of years with contributions from ancient cultures and modern ones. The 

ancient Rome used essentially the same methodology, though with less precision and, 
therefore, greater variation. With each advance in mathematics, physics, chemistry 
and mechanization, the process became better understood and more precise, leading to 
today’s robotic assembly lines and precision fabs. With the possibility of engineering 
complex systems, we are facing a whole new paradigm in engineering, and it is 
instructive to reflect on what it offers in comparison with the existing paradigm. 

3.2 The Logic of the Classical Paradigm 

The classical engineering process described above has several notable characteristics 
that define its scope, determine its logic, and circumscribe its possibilities. Before 
turning to complex systems, we look explicitly at some of these characteristics. The 
most important assumption is that the problem to be solved is uniquely and clearly 

shuttle) where only one system is built, as that system still relies on the quality 

shipwrights of ancient China, the builders of ancient Egypt and the swordsmiths of 
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specified from the outset. In a sense, this specification is extrinsic to the engineering 
process, but this assumption is necessary as a basis for traditional engineering. The 

3.2.1 The search for a single solution 

The goal of traditional engineering is to seek one solution, which often revolves 
around a unique design concept, for the specified problem. Though engineers 
understand fully that every problem admits of multiple design concepts, it is always 
assumed that, in the end, the engineering process will produce a single acceptable—
perhaps optimal—design. Multiple design concepts may be considered during the 
process, but the result is often a single final design, though a certain amount of 
customization might be left in this design for reasons that address varying 
market/customer demands. The need for converging onto a single design concept is 
motivated by several factors. Most importantly, it is the basis of well-characterized 
systems that can be patented, branded and marketed as distinct, well-defined products 
that are the best possible solution to a well-defined problem. And, finally, it produces 
economies of scale through mass production that make products more affordable. 

3.2.2 Seeking well-behaved systems 

The classical engineering process seeks systems whose behavior can be predicted and 
encapsulated by precise description. This is reflected in the characteristics that are 
seen as the sine qua non of all engineered systems: stability, predictability, reliability, 
transparency, controllability, and—ideally—optimality. Under the current paradigm, 
these systems lack the ability to adapt, evolve, innovate or grow after release. Even 
such characteristics as robustness and resilience are seen in terms of the ability of the 
system’s performance to be insensitive to pre-specified sources of uncertainty rather 
than to the possibility that the system might adapt itself to faults or changing 
circumstances. Adaptation, even when included in the system, is carefully 
circumscribed within predictable limits. The purpose of good design is seen as the 
elimination of the unforeseen, the unexpected and the unintended, not as the 
consideration of the unforeseeable, the unthinkable and the unknown. Indeed, the 
choice of optimality as the ultimate goal reflects the essential optimistic reductionism 
of the classical engineering paradigm. Since complexity often complicates the search 
for optimality, there is a strong tendency to control or limit complexity instead of 
embracing it. This has worked remarkably well, but is becoming untenable as 
engineering expands its scope to systems that are inherently complex. 

3.2.3 Engineering as top-down problem-solving

The classical top-down design process depends fundamentally on the reductionistic 
assumption that any system can be described wholly by describing the behavior of its 
parts and their interactions. This assumption enables designers to work at different 
levels of abstraction with the confidence that subsystems at each level can be analyzed 

engineering steps engage in the solution of this prespecified problem. 
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and synthesized completely in terms of subsystems at the next lower level. Thus, a 
VLSI chip designed at the level of functional modules can be translated into a 
register-level description, and thence to gate-level, device-level and wafer-level 
descriptions. At each step, the desired higher-level functionality is specified before its 
lower-level implementation is designed, so that the design process is reduced to a 
series of problem-solving activities. As mentioned earlier, this corresponds to an 
inherently problem solving view of engineering where the goal is to produce tools for 
specific predefined purposes whose utility is taken as given. This can be contrasted 
with what one might call a “meta-utilitarian” view where utility itself is subject to 
reassessment as the environment changes and as what can be done changes due to 
unanticipated innovations or insights, including bottom-up self-organization that 
generates unexpected emergent phenomena [36].

3.2.4 What the Classical Approach Offers 

The classical engineering approach has been remarkably successful, and is responsible 
for virtually all the technological innovations we see around us. In particular, it 
confers several crucial attributes on the systems it produces—attributes that have 
come to embody the very notion of an engineered system. These are: 

Stability: The system’s performance is insensitive to pre-specified variations in the 
system’s parameters and external environment.

Predictability: The system works in predictable ways. 

Reliability: The ability of the system to perform a required function under stated 
conditions for a stated period of time. 

Transparency: All the structures and processes in the system can be described 
explicitly.

Controllability: The design process and the system can be controlled directly. 

4. A New Paradigm for Engineering Complex Systems 

Classical engineering requires prediction of the environment in which the system will 
operate, the conditions it will face, and the tasks it will be required to perform. Very 
clever designers must then determine how these tasks can be performed as desired, 
and by what components put together in what fashion. Thus, the designers determine 
not only the behavior or functionality of the system but also the process or procedure 
by which that is achieved. The ultimate performance of the system depends wholly on 
the knowledge, competence, skill and imagination of the designers. Nothing, as far as 
possible, is left unspecified. All loops are closed, all contingencies considered. The 
result is a well-designed, reliable system that operates exactly as advertised within the 
limits of its tolerances. It is not expected to change (beyond wear-and-tear or 
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accidents that are detrimental) or to “grow,” and its quality is measured by the 
stability of its performance: How long can it continue to function at the same level as 
when it was new? This is the question we ask when judging the quality of a computer, 
a dishwasher, an automobile or an airplane. Significantly, this is not the way we judge 
the performance of an employee, a pet, an economy, or a society. What is the 
difference?
 The primary difference is that systems designed through the classical engineering 
process are expected to perform foreseeable tasks in a bounded environment, whereas 
complex systems such as humans or other organisms are expected to function in 
complex, open environments with unforeseeable contingencies. One can argue that 
the classical engineering process is an ideal one for the former case, and is unlikely to 
be superseded by a process based on self-organization or adaptation. Barring radical 
changes in concept, aircraft and automobiles will continue to be designed the old-
fashioned way because it offers predictability, reliability, controllability, etc. 
However, the classical engineering process suffers from serious drawbacks when 
applied to complex systems. 
 Many engineering applications, such as real-time decision support, 
communications and control, are reaching the point where classical methods are no 
longer feasible for reasons of system interdependencies and complexity. At the same 
time, it is increasingly clear that existing complex systems, both natural and artificial, 
handle these problems with ease and efficiency. Complex systems, once understood, 
promise a much wider repertoire of techniques and algorithms needed to engineer 
large systems that can work in complex, dynamic environments.
 Ultimately the need to go beyond conventional engineering practice arises from 
the recognition that only complex systems can perform complex tasks. Equivalently, 
in a highly uncertain (complex) environment, planning the response of a system is 
guaranteed to lead to failure, precisely because we cannot anticipate all of the 
possibilities that may be encountered.

4.1 The Logic of Complex Systems Engineering 

The key difference in the logic underlying the classical and complex engineering 
paradigms is in the definition of the objective. Complex systems engineering [5, 7, 8] 
does not primarily seek to produce predictable, stable behavior within carefully 
constrained situations, but rather to obtain systems capable of adaptation, change and 
novelty—even surprise. Some of the key concepts underlying this approach are:

Local action, global consequences. The scalability of a wide variety of complex 
systems arises primarily from the fact that most of the relevant processes—processes 
with high information requirements—are performed locally and, therefore, are low 
cost. Global consequences arise through self-organization or adaptation rather than 
explicit design, aided in many cases by non-specific global processes such as 
modulatory signals or global threshold-setting. The complex systems engineer, 
therefore, does not seek to design the system in all its details, but focuses instead on 
configuring the context and the local interactions that may lead to effective global 
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behavior. Generic methods for the design of such local interactions are, indeed, one of 
the biggest challenges facing complex systems research.

Expectation of the unexpected. Complex systems are required in order to function in 
environments that are themselves too complex to be completely predicted or 
constrained. In such operating environments, the exact analytic relationships between 
the system parameters and the system behaviors are unknown or cannot be practically 
determined. As such, complex systems have to incorporate capabilities necessary to 
handle novel circumstances with incomplete information (low observability) and 
limited control (poor controllability). Also, these systems must be able to dynamically 
modify the way information about the uncertain external environment (including 
changes in the system’s initial requirements) is represented within the system, and to 
reconfigure itself based on these modifications. And, since the problems faced by the 
system are not wholly predictable, all the solutions for all possible contingencies 
cannot be entirely determined in advance. Unlike standard engineered systems, 
complex systems must explicitly leave room for unforeseen changes in their behavior. 
All loops cannot be closed before production. Indeed, they cannot be closed even 
during operation. In addition to the functional dynamics necessary for any utilitarian 
system, a complex system also has a “meta-dynamics” that keeps the space of its 
behavioral possibilities in flux as well. One important consequence of this for 
engineers building such systems is the necessity of their partial ignorance about their 
own system—a kind of “residual irreducibility.” Unlike the designers and 
manufacturers of standard systems, complex systems engineers must appreciate the 
inherent limitations of their knowledge and capabilities. For the builder of a chip, it 
may be embarrassing to admit ignorance of its precise behavior. However, for an 
engineer trying to build an autonomously intelligent robot, or a real time system 
involving many hardware and software components as well as people (e.g., the air 
traffic control system) such ignorance can establish the conditions for suggesting 
viable solutions.

The inherent uniqueness of individual systems. As pointed out in the discussion of 
the classical paradigm, the main idea in that context is to find one solution to the 
problem at hand, and often to mass-produce identical copies of that design. For 
engineered complex systems, some degree of replication may be effective, but in 
general the existence of a variety of types enables multiple approaches to be tried and 
for progressive improvement to arise from information obtained during operation. 
Changing environments may yield variable benefits for different designs, but the 
presence of variety allows for rapid adaptation to changing demands. Moreover, each 
individual adaptive system operating in its own unique complex environment will, 
over time, develop unique structural and behavioral characteristics. This is very 
different from every car of the same model developing its own quirks. Such quirks are 
seen as undesirable from an engineering viewpoint and good design seeks to minimize 
them. In contrast, individual complex systems are required to develop individual 
techniques to cope with their complex environments. Conformity, for a complex 
system, is not often a virtue, and novelty is not at all a vice.
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Redundancy and degeneracy at all levels. The concept of redundancy is a well-
established one for fault-tolerant design. In complex systems, the need for redundancy 
increases, as safety or performance constraints must be reliably satisfied in changing 
environments. Recently, the notion of degeneracy multiple processes with identical 
consequences has also been suggested as an important one in complex systems (for 
a recent discussion see [29, 37]). Redundancy relies on internal duplication of process 
modules, so that when a few fail, others can take their place. However, redundancy 
provides no protection against disruptions that attack the inherent functioning of the 
modules, disabling them all simultaneously. Degeneracy, in contrast, provides 
multiple processes for achieving the same end, and a single type of disruption is 
extremely unlikely to disable all these different processes. It has been suggested that 
degeneracy allows the genome to withstand enormous change (necessary for 
evolution) without disrupting basic viability for the phenotype. Engineered complex 
systems will also need such degeneracy to perform in complex, dynamic 
environments.

Off-label utilization of modules.  Complementary to the attribute of degeneracy, 
which involves doing the same thing in multiple ways, complex systems also engage 
in prodigious and promiscuous re-use of the same modules and processes for multiple, 
often novel, purposes — perhaps with minor modifications. This allows complex 
systems to build on what has been achieved rather than re-inventing a new wheel each 
time one is needed. The resulting cumulative compounding of adaptation is key to 
these systems’ success in handling otherwise daunting complexity.

Opportunistic leveraging of the combinatorial explosion. The “curse of 
dimensionality” or the “combinatorial explosion” of the solution space is dreaded by 
engineers as a harbinger of failure in their quest for optimality [27]. Complex systems, 
not seeking to be optimal in the first place, actually benefit from the combinatorial 
explosion. In combination with a mechanism for selective reinforcement, the diversity 
provided by exponential possibilities represents an opportunity rather than a problem. 
The extreme diversity of configurations makes it likelier that solutions to difficult 
sub-problems are present within this space, and complex systems—notably 
exemplified by biological evolution—have discovered ways to “mine” it. 

Robustness-by-structure. The classical engineering approach defines system 
robustness as the ability of a product or process to function close to ideal 
specifications under actual environmental and use conditions. Designers then seek to 
find the right combination of parameter values that minimize the design’s sensitivity 
to noise factors. These methods are based on statistically designed experiments that 
reveal sensitivities of the output response to the input variable values.  The robustness 
of complex systems goes far beyond optimal settings of system parameters. One 
remarkable feature of complex systems is that their underlying structural properties 
have a major effect on their functionality, dynamics, robustness, and fragility. 
Robustness-by-structure can be achieved by appropriately designing the interactions 
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among the system’s elementary components [14]. Not only does this strategy inhibit 
system-wide catastrophe, it also enables the development of highly robust systems by 
effectively utilizing imperfect or faulty components. The latter property is also shared 
by many biological and ecological systems (e.g., food-webs and neural networks), 
which seem to posses a spectacular ability of fault-tolerance despite numerous faulty 
components or the deletion of some of their constituent members altogether. 

4.2. Enlightened Evolutionary Engineering 

When the overall process of complex systems engineering is considered, we come to a 
broader view of system creation that can be understood best by analogy with 
biological evolution or technological development in a market economy [5, 16]. 
Traditionally, in engineering, evolutionary methods have been considered as just 
another optimization technique where human designers create the meta-process of 
problem specification and interpretation. This is not what is intended here. In complex 
systems engineering, evolution serves as the meta-process and human 
engineers/designers create the components on which this meta-process operates. 
These components are still produced through traditional problem-solving methods 
that are quite effective if the individual components are not overly complex. The 
evolution of large complex systems takes place primarily in their functional 
environment, enabling the system to adapt to real world tasks through changes in 
components and their interactions over time. Large engineering systems should be 
considered as hybrids of people and equipment. Thus, people too serve as components 
in the system, both during the operation and in the design of the system. The existence 
of variety in the components at multiple levels of organization enables evolutionary 
selection to occur. Selection changes the population of components so that the 
introduction of more effective components leads to their wider adoption over time. 
When viewed with a wide lens, this is the process that has been used historically for 
engineering within a free market economy, as different products compete with each 
other for market share. With the need to develop larger and more complex systems, 
engineering must explicitly recognize the role of evolutionary change, not only in the 
human-centered process of innovation and design, but also within the systems being 
engineered and deployed. Evolution, in its broadest sense, permeates all levels of a 
complex system. 

4.3. A New Set of Challenges 

Given its radical redefinition of the classical engineering paradigm, it is not surprising 
that complex systems engineering poses several significant challenges of its own. 
Here, we identify only a few of the more fundamental issues that researchers in 
complex systems engineering must address if this discipline is to establish itself as a 
viable paradigm. 
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4.3.1 Configuring Viable Configuration Spaces 

In a series of papers, John Doyle and colleagues have recently contrasted the purely 
self-organized view of complex systems with the optimization-based paradigm rooted 
in engineering [18, 19, 25]. One essential insight to emerge from this work is that, 
while most work in complex systems has focused on generic or typical systems within 
ensembles, well-designed and optimized systems are likely to be rare and atypical
within their configuration spaces. Attributing the focus on ensembles to standard 
practice in mathematical physics, the authors conclude that most work on the broad 
principles of complex systems [2, 10, 11, 30] has not contributed much to the 
understanding of real systems such as the Internet [25] and metabolic networks [31], 
which are best understood in terms of optimal design. Leaving aside the specifics of 
the critique, this observation clarifies a fundamental issue for engineering complex 
systems: The need for solution-rich configuration spaces. For the inherently 
stochastic process of self-organization to produce high-performance instantiations of a 
system, such instantiations must not be too rare in the configuration space. This is not 
true of the configuration spaces in which most design currently occurs, and the 
classical engineering paradigm can be seen essentially as an algorithm for finding the 
rare, atypical configurations that provide peak performance, i.e., optimal designs. The 
challenge for complex systems engineers is to devise the components of their systems 
and the interactions between them in such a way that stochastic processes such as 
relaxation, annealing, swarming, evolution, etc. can find near-optimal configurations 
relatively quickly, which is only possible if such configurations are not too rare or 
completely atypical. Just as traditional engineering seeks optimal solutions, complex 
systems engineering must seek “optimal” configuration spaces where near-optimal 
configurations for an infinite number of as-yet unforeseen circumstances are 
numerously implicit. 
 Currently, almost all complex systems engineering research has focused on 
specific domains such as multi-agent systems [32, 33], collective robotics [24, 26], 
swarms [12], and networks [1, 10, 11, 13, 14, 15, 22, 35], and the emergence of good 
algorithms have relied heavily on the ingenuity of human researchers. However, a 
clue towards a general strategy comes from biological systems, where evolution’s 
profound success is supported by the meta-attribute of evolvability: The ability of the 
configuration space (in this case, the space of genotypes or phenotypes) to produce an 
endless supply of viable configurations with remarkably few obvious dead-ends. 
Redundancy  often cited as a source of this evolvability [20]  is only a partial 
explanation, and factors such as degeneracy [29] may play a key role. Indeed, it has 
been suggested that evolvability itself is an evolved quality [20]. Uncovering the 
characteristics that make evolution so efficient may well enable complex systems 
engineers to devise systems that have the attribute of self-optimizability.

4.3.2 Obtaining Specific Global Functionality from Local Processes 

While the methods and processes of complex systems engineering may differ from 
those of classical engineering, they still share the ultimate goal of utility: The need for 
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the engineered system to demonstrate specific functionality. In the classical paradigm, 
this is assured by the explicit design and testing of the processes that produce the 
desired functionality, and the pathway from component behavior to system behavior 
is clear. This is not the case in engineered complex systems where, by definition, 
system functionality is emergent and too complex to be described explicitly in terms 
of component behavior. The engineering process defines components and their 
interactions, but ensuring that the design produces the desired global functionality is 
the primary challenge for complex systems engineering. 
 Several approaches have been tried to address this issue, but they rely primarily 
on three ideas. The first is the idea of coordination, where global behavior is related to 
component behavior using a set of coordination variables. In this approach, which is 
primarily control-theoretic, components or agents coordinate their choices through a 
shared set of quantities that can be related more directly to global functionality. Thus, 
the components seek to achieve certain desirable coordination states (e.g., 
synchronization, partitioning) that correspond to the desired functional state of the 
system. The coordination-based approach has been used very successfully in multi-
agent systems [32, 33], collective robotics [24, 26], and swarms [12, 21]. Another 
approach has been developed where a high-level language is used to describe system 
functionality. Functional programs can then be “compiled” into a specification for the 
behavior of individual components [28]. 
 The second important idea is that of analogy, where the functionality of existing 
complex systems such as insect colonies, ecosystems, economies, etc., is used to infer 
desirable behaviors for components/agents. For example, since insect swarms perform 
brood-sorting through local and stigmergic interactions [21], the behavior of 
individual insects during the process presumably has the effect of sorting, and can be 
used to design a system of sorting agents. This analogy-based approach has been 
especially fruitful for complex systems, and underlies paradigms such as neural 
networks, swarms, artificial worlds and artificial life. In particular, analogies with 
processes at all levels in biological systems promise a comprehensive framework for 
engineering a variety of useful complex systems. It is important to note that designing 
by analogy is not necessarily distinct from the coordination-based approach (above), 
and analogies often yield a set of suitable coordination mechanisms. 
 The third important idea in controlling the functionality of complex systems is 
selective plasticity. This can take the form of learning, fitness-based selection, 
adaptation, or a combination of these. In many cases, while it may not be clear a priori 
how a specific global functionality may be obtained from component behavior, it can 
be arrived at through an adaptive process. This relates to the earlier discussion of 
defining good configuration spaces: If the configuration space implied by the 
components and their interactions includes the desired global functionality, then an 
adaptive process that makes this functionality its attractor will lead to a suitable 
design. Of course, this is easier said than done, but the process can be aided by 
choosing a configuration space likely to be rich in “good” designs. A systematic 
method for specifying such configuration spaces is a fundamental challenge for 
complex systems engineering. 
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4.3.3 Defining Functional and Meta-Functional Performance Metrics 

The definition of performance metrics is a necessity for any engineering process, 
since the goal of design is to produce a high-performance system. In engineering 
complex systems, however, care is needed to focus on the appropriate performance 
domain. The fundamental question to be answered is: What makes a good complex 
system? Is it a system that performs a specific task very well in a particular situation, 
or is it one which can adapt to perform well in a variety of situations? Implicit in most 
work on complex systems is the notion that complex systems should be judged on 
their meta-attributes such as robustness, evolvability, adaptivity, scalability, etc, 
rather than on narrowly-defined tasks. However, defining and measuring these 
properties is still far from being an exact science. Interestingly, this is a problem 
prevalent even in the evaluation of “real” complex system such as organizations or 
individuals. For example, students’ capabilities are evaluated both by using rigidly 
specified examinations with well-defined correct responses and through open-ended 
challenges such as research projects. Current methods for evaluating engineered 
systems correspond mainly to the first of these modes, and metrics to assess the meta-

4.4  What the Complex Engineering Paradigm Offers 

In order to engineer useful complex systems, the complex engineering paradigm seeks 
to provide behavior-rich systems that, when confronted with a problem-rich 
environment, discover a variety of potential solutions in their repertoire. These 
potential solutions can then be selected through an evolutionary adaptation process to 
produce progressively better (and continuously improving) solutions. The promise of 
complex systems engineering is, therefore, one of open-ended discovery rather than 
predetermined performance. The contrast between the limitations of traditional 
systems and the power of complex systems can be seen in terms of several key 
attributes including scalability, flexibility, evolvability, adaptability, resilience, 
robustness, durability, reliability, self-monitoring, and self-repair. Overarching these, 
the essential property of complex systems is their complexity, which enables them to 
perform highly complex tasks without running into insuperable capacity constraints. 
As the complexity of tasks facing engineered systems grows, the complex systems 
approach to engineering will increasingly become the default option rather than just 
another interesting alternative. 

5. About this Book

The first of its kind, the objective of this book is to demonstrate the potential of 
complex systems perspectives to understanding and improving the design, 
implementation, and dynamics of complex engineered systems. The book provides 

for the systematic study of complex engineered systems. In particular, the book 
inspires discussion about fundamental questions such as: Is there any place in the 
complex systems paradigm for explicitly sought design characteristics, or must 

attributes that make a complex system worth its complexity are still in development. 

essential terminology, a set of central concepts, and  an appropriate technical framework 
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everything be emergent? If the default paradigm must be trial-and-selection rather 
than specification-and-design, how can complex systems engineering attain the 
systematic aspect of classical engineering?
 The book is conceptually divided into two parts: The first part (Chapters 2-12) is 
devoted to understanding the general characteristics of Complex Engineered Systems, 
whereas the second part (Chapters 13-16) addresses specific systems and technologies 
that embody key features, characteristic of complex adaptive systems, as part of their 
behavior. In particular: 
 Bar-Yam (Chapter 2) demonstrates the fundamental limitations of 
decomposition-based engineering for the development of highly complex systems. 
Recognizing these limitations, it is argued that a new strategy for constructing many 
highly complex systems should be modeled after biological evolution, or market 
economies, where multiple design efforts compete in parallel for adoption through 
testing in actual use.
 In the next two chapters, Braha and Bar-Yam (Chapter 3) and Valverde and Solé 
(Chapter 4) examine the statistical properties of software architectures and product 
development organizational networks, respectively. They show that the structure of 
these man-made information flow networks have properties that are similar to those 
displayed by other social, biological and technological networks. These statistical 
structural properties are shown to have a major effect on the functionality, dynamics, 
robustness, and fragility of Complex Engineered Systems. Braha and Bar-Yam 
(Chapter 3) further present a model and analysis of product design dynamics on 
complex networks, and show how the underlying network topologies provide direct 
information about the characteristics of this dynamics. 
 In Chapter 5, Anderson considers a few aspects associated with choosing an 
initial strategy towards designing a particular desired self-organized system. In 
particular, he discusses at a broad level some of the general pros and cons of 
approaches such as bottom-up simulation, top-down engineering, analogy and 
mimicry, and interactive evolution. Some of the key criteria, decisions, and 
constraints that might help pinpoint an initial useful approach to tackling the design of 
specific self-organized systems are extracted. 
 Maier and Fadel suggest in Chapter 6 that in design, the semantic, non-rational, 
non-algorithmic, impredicative, subjective, and unpredictable nature of humanity is 
inescapable.  This is so because artifacts are always designed for human use, usually 
designed by humans themselves (using computers and other tools), and situated 
within a larger context of a complex world economy. Consequently, they argue that 
design in general is a member of the class of systems that are formally described as 
open and complex, and not a member of the class of systems that are formally 
described as closed and algorithmic. 
 Mihm and Loch (Chapter 7) and Klein et al (Chapter 8) present dynamic models 
of complex product development projects that are characterized by decomposition 
into an interrelated set of localized development tasks. They show how a ‘rugged 
performance landscape’ arises from simple interdependent components (local design 
teams) that have ‘simple’ performance functions. Consequently, they discuss the 
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circumstances under which projects exhibit persistent problems or reach satisfactory 
performance levels (convergence of the development process). 
 Baldwin and Clark (Chapter 9) present a model of design and industrial evolution 
by emphasizing the role of modularity - building complex products from smaller 
subsystems that can be designed independently yet function together as a whole – as a 
financial force that can change the structure of an industry. They explore the value 
and costs that are associated with constructing and exploiting a modular design, and 
examine the ways in which modularity is exploited through the use of design rules 
and modular operators that correspond to search paths in the “value landscape” of a 
complex engineering system.
 Norman and Kuras (Chapter 10) argue, based on their experience with developing 
the Air and Space Operations Center for the US Air force, that the methods for the 
engineering of complex systems should be based on a view of complex systems as 
having the characteristics of an ecosystem. This includes the use of processes which 
take advantage of emergence and which deliberately mimic evolution to accomplish 
and manage the engineering outcomes desired. 
 Klein et al show in Chapter 11 that collaborative design negotiation, involving 
many interdependent issues, has properties that are substantially different from the 
independent issue case that has been studied to date in the negotiation literature, and 
requires as a result different protocols to achieve near-optimal outcomes in a 
reasonable amount of time. Consequently, They describe a family of negotiation 
protocols that make substantial progress towards achieving near-optimal outcomes for 
complex negotiations.
 Complex Engineered Systems comprise agents (animate or inanimate) that are 
intrinsically idiosyncratic and bounded-rational. This general characteristic introduces 
a long-running difficulty of applying conventional game theory. In Chapter 12, 
Wolpert shows how to modify conventional game theory to accommodate the 
bounded rationality of all real-world players. To this end, he presents a statistical 
physics approach, known as Product Distribution (PD) theory, as a principled 
formulation of bounded rationality. 
 As discussed earlier, one of the central challenges in engineering complex 
systems is to determine local rules of interaction that lead, via self-organization, to a 
desired global behavior. Chapters 13 through 16 address this issue in various contexts, 
presenting well-developed, general approaches to solving the problem. 
 In Chapter 13, Nagpal addresses the issue of specifying local behaviors to 
achieve pre-specified global results using the idea of global-to-local compilation. The 
global behavior is specified in terms of primitive behaviors at the agent level and this 
“program” is then “compiled” into a common behavioral specification for all agents, 
ensuring the emergence of the desired global effect. The idea of global-to-local 
compilation is inspired in part by the processes seen in living cells, and is applicable 
in principle to a large class of distributed systems. 
 Dahl, Mataric and Sukhatme (Chapter 14) address the issue of global 
organization emerging from local behaviors in the specific context of multi-robot 
systems. They present an approach based on behavior-based decision-making, 
reinforcement learning and vacancy chains, demonstrate its efficacy, and extend it to 
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heterogeneous groups of robots. The approach represents a systematic and powerful 
method for the organization of complex global behavior in multi-robot systems. 
 In Chapter 15, de Croon, Nolfi and Postma describe how pro-active embodied 
agents can be produced by using neural controllers optimized through evolutionary 
learning. This extends the traditional embodied cognitive science framework by 
allowing agents to learn complex behaviors using internal states rather than simply 
exhibiting primitive stimulus-response behaviors. This extension opens up the 
possibility of achieving very complex emergent global behaviors in multi-robot 
systems.
 An extremely useful attribute of natural complex systems is the ability to 
reconfigure themselves in response to their situation. However, achieving global self-
reconfigurability requires robust mechanisms that correctly lead to desired 
configurations without getting trapped in sub-optimal ones. In Chapter 16, Salemi, 
Will and Shen describe a practically implementable, general approach to this problem 
using the CONRO self-reconfigurable robot to demonstrate its utility. 
 It is hoped that this book will contribute towards putting natural and engineering 
complex systems within the same discipline, thus allowing a new kind of "closing of 
the loop" whereby the study of natural complex systems leads to better methods for 
complex engineered systems, while experience with building and manipulating 
complex engineered systems enhances understanding of how natural complex systems 
function.
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1. Overview

We describe an analytic approach, multiscale analysis, that can demonstrate the
fundamental limitations of decomposition based engineering for the development of
highly complex systems. The interdependence of components and communication
between design teams limits any planning based process. Recognizing this limitation,

should be modeled after biological evolution, or market economies, where multiple
design efforts compete in parallel for adoption through testing in actual use. Evolution
is the only process that is known to create highly complex systems.

2. Introduction

The idea that highly complex system design and engineering requires new insights
and tools has become a topic of increasing interest and importance as the number of
active elements in systems and the real time demands on systems increase.[1-5]

One of the central realizations about highly complex systems is that analysis and
synthesis do not follow the same processes. This is dramatically different from the
case of conventional engineering analysis and design. When a system is sufficiently
simple, analysis and synthesis occur by decomposition. The system is broken down
into parts and each part is described. Then, the function of the entire system can be
realized through recomposition of the parts. When a system is highly complex, this
approach is not feasible.[1-3] We will demonstrate this both through a formal analytic
treatment and through historical experience in this chapter.

We have developed an analytic approach to the study of complex systems called
Multiscale Analysis [1,6-13], which directly addresses the complexity of the system

we  found that a new strategy  for constructing  many highly complex systems
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and its relationship to structure and function. This approach provides basic insights
into design trade-offs. However, it also enables us to demonstrate quantitatively that
decomposition design strategies are unable to create systems beyond a certain level of
complexity. The level of complexity is limited by a single agent’s ability (i.e. a human
being’s ability) to understand the interdependencies between the components. When
higher levels of complexity are needed to design systems, it is necessary to transition
to an alternative synthesis strategy: the strategy of evolutionary engineering.

Evolutionary engineering abandons many of the highly valued conventional
systems engineering strategies for arriving at well planned and fully understood
systems. It replaces this with the creation of a planned environment that fosters
learning by doing and enables unanticipated advances. The evolutionary approach is
the natural strategy for developing highly complex systems because their behavior is
ultimately untestable[6,9]. Discovery is a key part of ongoing improvement and the
necessary time scale for use and improvement is far shorter than what can be achieved
by traditional cycles of planning and implementation. The false sense of security in
planning is inferior to the recognition that creating the right environment is a better
guarantor of rapid change improvement and innovation.

Aspects of the evolutionary approach we describe [1-3] can be found in various
more traditional and recent approaches. Incremental engineering [14] and experience-
based learning [15,16] are very traditional approaches in certain contexts. Recent
extensions include spiral development and evolutionary acquisition [17] and adaptive
programming; [18] various modifications of conventional engineering are relevant for
different engineering contexts.[19] There are key differences between the
evolutionary approach we describe and other strategies. These include an emphasis on
parallel competitive development teams and the importance of creating an ongoing
fielded implementation strategy, where coexistence of multiple types of components
and interactions is possible. This evolutionary process is most commonly associated
with the formation of complex biological organisms. A free market system is also an
example of an evolutionary system with particular features that are not present in all
evolutionary contexts.

In this chapter we will describe both the analysis of the limitations of
conventional systems engineering and the new ideas of evolutionary engineering. In
Section 3, we will describe the framework of multiscale analysis, mention its
implications for design decisions and use it to prove the limitations of decomposition
based design. In Section 4 we will describe historical experience with complex
engineering projects, and some of the steps we have taken toward defining an
enlightened evolutionary engineering strategy. Readers who are less interested in the
formal mathematical proof of the limitations of conventional systems engineering, and
more interested in the new concepts of evolutionary engineering can proceed directly
to Section 4.

3. Analysis

Multiscale analysis [1,10] builds on the twin recognitions that scale and
variety/complexity both play a role in effective system performance:
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• Scale: A task requires a system to have sufficient “scale” of action, where
scale refers to the number of elementary components that are coordinated to
perform a task.

• Variety: A task requires that a system have the ability to perform many
distinct actions, this known as variety and is measured as the logarithm of the
number of distinct actions that can be taken in a specified interval of time.

Thus, for example, a system can be effective at some tasks via brute force, but for
others it must carefully choose the right action to take. When designing a system for
its tasks, recognizing the degree to which scale and complexity are essential in the
effective functioning of the system is also directly relevant to the design process.

To understand the design implications of this analysis conceptually, we note that
when components are acting in a coordinated way, they cannot act independently.
When large scale action is required, the components must act coherently. Conversely,
when high variety is required, the components must be able to act independently.
More generally, there are various degrees of coordination that may be necessary to
achieve the particular amount of variety needed at each scale of action to perform
ongoing tasks.

The key to multiscale analysis of the variety of any system is that each of the
components has a limit on its variety—the logarithm of the number of its
distinguishable states. Components can be individuals that act in performing tasks, or
they can be individuals that serve to manage or coordinate tasks, or they can be
physical or computer based communication channels. We do not assume anything a-
priori about the specific tasks or actions of the components, so that they could be
widely different kinds of entities such as biological cells, human beings or artificial
devices. The components could also be the same as each other or different. The key is
that each of them has a bound on its variety. If we have a system that is formed of
many components, and some of these components are responsible for coordinating
other components, then we can establish limits on what particular organizational
structures can do. It may be that the variety associated with the coordination exceeds
the variety of the components. This is true even if the components that must be
coordinated are relatively simple. It is also true if the components have a high variety.
The key is that quite generally the coordination may require of order N times the
variety of the individual components, even in a fixed configuration of coordination.
This means we may need N coordinating entities.

To understand the organizational limitations that are established by such an
analysis consider a hierarchical system, such as a human organization with
hierarchical chains of communication or a hierarchically decomposed engineering
system with hierarchical specification. Indeed, these two representations are
synergistic, in that hierarchical organizations are generally the mechanism by which
hierarchically decomposed systems are generated. The difficulty with this architecture
is that there is a bandwidth limitation in the communication channels. This limitation
is manifest most clearly in that the component at the apex of the hierarchy must
perform all coordinations between the large groups that branch from the apex. More
generally, the channels of communication pass through individual components, and if
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we assume that each component has a limit on its variety, then we can see that the
communication channels are limited by the variety of their components.

This is a severe limitation on the variety of the system behavior because in a
more networked structure it is possible for the components at the bottom of the
hierarchy to coordinate with each other directly in a way that would increase
dramatically the variety of possible pairwise actions well above what can be
coordinated through the hierarchy. This illustrates the well known phenomenon in
engineering of the explosion of interface specification, and the dramatic efforts that
are devoted to coordination of components. Thus, while the conventional
decomposition strategy presumes that the components are the entities that require
engineering, when systems become highly complex it is the coordination that requires
the effort of engineering. Therefore, the conventional decomposition strategy breaks
down, requiring other engineering strategies.

The formal proof of this statement requires one subtlety, which is quantifying the
coordination above the level of behavior of an individual. The variety that is the most
limiting variety for a hierarchical organization is the variety that has a scale that
requires more than one individual to perform a task, but less than that of the system as
a whole. It is the existence of large varieties at intermediate scales that are not
possible for hierarchical organizations. Either a completely independent or a
completely dependent organizational behavior can be readily achieved. We describe
the formalism that captures variety at all scales in several steps.

Quantitatively, the understanding of the requirements of variety was articulated in
Ashby’s Law of Requisite Variety.[20] Recently,[10] this law has been generalized to
consider the issue of scale as well as variety. In the generalization, it is assumed that
the system is composed of a number of components and that these components can be
combined to perform specific tasks that might require more than a single component
to perform.

More specifically, we assume that a responding system is composed of a number
of subsystems, N, that are variously coordinated to respond to external contexts. The
number of possible actions that the system can take, M, is not more than, mN, the
product of the possible actions of each part, m. We could directly apply the Law of
Requisite Variety for that case, but we further constrain the problem of effective
function by assuming that effective actions require a sufficient variety at each scale of
action corresponding to the requirements for action at that scale. At every scale, the
variety necessary to meet the tasks must be larger for the system than the task
requirements. It is conventional to measure variety, like information, in logarithmic
units so that the total variety of a set of independent components V M= ( )log is the
sum of the variety of the components, V Nv= , where v m= (log ) . If we assume a
simple coordination mechanism such that the system is partitioned into groups that are
fully coordinated, and different groups are independent of each other, then the variety
of actions of each group is the same as the variety of actions of any individual of that
group, and the scale of action equals the number of individuals in that group. For the
entire system, the variety at scale k is D k vn k( ) = ( )  where n k( ) is the number of
different k-member fully coordinated groups needed to perform the entire task, which
therefore at a minimum requires N kn k= ∑ ( )  components to perform. The total
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variety of the task is proportional to the total number of subsets of any scale
V D k= ∑ ( ) .

With these assumptions, given a predetermined number, N, of components, the
system can, in the extreme, perform a task of scale N, with variety equal to that of one
component, or a task of scale one with variety N times as great. More generally the
equation (obtained from N kn k= ∑ ( ))

Nv kD k= ∑ ( ) (1)

can be considered a constraint on the possible behavior patterns (sum rule) of a
system due to different mechanisms of organization. It is often convenient to think
about the variety of a system, V(k), that has a scale k or larger, as this is the set of
possible actions that can have at least that scale,

V k D k
k k

N

( ) ( )= ′
′=
∑ . (2)

Then the total variety of the system is V(1), and the sum rule can be written as:

V k Nv
k

N

( )
=

∑ =
1

. (3)

The sum rule given by equation (1) or (3) describes the existence of a tradeoff
between variety at different scales. Increasing the variety at one scale, by changing the
organizational form, must come at the expense of variety at other scales. Our
generalization of the Law of Requisite Variety is directly relevant to an analysis of
whether or not coordination mechanisms of an organization are well or ill suited to the
tasks being performed. Given the constraint imposed by the number of components, a
successful organization has a coordination mechanism that ensures that the groups are
coordinated at the relevant scale of tasks to be performed. The multiscale version of
the Law of Requisite Variety captures this simple and intuitive statement.

In considering the requirements of multiscale variety, we can state that in order
for a system to be effective, it must be able to coordinate the right number of
components to serve each task, while allowing the independence of other sets of
components so that they can perform their respective tasks without binding the actions
of one such set to another. This now serves as a key characterization of system
organization. Specifically, the Multiscale Law of Requisite Variety implies that for a
system to be successful its coordination mechanisms must allow for independence and
dependence between components so as to allow the right number of sets of
components acting at each scale.

In order to formalize the analysis we must define how a manager functions in an
organization in terms of the coordination of subordinates. How do we describe a
coordinator/manager? A manager specifies the state of the subordinates and a
coordination mechanism. We assume that at any particular time the manager can only
coordinate a particular subset, indexed by w, of the subordinates, and at that time
these subordinates are fully coordinated, while the others act independently (one
cannot be in two places at the same time). q(w) is the number of subordinates that are
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being coordinated, which, for values of zero or one corresponds to no coordination. A
specification of the manager at a particular time thus can be written (sm,w), where the
state of sm specifies the states of all the coordinated subordinates, while w specifies
which subordinates are coordinated. For simplicity we do not count the redundancy
provided by the manager (who we assume does not do the action only specifies it) and
therefore sm is not needed in the description of the system since it is redundant to the
actions of the subordinates. We also neglect the information in specifying w  by
treating the information as conditional on the coordination mechanism. These
assumptions can be relaxed without changing the conclusions. Then we have the
multiscale variety for a particular coordination state given by:

D k w v N q w vk k q w( | ) = ( - ( ) ,) , ( )δ δ1 +  . (4)

Combining coordination states, each with a probability P(w) we have:

D k P w v P w N q w v
w

q w k k
w

( ) ( ) ( )( ( ))( ), ,= + −∑ ∑δ δ 1 . (5)

This gives the expected bound on the total coordination:

V D k P w v v
k

N

q w k
wk

N

( ) ( ) ( ) ( ),2
2 2

= = ≤
= =

∑ ∑∑ δ . (6)

Where the inequality provides the quite reasonable statement that the variety of the
system for scales larger than one individual cannot be greater than the variety of the
manager.

This coordination limitation is recursively applied to each level of managers for
the set of individuals under their supervision so that the mutual information between
individuals (workers or managers) at one level of organization is limited by the
manager that supervises them. This implies, for example, that the combined mutual
information between all workers is no more than the variety of the first level
supervisors. Assuming that the variety of a manager is typically no more than the
variety of a worker, we would expect that the limit of mutual information to be N B/
where B is the branching ratio, i.e. the number of workers supervised by a single
manager. Higher level managers are similarly restricted in their ability to coordinate
the managers at the lower level. When an upper level manager in a conventional
hierarchy coordinates parts of the organization, information must be communicated
through the lower level managers. This also reduces the degree to which their own
inter-worker coordination can be performed (i.e. to the extent that the higher level
manager performs coordination, this reduces the capacity of the lower level managers
to coordinate).

We can make a more direct connection to multiscale variety if we consider a
somewhat generalized version of hierarchical control. In the generalized version of
the hierarchy, managers exist at a certain level of authority, i.e. supervising a certain
fraction of the organization, but do not have a particular set of subordinates that they
supervise (the “matrix organization” [21] is an intermediate case). By not including
the constraint of a strict hierarchy, i.e. that a manager has a particular subset of the
individuals and cannot coordinate others outside of this subset, we obtain an upper
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bound on the coordination of a more conventional hierarchy. For the conventional
hierarchy, the coordination of the system is further limited since even only two
individuals that are in different divisions of the organization require coordination by
the CEO. For the generalized hierarchical model, we can generalize the equations
above and reach a conclusion that

V D k Cv
k

N

( ) ( )2
2

= ≤
=

∑ . (7)

Where C is the number of managers. This states quite reasonably that the total variety
of actions greater than the scale of one individual is not greater than the total variety
of the managers. For managers having a certain limit on how many subordinates they
can control, so that managers at level l can coordinate up to Bl  subordinates, we
further limit the number of those coordinated at larger scales by

V B D k C vl

k B
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l ll
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−
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1
1

(8)

which reasonably states that the variety of behaviors associated with a number of
individuals is only as great as the variety of the managers that can coordinate that
number of individuals.

For example, we consider the role of the CEO and assign him/her the obligation
of determining those issues that are of relevance to the actions of a large proportion of
individuals that are part of the organization. If we consider 10% to be the threshold
fraction, then all decisions involving 10% of the individuals of the organization are
coordinated by the CEO. The maximal possible variety of such portions (at this scale
of action) is ten times the variety of a single individual. However, this cannot be done
when coordinated by a single individual, the maximum is the CEO’s variety. More
generally, we can categorically state: to the extent that a single individual is
coordinating the behavior of an organization, the coordination defined by mutual
information cannot have a higher variety than that of a single individual.

We see that for a hierarchically coordinated system, the combined conditional
mutual information of subunits of a manager cannot be greater than the variety of that
manager. This is not a problem for either of two cases (dictated by environmental
conditions associated with the task to be performed): 1) if the system has a simple
coherent behavior, or 2) if the manager exercises very little control over subordinates
so that the workers are almost totally independent of each other. It is a problem,
however, when the behaviors of subunits themselves have a high variety (greater than
that of an individual) and these must be coordinated. Thus, a hierarchical control
system is well designed for relatively simple large scale behaviors, or for systems
with very distributed control, but not for highly coordinated behaviors, i.e. when the
coordination of these behaviors is more complex than a human being can
communicate.

In summary, a generalization of the Law of Requisite Variety suggests that the
effectiveness of a system organization can be evaluated by its variety at each scale of
tasks to be performed. In its simplest form, a system with a high degree of
coordination is large scale. When it is not coordinated, allowing for independent
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component action, it has high variety. The tradeoff of large scale action, as compared
to the variety possible when actions of components are independent, provides a direct
analysis of system organization. While this analysis does not specify that a particular
system is capable of performing a task, it can provide a necessary condition for
effectiveness. In considering biological and social systems, such analysis provides a
way of classifying their behavior and considering the functional role they play in
survival and societal function. [1,6-11] In engineering this analysis can provide an
approach to guiding system design, by comparing the scale and analysis of tasks to the
system capabilities. However, the analysis of hierarchical control also points to the
inability of hierarchical decomposition to achieve desired coordination of the
components, and thus the need for evolutionary approaches when the complexity of
systems above the scale of the individual components is too high.

4. Enlightened Evolutionary Engineering

The failure rate of major engineering projects in recent years has been remarkably
high costing many billions of dollars and much wasted time and effort. [1,3,4] In the
conventional systems engineering approach, the project is recursively broken into
subparts. The parts are then put together, with the task of defining and coordinating
the subprojects being in the domain of the systems engineer developing the design at
each level of decomposition. In order to perform the decomposition at a particular
level, the systems engineer must perform the coordination that is necessary of the
components at that level of decomposition. According to the multiscale analysis given
above this may exceed the capacity of an individual. To understand the existing
approach it is helpful to review its conceptual paradigm.

The traditional approach to large engineering projects follows the paradigm
established by the Manhattan project and the Space program. There are several
assumptions inherent to this paradigm: 1) substantially new technology will be used;
2) the new technology to be used is based upon a clear understanding of the basic
principles or equations that govern the system (i.e. the relationship between energy
and mass, E=mc2, for the Manhattan project, or Newton's laws of mechanics and
gravitation F=-GMm/r2 for the space program); 3) the goal of the project and its more
specific objectives and specifications are clearly understood; 4) based upon these
specifications, a design will be created essentially from scratch and this design will be
implemented and, consequently the mission will be accomplished.

Large engineering projects today generally continue to follow this paradigm.
Projects are driven by a need to replace old "obsolete" systems with new systems, and
particularly with the desire to use new technology. The time line of the project
involves a sequence of stages: a planning stage at the beginning giving way to a
specification stage, a design stage, and an implementation stage. The various stages of
the process all assume that managers know what needs to be done and that this
information can be included in a specification. Managers are deemed successful or
unsuccessful depending upon whether or not this specification is achieved. On the
technical side, modern large engineering projects generally involve the integration of
systems to create larger systems, their goals include adding multiple functions that
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have not been possible before, and they are expected to satisfy additional constraints,
especially constraints of reliability, safety and security.

The images of success of the Manhattan and Space Projects remain with us.
However, the reality of most large engineering projects is much less satisfactory.
Many projects end up in failure and are abandoned. This is true despite the
tremendous investments that are made. The largest documented financial cost for a
single project was the government’s effort to improve air traffic control in the United
States, the Federal Aviation Administration (FAA) Advanced Automation System.
Many of the major difficulties with air traffic delays and other limitations are blamed
on the antiquated / obsolete air traffic control system. This system, originally built in
the 1950s, used remarkably obsolete technology, including 1960s mainframe
computers and equipment based upon vacuum tubes [22], with functional limitations
that would compel any modern engineer into laughter. Still, an effort that cost 3-6
billion dollars between 1982 and 1994 was abandoned without improving the system.
While the failure of government projects is frequently blamed on specific issues
related to government acquisition, a general survey of large software engineering
projects in 1994 [32] showed that such failures were widespread in both private and
public sector projects. This study classified projects according to whether they met
stated goals of the project, the time table, and cost estimates. They found that under
20% of the projects were on-time, on-budget and on-function (projects at large
companies had a lower rate of under 10% success). Over 50% of the projects were
"challenged" which means that they were over budget typically by a factor of two,
were over schedule by a factor of two, and did not meet about two thirds of the
original functional specifications. The remaining 30% of the projects were called
"impaired" which meant that they were abandoned. When considering the major
investments these projects represent in time and money, the numbers are staggering,
easily reaching $100 Billion each year in direct costs. The high percentage of failures
and the remarkable percentage of challenged projects suggest that there is a
systematic reason for the difficulty involved in large engineering projects beyond the
specific reasons for failure that one might identify in any given case.

Indeed despite various efforts to improve acquisition of large systems, successors
of the Advanced Automation System that are being worked on today are finding the
process to be slow and progress limited [33]. From 1995 until today, major
achievements in air traffic control modernization include replacing mainframe
computers, replacing communications switching systems, and the en-route controller
radar stations. The replacement of the Automated Radar Terminal System at Terminal
Radar Facilities responsible for air traffic control near airports (the Standard Terminal
Automation Replacement System (STARS) program), faced many of the problems
that affected the Advanced Automation System: cost overruns, delays, and safety
vetoes of implementation, and was implemented beginning in 2002 in particular
airports by FAA emergency decree, and the full implementation at all airports is
expected to take at least a decade if not longer. Even with the limited modernization
taking place, the new equipment continues to be used in a manner that follows
original protocols used for the old equipment.
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A fundamental reason for the difficulties associated with modern large
engineering projects is their inherent complexity. Complexity implies that different
parts of the system are interdependent so that changes in one part may have effects on
other parts of the system. Complexity may cause unanticipated effects that lead to
failures of the system. These “indirect” effects can be discussed in terms of feedback
loops in the system, and in terms of emergent collective behaviors of the system as a
whole [6]. Such behaviors are generally difficult to anticipate and understand. Despite
the superficial complexity of the Manhattan and Space Projects, the tasks that they
were striving to achieve were relatively simple compared to the problem of air traffic
control. To understand complexity of Air Traffic Control (ATC), it is necessary to
consider the problem of 3-dimensional trajectory separation --- ensuring that paths of
any two planes do not intersect at the same time, considering the many airplanes
taking off and landing in a short period of time, and taking into account the
remarkably low probability of failure that safety constraints impose. Failure in any
one case may appear to have a specific cause, but the common inability to implement
high cost systems can be attributed to their intrinsic complexity.

While the complexity of engineering projects has been increasing, it is important
to recognize that complexity is not new. Indeed, engineers and managers are generally
aware of the complexity of these projects and have developed systematic techniques
to address them. There are several strategies that are commonly used including
modularity, abstraction, hierarchy and layering. These methods are useful, but at some
degree of interdependence they become ineffective. Modularity is a well recognized
way to separate a large system into parts that can be individually designed and
modified. However, modularity incorrectly assumes that complex system behavior
can be reduced to the sum of its parts. As systems become more complex, the design
of interfaces between parts occupies increasing attention and eventually the process
breaks down. Abstraction simplifies the description or specification of the system.
However, abstraction assumes that the details to be provided to one part of the system
(module) can be designed independently of details in other parts. Modularity and
abstraction are generalized by various forms of hierarchical and layered specification,
whether through the structure of the system, or through the attributes of parts of a
system (e.g. in object oriented programming). Again, these two approaches either
incorrectly portray performance or behavioral relationships between the system parts
or assume details can be provided at a later stage. Similarly, management has
developed ways to coordinate teams of people working on the same project through
various carefully specified coordination mechanisms.

4.1. Evolve highly complex systems

One way to address the difficulty of complex projects is to simplify what is attempted.
However, simplifying the function of an engineered system is not always possible
because the necessary or desired core function is itself highly complex. When the
inherent nature of a complex task is too large to deal with using conventional large
engineering processes, a better solution is to use an evolutionary process [7], that is to
create an environment in which continuous innovation can occur.
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Evolutionary processes, commonly understood to be analogous to free market
competition, are based on incremental iterative change. However, there are basic
differences between evolution and the notion of incremental engineering. Among
these is that evolution assumes that many different systems exist at the same time, and
that changes occur to these systems in parallel. The parallel testing of many different
changes, which can be combined later is distinctly different from conventional
incremental engineering. The use of parallel initial exploration has been advocated in
engineering [31]. However, this approach is unlike evolution as it leads to the
selection of a single option rather than multiple parallel implementation. Multiple
parallel implementation is more similar to the parallel and largely independent
exploration of product improvements by different companies in a market economy,
especially when there are many small companies. Another basic idea of evolution is
that much testing is done "in the field"; the process of learning about effective
solutions occurs through direct feedback from the environment. There are many more
aspects of evolution that should be understood to make effective use of this process in
complex large engineering projects, some of which are discussed below. Even the
conventional concepts of evolution as they are currently taught in basic biology
courses are not sufficient to capture the richness of modern ideas about evolution [6
(ch. 6),1,26-8].

Many of the more recent programming strategies, e.g. spiral development,
extreme programming, and the open source movement, embody features of
evolutionary processes. Still, a better understanding is necessary to realize the promise
of evolutionary methods. The objective revolves around mimicry of the processes that
promote rapid innovation through competition. The creation of an effective ``artificial
ecology" or ``artificial economy" requires design. In and of itself, a competitive
system is not self-sustaining as it tends to become stuck through monopolization, or
self-destructive behavior.

To introduce the concepts of evolution, it is helpful to start from the conventional
perspective and then augment it with some of the modern modifications. Evolution is
about the change in a population of organisms over time. This population changes not
because the members of the population change directly, but because of a process of
generational replacement by offspring that differ from their parents. The qualities of
offspring are different from their parents, in part, because some parents have more
offspring than others. The process by which the number of offspring are determined,
termed selection, is considered a measure of organism effectiveness / fitness.
Offspring tend to inherit traits of parents. Traits are modified by sexual reproduction
and mutation that introduce novelty / variation. This novelty allows progressive
changes over many generations. Thus, in the conventional perspective, evolution is a
process of replication with variation followed by selection based upon competition. In
contrast to a traditional engineering view, where the process of innovation occurs
through concept, design, specification, implementation and large scale manufacture,
the evolutionary perspective suggests that we consider the population of functioning
products that are in use at a particular time as the changing population that will be
replaced by new products over time. The change in this population occurs through the
selection of those products that increase their proportion in the population. This
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process of evolution involves the decisions of people as well as the changes that occur
in the equipment itself.

It may be helpful to point out that this approach (the treatment of the population
of engineered products as evolving) is quite different than the approach previously
used to introduce evolution in an engineering context through genetic algorithms or
evolutionary programming (GA/EA) [29,30]. The GA/EA approach has considered
automating the process of design by transferring the entire problem into a computer.
According to this strategy, we develop a representation of possible systems, specify
the utility function, implement selection and replication and subsequently create the
system design in the computer. While the GA/EA approach can help in specific cases,
it is well known that evolution from scratch is slow. Thus it is helpful to take
advantage of the capability of human beings to contribute to the design of systems.
The objective of the use of evolutionary process described here is to avoid relying
upon an individual human being to design systems that can perform highly complex
tasks. A computer by itself cannot solve such problems either. Our objective here is to
embed the process of design into that of many human beings (using computers)
coordinated through an evolutionary process.

4.2. Environment for evolution

The basic concept of designing an evolutionary process is to create an environment in
which a process of innovation and creative change takes place. To do this we develop
the perspective that tasks to be performed are analogous to resources in biology.
Individual parts of the system, whether they are hardware, software or people
involved in executing the tasks, are analogous to various organisms that are involved
in an evolutionary process. Changes in the individual parts take place through
introducing alternate components (equipment, software, training or by moving people
to different tasks). All of these changes are part of the dynamics of the system. Within
this environment it is possible for conventional engineering of equipment or software
components to occur. The focus of such engineering efforts is on change to small
parts of the system rather than on change to the system as a whole. This concept of
incremental replacement of components (equipment, software, training, tasks)
involves changes in one part of the system, not in every part of the system. Even when
the same component exists in many parts of the system, changes are not imposed on
all of these parts at the same time. Multiple small teams are involved in design and
implementation of these changes. It is important to note that this is the opposite of
standardization—the explicit imposition of variety. The development environment
should be constructed so that exploration of possibilities can be accomplished in a
rapid (efficient) manner. Wider adoption of a particular change, corresponding to
reproduction in biology, occurs when experience with a component indicates
improved performance. Wider adoption occurs through informed selection by the
individuals involved. This process of "selection" explicitly entails feedback about
aggregate system performance in the context of real world tasks.

Thus the process of innovation involves multiple variants of equipment, software,
training or human roles that perform similar tasks in parallel. The appearance of
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redundancy and parallelism is counter to the conventional engineering approach,
which assumes specific functional assignments rather than parallel ones. This is the
primary difference between evolutionary processes and incremental approaches to
engineering. The process of overall change consisting of an innovation that, for
example, replaces one version of a particular type of equipment with another, occurs
in several stages. In the first stage, a new variant of the equipment (or other
component) is introduced. Locally, this variant may perform better or worse than
others. However, overall, the first introduction of the equipment does not significantly
affect the performance of the entire system because other equipment is operating in
parallel. The second stage occurs if the new variant is more effective: others may
adopt it in other parts of the system. As adoption occurs there is a load transfer from
older versions to the new version in the context of competition, both in the local
context and in the larger context of the entire system. The third stage involves keeping
older systems around for longer than they are needed, using them for a smaller and
smaller part of the load until eventually they are discarded 'naturally'. Following a
single process of innovation, is, however, not really the point of the evolutionary
engineering process. Instead, the key is recognizing the variety of possibilities and
subsystems that exist at any one time and how they act together in the process of
innovation.

The conventional development process currently used in large engineering
projects is not entirely abandoned in the evolutionary context. Instead, it is placed
within a larger context of an evolutionary process. This means that individuals or
teams that are developing parts of the system can still use well known and tested
strategies for planning, specification, design, implementation and testing. The
important caveat to be made here is that these tools are limited to parts of the system
whose complexity is appropriate to the tool in use. Also, the time scale of the
conventional development process is matched to the time scale of the larger
evolutionary process so that field testing can provide direct feedback on effectiveness.
This is similar to various proposals suggested for incremental iterative engineering.
What is different, is the importance of parallel execution of components in a context
designed for redundancy and robustness so that the implementation of alternatives can
be done in parallel and effective improvements can be combined. At the same time,
the ongoing variety provides robustness to changes in the function of the system.
Specifically, if the function of the system is changed because of external changes, the
system can adapt rapidly because there are various possible variants of subsystems
that can be employed.

Understanding a complex system approach to design and implementation
involves recognizing the many differences between the natural evolutionary process
and traditional engineering practices. Evolutionary engineering employs, among
others, the following key concepts,[31] that may be contrasted to traditional
engineering practices:

° Focus on creating an environment and process rather than a product.
° Continually build on what already exists.
° Operational components are modifiable in situ.
° Operational systems include multiple versions of functional components.
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° Utilize multiple parallel development processes.
° Evaluate experimentally in-situ.
° Increase utilization of more effective components, gradually.
° Effective solutions to specific problems cannot be anticipated.
° Conventional systems engineering should be used for not-to-complex

components.
Brief notes on each of these points follow.

4.2.1 Focus on creating an environment and process rather than a product:

Ongoing change in a system is the underlying mechanism of creation, not the
formulation and execution of a particular plan. The environment must include rules
for a structured competition between design teams and the components they develop.
Encouraging and safeguarding the ongoing change and monitoring its outcomes are
the absolute essentials of an evolutionary-based process.

4.2.2 Continually build on what already exists:

Off-line engineering of complex systems is impractical because the complexities of
their environment and true functional requirements do not permit practical
specification or testing prior to implementation. In complex systems, correct
expectations and testing both depend on the immediate consequences of current
operations.

4.2.3 Individual components must be modifiable in situ

The interdependencies between system components must be such that individual
components can be modified in situ. In practice this requires point 4.2.4.

4.2.4 Operational systems include multiple versions of functional components

Complex systems should be understood as populations rather than as rigid assemblies
of unique components. Individual components can overlap substantially in terms of
both functionality and interaction. Evolutionary processes impact both populations
and individuals. Redundancies are not always unwanted inefficiencies.

4.2.5 Utilize multiple parallel development processes

The existence of populations of components allows multiple parallel efforts to explore
modifications that might (but that are not guaranteed) to improve system components
and/or total system capability.

4.2.6 Evaluate experimentally in-situ

Testing and experimentation increasingly overlap. Off-line qualification testing
becomes a prelude to active field testing for components in a large variety of
operational environments. Results (including unexpected results) are ratified or
rejected as they occur based on then-current overall system capability.
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4.2.7 Increase utilization of more effective components, gradually

The replacement of components cannot be abrupt as testing is never complete and
operation is continuous. Augmentation and parallel operation is the preferred
approach.

4.2.8 Effective solutions to specific problems cannot be anticipated

Specification efforts cannot assume that the most efficient or effective solutions can
be anticipated in advance of an exploration and discovery process involving multiple
parallel development efforts.

4.2.9 Conventional systems engineering should be used for not-to-complex

components.

Conventional systems engineering is a highly effective discipline when it is used for
systems that are not too complex, it provides an important acceleration for the
evolutionary engineering process over that of naive evolution where randomness is
the only player.

4.3 The Integration of Systems, and the Systems of Systems Concept

Frequently, engineering today is concerned with the integration of multiple
components into larger aggregate systems. Such aggregations are often called system
of systems, and are characterized by conceptual properties such as interoperability.
The ideas presented here suggest that conventional engineering is unlikely to be
effective in achieving such aggregate systems that involve many interactions and
interdependencies. Ultimately, the challenge that has to be met in order to create such
systems is to avoid or abandon conventional control and planning and institute
evolutionary engineering processes.

In order to operate a evolutionary engineering process, the prevailing concept of
system integration must be radically rethought. Effective application of the ideas in
this chapter involves a paradigm shift from complete system specification to the
creation of environments that are conducive to ongoing change in components of
systems, while supporting the more or less constant evaluation of their overall
effectiveness through virtual as well as real world testing.

5. Conclusions

It is important to appreciate that there are fundamental reasons that highly trained
systems engineers have been unable to successfully complete the very highly complex
engineering projects undertaken in recent years. Efforts to improve the existing
decomposition based approach will not solve these problems. The application of
multiscale analysis reveals that the coordination between components that is required
to develop such systems is incompatible with decomposition. This can be most easily
understood as an underlying bandwidth limitation in the hierarchical structure in
which the decomposition of the design is performed.
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The solution to this problem is to develop an environment for parallel design
teams to develop components that can be field tested and compete for wider adoption.
This approach underlies both the creation of complex biological systems and some
complex social system, for example, those that utilize market competition process. Its
implementation in large engineering projects may be a challenge, however, according
to our understanding of the science of complex systems, it is the only way to
successfully engineer highly complex systems.
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1. Introduction 

The usefulness of understanding organizational network structure as a tool for 
assessing the effects of decisions on organizational performance has been illustrated 
in the social science and management literatures [39-42]. There it has been shown that 
informal networks of relationships (e.g., communication, information, and problem-
solving networks) – rather than formal organizational charts – determine to a large 
extent the patterns of coordination and work processes embedded in the organization. 
In recent years, networks have also become the foundation for understanding 
numerous and disparate complex systems outside the field of social sciences (e.g., 
biology, ecology, engineering, and internet technology, see [9, 10, 49]). 
 The goal of this chapter is to examine, for the first time, the statistical properties 
of an important class of large-scale information-carrying networks – new product 
development. We discuss the significance of these statistical properties in providing 
insight into ways of improving the strategic and operational decision-making of the 
organization. In general, information-carrying networks constitute the infrastructure 
for exchanging knowledge that is important to the achievement of work by individual 
agents. We believe that our results will also be relevant to other information-carrying 
networks.
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 Distributed product development (abbreviated as ‘PD’), which often involves an 
intricate set of interconnected tasks carried out by hundreds of designers, is 
fundamental to the creation of complex manmade systems [1]. The interdependence 
between the various tasks makes system development fundamentally iterative [2]. 
Iterations are driven by the repetition (rework) of tasks due to the availability of new 
information generated by other tasks such as changes in input, updates of shared 
assumptions, components, boundaries, or the discovery of errors. In such a network of 
interactions, iterations occur when some development tasks must be attempted even 
though the complete predecessor information is not available or known with certainty 
[3]. As this missing or uncertain information becomes available, the tasks are repeated 
to come closer to the design specifications or goals. This iterative process proceeds 
until convergence occurs [3-5].
 Design iterations, which are the result of the PD network structure, might slow 
down the PD convergence or have a destabilizing effect on the system’s behavior. 
This will delay the time required for product development, and thus compromise the 
effectiveness and efficiency of the PD process. For example, it is estimated that 
iteration costs about one-third of the whole PD time [6] while lost profits result when 
new products are delayed in development and shipped late [7]. Characterizing the 
real-world structure, and eventually the dynamics of complex PD networks, may lead 
to the development of guidelines for coping with complexity. It would also suggest 
ways for improving the decision making process, and the search for innovative design 
solutions.
 The last few years have witnessed substantial and dramatic new advances in 
understanding the large-scale structural properties of many real-world complex 
networks [8-10]. The availability of large-scale empirical data on one hand and the 
advances in computing power and theoretical understanding have led to a series of 
discoveries that have uncovered statistical properties that are common to a variety of 
diverse real-world social, biological and technological networks including the world-
wide web [11], the internet [12], power grids [13], metabolic and protein networks 
[14, 15], food webs [16], scientific collaboration networks [17-20], citation networks 
[21], electronic circuits [22], and software architecture [23]. These studies have 
shown that many complex networks are sparse; that is, they have only a small fraction 
of the possible number of links. Despite being primarily locally connected, such 
networks exhibit the “small-world” property of short average path lengths between 
any two nodes. Studies also have found that complex networks are characterized by 
an inhomogeneous distribution of nodal degrees (the number of nodes a particular 
node is connected to) with this distribution often following a power law (termed 
"scale free" networks in [29]). Scale-free networks have been shown to be robust to 
random failures of nodes, but vulnerable to failure of the highly connected nodes [24]. 
A variety of network growth processes that might occur on real networks, and that 
lead to scale-free and small-world networks have been proposed [9, 10]. The 
dynamics of networks can be understood to be due to processes propagating through 
the network of connections; the range of dynamical processes include disease 
spreading and diffusion, search and random walks, synchronization, games, Boolean 
networks and cellular automata, and rumor propagation. Indeed, the raison d'être of 
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complex network studies might be said to be the finding that topology provides direct 
information about the characteristics of network dynamics [48]. In this chapter, we 
study network topologies in the context of large-scale product development; and 
discuss their relationship to the functional utility of the system as well as to the 
dynamics of the underlying distributed design problem-solving.

Planning techniques and analytical models that view the PD process as a network 
of interacting components have been proposed before [2-5, 25, 26, 45]. However, 
others have not yet addressed the large-scale statistical properties of real-world PD 
task networks. In the research we report here, we study such networks. We show that 
task networks have properties (sparseness, small world, scaling regimes) that are like 
those of other biological, social and technological networks. We discover a distinctive 
asymmetry between the distributions of incoming and outgoing information flows 
(links) of PD networks, which has implications for their functionality, sensitivity, and 
robustness (error tolerance) properties.
 We further present a model of product development dynamics embodying 
interactions through the network. Using analysis and simulation we study its behavior 
to determine the conditions under which all the PD development tasks are completed, 
and the rate of convergence to the completed state. We show that network topology 
provides key information about the characteristics of convergence, both whether and 
how rapidly convergence occurs. We find, quite reasonably, that the PD network 
dynamics will converge unless the total rate at which a task is affected by its 
neighboring tasks exceeds the ‘internal completion rate’ of the task. Convergence is 
impeded by the existence of nodes that have both high numbers of incoming and 
outgoing information flows, i.e. convergence is controlled by the joint distribution of 
incoming and outgoing links. A more general result [See 50] shows that the 
characteristics of convergence depend upon the incoming and outgoing information 
flows among multiple tasks. 

The chapter is organized as follows: In Section 2, we review the basic structural 
properties of real-world complex networks. In Section 3, we describe the PD data 
used in this chapter. In Section 4, we present an analysis of the PD task networks, 
their small-world property, and node connectivity distributions. We demonstrate the 
distinct roles of incoming and outgoing information flows in distributed PD processes 
by analyzing the corresponding in-degree and out-degree link distributions. In Section 
5, we present a dynamical model of PD processes on complex networks, and show 
analytically and numerically how the empirical structural properties bear upon the PD 
dynamics. In Section 6, we present simulation results. In Section 7 we present our 
conclusions.

2. Structural Properties of Complex Networks 

Complex networks can be defined formally in terms of a graph ),( EVG , which is a 

pair of nodes },...,2,1{ NV , and a set of lines },...,,{ 21 LeeeE  between pairs of 

nodes. If the line between two nodes is non-directional, then the network is called 
undirected; otherwise, the network is called directed. A network is usually 
represented by a diagram, where nodes are drawn as points, undirected lines are 
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drawn as edges and directed lines as arcs connecting the corresponding two nodes. 
Three properties have been used to characterize ‘real-world’ complex networks [9, 
10]. The first characteristic is the average distance (geodesic) between two nodes, 
where the distance ),( jid  between nodes i  and j  is defined as the number of edges 

along the shortest path connecting them. The characteristic path length  is the 
average distance between any two vertices:

ji

ijd
NN )1(

1
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The second characteristic measures the tendency of vertices to be locally 
interconnected or to cluster in dense modules. The clustering coefficient iC  of a 

vertex i  is defined as follows. Let vertex i  be connected to ik  neighbors. The total 

number of edges between these neighbors is at most 2)1( ii kk . If the actual 

number of edges between these ik  neighbors is in , then the clustering coefficient iC

of the vertex i  is the ratio
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The clustering coefficient of the graph, which is a measure of the network’s potential 
modularity, is the average over all vertices, 
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 The third characteristic is the distribution of degrees of vertices. The degree of a 
vertex, denoted by ik , is the number of nodes adjacent to it. The mean nodal degree is 

the average degree of the nodes in the network, 
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If the network is directed, a distinction is made between the in-degree of a node and 
its out-degree. The in-degree of a node, )(ikin , is the number of nodes that are 

adjacent to i . The out-degree of a node, )(ikout , is the number of nodes adjacent

from i .
 Regular networks, where all the degrees of all the nodes are equal (such as 
circles, grids, and fully connected graphs) have been traditionally employed in 
modeling physical systems of atoms [8]. On the other hand, many ‘real-world’ social, 
biological and technological networks appear more random than regular [8, 9-10]. 
With the scarcity of large-scale empirical data on one hand and the lack of computing 
power on the other hand scientists have been led to model real-world networks as 
completely random graphs using the probabilistic graph models of Erdös and Rényi 
[46].
 In their seminal paper on random graphs, Erdös and Rényi considered a model 
where N  nodes are randomly connected with probability p . In this model, the 
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average degree of the nodes in the network is pNk , and a Poisson distribution 

approximates the distribution of the nodal degree. In a Poisson random network, the 
probability of nodes with at least k  edges decays rapidly for large values of k .
Consequently, a typical Poisson random network is rather homogenous, where most 
of the nodal degrees are concentrated around the mean. In particular, the average 
distance between any pair of nodes random  scales with the number of nodes as 

random )ln()ln( kN . This feature of having a relatively short path between any 

two nodes, despite the often large graph size, is known as the small-world effect. In a 
Poisson random graph, the clustering coefficient is NkpCrandom . Thus, 

while the average distance between any pair of nodes grows only logarithmically with 
N  the Poisson random graph is poorly clustered.
  Regular networks and random graphs serve as useful models for complex 
systems; yet, many real networks are neither completely ordered nor completely 
random. Watts and Strogatz [13] found that social, technological, and biological 
networks are much more highly clustered than a random graph with the same number 
of nodes and edges (i.e., realC » randomC ), while the characteristic path length real  is 

close to the theoretically minimum distance obtained for a random graph with the 
same average connectivity. Small-World Networks are a class of graphs that are 
highly clustered like regular graphs ( realC » randomC ), but with a small characteristic 

path length like a random graph ( randomreal ). Many real-world complex systems 

have been shown to be small-world networks, including power-line grids [13], 
neuronal networks [13], social networks [17-20], the World-Wide Web [11], the 
Internet [24], food webs [16], and chemical-reaction networks [14]. 
 Another important characteristic of real-world networks is related to their nodal 
degree distribution. Unlike the bell-shaped Poisson distribution of random graphs, the 
degree distribution of many real-world networks have been documented to have 
power-law degree distribution, 

)(kp k  (5) 

where )(kp  is the probability that a node has k  edges. Networks with power-law 

distributions are often referred to as scale-free networks [29]. The power-law 
distribution implies that there are a few nodes with many edges; in other words, the 
distribution of nodal degrees has a long right tail (resulting in an extremely large 
variance) of values that are far above the mean (as opposed to the fast decaying tail of 
a Poisson distribution, which results in an small variance). Power-law distributions of 
both the in-degree and out-degree of a node have been also observed in a variety of 
directed real-world networks [9, 10] including the World-Wide Web, metabolic 
networks, networks of citations of scientific papers, and telephone call graphs. 
Although scale-free networks are prevalent, the power-law distribution is not 
universal. Empirical work shows that the total node degree distribution of a variety of 
real networks often has a scale-free regime with an exponential cutoff, i.e. 

)(kp )(
*

kkfk  where *
k  is the cutoff [8, 17]. The existence of a cutoff has  
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been attributed to physical costs of adding links or limited capacity of a vertex [17]. In 
some networks, the power-law regime is not even present and the nodal degree 
distribution is characterized by a distribution with a fast decaying tail [8, 17]. It is also 
not clear that a scale-free network optimizes properties of network behavior, and 
alternatives have been proposed [32]. 

The goal of the present chapter is to investigate the statistical properties of large-
scale distributed product development networks. We show that large-scale PD 
networks, although of a different nature, have general properties that are shared by 
other social, technological, and biological networks. 

3. Data

We analyzed distributed product development data of different large-scale 
organizations in the United States and England involved in vehicle design [33], 
operating software design [34], pharmaceutical facility design [35], and a sixteen 
story hospital facility design [35]. A PD distributed network can be considered as a 
directed graph with N  nodes and L  arcs, where there is an arc from task iv  to task 

jv  if task iv feeds information to task jv . The documentation of the directed links 

between the tasks has been based on structured interviews with experienced engineers 
and design documentation data (design process models). In all cases, the repeated 
nature of the product development projects and the knowledgeable people involved in 
eliciting the information flow dependencies reduce the risk of error in the construction 
of the product development networks. More specifically, Cividantes [33] obtained the 
vehicle development network by questioning in person at least one engineer from 
each task “where do the inputs for the task come from (e.g., another task)?” and 
“where do the outputs generated by the task go to (e.g., another task)?” The answers 
to these questions were used by him to construct the network of information flows 
[33]. The operating software development network was obtained from 
module/subsystems dependency diagrams compiled by Denker [34]; and both the 
pharmaceutical facility development and the hospital facility development networks 
were compiled by Newton and Austin [35] from data flow diagrams and design-
process model diagrams [36] deployed by the organizations. An example of a diagram 
from the pharmaceutical facility and sixteen-story hospital facility process models is 
shown in Figure 1.
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Figure 1 Example of a diagram from a design process model. Such diagrams were 
used to construct the pharmaceutical facility and the sixteen-story hospital facility 
networks (adapted from [37]). 

4. Results 

4.1 Small world properties 

An example of one of these distributed PD networks (operating software 
development) is shown in Figure 2. Here we consider the undirected version of the 
network, where there is an edge between two tasks if they exchange information 
between them (not necessarily reciprocal communication). We see that this network is 
sparse ( )1(2 NNL 0.0114911) with the average degree of each node only 5.34, 

which is small compared to the number of possible edges 4651N . A clear 
deviation from a purely random graph is observed. We see that most of the nodes 
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have low degree while a few nodes have a very large degree. This is in contrast to the 
nodal degree homogeneity of purely random graphs, where most of the nodal degrees 
are concentrated around the mean. The software development network also illustrates 
the ‘small-world’ property (see Section 2), which can be detected by measuring two 
basic statistical characteristics: 1) the average distance (geodesic) between two nodes; 
and 2) the clustering coefficient of the graph. Small-world networks are a class of 
graphs that are highly clustered like regular graphs ( realC » randomC ), but with small 

characteristic path length like a random graph ( randomreal ). For the software 

development network, the network is highly clustered as measured by the clustering 
coefficient of the graph ( 0.327softwareC ) compared to a random graph with the 

same number of nodes and edges ( 0.021randomC ) but with small characteristic path 

length like a random graph ( 3.4483.700 randomsoftware ).

Figure. 2. Network of information flows between tasks of an operating system 
development process. This PD task network consists of 1245 directed information 
flows between 466 development tasks. Each task is assigned to one or more actors 
(“design teams” or “engineers”) who are responsible for it. Nodes with the same 
degree are colored the same. 
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   In Table 1, we present the characteristic path length and clustering coefficient for 
the four distributed PD networks examined in this chapter, and compare their values 
with random graphs having the same number of nodes and edges. In all cases, the 
empirical results display the small-world property ( realC » randomC  and 

randomreal ).

Table 1 Empirical Statistics of the four large-scale PD Networks 

*
 We restrict attention to the largest connected component of the graphs, which 

includes 82% of all tasks for the Operating Software network, and 92% of all tasks 

for the Sixteen story Hospital Facility network.

 An interpretation of the functional significance of the architecture of PD 
networks must be based upon a recognition of the factors that such systems are 
optimizing. Shorter development times, improved product quality, and lower 
development costs are the key factors for successful complex PD processes. The 
existence of cycles in the PD networks, readily noted in the network architectures 
investigated, points to the seemingly undeniable truth that there is an inherent, 
iterative nature to the design process [2]. Each iteration results in changes that must 
propagate through the PD network requiring the rework of other reachable tasks. 
Consequently, late feedback and excessive rework should be minimized if shorter 
development time is required.
 The functional significance of the small-world property can be attributed to the 
fast information transfer throughout the network, which results in immediate response 
to the rework created by other tasks in the network. A high clustering coefficient is 
consistent with a modular organization; i.e., the organization of the PD process in 
clusters that contain most, if not all, of the interactions internally and the interactions 
or links between separate clusters is minimized [1-3, 49]. The dynamic model 
developed in [5] shows that a speed up of the PD convergence to the design solution 
is obtained by reducing or ‘ignoring’ some of the task dependencies (i.e., eliminating 
some of the arcs in the corresponding PD network). A modular architecture of the PD 
process is aligned with this strategy. 

Network N L C
random

C
random

Vehicle 120 417 0.205 2.878 0.070 2.698 

Operating

Software
*

466 1245 0.327 3.700 0.021 3.448 

Pharmaceutical

Facility

582 4123 0.449 2.628 0.023 2.771

Sixteen story 

Hospital

Facility
*

889 8178 0.274 3.118 0.024 2.583 
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4.2 In-degree and out-degree distributions 

We compared the cumulative probability distributions )(kPin  and )(kPout  that a task 

has more than k  incoming and outgoing links, respectively (see Figure 3)30. For all 
four networks, we find that the in-degree and out-degree distributions can be 
described by power-laws (the “scale-free” property) with cutoffs introduced at some 

characteristic scale *
k ; )(

*
kkfk  (typically the function f  corresponds to an 

exponential or Gaussian). More specifically, we find scaling regimes (i.e., straight-
line regimes in the figure) for both )(kPin  and )(kPout . We note however that the 

cutoff *
k  is lower by more than a factor of two for )(kPin  than for )(kPout . This is a 

new observation that has not been found before [38].
 The “scale-free” property suggests that complex PD task networks are dominated 
by a few highly central tasks. This is in contrast to the bell-shaped Poisson 
distribution of random graphs, which leads to a fairly homogeneous network where 
each node has approximately the same number of links (and thus equally affecting the 
network behavior). The ‘failure’ (e.g., excessive rework, lack of integration ability, or 
delays) of central PD tasks will likely affect the vulnerability of the overall PD 
process. Focusing engineering efforts and resources (e.g., funding and technology 
support) as well as developing appropriate control and management strategies for 
central PD tasks will likely maintain the sustainability and improve the performance 
of the PD process. 
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Figure 3 Degree distributions for four distributed problem solving networks. The log-
log plots of the cumulative distributions of incoming and outgoing links show a
power law regime (Pearson coefficient 98.0R , 001.0p ) with or without a fast
decaying tail in all cases. The in-degree distribution has a lower best visual fit cutoff

*

ink  in each case. a, Vehicle development with 120 tasks and 417 arcs. The exponents

of the cumulative distributions are 1
in
vehicle

 and 1
out
vehicle

, where

25.082.2
in
vehicle  and 24.097.2

out
vehicle denote the exponents of the associated

probability density functions. b, Software development with 466 tasks and 1245 arcs,

where 13.008.2
in
software  and 15.025.2

out
software . c, Pharmaceutical facility

development with 582 tasks and 4123 arcs, where 07.092.1
in

icalpharmaceut  and

07.096.1
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icalpharmaceut . d, Hospital facility development with 889 tasks and 8178

arcs, where 03.08.1
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hospital  and 03.095.1
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hospital .
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 In order to analyze the structure of PD networks, it is important to study the 
relationships between the in-degree and out-degree of tasks. Thus, for example, we 
are interested in questions such as “Do tasks with high out-degree also have relatively 
high in-degree?” We address such questions by plotting the relationship between the 
in-degree and out-degree of tasks (Figures 4a-d). Interestingly enough it turns out that 
to a large extent, when considering the vehicle, pharmaceutical and hospital product 
development networks, the results reveal almost no correlation between the in-degrees 
of tasks and their out-degrees; i.e. there are tasks that have a small in-degree but yet 
have a large out-degree, and vice-versa. To illustrate this finding, we present in Table 
2 the top 10 tasks of the vehicle development network at General Motors’ Research & 
Development Center ranked according to their in-degree and out-degree centrality 
measures. We see that only 2 out of the 10 tasks (underlined in the table) appear both 
in the in-degree ranking and in the out-degree ranking. This finding implies that, 
generally, there is a clear distinction between large-scale generators of information 
(i.e. with high out-degree) and large-scale consumers (i.e. with high in-degree); a high 
generator of information could be a low consumer and vice versa. This further 
suggests that a distinction has to be made between in- and out-centrality as far as 
control and management strategies are concerned. Moreover, those tasks that have 
both high in- and out-centrality (e.g., ‘track total vehicle issues’ at General Motors’ 
vehicle design in Figure 4) are likely to play a unique role during the product design 
process. The dynamical model presented in Section 5 shows that the nature of in- and 
out-degree correlations has profound and subtle effects on the behavior of PD 
processes defined in top of complex networks. 
 The presence of cutoffs in node degree distributions has been attributed to 
physical costs of adding links and limited capacity of a node [17]. Such networks may 
also arise if network formation occurs under conditions of preferential attachment 
with limited information [31]. As previously noted [17, 31], the limited capacity of a 
node, or limited information-processing capability of a node are similar to the so-
called “bounded rationality” concept of Simon [28].
 We find that there is an asymmetry between the distributions of incoming and 
outgoing information flows. The narrower power law regime for )(kPin  suggests that 

the costs of adding incoming links and limited in-degree capacity of a task are higher 
than their counterpart out-degree links. We note that this is consistent with the 
realization that bounded rationality applies to incoming information, and to outgoing 
information only when it is different for each recipient, not when it is duplicated. This 
naturally leads to a weaker restriction on the out-degree distribution. 
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Figure 4 In-degree as a function of out-degree for four distributed PD networks. 
Figures 4a, 4c, and 4d show almost no correlation between the in-degrees of tasks and 
their out-degrees (Pearson coefficient of 0.17, 0.1, 0.11 respectively). Figure 4b shows 
a significant positive correlation (Pearson coefficient of 0.76). 
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Table 2 The top 10 tasks of the vehicle development network at General Motors’ 
Research & Development Center ranked according to their in-degree and out-degree 
centrality measures. 

