

Lecture Notes in Economics
and Mathematical Systems 588

Founding Editors:

M. Beckmann
H. P. Künzi

Managing Editors:

Prof. Dr. G. Fandel
Fachbereich Wirtschaftswissenschaften
Fernuniversität Hagen
Feithstr. 140/AVZ II, 58084 Hagen, Germany

Prof. Dr. W. Trockel
Institut für Mathematische Wirtschaftsforschung (IMW)
Universität Bielefeld
Universitätsstr. 25, 33615 Bielefeld, Germany

Editorial Board:

A. Basile, A. Drexl, H. Dawid, K. Inderfurth, W. Kürsten, U. Schittko

Don Grundel · Robert Murphey
Panos Pardalos · Oleg Prokopyev
(Editors)

CooperativeSystems
Control and Optimization

With 173 Figures and 17 Tables

123

Dr. Don Grundel
AAC/ENA
Suite 385
101 W. Eglin Blvd.
Eglin AFB, FL 32542
USA
don.grundel@eglin.af.mil

Dr. Panos Pardalos
University of Florida
Department of Industrial and
Systems Engineering
303 Weil Hall
Gainesville, FL 32611-6595
USA
pardalos@ufl.edu

Dr. Robert Murphey
Guidance, Navigation and
Controls Branch
Munitions Directorate
Suite 331
101 W. Eglin Blvd.
Eglin AFB, FL 32542
USA
robert.murphey@eglin.af.mil

Dr. Oleg Prokopyev
University of Pittsburgh
Department of Industrial Engineering
1037 Benedum Hall
Pittsburgh, PA 15261
USA
prokopyev@engr.pitt.edu

Library of Congress Control Number: 2007920269

ISSN 0075-8442

ISBN 978-3-540-48270-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must always be obtained
from Springer. Violations are liable to prosecution under the German Copyright Law.

Springer is part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover-design: WMX Design GmbH, Heidelberg

SPIN 11916222 /3100YL - 5 4 3 2 1 0 Printed on acid-free paper

Preface

Cooperative systems are pervasive in a multitude of environments and at
all levels. We find them at the microscopic biological level up to complex
ecological structures. They are found in single organisms and they exist in
large sociological organizations. Cooperative systems can be found in machine
applications and in situations involving man and machine working together.
While it may be difficult to define to everyone’s satisfaction, we can say that
cooperative systems have some common elements: 1) more than one entity, 2)
the entities have behaviors that influence the decision space, 3) entities share
at least one common objective, and 4) entities share information whether
actively or passively.

Because of the clearly important role cooperative systems play in areas
such as military sciences, biology, communications, robotics, and economics,
just to name a few, the study of cooperative systems has intensified. That be-
ing said, they remain notoriously difficult to model and understand. Further
than that, to fully achieve the benefits of manmade cooperative systems, re-
searchers and practitioners have the goal to optimally control these complex
systems. However, as if there is some diabolical plot to thwart this goal, a
range of challenges remain such as noisy, narrow bandwidth communications,
the hard problem of sensor fusion, hierarchical objectives, the existence of
hazardous environments, and heterogeneous entities.

While a wealth of challenges exist, this area of study is exciting because
of the continuing cross fertilization of ideas from a broad set of disciplines
and creativity from a diverse array of scientific and engineering research. The
works in this volume are the product of this cross-fertilization and provide
fantastic insight in basic understanding, theory, modeling, and applications in
cooperative control, optimization and related problems. Many of the chapters
of this volume were presented at the 5th International Conference on “Coop-
erative Control and Optimization,” which took place on January 20-22, 2005
in Gainesville, Florida. This 3 day event was sponsored by the Air Force Re-
search Laboratory and the Center of Applied Optimization of the University
of Florida.

VI Preface

We would like to acknowledge the financial support of the Air Force Re-
search Laboratory and the University of Florida College of Engineering. We
are especially grateful to the contributing authors, the anonymous referees,
and the publisher for making this volume possible.

Don Grundel
Rob Murphey
Panos Pardalos
Oleg Prokopyev

December 2006

Contents

Optimally Greedy Control of Team Dispatching Systems
Venkatesh G. Rao, Pierre T. Kabamba . 1

Heuristics for Designing the Control of a UAV Fleet With
Model Checking
Christopher A. Bohn . 21

Unmanned Helicopter Formation Flight Experiment for the
Study of Mesh Stability
Elaine Shaw, Hoam Chung, J. Karl Hedrick, Shankar Sastry 37

Cooperative Estimation Algorithms Using TDOA
Measurements
Kenneth A. Fisher, John F. Raquet, Meir Pachter 57

A Comparative Study of Target Localization Methods for
Large GDOP
Harold D. Gilbert, Daniel J. Pack and Jeffrey S. McGuirk 67

Leaderless Cooperative Formation Control of Autonomous
Mobile Robots Under Limited Communication Range
Constraints
Zhihua Qu, Jing Wang, Richard A. Hull . 79

Alternative Control Methodologies for Patrolling Assets With
Unmanned Air Vehicles
Kendall E. Nygard, Karl Altenburg, Jingpeng Tang, Doug Schesvold,
Jonathan Pikalek, Michael Hennebry . 105

A Grammatical Approach to Cooperative Control
John-Michael McNew, Eric Klavins . 117

VIII Contents

A Distributed System for Collaboration and Control of UAV
Groups: Experiments and Analysis
Mark F. Godwin, Stephen C. Spry, J. Karl Hedrick 139

Consensus Variable Approach to Decentralized Adaptive
Scheduling
Kevin L. Moore, Dennis Lucarelli . 157

A Markov Chain Approach to Analysis of Cooperation in
Multi-Agent Search Missions
David E. Jeffcoat, Pavlo A. Krokhmal, Olesya I. Zhupanska 171

A Markov Analysis of the Cueing Capability/Detection Rate
Trade-space in Search and Rescue
Alice M. Alexander, David E. Jeffcoat . 185

Challenges in Building Very Large Teams
Paul Scerri, Yang Xu, Jumpol Polvichai, Bin Yu, Steven Okamoto,
Mike Lewis, Katia Sycara . 197

Model Predictive Path-Space Iteration for Multi-Robot
Coordination
Omar A.A. Orqueda, Rafael Fierro . 229

Path Planning for a Collection of Vehicles With Yaw Rate
Constraints
Sivakumar Rathinam, Raja Sengupta, Swaroop Darbha 255

Estimating the Probability Distributions of Alloy Impact
Toughness: a Constrained Quantile Regression Approach
Alexandr Golodnikov, Yevgeny Macheret, A. Alexandre Trindade, Stan
Uryasev, Grigoriy Zrazhevsky . 269

A One-Pass Heuristic for Cooperative Communication in
Mobile Ad Hoc Networks
Clayton W. Commander, Carlos A.S. Oliveira, Panos M. Pardalos,
Mauricio G.C. Resende . 285

Mathematical Modeling and Optimization of Superconducting
Sensors with Magnetic Levitation
Vitaliy A. Yatsenko, Panos M. Pardalos . 297

Stochastic Optimization and Worst–case Decisions
Nalan Gülpinar, Berç Rustem, Stanislav Žaković . 317

Decentralized Estimation for Cooperative Phantom Track
Generation
Tal Shima, Phillip Chandler, Meir Pachter . 339

Contents IX

Information Flow Requirements for the Stability of Motion of
Vehicles in a Rigid Formation
Sai Krishna Yadlapalli, Swaroop Darbha and Kumbakonam R. Rajagopal 351

Formation Control of Nonholonomic Mobile Robots Using
Graph Theoretical Methods
Wenjie Dong, Yi Guo . 369

Comparison of Cooperative Search Algorithms for Mobile RF
Targets Using Multiple Unmanned Aerial Vehicles
George W.P. York, Daniel J. Pack and Jens Harder 387

Optimally Greedy Control of Team
Dispatching Systems

Venkatesh G. Rao1 and Pierre T. Kabamba2

1 Mechanical and Aerospace Engineering, Cornell University
Ithaca, NY 14853
E-mail:vr47@cornell.edu

2 Aerospace Engineering, University of Michigan
Ann Arbor 48109
E-mail: kabamba@engin.umich.edu

Summary. We introduce the team dispatching (TD) problem arising in coopera-
tive control of multiagent systems, such as spacecraft constellations and UAV fleets.
The problem is formulated as an optimal control problem similar in structure to
queuing problems modeled by restless bandits. A near-optimality result is derived
for greedy dispatching under oversubscription conditions, and used to formulate an
approximate deterministic model of greedy scheduling dynamics. Necessary condi-
tions for optimal team configuration switching are then derived for restricted TD
problems using this deterministic model. Explicit construction is provided for a spe-
cial case, showing that the most-oversubscribed-first (MOF) switching sequence is
optimal when team configurations have low overlap in their processing capabilities.
Simulation results for TD problems in multi-spacecraft interferometric imaging are
summarized.

1 Introduction

In this chapter we address the problem of scheduling multiagent systems
that accomplish tasks in teams, where a team is a collection of agents that acts
as a single, transient task processor, whose capabilities may partially overlap
with the capabilities of other teams. When scheduling is accomplished using
dispatching [1], or assigning tasks in the temporal order of execution, we re-
fer to the associated problems as TD or team dispatching problems. A key
characteristic of such problems is that two processes must be controlled in
parallel: task sequencing and team configuration switching, with the associ-
ated control actions being dispatching and team formation and breakup events
respectively. In a previous paper [2] we presented the class of MixTeam dis-
patchers for achieving simultaneous control of both processes, and applied it
to a multi-spacecraft interferometric space telescope. The simulation results
in [2] demonstrated high performance for greedy MixTeam dispatchers, and

2 Venkatesh G. Rao and Pierre T. Kabamba

provided the motivation for this work. A schematic of the system in [2] is in
Figure 1, which shows two spacecraft out of four cooperatively observing a
target along a particular line of sight. In interferometric imaging, the resolu-
tion of the virtual telescope synthesized by two spacecraft depends on their
separation. For our purposes, it is sufficient to note that features such as this
distinguish the capabilities of different teams in team scheduling domains.
When such features are present, team configuration switching must be used
in order to fully utilize system capabilities.

g
g

i

Line of Sight

r

Effective baseline

Observation plane

Baseline

Space telescopes

Fig. 1. Interferometric Space Telescope Constellation

The scheduling problems handled by the MixTeam schedulers are NP-
hard in general [3]. Work in empirical computational complexity in the last
decade [4, 5] has demonstrated, however, that worst-case behavior tends to be
confined to small regions of the problem space of NP-hard problems (suitably-
parameterized), and that average performance for good heuristics outside this
region can be very good. The main analytical problem of interest, therefore, is
to provide performance guarantees for specific heuristic approaches in specific
parts of problem space, where worst-case behavior is rare and local structure
may be exploited to yield good average performance. In this work we are
concerned with greedy heuristics in oversubscribed portions of the problem
space.

TD problems are structurally closest to multi-armed bandit problems [6]
(in particular, the sub-class of restless bandit problems [7, 8, 9]), and in [2] we
utilized this similarity to develop exploration/exploitation learning methods

Optimally Greedy Control of Team Dispatching Systems 3

inspired by the multi-armed bandit literature. Despite the broad similarity of
TD and bandit problems, however, they differ in their detailed structure, and
decision techniques for bandits cannot be directly applied. In this chapter we
seek optimally greedy solutions to a special case of TD called RTD (Resricted
Team Dispatching). Optimally greedy solutions use a greedy heuristic for dis-
patching (which we show to be asymptotically optimal) and an optimal team
configuration switching rule.

The results in this chapter are as follows. First, we develop an input-output
representation of switched team systems, and formulate the TD problem. Next
we show that greedy dispatching is asymptotically optimal for a single static
team under oversubscription conditions. We use this to develop a deterministic
model of the scheduling process, and then pose the restricted team dispatch-
ing (RTD) problem of finding optimal switching sequences with respect to
this deterministic model. We then show that switching policies for RTD must
belong to the class OSPTE (one-switch-persist-till-empty) under certain real-
istic constraints. For this class, we derive a necessary condition for the optimal
configuration switching functions, and provide an explicit construction for a
special case. A particularly interesting result is that when the task processing
capabilities of possible teams overlap very little, then the most oversubscribed
first (MOF) switching sequence is optimal for minimizing total cost. Quali-
tatively, this can be interpreted as the principle that when team capabilities
do not overlap much, generalist team configurations should be instantiated
before specialist team configurations.

The original contribution of this chapter comprises three elements. The
first is the development of a systematic representation of TD systems. The
second is the demonstration of asymptotic optimality properties of greedy
dispatching under oversubscription conditions. The third is the derivation of
necessary conditions and (for a special case) constructions for optimal switch-
ing policies under realistic assumptions.

In Section 2, we develop the framework and the problem formulation. In
Sections 3 and 4, we present the main results of the chapter. In Section 5 we
summarize the application results originally presented in [2]. In Section 6 we
present our conclusions.The appendix contains sketches of proofs. Full proofs
are available in [3].

2 Framework and Problem Formulation

Before presenting the framework and formulation for TD problems in de-
tail, we provide an overview using an example.

Figure 2 shows a 4-agent TD system, such as Figure 1, represented as a
queuing network. A set of tasks G(t) is waiting to be processed (in general
tasks may arrive continuously, but in this chapter we will only consider tasks
sets where no new jobs arrive after t = 0). If we label the agents a, b, c and d,
and legal teams are of size two, then the six possible teams are ab, ac, ad, bc,

4 Venkatesh G. Rao and Pierre T. Kabamba

bd and cd. Legal configurations of teams are given by ab-cd, ac-bd and ad-bc
respectively. These are labeled C1, C2 and C3 in Figure 1. Each configuration,
therefore, may be regarded as a set of processors corresponding to constituent
teams, each with a queue capable of holding the next task. At any given
time, only one of the configurations is in existence, and is determined by the
configuration function C̄(t). Whenever a team in the current configuration is
free, a trigger is sent to the dispatcher, d, which releases a waiting feasible
task from the unassigned task set G(t) and assigns it to the free team, which
then executes it. The control problem is to determine the signal C̄(t) and the
dispatch function d to optimize a performance measure. In the next subsection,
we present the framework in detail.

Fig. 2. System Flowchart

2.1 System Description

We will assume that time is discrete throughout, with the discrete time
index t ranging over the non-negative integers N. There are three agent-based
entities in TD systems: individual agents, teams, and configurations of teams.
We define these as follows.
Agents and Agent Aggregates

1. Let A �
= {A1, A2, . . . , Aq} be a set of q distinguishable agents.

Optimally Greedy Control of Team Dispatching Systems 5

2. Let T �
= {T1, T2, . . . , Tr} be a set of r teams that can be formed from

members of A, where each team maps to a fixed subset of A. Note that
multiple teams may map to the same subset, as in the case when the
ordering of agents within a team matters.

3. Let C �
= {C1, C2, . . . , Cm} be a set of m team configurations, defined as a

set of teams such that the subsets corresponding to all the teams constitute
a partition of A. Note that multiple configurations can map to the same
set partition of A. It follows that an agent A must belong to exactly one
team in any given configuration C.

Switching Dynamics
We describe formation and breakup by means of a switching process de-

fined by a configuration function.

1. Let a configuration function C̄(t) be a map C̄ : N → C that assigns a
configuration to every time step t. The value of C̄(t) is the element with
index it in C, and is denoted Cit . The set of all such functions is denoted
C.

2. Let time t be partitioned into a sequence of half-open intervals [tk, tk+1),
k = 0, 1, . . . , or stages, during which C̄(t) is constant. The tk are referred
to as the switching times of the configuration function C̄(t).

3. The configuration function can be described equivalently with either time
or stage, since, by definition, it only changes value at stage boundaries.
We therefore define C(k) = C̄(t) for all t ∈ [tk, tk+1). We will refer to both
C(k) and C̄(t) as the configuration function. The sequence C(0), C(1), . . .
is called the switching sequence

4. Let the team function T̄ (C, j) be the map T : C × N → T given by
team j in configuration C. The maximum allowable value of j among
all configurations in a configuration function represents the maximum
number of logical teams that can exist simultaneously. This number is
referred to as the number of execution threads of the system, since it is
the maximum number of parallel task execution processes that can exist
at a given time. In this chapter we will only analyze single-threaded TD
systems, but present simulation results for multi-threaded systems.

Tasks and Processing Capabilities
We require notation to track the status of tasks as they go from unsched-

uled to executed, and the capabilities of different teams with respect to the
task set. In particular, we will need the following definitions:

1. Let X be an arbitrary collection of teams (note that any configuration C

is by definition such a collection). Define G(X, t)
�
= {gr : the set of all

tasks that are available for assignment at time t, and can be processed by
some team in X}.

6 Venkatesh G. Rao and Pierre T. Kabamba

Ḡ(C, t) = G(C, t) −
⋃

Ci �=C

G(Ci, t)

Ḡ(T, t) = G(T, t)−
⋃

Ti �=T

G(Ti, t). (1)

If X = T , then the set G(X, t) = G(T , t) represents all unassigned tasks
at time t. For this case, we will drop the first argument and refer to such
sets with the notation G(t). A task set G(t) is by definition feasible, since
at least one team is capable of processing it. Team capabilities over the
task set are illustrated in the Venn diagram in Figure 3.

Fig. 3. Processing capabilities and task set structure

2. Let X be a set of teams (which can be a single team or configuration as
in the previous definition). Define

nX(t) =

∣∣∣∣∣ ⋃
Ti∈X

G(Ti, t)

∣∣∣∣∣ , and

n̄X(t) =

∣∣∣∣∣∣
⋃

Ti∈X

G(Ti, t)−
⋃

Ti /∈X

G(Ti, t)

∣∣∣∣∣∣ . (2)

If X is a set with an index or time argument, such as C(k), C̄(t) or Ci,
the index or argument will be used as the subscript for n or n̄, to simplify
the notation.

Optimally Greedy Control of Team Dispatching Systems 7

Dispatch Rules and Schedules
The scheduling process is driven by a dispatch rule that picks tasks from

the unscheduled set of tasks, and assigns them to free teams for execution.
The schedule therefore evolves forward in time. Note that this process does
not backtrack, hence assignments are irrevocable.

1. We define a dispatch rule to be a function d : T ×N→ G(t) that irrevocably
assigns a free team to a feasible unassigned task as follows,

d(T, t) = g ∈ G(T, t), (3)

where t ∈ {tid} the set of decision points, or the set of end times of the
most recently assigned tasks for the current configuration. d belongs to a
set of available dispatch rules D.

2. A dispatch rule is said to be complete with respect to the configuration
function C̄(t) and task set G(0) if it is guaranteed to eventually assign all
tasks in G(0) when invoked at all decision points generated starting from
t = 0 for all teams in C̄(t).

3. Since a configuration function and a dispatch rule generate a schedule, we
define a schedule3 to be the ordered pair (C̄(t), d), where C̄(t) ∈ C, and
d ∈ D is complete with respect to G(0) and C̄(t).

Cost Structure
Finally, we define the various cost functions of interest that will allow us

to state propositions about optimality properties.

1. Let the real-valued function c(g, t) : G(t)×N→ R be defined as the cost
incurred for assigning4 task g at time tg. We refer to c as the instantaneous
cost function. c is a random process in general. Let J (C̄(t), d) be the
partial cost function of a schedule (C̄(t), d). The two are related by:

J (C̄(t), d) =
∑

g∈G(0)

c(g, tg), (4)

where tg is the actual time at which g is assigned. This model of costs is
defined to model the specific instantaneous cost of slack time in processing
a task in [2], and the overall cost of makespan [1]. Other interpretations
are possible.

3 Strictly speaking, (C̄(t), d) is insufficient to uniquely define a schedule, but suf-
ficient to define a schedule up to interchangeable tasks, defined as tasks with
identical parameters. Sets of schedules that differ in positions of interchangeable
tasks constitute an equivalence class with respect to cost structure. These details
are in [3].

4 Task costs are functions of commitment times in general, not just the start times.
See [3] for details.

8 Venkatesh G. Rao and Pierre T. Kabamba

2. Let a configuration function C(k) = Cik
∈ C have kmax stages. The total

cost function J T is defined as

J T (C̄(t), d) = J (C̄(t), d) +
kmax∑
k=1

JS(ik, ik−1), (5)

where JS(ik, ik+1) is the switching cost between configurations ik and
ik+1, and is finite. Define JS

min = min JS(i, j), JS
max = maxJS(i, j), i,

j ∈ 1, . . ., m,.

2.2 The General Team Dispatching (TD) Problem

We can now state the general team dispatching problem as follows:
General Team Dispatching Problem (TD) Let G(0) be a set of tasks that
must be processed by a finite set of agents A, which can be partitioned into
team configurations in C, comprising teams drawn from T . Find the schedule
(C̄∗(t), d∗) that achieves

(C̄∗(t), d∗) = argmin E(J T (C̄(t), d)), (6)

where C̄(t) ∈ C and d ∈ D.

3 Performance Under Oversubscription

In this section, we show that for the TD problem with a set of tasks G(0),
whose costs c(g, t) are bounded and randomly varying, and a static config-
uration comprising a single team, a greedy dispatch rule is asymptotically
optimal when the number of tasks tends to infinity. We use this result to
justify a simplified deterministic oversubscription model of the greedy cost
dynamics, which will be used in the next section.

Consider a system comprising a single, static team, T . Since there is only
a single team, C(t) = C = {T }, a constant. Let the value of the instantaneous
cost function c(g, t), for any g and t, be given by the random variable X , as
follows,

c(g, t) = X ∈ {cmin = c1, c2, . . . , ck = cmax},
P (X = ci) = 1/k, (7)

such that the finite set of equally likely outcomes, {cmin = c1, c2, . . . , ck =
cmax} satisfies ci < ci+1 for all i < k. The index values j = 1, 2, . . . k are
referred to as cost levels. Since there is no switching cost, the total cost of a
schedule is given by

J T (C̄(t), d) ≡ J (C̄(t), d) ≡
∑

g∈G(0)

c(g, tg), (8)

Optimally Greedy Control of Team Dispatching Systems 9

where tg are the times tasks are assigned in the schedule.
Definition 1: We define the greedy dispatch rule, dm, as follows:

dm(T, t) = g∗ ∈ G(T, t),
c(g∗, t) ≤ c(g, t) ∀g ∈ G(T, t), g �= g∗. (9)

We define the random dispatch rule dr(T, t) as a function that returns a ran-
domly chosen element of G(T, t). Note that both greedy and random dispatch
rules are complete, since there is only one team, and any task can be done at
any time, for a finite cost.
Theorem 1: Let G(0) be a set of tasks such that (7) holds for all g ∈ G(0), for

all t > 0. Let jm be the lowest occupied cost level at time t > 0. Let n
�
= |G(t)|.

Then the following hold:

lim
n→∞E(c(dm(T, t), t)) = cmin, (10)

lim
n→∞E(jm) = 1, (11)

E(Jm) < E(Jr)for large n, (12)

lim
n→∞

E(Jm)− J ∗

J ∗ = 0, (13)

where Jm ≡ J T (C̄(t), dm) and Jr ≡ J T (C̄(t), dr) are the total costs of the
schedules (C̄(t), dm) and (C̄(t), dr) computed by the greedy and random dis-
patchers respectively, and J ∗ is the cost of an optimal schedule.
Remark 1: Theorem 1 essentially states that if a large enough number of
tasks with randomly varying costs are waiting, we can nearly always find one
that happens to be at cmin.5 All the claims proved in Theorem 1 depend on
the behavior of the probability distribution for the lowest occupied cost level
jm as n increases. Figure 4 shows the change in E(jm) with n, for k = 10, and
as can be seen, it drops very rapidly to the lowest level. Figure 5 shows the
actual probability distribution for jm with increasing n and the same rapid
skewing towards the lowest level can be seen. Theorem 1 can be interpreted
as a local optimality property that holds for a single execution thread between
switches (a single stage).

Theorem 1 shows that for a set of tasks with randomly varying costs, the
expected cost of performing a task picked with a greedy rule varies inversely
with the size of the set the task is chosen from. This leads to the conclusion
that the cost of a schedule generated with a greedy rule can be expected to
converge to the optimal cost in a relative sense, as the size of the initial task
set increases.
Remark 2: For the spacecraft scheduling domain discussed in [2], the se-
quence of cost values at decision times are well approximated by a random
sequence.
5 Theorem 1 is similar to the idea of ‘economy of scale’ in that more tasks are

cheaper to process on average, except that the economy comes from probability
rather than amortization of fixed costs.

10 Venkatesh G. Rao and Pierre T. Kabamba

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
Expected Lowest Occupied Cost Level for k=10

 E
(j m

)

 n

Fig. 4. Change in expected value of jm with n

3.1 The Deterministic Oversubscription Model

Theorem 1 provides a relation between the degree of oversubscription of
an agent or team, and the performance of the greedy dispatching rule. This
relation is stochastic in nature and makes the analysis of optimal switching
policies extremely difficult. For the remainder of this chapter, therefore, we
will use the following model, in order to permit a deterministic analysis of the
switching process.
Deterministic Oversubscription Model: The costs c(g, t) of all tasks is
bounded above and below by cmax and cmin, and for any team T , if two
decision points t and t′ are such that nT (t) > nT (t′) then

c(dm(t), t) ≡ c(nT (t)) < c(dm(t′), t′) ≡ c(nT (t)). (14)

The model states that the cost of processing the task picked from G(T, t)
by dm is a deterministic function that depends only on the size of this set, and
decreases monotonically with this size. Further, this cost is bounded above and
below by the constants cmax and cmin for all tasks. This model may be regarded
as a deterministic approximation of the stochastic correlation between degree
of oversubscription and performance that was obtained in Theorem 1. We now
use this to define a restricted TD problem.

Optimally Greedy Control of Team Dispatching Systems 11

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cost Levels (j=1 through k)

 P
(j m

=j
)

Changing probability distribution for j
m

 as n grows

Fig. 5. Change in distribution of jm with n. The distributions with the greatest
skewing towards j = 1 are the ones with the highest n

4 Optimally Greedy Dispatching

In this section, we present the main results of this chapter: necessary con-
ditions that optimal configuration functions must satisfy for a subclass, RTD,
of TD problems, under reasonable conditions of high switching costs and de-
centralization. We first state the restricted TD problem, and then present two
lemmas that demonstrate that under conditions of high switching costs and
information decentralization, the optimal configuration function must belong
to the well-defined one-switch, persist-till-empty (OSPTE) dominance class.
When Lemmas 1 and 2 hold, therefore, it is sufficient to search over the OS-
PTE class for the optimal switching function, and in the remaining results,
we consider RTD problems for which Lemmas 1 and 2 hold.
Restricted Team Dispatching Problem (RTD) Let G(0) be a feasible
set of tasks that must be processed by a finite set of agents A, which can be
partitioned into team configurations in C, comprising teams drawn from T .
Let there be a one to one map between the configuration and team spaces,
C ↔ T and Ci = {Ti}, i.e., each configuration comprises only one team. Find
the schedule (C̄∗(t), dm) that achieves

12 Venkatesh G. Rao and Pierre T. Kabamba

(C̄∗(t), dm) = argmin J T (C̄(t), dm), (15)

where C̄(t) ∈ C, dm is the greedy dispatch rule, and the deterministic over-
subscription model holds.

RTD is a specialization of TD in three ways. First, it is a determinis-
tic optimization problem. Second, it has a single execution thread. For team
dispatching problems, such a situation can arise, for instance, when every
configuration consists of a team comprising a unique permutation of all the
agents in A. For such a system, only one task is processed at a time, by the
current configuration. Third, the dispatch function is fixed (d = dm) so that
we are only optimizing over configuration functions.

We now state two lemmas that show that under the reasonable condi-
tions of high switching cost (a realistic assumption for systems such as multi-
spacecraft interferometric telescopes) and decentralization, the optimal con-
figuration function for greedy dispatching must belong to OSPTE.
Definition 2: For a configuration space C with m elements, the class OS of
one-switch configuration functions comprises all configuration functions, with
exactly m stages, with each configuration instantiated exactly once.
Lemma 1: For an RTD problem, let

|G(0)| = n

Ḡ(Ci, 0) �= ∅, for all Ci ∈ C, (16)

and let
mJS

min − (m− 1)JS
max > n (cmax − cmin) . (17)

Under the above conditions, the optimal configuration function C̄∗(t) is in OS.
Lemma 1 provides conditions under which it is sufficient to search over

the class of schedules with configuration functions in OS. This is still a fairly
large class. We now define OSPTE defined as follows:
Definition 3: A one-switch persist-till-empty or OSPTE configuration func-
tion C̄(t) ∈ OS is such that every configuration in C̄(t), once instantiated,
persists until G(Ck, t) = ∅.
Constraint 1: (Decentralized Information) Define the local knowledge set
Ki(t) to be the set of truth values of the membership function g ∈ G(Ci, t)
over G(t) and the truth value of Equation 17. The switching time tk+1 is only
permitted to be a function of Ki(t).
Constraint 2: (Decentralized Control): Let C(k) = Ci where Ci comprises
the single team Ti. For stage k, the switching time tk+1 is only permitted to
take on values such that tk ≥ tC , where tC is the earliest time at which

Ki(t) ⇒ � ∃(t′ < ∞) : (G(Ti, t
′) = ∅) (18)

is true
Lemma 2: If Lemma 1 and constraints 1 and 2 hold, then the optimal con-
figuration function is OSPTE.

Optimally Greedy Control of Team Dispatching Systems 13

Remark 3: Constraint 1 says that the switching time can only depend on
information concerning the capabilities of the current configuration. This cap-
tures the case when each configuration is a decision-making agent, and once
instantiated, determines its own dissolution time (the switching time tk+1)
based only on knowledge of its own capabilities, i.e., it does not know what
other configurations can do.6 Constraint 2 uses the modal operator � (“In
all possible future worlds”) [10] to express the statement that the switching
time cannot be earlier than the earliest time at which the knowledge set Ki

is sufficient to guarantee completion of all tasks in G(C(k)) at some future
time. This means a configuration will only dissolve itself when it knows that
there is a time t′, when all tasks within its range of capabilities will be done
(possibly by another configuration with overlapping capabilities). Lemma 2
essentially captures the intuitive idea that if an agent is required to be sure
that tasks will be done by some other agent in the future in order to stop
working, it must necessarily know something about what other agents can do.
In the absence of this knowledge, it must do everything it can possibly do, to
be safe.

We now derive properties of solutions to RTD problems that satisfy Lem-
mas 1 and 2, which we have shown to be in OSPTE.

4.1 Optimal Solutions to RTD Problems

In this section, we first construct the optimal switching sequence for the
simplest RTD problems with two-stage configuration functions (Theorem 2),
and then use it to derive a necessary condition for optimal configuration func-
tions with an arbitrary number of stages (Theorem 3). We then show, in
Theorem 4, that if a dominance property holds for the configurations, Theo-
rem 3 can be used to construct the optimal switching sequence, which turns
out to be the most-oversubscribed-first (MOF) sequence.
Theorem 2 Consider a RTD problem for which Lemmas 1 and 2 hold. Let
C �

= {C1, C2}. Assume, without loss of generality, that |C1| ≥ |C2|. For this
system, the configuration function (C(0) = C1, C(1) = C2) is optimal, and
unique when |C1| > |C2|.

Theorem 2 simply states that if there are only two configurations, the one
that can do more should be instantiated first. Next, we use Theorem 2 to
derive a necessary condition for arbitrary numbers of configurations.
Theorem 3: Consider an RTD system with m configurations and task set
G(0). Let Lemmas 1 and 2 hold. Let C(k) = C(0), . . . , C(m − 1) be an op-
timal configuration function. Then any subsequence C(k), . . . , C(k′) must be
the optimal configuration function for the RTD with task set G(tk)−G(tk′+1).
Furthermore, for every pair of neighboring configurations C(j), C(j + 1)

nj(tj) > nj+1(tj). (19)
6 Parliaments are a familiar example of multiagent teams that dissolve themselves

and do not know what future parliaments will do.

14 Venkatesh G. Rao and Pierre T. Kabamba

Theorem 3 is similar to the principle of optimality. Note that though it is
merely necessary, it provides a way of improving candidate OSPTE configu-
ration functions by applying Equation 19 locally and exchanging neighboring
configurations to achieve local improvements. This provides a local optimiza-
tion rule.
Definition 4: The most-oversubscribed first (MOF) sequence CD(k)

�
=

Ci0 . . . Cim−1 is a sequence of configurations such that ni0(0) ≥ ni1(0) ≥ . . . ≥
nim−1(0)
Definition 5: The dominance order relation is defined as

Ci Cj ⇐⇒ n̄i(0) > nj(0). (20)

Theorem 4: If every configuration in CD(k) dominates its successor, CD(k)
CD(k + 1) , then the optimal configuration function is given by (CD(k), dm).

Theorem 3 is an analog of the principle of optimality, which provides the
validity for the procedure of dynamic programming. For such problems, solu-
tions usually have to be computed backwards from the terminal state. Theo-
rem 4 can be regarded as a tractable special case, where a property that can
be determined a priori (the MOF order) is sufficient to compute the optimal
switching sequence.
Remark 4: The relation may be interpreted as follows. Since the relation
is stronger than size ordering, it implies either a strong convergence of task
set sizes for the configurations or weak overlap among task sets. If the number
of tasks that can be processed by the different configurations are of the same
order of magnitude, the only way the ordering property can hold is if the
intersections of different task sets (of the form G(Ci, t)

⋂
G(Cj , t) are all very

small. This can be interpreted qualitatively as the prescription: if capabilities
of teams overlap very little, instantiate generalist team configurations before
specialist team configurations.

Theorem 3 and Theorem 4 constitute a basic pair of analysis and synthesis
results for RTD problems. General TD problems and the systems in [2] are
much more complex, but in the next section, we summarize simulation results
from [2] that suggest that the provable properties in this section may be
preserved in more complex problems.

5 Applications

While the abstract problem formulation and main results presented in
this chapter capture the key features of the multi-spacecraft interferometric
telescope TD system in [2] (greedy dispatching and switching team configura-
tions), the simulation study had several additional features. The most impor-
tant ones are that the system in [2] had multiple parallel threads of execution,
arbitrary (instead of OSPTE) configuration functions and, most importantly,

Optimally Greedy Control of Team Dispatching Systems 15

learning mechanisms for discovering good configuration functions automat-
ically. In the following, we describe the system and the simulation results
obtained. These demonstrate that the fundamental properties of greedy dis-
patching and optimal switching deduced analytically in this chapter are in
fact present in a much richer system.

The system considered in [2] was a constellation of 4 space telescopes that
operated in teams of 2. Using the notation in this chapter, the system can be
described by A = {a, b, c, d}, T = {T1, . . . , T6}

�
= {ab, ac, ad, bc, bd, cd} and

C = {C1, C2, C3}
�
= {ab−cd, ac−bd, ad−bc} (Figure 2). The goal set G(0) com-

prised 300 tasks in most simulations. The dispatch rule was greedy (dm). The
local cost cj was the slack introduced by scheduling job j, and the global cost
was the makespan (the sum of local costs plus a constant). The switching cost
was zero. The relation of oversubscription to dispatching cost observed em-
pirically is very well approximated by the relation derived in Theorem 1. For
this system, the greedy dispatching performed approximately 7 times better
than the random dispatching, even with a random configuration function. The
MixTeam algorithms permit several different exploration/exploitation learn-
ing strategies to be implemented, and the following were simulated:

1. Baseline Greedy: This method used greedy dispatching with random con-
figuration switching.

2. Two-Phase: This method uses reinforcement learning to identify the ef-
fectiveness of various team configurations during an exploration phase
comprising the first k percent of assignments, and preferentially creates
these configurations during an exploitation phase.

3. Two-Phase with rapid exploration: this method extends the previous
method by forcing rapid changes in the team configurations during ex-
ploration, to gather a larger amount of effectiveness data.

4. Adaptive: This method uses a continuous learning process instead of a
fixed demarcation of exploration and exploitation phases.

Table 1 shows the comparison results for the the three learning methods,
compared to the basic greedy dispatcher with a random configuration func-
tion. Overall, the most sophisticated scheduler reduced makespan by 21% rel-
ative to the least sophisticated controller. An interesting feature was that the
preference order of configurations learned by the learning dispatchers approx-
imately matched the MOF sequence that was proved to be optimal under the
conditions of Theorem 4. Since the preference order determines the time frac-
tion assigned to each configuration by the MixTeam schedulers, the dominant
configuration during the course of the scheduling approximately followed the
MOF sequence. This suggests that the MOF sequence may have optimality
or near-optimality properties under weaker conditions than those of Theorem
4.

16 Venkatesh G. Rao and Pierre T. Kabamba

Table 1. Comparison of methods

Method Best Makespan Best Jm/J ∗ % change
(hours) (w.r.t greedy)

1. 54.41 0.592 0%
2. 48.42 0.665 -11%
3. 47.16 0.683 -13.3%
4. 42.67 0.755 -21.6%

6 Conclusions

In this chapter, we formulated an abstract team dispatching problem and
demonstrated several basic properties of optimal solutions. The analysis was
based on first showing, through a probabilistic argument, that the greedy
dispatch rule is asymptotically optimal, and then using this result to motivate
a simpler, deterministic model of the oversubscription-cost relationship. We
then derived properties of optimal switching sequences for a restricted version
of the general team dispatching problem. The main conclusions that can be
drawn from the analysis are that greed is asymptotically optimal and that a
most-oversubscribed-first (MOF) switching rule is the optimal greedy strategy
under conditions of small intersections of team capabilities. The results are
consistent with the results for much more complex systems that were studied
using simulation experiments in [2].

The results proved represent a first step towards a complete analysis of dis-
patching methods such as the MixTeam algorithms, using the greedy dispatch
rule. Directions for future work include the extension of the stochastic analysis
to the switching part of the problem, derivation of optimality properties for
multi-threaded execution, and demonstrating the learnability of near-optimal
switching sequences, which was observed in practice in simulations with Mix-
Team learning algorithms.

References

1. Pinedo, M., Scheduling: theory, algorithms and systems, Prentice Hall, 2002.
2. Rao, V. G. and Kabamba, P. T., “Interferometric Observatories in Circular

Orbits: Designing Constellations for Capacity, Coverage and Utilization,” 2003
AAS/AIAA Astrodynamics Specialists Conference, Big Sky, Montana, August
2003.

3. Rao, V. G., Team Formation and Breakup in Multiagent Systems, Ph.D. thesis,
University of Michigan, 2004.

4. Cook, S. and Mitchell, D., “Finding Hard Instances of the Satisfiability Prob-
lem,” Proc. DIMACS workshop on Satisfiability Problems, 1997.

5. Cheeseman, P., Kanefsky, B., and Taylor, W., “Where the Really Hard Problems
Are,” Proc. IJCAI-91 , Sydney, Australia, 1991, pp. 163–169.

Optimally Greedy Control of Team Dispatching Systems 17

6. Berry, D. A. and Fristedt, B., Bandit Problems: Sequential Allocation of Exper-
iments, Chapman and Hall, 1985.

7. Whittle, P., “Restless Bandits: Activity Allocation in a Changing World,” Jour-
nal of Applied Probability , Vol. 25A, 1988, pp. 257–298.

8. Weber, R. and Weiss, G., “On an Index Policy for Restless Bandits,” Journal
of Applied Probability , Vol. 27, 1990, pp. 637–348.

9. Papadimitrou, C. H. and Tsitsiklis, J. N., “The Complexity of Optimal Queuing
Network Control,” Math and Operations Research, Vol. 24, No. 2, 1999, pp. 293–
305.

10. Weiss, G., Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence, MIT Press, Cambridge, MA, 2000.

A Proofs

In this appendix we present a sketch of the proof of Theorem 1, and briefly
outline the main arguments of the other proofs. Full proofs are available in
[3].
Proof of Theorem 1: To prove the first and second claims we first derive
expressions for E(c(dm(t), t)) and E(jm),

E(jm) =
j=k∑
j=1

jP (jm = j),

E(c(dm(t), t)) =
j=k∑
j=1

cjP (jm = j). (21)

Define the φ(j), the occupancy of cost-level j, as the number of waiting tasks
for which c(g, t) = cj . We write α = (j − 1)/k and β = (1− 1/(k− j + 1)). It
can be shown [3] that

E(jm) =
j=k∑
j=1

j (1− α)n (1− βn) , (22)

and similarly

E(c(dm(t), t)) =
j=k∑
j=1

cj (1− α)n (1− βn) . (23)

By taking limits on the term inside the summand

P (jm = j) = (1− α)n (1− βn) (24)

it can be shown that

lim
n→∞E(c(dm(t), t)) = cmin,

lim
n→∞E(jm) = 1, (25)

18 Venkatesh G. Rao and Pierre T. Kabamba

which proves the first two claims. To prove 12, we first prove that the con-
vergence for 10 and 11 is monotonic after a sufficiently high n for each of
the summands. Specifically, we can show that for n > η∗

j , the jth summand
decreases monotonically, where η∗

j is given by

η∗
j = ln

(
λ

1 + λ

)
/ ln β

= ln
(

ln(1− α)/ ln β

1 + ln(1− α)/ ln β

)
/ lnβ. (26)

Picking n∗ > n∗
j for all j, we can show that the cost approaches cmin monoton-

ically for n > n∗. We can use this fact to bound the total cost of the schedule
by partitioning it into the cost of the last n∗ tasks and the first n− n∗ tasks
to show that for arbitrary ε:

E(Jm) < N(ε)(cmax − cmin − ε) + n(cmin + ε), (27)

which yields

E(Jr)− E(Jm) > 0 as n→∞. (28)

Finally, 13 follows immediately from the fact that the schedule cost is bounded
below by ncmin, which yields, for sufficiently large n

lim
n→∞

(E(Jm)− J ∗)
J ∗ ≤ O(ε/cmin). (29)

Since we can choose ε arbitrarily small, the right-hand side cannot be bounded
away from 0, therefore

lim
n→∞

(E(Jm)− J ∗)
J ∗ = 0. (30)

�

Proof of Lemma 1: This lemma is proved by showing that with high enough
switching costs, the worst case cost for a schedule with m− 1 switches is still
better than the best-case cost for a schedule with m switches. Details are in
[3] �

Proof of Lemma 2: Constraint 1 says that the switching time tk+1 out
of stage k can only depend on information Ki(t) about whether or not the
current configuration C(k) = Ci can do each of the remaining jobs. Constraint
2 specifies this dependence further, and says that the switching time cannot be
less than the earliest time at which Ki(t) is sufficient to guarantee that all jobs
in G(Ci, t) will eventually get done (in a finite time). Clearly, if G(Ci, tk+1)
is empty at the switching time tk+1, then it will continue to be empty in all
future worlds and constraints 1 and 2 are trivially satisfied.

To establish that C(k) is OSPTE, it is sufficient to show that G(Ci, t) must
be empty at t = tk. We show this by contradiction. Assume it is non-empty and

Optimally Greedy Control of Team Dispatching Systems 19

let g ∈ G(C(k), tk+1). Then by constraint 2, it must be that Ki(tk) is sufficient
to establish the existence of t′ > tk+1 such that G(C(k), t′) = ∅. This implies it
is also sufficient to establish that there exists at least one configuration C′ to be
instantiated in the future, that can (and will) process g. Now, either C′ = Ci or
C′ �= Ci. By assumption it is known that Equation 15 holds, and by Constraint
1, this is part of Ki(t). Therefore Ki(tk) is sufficient information to conclude
that Ci will not be instantiated again in the future. Therefore C′ �= C. But
this means something is known about the truth value of membership relation
g ∈ G(C′, t′), for a C′ �= Ci, which is impossible by Constraint 1. Therefore,
by contradiction, G(C(k), tk+1) = ∅ and the configuration function must be
in OSPTE. �

Proof of Theorem 2: This theorem is a consequence of the deterministic
oversubscription model which leads to lower marginal costs for doing tasks
when they are assigned to the more capable configuration. See [3] for details.
Proof of Theorem 3: Theorem 3 is a straightforward generalization of The-
orem 2 and hinges on the fact that each task is done by the first configuration
that can process it, which implies that the tasks processed by a subsequence of
configurations do not depend on the ordering within that subsequence. There-
fore the state of the task sets before and after the subsequence are not changed
by changing the subsequence, implying that each subsequence must be the op-
timal permutation among all permutations of the constituent configurations.
This principle does not hold in general. For details see [3]. �

Proof of Theorem 4: This theorem hinges on the fact that the relation
Ci Cj cannot be changed by any possible processing by configurations
instantiated before either Ci or Cj is instantiated, since the relation depends
on the number of tasks each is uniquely capable of processing. This relation,
a fortiori, allows us to use reasoning similar to Theorems 2 and 3 to recover
a construction of the optimal sequence. For details see [3]. �

Heuristics for Designing the Control of a UAV
Fleet With Model Checking

Christopher A. Bohn∗

Department of Systems and Software Engineering
Air Force Institute of Technology
Wright-Patterson AFB OH 45385, USA
E-mail: christopher.bohn@afit.edu

Summary. We describe a pursuer-evader game played on a grid in which the pur-
suers can move faster than the evaders, but the pursuers cannot determine an
evader’s location except when a pursuer occupies the same grid cell as that evader.
The pursuers’ object is to locate all evaders, while the evader’s object is to prevent
collocation with any pursuer indefinitely. The game is loosely based on autonomous
unmanned aerial vehicles (UAVs) with a limited field-of-view attempting to locate
enemy vehicles on the ground, where the idea is to control a fleet of UAVs to meet
the search objective. The requirement that the pursuers move without knowing the
evaders’ locations necessitates a model of the game that does not explicitly model
the evaders. This has the positive benefit that the model is independent of the num-
ber of evaders (indeed, the number of evaders need not be known); however, this
has the negative side-effect that the time and memory requirements to determine a
pursuer-winning strategy is exponential in the size of the grid. We report significant
improvements in the available heuristics to abstract the model further and reduce
the time and memory needed.

1 Introduction

The challenge of an airborne system locating an object on the ground is a
common problem for many applications, such as tracking, search and rescue,
and destroying enemy targets during hostilities. If the target is not facilitating
the search, or is even attempting to foil it by moving to avoid detection, the
difficulty of the search effort is greater than when the target aids the search.
Our research is intended to address a technical hurdle for locating moving
targets with certainty. We have abstracted this problem of controlling a fleet
of UAVs to meet some search objective into a pursuer-evader game played on

∗ The views expressed in this article are those of the author and do not necessarily
reflect the official policy of the Air Force, the Department of Defense, or the US
Government.

22 Christopher A. Bohn

a finite grid. The pursuers can move faster than the evaders, but the pursuers
cannot ascertain the evaders’ locations except by the collocation of a pursuer
and evader. Further, not only can the evaders determine the pursuers’ past
and current locations, they have an oracle providing them with the pursuers’
future moves. The pursuers’ objective is to locate all evaders eventually, while
the evaders’ objective is to prevent indefinitely collocation with any pursuer.

We previously [5] described how and why we modeled this game as a sys-
tem of concurrent finite automata, and the use of symbolic model checking
to extract pursuer-winning search strategies for games involving single- and
multiple-pursuers, games with rectilinear and hexagonal grids, games with
and without terrain features, and games with varying pursuer-sensor foot-
prints. We further outlined the state-space explosion problem essential to our
approach and suggested heuristics that may be suitable to cope with this
problem.

Here we present the results of our investigation into these heuristics. In
Section 2, we reiterate the technique of using model checking to discover
pursuer-winning search strategies. In Section 3, we describe our heuristics
and demonstrate their utility. In Section 4, we establish necessary pursuer
qualities for a pursuer-winning search strategy to exist. Finally, in Section 5
we consider directions for future work.

2 Background

We begin by describing model checking, an automatic technique to verify
properties of systems composed of concurrent finite automata. After examin-
ing model checking, we review the model of the pursuer-evader game and how
model checking can be used to discover pursuer-winning search strategies.

2.1 Model Checking

Model checking is a software engineering technique to establish or refute the
correctness of a finite-state concurrent system relative to a formal specifica-
tion expressed using a temporal logic. Originally, model checking involved the
explicit representation of an automaton’s states, which placed a considerable
constraint on the size of models that could be checked. With the advent of
symbolic model checking, checking models with greater state spaces was pos-
sible. Symbolic model checking differs from explicit-state model checking in
that the models are represented by reduced, ordered binary decision diagrams,
which are canonical representations of boolean formulas. Examples of symbolic
model checkers are SMV [2] and its re-implementation, NuSMV [1]; Spin [3]
is an examplar explicit-state model checker. Should a model fail to satisfy its
specification, SMV, NuSMV, and Spin all provide computation traces that
serve as witnesses to the falsehood of the specification; these counterexamples
are often used to identify and correct errors the model.

Heuristics for Designing the Control of a UAV Fleet With Model Checking 23

The computational complexity of model checking is not unreasonable. For
example, consider a model M consisting of the set of states S and the transi-
tion relation R and the formula f . Let |S| and |R| be the cardinalities of S
and R, respectively. Then we define |M | = |S|+ |R|, and we further define |f |
as the number of atomic propositions and operators in f . The model-checking
complexity of Computation Tree Logic, a temporal logic used by SMV and
NuSMV, is O (|M | · |f |); that is, it is linear in the size of the model and in the
size of the specification. On the other hand, the model-checking complexity of
Linear Temporal Logic, a logic used by Spin and NuSMV, is O

(
|M | · 2O(|f |))

[7].

2.2 Modeling the Game

In our model, each pursuer is represented by a nondeterministic finite automa-
ton. If a pursuer can move speed times faster than the evaders, then in each
round of movement, the automaton modeling that pursuer will make speed
nondeterministic moves, each move being either a transition into an adjacent
grid cell or remaining in-place. While we directly model the pursuers, we do
not explicitly include evaders. Instead, each grid cell has a single boolean state
variable cleared that indicates whether it is possible for an undetected evader
to occupy that cell. Cleared is true if and only if no undetected evader can
occupy that cell, and cleared is false if it is possible for an undetected evader
to occupy that cell. Trivially, cells occupied by pursuers are cleared – either
there’s no evader occupying that cell, or it has been detected. A cell that is not
cleared becomes cleared when and only when a pursuer occupies it. A cleared
cell ceases to be cleared when and only when it is adjacent to an uncleared
cell during the evaders’ turn to move; if all its neighboring cells are cleared
then it remains cleared .

Consider Figure 1. In this hypothetical scenario, the pursuer has cleared a
region of the southwest corner of the grid, as shown by the shaded portion of
Figure 1(a), and can conclude that all the evaders must be outside that region.
The pursuer moves four spaces north and west in Figure 1(b), increasing the
cleared region by three cells (one of the visited cells was already cleared).
Since the pursuer does not know where the evaders are located, the cleared
region must shrink in accordance with the union of all possible moves by the
evaders. A move by the evader south from the northeastern-most corner would
not cause the evader to enter a previously-cleared cell, but Figure 1(c) shows
there are six ways evaders could move from an uncleared cell into a cleared
cell, and the five cleared cells that could now be occupied by evaders may no
longer be considered cleared .

We now check whether, in the resulting system, invariably at least one
cell is not cleared . If this specification holds, then there is no pursuer-winning
search strategy: no matter what the pursuers do, the evaders will always be
able to avoid detection. On the other hand, if the specification does not hold,
then the model checker will provide a counterexample: a sequence of states

24 Christopher A. Bohn

0 1 2 3 4 5

0

1

2

3

4

5

(a) Before pursuer
moves

0 1 2 3 4 5

0

1

2

3

4

5

(b) Pursuer’s turn

0 1 2 3 4 5

0

1

2

3

4

5

(c) Evader’s turn

Fig. 1. Examples of changes in the possible locations for the evader. Evader is
known to be in unshaded region.

that lead to a state in which every cell is cleared . If every cell is cleared ,
then there is no cell that contains an undetected evader; ergo, every evader
has been detected. By examining the counterexample trace, we can infer the
moves the pursuers made and use this as a pursuer-winning search strategy.

3 Heuristics

While the technique we have described works, the time and memory require-
ments grow exponentially with the size of the grid. Consider a game on an
m×n grid with p pursuers moving at speed spaces/turn. The number of states,
then, is:

(mn)p︸ ︷︷ ︸
pursuers’

locations

· 2mn︸︷︷︸
cells

cleared?

· (speed +1)︸ ︷︷ ︸
scheduling

counter

(1)

That model checking can be accomplished in time that is linear is the number
of states is of little comfort when the number of states grows exponentially in
the size of the problem. This exponential growth is shown in Figure 2.

3.1 Heuristic Descriptions

To overcome this complexity, we turned to heuristics, three of which we de-
scribe here.

Clear-Column

The Clear-Column heuristic involves breaking the problem of clearing the grid
into the smaller problem of clearing one column and ending up positioned to
clear the next column, without permitting any undetected evaders to pass
into previously-cleared columns; see Figure 3. If it is ever possible for the

Heuristics for Designing the Control of a UAV Fleet With Model Checking 25

Fig. 2. Total mean execution times to generate winning search strategies for pursuer.
Where no time is listed, the model checker exceeded available memory. Error bars
indicate minimum and maximum values from the test data.

evader to enter the westernmost region, then the technique of clearing columns
will not compose. However, if it is possible to accomplish this feat, repeated
applications of this Clear-Column procedure can be composed to clear the
whole grid by sweeping from one side of the grid to the other. Now we only
need to model w × n cells explicitly (where w is the width of the subgrid we
model; 2 ≤ w � m), which can be a significant reduction in the size of the
state space.

w

n

(a) Before column is
cleared

w

n

(b) After column is
cleared

Fig. 3. Abstraction of grid unbounded along the horizontal axis.

The general approach is inductive on the columns: assume the western
region has been cleared ; that is, any evaders to the west have already been
detected. If the pursuer is in the westernmost column of the actual grid, then

26 Christopher A. Bohn

this condition is vacuously true. With the pursuer at one of the ends of the
westernmost uncleared column, the pursuer executes some search substrategy
that will cause every cell in that column to be cleared without permitting
any cell to the west to become uncleared and terminates with the pursuer at
one of the ends of the column immediately to the east (the exception being
the easternmost column, for which the terminating position is irrelevant). By
applying the substrategy at each column in turn, the pursuer will eventually
clear the entire grid.

The benefit of the Clear-Column heuristic is that, while checking the model
is still exponential in the size of the grid being modeled, it is a much smaller
grid that we are explicitly modeling. Specifically, the number of states is now:

(wn)︸ ︷︷ ︸
pursuers’

locations

· 2wn+1︸ ︷︷ ︸
cells

cleared?

· (speed +1)︸ ︷︷ ︸
“clock”

artifact

(2)

The property to check is no longer an invariant; rather, we check whether
the region to the west of column c remains cleared until all cells in column c
and the region to the west are cleared when the pursuer is positioned to clear
column c+1. The obvious downside to the Clear-Column heuristic is that if it
is possible for a pursuer to win by a strategy that does not involve clearing the
columns in sequence, and no comparable strategy exists which does involve
column-clearing, then this heuristic would not reveal that pursuer-winning
strategy.

Cleared-Bars

Besides composing subsolutions, we also consider changes to the manner in
which we model the game. The alternate models we present here reflect our
belief that when pursuer-winning solutions exist, there are pursuer-winning
monotonic solutions; that is, solutions in which the number of cleared cells
does not decrease. The goal in these new models is to eliminate many possible
states that, intuitively, move the pursuer further from winning the game.

So instead of considering whether each cell is cleared , we instead can define
sets of contiguous cleared cells. For example, under the belief that if a pursuer-
winning strategy exists, one exists that “grows” the cleared area as a set of
contiguous bars, we can define the endpoints of cleared cells in each row (or
column) and require that the cleared cells in each row be contiguous from one
endpoint to the other (Figure 4(a)).

The number of states in the Cleared-Bars model is:

(mn)2p︸ ︷︷ ︸
pursuers’

locations

· (m + 1)2n︸ ︷︷ ︸
endpoints

of bars

· (speed +1)︸ ︷︷ ︸
“clock”

artifact

(3)

Heuristics for Designing the Control of a UAV Fleet With Model Checking 27

0 1 2 3 4 5

0

1

2

3

4

5

(a) Using cleared
bars

0 1 2 3 4 5

0

1

2

3

4

5

(b) Using cleared re-
gions.

Fig. 4. Alternate ways to describe the configuration of Figure 1(a).

The first term is raised to the power of 2p instead of p because, as we described
above, there are conditions in which the pursuers’ current and last locations
are needed to update the bars correctly. The middle term is m + 1 instead of
m to provide for “endpoints” when there are no cleared cells in a given row.
The property to check is that invariantly there is a row whose left endpoint
is not in the leftmost column or whose right endpoint is not in the rightmost
column.