Task
In-

Degree
Task

Out-

Degree

Develop Mainstream Integrated 

Concept Vehicle Model 
14 Develop Nine Box Summary 24 

Maintain Vehicle Mainstream 

Chart and Update Engineering 

Product Content Sheet

12 Track Total Vehicle Issues 15 

Conduct Performance Synthesis 

and Analysis in Quick Study 

Phase

12
Set Engineering Target Parameters 

(Concept Technical Descriptors) 
12

Track Total Vehicle Issues 11 Recommend Final Architecture 11 

Review Quick Study 

Deliverables
11 Identify Target Architectures 10 

Assess Risks in Performance 

Requirements
10

Develop Critical Product 

Characteristics / Key Voices 
10

Prepare Program QRD Matrix 10 
Develop Engineering Product 

Content Sheet 
9

Follow up and Maintain Open 

Issues - Front Compartment 
9

Maintain Vehicle Mainstream Chart 

and Update Engineering Product 

Content Sheet

9

Follow up and Maintain Open 

Issues - Passenger/Rear 
8 Create Initial Visual Surfaces 9 

Follow up and Maintain Open 

Issues - Chassis 
8

Establish Body BOM Sharing 

Strategy
9

 An additional functional significance of the asymmetric topology can be 
attributed to the distinct roles of incoming and outgoing links in distributed PD 
processes. The narrow scaling regime governing the information flowing into a task 
implies that tasks with large incoming connectivity are practically absent. This 
suggests that distributed PD networks limit conflicts by reducing the multiplicity of 
interactions that affect a single task, as reflected in the incoming links. Such 
architecture reduces the amount and range of potential revisions that occur in the 
dynamic PD process, and thus increases the likelihood of converging to a successful 
solution. Our empirical observation is found to be consistent with the dynamic PD 
model presented in the next section. There it is shown that additional rework might 
slow down the PD convergence or have a destabilizing effect on the system’s 
behavior. As a general rule, the rate of problem solving has to be measured and 
controlled such that the total number of design problems being created is smaller than 
the total number of design problems being solved.
 The scale-free nature of the outgoing communication links means that some tasks 
communicate their outcomes to many more tasks than others do, and may play the 
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role of coordinators (or product integrators see [5]). Unlike the case of large numbers 
of incoming links, this may improve the integration and consistency of the problem 
solving process; thus reducing the number of potential conflicts. Product integrators 
put the separate development tasks together to ensure fit and functionality. Since late 
changes in product design are highly expensive, product integrators continuously 
check unfinished component designs and provide feedback to a large number of tasks 
accordingly.

5. A Dynamical Model on Complex PD Networks 

This section introduces a deliberately simple model of product development on 
complex directed networks, which captures important features of PD dynamics (e.g., 
see [3]). We characterize the model’s behavior by using analysis and simulations 
performed on the empirically heterogeneous directed network topologies examined in 
Section 4 (rather than on simplified fully connected or lattice topologies). In our 
model, there is a network of interconnected nodes (elemental tasks); each can be in a 
‘resolved’ or ‘unresolved’ state. Each node could be affected by those nodes that 
directly reach it, and could affect those nodes that are directly reachable from it. The 
rule by which a resolved node becomes unresolved depends stochastically on the 
number of unresolved contiguous incoming nodes – the higher the number of 
unresolved neighbors, the higher the probability of becoming unresolved. This rule 
reflects the repetition (rework) of tasks due to the availability of new information and 
input changes generated by other contiguous tasks. An unresolved node may be fully 
resolved with probability that depends on both its self-completion rate (internal 
problem-solving rate), and on the number of unresolved neighboring nodes. 
Incorporating the effect of task j  on task i  (which possibly differs between each pair 

of tasks) as well as including non-binary states (e.g., the number of design problems 
or open issues associated with a task) can be readily done but does not offer additional 
understanding on the issues addressed here. Although the motivation is different, it is 
worthwhile to note that the model considered here is similar in spirit to dynamic 
models that have been studied in the context of collective action, percolation, 
majority-vote cellular automata, self-organized criticality, spin-flip Ising dynamics, 
and epidemic spreading [9, 10].

5.1 Model 

We consider a network where each node (a task in the network) can be in one of two 
states, ‘0’ or ‘1’ representing unresolved or resolved states, respectively. We consider 
a dynamic process occurring at discrete times, t,...,2,1 . Node states are updated 

synchronously, indicating a parallel mode of product development1. Let )(tsi  be the 

state of node i  at time t . We consider two cases: 

1
 Note that this assumption can be easily relaxed by randomly selecting, at each time 

point, a node for an update. 



The Structure and Dynamics of Complex Product Design            55

Case 1. Node i  is resolved at time t  (i.e., 1)(tsi ):

Let ik  be the in-degree connectivity of node i , and let 
Eijj

jii tsktk

,:

)()(  be the 

number of neighboring unresolved nodes that are directly connected by directional 
links (arcs) to node i  at time t . Node i  changes its state according to the following 
stochastic rule:

))(tanh(-1yprobabilit   with 1

))(tanh(yprobabilitwith0
)1(

tk

tk
ts

ii

ii
i   (6) 

where i  is a parameter that reflects the sensitivity of the node i  state to its 

neighboring unresolved nodes, and )tanh(x  is the hyperbolic tangent function defined 

by

xx

xx

ee

ee
x)tanh(    (7) 

The stochastic dynamic rule allows for node state realizations to vary over time even 
if the node has the same number of unresolved neighbors at different times. The 
parameter i  captures the tendency of a node to be affected by its neighbors. For 

0i , the node’s behavior is completely decoupled from its neighbors. A low i

corresponds to the case where a node’s behavior is not influenced much by the states 
of its neighbors. For i , each node’s behavior is completely dependent on its 

neighbors: any non-zero number of unresolved neighbors will render the node 
unresolved at the next iteration. 

Case 2. Node i  is unresolved at time t  (i.e., 0)(tsi ):

In this case, node i  changes its state according to the following stochastic rule:

))(tanh(-(1yprobabilitwith1

))(tanh(-(1-1yprobabilitwith0
)1(

tkr

tkr
ts

iii

iii
i  (8) 

where ir  is a parameter that reflects the internal completion rate of task i  ( 10 ir ).

Here we assume that the node can be resolved if two events occur: (1) the node is not 
affected by its unresolved neighbors; and (2) the task is successfully completed 
internally in one unit of time with probability ir .

5.2 Analytic Results for Random (Erdös-Rényi) Networks

The relaxation of the system to the uniformly resolved state (i.e., 1)(tsi  for all 

tasks) depends on the free parameters i , ir , the initial state of the network, and the 

PD network topology. Although there is no theorem guaranteeing the relaxation of the 
network to the uniformly resolved state, we apply a mean-field approximation [47] to 
the stochastic model we have defined in order to gain insight about the convergent 
final state. We derive a rate equation for the density of unresolved tasks at time t ,
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N

ts

t i

i )(

1)( . We assume that for every task i , ii rr , . We also make 

the following homogeneity condition, which holds particularly well for a completely 
random graph: for every task i , its number of unresolved neighbors is approximately 

)()( tktk ini , where ink  denotes the average in-degree of a task in the network. 

The global density of unresolved tasks )(t  evolves according to the rate equation, 

))(tanh(1()())(tanh())(1(
)(

tkrttkt
dt

td
inin  (9) 

After substitution of the hyperbolic tangent function and ink , we obtain 

)()(

)(

)()(

)()(
2

)())(1(
)(

tt

t

tt

tt

ee

e
rt

ee

ee
t

dt

td

At an equilibrium 0
)(

dt

td
; thus, we obtain a single equation to be solved for 

)(t ,

)(

2

f
reee

ee
             (10) 

We conclude that the only stable fixed point of this equation is 0
*  if 

1)( 0f , and has a non-zero solution if 1)( 0f . Thus, for r , the 

global density of unresolved tasks at equilibrium is 0
*  (i.e., all tasks are 

successfully completed). This result has a simple intuitive interpretation: if the task’s 
internal completion rate r  exceeds the average total sensitivity of the task to its 

unresolved incoming neighbors ink , the PD process will converge to the 

uniformly resolved state; otherwise, it is quite likely that the PD process will converge 

to a state where a non-zero fraction 0
*  of the tasks remains unresolved2.

 When the fraction of unresolved tasks at equilibrium is very small ( * 1), we 

can find a closed-form expression for *  by expanding )(f  in Equation (10) to 

the second order in  and solving for * :

)(
)1(

)(
32

2

2

O
r

r

r
f                  (11) 

2
 In other words, a threshold behavior occurs at 1

r
ink

.
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Hence,

)1(

)(

2
r

rr
                 (12) 

 In order to gain further insight regarding the rate of convergence to the fixed 
point of equation (9), we solve it approximately as follows. For small values of ,
Taylor’s expansion yields, 

)()tanh(
3

O

Thus, the differential equation (9) is approximated by

)1()1( r
dt

d
                 (13) 

The solution of Equation (13) is 

)1()1(

)(
)(

rre

r
t

tr
                 (14) 

For r , 0)(lim t
t

 and the system converges exponentially to the uniformly 

resolved state. For r , the fraction of unresolved tasks decays at an exponential 

rate, and eventually saturates at a non-zero fraction of unresolved tasks 

)1(
)(lim

*

r

r
t

t
 (notice that when *  is small, as assumed, 1

r
 and thus 

the prediction of Equation (12) is consistent with the estimate above).
 The deterministic analysis of the model has involved a number of assumptions, 
which can be tested by simulation. First, a directed random graph with a prescribed 
average in-degree of tasks (and same average out-degree) has been generated, and all 

tasks have been initially selected to be unresolved. The graph contains 5
10  tasks with 

connectivity 12outin kk . We have simulated the model using a synchronous 

discrete-event implementation. Figure 5 compares a typical simulation run to the 
corresponding deterministic solution (14). The simulation run has followed the 
deterministic solution quite well. Performing multiple independent simulation runs 
using the same parameters has shown that the variation in the equilibrium obtained 
across different simulation runs has been quite small. 
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Figure 5. Comparison between average fraction of unresolved tasks versus time as 
predicted by deterministic theory (solid curve) and a typical simulation run (broken 

curve) on a randomly-generated graph with 5
10  nodes. The average number of in-

coming arcs connected to a node is 0192.12ink . In Figure (a), the time evolution 

of )(t  when the sensitivity and the internal completion rates of tasks are 061.0

and 75.0r , respectively. In this case, rkin  and the simulation run converges 

to the uniformly resolved state as predicted by theory. In Figure (b), in this case, the 
sensitivity and the internal completion rates are 064.0  and 75.0r ,

respectively. In equilibrium, the average fraction of unresolved tasks between 65t

and 100t  (a stationary regime) is 087.0 , which agrees reasonably well with 

the prediction 09084.0  given in Equation (12). 

5.3 Analytic Results for General PD Networks

The extreme heterogeneity of the connectivity distributions of undirected scale-free 
networks significantly affects the dynamical processes that propagate through these 

networks. In particular, it was shown that the large fluctuations, 2
k , of power-law 

connectivity distributions cannot be neglected as far as system dynamics is concerned, 
even for finite-size systems [10]. For directed PD networks, we show below that the 
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first-order joint moment of the joint in-degree and out-degree distributions (i.e., 

outinkk ) plays an important role in determining the PD dynamics.

 In order to take into account the extreme heterogeneity of real-world directed PD 
networks (see Section 4), we modify the mean-field analysis presented for random 
(Erdös-Rényi) networks by writing the rate equations governing the time evolution of 

)(tk , where )(tk  is the relative density of unresolved tasks with given in-degree 

connectivity k . In the analysis below, we also neglect the degree correlations among 
neighboring tasks (called “mixing by degree” in [10]). This assumption could be 
tested, for undirected networks, by measuring the linear (Pearson) correlation 

),( ji kkr  between the sets ik  and jk  of total degrees for all tasks i  and j  at 

either ends of an edge in the network. This measure reflects the tendency of tasks of 
similar degrees to be connected to one another. For directed PD networks, however, 

there are four possible correlation coefficients: ),(
j

in
i
in kkr , ),(

j
out

i
in kkr , ),(

j
in

i
out kkr ,

and ),(
j

out
i
out kkr , where the index i  indicates the source node of the directed edge, 

and j  refers to the destination node. In [50], we show that the determining 

correlation as far as PD dynamics goes is related to the correlation coefficient 

),(
j

in
i
in kkr . Thus, we have tested the correlation coefficients ),(

j
in

i
in kkr  for each of 

the PD networks studies. These have been found to be 0.0943 (vehicle), -0.0644 
(software), 0.2452 (pharmaceutical), and -0.0750 (hospital); in support of our 
assumption. Still, for the sake of completeness, the general case where there are 
explicit correlations among the tasks’ connectivities, is presented in [50].
 The dynamical mean-field rate equations now become, 

))(tanh(1()())(tanh())(1(
)(

tkrttkt
dt

td
kk

k k   (15) 

where )(t  is the probability that any given incoming link (arc) to a task originates 

from an unresolved task. At an equilibrium 0
)(

dt

td k , )(t  and thus we 

obtain a single equation to be solved for kk t)( ,

kkk

kk

k
reee

ee

2

 (16) 

In order to solve the equations in (16), we need to derive an expression for . First, 
we define the probability mq  that an incoming link to a task originates from another 

task with m  outgoing links. Since it is more likely that a randomly chosen link 
originates from a node with high out-degree connectivity, the probability mq  is 

proportional to )(mmPout  and the normalized distribution is given by, 
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We conclude that  is given by, 
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where ),( outin kkP  is the joint probability distribution of ink  and outk . Consequently, 

Equation (18) yields a consistency equation for . After solving Equation (18) for ,
the average density of unresolved tasks in the system at equilibrium is evaluated by 
the relation 

k kin kP )( .

 Finding an exact solution of Equation (18) can be difficult, depending on the 
particular form of ),( outin kkP . Fortunately, we don’t have to solve Equation (18) 

explicitly to gain a qualitative understanding of the underlying PD dynamics. 
Following the same argument as in Equation (10), we obtain that, 

0)(f k
k

kkCov

rkr

kk

r

k

k

kmmP outin

out

outin

outm k

ˆ

ˆ

),(),(
   (19) 

where outinkk  denotes the first-order joint moment of the joint probability 

distribution ),( outin kkP , ),( outin kkCov  denotes the covariance3 of the two random 

variables ink  and outk , and outin kkk̂ . Thus, for the general case considered 

here, the model exhibits a threshold behavior at 1)( 0f , which implies that an 

initial seed of unresolved tasks would lead, at equilibrium, to the uniformly resolved 
state if 1)( 0f ; i.e., for outoutin krkk . We also note that if ink  and 

outk  are uncorrelated then outinoutin kkkk , from which we recover the 

condition 1
r

kin  obtained for homogeneous random networks (see Section 5.2).

 The above analysis suggests that the dynamical model does exhibit a threshold 
behavior, as for homogeneous networks. However, for positive covariance, the range 
of r  values for which the system converges to the uniformly resolved state is 

more constrained compared with the corresponding homogeneous situation (see 
Figure 6). It is concluded that high covariance values exhibited in PD networks must 
be compensated for by either reducing the sensitivity of tasks to their neighbors 

3
  We have shown elsewhere that some directed networks used to model the topology 

of the World Wide Web yield very large covariance values that go to infinity as the 

number of nodes in the network goes to infinity. 
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(reflected by the parameter ) or by increasing their internal problem-solving rates 

(reflected by the parameter r ), if the project is expected to converge to the uniformly 
resolved state. As mentioned in Section 4.2, the observed low correlation between the 
in-degrees and out-degrees of nodes for some PD networks implies that 

k

kkCov outin

ˆ

),(
1 in Equation (19), and thus the predicted threshold behavior at 

1
r

kin  (as for random homogeneous networks) could still be a good 

approximation (this is confirmed by simulations).

Figure 6. Dynamical behavior of a PD network with uncorrelated and correlated 
topologies. For a fixed network topology (i.e. ink  and ),( outin kkCov  are known 

values), the dynamics is characterized in terms of the parameters r  and . The 

parameter space r  is divided in two distinct regimes: fully resolved (gray) and 

partially resolved (white). The solid line represents the transition between these two 
regimes for a completely random (uncorrelated) network while the dashed line 
represents the transition between these two regimes for a positively correlated 
network (i.e., 0),( outin kkCov ).
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 The above deterministic analysis has been tested by simulating the model on the 

software network described in Section 3 with 163.3k̂ . The software network 
indicates a high degree of interdependence or covariance between the two random 
variables ink  and outk  (i.e. 59.5),( outin kkCov  and correlation 76.0 ). For 

example, for internal completion rates 75.0ir i , a threshold behavior is 

predicted at a value of 086.0  for which 1ˆ

ˆ

),(
k

k

kkCov

r

outin . It is 

instructive to compare the threshold thus obtained with the prediction for an 
uncorrelated random network, 237.0 . The actual measurement of the threshold 

has been found at 103.0 , smaller by a factor of 2.3 than the value corresponding 
to uncorrelated random networks ( 237.0 ), and in quite good agreement with the 

prediction for correlated networks ( 086.0 ). The actual threshold appears to be a 

bit higher than the prediction for correlated networks since the mean field 
approximation used to derive the deterministic theory neglected the density 
correlations among the different tasks (see [50]) and since the size of the network is 
small.

6. Simulation Results: Sensitivity and Robustness of PD 

One of the most practical aspects of a product development process is whether the 
total number of design problems (e.g., unresolved tasks) being solved remains 
bounded as the project evolves over time, and eventually falls below an acceptable 
threshold within a specified time frame [3, 5]. In order to analyze (from a global 

perspective) the performance of product development, we measure it by the time *
T

it takes for the PD process to reach the uniformly resolved state4. Since the 
characterization of the PD system-wide behavior depends on the distribution of s'i

and s'ir , we consider the special case where the sensitivity and the internal 

completion rates are identical across tasks ( i  and rri i ).   

 We confirmed through simulations that the time it takes for the PD system to 
reach the uniformly resolved state increases sharply as the sensitivity and completion 
rate parameters,  and r , increase towards the threshold regime (e.g., the solid line 

in Figure 6). Indeed, we note that the exponent in the denominator of Equation (14) 

begins to dominate the other factors for values of t  for which 1)( tr . Thus, we 

expect the inverse of the mean convergence time, *
1 T , to grow linearly with the 

scaled parameter inkrr  – the “threshold gap.” This is illustrated in 

Figure 7 for the pharmaceutical network, where the inverse of the convergence time 

4
  Here we guarantee convergence by proper selection of parameters. In general, we 

could use a performance measure pT , where pT  is the earliest time at which the 

fraction of resolved tasks is greater or equal to p .
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*
1 T  is plotted against the threshold gap , which verifies the predicted linear 

dependence of *
1 T  on  over a large range of threshold gap values.

Figure 7. The inverse of the mean convergence time, *
1 T , for different values of the 

threshold gap . The average number of in-coming arcs connected to a node is 

37.6ink , and the internal completion rates are 75.0
i

r i . The values of  go 

from 0 to 0.117 in increments of 0.001, and convergence times were averaged over 
100 independent simulation runs. The plot shows a linear relationship (Pearson 
coefficient 98.0R , 001.0p ).

 We further examine the dynamics of the PD process by analyzing the sensitivity 
as well as robustness (also known as error tolerance) of the PD network topology with 
respect to internal and external perturbations such as planned and unplanned design 
changes. We demonstrate two important properties of complex PD networks: (1) their 
dynamic behavior is highly insensitive (error tolerant) to random perturbations, yet 
highly sensitive (responsive) to perturbations that are targeted at specific tasks, and (2) 
if wisely exploited, the sensitivity of PD complex networks to targeted perturbations 
can yield great benefits with minimal effort, yet the sensitivity characteristic may also 
result in detrimental effects if not properly controlled.
 In the following, perturbations are considered as either “planned” or “unplanned” 
task modifications that could affect the performance5 of the PD process. Planned task 
modifications are defined as deliberate improvements of task parameters, and 

5
  As before, the performance is measured as the time it takes for the PD process to 

reach the uniformly resolved state. 
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include6: (1) decreasing the value of sensitivity rates i , or (2) increasing the value of 

internal completion rates ir . Effective improvement of tasks, however, will not select 

tasks randomly, but rather will preferentially direct resources to the most “important” 
tasks. Hence, we further consider the following five priority policies by which task 
improvements could be implemented: (1) ‘Information-Generating’ policy – first 
modify the task with the highest out-degree, and continue selecting and modifying 
tasks in decreasing order of their out-degree connectivity outk ; (2) ‘Information-

Consuming’ policy – same as in 1, but modify tasks according to their in-degree ink ;

(3) ‘Multiplicative’ policy – same as in 1, but modify tasks according to the product
of their in-degree and out-degree outinkk ; and (4) ‘Additive’ policy – same as in 1, 

but modify tasks according to the sum of their in-degree and out-degree outin kk ;

and (5) ‘Random’ policy – tasks are selected randomly, and modified accordingly. 
The latter scheme reflects an uninformed modification strategy. 
 We examine the sensitivity and robustness of PD networks with respect to 
perturbations by studying how the performance is being affected when a small 
fraction, f , of the tasks is modified according to the priority policies specified above. 

In general, as seen in Figure 8, planned task modifications tend to increase the 
performance of the PD process (see [50] for additional supporting material). However, 
while the PD performance increases slowly with f  when the random modification 

scheme is applied, a drastically different behavior is observed when the deliberate 
modification schemes are utilized. When tasks are modified preferentially (by either 
one of the above modification policies), the performance of the PD network increases 
rapidly, becoming about twice larger as its original value even if only 6% of the tasks 
are modified. This sensitivity to deliberate perturbations is deeply-ingrained in the 
inhomogeneity property of the in-degree and out-degree connectivity distributions of 
PD networks as indicated by their long right tails and extremely large variances (see 
Section 4). More specifically, the inhomogeneity property related to the out-degree 
connectivity means that the PD network  is dominated by a few tasks that generate 
information to a large number of other neighboring tasks. Similarly, the 
inhomogeneity associated with the in-degree distribution implies that the PD network 
is dominated by a few tasks that consume information from a large number of 
neighboring tasks. Consequently, improvement efforts that are channeled towards 
these dominating tasks (e.g., increasing their internal completion rates) are expected 
to drastically alter the overall network’s performance.
 The aggregate-based policies (Multiplicative and Additive) seem to generally 
outperform the single-based policies (‘Information-Generating’ and ‘Information-
Consuming’). This result is rooted in the nature of the directed information flows 
forming the links among the tasks. While not uniquely affected by either the in-degree 
or out-degree connectivity distributions alone, both distributions are needed to 
understand the dynamics of the PD process. Tasks with large in- and out-degrees have 

6
  Restructuring (redesigning) the task connectivities is another means for improving 

performance. Here, we assume a fixed network topology.
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both significant internal complexity associated with assembling the information of 
several other tasks and significant external dependability upon which others rely. 
Thus, it is plausible to expect that tasks with large in- and out-degrees could hamper 
the PD process. 
 Figure 8 (see also the supporting material presented in [50]) shows that for the 
vehicle, pharmaceutical and hospital networks the performance of the ‘Information-
Consuming’ priority policy (based on in-degree connectivities) is poor relative to the 
other policies. As observed in Section 4, these networks have the following 
properties: (1) the correlation between the in-degree and out-degree of tasks is small, 
and (2) the in-degree distribution has a cutoff that is significantly lower than the 
corresponding out-degree cutoff. This suggests that other networks that satisfy these 
properties and utilize the ‘Information-Consuming’ priority policy might also perform 
less effectively. Indeed, an early cutoff of the in-degree distribution (relative to the 
out-degree cutoff) implies that tasks with large incoming connectivities are practically 
absent. Also, a lack of degree correlation implies that it is unlikely that a highly 
information-generating task (i.e. with large out-degree connectivity) is also highly 
information-consuming (i.e. with high in-degree connectivity). Consequently, the PD 
dynamics is generally expected to be more responsive to modifications that include 
high out-degree connectivity of tasks. 
 Finally, we observe that, for the software network, all the “non-random” priority 
policies perform similarly. This might be expected for networks for which the in-
degree and out-degree connectivities are highly correlated (e.g., Pearson correlation of 
0.76). Next we analyze the effect of unplanned changes of tasks on the PD 
performance (see Figures 10 and 11 in [50]). To simulate unplanned changes, we 
modified tasks by impairing their sensitivity or completion rate parameters. As seen in 
Figures 10 and 11 in [50], the PD performance decreases slowly with f  when tasks 

are changed randomly. On the other hand, a drastically different behavior is observed 
if unplanned changes are targeted at central tasks. When tasks are modified 
preferentially (by either one of the above modification policies), the performance of 
the PD network decreases rapidly, becoming about twice lower as its original value 
even if only 6% of the tasks are modified. 
 Overall, Figures 8-11 illustrate the double-faceted characteristic of PD sensitivity 
– if wisely planned, the sensitivity of PD complex networks to targeted perturbations 
can yield great benefits with minimal effort (Figures 8 and 9), yet the sensitivity 
characteristic may also result in detrimental effects if not properly controlled (Figures 
10 and 11).
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Figure 8. Comparison between five priority policies: Multiplicative (red dotted line), 
Additive (blue dashed line), Information-Generating (green dash-dot line), 
Information-Consuming (magenta solid line), and Random (+). The figure presents 
the PD performance versus the fraction of modified tasks for which the completion 
rates are improved. For the non-random priority policies, each data point is the 
average of 1000 realizations. For the Random priority policy, each point is the 
average of 30 different modified task selections, performed for 100 independent runs. 
The average in-degree, sensitivity rate, internal completion rate prior to modification,
and modified internal completion rate are, respectively, as follows: Vehicle.

475.3ink , 135.0 , 5.0r , 1r ; Software. 163.3ink , 06.0 ,

5.0r , 1r ; Pharmaceutical. 371.6ink , 065.0 , 5.0r , 1r ;

Hospital. 741.9ink , 045.0 , 5.0r , 1r .

15

20

25

30

35

40

45

15

20

25

30

35

40

45

15

20

25

30

35

40

45

Software

0 0.02 0.04 0.06 0.08 0.1 0.12

0 0.02 0.04 0.06 0.08 0.1 0.12 0 0.02 0.04 0.06 0.08 0.1 0.12

0 0.02 0.04 0.06 0.08 0.1 0.12
18

20

22

24

26

28

30

32

Fraction of Modified Tasks 

Fraction of Modified Tasks Fraction of Modified Tasks 

Fraction of Modified Tasks 

M
ea

n 
C

on
ve

rg
en

ce
 T

im
e 

M
ea

n 
C

on
ve

rg
en

ce
 T

im
e 

M
ea

n 
C

on
ve

rg
en

ce
 T

im
e 

M
ea

n 
C

on
ve

rg
en

ce
 T

im
e 

Vehicle

Pharmaceutical Hospital



The Structure and Dynamics of Complex Product Design            67

7. Summary and Conclusions 

In the last few years, the study of complex network topologies has become a rapidly 
advancing area of research across many fields of science and technology [8-10]. One 
of the key areas of research is understanding the network properties that are optimized 
by specific network architectures [17, 23, 27, 31, 32]. Here we have analyzed the 
statistical properties of real-world networks of people engaged in product 
development activities. We have shown that complex PD networks display similar 
statistical patterns to other real-world networks of different origins, and have shown 
how the underlying network topologies provide direct information about the 
characteristics of PD dynamics. In particular: 

PD complex networks exhibit the “small-world” property, which means that they 
react rapidly to changes in design status;
PD complex networks are characterized by inhomogeneous distributions of 
incoming and outgoing information flows of tasks. Consequently, PD task 
networks are dominated by a few highly central ‘information-consuming’ and 
‘information-generating’ tasks;
PD networks exhibit a noticeable asymmetry (related to the cut-offs) between the 
distributions of incoming and outgoing information flows, suggesting that the 
incoming capacities of tasks are much more limited than their counterpart outgoing 
capacities. The cut-offs observed in the in-degree and out-degree distributions 
might reflect Herbert Simon’s notion of bounded rationality [28], and its extension 
to group-level information processing. 
Focusing engineering and management efforts on central ‘information-consuming’
and ‘information-generating’ PD tasks will likely improve the performance of the 
overall PD process; 
‘Failure’ of central PD tasks affects the vulnerability of the overall PD process; 
Positive correlation between the in-degree and out-degree of a task tends to limit 
the range of the parameters’ values for which the system converges to the 
uniformly resolved state. 
PD dynamics is highly error tolerant, yet highly responsive to perturbations that are 
targeted at specific tasks. 

 In the context of product development, what is the meaning of these patterns? 
How do they come to be what they are? We propose several explanations for these 
patterns. Successful PD processes in competitive environments are often characterized 
by short time-to-market, high product performance, and low development costs [7]. In 
many high technology industries, an important tradeoff exists between minimizing 
time-to-market and development costs and maximizing the product performance. In 
PD task networks, accelerating the PD process can be achieved by “cutting out” some 
of the links between the tasks [5]. Although the elimination of some arcs should result 
in more rapid PD convergence, this might worsen the performance of the end system. 
Consequently, a tradeoff exists between the elimination of task dependencies 
(speeding up the process) and the desire to improve the system’s performance through 
the incorporation of additional task dependencies. PD networks are likely to be highly 
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optimized when both PD completion time and product performance are accounted for. 
Recent studies have shown that an evolutionary algorithm involving minimization of 
link density and average distance between any pair of nodes can lead to non-trivial 

types of networks including truncated scale-free networks; i.e. )()(
*

kkfkkp

[23, 27]. This might suggest that an evolutionary process that incorporates similar 
generic optimization mechanisms (e.g., minimizing a weighted sum of development 
time and product quality losses) might lead to the formation of a PD network structure 
with the small-world and truncated scale-free properties.
 Another explanation for the characteristic patterns of PD networks might be 
related to the close interplay between the design structure (product architecture) and 
the related organization of tasks involved in the design process. It has been observed 
that in many technical systems design tasks are commonly organized around the 
architecture of the product [25]. Consequently, there is a strong association between 
the information flows underlying the PD task network and the design network 
composed of the physical (or logical) components of the product and the interfaces 
between them. If the task network is a “mirror image” of the related design network, it 
is reasonable that their large-scale statistical properties might be similar. Evidence for 
this can be found in recent empirical studies that show some design networks 
(electronic circuits [22] and software architectures [23]) exhibit small-world and 
scaling properties. The scale-free structure of design networks, in turn, might reflect 
the strategy adopted by many firms of reusing existing modules together with newly 
developed modules in future product architectures [2]. Thus, the highly connected 
nodes of the scale-free design network tend to be the most reusable modules. Reusing 
modules at the product architecture level has also a direct effect on the task level of 
product development; it allows firms to reduce the complexity and scope of the 
product development project by exploiting the knowledge embedded in reused 
modules, and thus significantly reduce the product development time. 
 Of greatest significance for the analysis of generic network architectures, we 
demonstrated a previously unreported difference between the distribution of incoming 
and outgoing links in a complex network. Specifically, we find that the distribution of 
incoming communication links always has a cutoff, while outgoing communication 
links is scale-free with or without a cutoff. In the cases studied, when both 
distributions have cutoffs, the incoming distribution has a cutoff that is significantly 
lower by more than a factor of two. From a product development viewpoint, the 
functional significance of this asymmetric topology has been explained by 
considering a bounded-rationality argument originally put forward by Simon in the 
context of human interactions [28]. Accordingly, this asymmetry could be interpreted 
as indicating a limitation on the actor's capacity to process information provided by 
others rather than the ability to transmit information over the network. In the latter 
case, boundedness is less apparent since the capacity required to transmit information 
over a network is often less constrained, especially when it is replicated (e.g., many 
actors can receive the same information from a single actor by broadcast). In light of 
this observation, we expect a distinct cut-off distribution for in-degree as opposed to 
out-degree distributions when the network reflects communication of information 
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argument. It would be interesting to see whether this property can be found more 
generally in other directed human or non-human networks. It seems reasonable to 
propose that the asymmetric link distribution is likely to hold for such networks when 
nodes represent information processing elements. 
 The chapter analyzes an intra-organizational network where PD tasks are nodes. 
It would be interesting to see if the statistical patterns uncovered for intra-
organizational networks remain invariant when moving to the inter-organizational
level where enterprises form the nodes (e.g., supply chain networks, see [43, 44]). We 
conjecture that the level of abstraction will not significantly change the qualitative 
structure of the network’s topology; but may change the embedded parameters 
underlying the network’s characteristics (e.g., coefficients and cut-offs of the power-
law distributions). We have identified two generic categories of network nodes: 
“information-consuming” and “information-generating.” We believe that this 
categorization could be expanded by at least three methods: 1) considering other unit 
centrality measures (e.g., closeness and betweenness centrality, see [42]); 2) analyzing 
the structure of sub-graphs (“building blocks”) embedded in the networks; and 3) 
assigning richer data structures that more naturally describe a product development; 
e.g., adding characteristics to each task or adding information bandwidth (weights) to 
links.  Finally, it would be interesting to see (by direct observations) if the group-level 
information-processing capacity reflected by the distributions’ cutoffs can be 
extended; e.g., by redesigning the structure or topology of the network or by 
incorporating sophisticated information technologies and transaction protocols. 
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Complex Systems Lab

ICREA-Universitat Pompeu Fabra, Barcelona
svalverde@imim.es

ricard.sole@upf.edu

1 Introduction

At the beginning of the industrial revolution, an extraordinary event attracted
the attention of scientist, philosophers and layman alike. It was so extraordinary
in fact that even today we are fascinated by it and by the no less uncommon
people who got involved. The subject of this story was an amazing machine,
more precisely an automaton. Known as the Turk, it was a mechanical chess

It
played chess with Napoleon, inspired Charles Babbage and moved the great
Edgar Allan Poe to write a critical essay about the nature of the automaton [1].

Although mechanical automata were not new at the time the Turk appeard
into the scene in 1770, it was certainly a far-sighted invention. From the available
accounts of these times, it had to be a rather impressive rival. Kempelen’s
automaton was life-size, and was able to move its head and eyes and move the
chessmen forward. It was also able to say a few words such as “Check”.

The expectation and doubts raised by the Turk were the result of its life-like,
intelligent behavior. The machinery inside the Turk did not look complicated
enough to explain the virtually astronomical repertoire of movements observed.
So to speak, the hardware was impressive but the software was missing. Previous
automata achieved fame by displaying a given repertoire of mechanical actions
that were repeated again and again with the same sequence. Vaucanson’s duck,
for example, imitated a real bird and was able to quack, flap its wings and even
simulate digesting food. In spite of the complexity of these actions, the internal

player, made of wood and dressed in a Turkish-like costume (see Fig. 1).
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mechanism was a clock-like system with wheels and levers. All these mechanisms
and the wires connecting them with the different parts of the automaton were
included inside a large pedestal. But the chess player faced a great challenge: to
be able to play a game with an enormous potential combinatorics. How it could
it be possible? Although Charles Babbage considered the possibility of building
an intelligent machine after playing with the Turk in 1819, it was apparent to
him that the automaton was probably hiding a human inside it. That was of
course the case.

Figure 1: Von Kempelen’s chess player automaton, the Turk. Here a front view
is shown, with the cabinet doors open showing the internal mechanisms which were
claimed to power the automaton’s abilities. In reality, a man was actually hidden inside
the cabinet and manipulated the automaton.

An interesting point here is how life-like (or “human”) the Chess Player was.
In a more general context, the Turk raises questions on the boundaries between
life and the artificial. What features of living systems can be captured by man-
made designs? Engineered structures seem to be closer to the physical than
the biological world. But this might actually be a misleading conclusion. The
key difference that distinguishes biology from physics is that biological systems
perform computations. The origin of such difference stems from the role that
information plays in the first, which is not shared by the second [2]: there is
an evolutionary payoff placed on being able to predict the future. More com-
plex organisms are better able to cope with environmental uncertainty because
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they can compute and can also make calculations that determine the appropri-
ate behavior using what they sense from the outside world. Such computing
systems emerge through evolution as a consequence of different (non exclusive)
mechanisms [3, 4, 5, 6, 7].

Perhaps the earliest exploration of a theoretical basis for life-like structures
is Von Neumann’s study of self-reproducing automata. While looking at the
minimal, formal conditions required for a given system to replicate itself, Von
Neumann found that these automata should include two key ingredients in their
architecture: hardware and software [8]. As noted by several authors, there is
a surprisingly good mapping between Von Neumann’s finding and the actual
structure of cellular organization. Although this work was formulated several
years before Watson and Crick’s discovery of DNA, it already presented a formal
picture of what should be expected to be observed.

Computer science has been evolving over the last 50 years in many direc-
tions, but in some fundamental sense it has been frozen into a well-defined view
of computing based on von Neumann’s ideas of computers (see below). Although
there was an early fascination in getting inspired by nature while thinking on
how machines should compute, such initial fascination rapidly faded out. Pow-
erful designs rapidly emerged and became real. Fast computers were built and
biological metaphors became unnecessary.

When looking at the architecture of cells, three basic components can be
properly identified (together with a membrane structure separating the inside
from the outside):

• The genome, and the regulation pathways defined by interactions among
genes;

• The proteome, defined by the set of proteins and their interactions; and

• The metabolome (or metabolic network) also under the control of proteins
that operate as enzymes.

The last two components define the hardware of cells, while the first is the
software. Roughly speaking, the instructions written in the DNA sequence (the
genetic material) are executed provided that the appropriate hardware is present.
Perhaps not surprisingly the jargon of molecular cell biology is full of terms
suggesting that computations are taking place, such as transcription, translation
or genetic code [9].

Technological design and evolution reveal a number of traits in common with
natural evolution [3]. On the other hand, many patterns found in nature seem
to result from a combination of optimal designs together with strong structural
constraints [3][4][5]. Such similarities are made more apparent while looking at
the overall pattern of interactions among components both in cells and artifacts
[10].

Understanding the origins and implications of computation in biology as well
as in technology requires understanding the system level behavior of both hard-
ware and software. Although hardware has received great attention, software has
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been less appreciated in spite of its fundamental relevance, complexity and plas-
ticity. This chapter constitutes a very early attempt to explore the main features
of the architecture and functional organization of software, from the microscopic
to the macroscopic level. In particular, we will report different network patterns
observed in software structures. By understanding how these patterns originate,
we might be able to provide tentative answers to some fundamental questions,
such as:

1. Are there constraints to optimality in technological designs?

2. What type of emergent patterns result from engineering?

3. Is there tinkering at some level in the organization of artifacts?

4. Are emergent patterns similar to those observed in natural structures?

5. Are there fundamental differences in the global structures observed in nat-
ural and artificial structures?

6. Can we get inspiration from biological patterns in order to obtain new
types of designs?

Figure 2: Schematic representation of a state machine (left). The state transition
diagram for a simple finite state machine that accepts binary words with an even
number of ones (right). Accepting states are depicted by double circles (see text).

2 Computing Machines

In order to start our exploration, we need to approach the problem in a way that
is largely independent of specific computing machine features. In this context,
computation theory [14] allows us to explore key features of complex systems by
integrating architecture and function at different levels. Any computing device
can be modelled with an abstract state machine. A state machine consists of a
(possibly infinite) data tape of symbol cells and a computing device (see Fig. 2).
The computing device handles the data tape according to a predefined set of
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rules (or transition functions). The behavior of this machine can be described
graphically by means of a state transition graph, where nodes depict machine
states and directed links represent the possible transitions between states. At
every step, a transition rule is selected depending on the current device state
and the symbol read by the tape head. The rule instructs the device if a new
symbol must be written on the tape, what is the next state and the direction
the data tape shifts (i.e: move to the left or to the right).

A diversity of computing models can be obtained by disabling certain features
of the most powerful model of computation, the Turing machine. This computer
can write symbols in the data tape and also shifts the tape to the right or
to the left, as desired. It can be shown that the Turing machine is powerful
enough to simulate any computer [24]. On the other hand, the simplest model
of computation is the finite state machine (FSM). The finite automaton has a
read-only and unidirectional data tape. Another limitation of this machine is
the finiteness of input words placed in its tape. This type of machine is only able
to emulate a very constrained family of computers. In spite of these limitations,
this class of machines really deserves some analysis because many dynamical
features of cell biology, such as the cell cycle, can be described in terms of the
FSM (see Fig. 3).

Figure 3: Many processes taking place inside living cells can be understood in terms
of a computation. Some particular situations can be easily mapped into a discrete,
finite state machine (see text). An example is the cell cycle. In (a) a micrograph of
a dividing mammalian cell is shown. In (b) the corresponding basic algorithm for the
cell cycle is given and the associated finite automaton is displayed in (c).

We can illustrate the inner workings of the FSM with an example. Fig. 2
shows the state transition diagram for a simple finite automaton. This simple
computing device is intended to detect if the input word has an even number
of ones. To perform this function, only two states are required. Every link is
labelled with a symbol used to match the next state transition. Initially, the
machine is configured in the starting state, which is denoted by a pointing arrow
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(i.e: the state S0 in the above figure). The tape is loaded with an input word
(say “011”) and the head is pointed to the first symbol ( that is, “0”). The
computing device performs the transition 〈S0, 0〉 → S0 and the tape head is
shifted one position to the next symbol. In the following transition, the machine
reads “1” and the new state becomes S1. Finally, the symbol “1” is read and the
state changed again to S0. There are no more symbols to read so the machine
checks if the current state is an ending state. In this case the word is accepted
but not every word presented to the machine leaves the machine at an ending
state (i.e: try “111”).

In order to recognize more complex words it is necessary to extend the finite
state machine capabilities. For instance, no finite state machine is able to accept
words having an arbitrary number n of ones and zeros like 0n1n. The machine
should be able to process a potentially infinite number of states. Counting
requires the device to remember the number of symbols past read by using a
memory storage, which is precisely the ability possessed by the Turing machine.
The physical realization of the Turing machine is the Von Neumann architecture.

Figure 4: The Von Neumann architecture has three different parts: the CPU, the
memory and the bus connecting both (see text for detailed description). The program
is stored in the memory along with data, parameters and temporary calculations. The
CPU traverses the memory recognizing program instructions and performing their
associated actions. A little memory (registers) is included in the CPU and used during
normal operation like for locating the current instruction.

The Von Neumann computer consists of three differentiated components: a
central processing unit or CPU, a data store (or memory) and a wires connecting
both components (or bus) (see Fig. 4). The CPU is a state machine which is able
to recognize a number of special words (also called “program instructions”). The
memory is a finite grid of cells analogous to the data tape used by the Turing
machine. But unlike the Turing machine, the CPU is capable of direct access to
any particular memory cell simply by referencing its position in the data store
(or “memory address”).
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3 The Memory Stored Program

The signature of the universal computer is the memory stored program [24].
Any complex system requires this component in order to properly react and
adapt to a changing environment. The program is a sequence of instructions
that describe the computer’s behavior. The CPU scans this sequence and ac-
tivates different actions by accepted instructions. It can be shown that a very
small instruction repertoire is enough to implement any program: arithmetic op-
erations between two memory locations, store and/or retrieval of memory cells,
and branching instructions. Complex behavior is achieved by the interpretation
of the stored program, which yields a particular interleaving of calculations and
memory accesses.

Assignment is the key instruction of the Von Neumann computer. The as-
signment stores a word or a number (often the value returned by evaluating a
numeric expression) in a given memory cell. This places a very important re-
striction because the computer is only able to handle a single word-at-a-time
[15]. Moreover, this computation model requires large amounts of data traffic
exchanges through the bus in order to do useful work. The situation is worsened
because a large fraction of traffic is wasted for sending memory addresses, that
is, information for locating the required data. Because of the large volume of
words exchanged and the word-at-a-time limitation, the bus rapidly becomes
the bottleneck of the computation. Programming the Von Neumann computer
means planning and specifying the enormous traffic of words through the Von
Neumann bottleneck [15]. In order to minimize traffic exchanges and partly
reduce performance problems, memory access patterns should be planned with
care. In this context, the ordering of instructions is a key factor.

The sequence of instruction activation can be arbitrarily specified by inserting
some special branching instructions that indicate to the CPU the address of the
next instruction to be executed. The CPU stores the address of the current
program instruction in a special cell called “program counter” register (PC).
When the current operation finishes, the PC is automatically incremented in
order to point to the following instruction. Branching instructions can change
the state of the program counter in several ways and are very important in
defining program behavior. For instance, there are unconditional branching
instructions that allow the CPU to move to a distant location after (or before) the
current instruction. Sometimes the jump is executed depending on the success
of some arithmetic test or condition. Loops (executing the same instructions
several times) can be implemented by combining unconditional and conditional
instructions.

3.1 Flow Graphs

Program dynamics is defined at the interplay between memory contents and
the instruction branching process. In this context, graphs are a useful tool for
expressing interaction between different program parts. As static structures,
they provide the skeleton on top of which function takes place. Still, this flow
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graph is an incomplete characterization of program complexity because (besides
other reasons) the interaction between instructions and memory cells is not
depicted. However, as will be shown below, such static structures can be highly
constrained in terms of the possible range of graphs that can be found for a given
purpose. The flow graph describes the instruction processing order, encoding all
possible branchings between program instructions[13]. Every node v ∈ V in
the flow graph (also named “basic block”) represents a continuous sequence of
instructions. The last instruction of a node is always a branching instruction or
decision point. Directed links (v, u) ∈ E signal the transferring of control from
the last instruction of the source node v to the first instruction at the destination
node u. Execution flows unidirectionally from the entry to the exit node, which
are two special nodes present in any flow graph.

We call in-degree the number of links entering a node and out-degree the
number of links exiting a node. Nodes with out-degree two denote conditional
branching. With conditional branching, the transfer of flow depends on the
evaluation of a conditional clause (link taken/not taken). On the other hand,
unconditional branching is represented by nodes with out-degree one. Additional
performance information may be attached to both nodes and links. For example,
useful performance profiles are frequency of visits to a node or the frequency of
traversing a link.

I

A3

A4

A5

A6

A1 c=0;

A2 i=0;

A3 while (i<10) do

A4 if (a[i] > 0) then

A5 c=c+1;

A6 i=i+1;

end

Figure 5: A simple program and its flow graph. Entry and exit points are denoted by
empty boxes. Several instructions (A1,A2) are grouped within the initialization node
(I). The main feature of the control flow graph is a loop, which is expressed with the
back link (A6,A3). The looping condition is tested at node A3. When i ≥ 10 the entire
loop is skipped. At this moment, variable c equals the number of non-zero entries in
vector aj . Note also the branching point at A4 where the link (A4, A5) or the link
(A4, A6) is chosen depending on the value of a memory cell. A multiplicity of different
programs can be mapped onto the same control flow graph.
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3.2 Program Predictability

Designers must pay attention to the evaluation order of instructions, that is, to
the structure of the flow graph. An innocent permutation of a random pair of
program instructions may yield very different program semantics. For example,
let us swap instruction A6 and A1 in Fig. 5. We obtain an unresponsive program
that never finishes and gets caught in an infinite loop. Unfortunately, it was
shown by Turing that no automatic procedure is able to detect if a program
stops for any given input configuration [24]. This so-called halting problem
is deeply related to the inability to predict the future behavior of a computer
program. In spite of the apparent simplicity of some programs, it turns out that
we cannot predict what microscopic states result from the composition of simple
instructions.

Any useful artificial object must be predictable. Software engineering should
not be an exception to this rule. Take planetary missions for example. This is the
kind of system that requires autonomy and strong tolerance under highly stress-
ing environments. In the current state of art, reasonably predictable software
is obtained by doing a lot of tests in many different scenarios. Unfortunately,
the engineers can not plan in advance every situation faced by the software
controlling the robot deployed on an unknown planet.

A1

A2

A3

A1

A2

A3

Figure 6: Two control flow graphs with the same number of predicates and branches,
but very different number of (acyclic) paths. The control flow graph on the left defines
23 possible paths to be compared with the 4 possible paths of the right control flow
graph. In this sense, the left directed graph is less predictable than the right one.
Basically, this is reflected in the in-degree of some nodes on the left. Those nodes will
be the crossroad of more than one path and thus increasing the uncertainty of the
expected program behavior.

Predictability is also deeply linked to performance. For example, modern
computers exploit regularities found in programs to yield better performance.
A good example is provided by data and instruction caching. In order to avoid
slow memory accesses, frequently referenced memory portions are copied into



On the Nature of Design 81

a fast memory (or cache). This scheme results in speed-up only if program
execution displays a certain predictability, that is, if the processor accesses the
same memory region more than once.

Dynamic software behavior can be understood in terms of a walking through
the flow graph. However, even the simplest flow graphs display an enormous
number of potential execution paths. Walk length is theoretically unbounded
because it is possible to visit some links many times (such as the link (A6,A3)
in Fig. 5). We can also restrict the discussion to acyclic walks, also called paths.
A path is a finite sequence of links (u1, u2), (u2, u3), (u3, u4), ..., (un−1, un) in the
flow graph where the destination of each link equals the source of the following
link. No single link is reported more than once. The number of links in the path
is the path length.

Unfortunately, flow graphs of large software systems still have an enormous
number of potential paths. For instance, the popular application Microsoft(R)
Word contains more than 264 potential paths [23]. Again, the serious limitations
deduced from the halting problem prevents us from differentiating between po-
tential paths and actually visited paths from the static program description. In
fact, this is equivalent to the problem of determining if a related program halts
or not, which we know to be undecidable in general [24].

Surprisingly, the statistical analysis of real flow graph indicates that some
programs are more predictable than others (see Fig. 6 ). Empirical studies have
revealed that programs as a whole traverse a tiny fraction of the millions of po-
tential program paths. Software performance profiles typically reveal that 90%
of execution time is spent in a very small number of so-called “hot paths”. This
subset of traversed paths is largely independent of parameter variability, sug-
gesting that software dynamics is not a purely driven process. In addition, real
programs display a non-negligible amount of local correlation. Both global and
local empirical regularities have been exploited in modern computer hardware
in order to predict the next instruction to be executed by storing past branching
outcomes (a mechanism analogous to data caching). In addition, these regu-
larities enable the programmer to focus on a few program paths. This offers
advantages when detecting performance bottlenecks and/or computation errors.

4 Programming and Separation of Concerns

Branching allows the reuse of instructions without the need for code duplication.
The branching instruction allow us to partition the program into disjoint code
pieces that alternate execution flow. Such a simple technique minimizes the num-
ber of program instructions and saves scarce memory resources, an important
constraint in old computers. Beyond performance requirements, there is also
a more important reason for structuring the program. The partition promotes
the view that different functionalities must be provided by different program
components [11]. Ideally, the mapping between functionality and components
should be one-to-one but it was realized early on that, for complex programs, it
is really difficult to make a clear division of labor.
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Now imagine that our program achieves clear separation of responsibilities.
In this case, the program state can be partitioned into disjoint pieces, each with a
well-defined function. Then the whole state transition function can be expressed
as the concatenation of simpler state transition functions. This program struc-
ture extends to memory organization because each piece computes a well-defined
part of the global program state, without overlaps. In this ordered system, the
whole coincides with the sum of its parts. Unfortunately, real software practices
show us that the above clear separation is not an easy objective to reach. We
find it very difficult to decompose the global program state in a linear combina-
tion of simple pieces. Instead, global program behavior is often defined by the
interaction between more than one component (i.e, one memory cell accessed
by two distant program instructions). In this case, interaction involves complex
temporal correlations. Because of the constraints, our systems tend to exhibit
complex dynamics that are more than the sum of the parts.

4.1 Object-Oriented Programming

Another important factor influencing programming is the language used for ex-
pressing the program. Using the same reduced set of machine instructions turns
out to be very inconvenient for human designers. Different artificial languages
have been considered for this task. The requirements imposed by a program-
ming language are numerous and, to a certain extent, contradictory. Fortunately,
the listener (the computer) is so constrained that ambiguity must be removed
from the artificial language. This greatly simplifies the syntax of programming
languages.

A broad characterization splits the world of programming languages into
two big groups: declarative and procedural. When using the former type of
language, the program constitutes a formal specification of what is wanted to
be computed. Declarative languages (such as Prolog ) only tell the computer
what is desired and not how to achieve it. Conversely, a program written with
a procedural language (like C, C++ or Basic) is a step-by-step detailed recipe
of how to perform the computation. All previously presented code samples are
instances of programs written in a procedural language. They are detailed plans
that, when interpreted by the computer, yield the desired behavior. Declarative
languages are very desirable from the user point of view but suffer from severe
performance problems.

Modern programming practices (i.e: object-oriented languages like C++ or
Java) are procedural and extensible. These languages are so powerful that they
enable the programmer to create new software entities that represent real-world
concepts. At this level, the program is understood in terms of high-level pro-
cesses that manipulate abstract entities. The programmer looks at the domain
of software application trying to localize the relevant entities and the relation-
ships between them. For example, if a business application deals with customers
and selling orders, the programmer should explicitly define the ’customer’ and
’order’ entities as part of the program description. In this example, ’customer’



On the Nature of Design 83

and ’order’ are related to each other because a particular order is placed by a
given customer. In addition, attributes and processes are attached to entities.
For example, with every customer the program stores her name and a process
that enables the customer to issue a new order.

The complexity associated to software requires an evolutionary approach.
The number of requirements is so large that we cannot develop the full appli-
cation in a single step. In addition, some requirements are just unknown when
we start to develop the system. This iterative process requires the program-
mer to switch between local and the global views of the software system. The
programmer tends to focus her efforts on a single part of the complete design,
which later is integrated with the whole system. Moreover, several develop-
ers can work on different parts simultaneously. Unfortunately, experience tells
us that one cannot simply add more and more human developers and expect
that the development process will be greatly shortened. As the number of pro-
grammers increases, so do the chances of unwanted interaction. There will be
conflicting design decisions among programmers, which may result in project
delays and overruns. Soon, the cost of communication outweighs the benefits
of having many programmers working in parallel. In this context, an adequate
global architecture of the software system (i.e., the set of components and their
relationships) can be of great help.

4.2 Class Structure

Every advantage offered by object-oriented programming is based on the concept
of class. The class recognizes that software development must be incrementally
performed. When a new functionality must be added to the system, the engineer
addresses a little computing device encoded by a class. The class machinery is
nothing more than a grouping of variables and the code operating on them.
The class variables are also known as attributes and each block of instructions
is called a method. In order to avoid redundancy, the class might be allowed
to cross its boundaries by accessing attributes and methods from other classes.
The entire system is viewed like a network of interacting and simpler computing
devices.

Inside the class, method interaction can be direct and indirect. The former
type of interaction takes place when a method transfers the execution flow to
another method, like directed edges in the flow graph. An indirect (but some-
what stronger) method interaction is through shared variables (like the methods
f and g in Fig. 7). The only way that a method can alter the behavior of another
method is by exchanging a variable. The execution path in a method depends
on the values of accessed variables.

The notion of class cohesion is one of the most important object-oriented
features. Good class design displays strong cohesion, that is, “a class should not
be a collection of unrelated members, but all the members of a class should work
together to provide some behaviors of the corresponding objects” [27]. Designs
with strong class cohesion are believed to be more maintainable and reusable.
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Figure 7: Mixed graphical representation for a simple software system consisting of
two classes (also components) A and B. The diagram shows the following elements.
Class A defines a single attribute (a vector of eight elements a0, a1, a2, ..a7) and two
methods f and g. Every method is described by its control flow graph. Methods f
and g indirectly interact by means of the data vector. The class B encapsulates the
method h. Eventually, f transfers the control to h. The dashed line indicates that
control flow is crossing class boundaries.

When the class methods are loosely interconnected, this is a sign of poor design
and the class must split into several classes. Conversely, a class with strong
cohesion will be difficult to split into isolated parts [28].

In this case, methods are closely related to each other by shared attributes. A
bipartite graph representation is well-suited for measuring class cohesion. The
bipartite graph G = (F, V, E) consists of two disjoint sets F and V of nodes
representing methods and attributes, respectively. Only interaction between
two nodes of unlike sets is displayed. An edge belongs to the graph {f, v} ∈ E
if the method f ∈ F references the variable v ∈ V . Two methods f and g will
be indirectly related only if they share the same variable, that is, only if the
{f, v} ∈ E and {g, v} ∈ E. This bipartite graph is called an attribute-method
reference graph. For instance, the attribute-method reference graph for class A
in Fig. 7 consists of only three nodes: one for attribute ai and another two for
the methods f and g. The graph has only two edges connecting the attribute
with the two methods. The attribute-method reference graph for class B in the
same figure will have only a single node for the method h.

Once the reference graph is defined, the cohesion is measured as a function
of the fraction of methods that should be removed in order to disconnect it [28].
Fig. 8 illustrates the notion of cohesion captured by this measurement.
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a b c d

Figure 8: From left to right, attribute-method reference graphs for several classes
displaying increasing levels of cohesion (see text). Attributes are displayed with circles
and methods with boxes. Note that every box encloses a control flow graph. (a) shows
an already disconnected class with weak cohesion. This is a symptom of poor design
suggesting that two unrelated functionalities were enclosed within a single class. A
better design will split the class in two different classes. Complete bipartite graph
(d) always displays very strong cohesion. All methods must be removed in order to
disconnect the graph. (Adapted from [28]).

4.3 Class Diagrams

Complex software systems rarely consist of a single class. The typical software
system performs several functionalities distributed (more or less) evenly among
a collection of interrelated classes. Software engineers are aware of this and
they explicitly depict this large-scale organization through class diagrams. For
this purpose, graphical languages like UML have been devised to communicate
software designs in a standard way[36]. A simple UML class diagram is displayed
in Fig. 9.

Class diagrams represent a number of interesting features about software de-
signs. A quick look at this diagram gives a global idea of the internal software
structure. The class diagram is an abstraction of the domain of software actua-
tion, the entities and the nature of their relationships (i.e: in the previous sample
commercial application, its class diagram should reflect the interaction between
customers and orders). In order to introduce new software functionalities or to
fix unwanted software behavior (also known as bug fixing), programmers nav-
igate the information space defined by the class diagram. It is believed that
some class diagrams enable fast identification of the relevant software pieces
that must be changed or modified, thus reducing the total amount of effort
spent by the programmer to accomplish her task. Can we identify and measure
common structural patterns of class graphs? How is software quality reflected
in its structure?

An early answer to the previous questions was given in their seminal book by
Gamma, Helm, Johnson and Vlissides [29]. In their book, the authors proposed
to assess the quality of an object-oriented system by looking at the patterns of
collaborations between classes. It turns out that for some particular design prob-
lems there is some preferred solution which is more frequently selected among
other candidate solutions. [29] presents a full catalogue of common solutions (or
design patterns) observed in object-oriented programming. Every single design
pattern has a name and is described by its intent, motivation and structure.
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Figure 9: A simple class diagram for a commercial software application, in UML
notation. The diagram shows five classes: Customer, Corporate Customer, Personal
Customer, Order and Order Line. Every class is divided into three sections: name
(shaded), attributes and methods (in cursive). Classes might relate to each other
in three ways: composition, inheritance and use. These relationships are denoted by
decorated links connecting two classes. For instance, the fact that the one customer can
place more than one order is represented by a single relationship between ’customer’
and ’order’. The numbers at the end-points of the link are the multiplicity of the
relationship, telling how many objects will participate in the relationship. In the
example, the customer is related to ’n’ orders, but every order is only related to a
single customer. Another typical relationship in UML diagrams is inheritance. This
applies when two classes are similar but have different features. In the figure, both
corporate customer and personal customer are related to the customer class by an
inheritance relationship, indicating that they are able to place orders but in different
ways.

In addition, the book classifies patterns in several families depending on their
purpose (what a pattern does) and their scope (specifies whether the pattern
applies primarily to classes or to objects). Are these patterns the signature of
universal laws followed by high-quality software structures?

5 The Small World of Software Architecture

It is clear that the so-called “design patterns” approach is a qualitative catalogue
of software knowledge. Here, we propose a new approach to document software
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knowledge, which is based on the quantitative study of structural patterns in
object-oriented systems. The first requirement of this new approach is to repre-
sent software structure with a network. The software graph is defined by a pair
Ωs = (Ws, Es), where Ws = {si}, (i = 1, ..., N) is the set of N = |Ω| classes and
Es = {{si, sj}} is the set of edges/connections between classes. The adjacency
matrix ξij indicates that a static interaction exists between classes si, sj ∈ Ωs

(ξij = 1) or that the interaction is absent (ξij = 0). Nodes in the software graph
are black boxes hiding internal class complexity. Similarly, links in the class
graph hide the specific meaning of an underlying static collaboration between
classes. There are two ways to recover the software graph: (1) from the class
diagram described in UML or (2) from the source code itself.

When there is no explicit UML class diagram available, the analysis of source
code is the best method for recovering the software graph. In [18] we have de-
scribed a simple algorithm that recovers the software graph from C++ or Java
source code. Automatic documentation tools implement similar algorithms [22].
The reconstruction process is implemented by a finite state machine, which looks
for class definitions by finding all instances of the keyword “class” in the source
code. The analysis of the class declaration body provides the links connecting
classes. In this case, we look for the so-called “inheritance” and “uses” rela-
tionships found within the class. Every time the parsing process detects a class
attribute, an edge is set from the owner class to the referenced class. Our def-
inition of the software graph does not make any distinction between different
types of static collaborations, which are always represented with a plain link.
The reason for not attaching semantic information to nodes and links is that
here we are only interested in modelling and characterizing structural patterns.
Fig. 10 shows a software graph recovered from a real software application.

We define the average path length l as l = 〈lmin(i, j)〉 over all pairs si, sj ∈
Ωs, where lmin(i, j) indicates the length of the shortest path between two nodes.
The clustering coefficient is defined as the probability that two classes that are
neighbors of a given class are neighbors of each other. Poissonian graphs with
an average degree k̄ are such that C ≈ k̄/N and the path length follows:

l ≈ log N

log(k̄)
(1)

C is easily defined from the adjacency matrix, and is given by:

C =

〈
2

ki(ki − 1)

N∑
j=1

ξij

[ ∑
k∈Γi

ξjk

]〉
Ωs

(2)

This provides a measure of the average fraction of pairs of neighbors of a
node that are also neighbors of each other. In a remarkable paper [17], Watts
and Strogatz observed that many social, biological and technological networks,
while very different in purpose and nature, share a number of common traits.
All these systems are instances of what is known as small-world. Small-world
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Figure 10: The largest connected component of the software graph Ωs reconstructed
from the source code of the 3D tool Aztec (http://aztec.sourceforge.net).

networks displays high clustering C, that is, nodes are connected in local neigh-
borhoods. The surprising thing about small-world networks is that, in spite of
the limited scope of nodes, the average path length l is very low. That is, any
node is reachable within a small number of hops. This is achieved by means of a
small number of key links or “shortcuts” that act like bridges connecting distant
network regions.

We have analyzed the class diagrams for 29 different software systems (see
[18] for a detailed analysis). These diagrams are examples of highly optimized
structures, where design principles call for diagram comprehensibility, grouping
components into modules, flexibility and reusability (i.e. avoiding the same task
to be performed by different components). Although the entire plan is controlled
by software engineers, no design principle explicitly introduces small-worldness.
The resulting software graphs, however, turn out to be small worlds (see Fig. 11).

The small-world structure has important effects on the resulting network
dynamics. A small-world communication network like the Internet propagates
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Figure 11: Average path length against network size for 29 different software systems.
(a) Normalized distance grows with the logarithm of the number of classes, as expected
in small world networks (see text). (b) Normalized clustering strongly departs from
the predicted relation followed by random graphs (dashed line).

messages very quickly because of the low average path length. Moreover, its
clustered nature makes the network very resilient to the loss of single elements.
That is, there is enough redundancy in the number of paths connecting two nodes
because their neighborhood is densely connected. Studies of synchronization in
networks has also shown how small-world properties can be exploited in order to
reach a globally synchronized state in a decentralized and robust manner [19].
This phenomenon is deeply related to computation. Indeed, we have determined
that a large number of software applications are small-worlds. It might be that
our software graphs arrange in small-world settings for similar reasons. But,
how does the system reach the small-world architecture? How is the small-world
exploited by computation processes?

5.1 A Simple Explanation for the Small World

The microscopic software structure is captured by the relationship between
classes and methods (see Fig. 8), which accepts a bipartite graph G =
(Ws,Wm, D) representation (also known as class-method reference graph). The
set Ws of classes and the set Wm or methods are disjoint, that is, D = {{si,mj}}
where si ∈ Ws and mj ∈ Wm. The adjacency matrix ψij for the bipartite graph
encodes these connections:

ψij =
{

1 {si, mj} ∈ D
0 otherwise

(3)

This is an N ×M binary matrix where N = |Ws| (the number of classes) and
M = |Wm| (the number of methods). Relationships between nodes of the same
kind can be recovered by means of one-mode projection of the bipartite graph
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G (see Fig. 12). The projections yield two one-mode graphs Gs = (Ws, Ds) and
Gm = (Wm, Dm). The adjacency matrix ψs for the graph Gs is related to the
adjacency matrix ψ by

ψs
ij =

∑
k

ψikψjk (4)

and a similar relation holds between the adjacency matrix ψm for the graph Gm

and ψ,

ψm
ij =

∑
k

ψkiψkj (5)

Interestingly, it can be shown that projections are not random graphs even
if the links between classes and methods are chosen at random. There are two
important constraints affecting the projected graphs.

C

A B

D

ja b c d e f ig h

E

methods

classes

graph

f

a

b

c

d

g h

i

e

A B DC

{e,f}

B

D

A

C

E

E

{i}

{f}

{d}
{c}

{f}

j

software

class
projection projection

method

Figure 12: The reference graph relating classes and methods (top graph) can be
projected in two one-mode graphs (middle graphs). The software graph is a subgraph
of the class projection. Random bipartite graphs yield highly clustered one-mode
graphs for free, that is, the software graph is constrained to follow certain non-random
topological properties (see text).
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The bipartite structure induces high clustering and low average path length.
Let us consider the method projection Gm. In this projection, two methods mi

and mj will be related if they both access the same class sk. Projection predicts
that all methods owned by a class will be related to each other, thus yielding
highly clustered Gm graph (even if the bipartite graph is sparse) (figure 12 right).
In terms of software engineering practices, the above means that classes tend to
display strong cohesion (see figure 12 (c) and (d)). Actually, this hypothesis is in
agreement with empirical studies of object-oriented software[28]. It can be shown
that the projection of a random bipartite graph is always a small-world. Newman
et al. [16] derived the equations for the clustering C and averaged path distance
l when the underlying bipartite graph has Poisson distributed connections. The
clustering coefficient C(Gs) for the class projection of a random bipartite graph
is:

C(Gs) =
1

µ + 1
(6)

where µ is the average number of methods referencing a class. There is a similar
equation for the clustering coefficient C(Gm) of the method projection:

C(Gm) =
1

ν + 1
(7)

where ν is the average number of classes referenced by a method. Note that
Mν = Nµ. The average distance l for the one-mode class projection of a Poisson
bipartite graph is also very small:

l(Gs) =
logN

logz
(8)

and
l(Gm) =

logM

logz
(9)

where z = µν is the expected average degree for the one-mode projection.
The bipartite network approach assumes that the class projection will explain

most of the topological properties of the software graph. The software graph
Ωs = (Ws, Es) should be a subset of the class projection Gs = (Ws, Ds):

|Es| = p |Ds|
where p is the fraction of edges lacking in the software graph with respect

to the class projection. The differences between the Ωs and Gs could be due to
errors in the approximate reconstruction process of Ωs described in the previous
section or simply because the bipartite approach is not correct. We have per-
formed a comparison between the topological properties of the software graph Ωs

and the same measures taken from the class projection Gs (see table 1). There
is considerable agreement between the average degree, the clustering coefficient
and average path length, thus suggesting that macroscopic software graph prop-
erties derive from the microscopic bipartite network (see Fig. 13).
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Net < k > C l
Ωs 4.29 0.16 5.52
Gs 4.24 0.19 5.21

Random 13.04 0.08 2.71

Table 1: Comparison between software graph Ωs and the projected graph Gs from
the software bipartite graph G. Both Ωs and G networks were obtained from a large
software system analyzed in [18]. A Poisson bipartite graph is provided for comparison.
Parameters: N = 1071 classes, M = 9218 methods, µ = 10.59 and ν = 1.23.

Still, we can appreciate how the real software graph deviates from the random
bipartite network (having the same parameters as the real software system). The
clustering coefficient is about one order of magnitude larger than the random
counterpart (see table 1). Moreover, the average path length is two times larger
than random. The random bipartite explanation tells us that the projection
will be naturally correlated (clustered) and will be a small-world even if the
underlying graph is uncorrelated (which is not the case), that is, the small-world
property is achieved for free. The software graph will display a small-world
architecture because of the encapsulation mechanism associated with object-
oriented languages. The consequences of this observation still remain to be
completely uncovered but we can safely conclude that the small-world behavior of
software structures is not an additional requirement selected by human designers
during software development.

5.2 Scale-Free Networks

Dijkstra was the first to claim that software engineers must be not only con-
cerned with function but also with software structure [11]. He recognized the
importance of having a well-organized software system that enables easy changes
and modifications. He guessed that such an ideal software structure will be
represented by a hierarchical tree. In these systems, function is provided by
assembling the behavior of simple components which have clearly defined re-
sponsibilities. The coarse layout of these systems will resemble a planar graph,
where nodes are software modules and edges depict existing collaborations. In
this context, the aesthetics of the graph are associated with clever design. The
planarity of the graph is interpreted as a signature of the clarity and clear sep-
aration of concerns achieved by its human designer.

The ordered diagram is also very homogeneous. It is easy to detect a re-
peating pattern in the way nodes connect to each other. In a tree, every node
has only one predecessor and a slowly varying number of successors. This reg-
ular pattern can be detected by looking at the degree distribution P (k) or the
probability of a node having k connections. For a homogenous network like the
tree or the random graph, this distribution follows the exponential distribution
(equation 1.2). The main feature of this distribution is the small variance around
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a b

Figure 13: Looking at different granularities of the same software system. (a) A
large subgraph of the class/method bipartite graph for the software application poEdit
v1.2.5 (http://poedit.sourceforge.net/). Class nodes and method nodes are displayed
with empty balls and gray balls, respectively. A noticeable feature is the asymmetry
between average class degree (µ = 8.65) and average method degree (ν = 2.38). (b)
The class projection for the previous bipartite graph coincides with the software graph
obtained from the source code. The one-mode graph is star-shaped with a single
triangle. The class at the center is the so-called hub.

the average degree. The graph has a well-defined scale.
An additional, widespread feature of many complex networks is the scale-free

behavior of their degree distributions. Specifically, we have

P (k) = Ak−γ exp(k/kc) (10)

where A is a normalization constant, kc is a cut-off degree and the scaling
exponent γ is typically constrained to a range γ ∈ (2, 3). As kc increases, the tails
of the distribution become larger and the graph will display a majority of nodes
having few links and a small number of nodes (the hubs) having a large number
of connections [31][33]. These graphs are called ’scale free’ (SF) and are found
in many different contexts, from natural to technological systems [37]. Their
ubiquity seems to stem from shared organizing principles [30]. SF networks are
known to display some unexpected statistical features. In particular, looking at
the moments of the degree distribution, i. e.

Mµ =
∫ ∞

1

kµP (k)dk (11)

(with µ = 1, 2, ...) and assuming that P (k) ≈ Ak−γ , it is easy to show that
the average degree is well defined, leading to < k >= (γ − 1)/(γ − 2), whereas
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the higher moments are not, since they scale as

Mµ = kµ−γ+1 (12)

and thus Mµ → ∞ for µ ≥ 2. Fluctuations are thus extremely important
and have been shown to be the key for understanding a number of key features
exhibited by SF architectures. This is the case for example of the spreading of
computer viruses on the Internet [32].

How do SF nets originate? There are a number of well-identified processes
leading to SF structure. Most of them rely in a growing network displaying some
rules of preferential attachment of new nodes [31]. However, it has been sug-
gested that a sparse SF network can actually result from an underlying optimiza-
tion process in which efficient communication at low cost is involved [34]. But
the most interesting implications from SF architectures are related to their high
robustness against random node failure, together with a high level of fragility
when hubs fail [35]. In other words, information transfer keeps working in an
efficient way when a randomly chosen node fails but typically degrades when a
highly connected node fails. These observations have been shown to have imme-
diate implications for reliable network architecture. Since a system’s sensitivity
to component failure is a fundamental problem in any area of engineering, it is
important to recognize how network topology influences system performance.

Interestingly, all the software networks studied here are scale-free [18], that
is, the degree distribution in software graphs scales with degree, P (k) ∼ k−γ . In
order to properly estimate the scaling exponent γ, we have used the cumulative
distribution P>(k), defined as follows:

P>(k) =
∑
k′>k

P (k′) (13)

so if P (k) ∼ k−γ , then we have

P>(k) ∼
∫

P (k′)dk′ ∼ k−γ+1 (14)

A clear regularity is that the exponents obtained from the directed software
network differ from the undirected one. Typically, we observe γ ∼ 2.5, with
γin < γ and γout > γ. In other words, if we look at the number of outgoing
and incoming links, the resulting degree distributions are different (see figure
Fig. 14). They are more heavy tailed for the in-degree and more rapidly decay-
ing for the out-degree distribution. Classes with high in-degree typically result
from broad reuse [21]. The reasons for such an asymmetry might be rooted
in the economization of development effort and related costs [18]. In principle,
maximum in-degree is unbounded because linking to a class imposes no cost on
the reused class. On the other hand, the complexity of the class increases with
the number of used classes. The benefit of reusing some externally provided
functionality is overwhelmed by the additional machinery required, which limits
the maximum out-degree.
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Figure 14: (a) Cumulative degree distributions for different software graphs varying
in size: N=129 (triangles), N=495 (squares) and N=1488. All distributions have an
exponent about -2.5 in spite of the obvious differences in size and functionality. (b)
Asymmetry of in-degree (open circles) and out-degree (black circles) distributions for
ProRally 2002 system. The in-degree distribution is the probability that a given com-
ponent is reused by kin other components. Conversely, the out-degree distribution is
the probability that a component uses kout other components.

Our recent studies suggest that the scale-free pattern is the fingerprint of
some universal pattern of software development. The SF pattern is an emergent
property of software evolution: the overall architecture is not specified within
the design principles and yet it seems to be the universal result of software
development. The fact that all the systems analyzed display SF structure, in
spite of the obvious differences in size, functionality and other features, indicates
that strong constraints are at work during software evolution.

5.3 Software Evolution yields Scale-Free Networks

The small-world behavior of software appears to be an unavoidable consequence
of encapsulation, that is, simpler functions are grouped into components. How-
ever, the random bipartite model does not explain the slightly higher-than-
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random average path length. The unaccounted differences force us to look for
alternative explanations about their causes. One source of inspiration is the evo-
lution of software itself. Considerable effort has been devoted to studies about
the generation of scale-free networks by evolving processes. It seems that contin-
gency plays a very important role in shaping the network. Barabsi and Albert
(BA) proposed the “rich-gets-richer” mechanism as a universal process yielding
a scale-free network. In the BA model, the degree of a node is a proxy of its im-
portance. The network is grown by adding a new node at a time whose m links
are preferentially connected to the most important (that is, the more connected)
existing nodes [31]. Such an evolving process yields a scale-free network with
an exponent of -3. Unfortunately, the BA model cannot realistically reproduce
other features of networks (i.e., the BA network has very low clustering).

A related theoretical result by Puniyani and Lukose indicates that growing
networks with constant average path length leads to a scale-free network [38].
They have shown that a randomly growing network under the constraint of con-
stant average path length always yields a scale-free network, with an exponent
between -2 and -3 [38]. The degree distribution for the evolved SF network is:

P (k) ≈ k3−α
β (15)

where α < 1 is the scaling exponent relating network size with the fluctua-
tions in network connectivity:

Nα =
1
〈k〉

∫ k

k2P (k)dk (16)

and β is the scaling exponent linking the degree distribution cutoff kc with
size, i.e:

kc ≈ Nβ (17)

For the systems analysed in [18], we get β = 0.62 ± 0.09 and α = 0.42 ±
0.08, which gives a predicted scaling exponent γ = 2.59. This is in very good
agreement with the averaged exponent for the studied systems < γ >= 2.57 ±
0.07.

In order to check if the SF software network is related to a pattern of con-
strained growth, we have analyzed the evolution of the computer game Prorally
2002, which is a large video game (about 2000 classes in its final release) de-
veloped by Ubisoft during two years. We have collected a large sample of class
graph snapshots taken at different moments of Prorallys evolution. From this
data set we have computed the time series of its average path length and we
have observed that, after an initial and sudden jump, the evolution of average
path length appears to be constant during Prorallys evolution. Fig. 15 displays
the evolution of the average path length for the ProRally 2002 system [20][18].

Interestingly, the sudden jump in average path length does not correspond
to a sharp increase in development activity due to some external deadlines or
other external pressures. The evolution of number of nodes and links is almost
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Figure 15: The evolution of average path length for the ProRally 2002 system. In
spite that system size grows in a linear way, the average path length is kept constant
during the project lifetime (see text).

linear (not shown) and thus, the average amount of work spent at each mo-
ment is more or less constant. Other projects we have analyzed show a similar
growth pattern. We have shown that this pattern of constrained growth predicts
the observed exponent of the degree distribution, thus confirming the result by
Puniyani and Lukose. However, the origin of this constrained growth pattern
remains to be explained. This is an apparently difficult question because build-
ing a model of software evolution appears to be a very complicated task. It
is widely acknowledged that software is probably one of the most intricate hu-
man inventions. In principle, any useful model of software structure should take
into account the many different mechanisms involved in computer programming.
Unfortunately, some of the principles underlying computer programming are rel-
atively unknown. For instance, it seems important to consider cognitive skills of
computer programmers involved in this task. In this context, we are developing
stochastic models of network growth that imitate common programming prac-
tices (like code duplication). The comparison of synthetic networks generated
with these models with real software networks can shred some light into the
mechanisms responsible of software growth and ultimately, the models will en-
able us to understand software development in a quantitative and unambiguous
manner.

6 Conclusions

Understanding the origins of natural and artificial complexity requires the con-
sideration of both their function and architecture. In order to perform a given
function in an efficient way, not all topological patterns of interactions among
units are allowed. Cost and proper communication are two essential require-
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ments for most complex systems. Moreover, constraints of different nature ex-
ist: some are historical and others arise from both structural and dynamical
limitations. Although it seems reasonable to think that the engineer overcomes
the barriers which might be imposed to natural evolution, some lessons can be
learnt from the analysis of both types of networks.

In this chapter we have reviewed a number of key features of software archi-
tecture and function in relation with its evolution and constraints. We have seen
that, in spite the designed, human-driven evolution of software graphs, there are
strong constraints limiting the effective repertoire of designs that are ultimately
reachable. The scale-free, small world structure found in all, large-scale com-
puter programs is a consequence of basic limitations imposed by an appropriate
communication among different parts at low cost. It is certainly interesting to
see that natural and artificial networks seem to share several key regularities
at the network level. Eventually, models of software structure should provide
insights into how internal and external forces constrains processes of artificial
design.

Beyond the exact evolutionary rules shaping both types of structures, com-
mon principles might be at work. In this context, it is interesting to see that both
software maps and electronic circuits [39] share some common features (such as
their small world structure and their heterogeneity) with cellular networks, in
spite of their differences in robustness. Such observations suggest that the plas-
ticity implicit in cellular webs, as far as related to network topology, might
inspire future developments of reliable technological systems by exploiting the
common architectural patterns.
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[10] R. V. Solé, R. Ferrer-Cancho, J. M. Montoya and S. Valverde, ”Selection,
Tinkering and Emergence in Complex Networks”, Complexity, vol. 8(1),
20-33, (2002).

[11] E. W. Dijkstra, ”The Structure of the ’T.H.E.’ multiprogramming system”,
Comm. of the ACM, vol. 11, no. 5, pp. 453-457, (1968).

[12] D. L. Parnas, ”On the criteria to be used in decomposing systems into
modules”, Comm. of the ACM, vol. 15, 1053-1058, (1972).

[13] A. V. Aho, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques
and Tools, Addison-Wesley, Reading, Mass (1988)

[14] J. E. Hopcroft, R. Motwani and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation, Addison-Wesley, Boston, 2nd Ed.
(2000)

[15] J. Backus, ”Can programming be liberated from the von Neumann style?:
a functional its algebra of programs”, Comm. of the ACM, vol.
21, 8, 613-641, (1978)

[16] M.E.J Newman, S.H. Strogatz and D. J. Watts, ”Random Graphs with arbi-

[17] D.J. Watts and S.H. Strogatz, ”Collective Dynamics of Small-World Net-
works”, Nature, vol. 393, no. 440, (1998).
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1.   Introduction 

Thirty years ago, Barry Malzberg described what may have been the first vision of a 
self-organized1 application: “surely ant and man could coexist peacefully…we might 
even be able to voyage to the stars together, the ants developing a communications 
network that would implement our vast technological resources” [53, p. 118]. 
Although we have indeed developed ant-based routing for telecommunications [17, 
32, 63], more generally progress has been disappointing. To date, self-organization 
research has focused mostly on dissecting and understanding these complex systems, 
elucidating the links between the micro and macro levels, and identifying their 
general characteristics and ingredients. We have lingered in the proof-of-concept 
stage, demonstrating that simple agents with local interactions and feedbacks can lead 
to complex, adaptive group-level properties. However, despite various authors waxing 
lyrical about the enormous potential for problem-solving self-organized systems [15, 
33, 46, 47], there are surprisingly few practical applications in use.

                                                          
1
 Defined as “a process in which pattern at the global level of a system emerges solely 

from numerous interactions among the lower-level components of the system. 

Moreover, the rules specifying interactions among the system’s components are 

executed using only local information, without reference to the global pattern” [20, p. 

8]. See [1] for a review of other definitions.
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The problem is, of course, that we are amateurs in the process of designing self-
organized systems, or as Karl Sims [67, p. 22] puts it, in “the creation of desirable 
complexity.” In many ways, this is not too surprising. After all, the cards seem 
stacked against us. We know that small changes in individual level rules can lead to 
enormous changes in global behavior [2, 13, 19, 20, 73]. We also know that positive 
feedback may amplify small perturbations in such a way that a phase transition 
occurs, shifting our whole system to a new, very different, and perhaps undesirable 
regime [ibid. 11, 76]. And, we know that the moderate number of agents in these 
systems implies unimaginably large state spaces, ones in which the region of interest, 
the ones possessing our particular desired system level properties, are miniscule. 
Finding needles in haystacks might actually be easier. The above features are, 
however, part of the draw of self-organized systems: their potential as a powerful, 
flexible, robust, and decentralized problem solving architecture. 

How then does one design a self-organized system with a given set of system-level 
properties? Which possible design strategies could be used and what particular 
features and factors of the problem might favor one approach over another? In this 
chapter, I consider these questions at a broad level, discussing some of the general 
pros and cons of approaches such as bottom-up simulation, top-down engineering, 
analogy and mimicry, and interactive evolution. The aim is to extract some of the key 
criteria, decisions, and constraints that might help pinpoint an initial useful approach 
to tackling the design problem at hand. Later, I develop a key, similar to those used by 
biologists to identify species, with a few questions that may aid this process. I also 
offer a few thoughts on coping with pathological system behavior. I should stress that 
this is just a preliminary survey and a cursory overview. It does not offer any system-
specific guidelines or magical recipes. Instead, its objective is more as a starting point 
for discussion about the general process of designing self-organized systems and, 
hopefully, might initiate some useful discussion for those groups tackling the design 
of specific self-organized systems. 

2.   Analogy and mimicry 

I start with the simplest approach: copying. Rather than designing a new self-
organized system from scratch, one might be lucky and know of, or find, an existing, 
analogous system that can act as a model. This strategy is the one most likely to 
succeed: if the original model works, then it is only a matter of implementing it 
correctly.

Philosophically, this strategy should be the least common of all the major design 
strategies considered in this chapter—what are the chances of knowing a self-
organized system that exactly matches ones’ needs? Practically, however, our ability 
to dream up new applications, and to get those projects funded, will be limited and 
shaped by current knowledge and technology; in other words, mimicry is a safe bet 
and may occur relatively frequently. 

The use of such a model may take one of several major forms: 
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1) Archetypal: we may find a completely analogous model that is to be 
replicated. As there are always going to be some differences, even if slight, 
such situations are probably rare. This first category, therefore, probably 
falls mostly under modeling the original system, perhaps to understand it 
better.

2) Prototypal: more realistically, the model may not be exactly as required but 
can be tweaked to produce the desired result. 

3) Inspirational: the model serves as a starting point, a basic source of 
inspiration, which is then modified in whatever way necessary to produce 
the desired result or to enhance system performance. This pragmatic, goal-
oriented approach may, however, result in a system that has little 
resemblance to the original system. Further, the new system will require 
testing and validation, most likely using bottom-up simulation (Section 1.4). 

In the first two forms, by implementing the same agent level behavior, including 
agent-agent and agent-environment interactions, one hopes to obtain the same system-
level properties. Implicit are two important assumptions that must be met: first, that 
one has sufficiently detailed knowledge of the original system to demonstrate that it 
does indeed possess the system level properties required in the designed system, that 
is, to prove that one is copying the correct thing; second, that all the “necessary and 
sufficient” [20] agent-level proximate mechanisms are known in detail; that is, that 
one has all the necessary correct information. In most cases, this is a tall order, but 
there are many self-organized systems that have served as inspiration, metaphors and 
models for designed self-organized systems.