We earlier reported our preliminary performance results of the Cleared-
Bars heuristic using the SMV model checker [5]. Unfortunately, that was the
extent of our success with the SMV (or NuSMV) model checker. Describing
the Cleared-Bars model with the SMV model description language is overly
complex and difficult to reason about. The result was that generating each
model was an error-prone process for even the simplest models, and the ten-
dency toward insidious errors rapidly increased as the problem size grew. For
this reason we re-implemented the model to be checked with Spin. Spin’s
model description language, Promela, uses guarded commands that made for
a far simpler model description that was less amenable to implementation
errors. The performance of Cleared-Bars using Spin is reported in Figure 6
along with our other results.

Cleared-Regions

Alternatively, we might instead define the cleared regions geometrically by
possibly-overlapping convex polygons: for rectilinear grids, rectangles. Fig-
ure 4(b) shows how the cleared area in Figure 1(a) can be described using
three rectangles. While this will dramatically increase the complexity of the
model description, it will also dramatically decrease the number of states in
the model because each rectangle can be fully characterized by two opposing
corners.

We believe that when a pursuer-winning search strategy exists, it will have
contiguous regions of cleared cells throughout the game, as opposed to iso-
lated cleared cells scattered across the grid. Moreover, when a pursuer-winning

28 Christopher A. Bohn

search strategy exists, at least one exists for which these regions of cleared
cells can be grouped into a small number of possibly-overlapping rectangles.
In essence, the “Cleared Bars” heuristic detailed above is a special case of
the “Cleared Regions” heuristic: there are potentially as many rectangles as
there are rows. Our claim for the “Cleared Regions” heuristic is stronger than
our claim for the “Cleared Bars” heuristic. We believe that the number of
rectangles needed is independent of the size of the board, that it is in fact a
small constant: for example, pursuer-winning search strategies on a rectangu-
lar rectilinear grid require at most three rectangles.

While we have proposed this heuristic before, we have now implemented
the Cleared-Regions heuristic and can report its performance.

The critical issue to be addressed is how to determine the positions and
dimensions of the rectangles. While we could take a brute-force approach and
try to fit each possible selection of rectangles until all cleared cells and only
cleared cells are enclosed by a rectangle, the time to do this would tend to
offset any gain achieved by model checking the smaller state space. Instead,
we shall use a fast and satisficing approach.

We define a total ordering on the grid cells in row-major order starting in
the lower-left corner. Starting in the first cell, we examine the cells in order
until we locate a cleared cell. This is the lower-left corner of a rectangle. We
then continue searching the cells in order until we reach the right edge of the
grid or until we encounter an uncleared cell; we now have the breadth of the
rectangle. Now we examine all the cells in the next row within the columns
touched by the rectangle; for example, if we begin the rectangle in row 2 and
it stretches from column 5 to column 8, then we examine the cells in row 3,
columns 5–8. If all those cells are cleared , then the rectangle’s height grows
by one. We continue to grow the rectangle’s height until we reach a row in
which at least one of the cells within the rectangle’s breadth is not cleared .

Construction of the next rectangle begins by resuming the examination
of the cells where we had stopped to adjust the previous rectangle’s height.
Again, we examine the cells in order until we locate a cleared cell that is not
already in a previously-constructed rectangle. Once we have located such a
cell, the rectangle is constructed as before. This process continues until all
cells have been examined.

The algorithm we have described is suboptimal in that it may require more
rectangles than are necessary for a particular arrangement of cleared cells. For
example, consider the arrangement in Figure 5(a). The method presented here
would require the three rectangles shown in Figure 5(b). The cleared region
could in fact be covered by two rectangles, as shown in Figure 5(c). Indeed,
the problem of covering the cleared cells is an instance of the the Minimal
Set Cover Problem, which is known to be NP-complete [8]. This algorithm,
though, runs in linear time: if we allow up to some constant k rectangles, then
each cell will be examined at most k times. We are willing to accept using
three rectangles to cover a configuration that could be covered with two, as
we know of no pursuer-winning strategies for grids larger than 2×2 for which

Heuristics for Designing the Control of a UAV Fleet With Model Checking 29

two rectangles are sufficient for all confingurations in the general case nor in
the specific instances that we checked.

0 1 2 3 4 5

0

1

2

3

4

5

(a) Hypothetical
configuration of
cleared cells.

0 1 2 3 4 5

0

1

2

3

4

5

(b) Rectangles
generated by
method in Sec-
tion 3.1

0 1 2 3 4 5

0

1

2

3

4

5

(c) Optimal cover-
ing by rectangles.

Fig. 5. Example game configuration demonstrating suboptimality of cell-covering
algorithm.

With p pursuers moving speed spaces/turn and k rectangles describing the
cleared regions, the size of the state space is:

(mn)p︸ ︷︷ ︸
pursuers’

locations

· ((m + 1)(n + 1))2k︸ ︷︷ ︸
diagonal

corners of

rectangles

· (speed +1)︸ ︷︷ ︸
“clock”

artifact

(4)

And the property to check is that invariantly at least one grid cell is not
covered by a rectangle. If this property does not hold, then a pursuer-winning
search strategy exists and can be extracted from the counterexample witness.

3.2 Performance

The first question to be answered is whether the heuristics fail to find pursuer-
winning search strategies for games which are known to have pursuer-winning
search strategies. The answer is no. For every problem we checked using the
basic approach, the heuristics’ solutions did not require faster pursuers. More-
over, we have proven that there are no pursuer-winning search strategies per-
mitting slower pursuers than those produced by our technique here; this proof
is in Section 4.

We have demonstrated three heuristics that can be used to reduce the time
to determine if and how the pursuers can locate the evaders. Clear-Columns
was based on composing solutions to subproblems, whereas Cleared-Bars and
Cleared-Regions were based on alternate ways to describe the arrangement of
cleared and uncleared cells on the grid. Each of the three was able to provide a

30 Christopher A. Bohn

pursuer-winning search strategy for a single pursuer travelling at the slowest
speed possible for it to win in the full model. This suggests the heuristics are
effective. As Figure 6 shows, for sufficiently large grids — by the 4×4 grid for
all three — the heuristics also provided solutions faster than the full model.
This suggests the heuristics are efficient.

Fig. 6. Mean execution times to generate winning search strategies for pursuer, for
the full model checked with NuSMV and with Spin, for the Clear-Columns model
checked with NuSMV, and for the Cleared-Bars and Cleared-Regions models checked
with Spin.

On a 933 MHz Pentium III workstation with 1 GB main memory, the
Clear-Column heuristic is efficient enough to permit games with up to 15×∞
grids. The Cleared-Bars and Cleared-Regions permitted no larger than 4× 6
and 5 × 5 grids, respectively, given the memory requirements for Spin. This
is larger than possible with the full model with Spin, but no larger than is
possible with the full model with NuSMV – though checking these models
with Spin is faster than checking the full model with NuSMV. Should we
implement these heuristics with a symbolic model checker, much larger grids
should be manageable.

For the problem sizes we checked, despite its lower big-O complexity,
Cleared-Regions did not provide a clear benefit over Cleared-Bars, other than
permitting a 5 × 5 grid. This is can be explained in part by their constant
factors; further, as shown in Figure 7, for these problem sizes, the Cleared-

Heuristics for Designing the Control of a UAV Fleet With Model Checking 31

Regions model has a larger state space than the Cleared-Bars model. For grids
at least as large as 6× 6, though, the ranking of the number of states among
the four models is as we would expect, except that the size of the statespace
of Clear-Columns will overtake that of Cleared-Regions at 32× 32.

Fig. 7. Number of states for the four models as a function of grid size.

4 Necessary Pursuer Qualities for Simple Game Variants

We previously reported the sufficient pursuer qualities for a pursuer win the
game [5, 6], though we were unable to prove the necessary conditions in gen-
eral. We showed that a single pursuer moving at a rate of n spaces/turn is
sufficient to detect all evaders on an m × n board (where n is the shorter
dimension) when the evaders do not move diagonally, regardless of whether
the pursuer moves diagonally. We also showed that when the evaders do move
diagonally, a pursuer speed of n + 1 spaces/turn is sufficient for the pursuer
to win. We now prove that, under a reasonable assumption, these speeds are
also necessary; that is, a pursuer moving n − 1 spaces/turn cannot win the
game, nor can a pursuer moving n spaces per turn when the evaders move
diagonally. We begin with a lemma whose proof should be obvious; in the
interest of space we do not reproduce the proof for Lemma 1 here, though can
be found elsewhere [4].

32 Christopher A. Bohn

Lemma 1. Let s be a speed for which there is a pursuer-winning search strat-
egy for a single pursuer on an m× n board. Then s is also a speed for which
there is a pursuer-winning search strategy for a single pursuer on an (m−1)×n
board.

The relevance of Lemma 1 may not be immediately obvious, but consider
its contrapositive:

Corollary 1. Let s be a speed for which there is not a pursuer-winning search
strategy for a single pursuer on an m× n board. Then s is a speed for which
there is not a pursuer-winning search strategy for a single pursuer on an
(m + 1)× n board.

Recall that the upper bounds on the minimum puruser-winning speed are
defined in terms of the shorter dimension of the board. That does not mean,
however, that we can ignore the longer dimension when establishing the lower
bounds. We shall use Corollary 1 to demonstrate that an insufficient speed
does not become sufficient as the longer dimension grows. But first, we turn
our attention to the assumption we alluded to earlier. Let us define a class of
search strategies that have a property we believe to be universal:

Definition 1. Let S be the set of all possible single-pursuer pursuer-winning
search strategies. A ⊆ S is the set of search strategies such that: if a search
strategy S ∈ A is a pursuer-winning search strategy for a single pursuer moving
s spaces per turn on an m × n board, then there is a pursuer-winning search
strategy for a single pursuer moving s spaces per turn on an m×n board such
that the pursuer visits each row at least once in each of its turns.

The most immediate consequence of Definition 1 is that no strategy in A
has a pursuer speed less than n− 1, where n is the shorter dimension of the
board. This does not, however, provide us with the tight bounds we seek.

Definition 2. Let S be the set of all possible single-pursuer pursuer-winning
search strategies. B ⊆ S is the set of search strategies such that: if a search
strategy S ∈ B is a pursuer-winning search strategy for a single pursuer moving
s spaces per turn on an m × n board, then there is a pursuer-winning search
strategy for a single pursuer moving s spaces per turn on an m×n board such
that the number of cells in which an undetected evader may be present never
decreases when counted at the end of each round of movement. That is, there
is a pursuer-winning search strategy such that the number of cleared cells is
non-strictly monotonically increasing.

For the proof of our next lemma, we require one more definition.

Definition 3. The frontier is the set of cells from which an evader can enter
a cell that is known not to contain an evader.

Lemma 2. B ⊆ A

Heuristics for Designing the Control of a UAV Fleet With Model Checking 33

Proof. Consider an arbitrary pursuer-winning search strategy with speed s:
Ss ∈ B.

Ignoring for the moment the edges of the grid, then for any given number
of cleared cells, the smallest frontier is realized by forming a contiguous region
of cleared cells that is square. The frontier can be halved by placing this square
in a corner such that only two sides of the square are exposed to the frontier.
When the square is n

2 ×
n
2 , the frontier will consist of n cells (n + 1 if the

evader can move diagonally), and the pursuer must be able to cover at least
this distance each turn to preserve monotonicity. Since s ≥ n (s ≥ n + 1 if
the evader can move diagonally), the pursuer has enough speed to execute
the algorithms we used to prove the sufficient pursuer qualities [5], which
are elements of B since thay are monotonic, but more importantly, are also
elements of A since in each turn the pursuer visits each row at least once.

Alternatively, the cleared cells may be grown as a contiguous region con-
tacting three edges of the board; in such a configuration, the frontier can never
be fewer than n− 1 cells, and to preserve monotonicity, the pursuer must be
able to visit each row in each turn; thus Ss ∈ A. (Note that when there are
more than n2

4 cleared cells, a smaller frontier is realized by growing the cleared
region contacting three edges than by growing the region as a square.)

As arbitrary strategy Ss ∈ B is also in A, we conclude that B ⊆ A.

Conjecture 1. A is the set of all single-pursuer pursuer-winning search strate-
gies; that is, A = S.

It is worth noting that it may not be possible to prove the correctness of
any pursuer-winning search strategies which are not in B. This, in part, is
why we believe Conjecture 1.

Lemma 3. Let s be a speed for which there is a pursuer-winning search strat-
egy S1 ∈ A for a single pursuer on an m × n board, where n is the shorter
dimension. Then s− 1 is a speed for which there is a pursuer-winning search
strategy S2 ∈ A for a single pursuer on an (m− 1)× (n− 1) board.

The proof of Lemma 3 may not be as obvious as that of Lemma 1; however,
the intuition is that we have been defining pursuer-winning speeds in terms
of the shorter dimension of the board; if the shorter dimension of the board
is decreased by 1, then the pursuer’s speed can also be decreased by 1. The
full proof is available elsewhere [4]. Again, we consider the contrapositive of
this lemma:

Corollary 2. Let s be a speed for which there is not a pursuer-winning search
strategy for a single pursuer on an m×n board, where n is the shorter dimen-
sion. Then s + 1 is not a speed for which there is a pursuer-winning search
strategy for a single pursuer on an (m + 1)× (n + 1) board.

We now intend to use an inductive argument. Before we do so, we need
our base cases.

34 Christopher A. Bohn

Lemma 4. On a 2× 2 board, a single pursuer with speed s = 1 does not have
a pursuer-winning search strategy.

Lemma 5. On a 2× 2 board, a single pursuer with speed s = 2 does not have
a pursuer-winning search strategy when the evaders can move diagonally.

We have demonstrated both of these base cases through model checking,
and we have also proven the lemmas analytically [4]. We are now ready to
prove the lower bounds on the minimum pursuer speed.

Theorem 1. To catch all evaders on an m×n board, ∀m, n ≥ 2, the pursuer’s
minimum speed is at least min(m, n) spaces/turn when using a search strategy
S ∈ A.

Proof. The proof is inductive. For the basis, Lemma 4 states that the pursuer’s
minimum speed on a 2×2 board is at least min(2, 2) = 2 spaces/turn. If n−2
is insufficient for an (n − 1) × (n − 1) board, then by Corollary 2, n − 1 is
insufficient for an n×n board. If n− 1 is insufficient for an n×n board, then
by Corollary 1, n−1 is insufficient for an m×n board, where m ≥ n. Thus, for
an m× n board, the minimum pursuer-winning speed is at least min(m, n).

Theorem 2. To catch all evaders that can move diagonally on an m×n board,
∀m, n ≥ 2, the pursuer’s minimum speed is at least min(m, n)+1 spaces/turn
when using a search strategy S ∈ A.

Proof. The proof is inductive. For the basis, Lemma 5 states that the pursuer’s
minimum speed on a 2× 2 board is at least min(2, 2) + 1 = 3 spaces/turn. If
n− 1 is insufficient for an (n− 1)× (n − 1) board, then by Corollary 2, n is
insufficient for an n× n board. If n is insufficient for an n× n board, then by
Corollary 1, n is insufficient for an m× n board, where m ≥ n. Thus, for an
m× n board, the minimum pursuer-winning speed is at least min(m, n) + 1.

Thus, we established the lower bounds on the minimum pursuer-winning
speeds for a particular class of search strategies. Repeating our earlier suffi-
ciency theorems:

Theorem 3. To catch all evaders that cannot move diagonally on an m ×
n board, ∀m, n ≥ 2, the pursuer’s minimum speed is at most min(m, n)
spaces/turn.

Proof. Follows from Theorems 9 and 16 of Bohn & Sivilotti [6].

Theorem 4. To catch all evaders that can move diagonally on an m×n board,
∀m, n ≥ 2, the pursuer’s minimum speed is at most min(m, n)+1 spaces/turn.

Proof. Follows from Theorems 13 and 20 of Bohn & Sivilotti [6].

Theorem 5. When the evaders cannot move diagonally, the minimum speed
for which a single pursuer to be assured it can detect all evaders on an m× n
board, ∀m, n ≥ 2, is min(m, n) when using a search strategy S ∈ A.

Heuristics for Designing the Control of a UAV Fleet With Model Checking 35

Proof. Follows from Theorems 1 and 3.

Conjecture 2. When the evaders cannot move diagonally, the minimum speed
for which a single pursuer to be assured it can detect all evaders on an m×n,
∀m, n ≥ 2, board is min(m, n).

Theorem 6. When the evaders can move diagonally, the minimum speed for
which a single pursuer to be assured it can detect all evaders on an m × n
board, ∀m, n ≥ 2, is min(m, n) + 1 when using a search strategy S ∈ A.

Proof. Follows from Theorems 2 and 4.

Conjecture 3. When the evaders can move diagonally, the minimum speed for
which a single pursuer to be assured it can detect all evaders on an m × n
board, ∀m, n ≥ 2, is min(m, n) + 1.

We have shown the bounds are tight for all single-pursuer pursuer-winning
search strategies in A. We believe the bounds are tight for all single-pursuer
pursuer-winning search strategies (that is, A = S) in large part because we
have not found evidence to the contrary. We further believe the conjectures
because they hold for smaller boards where the evaders have less freedom to
move. Every pursuer-winning search strategy involves cornering the evaders;
that is, reducing the places they can escape to. On an m × n board where
m, n ≥ 2, there will be four cells with two (or three) escapes, 2(m−2)+2(n−2)
cells with three (or five) escapes, and (m−2) · (n−2) cells with four (or eight)
escapes. If there is some board for which our conjecture does not hold, then
on that board, the pursuer can detect all evaders at the same speed as on
a smaller board, despite the greater number of ways the evaders can avoid
detection.

5 Conclusions and Future Work

We have shown that heuristics exist that can reduce the size of the models and,
by extension, reduce the time to obtain pursuer-winning search strategies. The
heuristics we demonstrated generate pursuer-winning search strategies with-
out loss in effectiveness. Clear-Columns demonstrated remarkable efficiency,
though this is in large part because the structure of the solution is incorpo-
rated in the heuristic. Cleared-Bars and Cleared-Regions offer promise, but
they are limited by Spin’s memory reqauirements.

A necessary future direction of this research is obtaining an improved
model checker. The nature of our technique requires a model checker that
produces counterexample witnesses. The memory requirements of an explicit-
state model checker demand that we use a symbolic model checker for our
future research. SMV’s model description language is ill-suited for the Cleared-
Bars and Cleared-Regions heuristics (indeed, preparing models for these

36 Christopher A. Bohn

heuristics was very error-prone when using SMV — this was the reason we
used Spin for these last two heuristics) and so we need a model checker that
uses guarded commands in its description language. We can find many model
checkers that satisfy any two of these requirements, but finding one satisfying
all three remains elusive.

That problem dealt with, we shall then investigate other games. These may
be variations of the current game, such as on-line coordination (for example,
dealing with the loss of a pursuer, with a heterogeneous fleet of UAVs, or
cooperation with a sensor net). Or these may be games on arbitrary graphs,
as opposed to grids, such as might be found with sensor nets. Or they may
even be completely new games; for example, we have a proof-of-concept model
for a popular puzzle-solving board game.

References

1. NuSMV home page. http://nusmv.irst.itc.it/. Viewed 11 March 2005.
2. The SMV system. http://www.cs.cmu.edu/∼modelcheck/smv.html. Viewed 11

March 2005.
3. Spin – formal verification. http://spinroot.com/. Viewed 11 March 2005.
4. C. Bohn. In Pursuit of a Hidden Evader. PhD thesis, The Ohio State University,

2004.
5. C. Bohn, P. Sivilotti, and B. Weide. Designing the control of a UAV fleet with

model checking. In D. Grundel, R. Murphey, and P. Pardalos, editors, Theory
and Algorithms for Cooperative Systems, chapter 2. World Scientific, 2004.

6. C. A. Bohn and P. A.G. Sivilotti. Upper bounds for pursuer speed in rectilinear
grids. Technical Report OSU-CISRC-1/01-TR01, The Ohio State University,
2004.

7. E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, 1999.

8. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, 1979.

Unmanned Helicopter Formation Flight
Experiment for the Study of Mesh Stability ∗

Elaine Shaw1, Hoam Chung1, J. Karl Hedrick1 and Shankar Sastry2

1 Department of Mechanical Engineering,
University of California Berkeley,
Berkeley, CA 94720, USA
E-mail: eshaw@vehicle.me.berkeley.edu, hachung@eecs.berkeley.edu,
khedrick@me.berkeley.edu

2 Department of Electrical Engineering and Computer Science,
University of California Berkeley,
Berkeley, CA 94720, USA
E-mail: sastry@eecs.berkeley.edu

Summary. The authors have performed formation flights of UAVs using two of
UC Berkeley’s BEAR unmanned helicopters together in realtime with a simulated
leader and six simulated helicopters. The goal of this experiment was to verify the
mesh stability theory. The experimental results differ from the ideal theoretical
results. Upon closer examination, this discrepancy is due to the effects of having a
heterogeneous formation while the theory used is meant for homogeneous formations.
While much work remains to be done, we can still show that using leader information
in the control law is better than not using leader information. However, a new
question arises regarding how one should define mesh stability for a heterogeneous
mesh.

1 Introduction

Connective stability in one dimension, called string stability, has been studied
by many sources including Chu [1], Eyre [3], Hedrick [5], and Swaroop [12, 13].
The generalization of string stability to two dimensions, called mesh stability,
has been studied by Hedrick [4], Pant [7], and Seiler [8, 9]. A string/mesh
stable interconnected system has the property of damping disturbances as
the disturbances travel away from the source. Mesh stability is an important
aspect of formation flight as it allows the possibility of large formations. For-
mation flight of UAVs is of great interest in recent years due to its application
in areas such as surveillance and terrain mapping. In the near future, for-

∗ This work was supported by the Office of Naval Research’s Autonomous Intelli-
gent Network System Program under the grant N00014-99-10756.

38 Elaine Shaw et al.

mation flight theory can be applied to a swarm of micro-robotic insects for
sensing applications.

To verify the theoretical mesh stability results, formation flight experi-
ments are performed using the BErkeley AeRobot (BEAR) Rotorcraft-based
Unmanned Aerial Vehicles (RUAVs) and virtual helicopters running simulta-
neously on computers in realtime.

The outline of the paper is as follows: We will briefly review some useful
results in the analysis of string and mesh stability followed by the problem for-
mulation. Then we will describe the experimental setup and scenario. Finally,
we will present and discuss the results of the experiments.

Fig. 1. Snapshot of the formation flight experiment. The left one is Ursa Magna 2,
and the right one is Ursa Magna 1.

2 Background

The theory and design methodology used for this experiment will be briefly
summarized in this section.

2.1 String and Mesh Stability Theory

A summary of string and mesh stability theory can be found in Seiler [8] and
is briefly presented below. We will use the norms ‖f(·)‖∞ = supt≥0 |f(t)| and
‖f(·)‖1 =

∫∞
0
|f(τ)|dτ . A string of vehicles is called string stable if the ith

error, εi, and the (i + 1)th error, εi+1, in the chain satisfy ‖εi+1‖∞ ≤ ‖εi‖∞.
For a linear system, if y = h ∗ u, then Desoer [2] shows:

‖y(t)‖∞ ≤ ‖h(t)‖1‖u(t)‖∞ (1)

Hedrick and Swaroop [5] found an LTI convolution kernel, h(t), that relates
the errors in a vehicle following chain by: εi+1 = h∗ εi. The ‖h(t)‖1 represents

Unmanned Helicopter Formation Flight Experiment 39

the maximum amplification of any error as it propagates down the chain, and
thus allowing us to determine the string stability of the chain of vehicles. If
‖h(t)‖1 ≤ 1, then ‖ε(t)i+1‖∞ ≤ ‖ε(t)i‖∞. If ‖h(t)‖1 > 1, then the system is
string unstable, and we can find an input error which will be amplified as it
propagates down the chain. If h(t) does not change sign, then the time domain
string stability condition of ‖h(t)‖1 ≤ 1 is equivalent to the frequency domain
condition of ‖H(jω)‖∞ ≤ 1. Hedrick and Swaroop [5] found that a system
can be made string stable if reference vehicle information is used.

The SISO string stability results can be generalized to the MIMO case for
mesh stability. We will use the norm ‖f(·)‖∞ = maxi supt≥0 |fi(t)|. For an
n-input, n-output linear system, if h(t) is the convolution kernel, and y=h*u,
then Desoer [2] shows:

‖y(t)‖∞ ≤ (max
i

n∑
j=1

‖hij(t)‖1) · ‖u(t)‖∞ (2)

As in the SISO case, if none of the hij(t) changes sign, then

‖y(t)‖∞ ≤ (max
i

n∑
j=1

‖Hij(jω)‖∞) · ‖u(t)‖∞. (3)

2.2 Problem Formulation

Figure 2 shows the 3x3 grid formation used for the experiment. X1,1 denotes
the lead vehicle, while the others are follower vehicles. The goal is to force the

L=1

L=4L=2 L=3
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

X
1,1

X
3,1

X
2,1

X
1,2

X
1,3

X
2,2

X
2,3

X
3,2

X
3,3

Y

X

Fig. 2. 3 × 3 Mesh Schematic

mesh spacing errors to zero and to make sure that the disturbances on the
mesh damp out instead of amplify. The analysis done in Seiler [8, 9] assume
the following about the formation:

1. All the vehicles have the same model.

40 Elaine Shaw et al.

2. The vehicle model is linear.
3. The vehicle has the same number of inputs and outputs.
4. All vehicles use the same control law.
5. The desired spacings are constants independent of time and formation

index.

Let pi,j(t), a 4 × 1 vector, denote the outputs, (x, y, z, ψ ≡ heading), of
the (i, j)th vehicle. For the experiments without reference vehicle information,
each follower vehicle gets the position information of its nearest top neighbor
and its nearest left neighbor, as shown in Figure 2. For the experiments with
reference vehicle information, each follower vehicle also gets the position in-
formation of the lead vehicle as well as from the two neighbors.

X

Y

x

x

x

p

p p

x

p

1,des

2,des

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

p

 −

 −

Fig. 3. Error Definitions

The mesh spacing errors are defined as:

εi,j = δ1,des − (pi,j−1 − pi,j) (4)
γi,j = δ2,des − (pi−1,j − pi,j) (5)

Figure 3 illustrates the error definitions. An averaged spacing error vector,
ei,j = (εi,j + γi,j)/2, is defined for analysis purposes. For the vehicles on the
top and the left boundaries of the mesh, the averaged spacing error vector is
defined as ei,j = εi,j if i = 1 and ei,j = γi,j if j = 1.

By assumption 1) mentioned above, the formation exhibits symmetry. Per-
formance “level sets”, shown in Figure 2, can be defined by L = i + j − 2 as
in Seiler [9]. Due to the formation symmetry, all vehicles in the same level set
have the same error trajectories, and thus the same averaged spacing errors,
i.e. e1,2 = e2,1, e1,3 = e2,2 = e3,1, and e2,3 = e3,2. If a formation is mesh

Unmanned Helicopter Formation Flight Experiment 41

stable, then the errors for vehicles of level set L = i are less than the errors
for vehicles of level set L = i− 1. We will think in terms of level sets for the
analyses presented in the next two sections in order to simplify the notations.

2.3 Design of Mesh Stability Controller

Regulated HelicopterpK(s)

1−pK(s)

X i

X pred

X lead

+

+

+

+

+

+ +

−

−

−

−

+

+

spacing

spacing

Mesh Controller

Fig. 4. Mesh Controller Structure

The design methodology for a mesh stability controller, as shown in Fig-
ure 4, can be found in Hedrick [4] and is briefly presented below. Assume
that we are given a regulated helicopter model. Let Xi ∈ �4 be the regulated
outputs of this helicopter model and Xi = H(s)Xid.3 Let Xp

id and X l
id denote

the desired positions of the ith vehicle with respect to the preceding and the
lead vehicle, respectively. Ep

i and El
i are the corresponding errors. In order to

have mesh stability, we must include the lead vehicle information, and so we
implement:

Xid = p(K(s)Ep
i + Xp

id) + (1− p)(K(s)El
i + X l

id), (6)

where p is a scalar ∈ [0, 1]. This equation can be manipulated into the form:

Ep
i = (p[I + HK]−1[H + HK])Ep

i−1 (7)

Define:
G(s) ≡ [I + HK]−1[H + HK] (8)

Let g(t) be the impulse response of the individual transfer function entries
of G(s). Using the input-output relation described in section 2.1, we know
that p‖g(t)‖1 ≤ 1 implies that ‖e(t)i‖∞ ≤ ‖e(t)i−1‖∞. The mesh controller
can be designed by manipulating the parameters K(s) and p. K(s) should be
designed to minimize ‖G(jω)‖∞ while keeping G(s) stable. The system will
3 Uppercase letters represent the Laplace transform of time functions.

42 Elaine Shaw et al.

be mesh stable if we choose p such that p ≤ 1
‖g(t)‖1

. To avoid collisions, p

should be kept as large as possible so that each vehicle is tightly coupled to
its neighbors.

2.4 Robustness to Disturbances

Robustness analysis for the mesh controller in Hedrick [4] is briefly presented
below. All the prior analysis assume linear regulated helicopter models, perfect
tracking at steady state, and no external disturbances. In reality, helicopter
dynamics are nonlinear, perfect tracking cannot be achieved, and external
disturbances, such as wind gust, will act on the helicopters. We will show that
a mesh stable system damps out the effects of all such disturbances.

Consider the given regulated helicopter model presented earlier with an
added disturbance, giving Xi = H(s)Xid + Di(s). Using equation (6) and the
same analysis as in the preceding section, we get the following equation:

Ei(s) = Ĝ(s)Ei−1(s) + Ḡ(s)(Di−1(s)−Di(s)), (9)

where Ĝ(s) = pG(s), G(s) is given in equation (8), and Ḡ(s) = [I + HK]−1.
Equation (9) shows us that disturbances are propagated via Ĝ(s). For exam-
ple, suppose the second helicopter (i = 2) is affected by D2. D2 affects the
error, E2, through Ḡ, i.e. E2 = ĜE1 + ḠD2. Notice that D2 also propagates
to other errors through Ĝ. For i > 2, Ei = Ĝi−1E2 + Ĝi−3ḠD3. If a system
is mesh stable, then ‖Ĝ‖∞ < 1, and the effects of the disturbances will decay.
If a system is mesh unstable, then ‖Ĝ‖∞ > 1, and there exists disturbances
which will cause the errors to grow.

3 Experimental Setup

The experimental system is made up of real and simulated helicopters working
together in realtime.

3.1 Real Helicopters

BEAR UAV Testbed

The BEAR RUAVs used in the experiments are the Ursa Magna series, which
are based on the Yamaha R-50 industrial helicopters. The two RUAVs have
identical software and hardware structure, except for minor enhancements
in Ursa Magna 1 and the control algorithms, which will be discussed later.
MiLLennium RT-2 GPS from NovAtel and DQI-NP from Systron Donner
make up the main navigation sensor system, and WaveLAN from Orinoco
provides wireless communication links, one is between the vehicle and the
monitoring station, and the other is for the differential GPS solution. For
detailed descriptions about the hardware structure of BEAR RUAVs, please
refer to Shim [10].

Unmanned Helicopter Formation Flight Experiment 43

VCL Sequencer
Off-board

Strategy Planner
On-board

High-level Agent

Pre-defined
Waypoint Mode

Dynamic Waypoint
Mode

High-speed Position
Tracking Mode

Switching Layer

Waypoints Conflict
Notification

Stabilization
Layer

Vehicle Platform

Reference
Trajectory

Control
Input

Navigation
Sensors

Navigation
Information

Coordination
Layer

Waypoints

Fig. 5. Hierarchical flight management system of BEAR RUAVs

Hierarchical Flight Management System

A flight management system (FMS) for an intelligent UAV system should
provide various flexible communication protocols for higher level agents, which
can be on-board or off-board. In order to realize this feature, and to supply
important functions for autonomous navigation of RUAVs, the BEAR group
uses a hierarchical flight management system by Shim [11].

Figure 5 shows the current hierarchical structure of the FMS implemented
on the Ursa Magna series. The hierarchical structure consists of high-level
strategy planners, a coordination layer, a stabilization layer, and a physical
vehicle platform. On the top level of the hierarchy, high-level strategy planners
send waypoints to the lower layer, and the switching layer determines which
planner takes the control. For this experiment, the on-board mesh stability
controller is chosen as the high-level agent.

The stabilization layers of the two helicopters are different from each other.
A multi-loop PID controller is used on Ursa Magna 2, see Shim [10], and a
reinforcement learning controller is used on Ursa Magna 1, see Ng [6]. The
multi-loop PID controller is implemented on the assumption of loosely coupled
helicopter dynamics around hovering condition, while the reinforcement learn-
ing controller is more aggressively tuned and is trained for high velocity and
complicated maneuvers. Here, “aggressive” does not mean only the size of the
gains but also the consideration of the MIMO nature of helicopter dynamics.
The multi-loop PID shows superior tracking performance at low velocities,
while the reinforcement learning controller shows better performance when
the reference trajectory requires simultaneous control of all channels, such as

44 Elaine Shaw et al.

a circular trajectory. In the experiments, only slow reference trajectories are
used, so we expect the multi-loop PID controller to perform better.

Mesh Controller

In high-speed position tracking mode, the FMS can accept external inputs
at 10 Hz through an RS232 port. Stand alone mesh controller units are built
and mounted on the RUAVs to coordinate the formation flight task. The
mesh controllers provide wireless communication links for the RUAVs so they
can communicate with each other and also with the virtual helicopters. The
purpose of the mesh controllers is to generate mesh stable trajectories for
the RUAVs using the information gathered from the other helicopters in the
formation.

3.2 Virtual Helicopters

Since we only have access to two real helicopters, in order to perform exper-
iments as shown in Figure 6, we will have to augment our fleet using virtual
helicopters that are simulated in realtime. The lead vehicle, X1,1, is simply a
reference trajectory. Six additional virtual helicopters, with dynamics based
on the real helicopters, will be used alongside the two real helicopters.

Realtime Helicopter Simulations

leader

virtual

real

Fig. 6. Experimental Scenario

The helicopter model and controller described in Shim [10] is coded in C.
This code can be run in realtime to simulate the virtual helicopters. Four lap-
tops are used to simulate the virtual leader helicopter and six virtual follower

Unmanned Helicopter Formation Flight Experiment 45

helicopters (see Figure 6). One laptop acts as the virtual leader by broad-
casting the desired trajectory to the rest of the formation. The remaining
three laptops each simulates two virtual helicopters. Each helicopter simu-
lation is composed of two processes. One process is in charge of simulating
the helicopter dynamics, while the other process is in charge of the wireless
communication.

Communication Between Helicopters

Each vehicle in the formation communicates wirelessly with the others at 10
Hz using an Orinoco 802.11b card. A token ring protocol is used to allow a
large number of vehicles to communicate without packet collision.

3.3 Software Structure Outline

An outline of the software is shown in Figure 7. Each mesh controller is
composed of two processes, and each virtual helicopter is also composed of
two processes. The virtual leader is composed of only 1 process because it is
just a trajectory with no dynamics. The whole setup for the mesh formation
layer (i.e. not including the low level RUAVs regulation layer) is made up of
17 processes, each one running at 10Hz through the use of timer interrupts.

Mesh Algorithm

Communicate
with

helicopter’s
controller via

RS232

R1 position
R2 position
V1 positions

Process1 Process2Shared
Memory

Mesh Controller

RS232

Simulation of
virtual

helicopters

Process1 Process2
Shared
Memory

Laptop

Wireless
communication

between
helicopters

Error detection

R1 position
R2 position
V1 positions

Wireless
communication

between
helicopters

Error detection

Fig. 7. Software Outline

3.4 Experimental Scenarios

In the experiments, X2,2 and X3,3 are the real helicopters, while the other
ones are the simulated helicopters. X1,1, also known as the virtual leader,

46 Elaine Shaw et al.

traces out a trajectory, and the rest of the formation follows while trying to
keep the spacings between them constant.

We performed two experiments. In the first experiment, no lead vehicle
information is used, i.e. p = 1.0. In the second experiment, lead vehicle infor-
mation is used, and the parameter p is chosen as described below in section
3.4. For comparison purposes, we first simulated the above scenarios using
only the virtual helicopters.

40 50 60 70 80 90 100
−90

−80

−70

−60

−50

−40

−30

−20

X (m)

Y
 (

m
)

X11
X12
X13
X21
X22
X23
X31
X32
X33

x21
x12

x31
x22

x11

x32
x23

x13

x33

Fig. 8. Experimental Formation Trajectories: X versus Y, p = 1.0

Leader Trajectory

The virtual leader traces out a 10 meter square in the X −Y plane, as shown
in Figure 8. Each side of the square trajectory is constructed using a constant
acceleration of 0.5m/s2, with the maximum velocity limited at 1m/s, followed
by a constant deceleration of 0.5m/s2. The lead vehicle pauses after each leg
of the square trajectory before starting on the next leg. These pauses allow
the vehicles farther down in the mesh to catch up with the lead vehicle before
starting the next leg. This trajectory is chosen due to limited safe operating
space.

Mesh Controller Parameters

A regulated helicopter model, H(s), is constructed using the linear helicopter
model and controller given by Shim [10]. Using the mesh stability controller

Unmanned Helicopter Formation Flight Experiment 47

design methodology described in section 2.3, we briefly checked what the
p parameter should be. Since the stabilized helicopter model has reason-
able frequency response, we decided not to design for the K(s), see section
2.3. By setting K(s) = 04×4, G(s) is simply H(s). Calculations show that
‖G(jω)‖∞ = 1.217 (achieved near 0.35 radians/second), so we know that if
p < 0.82, then mesh stability is guaranteed. However, considering the nonlin-
earities and the uncertainties in the actual system, we simply choose p = 0.5
to make sure that the system will be mesh stable.

4 Results

4.1 All Virtual Helicopters Simulation Results

Table 1. Simulation: ‖ei,j‖∞ Without Leader Info (p = 1)

‖ei,j‖∞(meter) j=1 j=2 j=3

i=1 n/a 4.52 3.62

i=2 4.52 3.62 3.10

i=3 3.58 3.10 2.88

Table 2. Simulation: ‖ei,j‖∞ With Leader Info (p = 0.5)

‖ei,j‖∞(meter) j=1 j=2 j=3

i=1 n/a 4.53 1.82

i=2 4.48 1.83 0.80

i=3 1.82 0.79 0.37

For comparison purposes, we performed simulations using the identical
experimental setup as in the actual experiments except with all virtual heli-
copters. These simulations are performed using all the assumptions presented
in the theory section, i.e. constant spacings, identical vehicle models, and iden-
tical control laws. The infinity norm of the averaged spacing error vectors, as
defined in section 2.2, are shown in Tables 1 and 2.

The results shown, which are performed on four laptops communicating
wirelessly, are almost identical in structure to the simulation results obtained
in Seiler [8]. The data exhibit performance “level sets”, described in section

48 Elaine Shaw et al.

2.2, and the error for each (i, j)th vehicle is only a function of the level sets.
The results simulated on the four laptops deviate slightly, i.e. e1,2 ≈ e2,1,
e1,3 ≈ e2,2 ≈ e3,1, and e2,3 ≈ e3,2, because the timing for the 17 processes,
running at 10Hz each, across four laptops, cannot be completely synchronized.

Table 1 shows that, for the leader trajectory chosen, the spacing errors
attenuate even if no reference vehicle information is used. The theory states
that if a formation is mesh unstable, one can find an input that will cause
the spacing errors to amplify, but not all inputs will cause the spacing errors
to amplify. The very slow stabilized helicopter dynamics make it difficult to
find a trajectory that will cause error amplification even though the forma-
tion without reference vehicle information is theoretically a mesh unstable
formation.

Based on the simulation results, we expect the experimental errors to
attenuate even if no lead vehicle information is used. However, we also expect
that the addition of lead vehicle information will improve the performance of
the mesh. Since the helicopters are not identical, we expect the actual results
to be slightly different from the simulation results, especially with regards
to the real helicopters X2,2 and X3,3. But our assumption is that the real
helicopters’ dynamics will be roughly the same as the simulated helicopters’
dynamics since the helicopter model used is based on the real helicopters.

4.2 Real and Virtual Helicopters Experimental Results

Table 3. Experiment: ‖ei,j‖∞ Without Leader Info (p = 1)

‖ei,j‖∞(meter) j=1 j=2 j=3

i=1 n/a 4.57 3.65

i=2 4.52 3.73 3.20

i=3 3.64 3.23 1.69

Table 4. Experiment: ‖ei,j‖∞ With Leader Info (p = 0.5)

‖ei,j‖∞(meter) j=1 j=2 j=3

i=1 n/a 4.59 1.85

i=2 4.55 1.93 1.30

i=3 1.79 1.32 3.00

Unmanned Helicopter Formation Flight Experiment 49

Tables 3 and 4 show the infinity norm of the averaged spacing errors ob-
tained from the real helicopter experiments. When compared to the simulation
results in Tables 1 and 2, we notice the loss in performance “level sets”. While
e2,2 stays roughly the same as in the simulations, e3,3 is quite different. We
will attempt to explain this phenomenon in the next section.

Figures 9 and 10 show the positions of the helicopters as a function of
time. Please note that the plots are shifted so that they all start at the same X
(and Y) position, allowing us to compare the performances of the helicopters.
Figures 11 and 12 show the averaged spacing errors as a function of time.

0 10 20 30 40 50 60 70 80 90 100
66

68

70

72

74

76

78

Time (sec)

X
 (

m
)

x11
x12
x13
x22
x23
x33

0 10 20 30 40 50 60 70 80 90 100
−86

−84

−82

−80

−78

−76

−74

Time (sec)

Y
 (

m
)

x11
x12
x13
x22
x23
x33

x11

x12
x23

x11
x12 x23

Fig. 9. Position versus Time, p = 1.0

5 Discussion of Results

5.1 Differences between Simulation and Actual Experiments

There are many reasons why the experimental results are different from the
simulation results. Some of the reasons that intuitively come to mind are that
the helicopters are not identical, there are external disturbances acting on
the real helicopters, wireless communication packet loss, and imprecise GPS
readings.

50 Elaine Shaw et al.

0 10 20 30 40 50 60 70 80 90
74

76

78

80

82

84

86

Time (sec)

X
 (

m
)

x11
x12
x13
x22
x23
x33

0 10 20 30 40 50 60 70 80 90
−90

−88

−86

−84

−82

−80

−78

Time (sec)

Y
 (

m
)

x11
x12
x13
x22
x23
x33

x11
x23

x11
x23

Fig. 10. Position versus Time, p = 0.5

The Idealized Assumptions Do Not Hold

Several assumptions we made in section 2.2 are not true.

• The vehicles are not identical.
• The dynamics of the real helicopters are not linear.

The simulated helicopters’ dynamics are not identical to the real heli-
copters’ dynamics. This means that the simulated helicopters would perform
differently than the real helicopters, even though, as mentioned previously,
our initial assumption is that their dynamics would roughly be the same. Due
to our limited access to the experimental platform, we are not able to dictate
which type of controllers the real helicopters use as different controllers are
tried out on these helicopters constantly. As a result of this, the simulated heli-
copters use PD controllers as described by Shim [10], while the real helicopters
use a PID controller and a reinforcement learning controller. Once again, we
initially assume that this difference would not cause too much difference in
the performance of the helicopters since only slow reference trajectories are
used.

Looking at Figures 9 and 10, we noticed that both real helicopters have
faster dynamics than the simulated helicopters. However, when we look at
the infinity norm of the averaged spacing errors in Tables 3 and 4, X2,2 have
slightly larger errors than the ideal case in both experiments, while X3,3 have

Unmanned Helicopter Formation Flight Experiment 51

0 20 40 60 80 100 120
−4

−2

0

2

4

Time (sec)

X
−

er
ro

rs
 (

m
)

e12
e13
e22
e23
e33

0 20 40 60 80 100 120
−5

0

5

Time (sec)

Y
−

er
ro

rs
 (

m
)

e12
e13
e22
e23
e33

e12

e23

e13

e12

e23

e13

Fig. 11. Error versus Time, p = 1.0

errors that are smaller than the ideal without-leader-information case, and
bigger than the ideal with-leader-information case.

We believe X2,2’s errors can be explained by the external disturbances,
imprecise GPS readings, and communication issues.

External Disturbances

The real helicopters are affected by external disturbances such as wind gusts,
while the simulated helicopters are not affected. Suppose while the formation
is traveling in the x direction, a wind gust pointing in the y direction blows
on the real helicopters causing them to drift to one side, this alone can create
the slightly larger errors that we noticed in X2,2.

Wireless Communication Issues

Wireless communication packet losses also contribute to the deterioration in
performance. If packets are not received by a particular helicopter, that heli-
copter will not move as much as if it had received the packets, thus causing
errors. This effect increases if consecutive packets are lost. The simulations,
performed in a laboratory environment with the laptops in close proximity
to each other, have negligible packet loss rate. The actual experiments, per-
formed outside in a field, have a worst case packet loss rate of 1.5 percent.

52 Elaine Shaw et al.

0 10 20 30 40 50 60 70 80 90
−4

−2

0

2

4

Time (sec)

X
−

er
ro

rs
 (

m
)

e12
e13
e22
e23
e33

0 10 20 30 40 50 60 70 80 90
−5

0

5

Time (sec)

Y
−

er
ro

rs
 (

m
)

e12
e13
e22
e23
e33

e12

e13

e23

e12

e13

e23

Fig. 12. Error versus Time, p = 0.5

Uncertainties in GPS Readings

The GPS does not produce good readouts at all times (see Shim [10]). Even
when the GPS readings are good, the standard deviation of the readings is
around 0.04m during the experiments.

While the errors of X2,2 are quite similar to the ideal case and can be
explained by the three issues mentioned above, the errors of X3,3 are too
different to have been caused by the above issues alone.

Effects of Heterogeneity

Even though we expect differences to exist, we did not expect the differences
to be so large. The robustness analysis done in section 2.4 tells us that dis-
turbances on a mesh stable formation will be damped out, so why does X3,3

seem to perform worse when a mesh stable formation is used? Upon careful
examination, it becomes obvious that X3,3’s dynamics are much faster than
the other helicopters (see Figures 10 and 12). The figures show that X3,3 is
moving so far ahead that its errors are opposite in sign from that of the other
helicopters. X3,3’s dynamics are sufficiently different from the rest of the he-
licopters, therefore the formation should be considered heterogeneous rather
than homogeneous.

Using this information, new simulations are performed in MATLAB to
imitate the experimental scenario, i.e. we improved the performance of the

Unmanned Helicopter Formation Flight Experiment 53

Table 5. Simulation: ‖ei,j‖∞ Without Leader Info (p = 1), X2,2 slower and X3,3

much faster than others

‖ei,j‖∞(meter) j=1 j=2 j=3

i=1 n/a 3.00 2.80

i=2 3.00 2.91 2.60

i=3 2.80 2.60 0.97

Table 6. Simulation: ‖ei,j‖∞ (p = 0.7) X2,2 slower and X3,3 much faster than
others

‖ei,j‖∞(meter) j=1 j=2 j=3

i=1 n/a 3.00 1.96

i=2 3.00 2.08 1.26

i=3 1.96 1.26 0.89

Table 7. Simulation: ‖ei,j‖∞ (p = 0.4) X2,2 slower and X3,3 much faster than
others

‖ei,j‖∞(meter) j=1 j=2 j=3

i=1 n/a 3.00 1.12

i=2 3.00 1.25 0.38

i=3 1.12 0.38 1.67

X3,3 helicopter and decreased the performance of X2,2. Note that since we
cannot simulate the real helicopters’ exact dynamics, we cannot recreate the
identical experimental scenario. The MATLAB simulation results, shown in
Tables 5, 6, 7, 8, reaffirm the experiment results and fill in the missing gaps.
Intuitively, if X3,3 is much faster than the rest of the formation and p = 1,
X3,3’s mesh spacing errors will be much smaller than for the case when all the
helicopters have identical dynamics. Even though the formation is already
attenuating errors in the p = 1 case, adding leader information by using
p = 0.7, making the formation mesh stable, causes the errors to damp out
even faster. However, as more emphasis is placed on the leader’s position
information, as in the case of p = 0.4, X3,3, in its attempt to follow the
leader, starts to move much faster than its nearest neighbors and closes in on

54 Elaine Shaw et al.

Table 8. Simulation: ‖ei,j‖∞ (p = 0.0) X2,2 slower and X3,3 much faster than
others

‖ei,j‖∞(meter) j=1 j=2 j=3

i=1 n/a 3.00 0.00

i=2 3.00 0.14 0.07

i=3 0.00 0.07 2.01

them, causing its errors to go up. In the limiting case, when all vehicles follow
only the leader (p = 0), each vehicle is traveling as fast as it can to keep up
with the leader without any clue as to where their neighbors are, X3,3 shows
its largest error because it has moved even closer to its neighbors, distorting
the mesh.

For vehicles with different tracking performances, what we noticed is that
even though using reference vehicle information can still improve the perfor-
mance (in the sense that the maximum error magnitude decreases), placing
too much emphasis on the lead vehicle information will eventually cause the
performance to degrade again.

As previously discussed in section 2.3, even though a homogeneous for-
mation is guaranteed to be mesh stable as long as we keep p ≤ 1

‖g(t)‖1
, in

practice, one would want to make p as large as possible, i.e. p = 1
‖g(t)‖1

, in
order to keep each vehicle tightly coupled to its neighbors, decreasing the pos-
sibility of collisions if one of the vehicles fails to behave as expected. When
one is simulating a homogeneous formation on a computer, it is easy to forget
this fact since the more we decrease p, the better the overall performance (in
the sense of smaller mesh spacing errors). However, in the real world, where
vehicles can break down and fail in unexpected ways, and the formation may
not be homogeneous, we quickly remember to follow this rule.

5.2 Mesh Stability Controller Improves Performance

Even though having a heterogeneous mesh makes it more difficult to design
a mesh stability controller, the use of a mesh stability controller can still be
beneficial, at least for the simple case we cover in this paper. By choosing
the appropriate weight for the leader information, the magnitude of the mesh
spacing errors can be decreased. Since these errors are the inputs into the mesh
controller, this means that the control effort for a mesh stable formation is in
turn smaller.

Unmanned Helicopter Formation Flight Experiment 55

6 Conclusion

The results of the experiments are different than expected because the com-
bination of real and simulated helicopters created a heterogeneous formation.
Once the formation is not homogeneous, we must come up with a new defini-
tion for mesh stability because the definition involving “level sets” no longer
applies. Despite having a heterogeneous formation, one can still show that
the use of reference information improves the performance of the formation
flight, although the balance between using the lead vehicle’s information ver-
sus neighboring vehicles’ information is much more delicate. The design of a
mesh controller is no longer straight forward.

Obviously this is only one very simple heterogeneous formation scenario
out of many possible scenarios. For further analysis on heterogeneous forma-
tions, please refer to Shaw [14].

Acknowledgments

The authors would like to thank Aniruddha Pant, Rosemary Huang, Marco
Zennaro, Jusuk Lee, Xiao Xiao, Tony Mak, David Shim, Ron Tal, Perry
Kavros, Richard Niedzwiecki, and Ted Phares.

References

1. Chu, Kai-ching. “Decentralized Control of High Speed Vehicular Strings.” Trans-
portation Science, p.361-384, 1974.

2. Desoer, C.A. and M. Vidyasagar. Feedback Systems: Input-Output Properties.
Academic Press, 1975.

3. Eyre, J., D. Yanakiev, and I. Kanellakopoulos. “A Simplified Framework for
String Stability Analysis of Automated Vehicles”. Vehicle System Dynamics,
30(5):375-405, November, 1998.

4. Karl Hedrick, Aniruddha Pant, and Pete Seiler. “Mesh Stability of Helicopters.”
In Proceedings of the 11th Yale Workshop on Adaptive and Learning Systems,
2001.

5. Hedrick, J.K. and D. Swaroop. “Dynamic Coupling in Vehicles under Automatic
Control.” 13th IAVSD Symposium, p.209-220, August 1993.

6. Andrew Y. Ng, H. Jin Kim, Michael I. Jordan, and Shankar Sastry. “Flying a
Helicopter with Reinforcement Learning.” (to be published).

7. Aniruddha G. Pant. Mesh Stability of Formations of Unmanned Aerial Vehicles.
PhD thesis, University of California, Berkeley, 2002.

8. Pete Seiler, Aniruddha Pant, and J.K. Hedrick. “Preliminary Investigation of
Mesh Stability for Linear Systems.” In Proceedings of the ASME: DSC Division,
volume 67, p.359-364, 1999.

9. Peter J. Seiler. Coordinated Control of Unmanned Aerial Vehicles. PhD thesis,
University of California, Berkeley, 2001.

56 Elaine Shaw et al.

10. Hyunchul Shim. Hierarchial Flight Control System Synthesis for Rotorcraft-
based Unmanned Aerial Vehicles. PhD thesis, University of California, Berkeley,
2001.

11. D.H. Shim, H.J. Kim, H. Chung, and S. Sastry, “Multi-functional Autopilot
design and Experiments for Rotorcraft-based Unmanned Aerial Vehicles,” 20th
Digital Avionics Systems Conference, Florida, 2001.

12. D. Swaroop. String Stability of Interconnected Systems: An Application to Pla-
tooning in Automated Highway Systems. PhD thesis, University of California,
Berkeley, 1994.

13. D. Swaroop and J.K. Hedrick. “String Stability of Interconnected Systems.”
IEEE Transactions on Automatic Control, 41:349-357, March, 1996.

14. Elaine Shaw and J.Karl Hedrick. “String Stability Analysis for Heterogeneous
Vehicle Strings.” to be submitted to the 2007 American Control Conference.

Cooperative Estimation Algorithms Using
TDOA Measurements

Kenneth A. Fisher, John F. Raquet and Meir Pachter

Air Force Institute of Technology
E-mail: {Kenneth.Fisher,John.Raquet,Meir.Pachter}@afit.edu

Summary. A navigation algorithm using Time Difference of Arrival (TDOA) mea-
surements obtained from signals of opportunity (SOPs) is developed. SOP-derived
TDOA measurements are signals that are transmitted for purposes other than nav-
igation (such as communication, telecasts, etc.) and are motived as appealling al-
ternatives to GPS. In the scenario considered herein, the received SOPs are gener-
ated by asynchronous emitters at known locations. The measured TDOA are with
reference to a reference receiver also at a known location. Although it would ap-
pear that the equations governing TDOA measurements, and consequently TDOA
GDOP, are quite different from their GPS counterparts, it is shown that the TDOA
measurement equations can be transformed into GPS pseudorange equations. This
interpretation not only provides a direct evaluation of the TDOA GDOP and affords
a characterization of the optimal measurement geometry, but, in addition, lets us
fall back on well known GPS algorithms.

1 Introduction

Systems and applications have increasingly become dependent upon and rely
on accurate position determination afforded by the Global Positioning System
(GPS). GPS is a line-of-sight (LOS) system – that is, the satellites must be
in “view” of the receiver antenna to receive the signal. Efforts are made
to reduce this limitation, most notably in urban areas and indoors. Urban
areas are characterized by tall buildings, which block satellites from view
and create multipath signals. Indoors, the signals are present but greatly
attenuated, so that it is difficult to get a reliable GPS position solution. The
demand for accurate position information is growing. When GPS solutions
are unattainable, another method with comparable accuracy is desired.

Alternatives to aid in navigation without GPS or to improve navigation
in urban areas and indoors include inertial navigation [12], LORAN [5], and
signals of opportunity [2, 3]. Signals of opportunity (SOP) are transmitted for

58 Kenneth A. Fisher, John F. Raquet and Meir Pachter

non-navigation purposes; however, clever techniques can exploit these signals
for navigation. SOPs are convenient sources of navigation for several reasons.
First, SOPs are abundant, which is useful in ensuring sufficient signals are
available for position determination and for reducing the position error. Sec-
ond, the signal-to-noise ratio is often higher than for signals such as GPS [2].
Finally, there are no deployment costs or operating expenses related to the
signal for the navigational user. (Of course, there are navigation equipment
costs incurred by the user).

The use of signals of opportunity for navigation has been suggested by
Hall in [2, 3]. In this paper, a navigation algorithm using Time Difference
of Arrival (TDOA) measurements obtained from SOPs is developed. In the
scenario considered herein the received SOPs are generated by asynchronous
emitters at known locations. The measured TDOA are with reference to a
reference receiver also at a known location. Using a stationary and a mo-
bile receiver, a time difference of arrival (TDOA) measurement is formed as
the difference in received time of a single SOP received at the stationary re-
ceiver compared to the received time at the mobile receiver. Multiple TDOA
measurements can be formed using multiple SOP. In this paper, it is shown
that TDOA measurements from SOP can be treated as GPS psuedorange
measurements. The derived positioning algorithm is an elegant adaptation
of the conventional positioning algorithm used in GPS positioning and which
operates on pseudorange measurements. Subsequent position solution and
geometry considerations follow directly from current GPS techniques.