In many cases, these models come from the natural world, but why is this? One 
possible reason that biological metaphor is perhaps the most pervasive in designed 
multi-agent systems is inherent intra-agent behavioral flexibility. It is true that 
physical and chemical self-organized systems such as stone stripes, Bénard 
convection cells, and the swirls and spirals of the Beloussov-Zhabotinsky reaction 
[e.g., 8, 48, 70, 75] have been well studied, are often easy to manipulate in the 
laboratory, and give us enormous insight about the general mechanisms, properties 
and characteristics of self-organization. However, they could be regarded as rather 
static systems in that the agents have (relatively) fixed individual level behavior: 
physical laws of interaction and bonding with little room for agent evolution. 
Adaptive agents, and especially systems of adaptive agents, possess a far richer suite 
of complex group-level behavior. A second element in biological systems’, and also 
social sciences’, favor is that many of these systems have existed for long periods in
the case of ant colonies, around 100 million years and have likely been subject to 
various selection pressures, thereby resulting in diverse, efficient and sometimes 
surprising and counterintuitive behavioral algorithms and mechanisms. 

Collective robotics is an excellent example of a field that has drawn heavily from 
biology, especially sociobiology. Many roboticists recognize the potential benefits of 
adopting the behavioral algorithms of social insects, especially ants. Although 
individually dumb, ants form complex adaptive systems (colonies) that are 
decentralized, robust, flexible, and self-organized [12, 17, 64]. Moreover, the majority 
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of the complexity resides not in the individual ants themselves but in the network of 
interactions [46, 47]. This has a powerful implication: by networking them, roboticists 
can get away with cheap, simple and therefore easily designed robots. 

Although one is exploiting algorithms known to work in other systems, use of 
analogy and mimicry does not guarantee success. Let us suppose a researcher has 
been inspired by the collective decision making of ants and decides to mimic them in 
his system. He has complete knowledge of the ants’ rules, feedbacks and interactions 
and copies these exactly in his set of agents. This still does not guarantee that his 
system will have the same, desired properties. Why might this be so?

First, differences in environment may shape the system level behavior differently. 
This is an aspect that I feel is underemphasized in the self-organization literature. For 
example, ground slope determines the orientation of stone or vegetation stripes [50 
and references therein, 75], raid patterns may differ among army ant species solely 
due to differing food dispersion [29, 34], and substrate absorption properties affect the 
collective decision making abilities of ants in double bridge experiments [31] (See 
also Figure 1). 

Second, agents may be relatively unreliable in the new system. For instance, many 
robotics studies that have tried to mimic collective behavior in ants [e.g., 22, 30, 42, 
74]. While, to the uninitiated, this may not seem particularly innovative after all, 
biologists and mathematicians can show exactly how and why these systems work it
is necessary, and often a significant challenge, to demonstrate that these potentially 
useful algorithms work in real instantiated robots. A robot system that works perfectly 
in simulation may fail spectacularly in reality because of sensor noise and component 
failure.

Third, and finally, bifurcations may exist. As mentioned above, many self-
organized systems exhibit phase transitions in which the emergent properties only 
arise above some critical number or density of agents [11, 17, 20, 37, 70]. Most 
collective robotics studies involve 20 agents or less, very rarely 100 [36]. They are 
not harnessing the full potential of self-organization; the networks are far too small, 
an issue taken up in more detail later (Section 1.7). 

3.   Top-down design 

Writers on self-organization tend to emphasize emergence and the need for a synthetic
reductionist methodology to explain “high level behavior from low level causes” [16, 
p. 304]. Except in the very simplest cases, complete knowledge of the individual 
agents, their environment, and the coupling among them [60] does not provide 
sufficient insight or predictive ability as to the system-level behavior [e.g., 13, 23]. 
We must build these systems from the bottom-up (Section 1.4). It might, therefore, be 
a little surprising to some readers that I include a section on top-down design. 

The classic self-organized examples (e.g., those commonly cited in [8, 17, 20, 70]) 
are seemingly devoid of any intermediate hierarchical levels between the lower-level 
agents and the upper-level system [contra 23]: agents contribute directly to the system 
level behavior, which, in turn, directly affects the agents (Figure 1). For example, a 
turning fish contributes to the school-level behavior, and this schooling, e.g., splitting 
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Figure 1.  In a fish school, there are no intermediate hierarchical levels between the
individual level, that is, the fish, and the system level, the self-organized school. Fish directly
influence the school and the school directly affects the fish. Note that the system may be
shaped by the environment; that is, from external factors such as water current and turbidity,
predators, and obstacles. (Based upon [51] and a long lost webpage.) 

to avoid an obstacle, directly affects the turning motion of individual fish. It is 
difficult, therefore, to imagine how one would design this from anything other than a 
bottom-up approach one hypothesizes the individual level rules, implements them in 
an agent-based simulation model, studies the system-level behavior and if the 
outcome does not match that expected then modifies the hypothesis, reruns the model, 
and so on. It is an iterative process between the macro and micro levels [see 20]. 

There may be some situations, however, in which one or more intermediate 
hierarchical levels exist between the agent-level and the system-level. Hierarchy is 
often associated with top-down command and control, for example, directives from a 
company’s CEO constraining and shaping the individual workers’ behavior and the 
company’s culture. However, this need not be the case; multiple hierarchical levels 
may exist in a self-organized system [e.g., 4]. Given such a system, one could start at 
the system level and question “what must happen at the next-lowest hierarchical level 
to produce this behavior,” then design this level of behavior, repeat the question at the 
next lowest level, and so on. 

This approach is perhaps best explained with a simple example. Suppose we wish 
to design a system in which a group of self-organized robots must construct a tripod 
structure. Without leaders, and with only local interactions and decisions, three teams 
of robots must coordinate their efforts to rest three poles against each other [cf. 5 and 
41]. (Implicit is the assumption that a single robot cannot lift and move one of the 
poles by itself.) Thus, there are three hierarchical levels (Figure 2). Adopting this top 
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Figure 2.  A top-down approach for designing a system of autonomous robots that must
collaborate to construct a tripod. First, one starts at the system level, the tripod, and
considers what is necessary at the team level to achieve this goal. Next, one focuses on a
team and what is necessary at the individual level to achieve this subgoal. 

down approach, one first asks how teams should coordinate their efforts to achieve 
the goal. Importantly, at this stage one considers a team as a black box, ignoring the 
individual robots, and robot behavior, that comprise each team. 

Suppose we decide that the three teams (each carrying a pole) should move around 
at random and when a collision occurs between any two of the three teams, they 
should stop and position their two poles so that they rest against each other. Then, 
these two teams should wait until the third team encounters them and positions its 
pole to complete the task. We thus have a team-level rule. Next, we shift our focus to 
the next lowest hierarchical level: what robot-level rules will generate this team-level 

behavior? Unfortunately, I don’t have the complete answer, although it likely will 
involve the process of team formation (which may be relatively easy to program; 
individuals move around randomly until they encounter one of the three poles), 
collective movement (rather more tricky and depends upon how the pole is carried, 
e.g. dragged or carried aloft), collision detection (easy), and pole positioning 
(undoubtedly the hardest subtask).

The important point here is that self-organized systems may involve hierarchy and 
modularity and that we might prefer to start the process from the top down rather than 
from the bottom up, each stage moving to smaller and smaller, and possibly more 
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well-defined, sub-problems. In other words, hierarchy and modularity can result in 
problem reduction [65]. While a bottom-up may appear to be the general, primary 
approach for self-organized systems, there may be cases in which a top-down 
approach may be favored. Further, I tentatively speculate that a hierarchical structure 
may be a factor that favors top-down. In addition, a combined top-down and bottom-
up approach might be even better in some cases.

4.   Bottom-up design 

4.1.   Why bottom up? 

In the majority of cases, the most natural and perhaps only approach to design, test, 

and analyze self-organized systems is to model them from the bottom up. There are 

two main reasons for this. 

First and foremost, in most self-organized systems the system level properties are 
emergent, a result of a complex set of interdependent (often non-linear) interactions, 
feedbacks, and perturbations among a set of agents that may differ in space, time and 
state. Unless simplifying assumptions can be made without detriment, too high a level 

of abstraction (meaning other modeling techniques such as mean field and differential 

equations) will miss these crucial aspects. Bottom up modeling, in most cases agent-

based models, have the greatest fidelity to the process being the modeled or emulated. 

It is the only way to capture the crucial low level processes and interactions that 

produce the actual system level pattern [see 13, 60]. 

Second, modeling from the top down or with some (unconstrained) evolutionary 
approach may yield wonderfully simple algorithms that work incredibly well, but 
which may somehow be incompatible with the set of agents one plans to implement 
them. In self-organized systems many different rules may lead to the same system 
level behavior (therefore making the design task complex sensu [21]). This may be a 
blessing or a curse. While some systems may have broad “basins of attraction” [e.g., 
77], potentially providing multiple design solutions for one’s system [e.g., 35], a top-
down approach may be led down just a single path, one that simply cannot work with 
the planned agents. For instance, the required rules may involve unfeasible sensory 
range or cognitive abilities. It may be easier therefore to start with suitably 
constrained agents and build the complexity upwards (possibly using evolutionary 
computation to parameterize the system). 

4.2.   Agent design strategies 

Much has been written in a descriptive manner about agent qualities and 
characteristics in self-organized systems the general characteristics that these agents 
and systems possess. However, there is an embarrassingly small literature that is 
prescriptive “how to” guides or rules. “Designing Self-Organized Systems FOR

DUMMIES” has yet to appear in bookshops. Building upon Kelly’s [46, 47] important 
work with his “Nine rules of God,” the best prescriptive review to date is probably 
that of Parunak [60]. 
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Focusing on agent software development, although with more widely applicable 
insights, he derives “a set of general principles that artificial multi-agent systems can 
use to support overall system behavior significantly more complex than the behavior 
or the individual agents” [60, p. 69]; in other words, a set of general design principles 
for bottom up generation of self-organized systems. I shall simply state these 
principles, without additional comment, and encourage the interested reader to 
examine Parunak’s more detailed and thorough treatment: 

1. Agents should correspond to things in the problem domain rather than to 

abstract functions; 

2. Agents should be small in mass (a small faction of the total system), time 

(able to forget), and scope (avoiding global knowledge and action); 

3. The agent community should be decentralized, without a single point of 

control or failure; 

4. Agents should be neither homogeneous nor incompatible, but diverse; 

5. Agent communities should include a dissipative mechanism to whose flow 

they cannot orient themselves, thus leaking entropy away from the macro 

level at which they do useful work; 

6. Agents should have ways of caching and sharing what they learn about their 

environment, whether at the level of the individual, the generational chain, or 

the overall community organization; 

7. Agents should plan and execute concurrently rather than sequentially. 

These guiding principles are both sensible and justified. Unfortunately, however, 
at this preliminary stage we are probably akin to a student with a poor grasp of 
statistics: armed with a partial list of tests, he can find a recipe detailing how to apply 
a particular test but doesn’t have a deep understanding of precisely when and why to 
apply it. Like the student, we will only increase our depth of knowledge of system 
design by both hands on practice and a concerted effort to grasp the fundamentals (see 
Section 1.7). 

Our relative lack of experience and understanding, and also the huge state spaces 
involved, contribute to the prevalence of evolutionary computation including
evolutionary strategies, genetic programming and genetic algorithms to
parameterize the systems. That is, to evolve the parameters of rules in a bottom-up 
simulation or even to randomly generate completely new rules in the hope that they 
will generate the desired system level behavior. While these techniques are relatively 
common and require little additional comment, an aspect that receives far less 
attention but, importantly, is a viable design strategy for self-organized systems in
some situations is interactive evolution. 
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5.   Interactive evolution 

Pioneered by Dawkins [26], interactive evolution is a method designed to mimic a 
natural evolutionary process but in which the selective agent is the user (reviewed by 
[9,71]). He or she is presented with a number of variants, “mutant offspring,” of the 
object being evolved and chooses one based upon some criterion, often simply 
esthetic value. That chosen object becomes the new parent from which a set of 
mutated offspring are generated (usually asexually) and displayed in the panel for the 
user to choose again. (In some cases, two or more offspring are chosen and bred with 
recombination, that is, sexually [66], or they are simply averaged [26].) In this 
manner, the user can select for a particular desired trait or simply explore parameter 
space in an interactive manner. 

Figure 3: an example of an interactive evolution interface. To the left are six panels, each 

containing a separate self-organized system, in this case a set of agents playing the aggressor-

defender game (from [18, 35]; reprinted with permission). The user selects a panel containing 

an “interesting” group-level behavior from which are bred six new “offspring” systems. 

Dawkins [26, 27] developed his system to evolve simple stick-like creatures called 
biomorphs, but this methodology can also be used to select and evolve whole self-
organized systems 2 [18, Figure 1.3; 35]. That is, the user is presented with a panel of 
variant systems, each with slightly different individual level rules, number of agents, 
threshold values etc., and he or she selects the one whose group-level behavior most 

                                                          
2
 Notice that selection, natural or otherwise, acts upon the whole system, which just 

happens to be self-organized; self-organization is simply a dynamic process that gives 

rise to the system’s form, that is, its phenotype, based upon its individual level rules, 

that is, its genotype, and is not an alternative or rival to Darwinism, as some authors 

have suggested (e.g., [38, 45]; see also [20, pp. 88 89]).
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closely matches the desired properties; this, in turn, is bred from to form a new panel 
of variants. 

There are a number of features that determine the utility of this approach for 
designing self-organized systems. Interactive evolution (IE) is often associated with 
esthetic selection [e.g., 67], meaning that, in most cases, the user is not entirely sure 
what it is they are after they select what looks good or feels right. (As such, IE has 
been used to develop novel, never-before-imagined art, including pictures [e.g., 66, 
68] and sounds [28, 57], as well as providing an advanced computer aided design tool 
for items such as bridges, dams, and cars [14, 69, 71].) In this chapter, however, I am 
assuming that the user does know what it is they are after and that they do have a set 
of desired system-level properties. Nevertheless, IE can play a useful role in exploring 
the set of possible systems or system dynamics. 

Suppose a research team has been given a remit to design a self-organized system 
of unmanned underwater vehicles (UUVs) that school in a similar manner to fish. The 
team studies how real fish move and interact [Section 1.2], and successfully 
implements the system as required: the UUVs move forward as a group, turning in 
unison. Although the team has achieved their goal, they could go further. First, they 
could use IE as one way of testing the robustness of the system. For instance, do 
slight changes in the proximate rules and mechanisms, embodied in the set of mutants 
on screen, result in the same system behavior or very different behavior? Second, they 
may wish to explore what other group-level behavior arises with the same set of 
agents but slightly modified parameter values or rules. (These are two degrees of the 
same process: first, how far can we perturb the system without a regime change; 
second, what different regimes can we obtain from this system if we perturb it 
sufficiently hard.) Thus, by applying interactive evolution they may, for instance, find 
conditions that generate slowly circling tori, like that seen in some species of fish [24, 
58, 59]. Therefore, one set of parameter values can be used to keep the UUVs in a 
stable, safe holding pattern while waiting for intelligence or other orders, and when 
ready to move, a signal is sent to all UUVs that causes them to modify their rules, and 
so the system behavior switches and they move off as a school. 

Generally, IE is most useful when it is not possible to write an explicit, closed 
form analytic expression for the fitness or objective function (as in esthetic selection, 
above). That is, evolutionary computation, such as genetic algorithms, may work well 
to search parameter space but one has to specify precisely what is to be optimized (the 
fitness function). In self-organized systems this may not always be possible. First, the 
system specifications may be qualitative or vague e.g., “develop a self-organized 
system of robots that acts like a herd of wildebeest.” Second, one may develop a set 
of relevant metrics but it is unclear quite how to weight those into a final fitness 
function. For example, rotating tori of fish are characterized by a low degree of 
polarization and high group angular momentum [24], but what precise relative values 
should one incorporate into a fitness function? Third, it may be perfectly possible to 
develop the metrics and define a fitness function but would be much easier, cheaper, 
and faster to evaluate the system by eye ([26], see [52] for an example). Fourth and 
finally, you may wish non-experts to design the required self-organized system; that 
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is, experts set up the IE application but others who do not need, wish, or have the 
ability to understand the underlying mechanisms actually use it [e.g., 54]. 

Interactive evolution has a number of important constraints and limitations that 

affect its usefulness in designing self-organized systems: 

1. System behavior has to be realized quickly [28, 52, 54, 66, 69]. The user is 
likely to become disinterested if they must wait hours between rounds of generation 
and selection interactive evolution implies real time generation [69]. This may be a 
particular problem with self-organization as each of the multiple systems on screen 
may contain a large number of agents. 

2. System behavior must be easily evaluated. The production of a self-

organized structure, e.g. a set of self-assembling robots that form a bridge, may be 

simple to evaluate. Similarly, certain types of behavior, e.g. UUVs that form a torus, 

may be easily evaluated. However, for many other systems, this will not be the case. 

For instance, the key aspect may be the ability of the group of agents to form a 

complex adaptive system, able to tolerate environmental uncertainty and challenges, 

agent failure, and so on. Imagine trying to evaluate a new ant-based Internet routing 

protocol with IE. It would be impossible. In addition, IE is most suited to evaluation 
of all the screen’s sub-panels simultaneously. For visuals this may not be too difficult 
but for other forms, such as sounds, this could be extremely tricky ([57], but see [28]). 

3. Low population size. There should only be a small number of mutant 
offspring systems on screen. Whereas evolutionary computation, such as genetic 
algorithms, may involve large population sizes (100 to 1000 or more), IE will involve 
far fewer offspring to be evaluated each iteration (e.g., 20–40: [66]; 9: [28, 57]; 16: 
[54]; 6: Figure 1.3). This is a product of limited computational power, cognitive 
ability to compare multiple offspring simultaneously, and screen size, a particular 
problem for self-organized systems if one needs to be able to distinguish each of the 
many agents in each system. Thus, exploration of the state space will be very limited 
each iteration and slow overall. 

4. Fast convergence. Ideally, a satisfactory solution should be arrived at in 
relatively few generations as users can easily fatigue [e.g., 39, 72]. While 
convergence rate may be difficult to control in many situations, some aspects may 
help; for instance, lowering the numbers of levels of a discretized parameter, 
increasing the population size (point 3 above), and use of visualized interactive 
evolutionary computation [39], a form of interactive evolution where a 2D 
representation of n-dimensional search space, as sampled from previous solutions, is 
presented alongside the panels of offspring. 

In summary, interactive evolution will involve a slow stroll through state space. 
Not only is user selection a relatively slow process (compared to automatic 
evaluation), but each iteration will also likely have a high computational load: 
multiple agents in multiple systems. It is most useful when the systems can be 
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computed and evaluated quickly and easily and/or where the development of useful 
metrics and fitness functions may be slow or difficult, or at least quicker and easier by 
human eye. 

6.   Avoiding pathological behavior 

One of the problems with self-organizing systems is that they can be extremely 
myopic and the system may develop pathological behavior. Each agent’s view of the 
system-level is so limited that no single individual, or other functional unit such as a 
team, has a global view. This can result in highly undesirable, inefficient, and even 
ludicrous global patterns of behavior. The classic illustrative example is that of 
circular milling in army ants (Figure 4). Ants of many army ant species are blind and 
entirely reliant on chemical trails to direct their movement. If a group of ants becomes 
isolated from the rest of the colony, each individual has no choice other than to follow 
the trail of the ant in front. However, in turn, the ant they are following has no choice 
other than to follow the ant in front of it, and so on. If the trail crosses itself, a circular 
trail or “mill” may develop in which the ants circle around and around until they drop 
dead from exhaustion. Beebe [10], for instance, reports a circular trail 1200 feet (365 
m) in circumference with a circuit time of 2½ hours. This is obviously an extreme 
illustration but Anderson and Bartholdi [3] report similar pathological behavior in 
industry and human societies. 
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Figure 4.  A circular mill in army ants. Being blind, each ant has no choice other than to
follow the trail from the ant in front. If a group of ants is somehow isolated from the rest
of the colony a circular trail, or “mill” may form in which the ants circle around and
around (counterclockwise in this case) until starvation and death, or they accidentally
break out of this vicious cycle. [From: ARMY ANTS by T. C. Schneirla, edited by H. R.
Topoff © 1971 by W. H. Freeman and Company. Reprinted with permission.] 

In the ants, such milling behavior is rare, caused by a significant colony 
perturbation, for example rain washing away portion of the trail [10] or an 
experimenter deliberately isolating a group of ants [62]. Each ant’s “world view” is 
simply too limited to see the maladaptive circular trail. However, for us, when 
standing over the mill with our bird’s eye view of the system, it is easy to identify 
such behavior. What potential strategies, therefore, are available 1) to design the 
system to recognize such pathological behavior itself, and 2) to deal with the behavior 
and move the system to a more desirable configuration?

First, it is perhaps worth recognizing that such undesirable behavior may only be 

temporary, perhaps a result of drift of the system through state space and not the 

result of a major shift or perturbation. Thus, in time, the system may drift back to a 

more efficient state. Consequently, if the sub-optimal behavior is not mission-critical, 

dangerous, or too costly, it may, in fact, not be a major issue or concern. An example 

is that of Morley and Ekberg’s ([55], see also [56, 49]) decentralized scheme for 

allocating trucks rolling off an assembly line to booths for painting. The goal is to 

allocate trucks, which each have a customer-desired color, to booths currently 

painting that color, thus saving time and paint costs of the booths having to switch 

colors between trucks. They found that their new, self-organized scheme (where 

booths bid for trucks) was sometimes slower and less efficient that the previous, more 

traditional scheduling scheme (where trucks are allocated in advance to booths). 

While these inefficient periods sound unfavorable, the new scheme generated a 10 % 

reduction in paint use and $3 million dollars savings per annum. The key feature is 
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that the sub-optimal behavior that is, a period of frequent color switching was

rare, only causing a brief spike in wasted paint and was fairly insignificant in the 

grander scale of things. 

Let us now suppose, however, that such pathological behavior really is significant. 
How can we deal with it? There are several potential levels of detection and control. 
First, we can engender agents with the ability to assess or recognize the global 
behavior. In short, we could make the agents less myopic. This comes at a cost of 
course. Agents would need to be able to sense a larger portion of the system, which is 
contra to Parunak’s [60] advice of keeping agents “small in scope.” It may require 
greater inter-agent communication, which would also imply greater intra-agent 
cognitive and computational abilities. And, even if we could do all of this, how can 
we, as designers, be certain to foresee all of the possible sub-optimal behavior and 
know all the remedies? This approach seems as if it may be more difficult than 
designing the desired system-level behavior in the first place. 

A second strategy is to have just some of the agents, perhaps agents of a particular 
class, to patrol the system purposely on the lookout for such behavior Parunak [60] 
terms these “watchdog agents.” This may be a little easier to achieve. Only a few 
“well-endowed” agents would be necessary (rather than all agents, above), and their 
motion through the system may be sufficient to gain a reasonable global view without 
a significant increase in inter-agent communication. One example is the use of parent 
agents in one of the first agent-based telecommunication routing algorithms [7]. In 
this system, a set of load management agents route telephone calls across a network 
by updating routing tables to a source destination. A second, more global level of 
control is provided by a smaller set of parent agents. These agents roam the network 
monitoring congestion and manage the population level of load agents by launching 
new load agents in congested areas [7]. This is obviously a very simple example, but 
it is not too hard to imagine bestowing the ability in parent agents to detect circular 
routes, a truly pathological behavior in routing. 

Paranuk [60], without going into detail, advises that “It is best not rely on 
watchdogs at all, but if they are used, they should sense conditions and raise signals 
but not plan or take action.” In general, this is true. Having a few key individuals, 
such as these, makes the system more centralized and therefore less robust. However, 
in practice, as discussed above, a truly decentralized detection and error correction 
scheme may be very difficult to design. 

A final strategy is the use of an observer with a truly global perspective. Implicit is 
the assumption that this observer has far greater cognitive and computational abilities 
than the individual agents within the system and so can detect or foresee problematic 
behavior. Humans are an obvious example. Hubanks [43, p. 54] describes a self-
organized military logistics program and hints at a human-level monitoring: “if the 
solution is not palatable, we would input policy directives and the system would 
recompute.” Similarly, in the truck-painting example above, supervisors easily 
overrode the system behavior (e.g., to route the vice president’s new truck through the 
best performing booth) by manipulating the parameters determining a particular 
booth’s bid (G. Ekberg, pers. comm.). With the rapid advance in global positioning 
(GPS) and other technologies, it is now possible to monitor and control self-organized 
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systems remotely and in real time teleoperating. Thus, we have the potential for a 
system of semi-autonomous, fish school mimicking robots or missiles, with an 
operator thousands of miles away following their progress, ready to intervene and 
manipulate global behavior when necessary. This could take the form of explicit 
orders to specific agents or adjusting the parameters determining individual level 
behavior for all agents. For instance, detecting that the set of robots or missiles are 
about to crash, the operator could send a signal telling each agent to increase its 
“personal space” or zone of repulsion [24, 61] thus reducing agent density and 
avoiding potential disaster. Of course, such a labor-intensive strategy is only realistic 
for relatively few multi-agent systems but, again, the key point is that such 
pathological behavior should be rare. 

If the system is well designed so that these problems seldom occur, then the 
overheads of a global observer could be low. For instance, it may not be necessary for 
the human observer to constantly monitor the system. Appropriate global metrics, 
such as group angular momentum [24], where a high value would be a reliable 
indicator of circular milling, can probably be devised in many cases. It only remains, 
therefore, for a system to collect and analyze the data automatically, alerting the 
human observer, or perhaps an expert system, if these metrics exceed certain 
thresholds. The bottom line is that these are self-organized systems and so have the 
potential to develop pathological behavior. There is no cure-all and a decision 
whether to tolerate such behavior depends on a host of factors including the severity 
and cost of the behavior, how cheap and disposable the agents are, the rarity of the 
behavior, whether any degree of failure is unacceptable, the cost of designing the 
additional control infrastructure, whether one can monitor and control the system in 
real time, and many others. The occurrence of system pathologies is a problem that 
will certainly plague, perhaps haunt, swarm intelligence researchers and practitioners 
for many years to come.

7.   Discussion 

In this chapter, I have considered a few aspects associated with choosing an initial 
strategy towards designing a particular desired self-organized system. Most problems 
will involve some element of bottom up simulation (even interactive evolution has to 
has some generative underlying model); however, I have suggested that there are 
some situations or features of the problem that may favor a different approach. 
Ultimately, the decision will be problem dependent, but in Figure 5 I have 
summarized a few questions that may aid this decision. (They have been organized as 
a key, similar to those developed by biologists to identify particular species.) This list 
is not exhaustive but, as mentioned in the introduction, I hope that it might be of some 
use to those just starting to tackle a particular design problem. 
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1. Is it possible to define an objective / fitness function mathematically? 

(In other words, do you know what you are looking for?)

Yes: go to question 3.

No:  go to question 2. 

2. Can system-level behavior be realized in real time? 

Yes: interactive evolution is a strong possibility 

No: either a slow, probably frustrating, process of hand-tuning 

parameters or systematic search through state space is likely 

involved, or a technique such as open-ended search

3. Is there a known analogous system? 

Yes: emulate known system, tweaking and modifying as 

necessary, possibly using evolutionary computation to 

parameterize system 

No: go to question 4. 

4. Does the system involve or require multiple hierarchical levels, or is 

amenable to their introduction? (In other words, can we chunk?) 

Yes: some element of top-down engineering may be possible 

(likely,  in conjunction with bottom-up modeling) 

No: bottom-up modeling, adopting some of the general 

principles expounded in the literature [see text], may work.

Figure 5.  A key of design strategies. The key, similar to those used by biologists to
identify individual species, sets out some of the key criteria, decisions, and constraints that
may favor one design strategy over another. It is meant only to hint at some of the general,
major decisions that may go into deciding which strategy to use. 

There is no doubt that self-organized systems have enormous potential for real-
world applications. We are captivated by the lure of “dumb parts, properly connected 
into a swarm, yield[ing] smart results” [47, p. 13]. If the system complexity resides in 
the network of interactions, rather than in the individual agents themselves, then 
modeling agents should be a relatively easy task (Section 1.2) (an extremely 
appealing notion given that Boeing and Honeywell estimate that 60 80 % of the 
development cost of a complex control system is in the software development and not 
the actual control system design; [40]). We simply program the agents’ 
behavior just four lines of code in Morley & Ekberg’s [55] paint booths on a GM
assembly line (see section 1.6) and simply let the complexity emerge. 

Unfortunately, as we are all aware, “there is no such thing as a free lunch” 
(attributed to A. Hansen by Hugh-Jones [44]). Yes, the agents may be simple, 
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hopefully cheap, easily designed, and disposable, and there may indeed be a 
“coexistence of individual simplicity and collective complexity” [16, p. 322]. 
However, we have to learn not only to design those agents but also, and perhaps more 
importantly, to connect those agents into the particular network (out of a multitude of 
possibilities) that works as desired. We do have a list of ingredients of self-
organization agent diversity, positive feedback, and so on [19, 60] but only a scant 
knowledge of real design strategies. What is needed is a more rigorous research 
agenda in this area, a deeper understanding of questions such as 

How much inter-agent diversity should be engineered into these systems? 

What is the relationship between exploration and exploitation? (A question 
that is strongly related to issues of speed vs. efficiency.) 

What does the role of network structure (e.g., scale-free vs. random) play? 

What is the role of hierarchy and modularity in self-organized systems? 

What potential control strategies are available for self-organized systems? 

Since we are dealing with emergent behavior, research in this area may never be 
easy but there are surely great rewards to be gained. However, if we are to exploit the 
true utility and power of self-organization in man-made, designed systems we need to 
rank up the orders of magnitude of agent number: millions, perhaps billions, of 
networked nanorobots, computers, and sensors. Large systems such as these 
undoubtedly will possess incredible behavioral richness: “Sometimes we expect too 
much from a technology; at other times we cannot even dream what its impact will 
be” (6, but see [33, 25]).
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1.   Introduction 

The powerful concept of complexity can be applied to help us understand not only 
modern engineering systems, but also the design of those systems, and artifacts in 
general. In this chapter we attempt to establish a two-pronged theoretical framework 
for understanding the complexity of design. By design we mean the activity of 
designing artifacts in general, not any specific class of artifact. 

The first route to understanding the complexity of design is based on a 
fundamental exploration of what it means for a system to be complex. This avenue is 
essentially mathematical in character, and for it we rely heavily on the works of 
Robert Rosen, Nicholas Rashevsky, and Peter Wegner. Having discussed briefly the 
foundations of this approach, it is then applied to the science of design. In particular, 
the goal is to show that design in general is a member of the class of systems that are 
formally described as open and complex, and not a member of the class of systems 
that are formally described as closed and algorithmic. This amounts to theoretical 
validation for adopting a paradigm for using an open relational concept, such as 
affordance, as a basis for design, rather than a closed algorithmic concept such as 
function. This approach also suggests abstract affordance based descriptive models of 
design as alternatives to the current function based models of design. 

The second route to understanding the complexity of design lies in the study of 
systems that are in some obvious way complex. This approach is essentially empirical 
in character. Accordingly, the goal here is to show that design exhibits similar 
characteristics to other complex systems, in particular, as will be shown, a class of 
complex systems known as Complex Adaptive Systems (CAS). This constitutes more 
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validation for using a relational as opposed to an algorithmic concept as a basis for 
design. Also, this suggests that design may be modeled in the same way as other 
CAS, i.e., in accordance with a cycle in which other CAS are known to operate 

In place of algorithms, what is needed for complex systems are structures which 
are semantically rich and open to interactions. For biology, such a formalism, once he 
realized such a thing was necessary, was invented by Rashevsky in the form of 
relational models [14], to replace the earlier simplistic machine metaphor dating back 
to Descartes. For computer science, such a formalism was invented by Wegner in the 
form of interaction machines [22, 23], to replace the much more restrictive and 
simplistic Turing machines [e.g., 21]. For design, we propose that the appropriate 
formalism is that of affordance [7, 9, 11, 12], rather than the much more restrictive 
and simpler concept of function, which is very similar to that of algorithm, as 
explained in this chapter. 

The concept of affordance, thus grounded theoretically in the first approach to 
design complexity (the relational approach), agrees very well with the empirical 
model for design complexity suggested by the CAS-type approach. The integration of 
the concept of affordance into the CAS-inspired model for design thus concludes this 
chapter. However, the terms complex and complexity have been used before in design 
and therefore these views need to be distinguished our use of these terms. A review of 
these approaches is given in the next section. 

2.   Targeted Approaches to Complexity in Design 

2.1.   Computational Complexity 

Computational complexity attempts to measure the complexity of a given problem in 
terms of its most compact solution algorithm. This approach is widely used in 
computer science, and looks primarily at solution algorithms, without considering the 
many other factors that contribute to the complexity of design. For example, the 
complexity of design involves relationships and interactions between designers, users, 
and artifacts. Such two-way relationships cannot be described by a unidirectional 
algorithm. Therefore, the techniques of computational complexity are not sufficient to 
describe the broad complexity of design. 

2.2.   Complexity in Axiomatic Design 

Suh defines complexity “as a measure of uncertainty in achieving the specified 
Functional Requirements”. Suh uses the term “Real complexity” to describe the 
uncertainty associated with the known probability of a solution not completely 
satisfying the desired objectives. Suh defines “Imaginary complexity” as the 
uncertainty associated with a designer’s lack of knowledge [19, pp. 474-476]. 
However, there is an important conceptual distinction between complexity as 
describing the uncertainty of a system—which refers to probability distributions—and 
complexity as describing the impredicativity of a system—which refers to self-
referential causal entailment (see Section 2.3.1). The term “uncertainty” implies that 
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either there is some quantifiable probability involved or that certainty is in fact 
possible, if only there were more information available.

This situation, as Rosen recognized [16, pp. 86-89], is analogous to the 
measurement problem in physics. One problem, of uncertainty, involves where a 
particle is or how fast it is going, which below a certain resolution cannot be 
described exactly but can be described by a probability distribution. This problem, in 
and of itself, was enough to wreck the Newtonian paradigm of clockwork-like 
predictability and determinism of the physical universe. The second and more serious 
problem is that the location and or velocity of the particle as measured depends on 
how the measurer measures it. Whereas the former problem is a matter of simple 
probability, of measurement uncertainty, the latter problem is a matter of complexity,
of causal entanglement between the observer and what is observed. These ideas will 
be explained more fully in Section 2.3, but suffice it to say that Suh’s conception of 
complexity in design as having to do with uncertainty, while potentially useful, is 
qualitatively different from the kind of complexity we appear to be confronting in 
design, which involves interactions and relationships, not just uncertainty. 

2.3.   Measuring Design Problem Complexity 

An approach to measuring the complexity of design problems themselves has been 
proposed by Dixon and his colleagues [5], based upon the coupling between design 
targets and design variables. The underlying assumption here is that the more coupled 
the design problem, the more complex it is. In other words, a situation in which each 
design variable affects only one design target would be of lowest complexity, and a 
situation in which each design variable affected several design targets, and thus each 
target would be affected by several design variables, would be of higher complexity.

This kind of complexity could be modeled by a series of linear equations. How 
far the coefficient matrix would be away from purely diagonal would define the 
coupling and thus the complexity in this sense. In contrast, the complexity of design 
appears to involve more than just mathematical variables and targets; it necessitates 
the inclusion of relationships between human designers and users who are involved in 
the determination and mutability of both variables and targets, as well as concepts, 
testing, and other important aspects of design. 

2.4.   Measuring Artifact Complexity 

As opposed to the previous few methods of measuring problems and solutions, some 
researchers such as Dixon [5], and Braha and Maimon [2], have tried to measure the 
complexity of artifacts. Typically such analyses quantify how complicated an artifact 
is based upon how much effort it takes to describe the artifact using a standardized 
representation scheme. However, counting parts is not counting complexity. 
Certainly, the lengthier the description, the more complicated the artifact. But again, 
only measuring the complexity of the solution algorithm, or the problem, or the 
artifact, in our opinion misses the larger source of complexity in design, which is the 
interactions inherent between designers, artifacts, and users, and everything that 
influences them. 
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3.   Rosen’s Approach to the Complexity of Science, Applied to the 
Complexity of Design 

3.1.   Impredicativities in Science 

Let us return again to the mechanistic paradigm in which design is currently cast, and 
attempt to understand, with the help of the theoretical biologist Robert Rosen (see [15, 
16] for his original arguments), what the power of that paradigm is, but also its 
limitations. The cornerstones of Newtonian mechanics are Newton’s laws of motion 
and Newton’s law of universal gravitation. The mathematical language that describes 
them both is of course Calculus, which Newton also developed. Newton’s laws of 
motion address the problem of how a particle responds to an (external) force,
whereas the law of universal gravitation addresses the problem of how that same 
particle can exert a force on another particle. What is most curious about this 
formulation is that the material parameter that describes a particle’s response, its 
inertial mass, is numerically identical to the totally independent (conceptually) 
parameter that describes the particle’s exertion, its gravitational mass. This 
fundamental equivalence was not adequately explained until the time of Einstein, who 
realized it as a foundation of General Relativity.

Meanwhile, this Newtonian model that equates the behavioral effect of particles, 
i.e., their reaction (in biological terms, their phenotype), with their behavioral causes, 
i.e., their actions (in biological terms, their genotype), experiences severe difficulties 
in certain common situations, such as the so-called many body problem, the problem 
of trying to predict the trajectories of several (more than two) particles under mutual 
gravitational attraction. In such a case, the addition of more than one particle results 
in a situation where the original particle, although not allowed to push on itself, is 
allowed to push on other particles which in turn push on the original particle. This is 
one example of an impredicativity (Bertrand Russel’s term), meaning that this 
problem cannot be solved reductionistically, i.e., in closed form, nor in terms of 
defined probabilities.

The impredicativity, as in all impredicativities, arises at root, from the absolute 
separation between causes and effects (genotypes and phenotypes), that is, with 
drawing a line in the sand. Similar impredicativities arise in logic, whenever we try to 
draw a clear distinction between two classes of related objects, for instances true 
statements and false statements. For example, the statement, 

This statement is false. 

is a classic example of an impredicativity. If the statement is true, then it is not false, 
but if it is not false, then it must be true, but it cannot be true because it says it is false, 
but if that is true, then it is false, but, but, but…ad infinitum. The apparent paradox of 
this statement abides in the fact that, as in all such impredicativities, the statement is 
self-referential.

Mathematically, the many body problem is expressed by networks of differential 
forms that describe direct and indirect effects of inertia on gravitation, mirroring the 
network of interacting particles they model. These equations collapse into ordinary 
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rate equations (equations of motion) only when all the differential forms are exact
(predicative), but not otherwise. The non-exactness of any of these differential forms 
is one mathematical description of complexity, i.e., impredicativity, caused by 
relatively many interacting subsystems, from which the colloquial notion of 
complexity is derived. To look ahead a bit, this is just another manifestation of 
Gödel’s theorem [8], that the real behavior (truth) of nature is larger than any purely 
predicative, syntactic, model of it. 

More generally, what is happening here is that in any apparently predicative 
formalism (e.g., what happens with only one or two particles, or whether a statement 
is true or false), the application of certain larger contexts (e.g., what happens with 
more than two particles, or whether a statement about falseness is true) generates 
impredicativities that the original formalism cannot handle. The aforementioned 
measurement problem in quantum physics is also of this flavor—the original 
formalism of how the quanta behave (even probabilistically) breaks down in a larger 
context of when those quanta are actually measured, which depends on how they were 
measured. Bohr’s quip that anyone who is not shocked by quantum mechanics does 
not understand it refers to the shock over the realization of the reality of this 
impredicativity, which is anathema to the predicative Newtonian mindset from which 
most people come until confronted with the evidence of quantum experiments. 

Even more generally, what this argument illustrates in brief is that 
impredicativities, while inconvenient, are essential features of reality. As Gödel 
proved [8], they are more than just problems with our current formalisms; they are 
inherent to all formalisms. In other words, if we identify, as Rosen has, 
impredicativity with complexity, then reality is complex, and only special models of it 
are not complex, but these models, while perhaps powerful, will always be to some 
degree inadequate. For design, therefore, to be exempted from this picture would be a 
very special case indeed. We should expect to find some impredicativities in design. 
How frequent, and how serious these impredicativities are, determines whether design 
can be effectively treated algorithmically versus as a complex science.

The Newtonian paradigm, while powerful, is a formalism, predicative in nature, 
that can be applied to a certain class of real material systems that exhibit few enough 
impredicativities for the formalism to be useful. Such real material systems are called 
machines. What is in dispute is not the applicability of the Newtonian paradigm to the 
behavior of machines, which is the traditional focus of the engineering sciences, and 
is supported by several centuries of positive evidence. What is questionable, however, 
is the applicability of the Newtonian paradigm to the design of machines, which is the 
focus of design science. Tate and Norlund’s finding [20] that design science, even 
after several decades of research, is still in a pre-paradigm state suggests that the 
larger mechanistic Newtonian paradigm, while sufficient for many other engineering 
sciences, is not sufficient for design. 

3.2.   Implications for Technology and Design 

The archetypal example of such a Newtonian machine, especially in recent years, is 
the Turing machine, a purely predicative formalism that executes an algorithm (as 
Turing proved, any algorithm) with perfectly predictable results. As a historical note, 
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it is worth pointing out that Turing’s work was motivated by the recent work of Gödel 
before him. Whereas Turing set out to contradict Gödel’s results, he wound up 
spectacularly confirming them, by showing that his simple symbol pushing machine 
could execute any algorithm, but not any mathematics, without loss of truth (e.g., 
impredicativities). Turing’s solution was to invert the problem, to assert that enough
algorithm would suffice for something larger, something as rich as intelligence. Von 
Neumann, who helped design the computer architecture to implement Turing’s 
theoretical machine, was of the same persuasion, theorizing some threshold above 
which “enough” predicativity (such as his cellular automata) would achieve 
impredicativity (some kinds of “life-like” behavior). This idea, however, is easily 
debunked by considering the original work of Gödel, as Rosen has done. In a nutshell, 
Gödel’s theorem allows us to discriminate between real number theory, full of 
impredicativities, with artificial predicative number theory, and proves that the two 
are indeed distinct. Similarly, the impredicativities of human intelligence, born of the 
subjective mind, are distinct from any purely predicative algorithmic conception of 
intelligence.

The essence of the above distinction, between number theory and any 
formalization of it, between real intelligence and artificial intelligence, between 
material reality and Newtonian machines, boils down to the simple algorithmic 
symbol-pushing (syntactic) character of the latter systems as opposed to the complex 
impredicative (semantic) character of the former systems. An essential feature of the 
former systems, which can be viewed in one light as the basis for much of their 
impredicative traits is the interaction inherent in these systems. Along these lines, the 
computer scientist Wegner recently produced a proof showing that “interaction is an 
inherently more powerful paradigm for computing than [closed] algorithms” [22]. By 
interaction, he meant interactions between computer programs with humans, not 
closed interactions between fixed algorithms and operable data sets, which in general 
can always be expressed and computed in Turingesque algorithms. 

Wegner’s proof structure is based explicitly on the proof structure of Gödel. 
Gödel showed the incompleteness of the set of integers by showing that the set of 
integers is not recursively enumerable. That the integers are incomplete implies that 
they are not formalizable. Thus the larger body of number theory, which includes the 
integers, is not formalizable. Any formalism that attempts to capture number theory 
(i.e., a complete set), therefore, will leave out essential parts of “real” number theory, 
which is not formalizable. One consequence of this is that in any formalization of 
number theory, one can always ask questions about number theory which cannot be 
answered within that formalism. 

Similarly, Wegner showed the completeness of algorithms (expressed on Turing 
machines) and the incompleteness of interaction (expressed on so-called “interaction 
machines.”) Incompleteness of human interaction follows from the unpredictability of 
human input, which is modeled by infinite series which are by definition incomplete 
(because they are infinite). Thus Wegner proved that interaction is a larger, non-
formalizable computing paradigm than standard Turingesque closed algorithms. In 
Rosen’s terms, Wegner showed that interaction is complex, and therefore more 
powerful than closed algorithms. The mechanistic paradigm begins to fail (i.e., is not 
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powerful enough) in design in the same way that it begins to fail in computing, when 
human interaction is introduced, which is unpredictable by nature. 

A similar situation has arisen in the field of economics, where a purely 
predicative modeling approach has again been shown to be insufficient. The classical 
assumption in economics is rationality of the human economic agent, in essence, that 
people rationally make decisions (execute an algorithm) in order to maximize profits. 
Even when the assumption of perfect rationality, as in the classic Arrow-Debreu 
equilibrium model [4] is reduced to the “bounded rationality” described by Herbert 
Simon, this approach fails to describe many empirically evidenced facts of economic 
life. For example, the Arrow-Debreu rational model mandates decreasing returns that
drive the economy toward equilibrium., but in real life, often increasing returns are
observed. The economist W. Brian Arthur has shown that such increasing returns (as 
well as the common decreasing returns) can be exhibited by models of human 
economic agents that behave in non-rational, non-algorithmic, i.e., complex ways [1]. 
His treatment is thus as the economy as a complex adaptive system (see Section 2.4 
below), rather than as a simple algorithmic system. 

Similar complexities can be found in other scopes of human study. For example, 
in cognitive psychology, the assumption is again made that human intelligence is 
basically algorithmic in nature and therefore the attempt is to model human thought, 
perception, and interaction with the environment with simple predicative Turingesque 
algorithms [e.g., 17]. Theoretically, such an approach can be repudiated on the same 
grounds as the Turing test as discussed above, but empirically, these cognitive models 
have also failed to exhibit semantic qualities of real human minds. Once again, as 
Gödel showed, no amount of completeness, i.e., predicativity, can amount to 
incompleteness, i.e., impredicativity. 

In design, the semantic, non-rational, non-algorithmic, impredicative, subjective, 
and unpredictable nature of humanity is inescapable, because artifacts are always 
designed for human use, usually designed by humans themselves (using computers 
and other tools), and situated within a larger context of a complex world economy. 
Some consequences of this are individual differences between consumers and 
designers, changing mindsets, preferences, needs, and attributes of all these people, 
non-rational unpredictable behavior, and creativity. Cast in this light, it is quite 
understandable why approaches to design based on a Newtonian predicative paradigm 
have failed to rise to the level of the mature design science we desire. The alternative, 
suggested from these considerations, is a paradigm for design based on the idea that 
design is complex. Such an approach should further incorporate the complex nature of 
human interactions (à la Wegner), as opposed to relying solely on closed predicative 
algorithms. However, there is another route to the same conclusion, from the theory 
of complex adaptive systems, as discussed next. 

4.   Understanding Design as a Complex Adaptive System 

4.1.   History and Overview 

The science of complexity has emerged in recent years as a response to the realization 
that many important phenomena across a wide range of scientific domains possess 
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features that arise from the interaction of many small subsystems, from individuals 
and corporations in an economy to elementary particles in a large molecule. The key 
realizations behind this science are three-fold, 1) that many interesting and unsolved 
problems in science are complex in nature, and not simple, 2) that problems across a 
wide range of domains have complexity in common, and 3) that complexity itself can 
be studied.

The domain of interest to the science of complexity is predominately 
complexity’s manifestation in complex systems. A complex system may loosely be 
defined as a collection of a large group of strongly interacting parts exhibiting non-
linear dynamical behavior. Complex systems may be further classified as either non-
adaptive or adaptive. 

4.2.   Complex Adaptive Systems 

The concept of a Complex Adaptive System (CAS) has been described in terms of a 
system “with many different parts which, by a rather mysterious process of self-
organization, become more ordered and more informed than systems which operate in 
approximate thermodynamic equilibrium with their surroundings.” [3, pp. 1]. The 
physicist Murray Gell-Mann identifies the cycle in which all CAS appear to operate 
[6, pp. 25] as follows: 

I. Coarse graining of information from the real world 
II. Identification of perceived regularities 

III. Compression into a schema 
IV. Variation of schemata 
V. Use of the schema 

VI. Consequences in the real world exerting selection pressures that affect the 
competition among schemata 

However, perhaps the most important property of a CAS (that distinguishes it 
from most of the systems with which engineers are accustomed) is that CAS are open
systems. CAS are situated; they operate and interact within a larger environment 
wherein the CAS accepts energy in and exports energy out. Moreover, because the 
CAS is adaptive, some of the energy in is used to change the internal state of the 
CAS. Usually this flow of energy in and out is continuous; thus the CAS is 
continually in a state of flux, constantly adapting to what is usually a changing 
environment. Another important consequence of CAS being open systems is that the 
second law of thermodynamics, which is formulated expressly for closed systems, is 
not applicable. Thus in CAS we often see a decrease in entropy (increase in order) 
over time, sometimes seen as progressive evolution. 

Since all of the details of a complex system can in principle never be totally 
understood, an essential tool for understanding complex systems is to study the 
system’s organization, which is often relatively simple. Understanding the 
organization of the system can also lead to a better understanding of the system’s 
behavior, since the behavior of a system is strongly affected by the system’s internal 
organization. For example, an important result for business management (a business 
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organization being a complex system) is that the organization of the business strongly 
affects the behavior of both the business as a whole and the actions of its individual 
employees [18]. 

4.3.   The Designer-Artifact-User Complex System 

One of the strengths of the science of complexity is its ability to handle very large and 
very complex systems. Thus it frees the investigator from the self-defeating need to 
over-simplify the problem under study. To study complexity in design, therefore, we 
need not focus on just artifacts, or just problems, or just solution procedures, as has 
been done in the past (see Section 2.2). There is in fact total freedom to define the 
complex system of interest, the “design system,” as it were, to encompass all relevant 
issues and stakeholders. However, in every design there will be different issues and 
stakeholders at play, but incumbent to every design are at least three major 
subsystems: 1) the designer(s) of the artifact, 2) the artifact(s) being designed, and 3) 
the user(s) of the artifact. Thus the complex system of interest in design is the 
designer-artifact-user (DAU) system. 

The properties of the designer-artifact-user system involve many important 
aspects of design not stated directly in the three component subsystems. First, as in 
every system, the DAU system is situated in a larger environment. However, the 
specific environment in which a particular DAU system is situated depends upon the 
specific design. For example, in the case of the design of a family of consumer 
appliances, the environment would consist of a corporation, local, regional, national, 
and global economies, legal regulations, competitor corporations and products, the 
physical world, etc. Each of these elements of the environment would act upon the 
DAU system in different ways, in terms of inputs to the DAU system from each entity 
in the environment, as well as outputs from the DAU system to entities in the 
environment. A generic situation of this kind is shown in Figure 1. 
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Figure. 1. Generic situated designer-artifact-user (DAU) system

Each of the three basic subsystems within a DAU system need not be singular. In 
any given design, there may be multiple designers, and/or multiple artifacts being 
designed, and/or multiple users. By considering the general case of multiple 
designers, we open the door for important insights into concurrent engineering and 
collaborative design, two recent and important topics of design research. By 
considering the general case of multiple artifacts, we open the door for important 
insights into product family design, another hot topic of design research. And by 
considering the general case of multiple users, we can consider not just the end user 
but anyone who might interact with the artifact throughout its life-cycle, thus opening 
the door for important insights into areas such as human factors, mass customization, 
and many design-for-x methods. Moreover, by considering designer(s), artifact(s), 
and user(s) together in the same system, we can also study the interactions between 
each of these subsystems, and perhaps most importantly, the system behaviors that 
result from those interactions—for instance the success or failure of the whole design 
project.
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4.4.   The Designer-Artifact-User System as a Complex Adaptive System 

First, however, it is necessary to show that DAU systems are, in fact, complex 
adaptive systems. It would be difficult to argue that DAU systems are complex 
adaptive systems (CAS) merely by a straight application of the definition of CAS, 
because there is no formal accepted definition of CAS. However, there are widely 
recognized and studied properties of CAS. Thus we can show that DAU systems are 
CAS by showing that the properties of a DAU system are consistent with those of a 
CAS, in particular the quintessential CAS cycle as identified by Gell-Mann (see 
Section 2.4.2), as follows:

Coarse graining of information from the real world:
In a DAU system, coarse graining occurs in the problem definition stage of design. 
Here the designer’s goal is to understand the problem at hand. This must be done by a 
process of “coarse graining,” in other words a process of sampling, surveying, and 
gleaning information about the design problem from wherever possible in the real 
world. This may take the form of a formal problem statement from management, user 
surveys, the designer’s own experience, marketing information, legal and cost 
constraints, etc. This step involves primarily the designer and user subsystems 
interacting with the environment. 

Identification of perceived regularities:
In a DAU system, the identification of regularities occurs as designers further refine 
their understanding of the design problem by sorting out the initial data gathered in 
the coarse graining phase, which is often contradictory and/or incomplete. Often 
designers will organize the design problem in terms of requirements with associated 
constraints, criteria, and goals, which may or may not be articulated in some form 
such as a Requirements List [e.g., 13, pp. 131-135]. Again, this step primarily 
involves the designer and user. 

Compression into schema:
After designers sufficiently understand the problem to continue design work, the 
broad design space available to the designers must be narrowed in order to arrive at 
solution concepts. Thus the CAS compression into schema phase is equivalent to the 
conceptual design phase in a DAU system (where the terms “schema” and “artifact 
concepts” essentially become interchangeable). This involves exploration of the 
design space using ideation techniques as well as combination and selection of 
concepts. The resulting schema is thus a full system solution concept, possibly 
accompanied by some sort of prototype, physical or otherwise. This step primarily 
involves the designer and artifact subsystems. 

Variation of schemata:
Once an initial system concept is found, the designer must improve, test, and refine 
that concept in order to arrive at a final production worthy artifact. Often this process 
requires extensive iteration of earlier phases of the design process. In other cases, the 
entire design project may be an exercise in variant design, where an artifact already 
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exists, but the objective is to modify it to suit new circumstances. These design 
activities within a DAU system are thus equivalent to the variation of schemata phase 
in the CAS cycle. Again, this step primarily involves the designer and artifact 
subsystems.

Use of the schema:
In a DAU system, the schema is used when the artifact is released on the market as a 
finished product. In many systems, this first must be preceded by a manufacturing 
step. In the discussion above, the manufacturer, since it is not explicitly defined to be 
a member of the DAU system, exists and interacts with the DAU system from the 
DAU system’s external environment, yet clearly those interactions are important, but 
perhaps no more or less important than other interactions from the environment, such 
as from competitors, bodies of law, environmentally conscious issues, etc. And in 
other cases, such as in one-off products and software, there may be no significant 
manufacturer at all. At any rate, the schema may be used by a variety of users 
described by the DAU system’s user subsystem, including people involved in any 
manufacturing process necessary, end users, maintenance and service personnel, etc. 
This step primarily involves the artifact and user subsystems. 

Selection pressures that affect the competition among schemata:
In a DAU system, selection pressure is exerted from the outside environment. This 
pressure may come from the economy and changing user whims, which would feed 
back into the DAU system affecting choices and ideas for variant designs. This is 
especially important for product family design, in particular for what we have termed 
in other work as “evolving product families” [10].  Different selection pressures may 
come to bear in an original design exercise, where, for instance, corporate 
management or marketing people may influence the designer’s decisions. It is 
important in this context not to confuse the competition of competing products in the 
marketplace—which occurs within a different CAS, the economy [1]—with the 
subset of competition in the economy that actually feeds back into the DAU system, 
which is all that is applicable here. This step involves all three subsystems: the 
designer(s), artifact(s), and user(s). 

Implications of DAU systems as CAS:
Having thus established and defined the designer-artifact-user system as the complex 
design system of interest, we can now proceed to apply insights and ideas from the 
sciences of complexity in order to further our understanding of design itself, which is 
our primary objective. First, we may take some comfort from the fact that many 
troublesome problems in design coincide with equivalent problems in CAS in general. 
This suggests that our lack of understanding in these areas is not due to any particular 
lack of knowledge in the design field, but rather the difficult and complex nature of 
these problems in general. Furthermore, the congruence between unsolved problems 
in design and unsolved problems in CAS in general is further validation of the 
appropriateness of studying the complexity of design in general and the use of the 
DAU complex system in particular. 
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A list of eight outstanding problems that are common to both design (i.e., the 
DAU complex system) and CAS in general, organized by phases of the generic CAS 
cycle is as follows. This list is based upon the list of issues in CAS research deserving 
further investigation (of which the following is only a subset), as presented by Gell-
Mann [6, pp. 26-28]: 

Coarse graining of information from the real world:
1. In CAS: An interesting trade-off is “between coarseness for manageability of 

information and fineness for a better picture of the environment.” [6, pp. 26] 
In design: An analogous trade-off arises between spending a lot time trying 
to understand the problem, i.e., by extensive user surveys, versus spending 
less time in this phase although sacrificing understanding of the problem, in 
order to rush to market for a potential pay-off there. 

Identification of perceived regularities:
2. In CAS: A problem is “the tendency of a CAS to err by mistaking regularity 

for randomness and vice versa.” [6, pp. 26] 
In design: It is difficult to identify true user needs and latent user needs, 
which is further complicated when users say they want one thing when in 
reality they actually buy something else. In other words, the difficulty is 
interpreting user data and other data that describes the problem, which is 
often incomplete and contradictory. 

Compression into schema:
3. In CAS: An issue is “the importance of continual evolution of the observed 

system with the difficulty inherent in estimating the probability of future 
histories.” [6, pp. 26] 
In design: Since the marketplace is continually changing, designers must 
confront the fact that by the time they finish designing the artifact, user 
preferences and other environmental effects such as market conditions may 
have changed. 

4. In CAS: An important trade-off is “between degree of compression versus 
time and amount of computation involved.” [6, pp. 26] 
In design: The analogous trade-off is between increasing the number of 
promising solution concepts and prototypes elaborated, versus time and 
money spent on them in development. 

Variation of schemata:
5. In CAS: “Variation usually proceeds step by step from what is already 

available, so how can schema change by large jumps?” [6, pp. 27] 
In design: Most products evolve slowly over time, with modest success. But 
occasionally a major innovation occurs seemingly out of no-where. How do 
innovations like this occur, and how can they be engineered intentionally? 
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Use of the schema:
6. In CAS: A problem is finding a “method of incorporating largely random 

new data.” [6, pp. 27] 
In design: This manifests in the difficulty of designing for the real world. The 
artifact, once introduced, is subject to all the vagaries of real users and the 
real marketplace, whereas in order for the designers to design the artifact at 
all, most of this complexity was lost in the coarse graining phase. 

Selection pressures that affect the competition among schemata:
7. In CAS: “Fitness is an elusive concept.” [6, pp. 27] 

In design: How can designers “optimize” a design to perform in an 
environment that is ill defined and approximate (out of the coarse graining 
phase) and ever changing? What is an appropriate fitness function? 

8. In CAS: A problem is “when maladapted schemata occur because of 
mismatched time scales.” [6, pp. 27] 
In design: This occurs when products fail because the market changes faster 
than products can be designed or redesigned. 

Summary of DAU systems as CAS
This description of design as a complex adaptive system thus reinforces the earlier 
discussion of how the approaches to design based on a Newtonian predicative 
paradigm have failed to rise to the level of a mature design science. The alternative, 
again suggested from these considerations, is a paradigm for design based on the idea 
that design is complex. A high-level conceptual model for the complexity of design is 
the DAU complex system. However, what has been missing from the discussion of 
the DAU system thus far is the all important interactions between the various 
subsystems within the larger DAU system. Recall that from the complexity approach 
to design following Rosen’s (and Wegner’s) work, the primacy of impredicative 
interactions became apparent. Thus we require a deeper understanding of these 
interactions, which can be generated by applying the powerful concept of affordance. 

5.   Properties of Affordances within DAU Systems 

5.1.   Relational Questions and Answers 

The preceding discussion suggests that rather than ad-hoc or closed form algorithmic 
approaches to design, in light of the complexity of design, interactions and relational 
aspects ought to be given preeminence. As a first step, we can refer back to the 
designer-artifact-user system (Figure 1), and examine the interactions and 
relationships between the three major subsystems (designers, artifacts, and users). 
Accordingly, there are three principal categories of interactions to be investigated and 
to wit, three main associated questions to be answered in this context: 

1. What is the nature of the relationship between users and artifacts? 
2. What is the nature of the relationship between designers and artifacts? 
3. What is the nature of the relationship between designers and users? 
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The answer to the first question seems obvious. By definition, users use artifacts. 
Conversely, artifacts are used by users. This answer, however, begs another more 
subtle question, namely, What determines how an artifact may be used? By definition, 
the affordances of an artifact determine how that artifact may be used.  Gibson 
defined affordances as follows:

The affordances of the environment are what it offers the animal, what it provides
or furnishes, either for good or ill. The verb to afford is found in the dictionary, 
but the noun affordance is not. I have made it up. I mean by it something that 
refers to both the environment and the animal in a way that no existing term does. 
It implies the complementarity of the animal and the environment… As an 
affordance...for a species of animal, however, they have to be measured relative
to the animal. They are unique for that animal. They are not just abstract physical 
properties...So an affordance cannot be measured as we measure in physics...An 
affordance is neither an objective property nor a subjective property; or it is both 
if you like… Affordances are properties taken with reference to the observer [7]. 

Interestingly, this idea immediately suggests answers to the remaining two 
questions. The nature of the relationship between designers and artifacts is that 
designers create the affordances of artifacts. They specify all the properties 
(geometries, dynamic behaviors, colors, etc.) that will afford a certain set of uses to a 
certain set of users. Thus the nature of the relationship between designers and users is 
that designers must ascertain from users a target set of affordances. Conversely, the 
users inform the designers of desired uses—what they want the artifact to afford. For 
an expanded discussion of designing affordances, see [12]. 

In the context of the designer-artifact-user complex system, artifact-user 
affordances (AUA) appear as interactions between the artifact and user subsystems, 
and artifact-artifact affordances (AAA) appear as interactions within the artifact 
subsystem itself. Interactions between the designer and user subsystems include the 
information needed to specify which affordances should and should not exist in the 
artifact under design. Interactions between the designer and artifact subsystems 
include the specification of the artifact’s properties that determine its various 
affordances internally (i.e., AAA) and externally to the targeted users (i.e., AUA). 
These interactions within the DAU complex system are shown schematically in 
Figure 2. 
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Figure. 2. Affordance related interactions within a designer-artifact-user complex system

To take a step back, the questions and answers outlined above may be contrasted 
with the kinds of questions and answers that have been addressed by existing 
approaches to design. One question is, What is the nature of artifacts? The answer to 
that is, they function. According to this view, artifacts are functional in nature. A 
second question is, What is the nature of designers? The answer to that is, they 
execute solution algorithms (as in Decision Based Design). That a computer can 
execute such algorithms just as well leads to design automation, and more broadly, 
classical top-down artificial intelligence. A third question is, What is the nature of 
users? The answer to that is that users are simply economic actors operating under 
bounded rationality, but rationally, nonetheless. These questions and answers define 
the tidy algorithmic universe familiar as the standard mechanistic paradigm for 
design. Under this view, the interactions between designers, artifacts, and users 
discussed previously are not considered explicitly, and design is not complex. 
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5.2.   Contrast: the Relational Nature of Affordances versus the Transformative 
Nature of Functions 

This suggests an empirical test of these ideas, capable of discriminating between these 
two competing paradigms, capable of validating one or the other. The test is simply 
this: if interactions (between designers, artifacts, and users) are not important, then the 
mechanistic paradigm is all we need, but if such interactions are important, then a 
relational affordance based paradigm is supported. How can we tell if such 
interactions are important? One way is by comparing affordance-based versus 
functional descriptions of artifacts. If interactions of the type under question are not 
important, then an affordance based description should be no better than a functional 
one, but if the affordance-based description is indeed more powerful, i.e., it describes 
more (qualitatively and/or quantitatively) about artifacts, then this validates the 
affordance- based paradigm from which it came. 

Interestingly, this question has already been answered definitively by Wegner, 
whose proof of the incompleteness of interaction machines shows that more can be 
done with interaction machines than with algorithmic, i.e., function-based, Turing 
machines. However, concrete examples of the superiority of affordance based 
descriptions are also not hard to find. One such example, discussed in prior work by 
the authors [9] is that of the everyday stool (Figure 3a). Its function is to support 
weight, but so does a tree stump or a briefcase on end. What makes a stool a stool is 
that it affords sitting to users, in a characteristically limited range of postures. The 
same argument goes for the sitability of chairs, but consider the stackability of chairs 
(Figure 3b). For shipping and storage this is often an important consideration. 
Colloquially, one might say that chairs that are stackable are more “functional” than 
chairs that are not. However, this is an abuse of terminology since stacking is not a 
function of any individual chair or chairs—they do not stack themselves. Rather, 
users stack chairs, but in order for that to happen the chairs must afford stacking. 
They must possess the affordance of stackability.

Figure. 3. Three object lessons in affordance based descriptions versus functional descriptions

 (a) (b) (c)
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Other examples are numerous. Consider a household curling iron (Figure 3c); it 
does not curl hair by itself—why it is hardly more than a heated shaft and a hinged 
metal clip. Its function therefore cannot truly be said to curl hair. Yet the curling iron 
affords curling hair because it can be used with the appropriate twisting and pulling 
motion of the hand, arm, and wrist in order to curl hair. A curling iron thus possesses 
the affordance of “hair-curlability.”

That the artifact affords its purpose, denoted by its very name, is not a trivial 
observation. The same can be said of an air conditioner, which affords cool 
(conditioned) air, regardless of whether a convective cooling tower or vapor-
compression refrigeration cycle, or thermoelectric effect, or some other process is 
used to achieve it [9]. Suffice it to say that these few examples, together with their 
ultimate inductive conclusion embodied in Wegner's theorem, validate on descriptive 
theoretical grounds the appropriateness of a relational affordance based paradigm for 
design, and more generally a view of design as being fundamentally complex. 

6.   Summary Remarks 

This chapter has laid forth a theoretical discussion of the complex nature of design 
and has argued that the concept of affordance, because of its relational character, is 
more appropriate for design than the transformative concept of function. The concept 
of affordance is a powerful tool to help understand specific processes in design, 
within a larger context of design as a complex adaptive system. The issue of putting 
this theoretical understanding into practical use has been another focus of our work 
[12] and is on-going. 
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1. Introduction 

Over the last two decades, the New Product Development (NPD) process has become 
an important focus of interest for industrial companies as well as academic 
researchers.  The success of NPD process analyses [e.g., 6, 8] reflects this increased 
importance.

Under the pressure of foreign competition, many companies have realized the 
significance of NPD, not only for their economic well-being, but also for their very 
survival.  In many industries, not only are 75-85% of life cycle production costs 
determined during the design process [7], but a delay of six months in NPD cycle 
time can reduce product profitability by a third over its life cycle [24], or, in fast 
clockspeed industries, such as notebook computers, by over a half [22].  Moreover, it 
has long been known that R&D investments boost business growth [e.g., 28]. 

The identification of NPD as a key success factor has given rise to a multitude of 
NPD management techniques, among which multi-functional teams have become the 
most prominent.  However, in spite of advances in practice and theory, the NPD 
process remains plagued by failures and missed performance targets [e.g., 30, 43, 44].  
Large engineering projects, in particular, seem to be prone to failure.  Specifically, the 
pathology of “problem-solving oscillations” [25] seems to be recurring in large 
projects across many industries, as the following examples suggest. 



142 Spiraling Out of Control 

We interviewed the project manager for the design of a new engine in a large 

automotive OEM. Such a project involves several hundred engineers and incorporates 

many component design choices concerning, for example, the mechanical 

configuration, materials, electronics and software.  The project took off with one set 

of basic choices, only to run into trouble three months later because of some 

component performance hitch.  So, another approach was tried, which also ran into 

trouble.  The cycle of new design starts and failures repeated itself for another three 

times until the project manager took the decision to take the first set of parameters and 

work it all through, despite the obvious shortcomings.  He commented, “In the end, 

we were where we had started out.”  (Figure 1).

Stylized multi-dimensional 

design parameter space

Starting point 

(e.g., old 

engine)

First 

approach,

revisited as 

fifth approach

Second

approach

Third

approach

Fourth

approach

Figure 1.  Problem-solving oscillations in automotive engine design. 

In another automotive company, Yassine et al. [54] observed similar behavior.  

Progress oscillated between being ahead and behind schedule, and one engineer 

commented, “We just churn and chase our tails until someone says that they won’t be 

able to make the launch date.”  Similarly, Terwiesch and Loch [44] and Terwiesch et

al. [45] examined the effect of engineering change orders (ECOs) in the final phase of 

yet another car development project.  They found that ECOs snowballed from one 

component to another, sometimes in cycles, causing budget and schedule overruns. 

These effects are not confined to the automotive industry.  Iansiti [16] documented 

the development progress of Microsoft Office, measured as the number of outstanding 

coding errors (bugs).  The number of reported bugs did not simply converge to a 

marketable level, but exhibited large ups and downs.  When developers worked to 

eliminate the bugs, new ones were introduced into the code, or old bugs became 
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exposed, as performance problems required the introduction of new code.  Bugs 

waxed and waned for over two years until the product finally converged.  The same 

happened repeatedly for later products, not only at Microsoft, but also at many 

software companies [8]. 

In the aeronautics industry, the same phenomenon of problem-solving oscillations 

exists [17]: in the design of the Boeing 767-F, half of the engineering labor cost 

budget was spent on redoing work that the engineers had done before, because the 

original work did not lead to a satisfying systems result.  About 25-30% of design 

decisions required rework.  In some instances, up to 15 iterations were required for 

some of the decisions to reach a stable state, causing cost overruns and loss of quality.  

Klein et al. come to the conclusion that “the dynamics of current collaborative design 

processes are daunting, and have led to reduced design quality, long design cycles and 

needlessly high costs.”  Also in other industries, it is reported that rework can 

consume up to 50% of the engineering capacity and up to one third of the 

development budget [6, 35]. 

Consider one more example from the semiconductor industry.  Hamilton [11] 

reports how the design of Intel’s Itanium chip design went around in a circle.  The 

team found itself in a “nightmarish world where a change to one module would ripple 

through the work of several hundred other people, leaving more problems in its 

wake.”  The design only finally converged after a manager introduced improved 

methods for quickly discovering the ripple effects of component design decisions. 

What do these examples have in common?  They all show that problem-solving 
oscillations in design are a major problem in large NPD projects.  They suggest that 
instability is inherent to many design processes.  Thus, the lack of control over the 
final product performance, experienced by many development managers, may be due 
to systemic reasons more than individual shortcomings.

Unfortunately, the technology management community (managers and academic 
researchers) does not have a clear understanding of which (combinations of) 
parameters have the ability of driving spirals of mutually amplifying changes that 
result in oscillations and divergence.  In the dominant research paradigm of the social 
sciences over the last decades, the world of interactions is viewed as linear: if we do 
twice as much of A, we get roughly x times B.  Thus, conclusions about the right 
choices can easily be drawn.  Unfortunately, complex NPD projects represent systems 
of interacting design decisions in a distributed way: although there is a global 
architecture, complex NPD projects always have a substantial number of local
component decisions because no one knows how to centrally optimize problems of 
the relevant complexity.  Distributed interactive systems fundamentally behave in a 
nonlinear way – doing twice as much of A may give us 0.1B in one instance and 5 
times B in another.  In nonlinear systems, small local changes may have large global 
effects.

In the next section, we explain how the problem-solving oscillations described in 

this section systematically arise in complex systems, such as NPD projects.  In 

Section 3, we will develop a number of actions that engineering management can take 

to avoid, or at least mitigate, system oscillations.  In the final section, we draw 

conclusions from these insights. 
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2. Causes of Problem-Solving Oscillations 

Large NPD projects represent examples of complex systems of many parts with many 
interactions, or, more formally, collections of components and activities that are 
“made up of a large number of parts that interact in non-simple ways, ... [such that] 
given the properties of the parts and … their interactions, it is not a trivial matter to 
infer the properties of the whole” [34, pp. 195].  The characteristics of complex 
systems are fundamentally prone to problem-solving oscillations. 

2.1 Why problem-solving iterations arise 

A typical feature of complex systems is that the overall problem has to be partitioned 
into pieces in order to be manageable – economists call this “bounded rationality”, or 
the inability to consider all system parts and their interactions in making a decision 
[e.g., 50].  This is also well-known in Operations Research [see, e.g., 37].  Thus, 
individuals or departments are assigned pieces of the problem, coordinated by a 
system architecture with defined interfaces.  These individuals act locally to do the 
best they can with (“optimize”) the pieces of the problem for which they are 
responsible.  Ideally, in a perfectly modular system, the individuals can work in true 
separation from one another, but many interdependencies remain in most large NPD 
projects.  In other words, the individuals influence one another, and while they may 
be aware of the influences, they cannot fully take them into account in their local 
decisions (that would amount to a perfect system optimization).  As the component 
designs evolve over time, ongoing problem choices in other groups make the 
requirements for a particular group inherently unstable [e.g., 46, 50].

Consider the example in Figure 2, the climate control system (CCS) of a car.  The 
CCS supplies the passenger cabin with outside air and controls the temperature and 
humidity of the air.  This particular, relatively simple, system consists of 13 
components (such as the radiator; the entire engine counts as one “component” for the 
purpose of the CCS) and 20 interactions (represented by arrows), not counting any 
interactions with the rest of the car.  Interactions represent exchanges of material 
flows, mechanical force, energy (e.g., electricity), information, and the competition 
for space (the latter is not shown in the Figure).

The interactions can be represented in the form of a design structure matrix (DSM, 
see [9, 40]).  The DSM lists all activities (which we can group by component) along 
the top (information providing) and along the side (information receiving).  For 
example, an entry in column A (engine) and row B (cooling circuit) of the matrix 
represents a dependence (of the cooling circuit); entries both in column B and row C
(radiator) and in column C and row B an interdependence (the components depend on 
each other).  In large projects, we typically find dependence cycles – for example, the 
auxiliary heater influences the heating circuit, which influences the main unit (with 
motors and valves), which, in turn, affects the auxiliary heater through signals and 
space constraints.
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Figure 2.  The automotive CCS system (source: Terwiesch et al. 2002). 

The interdependencies require coordination mechanisms among the players: as one 
individual makes changes to his component, or sub-problem, the other players must 
be informed in order to take the changes into account in their own decisions.  
Coordination mechanisms range from static a priori rules (such as design handbooks) 
over formal design meetings and engineering changes to frequent communication in 
cross-functional teams [e.g., 1].  One specific way to exchange design information is 
through prototypes [6, 8].  Often, problems are discovered when a prototype is 
assembled from individual components.  In addition to official mechanisms, 
coordination frequently happens when the individual component owners meet 
informally (at random encounters, at lunch, etc.), or even accidentally, and exchange 
information about the respective state of their designs.

The different coordination mechanisms vary in their “channel capacity” or their 
ability to convey ill-defined and preliminary information; static channels have the 
lowest capacity, and informal face-to-face communication the highest [1].  Thus, 
conventional wisdom has long advocated using high-bandwidth communication 
channels in complex projects.  Unfortunately, the high bandwidth channels also 
consume a lot of time.  No communication channel provides perfect coordination 
because the organization quickly suffocates under information overload.  In all large 
and complex NPD projects, therefore, information travels gradually, and thus, 
component engineers receive updates of their peers’ decisions with a delay.  Modern 
communication media (such as e-mail, CAD files, electronic meetings, 
videoconferencing) do not ensure that all project members are immediately informed 
of all important events.  They merely force the individual engineers to choose what 
they pay attention to. 
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These are then the three fundamental causes of problem-solving oscillations – 
distributed interdependent decisions, complexity causing dependence cycles, and 
gradual coordination (updating of other components’ decisions).  In large projects, it 
inevitably happens that changes in one component, as its design evolves (distributed 
problem solving), affect other components, which, in turn, affect the first component 
(dependence cycles) with a delay (because of gradual coordination).  Thus, the first 
component exerts (possibly considerable) effort on design changes that are obsolete 
because of the feedback changes in the other components, and so do the others, as 
continuing adjustments in the first component ripple back to them.

If the size of the “feedback”, or the influence of an actor’s design change reflected 
through others on itself, is strong and pervasive enough, the feedback loops can cause 
the system to diverge or to remain unsettled.  The result is that (a) the system may 
take a long time to “settle down” to an overall collective design in which all 
components perform well, and (b) a large amount of manpower and costs are wasted.

There exists a very general mathematical theory that describes (slightly simplified 

models of) large systems of the type described above.  This theory (random matrix 

theory) predicts that the larger the project (the distributed system), as measured by 

components or interdependencies, the more likely are the problem-solving oscillations 

and the more severe they become – failure rates grow exponentially before 

approaching 100%.
1

Random matrix theory, thus, predicts that a complex NPD project (featuring either 

many components, or many interactions, or both) inherently has a high probability of 

problem-solving oscillations, of instability, and of a long design conversion time.  The 

larger the system, the worse the oscillations become.  In other words, large complex 

projects are hard to manage, and often fail, even when none does anything wrong.  

This prediction is largely borne out by empirical evidence – large projects often do

fail, and companies undertaking them must either develop special expertise or 

abandon them (for example, there is a trend in the software industry to keep projects 

smaller, see [31]). 

2.2 The insufficiency of modularity and rich communication channels 

One often hears the assertion, “If we could just communicate effectively, we would 

avoid all this churning.”  This is also often proposed in NPD literature [e.g., 1, 13].  

However, we have already alluded to the fact that modern, rich communication 

channels will never eliminate problem-solving oscillations because the availability of 

ubiquitous information does not remove the processing bottleneck of individual 

component designers or groups.  Even if all design changes were posted every day on 

                                                          
1

Take the DSM and write in the element of the i-th row and the j-th column by how much component i

would change its design [in a suitable metric], in order to maintain its best component solution, when 

component j changes its design by a small amount.  This is called the Jacobian matrix of the linearized 

system, and it describes the system’s behavior in the sense that its largest [real] eigenvalue represents the 

size of the feedback of a component change through other components for itself.  That is, if the largest 

eigenvalue is positive, the system tends to oscillate and diverge, while a negative largest eigenvalue 

characterizes a dampened system in which oscillations quickly die out.  Random matrix theory formally 

shows that the largest eigenvalue grows as the system size grows (everything else being equal), see [25, 

26].
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a central electronic bulletin, the component designers would still not have the time to 

process them.  As one manager remarked to us, “We simply do not have the time and 

luxury to have everyone fully informed all the time of everything that is going on.”

A subtle and devious effect of oscillations, especially in the presence of rich 

communication channels, lies in equivoque, or the inability of the participants to 

understand and interpret what is going on.  As the reasons for problem-solving 

oscillations are not widely understood, it is not uncommon for project teams to be 

caught up in endless cycles of rippling changes, regardless of intensive 

communication, to ask themselves why they are facing such difficulties, and to doubt 

their competence.  Seemingly unexplainable problems can cause severe stress and 

dysfunction [e.g., 45, 52]. 

A second widely discussed tool to reduce complexity is modularity.  A modular 

system is one with few, and well defined, interfaces cutting across the modules 

(component groups) and functions of the product [e.g., 47].  For example, software 

modules are classes or subroutines that have a clear interface for evoking them.  In car 

development, modularization comes in the form of mechanical “chunks” with clear 

interfaces to the rest of the car.  For example, a car engine is developed largely 

independently of the body.

Modularity, in effect, reduces complexity itself by dividing the complex system 

into several smaller subsystems, which do not (or barely) interact.  Making the 

subsystems smaller already strongly reduces the oscillations effect (as random matrix 

theory predicts), without any additional improvements.  Why does not everyone build 

modular systems, if they are so helpful?  The answer is that the design restrictions 

imposed by modularity reduce system performance and compactness, especially for 

products incorporating new technologies that are not yet fully understood.  In 

particular, modularization limits the search space of the design team, which may 

result in a sub-optimal solution [10].  Suffering these performance disadvantages may 

well make a product uncompetitive [e.g., 48].  Thus, modularity is not always an 

option.

A more subtle form of modularity is a “feed-forward” structure of dependencies 

among the components.
2
  This means that the dependencies “order” the components 

into a natural sequence that will never produce any feedback dependencies to 

previous components.  Such a structure prevents any dependence cycles and, thus, any 

oscillations.  But again, this puts heavy restrictions on the permissible product design 

(only strictly sequential dependencies), and is rarely feasible for a competitive 

product [e.g., 49]. 

                                                          
2

Such a feed-forward dependence structure means that the DSM is lower-triangular, that is, all entries are 

in the lower left half under the diagonal, reflecting the fact that the components can be re-numbered in 

such a way that no dependence points back to a lower-numbered component.  Traditional project 

planning methods, such a PERT or critical path, also assume a feed-forward dependence structure.
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3. What Can We Do? – Managerial Actions to Mitigate 
Oscillations

In the previous section, we argued that one way to reduce problem-solving 

oscillations is to attack their root, complexity in itself, by limiting the system size or 

the number of interdependencies (modularity).  While such complexity reduction is 

not always feasible, there is a range of less radical levers that engineering managers 

have at their disposal to at least mitigate oscillations.  Some of these are well-known 

to managers, but are usually discussed in different contexts, and have not been clearly 

linked to the roots of problem-solving oscillations.

Complexity (dependence 

cycles)

Distributed

problem 

solving

Gradual

coordination

Problem-solving oscillations

Partially global 

system 

optimization 

• Immediate information 

broadcast

• Preliminay information 

exchange

• Limited project size

• Modularity (fewer dependencies)

• No cycles (sequential structure)

• Freezing of some component specifications

• Satisficing

React quickly: re-start 

after divergence

Figure 3.  Actions mitigating problem-solving oscillations. 

Figure 3 summarizes, together with the complexity reduction measures from 

Section 2, seven types of actions that managers can take; we discuss them in detail in 

the remainder of this section.  The first two (re-start and freeze) are the standard 

results that happen when problem-solving oscillations are not consciously managed.  

The third and fourth (global optimization and immediate communication) represent 

attempts to eliminate the two conditions for oscillations (which are required in 

addition to complexity), namely, distributed problem solving and gradual 

coordination.  The last three (satisficing, communicating preliminary information and 

introducing a coordinating hierarchy) have not previously been discussed in the 

context of problem-solving oscillations and are somewhat counterintuitive. 
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3.1 Re-start after system has diverged 

An oscillating system may not converge to a satisfactory design at all, but rather 

“spiral out of control”, that is, the system may exhibit components that are forced into 

less and less adequate solutions by the restrictions from other components.  A 

“diverged” design does not, of course, reach the market – the design is stopped, and 

either the project is scrapped, or design starts anew from a known starting point.  The 

trick is to stop a project quickly if divergence becomes apparent.  We have seen many 

projects that continued to linger on, although it was clear that they would not lead to 

reasonable results.  The waste of time and resources of indecision can be much worse 

than the pain caused by decisively re-starting.

What makes this difficult to do is, again, equivoque, as in Section 2.  It is not clear 

exactly how to define the point when divergence of a project becomes apparent.  For a 

while, it is not apparent what the outcome of the project will be, whether it will 

oscillate a bit longer and then converge, or fail.  During this phase, project 

organizations experience enormous stress.  The tendency to hang on for too long is 

called “over-commitment” – hope, social pressure, or an unwillingness to give up 

what one has achieved, may prevent the decision to stop [see 39].  Sometimes, a new 

decision maker is needed to look at progress with an unbiased eye, and make the call 

[4].  Installing a regular review process and introducing quality gates for NPD 

projects can help the organization to utilize and translate into action previous 

experience with oscillating projects. 

3.2 Freeze the specifications of some components 

It is an important architectural choice as to what should be optimized for the system 

and what components and interfaces are less important.  Such “secondary” system 

elements may be fixed at some point during the development process.  Freezing 

specifications stops short of segmenting the design (or reducing complexity itself, as 

modularization does).  It defines which optimizations across interfaces have 

precedence over other optimizations.  Holding some components and interfaces fixed 

reduces the size of the part of the design system that contributes to oscillations.  This 

is a way of bringing a spiraling project under control, albeit at the cost of 

performance, as changing the fixed components may be beneficial. 

Take the example of developing an integrated entertainment system (CD, radio, 

cassette, TV, GPS, and links to the phone) as part of a new car model.  After a long 

“back and forth” about the best operating system (OS) for the software, the team had 

to settle on one (freeze the decision) although the choice was not the one with the 

highest performance (and hotly contested).  However, without the freezing, the many 

other components of the project had no chance of converging to a design.