The paper is organized as follows. Section 2 presents the formation of
measurements from SOP. TDOA measurements are motivated, and the gen-
eral measurement equation is derived. Section 3 presents the use of TDOA
measurements from SOP for navigation. It is shown that the navigation al-
gorithm parallels that of the GPS system with minor differences. Concluding
remarks are made in Section 4.

2 Measurements from Signals of Opportunity

SOPs can be exploited for navigation in several ways. Hall [2, 3] used two
receivers, one at a known location and one at the location to be determined,
to track the phase of an incoming amplitude modulation (AM) radio station
signal and was able to obtain GPS-like accuracy under certain restrictions.
Rosum Corporation [8, 9] uses analog and digital television signals. Mea-
surements are formed by comparing the incoming TV signal with a generated
reference signal. Timing information is provided by a second receiver at a
known location. GPS-like accuracy is obtained indoors in specific coverage
areas. This paper proposes using two receivers and TDOA measurements.
As shown in Fig. 1, one receiver, the base station or reference receiver, is at
a known location while the other receiver, the rover, is at a location to be
determined. The SOP transmitter location is assumed to be known. Fixed

Cooperative Estimation Algorithms Using TDOA Measurements 59

ith SOP

rover

tb
i

t
r

i

tt
i

base station

Fig. 1. TDOA Measurement of ith SOP

SOP transmitter locations (such as fixed towers) can be determined a priori
through surveying. Moving SOP transmitter locations can be predicted (such
as space-based, orbiting transmitters) or determined with additional base sta-
tions in a separate, simultaneous algorithm [4]. Each TDOA measurement is
formed as the difference in received time of the SOP at the base station com-
pared to the received time of the SOP at the rover. The TDOA measurement
of the ith SOP at the base station compared to the rover, δi

br, can be written
as

δi
br = tib

∣∣
b
− tir

∣∣
r

(1)

where tib
∣∣
b

is the received time of the ith SOP at the base station according
to the base station clock and tir

∣∣
r

is the received time of the ith SOP at the
rover according to the rover clock. The |b and |r denote that the time is
measured by the base station and rover, respectively, and allow for imperfect
and unsynchronized base station and rover clocks. The received time of the ith

signal at the base station according to the base station clock, tib
∣∣
b
, is related

to the true received time of the ith signal at the base station, tib, by

tib
∣∣
b

= tib + δb

(
tib
)

(2)

where δb

(
tib
)

is defined as the base station clock error at the true received
time. Likewise, the received time of the ith signal at the rover according to
the rover clock, tir

∣∣
r
, is related to the true received time of the ith signal at

the rover, tir, by

60 Kenneth A. Fisher, John F. Raquet and Meir Pachter

tir
∣∣
r

= tir + δr

(
tir
)

(3)

where δr

(
tir
)

is defined as the rover clock error at the true received time.
Substituting Equations (2) and (3) into Equation (1), the TDOA measurement
is

δi
br = tib + δb

(
tib
)
−
[
tir + δr

(
tir
)]

(4)

δi
br = tib − tir + δb

(
tib
)
− δr

(
tir
)

(5)

As the name implies, a TDOA measurement is fundamentally a measure-
ment of a signal’s received time difference at two different locations1. One
way to form a TDOA measurement is to time-tag a specific portion of the
incoming signal at each location and determine the difference in the received
times. The ability to time-tag precisely the same portion of the signal at each
receiver may require SOP that possess distinct time domain features. An-
other method that can be used for any SOP is cross-correlating a portion of
the incoming signal at each receiver. Regardless of the TDOA measurement
method, either a datalink between the rover and reference receivers must be
in place for near-real time operation, or data must be stored for subsequent
post-processing.

There are many advantages in forming TDOA measurements from SOP.
One advantage of TDOA measurements is the transmit time does not need
to be known (or determined) to obtain a solution. Consequently, there are no
timing requirements placed upon the transmitter for navigation purposes. (A
clock may be necessary for determining transmitter frequencies governed by
the Federal Communications Commission or other system requirements.) Also,
the two receivers do not need to keep accurate time nor be time-synchronized.
Finally, TDOA measurements can be formed from a wide range of signals.
For example, one can obtain TDOA measurements from AM radio stations,
FM radio stations, analog television stations, digital television stations, and
cellular tower transmissions. All the measurements can be used in a weighted
solution algorithm in a straightforward manner. The only difference is in
how the TDOA measurement for each signal type is obtained. Once the
TDOA measurements are taken, the herein developed positioning algorithm
is applied.

3 Using Measurements from Signals of Opportunity

SOP-derived TDOA measurements have been motived as appealling alter-
natives to GPS; and the TDOA measurement equation has been given in
Equation (5). Although it would appear that the equations governing TDOA
measurements, and consequently TDOA GDOP, are quite different from their
1 Not used here, TDOA can also be defined as the difference in received times of

two different signals at the same location.

Cooperative Estimation Algorithms Using TDOA Measurements 61

SOP #1

roverbase station

ith SOP

SOP #2

xi (t)

x2 (t)

x1 (t)

xb (t) xr(t)

Fig. 2. TDOA Transmitter and Receiver Scenario

GPS counterparts, this section shows that the TDOA measurement equations
can be transformed into GPS pseudorange equations. Because SOP are trans-
mitted for purposes other than navigation and are normally controlled by some
entity other than the navigation user, in general, the transmit time of a signal
is unknown to the navigational user. Furthermore, each SOP transmitter is
not synchronized to any of the other transmitters. For example, a local radio
station’s broadcast is not generally synchronized to other radio stations. A
situation may nevertheless occur when transmitters are synchronized. The
assumption here does not take advantage of this additional constraint in order
to encompass a wider range of SOP.

Figure (2) shows the scenario considered. The location of the ith SOP
transmitter for i = 1, 2, · · · , N at time t is assumed to be known as xi (t).
The equipment needed consists of two receivers: a base station at a known
location, xb (t), and a rover unit at the location to be determined, xr (t). Each
receiver may be stationary or moving. The base station location, xb (t), may
be at a fixed, surveyed site or determined using an available navigation system
such as GPS.

The TDOA measurement of the ith signal to the base station relative to the
receiver, δi

br, was given in Equation (5). Converting travel times into distances
by multiplying by the speed of propagation of the signal, c, Equation (5)
becomes

62 Kenneth A. Fisher, John F. Raquet and Meir Pachter

ith SOP

rover base station

d
r

i

d
b
i

br
i

Fig. 3. Geometric Interpretation of TDOA Measurement Equation

∆i
br � cδi

br = ctib − ctir + cδb

(
tib
)
− cδr

(
tir
)

=
(
ctib − ctit

)
−
(
ctir − ctit

)
+
[
cδb

(
tib
)
− cδr

(
tir
)]

= di
b − di

r +
[
cδb

(
tib
)
− cδr

(
tir
)]

(6)

where tit is the unknown transmit time of the ith SOP, cδi
br � ∆i

br , and di
b

and di
r are the distances from the ith SOP transmitter to the base station and

rover, repectively. Figure (3) shows the relationship of and di
b, di

r and ∆i
br .

Using this insight, Equation (6) is rearranged as

di
r −

[
cδb

(
tib
)
− cδr

(
tir
)]

= di
b −∆i

br (7)

Equation (7) represents the measurement equation for a single SOP, where
∆i

br is the TDOA measurement (in distance), di
b is the known distance from

the base station to the ith SOP,
[
cδb

(
tib
)
− cδr

(
tir
)]

is the unknown difference
in the clock errors of the base station and the rover (expressed in units of
distance), and di

r is the unknown distance from the rover to the ith SOP.
Using N SOP transmitters, N measurements can be taken. For three

dimensional positioning, N ≥ 4 is required. In general, each of the terms
in Equation (7) with the superscript i vary as the SOP transmitter varies.
However, the time the ith SOP is received at the rover, tir, can be selected
by the user by choosing when the SOP is considered “received” at the rover.
Using multiple channels, each of the N SOPs can be received simultaneously,
or

t1r = t2r = · · · = tNr � tr

It follows that the rover clock error remains the same for each SOP and can
be denoted as δr (tr).

Cooperative Estimation Algorithms Using TDOA Measurements 63

The time at which the ith SOP is received at the base station, tib, may take
on values between tr − B

c and tr + B
c , or

tib ∈
[
tr −

B

c
, tr +

B

c

]
where B is the distance between the base station and the rover and c is the
speed of propagation. If B is constrained such that the base station clock drift
is sufficiently small over the possible range of base station received times, then

δb (t) ≈ k ∀t ∈
[
tr −

B

c
, tr +

B

c

]
(8)

where k is a constant. Furthermore, Equation (8) holds for each SOP, so that

δb

(
t1b
)
≈ δb

(
t2b
)
≈ · · · ≈ δb

(
tNb
)

� δb (tb)

Finally, replacing δr

(
tir
)

with δr (tr) and δb

(
tib
)

with δb (tb), Equation (7)
becomes

di
r − [cδb (tb)− cδr (tr)] = di

b −∆i
br (9)

Equation (9) parallels the GPS pseudorange equation, where di
b −∆i

br is
the ith pseudorange measurement, di

r is range from the rover to the ith GPS
transmitter (or satellite), and [cδb (tb)− cδr (tr)] is a bias term constant over
all N measurements. Thus, TDOA navigation parallels GPS navigation with
a user, a local differential receiver, and the GPS satellites as transmitters. The
difference is that in conventional GPS the bias term represents the user clock
error, whereas for SOP TDOA measurements the bias term represents the
difference in the clock errors of the base station and rover. Hence, standard
GPS algorithms, such as one presented by Misra and Enge [5], or closed-form
solutions such as in [7], can be used to solve for the rover position and the
difference in clock errors of the base station clock and rover clock. Note that
the algorithm using SOP TDOA measurements cannot be used to estimate
true time, since the bias found represents a difference in clock errors and not
a single clock error compared to the true time.

Similar to GPS navigation, dilution of precision considerations (a.k.a.,
observability) also apply and can be addressed in a manner consistent with
GPS techniques [5]. In this respect and leveraging GPS knowledge, it may
be advantageous to constrain the solution to 2-D positioning while at the
same time taking advantage of having an overdetermined system–barring the
fortunate circumstance where one of the TDOA receivers is overhead the
source. Moreover, it is suggested here to redifine the GDOP metric, namely,
consider the condition number of the regressor at the point of convergence
of the ILS algorithm. Indeed, both the TDOA and GPS algorithms employ
ILS, and for both we propose to transition to the condition number-based
characterization of GDOP. Only then is one justified bounding the position
error by GDOP ∗ (Measurement Error) [6]. Indeed, when a linear system

64 Kenneth A. Fisher, John F. Raquet and Meir Pachter

z = Hθ is solved, the relative error of the estimate is related to the relative
measurement error according to:

‖∆θ‖2
‖θ‖2

≤ κ {H} ‖∆z‖2
‖z‖2

(10)

where κ {·} is the condition number of the matrix.
Finally, an example in using SOP for navigation is considered in which

an optimal GDOP can be realized. It has been suggested to use TDOA
measurements from x-ray pulsars for relative positioning [1, 10, 11]. Without
loss of generality, let the reference station be located at the origin; the desired
receiver is located at r ∈ R3. The ith emitter is located a distance near ∞
in the known direction, di, where ‖di‖2 = 1. Finally, assume that ambiguity
resolution is acheived. Under these conditions, the measurement equations
are

zi � (di)
T r + vi (11)

for i = 1, 2, · · · , N where N ≥ 3 and vi is zero-mean, white, Gaussian noise
with a covariance σ2. Now,

z = Hr + v (12)

where z �
[
z1 z2 · · · zN

]T
, v �

[
v1 v2 · · · vN

]T
, and H is the regressor

matrix given as

H =

⎡⎢⎢⎢⎣
(d1)

T

(d2)
T

...
(dN)T

⎤⎥⎥⎥⎦
N×3

(13)

Notice that

HTH =
N∑

i=1

di (di)
T (14)

Thus, if N = 3 and the vectors di form an orthonormal triad, then

HTH = I3×3 (15)(
HTH

)−1
= I3×3 (16)

and the condition number is given as

κ
{(

HT H
)−1

}
= 1 (17)

If the direction vectors are not orthonormal, without loss of generality, they
can be expressed as

d1 =

⎡⎣1
0
0

⎤⎦ , d2 =

⎡⎣ cosϕ
sin ϕ

0

⎤⎦ , d3 =

⎡⎣ cos θ cosψ
cos θ sinψ

sin θ

⎤⎦ (18)

Cooperative Estimation Algorithms Using TDOA Measurements 65

Now,

HTH=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1 + cos2 ϕ

+ cos2 θ cos2 ψ

) (
sinϕ cosϕ

+ cos2 θ sinψ cosψ

)
sin θ cos θ cosψ

(
sin ϕ cosϕ

+ cos2 θ sin ψ cosψ

) (
sin2 ψ

+ sin2 ψ cos2 θ

)
sin θ cos θ sin ψ

sin θ cos θ cosψ sin θ cos θ sin ψ sin2 θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19)

and

det
(
HTH

)
=

= sin2 θ sin ϕ
(
sin ϕ + 2 sinϕ cos2 ϕ + 2 cosϕ cos2 θ sin ψ cosψ

) (20)

Trace
{(

HT H
)−1

}
=

(
cos2 θ (cos 2ψ − cos [2 (ψ − ϕ)])

+2 sin2 ϕ + 4 sin2 ψ cos2 θ

)
2 sin2 θ sin ϕ

(
sin ϕ + 2 sinϕ cos2 ϕ

+2 cosϕ cos2 θ sin ψ cosψ

) (21)

4 Conclusion

The use of SOP, including x-ray pulsars-based stellar navigation, provides an
alternative, and/or augmentation, to current navigation methods such as GPS
or INS. A navigation senario using SOP exploitation was described, and the
assumptions about SOP were clearly stated. The time difference of arrival
(TDOA) measurement process applied to SOP signals was described, and it
was shown that SOP TDOA measurements can be processed with existing
GPS algorithms to solve for user positions and the rover clock error relative
to the base station clock error. Furthermore, existing GDOP techniques (in-
cluding the “trace” method and the “condition number” method) used for
GPS measurements are applicable to TDOA formulation given herein. Fur-
thermore, SOP-based TDOA navigation enables positioning systems where
none of the transmitters or receivers require precise clocks, nor do they need
to be synchronized.

5 Disclaimer

This is declared work of the U.S. Government and is not subject to copyright
protection in the United States. The views expressed in this article are those
of the authors and do not reflect the official policy of the United States Air
Force, Department of Defense, or the US Government.

66 Kenneth A. Fisher, John F. Raquet and Meir Pachter

References

1. Downs, G. “Interplanetary Navigation Using Pulsating Radio Sources,” NASA
TR N74-34150, October 1974

2. Hall, T. D., C. C. Counselman, and P. Misra. “Instantaneous Radiolocation Us-
ing AM Broadcast Signals,” Proceedings of ION-NTM, Long Beach, CA, pp. 93-
99, January 2001.

3. Hall, T. D. “Radiolocation Using AM Broadcast Signals,” Ph.D. Dissertation,
Massachusetts Institute of Technology (MIT), September 2002.

4. Mellen, G., M. Pachter, and J. Raquet. “Closed-Form Solution for Determin-
ing Emitter Location Using Time Difference of Arrival Measurements,” IEEE
Transactions on Aerospace and Electronic Systems, Vol. 39, No. 3, pp. 1056-
1058, July 2003.

5. Misra, P. and P. Enge. “Global Positioning System: Signals, Measurements,
and Performance,” Ganga-Jamuna Press, Lincoln, MA, 2001.

6. Pachter, M. and J. B. McKay. “Geometry Optimization of a GPS-Based Navi-
gation Reference System,” Journal of the Institute of Navigation, Vol. 44, No. 4,
pp. 457-490, Winter 1997-1998.

7. Pachter, M. and T. Nguyen. “An Efficient GPS Position Determination Al-
gorithm,” Journal of the Institute of Navigation, Vol. 50, No. 2, pp. 131-141,
Summer 2003.

8. Rabinowitz, M. and J. Spilker. “Positioning Using the ATSC Digital Television
Signal,” Rosum Corporation Whitepaper, August 2001.

9. Rabinowitz, M. and J. Spilker. “The Rosum Television Positioning Technol-
ogy,” ION 59th Annual Meeting/CIGTF 22nd Guidance Test Symposium, Al-
bequerque, NM, pp. 528-541, June 2003.

10. Sheikh, S. I., et al. “The Use of x-Ray Pulsars for Spacecraft Navigation,” pre-
sented at the 14th AAS/AIAA Space Flight Mechanics Conference, Paper #04-
109, Maui, Hawaii, February, 2004.

11. Taylor, J. and M. Ryba. “High Precision Timing of Millisecond Pulsars,” The
Astrophysical Journal, Vol. 371, 1991.

12. Titterton, D. H. and J.L. Weston. ”Strapdown Inertial Navigation Technology,”
IEE Books, Peter Peregrinus Ltd, UK, 1997.

A Comparative Study of Target Localization
Methods for Large GDOP

Harold D. Gilbert, Daniel J. Pack and Jeffrey S. McGuirk

Department of Electrical and Computer Engineering
United States Air Force Academy USAF Academy, CO 80840-6236
E-mail: {harold.gilbert,daniel.pack,Jeffery.mcguirk}@usafa.af.mil

Summary. In this chapter, we present a comparative study on two algorithms to
localize ground targets using Unmanned Aerial Vehicles (UAVs): an angle-of-arrival
(AOA) emitter-location algorithm using triangulation techniques and an angle-rate
algorithm. In particular, we focus on the performance of the two algorithms locating
targets when a sensor platform is under a large Geographic Dilution of Precision
(GDOP) condition. The large GDOP condition occurs when a target is seen by
a sensor platform within a small included angle; the total included angle between
Line-Of-Bearings (LOBs) is less than five degrees. The comparative study is a part of
the United States Air Force Academy’s Unmanned Aerial Vehicles (UAVs) research
project to develop a group of cooperative UAVs to search, detect, and localize moving
ground targets. The GDOP conditions limit the accuracy of the AOA triangulation-
emitter-location algorithm’s accuracy due to the resulting highly elliptical probable
error. In such cases, angle-rate algorithms should be used for better localization
accuracy. Usually, a large GDOP condition is encountered during two important
operational applications: (1) tasks that use slow-moving-sensor platforms, such as
a small UAV, and (2) tasks involving short-up-time emitters that typically are not
transmitting signals long enough for any sensor platform to open more than a small
total included angle. We investigate the performance of the two algorithms as we
vary the included angle for the sensor platform. The performances of angle-rate and
triangulation algorithms are compared via MATLAB simulation to determine the
preferred regions of operation.

1 Introduction

Ever since aviation became available for military use, developing techniques
to accurately locate targets has been the pursuit of numerous researchers.
Ideally, localization of a target becomes a straight forward procedure if we
can accurately sense the distance of a target from two or three distributed
sensor platforms, and if we can compute the positional relationships between
the sensor platforms. Typically, the sensed range information is corrupted
with noise, making accurate platform position difficult. To further complicate

68 Harold D. Gilbert, Daniel J. Pack and Jeffrey S. McGuirk

the task, some targets, such as time-varying Radio Frequency (RF) signal
emitters, can be seen only within a small time window.

Over the past decade, locating targets cooperatively using multiple sensor
platforms generated sizable interests among engineers and scientists in a va-
riety of research communities [1,2,3]. The UAV community, in particular, has
been actively advancing the state of this technology [4,5,6]. It is within this
context that we are developing a cooperative UAV system at the US Air Force
Academy [7]. We have developed a multiple UAV system graphical simulator,
and we are in the process of acquiring and constructing hardware for a flying
fleet of UAVs.

In our applications, multiple UAVs are working together to detect, locate
and exploit radiating electromagnetic emitters. The first UAV to detect a
target needs to rapidly estimate an approximate emitter location. This infor-
mation is passed to other UAVs that will participate in a cooperative local-
ization task. The initial estimation of the target location is important since it
helps other UAVs to plan their trajectories to approach the target in an opti-
mal fashion . Once a set of UAVs are within the sensor range from a target,
they can collectively and accurately localize that target. The objective of the
current work is to compare two types of algorithms based on the principles
of angle-rate and AOA triangulation. The results of the comparative study
will be used to properly select a technique to increase the target localization
accuracy for the first UAV that detects a target.

2 Background

For several decades, passive sensors have been deployed to locate unknown
electromagnetic sources (emitters). As shown in Figure 2, three basic tech-
niques allow passive localization of stationary-based emitters from airborne
platforms [8]:

1. The azimuth triangulation method where the intersection of successive
spatially displaced bearing measurements provides the emitter location;

2. The azimuth/elevation location method that provides a single-pulse in-
stantaneous emitter location from the intersection of the measured az-
imuth/elevation bearing with the earth’s surface; and

3. The time difference of arrival (TDOA) method that computes the un-
known emitter location from the measured difference in time of arrival on
a single pulse at three spatially remote locations.

Small, inexpensive, UAVs are normally applied to applications that may
be solved by the first method described above, because of their limited pay-
load capability. This paper considers applications that employ an azimuth
angle-of-arrival (AOA) sensor. Typical sensors are collinear phase interferom-
eters or one-dimensional rotating directional antennas. The measured relative
direction-of-arrival (DOA) of the received electromagnetic signal is converted

A Comparative Study of Target Localization Methods for Large GDOP 69

Heading due south

Target

Measurement
Locations

a) Azimuth Triangulation
Multiple Measurement Locations

Heading due south

Target

Multiple
Platforms

Time Difference of Arrival
Multiple Platforms

T1

T2

T3

c) Time Difference of Arrival
Single Measurement

Lines of Bearing

Measurement
Location

Target

Azimuth

Elevation

b) Azimuth and Elevation
Single Measurement

Fig. 1. Passive Location Techniques for Stationary Emitters

70 Harold D. Gilbert, Daniel J. Pack and Jeffrey S. McGuirk

to an absolute azimuth AOA by considering the attitude and heading of the
collection platform. For the ideal case with no measurement errors, the exact
emitter location is the intersection of successive spatially displaced bearing
measurements. The more interesting case, which requires statistical methods,
is when the measurement data contains random and bias errors. These errors
may occur from both the navigational and AOA sensors and the time skew
between them.

Since the deployment of the Global Positioning System (GPS), the most
common metric to express the satellite geometry is a single number termed
the Geometric Dilution of Precision (GDOP) [9]. GDOP is a measure of the
spatial distribution of the observed satellites. The smallest GDOP yields the
best statistical location accuracy for a given system. If this concept is applied
to the azimuth triangulation emitter location problem, the GDOP is a measure
of the spatial displacement bearing measurements. A large GDOP occurs when
the included angle is small. Hence, for large GDOP the measurement errors
yields a highly elliptical probable error with major and minor axes aligned
along-range and cross-range, respectively. Since we are considering the two-
dimensional azimuth AOA systems, the GDOP is sometimes referred to as
HDOP (horizontal DOP) [9]. The generic GDOP notation is used in the paper.

GDOP =

√
σ2

max + σ2
min

σmin
≥
√

2 (1)

where σ is the major and minor axis of the elliptical probable error.
For UAV applications employing GPS navigation systems, the effect on

the emitter location accuracy from the positional and time skew errors are
small when compared to the typical AOA measurement errors, which include
both the heading and AOA sensor errors. For large GDOP cases, the line-
of-bearings (LOBs) are almost parallel resulting in the AOA errors causing a
large variation in their intersections. For example, the measured LOBs may ac-
tually intersect on the opposite side of the UAV from the actual emitter! Such
large GDOP conditions normally occur when a slow-moving-sensor platform,
such as a small UAV, is used, or when an application requires the location
of short-up-time emitters that typically are not transmitting long enough for
any sensor platform to open more than a small total included angle.

For the purpose of this study, the AOA measurements are assumed to in-
clude zero mean additive Gaussian noise; all other measurement error sources
are assumed to have an insignificant affect on the emitter location accuracy.
With these above assumptions, the emitter location problem becomes a statis-
tical process to estimate the best emitter location. AOA triangulation emitter-
location algorithms are commonly implemented via a Kalman-filter or least
squares method. Our work reported in this chapter is limited to least squares
algorithms.

The adverse affect of large GDOP for triangulation algorithms can be
significantly reduced by considering an alternative angle-rate algorithm that
depends on a least squares algorithm to calculate the average AOA, average

A Comparative Study of Target Localization Methods for Large GDOP 71

AOA angle-rate and average included AOA angle that, in turn, are used to
calculate the estimated emitter location. This approach is currently used in
at least one military application. The remainder of this paper compares the
triangulation and angle-rate algorithms for the geometry shown in Figure 2.

A single UAV collection platform, flying due south with a standoff range
of 100 Km from the emitter located at the origin, makes multiple symmet-
rical uniformly spaced measurements as shown in Figure 2. For the specified
geometry the emitter is located at point (0,0). The calculated emitter loca-
tion’s x-value is the along-range error, and the emitter location’s y-value is
the cross-range error; the errors are normalized as a percent of range without
a loss of generality. Additionally, we have made the following assumptions:

1. The directional finding system has zero mean Gaussian noise with an error
covariance of one;

2. UAVs are equipped with GPS systems that provide them their locations
and headings, and the GPS system error is negligible compared to the
sensor error; and

3. the sensing equipment on the UAVs is azimuth only.

Heading due south

Along Range Distance = 100 km

Target

Measurement
Locations

Not to scale

Included
Angle

Fig. 2. Basic UAV and Target Geometry

72 Harold D. Gilbert, Daniel J. Pack and Jeffrey S. McGuirk

−50 0 50 100
−10

−8

−6

−4

−2

0

2

4

6

8

10

Lines of Bearing for Perfect Measurements

Fig. 3. Perfect LOBs

3 AOA Triangulation Algorithm

For perfect measurements, the only common point for multiple LOBs is the
true emitter location as illustrated in Figure 3. Frame (a) of Figure 1.4 shows
the LOBs and the multiple intersections, while frame (b) shows the resulting
emitter locations. Note in this case, the actual target location is at point (0,0).

Measurements with random errors result in different locations for each pair
of measured LOBs as shown in Figure 4. There are cross-range and along range
emitter location errors. The along-range error is 5 km while the cross-range
error is 100 m. Note the along-range error is an order of magnitude greater
than the cross range error. The estimated emitter location is the least-square
solution for the statistical sample function of sequential LOBs.

Consider the limiting case when the UAV’s displacement approaches zero,
hence the only intersection of the noisy LOB’s is at the UAV’s location not
at the target’s location. In this case, the along-range emitter location error
obtained from the triangulation algorithm simply becomes the range to the
target. This adverse location error is the result of the extreme GDOP. It should
be obvious the emitter location accuracy of the triangulation algorithm is very
suspect for large GDOP cases. In the next section, an alternative algorithm

A Comparative Study of Target Localization Methods for Large GDOP 73

−50 0 50 100
−5

0

5

(a)

−50 −40 −30 −20 −10 0 10 20 30 40 50
−10

−5

0

5

10

(b)

Actual Location
Estimated Location

Fig. 4. Measured LOBs and Triangulation Emitter Location Error

is introduced to improve the initial emitter location estimate for large GDOP
cases.

4 Angle-Rate Algorithm

Before introducing the angle-rate algorithm, recall for a rotating vector, the
tangential velocity is equal to the angular velocity multiplied by the magnitude
of the vector. Applying this principle to the emitter location problem, the
range to the target is the UAV’s velocity divided by the angle-rate of the
observed line-of-bearing to the emitter when the UAV is orbiting the emitter
with a constant velocity at a constant range. For the geometry described in
Figure 5, the emitter’s calculated range is one-half of the UAV’s y-distance
travelled divided by the tangent of one-half of the included angle. The emitter
location’s calculated y-value, or cross-range, is the UAV’s average y-value
added to the emitter’s range multiplied by the tangent of the average included
AOA.

Because of noisy LOB measurements, the exact angles in the above figure
are not available. The objective of the angle-rate algorithm is to estimate these
unknown values. The angle-rate algorithm determines the target’s position by
using the average AOA, average AOA angle-rate, and average included AOA
angle that are obtained from the linear least square regression of the measured
AOA data. Note using the average AOA obtained via linear regression instead
of a tangent regression curve adds a bias to the range estimate. For small
included angle where tan α ≈ α , the bias is negligible; as the included angle
increases, the bias grows adding error to the algorithm.

74 Harold D. Gilbert, Daniel J. Pack and Jeffrey S. McGuirk

Target

Target RangeTheta / 2

Total y Distance

2

Total Included Angle = Theta

Target Range = y/2*tan(Theta/2)

Fig. 5. Angle-Rate Geometry

−5 −4 −3 −2 −1 0 1 2 3 4 5
267

268

269

270

271

272

273
True AOA
Measured AOA
Calculated AOA

Fig. 6. True, Measured, and Calculated AOAs

The true AOA data from Figure 5 and the measured AOAs and the least
squares average AOAs are shown in Figure 6. The average AOA angle and
average included AOA angle are obtained from the average AOAs regression
line.

The estimated emitter location’s error using the regression data from Fig-
ure 6 is 663 m and 251 m for the along-range and cross-range respectively as
shown in Figure 7. The equivalent estimated emitter location for the triangu-
lation algorithm was shown in Figure 4b. Note for this single sample function,

A Comparative Study of Target Localization Methods for Large GDOP 75

−50 −40 −30 −20 −10 0 10 20 30 40 50
−10

−8

−6

−4

−2

0

2

4

6

8

10

Actual Location
Estimated Location

Fig. 7. Angle Rate Location Error

there is a significant error reduction (a factor of 7) by using the angle-rate
algorithm instead of the standard triangulation algorithm.

5 Algorithm Comparison

For the case discussed above, it is obvious the angle-rate algorithm is more
accurate than AOA triangulation. For this one specific case, there were 11
LOBs and the included angle was five degrees.

To further compare the two algorithms, we varied the parameter values.
We kept noise constant with a covariance of one. We collected the accuracy
data as we varied the LOBs from 3 to 101, and the included angle from 0.5
to 60 degrees.

As previously mentioned, the along-range error will be the dominant term
in the error calculations. This is because the along-range error is along the
semi-major axis of the error probable, and for large GDOP, our error is highly
elliptical.

When comparing the performance of the two algorithms, we used only
the square of the along-range error. The figure of merit (FOM) we used to
compare the algorithms’ performance is:

FOM =
σ2

along−range−Angle−Rate

σ2
along−range−Triangulation

(2)

In Eq. 2, FOM less than 1 means the angle rate algorithm resulted in
a smaller average error, while FOM greater than 1 means the triangulation
algorithm resulted in smaller average error.

76 Harold D. Gilbert, Daniel J. Pack and Jeffrey S. McGuirk

Fig. 8. Figure of Merit

Fig. 9. Error Values for Small Included Angles

Figure 8 shows a three dimensional plot of the FOM vs. included angles
ranging from 0 to 20 degrees and LOBs ranging from three to 101. Also shown
in the graph is a FOM plane which equals 1. All points on the graph above
this plane were for cases in which the triangulation algorithm had a smaller
error, while all points below this plane are for cases in which the angle-rate
algorithm had better error performance.

Figure 8 shows the angle-rate algorithm performs better than standard tri-
angulation algorithms once the number of LOBs exceeds 10 and the included
angle is greater than two degrees.

A Comparative Study of Target Localization Methods for Large GDOP 77

Fig. 10. FOM for Included Angles from 0 to 60 Degrees

It would appear since FOM is so much greater than 1 that triangulation
is the algorithm of choice for very small included angles and a small number
of LOBs. However, Figure 9 shows the magnitudes of the along-range error
for the parameter variations. Figure 9(a) shows the error performance for
the angle-rate algorithm while Figure 9(b) shows the error performance for
the AOA triangulation algorithm. Note for small included angles and small
LOBs, the errors approach 100 km. In many instances, the errors are much
larger than 100 km, but in order to keep the scale of the graph meaningful,
all error values greater than 100 km were assigned a value of 100 km. Actual
error values for the triangulation algorithm at small included angles and small
number of LOBs was on the order of 100 km while the error for the same
conditions for the Angle Rate algorithm were over 1,000 km. Thus, neither
algorithm produces useable results.

Once the included angle passes two degrees and the number of LOBs is
more than 10, the angle-rate algorithm produces consistently better results
than the AOA triangulation algorithm.

Interestingly enough, when the included angle grows beyond forty degrees,
the angle rate error increases. The tangent function results in error in our
approximation at these higher angles, as shown in Figure 10.

6 Conclusions and Future Work

The angle-rate emitter location algorithm is a better choice for small-included
AOA applications [i.e., large GDOP cases] and provides the better initial tar-
get location accuracy for any application. The methods described above may

78 Harold D. Gilbert, Daniel J. Pack and Jeffrey S. McGuirk

be extended to include recursive linear or non-linear algorithms for either two
or three-dimensional applications that not only calculate the unknown emit-
ter location but also compute the sample function error statistics to provide
a real-time figure-of-merit for the computed location.

Applying the angle-rate algorithm to slow moving UAVs provides an en-
hanced initial target location for rapid decimation to other UAVs, thereby
enhancing the corporative search, detect, and localization of radiating tar-
gets.

The future direction of this work is implementation of angle-rate algorithm
into the USAFA’s UAV simulator and then into hardware for the USAFA’s
UAV test program.

References

1. Parker, L., and Emmens, B. (1997) Cooperative Multi-Robot Observation of
Multiple Moving Targets, Proceedings of the 1997 IEEE International Conference
on Robotics and Automation,, pp.2082-2089.

2. Everett, H., Gilbeater, G., Heath-Pastane, T., and Laird, R. (1993), Coordinated
Control of Multiple Security Robots, Proceedings of SPIE Robots VIII, pp. 292-
305.

3. Stone, L., Barlow, C., and Corwin, T., (1999). Bayesian Multiple Target Tracking,
Mathematics in Science and Engineering.

4. Bourgault, F., Furukawa, T., and Duttant-Whyte, H. (2003), Coordinated De-
centralized Search for a Lost Target in a Bayesian World, Proceedins of the 2003
IEEE/RSJ Intl. Conf. on Intelligent Robts and Systems.

5. Beard, R., Mclain, T., Goodrich, M., and Anderson, E. (2002). Coordinated Tar-
get Assignment of Intercept for Unmanned Air Vehicles, IEEE Transactions on
Robotics and Automation, vol. 18, no. 6.

6. Vincent, P., and Rubin, I., (2003), A Framework and Analysis for Cooperative
Search Using UAV Swarms, Proceedings of the 2004 ACM Symposium on Applied
Computing, pp. 79-86.

7. Pack, D., and York, G., (2005), Developing a Control Architecture for Multiple
Unmanned Aerial Vehicles to Search and Localize RF Time-Varying Mobile Tar-
gets: Part I, Proceedings of the 2005 IEEE International Conference on Robotics
and Automation.

8. Avionics Department of the Naval Air Warfare Center Weapons Division, (1992)
Electronic Warfare and Radar Systems Engineering Handbook.

9. Yarlagadda, R., Ali, I., Al-Dhahir, N., and Hershey, J. (2000), GPS GDOP Metric,
IEEE Proceedings on Radar, Sonar Navigation, pp. 259-264.

Leaderless Cooperative Formation Control of
Autonomous Mobile Robots Under Limited

Communication Range Constraints

Zhihua Qu1, Jing Wang1 and Richard A. Hull2

1 Department of Electrical and Computer Engineering,
University of Central Florida,
Orlando, FL 32816, USA
E-mail: qu@mail.ucf.edu; jwang@pegasus.cc.ucf.edu

2 Lockheed Martin Missiles and Fire Control,
5600 Sand Lake Rd. MP-450,
Orlando, FL 32819, USA
E-mail: Richard.A.Hull@lmco.com

Summary. In this paper, a new leaderless cooperative formation control strategy
is proposed for a group of autonomous mobile robots. Through the local state and
input transformations, the formation control problem can be recast as the coopera-
tive control design problem for a class of general canonical systems with arbitrary
but finite relative degree. A set of less-restrictive sufficient conditions on group com-
munication topology to ensure the success of cooperative control design has been
established. The system stability is rigorously proved by studying the convergence
of products of row stochastic matrices. The proposed design does not require ei-
ther that collaborative robots have a fixed communication/control structure (such
as leader/follower or nearest neighbor) or that their sensor/communication graph
be strongly connected. Detailed simulation results are provided to illustrate the
effectiveness of the proposed method.

1 Introduction

Recent years have seen a rapid progress on the study of cooperative and
formation control for a group of mobile autonomous robots. The reason is
that cooperatively controlled multiple robots have the potentiality to complete
the complicated tasks with the advantages of higher efficiency and failure
tolerance, such as coordinated navigation to a target, coordinated terrain
exploration and search and rescue operations.

To cooperatively control a group of robots with less intervention from
the centralized coordinator, a necessary condition is that the robots in the
group can exchange information. As a result, the communication topology
of the group plays a key role for the success of the coordination tasks. The

80 Zhihua Qu, Jing Wang and Richard A. Hull

fundamental problems in the study of cooperative control are thus how to
design the decentralized control for the individual robot only using the local
information from its neighboring robots while guaranteeing the stability of
the overall system; and under what kinds of communication topologies of
the group, it is sufficient to design the control to achieve the coordination
behavior.

At the early stage, cooperative control studies have been motivated by
mimicking the animals’ behavior. The basic cohesion, separation and align-
ment rules were extracted by observing the animal flocking and simulated
through the computer animation [26]. The alignment rule was later on mod-
elled mathematically in the study of planar motion of a group of particles
[30], and simulation results verified its correctness. In [9], a simple model was
given to describe the animal swarm aggregation under the assumption that
all the members know the exact positions of all the other members. Using the
heuristical behavior method [1], rule based motion schemas were defined to
guide and maintain the robot formation while moving to the goal location [2].
The methodology is in essence ad hoc, and no system dynamics are consid-
ered. Probabilistic approaches were also employed for multi-robot localization
and exploration [7, 21]. As a parallel development, formation control strategies
have been sought using graph theory and artificial potentials. In [5], using for-
mation graph, the problem of following a desired trajectory while maintaining
a formation was discussed by converting the system dynamics into the domain
of relative position and relative angle between robots, and then the feedback
linearization technique was applied to stabilize the relative distances of the
robots in the formation. Virtual leaders and artificial potential method were
used for a group of agents maintaining the group geometry [15, 20], where
the closed-loop stability was proved by using the system kinetic energy and
the artificial potential energy as a Lyapunov function. In [29], the notion of
string stability for line formations was proposed and sufficient conditions for
a formation to be string stable was derived. In [12], the action reference con-
cept has been introduced to define the desired trajectory for the individual
agent in the group, and the control design reduces to the classical tracking
control problem for each agent. The group coordination can be completed by
specifying the action reference, such as leader-follower.

More recently, attentions have been particularly paid to the cooperative
control problem of making the states of a group of dynamical systems converge
to same steady state, the so-called consensus problem, since its solvability has
close relation to the solvability of general formation control problem [11, 16,
23, 24, 19, 6, 28, 27, 25]. To seek a rigorous mathematical explanation to
the Vicsek model [30], a remarkable work has been done in [11], where it is
proved that all the agents’ headings converge to a common value provided
that the bidirectional sensor graphs for all agents are periodically connected.
The extensions to the directed sensor graph was subsequently done in [16, 19,
25, 27]. For the case of directed sensor graph, the condition found is that the
sensor graph needs to be strongly connected once over a fixed time interval

Leaderless Cooperative Formation Control of Autonomous Robots 81

[16]. In our recent works [23, 24], we posed the consensus problem for a general
class of multiple-input-multiple-output dynamical systems in canonical form
with arbitrary but finite relative degree. Through the thorough studies on
the irreducibility of row stochastic matrix and establishing the new results on
convergence of product of a sequence of row stochastic matrix, we presented
a general guideline for the cooperative control design.

In this paper, as a continuation of the works in [23, 24], we propose a new
leaderless cooperative formation control strategy for a group of autonomous
mobile robots. In particular, we consider a group of robotic vehicles that
operate individually by themselves most of the time, communicate intermit-
tently among their teammates within their neighboring groups, and vehicles
have limited sensing range. Such a setting is typical in many practical appli-
cations, such as deploying a group of robots for search or exploration pur-
pose in hazardous environments. The proposed design does not require either
that collaborative robots have a fixed communication/control structure (such
as leader/follower or nearest neighbor) or that their sensor/communication
graph be strongly connected. The convergence of the overall system is rigor-
ously proved by studying the convergence of products of a sequence of row
stochastic matrices. Compared to the existing results in the literature, the
main contribution of this work lies in two-fold: First, the formation control
problem has been solved for a general class of systems in canonical form with
higher relative degrees and the agents in the group can be not identical, this
makes the proposed method applicable to a broad class of practical systems.
To the best of the authors’ knowledge, there is no related result reported in
the literature. Second, the less-restrictive sufficient conditions on group com-
munication topology to ensure the success of cooperative control design has
been established. In the final part of the paper, the illustrative examples are
provided to verify the proposed method.

2 Problem Formulation

Throughout the paper, the following notations and definitions are used. Let
1p be the p-dimensional column vector with all its elements being 1, and
Jr1×r2 ∈ �r1×r2 be a matrix whose elements are all 1. A nonnegative matrix
has all entries nonnegative. A square real matrix is row stochastic if it is
nonnegative and its row sums all equal 1. For a row stochastic matrix E, define
δ(E) = maxj maxi1,i2 |Ei1j − Ei2j |, which measures how different the rows of
E are. Also, define λ(E) = 1−mini1,i2

∑
j min(Ei1j , Ei2j). Given a sequence of

nonnegative matrix E(k), E(k) 0, k = 0, 1, · · · , means that, there is a sub-
sequence {lv, v = 1, · · · ,∞} of {0, 1, 2, · · · ,∞} such that limv→∞ lv = +∞
and E(lv) �= 0, that is, there exists at least one element Eij(lv) ≥ ε for
ε > 0. A non-negative matrix E is said to be irreducible if there does not exist
a permutation matrix T such that TGT T is in the block lower-triangular
structure. Otherwise, it is reducible.

82 Zhihua Qu, Jing Wang and Richard A. Hull

In this section, we first formulate the cooperative control design problem
for a class of dynamical systems in the canonical form, and show that a broad
class of practical robotic systems can be converted into the given canonical
form through the decentralized state and input transformations. Then, we will
show that the formation control problem can be recast to study the solvability
of the proposed cooperative control problem for the canonical systems.

2.1 Canonical Form

Consider a group of dynamical systems given by the following canonical form

ẋi = Aixi + Biui, yi = Cixi, η̇i = gi(ηi, xi), (1)

where i = 1, · · · , q, li ≥ 1 is an integer, xi ∈ �lim, ηi ∈ �ni−lim, Im×m is the
m-dimensional identity matrix, ⊗ denotes the Kronecker product, Jk is the
kth order Jordan canonical form given by

Jk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 · · · 0 0

0 −1 1
. . . 0 0

...
.

...
0 0 · · · −1 1 0
0 0 0 · · · −1 1
0 0 0 · · · 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ �k×k,

Ai = Jli ⊗ Im×m ∈ �(lim)×(lim), Bi =
[

0
Im×m

]
∈ �(lim)×m, Ci =[

Im×m 0
]
∈ �m×(lim), yi ∈ �m is the output, ui ∈ �m is the coopera-

tive control law to be designed, and subsystem η̇i = gi(ηi, xi) is input-to-state
stable. Without loss of any generality, in this paper we consider the case that
l1 = l2 = · · · = lq = l. The objective is to synthesis a general class of co-
operative control ui and establish the less-restrictive conditions on network
connectivity requirements such that the all states of the overall system con-
verge to the same steady state.

The following examples illustrate the wider application of the proposed
canonical model.

Example 1. Point-mass agent: Given the agent’s motion model:

ż1 = z2, ż2 = v, (2)

where z1 ∈ �m is the position of the agent, z2 ∈ �m is the velocity, and
v ∈ �m is the control. Define the state and input transformations as follows:

x1 = z1, x2 = x1 + z2, v = −2x2 + x1 + u.

Then system model can be transformed into (1) with

Leaderless Cooperative Formation Control of Autonomous Robots 83

A =
[
−1 1
0 −1

]
⊗ Im×m, B =

[
0

Im×m

]
, C =

[
Im×m 0

]
.

Example 2. Differential driven mobile robots: Given nonholonomic 4-wheel dif-
ferential driven mobile robots [14]:⎡⎢⎢⎢⎢⎣

ṙx

ṙy

ṙθ

ṙv

ṙω

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
rv cos(rθ)
rv sin(rθ)

rω

0
0

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
0 0
0 0
0 0
1
m 0
0 1

J

⎤⎥⎥⎥⎥⎦
[

F
τ

]
, (3)

where (rx, ry) is the inertial position of the robot, rθ is the orientation, rv is
the linear speed, rω is the angular speed, τ is the applied torque, F is the
applied force, m is the mass, and J is the moment of inertia. By taking the
robot “hand” position as the guide point (which is a point located a distance
L from (rx, ry) along the line that is perpendicular to the wheel axis), the
robot model in (3) can be feedback linearized to

φ̇1 = φ2, φ̇2 = v, (4)
ṙθ =

[
− 1

2L sin(rθ) 1
2L cos(rθ)

]
φ2, (5)

where φ1 =
[

rx + L cos(rθ)
ry + L sin(rθ)

]
∈ �2 is the position of “hand” point, φ2 ∈ �2,

and[
F
τ

]
=
[

1
m cos(rθ) −L

J sin(rθ)
1
m sin(rθ) L

J cos(rθ)

]−1(
v −

[
−rvrω sin(rθ)− L2r2

ω cos(rθ)
rvrω cos(rθ)− L2r2

ω sin(rθ)

])
.

As shown by example 1, system (4) can be further put into the form of (1),
and (5) is the internal dynamics. Once φ2 and φ1 are controlled to the steady
state φss, we can show that the internal dynamics (5) is also stable. Assume
that φss > 0. It is easy to see that π

4 is an equilibrium of system (5). Then by
taking Lyapunov function candidate as V = 1 − cos(rθ − π

4), it follows from

(5) that V̇ = −
√

2φss

4L [sin(rθ)− cos(rθ)]
2 ≤ 0. Thus, we can conclude that the

internal dynamics is asymptotically stable.

Example 3. Point-mass aircraft [17]: Given

ẋ = V cos γ cosφ, (6)
ẏ = V cos γ sin φ, (7)
ḣ = V sin γ, (8)

V̇ =
T −D

M
− g sin γ, (9)

γ̇ =
g

V
(n cos δ − cos γ) , (10)

φ̇ =
L sin δ

mV cos γ
, (11)

84 Zhihua Qu, Jing Wang and Richard A. Hull

where x is the down-range displacement, y is the cross-range displacement, h
is the altitude, V is the ground speed and is assumed to be equal to airspeed,
γ is the flight path angle, φ is the heading angle, T is the aircraft engine
thrust, D is the drag, M is the aircraft mass, g is the gravity acceleration,
L is the aerodynamic lift, δ is the banking angle. The banking angle δ, the
engine thrust T , and the load factor n = L/gm are the control variables.

By differentiating (6), (7) and (8) once with respect to time [17], the
kinematic equations describing the aircraft position can be put into (2) (which
can be further transformed into the canonical form (1)) with

z1 = [x, y, h]T , z2 = [ẋ, ẏ, ḣ]T , v = [u1, u2, u3]T ,

where u1, u2 and u3 are the new control variables. Once cooperative control
u1, u2, and u3 are designed, the actual control variables can be computed by

δ = tan−1

[
u2 cosφ− u1 sin φ

cos γ(u3 + g)− sinγ(u1 cosφ + u2 sin φ)

]
,

n =
cos γ(u3 + g)− sin γ(u1 cosφ + u2 sin φ)

g cos δ
,

T = [sinγ(u3 + g) + cos γ(u1 cosφ + u2 sin φ)]m + D,

and the heading angle φ and the flight-path angle γ can be computed as
tan φ = ẏ/ẋ, sin γ = ḣ/V .

Example 4. One more example is the underwater glider discussed in [4], where
by taking the position of shifting mass (rp1 , rp3) and the buoyancy mass mb

as the outputs, the system can be feedback linearized into

ζ̇1 = ζ2, ζ̇2 = ω1, (12)
ṁb = ω2, (13)

η̇ = q(η, ζ, ω), (14)

where ζ1 = [rp1 , rp3]T , ω1 ∈ �2 and ω2 ∈ � are the new control inputs. It is
obvious that (12) is in the form of (2) with relative degree 2, (12) is in the
form (1) with relative degree 1. It can also be verified that internal dynamics
(14) is stable [4].

Remark 1. As shown by above examples, in general, any input-output feed-
back linearizable dynamical systems with stable internal dynamics can be
transformed into the canonical form (1) [22, 13].

2.2 Formation Control Problem

Now, let us consider the formation control problem for a group of q point-mass
agents whose dynamics are given by:

Leaderless Cooperative Formation Control of Autonomous Robots 85

żi1 = zi2, żi2 = vi, i = 1, · · · , q, (15)

where zi1 = [zi11, zi12] ∈ �2 is the planar position of the ith agent, zi2 =
[zi21, zi22] ∈ �2 is its velocity, and vi = [vi1, vi2]T is its acceleration input.

A formation is defined in a coordinate frame, which moves with the desired
trajectory. Let e1(t) ∈ �2 and e2(t) ∈ �2 be the orthonormal vectors which
forms the moving frame F (t). Let zd(t) = [zd1(t), zd2(t)] ∈ �2 be any desired
trajectory of the origin of the moving frame. A formation consists of q points
in F (t), denoted by {P1, · · · , Pq}, where

Pi = di1(t)e1(t) + di2(t)e2(t), i = 1, · · · , q (16)

with di(t) = [di1(t), di2(t)] ∈ �2 being the desired relative position for the ith
agent in the formation. It is obvious that di(t) being constant refers to the
rigid formation. The desired position for the ith agent is then

zd
i (t) = zd(t) + di1(t)e1(t) + di2(t)e2(t). (17)

Figure 1 illustrates a formation setup for 3 agents.

Fig. 1. Illustration of Formation Setup

In this paper, the formation control objective is to design a decentralized
control vi(t) according to the feedback information from the agents within
its limited sensor range so as to make the group of agents converge to the
desired formation given by (16) while moving along the specified trajectory.
More specifically, two problems will be addressed:

(a) Establish the less restrictive connectivity conditions among agents under
which the coordination behavior of the group of agents can be achieved.

(b) Explicitly design the cooperative control according to the connectivity
among agents and prove the stability of the overall closed-loop system.

To solve the problems stated above, the following assumptions are made
throughout the paper:

86 Zhihua Qu, Jing Wang and Richard A. Hull

A1:Each agent is represented by a point.
A2:The agent’s motion is instantaneous and there are no communication time-

delays within the group.

In what follows, we show that, through state and input transformations,
the formation control problem for (15) can be recast as the cooperative control
design problem for (1). Let the input transformation be

xi1 = zi1 − zd
i (t), xi2 = zi2 + xi1 − żd

i (t) (18)

and the decentralized control be

vi(t) = −2xi2 + xi1 + ui. (19)

Substituting (18) and (19) into (15), we obtain the canonical model (1) with
xi = [xT

i1, x
T
i2]

T ∈ �4, ui ∈ �2, and yi ∈ �2. To this end, if we can design the
cooperative control ui such that states xi1 and xi2 for all i converge to the
same steady state xss, then it follows from (18) that

zi1 → xss + zd
i (t), zi2 → żd

i (t),

from which it can be seen that the desired formation is achieved for the whole
group while agents moving with the desired trajectory shape.

In the basic formulation of cooperative formation control problem, collision
among agents is not explicitly considered. In practice, special local control
strategy can be activated to avoid the possible collision, and then switch back
to the proposed cooperative control. In the next section, we will show how to
design cooperative control for system (1) according to the local information
within the limited sensor range and find the less-restrictive conditions under
which the coordination behavior of the whole group can be guaranteed.

3 Leaderless Cooperative Control Design

In this section, we first analyze the connectivity of the overall system by in-
troducing signal transmission matrix. Then, the analytical conditions on con-
nectivity and the design of cooperative control are provided with the rigorous
mathematical proof.

3.1 Limited Sensor Range

A typical scenario of a group of agents moving in a plane is depicted in figure
2.

As shown by figure 2, the ith agent has the limited and directed sensor
range, and it is preferred to design ui(t) by only using the local output in-
formation coming from its sensor range at the current time instant t. Under

Leaderless Cooperative Formation Control of Autonomous Robots 87

robot i

Fig. 2. Scenario

such a preference for control design, it is easy to understand that the overall
closed-loop system convergence (in the sense of cooperative control objective
being achieved) is determined by the connectivity topology of the group. In
general, the connectivity topology of the group will change dynamically with
the evolution of the system. The intuition is that the more the system is
connected, the higher the possibility of system convergence will be. However,
there may be the possible uncertainties with system communication channels,
such as the communication dropout. To reduce the effect of such uncertain-
ties, a robust cooperative control will be that requiring the information from
other agents as less as possible, that is, we prefer to seek the design of the suc-
cessful cooperative control under the connectivity topologies that is sparse. In
this paper, we analyze that under which kind of less restrictive requirements
on connectivity topology, it is sufficient to design the cooperative control to
ensure the convergence of the overall system.

The connectivity of the agents can be described by the following signal
transmission matrix:

S(t) = [Sij(t)] ∈ �q×q, (20)

where Sii = 1 which means that agent always has sensor information itself;
Sij = 1 for i �= j if the ith agent can sense the jth agent, otherwise Sij = 0.
Figure 3 gives an example to illustrate the connectivity topologies of a group
of 4 agents at two different time instants. In the graph, the line with arrow
indicates the directed communication channel between agents. If the ith agent
receives information from the jth agent, then there is a line from the jth agent
pointing at the ith agent. The corresponding signal transmission matrices are

S(tSk) =

⎡⎢⎢⎣
1 1 0 1
0 1 0 0
1 0 1 0
0 0 1 1

⎤⎥⎥⎦ , S(tSk1) =

⎡⎢⎢⎣
1 1 0 0
0 1 0 1
0 0 1 0
0 0 1 1

⎤⎥⎥⎦ . (21)

88 Zhihua Qu, Jing Wang and Richard A. Hull

Fig. 3. Connectivity topologies

The property of signal transmission matrix S(t) presents an exact descrip-
tion about the connectivity among the agents. A directed graph represented
by S(t) is strongly connected if between every pair of distinct nodes ni, nj

there is a directed path of finite length that begins at ni and ends at nj .
It is shown in [10] that the fact that a directed graph represented by S(t) is
strongly connected is equivalent to that matrix S(t) is irreducible. To this end,
the task becomes to study the property of S(t) under which the overall sys-
tem convergence can be achieved. In general, S(t) will change with the system
evolution and/or the change of communication sensor mechanisms installed
on each agent (such as the sensor may rotate periodically on each agent to en-
large the ability of receiving more information). The following time sequence
is introduced to describe the change of S(t).

Definition 1. Let {tSk : k = 0, 1, · · · } with tS0 = t0 be the sequence of time in-
stants at which the topology (that is, S(t)) of the multi-agent network changes.

In general, time sequence {tSk } and the corresponding changes of matrix
S(t) are detectable instantaneously but not known apriori. Nonetheless, it can
be assumed without loss of generality that 0 < ct ≤ tSk+1 − tSk ≤ ct <∞.

The property of S(t) plays a key role on the analysis of system convergence.
Recently, some excellent works have been done to establish the link between
the property of sensor graph (equivalently, the S(t) in this paper) and the
coordination behavior [16, 11, 19]. It is proved that if the system sensor graph
is periodically strongly connected, then systems’ coordination behavior can be
reached using the nearest neighbor rules for the control design. In particular,
the undirected sensor graph case is considered in [11], while the directed sensor
graph case is studied in [16, 19]. In those works, the system model is assumed
to be the single integrator. In this paper, two improvements will be made:

(i) We further relax the conditions on S(t);
(ii) The results are built upon the system model (1) which has arbitrary but

finite relative degree.

Leaderless Cooperative Formation Control of Autonomous Robots 89

That is, on the one hand, we will show that even S(t) are always reducible, it is
still possible to establish the conditions for overall system convergence; on the
other hand, the extension to higher relative degree enlarges the applicability
to more general agent control problem, such as motion control of UAVs. The
extension itself is not trivial as we need to prove a propagation property of
the irreducibility, and this will be clarified in subsection 3.3.

In what follows, we will give the cooperative control according to S(t) and
explicitly obtain the conditions for system convergence.