More generally, some of the luxury car manufacturers have traditionally given 

design and feature decisions more emphasis than they have to production issues.  As a 

result, feedback loops from production back to product elements of the design process 

are limited.  This eliminates some problem-solving oscillations, at the expense of 

production cost. 

Experience plays an important role in freezing decisions.  An organization 

developing a next generation product, based on a well-known architecture and well-

understood technologies, can predict many aspects of the system’s performance.  The 
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organization can choose in advance ranges of design parameters that are likely to 

yield high performance.  Thus, many parameters can be frozen (i.e., ranges do not 

need to be considered) without trading off performance.  In contrast, when freezing is 

used in novel projects, it is often not understood what performance is sacrificed; 

rather, the freezing is defensive in order to get the project’s progress under control. 

3.3 Satisfice 

Like freezing specifications, satisficing substitutes for truly reducing complexity.  It 

achieves this by requiring the individual component designer to forgo the last bit of 

local component performance improvement.

In many design projects, significant initial progress is made quickly, while a large 

fraction of iterations are linked to the last few percent of performance (fine-tuning and 

perfecting).  By not insisting on the last few percent, it often turns out that the number 

of iterations, and thus problem-solving oscillations, significantly decrease [23].  

Because of the non-linear deterioration in system convergence, a small compromise in 

component performance may buy a disproportionally large improvement in design 

iterations and design conversion time.  “Enough is enough” turns out to be a good 

motto for fast design convergence. 

Of course, satisficing can be dangerous to overall system performance if not used 

consciously and in a controlled fashion.  Designers have to be aware that, for some 

components, even small reductions in overall performance are not acceptable.  For 

others, there is large leeway.  Therefore, the overall architect (or the project 

leadership) needs to specify in advance which elements must be fully optimized and 

which components are allowed to compromise.  This explicit reasoning for satisficing 

is important also psychologically, to prevent a creeping spirit of mediocrity (“I didn’t 

insist on the best solution not because I wasn’t ambitious enough but for the good of 

everybody.”).

The well-known method of “design to cost” can be used to target satisficing.  

Design to cost efforts select those product components and features that result in the 

largest benefit for the customer.  Thus, the method can help in selecting those 

components that can be subject to satisficing (either no benefit, or already sufficient 

benefit).

3.4 Design components for partial system optimization 

Large, complex projects are characterized by distributed problem solving.  In other 

words, the only way we know how to accomplish the task is to cut the overall 

problem into pieces (components), with as few and well defined interfaces as 

possible, and work on them separately.  For example, there is an engineer who 

designs door handles, and he designs the best door handles in the world!  The 

components have local performance measures.  Unfortunately, these local 

performance measures take on a life of their own (e.g., over-designing the door 

handle with no customer benefit but a cost penalty), and they lead to problem-solving 

oscillations, as we have seen.

Now, imagine that the component engineers could take into account the effects of 

their decisions on the other components, trading off their own local performance for 

system performance.  Of course, this is not possible because it would amount to 



Spiraling Out of Control            151 

global system optimization again (and it is a feature of large, complex projects that we 

do not know how to accomplish system optimization).  However, it is often possible 

partially, for larger subsystems.  For example, an entire interface (a large module) of a 

software product or the engine of a car (a complex system in itself) may be optimized 

as a whole.  Optimizing larger system chunks amounts to reducing the effective 

number of “components” of the system (i.e., fewer distributed optimizations happen), 

which simultaneously improves system performance and reduces oscillations.  As for 

specification freezing, the ability to optimize larger system chunks is greatly aided by 

experience and the use of well-known architectures and technologies.

Having system optimization in mind when designing components is sometimes 

surprisingly difficult to achieve.  Power struggles, pride in one’s own work, social 

identity and emotional relationships, in addition to a “rational” assessment of 

efficiency, influence behavior.  First, it is well established [e.g., 18, 42] that group 

identity and perceived conflicts over resources or power have a strong impact on 

cooperation.  In other words, if a design trade-off must cut across perceived group 

boundaries (such as different engineering disciplines, or the functional boundary 

engineering versus marketing), the actors may refuse to collaborate.  If a common 

group identity exists for the information exchanging parties, information will be 

exchanged more freely.  In one case, an electronics engineer in a car development 

project commented, “We work within a few micro inches, but these mechanical metal 

bashers, they work with tolerances of a quarter of an inch.  Isn’t that ridiculous!” 

Second, personal relationships are required in order to overcome a general 

reluctance to share information. For example, Uzzi [49] investigated buyer-supplier 

relationships in the New York fashion industry, and found that ongoing relationships 

tended to make economic exchanges reliable, and to eliminate opportunistic behavior 

and free-riding (however, if the relationships persisted too long, their purpose took on 

an identity of its own, independent of, and sometimes to the detriment of, the 

economic rationale).  Similarly, Bensaou and Anderson [3] found, in a study of buyer-

supplier relationships, that those with personal ties performed better. 

3.5 Immediate communication broadcasts 

In addition to attacking complexity itself and distributed problem solving, managers 

can also attack the third reason for oscillations, namely communication delays (and 

thus gradual coordination).  We stated in Section 1.2.2 that it is obviously impossible 

to inform every one of all relevant events in a project – information inundation and 

overload would result.  However, as for system optimization (Section 1.3.4), it is 

often possible to do this partially, by quickly communicating a component design 

change to a few critical other components with the strongest dependence.

The DSM of interdependencies in a design project is usually only thinly populated, 

with typical densities of about 10% [e.g., 38].  That is, of all possible dependencies in 

the matrix,
3
 only 10% actually exist.  It is, therefore, often possible to quickly 

communicate along a few important dependencies, thus avoiding work that is based 

on obsolete assumptions about other components. 

                                                          
3

In a system of N components, the fully populated DSM matrix contains N(N-1) dependencies. 
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Executing this focused quick communication requires process discipline and 

awareness.  Awareness, or the knowledge of the parties in the project of the nature of 

their interdependencies, may seem trivial and self-evident.  It may be trivial, perhaps, 

if all personnel working in the project are experienced and have worked in similar 

projects before, but in most projects, a large fraction of personnel is not experienced.  

We have, in our work, encountered numerous examples of project workers who 

negatively impact fellow workers simply because they were not even aware of the fact 

that an interaction existed.  Thus, it is an important first investment in a project to 

educate the participants about the overall project architecture and about 

interdependencies, and to give them an opportunity to explore the precise content of 

the interdependencies. The DSM is one widely known tool for this education.  Such 

initial education is an important investment. 

There are different methods for ensuring quick communication.  Co-location is 

still the most effective, but not everyone in a project of several hundred people can be 

co-located.  CAD technologies help by making certain dependencies (such as spatial 

conflicts) quickly visible.  Fast compilers and “daily builds” help to update 

information quickly in software development [e.g., 8].

3.6 Exchange preliminary information 

In addition to quickly communicating final design choices, oscillations can be 

dramatically dampened by also communicating preliminary information, that is, an 

intermediate status of an evolving design, which is still likely to change [23].  

Exchanging preliminary information helps because it, again, reduces the amount of 

work other components do, based on obsolete information that they regard as final 

and reliable.

Preliminary information makes dependencies and uncertainty explicit by labeling 

a design status as unfinished.  Preliminary information is either unstable (I estimate 

that the engine will deliver 4 gallons of hot water per hour to the heating unit, but 

don’t rely on this estimate because it may change, so the heating unit may have to find 

additional heating energy, or not) or imprecise (I don’t know yet how much hot water 

the engine will deliver; it may vary between 2 and 6 gallons per hour), or both [see 

45].  Communicating the type of uncertainty in the design status can help the 

dependent components to adjust their own component decisions and, thus, avoid 

wasted effort.  Signaling the preliminary nature of the information also helps to 

reduce equivoque, as it makes the component designers aware of the overall status of 

the project. 

Similar to global system optimization (Section 1.3.4), preliminary information 

often fails because of biases in human behavior.  Engineers have a tendency not to 

communicate preliminary information to their peers, sometimes because of 

perfectionism, and often because having to reverse a decision may be viewed as a lack 

of technical understanding and expertise.  Therefore, engineers often hold back 

information until they can be sure that their choice is justified.

Regular meetings (formal and informal) can foster the exchange of preliminary 

information.  However, as we discussed in Section 1.2.2, additional communication 

comes at a cost.  First, meetings cost time, and second, the information exchanges 

become a subject of reciprocity considerations (see Section 1.3.4): “I will not move 
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before you give me your final specifications, and you will not move before I give you 

mine.”  This is sometimes called coordination fever.  Reciprocal relationships can 

help to boost cooperation, but may also cause spirals of retaliation, thus reducing 

information exchanges.

3.7 Introduce a coordinating hierarchy 

Problem-solving oscillations represent an area of unexpected benefits from 

introducing a hierarchy.  We have already argued that forcing modularity on a design, 

or ignoring interdependencies that cut across groups, may substantially compromise 

overall system performance.  A hierarchy offers the following compromise: Form 

groups of highly connected components and communicate frequently, and without 

delay, within those groups, and communicate less frequently at defined points in time, 

through a coordinating manager, across groups.  The grouping produces some of the 

benefits of modularity (because the groups correspond to smaller subsystems), and the 

periodic coordination across groups avoids the downside of too much treating the 

groups in isolation [26].

This works well if it is naturally possible to form the overall design team into 

groups in which most interactions are concentrated.  NPD organizations often do this 

intuitively – they structure the project organization around subsystems that are highly 

connected internally and less connected to other subsystems [29, 38].

This is, however, subtle, and may have unexpected negative effects.  First, the 

structure of the groups and the hierarchy itself influence communication (e.g., 

communication across groups becomes much harder as group identities are formed) 

and coordination patterns and, thus, the outcome of the design effort.  Therefore, the 

project leadership must ensure that important interdependencies are not overlooked.

Second, the effort to concentrate design interdependencies within the groups may 

go too far – the groups (sub-problems) themselves may get so intertwined and 

complex in the process, that they themselves start oscillating.  For example, 

manufacturing engineers, applying the method of design-for-assembly, have noticed 

“design origami”: in its drive for reducing the number of parts, design-for-assembly 

sometimes produces parts that are so complex that they drive total cost up instead of 

down [e.g., 41]. 

Third, a highly split structure limits the search space of the organization: as the 

sub-problems of the groups become smaller, each performs a more and more local 

solution search.  As a whole, this may substantially reduce the overall amount of 

search, and result in an incremental and low-performing system [32].  In short, the 

organization needs to seek a balance between decentralization and centralization.  

While no one knows where the “optimal balance” lies, knowing that neither extreme 

is desirable is already helpful. 

4. Discussion and Conclusion 

In this chapter, we started with the observation that large scale distributed activities in 

organizations tend to lead to problem-solving oscillations, or repeated “cycling” of 

the problem-solving evolution.  Such oscillations imply design process instability and 

unpredictable design conversion times.  The examples in the Introduction, as well as 
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theoretical work, suggest that these problems are pervasive in large, complex design 

projects.

Problem-solving oscillations are driven by a combination of distributed 

interdependent decisions, complexity causing dependence cycles, and gradual 

coordination (delayed status updates across components).  Theoretical considerations 

suggest that oscillations are, to some degree, inevitable in large, complex projects, 

and cannot be entirely avoided.

However, there are management techniques (summarized in Figure 3) that can 

mitigate them.  The radical conclusion would be simply not to undertake large 

projects.  However, less extreme measures are available.  First, the degree of 

distributed interdependent decisions can be reduced by collaboration and, at least 

partial, system optimization (for example, by optimizing larger, aggregated chunks 

rather than only components).  Second, complexity itself can sometimes be reduced 

(system modularity or a feed-forward structure of dependencies) or managed (by 

freezing components or satisficing with respect to component performance, in order 

to avoid iterations from perfectionism).  Third, modern information technologies 

make coordinating information more freely available to project workers, and can 

contribute to faster information exchange if they are used in a focused way, and if 

people understand the advantage of communicating.  Specifically, project workers 

often have to change their attitudes (of not wanting to be seen as changing their 

minds) in order to be motivated to exchange preliminary information.  Thus, product 

and organizational architecture and collaboration behavior have a great impact on the 

problem-solving convergence of complex engineering projects.

In some industries, a trend is emerging to restructure design processes toward 

becoming more robust in a sense that is consistent with our discussion.  For example, 

“functional design” is being discussed in automotive engineering.  The idea is that 

functionally defined, rather than physical component, units have fewer interfaces – to 

give one example, the functional unit “driver interface” characterizes a set of 

increasingly interacting components (driven by electronic integration), such as 

steering, acceleration and deceleration, gear shifting, control of car movement and 

status, communication and entertainment.  Approaching the design from this angle is 

hoped to allow better optimization of this set of functions (incorporating many 

components), and, simultaneously, allow clearer definition of the interfaces between 

this functionally defined chunk and the rest of the car.  The effectiveness of this 

approach will have to emerge (the benefit is currently not proven, especially in the 

light of the fact that automobiles are becoming more complex).

Many companies believe that new technologies (such as 3D-CAD and distributed 

databases) will drive productivity in NPD projects.  This chapter argues that new 

technologies improve the potential design performance, but also make project 

execution harder by increasing interdependencies and complexity.  Breakthrough 

improvements will come from a combination of new technologies and creative 

thinking about the drivers of problem-solving oscillations. 
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1. Introduction 

Almost all complex artifacts nowadays, including physical artifacts such as airplanes, 
as well as informational artifacts such as software, organizations, business processes 
and so on, are defined via the interaction of many, sometimes thousands of 
participants, working on different elements of the design. This collaborative design
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process is challenging because strong interdependencies between design decisions 
make it difficult to converge on a single design that satisfies these dependencies and is 
acceptable to all participants. Current collaborative design approaches are as a result 
typically characterized by heavy reliance on expensive and time-consuming 
processes, poor incorporation of some important design concerns (typically later life-
cycle issues such as environmental impact), as well as reduced creativity due to the 
tendency to incrementally modify known successful designs rather than explore 
radically different and potentially superior ones. 
 Research on negotiation focuses on understanding what local behaviors are to be 
expected from (relatively small numbers of) self-interested agents attempting to come 
to agreements in the face of interdependencies. Complex systems research 
compliments this perspective by attempting to understand the global dynamics that 
emerge as the collective effect of many such local decisions. These two perspectives, 
when brought together, have we believe much to offer to a understanding of the 
dynamics of collaborative design. The remainder of this paper is dedicated to 
exploring some of these insights. 

2. A Model of Collaborative Design 

Let us first establish a working definition of collaborative design. A design (of 
physical artifacts such as cars and planes as well as behavioral ones such as plans, 
schedules, production processes or software) can be represented as a set of issues
(sometimes also known as parameters) each with a unique value. A complete design 
for an artifact includes issues that capture the requirements for the artifact, the 
specification of the artifact itself (e.g. the geometry and materials), the process for 
creating the artifact (e.g. the manufacturing process) and so on through the artifacts’ 
entire life cycle. If we imagine that the possible values for every issue are each laid 
along their own orthogonal axis, then the resulting multi-dimensional space can be 
called the design space, wherein every point represents a distinct (though not 
necessarily good or even physically possible) design. The choices for each design 
issue are typically highly interdependent. Typical sources of inter-dependency include 
shared resource (e.g. weight, cost) limits, geometric fit, spatial separation 
requirements, I/O interface conventions, timing constraints etc.

Figure 1. A Model for Collaborative Design 
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Collaborative design is performed by multiple participants (representing individuals, 
teams or even entire organizations), each potentially capable of proposing values for 
design issues and/or evaluating these choices from their own particular perspective 
(e.g. manufacturability). Figure 1 below illustrates this model: the small black circles 
represent design issues, the links between the issues represent design issue inter-
dependencies, and the large ovals represent the design subspace (i.e. subset of design 
issues) associated with each design participant. In a large artifact like a commercial jet 
there may be millions of components and design issues, hundreds to thousands of 
participants, working on hundreds of distinct design subspaces, all collaborating to 
produce a complete design. 
 Some designs are better than others. We can in principle assign a utility value to 
each design and thereby define a utility function that represents the utility for every 
point in the design space (though in practice we may only be able to assess 
comparative as opposed to absolute utility values). A simple utility function might 
look like the following: 
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Design
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Figure 2. A simple utility function, with a single optimum 

The goal of the design process can thus be viewed as trying to find the design with the 
optimal (maximal) utility value, though often optimality is abandoned in favor of 
‘good enough’. 
 The key challenge raised by the collaborative design of complex artifacts is that 
the design spaces are typically huge, and concurrent search by the many participants 
through the different design subspaces can be expensive and time-consuming because 
design issue interdependencies lead to conflicts (when the design solutions for 
different subspaces are not consistent with each other). Such conflicts severely impact 
design utility and lead to the need for expensive and time-consuming design rework.

3. Strengths and Limitations of Current Approaches 

Traditionally, collaborative design has been carried out using a serialized process, 
wherein for example a complete requirements set would be generated, then given to 
design engineers who would completely specify the product geometry, which in turn 
would then be given to the manufacturing engineers to create a manufacturing plan, 
and so on. This has the problem that if an earlier decision turns out to be sub-optimal 
from the perspective of someone making dependent decisions later on in the design 
process (e.g. if a requirement is impossible to achieve, or a particular design geometry 
is very expensive to manufacture): the process of revising the design is slow and 
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expensive, and often only the highest priority changes are made. The result is designs 
that tend to be poor from the standpoint of later life-cycle perspectives, including for 
example environmental concerns such as recyclability that are becoming increasingly 
important.
 More recently, several strategies have emerged for better accounting for the 
interdependencies among collaborative design participants. These include concurrent 
engineering and least-commitment design: 
 Concurrent engineering involves the creation of multi-functional design teams, 
including representatives of all important design perspectives, for each distinct design 
subspace. Design decisions can be reviewed by all affected design perspectives when 
they are initially being considered, so bad decisions can be caught and revised 
relatively quickly and cheaply. While this approach has proven superior in some ways 
to traditional serial design, it does often incur an overwhelming burden on engineers 
as they have to attend many hours of design meetings and review hundreds of 
proposed changes per week [6]. 
 Least-commitment design is a complimentary approach that attempts to address 
the same challenges by allowing engineers to specify a design incompletely, for 
example as a rough sketch or set of alternatives, and then gradually make the design 
more specific, for example by pruning some alternatives [9, 13]. This has the 
advantage that bad design decisions can be eliminated before a lot of effort has been 
invested in making them fully specific, and engineers are not forced to make arbitrary 
commitments that lead to needless conflicts. 
 While the adoption of these approaches has been helpful, major challenges 
remain. Consider for example the Boeing 767-F redesign program [6]. Some conflicts 
were not detected until long (days to months) after they had occurred, resulting in 
wasted design time, design rework, and often even scrapped tools and parts. It was 
estimated that roughly half of the labor budget was consumed dealing with changes 
and rework, and that roughly 25-30% of design decisions had to be changed. Since 
maintaining scheduled commitments was a priority, design rework often had to be 
done on a short flow-time basis that typically cost much more (estimates ranged as 
high as 50 times more) and sometimes resulted in reduced product quality. Conflict 
cascades that required as many as 15 iterations to finally produce a consistent design 
were not uncommon for some kinds of design changes. All this in the context of 
Boeing’s industry-leading concurrent engineering practices. The dynamics of current 
collaborative design processes are thus daunting, and have led to reduced design 
creativity, a tendency to incrementally modify known successful designs rather than 
explore radically different potentially superior ones. 
 Improving the efficiency, quality and creativity of the collaborative innovative 
design process requires, we believe, a much better understanding of the dynamics of 
such processes and how they can be managed. In the next section we will review of 
the some key insights that negotiation and complex systems research offers for this 
purpose.

4. Insights from Complex Systems and Negotiation Research 

A central focus of complex systems research is the dynamics of distributed networks, 
i.e. networks in which there is no centralized controller, so global behavior emerges  



162 The Dynamics of Collaborative Design 

solely as a result of concurrent local actions. Such networks are typically modeled as 
multiple nodes, each node representing a state variable with a given value. Each node 
in a network tries to select the value that maximizes its consistency with the 
influences from the other nodes. The dynamics of such networks emerge as follows: 
since all nodes update their local state based on their current context (at time T), the 
choices they make may no longer be the best ones in the new context of node states 
(at time T+1), leading to the need for further changes. 
 The negotiation literature adds the following refinement to this model. Each one 
of the nodes is self-interested, i.e. attempts to maximize its own local utility, at the 
same time it is seeking a satisfactory level of consistency with the nodes it is inter-
dependent with. A central concern of negotiation research is designing the rules of 
encounter between inter-dependent nodes such that each node is individually incented 
to make decisions that maximize social welfare, i.e. the global utility of the collected 
set of local decisions. In this case, we can define global utility simply as the sum of 
node utilities plus the degree to which the inter-node influences are satisfied. 
 Is this a useful model for understanding the dynamics of collaborative design? 
We believe that it is. It is straightforward to map the model of collaborative design 
presented above onto a network. We can map design participants onto nodes, where 
each participant tries to maximize the utility of the subsystem it is responsible for, 
while ensuring its decisions satisfy its dependencies (represented as the links between 
nodes) with other subsystems. As a first approximation, it is reasonable to model the 
utility of a design as the local utility achieved by each participant plus a measure of 
how well all the decisions fit together. Even though real-world collaborative design 
clearly has top-down elements early in the process, the sheer complexity of many 
design artifacts means that eventually no one person is capable of keeping the whole 
design in his/her head and assessing/refining its global utility. Centralized control of 
the design decisions becomes impractical, so the design process is dominated perforce 
by concurrent subsystem design activities (performed within the nodes) done in 
parallel with subsystem design consistency checks (assessed by seeing to what extent 
inter-node influences are satisfied). We will assume, for the purposes of this paper, 
that individual designers are reasonably effective at optimizing their individual 
subsystems.
 The key factor determining network dynamics is the nature of the influences 
between nodes. There are two important distinctions: whether the influences are 
linear or not, and whether they are symmetric or not. We will consider each one of 
these distinctions in turn, with an important side trip into the negotiation literature to 
understand the dilemmas raised by the presence of self-interested agents. This will be 
followed by a discussion of subdivided network topologies, and the role of learning. 
Unless indicated otherwise, the material on complex systems presented below is 
drawn from [2]. 

4.1. Linear vs. Non-Linear Networks 

Non-Linearity Produces Multi-Optimum Utility Functions: If the value of nodes is a 
linear function of the influences from the nodes linked to it, then the system is linear, 
otherwise it is non-linear. Linear networks have a single attractor, i.e. a single 
configuration of node states that the network converges towards no matter what the  
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starting point, corresponding to the global optimum. Their utility function thus looks 
like that shown in Figure 2 above. This means we can use a ‘hill-climbing’ approach 
(where each node always moves directly towards increased local utility) because local 
utility increases always move the network towards the global optimum.
 Non-linear networks, by contrast, are characterized by having utility functions 
with multiple peaks (i.e. local optima) and multiple attractors, as in Figure 3: 

Figure 3. A multiple optima utility function, characteristic of non-linear networks 

A key property of non-linear networks is that search for the global optima can not be 
performed successfully by pure hill-climbing algorithms, because they can get stuck 
in local optima that are globally sub-optimal. Consider, for example, what happened 
in Figure 3 above. Hill-climbing took the design to the top of a local optimum, which 
has substantially lower utility than some other designs. 
 To make this concrete, let us examine the following simple example: a network 
consisting of binary-valued nodes where each node is influenced to have the same 
value as the nodes it is linked to, and all influences are equally strong (Figure 4): 
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Figure 4. A simple network illustrating how networks can get stuck in local optima 
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Node A, for example, is influenced to have the same value as Node C, while Node C 
is influenced to have the same value as Nodes A, B and D. For simplicity’s sake, we 
assume that the global utility is determined solely by the degree to which the inter-
node influences are satisfied. We can imagine using this network to model a real-
world situation wherein there are six subsystems being designed, with two equally 
optimal design options for each, and we want them to use matching interfaces. 
 This network has reached a stable state, i.e. no single node change will result in 
an increase in the number of satisfied influences. If we change the value of node A 
from 0 to 1, it will violate its one influence so this change will not be made. If we 
change the value of Node C to 1, it will now satisfy the influence with Node D but 
violate two influences (with Nodes A and B), resulting in a net loss in the number of 
satisfied influences, so this change will not be made either. The analogous argument 
applies to all the other nodes in the network. The system will not as a result converge 
on a global optimum (i.e. an ideal design where all the influences are satisfied), even 
though one does exist (where all nodes have the same value). 
 A range of techniques have emerged that are appropriate for finding global 
optima in multi-optima utility functions, all relying on the ability to search past 
valleys in the utility function. Stochastic approaches such as simulated annealing have 
proven quite effective [5]. Simulated annealing endows the search procedure with a 
tolerance for moving in the direction of lower utility that varies as a function of a 
virtual ‘temperature’. At first the temperature is high, so the system is as apt to move 
towards lower utilities as higher ones. This allows it to range widely over the utility 
function and possibly find new higher peaks. Since higher peaks generally tend to also 
be wider ones, the system will spend most of its time in the region of high peaks. 
Over time the temperature decreases, so the algorithm increasingly tends towards pure 
hill-climbing. While this technique is not provably optimal, it has been shown to get 
close to optimal results in most cases.
 A Social Dilemma with Self-Interested Agents: Annealing runs into a dilemma, 
however, when applied to systems with self-interested agents. Let us assume that at 
least some actors are ‘hill-climbers’, concerned only with maximizing their local 
utilities, while others are ‘annealers’, willing to accept, at least temporarily, lower 
local utilities as part of the exploratory process. We can use a simulation approach to 
explore what happens. Table 1 summarizes the results for such experiments, giving 
the local and global utilities achieved for different pairings of agent strategies in 
simulated non-linear negotiations: 

Table 1. Annealing vs. hill-climbing agents 

 Agent 2 hill-climbs Agent 2 anneals 
Agent 1 hill-climbs [.86] 

.73/.74
[.86]
.99/.51

Agent 1 anneals [.86] 
.51/.99

[.98]
.84/.84

In this table, the cell values are laid out as follows: 
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[<global optimality>] 
<agent 1 optimality >/<agent 2 optimality> 

Details on the negotiation results described in this paper are available, unless 
otherwise specified, in [7, 8]. 
 These results show that, while annealers increase global utility, and are therefore 
highly desirable, annealers always fare individually worse than hill-climbers when 
both are present. Hill-climbing is thus a ‘dominant’ strategy: no matter what strategy 
the other agent uses, it is individually more rationale to be a hill-climber. If all agents 
do this, however, then they forego the higher individual utilities they would get if they 
both annealed. Individual strategic considerations thus drive the system towards the 
strategy pairing with the lowest utility values.
 What can be done about this? This pattern of utility values is an instance of a 
well-known phenomenon in game theory known as the “prisoner’s dilemma” [10]. It 
has been shown that this dilemma can be avoided if there are repeated interactions 
between agents [1]. The idea is simple. Each agent uses an annealing strategy at first, 
but if it determines that the agent it is negotiating with is using hill-climbing, it itself 
then switches to hill-climbing for its future negotiations with that agent, thereby 
forcing them both into the ‘lose-lose’ quadrant of Table 1. It turns out that this ‘tit for 
tat’ approach incents annealing behavior in all agents, assuming that they negotiate 
with each other multiple times. This idea can be refined with the addition of a 
‘reputation mechanism’, wherein agents consult a database of previous negotiations 
(in addition to their individual experience) in order to determine whether the agent 
they currently face tends to be an annealer or hill-climber. Ideally, however, we would 
prefer to find a way to incent annealing behavior within the context of a single 
negotiation, without the requirement of multiple interactions. Can this be done?
 Some apparently reasonable approaches are, it turns out, quite ineffective. One 
approach, for example, is what we can call ‘adaptive’ annealing. A negotiation 
typically consists of a relatively large number of offers and counter-offers, resulting in 
increasingly better interim agreements that eventually are accepted as final by both 
parties. An agent could therefore in principle switch in mid-stream from being an 
annealer to being a hill-climber if it determines that the other agent is being a hill-
climber. Determining the strategy type of the agent you are negotiating with is in fact 
relatively easy: an annealer tends to accept a much higher percentage of interim 
proposals than a hill-climber. The problem with this approach is that determining the 
type of an agent in this way takes time. Our simulations have shown that the 
divergence in acceptance rates between annealers and hill-climbers only becomes 
clear after most of the utility has been committed, so it is too late to fully recover from 
the consequences of having started as an annealer if you negotiated with a hill-
climber. Hill-climbing therefore remains the dominant strategy. Another possibility is 
for annealers to simply be less concessionary, i.e. less willing to accept utility-
decreasing interim agreements. This in fact allows us to eliminate the poor annealer 
payoffs that underlie the prisoner’s dilemma, but only at the cost of radically reduced 
global utility. In both cases, we are unable to incent agent strategies that optimize the 
global utility of the outcome. 
 Resolving the prisoners’ dilemma within the scope of a single negotiation can be 
achieved, however, through the use of what we call a ‘parity-enforcing annealing  
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mediator’. Rather than requiring that the agents anneal, we move the annealing into a 
third party we call a mediator. In this approach, possible agreements are generated (in 
our experiments they were generated by the mediator, but this is a not a critical part of 
the scheme) and then voted on by the negotiating agents. The mediator is a kind of 
annealer: it is endowed with a time-decreasing willingness to at least temporarily 
follow up on design proposals that one or both agents voted against. Agents are free to 
remain hill-climbers in their voting behavior, and thus avoid making harmful 
concessions. The mediator, by virtue of being willing to provisionally pursue utility-
decreasing agreements, can traverse valleys in the agents’ utility functions and 
thereby lead the agents to win-win solutions. Paradoxically, using a mediator that 
occasionally ignores agent preferences leads to outcomes that are better for both 
agents.
 Achieving maximal global utilities in this scheme requires that agents be able to 
annotate their votes with strength information. A binary scheme is sufficient, wherein 
agents annotate their accept votes as being either strong or weak. This allows the 
possibility of ‘over-rides’, wherein the mediator pursues an interim agreement that 
was strongly preferred by one agent and weakly rejected by another. Over-rides are 
important because such agreements are likely to increase global utility. Agents might 
of course be tempted to exaggerate in such contexts, marking every vote as being a 
strong one. But this possibility can be foiled by enforcing running parity on the 
number of times each agent over-rides the other. This works for the following reason. 
One can think of this procedure as giving agents ‘tokens’ that they can use to gain 
over-rides. A truthful agent spends its tokens exclusively on over-rides that truly offer 
it a strong local utility increase. An exaggerator, on the other hand, will spend tokens 
even when the utility increment it derives is relatively small. At the end of the day, the 
truthful agent has spend its tokens more wisely and to better effect. 
 Lessons: How do these insights apply to collaborative design? Generally 
speaking, linear networks represent a special case (only a tiny fraction of all possible 
influence relationships are linear), but they have proven adequate for modeling what 
has been called routine design. Routine design involves highly familiar requirements 
and design options, as for example in automobile brake or transmission design [3]. In 
these contexts, designers can usually start the design process near enough to the final 
optimum that the process acts as if it has a single attractor. Previous research on 
design dynamics has focused on this class of design model, generating such useful 
results as approaches for identifying design process bottlenecks [12] and for fine-
tuning the lead times for design subtasks [4]. 
 Rapid technological and other changes have made it increasingly clear, however, 
that many of the most important collaborative design problems (e.g. concerning 
software, biotechnology, or electronic commerce) involve innovative design, radically 
new requirements, and unfamiliar design spaces. It is often unclear how to achieve a 
given set of requirements. There may be multiple very different good solutions, and 
the best solution may be radically different than any that have been tried before. For 
such cases non-linear networks seem to represent a more accurate model of the 
collaborative design process. 
 This has important consequences. One is a tendency to stay with well-known 
designs. When a utility function has widely separated optima, once a satisfactory 
optimum is found the temptation is to stick to it. This design conservatism is  
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exacerbated by the fact that it is often difficult to compare the utilities for radically 
different designs. We can expect this effect to be especially prevalent in industries, 
such as commercial airlines and power plants, which are capital-intensive and risk-
averse, since in such contexts the cost of exploring new designs, and the impact of 
getting it wrong, can be prohibitive. 
 Another consequence is that collaborative design as currently practiced is 
probably quite prone to getting stuck in local optima that may be significantly worse 
than radically different alternatives. Annealing-like processes potentially applicable to 
addressing this problem are widely used in human collaborative design settings. 
‘Brainstorming’, for example, with its emphasis on not pruning candidate solutions 
too quickly, can be viewed as a kind of annealing. Designers are, however, generally 
much more strongly encouraged to create a good design for their own subsystems, 
than to concede to make someone else’s job easier. This incentive structure leads to 
the “prisoner’s dilemma” described above. 
 The prisoner’s dilemma can, as we have seen, be avoided if we assume that 
agents have multiple negotiation encounters and use a ‘tit for tat’ scheme for deciding 
when to be concessionary or not. Such schemes are probably used, in fact, by many 
designers in collaborative settings. The relative infrequency of major negotiations, the 
absence of reputation databases, and high turnover in personnel may, however, 
sabotage the efficacy of such strategies. It seems likely, in addition, that many 
engineers make some use of the other approaches we described above, being adaptive 
or simply highly sparing in how much they concede. These are, after all, apparently 
reasonable strategies. They do not, however, have the desired result of fostering the 
discovery of more optimal overall designs. Mediation, as we have seen, has the 
potential of resolving the prisoner’s dilemma, and it in fact has an important place in 
current collaborative design practice. Senior engineers, and in some cases teams of 
such engineers (sometimes called “change boards”) are often called upon to mediate 
situations where the achievement of satisfactory global utility appears to be 
threatened. Engineers with that level of experience are, however, a scarce resource, so 
this tactic is typically reserved for only the most serious problems. 
 In brief, it appears likely that current collaborative design practice, particularly 
for highly innovative design, is prone to getting stuck in unnecessarily suboptimal 
solutions. We will discuss possible solutions to these problems in the section “How 
We Can Help” below. 

4.2. Symmetric vs. Asymmetric Networks 

Asymmetry Allows Non-Convergence: Symmetric networks are ones in which 
influences between nodes are mutual (i.e. if node A influences node B by amount X 
then the reverse is also true), while asymmetric networks do not have this property. 
Asymmetric networks (if they have cycles in them; see below) add the complication 
of having dynamic attractors, which means that the network does not converge on a 
single configuration of node states but rather cycles indefinitely around a relatively 
small set of configurations. Let us consider the simplest possible cyclic asymmetric 
network: the ‘odd loop’ (Figure 5): 
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Figure 5. The simplest possible cyclic asymmetric network – an ‘odd loop’ 

This network has two links: one where node B influences node A to have the same 
value, and another where node A influences node B to have the opposite value. 
Imagine both nodes have the initial value 1, and update each other in parallel. The 
states of the two nodes will proceed as follows: 

State Value of Node A Value of Node B 
Initial state 1 1 

State 1 1 -1 
State 2 -1 -1 
State 3 -1 1 
State 4 1 1 

After one time step (state 1) node A will cause node B to ‘flip’ to –1, and node B will 
leave node A unchanged. After a second iteration (state 2) node A leaves node B 
unchanged, but node B causes the value of node A to flip. If we trace this far enough 
we find that the system returns to its initial state (State 4) and thus will repeat ad
infinitum. If we plot the state space that results we get the following simple dynamic 
attractor:

Figure 6. The dynamic attractor for the odd loop 
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 More complicated asymmetric networks will produce dynamic attractors with 
more complicated shapes, including ones where states are never exactly repeated, but 
the upshot is the same: the system will not converge. One can always of course stop 
the system at some arbitrary point along its trajectory, but there is no guarantee that 
the design utility at that point will be better than that at any other point because the 
system, unlike the symmetric case, does not necessarily progress monotonically 
towards higher utility values. This can be understood in the following way. Every 
utility function can, in principle, be ‘compiled’ into a (symmetric) network that will 
progress monotonically towards higher utility values as long as the individual nodes 
perform local optimization. The opposite, however, is not true. There are many 
networks (including most asymmetric ones) that do not correspond to any well-
formed utility function, so their sequences of states clearly can not be viewed as 
progressing towards a utility optimum [2].
 If a network is acyclic however (also known as a feed-forward network, wherein 
a node is never able to directly or indirectly influence its own value), it has a well-
defined utility function and thus will not have a dynamic attractor. 
 Lessons: How does this apply in collaborative design settings? Traditional 
serialized collaborative design is an example of an asymmetric feed-forward network, 
since the influences all flow uni-directionally from the earlier product life cycle stages 
(e.g. design) to later ones (e.g. manufacturing) with only weak feedback loops if any. 
In such contexts the attractors should be static and convergence should always occur, 
given sufficient time. In such settings we may not, however, expect particularly 
optimal designs. It is typically very difficult, given the bounded rationality of human 
beings, for designers earlier in the design life cycle to ensure that the designers later 
on in the life cycle will be able to produce near-optimal solutions for their very 
different but highly dependent problems. This is in fact the rational underlying the 
adoption of concurrent engineering approaches. ‘Pure’ concurrent engineering, where 
all design disciplines are represented on multi-functional design teams, encourage 
roughly symmetric influences between the participants and thus can also be expected 
to have convergent dynamics with static attractors. Current collaborative design 
practice, however, is a hybrid of these two approaches, and thus is likely to have the 
combination of asymmetric influences and influence loops that produces dynamic 
attractors and therefore non-convergent dynamics. 
 This, moreover, is a fundamental problem. As noted above, it is in principle 
straightforward to compute the proper inter-node influences given a global utility 
function. In design practice, however, we do not know the global utility function, 
especially once we have reached the realm of detailed design. The space of possible 
designs, and the cost of calculating their individual utility values, is simply too large. 
At best the global utility function is revealed to us incrementally as we generate and 
compare different candidate designs. The influence relationships between designers 
are, as a result, invariably defined directly based on experience and our knowledge of 
design decision dependencies. But such a heuristic approach can easily lead to the 
creation of influence networks that do not instantiate a well-formed utility function, 
and thus display dynamic attractors. 
 Dynamic attractors were found to not to have a significant effect on the dynamics 
of at least some routine (linear) collaborative design contexts [4], but may prove more  
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significant in innovative (non-linear) collaborative design. It may help explain, for 
example, why it sometimes takes so many iterations to fully propagate changes in 
complex designs [6]. 

5. Subdivided Networks 

Subdivision Can Speed Convergence: Another important property of networks is 
whether or not they are sub-divided, i.e. whether they consist of sparsely 
interconnected ‘clumps’ of highly interconnected nodes, as for example in Figure 7: 

Figure 7. An example of a subdivided network 

When a network is subdivided, node state changes can occur within a given clump 
with only minor effects on the other clumps. This has the effect of allowing the 
network to explore more states more rapidly. Rather than having to wait for an entire 
large network to converge, we can rely instead on the much quicker convergence of a 
number of smaller networks, each one exploring possibilities that can be placed in 
differing combinations with the possibilities explored by the other sub-networks [11]. 
 Lessons: This effect is in fact widely exploited in design communities, where it is 
often known as modularization. This involves intentionally creating subdivided 
networks by dividing the design into subsystems with pre-defined standardized 
interfaces, so subsystem changes can be made with few or any consequences for the 
design of the other subsystems. The key to using this approach successfully is 
defining the design decomposition such that the utility impact of the subsystem 
interdependencies on the global utility is relatively low, because standardized 
interfaces rarely represent an optimal way of satisfying these dependencies. In most 
commercial airplanes, for example, the engine and wing subsystems are designed 
separately, taking advantage of standardized engine mounts to allow the airplanes to 
use a range of different engines. This is almost certainly not the optimal way of 
relating engines and wings, but it is good enough and simplifies the design process 
considerably. If the engine-wing interdependencies were crucial, for example if 
standard engine mounts had a drastically negative effect on the airplane’s 
aerodynamics, then the design of these two subsystems would have to be coupled 
much more closely in order to produce a satisfactory design. 

6. Imprinting 

Imprinting Captures Successful Influence Patterns: One common technique used to 
speed network convergence is imprinting, wherein the network influences are 
modified when a successful solution is found in order to facilitate quickly finding 
(similar) good solutions next time. A common imprinting technique is reinforcement 
learning, wherein the links representing influences that are satisfied in a successful  
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final configuration of the network are strengthened, and those representing violated 
influences weakened. The effect of this is to create fewer but higher optima in the 
utility function, thereby increasing the likelihood of hitting such optima next time. 
 Lessons: Imprinting is a crucial part of collaborative design. The configuration of 
influences between design participants represents a kind of ‘social’ knowledge that is 
generally maintained in an implicit and distributed way within design organizations, 
in the form of individual designer’s heuristics about who should talk to whom when 
about what. When this knowledge is lost, for example due to high personnel turnover 
in an engineering organization, the ability of that organization to do complex design 
projects is compromised. It should be noted, however, that imprinting reinforces the 
tendency we have already noted for organizations in non-linear design regimes to 
stick to tried-and-true designs, by virtue of making the previously-found optima more 
prominent in the design utility function, and thus may be counter-indicated for 
challenges requiring highly innovative designs. 

7. How Can We Help? 

What can we do to improve our ability to do innovative collaborative design? We will 
briefly consider several possibilities suggested by the discussion above. 
 Information systems are increasingly becoming the medium by which design 
participants interact, and this fact can be exploited to help monitor the influence 
relationships between them. One could track the volume of design-related exchanges 
or (a more direct measure of actual influence) the frequency with which design 
changes proposed by one participant are accepted as is by other participants. This can 
be helpful in many ways. Highly asymmetric influences could represent an early 
warning sign of non-convergent dynamics. Detecting a low degree of influence by an 
important design concern, especially one such as environmental impact that has 
traditionally been less valued, can help avoid utility problems down the road. A record 
of the influence relationships in previous failed and successful design projects can be 
used to help better manage future projects. This will require being able to determine 
which influences were critical in these previous efforts. If a late high-impact problem 
occurred in a subsystem that had a low influence in the design process, for example, 
this would suggest that the relevant influence relationships should be modified in the 
future. Incentive mechanisms can be put in place that reward engineers not just for 
producing good subsystem designs, but also for participating in what are believed to 
be productive patterns of mutual influence with other designers. Note that this has the 
effect of making a critical class of normally implicit and distributed knowledge more 
explicit, and therefore more amenable to being preserved over time, as well as 
transferred between projects and even organizations. 
 Information systems can also potentially be used to help assess the degree to 
which the design participants are engaged in routine (i.e. optimization-driven) vs 
innovative (i.e. highly exploratory) design strategies. We could use such systems to 
estimate for example the number and variance of design alternatives being considered 
by a given design participant. This is important because, as we have seen, a premature 
commitment to a routine design strategy that optimizes a given design alternative can 
cause the design process to miss other alternatives with higher global optima. 
Tracking the degree of innovative exploration can be used to fine-tune the use of  
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innovation-enhancing interventions such as incentives, competing design teams, 
introducing new design participants, and so on. As with simulated annealing, it will 
probably make sense to encourage more conceding and exploration early on in the 
design process, and gradually transition to hill-climbing as time goes on. 
 The prisoner’s dilemma incentive structure that leads to suboptimal designs can 
be addressed in at least two ways that are probably under-utilized in current practice. 
One is by the introduction of reputation mechanisms. If we simply make information 
available on which designers have a history of conceding sparingly, we are likely to 
find an increase in concessionary behavior, and therefore improved design outcomes, 
even in the absence of explicit (e.g. salary) incentives. Another possibility is the wider 
use of mediators. Mediators in collaborative design contexts have traditionally been 
senior engineers capable of dictating the content of a design outcome. Our work on 
negotiation algorithms suggests, however, that mediators can be effective by guiding 
the design process, for example as we suggested above by occasionally having the 
agents follow up on design options that one or both rejected, and by enforcing rough 
parity in the number of mixed wins. Process-oriented mediation does not require the 
same depth of domain expertise as content-oriented mediation, and it is therefore 
likely that designers can be trained to provide that for each other, and that such 
mediation can become much more widely available as a result. 
 Finally, information systems can be used to track the history of design 
alternatives explored and thereby detect the design loops that indicate a non-
convergent design process.

8. Conclusions 

Existing collaborative design approaches have yielded solid but incremental design 
improvements, which has been acceptable because of the relatively slow pace of 
change in requirements and technologies. Consider for example the last 30 years of 
development in Boeing’s commercial aircraft. While many important advances have 
certainly been made in such areas as engines, materials and avionics, the basic design 
concept has changed relatively little (Figure 8): 

Figure 8. The Boeing 737 (inaugurated 1965) and the Boeing 777 (1995) 

Future radically innovative design challenges, such as high-performance commercial 
transport, will probably require, however, substantial changes in design processes: 
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Figure 9. The Boeing Sonic Cruiser (under development) 

This paper has begun to identify what recent research on negotiation and complex 
systems can offer in this regard. The key insights are that important properties of 
collaborative design dynamics can be understood as reflecting two basic facts: (1) 
collaborative design is a kind of distributed network, and (2) the agents in this 
network are self-interested and respond to local incentives. This is powerful because 
this means that our growing general understanding of networks and negotiation can be 
applied to help us better understand and eventually better manage collaborative design 
regardless of the domain (e.g. physical vs informational artifacts) and type of 
participants (e.g. human vs software-based). 
 This insight leads to several others. Most prominent is the suggestion that we 
need to fully embrace an influences- and incentives-centric perspective on how to 
manage complex collaborative design processes.  It is certainly possible for design 
managers to have a very direct effect on the content of design decisions during 
preliminary design, when a relatively small number of high-level global utility driven 
decisions are made top-down by a small number of players. But once the detailed 
design of a complex artifact has been distributed to many players, the global utility 
impact of local design changes is too difficult to assess, and design decisions are too 
voluminous and complex to be made top-down, so the dominant drivers become local 
utility maximization plus fit between these local design decisions. In this regime 
encouraging the proper influence relationships and concession strategies becomes the 
primary tool available to design managers. If these are defined inappropriately, we 
can end up with designs that take too long to create, do not meet important 
requirements, and/or miss opportunities for significant utility gains through more 
creative (far-ranging) exploration of the design space. 
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1. Introduction 

In the last decade, the concept of modularity has caught the attention of engineers, 
management researchers and corporate strategists in a number of industries. When a 
product or process is “modularized,” the elements of its design are split up and 
assigned to modules according to a formal architecture or plan. From an engineering 
perspective, a modularization generally has three purposes: 

To make complexity manageable; 
To enable parallel work; and 
To accommodate future uncertainty. 

Modularity accommodates uncertainty because the particular elements of a 
modular design may be changed after the fact and in unforeseen ways as long as the 
design rules are obeyed. Thus, within a modular architecture, new module designs 
may be substituted for older ones easily and at low cost.

This chapter will make three basic points.  First, we will show that modularity is a 
financial force that can change the structure of an industry. Then, we will explore the 
value and costs that are associated with constructing and exploiting a modular design. 
Finally we will examine the ways in which modularity shapes organizations and the 
risks that it poses for particular firms.1

                                                          

1 Some of the arguments and figures in this paper are taken from Baldwin and Clark, 2000. The 
figures are reprinted by permission. 
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2. The Financial Power of Modularity 

To demonstrate the financial power of modularity, let us begin by looking at some 
data from the computer industry. Figure 1 is a graph of the market values (in 2002 
constant US dollars) of substantially all the U.S. based public corporations in the 
computer industry from 1950 to 2002. The firms are aggregated into sixteen 
subsectors by primary SIC code. The SIC codes included in the database and their 
definitions are listed in Table 1. IBM, Intel and Microsoft are shown separately.

Figure 1. The Market Value of the U. S. Computer Industry By sector, 1950-2002 in constant 
2002 US dollars 
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Table 1. SIC Codes Included in the Database 

Figure 1 tells a story of industry evolution that runs counter to conventional 
wisdom. In economics the dominant theories of industry evolution describe a process 
of pre-emptive investment by large, well-capitalized firms, leading to stable market 
structures and high levels of concentration over long periods of time.2 These theories 

                                                          

2 The original theory of pre-emptive investment leading to industry concentration, with 
supporting historical evidence, was put forward by Alfred Chandler [11, 12]. A complementary 
theory of concentration following the emergence of a “dominant design” was put forward by 
William Abernathy and James Utterback [1]. Modern formulations of these theories and some 
large-scale empirical tests have been developed by John Sutton [46] and Steven Klepper [27]. 
Oliver Williamson (1985, Ch. 11) has interpreted the structures of modern corporations (unified 
and multi-divisional) as responses to potential opportunism (the hazards of market contracting). 
It is our position that the basic “task structures” and the economic incentives of modular design 
(and production) systems are different from the task structures and incentives of classic large-
volume, high-flow-through production and distribution systems. Therefore the organizational 
forms that arise to coordinate modular design (and production) may not ressemble the classic 
structures of the modern corporation. 

SIC

Code Category Definition Start Date (1)

3570 Computer and Office Equipment 1960

3670 Electronic Components and Accessories 1960

3674 Semiconductors and Related Devices 1960

3577 Computer Peripheral Devices, n.e.c. 1962

3678 Electronic Connectors 1965

7374 Computer Processing, Data Preparation and Processing 1968

3571 Electronic Computers 1970

3575 Computer Terminals 1970

7373 Computer Integrated Systems Design 1970

3572 Computer Storage Devices 1971

7372 Prepackaged Software (2) 1973

3576 Computer Communication Equipment 1974

3672 Printed Circuit Boards 1974

7370 Computer Programming, Data Processing, and Othe

Services

1974

7371 Computer Programming Services 1974

7377 Computer Leasing 1974

(1) Start date is the first year in which six or more are present in the categor

(2) This category had six firms in 1971, dipped to five in 1972, and back to

six in 1973.
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are backed up by a great deal of supporting empirical evidence going back to the late 
19th Century. The data in Figure 1, by contrast, show that while IBM dominated the 
industry in the 1950s and 1960s, in the 1970s and 1980s the computer industry “got 
away” from IBM. (IBM’s market value is the blue “mountain range” at the far left of 
the chart.) In 1969, 71% of the market value of the computer industry was tied up in 
IBM stock. By 2002, IBM was no longer dominant, and the largest firm (Microsoft) 
accounted for less than 20% of the total value of the industry.

Underlying Figure 1 is a pattern of extreme turbulence at the level of firms.  The 
entire database spanning the years 1950 to 2002 contains about 2,700 firms. Of these, 
only about 1,100 survived in 2002. Thus around 1,600 or 60% of the firms that 
entered the computer industry over five decades no longer exist: they went bankrupt, 
were acquired, or moved out of the industry. Not surprisingly (for those who lived 
through it), much of this turnover occurred between 1997 and 2002, the years of the 
Internet Bubble and Crash. Around 1,200 firms entered during these six years, while 
1,100 failed or were acquired.

The figure also shows that market values were initially concentrated in a few 
firms, but are now spread out over across sixteen industrial categories. Whole 
industries have come and gone. For example, the original computer category, SIC 
3570, “Office and Computer Equipment”, once included firms like Digital Equipment 
Corporation, Sperry Corporation, Data General and NCR, as well as IBM. This 
category has virtually disappeared: IBM has been reclassified into SIC 7370, 
“Computer Programming and Data Processing,” and the other firms mentioned have 
failed or been acquired. By 2002, Hewlett Packard was the only firm of any size 
remaining in this once-pre-eminent category. Conversely, in 1970, SIC 7372, 
“Packaged Software,” included only 7 firms with a combined market capitalization of 
just over $1 billion. In 2002, this category had grown to 408 firms with a combined 
market cap of almost half a trillion dollars ($490 billion). 

Volatility and turbulence can be observed at the level of the whole industry as 
well. Figure 2 shows the total market value of all firms in the industry for the sample 
period 1950 – 2002. The chart is dominated by the Internet Bubble and Crash, which 
created and then destroyed $2.5 trillion in the space of five years (1997 – 2002). Apart 
from the Bubble, the industry as a whole has experienced significant value increases 
over time. From 1960 to 1996, even as value was being dispersed and redistributed 
over many, many firms, aggregate value kept pace. Then around 1997, the aggregate 
value of this group of firms seemed to spin out of control. More value was created and 
destroyed in a few years than the whole industry had managed to create over its entire 
history. The causes of this remarkable pattern are the subject of ongoing research, but 
we have no explanations for it as yet. 
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Figure 2. The Market Value of the Computer Industry Aggregated, 1950-2002, in constant 
2002 US dollars 

In summary, the computer industry presents us with a pattern of industry evolution 
involving more firms, more products, and (mostly) increasing value created over time. 
As a result of this pattern, the computer industry today consists of a large cluster of 
over 1,000 firms, no one of which is very large relative to the whole. In addition, the 
total market value of the industry is now spread widely but very unevenly across the 
sixteen sub-industries. (See Figure 3.) We contend that modularity in the design of 
complex computer systems is what allowed this creation of value, the dispersion of 
value across so many firms, and finally new concentrations of value to take place. We 
will expand on this argument in the sections that follow. 

Figure 3. The Distribution of Market Value in the U. S. Computer Industry as of 2002 By 
sector, in constant 2002 US dollars 
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3. The Modularity of Computer Designs 

Modularity-in-design is one of the things that has caused the computer industry to 
evolve to its present form. In brief, modularity in computer designs was first 
envisioned by pioneering computer scientists like Maurice Wilkes in the 1950s. Later 
the goal of a modular architecture was realized by architects like Fred Brook and 
Gerrit Blaauw, Gordon Bell and Allen Newell, and Carver Mead and Lynn Conway in 
the 1960s and 1970s.3 Modular architectures in turn enabled the computer industry to 
evolve to its present form, which we call a “modular cluster”.

The computer industry became a cluster in approximately 1980. This cluster has 
been extremely dynamic, displaying high rates of entry, growth and turnover in the 
population of firms over time. In addition, the connections among products and 
companies are quite complicated in the cluster. Firms do not design or make whole 
computer systems; instead, they design and/or make modules that are parts of larger 
systems. These modules include hardware components like computers, 
microprocessors and disk drives; software components like operating systems and 
application programs; as well as process components like fabrication, assembly, 
systems integration, and testing. 

Modules, in fact, are always distinct parts of a larger system. They are designed 
and produced independently of one another, but must function together as a whole. 
Modularity allows tasks—both design tasks and production tasks—to be divided 
among groups, which can work independently and do not have to be part of the same 
firm. Compatibility among modules is ensured by “design rules” that govern the 
architecture, the interfaces, and the standardized tests of the system. Thus 
“modularizing” a system involves specifying its architecture, that is, what its modules 
are; specifying its interfaces, i.e., how the modules interact; and specifying tests
which establish that the modules will work together and how well each module 
performs its job. 

From an engineering perspective, modularity does many things.  First, it makes the 
complexity of the system manageable by providing an effective “division of cognitive 
labor.”4 It also makes possible the graceful evolution of knowledge about the system.5

In this way, modular systems are “cognitively economic.” Second, modularity 
organizes and enables parallel work. Work on or in modules can go on 
simultaneously, hence the start-to-finish time needed to complete the job decreases. 
Thus modular systems are “temporally economic.” Finally, modularity in the design
of a complex system allows modules to be changed and improved over time without 
undercutting the functionality of the system as a whole. In this sense, as we indicated 
above, the modular design of a complex system is “tolerant of uncertainty” and 
“welcomes experimentation” in the modules. 

                                                          

3 See [4], Chapters 6-7 on the origins of modularity in early computer designs. 
4 O.E. Williamson, 1999, “Human Action and Economic Organization,” mimeo, University of 
California, Berkeley; quoted in M. Aoki, Towards a Comparative Institutional Analysis, 2001, 
MIT Press, Chapter 4. 
5 See [21]. 
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4. Modularity in Design, Production and Use 

Humans interact with artifacts in three basic ways: they design them; produce them; 
and use them. There are, as a result, three basic types of modularity: modularity-in-
design, modularity-in-production, and modularity-in-use. We will discuss these 
“modularities” in reverse order. 

A system of goods is modular-in-use if consumers can mix and match elements to 
come up with a final product that suits their taste and needs. For example, consumers 
often buy bed frames, mattresses, pillows, linens, and covers made by different 
manufacturers and distributed through different retailers. The parts all fit together 
because different manufacturers make the goods in standard sizes. These standard 
dimensions constitute design rules that are binding on manufacturers, wholesalers, 
retailers, and users. Modularity-in-use thus supports customization of the system to 
suit the needs and tastes of the end-user. 

Manufacturers have used modularity-in-production for a century or more. 
Carmakers, for example, routinely arrange to manufacture the components of an 
automobile at different sites and bring them together for final assembly. They can do 
so because they have completely and precisely specified how the parts will interact 
with the vehicle. The engineering specifications of a component (its dimensions, 
tolerances, functionality, etc.) constitute a set of design rules for the factories that 
supply the parts. Such process modularity is fundamental to mass production.  

However, the fact that, in a complex system, the elements of use or the tasks of 
production have been split up and assigned to separate modules does not mean that 
the design of the system is modular. Indeed systems that are modular-in-use or 
modular-in-production may rest on designs that are tightly coupled and centrally 
controlled. For example, Intel Corporation famously imposes a “copy exactly” rule on 
its fabrication plants. The production of chips can go on independently at separate 
sites because the layout of the plants and the work processes within the plants are the 
same. Thus Intel’s “copy exactly” plants are modular-in-production but not modular-
in-design. In a similar vein, a sectional sofa is a suite of furniture that is modular-in-
use. Purchasers can combine and recombine the elements of the suite at will. But 
those elements must be designed as one interdependent whole, or the patterns and 
shapes will not form a pleasing ensemble. Thus the sectional sofa suite is modular-in-
use, but not modular-in-design. 

A complex engineering system is modular-in-design if (and only if) the process of 
designing it can be split up and distributed across separate modules, that are 
coordinated by design rules, not by ongoing consultations amongst the designers. Of 
all the “modularities”, modularity-in-design is the least well understood and has the 
most interesting economic consequences. This is because new designs are 
fundamentally options with associated economic option value. Modularity-in-design 
multiplies the options inherent in a complex system. This in turn both increases the 
total economic value of the system and changes the ways in which the system can 
evolve. In the rest of this chapter, we will explain how to map and measure the option 
value of modularity-in-design.
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5. Designs as Options 

A fundamental property of designs is that at the start of any design process, the final 
outcome is uncertain. Once the full design has been specified and is certain, then the 
development process for that design is over.

Uncertainty about the final design translates into uncertainty about the design’s 
eventual value. How well will the end-product of the design process perform its 
intended functions? And what will it be worth to users? These questions can never be 
answered with certainty at the beginning of any substantive development process. 
Thus the ultimate value of a design is unknown when the development process begins. 

Uncertainty about final value in turn causes new designs to have “option-like” 
properties. In finance, an option is “the right but not the obligation” to choose a course 
of action and obtain an associated payoff. In engineering, a new design creates the 
ability but not the necessity—the right but not the obligation—to do something in a 
different way. In general (if the designers are rational), the new design will be adopted 
only if it is better that its alternatives. Thus the economic value of a new design is 
properly modeled as an option using the methods of modern finance theory. 

The option-like structure of designs has three important but counterintuitive 
consequences. In the first place, when payoffs take the form of options, taking more 
risk creates more value.6 Risk here is defined as the ex ante dispersion of potential 
outcomes. Intuitively, a risky design is one with high technical potential but no 
guarantee of success. “Taking more risk” means accepting the prospect of a greater ex
ante dispersion. Thus a risky design process is one that has a very high potential value 
conditional on success but, symmetrically, a very low, perhaps negative, value 
conditional on failure.

What makes the design an option, however, is that the low-valued outcomes do not 
have to be passively accepted. As we said, the new design does not have to be 
adopted; rationally, it will be adopted only if it is better than the alternatives, 
including the status quo alternative. In effect, then, the downside potential of a risky 
design is limited by the option to reject it after the fact. This means that “risk” creates 
only upside potential. More risk, in turn, means more upside potential, hence more 
value.7

The second counterintuitive result is that when payoffs take the form of options, 
seemingly redundant efforts may be value-increasing. Two attempts to create a new 
design may arrive at different endpoints. In that case, the designers will have the 
option to take the better of the two. The option to take the better of two or best of 
several outcomes is valuable.8 Thus when faced with a risky design process, which  

                                                          

6 This is a basic property of options (See [34]). 
7 It follows, of course, that if a risky design is “hardwired” into a system so that it must be 
implemented regardless of its value, then the design process loses its option-like properties. In 
such cases, “taking more risk” in the sense defined above, will not increase, and may decrease 
value.
8 Stulz, 1982, first analyzed the option to take the higher-valued of two risky assets. Sanchez 
[40] worked out the real option value of parallel design effort in product development. 
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has a wide range of potential outcomes, it is often desirable to run multiple “design 
experiments” with the same functional goal. These experiments may take place in 
parallel or in sequence, or in a combination of both modes.9 But whatever the mode, 
more risk calls for more experimentation. 

The third result is that options interact with modularity in a powerful way. By 
definition, a modular architecture allows module designs to be changed and improved 
over time without undercutting the functionality of the system as a whole. This is 
what it means to be “tolerant of uncertainty” and to “welcome experiments” in the 
design of modules. As a result, modules and design experiments are economic 
complements: an increase in one makes the other more valuable.10 (Below we will 
derive this result in the context of a formal model.) 

The effect of modularity-in-design on options and option value is depicted in 
Figure 4. Here we envision a system that is making the transition from being one 
interdependent whole to being a set of modules governed by design rules.  The system 
goes from having one large design option (i.e., to take the whole design or leave it) to 
having many smaller options—one per module.  Thus the act of splitting a complex 
engineering system into modules multiplies the valuable design options in the system.  
At the same time, this modularization moves decisions from a central point of control 
to the individual modules. The newly decentralized system can then evolve in new 
ways.

Notice, however, that by modularizing, one barrier to entry by competitors, the 
high costs of developing an entire complex engineering system (like an automobile, a 
computer, or a large software package) are reduced to the costs of developing 
individual modules. Thus the modularization of a large, complex system, even as it 
creates options and option value, also sows the seeds of increased competition focused 
on the modules. We shall revisit this issue at the end of the chapter. 

                                                          

9 See [30]. 
10 This is the definition of economic complementarity used by Milgrom and Roberts [35] and 
Topkis [47]. The complementarity of modularity and experimentation was first demonstrated 
by Baldwin and Clark [2; 4, Chapter 10]. 
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Figure 4.  Modularity Creates Design Options

6.  Mapping the Design of a Complex Engineering System  

We will now look at modularity-in-design more carefully. To help us do so, we will 
represent the design of a complex system using the methods of Design Structure 
Matrix (DSM) Mapping. In this mapping technique, the system is first characterized 
by listing a set of design parameters for the system. The design parameters are then 
arrayed along the rows and columns of a square matrix. The matrix is filled in by 
checking—for each parameter—which other parameters affect it and which are 
affected by it.  For example, if Parameter A affects the choice of Parameter B, then we 
will put a mark “x” in the cell where the column of A and the row of B intersect. We 
repeat this process until we have recorded all parameter interactions. The result is a 
map of the dependencies that affect the detailed structure of the artifact. For example, 
Figure 5 is a DSM map of the dependencies in the design for a laptop computer 
system circa 1993.11

DSM maps are well known in the engineering professions. They can be 
constructed for any artifact or complex system, whether it is tangible or intangible. 
Thus there are DSM maps of products, like computers and automobiles, and DSM 
maps of both production processes and design processes. Many such maps have been 
constructed by Steven Eppinger and his colleagues at MIT. 

The DSM map in Figure 5 indicates that the laptop computer design has four 
blocks of very tightly interrelated design parameters corresponding to the (Disk) 
Drive System, the Main Board, the LCD Screen, and the Packaging of the machine. 
There is also a scattering of dependencies (“x’s”) outside the blocks. The 
dependencies arise both above and below the main diagonal blocks, thus the blocks 
are interdependent.

                                                          

11 The DSM methodology was invented by Donald Steward. The DSM map shown in Figure 5 
was prepared by Kent McCord and published in McCord and Eppinger [32]. Reprinted by 
permission.
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Figure 5. Design Structure Matrix Map of a Laptop Computer 

Cycling and iteration are needed to resolve design interdependencies. For 
example, as shown in the figure, the location of the computer’s graphics controller 
creates dependencies between the Main Board and the LCD Screen and vice versa.

Because of these dependencies, there will be ramifications of any choice made at 
this particular point: these are indicated by the arrows in the diagram. If two teams 
were working on the different components, they would have to confer about the 
location of the graphics controller in order to coordinate their design choices. But 
unforeseen consequences might arise later, causing the initial choice to be revisited. 
There would then be further consequences: new arrows would arise, which, through 
the chain of dependencies, might wander all over the map. Such cycling is the 
inevitable consequence of an interdependent design structure.
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However, it is important to note that the DSM map for a product or process need 
not be set in stone forever. Dependencies and interdependencies can be modified by a 
process of design rationalization, which works in the following way. Suppose that the 
designers of the laptop computer system wished to eliminate the interdependencies 
between the Main Board and the Screen that were due to the graphics controller 
location.  They could do so by setting a design rule that located the graphics controller 
on the Board (for example). By this action the two design teams would have restricted 
their alternatives, but they would also have eliminated a source of cycling between 
two of the blocks of the design.

Figure 6 shows the new DSM map obtained by turning the graphics control 
location into a design rule. Two dependencies, one above the diagonal and one below, 
which were present before, now do not exist: they are absent from the circled areas in 
the map. Instead there is a design rule that is known (hence “visible”) to both sets of 
designers, which they must obey. 
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Figure 6. Eliminating Interdependencies by Creating a Design Rule 

Carrying this process through to its logical conclusion results in a radically 
different structure: a modular structure as shown in Figure 7.  Here we have the same 
highly interdependent blocks as before: the Drive System, the Main Board, the LCD 
Screen, and Packaging.  And within those blocks essentially nothing has changed, the 
pattern of interdependency is the same.  But the out-of-block dependencies both above 
and below the main diagonal have all disappeared. 
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Figure 7. Modularization of a Laptop Computer Design

How does that happen? First, in the new structure, each of the former out-of-block 
dependencies has been addressed by a design rule. Thus, there is now a new “Design 
Rules” block (not drawn to scale), whose parameters affect many of the parameters in 
the component blocks. Those dependencies are indicated by the “x”s in the vertical 
column below the Design Rules block. (Design rule parameters are often called 
“standards.”)

By obeying the design rules, teams working on the designs of each of the 
component blocks—which are now modules—can maintain conformity with the other 
parts of the system. But note that there has been another, earlier stage in the process in 
which the design rules were established.

Furthermore, the new process, as shown in Figure 7, delivers four separate items,
which must still be integrated into a functioning whole system.  No set of design rules 
is perfect, and unforeseen compatibility problems are often revealed in the latter 
stages of a modular design process. For these reasons, a “System Integration and 
Testing” (SIT) block appears in the lower right corner of the modular DSM.  This 
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block is affected by the design rules and by some parameters of the hidden modules.  
But decisions taken in the SIT block, by definition, will not affect choices in the prior 
blocks. (If they do, then the structure is no longer modular).

Therefore, a modular design structure has three characteristic parts: 

design rules, which are known and obeyed by teams responsible for 
individual modules; 

so-called hidden modules that “look to” the design rules, but are 
independent of one another as work is proceeding; and 

a systems integration and testing module in which the hidden modules are 
assembled into a system, and any remaining, minor problems of 
incompatibility are resolved. 

A complex system design may go from being interdependent to being modular in 
the following way.  The “architects” of the system must first identify the 
dependencies between the distinct components and address them via a set of design 
rules. Second, they must create encapsulated or “hidden” modules corresponding to 
the components of the system. And third, they must establish a separate system 
integration and testing activity that will assemble the modular components and 
resolve unforeseen incompatibilities. 

7.  The Design Hierarchy Representation 

A DSM map is one way to represent a modular system: a design hierarchy is 
another.12  A design hierarchy shows which modules are affected by which other 
modules. (See Figure 8.) At the very top of the design hierarchy are the system-wide 
design rules: these must be obeyed (hence “are visible to”) all modules in the system.

Figure 8. A Two-level Modular Design Hierarchy 

Below the system-wide design rules, there may be “architectural modules,” which 
establish design rules for certain subsystems. There are no architectural modules in 
Figure 8, but in most complex engineering systems there are one or two layers of 

                                                          

12 See [13, 31]. 
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architectural modules. For example, operating systems like Microsoft Windows and 
Unix are architectural modules in a computer system.

Finally, at the bottom of the design hierarchy are the hidden modules of the 
system: these must obey the design rules, hence “look to” them. But the hidden 
modules’ own parameters are “encapsulated”: they do not affect, and hence do not 
need to be known to those working on other modules. Hidden modules are thus the 
primary source of option value in a modular system. (Even so, depending on the rules 
governing intellectual property, much of the value created in the hidden modules may 
be captured by the companies that control architectural modules and/or design rules.) 

8. Modular Organizations 

The “modularized” architectures depicted in Figures 7 and 8 lead naturally to a 
“modularized” organizational structures.13  In a recent paper which addressed the 
nature of transactions we postulated that the activities represented by the x’s in 
Figures 5 and 6 naturally map onto organizations since each interaction captured on 
the DSM represents a transfer of material or information or both.14  In this way it is 
natural to look at Figure 6 and see a ‘traditional’ organization structured around 
specific technologies or disciplines.  The within-block interactions represent 
interactions that are internal to each organizational unit while the out-of-block 
interactions can be viewed as interactions that require coordination across units. In 
this system, each organizational unit would have liaison personnel whose function 
was to assure that activities in each unit of the overall endeavor remained 
synchronized and coordinated. 

In the modularized design of Figures 7 and 8 however, many of the cross-unit 
liaison and coordination functions have been eliminated. This is done in two ways: 
through design rules and through encapsulation. Design rules (standards) ensure that 
decisions that affect multiple units are fixed and communicated ahead of time, and not 
changed along the way. Encapsulation means that all activities associated with 
specific aspects of the product are conducted within one organizational unit – even if 
that organizational unit embodies multiple skillsets, disciplines or activities.  This 
may lead to duplication of skillsets – for example the Main Board and Packaging 
groups may both need people who are skilled in understanding interconnections – but, 
if they are to be encapsulated, these groups must be scaled and staffed to their own 
needs without calling on shared resources, and without requiring extensive cross-unit 
coordination activities.

Similarly note that the transfers of material and information between groups have 
been simplified to a simple handoff from each module task group to a final systems 
integration and testing group. If these handoffs as well as the design rules can be 
standardized and codified, then there is no need for the various groups to reside in the  

                                                          

13 See [41]. 
14 See [5]. 
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same company: armslength transactions betweens several firms can cost-effectively 
replace complex coordinating flows of information within a single firm. 

An educational analogy might be useful here. Instead of a laptop computer, Figure 
6 might as easily represent the traditional departmental or discipline-based 
organizational structure of a university (like Harvard). A discipline-based 
organizational structure is well-suited to teaching courses, but it is ill-suited to 
carrying out broadly-based research initiatives that cut across many disciplines. 
Indeed, in order to conduct interdisciplinary research, the traditional departmental 
structure requires many cross-unit interactions as shown in Figure 6. These 
interactions are generally time-consuming and prone to cycling. In addition, many 
task-relevant interactions may get lost in the shuffle and not take place at all.

By contrast, a center-based or project-based collaborative structure gathers 
participants from multiple disciplines and organizes them into self-contained teams as 
in Figure 7. Even though some interactions are lost, and there may be duplication of 
resources across centers, the new organizational structure imposes a much smaller 
coordination burden on the overall research endeavor. The reduced coordination costs 
in turn can offset the opportunity losses and costs of implementing the more modular, 
team-based structure. If the coordination cost savings are large, then a “more 
modular” organization is a good idea. But there is always a tradeoff—some things are 
lost while other things are gained. 

9. Modular Operators 

A key benefit of systems with modular designs is that, especially at the lower levels of 
the design hierarchy, such systems can evolve. The information that is encapsulated in 
the hidden modules can change, as long as the design rules are obeyed. Therefore, as 
we said earlier, modular systems are “tolerant of uncertainty” and “welcome 
experimentation” in their modules.  In contrast, the design rules of a modular system, 
once established, tend to be both rigid and long lasting.

There are certain generic design actions one can apply to a modular system. 
Following the lead of John Holland of the University of Michigan,15 we have labeled 
such actions “operators.” In our prior work, we identified six modular operators, and 
analyzed the sources of their economic value. In particular, given a modular structure, 
one can:

split any module; 

substitute a newer module design for an older one; 

exclude a module; 

augment the system by adding a module that was not there before; 

                                                          

15 See [23]. 
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collect common elements across several modules and organize them as a 
new level in the hierarchy (modular inversion); and 

create a “shell” around a module so that it works in systems other than one 
for which it was initially designed (modular porting).

Figure 9 shows how each of these operators affects the structure of a modular 
system.

We must emphasize that we regard our list of six operators as the beginning of a 
useful taxonomy.  The list is by no means exhaustive. Indeed three other operators 
have been identified in empirical investigations of design evolution. These are: 

the linking of two pre-existing modules;16

the recombining of two previously separate modules (this is the opposite 
of splitting); and 

embracing and extending a pre-existing module (this operator was 
famously used by Microsoft on Sun’s version of Java). 

The important thing to understand is that operators correspond to search paths in 
the design space of a complex engineering system. These search paths in turn are
options in the so-called “value landscape” of the complex system. As options, the 
operator/search paths can be valued using fairly standard analytic techniques from 
finance. Thus, for example, the decision to split a complex system (or subsystem) into 
several modules can be valued. The decision to augment the system by designing 
several variants of a module customized for different users or purchasers can also be 
valued. In the next section, we will describe the economic structure of option values 
for the modules of a complex engineering system. 

                                                          

16 Bala Iyer, 2003, private communication. 
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Figure 9. The Effect of the Six Operators on a Modular System

10.  Option Values in a Complex Engineering System 

We begin this section by introducing some notation. We assume that the total 
economic value of a complex engineering system can be expressed as the sum of a 
minimal system value, S0, plus the incremental value added by the performance of 
each of J modules. Equation 1 thus denotes the ex post value that will be realized once 
the system’s design is complete: 

 Economic Value of the system =   (1) 
J

1j

;
1

j
X0S

We started with a generic two-level modular design structure, as shown in Figure 8, but

with six modules (A, B, C, D, E, F) instead of four. (To display the porting operator, we

moved the “System Integration & Testing Module” to the left-hand side of the figure.) We

then applied each operator to a different set of modules. 

 - Module A was Split into three sub-modules. 

 - Three different Substitutes were developed for module B. 

 - Module C was Excluded. 

 - A new Module G was created to Augment the system. 

 - Common elements of Modules D and E were Inverted. Subsystem design rules

and an architectural module were developed to allow the inversion.

 - Module F was Ported. First it was split; then its “interior” modules were grouped

within a shell; then translator modules were developed. 
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At the beginning of our analysis, we assume that the minimal system exists and its 
economic value is known. Without loss of generality, we normalize that value to zero.  
At the same time, we assume that the modules of the system have not yet been 
realized; hence their eventual economic payoffs (the Xj

1) are uncertain.
As long as economic payoffs can be expressed in terms of money (e.g., a present 

value), module values can be modeled as one-dimensional random variables. We use 
superscripts to denote the realizations of random variables, and subscripts to denote 
the distributions of random variables with different distributions. Thus Xj

1 should be 
read as “the economic value of a single realization of the random variable Xj”. Total 
system value is a sum of realizations over a set of J random variables, with different 
distributions, indexed by j.

The realization of a module design is the outcome of a development effort targeted 
at that module. The realization in turn can have positive or negative value. A design 
with negative value is not worth incorporating into the system: it subtracts more 
functionality than it adds. At the end of a design interval, the developers can observe 
the realization for each module and compare that value to zero. If the new module 
design has positive value, it will be added to the system, and the system’s value will 
increase by that amount. If the new module design has zero or negative value, it can 
be discarded, and the developers can try again. In this fashion, the developers can mix 
and match old and new module designs. The ability to accept or reject a particular 
realization is the developers’ basic option and the focus of our analysis. 

For simplicity, we assume that the firm or firms developing the complex system 
are risk-neutral expected-value maximizers, and that design intervals are short enough 
that we can ignore the time value of money. In that case, the ex ante economic value 
of the entire system (whose ex post value is given by equation 1) can be expressed as 
follows:

VJ   =   S0  +  Emax(X1

1, 0) + Emax(X2

1, 0) + ... + Emax(XJ

1, 0) ; (2) 

Equation 2 indicates that each module's realized value will be compared to a 
benchmark equal to zero. If the new module design has value greater than the 
benchmark, the new design will be incorporated into the system, otherwise it will be 
rejected. Thus the expectation of the value of the new design is the maximum of its 
realization and zero. The expectation of the maximum of a random variable and a 
scalar is larger than the expectation of the random variable alone, thus the option to 
reject module designs adds to the economic value of the system. 

Equation 2 is very general. We can gain further insight by specializing the 
assumptions. For example, as a thought experiment, consider a system with a total of 
N design parameters, and think of allocating the parameters into J distinct modules of 
different sizes. Let X  denote the economic value of a module of size N where  is 
less than (or equal to) one and the set of s sums to one: 



                Modularity in the Design of Complex Engineering Systems 195

For purposes of illustration, assume that X  is a normally distributed random variable 
with mean zero and variance 2 N: X  ~ N(0, 2 N). In this case, the variance of a 
module’s value will be proportional to the number of design parameters in the 
module. Roughly speaking, the dispersion of outcomes increases as a module’s 
“complexity” measured by N goes up.

Define z  as: 

z  is a standard normal variant with mean zero and variance one: z • ~ N(0, 1). 
Substituting for the Xs in terms of z in equation 2, suppressing S0, and collecting 

terms, we have: 

 (3) 
Here Emax(z, 0) is the expectation of the right half of a truncated standard normal 
distribution and equals .3989. Note that the system value depends on the elements of
the vector of ( 1, …, J) as well as the system parameters  and N. This underscores 
the fact that impact of modularity cannot be captured by a single summary measure or 
statistic (e.g., the average degree of modularity). The details of the modular structure 
(i.e., the elements of the vector• ) affect the system’s option value in important and 
nonlinear ways.

Several results follow directly from equation 3. For example, we can compare the 
value of a modularized system to the value of the corresponding unmodularized 
system:

Proposition 1. Under the assumptions given above, let an engineering system of 
complexity N be partitioned into J independent modules of complexity ( 1N, 2N,…,

JN) respectively. The modularized system has value: 

 (4) 

relative to V1, the value of the corresponding unmodularized system. 
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Proof.
By definition, a one-module design has both J and J equal to one. Thus V1 =  N1/2 

Emax(z, 0). Collecting terms and substituting in equation (3) yields the result. QED. 

From the fact that  < 1N, 2N,…, JN > are fractions that sum to one, it follows 
that the sum of their square roots is greater than one.  Thus, as expected, under these 
very specialized assumptions, a modular design is “always” more valuable than the 
corresponding non-modular design. Moreover, additional modularization (the 
splitting) increases value:  if a module of size  is split into sub-modules of size  and 
, such that   +   = , then the two modules’ contribution to overall value will rise 

because 1/2 + 1/2 > 1/2.
In this fashion, higher degrees of modularity can increase the value of a complex 

design through option value. This result is a special case of a well-known theorem, 
first stated by Robert Merton in 1973.17 For general probability distributions, 
assuming aggregate value is conserved, Merton showed that a “portfolio of options” is 
more valuable than an “option on a portfolio.” 

Up to this point in our thought experiment, we have assumed that designers will 
create only one new design per module. However, as we indicated above, an 
important fact about options is that “duplication of effort,” in the sense of mounting 
several design experiments aimed at the same target, may be desirable. Pursuing 
several experimental designs gives developers the opportunity to select the best 
outcome after the fact. How much economic value does this does this option create? Is 
it worth the cost? The answer to this question, it turns out, depends on both the 
modular structure of the overall system and the technical potential inherent in each 
module.

To quantify the value of parallel experimentation, let us suppose that in each of J 
modules, the designers initiate kj independent design efforts. When the designs are 
complete, the designers then have the option in each module to select the best of the kj

outcomes for the final design. Thus let Q(kj) denote the expected value of the highest 
realization of k independent draws from a standard normal distribution as long as the 
realization is greater than zero. Formally: 

      

where N(z) and n(z) are respectively the standard normal distribution and density 
functions.18

                                                          

17 See [34]. 
18 This distribution of the best of k realizations is well known in statistics: it is the distribution 
of the "maximum order statistic of a sample of size k." Our expectation differs from the 
standard one, however, because it is taken only over the range of values above zero. See 
Lindgren, 1968, on order statistics in general. 

0

n(z)dz
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z[N(z)]kQ(k)
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 By similar reasoning as above, the total value of a system with J modules and kj
experiments on the jth module is: 

 (5) 

The rightmost expression simply notes that the option value of each module is the 
product of the module’s dispersion parameter, j, times a “highest draw expectation” 
for a standard normal variate. We have tabulated Q(k) for values of k up to 50: the 
results are shown in Table 2. Using the tabulated values it is straightforward to 
operationalize this valuation methodology. 

Table 2. Tabulated Values of Q(k) for k =  1, …, 50

Equation 5 applies to systems wherein the modules are asymmetric. If modules are 
symmetric, then it will be optimal to run the same number of experiments on each 
module. The 2J arguments in equation 5 then collapse to two, and the value of the 
system as a whole, denoted V(j,k), becomes: 

(6) 

Figure 10 graphs this function for different values of j and k. The way to read this 
chart is as follows. The vertical axis shows system value as a function of two 
variables.  The first variable, on the right-hand axis, is the number of modules in the 
system.  In the figure, this variable ranges from 1 to 25. The second variable, on the 
left axis, is the number of design experiments, i.e. R&D projects, per module. This 
variable also ranges from 1 to 25. The surface shown on the vertical axis indicates the 
value of different combinations of modules and experiments. As we go out along the 
middle of this surface, we see the value of running one experiment on one module, 

k Q(k) k Q(k) k Q(k) k Q(k) k Q(k)

1 0.3989 11 1.5865 21 1.8892 31 2.0565 41 2.1707

2 0.681 12 1.6293 22 1.9097 32 2.0697 42 2.1803

3 0.8881 13 1.668 23 1.9292 33 2.0824 43 2.1897

4 1.0458 14 1.7034 24 1.9477 34 2.0947 44 2.1988

5 1.1697 15 1.7359 25 1.9653 35 2.1066 45 2.2077

6 1.2701 16 1.766 26 1.9822 36 2.1181 46 2.2164

7 1.3534 17 1.7939 27 1.9983 37 2.1293 47 2.2249

8 1.4242 18 1.82 28 2.0137 38 2.1401 48 2.2331

9 1.4853 19 1.8445 29 2.0285 39 2.1506 49 2.2412

10 1.5389 20 1.8675 30 2.0428 40 2.1608 50 2.2491
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two experiments on each of two modules, and so on, until at the far corner, we have 
25 experiments on each of 25 individual modules in the system. 

Figure 10. The Value of Splitting and Substitution 

The figure shows that there is strong complementarity between design modularity 
and experimentation.  More modules make more experiments more valuable, and vice 
versa.  The two things go together.

Although this function is the result of a thought experiment  (and no real system is 
symmetrical to this degree), the result is nevertheless compelling. The amount of 
economic value being created by the combination of modules and experiments is 
really very large. The values are calculated relative to the value of a single experiment 
in a non-modular system; we see, in effect, that a complex project organized as 25 
modules with 25 experiments per module can obtain approximately 25 times the value 
of the same project organized as a single, interdependent whole. These values are 
hypothetical, and do not recognize the costs of creating a modular architecture, 
running experiments, or integrating and testing the modular system.  But a value 
multiple of 25 will pay for a lot of engineering costs!  In other words, the incentives 
afforded by the combination of modularity and experimentation are so great that in a 
free-market economy, if it is possible to modularize, someone will do so in order to 
capture this value.
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The graph is also surprising in the way the factors interact.  Modules and 
experiments work together, and therefore, as one increases modularity, and one 
should experimentation, that is, R&D, as well, in order to get the best outcome.  This 
is costly, as we shall see.  But there is another kind of “cost” involved: the cost of 
potential innovation ignored. Often engineers with the encouragement of managers 
will modularize a complex engineering system in order to reduce its cognitive 
complexity or shorten its development time. Neither group may understand what the 
modularization implies for the value of innovation and experimentation within the 
system.  Yet if the firm that initially modularizes the system ignores this value, there
will be strong incentives for other firms to enter the market offering their own new 
module designs.

Something like that happened to IBM after the company introduced the first 
modular computer, System/360, in the mid-1960s. System/360 was a powerful and 
popular modular system, a tour de force in terms of product design, marketing, and 
manufacturing. However, IBM’s top managers did not understand the value of the 
options that had been created by its own new modular design. They did not increase 
inhouse design efforts, and as a result, left profitable opportunities “on the table.” 
Before long, new firms moved in and seized these opportunities. This was the start of 
the pattern of industry evolution and value migration depicted at the beginning of this 
chapter.

Many of the new firms that entered the computer industry in the wake of 
System/360 were staffed by former IBM engineers. Engineers who had worked on 
System/360 and its successors could see the module options very well, and knew the 
design rules of the system. Thus when IBM’s top managers did not fund their 
projects, they took those projects elsewhere. Beginning in the early 1970s, scores and 
then hundreds of engineers left IBM and joined others in founding companies that 
supplied “plug-compatible” modules for IBM’s System/360 and 370. As it happens, 
one of IBM’s main R&D labs was located in San Jose, California, and the exodus of 
engineers from the San Jose labs was one of the key factors that contributed to the 
emergence of what we now call Silicon Valley.

11. The Costs of Modularity 

We have yet to address the costs of modularity. In fact, the costs of creating and 
exploiting a modular system can be a significant offset to the value that is created.

There are, first of all, the costs of making an interdependent system modular: the 
cost of creating and disseminating design rules.  The DSM mapping techniques, 
discussed above, show how painstaking the process of modularization must be, if it is 
to succeed in creating truly independent modules.  Every important cross-module 
dependency must be understood and addressed via a design rule.  Obviously the 
density of the dependencies matters here. Modular breakpoints (interfaces) need to go 
at the “thin crossing points” of the interdependency graph. Some systems are naturally 
more “loosely-coupled” than others: they have more thin crossing points hence 
relatively more potential modules.

For example, circuits, the physical system on which computers are based, are one- 
and two-dimensional; whereas mechanical solids are three-dimensional. Clearly it is 
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harder to split up complex, curved, 3-dimensional designs, and to create flexible 
interfaces for them: there are more dependencies to manage, and the tolerances are 
much tighter. Thus modularizing an automobile’s design is a tougher engineering 
problem than modularizing a circuit design: the cost of creating a modular 
architecture and related interfaces will be higher. This has led some scholars, like 
Daniel Whitney at MIT, to predict that autos and airplanes will achieve only limited 
modularity in practice.19 The option values inherent in these tightly coupled systems 
will be low relative to systems that can more easily be modularized. 

 It is also costly to run the experiments needed to realize the potential value of a 
modular system and to design the tests needed to determine if particular modules are 
compatible with the system, and which one performs best. Indeed figuring out how 
many and what kind of experiments to run and how to test the results are important 
sub-problems within the overall option valuation problem. The interaction of option 
value and the costs of experimentation and testing modules causes each module in a 
large system to have a unique value profile. For example, Figure 11 shows how value 
profiles may differ across modules as a function of the number of experiments. Some 
modules (those that are hidden and have high technical potential) can support a lot of 
experiments; others (those that are visible and/or have low technical potential) can 
support few or none. 

Figure 11. The Value Profiles for Different Modules of a Computer System

                                                          

19 See [50] 
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12. Conclusion 

We conclude this brief excursion into the realm of modularity by returning to the 
question of industry evolution, and commenting on the perils of modularity for 
incumbent firms.   Modularity in the design of a complex engineering system with 
high technical potential (high s in the modules) is likely to be highly disruptive to 
the pre-existing industry structure. Modularity-in-design allows users or system 
integrators to mix and match of the best designs within each module category and to 
incorporate new and improved module designs as they become available. Thus a 
modular system design requires that a company operate all aspects of its business 
more efficiently than its competitors. If it is not “the best” in a given module, then 
competitors will flock to that point of vulnerability.

For example, consider IBM’s introduction of the personal computer (PC) in the 
early 1980s.20 By this time, IBM had learned the basic lessons of modularity inherent 
in System/360. Its managers understood how modularity encouraged both innovation 
and entry on modules. Indeed, the PC was extremely modular-in-design, and IBM 
leveraged this modularity by outsourcing most of its hardware and software 
components. But IBM’s managers also understood that they needed to protect the 
company’s privileged position within the modular architecture. Thus IBM retained 
control of what were thought to be the key design and process modules—a chip called 
the BIOS (Basic Input Output System) and the manufacturing process of the PC itself. 
By exercising control of these critical and essential “architectural modules,” IBM’s 
managers believed that they could manage the rate of innovation in PC’s. Their goal 
was to obtain maximum return from each generation of PC, before going on to the 
next.

However, the founders of Compaq had a different idea. First, they independently 
and legally replicated IBM’s technical control element, the BIOS. Then they designed 
a machine that was fully compatible with IBM’s published and non-proprietary 
specifications.  They bought the key modules of the PC — the chip and the operating 
system — and all the other parts they needed from IBM’s own suppliers. And they 
went to market with an IBM-compatible PC built around the newer, faster Intel 386 
chip while IBM was still marketing 286 machines. Within a year Compaq had sales of 
$100 million; by 1990, its revenues were $3 billion and climbing, and IBM was 
looking to exit from its unprofitable PC business.

However, as everyone knows, the leading player in the PC market today is not 
Compaq but Dell.21 In a nutshell, Dell did to Compaq what Compaq did to IBM: it 
took advantage of the benefits of modularity and designed a line of technologically 
competitive, yet compatible, and lower-priced PCs. In fact, Dell used modularity-in-
the-design-of-production-processes more effectively than Compaq in order to arrive at 
a more efficient, less-asset-intensive business model. Dell outsourced even more of its 
manufacturing activities than Compaq. It designed its assembly processes to build 
machines to order (BTO), thereby cutting out most of its inventory. And it sold its 

                                                          

20 This history is recounted in [16]. 
21 For detailed comparisons of Compaq’s and Dell’s business models, see [6, 49]. 
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products directly to consumers, thereby cutting out dealers’ margins and more 
inventory. Compaq simply could not compete. When its top managers saw the 
handwriting on the wall in PCs in early 1998, they tried to move the company into  
higher-margin “enterprise computing” through the acquisition of Digital Equipment 
Corporation, but the transition was not successful. Today, Compaq no longer exists as 
a separate company—it was acquired by Hewlett Packard Corporation in 2002.

In conclusion, the widespread adoption of modularity-in-design in complex 
engineering systems with high technical potential can set in motion an uncontrollable 
process of design and industry evolution. The economic consequences of this 
process—for good and bad—are depicted in the charts and turnover rates described at 
the beginning of this chapter. Thus modularity-in-design can open the door to an 
exciting, innovative, but very Darwinian world in which no one really knows which 
firms or business models will ultimately prevail. This can be a world of growth, 
innovation and opportunity. But, as the Internet Bubble and Crash taught us, this 
world can also fall into periods of extreme value destruction, chaos and inefficiency. 
Thus in the last analysis, modularity-in-design is neither good or bad.  Rather, it is 
potentially powerful and disruptive, and therefore dangerous to ignore. 
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1.   Introduction 

This chapter motivates the need for, and introduces a formal set of processes that 
constitute the practice of, “Complex Systems Engineering” (CSE). Our experiences 
and observations strongly suggest Enterprise Engineering is best approached using 
CSE to engineer and manage the enterprise1.

Using the current instantiation of the Air and Space Operations Center (AOC2),
and the desired evolution of it, the AOC is shown to be best thought of as a complex 
system. Complex Systems are alive and constantly changing. They respond and 
interact with their environments – each causing impact on (and inspiring change in) 
the other. We make the case that a traditional systems engineering (TSE) approach 
does not scale to the AOC; consequently, we don’t believe TSE scales to the 
“enterprise.”

We introduce a new set of processes which complement – and do not replace – the 
processes that constitute traditional systems engineering. The methods for the 
engineering of complex systems are based on a view of complex systems as having 
the characteristics of an ecosystem, and the use of processes which take advantage of 
emergence and which deliberately mimic evolution to accomplish and manage the 
engineering outcomes desired.

                                                          
1 Initially, we appeal to the reader’s intuition for the definition of an enterprise. The picture in one’s mind 
should be something like a large collection of independent organizations, loosely associated to achieve 
something in common. 
2 A special thanks to Col Pete Hoene, USAF, and Col Terry Szanto, USAF, the past and current AOC WS 
System Program Office Director, respectively, good friends both, for their continuing professional 
engagement in this topic, and their kind reading of this draft along with their helpful comments. Special 
thanks also to Col Joe May, USAF (ret) who took the time for healthy debate and discussions both as the 
Director of Operations for the Air Force’s C2 and ISR Center, and subsequently. Joe put the operator’s 
“stink” on the thoughts.
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The chapter is structured in four major sections: 
Why Rethink Systems Engineering? 
Complexity and Complex Systems 
Engineering Complex Systems 
Complex Systems Engineering in Practice 

We all must come to grips with the non-deterministic nature of enterprises. We 
hope to extend the concepts and methods of Systems Engineering to complex 
systems, and to open up the professional dialog so as to codify the engineering and 
management of complex systems and enterprises.

2.   Why Rethink Systems Engineering? 

First, we should take stock in everything accomplished. We’ve designed, built, 
fielded, and operated two Air and Space Operations Centers (AOC) which provided 
the tools used to plan, task, and monitor all air operations in both Operation Enduring 
Freedom in Afghanistan and Operation Iraqi Freedom in Iraq as well as the AOC 
created for NORAD to manage airspace and combat air patrols in the US after 9/11 
(Operation Noble Eagle). Other packagings of the functionality are fielded with 
Special Operations units, and with the Navy and Marines. 

Yet, we are having trouble building, integrating, and modifying large “systems.” 
Our difficulties are legion [e.g., 9]. Struggling with these failures, as a community, we 
have continued to refine our notions about systems engineering, and how we define, 
design, and prepare for systems; but – again, as a community – we haven’t changed 
our underlying “mental model” which informs our general (and specific) philosophy 
and processes. We continue to view Systems Engineering as fundamentally about 
allocating desired, known functionality among specific elements of a design; all 
known a priori and stable over time. The users of the functionality built often accuse 
us, the developers and acquirers, of being “late to need,” “unresponsive,” and “too 
expensive.”

We respond with a lexicon carefully crafted to put the onus back on the users. We 
say that the users’ requirements are unknown or poorly stated; that, if the 
requirements are known, there is a requirements drift (i.e. modifying the 
requirements), or requirements creep (i.e. adding additional requirements). We 
suggest that the user can’t (or won’t) say what they really want, or how they will use 
that which is to be built and delivered. This situation results in processes that focus on 
detail: detail of proposed use, detail of environment, detail of design, and detail of 
planned schedule. The more detail the better.

During the last decade as the world has moved from stand-alone automation that 
augmented individuals, to networked and shared automation, architectures became the 
way to deal with the rising complexity. But the early forays into architectural-based 
engineering didn’t seem to pay the dividends anticipated – complaints from users 
continued, and the most-valued automation tools were ones not built with the same 
careful attention to detail required by the Architecturally-based Systems Engineering 
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approach practiced. Rather, it seemed much of the architecture-supplied 
understanding and simplification was implicit. We saw the technical architectures,
rather than being defined and engineered, were being imposed by the development 
tools used; and the need for operational architectures (what will this system do…and 
how will it be used) were rendered unnecessary since “experts” were supplying the 
operational insight directly to the developers. Further, these user/developer 
collaborations were turning products out quickly; and they were valued by the end-
user.

As we attempt to make systems more useful and valued we also start to come face-
to-face with the limitations of our current methodologies. For the Air and Space 
Operations Center, there are two clear forces pressing on it and demanding its 
evolution: 1) speed of accommodation to new understandings of current missions, or 
new missions demanding modification of the current AOCs; and 2) application to new 
doctrinal uses or mission types [1, 2, 3]. In all cases, the manner in which we practice 
Systems Engineering seems to bog us down; and we’re compelled to rethink the 
practice. This analysis leads us to recognize that there are additional classes of 
Systems Engineering problems. Each class requires a different qualitative mindset; 
and consequently, a different set of tools, techniques, and procedures to undertake the 
task of systems engineering successfully. 

Systems engineering, at its simplest, attempts to understand a desired outcome 
from the interactions among people and things, and is roughly divided into two 
phases: Analysis and Design. During analysis the context for the desired outcome is 
explored to uncover the initial conditions and resources available, which can 
contribute to the desired outcome. Then, with this understanding, processes are 
designed which are able take the initial conditions and transform them into the desired 
outcome. As the designing proceeds, roles and activities are allocated among people, 
hardware, software, and organizations. Flowing out from this allocation are the 
ancillary activities implied and required by the design. For example, if an activity has 
been allocated to a person – and that person is expected to perform in a certain 
manner – then the person must understand their role in the system, and must be 
trained to perform that role. At all times design boundaries and constraints are 
examined and evaluated to ensure they are not violated. For example, if precision 
must be maintained, then cumulative error must be watched; or if certain information 
flows are required, then there must be connectivity and sufficient bandwidth to satisfy 
the design, etc. 

The preceding certainly seems to make sense. And, the more complex or critical 
the desired outcome, the more important it would seem to conduct this process with 
more rigor, more information, and with more detailed plans; after all, we have to get it 
“right.”

So what’s the issue? In a nutshell: the mindset, skills, methods, and processes used 
to develop “systems” in this way seem to fail us when we attempt to craft “Systems of 
Systems.” And, the AOC is certainly a System of Systems.
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2.1. Challenges with Engineering the AOC 

The AOC is known as a “System of Systems” (SoS). As such, it is envisioned as a 
system assembled of other systems so as to offer the capabilities needed to perform 
roles assigned to an AOC. Implicit in this is the expectation that the systems from 
which the AOC is assembled can be composed into an AOC System of Systems. This 
has proven harder than anticipated, and it provides insight into the challenges of 
Enterprise Engineering. While still viewed as a “system” by some, the AOC turns out 
to be an “enterprise” in the small. As in all enterprises, it is composed of different 
pieces representing different fiefdoms and principalities; (or “tribes” as Gen J. 
Jumper, AF Chief of Staff likes to say) Listed and discussed below are those 
characteristics that have proven to add difficulties to the intended composition of 
systems into an AOC SoS. 

The AOC today is assembled from over 80 elements. There are infrastructure 
elements, communication elements, applications, servers, and databases. The goal is 
to compose the desired capabilities from the elements found in, or which can be 
brought into, the AOC. For the most part, today’s systems are not composable. The 
systems:

Don’t share a common conceptual basis. 
Aren’t built for the same purpose, or for use within specific (AOC) work 
flows, or for use exclusively at AOCs, 
Share an acquisition environment which pushes them to be “stand alone”3,
Have no common control or management, 
Don’t share common funding which can be directed to “problems” as 
required,
Have many “customers,” of which the AOC is only one, 
Evolve at different rates (as do individual system components) subject to 
different (generally uncoordinated) pressures and needs. 

Because of the above, ensuring integration and interoperability are 
unbounded, unpredictable engineering activities. The following observations 
clarify this further: 

Observation 1: The AOC SoS is an opportunistic aggregation, not a design. 
Only the AOC System Program Office (SPO), which has the acquisition 
responsibility for the AOC SoS, has a strong interest in an overall AOC 
design, and has no way to enforce such a design on others who supply the 
component systems of the AOC, 
Since the AOC SPO doesn’t spend its money for many of the component 
systems of an AOC SoS, the component system-owners have little incentive 
to comply with, or respect, an AOC design, 

                                                          
3 The DoD’s acquisition system is built around the concept of a “system” which seeks to separate a given 
system from every other. This separation extends from the concept through delivery and sustainment. 
Funds executed on behalf of the system acquisition are, by law, separate from all other monies with 
Congress carefully monitoring expenditures. 
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The SPOs for the component systems in an AOC SoS must remain 
responsive to customers and users with interests other than the AOC, and, 
The need for, and the appearance of, a specific new capability at an AOC is 
often driven by a new, immediate need not apparent to or felt by the other 
customers and users of the component systems in an AOC SoS; and to which 
the AOC SPO would be unable to satisfy within the time-of-need. 

Observation 2: Integration-enabling technologies (glueware) are grafted onto the 
elements (systems) of the AOC, and integration developments are undertaken, after 
delivery of the component systems to their prime customers, 

Each element in the aggregate is designed and built with its own 
understanding of the world – around its own set of “conceptual atoms” 

o Integration among these elements requires effort (resources) to 
understand and bring these potentially disparate “conceptual atoms” 
in line so they can be composed, 

Integration is a source of work and revenue – using today’s dominant 
business model (employer/contractor) contractors sell engineering hours, 

o “Big Integration” is a potential cash-cow for those who perform it 
o Little incentive to limit the work, or find ways to be more effective 
o Integration of already-developed elements guarantees that the 

delivery of an integrated, operational AOC will lag behind the 
availability of the individual elements; however, the expectation 
from the users is that general availability (when the component 
systems become available to the users) and integrated are
synonymous. This leads to customer disappointment; and is further 
compounded by the need to expend additional funds to perform the 
integration proper. 

Observation 3: Funds for integration are limited 
Willingness (and sometimes, the ability) of the user to wait is limited, and 
accelerating deliver (if even possible) costs additional money; 
Perceived barriers for building automated functionality (in software) are low, 
setting customer expectations that it’s easy, quick, and cheap; 
Integration tends to be built around a defined work flow which implements a 
specific concept of operation. Integration “glue” which implements the 
concept of operation binds systems into rigid relationships. This is contrary 
to achieving “agility” and “net-centricity;” [2, 3] 
The ability to conduct tests has an inverse relation to system size;

o Resources (organizations, staff, time, money) available to conduct 
large tests are limited; 

o Test coverage plans for large systems becomes unwieldy; 
o Likelihood of finding incompatibilities during large test rises (due 

to the possibility of uncovering an unexpected transitive affect); 
o Understanding of how to proceed once a problem is uncovered is an 

open question; 
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Note: The process of testing of SoS must be rethought; the goals and the uncovering 
of problems are good things which must be preserved – just not at system test time; 
especially operational test. 

Observation 4: “Value” assessment is not by those who use the capabilities 
The “marketplace” serviced by the acquisition system is the selling of 
engineering hours through the promise of future assemblies and creations; 
and the delivery of these creations; not by the assessment of value or utility 
by the AOC staff (these aspects are supposedly contained in the formal 
requirements),
Those who use the creations of the formal system have only an indirect 
influence; any direct influence being the result of heroic efforts on the part of 
individuals

o This tends to bring into being a “black market” of applications and 
functionality – and the hoarding of local “slush funds” which can be 
directed by the local commanders to satisfy needs as they arise. 

Observation 5:  Plans (and Planning) as a primary SoS strategy has problems 
Focuses on the future – but is based in the past 
Tends to fix an early (likely incorrect and incomplete) view 

Activities tend to twist reality (subject to unplanned change) to the plan 

(static, based on past beliefs) 

Imposes expectations, and dependencies, on partially-interested participants 
Design implied in the plan is based on today’s understandings. As things 
change in the world all the elements to be composed are subject to different 
pressures and decisions which likely will not align 
Assumes a success based on promises (staying on-plan) – not achievements 

Additionally, there are new operational concepts being considered, developed and 
employed. These include over-arching concepts such as Netcentric Warfare (NCW) 
[1], and technical concepts such as the Global Information Grid4. For the AOC, new 
operational ideas such as Dynamic Tasking and Effects-Based Operations are taking 
hold. Supporting this growth and change, at an acceptable rate and at an acceptable 
cost, is often described as “agile acquisition.” Yet, there are few examples of how to 
achieve this “agile acquisition.” 

How can these new operational ideas be cast into capabilities, which can then be 
integrated in the AOC? What works? There seem to be characteristics that militate 
against success, even when carefully practicing Systems Engineering as we know it. 
Before these characteristics are introduced and reviewed, and the CSE approaches by 
which complex systems may be engineered are discussed, we present a quick 
introduction to systems engineering and complexity as it applies to systems (and 
systems engineering).

                                                          
4Global Information Grid Capstone Requirements Document, 5 JROCM 134-01, August 30, 2001
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2.2.   What is Systems Engineering? 

Traditional systems engineering (TSE) has its foundations in Linear System Theory 
(LST). Key ideas are proportionality, super-positioning, and the existence of 
invertible functions (i.e. x = f-1(f(x)).  There is also the assumption of repeatability. 
These ideas, coupled to an attention to detail, explain why traditional systems 
engineering works as well as illuminating the boundaries of its applicability. 

Traditional systems engineering begins with the specification of requirements. 
Closed and complete, precise and fully detailed are the ideals. Systems are then 
implemented to comply with or to satisfy exactly these requirements.5 The practice of 
TSE is the application of a series of linear transformations moving from the 
statements of the requirements through to a preliminary design, a final design, the 
actual development, then testing and fielding. A hallmark of the process is the ability 
to justify everything built in terms of the original requirements. If requirements 
change it dislodges the careful scaffolding upon which the system rests. Change 
ripples through everything; and; therefore, approaches which isolate the impacts of 
change are sought. Since “no change” is the desired (and expected) state of affairs, 
engineering efforts shift to development efficiencies. 

Decomposition and then integration (or assembly) are the bookends for the 
implementation that follows specification, both of which depend upon the 
applicability of LST to a given situation. Because of this, there is a strong preference 
for hierarchy in both implementation activities as well as in the result.6

Traditional systems engineering relies on the making of and the fulfilling of 
predictions. These predictions are more binding for traditional system engineers than 
any current realities as is seen (for example) in development of PERTs, and in formal 
testing procedures which are made independent of implementation but that are 
predicated on the same requirements. As long as predictions and realities diverge, a 
preference is given to preserving the predictions. Descriptions of traditional systems 
engineering can be found in many places. A quick “Google”7 of the term brings many 
hits (millions), including many universities offering systems engineering curricula 
and degrees. 

Systems Engineering is seen as a professional discipline and, as for other 
professions, has developed professional associations where the practice itself is 
codified and socialized. Such a professional organization is the International Council 
on Systems Engineering (INCOSE – www.incose.org). This (traditional) Systems 
Engineering definition is taken from the INCOSE web site [18]: 

                                                          
5 Engineering is always an approximation, however. Traditional systems engineering assumes (or asserts) 
that the ideal result is “closed” and that it can be completely pre-specified. The appearance of Interface 
Control Documents (ICDs), for example, is an exception that illustrates (or preserves) the validity of the 
general rule. 
6 Refer to the brief discussion of multiscale analysis. This preference for hierarchy is actually a result of the 
fact that LST is limited to a uniscale analysis and synthesis of a problem and its solution. 
7URL = http://www.google.com. Note the irony of using a complex system to help describe complex 
systems.
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What’s not described in this definition is the process, previously outlined, to which all 
of the activities, areas, and disciplines implied in the INCOSE definition are brought 
to bear to support. 

Fundamentally, the practice of TSE seeks to understand the place of an element 
within the environment, isolate the element under study from the environment, and 
then treat the environment as a constant.

Reflect on Systems Engineering. Among the characteristics one would require to 
have a successful, or at least a low risk outcome, there are a few which are absolutely 
required to ensure success using traditional Systems Engineering. These serve as 
boundary conditions for applying TSE:

The specific desired outcome must be known a priori, and it must be clear and 
unambiguous (implied in this is that the edges of the system, and thus 
responsibility, are clear and known); 
There must be a single, common manager who is able to make decisions about 
allocating available resources to ensure completion; 
Change is introduced and managed centrally; 
There must be “fungible” resources (that is money, people, time, etc.) which can 
be applied and reallocated as needed. 

Failing to have any of the above raises risk dramatically; and it is unlikely that 
other mitigation strategies will be possible for the risks introduced. How many of 
these boundary conditions are found in an enterprise? Our sense is that there seems to 
be a correlation between small projects – that build stand-alone, fairly simple 
applications/products, which are under the complete control and management of a 
single party – and the likelihood of having these boundary conditions satisfied.  

“Systems Engineering is an interdisciplinary approach and means to
enable the realization of successful systems. It focuses on defining
customer needs and required functionality early in the development cycle,
documenting requirements, then proceeding with design synthesis and
system validation while considering the complete problem: 

Operations

Performance

Test

Manufacturing

Cost & Schedule

Training & Support

Disposal

Systems Engineering integrates all the disciplines and specialty groups
into a team effort forming a structured development process that proceeds
from concept to production to operation. Systems Engineering considers
both the business and the technical needs of all customers with the goal of
providing a quality product that meets the user needs.” 

Figure 1. INCOSE Systems Engineering Definition
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Unfortunately, when one considers an enterprise every one of the characteristics 
mentioned above is violated. This isn’t too surprising as Systems Engineering has 
evolved (very successfully) from an industrial, element-manufacturing point of view.

Of note in the INCOSE definition of Systems Engineering is the absence of the 
concept of the enterprise. In fact, the aspects discussed and listed above in the 
INCOSE definition are appropriate for elements of the enterprise – and their 
manufacture- but not the enterprise itself. Any arguments offered wherein one 
suggests that one does the same things at a grander scale are wrong; they don’t scale; 
they don’t work. Our experience stands in stark contrast to this (sometimes implied) 
assertion. Notwithstanding this seeming omission, INCOSE identifies the changes 
needed in engineering education and practice to enable engineering on an enterprise 
basis. They call out for all engineering curricula to be multi-disciplinary. They hint 
that Systems Engineering is the place where the currently balkanized set of 
engineering departments can be brought together, and they suggest a difficult 
interdisciplinary senior challenge problem and “playground” where the students can 
learn their trade. We agree wholeheartedly with these observations and 
recommendations. In a real sense, INCOSE is discovering process and 
methodological elements that fit Complex Systems Engineering, but has yet to name 
and describe it.

2.3.   Can Traditional Systems Engineering be applied to the AOC? 

It is clear that processes must be applied where they fit. If boundary conditions for 
applying a process, or a set of processes, are violated the processes are not really 
applicable. Is an AOC such a situation? 

We can test whether the characteristics we previously argued were required for 

successful outcomes using TSE fit an AOC:

The specific desired outcome must be known a priori, and it must be clear and 
unambiguous (implied in this is that the edges of the system, and thus 
responsibility, are clear and known); 

o Test Result: Failed.

There are expectations expressed in documents known as Block 

Requirements Documents (BRD), which lay out an AOC’s planned 

functionality over time. The fly-in-the-ointment is that the plan implies a 

convergent set of developments, which would deliver the capabilities found 

in the AOC BRD. This isn’t the case; and it leads to the next characteristic to 

test.

There must be a single, common manager who is able to make decisions about 
allocating available resources to ensure completion; 

o Test Result: Failed.

As observed above, there are many component systems, which are managed 

by many different organizations responding to many constituencies on behalf 

of a set of users, of which one user community is found at AOCs. 

Change is introduced and managed centrally;
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o Test Result: Failed. 

It is certainly the case that senior AF management has (and is) attempting to 

apply centralized management to bring AOCs under control. AOCs have 

been declared to “Weapon Systems,” The senior acquisition authority has 

asserted personal control over the official configuration, and detailed 

configuration control processes and measures have been imposed. 

To date, these measures have not worked; and we suspect they still won’t.

The only proximal result is a sense of stasis hovering over the AOC formal 

definitions. This invites the formation of black markets. Each Combatant 

Commander has funds that can be spent on their AOCs  (the OIF AOC was 

built on Commander’s Initiative funds). Bottom line: they have the means; 

and when a need surfaces, they can fix their own problems. And they are 

independent of the corporate AF staff. 

Besides, stasis of the AOC definition imposes no stasis on the component 

systems used to build the AOC, so what does a firm baseline mean in this 

case?

There must be “fungible” resources (that is money, people, time, etc.) which can 
be applied and reallocated as needed.

o Test Result: Failed. 

As mentioned, few of the total set of resources required to produce an AOC 

are controlled by, or in a way, that renders them fungible. 

The conclusion is pretty straightforward. TSE doesn’t lend itself to engineering or 

managing the engineering of AOCs (and by extension, enterprises). Can one take 

organizational or management steps to bring the characteristics, which are outside of 

the boundary conditions back in line? Perhaps one; but they are all violated. A 

reasonable guess is that it is not likely that there are management or organizational 

changes which would allow TSE to be applied successfully. 

3.   Complexity and Complex Systems 

To facilitate discussion, terms must be defined. For this discussion there are a few key 
terms that require definition. While somewhat pedantic, the concepts offered below 
attempt to define the landscape explored. For those who believe they have a good 
grasp on the definitions and characteristics of complexity and complex systems, or 
who have an immediate interest in answering the next logical question with respect to 
an AOC – is the AOC a complex system? – they might jump ahead to section a.3.4, 
then return to this point. 

 “Complex Systems Engineering” contains three terms: 
Complexity
Systems
Engineering

Fundamentally, we’re talking about an engineering activity centered on complex 
systems. Yet, to this point the appeal is to a general gut-feel for the concept. But, what 
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is complexity? What are systems? What are complex systems? What is systems 
engineering? What is complex systems engineering?

3.1.   Complexity 

“Complexity” as a concept is actually rather slippery. For understanding the 
difficulties “complex systems” present to engineering and management activities, it’s 
worthwhile taking a few moments and exploring this term “complexity.” As we 
discuss complexity, we will use a “progressive formalism” approach, which initially 
appeals to intuition, then fills in the intuition with some formal structures. To set 
complexity in its proper place, we will also use some forward references – i.e. before 
we define a system, we will use the common notion of a system to help understand 
“complexity.”

“Complexity” does not mean “difficult to understand” (although it might be the 
case that something complex is difficult to understand). Reaching into the American 
Heritage Dictionary,

Complex adj.
1.a. Consisting of interconnected or interwoven parts; composite. b.

Composed of two or more units 
This particular definition is not too useful, since every system (using the working 
definition of system below) is “complex” by this definition.  The Oxford Dictionary 
states that something is complex if it is “made of closely connected parts.” This 
definition also does not distinguish between “simple systems” and “complex system.” 
In fact, one could (by simple substitution) quickly create a “simple complex” which 
seems like an oxymoron. 

Bar-Yam [8] suggests that complexity is strongly related to the number of possible 
states of a collection, or its complete description. That takes the concept closer to a 
useful understanding for engineering, and borrows in an attractive way from 
Shannon’s Information Theory; but it also seems arbitrary in some ways, as it 
suggests that a collection becomes more complex when measured with more 
precision. For example, if one calculates all the possible arrangements of papers on 
one’s desk, the number of discernible possibilities is different depending on the 
precision of the ruler used. But it’s still the same desk and the same set of papers. 
Arguably, the complexity should be the same. The complexity should not depend on 
the measuring method. The counter argument is that the use of a different ruler is 
precisely equivalent to using a different scale; and so finding that the complexity at 
different scales is different should not be surprising. Nevertheless, the use of a value 
related to both information theory8 and entropy9 remains attractive.

Another aspect to contemplate is the difference between actual number of 
possibilities and the number of useful possibilities. Consider a spoken language. Is the 
complexity of a sentence in the language of length ‘n’ related to the permutations of 
the number of words in the sentence (O(n!))? Or, is it related to the number of ‘useful’ 

                                                          
8 Shannon's 10th Theorem: 
9 Second Law of Thermodynamics 
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arrangements of the ‘n’ words, which would be significantly less? This is potentially 
important as one develops metrics to measure complexity and compare complexity 
levels.

Another view of complexity is Turchin’s [14]. He describes complexity in terms of 
behavior and emergence. He has crafted a theory known as Metasystem Transition 
Theory, which describes interactions within and among models of meaning. The 
creation of each new level of abstraction and complexity he terms a “quantum of 
evolution.”

Whatever model is used to understand complexity, rendering ‘complexity’ into a 
useful engineering concept requires metrics. Return to the statement “Complexity”
does not mean “difficult to understand” above. Since it is easy to assume that the 
concepts are synonymous, a concept for “difficult to understand” but is not the 
concept “complexity” must be found. A candidate term offered is Intricacy

Intricacy.
1. Having many complexly arranged elements; elaborate. 2. Solvable or 

comprehensible only with painstaking effort.
An example may help drive the point home. There used to be a board game called 

Mousetrap played by children (it may still be played!). In the game, players move 
their playing pieces (colored mice) around a board and in doing so build a Rube-
Goldberg mousetrap which one player ends up using to capture the other player’s 
mouse, thus winning the game.

The advertising copy reads as follows10:
“Construct a crazy mice-catchin’ contraption piece by piece as you race 
your mice around the track! Once it’s built, turn the crank...that kicks the 
marble...that rolls down the chute...and sets off a zany chain reaction that 
just might trap a pesky mouse!” 

It’s clear that the bizarre mouse-catching device is intricate. However, it is not 
complex. It has only one possible configuration, and it results in only one behavior. 
Each piece is carefully crafted to fit onto the previous structure which sets up the 
conditions for the subsequent structure. It also doesn’t interact at all with its 
environment. It assembles the same way each time (in fact it must have this 
characteristic to be a good toy). It is also clear that the mouse-catching system built is 
“solvable or comprehensible only with painstaking effort.” That’s the appeal of the 
game. That’s why kids enjoy it. That’s not a characteristic necessarily appropriate for 
our military systems. 

Measures of complexity and intricacy may serve as good metrics to understand the 
relative merits of a system, and may be useful for relative comparisons. Mathematical 
properties of complexity and intricacy can be shown to relate to specific mathematical 
characteristics, which we will treat in a subsequent publication. As a precursor to a 
detailed treatment, it appears that intricacy relates to the number of axes of 
characterization – i.e. the absolute volume of a hyperspace defined by the axes. 
Complexity relates to the volume reachable within this hyperspace. Thinking about 
the mousetrap device, it is a device whose hyperspace has many axes; yet it has a 

                                                          
10 Taken from http://www.areyougame.com 
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narrow extent along each axis, forming a narrow volume of reachability within this 
hyperspace. Other models attempt to describe complexity in terms of variety and 
constraints [15], which roughly map to Shannon’s notion of statistical information 
entropy and content. Still other formulations of complexity are found in other 
disciplines.

Alexander [4] offers well-known (architectural) pattern models for considering 
complexity and emergence in architecture. Emerging from the repeated application of 
the principles, Alexander’s speaks about spaces, homes, towns and cities that are 
“alive.” His concept of “alive” is a reflection of the interactions among the 
components in the environment and the people, and the support the environment 
affords to the repeated patterns and events, which make up the peoples’ experiences 
minute-to-minute and day-to-day. He recognizes that there are both patterns formed at 
higher levels from bottoms-up application of patterns, and there are explicit patterns 
applied at higher levels – and in this he hints at multiscale analysis. Fundamentally, 
he is talking about the relations among the entities that interact, and the result of those 
relations. His work was adopted and interpreted by those who practice “pattern”-
oriented approaches to systems and software [13]. These approaches certainly seem to 
have something to say about complexity, and Complex Systems Engineering. 

Alexander’s notion of complexity seems to align with the notion of “order.” The 
utility of a definition (of order now) depends on its alignment with the informal 
understanding accorded the term. In the informal sense, order is almost always 
associated with organization as well as with the actions or other forms of direction 
that lead to this organization (rhyme and reason). Order is not simply a passive thing 
like color (i.e. a state property). It is dynamic; it is associated with doing something – 
i.e. both form and function. By focusing on the relationships among things, not just 
the state of the things as a result of the relationships, we can understand the reasons 
for the molar organization and perhaps understand the implications to change – even 
infer or deduce state elsewhere which may be out of view. 

Formally now, the order (of a system) is a measure. The measure is the set of all of 
the specific and instant relationships among the parts of a system.11 In many 
circumstances, the order (of a system) can be quantized and summarized by the 
cardinality of such a measure-set.12 This approach, that of focusing on the relations, 
not merely the state, will likely provide the most useful characterization of complexity 
since it characterizes things in an active way. 

                                                          
11 A given relationship can vary over time. The “specific and instant” form of a relationship is to be 
distinguished from these possibilities. A fuller discussion of the meaning of order would elaborate the 
definition of “relationship” offered here. It would offer that relationships are patterns in attributes, where 
attributes define the parts of a system (and sets of “values” define attributes). A relationship allows the 
inference or deduction of the specific values of an attribute of a part of a system based on other attribute 
values because those attribute values collectively form patterns 
12 Random is often used to identify the absence of order. If so, random should not be treated as an exact 
synonym for stochastic – which actually asserts that there are relationships, but that they are not well 
enough understood to dependably deduce or infer knowledge of specific parts. In fact, stochastic is a telltale 
for relationships at multiple levels of scale, something that is taken up briefly below. 
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3.2.   Systems 

Here, the term system denotes a set of parts that have relationships with one another.  
This is also the preferred definition for this term. From the American Heritage 
Dictionary, first definition: 

1. A group of interacting, interrelated, or interdependent elements forming a 
complex whole 

Not everyone uses this definition, but it is the definition we use. The major stumbling 
block some have with this definition is that it requires that the parts have some sort of 
relationship to one another to constitute a system. Some speak of “systems” using a 
much looser definition. The American Heritage Dictionary supports a looser 
definition as well; to wit, definition six: 

6. A set of objects or phenomena grouped together for classification or 
analysis.

The issue to consider is which definition fits one’s intuitive notion of “system” better. 
Number one seems to meet the intuition test: it’s alive and active, while definition six 
is a system of academic or conversational convenience. The definition used here 
insists that a system has multiple parts, AND that those parts have relationships 
among them.

INCOSE defines a System [18] in the following way: “...A system can be broadly 
defined as an integrated set of elements that accomplish a defined objective...” They 
have also been struggling with scaling up, and the implications. They also note “…It 
is sometimes confusing as to which elements comprise a system…” offering an 
example of a broad network with independent databases fused, and a desire to print 
the results.[ibid] Also noted is the presence of multiple “levels” to a system, and the 
different roles the same “things” are at different levels13. Clearly, the limits of the 
traditional definition of a system are being felt, and it too hints at Multi-scale analyses 
(discussed later).

3.3.   Complex Systems 

A Complex System [8, 14, 17, 19] is a system: 
Whose structure and behavior is not deducible, nor may it be inferred, from 
the structure and behavior of its component parts;
Whose elements can change in response to imposed “pressures” from 
neighboring elements (note the reciprocal and transitive implications of this);
Which has a large number of useful potential arrangements of its elements;
That continually increases its own complexity given a steady influx of 
energy (raw resources); 
Characterized by the presence of independent change agents. 

A measure of a complex system (for characterization and comparison) might be 
based on the balance of complexity and intricacy. Other corollaries of these 
measurements might be a measurement of the rate at which the complex system’s 
adapts to required/desired change. 
                                                          
13 “Aircraft, automobiles, and homes are other examples of systems at one level, which can be considered 
elements or subsystems at another level.”;  Ibid 
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3.4.   Is the AOC a Complex System? 

We can test whether AOCS fit the definition of Complex Systems by comparing the 
two:
A complex system is a system: 

Whose structure and behavior is not deducible, nor may it be inferred, from the 
structure and behavior of its component parts;

o Result: Marginal Pass 

The AOC’s desired molar behavior is reasonably well known; even it’s 
desired changes, so this characteristic doesn’t necessarily fit. However, if we 
take a broader view of an AOC as an element of C2 (i.e. the enterprise), then 
this statement becomes more correct. 

Whose elements can change in response to imposed “pressures” from 
neighboring elements (note the reciprocal and transitive implications of this);

o Result: Pass 
This is certainly the case in the AOC. Independently-introduced applications 
(through independent agents) such as (for example) ADOCS and Falcon-
View cause direct “pressure” on those applications which perform similar 
roles, or which could potentially act in concert with these introduced 
applications. As an example of resolving the introduced pressures, TBMCS 
specifically added certain Information Services to interact with ADOCS 
without the need to own and control it. 

Which has a large number of useful potential arrangements of its elements;
o Result: Pass 
Since the AOC’s workflows are numerous, and are in flux due to new 
missions and doctrine, this fits. IT is also true, though, that it is the people 
who supply the flexibility; and they often fight the automation present. 

That continually increases its own complexity given a steady influx of energy 
(raw resources); 

o Result: Pass 
This also seems to be the case. For example, TBMCS re-architected from a 
monolith to a set of applications riding on a set of Information Services 
precisely to increase the number of possible connections and relations, and to 
allow more independence of creation and use of new clients of the services 
offered.

Characterized by the presence of independent change agents. 
o Result: Pass 
The AOC has upwards of 30 independent agents – in the form of separate 
Program Elements (PEs). PEs are, by their definition and nature, independent 
agents.

It seems reasonable to conclude that AOCs are Complex Systems; and, since there 
is a need to apply a Systems Engineering approach to the AOC which is beyond the 
traditional Systems Engineering approach (see the earlier discussion in section 2.3), 
the AOC might benefit from a Complex Systems Engineering approach which  
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acknowledges the differences between the AOC and other more-traditional 
developments to which TSE can be applied. 

4.   Engineering Complex Systems 

If TSE doesn’t scale to AOCs or the enterprise, what does? In the introduction we 
made the claim that an augmentation of Systems Engineering, to be called Complex 
Systems Engineering (CSE), should be used to manage and guide the enterprise. As 
discussed above in some detail, a violation of the boundary conditions required for a 
favorable application of TSE suggests different tools and approaches are required. In 
essence, CSE must serve to bring together independent, disparate organizations and 
entities. It must provide them with a sense of “pressure” that they feel, and a set of 
processes that can be used to resolve the pressures.  CSE must incentivize the 
partnerships needed; and must compel the engagement of their respective resources to 
accomplish the integration without resorting to arguments over whose money is being 
spent, or whether “interoperability” or “integration” is a “requirement” they have.

It’s clear that Systems Engineering must extend its philosophic and theoretic 
foundation to build a consistent (and hopefully complete) framework for the practice 
of Systems Engineering in general, and Complex Systems Engineering in particular. 
Within this framework, we describe new roles and responsibilities for new “jobs” 
which must be performed to do CSE. 

Complex Systems Engineering changes the focus from “…here is the solution 
designed from the requirements, now go implement it…” to “…here are the selective 
pressures acting on the elements present (likely built using TSE), now resolve or 
reduce them…”

CSE does this, and this is the key point, through a deliberate and accelerated 
mimicry of the processes that drive emergence and natural evolution. Kaufmann [19] 
noted that complex adaptable systems require both the emergence of novelty and 
variety as well as selective pressures to account for the richness in ecosystems. We 
find those characteristics in an AOC. In fact, the AOC (and Command and Control in 
general) can be thought of as an Ecosystem. Bar-Yam [9] has explicitly incorporated 
this thinking in a recent presentation where he introduces what he calls Enlightened
Evolutionary Engineering. Using the conceptual models suggested above, one can 
speculate about niches, selective pressures, competition, adaptation, displacement, 
etc. It describes a process constantly at work and in line with our daily experience; a 
process which is alive [16, 17].

Complex systems engineering is NOT a new or renewed attention to detail; it is an 
attention to overall coherence. The two are obviously and will always be related. 
However, as the actual order and complexity of a system increases, it becomes 
humanly impractical to address both from a single perspective – in particular from the 
perspective of ever increasing detail. What complex systems engineering does is to 
address overall coherence without a direct and immediate attention to detail.14

                                                          
14 This is what baffles those confined to a linear theoretic and uniscale (or reductionist) viewpoint. 
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Complex Systems Engineering acknowledges the presence and action of 
“autonomous agents” as important elements of a SoS. These autonomous agents are 
precisely the effectors, which must be (and are) eliminated to apply TSE. Again, to 
apply TSE one needs to eliminate the independent agents, or one needs to augment 
the set of tools for dealing with their continued presence. 

4.1.   Comparing Traditional and Complex Systems Engineering 

Traditional and complex system engineering can be distinguished by contrasting 
either their methods or the outcomes resulting from the application of those methods. 
The following briefly contrasts the outcomes that are obtained using traditional and 
complex system engineering. The term product is used to identify the outcome of 
traditional system engineering; the term enterprise is used to identify the outcome of 
complex system engineering. 

Table 1. Comparing TSE and CSE 

TSE CSE 

Products are reproducible No two enterprises are alike. 

Products are realized to meet pre-conceived 

specifications

Enterprises continually evolve so as to increase 

their own complexity. 

Products have well-defined boundaries Enterprises have ambiguous boundaries 

Unwanted possibilities are removed during the 

realizations of products 

New possibilities are constantly assessed for utility 

and feasibility in the evolution of an enterprise. 

External agents integrate products Enterprises are self-integrating and re-integrating 

Development always ends for each instance of 

product realization 

Enterprise development never ends – enterprises 

evolve

Product development ends when unwanted 

possibilities are removed and sources of internal 

friction (competition for resources, differing 

interpretations of the same inputs, etc.) are removed 

Enterprises depend on both internal cooperation and 

internal competition to stimulate their evolution 

Traditional and complex system engineering can (and should) be applied 
concurrently in the realization and evolution of a complex system. Traditional system 
engineering is appropriate for managing the decision making processes of individual 
autonomous agents in a complex system. Complex system engineering must be added 
when multiple autonomous agents must be a part of any solution and/or when 
multiscale analysis becomes essential to a sufficiently complete characterization of an 
evolving problem and its solution. 

4.2.   The Regimen of Complex Systems Engineering 

Complex systems engineering (CSE) operates a bit differently than TSE in that TSE is 
a practice of direct impact and effects, while CSE tends to be indirect. The goal of 
CSE is to increase the order of, and the complexity available to, systems. As 
discussed earlier, there is a practical upper limit to the degree to which this can be 
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done successfully through pre-specification followed by implementation, and all of 
the other attendant processes of TSE15.

To engineer a system beyond this limit it is necessary to combine several related 
activities into a single continuous “regimen” of engineering and development. This 
regimen is intended to transcend the boundaries of TSE, which have been outlined 
previously. A regimen is distinguished here from a “recipe,” and a recipe here can be 
understood as shorthand for the cumulative nature of the processes of TSE. A recipe 
is a tightly and precisely scripted sequence of steps intended to yield reproducible 
outcomes such as specific kinds of cakes or meat loaves (or cars or planes, or 
operating systems). In the ideal, every outcome is exactly the same. A regimen is a 
looser formulation of more generalized steps that can be combined in various ways to 
yield many different instances of generalized outcomes such as weight loss or 
increased stamina (or an Air Operations Center, or a Department of Homeland 
Security). Even in the ideal, there can be no insistence on uniformity, only on 
acceptability or conformity with broad norms. 

The overall regimen of CSE creates and manages an environment16 in which 
multiple autonomous agents each address a fraction of the relationships that might be 
involved in an overall complex system. Autonomous agents (independent 
development tracks in the context of most engineered systems, especially IT-intensive 
systems) and their creations both operate in this environment and (continuously) 
interact to explore the utility and practicality of new or modified relationships.17 We 
have some reasonable hope that establishing such an environment is both practical 
and doable. Holland [17] points to its natural occurrence when the basic elements are 
present18.

In terms of today’s IT-intensive systems, it is useful to recognize that most of the 
increases in complexity (or interoperability, or new or expanded relations) are 
typically associated with the “run-time” of the system, while most of the collaboration 
(or interoperation or interoperability) that yields these new or modified “run time” 
relationships occurs among the people who create the “run time” components. This 
collaboration is said to occur during the “development time” for the system. As a 
consequence, complex systems engineering for IT-intensive systems needs to 
establish and manage an environment for “developers” AND for their “run time” 
creations. These two aspects (scales) of any IT-intensive complex system are not 
ultimately independent, but they can be discussed separately and then combined to 
enhance overall understanding.19

                                                          
15 Formally, this can be attributed to the increasing dimensionality of the relational multiscale phase-space 
that can be used to characterize the actual order and complexity of a system relative to the generally fixed 
and finite intellectual capacity of any human individual. 
16 There are many analogs to the developmental environment of CSE. See for example Hayek’s general 
thoughts on monetary and trade-cycle theory. An even more familiar analog is the role of “playgrounds” in 
child development. 
17 As well as to maintain, to modify, or to discard existing relationships. 
18 Holland [17] talks of the basic elements of: aggregation, tagging, nonlinearity, flows, diversity, internal 

models, and building blocks.
19 Continued improvement in the engineering of IT-intensive systems will witness the continued 
convergence of these “separate” development and run times. This can be colloquially summarized as the 
emergence of self-programming systems. The compelling “evolutionary pressure” for this emergence is the 
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 The following very briefly introduces each of the elements that are combined into 
the Regimen of CSE. Their combination is discussed after the elements are 
introduced.

4.2.1.   Developmental Environment 

An explicit and conscious attention to a developmental environment (including even a 
pre-specification of its initial form) is the single most important activity underpinning 
the deliberate development of complex systems. 

This developmental environment can be understood as either a separate and 
distinct environment in which complex systems develop and operate, or – along with 
that environment – an overall ecosystem that includes both. As such, this first activity 
focuses on the completeness of the ecosystem relative to supporting the more focused 
activities that occur within it. Are a sufficient number of the relevant autonomous 
agents and their creations present? Can new ones be added? Is the means available for 
these autonomous agents to interact if they so choose? Are resources flowing through 
the ecosystem? Are the means for supporting both cooperation and competition 
among the autonomous agents present? Is the flow of resources modulated by 
cooperation and competition, or is that flow entirely pre-specified? 20 Are there 
universal signals that can be interpreted locally (and perhaps differently) that are 
associated with the whole that cannot be entirely explained by any combination of a 
subset of the parts?21

The developmental environment can not be a one-time thing. It must be, nurtured, 
and managed so it can evolve itself; even after its initial establishment. Attention to 
this environment must be continuous, deliberate, and it must be available to all the 
independent agents; this is why it lends itself to being treated as a separate activity. 

4.2.2.   Outcome spaces 

Outcome spaces are identified (or defined) at multiple levels of scale, and from 
multiple points of view, for a complex system. An outcome space is explicitly 
distinguished from the many specific outcomes that comprise it. (When very specific 
outcomes are sought and/or are meant to be exactly reproducible, TSE should be used 
to achieve them. However, applying TSE becomes increasingly difficult as the 
number of autonomous agents increases; ideally, only one is involved. All specific 
outcomes in the outcome space must be viewed as acceptable without there being 
strong preferences for any of them.22

                                                                                                                               
“expense” of human labor in maintaining and expanding IT-intensive systems. Programmers are expensive 
relative to their programmed creations. 
20 If the flow of resources is entirely pre-specified, then competition cannot operate. The localized decisions 
of autonomous agents cannot, by definition, influence the flow of resources – although they can still 
influence the effectiveness of that flow. As a result, complex system development can’t occur. 
21 Examples of such signals are the pricing mechanism in a market economy or selective pressures in a 
biological ecosystem. 
22 This does not mean that outcomes can’t be identified as unwanted. Partitioning outcome spaces into 
wanted and unwanted sub-spaces is one way to do this. This is why outcome spaces are sometimes referred 
to as the targeted outcome spaces. 
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When specific outcomes in an outcome space can be realized by individual 
autonomous agents (or their creations) by themselves, competition is encouraged. 
When specific outcomes in an outcome space can only be achieved by autonomous 
agents (or their creations) collectively but not individually, cooperation is 
encouraged.23 Network centric operations and Jointness are military domain examples 
of the latter [1]. Such outcomes are best characterized at a scale in which the 
autonomous agents (or their creations) are not immediately or directly accessible. 
Complex systems require both competition and cooperation for sustained 
development, although competition is almost always more important in the short term. 

It is sometimes possible to characterize outcome spaces at multiple levels of scale 
using identical terminology. This often causes confusion and should be avoided. For 
example, it may be desired that a complex system achieve a reduced footprint (or 
reduced power consumption, etc.) and/or it may be desired that individual 
components of that complex system achieve reduced footprint. These are frequently 
outcomes at different levels of scale. (It is possible that a complex system could 
achieve a reduced footprint even though individual components do not – or even 
increase their footprint.) Such outcome spaces should always be explicitly 
distinguished (for example, by always and explicitly referring to “component” 
footprints and the complex system’s footprint). 

The identification of outcome spaces (vice specific, detailed outcomes) focuses 
attention on explicitly recognizing sub-spaces and partial volumes in a relational 
phase-space (vice specific phase points or trajectories).

4.2.3.   Rewards 

Autonomous agents (independent development tracks in the case of IT-intensive 
systems) make the decisions that determine the utility and/or the practicality of 
existing and new relationships within the complex system. Rewards are structured to 
motivate the autonomous agents to make decisions that cause the complex system to 
enter the targeted outcome spaces desired. 

Rewards shape the decision making processes employed by autonomous agents. 
The rewards should be clear and should not be dependent on specific processes of the 
autonomous agents who are subject to rewards. Since one should not assume that 
these autonomous agent processes are uniform (or that they should be), rewarding 
based on a specific process, which could be viewed as too invasive by the 
autonomous agents24. Rewards are only one consideration shaping the decisions of the 
autonomous agents; and should be viewed as incentives only. 

In the most general case, rewards are access to the energy flowing through a 
complex system. In the case of IT-intensive system development and within the 
context of contemporary acquisition protocols, rewards are almost always associated 
with access to the money flowing through the entire system development 
environment. There are other forms of rewards (as well as penalties), however, that 
                                                          
23 There are, of course, many intermediate or blended situations as well in which both cooperation and 
competition play a part. 
24 Unless the specific outcome space IS a common process. However, insisting on common processes may 

well stifle innovation and variety needed for evolution.
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are neglected only at great peril to the system engineer. Rewards motivate. As long as 
people are involved, the list of possible rewards is as long as the list of factors that 
motivate people. 

To the degree that rewards can be distributed extra-contractually, that offers 

motivation to autonomous agents to “keep their eye on” the complex system, even if 

they are not engaged in a direct manner. Innovations, which these agents can bring to 

the complex system and that are shown to bring value, should be rewarded. This sets 

up the potential of new approaches and influences, and avoids stagnation. 

4.2.4.   Developmental precepts 

Developmental precepts constitute the “rules of the game,” and by doing so stimulate 
contextual discovery and interaction among autonomous agents. They do this by 
establishing (for example) certain constraints on how outcomes are achieved by 
autonomous agents, or how they interact. It’s easy to confuse these precepts with 
rewards, however they are quite different. Like when playing a board game, even if 
the next space to promises a great, the rule (developmental precept) says you must 
move the number of spaces found on the die you throw, you can’t move that one 
space if the number is not “1.”

Developmental precepts do not specify specific outcomes or even outcome spaces. 
In contemporary IT-intensive systems in which development time and run time are 
treated separately, developmental precepts focus on the interaction of the independent 
development tracks more so than on such behavior among their creations. In 
contemporary IT-intensive system acquisition and development, these developmental 
precepts can be contractually fixed since they can be made as specific as desired. 

Developmental precepts are initially difficult for most system engineers to 
appreciate since they shape autonomous decision making leading to specific outcomes 
rather than the specific outcomes themselves. An example is useful. 

In the case of the Air Force, most IT-intensive systems that contribute to Command 
and Control (C2) are developed under the supervision of (acquisition) Programs. 
Many of these Programs are physically housed at the Electronic Systems Center 
(ESC) on Hanscom AFB, Massachusetts. Each of these C2 systems has explicitly 
designated military “end users.”(For example, an automated mission planning system 
helps a pilot to plan a route to be flown by an aircraft on a military mission. Pilots 
are the end users of such an automated system. Pilots do not take delivery of such a 
system, however. Instead, a Commander responsible for many pilots is the notional 
end user that takes receipt of such a system at a particular Air Force base on behalf 
of the Air Force and of the pilots stationed there.) The completion of the acquisition 
process (the delivery and acceptance of the system) is signified by the signing of a 
DD-250 form by the end user. The Program uses this signed form to confirm the 
successful completion of its own (acquisition) mission. Absent that signed form, the 
mission remains incomplete. Careers depend on the completion of missions, and this 
is true for the people in Programs as well. 

End users (the Commander in this example) take receipt of multiple systems from 
ESC – often in the same year. The mission planning system is just one such system. 
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These systems increasingly must interact with one another to fully accomplish their 
respective purposes. Because such interactions do not fully fall within the scope of 
any one system, however, the successful realization of such interactions is left to 
delivery time and is often partially or wholly left to the end users to accomplish.

This is further aggravated by the periodic replacement of an earlier version of a 
system with a newer (and better) version. This almost always involves moving 
extensive databases from the earlier to the newer versions of a system to maintain 
operations. This is frequently left to the end users to accomplish even though 
improvements in the newer version of a system often involve the reorganization of the 
existing information in those databases. 

This is even further aggravated since many improvements to systems impose new 
or additional burdens on the infrastructures supporting modern C2 operations 
(power, bandwidth, connectivity, etc.). New or improved systems are not responsible 
for augmenting such infrastructures since by definition infrastructures are shared. 
The end users are however constrained by these infrastructures. 

As a result, end users increasingly complain of “drive by” deliveries of systems by 
ESC Programs and the failure of ESC to deliver “integrated” solutions to their 
operational needs. Although ESC increasingly talks about an “integrated C2 
enterprise,” it continues to deliver that enterprise in “kit” form – leaving the hard 
“integration” part to the non-acquisition community to accomplish. 

The traditional response to this complaint (thereby acknowledging its essential 
truth) has been to attempt to formulate master schedules for the delivery of systems to 
specific locations and the formulation of detailed integration plans to interconnect the 
independent systems prior to deliveries in the traditional system engineering fashion. 
This response has failed, been retried and failed again. The specific reasons 
explaining each failure is now legion. 

Treatment of such overlapping and interdependent deliveries as a complex system 
development would involve (in part) the formulation of a developmental precept. This 
precept would alter slightly the mechanism already employed to complete the delivery 
and acceptance process. It would modify the DD-250 form so that an end user could 
only take receipt of multiple (say two in the simplest case) systems from ESC at one 
time. The end user would then have the leverage to compel the acquisition community 
to address the interconnection of delivered systems. ESC Programs would respond 
accordingly since a system could no longer be completed by itself. The specifics of 
which systems to be delivered and how they need to be interconnected, etc. would be 
left to the Programs (the autonomous agents) to resolve in their own best interests. 
However, the” global” outcome of more integrated systems from ESC would also be 
accomplished – even though the specifics of how and when were never explicitly 
formulated in advance at any “global” level. 

The specification and then the enforcement of such a developmental precept would 
serve to stimulate discovery and interaction among ESC Programs without specifying 
what the specific outcomes should be. This is the essential characteristic of a 
developmental precept. 
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4.2.5.   Judging 

Judging requires human judgment. Judging associates specific outcomes achieved
with autonomous agents, and assigns rewards to the autonomous agents accordingly. 
Rewards are established prior to the realization of desired outcomes. Judging, on the 
other hand, is based on actual outcomes achieved, not before.25

Judging for rewards that are associated with outcomes that can be attained directly 
by autonomous agents (or their creations) is straightforward. Specific outcomes in the 
targeted outcome spaces are seen to actually occur. They are recognized as such and 
then the reward is assigned (given) to the autonomous agent(s) responsible.; as 
quickly as possible following the judgment

Judging for rewards that are associated with specific outcomes that are in outcome 
spaces that can only be associated collectively with autonomous agents (or their 
creations) is more demanding. (For example, if a complex system achieves a reduced 
footprint by virtue of certain components increasing their footprint and so allowing 
others not to be used, or others to decrease their own component footprints so that the 
net effect is an overall reduction, then judging requires the identification of the 
autonomous agents responsible and the apportionment of the reward. The actual 
achievement of network centric operations would be another example.) 

4.2.6.  Continuous Characterization 

Outcome spaces and rewards can (and should) initially be characterized with succinct 
(even pithy) “bumper sticker” labels.26 This allows for a maximum role for the 
autonomous agents in shaping the evolution of the complex system. Because 
autonomous agents do exactly that – act autonomously – this maximizes the 
opportunities for inconsistencies in how these characterizations are interpreted. To the 
extent that consistency matters, outcome spaces, rewards and the current condition of 
a complex system will benefit from continuous and progressively more detailed and 
complete characterizations. The characterization of the current situation is crucial in 
this regard because it permits autonomous agents to independently develop metrics to 
guide their local decision making in ways that will be broadly similar over time. 
(Autonomous agents, although autonomous, are never wholly dissimilar.) In this 
regard, the specific outcomes (as distinct from outcome spaces) used as the basis for 
judgments should be detailed, as should the rationale supporting those judgments.

                                                          
25 Judging removes an important risk attendant to contemporary acquisition protocols. Contemporary 
contracts are awarded based on what a successful bidder is predicted (in a source selection) to do in the 
future. Judging assigns rewards based solely on what actually happens, not on what will happen. This has 
implications for the nature (size, etc.) of rewards since the independent development tracks must assume 
greater responsibility for the risks attendant in actually achieving desired outcomes. A discussion of such 
implications is well beyond the scope of this discussion; but it suggests a wider variety of supported 
business relations should be explored. 
26 The U.S. Army motivated a tremendous spurt in its evolution with the visionary characterization of a 
targeted outcome space with the exceptionally pithy expression, “Own the Night.” 



Engineering Complex Systems 229

Figure 2. Continuous Characterization of a Complex System 

Consistency can never be guaranteed in complex system development (evolution). 
(it can be, in theory, with TSE.) As a result, these characterizations can never be made 
too detailed.27 Characterization refinement can, however, become less than cost 
effective.28 Moreover, consistency in this regard will tend to accelerate complex 
system evolution but in narrower and narrower directions that are explicitly identified 
and characterized (see Figure 2). Therefore, as new outcome spaces become apparent 
and/or attractive, unless they are explicitly added to the characterizations (initially 
with limited detail), it becomes increasingly unlikely that the new possibilities will be 
explored even though available. In the extreme, this can even result in stagnation, 
something that Safety Regulation is used to preclude or at least impede. In any case, 
deliberately stressing complex system development in this way (very detailed 
refinement of outcome spaces, etc.) should be carefully weighted. 

4.2.7.   Safety Regulations 

Safety regulations are aimed at preserving the “stability” of a complex system. Their 
purpose or focus is not on the attainment of desirable outcomes but rather on the 
continued functioning of the other activities that are intended to do that (defining 
outcome spaces and developmental precepts, judging, etc.). Their scope is wider than 
that, however. They are, in short, aimed at preserving the developmental environment. 
They are indirect measures. 

The act of applying safety regulations (or equivalently, safety regulation, and 
performed by safety regulators) can be thought of as policing a complex system. 
Although this applies to all levels of scale, in contemporary IT-intensive systems, 
safety regulation is most important during development time. Safety regulation 
applies to all developmental activities. Since a list of such activities is open ended, 
any listing of safety regulations is also open ended. 

                                                          
27 If, however, the detailing of specific outcomes is substituted for outcome spaces (as just one example), 
the complex system can be caused to collapse even though the complex system appears at first to rapidly 
accelerate its evolution. 
28 It can even become counter-productive, obscuring with detail rather than further illuminating the essential 
coherence desired and achieved. 



230 Engineering Complex Systems 

Adding autonomous agents (independent development tracks) to a complex 
system development is a development-time activity. Vetting such agents (or even 
preparing them) prior to entry to the developmental environment is an example of 
safety regulation. 

Adding the creations of independent development tracks to the run-time composite 
of a complex system is roughly analogous to integration in traditional system 
engineering, except that its goal and its many implementation particulars (defining 
and refining interfaces, etc.) are the responsibilities of the involved independent 
development tracks and not some external integrating agent. However, progressive 
steps to regularize this introduction procedure can be formulated and enforced as 
safety regulations. For example, such “integration” could first be required to happen 
“offline,” and then “online,” and finally “inline.” Each of these phases would be 
detailed and enforced by safety regulators. (In this example, offline, online, and inline 
represent progressively deeper and fuller participation in the run-time composite of 
the complex system.) The overall purpose of such phases would be to protect the 
“uninvolved” independent development tracks and their creations from accidental or 
deliberate rogue behavior by exposing the new components’ (admittedly partial) 
behaviors to independent observers with this goal in mind. 

Safety regulation can also be made to apply to the retirement of no-longer-used 
run-time components in a complex system (when and how this should be done, etc.). 
This example is cited because it permits attention to be drawn to a role such “soon-to-
be retired” components can play as tools themselves in the safety regulation of a 
system.

In many natural evolutionary complex systems, generations (populations with 
slightly different capabilities) overlap. Rather than generational replacement, there is 
gradual displacement with the possibility that older generations (or, equivalently, 
exact copies of them) can persist. The IT-intensive system analog of this phenomenon 
is that “older” components remain “on-line” (and in use) while “newer” components 
are brought “in-line” and then “on-line” as a surety against catastrophic complex 
system failure. This is illustrative of managed redundancy as a safety regulation in 
complex systems. 

But safety regulation does not have to be entirely ad hoc. Safety regulation is 
about avoiding “collapse” and “stagnation” in overall complex system behavior. 
These notions can be given rigorous meaning29 with the use of chaos and catastrophe 
theory. This meaning can in turn be translated into the specifics of a given complex 
system’s behavior (in terms of its trajectory in its phase-space). These specifics can, 
in turn, be translated into thresholds used to monitor and control overall system 
behavior, but only in very specific dimensions. In crude terms, this technique has 
been in use for a long time in the form of circuit breakers and the like. 

Other safety regulations can and should be directed at the detection of the 
continued presence of both cooperation and competition since both are always
necessary for the sustained operation of any complex system. 

                                                          
29 To do so is well beyond the scope of this system engineering focused narrative. 
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4.2.8.   Duality 

It has already been emphasized that a complex system’s “development time” can 
never be fully separated from its “run time.” Complex systems continually change as 
a natural part of their own operation. This can only be fully appreciated using 
multiscale analysis. 

In the context of IT-intensive systems that also utilize people as operators, it is 
important to apply multiscale analysis in a fashion suggested in Figure 3. Multiscale 
analysis must be applied to both distinguish between and to understand the 
relationships among these separate scales in a complex system: the IT-components 
themselves (application programs, etc.), their developers (groups of people as 
independent development tracks), and the human operators of the system. 

Figure 3. Developmnt Time of IT-intensive systems 

The IT components in an IT-intensive complex system do not create themselves 
(yet). Groups of people do that. These autonomous agent developers interact with one 
another as well as with their creations. There is only very limited (and often strongly 
inhibited) interaction between such agents and the creations of other such agents. 
These interactions are frequently identified as occurring during “development time.” 
The IT components of a complex system also interact with one another. Such 
interactions can occur during development time, but most of the time such 
interactions are thought of as an essential element of the “run time” of a system. 
However, these are not the only interactions that are associated with the run time of a 
system. In almost every case there is also a strong degree of interaction between these 
IT components and their human operators. Moreover, these human operators often 
interact with one another directly – without any intermediate interactions involving 
the IT components. 

To be fully productive in contemporary IT-intensive systems, the definition of 
outcome spaces is done (at least) at three distinct scales, two corresponding roughly to 
“run time” and one corresponding to “development time.” 

Complex system engineering should take all of interactions into account – not just 
those involving IT components during run time. This is almost never explicitly 
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acknowledged today – although the growing attention to fostering “user/developer” 
interaction during development is an implicit recognition of this multiscale reality. 
Duality is the explicit recognition that development cannot be completely separated 
from operation in the case of a complex system. 

4.3.   Running the Regimen 

There is no single way to characterize how the regimen of complex system 
engineering unfolds because it is a regimen, not a recipe.

Early on, one should clearly formulate desirable outcome spaces in broad terms 
(partial volumes and subspaces in the relational phase space for a system). The actual 
phase points and trajectory of a complex system are determined collectively by the 
autonomous agents operating within the complex system. In the case of contemporary 
IT-intensive systems, this is the primary role of the developers – but not exclusively 
so since operators, for example, can play an important role as well. Recognizing 
desirable outcomes (actual phase points and trajectories that are in the desired 
outcome space) when they occur is a primary role of the complex system engineer. In 
this sense, recognition and continuous characterization augments specification as an 
engineering activity for complex systems. 

Coincident with the identification of outcome spaces must be the publication of 
rewards available to autonomous agents. These rewards should be expressed in terms 
that are visible to the autonomous agents – even if the outcomes spaces themselves 
are not. 

Once recognized, desirable outcomes must actually be rewarded. The attainment 
and recognition of such outcomes does not make this automatic. Human judgment is 
still required. Complex system engineering can inform this judgment but such 
judgment must remain the prerogative of those responsible or desirous of the 
emergent complex system. Once such judgments are made (and rewards and 
punishments assigned to autonomous agents) the rewards must be restated along with 
the restatements of desired outcome spaces. 
 The formulation of desirable outcome spaces should never stop. As new 
outcomes occur, the desirable outcome spaces need to be restated – along with 
attendant rewards. 

The complex system engineer is responsible for managing the overall 
developmental (and operational) environment. Key in this regard is formulation of 
developmental precepts that serve to influence (but not to specify) the decision 
making of the autonomous agents in the complex system. This requires engineering 
judgment but judgment that is distinct from the assignment of rewards. These 
developmental precepts can and should be made “binding” on all developers in the 
complex system, as should the adherence to safety regulations. Enforcing these 
precepts and safety regulations are important roles for complex system engineers and 
are the essential aspects of specifying and managing a developmental environment. 

A complex system operates continuously. The complex system engineer is 
responsible for the overall developmental environment that appropriately mixes 
operational and developmental contexts. The complex system engineer almost always 
focuses attention on the developmental aspects of this mixed environment. This 
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includes specifying, operating, maintaining and modifying an infrastructure that 
supports interactions among autonomous agents and their creations, specifying and 
enforcing developmental precepts intended to stimulate discovery and interaction 
among the autonomous agents, and the specification and application of safety 
regulations.

A complex system operates continuously. In the process of so doing, it is 
constantly changing and becoming more complex (sic). A complex system engineer 
continuously characterizes the complex system, emphasizing those aspects that are 
associated with the order of the system as that order enters targeted outcome spaces. 
Such system and outcome characterizations become the basis for the complex system 
engineer’s assignment of responsibility for changes in the complex system’s order. 
These assignments become, in turn, the basis for judging – which ultimately assigns 
rewards to the appropriate autonomous agents. Final judging is always performed by 
the sponsor or other authority responsible for a complex system. 

The complex system engineer assists in the judging process, with the initial 
formulation of rewards based on targeted outcome spaces, and with their restatements 
as desirable outcomes are achieved and rewards are assigned. 

5.   Complex Systems Engineering in Practice 

Having presented the motivation and the conceptual basis of CSE in the preceding 
sections, what works? How would one start to apply CSE? The example of the AOC 
can serve as a template for other analyses, and we welcome and encourage further 
description of the edges of TSE and the set of techniques appropriate for CSE and its 
application.

While not explicitly known as CSE, most people have practical understanding of 
CSE from common experience. Consider how children are raised, or how large 
organizations exist and evolve. Even a superficial study of these illustrates how CSE 
can work in practice. 

Consider how children are raised. Upon their birth, we do not set out a detailed set 
of requirements and a schedule for achieving detailed milestones (of course, some 
parents try, and end up being rebuffed). Rather, we set out our principles, and help 
them learn what we, as parents, value, then apply guidance as they grow and mature. 
They come to find their own way in the world. This might be thought of as 
engineering through indirection. In that sense, it is a practice of CSE.

Consider the behavior of organizations. Seldom is it the case that detailed control 
is applied top-down through an organization continuously. Leadership tends to 
exercise control indirectly by publicizing what their values are, what traits they value 
in others, what their goals are for the organization, and how the organization should 
run (precepts). They set context and the desired outcome spaces. Periodically 
subordinates (autonomous agents) are chosen for promotion (rewards) based on what 
they’ve done (outcomes) and how well they fit the valued traits. It is those promoted 
subordinates who determine the day-to-day activities in most organizations.
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5.1.   What are some CS-derived strategies which can be employed within the 
regimen?

In a real sense, commercial “market places” are complex systems. Commercial 
practices might be mined for tactics, which lend themselves to CSE. Those with 
particular relevance are those which make technical change easier; those which 
transmit “selective pressure” easier; those which permit organizations to collaborate; 
and those which trim the environment selecting “success” and punishing “failure.” 
Table 2 shows a set of strategies harvested from commercial practices, which map to 
aspects of the principles outlined for running a CS regimen. We explore each in more 
detail below. 

Table 2.  Commercial Practices Embody CSE Principles 

Dev

Env

Outcome

spaces

Rewards Dev 

precepts

Judging Cont  

Char

Safety

Reg

Duality Indpnt 

Agents

½-life

Separation

X X  X   X X  

Playgrounds X X X X X X X X X 

Collaborative

Environments

X X  X  X   X 

Partnerships         X 

Developers

Networks

X X    X X X X 

Branding  X X X X   X  

Co-opetition X        X 

Leveraging

others’

Investments

  X X  X  X X 

Respect

Ricebowls

X X  X     X 

Opportunistic

Approach

X X    X X X X 

Advertising

and Discovery 

X X X X  X  X X 

Value-add

business

models

  X  X X   X 

Experience for 

test

   X X X X X  

As previously discussed, the essence of CSE is the deliberate modeling of the 
natural processes found in evolution and ecologies. Evolution and ecologies require 
interaction among entities, and the ability for the entities to change in response to 
pressures felt from the environment. 

To increase the rate of useful change in the enterprise, entities: 
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should be in touch with one another for extended periods of time, and; 
the entities’ “pulse” time should be reduced as much as possible; 
“value” must be assessed correctly, and by appropriate parties, 
assessed value must impose the selective pressure. 

Enabling ecological competition and evolution requires that elements can, in 
practice, rub against one another and allow respective stresses to be resolved as 
naturally as possible – based on real value. This requires the “systems” which 
compose the (for example AOC) SoS to build new connections across each other in 
useful ways.

5.1.1.   Separation of elements based on anticipated half-life

Architects are very familiar with the concepts of layering systems to separate 
concerns. This is a central principle, and is a good approach. Yet, the way today’s 
“systems” are tightly-bound into monolithic entities prevents the benefit of this to a 
large extent. Even within each system, limiting the “pulse” of evolution to the slowest 
changing element causes evolution to move at the slowest pace, rather than at the 
natural pace of each of the elements.

Evolution also proceeds at a rate strongly dependent on generation time (spiral 
time, pulse time, etc.). To increase the rate of evolution, one must shorten the 
generation time. Therefore, in addition to layering based on functionality, one should 
separate based on likely rate of change. 

5.1.2.   Playgrounds 

How do we come to recognize “goodness,” and how is it introduced? Humans, as 
natural pattern recognizers and problem solvers, learn and innovate through 
experimentation. We see it everyday among children where they constantly innovate 
and learn through interaction. “Games” take on an additional dimension when we 
understand they are using play to prepare for life; they are not merely killing time. 
“Play” is also a key component of many animals’ development. Again, while 
probably “fun” for the participants, it serves a much more important function. Card 
[12] reflected on the importance of a playground in his science fiction classic Ender’s 
Game.30

Within DoD, “games” are recognized for the powerful tools that they are. They are 
a key way that leaders and future leaders get to ply their trade. While the word 
“playground” cannot survive into DoD practice due to its pejorative tone, it serves to 
make the point by connecting to a truly common understanding, and it is appropriate 
for these discussions. 

Where is the “playground” where technology, doctrine, and Tactics, Techniques, 
and Procedures (TTPs) can come together? Today, the places where technology, 
doctrine, and TTPs come together are large, carefully-scripted events with carefully 
(centrally) chosen participants and known answers; they are demonstrations rather 
than even the experiments they purport to be. Experiments would be fine, but 
                                                          
30 Ender’s Game actually is an excellent examination of both the importance of a playground where 
innovation may be introduced, and an approach to “complex systems engineering” in general. 
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experiments can result in a negative finding; and, experiments are done on a 
playground. These are not playgrounds. Where playgrounds exist (e.g. C2 Battle 
Lab), they are somewhat disconnected from the process that gets new elements into 
the field where that which they construct could (potentially) provide a qualitative 
edge. The Air Force has a number of labs, which investigate technologies and 
operational needs, but there isn’t a good connection between them and the formal 
acquisition process. Where a connection exists it tends to exist because of the heroic 
efforts of particular persons. The reason for the “potential” rather than “actual” edge 
is that the new thing has likely been developed assuming all other elements it may 
impact or influence have themselves remained static; and it remains to be seen 
whether the potential is realized. Further, the organizational process is for the keepers 
of the “Systems of Record” to invite an innovator or new-capability provider into the 
fold. This puts the identification and valuing of innovation into the hands of the 
organization least likely to welcome it since, by definition, innovation’s appearance is 
disruptive; and the acquisition community is judged, in part, on the smoothness of 
delivery.

An important point to remember is that among SoS, no element stands alone. Each 
element exists within the context of those elements around it; and it supplies partial 
context back to those elements. Thus any change in any element causes a change in 
context to all elements, which juxtapose the changed element. In this way change 
flows to neighbors, and they respond, which causes further change, which flows to 
their neighbors, etc. Generally, the effects and pressures brought by any change can’t 
be predicted, and it occurs independently of any schedule or any a priori agreements 
or expectations, and generally without any insight on how its effects will be felt [11]. 
For the enterprise, “change” is constant, unplanned, and unpredictable in its complete 
effect. This is the essence of a Complex System. 

Another characteristic of a playground is that “play” tends to be safe. Ideas can be 
explored without too much risk.  There is a (thankfully) natural reluctance to disturb a 
real-world working process (i.e. the operational system); and if one were to let 
innovation have free reign within the operational system, the innovation is more likely 
than not to disturb or interfere with it. This clearly runs counter to the desire to 
introduce innovation. If one is tempted to suggest that the “new, innovative” element 
can be developed apart and independently, then introduced into the operational SoS, 
review the previous paragraph.

A playground is an example of a stigmergic environment [25] which supports 
innovation. We’re unaware of any explicit description of an innovation process 
appropriate to our domain, so we thought we’d supply one, which can serve as a point 
of departure for additional discussion.

On the playground, innovation seems to follow four distinct phases: 
Discovery
Game (compete) 
Codify
Practice
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Discovery. By whatever means it occurs, something new is found and its potential 
value is envisioned. We cannot predict where the new killer idea will emerge. Our 
goal is to capture the idea, not predetermine or restrict the places where the ideas we 
accept may gestate. What triggers innovation? This question deserves (and has had) 
many books of its own. Kuhn has written on this topic extensively describing the 
sociology surrounding scientific paradigm shifts [21]. Innovation and discovery 
receive much attention in the scientific world, including labs setup to study it 
explicitly31, and the literature dates back to Bacon, Descartes, Leibniz, etc., and 
continues today. Our use of the paradigm shift concept is not so grandiose. From time 
to time a connection will be made by someone new to the AOC, or by someone 
finding a new solution to a problem previously constraining their performance.

Game. The idea/insight is reduced to a form, which can be gamed against others who 
also occupy the same, or close, space. Within an environment where these ideas can 
be judged against each other, they compete. The new idea might be found to be a 
qualitative improvement, it might be refined, or it may be rejected. Alternatively, the 
old idea might be modified and achieve the benefit of “grinding” against the new idea. 
This must be done in a non-threatening way; and, we can’t only celebrate success32.
Like a playground, consequences that differentiate must exist, and some must fail, but 
a failure cannot devastate the failed; it must just remove it/them from the game. 

Codify. During the gaming, the idea/insight is come to be understood better; as is the 
area it supposedly improves upon. With this understanding, the insight is reduced to a 
repeatable process or technique. This allows others to learn and use the innovation. 

Practice. Once an innovation is reduced to practice and codified into a TTP, it can be 
taught and practiced. 

To the degree there exists a place to play and innovate, the environment will support 
evolution at a rate faster than would occur otherwise. If there existed a process for 
guiding and managing the evolution, then the enterprise can move forward based on 
demonstrated value rather than future promises of value. The development of 
capabilities in this manner – through discovery - doesn’t require the level of detail and 
a priori planning that a pure engineering approach requires. 

5.1.3.   Collaborative environments 

The ability to work with others is not an altruistic need. It is purely self-serving if 
done correctly and effectively. And, it’s this self-service that sustains useful 
collaborations. It may be the case that others may have need for that which I produce. 
Alternatively, I may be able to use that produced by others, allowing me to 

                                                          
31 See, for example, Smithsonian Institute’s Lemelson Center for the study of Invention and Innovation 
32 In the commercial world, Venture Capitalists recognize that the one “killer app” often comes after a 
number of promised, but failed, attempts. Their payback is judged on their portfolio, not on each member of 
the portfolio. 
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concentrate on what I do best (and how I add value) rather than expending resources 
on incidental aspects, which don’t discriminate my offering from others. 

Additionally, to the degree that what I produce must fit into a bigger whole, if I’m 
able to easily collaborate with others in that bigger whole, my risk of integration is 
reduced.

5.1.4.   Partnerships 

The ability to form and sustain partnerships helps to increase the utility of that which 
the partners produce and offer. Development risk is spread, and understanding of true 
need is improved. Successful partnerships seek to reduce overlap, and come to rely on 
each other to play necessary roles. Partnerships rely on effective collaborations. 

5.1.5.  Developers networks – creating opportunities for others

As discussed above, to speed up evolution, one must shorten generation time. Among 
systems, and with regard to systems engineering, this suggests shortening the 
feedback cycle, and lowering the amount of code which must be written, by allowing 
interaction among developers; thereby allowing reuse of useful code and connecting 
better to the run-time context. This is best embodied in the common understanding 
found in the software marketplace where developers’ networks are a common ploy to 
getting developers to use a specific platform. A short anecdote illustrates the point. 

In 2000 at a meeting of industry with the Air Force acquisition leadership, Paul 
Maritz33 was asked his opinion about how it is that Microsoft has achieved such an 
apparently unassailable presence on desktops. His answer came immediately. It was 
due, he stated, to their commitment to developers34. He said Microsoft’s strategy was 
to create opportunities for others; and use the fact of the opportunities created as a 
force to ensure that small mom-and-pop developer houses would recommend 
Microsoft products to their clients. Microsoft even extended their development 
environment (Visual Basic) down into the Microsoft Office suite, about which Maritiz 
stated that: 

Microsoft really supplied word processing, spreadsheet, and presentation 
graphics, etc. functionality, which, while bundled as useful office 
applications, were also available as functional primitives with which 
developers could provide customized value-added functionality to their 
customers.

He also noted that Microsoft felt it was necessary to lower the knowledge barriers to 
developing sophisticated applications.

Enabling integration and interoperability required many developers to be loyal to 
the Microsoft platform; and winning their loyalty required developer tools and 

                                                          
33 Paul Maritz was a Group Vice President of the Platforms Strategy and Developer Group at Microsoft at 
the time of his retirement in 2000. He held many different positions there, and was one of Bill Gates trusted 
advisors.
34 This was in an unguarded personal conversation between author Norman and Maritz  at Lt Gen Kenney’s 
(then Commander of the USAF Electronic Systems Center) first “Presidents Forum” meeting which 
Norman had defined and helped her put on. 
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environments, which were attractive and compelling. The resulting mechanism for 
exchange is Microsoft’s Developers Network (MSDN). 

This fits the CSE template in that Microsoft was not building, or attempting to 
build, all the functionality themselves, nor were they trying to make a killing on 
developer tools per se. Nor were they trying to get a piece of the action for all the 
functionality developed using their tools. Instead, they sowed the seeds with their 
tools, and took advantage of the multitude of applications built on top of their 
Windowstm platform. They rode the “need” identified by all the thousands of 
developers who were satisfying their own clients. The developer technical needs also 
were fed-back to the developer tools developers at Microsoft.

This is not a unique story; it was learned and implemented by others also. For 
example, Sun Microsystems practiced a similar approach as it brought Java along. 

5.1.6.   Branding 

Branding is an interesting concept that we may be able to apply to bring pressure to 
coalesce. It is best told with an imaginary example. Suppose a potential supplier 
shows a General a new capability, which is especially attractive. The General 
acknowledges the potential value of this new capability and then asks “… have you 
got the ‘Ready for the AOC’ sticker yet?...”. The potential supplier responses “no” and 
the General then sighs his disappointment, and states that, had the potential supplier 
qualified for the brand, the capability offered could be moved into consideration for 
the AOC immediately. Without it, the capability must be subjected to a long process 
of evaluation and likely rework to ensure it will be able to integrate; and then is 
integrated. The General, as a proponent of a capability not carrying the ‘Ready for the 
AOC’ brand, would need to advocate for funds to integrate and sustain the capability 
for its anticipated lifetime. 

Brands can be powerful; and they can influence indirectly.