3.2 Cooperative Control Design

Let the cooperative control be given by: for i = 1, · · · , q,

ui = Gi(t)y, (22)

where y = [yT
1 · · · yT

q]T , and Gi =
[
Gi1 · · · Giq

]
with Gij = Sij(t)Kij(t),

where Kij(t) ∈ �m×m are piecewise constant non-negative matrices and cho-
sen according to the changes of S(t) such that

∑q
j=1 Sij(t)Kij(t)1m = 1m.

It follows that Gij(t) = Gij(tSk) for t ∈ [tSk , tSk+1), Gij ≥ 0, Gii > 0 and
Gi(t)1mq = 1m. That is, Gi(t) are piecewise constant for all i, row stochastic,
and determined by S(t).

It follows from (1) and (22) that the overall closed-loop system is given by

ẋ = (A + BGC)x = (−INq×Nq + D(t))x, (23)

where x = [xT
1 , · · · , xT

q]T ∈ �Nq , Nq = mlq, xi = [xT
i1, x

T
i2, · · · , xT

il]
T ∈

�ml, xij = [xij1, xij2, · · · , xijm]T ∈ �m with i = 1, · · · , q, and j = 1, · · · , l,
A = diag{A1, · · · , Aq} ∈ �Nq×Nq , C = diag{C1, · · · , Cq} ∈ �(mq)×Nq ,
B = diag{B1, · · · , Bq} ∈ �Nq×(mq), G =

[
GT

1 · · · GT
q

]T ∈ �(mq)×(mq), and
D(t) = [Dij] with (i = 1, · · · , q)

Dii =
[

0 I(l−1)×(l−1) ⊗ Im×m

Gii 0

]
∈ �lm×lm, (24)

and

Dij =
[

0 0
Gij 0

]
∈ �lm×lm, i, j = 1, · · · , q, i �= j. (25)

It is obvious that D(t) is piecewise constant and row stochastic.
Since the stability of the overall closed-loop system (23) is dependent on

the group connectivity topology S(t), we start the analysis by studying the
property of S(t). Given signal transmission matrix S(t), it is shown that there
is a permutation matrix T1(t) ∈ �q×q such that [3, 18]

ST1(t) = T T
1 (t)S(t)T1(t) =

⎡⎢⎢⎢⎣
ST1,11(t) 0 · · · 0
ST1,21(t) ST1,22(t) · · · 0

...
...

. . .
...

ST1,p1(t) ST1,p2(t) · · · ST1,pp(t)

⎤⎥⎥⎥⎦ , (26)

90 Zhihua Qu, Jing Wang and Richard A. Hull

where ST1,ii ∈ �qi×qi ,
∑p

i=1 qi = q, and ST1,ii(t) are irreducible. If p = 1, it
is obvious that S(t) is irreducible. Otherwise, S(t) is reducible. It is worth
mentioning that the case of qi �= 1 corresponds to the situation that q sub-
systems are regrouped into n subgroups with the ith subgroup consisting of
qi subsystems, i = 1, · · · , p.

Corresponding to the permutation matrix T1(t) for S(t), we have aug-
mented permutation matrices T2(t) = T1(t)⊗ Im×m ∈ �mq×mq such that

GT2 (t) = T T
2 (t)G(t)T2(t) =

⎡⎢⎢⎢⎣
GT2,11(t) 0 · · · 0
GT2,21(t) GT2,22(t) · · · 0

...
...

. . .
...

GT2,p1(t) GT2,p2(t) · · · GT2,pp(t)

⎤⎥⎥⎥⎦ , (27)

where GT2,ii(t) is irreducible. Similarly, we have augmented permutation ma-
trices T3(t) = T1(t)⊗ Ilm×lm ∈ �lmq×lmq such that

DT2(t) = T T
3 (t)D(t)T3(t) =

⎡⎢⎢⎢⎣
DT3,11(t) 0 · · · 0
DT3,21(t) DT3,22(t) · · · 0

...
...

. . .
...

DT3,p1(t) DT3,p2(t) · · · DT3,pp(t)

⎤⎥⎥⎥⎦ . (28)

Example 5. Let us consider the signal transmission matrices illustrated in fig-
ure 3. The corresponding G(t) are as follows:

G(tSk) =

⎡⎢⎢⎣
G11(tSk) G12(tSk) 0 G14(tSk)

0 G22(tSk) 0 0
G31(tSk) 0 G33(tSk) 0

0 0 G43(tSk) G44(tSk)

⎤⎥⎥⎦ ,

G(tSk1) =

⎡⎢⎢⎣
G11(tSk1) G12(tSk1) 0 0

0 G22(tSk1) 0 G24(tSk1)
0 0 G33(tSk1) 0
0 0 G43(tSk1) G44(tSk1)

⎤⎥⎥⎦ .

For S(tSk), given permutation matrices

T1(tSk) =

⎡⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , T2(tSk) = T1(tSk)⊗ Im×m, T3(tSk) = T1(tSk)⊗ Ilm×lm,

we have

ST1(t
S
k) =

[
ST1,11(tSk) Ø
ST1,21(tSk) ST1,22(tSk)

]
, GT2(t

S
k) =

[
GT2,11(tSk) Ø
GT2,21(tSk) GT2,22(tSk)

]
,

and

Leaderless Cooperative Formation Control of Autonomous Robots 91

DT3(t
S
k) =

[
DT3,11(tSk) Ø
DT3,21(tSk) DT3,22(tSk)

]
,

where

ST1,11(tSk) = 1, ST1,21(tSk) =

⎡⎣1
0
0

⎤⎦ , ST1,22(tSk) =

⎡⎣1 0 1
1 1 0
0 1 1

⎤⎦ ,

with ST1,11(tSk) and ST1,22(tSk) being irreducible and p = 2, GT2,11(tSk) =
G22(tSk) and

GT2,21(tSk) =

⎡⎣G12(tSk)
0
0

⎤⎦ , GT2,22(tSk) =

⎡⎣G11(tSk) 0 G14(tSk)
G31(tSk) G33(tSk) 0

0 G43(tSk) G44(tSk)

⎤⎦ ,

with

Gii =
[

0 I(m−1)×(m−1)

Sii/
∑q

j=1 Sij 0

]
, Gij =

[
0 0

Sij/
∑q

j=1 Sij 0

]
,

DT3,11(tSk) = D22(tSk) and

DT3,21(tSk) =

⎡⎣D12(tSk)
0
0

⎤⎦ , DT3,22(tSk) =

⎡⎣D11(tSk) 0 D14(tSk)
D31(tSk) D33(tSk) 0

0 D43(tSk) D44(tSk)

⎤⎦ ,

with Dii and Dij given by (24) and (25).
Similarly, for S(tSk1), let

T1(tSk1) =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

⎤⎥⎥⎦ ,

it is easy to obtain ST1(tS
k1

, GT2(tSk1) and DT3(tSk1). �

Remark 2. It should be noted that the permutation matrices T1, T2 and T3

are introduced here only for system stability analysis purpose.

3.3 Conditions and Convergence Analysis

In this subsection, we present the main result of the paper, and establish the
less-restrictive conditions on connectivity topologies of the overall system. The
following lemmas are used in the proof of the main theorem. Lemma 1 states
a propagation property of the irreducibility of matrix, which will be used to
solve the problem with system of higher relative degree. An easy-to-check
conditions for the convergence of lower-triangular row stochastic is given in

92 Zhihua Qu, Jing Wang and Richard A. Hull

lemma 2, which lays one of the basic foundations for the proof of the main the-
orem. Lemma 3 gives a necessary and sufficient condition on the convergence
of combination of sequence of lower-triangular row stochastic matrices with
another sequence of row stochastic matrices, and this lays another foundation
for the proof of the main theorem.

Lemma 1. [23] Given any non-negative matrix E ∈ �(qm)×(qm) with sub-
blocks Eij ∈ �m×m, let E = [Eij] ∈ �(Lm)×(Lm) with L = l1 + · · · + lq be
defined by

Eii =
[

0 I(li−1) ⊗ Im

Eii 0

]
, Eij =

[
0 0

Eij 0

]
where li ≥ 1 are positive integers for i = 1, · · · , q. Then, E is irreducible if
and only if E is irreducible.

Lemma 2. [24] Consider a sequence of nonnegative, row stochastic matrices
in the lower-triangular structure

P (k) =

⎡⎢⎢⎢⎣
P11(k)
P21(k) P22(k)

...
...

. . .
Pp1(k) Pp2(k) · · · Ppp(k)

⎤⎥⎥⎥⎦ ∈ �R×R,

where R =
∑m

i=1 ri, sub-blocks Pii(k) on the diagonal are square and of dimen-
sion �ri×ri , sub-blocks Pij(k) off diagonal are of appropriate dimensions. Sup-
pose that Pii(k) ≥ εiJri×ri for some constant εi > 0 and for all (i = 1, · · · , p),
and in the ith row of P (k) (i > 1), there is at least one j (j < i) such that
Pij 0. Then,

lim
k→∞

k−1∏
l=0

P (k − l) = 1Rc,

where constant vector c = [c1, 0, · · · , 0] ∈ �1×R with c1 ∈ �1×r1 .

Lemma 3. [24] Given sequences of row stochastic matrices P (k) ∈ �R×R

and P ′(k) ∈ �R×R, where P (k) is in the lower-triangular structure and P ′(k)
satisfying P ′

ii(k) ≥ εp > 0. Then,

lim
k→∞

k−1∏
l=0

P (k − l)P ′(k − l) = 1Rc1, (29)

if and only if limk→∞
∏k−1

l=0 P (k − l) = 1Rc2, where c1 and c2 are constant
vectors.

The following assumption shows the less-restrictive conditions on the con-
nectivity topologies of the agents.

Leaderless Cooperative Formation Control of Autonomous Robots 93

Assumption 1 Suppose that there exists a sub-sequence {sv, v = 0, 1, · · · ,∞}
of {0, 1, 2, · · · ,∞}, such that ST1(tSsv

) is in the same lower-triangular struc-
ture (that is, T1(tSsv

) = T1c for all v, where T1c is a fixed permutation matrix),
and satisfies the conditions that (i) ST1,ii(tSsv

) is irreducible and (ii) for every
i > 1, there is at least one j such that ST1,ij(tSsv

) 0, j < i.

Theorem 1. Consider the cooperative control of system (1) under assumption
1. Given control (22) with the corresponding feedback matrix G(tSk) is chosen
according to S(tSk), in particular, G(tSsv

) is chosen according to

Gii(tSsv
) =

[
0 I(m−1)×(m−1)

Sii(t
S
sv

)
Pq

j=1 Sij(tS
sv

)
0

]
,

Gij(tSsv
) =

[
0 0

Sij(t
S
sv

)
Pq

j=1 Sij(tS
sv

)
0

]
, j �= i.

(30)

Then, the stability of the overall closed-loop system can be guaranteed with

lim
t→∞x(t) = 1Nqcx(tG0), (31)

where constant vector c ∈ �1×Nq .

Proof. The proof starts with finding the expression of the solution of the over-
all system, and then the convergence is proved by studying the convergence
properties of product of a sequence of row stochastic matrices.

Step 1. Define the state transformation

x = T3z, (32)

where T3 = T1⊗Ilm×lm ∈ �lmq×lmq. Then, the system dynamic (23) becomes

ż = −(I − T T
3 DT3)z = −(I −DT3)z. (33)

The solution of (33) is

z(tSk+1) = P (tSk)z(tSk), k = 0, 1, · · · , (34)

where

P (tSk) = e−(I−DT3(tS
k))(tS

k+1−tS
k). (35)

For notational convenience, denote T3(k) = T3(tSk) and P (k) = P (tSk). It then
follows from (32) and (34) that

x(tSk+1) =
k∏

l=0

T3(k − l)P (k − l)T3(k − l)T x(tS0). (36)

To prove (31), it suffices to prove that

94 Zhihua Qu, Jing Wang and Richard A. Hull

lim
k→∞

k∏
l=0

T3(k − l)P (k − l)T3(k − l)T = 1Nqc. (37)

Step 2. We then show the convergence of (37). It follows from the lower-
triangular structure of DT3(tSk) that P (k) are also in the lower-triangular
structure. Moreover, P (k) is row-stochastic matrix and its diagonal elements
are lower-bounded by a positive value [8]. Define P ′(sv) = T3(sv)T T3(sv −
1)P (sv − 1)T T

3 (sv − 1) · · ·T3(sv−1 + 1)P (sv−1 + 1)T T
3 (sv−1 + 1)T3(sv−1), the

proof of (37) is equivalent to that of

lim
v→∞ P (sv)P (sv)′P (sv−1)P (sv−1)′ · · ·P (s1)′P (s0) = 1Nqc. (38)

By assumption 1, ST1,ii(tSsv
) is irreducible, then under the choice of G(tSsv

) in
(30), we know that GT2,ii(tSsv

) is irreducible by invoking lemma 1. Invoking
lemma 1 again and noting (24) and (25), we have that DT3,ii(tSsv

) is irreducible
and Pii(sv) > 0. On the other hand, GT2,ij(tSsv

) 0 leads to DT3,ij(tSsv
) 0

and Pij(sv) 0. It then follows from lemma 2 that

lim
v→∞P (sv)P (sv−1) · · ·P (s0) = 1Nqcs, (39)

where cs is a constant vector. To this end, the proof can be done by noting
P ′

ii(·) > 0 and invoking lemma 3.

Remark 3. Compared to the recent results in [11, 16], the conditions presented
in theorem 1 are less-restrictive. In particular, the fact that the dimension p
in (26) can be any value from 1 to q says that the system sensor graph do
not need to be strongly connected. Assumption 1 corresponds to that system
connectivity topologies can change and fixed leader-follower structure is not
required for system convergence.

The following remarks illustrate that some system connectivity topologies
belong to the special cases of the general result presented in theorem 1.

Remark 4. The fixed leader-follower structure. In this case, the signal trans-
mission matrix S(t) is in the fixed lower-triangular structure, that is, T1(tSk) =
T1c for all k. To this end, under the satisfaction of assumption 1, the system
convergence directly follows from theorem 1. Two typical leader-follower con-
nectivity topologies are given by figure 4. The corresponding signal transmis-
sion matrices are

S1 =

⎡⎢⎢⎢⎣
1 0 0 · · · 0
1 1 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1

⎤⎥⎥⎥⎦ , S2 =

⎡⎢⎢⎢⎣
1 0 0 · · · 0
1 1 0 · · · 0
...

...
. . .

. . .
...

0 0 · · · 1 1

⎤⎥⎥⎥⎦ ,

with p = q. It is obvious that the conditions in theorem 1 are satisfied.

Leaderless Cooperative Formation Control of Autonomous Robots 95

Fig. 4. Two leader-follower topologies

Remark 5. Circular Pursuit. In this case, the connectivity topology is shown

by figure 5. The signal transmission matrix is S =

⎡⎢⎢⎢⎣
1 0 0 · · · 1
1 1 0 · · · 0
...

...
.

...
0 0 · · · 1 1

⎤⎥⎥⎥⎦ . In this

21 q

Fig. 5. The topology of circular pursuit

case, S is irreducible, and p = 1.

Remark 6. The nearest neighbor rules in [11, 16] correspond to the case that
there exists a sub-sequence {sv, v = 0, 1, · · · ,∞} of {0, 1, 2, · · · ,∞}, such that
S(tSsv

) is irreducible, which is stronger than the condition in assumption 1.

4 Simulation

In this section, we provide the simulation results to illustrate the basic results
stated in this paper.

96 Zhihua Qu, Jing Wang and Richard A. Hull

4.1 Cooperative Consensus

In this simulation, we consider the cooperative consensus problem of 3 agents
given by (15). We assume that the connectivity topologies among agents
change periodically in the order of 4 topologies given in figure 6.

Fig. 6. Connectivity topologies

It is easy to check that signal transmission matrices S1 and S3 are in the
same structure and assumption 1 is satisfied. According to theorem 1, let the
corresponding feedback gain matrix G(t) be

G1 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0

0.5 0 0.5 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ , G2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0 0 0

0.5 0 0.5 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

G3 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1

0.5 0 0 0 0.5 0

⎤⎥⎥⎥⎥⎥⎥⎦ , G4 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0.5 0 0.5 0
0 0 0 0 0 1
0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

The initial positions are [1, 0]T , [0, 1]T and [−1, 0]T , respectively. Figure 7
shows the convergence of agents’ position, which verifies the proposed design
in this paper.

4.2 Circling Around a Center

In this example, assume that in the group there are 3 agents given by (15),
and two kinds of connectivity topologies appear alternatively during the agent

Leaderless Cooperative Formation Control of Autonomous Robots 97

−1.5 −1 −0.5 0 0.5 1 1.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

agent 1

agent 2

agent 3

Fig. 7. Consensus of three agents

motion: (i) agent 1 as the leader, agent 2 follows agent 1 and agent 3 follows
agent 1; (ii) each agent runs by itself. The corresponding agent sensor matrices
are

S1(k) =

⎡⎣ 1 0 0
1 1 0
1 0 1

⎤⎦ , S2(k) =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ .

We can choose the corresponding G(t) as

G1(k) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0

0.5 0 0.5 0 0 0
0 0 0 0 0 1

0.5 0 0 0 0.5 0

⎤⎥⎥⎥⎥⎥⎥⎦ , G2(k) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

It is easy to verify that S1 satisfies assumption 1, and G1 satisfies the condi-
tions in theorem 1.

The formation control objective is to make the agents circle around a
center, and all agents try to keep the same radius and speed, and relative
angle offset. Let

zd(t) = [cos(t), sin(t)]T .

The moving frame F (t) is defined as

e1(t) =
[
− sin(t)
cos(t)

]
, e2(t) =

[
cos(t)
sin(t)

]
.

The formation is defined by the three points:

P1 = the origin of F (t), P2 = d1e1 + d2e2, P3 = −d1e1 + d2e2,

98 Zhihua Qu, Jing Wang and Richard A. Hull

where d1 = 0.5 and d2 = −0.1340. The initial positions for three agents are
given by

[0, 0]T , [−0.5, −0.5]T , [0.5, −0.5]T

Figures 8 to 13 show that the circle motion is achieved while maintaining the
formation among agents.

−2 −1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 8. Circle motion under cooperative control

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

Time (sec)

Fig. 9. Longitudinal velocities of 3 agents (z121: solid line, z221: dotted line, z321:
dashed line)

4.3 Formation Switching

In this simulation, we consider the formation control problem of 6 agents given
by (15). The agents first move into a triangular formation, and switch to the

Leaderless Cooperative Formation Control of Autonomous Robots 99

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

Time (sec)

Fig. 10. Lateral velocities of 3 agents (z122: solid line, z222: dotted line, z322: dashed
line)

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

Time (sec)

Fig. 11. Cooperative control for agent 1 (v11: solid line; v12: dotted line)

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (sec)

Fig. 12. Cooperative control for agent 2 (v21: solid line; v22: dotted line)

100 Zhihua Qu, Jing Wang and Richard A. Hull

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time (sec)

Fig. 13. Cooperative control for agent 3 (v31: solid line; v32: dotted line)

line formation when getting into the narrow space, after that switch back to
the triangular formation. During the motion, we assume that two kinds of
connectivity topologies appears alternatively, as shown by figure 14.

Fig. 14. Connectivity topologies

The initial position of agents are [2.5, 1]T , [2, 1]T , [1.5, 1]T , [1, 1]T , [0.5, 1]T ,
[0.5, 1]T , [0, 1]T . The simulations results are given by figures 15 to 18, which
show the longitudinal motion history of 6 agents.

5 Conclusion

In this paper, a new cooperative formation control strategy has been devel-
oped. In summary, the proposed control-design methodology enables us to
analyze, understand and achieve cooperative behavior and autonomy for a

Leaderless Cooperative Formation Control of Autonomous Robots 101

−2 0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

Fig. 15. Formation History (t ∈ [0, 100])

−2 0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

Fig. 16. Formation History Snapshot(t ∈ [0, 40])

−2 0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

Fig. 17. Formation History Snapshot(t ∈ [40, 80])

102 Zhihua Qu, Jing Wang and Richard A. Hull

−2 0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

Fig. 18. Formation History Snapshot(t ∈ [80, 100])

team of robotic vehicles that are autonomous by themselves to operate, and
communicate with and/or sense each other intermittently under the limited
communication range constraints. In addition to the development of new and
effective cooperative formation controls, the framework can also be used to
gain fundamental understandings about and develop analytical analysis tools
for the rules and behaviors inspired by nature. Being analytical, the pro-
posed results have wide applicability because its ability of handling such re-
quirements as adaptability, guaranteed performance (asymptotic cooperative
behavior), robustness (against uncertainties in communication channels, in
sensors and detection, in nonlinear dynamics of the vehicles), and scalability.

References

1. R. Arkin. Behavior-Based Robotics. MIT Press, 1998.
2. T. Balch and R. C. Arkin. Behavior-based formation contorl for multirobot

teams. IEEE Trans. on Robotics and Automation, 14:926–939, 1998.
3. R. B. Bapat and T. E. S. Raghavan. Nonnegative Matrices and Applications.

Cambridge University Press, Cambridge, 1997.
4. P. Bhatta and N. E. Leonard. Stabilization and coordination of underwater

gliders. In Proc. 41st IEEE Conf. Decision and Control, 2002.
5. J. P. Desai, J. Ostrowski, and V. Kumar. Controlling formations of multiple

mobile robots. In IEEE Conference on Robotics and Automation, pages 2864–
2869, Leuven, Belgium, May 1998.

6. J. Alexander Fax and R. M. Murray. Finite-horizon optimal control and sta-
bilization of time-scalable systems. In Proc. 39th IEEE Int. Conf. on Decision
and Control, Sydney, Australia, 2000.

7. D. Fox, W. Burgard, H. Kruppa, and S. Thrun. A probabilistic approach to
collaborative multi-robot localization. Autonomous Robots, 8(3), 2000.

8. D. Freedman. Markov Chains. Springer-Verlag, New York, 1983.
9. V. Gazi and K. M. Passino. Stability analysis of swarms. IEEE Trans. on

Automatic Control, 48:692–697, 2003.

Leaderless Cooperative Formation Control of Autonomous Robots 103

10. R. A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press,
Cambridge, 1985.

11. A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules. IEEE Trans. on Automatic Con-
trol, 48:988–1001, 2003.

12. W. Kang, N. Xi, and A. Sparks. Theory and applications of formation control
in a perceptive referenced frame. In IEEE Conference on Decision and Control,
pages 352–357, Sydney, Australia, Dec. 2000.

13. H. K. Khalil. Nonlinear Systems, 3rd edition. Prentice Hall, Upper Saddle River,
New Jersey, 2003.

14. J. R. T. Lawton, R. W. Beard, and B. J. Young. A decentralized approach to
formation maneuvers. IEEE Trans. on Robotics and Automation, to appear,
2003.

15. N. E. Leonard and E. Fiorelli. Virtual leaders, artificial potentials and coordi-
nated control of groups. In IEEE Conference on Decision and Control, pages
2968–2973, Orlando, FL, Dec. 2001.

16. Z. Lin, M. Brouchke, and B. Francis. Local control strategies for groups of
mobile autonomous agents. IEEE Trans. on Automatic Control, 49:622–629,
2004.

17. P. K. Menon and G. D. Sweriduk. Optimal strategies for free-flight air traffic
conflict resolution. J. of Guidance, Control and Dynamics, 22:202–211, 1999.

18. H. Minc. Nonnegative Matrices. John Wiley & Sons, New York, NY, 1988.
19. L. Moreau. Leaderless coordination via bidirectional and unidirectional time-

dependent communication. In Proceedings of the 42nd IEEE Conference on
Decision and Control, Maui, Hawaii, Dec 2003.

20. R. Olfati and R. M. Murray. Distributed cooperative control of multiple ve-
hicle formations using structural potential functions. In 15th Triennial World
Congress, Barcelona, Spain, 2002.

21. L. E. Parker. Alliance: An architecture for fault-tolerant multi-robot coopera-
tion. IEEE Trans. on Robotics and Automation, 14:220–240, 1998.

22. Z. Qu. Robust Control of Nonlinear Uncertain Systems. Wiley-Interscience,
1998, New York.

23. Z. Qu, J. Wang, and R. A. Hull. Cooperative control of dynamical systems with
application to mobile robot formation. In The 10th IFAC/IFORS/IMACS/IFIP
Symposium on Large Scale Systems: Theory and Applications, Japan, July 2004.

24. Z. Qu, J. Wang, and R. A. Hull. Products of row stochastic matrices and their
applications to cooperative control for autonomous mobile robots. In Proceedings
of 2005 American Control Conference, Portland, Oregon, 2005.

25. W. Ren and R. W. Beard. Consensus of information under dynamically chang-
ing interaction topologies. In Proceedings of the American Control Conference,
Boston, Jun 2004.

26. C. W. Reynolds. Flocks, herds, and schools: a distributed behavioral model.
Computer Graphics (ACM SIGGRAPH 87 Conference Proceedings), 21(4):25–
34, 1987.

27. R. O. Saber and R. M. Murray. Agreement problems in networks with directed
graphs and switching topology. In Proceedings of the 42nd IEEE Conference on
Decision and Control, Maui, Hawaii, Dec 2003.

28. R. O. Saber and R. M. Murray. Consensus protocols for networks of dynamic
agents. In Proceedings of the American Control Conference, Denver, CO, Jun
2003.

104 Zhihua Qu, Jing Wang and Richard A. Hull

29. D. Swaroop and J. Hedrick. String stability of interconnected systems. IEEE
Trans. on Automatic Control, 41:349–357, 1996.

30. T. Vicsek, A. Czirok, E. B. Jacob, I. Cohen, and O. Shochet. Novel type of
phase transition in a system of self-driven particles. Physical Review Letters,
75:1226–1229, 1995.

Alternative Control Methodologies for
Patrolling Assets With Unmanned Air Vehicles

Kendall E. Nygard, Karl Altenburg, Jingpeng Tang, Doug Schesvold,
Jonathan Pikalek, Michael Hennebry

Department of Computer Science and Operations Research
North Dakota State University
Fargo, ND 58105, USA
E-mail: {Kendall.Nygard,Karl.Altenburg,Jingpeng.Tang}@ndsu.edu
{Doug.Schesvold,Jonathan.Pikalek,Micheal.Hennebry}@ndsu.edu

Summary. We consider the problem of controlling a system of many Unmanned
Air Vehicles (UAVs) whose mission is to patrol and protect a set of important assets
on the ground. We present two widely differing methods, employing emergent in-
telligent swarms and closed-form optimization. The optimization approach assumes
complete communication of all newly sensed information among all of the UAVs as it
becomes available. The optimization problem is a network flow model that is readily
solvable to obtain optimum task allocations to configure patrols for the UAVs in the
swarm. Reapplication of the optimization algorithm upon demand yields the benefit
of cooperative feedback control. The swarm procedure establishes patrol patterns
by utilizing decentralized, reactive, behaviors. Global communication is unnecessary,
and control is established only through passive sensors and minimal short-range ra-
dio communication. Both models have been implemented and successfully demon-
strated in an agent-based, simulated environment. The strengths, weaknesses, and
relative performance the two approaches are compared and discussed.

1 Introduction

Unmanned air vehicles (UAVs) have great promise, especially in the area of
airborne reconnaissance and surveillance. To date, most UAV missions involve
a single UAV for a task. There is great interest in cooperatively controlling
multiple UAVs that can work as a team to efficiently and effectively carry
out a range of mission tasks, including search, target classification, attack,
and battle damage assessment. An example mission is for a team of UAVs to
persistently patrol high-value assets in a confined urban area and protect them
from mobile threats. The patrolling problem is constrained by limitations
in communication, computational power, and incomplete a priori situation
awareness.

106 Kendall

We describe two widely differing approaches to control for the problem,
based on an optimization model and on swarms. In the optimization approach,
a time-phased network-based model is solved iteratively to build task assign-
ments for the UAVs. The method works best if there is complete global com-
munication and information knowledge sharing. Running the model simul-
taneously and independently on all platforms at coordinated points in time
ensures that all of the UAVs have knowledge of the same solution without
having to explicitly communicate them.

In the swarm approach, we use a highly distributed paradigm based on
autonomous UAVs following behaviors that are reactions to information lo-
cally available through their sensors. By structuring the available behaviors in
prescribed ways, reasonable patrol patterns emerge without centralized con-
trol. The appearance of cooperation is a epiphenomenon of their collective
interaction.