5.1.7.  “Co-opetition” 35

This term was coined by Adam Brandenburger of the Harvard Business School and 
Barry Nalebuff of the Yale School of Management. It described their observation that 
connectivity among businesses and people require a new way to think about the 
business environment. Below is an explanation taken from the preface of their book 
of the same name: 

Co-opetition offers a theory of value. It’s a book about creating value and 
capturing value. There’s a fundamental duality here: whereas creating value 
is an inherently cooperative process, capturing value is inherently 
competitive. To create value, people can’t act in isolation. They have to 
recognize their interdependence. To create value, a business needs to align 
itself with customers, suppliers, employees, and many others. That’s the way 
to develop new markets and expand existing ones. 

                                                          
35 Co-opetition http://mayet.som.yale.edu/coopetition/index2.html   (Adam Brandenburger of the Harvard 
Business School and Barry Nalebuff of the Yale School of Management) 
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But along with creating a pie, there’s the issue of dividing it up. This is 
competition. Just as businesses compete with one another for market share, 
customers and suppliers are also looking out for their slice of the pie. 

Cooperation and competition is well studied. Axelrod [6] wrote about the evolution of 
cooperation, and showed how it can provide joint benefits. Poundstone [23] also 
describes mutually-beneficial approaches among autonomous agents.

Co-opetition allows independent parties to cooperate on those elements and 
aspects, which transcend their individual ability to control, while preserving their 
ability to compete on demonstrated value in their space.

For C2, various persons from traditional DoD contractors, commercial entities, 
and DoD officials have envisioned a marketplace where firms may specialize and 
come to dominate a niche. They maintain their dominance in their niche due to their 
continuing delivery of valuable and valued goods and services, rather than through 
contractual dictates.

As currently structured, this is difficult to achieve as there doesn’t exist an 
environment for co-opetition. Consortia are often used as a vehicle for broad 
cooperation, and these options should be examined for achieving a co-opetive 
environment.

5.1.8.   Leveraging other investments 

Partnerships, collaborations, and other instances of cooperation all attempt to use the 
investments others have made for one’s own benefit. An example (besides the 
obvious ones of using Commercial Off-the-Shelf technologies) is found in the Family 
of Interoperable Operational Pictures (FIOP) program. The FIOP program was the 
first to fund TBMCS’s desire to build Information Services – which represented a 
new way for them to build and deploy functionality. FIOP used a relatively small 
amount of money to leverage the larger development budget TBMCS had. 
Essentially, FIOP paid for good behavior on TBMCS’s part. Both benefited. And, 
others (who invested nothing) were able to use the Information Services built by 
TBMCS.

5.1.9.   Technical approaches which respect “ricebowls” 

There is no doubt that people come to place great value in that which they are 
personally involved in and responsible for. These apparently parochial interests are 
often described as “rice bowls.” A great source of resistance to cooperation among 
independent agents is the thought or impression that others will impose themselves on 
the independent agents in ways and manners, which they view are inappropriate. 
After all, each organization has conducted itself according to its needs, and has made 
decisions according to its assessment of how best to meet the needs. Additionally, 
there is often fear that one’s activity will be subsumed under another’s, and one’s 
contributions will be devalued and possibly ignored.
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It’s clear that cooperation has great value; and those aspects, which interfere with 
cooperation, cause “innovation drag.” Technical approaches, which tend to respect 
“ricebowls” remove some of the hesitations for forming cooperative partnerships. 
Examples of technical approaches, which respect ricebowls, include current 
developments in Web Services. This technology exposes functionality with the 
minimum requirements for homogeneity. It presents a “virtual homogeneity” within a 
heterogeneous world. In this way it offers the potentiality for independent agents to 
offer their services to others; and thereby permits new associations and relations to be 
exploited – supporting innovation. It also supports the rise of technical structures and 
approaches, which permit the agility needed. Assembly moves out towards the end-
users further blurring the difference between development and runtime. 

5.1.10.   Opportunistic approach

An aspect of the usual way in which we do business is to restrict ourselves to a 
complete capability before fielding. As mentioned earlier this restricts fielding to 
apparent “complete” sets at a fairly slow rate. If one treated logical sets of users as a 
unit, and involved them in managing the identification and introduction of 
functionality and change, then one might be able to be more responsive. 

5.1.11.   Advertising and Discovery 

As currently structured, finding useful capabilities and functionality offered by third-
parties is not trivial. Potentially useful functionality is not advertised, and there is no 
well-known place to go looking. Both for the development and the operational 
environments, achieving transparency for effective advertising and discovery is 
critical.

A key enabler for evolving and integrating the enterprise is to create opportunities 

for small world phenomena [7, 26] to emerge. The power of loose connections is clear 

and convincing. New relations possible are likely discovered in areas not previously 

explored. This will emerge with in both shared information spaces and with shared 

behavior. Advertising and discovery technologies are key to enable these results. 

5.1.12.   Permitting “value-add” business models 

A continuing complaint from users in the field is that they don’t get “a vote” in what 
is built for them. This is primarily due to the business models employed in acquisition 
today. As mentioned earlier, the dominant business model used is 
employer/contractor. In this model, the employer produces a requirements document, 
and then various potential contractors propose how they will produce the functionality 
desired. The market place is contract engineering; the selling and buying of 
engineering hours (perhaps laced with certain processes which can be argued reduce 
risk). Those who have successful proposals are those who can tell the story of how 
they are going to produce a requirements-compliant product for the least risk. It is a 
promise well told, not a demonstration of specific achievement. Success is measured 
based on compliance with the requirements, and the maintenance of the cost and 
schedule negotiated. Success is not directly related to the usefulness of that which is 
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produces. The Government’s money is spent for the engineering hours used for 
development. This is the basis for the complaints. 

Assume a by-use payment model. Assume further that there is no a priori
assumption of the undesirability of redundant functionality36. Under such model 
money flows to those who produce demonstrated utility to the user. The market now 
shifts to understanding and satisfying real needs rather than the sale of engineering 
hours. The acquisition organization’s role, under this model, shifts to verifying 
compliance with a set of rules under which functionality is built. Under this model the 
Government’s money pays for demonstrated value.

There are additional aspects to such a model: the emphasis shifts from cost to 
price. Suppliers (as opposed to contractors) attempt to manage their margins; and 
they may apply their best and brightest (assuming they can control their intellectual 
property) and be innovative. 

5.1.13. Analysis, simulation and collecting experiences replace full-coverage testing 

How does one test a complex adaptable system? Rather than relying on traditional 
approaches (which attempt to come as close to full-coverage testing as possible), we 
might collect and catalog things when they go wrong in the field; analyzing these for 
insight into subtle transitive effects. We also need to employ better testing approaches 
to develop some sense of belief about the systems we field before fielding. Phadke’s37

Robust Testing™ approach may provide tools for picking better and smaller test 
cases.

Additionally, the infrastructure should be tested to failure so we know the 
boundary. Then it should be monitored in the field to shed light on if and when we 
approach these limits. This permits time to intervene prior to (not after) problems 
emerge.

6.   Summary and Conclusions 

The challenge is moving from “things” to “integrated collections of things” which are 
governed and managed independently. Although we presented the problem as an issue 
for AOCs, it is not confined to the AF, or to joint forces, or to DoD, or the US 
Government, or to the US. The observation that one must use methods which respect 
the characteristics of the enterprise; and which don’t require complete control, or 
complete knowledge in one place. 

Our summary would be incomplete if we didn’t consider the insights offered by 
other professions who have faced similar challenges. Architecture has. Christopher 
Alexander (of architectural fame) talks about the illusion of control; and he observes 
that attempts to assert control generally has the opposite affect from what is desired; 
things tend to get worse, more out of control. He notes that the tendency “…to gain 
‘total design’ control of the environment…makes things still worse…”[4, pp. 238] He 

                                                          
36 Ashby’s Law of Requisite Variety [5] can be interpreted as explicitly supporting variety as a technique 
for attempting to supply sufficient potentiality to allow adequate response to selective pressures. 
37 See Phadke Associates’ Robust Testing™ at www.phadkeassociates.com/ser/rt.htm 
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points to the need to construct towns and cities using “patterns” which preserved the 
correct “nature,” and became “alive” in their own right. He calls this the “quality 
without a name.” He’s talking about complexity and adaptability.

Traditional Systems Engineering has always attempted to understand and deal 
with complexity; but the nature of that which was being engineered tended to be 
stand-alone with well-defined edges. Simple rules could tell what was “in the system” 
or “out of the system;” and the engineering activities started with, or required that, the 
requirements were well known, understood, and stable. As systems engineering came 
to deal with collections and aggregations of elements which were to be integrated into 
definite, well-understood (and understandable) forms-and-function which were to be 
stable over time. As we scale this approach up to the enterprise and find ourselves 
dealing with complex systems, we fall directly into the trap outlined by Alexander: 
things become worse. 

Our traditional systems engineering has been concerned with finding those well-
bounded subordinate elements, then (in essence) isolating them so they may be 
“engineered.” From this point one proceeds as if the element is isolated and unmoved 
by other juxtaposed elements. It’s this desire to “divide and conquer” which 
characterizes our tradition approaches. Is this wrong? No! But it’s not always correct; 
nor is it complete. 

Consider the richness now possible due to the potential interconnectivity now 
available, and the interdependence among elements implied. The forms an ecosystem 
– where each element responds to its context through some accommodation – 
potentially evolving to respond (those elements which are “alive” respond and 
change). Consider further that each element’s context is set by the elements, which 
juxtapose it in almost countless ways (forming a hyperspace of pressure). This is 
certainly an intricate, hard to understand-and-appreciate situation; and in that way, it 
may be thought of (in the usual vernacular) as complex. Using our traditional divide-
and-conquer systems engineering (TSE) we would likely measure the external world, 
then make an assumption of constancy with respect to this external surround. 
Engineering would proceed on the element from this point of view. 

But, the realization that the element under study also forms part of the context for 
every element which juxtaposes it starts to hint at the limit of the simplifying 
assumption made to perform the TSE: It imposes a pressure (an influence) on its 
surround in addition to feeling the pressure of the surround.

Note the implications of the transitive nature of these influences. This is what is 
referred to as complexity as opposed to intricacy or difficult to understand. One could 
imagine waves and ripples of change flowing through this system of system. Likely, 
patterns will emerge when viewed from a higher level of abstraction. This is likely 
where we find ourselves with respect to C2 in a joint and coalition world, and where 
independent agents can introduce change according to their own agenda and timing. 
 The big questions: can such an aggregation be engineered at all? Can it even be 
understood? Will useful patterns present themselves? Should we even bother? We can 
say that we’ve failed many times in the past because we’ve made the simplifying 
assumptions mentioned earlier. 
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One of the principles that pops out right away from taking this complexity point of 
view is the need to have tight control over all (or as many) characteristics of a system 
to be engineered as possible if one wants to apply TSE; e.g., the ability to direct 
resources to problem areas as they arise. Is this insight new? No; but maybe, where it 
is impossible to meet that control and authority boundary conditions, there might be 
other approaches which can be brought to bear. And we believe the codifying of CSE 
is a step in the right direction. 

Understanding complexity, and engineering complex systems is the next step. 
Systems Engineering is taking the next step. It is maturing past the point where a one-
size-fits-all process is what’s thought of as “correct.” It is finding a new language 
with which to understand that which it attempts to engineer. This is maturity, and this 
is its future.
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1. Introduction 
Work to date on computational models of negotiation has focused almost exclusively 
on defining ‘simple’ agreements consisting of one or a few independent issues [1] [2]. 
These protocols work via the iterative exchange of proposals and counter-proposals. 
An agent starts with proposal that is optimal for it and makes concessions, in each 
subsequent proposal, until either an agreement is reached or the negotiation is 
abandoned because the utility of the latest proposal has fallen below the agents’ 
reservation (minimal acceptable utility) value (Figure 1): 
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Figure 1. The proposal exchange model of negotiation, applied to a simple agreement. The Y 
axis represents the utility of an agreement to each agent. Each point on the X axis represents a 
possible agreement, ordered in terms of its utility to agent B. Since there is no need to negotiate 
over issues that both parties agree upon, we only consider issues where improvement for one 
party represents a decrement for the other. The arrows represent how agents begin with locally 
optimal proposals, and concede towards each other, with their subsequent proposals, as slowly 
as possible. Note that we have, for presentation purposes, ‘flattened’ the agreement space onto a 
single dimension, but there should actually be one dimension for every issue in the agreement. 

 This is a perfectly reasonable approach for simple agreements. Since issues are 
independent, the utility of a agreement for each agent can be calculated as the 
weighted sum of the utility for each issue. The utility function for each agent is thus a 
simple one, with a single optimum and a monotonic drop-off in utility as the 
agreement diverges from that ideal. Such negotiations thus typically progress as 
follows:

U
til

ity
 f

or
 a

ge
nt

 A
 

U
til

ity
 f

or
 a

ge
nt

 B
 

Possible contracts

Reservation

Reservation



248 Negotiation Algorithms for Collaborative Design Settings 

Figure 2. The utilities for the proposals made in a typical simple agreement negotiation. The 
agreement consisted in this case of 40 binary issues. Each agent starts with a locally optimal 
proposed agreement (at the extremes of the Pareto frontier) and is required to reduce the 
Hamming distance (number of issues with different values) between the two agents’ proposals, 
until an agreement is reached. With simple agreements, this results in optimal outcomes. The 
Pareto frontier, representing the set of optimal agreements, was estimated by applying an 
annealing optimizer to differently weighted sums of the two agents’ utility functions. 

 As we can see, the proposals from each agent start at their own ideal, and then 
track the Pareto frontier until they meet in the middle with an optimal agreement. This 
happens because, with linear utility functions, it is easy for an agent to identify the 
proposal that represents the minimal concession: the agreement that is minimally 
worse than the current one is “next” to the current one in the agreement space and can 
be found by moving in the direction with the smallest downward slope. The simplicity 
of the utility functions, moreover, makes it feasible for agents to infer enough about 
their opponents that they can identify concessions that are attractive to each other, 
resulting in relatively quick negotiations.
 Collaborative design negotiations, by contrast, are generally much more complex, 
consisting potentially of hundreds or even thousands of distinct issues. Even with only 
50 issues and two alternatives per issue, we encounter a search space of roughly 
10^15 possible agreements, too large to be explored exhaustively. The value of one 
issue selection to an agent, moreover, will often depend on the selection made for 
another issue. The value to me of a given couch, for example, depends on whether it is 
a good match with the chair I plan to purchase with it. Such issue interdependencies 
lead to nonlinear utility functions with multiple local optima [3]. 
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Figure 3. An example of proposal exchange applied to a complex agreement. Because of issue 
inter-dependencies, the utility functions have multiple optima. The arrows show what happens 
when each agent begins at a local optimum and concedes towards the other: win-win solutions 
found elsewhere in the agreement space (e.g. the agreement labeled ‘A’) can be missed. 

 In such contexts, an agent identifying a locally optimal design agreement 
becomes a nonlinear optimization problem, difficult in its own right. Simply 
conceding toward the other agents’ proposals can result in the agents missing 
agreements that would be superior from both their perspectives (e.g. the agreement 
labeled “A” in figure 3 above). Standard negotiation techniques thus typically produce 
the following behavior when applied to complex negotiation: 
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Figure 4. The utilities for the proposals made in a typical complex negotiation. This example 
differs from figure 2 only in that a nonlinear utility function was used by each agent (details 
below). As we can see, the minimal concession protocol that works optimally for simple 
agreements produces outcomes, for complex agreements, that are substantially sub-optimal.

 The agents start with an approximation to their ideal design and diverge 
increasingly from the Pareto frontier as they converge upon an agreement. The degree 
of sub-optimality depends on the details of the utility function. In our experiments, for 
example, the final agreements’ averaged 94% of optimal. This is a substantial 
decrement when you consider that the utility functions we used for each agent were, 
individually, quite easy to optimize: a simple steepest ascent search averaged final 
utility values roughly 97% of those reached by a nonlinear optimization algorithm. It 
is striking that such relatively forgiving multi-optima utility functions lead to 
substantially sub-optimal negotiation outcomes. 
 These sub-optimal outcomes represent a fundamental weakness with current 
negotiation techniques. The only way to ensure that subsequent proposals track the 
Pareto frontier, and thus conclude with a Pareto optimal result, is to be able to identify 
the proposal that represents the minimal concession from the current one. But in a 
utility function with multiple optima, that proposal may be quite distant from the 
current one, and the only way to find it is to exhaustively enumerate all possible 
agreements. This is computationally infeasible, however, due to the sheer size of the 
agreement space. Since the utility functions are quite complex, it is in addition no 
longer practical for one agent to infer the other’s utility function and thereby speed the 
negotiation by well-chosen concessions. 
 Collaborative design therefore requires different negotiation techniques, ones 
which allow agents to find ‘win-win’ agreements in intractable multi-optima search 
spaces in a reasonable amount of time. In the following sections we describe a family 
of negotiation protocols that make substantial progress towards achieving these goals. 
The paper is structured as follows. We begin by describing how a well-known non-
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linear optimization technique (simulated annealing) can be integrated the mediated 
single text negotiation protocol to produce an approach that offers near-optimal 
outcomes for complex negotiations. We reveal the prisoner’s dilemma that results 
from this approach, and propose a refined protocol, based on parity-maintaining 
annealing mediator, that resolves that problem. We conclude with describing an 
unmediated version of the negotiation protocol that is also effective at producing near-
optimal outcomes with complex agreements. 

2. Mediated Single Text Negotiation 
A standard approach for dealing with complex negotiations in human settings is the 
mediated single text negotiation [4]. In this process, a mediator proposes a agreement 
that is then critiqued by the parties in the negotiation. A new, hopefully better 
proposal is then generated by the mediator based on these responses. This process 
continues, generating successively better agreements, until some agreed-upon 
stopping point (e.g. the reservation utility value is met or exceeded for both parties). 
We can visualize this process as follows: 

Figure 5. Single text negotiation. The vertical line represents the current proposed agreement, 
and subsequent proposals move that line in the agreement space. 

Here, the vertical line represents the agreement currently proposed by the mediator. 
Each new agreement moves the line to a different point on the X axis. The goal is to 
find a agreement that is sufficiently good for both parties. 
 We defined a simple simulation experiment to help us explore how well this 
approach actually works. In this experiment, there were two agents negotiating to find 
a mutually acceptable agreement consisting of a vector S of 100 boolean-valued 
issues, each issue assigned the value 0 or 1, corresponding to the presence or absence 
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of a given agreement clause. This defined a space of 2^100, or roughly 10^30, 
possible agreements. Each agent had a utility function calculated using its own 
100x100 influences matrix H, wherein each cell represents the utility increment or 
decrement caused by the presence of a given pair of issues, and the total utility of a 
agreement is the sum of the cell values for every issue pair present in the agreement: 

The influence matrix therefore captures the bilateral dependencies between issues, in 
addition to the value of any individual agreement clause. For our experiments, the 
utility matrix was initialized to have random values between –1 and +1 in each cell. A 
different influences matrix was used for each simulation run, in order to ensure our 
results were not idiosyncratic to a particular configuration of issue inter-dependencies. 
 The mediator proposes a agreement that is initially generated randomly. Each 
agent then votes to accept or reject the agreement. If both vote to accept, the mediator 
mutates the agreement (by randomly flipping one of the issue values) and the process 
is repeated. If one or both agents vote to reject, a mutation of the most recent mutually 
accepted agreement is proposed instead. The process is continued for a fixed number 
of proposals. Note that this approach can straightforwardly be extended to a N-party 
(i.e. multi-lateral) negotiation, since we can have any number of parties voting on the 
agreements.
 We defined two kinds of agents: ‘hill-climbers’ and ‘annealers’. The hill-climbers 
use a very simple decision function: they accept a mutated agreement only if its utility 
to them is greater than that of the last agreement both agents accepted. Annealers are 
more complicated. Each annealer has a virtual ‘temperature’ T, such that it will accept 
agreements worse than last accepted one with the probability: 
              
    P(accept) = min(1, e- U/T)

where U is the utility change between the agreements. In other words, the higher the 
virtual temperature, and the smaller the utility decrement, the greater the probability 
that the inferior agreement will be accepted. The virtual temperature of an annealer 
gradually declines over time so eventually it becomes indistinguishable from a hill-
climber. Annealing has proven effective in single-agent optimization, because it can 
travel through utility valleys on the way to higher optima [3]. This suggests that 
annealers can be more successful than hill-climbers in finding good negotiation 
outcomes.

3. The Prisoner’s Dilemma 
Negotiations with annealing agents did indeed result in substantially superior final 
agreement utilities, but as the payoff table below shows, there is a catch: 

    100  100
U = Hij Sj Sj

               i=1  j=1
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Table 1. The optimality of the negotiation outcomes for different pairings of annealing and hill-
climbing agents. The top value in each cell represents how close the social welfare value of the 
final agreement is to optimal. The pair of values below it represent how close the final 
agreement is to the optimum for the Agent 1 and Agent 2, respectively.

 As expected, paired hill-climbers do relatively poorly while paired annealers do 
very well. If both agents are hill-climbers they both get a poor payoff, since it is 
difficult to find many agreements that represent an improvement for both parties.  A 
typical negotiation with two hill-climbers looks like the following: 

Agent 2 hill-climbs Agent 2 anneals 
Agent 1 hill-climbs .86 

.73/.74
.86
.99/.51

Agent1 anneals .86 
.51/.99

.98

.84/.84
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Figure 6. The utilities for the accepted proposals in a typical mediated single text complex 
negotiation with two hill-climbers. The mediator’s initial proposal is at the lower left, and the 
subsequent accepted proposals move towards higher utilities for both agents. 

 As we can see, in this case the mediator was able to find only a handful of 
agreements that increased the utility for both hill-climbers, and ended up with a poor 
final social welfare. 
 Near-optimal social welfare can be achieved, by contrast, when both agents are 
annealers, willing to initially accept individually worse agreements so they can find 
win-win agreements later on: 
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Figure 7. The utilities for the accepted proposals for a typical mediated single text complex 
negotiation with two annealers. Some of the accepted proposals actually cause utility 
decrements for one or both agents, but the final result is a near-optimal agreement. 

The agents entertain a much wider range of agreements, eventually ending very near 
the Pareto frontier. 

 If one agent is a hill-climber and the other is an annealer, however, the hill-
climber does extremely well but the annealer fares correspondingly poorly (Figure 8). 
This pattern can be understood as follows. When an annealer is at a high virtual 
temperature, it becomes a chronic conceder, accepting almost anything beneficial or 
not. The hill-climber ‘drags’ the annealer towards its own local optimum, which is not 
very likely to also be optimal for the annealer, so the annealer pays a “conceder’s 
penalty”:



256 Negotiation Algorithms for Collaborative Design Settings 

Figure 8. The utilities for the accepted proposals for a typical mediated single text complex 
negotiation with an annealer and a hill climber. Note that the hill climber achieves a near-
optimal agreement at the expense of the annealer. 

 This reveals a dilemma. In negotiation contexts we typically can not assume that 
agents will be altruistic, and we must as a result design protocols such that the 
individually most beneficial negotiation strategies also produce the greatest social 
welfare [5]. In our case, however, even though annealing is a socially dominant 
strategy (i.e. annealing increases social welfare), annealing is not an individually
dominant strategy. Hill-climbing is dominant, because no matter what strategy the 
other agent uses, it is better to be a hill-climber (Table I). If all agents do this, 
however, then they forego the higher individual utilities they would get if they both 
annealed. Individual rationality thus drive the agents towards the strategy pairing with 
the lowest individual and social welfare. This is thus an instance of the prisoner’s 
dilemma. It has been shown that this dilemma can be avoided if we assume repeated 
interactions between agents [6], but we would prefer to have a negotiation protocol 
that incents socially beneficial behavior without that difficult-to-enforce constraint. 
Several straightforward approaches to this problem, however, prove unsuccessful. One 
possibility is to simply reduce the annealer’s willingness to make concessions. This 
can indeed eliminate the conceder’s penalty, but at the cost of achieving social welfare 
values only slightly better than that achieved by two hill climbers. Another option is 
to have agents switch from being an annealer to a hill-climber if they determine, by 
observing the proposal acceptance rates of their opponents, that the other agent is 
being a hill-climber. We found, however, that it takes too long to determine the type 
of the other agent: by the time it has become clear, much of the agreement utility has 
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been committed, and it is too late to recover from the consequences of having started 
out as an annealer. See [7] for details. 

4. The Annealing Mediator 
We were able to define a negotiation protocol that avoids the prisoner’s dilemma 
entirely in mediated single-text negotiation of complex agreements. The trick is 
simple: rather than requiring that the negotiating agents anneal, and thereby expose 
themselves to the risk of being dragged into bad agreements, we moved the annealing 
into the mediator itself. In our original protocol, the mediator would simply propose 
modifications of the last agreement both negotiating agents accepted. In our refined 
protocol, the mediator is endowed with a time-decreasing willingness to follow up on 
agreements that one or both agents rejected (following the same inverse exponential 
regime as the annealing agents). Agents are free to remain hill-climbers and thus 
avoid the potential of making harmful concessions. The mediator, by virtue of being 
willing to provisionally pursue utility-decreasing agreements, can traverse valleys in 
the agents’ utility functions and thereby lead the agents to win-win solutions. We 
describe the details of our protocol, and our evaluations thereof, below. 
 In our initial implementations each agent gave a simple accept/reject vote for 
each proposal from the mediator, but we found that this resulted in final social welfare 
values significantly lower than what we earlier achieved using annealing agents. In 
our next round of experiments we accordingly modified the agents so that they 
provide additional information to the mediator in the form of vote strengths: each 
agent annotates an accept or reject vote as being strong or weak. The agents were 
designed so that there are roughly an equal number of weak and strong votes of each 
type. This maximizes the informational content of the vote strength annotations. 
When the mediator receives these votes, it maps them into numeric values (strong 
accept = 1, weak accept = 0, weak reject = -1, strong reject = -2) and adds them 
together to produce an aggregate score.  A proposal is accepted by the mediator if the 
score is non-negative, i.e. if both agents voted to accept it, or if a weak reject by one 
agent is overridden by a strong accept from the other. The mediator can also accept 
rejected agreements (i.e. those with a negative agrregate score) using the annealing 
scheme described above. This approach works surprisingly well, achieving final social 
welfare values that average roughly 99% of optimal despite the fact that the agents 
each supply the mediator with only two bits of information. We found, in fact, that 
increasing the number of possible vote weights did not increase final social welfare. 
This is because the strong/weak vote annotations are sufficient to allow the system to 
pursue social welfare-increasing agreements that cause a utility decrement for one 
agent.

5. Incentives for Truthful Voting 
Any voting scheme introduces the potential for strategic non-truthful voting by the 
agents, and our scheme is no exception. Imagine that one of the agents always votes 
truthfully, while the other exaggerates so that its votes are always ‘strong’. One might 
expect that this would bias negotiation outcomes to favor the exaggerator and this is in 
fact the case: 
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Table 2. The optimality of the negotiation outcomes for truth-telling vs. exaggerating agents 
with a simple annealing mediator. An exaggeration strategy is individually incented, even 
though it results in outcomes with lower social welfare. 

 Agent 2 exaggerates Agent 2 tells truth 
Agent 1 exaggerates .92 

.81/.81
.93
.93/.66

Agent 1 tells truth .93 
.66/.93

.99

.84/.84

 As we can see, even though exaggerating has substantial negative impact on 
social welfare, agents are individually incented to exaggerate, thus re-creating the 
prisoner’s dilemma we encountered earlier. The underlying problem is simple: 
exaggerating agents are able to induce the mediator to accept all the proposals that are 
advantageous to them (if they are weakly rejected by the other agent), while 
preventing the other agent from doing the same. What we need, therefore, is an 
enhancement to the negotiation protocol that incents truthful voting, preserving equity 
and maximizing social welfare. 
 How can this be done? We found that simply placing a limit on the number of 
strong votes each agent can use does not work. If the limit is too low, we effectively 
lose the benefit of vote weight information and get the lower social welfare values that 
result. If the strong vote limit is high enough to avoid this, then all an exaggerator has 
to do is save all of it’s strong votes till the end of the negotiation, at which point it can 
drag the mediator towards making a series of proposals that are inequitably favorable 
to it.
 Another possibility is to enforce overall parity in the number of “overrides” each 
agent gets. A override occurs when a agreement supported by one agent (the 
“winner”) is accepted by the mediator over the objections of the other agent. 
Overrides are what drags a negotiation towards agreements favorable to the winner, so 
it makes sense to make the total number of overrides equal for each agent. But this is 
not enough, because exaggerators always win disproportionately more than the truth-
teller.
 The solution, we found, came from enforcing parity between the number of 
overrides given to each agent throughout the negotiation, so neither agent can get 
more than a given advantage. This way at least rough equity is maintained no matter 
when (or whether) either agent chooses to exaggerate. The results of this approach 
were as follows when the override disparity was limited to 3: 

Table 3. The optimality of the negotiation outcomes for truth-telling vs exaggerating agents 
with parity-enforcing mediator. The parity-enforcing mediator makes truth-telling the rational 
strategy.

 Agent 2 exaggerates Agent 2 tells truth 
Agent 1 exaggerates .91 

.79/.79
.92
.78/.81

Agent 1 tells truth .92 
.81/.78

.98

.84/.84

 When we have truthful agents, we find that this approach achieves social welfare 
just slightly below that achieved by a simple annealing mediator, while offering a 
significantly (p < 0.01) higher payoff for truth-tellers than exaggerators. We found, 



Negotiation Algorithms for Collaborative Design Settings            259 

moreover, that the same pattern of results holds for a range of exaggeration strategies, 
including exaggerating all the time, exaggerating at random, or exaggerating just near 
the end of the negotiation. Truth-telling is thus both the individually dominant and 
socially most beneficial strategy. 
 Why does this work? Why, in particular, does a truth-teller fare better than an 
exaggerator with this kind of mediator? One can think of this procedure as giving 
agents ‘tokens’ that they can use to ‘purchase’ advantageous overrides, with the 
constraint that both agents spend tokens at a roughly equal rate. Recall that in this case 
a truthful agent, offering a mix of strong and weak votes, is paired with an exaggerator 
for whom at least some weak accepts and rejects are presented as strong ones. The 
truthful agent can therefore only get an override via annealing (see Table 3), and this 
is much more likely when its vote was a strong accept rather than a weak one. In other 
words, the truthful agent spends its tokens almost exclusively on agreements that truly 
offer it a strong utility increase. The exaggerator, on the other hand, will spend tokens 
to elicit a override even when the utility increment it derives is relatively small. At the 
end of the day, the truthful agent has spend its tokens more wisely and to better effect.

6. The Unmediated Single Text Protocol 
The protocol we have just considered worked well in the contexts studied but suffers 
from the disadvantage of requiring a mediator. One issue concerns trust. Since the 
annealing mediator is empowered to selectively ignore agent votes, there is the risk 
that it may do so in a way that favors one agent over another (though the use of the 
parity-enforcing token mechanism does somewhat reduce the potential impact of this 
problem). Another issue concerns how quickly negotiations converge on a result. The 
annealing mediator generates new proposals by making random mutations to the last 
provisionally accepted agreement, without taking into account any information about 
what agreements are preferable or even sensible. As a result, the mediator generates a 
very high proportion of rejected agreements, which is part of the reason why our 
experimental runs each involved so many (2500) proposals. The negotiating agents 
could imaginably provide the mediator with information about their utility functions 
so that the mediator is able to propose agreements more ‘intelligently’, but this is 
problematic for a number of reasons including the typical reluctance of self-interested 
agents to reveal their utility functions to a party that may or may not be worthy of 
their trust. 
 An effective unmediated version of the annealing protocol can, fortunately, be 
defined. It works as follows. Agents each start with a given number of tokens (2 each, 
in our experiments) and a mutually agreed-upon starting temperature T. A random 
agreement is generated, and one of the negotiating agents is selected at random to 
propose a small (e.g. single-issue) variant thereof, presumably the variant that most 
increases the utility of the agreement for that agent. The other agent then votes on the 
proposed variant. The proposing and voting both indicate the strength of their 
preference for the proposed agreement using the scheme described above (i.e. strong 
reject, weak reject, weak accept, strong accept). The agreement is provisionally 
accepted with probability

    P(accept) = min(1, e- U/T)
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where the aggregate score ( U) is calculated as for the annealing mediator, and the 
outcome is determined using the roll of a fair, mutually observable dice. If the 
decision to accept a proposal represents the over-ride of one agents’ reject vote, the 
winning agent needs to give one of its’ tokens to the over-ridden agent. An over-ride 
is not permitted if the agent has run out of tokens. The proposer and voter alternate 
roles thereafter until neither agent can identify any improvements to make to the last 
accepted agreement. Agents in the proposer role may pass but may not repeat 
proposals. The temperature T declines at a mutually agreed-upon rate during this 
process. This protocol thus reproduces the key elements of the annealing mediator 
protocol – a time-dependent annealing regime plus tokens - without the need for a 
mediator. Our experiments show that this protocol produces results just as good as the 
annealing mediator,  averaging 99% of optimal, while requiring fewer proposal 
exchanges (averaging about 200 exchanges per negotiation). 

7. Contributions 
We have shown that collaborative design negotiation, involving many interdependent 
issues, has properties that are substantially different from the independent issue case 
that has been studied to date in the negotiation literature, and requires as a result 
different protocols to achieve near-optimal outcomes. This work represents, as far as 
we are aware, the first family of negotiation protocols suited for interdependent issues. 
While some previous work has studied multi-issue negotiation (e.g. [8], [1] [9] [10]) 
the issues in these efforts are treated as being independent. Multi-attribute auctions 
[11] [12] represent another scheme potentially suitable for multiple interdependent 
issues, wherein negotiators bid on the agreements that they prefer, with the most 
highly demanded agreement winning. This approach is very unlikely to scale, 
however, to collaborative design settings where there could easily be trillions of 
competing agreements up for bid. 
 The essence of our approach can be summarized simply: conceding early and 
often (as opposed to little and late, as is typical for independent issue negotiations) is 
the key to achieving good agreements in contexts like collaborative design. Conceding 
is not individually rational in the face of agents that may choose not to concede, but 
this problem can be resolved either by introducing a mediator that stochastically 
ignores agent preferences, or by introducing dice into the negotiation protocol. In both 
cases, the exchange of tokens when one agent overrides another can be used to incent 
the truthful voting that enables win-win outcomes. 

8. Next Steps 
There are many other promising avenues for future work in this area. The high social 
welfare achieved by our approach partially reflect the fact that the utility functions for 
each agent, based as they are solely on binary dependencies, are relatively easy to 
optimize. Higher-order dependencies, common in many real-world contexts, are 
known to generate more challenging utility landscapes [13]. We hypothesize that it 
may be necessary to adapt non-linear optimization techniques such as genetic 
algorithms into the negotiation context in order to address this challenge. Another 
possibility involves agents providing limited information about their utility functions 
to the mediator or to each other in order to facilitate more intelligent search through 
very large design spaces. Agents can, for example, tell the mediator which issues are 
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heavily dependent upon each other, allowing the mediator to focus its attention within 
tightly-coupled issue ‘clumps’, leaving other less influential issues till later. We 
hypothesize that agents may be incented to tell the truth in order to ensure that 
negotiations can complete in an acceptable amount of time. Finally, we would like to 
derive formal incentive compatibility proofs (i.e. concerning when agents are incented 
to vote truthfully) for our protocols. New proof techniques will probably be necessary 
because previous results in this area have made strong assumptions concerning the 
shape of the agent utility functions that do not hold with complex agreements. 
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A long-running difficulty with conventional game theory has been how to modify
it to accommodate the bounded rationality of all real-world players. A recurring
issue in statistical physics is how best to approximate joint probability distri-
butions with decoupled (and therefore far more tractable) distributions. This
paper shows that the same information theoretic mathematical structure, known
as Product Distribution (PD) theory, addresses both issues. In this, PD theory
not only provides a principled formulation of bounded rationality and a set of
new types of mean field theory in statistical physics. It also shows that those
topics are fundamentally one and the same.

1 Introduction

In noncooperative game theory, one has a set of N players, each choosing its
strategy xi independently, by sampling a distribution qi(xi) over those strategies.
Each player i also has her own utility function gi(x), specifying how much reward
she gets for every possible joint-strategy x of all N players. Let q(i)(x(i)) mean
the joint probability distribution of all players other than i, i.e.,

∏
j �=i qj(xj).
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Then the “goal” of each player i is to set qi to so that, conditioned on q(i), the
expected value of i’s utility is as high as possible.

Conventional game theory assumes each player i is “fully rational”, able to
solve for that optimal qi, and that she then uses that distribution. It is primarily
concerned with analyzing the such equilibria of the game [15, 7, 27, 4]. In the real
world, this assumption of full rationality almost never holds, whether the players
are humans, animals, or computational agents [6, 28, 24, 14, 3, 9, 2, 29, 19].
This is due to the cost of computation of that optimal distribution, if nothing
else. This real-world bounded rationality is one of the major impediments to
applying conventional game theory in the real world.

This paper shows how Shannon’s information theory [11, 21, 18] provides a
principled way to modify conventional game theory to accommodate bounded
rationality. This is done by following information theory’s prescription that,
given only partial knowledge concerning the distributions the players are using,
we should use the Maximum Entropy (Maxent) principle to infer those distri-
butions. Doing so results in the principle that the bounded rational equilibrium
is the minimizer of a certain set of coupled Lagrangian functions of the joint
distribution, q(x) =

∏
i qi(xi). This mathematical structure is a special instance

of Product Distribution (PD) theory [31, 32, 22, 20, 8, 3].

In addition to showing how to formulate bounded rationality, PD theory pro-
vides many other advantages to game theory. Its formulation of bounded ratio-
nality explicitly includes a term that, in light of information theory, is naturally
interpreted as a cost of computation. PD theory also seamlessly accommodates
multiple utility functions per player. It also provides many powerful techniques
for finding (bounded rational) equilibria, and helps address the issue of multi-
ple equilibria. Another advantage is that by changing the coordinates of the
underlying space of joint moves x, the same mathematics describes a type of
bounded rational cooperative game theory, in which the moves of the players
are transformed into contracts they all offer one another.

Perhaps the most succinct and principled way of deriving statistical physics
is as the application of the Maxent principle. In this formulation, the problem
of statistical physics is cast as how best to infer the probability distribution over
a system’s states when one’s prior knowledge consists purely of the expectation
values of certain functions of the system’s state [17, 18]. For example, this
prescription says we should infer that the probability distribution p governing the
system is the Boltzmann distribution when our prior knowledge is the system’s
expected energy. This is known as the “canonical ensemble”. Other ensembles
arise when other expectation values are added to one’s prior knowledge. In
particular, if the number of particles in the system is uncertain, but one knows
its expectation value, one arrives at the “grand canonical ensemble”.

One major difficulty with working with these ensembles is that under them
the particles of the system are statistically coupled with one another. For high-
dimensional systems, this can make statistical physics calculations very difficult.
Accordingly, a large body of work has been produced under the rubric of Mean
Field (MF) theory, in which the ensemble is approximated with a distribution
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in which the particles are independent [26]. In an MF approximation, a prod-
uct distribution q governs the joint state of the particles — just as a product
distribution governs the joint strategy of the players in a game.

MF approximations are usually derived in an ad hoc manner. The principled
way to derive a MF approximation (or any other kind) to a particular ensemble is
to specify a distance measure saying how close two probability distributions are,
and then solve for the q that is closest to the distribution being approximated,
p. To do this one needs to specify the distance measure. How best to measure
distances between probability distributions is a topic of ongoing controversy
and research [33]. The most common way to do so is with the infinite limit
log likelihood of data being generated by one distribution but misattributed to
have come from the other. This is known as the Kullback-Leibler (KL) distance
[11, 12, 21]. It is far from being a metric. In particular, it is not symmetric
under interchange of the two distributions being compared.

It turns out that the simplest MF theories minimize the KL distance from q
to p. However it can be argued it is the KL distance from p to q that is the most
appropriate measure, not the KL distance from q to p. Using that distance, the
optimal q is a new kind of approximation not usually considered in statistical
physics.

For the canonical ensemble, the type of KL distance arising in simple MF
theories turns out to be identical to the maxent Lagrangian arising in bounded
rational game theory. This shows how bounded rational (independent) players
are formally identical to the particles in the MF approximation to the canoni-
cal ensemble. Under this identification, the moves of the players play the roles
of the states of the particles, and particle energies are translated into player
utilities. The coordinate transformations which in game theory result in cooper-
ative games are, in statistical physics, techniques for more allowing the canonical
ensemble to be more accurately approximated with a product distribution.

This identification raises the potential of transferring some of the powerful
mathematical techniques that have been developed in the statistical physics
community to the analysis of noncooperative game theory. In also suggests
translating some of the other ensembles of statistical physics to game theory,
in addition to the canonical ensemble. As an example, in the grand canonical
ensemble the number of particles is variable, which, after a MF approximation,
corresponds to having a variable number of players in game theory. Among
other applications, this provides us with a new framework for analyzing games
in evolutionary scenarios, different from evolutionary game theory.

In the next section noncooperative game theory and information theory are
cursorily reviewed. Then bounded rational game theory is derived, and its many
advantages are discussed. The following section starts with a cursory review
of the information-theoretic derivation of statistical physics. After that is a
discussion of the two kinds of KL distance and the MF theories they induce,
and a discussion of coordinate systems. This section also includes a discussion
on translating a MF version of the grand canonical ensemble into a new kind of
evolutionary game theory.
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It should be noted that PD theory is a far-ranging framework for analyzing
and controlling distributed systems, with potential applications extending far
beyond game theory and statistical physics. In particular, it can be used for
distributed optimization and adaptive, distributed control. It also has potential
applications in high-dimensional probability sampling, high-dimensional integra-
tion, reinforcement learning, and multi-agent systems. See [31, 32, 22, 20, 1, 8]
for preliminary investigations of a few of these.

2 PD theory as Bounded Rational Noncoopera-

tive Game Theory

This section motivates PD theory as a way of addressing several of the short-
comings of conventional noncooperative game theory.

2.1 Review of noncooperative game theory

In noncooperative game theory one has a set of N players. Each player i has
its own set of allowed pure strategies. A mixed strategy is a distribution
qi(xi) over player i’s possible pure strategies. Each player i also has a utility

function gi that maps the pure strategies adopted by all N of the players into
the real numbers. So given mixed strategies of all the players, the expected
utility of player i is E(gi) =

∫
dx

∏
j qj(xj)gi(x) 1.

This basic framework can be elaborated to model many interactions between
biological organisms, and in particular between human beings. These inter-
actions range from simple abstractions like the famous prisoner’s dilemma to
iterated games like chess, to international relations [16, 15, 7].

Much of noncooperative game theory is concerned with equilibrium con-

cepts specifying what joint-strategy one should expect to result from a particu-
lar game. In particular, in a Nash equilibrium every player adopts the mixed
strategy that maximizes its expected utility, given the mixed strategies of the
other players. More formally, ∀i, qi = argmaxq′

i

∫
dx q′i

∏
j �=i qj(xj) gi(x).

Several very rich fields have benefited from a close relationship with nonco-
operative game theory. Particular examples are evolutionary game theory (in
which the set of N players is replaced by an infinite set of reproducing organ-
isms) and cooperative game theory (in which players choose which coalitions of
other players to join) [23, 4]. Game theory as a whole is also closely related to
economics, in particular the field of mechanism design, which is concerned with
how to induce the set of players to do adopt a socially desirable joint-strategy
[34, 15, 25, 30].

1Throughout this paper, the integral sign will be interpreted in the appropriate measure-
theoretic terms, e.g., as Lebesgue integrals, point-sums, etc.
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2.2 Problems with conventional noncooperative game the-

ory

A number of objections to the Nash equilibrium concept have been resolved.
In particular, it was Nash who proved that every game has at least one Nash
equilibrium if one expands the realm of discourse to include mixed strategies.
(The same is not true for pure strategies.) Other objections have been more or
less resolved through numerous refinements of the Nash equilibrium concept.

However there are several major problems with the concept that are still
outstanding. One of them is the possible multiplicity of equilibria; this multi-
plicity means the Nash equilibrium concept cannot be used to specify the joint
strategy that is actually adopted in a real world game. (Some refinements of
the Nash equilibrium concept attempt to address this problem, though none
has succeeded.) Another problem is that while calculating Nash equilibria is
straightforward in many simple games (e.g., 2 players in a zero-sum game),
calculating them in the general case can be a very difficult computational multi-
criteria optimization problem. Yet another problem is that there is no general
way to extend the concept to allow each player to have multiple utility functions.

However perhaps the major problem with the Nash equilibrium concept is its
assumption of full rationality. This is the assumption that every player i can
both calculate what the strategies qj �=i will be and then calculate its associated
optimal distribution. In other words, it is the assumption that every player will
calculate the entire joint distribution q(x) =

∏
j qj(xj). If for no other reasons

than computational limitations of real humans, this assumption is essentially
untenable. This problem is just as severe if one allows statistical coupling among
the players [5, 15].

A large body of empirical lore has been generated characterizing the bounded
rationality of humans. Similarly much has been learned about the empirical
behavior of (bounded rational) machine learning computer algorithms playing
games with one another [6, 2]. None of this work has resulted in a full mathe-
matical theory of bounded rationality however.

There have also been numerous theoretical attempts to incorporate bounded
rationality into noncooperative game theory by modifying the Nash equilibrium
concept. Some of them assume essentially that every player’s mixed strategy is
its Nash-optimal strategy with some form of noise superimposed [4]. Others
explicitly model the humans, typically as computationally limited automata,
and assume the automata perform optimally subject to those computational
limitations [14]. Both approaches, while providing insight, are very ad hoc as
models of games involving real-world organisms or real-world (i.e., non-trivial)
machine learning algorithms.

The difficulty of calculating equilibria is addressed in the sections below
on solving for the distributions of PD theory. The rest of this section shows
how information theory can be used to extend game theory to avoid its other
shortcomings. Finally, the sections after this one present some other extensions
of game theory, in particular to allow for a variable number of players. (Games
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with variable number of players arise in many biological scenarios as well as
economic ones.)

2.3 Review of the maximum entropy principle

Shannon was the first person to realize that based on any of several separate
sets of very simple desiderata, there is a unique real-valued quantification of
the amount of syntactic information in a distribution P (y). He showed that
this amount of information is (the negative of) the Shannon entropy of that

distribution, S(P ) = −
∫

dy P (y)ln[P (y)
µ(y) ] 2.

So for example, the distribution with minimal information is the one that
doesn’t distinguish at all between the various y, i.e., the uniform distribution.
Conversely, the most informative distribution is the one that specifies a sin-
gle possible y. Note that for a product distribution, entropy is additive, i.e.,
S(

∏
i qi(yi)) =

∑
i S(qi).

Say we given some incomplete prior knowledge about a distribution P (y).
How should one estimate P (y) based on that prior knowledge? Shannon’s result
tells us how to do that in the most conservative way: have your estimate of
P (y) contain the minimal amount of extra information beyond that already
contained in the prior knowledge about P (y). Intuitively, this can be viewed
as a version of Occam’s razor. This approach is called the maximum entropy
(maxent) principle. It has proven extremely useful in domains ranging from
signal processing to image processing to supervised learning [21].

2.4 Maxent Lagrangians

Much of the work on equilibrium concepts in game theory adopts the perspective
of an external observer of a game. We are told something concerning the game,
e.g., its utility functions, information sets, etc., and from that wish to predict
what joint strategy will be followed by real-world players of the game. Say that
in addition to such information, we are told the expected utilities of the players.
What is our best estimate of the distribution q that generated those expected
utility values? By the maxent principle, it is the distribution with maximal
entropy, subject to those expectation values.

To formalize this, for simplicity assume a finite number of players and of
possible strategies for each player. To agree with the convention in other fields,
from now on we implicitly flip the sign of each gi so that the associated player
i wants to minimize that function rather than maximize it. Intuitively, this
flipped gi(x) is the “cost” to player i when the joint-strategy is x, rather than
its utility then.

Then for prior knowledge that the expected utilities of the players are given
by the set of values {εi}, the maxent estimate of the associated q is given by the

2µ is an a priori measure over y, often interpreted as a prior probability distribution. Unless
explicitly stated otherwise, in this paper we will always assume it is uniform, and not write it
explicitly. See [17, 18, 11].
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minimizer of the Lagrangian

L(q) ≡
∑

i

βi[Eq(gi) − εi] − S(q)

=
∑

i

βi[

∫

dx
∏

j

qj(xj)gi(x) − εi] − S(q) (1)

where the subscript on the expectation value indicates that it evaluated un-
der distribution q, and the {βi} are Lagrange parameters implicitly set by the
constraints on the expected utilities 3.

Solving, we find that the mixed strategies minimizing the Lagrangian are
related to each other via

qi(xi) ∝ e
−Eq(i)

(G|xi) (2)

where the overall proportionality constant for each i is set by normalization, and
G ≡

∑
i βigi

4. In Eq. 2 the probability of player i choosing pure strategy xi

depends on the effect of that choice on the utilities of the other players. This
reflects the fact that our prior knowledge concerns all the players equally.

If we wish to focus only on the behavior of player i, it is appropriate to modify
our prior knowledge. To see how to do this, first consider the case of maximal
prior knowledge, in which we know the actual joint-strategy of the players, and
therefore all of their expected costs. For this case, trivially, the maxent principle
says we should “estimate” q as that joint-strategy (it being the q with maximal
entropy that is consistent with our prior knowledge). The same conclusion holds
if our prior knowledge also includes the expected cost of player i.

Now modify this maximal set of prior knowledge by removing from it spec-
ification of player i’s strategy. So our prior knowledge is the mixed strategies
of all players other than i, together with player i’s expected cost. We can in-
corporate the prior knowledge of the other players’ mixed strategies directly
into our Lagrangian, without introducing Lagrange parameters. That maxent

Lagrangian is

Li(qi) ≡ βi[εi − E(gi)] − Si(qi)

= βi[εi −

∫

dx
∏

j

qj(xj)gi(x)] − Si(qi)

with solution given by a set of coupled Boltzmann distributions:

qi(xi) ∝ e
−βiEq(i)

(gi|xi). (3)

Following Nash, we can use Brouwer’s fixed point theorem to establish that for
any non-negative values {β}, there must exist at least one product distribution

3Throughout this paper the terms in any Lagrangian that restrict distributions to the
unit simplices are implicit. The other constraint needed for a Euclidean vector to be a valid
probability distribution is that none of its components are negative. This will not need to be
explicitly enforced in the Lagrangian here.

4The subscript q(i) on the expectation value indicates that it is evaluated according the
distribution

∏
j �=i qj .
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given by the product of these Boltzmann distributions (one term in the product
for each i).

The first term in Li is minimized by a perfectly rational player. The second
term is minimized by a perfectly irrational player, i.e., by a perfectly uniform
mixed strategy qi. So βi in the maxent Lagrangian explicitly specifies the balance
between the rational and irrational behavior of the player. In particular, for
β → ∞, by minimizing the Lagrangians we recover the Nash equilibria of the
game. More formally, in that limit the set of q that simultaneously minimize the
Lagrangians is the same as the set of delta functions about the Nash equilibria
of the game. The same is true for Eq. 2.

Eq. 2 is just a special case of Eq. 3, where all player’s share the same cost
function G. (Such games are known as team games.) This relationship reflects
the fact that for this case, the difference between the maxent Lagrangian and
the one in Eq. 1 is independent of qi. Due to this relationship, our guarantee of
the existence of a solution to the set of maxent Lagrangians implies the existence
of a solution of the form Eq. 2.

Typically players aren’t close to perfectly self-defeating. Almost always they
will be closer to minimizing their expected cost than maximizing it. For prior
knowledge consistent with such a case, the βi are all non-negative.

Finally, our prior knowledge often will not consist of exact specification of
the expected costs of the players, even if that knowledge arises from watching
the players make their moves. Such other kinds of prior knowledge are addressed
in several of the following subsections.

2.5 Alternative interpretations of Lagrangians

There are numerous alternative interpretations of these results. For example,
change our prior knowledge to be the entropy of each player i’s strategy, i.e.,
how unsure it is of what move to make. Now we cannot use information theory
to make our estimate of q. Given that players try to minimize expected cost, a
reasonable alternative is to predict that each player i’s expected cost will be as
small as possible, subject to that provided value of the entropy and the other
players’ strategies. The associated Lagrangians are αi[S(qi)−σi]−E(gi), where
σi is the provided entropy value. This is equivalent to the maxent Lagrangian,
and in particular has the same solution, Eq. 3.

Another alternative interpretation involves world cost functions, which are
quantifications of the quality of a joint pure strategy x from the point of view
of an external observer (e.g., a system designer, the government, an auctioneer,
etc.). A particular class of world cost functions are “social welfare functions”,
which can be expressed in terms of the cost functions of the individual players.
Perhaps the simplest example is G(x) =

∑
i βigi(x), where the βi serve to trade

off how much we value one player’s cost vs. anothers. If we know the value of
this social welfare function, but nothing else, then maxent tells us to minimize
the Lagrangian of Eq. 1.
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2.6 Bounded rational game theory

In many situations we have prior knowledge different from (or in addition to)
expected values of cost functions. This is particularly true when the players are
human beings (so that behavioral economics studies can be brought to bear)
or simple computational algorithms. To apply information theory in such situa-
tions, we simply need to incorporate that prior knowledge into our Lagrangian(s).

To give a simple example, say that we know that the players all want to
ensure not just a low expected cost, but also that the actual cost doesn’t vary
too much from one sample of q to the next. We can formalize this by saying
that in addition to expected costs, our prior knowledge includes variances in the
costs. Given the expected values of the costs, such variances are specified by the
expected values of the squares of the cost. Accordingly, all our prior knowledge
is in the form of expectation values. Modifying Eq. 3 appropriately, we arrive
at the solution

qi(xi) ∝ e
−Eq(i)

(αi(gi−λi)
2|xi).

where the Lagrange parameters αi and λi are given by the provided expectations
and variances of the costs of the players.

Eq. 4 is our best guess for what the actual mixed strategy of player i is,
in light of our prior knowledge concerning that player. Note that this formula
directly reflects the fact that player i does not care only about minimizing cost,
i.e., maximizing utility. In this, we are directly incorporating the possibility
that the player violates the axioms of utility theory — something never allowed
in conventional game theory. Other behavioral economics phenomena like risk
aversion can be treated in a similar fashion.

A variant of this scenario would have our prior knowledge only give the
variances of the costs of the players and not their expected costs. In this cost the
Lagrangian must involve a term quadratic in q, in addition to the entropy term
and a term linear in q. (See the subsection on multiple cost functions.) More
generally, our prior knowledge can be any nonlinear function of q. In addition,
even if we stick to prior knowledge that is linear in q, that knowledge can couple
the cost functions of the players. For example, if we know that the expected
difference in cost of players i and j is ε, the associated Lagrange constraint term
is

∫
dxq(x)[gi(x) − gj(x) − ε]. In this situation our prior knowledge couples the

strategies of the players, even though those players are independent. See the
discussion on constrained optimization in Sec. Opt.

2.7 Cost of computation

As mentioned above, bounded rationality is an unavoidable consequence of the
cost of computation to player i of finding its optimal strategy. Unfortunately, one
cannot simply incorporate that cost into gi, and then presume that the player
acts perfectly rationally for this new gi. The reason is that this cost is associated
with the entire distribution qi(xi) that player i calculates; it not associated with
some particular joint-strategy formed by sampling such a distribution.
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How might we quantify the cost of calculating qi? The natural approach is
to use information theory. Indeed, that cost arises naturally in the bounded
rationality formulation of game theory presented above. To see how, for each
player i define

fi(x, qi(xi)) ≡ βigi(x) + ln[qi(xi)].

Then we can write the maxent Lagrangian for player i as

Li(q) =

∫

dx q(x)fi(x, qi(xi)). (4)

Now in a bounded rational game every player sets its strategy to minimize its
Lagrangian, given the strategies of the other players. In light of Eq. 4, this
means that we can interpret each player in a bounded rational game as being
perfectly rational for a cost function that incorporates its computational cost.
To do so we simply need to expand the domain of “cost functions” to include
probability values as well as joint moves.

Similar results hold for non-maxent Lagrangians. All that’s needed is that we
can write such a Lagrangian in the form of Eq. 4 for some appropriate function
fi.

2.8 Multiple cost functions per player

Say player i has several different cost functions {gj
i } and wants to choose a strat-

egy that will do well at all of them. In the case of pure strategies we can simply
define an aggregate function like maxjg

j
i (x) or

∑
j [g

j
i (x)]2, and employ that in

a conventional, single-cost-function-per-player game theoretic analysis. Player i
will perform well according to such a function iff it performs well according to
all of the constituent gj

i .
One might think that for mixed strategies one could just “roll up” the cost

functions and say that player i works to minimize an aggregate cost function
∑

j g
j
i∑

j 1 . However especially when player i has many cost functions, it may be

that performance according to one or more of the constituent cost functions
is quite bad even though the performance according to this average function is
good. Similarly, player i can have a low value of the expectation of the minimum
of its cost functions, even though the minimum of the expected costs is quite
high. More generally, we cannot ensure that Eq(g

j
i ) =

∫
dx gj

i (x)qi(x)q(i)(x) has
a good value for all j by appropriately defining an aggregate gi. Instead, we
must “redefine” expected cost.

Proceeding in analogy to the pure strategy solution, such a redefinition
means that player i works to minimize an aggregate expected cost function like
maxjEq(g

j
i ) or

∑
j [Eq(g

j
i )]

2. Formally, such functions are just Lagrangians of
q. If we wish, we can modify them to incorporate bounded rationality, getting
Lagrangians like

∑
j βj [Eq(g

j
i )]

2 + S(qi), where the βj determine the relative
rationalities of player i according to its various cost functions.

These kinds of Lagrangians can also model the process of mechanism design,
where there is an external designer who induces the players to adopt a desirable
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joint-strategy [15]. As an example, “desirable” sometimes means that no single
player’s expected cost is high. A system that meets this goal fairly well can be
modeled with a Lagrangian involving terms like

∑
i[Eq(gi)]

2.

2.9 Uniqueness of equilibria

In general there can be multiple solutions to either the coupled equations of
Eq. 2 or those of Eq. 3. This is consistent with the possible multiplicity of Nash
equilibria. However say we modify the Lagrangians to be defined for all possible
p, not just those that are product distributions. For example the Lagrangian of
Eq. 1 becomes

L(p) ≡
∑

i

βi[

∫

dx gi(x)p(x) − εi] − S(p).

The first term in this Lagrangian is linear in p. Since entropy is a concave
function of the Euclidean vector p over the unit simplex, this means that the
overall Lagrangian is a convex function of p over the space of allowed p. This
means there is a unique minimum of the Lagrangian over the space of all possible
legal p. Furthermore, as mentioned previously, for finite β at least one of the
derivatives of the Lagrangian is negative infinite at the border of the allowed
region of p. This means that the unique minimum of the Lagrangian is interior
to that region, i.e., is a legal probability distribution.

In general this optimal p will not be a product distribution, of course. Rather
the strategy choices of the players are typically statistically coupled, under this
p. Such coupling is very suggestive of various stochastic formulations of non-
cooperative game theory. Coupling also arises in cooperative game theory, in
which binding contracts couple the moves of the players [16, 4].

Similarly, as in proven in the appendix, the Lagrangian L(p) =
β

∑
i[Ep(gi)]

2 − S(p) is concave over the manifold of legal p, assuming non-
negative β. So the model of mechanism design introduced in Sec. 2.8 has a
unique equilibrium — if we allow the players to be statistically coupled.

2.10 Rationality operators

Often our prior knowledge will not concern expected costs. In particular, this is
usually true if our prior knowledge is provided to us before the game is played,
rather than afterward. In such a situation, prior knowledge will more likely con-
cern the “intelligences” of the players, i.e., how close they are to being rational.
In particular, if we want our prior knowledge concerning player i to be relatively
independent of what the other players do, we cannot use i’s expected cost as our
prior knowledge. Our prior knowledge will often concern how peaked i’s mixed
strategy is about whichever of its moves minimize its cost (or how peaked we
can assume it to be), not the associated minimal cost values.

Formally, the problem faced by player i is how to set its mixed strategy qi(xi)
so as to maximize the expected value of its effective cost function, E(gi | xi).
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Generalizing, what we want is a rationality operator R(U, p) that measures how
peaked an arbitrary distribution p(y) is about the minimizers of an arbitrary
cost function U(y), argminyU(y).

Formally, we make two requirements of R:

1. If p(y) ∝ e−βU(y), for non-negative β, then it is natural to require that the
peakedness of the distribution — its rationality value — is β.

2. We also need to also specify something of R(U, p)’s behavior for non-
Boltzmann p. It will suffice to require that of the p satisfying R(U, p) = β,
the one that has maximal entropy is proportional to e−βU(y). In other
words, we require that the Boltzmann distribution maximizes entropy sub-
ject to a provided value of the rationality operator.

As an illustration, a natural choice for R(U, p) would be the β of the Boltzmann
distribution that “best fits” p. Information theory provides us such a measure
for how well a distribution p1 is fit by a distribution p2. This is the Kullback-

Leibler distance [11, 12]:

KL(p1 || p2) ≡ S(p1 || p2) − S(p1) (5)

where S(p1 || p2) ≡ −
∫

dy p1(y)ln[p2(y)
µ(y) ] is known as the cross entropy from p1

to p2 (and as usual we implicitly choose uniform µ). The KL distance is always
non-negative, and equals zero iff its two arguments are identical.

Define N(U) ≡
∫

dy e−U(y), the normalization constant for the distribution
proportional to e−U(y). (This is called the partition function in statistical
physics.) Then using the KL distance, we arrive at the rationality operator

RKL(U, p) ≡ argminβKL(p ||
e−βU

N(βU)
)

= argminβ [β

∫

dy p(y)U(y) + ln(N(βU))].

In the appendix it is proven that RKL respects the two requirements of ratio-
nality operators.

The quantity ln(N(βU)) appearing in the second equation, when scaled by
β−1, is called the free energy. It is easy to verify that it equals the Lagrangian
Ep(U) − S(p)/β if p is given by the Boltzmann distribution p(y) ∝ e−βU(y).

Say our prior knowledge is {ρi}, the rationalities of the players for their
associated effective cost functions. Introduce the general notation

[U ]i,p(xi) ≡

∫

dx(i)U(xi, x(i))p(x(i) | xi),

so that [gi]i,q is player i’s effective cost function. Then the Lagrangian for our
prior knowledge is

L(q) =
∑

i

λi[R([gi]i,q, qi) − ρi] − S(q). (6)
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where the λi are the Lagrange parameters. Just as before, there is an alternative
way to motivate this Lagangian: if our prior knowledge consists of the entropy
of the joint system, and we assume each player will have maximal rationality
subject to that prior knowledge, we are led to the Lagrangian of Eq. 6.

It is shown in the appendix that for the Kullback-Leibler rationality operator,
we can replace any constraint of the form R([gi]i,q, qi) = ρi with Eq(gi) =
∫

dx gi(x) e−ρiE(gi|xi)

N(ρigi)
q(i)(x(i)). In other words, knowing that player i has KL

rationality ρi is equivalent to knowing that the actual expected value of gi equals
the “ideal expected value”, where qi is replaced by the Boltzmann distribution
of Eq. 3 with β = ρi. This contrasts with the prior knowledge underlying the
Lagrangian in Eq. 1, in which we know the actual numerical value of Eq(gi).

Just as before, we can focus on player i by augmenting our prior knowledge
to include the strategies of all the other players. The associated Lagrangian is

Li(qi) = λi[R([gi]i,q, qi) − ρi] − S(qi). (7)

(The prior knowledge concerning the strategies of the other players is manifested
in the effective cost function.) It is shown in the appendix that the set of all the
Lagrangians in Eq. 7 (one for each player) are minimized simultaneously by any
distribution of the form

qg ≡

∏
i e−ρi[gi]i,q

N(ρi[gi]i,q)

In addition, since this distribution obeys all the constraints in the Lagrangian
in Eq. 6, we know that there exists a minimizer of that Lagrangian. All of this
holds regardless of the precise rationality operator one uses.

Note that the Lagrangian Li of Eq. 7 for player i arises in response to prior
knowledge specific to player i. Changing from one player and its Lagrangian to
another changes the prior knowledge. (The same is true for the Lagrangians in
Eq. 3.) In contrast, the Lagrangian of Eq. 6 arises for a single unified body of
prior knowledge, namely the set of all players’ rationalities.

For that single body of knowledge, the equilibrium of the game is the solution
to a single-objective optimization problem. This contrasts with the conventional
formulation of full rationality game theory, where the equilibrium is cast as a
solution to a multi-objective optimization problem (one objective per player).
Furthermore, for finite β, at least one of the derivatives of the Lagrangian is
negative infinite at the border of the allowed region of product distributions
(i.e., at the border of the Cartesian product of unit simplices). Accordingly,
all solutions lie in the interior of that region. This can be a big advantage for
finding such solutions numerically, as elaborated below.

2.11 Semi-coordinate systems

Consider a multi-stage game like chess, with the stages (i.e., the instants at
which one of the players makes a move) delineated by t. Now strategies are
what are set by the players before play starts. So in such a multi-stage game
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the strategy of player i, xi, must be the set of t-indexed maps taking what that
player has observed in the stages t′ < t into its move at stage t. Formally, this
set of maps is called player i’s normal form strategy.

The joint strategy of the two players in chess sets their joint move-sequence,
though in general the reverse need not be true. In addition, one can always find
a joint strategy to result in any particular joint move-sequence. More generally,
any onto mapping ζ : x → z that need not be invertible is called a semi-

coordinate system. The identity mapping z → z is a trivial example of a
semi-coordinate system. Another example is the mapping from joint-strategies
in a multi-stage game to joint move-sequences is an example of a semi-coordinate
system. So changing the representation space of a multi-stage game from move-
sequences z to strategies x is a semi-coordinate transformation of that game.

Typically there is overlap in what the players in chess have observed at
stages preceding the current one. This means that even if the players’ strategies
are statistically independent, their move sequences are statistically coupled. In
such a situation, by parameterizing the space of joint-move-sequences z with
joint-strategies x, we shift our focus from the coupled distribution P (z) to the
decoupled product distribution, q(x). This is the advantage of casting multi-
stage games in terms of normal form strategies.

We can perform a semi-coordinate transformation even in a single-stage
game. Say we restrict attention to distributions over spaces of possible x that
are product distributions. Then changing ζ(.) from the identity map to some
other function means that the players are no longer independent. After the
transformation their strategy choices — the components of z — are statistically
coupled, even though we are considering a product distribution.

Formally, this is expressed via the standard rule for transforming probabili-
ties,

Pz(z) ≡ ζ(Px) ≡

∫

dxPx(x)δ(z − ζ(x)), (8)

where ζ(.) is the mapping from x to z, and Px and Pz are the distributions across
x-space and z-space, respectively . To see what this rule means geometrically,
let P be the space of all distributions (product or otherwise) over z’s. Let Q be
the space of all product distributions over x. Let ζ(Q) be its image in P. Then
by changing ζ(.), we change that image; different choices of ζ(.) will result in
different manifolds ζ(Q).

As an example, say we have two players, with two possible strategies each.
So z consists of the possible joint strategies, labeled (1, 1), (1, 2), (2, 1) and (2, 2).
Have the space of possible x equal the space of possible z, and choose ζ(1, 1) =
(1, 1), ζ(1, 2) = (2, 2), ζ(2, 1) = (2, 1), and ζ(2, 2) = (1, 2). Say that q is given
by q1(x1 = 1) = q2(x2 = 1) = 2/3. Then the distribution over joint-strategies
z is Pz(1, 1) = Px(1, 1) = 4/9, Pz(2, 1) = Pz(2, 2) = 2/9, Pz(1, 2) = 1/9. So
Pz(z) �= Pz(z1)Pz(z2); the strategies of the players are statistically coupled.

Such coupling of the players’ strategies can be viewed as a manifestation of
sets of potential binding contracts. To illustrate this return to our two player



276 Information Theory

example. Each possible value of a component xi determines a pair of possible
joint strategies. For example, setting x1 = 1 means the possible joint strategies
are (1, 1) and (2, 2). Accordingly such a value of xi can be viewed as a set of
proffered binding contracts. The value of the other components of x determines
which contract is accepted; it is the intersection of the proffered contracts offered
by all the components of x that determines what single contract is selected.
Continuing with our example, given that x1 = 1, whether the joint-strategy is
(1, 1) or (2, 2) (the two options offered by x1) is determined by the value of x2.

Binding contracts are a central component of cooperative game theory. In
this sense, semi-coordinate transformations can be viewed as a way to convert
noncooperative game theory into a form of cooperative game theory.

While the distribution over x uniquely sets the distribution over z, the reverse
is not true. However so long as our Lagrangian directly concerns the distribution
over x rather than the distribution over z, by minimizing that Lagrangian we
set a distribution over z. In this way we can minimize a Lagrangian involving
product distributions, even though the associated distribution in the ultimate
space of interest is not a product distribution.

The Lagrangian we choose over x should depend on our prior information,
as usual. If we want that Lagrangian to include an expected value over z’s
(e.g., of a cost function), we can directly incorporate that expectation value
into the Lagrangian over x’s, since expected values in x and z are identical:∫

dzPz(z)A(z) =
∫

dxPx(x)A(ζ(x)) for any function A(z). (Indeed, this is the
standard justification of the rule for transforming probabilities, Eq. 8.)

However other functionals of probability distributions can differ between the
two spaces. This is especially common when ζ(.) is not invertible, so the space
of possible x is larger than the space of possible z. For example, in general the
entropy of a q ∈ Q will differ from that of its image, ζ(q) ∈ ζ(Q) in such a case.
(The prior probability µ in the definition of entropy only gives us invariance
when the two spaces have the same cardinality.) A correction factor is necessary
to relate the two entropies.

In such cases, we have to be careful about which space we use to formulate our
Lagrangian. If we use the transformation ζ(.) as a tool to allow us to analyze
bargaining games with binding contracts, then the direct space of interest is
actually the x’s (that is the place in which the players make their bargaining
moves). In such cases it makes sense to apply all the analysis of the preceding
sections exactly as it is written, concerning Lagrangians and distributions over
x rather than z (so long as we redefine cost functions to implicitly pre-apply
the mapping ζ(.) to their arguments). However if we instead use ζ(.) simply
as a way of establishing statistical dependencies among the strategies of the
players, it may make sense to include the entropy correction factor in our x-
space Lagrangian.

An important special case is where the following three conditions are met:
Each point z is the image under ζ(.) of the same number of points in x-space, n;
µ(x) is uniform (and therefore so is µ(z)); and the Lagrangian in x-space, Lx,
is a sum of expected costs and the entropy. In this situation, consider a z-space
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Lagrangian, Lz, whose functional dependence on Pz, the distribution over z’s, is
identical to the dependence of Lx on Px, except that the entropy term is divided
by n 5. Now the minimizer P ∗(x) of Lx is a Boltzmann distribution in values
of the cost function(s). Accordingly, for any z, P ∗(x) is uniform across all n
points x ∈ ζ−1(z) (all such x have the same cost value(s)). This in turn means
that S(ζ(Px)) = nS(Pz) So our two Lagrangians give the same solution, i.e., the
“correction factor” for the entropy term is just multiplication by n.

2.12 Entropic prior game theory

Finally, it is worth noting that in the real world the information we are provided
concerning the system often will not consist of exact values of functionals of q,
be those values expected costs, rationalities, or what have you. Rather that
knowledge will be in the form of data, D, together with an associated likelihood
function over the space of q. For example, that knowledge might consist of a
bias toward particular rationality values, rather than precisely specified values:

P (D | q) ∝ e−α
∑

i[RKL([gi]i,q)−ρi]
2

.

where α sets the strength of the bias.
The extension of the maximum entropy principle to such situations uses the

entropic prior, P (q) ∝ e−γS(q). Bayes’ theorem is then invoked to get the
posterior distribution [18]:

P (q | D) ∝ e−
∑

i αi[RKL([gi]i,q)−ρi]
2−γS(q).

The Bayes optimal estimate for q, under a quadratic penalty term, is then given
by E(q | D). The maxent principle for estimating q is given by this estimate
under the limit of all αi going to infinity. For finite α solving for E(q | D) can
be quite complicated though. For simplicity, such cases are not considered here.

3 PD theory and statistical physics

There are many connections between bounded rational game theory — PD the-
ory — and statistical physics. This should not be too surprising, given that many
of the important concepts in bounded rational game theory, like the Boltzmann
distribution, the partition function, and free energy, were first explored in sta-
tistical physics. This section discusses some of these connections.

3.1 Background on statistical physics

Statistical physics is the physics of systems about which we have incomplete
information. An example is knowing only the expected value of a system’s energy

5For example, if Lx(Px) = βEPx
(G(ζ(.))) − S(Px), then Lz(Pz) = βEPz

(G()) − S(Pz)/n,
where Px and Pz are related as in Eq. 8.
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(i.e., its temperature) rather than the precise value of the energy. The statistical
physics of such systems is known as the canonical ensemble. Another example
is the grand canonical ensemble (GCE). There the number of particles of
various types in the system is also uncertain. As in the canonical ensemble, in
the GCE what knowledge we do have takes the form of expectation values of
the quantities about which we are uncertain, i.e., the number of particles of the
various types that the system contains, and the energy the system.

Traditionally these kinds of ensembles were analyzed in terms of “baths” of
the uncertain variable that are connected to the system. For example, in the
canonical ensemble the system is connected to a heat bath. In the GCE the
system is also connected to a bath of particles of the various types.

Such analysis showed that for the canonical ensemble the probability of the
system being in the particular state y is given by the Boltzmann distribution
over the associated value of the system’s energy, U(y), with β interpreted as the
(inverse) temperature of the system: p(y) ∝ e−βU(y). This result is independent
of the details characteristics of the physical system; all that is important is the
Hamiltonian U(y), and temperature β.

Note that once one knows p(y) and U(y), one knows the expected energy of
the system. It is U(y) that is a fixed property of the system, whereas β can
vary. Accordingly, specifying β is exactly equivalent to specifying the expected
energy of the system.

In the case of the GCE, y implicitly specifies the number of particles of the
various types, as well as their precise state. The analysis for that case showed
that p(y) ∝ e−βU(y)−

∑
i µini . In this formula β is again the inverse temperature,

ni is the number of particles of type i, and µi > 0 is the chemical potential

of each particle of type i.
Jaynes was the first to show that these results of conventional statistical

physics could be derived without recourse to artificial notions like “baths”, sim-
ply by using the maxent principle. In particular, he used the exact reasoning
in Sec. 2.6 to derive the fact that the canonical ensemble is governed by the
Boltzmann distribution.

3.2 Mean field theory and PD theory

In practice it can be quite difficult to evaluate this Boltzmann distribution, due
to difficulty in evaluating the partition function. For example, in a spin glass,
y is an N -dimensional vector of bits, one per particle, and U(y) =

∑
i,j Hi,jyiyj .

So the partition function is given by
∑

y e−
∑

i,j Hi,jyiyj , where H is a symmetric
real-valued matrix. In general, evaluating this sum for large numbers of spins
cannot be done in closed form.

Mean Field (MF) theory is a technique for getting around this problem by
approximating the partition function. Intuitively, it works by treating all the
particles as independent. It does this by replacing some of the values of the state
of a particle in the Hamiltonian by its average state. For example, in the case of
the spin glass, one approximates

∑
i,j Hi,j [yi−E(yi)][yj −E(yj)] � 0, where the
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expectation values are evaluated according to the associated exact Boltzmann
distribution, i.e., one assumes that fluctuations about the means are relatively
negligible. This then means that

U(y) �

∑

i,j

Hi,j2yiE(yj) −
∑

i,j

Hi,jE(yi)E(yj),

The second sum in this approximation cancels out when we evaluate the associ-
ated approximate Boltzmann distribution, leaving us with the distribution

pβU (y) � P βU (y) ≡
e−β

∑
i,j Hi,j2yiE(yj)

∫
dy e−β

∑
i,j Hi,j2yiE(yj)

=
∏

i

e−αiyi

∫
dyi e−αiyi

,

where

αi ≡ 2β
∑

j

Hi,jE(yj).

Typically this approximation P βU (y) is far easier to work with than the exact

Boltzmann distribution, pβU (y) = e−βU(y)

N(βU) , since each term in the product is for

a single spin by itself. In particular, if we adopt this approximation we can use
numerical techniques to solve the associated set of simultaneous equations

E(yi) =
∂

∂αi

[

∫

dyi e−αiyi ] ∀i

for the E(yi). Given those E(yi) values, we can then evaluate the associated
approximate Boltzmann distribution explicitly.

The mean field approximation to the Boltzmann distribution is a product
distribution, and in fact is identical to the product distribution qg of bounded
rational game theory, for the team game where gi(y) = 2βU(y) ∀i. Accordingly,
the “mean field theory” approximation for an arbitrary Hamiltonian U can be
taken to be the associated team game qg, which is defined for any U .

This bridge between bounded rational game theory and statistical physics
means that many of the powerful tools that have been developed in statistical
physics can be applied to bounded rational game theory. They also mean that
PD theoretic techniques can be applied in statistical physics. In particular, it
is shown elsewhere [32, 22] that if one replaces the identical cost function of
each player in a team game with different cost functions, then the bounded
rational equilibrium of that game can be numerically found far more quickly. In
the context of statistical physics, this means that numerically solving for a MF
approximation may be expedited by assigning a different Hamiltonian to each
particle.
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3.3 Information-theoretic misfit measures

The proper way to approximate a target distribution p with a distribution from
a set C is to first specify a misfit measure saying how well each member of C
approximates p, and then solve for the member with the smallest misfit. This is
just as true when C is the set of all product distributions as when it is any other
set.

How best to measure distances between probability distributions is a topic
of ongoing controversy and research [33]. The most common way to do so is
with the infinite limit log likelihood of data being generated by one distribution
but misattributed to have come from the other. This is know as the Kullback-

Leibler distance [11, 12, 21]:

KL(p1 || p2) ≡ S(p1 || p2) − S(p1) (9)

where S(p1 || p2) ≡ −
∫

dy p1(y)ln[p2(y)
µ(y) ] is known as the cross entropy from p1

to p2 (and as usual we implicitly choose uniform µ). The KL distance is always
non-negative, and equals zero iff its two arguments are identical. However it it
is far from being a metric. In addition to violating the triangle inequality, it is
not symmetric under interchange of its arguments, and in numerical applications
has a tendency to blow up. (That happens whenever the support of p1 includes
points outside the support of p2.)

Nonetheless, this is by far the most popular measure. It is illuminating to use
it as our misfit measure. As shorthand, define the “pq distance” as KL(p || q),
and the “qp distance” as KL(q || p, where p is our target distribution and q is
a product distribution. Then it is straightforward to show that the qp distance
from q to target distribution pβU is just the maxent Lagrangian, up to irrelevant
overall constants. In other words, the q minimizing the maxent Lagrangian —
the distribution arising in MF theory — is the q with the minimal qp distance
to the associated Boltzmann distribution.

However the qp distance is the (infinite limit of the negative log of) the
likelihood that distribution p would attribute to data generated by distribution
q. It can be argued that a better measure of how well q approximates p would
be based on the likelihood that q attributes to data generated by p. This is the
pq distance. Up to an overall additive constant (of the canonical distribution’s
entropy), the pq distance is

KL(p || q) = −
∑

i

∫

dy p(y)ln[qi(yi)].

This is equivalent to a team game where each coordinate i has the “Lagrangian”

L∗
i (q) ≡ −

∫

dyi pi(yi)ln[qi(i)],

where pi(yi) is the marginal distribution
∫

dy(i)p(y).
The minimizer of this is just qi = pi ∀i, i.e., each qi is set to the associated

marginal distribution of p. So in particular, when our target distribution is the
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canonical ensemble distribution pβU , the optimal q according to pq distance is
the set of marginals of pβU . Note that unlike the solution for qp distance, here
the solution for each qi is independent of the q(i). So we don’t have a game
theory scenario; we do not need to pay attention to the q(i) when estimating
each separate qi.

Another difference between the two kinds of KL distance is how the asso-
ciated optimal product distributions are typically calculated numerically. The
product distribution that optimizes the maxent Lagrangian is usually found via
derivative-based traversal of that Lagrangian, or techniques like (mixed) Brouwer
updating[32, 22, 8, 20, 1]. In contrast, the integral giving each marginal distri-
bution of p is usually found via adaptive importance sampling of the associated
integral, with the proposal distribution for the integral to approximate pi set
adaptively, as q(i)[32].

It is possible to motivate yet other choices for the q that best approximates
pβU . To derive one of them, we start with the following lemma, which extends
the technique of Lagrange parameters to off-equilibrium points:

Lemma: Consider the set of all vectors leading from x′ ∈ R
n that are, to first

order, consistent with a set of constraints over R
n. Of those vectors, the one

giving the steepest descent of a function V (x) is 
u = ∇V +
∑

i λi∇fi, up to an
overall proportionality constant, where the λi enforce the first order consistency
conditions, 
u · ∇fi = 0 ∀i.

Choose R
n in the lemma to be the space of real-valued functions over the

set of y’s (so that n is the number of possible y). Have a single constraint f
that restricts us to P, the unit simplex in R

n, i.e., that restricts us to the set
of functions that (assuming they are nowhere-negative) are probability distri-
butions. Choose V to be the associated Lagrangian, L(p) = βEp(U) − S(p), p
being a point in our constrained submanifold of R

n. Note that this p can be any

distribution over the y’s, including one that couples the components {yi}.

Say we are at some current product distribution q. Then we can apply the
lemma with the choices just outlined to tell us what direction to move from q
in P so as to reduce the Lagrangian. In general, taking a step in that direction
will result in a distribution p′ that is not a product distribution. However we
can solve for the product distribution that is closest to that p′, and move to that
product distribution. By iterating this procedure we can define a search over
the submanifold of product distributions. We can then solve for the product
distribution at which this search will terminate.

To do this, of course, we must define what we mean by “closest”. Say that we
choose to measure closeness by pq distance. Then the terminating production
distribution is the one for which the marginals of ∇L + λ∇f all equal 0. For
each i, this means that

qi(yi) ∝ exp (−β

∫
dy(i)U(y)
∫

dy(i)1
). (10)
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This is akin to the qg of a bounded rational game, except that each
player/particle i sets its distribution by evaluating conditional expected U with
a uniform distribution over the y(i), rather than with q(i).

3.4 Semi-coordinate transformations

Let’s say there are numerical difficulties with our finding a q that is local min-
imization of the maxent Lagrangian. That q might still be a poor fit to p(y)
if it is far from the global minimizer of the Lagrangian. Furthermore, even the
global minimizer might be a poor fit, if p(y) simply can’t be well-approximated
by a product distribution.

There are many techniques for improving the fit of a product distribution to
a target distribution in machine learning and statistics [12]. To give a simple
example, say one wishes to approximate the target distribution in R

N with a
product of Gaussians, one Gaussian for each coordinate. Even if the target
distribution a Gaussian, if it is askew, then one won’t be able to do a good job
of approximating it with a product of Gaussians. However one can use Principal
Components Analysis (PCA) to find how to rotate one’s coordinates so that a
product of Gaussians fits the target exactly.

Similar techniques can address both the issue of breaking free of local minima
of the Lagrangian, and improving the accuracy of the best product distribution
approximation to p. More precisely, identify y with the variables z discussed in
Sec. 2.11. Then consider changing the map ζ(.) : x → z from the identity map.
This will in general change the mapping from Px to Lz(ζ(Px)). So if Lz is the
Lagrangian we are interested in, the mapping from product distributions over x
can be changed by changing ζ(.), in general.

As an example, consider the case where the space of x’s is identical to the
space of z’s, and consider all possible bijective transformations ζ(.). Entropy
is the same in both spaces for any ζ, i.e., S(Pz) = S(ζ(Px)) = S(Px). So for
fixed Px, the entropy in z-space is independent of ζ(.). However if we fix Px

and change ζ(.) the expected values of utilities will change. So Lz(ζ(Px)) does
depend on ζ(.), as claimed.

This means that by changing ζ(.) while leaving qx unchanged, we will in gen-
eral change whether we are at a local minimum of Lz(ζ(qx)). Furthermore, such
a change will change how closely the global minimizer of Lz(ζ(qx)) approximates
any particular target distribution. Indeed, some such transformation will always
transform a team game to have a strictly convex maxent Lagrangian, with only
one (bounded rational) equilibrium, an equilibrium that is in the interior of the
region of allowed q and that has the lowest possible value of the Lagrangian. In
the worst case, we can get this behavior by transforming to the semi-coordinate
system in which x is one-dimensional, so that any p(z) — coupling its variables
or not — can be expressed as a q(x) = q1(x1).

Note that unlike with PCA, semi-coordinate transformations can be used
for non-Euclidean semi-coordinates (i.e., when neither x’s nor z’s are Euclidean
vectors). They also can be guided by numerous measures of the goodness of fit
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to the target distribution (e.g., KL distance), in contrast to PCA’s restriction
to assuming a Gaussian likelihood.

3.5 Bounded rational game theory for variable number of

players

The bridge between statistical physics and bounded rational game theory have
many uses beyond the practical ones alluded to the previous subsection. In
particular, it suggests extending bounded rational game theory to ensembles
other than the canonical ensemble. As an example, in the GCE the number of
particles of the various allowed types is uncertain and can vary. The bounded
rational game theory version of that ensemble is a game in which the number of
players of various types can vary.

We can illustrate this by extending a simple instance of evolutionary game
theory [4] to incorporate bounded rationality and allow for a finite total number
of players. Say we have a finite population of players, each of which has one of m′

possible types. (These are sometimes called feature vectors in the literature.)
Each player i in the population is randomly paired with a different player j, and
they each choose a strategy for a two-person game. The set of strategies each
of those players can choose among is fixed by its respective attribute vector. In
addition the cost player i receives depends on the attribute vectors of itself and
of j, in addition to their joint strategy. Finally, to reflect this dependence, we
allow each player to vary its strategy depending on the attribute vector of its
opponent; we call player i’s meta-strategy the mapping from its opponent’s
attribute vector to i’s strategy. 6.

We encode an instance of this scenario in an x with a countably infinite
number of dimensions. xi,0 ≡ ni(x) specifies the number of players of type i,
with 
n(x) being the vector of the number of players of all types. For 1 < j ≤
xi,0, xi,j ≡ si,j(x) the meta-strategy selected by the j’th player of type i. If
its opponent is the j’th player of type T ′, the cost to the i’th player of type
T is gT,i,T ′,j(x) ≡ gT,i,T ′,j(s, s

′, nT , nT ′), where s and s′ are the two players’
respective meta-strategy. To enforce consistency between the index numbers
i, j and the associated numbers of players, we set gT,i,T ′,j(s, s

′, 
n) = 0 if either
i > nT or j > nT ′ .

To start we parallel the GCE, and presume that for each type we know the
expected number of players having that type, and the expected cost averaged
over all players having that type. Also stipulate that the distribution over x is
a product distribution, q. Then our prior information specifies the values of∑

k>0 k q
T,0

(k) =
∑

x
T,0

x
T,0

q
T,0

(x
T,0

)

and

6Note that it is trivial to replace meta-strategies with strategies throughout the analysis
below: simply restrict attention to meta-strategies that do not vary with the opponent’s
attribute vector
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∑
�n:n

T
>0 q(
n)

∑
T ′:n

T ′ >0
[ nT ′∑

T ′′ nT ′′
]
∑

j,k

∫
ds

T
ds

T ′

[1 − δ
T,T ′ δj,k

]
q

T,j
(s

T
)q

T ′,k
(s

T ′ )gT,j,T ′,k
(s

T
, s

T ′ , 
n)

n
T
n

T ′

=

∑
x1,0

. . .
∑

x
T,0>0

. . .
∑

x
m′,0

∑
T ′

∑
j,k

∫
dx

T,j
dx

T ′,k

{[1 − δ
T,T ′ δj,k

] [

m′
∏

i=1

qi,0(xi,0)] ×

q
T,j

(x
T,j

) q
T ′,k

(x
T ′,k

) g
T,j,T ′,k

(x)

x
T,0

∑
T ′′ x

T ′′,0

}

respectively, for all types T . (The sums over j and k all implicitly extend from
1 to ∞, and the delta functions are Kronecker deltas that prevent a player from
playing itself.)

We can write these expressions as expectation values, over x, of 2m′ functions.
These functions are the m′ functions nT (x) = xT,0 (one function for each T ) and
the m′ functions

cT (x) ≡

∑
T ′,j,k{[1 − δ

T,T ′ δj,k
] g

T,j,T ′,k
(x)}

x
T,0

∑
T ′′ x

T ′′,0

Θ(x
T,0

)

respectively, where Θ is the Heaviside theta function that equals 1 if its argument
exceeds 0, and equals 0 otherwise. Accordingly, the maxent principle directs us
to minimize the Lagrangian

L(q) = −
∑

T

[µT (E(nT ) − NT ) + βT (E(cT ) − CT )] − S(q)

where the integers {NT } and real numbers {CT } are our prior information. In
the usual way, the solution for each pair (i ∈ {1, . . . , m′}, j ≥ 0) is

q
i,j

(x
i,j

) ∝ e−E([
∑

T ′ µ
T ′ n

T ′− β
T ′ c

T ′ ] | x
i,j

),

where the values of the Lagrange parameters are all set by our prior information.
This distribution is analogous to the one in the GCE. As usual, one can con-

sider variants of it by focusing on one variable at a time, having prior knowledge
in the form of rationality values, etc. In addition, even if we stay in this random-
2-player games scenario, there is no reason for us to restrict attention to prior
information paralleling that of the GCE. As with bounded rational game the-
ory with a fixed number of players, our prior information can concern nonlinear
functions of q, couple the cost functions, etc.

In particular, in evolutionary game theory we do not know the expected
number of players having each type, nor their average costs. In addition, the
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equilibrium concept stipulates that all players will have type T if a particular
condition holds. That condition is that the addition of a player of type other
than T to the population results in an expected cost to that added player that
is greater than the associated expected cost to the players having type T . This
provides a model of the phenotypic interactions underlying natural selection.

We can encapsulate evolutionary game theory in a Lagrangian by appropri-
ately replacing each pair of GCE-type constraints (one pair for each type) with
a single constraint. As an example, we could have the (single) constraint for
type T be that

E(
n

T∑
T ′

n
T ′

) = E([
max

T ′ cT ′ − c
T

max
T ′ (cT ′ ) − min

T ′ (cT ′ )
]
γ

) (11)

for some positive real value γ. For finite γ, the entropy term in the Lagrangian
ensures that for no T is the expectation value in the lefthand side of this con-
straint exactly 0.

In the limit of infinite γ, the distribution minimizing this Lagrangian is non-
infinitesimal only for the evolutionarily stable strategies of conventional
evolutionary game theory. These are the (type, strategy) pairs that are best
performing, in the sense that no other pair has a lower cost function value. The
distribution for finite γ can be viewed as a “bounded rational” extension of
conventional evolutionary game theory. In that extension (type, strategy) pairs
are allowed even if they don’t have the lowest possible cost, so long as their cost
is close to the lowest possible 7.

There is always a solution to this Lagrangian (unlike the case in conventional
full rationality evolutionary game theory). The technique of Lagrange param-
eters provides that solution for each pair (i ∈ {1, . . . , m′}, j ≥ 0) in the usual
way:

q
i,j

(x
i,j

) ∝ e
−E(

∑

T ′
α

T ′ f
T ′ (x) | x

i,j
)

where the Lagrange parameters enforce our constraint, and

f
T ′ (x) ≡

n
T ′∑

T ′′
n

T ′′

− [
max

T ′′ cT ′′ − c
T ′′

max
T ′′ (cT ′′ ) − min

T ′′ (cT ′′ )
]
γ

.

More general forms of evolutionary game theory allow games with more than
two players, and localization via network structures delineating how players are
likely to be grouped to play a game. Other elaborations have each player not
know the exact attribute vectors of all its opponents, but only an “information
structure” providing some information about those opponents’ attribute vectors.
All such extensions can be straightforwardly incorporated into the current anal-
ysis. Many other extensions are simple to make as well. For example, since
the cost functions have all components of 
n in their argument lists, they can

7Many other parameterized constraints will result in this kind of relation between the
parameter value and the resultant Lagrangian-minimizing distribution. The one in Eq. 11 was
chosen simply for pedagogical clarity.
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depend on the total size of the population. This allows us to model the effect
on population size of finite environmental resources.

Note that if we change how we encode the number of players of the various
types and their joint meta-strategy in x, we change the form of the expectations
in Eq. 11. This reflects the fact that by changing the encoding we change the
implication of using a product distribution. Formally, such a change in the
encoding is a change in the semi-coordinate system. See Sec. 2.11.

4 Appendix

This appendix provides proofs absent from the main text.

4.1 β
∑

i[Ep(gi)]
2 − S(p) is concave over the unit simplex

Proof: Since S(p) is convex over the unit simplex, and the unit simplex is a
hyperplane, it suffices to prove that

∑
i[Ep(gi)]

2 is concave over all of Euclidean
space. Since a sum of concave functions is concave, we only need to prove that
any single function of the form [

∫
dx p(x)f(x)]2 is concave. The Hessian of this

function is 2f(x)f(x′). Rotate coordinates so that f is a basis vector, i.e., so
that f is proportional to a delta function. This doesn’t change the value of the
determinant of our Hessian. After this change though, we can read off that the
determinant is non-negative. QED

4.2 RKL is a rationality operator

Proof: Since KL distance only equals 0 when its arguments match and is
never negative, requirement (1) of rationality operators holds for RKL. Next,
since RKL = argminβ [β

∫
dy p(y)U(y) + ln(N(βU))], we know that Ep(U) =

− 1
N(βU)

∂N(βU)
∂β

|β=RKL(U,p). Accordingly, all p with the same rationality have

the same expected value Ep(U). Using the technique of Lagrange parameters
then readily establishes that of those distributions having the same expected
U , the one with maximal entropy is a Boltzmann distribution. Furthermore,
by requirement (1), we know that for a Boltzmann distribution the exponent β
must equal the rationality of that distribution. QED

4.3 Alternative form of a constraint on RKL

Proof: Let f{α, v} be any function that is monotonically decreasing in its (real-
valued) first argument. Then any constraint R([gi]i,q, qi) − ρi = 0 is satisfied iff
the constraint f{R([gi]i,q, qi), q(i)} − f{ρi, q(i)} = 0 is satisfied. Choose

f{α, q(i)} = −
∂ln(N(β[gi]i,q))

∂β
|β=α

=

∫
dxi[gi]i,qe

−α[gi]i,q(xi)

N(α[gi]i,q)
.
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Differentiating this quantity with respect to α gives the negative of the variance

of [gi]i,q under the Boltzmann distribution e
−α[gi]i,q

N(α[gi]i,q) . Since variances are non-

negative, this derivative is non-positive, which establishes that f is monotonically
decreasing in its first argument.

Evaluating,

f{ρi, q(i)} =

∫

dx gi(x)
e−ρiE(gi|xi)

N(ρigi)
q(i)(x(i)).

In addition, from the equation defining RKL, we know that

−
ln(N(βU(xi)))

∂β
|β=RKL(U,qi) =

∫

dxiqi(xi)U(xi)

for any function U . Plugging in U = [gi]i,q, we see that

f{R([gi]i,q, qi), q(i)) =

∫

dxiqi(xi)[gi]i,q(xi)

= Eq(gi).

QED

4.4 qg minimizes the Lagrangians of Eq. 7

Proof: Following Nash, we can use Brouwer’s fixed point theorem to establish
that for any non-negative {ρi}, there must exist at least one product distribution
given by qg. The constraint term in all the Li of Eq. 7 is zero for this distribution.
By requirement (2), we also know that given qg

(i) (and therefore [gi]i,qg ), there

is no qi with rationality ρi that has lower entropy than qg
i . Accordingly, no qi

will have a lower value of Li. Since this holds for all i, qg minimizes all the
Lagrangians in Eq. 7 simultaneously. QED

4.5 Constrained steepest descent is along ∇V +
∑

i λi∇fi

Proof: Consider the set of 
u such that the directional derivatives D�ufi evaluated
at x′ all equal 0. These are the directions consistent with our constraints to first
order. We need to find the one of those 
u such that D�ug evaluated at x′ is
minimal.

To simplify the analysis we introduce the constraint that |
u| = 1. This
means that the directional derivative D�uV for any function V is just 
u · ∇V .
We then use Lagrange parameters to solve our problem. Our constraints on 
u
are

∑
j u2

j = 1 and D�ufi(x
′) = 
u · ∇fi(x

′) = 0 ∀i. Our objective function is
D�uV (x′) = 
u · ∇V (x′).

Differentiating the Lagrangian gives

2λ0ui +
∑

i

λi∇f = ∇V ∀i.
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with solution

ui =
∇V −

∑
i λi∇f

2λ0
.

λ0 enforces our constraint on |
u|. Since we are only interested in specifying 
u
up to a proportionality constant, we can set 2λ0 = 1. Redefining the Lagrange
parameters by multiplying them by −1 then gives the result claimed. QED.
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Emerging technologies are making it possible to assemble systems that incorpo-
rate myriad of information-processing units at almost no cost: smart materials, self-
assembling structures, vast sensor networks, pervasive computing. How does one
engineer robust and prespecified global behavior from the local interactions of im-
mense numbers of unreliable parts? We discuss organizing principles and programming
methodologies that have emerged from Amorphous Computing research, that allow us
to compile a specification of global behavior into a robust program for local behavior.

1 Introduction

Over the next few decades, emerging technologies will make it possible to assem-
ble systems that incorporate myriad of information-processing units at almost
no cost. Microelectronic mechanical components have become so inexpensive to
manufacture that we can anticipate combining logic circuits, microsensors, actu-
ators, and communications devices, integrated on the same tiny chip to produce
particles that could be mixed with bulk materials, such as paints, gels, and con-
crete. Imagine coating bridges or buildings with smart paint that can sense and
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report on traffic and wind loads and monitor structural integrity of the bridge.
A robot, built of millions of tiny programmable modules, could assemble itself
into different shapes, perhaps as a cube for storage and then reconfiguring into
a shelter or tool as needed. Already many such novel applications are being
envisioned and built [3, 4, 9]. Emerging research in biocomputing will make it
possible to harness the many sensors and actuators in cells and program bio-
logical cells to function as drug delivery vehicles or chemical factories for the
assembly of nanoscale structures [22]. Pervasive computing and sensor networks
are creating massive distributed systems at a different scale, from remote habitat
monitoring to smart buildings and smart cars [20, 13].

These novel computational environments pose significant challenges, beyond
just the manufacturing of parts. Exploiting these new technologies will require
tackling two major challenges:

1. How does one engineer robust behavior from immense numbers of unreli-
able parts?

2. How does one translate prespecified system-level goals into the local inter-
actions of vast numbers of identically-programmed parts?

While we can envision producing and deploying vast quantities of individ-
ual computing elements, we have few ideas for programming them effectively,
without relying on reliable components, precise arrangements of parts and inter-
connects, and human intervention. The difficulty with engineering such complex
systems is that it is often hard to predict how the individual-level activities will
interact with each other and whether or not the desired global outcome will be
achieved. Hints for how to design robust, complex and predictable collective
behavior may come from natural systems, such as biology. Hints for how to
specify global goals and manage complexity may come from computer science
and other disciplines.

The research in Amorphous Computing has been centered around devel-
oping programming methodologies for systems composed of vast numbers of
identically-programmed agents[2]. In this article we review some of the work
on engineering pattern-formation and self-assembly, using metaphors inspired
by biology. We describe two organizing principles that have emerged from this
work. First is a common set of well-characterized primitives for achieving robust
behavior from locally-interacting agents, inspired by the development in multi-
cellular organisms. Second is constructive programming languages for specifying
global goals. Together these allow us to achieve global-to-local compilation in
the following way: the constructive languages specify complex goals as being
constructed from simpler parts, using a fixed set of construction rules. These
rules are mapped into local agent behavior using combinations of the primitive
behaviors. A global specification of a goal is then compiled into a local agent
program, using this mapping.

Global-to-local compilation confers many advantages: (1) We can reason
about the classes of global shapes and patterns that can and cannot be gener-
ated, by analyzing the expressiveness of the language. (2) The local primitives
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can be made robust by relying on mechanisms inspired by biological systems.
(3) The analysis of a complex system becomes tractable because it is built in
understood ways from smaller parts. (4) The high level language makes it possi-
ble to easily specify complex behavior by programming at the conceptual level,
without worrying about the millions of parts that are involved. While the spe-
cific examples presented here have to do with pattern and self-assembly, we
believe that the same methodology and principles can apply to designing other
large multi-agent systems such as sensor networks, distributed robots, and smart
materials.

The rest of the article is organized as follows: Section 2 describes the as-
sumptions of the amorphous computing model. Section 3 presents some of the
primitives for robust local behavior. Section 4 reviews three amorphous comput-
ing languages that have been developed to specify pattern and shape formation
and describes how global-to-local compilation is achieved. Section 5 concludes
with a discussion of how such an approach can be used to design other complex
systems.

2 The Amorphous Computing Model

An amorphous computer consists of massive numbers of identically-programmed
and locally-interacting computing agents, embedded in space. We can model
this as a collection of “computational particles” sprinkled randomly on a surface
or mixed throughout a volume. Some of the characteristics of an amorphous
computer are:

• The agents are all programmed identically. Each agent executes its pro-
gram autonomously and has means for storing local state and generating
random numbers.

• Each agent can communicate with a only a few nearby neighbors. We
assume that there is a communication radius r, which is large compared
with size of individual agents and small compared with the size of the entire
area, and that two agents can communicate if they are within distance r.

• The agents are not synchronized, although we assume that they compute
at similar speeds and are fabricated by the same process.

• The agents have no a priori knowledge of global position or orientation;
however some agents may be started in a special initial state. In general,
we assume that access to centralized sources of information is limited and
agents must self-organize global information as necessary.

• The agents are possibly faulty, and can die or be replaced at any moment.

• The agents are immobile and we do not have precise control over their
placement. In many of the examples here we assume that they are ran-
domly distributed on a two-dimensional plane.
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• The agents sense and affect the environment locally.

The massively parallel nature of an amorphous computer resembles, and
takes inspiration from, models such as cellular automata. However it relaxes
some restrictions such as precise geometric arrangement and synchronicity, while
allowing the agents to store more state. The model corresponds to our expecta-
tions of the capabilities of individual computing elements and of the constraints
of the application environments.

3 Primitives for Robust Local Behavior

The amorphous computing work has relied on a set of simple primitives for local
organization, many of which have been inspired by morphogenesis and cell differ-
entiation during the development of multi-cellular organisms [23]. By primitives
we mean simple ways in which an agent interacts with its local neighborhood
in order to create non-local behavior. Complexity arises by combining these
primitives in controlled ways. Here we describe some of the primitives that have
been used and analyzed.

Morphogen Gradients: One example of a mechanism common through-
out development is the use of gradients of morphogens to determine positional
information and polarity. For example, in the Drosophila embryo, cells at one
end of the embryo emit a morphogen (protein) that diffuses along the length
of the embryo. The concentration of this morphogen is used by other undiffer-
entiated cells to determine whether they lie in the head, thorax or abdominal
regions [12]. Different morphogens are used in determining the dorsal-ventral
axis, in wing and limb development, and even in leg bristle polarity.

We can emulate the concept of a morphogen gradient using a simple agent
program. An initial “source” agent, chosen by a cue from the environment or by
generating a random value, creates a gradient by sending a message to its local
neighborhood with the morphogen name and a value of zero. The neighboring
agents forward the message to their neighbors with the value incremented by one
and so on, until the morphogen has propagated through the entire population.
Each agent stores and forwards only the minimum value it has heard for a
particular morphogen name, thus the morphogen value represents the shortest
path from the source. The value provides an estimate of distance from the
source: a point reached in n steps will be roughly distance nr away. The quality
of this estimate depends on the density of the agents and can be theoretically
predicted for random distributions [15].

This very simple program can be used in powerful ways. Gradients can be
used to create regions of a given size, to provide local orientation towards the
source, and to provide routes around obstacles or regions of inactive agents.
Gradients are the basis of many different amorphous computing algorithms, but
it is also common throughout distributed robotics and sensor network research
[13, 7].
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Neighborhood Query and Selection: This primitive allows an agent
to query its local neighborhood and collect information about their state. For
example an agent may collect neighboring values of a gradient for comparison
and use this to determine which of its neighbors is closer to the source. This
primitive is similar to the cellular automata model of interaction [21]. An agent
can also select a particular neighbor by sending a message to that neighbor.
However because agents may die and messages may be lost, there is no guarantee
that an agent will have received all its neighbors states or that the selection will
always work. Instead these primitives are implemented so as to provide correct
behavior with high probability.

Local Competition: In many cases there is a need to select a single agent
from a region of agents, and this can be done spontaneously through a local
process. Each agent picks a random number and counts down. If it reaches
zero then it sends a message to inhibit all its neighbors from continuing to
compete. If there is a criteria or merit involved, then that can be used to pick
the random number such that agents with higher merit choose lower numbers.
This distributed leader election process is appropriate for breaking symmetry
within small regions and can be analyzed using traditional distributed algorithm
techniques [17].

Local Monitoring: This is a more general primitive that states that each
agent routinely sends a message to its neighbors indicating that it is alive. This
primitive operates in parallel to primitives discussed before and implicitly affects
the behavior of an agent by altering its perceived local neighborhood. Agents
can also react directly to the disappearance of a particular neighbor.

Contact Neighborhoods: When agents are not fixed on a two dimensional
surface but able to move and come into contact with other agents, then the agents
in contact seamless become part of each others neighborhood. This primitive also
implicitly affects all of the prior primitives by altering the local neighborhood.

These primitives represent building blocks that can then be put together
to create more complex agent behavior. These primitives are well-matched to
the amorphous setting because they are insensitive to the precise arrangement
of the individual agents, so long as the distribution is reasonably dense. If
individual agents do not function, or stop broadcasting, the result will not change
very much, so long as there are sufficiently many agents. At the same time,
it is possible to analyze the behavior of these algorithms, so that we have a
solid ground to build on top of. For example, the morphogen algorithm can be
thought of as computing a breath first search tree, and the spatial locality of
communication gives us a relation from tree depth to distance. These primitives
aim to provide a good-enough answer with high probability, rather than a perfect
answer. This allows the agent behavior to be simple, scalable, and tolerant to
variation.
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4 Programming Languages for Global Behavior

While biology may provide a means for thinking about organizing local behav-
ior robustly, computer science can provide tools for managing complexity. One
such tool is a programming language. The ability to think and describe goals
in terms of high-level abstractions, make possible a complexity that is almost
inconceivable to generate by manipulating 1s and 0s. Yet the final computation
does happen as bits, and the compiler translates from a language that is natu-
ral for expressing how to do something, to a low-level execution model that a
computer can interpret [1].

In the amorphous computing setting the goal is similar — we would like
to be able to translate complex global goals into local behavior, but in such a
way that the translation is not mysterious and not hand crafted for each goal
— in other words, a global-to-local compiler. In this section we describe three
different amorphous computing languages aimed at pattern formation and self-
assembly. In each case the desired goal is described in terms of abstract entities
and then compiled to produce the behavior of an agent, such that the identically-
programmed agents organize into the prespecified goal. At the end of the section
we compare the global and local strategies used by these three systems.

4.1 Growing Point Language

Coore developed a language for forming topological patterns on an amorphous
computer on a 2D surface[5]. The growing point language (GPL) can be used to
specify topological patterns consisting of lines of various thickness, such as those
specifying the interconnect of an electronic circuit. The language represents
pattern formation in terms of a botanical metaphor of “growing points” and
pheromones. A pheromone is a morphogen with a limited range. A growing point
is a locus of activity that modifies the states of agents as it passes through, and
it can respond to the gradient of a morphogen by moving towards lower, higher
or similar values of morphogens. A pattern is created by writing a program
in terms of abstract entities: growing points that lay down materials, materials
that secrete pheromones, and tropisms that govern the trajectory of the growing
point.

The specification is then compiled into an agent program. Initially the agents
start out with identical state except for a few agents. As a result of executing the
program, the agents “differentiate” into components of the pattern. At the level
of the agent, the abstract entities translate to simple local rules. For example,
a growing point is simply a piece of state at an agent. The agent collects values
of morphogens from its neighbors and uses those value to locally compute which
neighboring agent to pass the growing point to. The next agent then repeats
the same process to determine where to send the growing point next. Materials
are state bits set within an agent.

Figure 1 shows a fragment of a program written in the growing-point lan-
guage: A growing point process called make-red-line, takes one parameter
called length. This growing point “grows” material called red-poly in a band
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(define-growing-point (make-red-line length)

(material red-poly)

(size 1)

(tropism (and (away-from red-pheromone)

(keep-constant pheromone-1)

(keep-constant pheromone-2)))

(actions

(secrete 2 red-pheromone)

(when ((< length 1) (terminate))

(default

(propagate (- length 1))))))

Figure 1: A program in GPL. This procedure generates a line of specified length that
attempts to follow constant values of pheromones 1 and 2.

Figure 2: The amorphous surface differentiating to create the inverter pattern. All
agents execute the same program, which is compiled directly from the GPL specification
of the pattern on the left.

of size 1. This implies that each agent it moves through sets a state bit that
will identify the agent as red-poly. The growing point moves according to a
tropism that directs it away from higher concentrations of red-pheromone, in
such a way that the concentrations of pheromone-1 and pheromone-2 are kept
constant. All agents that are red-poly secrete red-pheromone; consequently,
the growing point will tend to move away from the material it has already laid
down. The growing point stops when the correct length line has been grown.
This procedure is part of a larger GPL program that generates the pattern on
the right. This pattern is a caricature of the layout of a CMOS inverter, where
the different colored regions represent structures in the different layers of stan-
dard CMOS technology: metal, polysilicon and diffusion. Figure 2 shows the
agents differentiating to create the inverter pattern. The agents that are part
of the top blue rail emit pheromone 1 and the bottom rail emits pheromone
2, thus the code fragment represents the method by which the first red line is
drawn parallel to these two rails and away from the edge. The entire program
that specifies the shape is only a few paragraphs long, and the resulting state
machine for the individual agents requires only about twenty states.
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;; OSL Cup program ;;--------------------- (define d1 (axiom2 c3

c1)) (define front (create-region c3 d1)) (define back

(create-region c1 d1)) (execute-fold d1 apical c3)

(define d2 (axiom3 e23 d1)) (define p1 (intersect d2 e34)) (define

d3 (axiom2 c2 p1)) (execute-fold d3 apical c2)

(define p2 (intersect d3 e23)) (define d4 (axiom2 c4 p2))

(execute-fold d4 apical c4)

(define l1 (axiom1 p1 p2)) (within-region front (execute-fold l1

apical c3)) (within-region back (execute-fold l1 basal c1))

Figure 3: A program in OSL for folding a square sheet of paper into a cup, as shown
in the diagram. At this level of description, there is no notion of agents.

4.2 Origami Shape Language

Nagpal developed a language for shape formation on a simulated foldable sheet
[15, 16]. In this case the two dimensional surface of agents represents a sheet
with a single layer of randomly but densely distributed agents; a set of agents
in a line can coordinate to fold the sheet along that line to create a flat layered
structure. The sheet model is inspired by epithelial tissues where a line of
epithelial cells can deform to cause the entire tissue to fold along that line,
for example during neural tube formation[23]. One could imagine building a
programmable reconfigurable sheet composed of such flexible agents.

The shape is specified as folding construction on a continuous sheet, using a
programming language called the Origami Shape Language (OSL). The language
is based on a set of geometry axioms, described by Humiaki Huzita, to capture
the mathematics behind origami paper-folding [8]. A large class of flat folded
shapes and line patterns can be constructed using these axioms [11]. OSL builds
on these geometry axioms, but also adds concepts such as naming, regions and
procedures. Figure 3 shows a diagram for constructing a cup from a blank square
sheet of paper, and the corresponding OSL program. The basic elements of the
language are points, lines and regions. Initially, the sheet starts out with four
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Figure 4: A reconfigurable sheet folding into a cup; each dot represents an agent in
the sheet. The agent program is directly compiled from the OSL program in figure
/reffig:cup1.

corner points (c1-c4) and four edge lines (e12-e41). The axioms describe how
to generate new lines and points from an existing set of lines and points, purely
through folding and unfolding paper. For example, the first operation constructs
the diagonal d1 from the points c1 and c2 by using axiom 2. Axiom 2 folds the
sheet so that c1 lies on c2 and then unfolds the sheet to create a line; this line is
tthe perpendicular bisetcor of the line between points c1 and c2. The sheet can
be permanently folded flat along a line, hence the structures created by OSL are
flat, but layered. Lines can be used to create regions and regions can be used to
restrict folds.

The interesting thing about this specification is that it is completely ab-
stract — there is no notion of morphogens, coordination or even agents! Rather
the programmer thinks in terms of a continuous sheet. The agent program is
automatically compiled from this description and is composed from the set of
primitives described in the previous section. Figure 4 shows a programmable
sheet differentiating to fold into a cup. Initially the surface is mostly homoge-
neous, with only the agents on the border having special local state. When the
agent program is executed by all the agents in the sheet, the sheet is configured
into the desired shape. The overall view of this process is very close to what the
diagram of the continuous sheet suggests. This is because each global operation
is translated into a local agent behavior that emulates the geometry by using the
biologically-inspired primitives. For example, in order to implement the first line
creation, the agents in regions c1 and c2 create two distinct morphogens. The
remaining agents test if the morphogen values are equal; if so then they are part
of the new line d1. This is the local rule corresponding to axiom 2. Morphogens
also serve as a form of barrier synchronization, so that agents can determine
when it is safe to move on to the next fold operation. Selective propagation
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of morphogens is used to create regions and confine operations within regions.
Thus each operation in the OSL language translates into a local rule, and the
OSL shape program translates to a sequence of rules.

4.3 Circle-Network Language

Kondacs developed a specification language for the synthesis of 2D shapes, using
a model of agents that can replicate and die [10, 18]. The agents are similar in
capability to previous models, but instead of having a fixed number of agents
on a 2D surface, the system starts out with a single agent in 2D space. An
agent can replicate by creating new agents randomly within a fixed small radius
around itself. These new agents can then similarly create more children. An
agent decides whether or not to replicate using its local program and state, and
through communication with neighbors. The goal of the language is to compile
a predetermined global shape to produce a program for a seed agent that then
“grows” the structure through replication.

The circle-network language (CNL) represents a 2D connected shape as a
network of overlapping circles of different sizes. Neighboring circles are linked
using local reference points within each circle; a circle can use its internal refer-
ence points to triangulate the location of all of its neighboring circles’ centers.
A rooted directed spanning tree in this network represents a process for con-
structing the structure starting from the root circle. A key feature of the circle-
network representation is that it specifies the formation of the entire structure
by recursively executing only two high-level operations: creating a circle of a
given radius, and determining internal reference points and centers of adjacent
circles. Even more importantly, such a specification can be generated automat-
ically from a graphical description of an arbitrary connected 2D shape, using
techniques borrowed from computer graphics.

Figure 5 shows the circle-network for a cross shape, generated from a drawing
program rendition of a cross. The system starts with a single seed agent. The
agent program is a set of rules, with rules corresponding to each circle in the
network. Agents can assume different roles. For example, an agent with the role
of circle A’s center induces replication of agents outward to the radius specified
by the rule for circle A. It achieves this by creating a morphogen gradient of
the correct range, and all agents who recieve non-zero gradient values create
children. Reference points within a circle are agents who have taken on the role
of “coordinates” of a local grid; these agents create distinct gradient messages
that allow other nearby agents (within the circle and neighboring circles) to
triangulate their position and determine their roles. Many agents compete to
take on the roles of reference points or circle centers. The agent program contains
rules that specify an ideal ratio of gradient strengths that a agent should receive
in order to be elected for a given role. Agents communicate their fitness to their
immediate competing neighbors and the agent with the best fitness is selected as
a leader. In this way the system tolerates imperfect agent positions and attempts
to locally create the best possible solution. While notions of growth and death
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Figure 5: A cross shape represented as a network of linked, overlapping circles. This
representation is generated directly from a pixel map of the desired shape. The system
starts with a single agent that grows new agents to create the shape, using rules based
on the circle-network representation.

are borrowed from living systems, they can be substituted with attachment and
detachment in mobile agents.

4.4 Common Properties of the Languages

The three languages presented, GPL, OSL and CNL, specify very different types
of patterns and shapes and operate on different models of agent capabilities. Yet
they represent a common strategy towards engineering a complex goal — the
goal is specified as a construction, using a global language based on a set of
construction rules; this specification is then compiled to produce an agent pro-
gram. The compiler uses a mapping from the elements of the global language
to combinations of biologically-inspired local behavior. The abstractness of the
global specification languages has increased over time. The first language GPL
explicitly used gradients and chemotaxis to specify patterns. OSL on the other
hand has no notion of gradients or even agents, and reasons in terms of opera-
tions on a continuous sheet. Finally the circle-network program is automatically
generated from a purely graphical depiction. At the local level, however, the
agents rely on roughly the same set of primitives as were first used in GPL, with
a few additions.

Global-to-local compilation confers many advantages:

1. We can reason about the classes of structures that can and cannot be gener-
ated by analyzing the expressiveness of the language. For example, Coore
proved that GPL can generate any prespecified planar graph pattern, up
to connection topology, on an amorphous computer. Similarly, OSL can
generate any 2D Euclidean construction pattern and all flat folded shapes
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(a)

(b)

Figure 6: Inverter pattern created by (a) GPL (b) OSL, when run on a rectangular
surface. The GPL program creates inverters with a fixed scale until the space is full,
while OSL creates a inverter that is proportional to the boundary of the surface.

composed of simple folds. The circle-language can generate any 2D con-
nected shape. These results are based on results from geometry, that have
nothing to do with multi-agent systems or self-organization.

The languages also encode implicit structural properties. For example,
GPL encodes patterns with an inherent length scale and can easily describe
fractal and space filling structures. The OSL language on the other hand
describes scale-independent structures, by recursively segmenting space
relative to the original boundary. The same pattern created in these two
languages behaves differently (but predictably) when the initial conditions
are changed. Figure 6 shows an example. When the GPL program for an
inverter is executed on a long sheet, it results in a chain of inverters filling
the space. When the OSL program for an inverter is executed on a long
sheet, it simply results in a stretched inverter pattern. The circle-network
implicitly defines structures that can repair themselves. Each circle in a
the rooted tree is capable of (re) creating its children and can commit
apoptosis if its parent circle disappears. Thus any circle-network structure
is capable of regeneration, so long as the root circle is not killed.

2. Locally agents interact through a small number of primitives that are ro-
bust, general and can be theoretically analyzed. While the three languages
described may look very different, they all rely on similar underlying prim-
itives such as gradients and local competition that are general enough to
support a variety of global behaviors. These primitives are robust in the
face of imprecise placement, asynchronous timing, small amounts of mes-
sage loss, and random agent death. Building a catalog of simple and
general primitives, with appropriate analysis, is key to developing these
systems.
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3. The analysis of a complex system becomes tractable because it is built
in understood ways from smaller parts. We can predict the robustness to
various types of faults, by separately analyzing the robustness of primitives
such as morphogens, and then analyzing how error accumulates when we
combine those primitives. This allows one to predict what densities and
numbers of agents are required to satisfactorily achieve a given high-level
goal.

We can also analyze time and space complexity. For example, in each
of these languages the space complexity of the agent program is directly
proportional to the complexity of the high-level description. By optimiz-
ing the high-level description, for example by using procedures to capture
regular patterns in GPL/OSL or by reducing the number of circles in the
circle-network, one can generate more efficient agent programs. Thus a
chain of inverters program need not be more complex than a single in-
verter pattern. Bounds on formation time can also be inferred directly
from the program. In OSL the time taken is proportional to the number
of sequential operations. In the circle-network, independent branches can
proceed simultaneously so the time is limited by the depth of the tree.

4. The high level language makes it possible to easily specify complex be-
havior, without worrying about the millions of parts that are involved.
This is partly because the specification in terms of abstract entities can
be very concise and promotes a high level of agent code reuse. For exam-
ple in OSL, very little of the agent code is modified between one program
and the next, the majority of the code implements common primitives and
mapping rules. Furthermore the programmer can express complex ideas in
terms of languages that are conceptually more closely related to the global
goal, rather than in terms of complex local interactions between agents.

One limitation of the languages explored so far is that the desired shapes are
globally deterministic and prespecified. An alternate example of desired shapes
is presented in [7], where the shape depends on external inputs such as the
weight of an object that needs to be lifted or the size of an object that needs to
be grasped. There are many cases where a shape may need to satisfy functional
and environmental constraints, as opposed to purely geometric or topological
ones. Exploring languages that encode such constraints, may allow us to use the
same compilation approach to systematically generate agent programs.

5 Discussion

Biology hints that there may be significant power to be achieved from building
things out of cheap, imprecise, parts with limited life. The ability to engineer
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complex but reliable systems from millions of simple and unreliable parts, pro-
vides an tantalizing alternative to our current methodologies that rely heavily
on making the individual pieces never fail.

Programming such systems to do useful work presents a significant challenge.
Decentralized versions of traditionally centralized approaches tend to fail for
many reasons, from lack of scalability to the inherent tendency to depend on
centralized state such as global clocks or external beacons for global positioning.
Planning at the level of individual agents quickly become intractable for large
numbers of modules, and more importantly increases the reliance on individual
modules never failing [19, 4]. These strategies put pressure on system designers
to build complex, precise (and thus expensive) agents rather than cheap, mass-
produced, unreliable computing agents that one can conceive of just throwing
at a problem. Alternative methods, such as cellular automata and artificial
life, have shown the possibility of achieving robust and adaptive behavior from
simple individuals [21, 14]. But the approaches have been difficult to generalize;
local rules are hand-crafted empirically for each application, without providing
a systematic framework for constructing local rules to obtain any desired goal.
Evolutionary and genetic approaches are more general, but the local rules are
evolved without an understanding of how or why they work. This makes the
correctness and robustness of the evolved system difficult to verify and analyze[6].

The amorphous computing approach represents a novel strategy that relies at
the individual level on biologically-inspired robust local rules, similar to cellular
automata approaches, but then combines those rules using more global frame-
works, such as programming languages. One can think of this as constructing a
plan at an intermediate level, with cellular automata like local rules that achieve
generic elements of the plan. This way there is ability at the individual level
to adapt to failure, and the ability at the high level to make guarantees about
global results.

So far the work in amorphous computing has focused on languages for pattern
and shape formation. However, the desire to achieve global-to-local program-
ming is not unique to amorphous computing. We believe that this programming
methodology is applicable to many emerging fields such as reconfigurable robots,
self-assembling systems and pervasive computing, where we are trying to pro-
gram specific global goals from vast numbers of parts. The fact that concepts
such as gradients are found everywhere, suggests that there exist general prim-
itives that are fundamentally suited to these types of environments. However
high-level programming languages and global-to-local compilation are rare. In
the amorphous computing examples, the programming languages made it pos-
sible to easily achieve complex and robust desired behavior. We believe that in
these other environments, the invention of appropriate global languages could
have a similar far-reaching impact.

In order to achieve this we need to (1) find programming languages that are
natural for expressing different classes of global goals (2) find ways to translate
the primitives, means of combination, and means of abstraction of these global
languages, into compositions of robust local rules we already know (3) develop a
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catalog of robust and general primitives. The work in the amorphous group con-
tinues to focus on developing new languages, new primitives, and incorporating
new models of agents.
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Machine learning is a means of automatically generating solutions that perform
better than those that are hand-coded by human programmers. We present a gen-
eral behavior-based algorithm that uses reinforcement learning to improve the spatio-
temporal organization of a homogeneous group of robots. In this algorithm each robot
applies the learning at the level of individual behavior selection. We demonstrate how
the interactions within the group affect the individual learning in a way that produces
group-level effects, such as lane-formation and task-specialization, and improves group
performance. We also present a model of multi-robot task allocation as resource distri-
bution through vacancy chains, a distribution method common in human and animal
societies, and an algorithm for multi-robot task allocation based on that model. The
model predicts the task allocation achieved by our algorithm and highlights its limi-
tations. We present experimental results that validate our model and show that our
algorithm outperforms pre-programmed solutions. Last, we present an extension of

our algorithm that makes it sensitive to differences in robot performance levels.
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1 Introduction

Machine learning (ML) [24] is a means of automatically generating solutions
that perform better than those that are hand-coded by human programmers.
Such improvement is possible in problem domains where optimal solutions are
difficult to identify, i.e., when there are no models available that can accurately
relate a system’s dynamics to its performance. One such domain is the control
of multi-robot systems.

Mobile robots are notoriously difficult to control in a robust, reliable, and
repeatable fashion. The challenges stem from uncertainty inherent in physically
embodied systems, including in sensors, effectors, and interactions between the
system components and the environment. The behavior-based (BB) control
paradigm [22, 1] provides a means of structuring robot controllers into collec-
tions of task-achieving modules or behaviors, such as exploration and obstacle
avoidance. The modules operate in parallel and interact within the system and
also through their effects on the environment. When properly designed, the re-
sulting controller produces robust, repeatable, and reliable overall behavior for
the robot.

The BB paradigm takes inspiration from biology and the metaphors used
to describe animal behavior. Behaviors also provide a basis for employing ML
to improve the robot’s performance [23]. ML can be employed at the level of
behavior coordination, or at the level of the behaviors themselves. The behaviors
typically have a set of preconditions used to decide when they are suitable for
execution. These preconditions and behaviors together form a tractable search
space for improvement through ML.

In Section 4 we present an algorithm that uses ML at the level of behavior
selection, applied to the multi-robot control domain. Specifically, we show how
a group of robots improved its performance on a cooperative transportation
task by using individual reinforcement learning to adjust individual behavior
selection polices from feedback related to individual performance.

In Section 5 we present a BB solution to multi-robot task allocation (MRTA)
where robots represent tasks internally as behaviors and use ML to automati-
cally improve their individual task selection policies. Through interaction the
robots specialize on different tasks and, from these specializations, global task
allocation emerges. We also present a model of MRTA called task allocation
through vacancy chains (TAVC). A vacancy chain [7] is a resource distribution
mechanism common in animal and human societies. The TAVC model represents
opportunities to improve a group’s performance by reallocating tasks, as chains
of task-related vacancies to be distributed between the robots. The TAVC model
captures the effects of group dynamics in such systems and explains and pre-
dicts the task allocations produced by distributed, communication-free MRTA.
We demonstrate a TAVC algorithm, in realistic simulations, using a homoge-



A Machine Learning Method for Improving Multi-Robot Transportation 309

neous group of robots in a dynamic environment where task values change and
where robots are susceptible to failure. Our results validate the TAVC model
of MRTA and show that our TAVC algorithm improves on pre-programmed
solutions to this problem.

In Section 6 we show that our TAVC algorithm also works for heterogeneous
groups of robots using a Boltzmann-softmax action selection function. Our
TAVC algorithm is a valuable alternative to existing MRTA algorithms as these
are typically not sensitive to the complex effects of group dynamics, such as
interference and synergy.

2 Motivation

As robot technology becomes increasingly ubiquitous, so will multi-robot sys-
tems. Control and coordination of groups of mobile robots is an active field of
research; multi-robot task allocation (MRTA) is a key aspect of this problem.
MRTA encompasses issues of skill utilization, cooperation, communication, and
scheduling. One of the central problems in dealing with these issues is modeling
the underlying group dynamics and their effects on the group’s performance.
We have developed TAVC, a model of MRTA inspired by vacancy chains, a ro-
bust and efficient resource allocation mechanism common in biological systems.
The advantage of TAVC over current MRTA models is that it is explicit about
the effects of group dynamics. Based on the TAVC model, we have developed
a novel MRTA algorithm that is sensitive to group dynamics. To achieve this
sensitivity, the TAVC algorithm uses distributed RL to make individual task
utility estimates. During learning these estimated utilities diverge according to
the effects of the prevailing group dynamics. The divergence leads to a general
improvement in the group’s performance.

2.1 Group dynamics

By the term group dynamics, we refer to the interaction among the members of
a group of robots. Group dynamics can have positive or negative effects on the
group’s performance. Interference is a typical negative effect in confined spaces,
but positive or synergistic effects are also possible when the actions of one robot
unintentionally facilitates the actions of another robot, or when robots inten-
tionally cooperate. Existing multi-robot control algorithms and related theory
such as scheduling theory [6] assume task independence. Task are independent
when there are no significant interference-related or synergistic effects to be
considered. However, in multi-robot systems in general, and in MRTA in partic-
ular, such effects are often critical to group performance. When this is the case,
understanding and modeling those effects is important for constructing and pre-
dicting the quality of the control algorithms. There are major challenges related
to modeling group dynamics in general. Each member of a group of robots is
a physically embedded system with inherent uncertainty. Interactions among
a group of physically embodied systems increase uncertainty to a level where
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practical accurate models are extremely difficult to construct. Previous work
on modeling group dynamics can be divided into microscopic (simulation-based
or otherwise) and macroscopic [19]. Microscopic models explicitly model each
agent. Simulation-based models simulate the actions taken by each so that prop-
erties of the system can be recorded as the agents interact. Macroscopic models
describe system properties in terms of abstract features such as the number
and general distribution of agents. We briefly overview representative relevant
examples from both areas next.

Microscopic Models Game theory [25] provides an abstract model of inter-
acting agents as players in formalized n-person stochastic games. Game theory
represents players in terms of their strategies for playing a given game and their
related payoff matrices for possible moves. Using these factors, game theory
predicts optimality and stability features of games. A game theoretic approach
to modeling group dynamics would require a specification of the payoff matrices
involved. However, these cannot be known for any but the most trivial multi-
robot systems. Littman [20] presented the Minimax-Q algorithm as a means
of finding payoff matrices. The algorithm is guaranteed to find the equilibrium
of any stochastic game. The exponential growth, nm, of a payoff matrix for n
tasks and m robots also means that it is not feasible to estimate the payoffs for
each state/action combination. Bowling et al. [5] presented experimental data
demonstrating how a reinforcement-learning algorithm based on policy gradient
ascent and the WoLF (Win or Learn Fast) principle for adjusting the learning
rate can overcome this complexity.

Simulation-Based Models To learn statistical models of interaction in a
space of abstract robot behaviors, Goldberg and Matarić [16] developed Aug-
mented Markov Models (AMMs). AMMs are transition probability matrices
with additional temporal information. They used these models to maximize re-
ward in multi-robot foraging/mine collection tasks. Balch et al. [3] used live
insect colonies to construct three-dimensional histograms of insect presence over
a discretized area, with the long-term goal of combining spatio-temporal models
with Hidden Markov Models for behavior recognition [18] in order to recognize
colony behaviors. Yan and Matarić [30] modeled group behaviors from spa-
tial data describing both human and robot activity. Their models were based on
proxemics and considered data related to individuals, pairs, clusters, and the en-
vironment. They also used three-dimensional histograms to identify and describe
activity distributions produced by underlying behaviors. Seth [27] presented a
simulation-based model using genetic algorithms to evolve foraging behaviors
for multiple agents in spatially explicit environments. The evolved systems were
able to reproduce interference functions previously described in field studies of
insects, but not previously reproduced by microscopic models.

Macroscopic Models Matarić [21] proposed group density as a macroscopic
model of interference. Group density is defined as the ratio between the agents’



A Machine Learning Method for Improving Multi-Robot Transportation 311

footprints and the available interaction space. An agent’s footprint is defined
by its sphere of influence, including geometry, motion constraints, and sensor
range. When the number and size of the agents are known, a mean free path
can be computed and used to estimate the number of expected collisions for
agents executing random walks. Lerman et al. [19] studied three different types
of models of cooperation and interference in groups of robots: sensor-based
simulations, microscopic numerical models, and macroscopic numerical models.
The three different models produced corresponding results but the macroscopic
model had the advantage of being very fast and independent of the number of
robots modeled.

Current macroscopic models are not sophisticated enough for optimizing the
control of multi-robot systems with regards to specific problems. Simulation-
based models are problem-specific but the time needed to for model-construction
makes them unsuitable for real-time control of a multi-robot system. Currently
there are no models of group dynamics with the speed, generality, and predictive
capabilities needed to specify the effects of interaction on group performance.
Simulation-based models are, in general, too slow and macroscopic models make
too many simplifying assumptions to be of predictive use.

—————————————————————————–

3 Cooperative transportation

Our experiments are related to the problem of cooperative transportation, where
group dynamics often have a critical impact on performance. In transportation
problems, a group of robots traverses a given environment in order to transport
items between sources and sinks. We call the time taken to traverse the environ-
ment once from a sink via a source and back to a sink again the traversal time.
We call the time between two arrival events at either source or sink the target
time. To perform optimally the robots must maximize the number of traversals
over time.

The basic transportation problem is one of the sub-problems of foraging
[2, 17]. Foraging is reduced to a problem of transportation when the locations
of the sources and sinks are known. When there are multiple sources and sinks,
the transportation problem becomes the MRTA problem where transportation
tasks must be allocated to robots in a way that optimizes overall performance.
We refer to a problem as a prioritized transportation problem when sources and
sinks have (sets of) different values. To optimize performance on prioritized
transportation problems, measured in total value of delivered goods over time, a
group of robots must strike the correct balance between the positive contribution
of high target values and the negative contribution of interference resulting in
increased delivery times.
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4 Improving performance on cooperative tasks

Taking advantage of the reduction in state/action space made possible by the
BB approach, we implemented a general algorithm, based on distributed re-
inforcement learning [28], that adapts the spatio-temporal properties of each
robot’s behavior in a way that improves the group’s performance on cooperative
tasks [9]. The robots learn from performance-related feedback. In homogeneous
groups this feedback mainly reflects effects of the prevailing group dynamics and
allows the robots to adjust their behavior so as to minimize the negative effects
and maximize the positive ones.

In addition to the problem of accurately modeling the effects of group dynam-
ics, multi-robot systems also face the inherent problem of scaling. Algorithms
that make decisions based on global system state need complex communication
structure to synchronize and update state information and coordinate individ-
ual robots. This makes it difficult to scale such centralized algorithms to work
efficiently for systems with many robots.

This section presents our distributed algorithm for spatio-temporal organi-
zation. The algorithm works purely through stigmergy, i.e., implicit commu-
nication through the effects of actions on the environment, and hence avoids
the scale-related difficulties of communication-dependent algorithms. We have
demonstrated the effectiveness of our algorithm and analyzed the qualitative
effects it had on individual action selection policies. Our results show that the
algorithm changes the spatio-temporal organization of a group of robots accord-
ing to the effects of the group dynamics. The most interesting result was a clear
tendency toward policy differentiation, i.e., specialization. This effect was the
motivation for adapting the algorithm as presented in this section for use on
MRTA problems, where existing solutions have typically been insensitive to the
effects of group dynamics.

4.1 The learning algorithm

Our algorithm for spatio-temporal organization is built on two main principles:
individual learning and emergence. Each robot individually estimates the utility
of the available actions and chooses from these in a way that allows it both to
keep its estimates current through continuous experimentation and to exploit the
actions with high estimated utilities. We used Q-learning for utility estimation.

Our algorithm depends on a reward structure that reflects the effects of the
current group dynamics. Q-learning is not sensitive to the frequency of rewards.
Hence, the estimated values of actions do not necessarily correspond to the
action’s contribution to performance over time. In order to use Q-learning to
optimize performance over time it is necessary to make the temporal aspect of
performance explicit in the reward function. Such a reward function, using the
last task processing time, t, and task value, wi, is given in Equation 1.

r = wi/t (1)
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Because we want the system to remain adaptive to changes in the environ-
ment, the experimentation rate ε does not decrease over time, as is common.

Using a reward function that is sensitive to the effects of the group dynamics
allows the robots to learn to take actions that minimize these effect with re-
spect to their individual performance. We assume that those individual changes
in action selection policies are enough to produce spatio-temporal effects on a
group level, such as turn-taking and lanes. The emergence of such phenomena
would indicate that the changes in the individual action selection policies can
be interpreted as spatio-temporal organization at a group level.

In Section 4.2 we demonstrate how, from individual Q-learning and the effects
of the group dynamics, consistent and repeatable group-level effects emerge.
In particular we show the effects of the emergent organization on the group’s
performance.

4.2 Experimental validation of spatio-temporal organiza-
tion

We hypothesized that it was be possible for recognizable spatio-temporal fea-
tures of group behavior such as turn-taking, lanes, and territories to emerge in a
group of robots using our adaptive algorithm. Each robot was given a set of be-
haviors that performed the same general task, but did this in ways with different
spatio-temporal qualities. We assumed that the spatio-temporal features listed
above had genuine positive effects on group performance. If so, these features
would represent easily identifiable optima in the problem space of spatially and
temporally constrained multi-robot control. As such, these features may emerge
from the interaction between robots that use Q-learning to individually estimate
each behavior’s utility in different locally perceived world states.

To test this hypothesis we choose to the problem of cooperative transporta-
tion, a problem that could be given clear spatial and temporal constraints. We
also designed a set of transportation-related behaviors with different spatio-
temporal qualities.

Simulated Environment For the experiments presented in this section, we
simulated five Pioneer 2DX robots with PTZ cameras and SICK laser range-
finders in a 6 by 8-meter rectangular area. There was one source and one sink,
each placed in the center of one of the short sides of the rectangle. The robots
wore color markings recognizable using ActiveMedia’s Color-Tracking Software
(ACTS), allowing them to perceive each other’s orientation. The markings,
inspired by ship lanterns which serve the same purpose at sea, were red on the
left side, green on the right side, and yellow at the rear. The prototype markings,
as they appear on a real Pioneer, are shown in Figure 1.

The source and sink were simulated with unique bar-codes (as shown in
Figure 2) made from highly reflective material readable by the SICK laser. Both
the recognition of the color markings and the reading of laser bar-codes have been
validated on real robot tests.
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Figure 1: Prototype Pioneer 2DX robot with color markings

Figure 2: Prototype bar-code readable by the SICK laser
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We performed our experiments in simulation, using the Player/Stage [15]
software platform. From experience, controllers written for the Stage simulator
work with little or no modification on the real Pioneers. A graphical rendering
of the simulated environment is presented in Figure 3.

Figure 3: The simulated environment used for experiments on adaptive spatio-
temporal organization

Controller architecture To support flexibility in the spatio-temporal fea-
tures of the transportation, we implemented three transport-related behaviors:

• direct target approach: servoed the robot directly toward the current
target.

• wall following: followed the boundaries of the simulated environment,
eventually arriving at a source or a sink.

• stopping: froze the robot in its current position and orientation.

These three behaviors made use of lower level behaviors such as obstacle
avoidance. The mapping of the transport-related behaviors to input states was
done by the learning algorithm presented in Section 4.1.

Learning parameters The input state presented to the learning algorithm
consisted of five bits. The first bit indicated the presence of a source or a sink.
The second bit was on for random intervals of time (1-30 seconds), allowing the
robot to express certain behaviors for short periods independent of the rest of
the input state. For example, instead of always following the walls whenever
a target is not visible, the robot could learn to approach the target directly
most of the time in this state, interspersed with short periods of wall following.
The three final bits represented the presence of color-blobs corresponding to the

Source

Sink
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three colored markings on the robots, indicating the presence and orientation of
another robot. When several robots were present, these bits reported only on
the visible markings of the closest one, distinguished by the height of the visible
color-blobs. The five input bits and three behaviors made up a state-action
space of size 25 ∗ 3 = 96. Actions were chosen by the adaptive controller using
a Boltzmann-softmax action selection function.

Results We ran a total of five trials. During every trial the five robots each
performed around two hundred traversals, resulting in a total of 1000 traversals
per trial. The initial individual performance had a mean traversal time, µ̂i, of
1112.5 seconds, and a standard deviation, si, of 1023.7 seconds. These values,
and the corresponding values after 50, 100, 150 and 200 traversals, n, are given
in columns 2 and 3 of Table 1. The group performance had an initial mean
target time, µ̂g, of 245.2 seconds and a standard deviation, sg, of 165.3 seconds.
Columns 5 and 6 of Table 1 show these values and the corresponding values after
250, 500, 750 and 1000 target arrivals, m.

n µ̂i si m µ̂g sg

0 1112.5 1023.7 0 245.2 165.3
25 843.9 628.0 125 159.8 102.7
50 759.7 559.8 250 161.4 130.4
75 639.6 445.9 375 133.6 84.4
100 668.3 504.5 500 139.5 114.4
150 537.7 343.0 750 123.1 86.7
200 524.8 296.8 1000 100.0 72.8

Table 1: Converging individual and group performance

The converging of the mean target times over a window of 10 trials is shown
graphically in Figure 4.

Figure 4: Converging group performance, mean target time, µ̂g
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All mean traversal and target times are lower than the ones produced by the
initial random behavior application, at n = m = 0, by a statistically significant
amount.

Analysis By analyzing the Q-tables produced during this experiment we found
that the robots learned policies dominated by the direct target approach behav-
ior, but with significant portions of the wall-following behavior. These policies
made the robots follow a common circular path from the source to the sink and
back, while keeping to the left side to minimize the interference with robots
coming from the opposite direction. In most of the experiments, one or two of
the robots would learn specialized policies containing disproportionately small
amounts of the wall-following behavior. When observing the behavior of the
specialized robots, it appeared that they effectively cut across the empty cen-
ter of the common circular path, benefiting from the general dispersion of the
rest of the group. The policies show that a structuring of the group’s spatial
organization is partly responsible for the improvement in performance.

We also found evidence that the robots adapted their temporal organization
according to the presence and orientation of other robots. From each robot’s
Q-table, using only the input states where yellow markings where visible, we
calculated the number of times the stopping behavior had the highest Q-value.
We called this number the yellow stop-rate of a robot. The yellow stop-rates
were significantly lower than the stop-rate for states in which other robots were
visible without displaying any yellow markings, i.e., states where the other robots
were seen from the front rather than from the back. The yellow stop-rate was
also significantly lower than the corresponding red and green stop rates. This
indicates that the robots in general learned to stop only when they saw a robot
without visible yellow markings. Intuitively, visible yellow or rear markings
indicate that the other robot is facing, and likely moving, away, and hence not
likely to cause interference. Simply put, the robots learned to stop for oncoming
traffic only.

4.3 Conclusions

Our analysis of the learned behaviors showed that they had natural interpreta-
tions at the group level. The tendency to keep to the left can be seen as the
formation of two lanes. The observed utilization of the center space, by one or
two of the robots, can be seen as specialization. Our analysis, together with the
demonstrated improvements in performance, verify our hypothesis that individ-
ual learning is sufficient to produce recognizable forms of group behavior in our
domain.

5 Task-allocation through specialization

In Section 4 we demonstrated a distributed learning algorithm that consistently
improved a group’s performance on a cooperative transportation problem by
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minimizing the negative effects of the group dynamics. One of the ways in
which the performance was improved was the specialization of the members in an
initially homogeneous group. The specialization was a result of the algorithm’s
sensitivity to the effects of the group dynamics. In this section we show how the
algorithm can be used for handling MRTA problems.

MRTA is a problem domain that presents a third major challenge, in addition
to those we reviewed in Sections 1 and 4. This challenge concerns the fact that
if the effects of the group dynamics are considered explicitly, MRTA is an NP-
complete problem [10]. This inherent complexity of MRTA implies that it is
not feasible to find optimal solutions as the size of the system, i.e., the number
of tasks and robots, grows. For such high-complexity problems, solutions must
be found through heuristic algorithms that rely on appropriate assumptions
about the problem to construct solutions of the necessary quality. Machine
learning methods are commonly used to produce the necessary heuristics for
such algorithms.

In this section we present the TAVC model of MRTA and the associated
TAVC algorithm [11]. Our TAVC model explicitly represents the effects of group
dynamics and allowed us to develop the TAVC algorithm, whose main contribu-
tion is its sensitivity to those effects. The TAVC algorithm uses Q-learning to
make individual estimates of task utilities; in it each robot follows a greedy rule
for choosing its next task based on its estimated utility. The algorithm goes be-
yond traditional greedy algorithms [8] in that the utility estimates are sensitive
to the effects of the group dynamics produced by the current task allocation.

5.1 Multi-robot task allocation

Multi-robot task allocation (MRTA), is the problem of allocating a set of tasks to
the robots in a group in a way that optimizes some group-level performance met-
ric. This problem is receiving growing attention. Recently, Gerkey and Matarić
[13, 14] presented a task- and architecture-independent framework in which to
study and compare existing empirical solutions. The solution methods include
L-ALLIANCE [26], a system for MRTA based on local task allocation decisions
only. Robots using L-ALLIANCE individually estimate their own progress and
the progress made by other robots, and take over or acquiesce tasks according to
those estimates. However, the progress estimation functions are problem-specific
and there is no explicit consideration of the effects of interaction.

The M+ algorithm [4] uses a centralized task allocation mechanism based
on negotiation through the Contract Net Protocol. The algorithm relies on
pre-specified capabilities and does not consider effects of interaction. Also, a
distributed negotiation system carries with it a high communication overhead
that introduces problems when scaling the system up to handle larger numbers
of robots.

Similarly, MURDOCH [12] used a negotiation mechanism based on the Con-
tract Net Protocol for task allocation. However, MURDOCH leaves open a
suitability parameter to be filled in by the individual robots when bidding for
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tasks. Though it is was done in their work, the suitability value could reflect
the effects of the group dynamics.

The broadcast of local eligibility algorithm [29] defines a similar parameter
called eligibility. The eligibility value is calculated by the robots individually
and used in an inter-robot coordination mechanism based on port-arbitrated
behaviors (PABs). PABs are a generalization, for multi-robot systems, of the
traditional behavior coordination mechanisms. As in MURDOCH, the locally
calculated eligibility could reflect the effects of the group dynamics but was not
used in that manner.

Among previous MRTA algorithms, none deal explicitly with the effects of
group dynamics. Our TAVC algorithm addresses that deficiency.

5.2 The vacancy chain model

The inspiration for the TAVC algorithm is the vacancy chain resource distribu-
tion process [7] common in human and animal societies. The typical example
of resource distribution through a vacancy chain is a bureaucracy, where the
retirement of a senior employee creates a vacancy to be filled by a less senior
employee. The promotion, in turn, creates a second vacancy to be filled, and so
on. The initial retirement results in a chain of vacancies linked by the promo-
tions. The resources that are distributed in this example are the positions, and
the consumers are the employees. Chase [7] has proposed that major human
consumer goods such as cars, boats, and airplanes, also move through vacancy
chains and that vacancy chains are common in other species as well.

Inspired by this process we developed a model of MRTA that describes how
task values and task processing times combine to produce task allocations among
greedy consumers [10]. Our model has the important property of breaking the
group performance down into individual robot contributions, a property that
allows us to use distributed control algorithms.

According to our TAVC model, any number of robots can be assigned to
tasks from a given class. When a robot, j, is assigned to a task from a class, i,
currently being serviced by a set of robots, J , we say that service-slot, (i, J, j) is
being filled. A particular set of robots, J , servicing the same task, i, will have a
task processing frequency, ci,J , dependent on the degree to which the robots are
able to work concurrently without interference. The difference in the group’s
task processing frequency before and after robot j joined, together with the task
value, wi, defines robot j’s contribution. We call this contribution, which can
be negative, the slot-value, si,J,j . The formal definition of the slot-value is given
in Equation 2.

si,J,j = wi(ci,J∪{j} − ci,J ) (2)

Assigning a robot to a task can lead to a decrease in the task processing
frequency of the group of robots servicing tasks from that class. The slot-value
then becomes negative. When all the available service-slots for a class of tasks
have negative slot-values, we say the task is saturated.
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When the service-slots are allocated optimally, a failure in a robot servicing
a high-value task, or the creation of a new class of high-value tasks, will result
in empty high-value service-slots that must be re-allocated for the system to
perform optimally. If the value of a vacant slot is greater than the value of the
occupied service-slots, the vacant slot will have to be filled in order to restore
optimal performance. In vacancy chain terminology, a vacant, high-value service-
slot is a resource to be distributed among the robots.

We make two simplifying assumptions: the robots are identical and the slot-
values decrease monotonically with the number of robots servicing a class of
tasks. When these assumptions are true, the task allocation algorithm can be
distributed by letting each robot individually optimize the value of the service-
slot it occupies. We will relax the first assumption later, in Section 6. Even with
these simplifying assumptions, the optimal task allocations cannot be predicted
without a model of the group dynamics, and such models are, as discussed in
Section 2.1, difficult to construct.

5.3 The vacancy chain algorithm

In the TAVC algorithm, a task corresponds to an action in RL terms. Each
robot uses a Q-table to keep individual estimates of task utilities and choses its
next task using an ε-greedy selection function.

The task processing is implemented in terms of pre-programmed high-level
behaviors, one per each of the available tasks. The state-space describes what
class of tasks the robot last serviced. This state-space allows the robots to learn
policies that are not dedicated to one class of tasks; the learned policies can
switch between classes of tasks in order to construct optimal task sequences.
The action space corresponds to the available classes of tasks.

If a robot consistently occupies a service-slot that is suboptimal due to a
high level of interference, the high mean traversal time for that class of tasks
will reduce the estimated utility for that class of tasks until it falls below the
estimated utility of the class of tasks that contains of the optimal service-slot.
This change in estimated utility will attract the robot to the optimal slot. The
robots keep a constant level of exploration, allowing them to identify and migrate
to new vacancies.

All the robots in our demonstration used the same adaptive, behavior-based
controller [22]. However, our vacancy chain task allocation algorithm is indepen-
dent of the underlying architecture, being defined purely in terms of distributed
reinforcement learning of task utilities.

5.4 Experimental validation of TAVC

In this section we present a set of experiments that had two aims. First, the
experiments were designed to demonstrate the validity of the TAVC model,
i.e., show that a simulated multi-robot system would behave as predicted by the
model. Second, they were designed to demonstrate that the TAVC algorithm im-



A Machine Learning Method for Improving Multi-Robot Transportation 321

proved system performance beyond what can be expected from pre-programmed
solutions.

The ‘initial task distribution’ experiment was designed to demonstrate that
the interactions between the robots could produce specializations where a num-
ber of robots would choose a task with sub-optimal value as a result of the effects
of the group dynamics on individual utility estimates.

The ‘vacancy from robot breakdown’ experiment was designed to demon-
strate that it is possible for the TAVC algorithm to recover from individual
robot failures. The TAVC model predicts that the failure of a robot servicing
tasks from a high-value class of tasks creates a vacant service-slot that is dis-
tributed among the robots currently servicing lower-value service-slots. This
experiment was designed to show how the individual task utility estimates of
the robots change in a way that leads to exactly this kind of migration between
classes of tasks by a single robot. This experiment also demonstrates that our
TAVC algorithm can perform better than a pre-programmed system.

The ‘breakdown without vacancy’ experiment was designed as a control ex-
periment, where the failure of a robot leads to a situation where the TAVC
model predicts no change. This experiment was designed to show that the
TAVC model’s prediction was correct by showing that the task allocation in the
simulated system did not change.

The ‘changing sub-task values’ was also a control experiment. Again a va-
cancy was created, but this time not from a robot failure, but from a change in
sub-task values. This experiment was designed to demonstrate that the simu-
lated system produces the patterns predicted by the TAVC model regardless of
the underlying reason for a change in the predicted task allocation.

The four experiments above were also designed to show whether the TAVC
algorithm could improve the performance of the system to a level significantly
above that of a system where task were randomly allocated to robots. Random
allocation is a pessimistic approximation of a pre-programmed system, because it
might be possible to make universally applicable assumptions, such as ‘minimize
changes between classes of tasks’ or ‘distribute robots evenly among the classes
of tasks’, that would improve the performance of general MRTA algorithms
above the performance of random allocation. It is, however, not unreasonable
to use a pessimistic approximation since, for most heuristics, one can construct
pathological cases where they would perform significantly below the random
allocation solution. In such cases, our TAVC algorithm would outperform both
the pre-programmed and the randomized solutions.

The simulated environment The experiments presented in this section were
done in simulation using six robots identical to those described in Section 4.2.
The simulated environment was an 8 by 12-meter rectangular area with two
unique laser bar-codes along one of the longer sides of the rectangle, indicating
sources, and two along the opposing side indicating sinks. A depiction of the
simulated environment is presented in Figure 5; common paths between the
sources and sinks are indicated by dashed arrows.
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Figure 5: The simulated environment used for experiments on TAVC

Controller architecture All of the task-related behaviors used by the TAVC
algorithm were implemented as a collection of sub-behaviors responsible for dif-
ferent aspects of a safe and efficient task execution.

These sub-behaviors were:

• obstacle avoidance: avoided obstacles detected (by laser range finder)
in the desired path.

• visible target approach: approached the desired target when it was
visible (to the laser range finder).

• target location approach: approached the location of the desired target
when the target itself was not visible.

• wall following: followed the walls to the first available target when the
desired target was not visible and localization (based on odometry) was
deemed to be inaccurate.

The localization was deemed to be inaccurate whenever the desired target
was not visible, but should have been so according to the robot’s estimated
position and orientation. On encountering a target, the localization estimate
was reset and again deemed to be accurate.

Learning parameters The Q-tables ware initialized with random values be-
tween −0.1 and 0.1, the learning rate, α, was set to 0.1, and the discount factor
γ was set to 0.95. For action selection we used a greedy-ε strategy [28], where ε
was set to 0.1.

We call the circuit with the highest related reward the high-value circuit
and, correspondingly, the the circuit with the lowest related reward is called the
low-value circuit. In order to demonstrate task distribution through vacancy
chains, we estimated circuit values that would produce an initial task allocation

Source 1 Source 2 

Sink 2Sink 1
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where three robots were allocated tasks from the high-value circuit and three
were allocated tasks from the low-value circuit.

In order to produce this task allocation, a situation needed to be set up in
which it was less attractive to be one of four robots servicing the high-value
circuit than to be one of three servicing the low-value circuit. This constraint
on the reward function is presented formally in Equation 3.

∀(x, y).rx,4 < ry,3 (3)

We also wanted to demonstrate the filling of a vacancy on the high-value
circuit. In order for a vacancy in the high-value circuit to be filled, it had to
be the case that it was more attractive to be the third robot on that circuit
than to be the third robot on the low-value circuit. This is expressed formally
in Equation 4, where p denotes the preferred circuit.

∀(x �= p).rx,3 < rp,3 (4)

We empirically estimated the relevant mean traversal times. To satisfy the
given constraints we chose the circuit values, as defined in Equation 1, to be
w1 = 2200 and w2 = 2000. The optimal allocation pattern emerges as each
robot’s utility estimates converge as a result of individual experience only. The
fact that the robots do not know the task values allows new allocation patterns to
emerge when external factors, such as the task values or the group size, change.

5.5 Results

For each experiment we defined a convergence period and a stable period accord-
ing to the stability of the system performance. Our student-t tests for statistical
significance were all done at a 90% confidence level.

Initial task distribution We performed 20 individual trials of 5 hours, each
averaging 3000 traversals or 500 traversals per robot. The convergence period
was 1.25 hours.

To show the structure that emerged we consider the last target visited by
each robot, which yields seven possible system states. We refer to each state
using the notation h : l, where h is the number of robots whose last target was
on the high-value circuit. Correspondingly, l is the number of robots whose last
target was on the low-value circuit. The rows labeled TAV C in Table 2 show
the mean, µ̂, and standard deviation, s, of the time the system spent in each of
the states when controlled by the TAVC algorithm. The values are percentages
of the total stable period. The rows labeled R describe the same values for a
set of 20 control trials using a group of robots where tasks were allocated at
random.

The row labeled T in Table 2 lists the number of different ways to choose
a sample of size n from a population of size m, as a percentage of all possible
samples, according to Equation 5. The time distribution produced by the six
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State 0:6 1:5 2:4 3:3 4:2 5:1 6:0
TAVC µ̂ 0.1 2.8 19.3 44.5 27.6 5.3 0.4

s 0.1 1.7 5.4 6.0 7.0 2.6 0.4
R µ̂ 1.0 7.4 22.3 33.7 25.3 9.3 1.0

s 0.6 1.6 1.5 2.2 1.6 1.4 0.6
T 1.6 9.4 23.4 31.2 23.4 9.4 1.6

Table 2: State/time distributions with six robots

random controllers is closely aligned with this theoretical estimate of random
distribution, though the differences are statistically significant.

T =
m!

n!(m − n)!2m
(5)

The two time distributions given in Table 2 are presented as histograms in
Figure 6 with the standard deviation indicated by the error bars for each state.

Figure 6: State/time distribution with six robots

The increase in the amount of time spent in state 3 : 3 is statistically sig-
nificant. The time the adaptive group spends in state 3 : 3 is also significantly
higher than the time spent in any of the other states.

Figure 7 presents the mean performance of a group of robots controlled by
the TAVC algorithm over both the convergence period and the stable period.
The TAVC performance is indicated by the thick, solid line. The performance
of random allocation is indicated by the dashed line. The values used for the
performance plots presented here are 10.0 and 1.0 for the high-value and low-
value circuits, respectively.

The performance of a group of robots controlled by the TAVC algorithm is
significantly higher than the performance of random allocation.

% of total time % of total time

1:50:6 2:4 3:3 4:2 5:1 6:0
State

50

40

30

20

10

6:05:14:23:32:41:50:6

50

40

30

20

10

State

Random Controllers Adaptive Controllers



A Machine Learning Method for Improving Multi-Robot Transportation 325

Figure 7: Performance with six robots

Vacancy from robot breakdown This experiment started with the system
in the converged state of the ‘initial task distribution’ experiment. We choose
at random one of the robots dedicated to the high-value circuit for removal.
According to the MRTA model, that circuit then had a vacancy. We performed
20 experiments of 7.5 hours. The convergence period was 2.5 hours. The values
of the time distribution in the stable period are given in Table 3 and a graphical
presentation is provided in Figure 8.

State 0:5 1:4 2:3 3:2 4:1 5:0
TAVC µ̂ 0.3 6.5 35.7 46.2 10.4 0.6

s 0.3 3.8 9.0 8.6 4.7 0.6
R µ̂ 2.2 13.9 31.0 32.9 16.1 2.8

s 0.8 2.6 2.2 2.3 2.6 0.4
T 3.1 15.6 31.3 31.3 15.6 3.1

Table 3: State/time distribution after breakdown creating a vacancy

The converged controllers kept the system in state 3 : 2 for a significantly
larger amount of time than a group of five random controllers. The group
adapted its structure from one that promotes the 3 : 3 state to one that promotes
the 3 : 2 state. This change implies that a robot from the low-value circuit has
filled the vacancy we created in the high-value circuit.

The performance data presented in Figure 9 show that on the removal of
a robot from the high-value circuit, the performance drops sharply. After the
re-convergence period, however, the performance rises again to a level that is
significantly higher than the performance of five random controllers. The new
performance level is also significantly higher than the mean performance, over
20 trials, of a group of robots controlled by a static TA algorithm optimized for
six robots. The mean performance of the static group is indicated by the thin
solid line.
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Figure 8: State/time distribution after breakdown creating a vacancy

Figure 9: Performance during breakdown creating a vacancy
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Breakdown without vacancy This experiment had an initial state identi-
cal to the ‘vacancy from robot breakdown’ experiment. This time, however, we
removed a robot from the low-value circuit. We performed 20 trials. The con-
vergence time was 2.5 hours. The time distribution during the stable period of
this experiment, presented in Table 4, was not significantly different from the
distribution produced during the experiment where a vacancy was created by
the removal of a robot.

State 0:5 1:4 2:3 3:2 4:1 5:0
µ̂ 0.3 6.7 34.6 47.1 10.5 0.7
s 0.3 3.7 9.2 9.4 3.8 0.4

Table 4: State/time distribution after breakdown not creating a vacancy

As shown in Figure 10, performance fell significantly when the robot was
removed, but remained significantly higher than the performance of random
allocation among five robots. There was no significant difference in the perfor-
mance during the stable period of this experiment and the stable period during
the experiment where a vacancy was created. Also, there was no significant dif-
ference in performance between the convergence period and the stable period.
This consistency in performance likely reflects the fact that the group structure
remained unchanged.

Figure 10: Performance during breakdown not creating a vacancy

This result demonstrates that our algorithm produces the group structure
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the new high-value circuit. We ran 20 individual trials using this setup. The
convergence time was 50 minutes.

The time distribution for the stable period, given in Table 5, had significantly
higher values for states 3 : 2 and 4 : 1 than the time distribution produced by the
experiment where a vacancy was created by the removal of a robot. Compared
to the time distribution produced by a group of five robots where tasks were
allocated at random, the distribution produced by the TAVC algorithm had a
significantly higher value for state 3 : 2 and significantly lower values for all
other states.

State 0:5 1:4 2:3 3:2 4:1 5:0
µ̂ 0.2 5.4 30.3 48.7 14.4 0.9
s 0.5 3.9 5.2 6.1 1.6 0.3

Table 5: State/time distribution after changing sub-task values

When the task values were changed the performance, presented in Figure 11,
fell significantly. After the re-convergence period, however, it was back up to a
level that was not significantly different from the initial level.

Figure 11: Performance during changing sub-task values

This experiment showed that the TAVC algorithm is not sensitive to how a
vacancy is created, whether by robot failure or by a change in task values.

5.6 Conclusions

In the ‘initial task distribution’ experiment we showed that the performance of
the TAVC algorithm was significantly above the performance level of a system
where tasks were allocated at random.

In the ‘vacancy from robot breakdown’ experiment we showed that the per-
formance of the TAVC algorithm after re-convergence was higher than a mis-
configured pre-programmed solution. Assuming that a model of the group dy-
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namics is not available in general, a pre-programmed solution must be based
on some heuristics that will occasionally lead to sub-optimal task allocations.
Our experiment shows that the TAVC algorithm has the potential to improve
on pre-programmed solutions.

Together, the experiments validate our TAVC model by reproducing the task
allocations predicted by the model. They also demonstrate that the TAVC al-
gorithm outperforms random allocation and can outperform pre-programmed
solutions under the assumption that pre-programmed solutions must occasion-
ally make sub-optimal task allocations.

6 Performance-related specialization

The analysis of the TAVC experiments presented in Section 5.4 indicated that
persistence with a class of tasks was a determining factor in the estimated utility
that class. By persisting with a class of tasks a robot contributes to the level of
interference around the related source and sink. This leads to a general fall in
the estimated utility of that class of tasks for all the robots in the group. When
the fall leads to a situation where one of the robots involved estimates another
class of tasks to have a higher utility, that robot will migrate to the class of
tasks. We refer to this effect of the group dynamics as forced migration through
persistence.

A severe limitation of our TAVC algorithm as presented in Section 5 is that
it is limited to homogeneous groups of robots. To remove this limitation, we
modified it to be sensitive to the individual performance levels of the robots in
a heterogeneous group of robots.

We hypothesized that this could be achieved by using the perceived ability of
robots to force migration through persistence. If performance could be related
to persistence in a way that made robots with high performance levels more
persistent, then the observed effect of forced migration through persistence would
allocate robots with high performance levels to high-value classes of tasks and
robots with low performance levels to low-value classes of tasks. This would
produce a completely communication-free algorithm for MRTA that is sensitive
to individual robot performance levels as a result of being sensitive to the general
effects of the group dynamics.

In this section we present action selection through a Boltzmann-softmax
function as a way of relating a robot’s performance level to its persistence. We
present experimental evidence showing that the TAVC algorithm, when using
a Boltzmann-softmax action selection function, is sensitive to the performance
level of the individual robots to a degree which produces a significant difference
in system performance over a system that allocates tasks to robots at random.

6.1 Action Selection

The TAVC algorithm used a greedy-ε action selection function. The problem
with using this function is that all the tasks, apart from the one with the
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highest estimated utility, have equal probability, ε, of being explored. With
a Boltzmann-softmax action selection function however, the probability of try-
ing a task is correlated with the relative estimated utility of that task. The
probability of selecting action, a, according to a Boltzmann-softmax function in
given in Equation 6.

P (a) =
eQt(a)/τ

∑n
b=1 eQt(b)/τ

(6)

A robot that on average has task processing time of p will have a difference
in estimated task utility that correlates with the expression wh−wl

p where wh

and wl are the values of high- and low-value tasks respectively. A robot with
a lower mean task processing time will have a correspondingly higher difference
in estimated utility of high- and low-value tasks. This greater difference in es-
timated utility implies a greater persistence on high-value tasks in terms of a
higher probability of servicing these tasks. This higher persistence can hypo-
thetically lead to fast robots forcing the slow robots to migrate from high-value
tasks to low-value tasks.

The experimental results presented in this section demonstrate that the abil-
ity of the Boltzmann-softmax action selection function to differentiate between
suboptimal actions can indeed be made to work on an inter-robot level, as a
mechanism for allocating high-value tasks to high-performance robots without
explicit communication.

6.2 Experimental Validation

We designed an experiment to test our hypothesis that a Boltzmann-softmax
action selection rule could relate a robot’s individual performance level to its
persistence and that a difference in persistence would lead to high-value tasks
being allocated to robots with high performance levels and low-value tasks to
robots with low performance levels.

The simulated environment was identical to the one used in the experiments
presented in Section 5.4.

Control architecture We made one change to the system architecture pre-
sented in Section 5.4. The original group of six robots was made heterogeneous
by dividing it into two sub-groups of three. One sub-group was made to operate
at a default speed of 300 mm/sec while the other was made to operate at a
default speed of 200 mm/sec. These speeds were chosen as equidistant points
from the default operating speed of 250 mm/sec used in the homogeneous robot
experiments. The equidistance was intended to preserve the allocation of three
robots to the high-value circuit and three to the low-value circuit.

The general difference in default speed of operation encompasses more spe-
cific differences in robot morphology and task competence. Hence, the results
presented here generalize to heterogeneous multi-robot systems where the differ-



A Machine Learning Method for Improving Multi-Robot Transportation 331

ences between the participating robots can be expressed in terms of differences
in task processing speed.

Learning parameters The Q-tables ware initialized with random values be-
tween −0.1 and 0.1, the learning rate, α, was set to 0.1, and the discount factor
γ was set to 0.95.

For the Boltzmann-softmax function, the temperature parameter, τ , was
set empirically to 0.005. Because we wanted the system to remain adaptive to
changes in the environment we did not decrease τ over time, as is common. The
reward structure was identical to the one presented in Section 5.4.

6.3 Results

We defined a convergence period of 15 hours based on the stability of the system
performance. To examine the performance we consider which of the robots
visited the high-value circuit last. We used three fast and three slow robots,
yielding fifteen possible system states. We refer to each state using the notation
f : s, where f is the number of fast robots whose last target was on the high-
value circuit. Correspondingly, s is the number of slow robots whose last target
was on the high-value circuit. The columns with subscript V C in Table 6 show
the mean and standard deviation of the time the system spent in each of the
states while running the TAVC algorithm. The values are percentages of the
total stable period. The columns with subscript R describe the same values for
a set of 15 trials using randomly tasks allocations.

f : s µ̂V C sV C µ̂R sR T µ̂V C − µ̂R
µ̂V C−µ̂R

µ̂R

0:0 0.2 0.2 1.4 0.5 1.5 -1.3 -0.88
0:1 1.5 1.2 3.4 1.7 4.7 -3.2 -0.67
0:2 2.0 2.6 5.0 1.4 4.7 -2.7 -0.58
0:3 0.5 0.7 2.0 1.1 1.5 -1.1 -0.70
1:0 2.9 1.6 3.6 1.4 4.7 -1.8 -0.38
1:1 12.1 4.9 13.5 3.3 14.1 -2.0 -0.14
1:2 14.4 6.1 14.4 2.4 14.1 0.3 0.02
1:3 4.1 2.7 4.0 1.4 4.7 -0.6 -0.13
2:0 7.0 5.0 5.1 1.2 4.7 2.3 0.48
2:1 19.4 7.4 15.7 2.3 14.1 5.30 0.37
2:2 18.5 5.0 14.7 3.0 14.1 4.4 0.3
2:3 5.7 3.6 4.4 2.4 4.7 1.0 0.20
3:0 2.7 4.1 1.7 0.6 1.5 1.2 0.78
3:1 5.2 4.6 5.2 1.6 4.7 0.5 0.10
3:2 3.3 2.6 4.2 1.2 4.7 -1.4 -0.29
3:3 0.7 0.7 1.5 0.8 1.5 -0.9 -0.56

Table 6: State/time distribution for six heterogeneous robots
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The column labeled T lists the probability of choosing a sample of size f from
a population of g = 3 fast robots as well as choosing a sample of size s from a
population of h = 3 slow robots according to Equation 7. The time distribution
produced by the six random controllers is closely aligned with this theoretical
estimate, though the differences are statistically significant.

T =
100g!h!

f !(g − f)!s!(h − s)!2g2h
(7)

The difference between the state-time distribution produced by the TAVC
algorithm and the distribution produced by random task allocation is presented
in the column labeled µ̂V C − µ̂R. This difference is presented as a percentage
of the mean of the random distribution, µ̂R, for each state in the last column,
labeled µ̂V C−µ̂R

µ̂R
.

The time distributions for the random allocation and the TAVC algorithm,
i.e., columns 2 and 4 of Table 6, are presented graphically in Figure 12.

Figure 12: State/time distributions for six homogeneous robots

The differences between the distributions produced by the TAVC algorithm
and the random task allocation, i.e., the last two columns, are also presented
graphically in Figure 13.

Over 15 experiments, the difference in time spent in state 0 : 3 is statistically
significant. The second histogram in Figure 13 shows the differences relative
to an underlying random distribution. The optimal state, 0 : 3 stands out as
the state with the highest relative increase. This validates the TAVC model by
confirming that the group behavior has converged to promote the state predicted
by the TAVC model. The performance data shows that the TAVC algorithm
produces a total target value throughput of 0.81 ∗ 10−2 per second. This is
significantly higher than the performance of a group of robots where tasks are
allocated randomly, 0.78 ∗ 10−2 per second. Together, the time distribution
data and the performance data show that the TAVC algorithm improves the
group’s performance by promoting the dedicated service structure predicted by
the TAVC model. The transition functions also indicate this. The fast robots,
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Figure 13: Difference in the state/time distributions produced by TAVC and random
task allocation

while the slow robots have higher estimated utilities for servicing the low-value
circuit. Finally, as predicted, the mean difference between the estimated utilities
are greater for the fast robots than for the slow robots.

6.4 Conclusions

Our results demonstrate that when using a Boltzmann-softmax action selection
function, there is an observable migration through persistence effect. This val-
idates our hypothesis that a performance-related persistence affects the group
dynamics in a way that promotes task allocations where high-value tasks are
allocated to high-performance robots and low-value tasks are allocated to low-
performance robots.

Our results demonstrated a significant improvement in group performance
over a control group using random task allocation. This shows that the TAVC
algorithm is able to produce task allocations that are sensitive to the underlying
group dynamics, including differences in individual robot performance levels.

7 Summary and conclusions

We have discussed three main challenges in producing high-quality solutions to
MRTA problems: modeling group dynamics, problem complexity, and commu-
nication overhead. We then presented a learning algorithm that used individual
learning and feedback that reflected the effects of the prevailing group dynam-
ics. We presented experimental evidence that the algorithm produces effects
that improve group performance. We then showed how one such effect, spe-
cialization, can be used to construct a MRTA algorithm based on a model of
MRTA as TAVC. The TAVC algorithm is an important contribution to existing
MRTA algorithms in that it is demonstrably sensitive to the effects of group
dynamics, including the effects of different individual performance levels among
the robots in a group. We presented experimental evidence that validated the
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TAVC model of MRTA and showed that the TAVC algorithm can out-perform
pre-programmed solutions. Finally we showed how using a Boltzmann-softmax
action selection function in the TAVC algorithm can relate a robot’s perfor-
mance level to its persistence level. We also presented experimental evidence
that a performance-related persistence level affects the group dynamics and pro-
duces task allocations where the robots with the highest performance levels are
allocated the high-value tasks. Therefore, we hope that the main contributions
of this work, a new model of group dynamics in MRTA and associated algorithm,
will help address the three main difficulties outlined at the start.
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In Embodied Cognitive Science, many studies have focused on reactive agents, i.e.
agents that have no internal state and always respond in the same way to the same
stimulus. However, this particular focus is not due to a rejection of the importance of
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internal states. Rather, it is due to the difficulty of developing pro-active embodied and
situated agents, that is agents able to: (a) extract internal states by integrating senso-
rymotor information through time and, (b) later use these internal states to modulate
their motor behaviour according to the current environmental circumstances. In this
chapter we will focus on how pro-active agents can be developed and, more specifically,
on which are the neural mechanisms that might favour the development of pro-active
agents. By comparing the results of five sets of evolutionary experiments in which
simulated robots are provided with different types of recurrent neural networks, we
gain insight into the relation between the robots’ capabilities and the characteristics of
their neural controllers. We show how special mechanisms for processing information
in time facilitate the exploitation of internal states.

1 Introduction

A new research paradigm, that has been called Embodied Cognitive Science
[18], has recently challenged the traditional view according to which intelligence
is an abstract process that can be studied without taking into consideration the
physical aspects of natural systems. In this new paradigm, researchers tend to
stress situatedness, i.e., the importance of studying systems that are situated
in an external environment [3, 4], embodiment, i.e., the importance of study
systems that have bodies, receive input from their sensors and produce motor
actions as output [3, 4], and emergence, i.e. the importance of viewing behaviour
and intelligence as the emergent result of fine-grained interactions between the
control system of an agent including its constituent parts, the body structure,
and the external environment. An important consequence of this paradigm
is that the agent and the environment constitute a single system, i.e. the two
aspects are so intimately connected that a description of each of them in isolation
does not make much sense [9, 10, 1].

Research in Embodied Cognitive Science often involves simple agents called
”reactive agents” [14]. These are agents in which sensors and motors are directly
linked and that always react with the same motor action to the same sensory
state. In reactive agents internal states (see next section) do not play a role in
determining the motor behaviour. The fact that the vast majority of research in
this area focuses on simple reactive agents, however, is not due to a rejection of
the importance of internal states. Rather, it is due to the difficulty of developing
pro-active embodied and situated agents, that is agents able to: (a) extract
internal states by integrating sensory-motor information through time and, (b)
later use these internal states to modulate their motor behaviour according to
the current environmental circumstances. In this paper we will focus on how pro-
active agents can be developed and, more specifically, on which are the neural
mechanisms that might favour the development of pro-active agents.

Given the difficulty of developing embodied and situated agents through
explicit design [13] our attempt to develop pro-active agents will be based on
an evolutionary robotics method [16], that is on the attempt to develop these
agents through a self-organisation process that allows the evolving robots to
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develop their skills in interaction with the environment and without human
intervention. By comparing the results of five sets of evolutionary experiments
in which simulated robots are provided with different types of recurrent neural
networks, we will try to understand the relation between the robots’ capabilities
and the characteristics of their neural controllers. In addition, we will show how
special mechanisms for processing information in time facilitate the exploitation
of internal states.

The paper is organised as follows. We define the term internal state in §2.
In §3 we describe our experimental test bed which consists of a self-localisation
problem that cannot be solved through simple reactive strategies. In §4, we re-
view five different neural models described in the literature that are potentially
suitable to develop pro-active agents. We describe the results of the experiments
and the comparison of the results obtained with the five different neural archi-
tectures in §5. Finally, in §6, we discuss the implication of the obtained results
and, in particular, the neural mechanisms that seem to constitute a pre-requisite
for the emergence of powerful pro-active agents.

2 Internal state

The concept of internal state plays a central role in our investigations. In this
section, we define the concept with particular reference to neural network con-
trollers.

An internal state is a set of variables of the agent’s controller that might be af-
fected by the previous sensory states perceived by the agent and/or the previous
actions performed by the agent and that might co-determine, together with the
current sensory states, current and future motor actions. By mediating between
perception and actions, internal states allow agents to produce behaviour that
is decoupled from the immediate circumstances while still remaining sensitive to
them.

An internal state can consist of different entities. For example, in the case of
a neural controller, they might consist of the activation states of some neurons
and/or in the strength of the synaptic weights. It should be noted that there is
not a one to one correspondence between the architecture of the controller and
the type of strategy adopted by evolving individuals. For instance, although an
individual provided with a recurrent neural network controller might potentially
develop an ability to integrate information over time, it might also rely on a
simple reactive strategy.

As we claimed in the previous section, agents that do not have an internal
state are reactive agents, that is agents that always react with the same motor
action to the same sensory state. Agents that have an internal state are pro-
active instead, that is agents that are able to integrate sensory-motor information
through time into internal states that co-determine the agents’ motor behaviour.

In the context of neural network controllers, reactive agents are provided with
feed-forward neural networks, that is neural networks in which sensory neurons
are connected to motor neurons directly or through one or more layers of hidden
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neurons that do not have a recurrent connection (Fig. 1). In Fig. 1 s1 and s2
represent sensory neurons (also called input units). h1, h2, and h3 represent
hidden neurons. o1 represents an output neuron. The bias neuron is a special
neuron whose activation state is always 1.0. In these neural networks, neurons
are updated in discrete time steps and the activation state of motor neurons and
hidden neurons only depends on the activation state of the sensors and on the
connection weights that are kept fixed during the lifetime of the agent.

Pro-active agents instead are provided with neural controllers that have an
internal state. An internal state can be realised through different neural mech-
anisms. One possibility, for instance, is to provide a neural controller with
recurrent connections. For example, in the neural network shown in Fig. 2, the
gray hidden neuron receives connections not only from the sensory neurons but
also from the hidden neurons including itself. This implies that the activation
state of this hidden neuron is not only a function of the activation of the sen-
sory neurons at time t, but also of the hidden neurons at time t-1. Given that
the state of the hidden neuron at time t-1 is also affected by the state at time
t-2 and so on, this implies that the activation state of this hidden neuron, that
influences the state of the motors at time t, might be influenced by the sensory
states previously experienced by the robot.

Figure 1: A feedforward neural network

Figure 2: A recurrent neural network.
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The recurrent neural connections, however, are only one of the possible neu-
ral mechanisms that might realise internal states. Other mechanisms include:
(a) dynamical neurons, in which the activation state of a neuron is influenced by
its previous activation state; (b) time delayed connections in which the propa-
gation of activation through connections takes time so that the activation state
of a neuron might influence the activation of other neuron after some time, (c)
networks in which connection weights vary according to learning rules affected
by the activation state of the neurons. One of the goals of this paper is indeed
to compare the characteristics and the effectiveness of different mechanisms for
realising internal states.

Given that internal states might be realised through several different mecha-
nisms and given that these mechanisms might be also combined together we do
not pretend to be exhaustive in our analysis. Indeed we will restrict our com-
parison and analysis only to some possible ways of realising the mechanisms (a)
and (b) described above. Moreover, although in some cases different algorithms
might be used to set the connection weights, we will restrict our analysis to neural
controllers whose connection weights are evolved through a form of evolutionary
algorithm [16]. The reason for this choice is twofold: (1) an evolutionary algo-
rithm can be used to evolve the connection weights and other free parameters of
the neural controllers independently from the particular neural architecture or
neural model used, and (2) by only requiring a general criterion for evaluating
how much evolving individuals are able to solve their adaptive task, they allow
us to maximise the level of self-organisation and reduce the externally imposed
constraints on the learning process with respect to other learning algorithms.

Before moving to the next section in which we will present our experimental
setup, we should emphasize two important aspects.

First, an agent provided with a neural architecture with recurrent neural
connections or other neural mechanisms that might allow it to extract internal
states and use these internal states to co-determine its motor behaviour does
not necessarily extract internal states or use them to co-determine its motor
behaviour. In the case of the neural controller illustrated in Fig. 2, for example,
due to a given configuration of the connection weights, the activation state of
the gray hidden neuron might be always off or always on and therefore might
not provide any information on the previous sensory states experienced by the
robot. Or, the activation state of this hidden neuron might vary and might be
affected by previous sensory states but it might not have any affect on the motor
neurons. This implies that in order to ascertain whether an agents really is a
pro-active agent we should analyze how activation states vary in time and how
they influence the motor behaviour of the agent.

The second important aspect that we want to stress here is the fact that,
as we will also see in the next sections, agents have often two options available
in order to solve their adaptive tasks that consist of: (1) use sensory-motor
coordination, that is act so to experience sensory states that allow to solve
the problem through a reactive control mechanism [14], and (2) extract internal
states and use them to co-determine the way in which the agents react to sensory
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states. Reactive solutions based on sensory-motor coordination are often simpler
and easier to find through artificial evolution and are therefore preferred when
available. This means that the emergence of pro-active control strategies only
tends to be observed when reactive solutions and sensory-motor coordination
are insufficient.

3 Self-localisation task

To investigate the issue described above we evolved the neural controllers of
simulated robots that are asked to move and to self-localise in their environment
[15] and we compared the results obtained by providing evolving robots with
different types of neural controllers. More precisely the agent has to drive around
a loopy corridor and to indicate with an output neuron in which room it is
currently located. Fig. 3 is a drawing of the environment for this task. The
arrows indicate the direction in which the agents are forced to drive. The two
rooms are painted in different shades of grey. If the agent is in the top room
(light grey), the localisation output neuron has to have a value in the interval
[0, 0.5] to be correct. In the bottom room (dark grey) this value has to be in
〈0.5, 1]. Fig. 4 is also a drawing of the environment, displaying the zones in the
environment that are used during evolution to stimulate agents to drive around
in the environment.

Figure 3: Environment and forced driving direction

The agent we use for the self-localisation task is the Kephera robot [11]
(shown in Fig. 5), a miniature mobile robot with a diameter of 55 mm and a
weight of 70 g. It is supported by two lateral wheels that can rotate in both
directions and two rigid pivots in the front and in the back. By spinning the
wheels in opposite directions at the same speed, the robot can rotate without
lateral displacement. The sensory system employs eight infrared sensors that
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Figure 4: Zones in the environment

are able to detect obstacles up to about 4 cm. Experiments were conducted
in simulation by using an extended version of Evorobot [12]. In Evorobot, a
sampling procedure is used to compute the activation state of the infrared sen-
sors. Walls and cylindrical objects are sampled by placing one physical robot in
front of them and by recording the state of the infrared sensors while the robot is
turning 360 degrees at 20 different distances from of each object. These recorded
values are used in simulation to set the activation states of the simulated infrared
sensors on the basis of the current angle and distance of the robot with respect
to obstacles. This procedure allows to develop a very accurate simulation that
takes into account the detailed characteristics of the individual robot used in the
experiments [16].

Figure 5: Diagram of a Kephera robot with its sensors

Each evolutionary run begins with an initial population that consists of 100
randomly generated genotypes. A genotype consists of a string of parameters
that are encoded in the genotype with 8 bits. During evolution each individual

0

1

2 3

4

5

67



Towards Pro-active Embodied Agents 345

of the population is allowed to ‘live’ for 4 epochs consisting of 2500 time steps
(a time step lasts 100ms). In each epoch, the agent starts at a different position
in the environment. The 20 fittest individuals of each generation are allowed to
reproduce by generating 5 copies of their genotype with 2% of their bits replaced
with a new randomly selected value. The process is repeated for 500 generations.

The fitness function is set up to reward first the ability of the robot to travel
in a clockwise direction in the environment and then its ability to indicate in
which room in the environment it is located:

F =






zc

zt
, if zc < zt

1 + (bottom ∗ top) , if zc >= zt

(1)

, where F is the fitness. Furthermore, zc is the number of zones that the robot
has crossed in its lifetime. The zones are illustrated in Fig. 4. zt is the zone
threshold and determines how fast the robot has to drive, before its capacities
for localisation are considered to determine its fitness. If the agent crosses more
than zt zones during its lifetime, the extra amount of zones has no effect on its
fitness. The self-localisation output of the agent is measured continuously when
it is inside one of the two rooms, but is only considered if the agent crosses the
zone threshold during the epochs that it is executed. ‘bottom’ and ‘top’ are
the percentages of good localisations in the bottom and top room, respectively.
E.g., ‘bottom’ is the number of time steps that the self-localisation output is
in the interval 〈0.5, 1.0] and the agent is in the bottom room, divided by the
total number of time steps that the agent is in the bottom room. Evidently, the
maximal fitness that can be achieved is 2.

The self-localisation task requires the agent to use its internal state. The
task is too difficult for a reactive agent, since the two different parts of the
environment are largely the same from the viewpoint of the agent. If an agent
has the same sensory inputs but it is required to take different actions, it faces
a problem of perceptual aliasing [14]. An example of perceptual aliasing is
that for the agent’s sensors there is no difference between being in the top or
bottom horizontal corridor, while the agent has to indicate a different room.
A number of factors, such as the forced driving speed and the fact that the
corridors are narrow, have as a consequence that reactive agents cannot ‘escape’
the perceptual aliasing by applying sensory-motor coordination. Experiments
performed with reactive agents did not lead to successful individuals [15].

Five classes of experiments in which evolving agents were provided with dif-
ferent type of neural controllers were run. For each neural architecture three
experiments with a different driving threshold (22, 23, and 25 rounds, corre-
sponding to zt = 440, zt = 506, and zt = 550, respectively) were run. For each
experiment 10 replications were performed. In §4 we describe the five different
neural models used. In §5 we describe the obtained results.
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4 Five types of recurrent neural controllers

In this section we describe the five types of neural models used to conduct the
experiments. All models might allow evolving robots to extract internal states
and use these states to co-determine the agents’ behaviour. However, different
models rely on different neural mechanisms.

4.1 Elman network: EN

The Elman network [6] consists of a neural network with a sensory layer, a layer
of hidden neurons, and an output layer. The activation state of the hidden
neurons at time t-1 is copied into an additional set of input units at time t.

The architecture used in our experiments consists of 10 sensory neurons, 5
hidden neurons, and 3 output neurons. Two of the output neurons indicate the
desired speed of the wheels. We will refer to them as ‘motor neurons’. The agent
has to indicate with the third output neuron in which room the agent is located.
We will refer to this neuron as ‘self-localisation output’. The sensory neurons
encode the activation state of the 8 infrared sensors, and the activation state of
the two motor neurons at time t-1.

Hidden layer

Hidden layer (t-1)Sensory layer

Output layer

Figure 6: The architecture of the Elman network. Boxes represent collections of
neurons. Arrows indicate the connection between collections of neurons (all neurons
of the first box are connected to all neurons of the second box).

Hidden and output neurons are activated according to the logistic function.
More precisely the activation function of each neuron is:

ai(t) = σ(netinputi(t) + biasi + ini(t)) (2)

netinputi(t) =
N∑

j=1

wjiaj(t), (3)

in which ai(t) denotes the activation of neuron i at time t and σ is the logistic
function, σ(x) = 1

1+e−x . N is the number of neurons connected to neuron i. In
the case of the hidden neurons this is the number of sensory neurons plus the
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number of neurons in the hidden layer. wji is the weight of the connection from
neuron j to neuron i. The external input is represented by ini(t).

During the evolutionary process the architecture is kept fixed. Only the
biases and the synaptic strengths of the connections are encoded in the genotype
and allowed to change. All parameters are encoded in the genotype with 8 bits.
Connection weights and biases are then normalised in the range [-5.0, 5.0].

4.2 Non-linear autoregressive model with exogeneous in-
puts: NARX

Nonlinear autoregressive neural networks with exogeneous inputs [7] are an ex-
tension of Elman Networks in which the activation state of the sensory neurons
at time t, t−1, ..., t−cin, and the activation state of the output neurons at time
t − 1, t − 2, ..., t − cout determine the activation of the output and the hidden
neurons at time t. The activation of the hidden neurons is also determined by
the activation state of the hidden neurons at time t-1.

The architecture used in our experiments consists of 8 sensory neurons, 5
hidden neurons, and 3 output neurons. The sensory neurons encode the acti-
vation state of the 8 infrared sensors. The output neurons encode the desired
speed of the two wheels and the self-localisation output.

Hidden layer

Hidden layer (t-1)Sensory layer (t, t-1, ..., t-cin)

Output layer

Output layer (t-1, t-2, ..., t-cout)

Figure 7: The architecture of the NARX network. Boxes represent collections of
neurons. Arrows indicate the connection between collections of neurons (all neurons
of the first box are connected to all neurons of the second box).

Hidden and output neurons are activated according to the logistic function.
During the evolutionary process the architecture is kept fixed. Only the synaptic
strengths of the connections are encoded in the genotype and allowed to change.
All parameters are encoded in the genotype with 8 bits. Connection strengths
and biases are then normalised in the range [-5.0, 5.0].

4.3 Dynamical Neural Network: DNN

Dynamical neural networks [17, 15] are neural networks constituted by dynamical
artificial neurons, that is neurons that tend to vary their activation state at
different time rate according to a time constant parameter.
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Neurons are updated according to the following activation function:

ai(t) = tciai(t − 1) + (1 − tci)σ(netinputi(t) + biasi + ini(t)), (4)

where tci is the parameter adjusted by the evolutionary algorithm that deter-
mines the proportion of neural inertia, tci ∈ [0, 1]. netinputi(t) is defined as
in equation (3). In the DNNs that we apply to the self-localisation task, only
the sensory neurons and the hidden neurons apply activation function (4), the
output neurons apply activation function (2). As a consequence, both the acti-
vations of the sensory neurons and of the hidden neurons are part of the internal
state. The activations of the hidden neurons influence future input-output map-
pings of the agent in two ways: by serving as neural input (through the recurrent
connections) and by imposing a neural inertia.

The architecture used in our experiments consists of 10 sensory neurons, 5
hidden neuron, and 3 output neurons. The sensory neurons encode the activation
state of the 8 infrared sensors, and the activation state of the motor neurons at
time t-1.

Hidden layer

Hidden layer (t-1)Sensory layer

Output layer

Figure 8: The architecture of the dynamical neural network (DNN). Boxes represents
collection of neurons. Arrows indicate the connection between collections of neurons
(all neurons of the first box are connected to all neurons of the second box).

During the evolutionary process the architecture is kept fixed. Only the
time constants of neurons and the synaptic strengths of the connections are
encoded in the genotype and allowed to change. All parameters are encoded in
the genotype with 8 bits. Connection weights and biases are then normalised in
the range [-5.0, 5.0], time constants are normalised in the range [0.0, 1.0].

4.4 Continuous time recurrent neural network: CTRNN

As dynamical neural networks, continuous time recurrent neural networks [2]
are neural networks constituted by dynamical artificial neurons. Also in this
case, the activation state of neurons is influenced by their previous activation
state. In the case of CTRNN, however, the state of a neuron is characterised by
two variables: the activation potential (that corresponds to the depolarisation
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of the neuron membrane, in the case of real neurons), and the activity of the
neuron (that corresponds to the frequency of the spikes produced, in the case of
real neurons). The time constant parameter, in this case, determines the rate of
change of the activation potential of the neuron.

More precisely, neurons are updated according to the following function:

ai = σ(pi + biasi) (5)

ṗi =
1

tci
(−pi + netinputi + g ini) (6)

netinputi =
N∑

j=1

wjiaj , (7)

where pi is the activation potential of a neuron, g the gain of the inputs, and
tci is the time constant of the neuron. The time constant is adjusted by the
evolutionary algorithm, 1

tci
∈ [0, 1]. Only the sensory neurons and the hidden

neurons apply activation function (5), the outputs apply activation function
(2). As a result, the activation potentials of the sensory neurons, the activation
potentials of the hidden neurons, and the activations of the hidden neurons are
part of the internal state. The activation potentials result in a neural inertia,
while the activations of the hidden neurons serve as neural input to the hidden
layer for the next time step.

We approximate the dynamics of the differential equation by using the stan-
dard Euler method (see [8]), with step size 0.1. The architecture and the pa-
rameters encoded in the genotype are the same as those described in §4.3, but
then with 1

tci
∈ [0, 1].

4.5 Time delay recurrent neural network: TDRNN

In a time delay recurrent neural network [5] the propagation of activation
through connections takes time and the time delay is controlled by a parameter
associated to each connection. For analysis purposes we have used a restricted
form of a TDRNN in which each neuron has one common time delay for all its
incoming connections.

The architecture used in our experiments consists of 10 sensory neurons, 5
hidden neurons, and 3 output neurons (Fig. 9). The sensory neurons encode the
activation state of the 8 infrared sensors, and the activation state of the motor
neurons encoding the desired speed at time t-1. The output neurons encode the
desired speed of the two wheels and the self-localisation output.

Neurons are updated according to the logistic function. The genotype of
evolving individuals encodes the strength of each connection and the time delay
associated with each neuron. All parameters are encoded in the genotype with
8 bits. Connection strength and biases are then normalised in the range [-5.0,
5.0]. Time delays are normalised in the range [0, 50] time steps corresponding
to a delay in the propagation of the activation ranging from [0.0, 5.0] seconds.
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Hidden layer (t-delay_jk)

Hidden layer (t-delay_ij)Sensory layer (t-delay_ij), (t-delay_ik)

Output layer

Figure 9: The architecture of the time delay recurrent neural networks (TDRNN).
Boxes represents collection of neurons. Arrows indicate the connection between collec-
tion of neurons (all neurons of the first box are connected to all neurons of the second
box).

5 Results

By running the evolutionary experiments we observed that all evolved individu-
als were able to travel in the environment at the required speed. However, with
respect to the ability to self-localise, performance varied significantly for differ-
ent neural controllers and for different driving thresholds. The performances of
the best evolved agents of the five types of neural controllers applied to the three
driving thresholds are shown in table 1. By analysing the performance of the
best individuals of each of the five experiments in which evolving agents were
provided with five different neural controllers, in fact, we observed that in all
cases at least one individual evolved that is able to self-localise more than 75% of
the times. At a driving threshold of 23 rounds, instead, in the case of the experi-
ment in which agents were provided with EN networks, no individuals were able
to self-localise correctly more than 75% of the times (Table 1). Finally, table
1 shows that only the DNN, CTRNN, and TDRNN neural controllers achieve
good performances in the case of a driving threshold of 25 rounds .

Neural controller 20 rounds 23 rounds 25 rounds

EN 91 74 67
NARX 86 89 75
DNN 97 93 92
CTRNN 86 80 94
TDRNN 81 82 79

Table 1: Self-localisation performance in percentages of the best individual of the
best replication for experiments with different neural controllers and different driving
thresholds. Performances in bold (i.e. performance equal or above 1.56) indicate indi-
viduals that are able to correctly self-localise more than 75% of the times. Performances
are averaged over 100 runs.
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As we will see in the next sub-sections, these results can be explained by
considering that evolving agents provided with EN and NARX neural controllers
are unable to extract internal states that encode long term regularities and rely
on simple quasi-reactive strategies that exploit sensory-motor coordination to
solve the self-localisation problem. These simple strategies are based on the
fact that, by producing different motor behaviours in different environmental
conditions, robots might experience later on different type of sensory states
even in identical environmental areas, if these areas are preceded by different
environmental structures. These simple strategies however do not allow evolving
agents to achieve optimal or close to optimal performance with respect to the self-
localisation problem, especially with high driving thresholds that force agents to
move quickly in the environment.

On the contrary, TDRNN evolved controllers exploit the time delay on ac-
tivity propagation, so that past sensory states have long term effects. As a
consequence, they still display good performance in the case of high driving
thresholds.

Finally, evolved agents that are provided with DNN and CTRNN evolved
controllers, are able to extract from sensory states internal states encoding long
term regularities that allow these agents to display good and, in some replica-
tions, optimal performance.

In the next sections we will describe the control strategies developed by
agents provided with different neural networks in detail.

5.1 EN

EN-agents are able to display reasonably good performance only with the lowest
driving threshold (20 rounds) and only in two out of ten replications of the
experiments. By analysing the behaviour and the activity of internal neurons of
the best evolved individuals of the two best replications we realised that they
use the same strategy to solve to the problem. Fig. 10 shows the behaviour of
the best of these two individuals.

By looking at the activity of hidden neurons we can see that they tend to
converge on two rather different equilibrium points corresponding to [0.95, 1.0,
0.02, 0.05, 0.07] and [0.03, 1.0, 1.0, 0.05, 0.84]. The transition between these
two equilibrium states occurs very quickly approximately when the agent moves
from one room to the other. The former equilibrium state of the internal neurons
and the connection weights from these neurons and the self-localisation output
neuron assure that the self-localisation output is low, when the robot is in the
upper room, and high, when the robot is in the lower room, as requested.

The transition between the two equilibrium states depends on the state of
sensors and motors during the few time steps that precede the transition.

More specifically, in the case of the transition between the top and the bottom
room, the transition between the former and the latter equilibrium point occurs
when the agent negotiates the bottom-right corner of the environment. During
the negotiation of this particular corner, in fact, given that the agent reaches the
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Figure 10: Trajectory and neural activity of the best evolved EN-agent in the case of
the experiment with a driving threshold of 20. Left: the environment and the robot
trajectory during a few laps of the corridor. Dotted circles indicate the areas in which
the self-localisation output produced by the agent is wrong. The numbers (from 5 to 1)
indicate critical points from the point of view of the ability of this agent to self-localise.
Right: the activation state of neurons while the robot is performing the last lap of the
environment. The activation value is indicated by the height of the graph with respect
to the baseline. M0, M1 and SL indicate the activity of the two motor neurons and of
the self-localisation output unit. H0-H4 indicate the activity of the 5 internal neurons.
M0(t-1), M1(t-1) and IR0-IR7 indicate the activity of the two input units that encode
the state of the two corresponding motor neurons at time t-1 and the activity of the
8 infrared sensors. SLP indicates the performance with respect to self-localisation. In
this case, the height with respect to the baseline indicates respectively, when the self-
localisation is correct (full height), wrong (null height), or when the agents is traveling
between the two rooms (half height).

corner by being very close to the wall on its right side, the activation of the two
back infrared sensors is almost null. This particular sensory-motor situation,
that is the fact that the activity of the right motor neuron decreases in order to
turn and negotiate the corner, and the fact that state of the two back infrared
sensors is almost null, causes the first transition. This hypothesis has been
further verified by freezing the activation state of the two back neurons to 0.05.
In this case, in fact, the agent always indicates that it is in the bottom room.
This strategy also explains why the agent is unable to self-localise correctly in
the bottom room before reaching the bottom-right corner. The fact that the
robot reaches the bottom-right room by staying very close to its right-side walls
is due to the fact that this evolved agent progressively approaches its right side
walls while traveling in a corridor and the fact that this corner is preceded by
the longest corridor of the environment.
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In the case of the transition between the bottom and the top room, the
transition between the latter and the former equilibrium point occurs when
the agent negotiates the second left-handed corner which is located just at the
beginning of the top room. Also in this case, the agents is able to discriminate
between the first and the second left-handed corner on the basis of the state
of the sensors and of the motors during the few time steps that precede the
transition. More specifically, the transition between the latter and the former
equilibrium point occurs when the agent negotiates a left-handed corner (i.e.
when the activation state of the left motor neurons is lower than the activation
of the right motor neuron) and the activation state of the IR3 and IR4 infrared
sensors placed on the frontal-right side of the robot (see Fig. 5) are low. The fact
that the activation of IR3 and IR4 tend to be low during the negotiation of the
second left-handed corner in turn is the result of the fact that the robot tends
to stay close to the wall on its left side after negotiating the first left-handed
corner and the presence of an obstacle on the right side of the first left-handed
corner. The discrimination between the two left-handed corners, however, is
sub-optimal. In fact, due to an increase of the activation of IR4 during the
negotiation of the second left-handed corner, wrong self-localisation output are
produced (see Fig. 10).

5.2 NARX

Similarly to EN-agents, evolved NARX-agents are able to display reasonably
good performance with low driving threshold (20 and 23 turns) but not with high
driving threshold (25 turns). Moreover, like in EN-agents, the ability of NARX-
agents to self-localise is based on the tendency to converge on two equilibrium
states and to move from one to the other equilibrium state on the basis of few
sensory and motor states preceding the transition.

Table 2 and 3 show the results obtained by running additional experiments
with a driving threshold of 20 and 23 in which we also varied the number of pre-
vious sensory and motor states that are copied into additional sensory neurons.

NARX NARX NARX NARX
cin 0 1 3 4
cout 5 4 2 1
F best 1.35 1.75 1.61 1.52

Table 2: Performance of the best individual of the best out of ten replications in four
experiments with different cin and cout numbers. In all experiments the number of
internal neuron is 5 and the driving threshold is 20. F best is the performance of the
best evolved agent averaged over 100 runs.

By analyzing the behaviour and the internal states of the best evolved in-
dividuals we observed that the strategy of the agents evolved with a driving
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NARX NARX NARX NARX
cin 0 1 3 4
cout 5 4 2 1
F best 1.72 1.80 1.83 1.61

Table 3: Performance of the best individual of the best out of ten replications in four
experiments with different cin and cout numbers. In all experiments the number of
internal neurons is 5 and the driving threshold is 23. F best is the performance of the
best evolved agent averaged over 100 runs.

threshold of 20 are similar to the strategy described in the previous section.
Below, we only describe the strategy adopted by the best individual obtained in
the experiment in which the driving threshold is 23, cin is 1 and cout is 4. The
analysis of the other evolved individuals with different values of cin and cout, in
any case, revealed that they adopt similar strategies (result not shown).

In this case, as illustrated in Fig. 11, the two equilibrium states are not
encoded at the level of the internal neurons but directly in the state of the self-
localisation output unit that tends to maintain its activation state close to 0.0 or
1.0. These two states tend to be maintained due to the large positive connection
weights of the four connections that link the sensory units encoding the previous
activation states of the self-localisation output unit to the unit itself.

The transition between the former and the latter equilibrium points (that
correspond to the top and the bottom room, respectively) is triggered by an
high activation of the left sensor (IR0), a low activation of the IR5 (i.e. the
right sensor), and a null or close to null activation of IR2, IR3 and IR7 (that are
activated during the negotiation of a corner). The fact that these conditions are
only met when the robot reaches the middle part of the long corridor on the right
side of the environment, is due to the particular way of traveling along corridors
selected by this agent. As shown in Fig. 11, in fact, this agents produces a
curvilinear trajectory in corridors by approaching first the wall placed on the
right side of the agent and then, after a certain length, the wall placed on the
left side. This curvilinear trajectory assures that the agent approaches the left
side walls only in corners or at about the middle part of the long corridor.

The transition between the latter and the former equilibrium points (that
correspond to the bottom and the top room, respectively) is triggered by the
sensory inputs that are specific to the second turn to the left. The back sensors
(IR6 and IR7) are activated in the second turn to the left while IR0 shortly
decreases.

As in the case of EN-agents, the fact that NARX-agents are unable to produce
reasonably good performance when the driving threshold is 25 can be explained
by considering that, by being asked to move at higher speed in the environment,
evolving agents cannot select peculiar ways of negotiating corridors and corners
(such as moving in corridors by producing curvilinear trajectories) that in turn
allow them to identify the location of critical areas of the environment on the
basis of a single or few sensory-motor states.
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Figure 11: Trajectory and neural activity of one of the best evolved NARX-agents in
the case of the experiment with a driving threshold of 23. Left: the environment and
the robot trajectory during few laps of the corridor. The numbers (from 4 to 1) indicate
critical points from the point of view of the ability of this agent to self-localise. Dotted
areas indicate the areas in which the self-localisation output produced by the agent is
wrong. Right: the activation state of neurons while the robot is performing the last
lap of the environment. The activation value is indicated by the height of the graph
with respect to the baseline. M0, M1 and SL indicate the activity of the two motor
neurons and of the self-localisation output unit. H0-H4 indicate the activity of the 5
internal neurons. M0(t-1), M1(t-1) and IR0-IR7 indicate the activity of the two input
units that encode the state of the two corresponding motor neurons at time t-1 and
the activity of the 8 infrared sensors. SLP indicates performance with respect to self-
localisation. In this case, the height with respect to the baseline indicate respectively,
when the self-localisation is correct (full height), wrong (null height), or when the
agents is traveling between the two rooms (half height).

5.3 DNN

DNN-agents are able to display reasonably good performance, and in some repli-
cations close to optimal performance, at all driving thresholds. By analysing the
behaviour and the activity of neurons of the best evolved individuals we observed
that the self-localisation problem tends to be solved by relying on a few or a sin-
gle hidden neuron that slowly changes its activation state by always keeping its
state below and above a given threshold in the top and in the bottom room
respectively, or viceversa. Fig. 12 shows the behaviour and the neural activity
of the best evolved individual of the experiment with a driving threshold of 25.
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Figure 12: Trajectory and neural activity of the best evolved DNN-agent in the
case of the experiment with a driving threshold of 25. Left: the environment and
the robot trajectory during few laps of the corridor. The numbers (from 6 to 1)
indicate critical points from the point of view of the ability of this agent to self-localise.
Right: the activation state of neurons while the robot is performing the last lap of the
environment. The activation value is indicated by the height of the graph with respect
to the baseline. M0, M1 and SL indicate the activity of the two motor neurons and of
the self-localisation output unit. H0-H4 indicate the activity of the 5 internal neurons.
M0(t-1), M1(t-1) and IR0-IR7 indicate the activity of the two input units that encode
the state of the two corresponding motor neurons at time t-1 and the activity of the
8 infrared sensors. SLP indicates performance with respect to self-localisation. In
this case, the height with respect to the baseline indicates respectively, when the self-
localisation is correct (full height), wrong (null height), or when the agents is traveling
between the two rooms (half height).

As can be seen in Fig. 12, the activity of the self-localisation output units
is mainly affected by the activity of H0 due to a strong inhibitory connection
coming from this hidden unit. Given that the time constant parameter of H0 is
very high (0.96), the activity of this neuron tends to change slowly in time.

The fact that the activity of H0 tends to decrease slowly while the robot
moves along corridors ensures that the activation of this unit progressively de-
creases while the robot moves along the long corridor located on the right side
of the environment. As a consequence, it reaches a value below the critical
threshold during the transition from the top to the bottom room.

The fact that the activity of unit H0 tends to increase slightly during the
negotiation of right-handed corners assures that the activity of this unit is always
above the critical threshold while the robot moves in the top room. Finally, the
fact that the activity of H0 tends to increase quickly during the negotiation of
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left-handed corners assures that the activity of this unit overcomes the critical
threshold during the transition from the bottom to the top room.

The ability to integrate information from long sequences of sensory-motor
states to detect, for instance, the length of corridors, allows DNN agents to solve
their problem without the need to rely on sensory-motor coordination strategies.
As we saw above, sensory-motor coordination strategies might allow agents to
self-localise correctly on the basis of regularities extracted by few sensory-motor
states, but require special ways to negotiate the environment that do not allow
to move at high speeds.

5.4 CTRNN

CTRNN-agents are able to display good performances at all driving thresholds.
By analysing the behaviour and the activity of neurons of the best evolved
individuals we observed that the agents solve the self-localisation problem with
strategies very similar to those exhibited by DNN-Agents. Fig. 13 shows the
behaviour and the neural activity of the best evolved individual of the experiment
with a driving threshold of 25 rounds.

As can be seen in Fig. 13, the activity of the self-localisation output is mainly
affected by the activity of H3 due to a strong inhibitory connection coming
from this hidden unit. Given that the time constant parameter of H3 is high
( 1
tc = 0.02) , the activity of this neuron tends to change slowly in time. As in the

case of DNN, the fact that the activity of H3 tends to decrease slowly while the
robot moves along corridors ensures that the activation of this unit progressively
decreases while the robot moves along the long corridor located on the right side
of the environment by reaching a value below the critical threshold during the
transition from the top to the bottom room.

As in the case of DNN, the fact that the activity of unit H3 tends to increase
slightly during the negotiation of right-handed corners assures that the activity
of this unit is always above the critical threshold while the robot moves in the
top room. Finally, the fact that the activity of H3 tends to increase quickly
during the negotiation of left-handed corners assures that the activity of this unit
overcomes the critical threshold during the transition from the bottom to the
top room. In this case however, H3 overcomes the critical threshold already after
the first left-handed corner. The combination of this fact and the fact that IR4,
that gets activated during the negotiation of left-handed corners, contributes to
activate the self-localisation output unit, causes a systematic localisation error
during the negotiation of the second left-handed corner (see the dotted area
indicated on the right side of Fig. 13).

5.5 TDRNN

TDRNN-agents are able to display reasonably good performance at all driving
thresholds (see table 1). The analysis of the best-evolved agents indicates that
the time delay on activity propagation plays an important role in the ability of
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Figure 13: Trajectory and neural activity of the best evolved CTRNN-agent in the
case of the experiment with a driving threshold of 25. Left: the environment and the
robot trajectory during few laps of the corridor. The numbers (from 6 to 1) indicate
critical points from the point of view of the ability of this agent to self-localise. Dotted
areas indicate the areas in which the self-localisation output produced by the agent is
wrong. Right: the activation state of neurons while the robot is performing the last
lap of the environment. The activation value is indicated by the height of the graph
with respect to the baseline. M0, M1 and SL indicate the activity of the two motor
neurons and of the self-localisation output unit. H0-H4 indicate the activity of the 5
internal neurons. M0(t-1), M1(t-1) and IR0-IR7 indicate the activity of the two input
units that encode the state of the two corresponding motor neurons at time t-1 and
the activity of the 8 infrared sensors. SLP indicates performance with respect to self-
localisation. In this case, the height with respect to the baseline indicates respectively,
when the self-localisation is correct (full height), wrong (null height), or when the
agents is traveling between the two rooms (half height).

these agents to self-localise. Fig. 14 shows the trajectory and neural activations
of the best TDRNN-agent evolved with a driving threshold of 23 rounds. The
values of the time delay parameters are shown in table 4.

The analysis of the evolved connection strengths and time delay parameters
indicate that evolved agents use time delay parameters to: (1) detect a sequence
of events separated by fixed time intervals, and (2) allow internal states to pro-
duce motor effects after a fixed time interval.

Let us consider in particular how the evolved individual shown in Fig. 14
is able to correctly indicate the transition from the bottom to the top room.
The activity of the self-localisation output unit of the TDRNN is determined
by the delayed activations of the sensory neurons and hidden neurons. In fact,
the indication of the transition from the bottom to the top room depends on
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Figure 14: Trajectory and neural activity of one of the best evolved TDRNN-agent
in the case of the experiment with a driving threshold of 25. Left: the environment
and the robot trajectory during few laps of the corridor. The numbers (from 8 to 1)
indicate critical points from the point of view of the ability of this agent to self-localise.
Right: the activation state of neurons while the robot is performing the last lap of the
environment. The activation value is indicated by the height of the graph with respect
to the baseline. M0, M1 and SL indicate the activity of the two motor neurons and of
the self-localisation output unit. H0-H4 indicate the activity of the 5 internal neurons.
IR0-IR7 indicate the activity of the 8 infrared sensors. The additional input neurons
encoding the state of the sensors and motors in previous time steps are not displayed
but can be inferred by previous sensory and motor states. SLP indicate performance
with respect to self-localisation. In this case, the height with respect to the baseline
indicates respectively, when the self-localisation is correct (full height), wrong (null
height), or when the agents is traveling between the two rooms (half height).

the sensory inputs that the agent experiences when it enters the first turn to
the left, indicated with the number ‘5’ in Fig. 14. The sensory neurons that
are especially involved are I0, I3, I4, and I5. Their particular values have three
effects.

1. The self-localisation output decreases after 43 time steps.

2. The activation of H1 increases 22 time steps later.

3. The activation of H2 decreases 36 time steps later.

The increase of H1 and decrease of H2 has as a consequence that SL remains
low while the agent is traversing almost the entire top room. The explanation
for this is that H1 inhibits H2 and SL, while H2 excites SL.



360 Towards Pro-active Embodied Agents

The agent indicates the transition of the top to the bottom room as follows.
After the activation of H1 has been decreased, the activation of H2 increases.
The main reason for this is the lack of inhibition from H1 and the excitation
due to the sensory inputs belonging to turns to the right. For example, M1(t-1)
inhibits H2 but has low values in turns to the right.

Neuron Time delay
M0 0
M1 0
SL 43
H0 10
H1 22
H2 36
H3 46
H4 6

Table 4: Values of the time delay parameters (in time steps) of all hidden and output
neurons. All incoming connections to one neuron have a common delay.

To summarize, the TDRNN-agent extracts an internal state from the sensory
signals it experiences between the time steps indicated with ‘5’ and ‘4’. Besides
delaying the signals from the sensory neurons, the agent exploits the recurrency
of the hidden layer to let the effects of the sensory signals experienced in the
turns to the left fade away. The effect of this strategy is that the agent has a
low self-localisation output during most of its traversal of the top room and a
high self-localisation output in the bottom room.

6 Discussion

The comparison of the results obtained by providing evolving agents with differ-
ent types of neural controllers indicate that the use of dynamical neurons and/or
time-delayed propagation of activation potentials might constitute a necessary
prerequisite for the emergence of the ability to integrate sensory-motor informa-
tion through time.

In fact, although in principle agents provided with simple recurrent neural
networks such as EN or NARX neural networks should be able to develop the
same control strategies developed by agents provided with DNN, CTRNN and
TDRNN neural networks, in practice they are unable to do so. This failure can
be explained by considering that the evolvability (i.e. the probability to produce
a better solution through random changes of free parameters) of EN and NARX
neural networks is lower than that of DNN, CTRNN and TDRNN.

The fact that agents provided with a DNN or CTRNN neural controller are
more evolvable than agents provided with EN or NARX can be explained by con-
sidering that the availability of neurons that tend to vary their state at different
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time rates is a useful prerequisite to solve problems that require to integrate
information from sequences of sensory-motor states or to produce motor states
lasting several time steps [15]. Although by properly setting the connection
weights, any type of recurrent neural network could in principle display neurons
that tend to vary their activity at different time rates, neurons that vary their
activity at slow time rates (i.e. time rates that are significantly slower from the
time rates with which the activity of sensors and neurons are updated) are much
more frequent in DNN and CTRNN.

The fact that neurons in DNN tend to vary their activity at a slower time rate
than neurons in EN and NARX networks can be demonstrated by considering
that the change of activation of a DNN-neuron is always smaller or equal to the
change of a neuron in EN and NARX neural networks (i.e. neurons updated
according to the standard logistic function). Indeed, the change in activation
of a neuron in a DNN is always smaller or equal to the change of activation
of a neuron in an EN or NARX, if the neurons have the same bias weight,
neural inputs, and past activation, and if 1

tc ∈ [0, 1]. First we express the neural
activation function of the DNN (equation (9)) in terms of the activation function
of the EN (equation (8)), as shown in equation (10).

aen(t) = σ(netinput(t) + bias + in(t)) (8)

adnn(t) =
1
tc

a(t − 1) + (1 − 1
tc

)σ(netinput(t) + bias + in(t)) (9)

adnn(t) =
1
tc

a(t − 1) + (1 − 1
tc

)aen(t) (10)

Since 1
tc ∈ [0, 1] and adnn is a weighted sum of a(t − 1) and aen(t), we can

conclude equation (11) and (12) from equation (10).

adnn(t) ∈ [min{aen(t), a(t − 1)}, max{aen(t), a(t − 1)}] (11)

|adnn(t) − a(t − 1)| ≤ |aen(t) − a(t − 1)| (12)

Equation (12) implies that the change in activation of a neuron in a DNN is
always smaller than or equal to that of a neuron in an EN, for the same neural
input, bias, past input, and external input.

The fact that agents provided with a TDRNN neural controller are more
evolvable than agents provided with EN and NARX can be explained by consid-
ering that the availability of neurons that encode the state of sensors and motors
at previous time steps within an adaptable time range is a useful prerequisite
to integrate information from sequences of sensory-motor states and, as we have
seen, to detect sequences of events separated by a given time interval.

Overall the obtained results suggest that a better understanding of the neural
mechanisms suitable to process information in time might be an important step
towards the development of powerful pro-active agents.
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1.  Introduction 

A self-reconfigurable system is a special type of complex systems that can 
autonomously rearrange its software and hardware components and adapt its 
configuration, such as shape, size, formation, structure, or organization, to accomplish 
difficult missions in dynamic, uncertain, and unanticipated environments. A self-
reconfigurable system is typically made from a network of homogeneous or 
heterogeneous reconfigurable modules (or agents) that can autonomously change 
their physical or logical connections and rearrange their configurations.
 Self-reconfigurable robots [3, 7, 8, 10] are examples of such self-reconfigurable 
systems that consist of many autonomous modules that have sensors, actuators, and 
computational resources. These modules are physically connected to each other in the 
form of a configuration network. Since the topology of the configuration network may 
change from time to time, to accomplish a given task, the controller of the Self-
reconfigurable robot must be distributed and decentralized to avoid single-point of 
failures, and communication bottleneck among modules.
 These modules must have some essential capabilities in order to accomplish 
complex tasks in dynamic and uncertain environments. The capabilities that we 
addressed in our previous work were: (1) distributed task negotiation [5] – allowing 
modules to agree on a global task which is to be accomplished,  (2) distributed 
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behavior collaboration [6] – allowing modules to “translate” a global task into local 
behaviors of modules; (3) synchronization – allowing modules to perform local 
behaviors in a coordinated and timely fashion; In these previous works we assumed 
the network of modules can have any initial topology but it remains unchanged during 
the process of accomplishing a selected task. 
 Here we relax this assumption and allow the topology of the network of modules 
to change at any time including the duration of accomplishment of the task. Our 
proposed solution for this problem is a distributed approach inspired by the concept of 
hormones [4] and is based on 1) giving the ability of detecting local changes in the 
topology of the network to the modules and 2) Allowing them to select and coordinate 
new behaviors when the topology of the network changes such that the selected global 
task can be accomplished.
 The related approaches for solving similar problems include Role-based Control 
[9] and stochastic approaches for self-repair such as [2]. The first approach is based 
on detecting the changes in local relationships of the immediate neighboring modules 
and local reaction to these changes. This approach does not require a lot of 
computational power. However, it is an open-loop approach and might not be suitable 
for accomplishing complex tasks. The second approach has been applied to lattice-
based self-reconfigurable robots, which their configuration space is much smaller than 
that of the chain-type self-reconfigurable robots such as CONRO. 
 This chapter is organized as follows: Section 2 defines the problem of 
autonomous discovery and functional response to topology changes and introduces 
CONRO self-reconfigurable robots as an illustrative example; Section 3 presents the 
idea of probing for solving the problem of autonomous discovery and functional 
response to topology changes; Section 4 presents the FEATURE algorithm and 
reviews its sub-algorithms; Section 5 gives examples of applying the FEATURE 
algorithm to real CONRO modules, and Section 6 concludes the chapter with future 
research directions. 

2.  Autonomous Discovery and Functional Response to Topology 

Changes

The problem of autonomous discovery and functional response to topology changes 
can be defined as follows: Given a global task and a set of self-reconfigurable 
modules, coordinating global responses to local changes in the topology of the 
network of modules in order to produce the desired global effects. Local changes 
include adding or deleting new modules or communication links to/from the network 
of modules. 
 This problem is very challenging due to several reasons: relationships among 
modules may change anytime; changes in configuration is locally detectable but a 
coordinated global response is required; the number of modules in the robot is not 
known; modules have no unique global identifiers or addresses; modules do not know 
the global configuration in advance, and can only communicate with their immediate 
neighbors.
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Generally, accomplishing a given global task is dependent on the topology of the 
network of modules [6]. Modules can accomplish a global task by selecting correct 
behaviors in coordination with other modules and performing them synchronously. 
As a result, changes in the topology will directly influence the behaviors that should 
be selected and the time they should be performed.
 Formally, an autonomous discovery and functional response to topology changes 
problem is a tuple [G(P, C), Q, T, B], where G is the configuration graph of the 
network of modules consisting of P, a list of nodes, pi and C, a list of labeled physical 
or logical links, cj, such that j  {locally unique labels}; Q is the list of the internal 
states, qi, associated with each node pi, such that i {1,…, N}; T is the global task 
shared by all nodes; and B is a set of behaviors, bi, available to the nodes. In this 
situation, an autonomous discovery and functional response to topology changes 
problem is solved if and only if there is a function, f(G,Q)  B, that it is a mapping 
from the current topology of the configuration graph, and the internal state of a node 
to a sequence of behaviors that can accomplish task T. Here, the nodes and links 
represent the modules and the communication links between them, respectively. Note 
that the size of the network is dynamic and unknown to the individual nodes; also the 
index numbers are only used for defining the problem and not used in the solution. 
 Under these circumstances, a satisfactory solution to this problem must be 
distributed. Modules must detect local changes in the configuration graph and inform 
the rest of the modules in order to let them select the correct behavior.
 To illustrate this problem, we use the CONRO self-reconfigurable robot as an 
example. CONRO is a chain-type self-reconfigurable robot developed at USC/ISI 
(http://www.isi.edu/robots). Figure 1 shows the schematic views of CONRO module 
and a six-legged CONRO robot.  Each CONRO module is autonomous and contains 
two batteries, one STAMP II-SX micro-controller, two servo-motors, and four 
docking connectors for connecting with other modules. Each connector has a pair of 
infrared transmitters/receivers, called outgoing-Links and incoming-Links, to support 
communication as well as docking guidance.
 Each module has a set of open I/O ports so that various sensors for tilt, touch, 
acceleration, and miniature vision, can be installed dynamically. Each module has two 
Degrees Of Freedom: DOF1 for pitch (about 0-130  up and down) and DOF2 for yaw 
(about 0-130  left and right). The range of yaw and pitch of a module is divided to 
255 steps. The internal state of each module includes the current values of the yaw, 

Figure. 1. A CONRO module, the schematic view of one module, and a hexapod 
configuration with 11 modules.
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pitch of a module, and the number of the sent and received messages. The modules’ 
actions consist of moving the two degrees of freedom to one of the 255 positions, 
attaching to or detaching from other modules, or sending messages to the 
communication links through the IR senders.
 Modules can be connected together by their docking connectors. Connected 
docking connectors are called active connectors. Docking connectors, located at either 
end of each module. At one end, labeled back (b for short), there is a female 
connector, consisting of two holes for accepting another module’s docking pins. At 
the other end, three male connectors of two pins each are located on three sides of the 
module, labeled left (l), right (r) and front (f).

3.  Probing and Communication 

The first step for modules in responding to the network topology change consists of 
detecting local changes. Instances of local changes are: 1) When a new module 
connects to one of the existing modules in the network, 2) When an existing module 
disconnects from all other modules in the network, 3) When an existing module 
establishes a new connection with another module in the network, and 4) When a 
module disconnects some of its connectors from other modules in the network. In 
situations 1 and 2 the number of nodes and links and in situations 3 and 4 the number 
of links in the configuration network changes. 
 Modules can detect local changes in the topology of the network by periodically 
monitoring their active docking connectors for disconnections and inactive docking 
connectors for new connections. This action is called probing. In order to detect all 
the above-mentioned cases of topology change efficiently, we will use two types of 
probing: 1) Probing when modules are communicating and 2) Probing using probing
signals.

3.1.  Probing by Communication 

The communication protocols that use handshaking signals when sending and/or 
receiving messages between modules can be used for probing the active connection 
links between modules. A successful communication action over an active connector 
shows that the connection is still active. Similarly, an unsuccessful communication 
action shows the disconnection of an already active connector.
 Figure 2 shows an asynchronous communication protocol that was implemented 
in CONRO modules. What follows is a brief description of the handshaking sequence 
of this protocol: Agent1 is the sender and agent2 is the receiver. 
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1. The sender requests to send a message by making its outgoing link ‘High’, point 

A in Figure 2b and then continues checking its incoming link for receiving a ‘High’ 

signal.

2. The receiver responds by making its outgoing link ‘High’, point B, and waits. 

3. After receiving the ‘High’, sender makes its outgoing link ‘Low’, point C, and 

starts sending the message (Data) after a short delay, point D. This short delay is 

called preparation time (T3), which allows the receiver to prepare for receiving Data. 

Data is communicated using RS232 asynchronous communication protocol. In order 

to avoid dead-lock, timeouts are added to the sender and receiver to limit their waiting 

time. T1 and T2 are sender’s and receiver’s timeouts, respectively. 

 This simple handshaking protocol successfully completes if and only if both 
modules actively participate. Therefore a successful communication confirms for both 
modules an active link between the two. In oppositely, an unsuccessful 
communication confirms that the receiving module is not present and the link is 
inactive.
 This method of probing, however, is not efficient for probing the inactive 
docking connectors unless one attempts to send a message to an inactive docking 
connector and waits for the timeout, which could be a quite long time. Also, in 
situations where two modules do not communicate for longer than a pre-specified 
duration called ‘monitoring period’, the communication-based approach will produce 
a wrong conclusion. In such situations we will use a different type of probing method 
based on sending probing signals.

3.2.  Probing Signals 

Probing signal are narrow pulses that are periodically sent to inactive connections or 
active connections if no communication occurs on them for a long time. The width of 
probing signals is much narrower than the communication protocol signals such that 
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Figure. 2. (a) The communication link between two agents. (b) The asynchronous 
communication protocol between two agents 
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they can be distinguished and filtered from the communication protocol signals. 
Figure 3 compares the width of the probing and communication protocol signals.

Figure 4 shows the block diagram of a module’s connection link. The ‘Probing 
Signal Filter’ on the incoming link separates the probing signals from the 
communication signals. On the outgoing link, the communication and probing signals 
are merged to a single output line. 

3.3.  Probing Algorithm 

Figure 5 describes the probing algorithm for detecting local changes in the topology 
of the network. This algorithm consists of two procedures. The first procedure, 
GenerateProbe, is called for generating probing signals on inactive connectors or the 
active connectors that have not communicated for longer than the duration of the 
‘monitoring period’.
 The second procedure, CheckTopology, is called for detecting changes in local 
topology of the network based on the received probing signals or the recent 
communicated messages. This procedure returns a true value if the topology has been 
changed.

4.  Functional Response to Topology Change Using Probing 

Our solution for the functional response to topology change problem in self-
reconfigurable robots relies on our previous work on distributed control for self-
reconfigurable robots. Specifically, the ‘distributed task negotiation’ and ‘distributed 
behavior collaboration’ problems. In this section we will describe these problems and 
our proposed solutions. Then we will present the FEATURE algorithm that utilizes 
probing for solving the functional response to the topology change problem. 

Probing 

Signals Communication

Protocol 

Signal 

Outgoing 

Link 

Communication

Protocol  

Sub-System 

Probing Signal

Sub-System 

Probing Signal

Filter

Incoming  

Link

Connection Link

Figure 3. Probing and Communication
protocol signals 

Figure 4. Merging and separating
the probing and communication
signals



370 Autonomous Discovery and Functional Response in Self-Reconfigurable Robots 

4.1.  Distributed Task Negotiation 

Distributed Task Negotiation is a process by which modules in a self-reconfigurable 
robot can negotiate and select a single coherent task among many different and even 
conflicting choices. This is a very challenging problem due to several reasons: the 
relationships among modules are not static, but change with configurations; modules 
have no unique global identifiers or addresses; modules do not know the global 
configuration in advance, and can only communicate with their immediate neighbors. 
 In [5] we presented the DISTINCT algorithm as a solution for the distributed task 
negotiation problem. The main idea is that all modules work together to build global 
spanning trees and each tree is associated with a task. Initially, all modules that have 
their own competing tasks start building their own trees, but as they exchange 
messages for tree building, most modules will give up their selected tasks and “root” 
status and participate in building trees for other tasks. In this process, modules report 
their status to their parent module in the tree to which they belong, and the module 
that does not have parent but received reports from all its children is the root for the 
entire network of modules. When this happens, this root module can conclude that the 

when GenerateProbe () do

   for each C  Connectors do

      if (C = Inactive) or (NoComm (C, Period) = true) do

          send ProbingSignal to C;

end do;

    end do;

end do;

when CheckTopology () do

TempLocalTopology = CurrentLocalTopology; 

    TopologyChanged = false;

   for each C  Connectors do //reset

 CurrentLocalTopology (C) = Inactive; end do;

 for each C  Connectors do

 if (CommOccurred (C) = true) or

(Probe Signal Received (C) = true) do

      CurrentLocalTopology (C) = active;

end do; end do;

    if (TempLocalTopology   CurrentLocalTopology) do

TopologyChanged = true;

    end do;

    return TopologyChanged;

end do;

Figure 5. The probing Algorithm 
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negotiation process has succeeded and all modules in the tree have agreed on the 
same task. An embedded synchronization algorithm detects the termination of the 
negotiation process. 
 Formally, a distributed task negotiation problem consists of a tuple (P, L, T, S),
where P is a list of nodes, pi, such that i  {1,…, N}; L is a list of communication 
links, ljk, such that j,k  {1,…, N}; T is a list of tasks, tm, such that 1  m  N, and S is a 
set of task selection functions, Si: (T')  ti , such that i  {1,…,N} and T' T. Each 
node has a task selection function that can select a single task from a set of given 
tasks. A distributed task negotiation problem is solved when all nodes have selected 
the same task from T, called t*, and have been notified that the negotiation process is 
terminated. Note that the index numbers assigned to P are only used for defining the 
problem and not used in the negotiation process. In addition, the size of the network is 
unknown to the individual nodes. 

 To illustrate the above definition, consider the example in Figure 6a, where P=
{p1, p2, p3, p4, p5, p6}, L = {l12, l14, l13, l45, l46}, T = {t1, t6}, and S is a selection function that 
prefers tasks with greater indexes and shared by all nodes. Initially, node p1 and p6

have initiated two tasks, t1 and t6, respectively, and the rest of the nodes are waiting to 
receive tasks. Figure 6b depicts a solution for the given problem where all nodes 
agreed on task t* = t6.
 Important characteristics of this solution are: 1) modules do not require having 
unique Ids; 2) ensures that all nodes will select the same task coherently; regardless of 
the number of competing tasks initiated in the network; and more importantly 3) it is 
not dependent on the topology of the network of modules. 

4.1.1  Negotiation by Creating Spanning Trees 

The most obvious solution for the problem is to assign priorities to the competing 
tasks and force nodes to select tasks that have higher priorities. However, since the 
importance of tasks cannot be determined statically, it is extremely hard to determine 
the correct priorities for an arbitrary set of competing tasks. 

t6
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t6

t6
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P4

P6

P3
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P3

P4
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t1 t6

Figure 6. An example of a distributed task negotiation problem. a) Initially p1 and p6

initiated two tasks (t1, t6). b) A solution, when all agents have selected t* = t6.
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 In our solution, nodes propagate their tasks to their neighbors and generate a Task 
Spanning Tree (TST) for each propagated task. As a result, when more than one task 
is initiated, a forest of partial TSTs is created. These partial TSTs negotiate with each 
other and gradually merge into one and only one TST. This final TST represents the 
task that has been selected by all nodes in the network.
 During the tree building process, all nodes report their status to their parent 
nodes. The negotiation process terminates when a node that has no parent has 
received reports from all of its children. This node is the root of the final TST, and it 
then notifies all nodes in the tree with an “end of task negotiation” message and all 
nodes will select the task associated with the final TST. 

4.1.2  Distributed Task Selection 

For nodes that have competing tasks to select a single task, the goal is to create a 
single TST. Each node must decide on two issues: 1) what task to select and 
propagate, and 2) how to be a part of a TST. 
 Initially, nodes that have competing tasks propagate their tasks by sending a task
message (TM) to their neighbors and designating themselves as the root of a partial 
TST. Assuming that the recipient of a TM has no tasks for itself and receives only one 
TM, then it will adopt the received task and create a “child-of” relationship toward the 
sender of the TM. The recipient will in turn propagate the received task by sending a 
new TM to the rest of its neighbors. To illustrate this idea, Figure 7 shows an example 
in which nodes P1 and P6 are the initiators of tasks t1 and t6 respectively and the rest of 
the nodes are non-initiator nodes. Node P2 and P3 are the recipients of TM(t1) sent by 
P1, and therefore have selected task t1. Similarly, P4 and P5 are the recipients of TM(t6)
sent by P6, and therefore have selected task t6. In this situation, parallel arrows show 
the “child-of” relationships that the nodes have created. 

P1

P2

P4

P5

t1

P6
t6

t6

t6

t1 l14

t1P3

TM(t6)TM(t6)

TM(t1)
TM(t1)

Figure 7. Task message propagation. Arrows on the links indicate messages in transit and
arrows parallel to links indicate the “child-of” relationship. Double circles indicate the
roots of partial TSTs. 
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Based on the above assumption, no message has been sent through the link l14. As a 
result two TSTs have been formed; one rooted at P1 and the other rooted at P6. In each 
TST, all nodes have selected the same task.
 At this point, if we relax the above assumption, two cases might occur: 1) either a 
root node receives a TM, or 2) a non-root node receives a TM from a node that is not 
its parent. An example of the first case is shown in Figure 8 where P1, a root node, 
receives a TM from P4. An example of the second case happens when P4, a non-root 
node in the TST rooted at P6, receives a TM from P1, which belongs to another partial 
TST.
 In the first case, the recipient, which is a root node, drops being a root, adopts the 
received task, establishes a “child-of” relationship with the sender of the TM and 
propagates new TM to the rest of its neighbors, which are its children. In this 
situation, these nodes adopt the new received task and propagate it to the rest of their 
neighbors.
 In the second case, the received TM is a conflicting message since it was received 
from a non-parent node. To resolve the conflict, the recipient node deletes all of its 
previous “child-of” relationships, makes a choice between its previous task and the 
received task (using its task selection function), propagates a newRoot message 
(NRM) containing the newly selected task to all of its neighbors, and then promotes 
itself as a new root for the selected task. 

The role of NRM is to merge partial TSTs and create a new root for the resulting 
TST. Therefore, the recipient of a NRM adopts the received task, creates a new “child-
of” relationship towards the sender of the NRM, becomes a non-root node (if 
previously a root), and propagates a new NRM containing the received task to the rest 
of its children. 
 Figure 8 shows the result of merging the two partial TSTs in Figure 7 for the 
situation where P4 has been the node that has received a conflicting TM from P1. As a 
result, P4 chooses a task between t6 and t1 (say t6 is chosen), promotes itself to be the  

P1

P2

P4

P5

P6
t6

t6

t6

t6 NRM(t6)

t6
P3

NRM(t6)NRM(t6)

TM(t6)
TM(t6)

t6

Figure 8. Merging partial TSTs from Figure 2. P4 is the new root of the merged TST. The
dashed arrows indicate the ack messages.
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root of the new TST, and propagates NRM(t6) to P1, P5 and P6, which turns P1 and P6

into non-root nodes. Consequently, P1 will adopt t6 as its new task and propagate a 
new TM to P2 and P3 for the task switch. 
 As shown in Figure 8, the final result of the task negotiation process is a single 
TST with a specified root node and a selected task. However, at this point the nodes 
do not know that the task negotiation process has been terminated. Unless a 
mechanism for detecting the termination of negation is in place, the nodes would wait 
indefinitely.

4.1.3. Distributed Termination Detection 

In order to detect the termination of the task negotiation process, we use an approach 
similar to the “termination detection algorithm for diffusing computation” by Dijkstra 
and Scholten [1]. For each received TM and NRM, each node must reply with an 
acknowledge message (AM), after the node receives acknowledges from all its 
children. For a leaf node, this means that it will acknowledge immediately for every 
received message. For a non-leaf node, it will send an acknowledge message to its 
parent after it receives AM from all of its children. If a non-leaf node receives all AM
from all its children and it has no parent, then this node is the root for the final TST 
and it can conclude that the task negotiation process has succeeded. 
 In Figure 8, dashed arrows indicate the AM messages. The root node, P4, expects 
to receive AMs from each of the P1, P5, and P6 nodes. Since P5 and P6 do not have any 
child nodes, they send their AM as soon as they receive NRM(t6) messages from P4.
However, P1 sends its AM to P4 only after it receives AMs from P2 and P3. When P4

receives all of its expected AMs, it detects the termination of the negotiation process 
and propagates a taskSelected message to all of its children. This message will be 
propagated to all the nodes in the tree and the task negotiation process successfully 
terminates.

4.2.  Distributed Behavior Collaboration 

The problem of distributed behavior collaboration can be defined as follows: Given a 
global task and a group behavior, to select a correct set of local behaviors at each 
module and coordinate the selected behaviors to produce the desired global effects. 
 The problem is very challenging due to several reasons: relationships among 
modules are not static but change with configurations; the number of modules in the 
robot is not known; modules have no unique global identifiers or addresses; modules 
do not know the global configuration in advance, and can only communicate with 
immediate neighbors. Under these circumstances, a satisfactory solution to distributed 
behavior collaboration must be distributed. Modules must select behaviors through 
local communication, and the execution of the selected behaviors must be 
synchronized.
 Formally, the problem of distributed behavior collaboration is a tuple (P, Q, C, A, 
B, t, GB), where P is a list of nodes, pi; Q is the list of the internal state, qi, associated 
with each node pi, such that i {1,…, N}; C is a list of labeled physical or logical links, 
cj, such that j  {locally unique labels}; A is a set of actions as a node can execute,
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Table 1. 32 local topological  types of CONRO module 

This Module  This Module 

b f r l Type b f r l Type

    T0 f b   T16

f    T1 f  b  T17

 b   T2 f   b T18

  b  T3  b b b T19
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r    T6 f b  b T22

 b b  T7 l b b  T23
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such that s  {1,…, S}; B is a set of behaviors in the form of bm = (ax, ay az,…), such 
that m {1,…, M};  t is the global task given to all nodes, and GB is the desired group 
behavior in the form of behavior selection rules. These rules are mappings from nodes 
internal states to behaviors, Q  B. The configuration graph of the network of 
modules is a graph consists of P nodes and C edges. A distributed behavior selection 
problem is solved if and only if the ordered sequence of the selected behaviors of all 
nodes over time is equal to the desired group behavior. If  represents the ordered 
sequence of the selected behaviors or  =  + bpi where, i  {1,…, N},  = GB, should
hold. Note that the size of the network is dynamic and unknown to the individual 
nodes; also the index numbers are only used for defining the problem and not used in 
the solution. 

4.2.1. Extended Neighborhood Topology 

When modules in a self-reconfigurable robot have negotiated and decided on a global 
task, they must then generate a group behavior to accomplish the task. A group 
behavior is the result of the coordinated performance of local behaviors of individual 
modules, while the local behaviors are selected based on the location of the modules 
relative to other modules. In [4], we represented the module’s location in a 
configuration as the type of the module. Table 1 lists 32 local types of CONRO 
module, which reflects the ways that a module can connect to its immediate 
neighbors. Figure 9 shows some example types in various CONRO configurations. 

The type information in Table 1 could provide modules with the necessary 
information to uniquely determine their location in most cases and select the 
appropriate local behaviors for the global task accordingly (see details in [4]). 
However, these types are not enough to guarantee determining modules’ location in 
any complex configuration. For example, consider the T-shape and the snake 
configurations in Figure 9. Modules A, and A’ are both of type T2, yet they must 
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Figure 9. Immediate neighborhood topological types of CONRO modules in different
configurations: a single module, a hexapod, a T-shape, and a snake. 

behave differently in the two different configuration. The module A’ must perform a 
sinusoidal behavior in the snake configuration, while the A module must keep still in 
the T-shape “butter-fly” locomotion (i.e., the leg modules move in a cycle of up, left, 
down, and right, while the body modules keep still). 

To solve this problem, we extend module’s type from the immediate 

neighborhood to neighbors that are n modules away. We call this extended type, 

type(n), and define it as how the active connection links of a given module are 

connected to the connection links of the modules of distance n. For example, in 

Figure 10, type(0) for module A is [(bf)] because module B is the only one of distance 

zero from A, and the b connector of B is connected to the f connector of A. However, 

type(1) of module A is [(br,bf),(bl,bf)] because this is the way A is connected to 

module C and D, which are one module away (n = 1). Similarly, the type(0) of 

module A’ is [(bf)] and its type(1) is [(bf,bf)]. Note that module B has only immediate 

neighbors (distance = 0) and therefore it only has type(0) information.

Type(0): [(bf)]

Type(1): [(br,bf),(bl,bf)]

D

C

B

bf

r
b

l
b

Type(0): [(rb)]

Type(1): [(fb,rb),(bl,rb)]

Type(0): [(br),(bl),(fb)]

Type(0): [(lb)]

Type(1): [(fb,lb),(br,lb)]

A

bfbf

A’

bf

Type(0): [(bf)]

Type(1): [(bf,bf)]

Figure 10. Examples of the extendable type(n).
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As we can see, although type(0) values of module A in the T-configuration and 
module A’ in the snake configuration are the same, but they have different type(1) 
value. It can be proven that using the extended types, modules can always uniquely 
identify themselves in a configuration as long as the labels of connection links of 
modules are locally unique. The proof is based on having unique path between any 
two nodes in a tree. Later we will show that modules can use the extended type 
information to select the appropriate behavior based on the given task.
 It can be shown that the type definitions in [4, 9] are special cases of the extended 
type and equivalent to type(0). In addition, global representation of the entire network 
for each agent is equivalent to [type(0),type(1), . . ., type(d-1)], where d is the 
diameter of the network.
 It is possible for the modules to autonomously dynamically discover their 
extended types and. The solution is based on the characteristics of hormone-inspired 
messages described in [7]. Each hormone message contains a path field that records a 
list of connector-pairs (ex. bf) through which the message has been propagated. When 
a module receives a hormone message with |path|=m, it will insert the path into its 
extended type(m-1) values. As more and more messages are received, the extended 
type information will be built up. Since messages are propagated through the network, 
each module will eventually build up the correct type values for itself. See [6] for 
more details. 

4.2.2. Selecting Local Behaviors Via Type(n) Values 

 A straightforward approach for behavior collaboration in a modular system is the 
centralized ‘gait control table’ [11], in which a designated module, called the central 
controller, is given the information about behaviors of other modules in the form of a 
table. Each column of this table contains the sequence of actions that a module, 
identified by its identifier, has to perform over time based on its location in the 
configuration (equivalent to the behavior of the module). The central controller job is 
to send each row of the table specifying the actions that all modules should perform at 
a time.
 The ‘gait control table’ approach, however, is not an ideal approach for 
controlling the self-reconfigurable system for the following reasons: first, requiring 
the central controller to send actions to the rest of the modules in the configuration 
creates a communication bottleneck. In addition, if the central controller becomes 
faulty the entire system will be disabled. More importantly, when the network of 
modules restructures themselves, the pre-specified behaviors of the modules in the 
table might not be valid anymore. The source of this difficulty is that modules do not 
know how their behaviors are chosen so they cannot select new behaviors as they re-
locate in the configuration.

Our approach for solving this problem is based on using the extended types to 
uniquely identify the location of modules in a configuration, and use them to select 
the correct local behaviors by the modules for the given global task. For example, as 
shown in Figure 11, for a quadruped to accomplish the ‘Move forward’ task, the 
‘front left leg’ module and ‘back right leg’ will select ‘Swing Backward’ behavior, 
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while the ‘front right leg’ module and the ‘back left leg’ module will select the ‘Lift 
and Swing Forward’ behavior and modules of types ‘front spine’ and ‘back spine’ 
will select ‘bend left’ and ‘bend right’, respectively. Figure 11b shows the robot after 
the modules have performed their selected behaviors. In general, the group behavior 
to accomplish “Move forward” consists of the following behaviors: the ‘front left leg’ 
and the ‘back right leg’ perform the ‘Lift and Swing Backward’ behavior, while the 
‘front right leg’ and the ‘back left leg’ is performing the ‘Swing Forward’ behavior, 
and then the two groups switch their behaviors. In the next section we present a 
flexible algorithm called Distributed BEhavior SelecTion (D-BEST) for behavior 
selection, which is based on the extended neighboring types. 

4.2.3.  The D-Best Algorithm 

Using the extended types as the condition for selecting behaviors will provide the 
modules with the information they require to autonomously collaborate to select new 
behaviors. Figure 12 illustrates the basic idea of the behavior collaboration based on 
the extended types. Initially, modules communicate their currently selected behaviors 
to their neighbors by sending hormone messages and wait for receiving new hormone 
message. This initial behavior could be a Null behavior. The communicated hormone 
message content consists of the type of the message, in this case of type  
<Behavior-selection>, and an initially empty path field, represented by <(path)>.
  When a new hormone message is received, the module updates the path field of 
the message, updates its extended type based on the received path and propagates the 
message to its neighbors. Then it uses the current extended type to select a behavior 
from a lookup table representing the desired group behavior. This process will 
continue until all modules receive and propagate the initiated hormone messages. 

‘front left leg' ‘back left leg’

‘front spine’ ‘back spine’

Swing Backward Lift-swing forward

‘front right leg’ ‘back right leg’ Lift-swing forward Swing Backward

Bend left Bend right

(b)(a)

Figure 11. (a) The module types in a four-legged self-reconfigurable robot; 
(b) The selected local behaviors of each module for “move forward”. 
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Although this approach can dynamically adapt to the changes in the topology of 
the network, it has two problems. First, an initiated message from a module will be 
propagated to all other modules in the configuration. This means that the total number 
of communicated messages will be O(N2), where N is the number of modules. The 
second problem is that when the diameter of the configuration is large, the size of the 
path field, and therefore the size of the message, will be large. This will considerably 
slow down the communication when the bandwidth is narrow. 
 To solve these two problems, we limit the maximum length of the path field in 
the messages. For example, if the maximum length of path is set to k, a message will 
stop being propagated after k hops. In this situation, if there are N agents in the 
network, and each agent has the average number of a active connectors, the number 
of communicated messages will be O(N) (since at most a*N messages will be initiated 
and each message will be communicated k times therefore k*a*N messages). The 
tradeoff of this solution is that the created extended type will be partial, and therefore 
might not be enough for some modules to select the correct local behaviors.
 This problem can be solved by including the modules’ selected behaviors in the 
communicated hormone messages and representing the group behavior as a set of 
decision rules based on the partial paths and received behaviors. In this situation, the 
content of the hormone messages and decision rules are shown in Figures 13a and 
13b, respectively. 

Send 

<Behavior-selection><()>

to all neighbors

A message 

received ? 

Update message path field 

Update extended types 

based on the received  

message’s path fields 

Propagate received 

Select a behavior

from a lookup table based  

on the current extended types 

Yes

No

Figure 12.  Basic idea of behavior selection based on the extended types 
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 The basic idea of this solution is that receiving the selected behavior of an 

extended neighbor gives an overview about the configuration of the module around 

that module, which combined with the received partial path can be used for selecting 

the correct behavior.

This control algorithm has some unique features that are different from previous 
approaches. Unlike the approaches based on the pre-assigned behaviors, this 
controller can adapt with the dynamic self-reconfiguration of the network, prevent 
communication bottleneck and is robust to individual modules failure. In addition, D-
BEST is more flexible and powerful than the approaches for behavior selection based 
on immediate neighboring connection patterns as D-BEST uses both immediate and 
extended neighboring modules connection pattern for behavior selection.
 It can be seen that the shorter the maximum size of the path results the smaller 
number of communicated message. This feature can be utilized at the design time of 
the decision rules for a desired group behavior in the following way. Starting from the 
smallest maximum length (k =0) the designer of the group behavior will write the 
rules that can uniquely select the correct behaviors for the modules. If there is 
ambiguity in selecting behaviors for the possible configurations, the k will be 
increased to provide the modules with more information such that the ambiguity is 
resolved. This characteristic of the D-BEST algorithm allows the number of the 
communicated message to be a function of the complexity of the desired group 
behavior and/or possible configurations. 
 Figure 14 shows an example of the behavior collaboration for generating a 
Butterfly locomotion in a T-shape CONRO robot. In this example Butterfly_Spine, 
Move_East, Move_West and CAT0 are different behaviors and four decision rules are 
used. The maximum path length is chosen to be zero, k = 0, specifying that the 
messages that immediate neighboring modules communicate will not be propagated 
to other modules.
 According to the rule 1, if a module receives a message from one of its left or 
right connectors, it will be a spine module otherwise it can be a spine or a module in a 
snake configuration. Based on this rule, module B can select the correct behavior, 
Butterfly_Spine. However, module A does not know if it is a spine module or in the 
snake configuration. Rule 4 can resolves this issue by determining the module cannot 
be part of a snake configuration if the neighboring module B has selected 

<Behavior-selection><(path)><Selected behavior>  (a)

if (received path == X) and (received behavior == Y)   (b)

then (select local behavior Z) 

Figure 13.  a) the format of the hormone messages. b) the format of the decision rules 
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direction for their movements. If module A applies rule 1, it will consider the 
possibility of being part of a snake by selecting the CAT0 (sinusoidal motion starting 
from angle zero for the caterpillar move). This selection will be corrected if at some 
point rule 4 is applicable.

4.3.  The FEATURE Algorithm 

In this section, we will describe the FEATURE algorithm that brings all the above-
mentioned pieces together and solves the problem of functional response to topology 
change in self-reconfigurable robots. This will be the algorithm that will run on all 
modules of the self-reconfigurable robot to ensure the homogeneity of all modules. 
Figure 15 depicts this algorithm. 
 Initially all modules will wait to receive a new task. The new task can be initiated 
by an outside controller or one of the sensors on a module. Receiving a new task 
initiates a distributed negotiation process among all modules in the robot. This is 
necessary to ensure that 1) all modules know what task they accomplishing and 2) in 
cases where multiple modules have initiated more than one task, all modules will 
agree on accomplishing the same task that has the highest priority. The above-

1) If  path = ((bl) or path = 

(br))

then select Butterfly_Spine 

else select CAT_0 

2) If path = (rb)

and behavior = 

Butterfly_Spine 

then select Move_West  

3) If path = (lb)

and behavior = Butterfly_Spine  

then select Move_East 

4) If (path = (fb) or path = (bf))

and behavior = Butterfly_Spine  

then select Butterfly_Spine  
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Figure 14.  Decision rule for Butterfly locomotion. 

Butterfly_Spine. Rules 2 and 3 will be used by the side legs to select the correct 
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If the selected task is not already accomplished, modules will generate a set of 
relevant behaviors. The relevant behaviors are represented by a set of decision rules 
that have been downloaded in all modules. The execution of the selected behaviors 
will be coordinated by an embedded distributed synchronization mechanism. The 
above-mentioned process is controlled by the D-BEST, behavior collaboration 
algorithm shown in the middle section of the Figure 15. 
 If the topology of the network of module changes while modules are performing 
their behaviors, the modules that detected the local changes, will initiate the 
DISTINCT algorithm using the current selected task in order to dynamically create a 
new spanning tree for synchronizing and initiating new sets of behaviors based on the 
current topology of the network. The topology detection process will be controlled by 
the probing algorithm shown on bottom of the Figure 15. 
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Figure 15. The FEATURE algorithm 

mentioned process is controlled by the DISTINCT, task negotiation algorithm shown 
on top part of the Figure 15. 
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We have implemented and tested the FEATURE algorithm and all of it sub–
algorithms on the CONRO self-reconfigurable robots. All modules are running as 
autonomous systems without any off-line computational resources and are loaded 
with the same control program and decision rules. For economic reasons, the power of 
the modules is supplied independently through cables from an off-board power 
supply.
 In our experiment we gave a ‘Move’ task to a quadruped CONRO robot. The 
robot initiated a ‘Four-Legged Walking’ gait. While performing the gait, we detached 
the two spine modules. The resulting configuration was two separate T-shape robots. 
In this situation, each T-shape robot continued the locomotion by executing the 
‘Butterfly Stroke’ gait. Later, two T-shape robots were re-connected and the resulting 
four-legged robot re-initiated the ‘Four-Legged Walking’ gait.
 For the snake configuration, we have experimented with caterpillar movement 
with different lengths ranging from 1 module to 10 modules. With no modification of 
programs, all these configurations can move and snakes with more than 3 modules 
can move properly as caterpillar. The average speed of the caterpillar movements is 
approximately 30cm/minute. In this experiment, we have dynamically “cut” a 10-
module running snake into three segments with lengths of 4, 4, and 2. All these 
segments adapt to the new configuration and continue to move as independent 
caterpillars. We also dynamically connected two or three independent running 
caterpillars with various lengths into a single and longer caterpillar. The new 
caterpillar adapted to the new configuration and continued to move in the caterpillar 
gait. These experiments show that the described approach is robust to changes in the 
length of the snake configuration.
 To test this approach for self-reconfiguration from a Snake to T-shape, a self-
reconfiguration task was manually given to one the middle modules of a snake-shape 
robot consisting of seven modules. After completion of the self-reconfiguration task 
the new topology of the robot was detected and a butterfly gait for the T-shape robot 
was generated. The videos of these experiments are available at 
http://www.isi.edu/robots.

6.  Conclusion and Future work 

This chapter presented the FEATURE algorithm that combines a set of distributed 
algorithms for accomplishing global tasks in a chain-type self-reconfigurable robots 
consisting of multiple modules with dynamic topology. These combined algorithms 
were DISTINCT for distributed task negotiation, and D-BEST for distributed 
behavior collaboration. The FEATURE algorithm used probing for detecting the local 
topology changes and this information was used for global coordinated selection of 
the new behaviors in the modules. The FEATURE algorithm was implemented on the 
real CONRO self-reconfigurable robot modules and the experimental results were 
presented.

5.  Examples 
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complete set of decision rules for performing all possible self-reconfiguration and 
locomotion tasks. 
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