We demonstrate that the swarm based bottom-up approach is more robust
than the centrally optimized one, particularly for operations in uncertain and
dynamic environments. This is because the emergent intelligence approach is
insensitive to numbers of UAVs, and relies little on situational knowledge, or
radio-based inter-agent communication. The solutions are also highly adaptive
and flexible. However, the solutions will likely have sub optimal performance
measures that are at best feasible and satisficing. The optimization-based ap-
proach provides the best possible solutions when complete information about
all of the UAVs and the situation is available. The solutions also have the
desirable property of not following easily discernible patterns, making it less
likely that an enemy could implement countermeasures.

2 Related Works

Work in reactive autonomous agents comes from diverse fields. The swarm
approach we developed draws upon graphical multi-agent systems, such as
Reeves’ particle systems, Resnick’s StarLogo, and Reynold’s Boids [10,11,12].
The basic control philosophy is inspired by work in autonomous mobile robots,
especially the subsumption architecture of Brooks [3] and the behavioral prim-
itives such as aggregate, disperse, and follow, developed by Mataric [6]. The
swarm agents are similar to minimalist robotic systems, such as reported in
Kube and Zhang and Werger [5,14]. The swarm intelligence approach to pa-
trolling was first suggested by Nygard et. al. [8].

Network flow optimization algorithms have a rich history. The seminal
work of Ford and Fulkerson [4] provides an early presentation of network-based
algorithms. Classical uses in transportation resource allocation and scheduling
can be found in work such as that of Brown and Graves [2] and Nygard,
Chandler and Pachter [9]. An application to task assignments using closed
form optimization is also presented in Murphey [7].

E. Nygard et al.

Control Methodologies for Patrolling Assets With Unmanned Air Vehicles 107

3 Methods

3.1 Swarm Intelligence

In the swarm solution the patrol patterns are regular flight tracks with differ-
ent radii and altitudes around the protected asset. Following the tracks while
patrolling maintains a persistent presence around the asset for surveillance
and possible destruction of hostile intruders. The tracks also provide multiple
viewpoints for surveillance as well as multiple layers of protection. The behav-
iors are structured to favor populating the inner tracks over the outer ones,
by using a track switching protocol understood by all of the units. Collision
avoidance is a high priority behavior within the protocol. The altitude of a
given patrol track is proportional to its radius, so that lower tracks are smaller
than upper ones, resulting in an “upside-down wedding cake” configuration.
Each patrol track consists of a fixed number of waypoints that form a regular
polygon with the asset at its center.

Fig. 1. Hierarchical state charts of UAV behavior.

The high level mission objective emerges from the local UAV behaviors
of collision avoidance, patrolling, and attacking. The collision avoidance and
attacking behaviors are similar to those used in the sweep search mission
described in [13]. We focus here on the patrolling behaviors. The high-level

control structure is illustrated in the state chart of Figure 1. The control is
hierarchical, with the Choose module of Figure 1 being a state diagram module
that identifies which lower-level behavioral module is in control at a particular
point in time. The agent’s environment and internal state is assessed at fixed
time intervals by the Choose module. At each cycle, sensory input is processed
to determine the best choice of action. Figure 2 illustrates an expansion of the
Patrol Asset module into its lower-level state chart consisting of the behaviors
enter patrol, patrol, seek gap, and exit patrol.

The enter patrol behavior allows the UAV to enter the outermost patrol
track. A UAV maneuvers to orient itself in the predetermined direction of
patrol flight. The UAV will enter the outer patrol track unless it encounters
another UAV. If another UAV is encountered, it will fly away from the asset
for a prescribed distance before repeating the enter patrol behavior, thereby
preventing congestion control for the outer track. The patrol behavior consists
of orbiting around the asset by flying from waypoint to waypoint. Each UAV
in a patrol track maintains a set cruise speed. A probability distribution is
sampled to govern whether the UAV will attempt to switch to the next inner
track. This decision is made at a pre-specified waypoint, which limits track
switching and avoids potential collisions.

A decision for a UAV to switch tracks is based on sensor information that
reveals the extent of congestion of the target track. A UAV that is unsuccessful

108 Kendall E. Nygard et al.

Control Methodologies for Patrolling Assets With Unmanned Air Vehicles 109

in switching tracks will record that information, and lower its probability
of attempting a switch at the next opportunity. Initially the UAVs attempt
track switches with 100% probability. As depicted in Figure 3, a track switch
attempt requires the following three steps: 1) Move from the patrol track to
the jump track, 2) Move from the jump track to the patrol track if an adequate
entry gap is detected, and 3) Start over if a gap is not detected. After entering
the jump track, the UAV accelerates to a fixed faster speed and begins the
seek gap behavior. The UAV seeks a minimum separation distance or gap
between UAVs on the lower patrol track. The gap is determined using forward
scanning visual sensors and a timer. If the elapsed time between flying over a
lower UAV is sufficient and there are no UAVs ahead, the gap seeking UAV
enters the new patrol track. The gap calculation is illustrated in Figure 4. The
gap calculations are shown in Equations 1 and 2. If the UAV does not find
a large enough gap enough it will exit the patrol area immediately prior to
completing a full orbit.

Fig. 3. Track switch protocol.

t(vfast − vcruise) ≥
minGapDist

2
(1)

tfast =
∆l + minGapDist

2

vfast − vcruise
(2)

The purpose of the exit patrol behavior is to leave the patrol area after
a failed track switch to avoid collisions with other patrolling UAVs. A UAV
flies away from the asset until it is beyond the outermost patrol track, then
begins climbing to the altitude of the outermost patrol track. Then the enter
patrol behavior is invoked. The exit patrol behavior may also be used when
UAVs are low on fuel and must return to base.

Fig. 4. Gap timer calculation.

3.2 Optimization Method

Network flow optimization models are often described in terms of supplies and
demands for a commodity, nodes which model transfer points, and arcs that
interconnect the nodes and along which flow can take place. There are typi-
cally many feasible choices for flow along arcs, and costs or values associated
with the flows. Arcs can have capacities that limit the flow along them. An
optimal solution is the globally least cost set of flows for which supplies find
their way through the network to meet the demands. To model patrol visit
allocation, we treat the individual vehicles as discrete supplies of single units,
tasks being carried out as flows on arcs through the network, and ultimate
disposition of the vehicles as demands. The numerical values of the flows are
0 or 1. Each assignment of tasks is determined by a solution of the network
optimization model. The receipt of new target information is an event that
triggers the formulation and solving of a fresh optimization problem that re-
flects current conditions, thus achieving feedback action. At any point in time,
the database onboard each vehicle contains a site set, consisting of indexes,
types and locations for vantage points that have been registered for patrolling.
Figure 5 illustrates the network model at a particular point in time.

The model is demand driven, with the large rectangular node on the right
exerting a demand pull of N units (labeled with a supply of −N), so that each
of the UAV nodes on the left (with supply of +1 unit each) must flow through
the network to meet the demand. In the middle layer, the M nodes represent
all of the vantage point sites that are registered for patrolling. An arc exists
from a specific vehicle node to a site node if and only if it is a feasible UAV
/ site pair. At a minimum, the feasibility requirement means that there is

110 Kendall E. Nygard et al.

Control Methodologies for Patrolling Assets With Unmanned Air Vehicles 111

1 1

UAVs SinkSites

MN

33

22

Fig. 5. Network optimization model structure at a specific point in time.

enough fuel remaining to patrol the site if tasked to do so. Other feasibility
conditions could also be invoked, if, for example, there were differences in
the onboard sensors that precluded certain UAV/site combinations, or if the
available observation angles were unsuitable. Finally, each node in the vehicle
set on the left has a direct arc to the far right node labeled sink, modeling
the option of deferred assignment. The capacities on the arcs from the sites
are fixed at 1. Because of the integrality property of network flow problems,
the flow values are either 0 or 1 at optimality. This enforces a condition that
at most one vehicle can patrol any given site, avoiding the need to model the
nonlinear scoring situation that would occur if multiple UAVs could simulta-
neously patrol a single site. Each unit of flow along an arc has an expected
future value (which can be viewed as a negative cost). The optimal solution
maximizes total value.

The network optimization model is expressed in closed form as follows:

Z = max
∑

i,j∈I,i�=j

c(i, j)x(i, j) (3)

∑
j∈I,i�=j

x(i, j)−
∑

k∈I,k �=j

x(k, j) = 0 i ∈ I (4)

x(i, j) ≤ b(i, j) {i, j | i, j ∈ I, i �= j} (5)

x(i, j) ≥ 0 {i, j | i, j ∈ I, i �= j} (6)

The model is a capacitated transshipment problem (CTP), a special case of
a linear programming problem. Constraint set 4 enforces a condition that flow-
in must equal flow-out for all nodes. Constraint set 5 mandates that flows on
arcs must not exceed specified upper bounds. Basis matrices for the constraints
are totally unimodular, which enforces integer solutions. Restricting these
capacities to a value of one on the arcs leading to the sink, along with the
integrality property, induces binary values for the decision variables x(i,j).

The cost function is:

c(i, j) = d(i, j)× u(i, t(i, j), t0(i, j), t1(i, j))× n(i, j) (7)

where
j = index of a UAV
i = index of a vantage site to be visited
dist travelable(j) = Maximum distance that j can fly
dist(i,j) = distance from location of j to site i
end time(j) = scheduled time at which j ends its flight
MIN(end time,j) = minimum scheduled end time for UAVs other than

j
MAX(end time) = maximum scheduled end time over all UAVs
n(j) = (end time(j) - MIN(end time,j)/(MAX(end time) -

MIN(end time,j))
d(i,j) = 1 - (dist(i,j)/dist travelable(j)) × n(j)
t(i,j) = time at which j could reach and visit vantage site i
t0(i,j) = latest time at which site i would be visited prior to the time at

which j could visit
t1(i,j) = earliest time at which sit i would be visited after the time at

which j could visit
u(i, t(i,j), t0(i,j), t1(i,j)) = site value(i) × (min(t(i,j), (ti(i,j) - t0(i,j))-

t(i,j))) × site rate(i)
The factor n(j) is designed to favor assigning sites to UAVs with larger

amounts of fuel over those with less. The distance function d favors sites
that are near over those that are far away, which supports an earlier is better
criterion for visiting sites. The site visit urgency function u increases incentive
to visit sites as a function of the intrinsic value of visiting the site and elapsed
time since the last visit.

The CTP is solved iteratively, with the first iteration solution fixing the
first site to be visited by each UAV. For each of these sites assigned to be
visited, the data is updated to reflect being visited at the projected time
the UAV would arrive. The corresponding UAV is moved in a virtual sense
to the location of its first visited site and the appropriate amount of fuel is
deducted. The process is repeated iteratively until no further site visits can be
accomplished, indicating no further patrolling can be done without violating
fuel constraints. The structure of the cost function results in the sequencing

1 Kendall E. Nygard et al.12

Control Methodologies for Patrolling Assets With Unmanned Air Vehicles 113

of waypoints not following regular patterns. Sufficient fuel is reserved for the
UAVs to return to a designated recovery point, at which time replacement
UAVs could be launched. Launches of the UAVs can be phased in time to
avoid clustering of launches.

3.3 Contrasting the two methods

Both methods have been coded and extensively evaluated with multiple sce-
narios within simulation environments. Comparisons are given below:

Robustness. The swarm approach relies little on a priori, situational
knowledge or high-bandwidth, inter-agent communication, and is indifferent
to numbers of, losses, or additions of UAVs. These characteristics make the
operation resistant to intrusion by attackers who might try to jam radio fre-
quencies, or impersonate friendly units. The swarm approach is also less vul-
nerable to loss of global positioning, communication network saturation, lack
of battlefield intelligence, and dynamic battlefield conditions. In terms of ro-
bustness, the approach is inherently of high performance and intrinsically
superior to the optimization-based method.

Scalability. The swarm approach runs on completely separate threads
of execution, and is thus highly scalable. The optimization approach has a
computational burden for setting parameters and communicating data for the
cost function. However, solutions are implicitly shared and the optimization
solver is extremely fast. Thus, the optimization approach also scales well.

Performance measures. The swarm approach is at best capable of pro-
viding feasible and satisficing solutions that adhere to structured flight pat-
terns. When compared with the optimization approach on measures that per-
tain to visiting sites at times that maximize surveillance return, the swarm
approach is inferior.

Deconfliction. Both the swarm and optimization approaches inherently
support deconfliction. However, if many UAVs are employed in a crowded
geographical area, the units in the swarms may spend more time carrying
out behaviors to avoid collisions than doing useful mission execution. The
sequencing accomplished in optimization approach directly avoids collisions.
However, if communication is interrupted and the model computes site assign-
ments without full knowledge of all the UAVs tasked in the mission, then the
approach may generate collisions. However, it is possible to simply mandate
that the UAVs return for recovery if complete information is not available.

4 Conclusions and Future Work

Cooperative control is not possible without communication. In the swarm ap-
proach, global communication is assumed to be unavailable, and control is
supported through passive sensors and minimal, short-range radio communi-
cation that provide simple signals and cues. In the optimization approach,

global and perfect communication is assumed, but implicit communication of
solutions is accomplished by the solvers running in parallel on all of the UAVs.
In both approaches all units share common control programs. The assumption
is that all agents will act in a rational and predictable fashion, which reduces
the need for communication.

Evaluation carried out through simulation establishes that the swarm ap-
proach is effective, robust, and scalable. The approach is particularly well
suited for numerous, small, inexpensive, and expendable UAVs. The use of
virtual beacons (waypoints), signal-based communication, and simple rules
provide a robust and effective method for cooperative control among n UAVs
for purposes of patrolling an asset. However, the solutions provided by the
swarm approach is not globally optimal.

In the optimization approach, complete communication of data to param-
eterize the model is called for, but communicating solutions is unnecessary
because the model is shared and solved locally and independently. Unlike
traditional uses of optimization in weapons system task allocation, the model
requires very little preplanning, and is dynamically driven by new information
reassigning roles on the fly. Bandwidth requirements are very low. There is a
low computational burden on each vehicle, tractable even with modest com-
puters. The potential weaknesses stem from the large burden on accurately
specifying cost functions; synchronization that relies on good communication,
and acknowledgements of messages.

The optimization approach is preferred if reliable communication is avail-
able. The swarm approach is preferred in complex, dynamic, and uncertain
environments.

The ultimate goal of the research is to develop robust, intelligent, and high-
performance cooperative control strategies for multi-vehicle missions. There is
some potential for combing attractive elements of the two approaches. To this
end, we are currently evaluating supporting heterogeneous UAV teams and
developing hybrid UAV agents. This might lead, for example to an architec-
ture in which optimizing UAVs serve as local leaders and managers of swarms.
The managing UAVs could select sites that needed patrolling and communi-
cate that need to the swarming UAVs. The swarming UAVs would follow the
manager from site to site and provide a robust, fault tolerant surveillance sys-
tem at each site. The implementation of such a system would add complexity
and new vulnerable points of potential failure, but is likely manageable.

References

1. Altenburg K, Schlecht J, Nygard KE. (2002). An Agent-based Simulation for
Modeling Intelligent Munitions”, Athens, Greece: Advances in Communications
and Software Technologies, pp. 60-65.B. Smith, ”An approach to graphs of linear
forms (Unpublished work style),” unpublished.

2. Brown, G.G. and Graves, G., ”Real-Time Dispatch of Petroleum Tank Trucks,”
Management Science, 27, 1, pp. 19-32, 1981.

114 Kendall E. Nygard et al.

Control Methodologies for Patrolling Assets With Unmanned Air Vehicles 115

3. Brooks, R.A., ”A Layered Control System for a Mobile Robot,” IEEE Journal of
Robotics and Automation, Vol. 2:1, pp. 14-23, 1986.

4. Ford, L.R., and D.R. Fulkerson, Flows in Networks, Princeton University Press,
1962.

5. Kube, C.R. and Zhang, H., ”Collective Robotic Intelligence,” Second Interna-
tional Conference on Simulation of Adaptive Behavior, pp. 460-468, December
7-11, 1992.

6. Mataric, M.J., ”Designing and Understanding Adaptive Group Behavior,” Adap-
tive Behavior, Vol. 4:1, pp. 51-80, December 1995.

7. Murphy, R.A., ”An Approximate Algorithm for a Weapon Target Assignment
Stochastic Program,” Approximation and Complexity in Numerical Optimiza-
tion: Continuous and Discrete Problems, editor: P. M. Pardalos, Kluwer Aca-
demic, 1999.

8. Nygard, Kendall E., Karl Altenburg, Jingpeng Tang, Doug Schesvold, A Decen-
tralized Swarm Approach to Asset Patrolling with Unmanned Air Vehicles, 4th
International Conference on Cooperative Control and Optimization, Destin, FL,
USA. November 19 - 21, 2003

9. Nygard, Kendall E., Phillip R. Chandler, and Meir Pachter, Dynamic Network
Flow Optimization Models for Air Vehicle Resource Allocation in Proceedings of
the American Control Conference, 2001.

10. Reeves, W.T., ”Particle Systems - A Technique for Modeling a Class of Fuzzy
Objects”, Computer Graphics, Vol. 17:3, pp. 359-376, 1983.

11. Resnick, M. Turtles, Termites, and Traffic Jams: Explorations in Massively Par-
allel Microworlds, Cambridge, MA, MIT Press, 1994.

12. Reynolds, C.,”Flocks, Herds, and Schools: A Distributed Behavioral Model,”
Computer Graphics, Vol. 21:4, pp. 25-34, 1987.

13. Schlecht J, Altenburg K, Ahmed BM, Nygard KE. (2003). Decentralized Search
by Unmanned Air Vehicles using Local Communication”, Las Vegas, NV: Pro-
ceedings of the International Conference on Artificial Intelligence 2003 (Volume
II), pp. 757-762.W.-K. Chen, Linear Networks and Systems (Book style). Bel-
mont, CA: Wadsworth, 1993, pp. 123-135.

14. Werger, B.B., ”Cooperation without Deliberation: A Minimal Behavior-based
Approach to Multi-robot Teams,” Artificial Intelligence, Vol. 110:2, pp. 293-320,
June 1999.

A Grammatical Approach to Cooperative
Control

John-Michael McNew and Eric Klavins

Electrical Engineering
University of Washington
Seattle,WA 98195, USA
E-mail: {jmmcnew, klavins}@ee.washington.edu

Summary. In many cooperative control methods, the geometric state of the sys-
tem is abstracted to the underlying graph or network topology. In this paper we
present a grammatical approach to modeling and controlling the network topology
of cooperative systems based on graph rewriting. By restricting rewrites to small
subgraphs, graph grammars provide a useful method for programming the concur-
rent behavior of large decentralized systems of robots. We illustrate the modeling
process through an ongoing example and demonstrate mathematical tools for rea-
soning about the system’s behavior. Finally, we briefly describe methods to design
continuous controllers that augment the grammar so that geometric requirements
may also be satisfied.

1 Introduction

Inexpensive peer-to-peer networking technologies have spurred the investiga-
tion of control methods for large-scale networks of complex concurrent systems
such as automated highway systems, air-traffic control systems and coopera-
tive systems of robots. Traditional control objectives for individual plants such
as stabilization are insufficient to capture the complex behaviors desired from
these systems. Furthermore, the scale and complexity of these systems requires
that local control of each robot, node, or subsystem must be used exclusively
to produce the desired global behavior. In the natural world, members of de-
centralized systems often self-organize in response to environmental stimuli
and to each other to produce complex global behaviors. One of the central
questions for engineered self-organization is: Given a specification of a global
behavior, can we synthesize a set of local controllers that produce that global
behavior and are robust to uncertainties about the environmental conditions.

In many cooperative control methods, the geometric state of the system is
abstracted to the underlying graph or network topology. In this paper we focus
our efforts on specifying and controlling the evolution of the network topology.
In particular, we are interested in controlling the network topology using

118 John-Michael McNew and Eric Klavins

only local interactions. Some of the control problems that interest us include
coordinating multiple vehicles, sequencing tasks in a concurrent environment,
and reconfiguring the network topology. Most research in this area assumes a
connected network. However, in this paper we are concerned with tasks that
often require a partially disconnected network. Our point of departure is the
use of graph grammars to model how the network topology changes due to
local interactions among agents. The graph grammar model is amenable to
many standard tools from concurrency theory, which can be used to show that
systems meet their specifications.

In this paper, we examine systems that combine exploration and formation
forming in response to environmental stimuli. In particular, we consider an
example we refer to as “Wandering Scouts.” In Section 3 we model this system
as a graph grammar. In Section 4 we introduce notation to specify behaviors of
graph transition systems. In Section 5 we use equivalence classes to partition
the set of reachable graphs into macrostates. In Section 6.1 we adapt standard
concurrency methods to the current setting and prove that for a class of initial
systems, eventually it is always the case that the terminal graph of the system
meets a desired criterion. In Section 6.2 we show that for a larger class of
initial conditions, the grammar proposed has at least one trajectory where
deadlock occurs. We augment the system and prove it meets the criterion for
the larger class of graphs. Finally, in Section 7 we briefly explain how to design
continuous controllers that use the topologies generated by the grammar to
guarantee proper formation forming.

2 Related Work

One of the earliest compelling models of self-organization in a continuous
state space is the local interaction model proposed by Reynolds to simulate
bird flocking behavior. Reynolds motivates motion by three steering behav-
iors: separation, alignment and cohesion. More recently, Leonard and Fiorelli
[9] analyze flocking behavior using potential function theory and Lyapunov
methods. Fax and Murray [3] use graph theoretic methods to analyze the
stability of such formations, while Tabuada et al [12] show which formation
graphs have feasible non-trivial trajectories. In these efforts, the connection
topology is fixed and the underlying graph is connected. Jadbabaie, Lin and
Morse [4] use ergodic matrix theory to demonstrate that under certain re-
strictions a discrete time simplification of the Reynolds model is stable for
essentially arbitrary switching sequences.

With the occasional exception of a leader robot, these results utilize es-
sentially homogeneous controllers on all the robots. We are interested in the
concurrent execution of multiple tasks, thus we examine programmed switch-
ing between heterogenous controllers. Olfati-Saber [11] describes controlled
switching of graph topology using a hybrid automaton for the purpose of
squeezing through tight spaces. However, similar to most of the previous re-

A Grammatical Approach to Cooperative Control 119

sults, a fully connected graph is assumed. Since we are interested in scenarios
where smaller teams of robots complete tasks concurrently, we model systems
wherein the overall topology is not necessarily always connected.

Klavins [5] describes self-organization of robot formations as a graph pro-
cess where the discrete states of robots are represented by symbols. Klavins,
Ghrist, and Lipsky [7] introduce graph grammars to assemble pre-specified
graphs from an initially disconnected graph. By restricting rewrites to small
subgraphs, graph grammars provide a useful method to program the concur-
rent behavior of large decentralized systems of robots. Klavins et al. [5, 6, 7]
demonstrate the use of graph grammars to define local interaction rules for
assembly, replication and other tasks. An application of graph grammars to
robotic systems is demonstrated wherein free-floating robots use graph gram-
mars to assemble into larger structures in a predictable and robust manner
[1].

3 Systems and Graphs

3.1 A Motivating Example

We informally present an example cooperative control scenario we refer to as
“Wandering Scouts.” Throughout the paper we use this example to illustrate
the process of converting a system to a formal graph grammar model and the
process of reasoning about that model.

Suppose a group of robotic scouts with only local communication and sens-
ing capabilities patrols an area to protect against enemy incursions. If three
robotic scouts surround an enemy agent, they can capture it, and transport
it to a detention center. One possible strategy is to send out the scouts in
teams of three. However, we do not know a priori the location or strength of
the enemies. We choose rather to send out the scouts to patrol individually,
thus covering a greater area. If a scout is in patrol mode and senses an enemy,
the scout chases it, thereby disrupting its activities. Once a scout is pursuing
an enemy, it may recruit other nearby patrolling scouts to help encircle, cap-
ture, and transport the enemy to a detention center. There are four essential
subtasks in our problem.

1. Random patrol coverage,
2. Disruption of the enemies’ activities,
3. Capture and transport of enemies, and
4. Detention of enemies.

Informally, since we can neither specify the controllers and objectives of
the enemy nor their initial density and spatial distribution, we often con-
sider the enemies to be an ”environmental stimuli”. The graph topology for
this system arises from local interactions between the robotic system and the
environmental stimuli. Although there is no formal connection between the

120 John-Michael McNew and Eric Klavins

Robotic Scouts Enemies

w: a patrol or wandering scout e: an undisrupted enemy
h: a pursuer or hunter dk: a disrupted enemy with degree k
l: a leader c: a captured enemy
f : a follower p: a detained enemy or prisoner

Fig. 1. Operational modes and the associated labels for the robotic scouts and
enemies.

network topology and the spatial distribution, certain initial spatial distribu-
tions give rise to characteristic orderings of the local interactions.

3.2 Graph Grammars

A simple labeled graph over an alphabet Σ is a triple G = (V, E, l) where V
is a set of vertices, E is a set of edges, and l : V → Σ is a labeling function.
In this paper, a graph is a model of the network topology of an interconnected
collection of robots, vehicles or particles. A vertex x corresponds to the index
of a robot. The presence of an edge xy corresponds to a physical and/or
communication link between robots x and y. We use the label l(x) of robot x
to keep track of local information and also to indicate the operational mode
of the robot.

Example 1. The labels in Figure 1 indicate the operational modes of the
robotic scouts and the enemy agents. Additionally we denote by j a detention
center or jail.

�

A graph grammar consists of a set Φ of rules. Each rule r = (L, R) is a
pair of labeled graphs over some small vertex set VL = VR. Let G be a larger
graph representing a possible state of a system and let h be an injective, label
and edge preserving map from VL into G. We call h a witness. The pair (r, h)
describes an action on G that produces a new graph G′ = (V, E′, l′) defined
by

E′ = (E − {h(x)h(y)|xy ∈ EL}) ∪ {h(x)h(y) | xy ∈ ER}

l′(x) =
{

l(x) if x �∈ h(VL)
lR ◦ h−1(x) otherwise.

That is, we replace h(L) (which is a copy of L) with h(R) in the graph G.
We write G

r,h−−→ G′ or equivalently G′ = f(r,h)(G) to denote that we obtain
G′ from G by applying action (r, h).

Example 2. In Figure 2 we pose the rule set Φ as a way to model the wandering
scouts system.

By convention we refer to the rules in the order they are displayed. So we
refer to the rule at the top of Figure 2 as rule one or r1, the next rule down as

A Grammatical Approach to Cooperative Control 121

w

w

w

w

ww

d2

d2

h

hhh

h

hhhh

h

hh

d3

d3

l

l

e ⇒

⇒

⇒

⇒

⇒

ff

ff

d1

d1

jj

p

c

c

Fig. 2. A grammar Φ for the wandering scouts example.

rule two or r2 and so on. In our system, an edge between two vertices indicates
one or both of the agents try to maintain a specified interagent distance. Thus,
execution of the first rule, r1, in Φ indicates when a local interaction occurs
between a patrolling scout w and an enemy e, the scout gives chase creating
an edge and changing its mode to h. This disrupts the enemy’s activities,
thus its label changes to d1. (The subscript “1” indicates that one robot is
connected to the enemy). The second and third rules recruit additional robots
to chase the enemy.

The fourth rule adds edges between the scouts. In the full system (i.e.
including spatial aspects), the edges and labels in the right hand side of rule
r4 will be used by the scouts’ continuous controllers to“encircle” the enemy
and capture it. Since the system will ultimately use leader-follower formation
control, rule r4 also changes one robot’s label to l and the other’s to f . Note
that we informally refer to the right hand side of r4 as an encirclement com-
ponent. Finally the fifth rule transfers the captured enemy to the detention
center and returns the robotic scouts to patrol mode w. �

3.3 Systems and Trajectories

A system (G0, Φ) consists of an initial graph G0 and a set of rules Φ. A
trajectory is a (finite or infinite) sequence

G0
r1,h1−−−−→ G1

r2,h2−−−−→ G2
r3,h3−−−−→ ...

where ri ∈ Φ. If the sequence is finite, then we require that there is no rule in
Φ applicable to the terminal graph.

122 John-Michael McNew and Eric Klavins

w w

w

w

w

w

w

w

w

w

w w

w

w w

w

w w

d2d2 d2

d2d2
r1−−→r1−−→

h

h

h

h

h

h h

h

h h

h

h

h

h h

h

h

h

h

d3 d3

r2−−→

l

e ee e

↓r3

f

f

d1 d1

d1
r4←−−

j

jj j

j

j

jj

p c
r2←−−r5←−−

Fig. 3. A trajectory of (G0, Φ) demonstrating concurrent capturing of two enemies.

A system (G0, Φ) defines a non-deterministic dynamical system whose
states are the labeled graph over VG0 . The system is non-deterministic since,
at any step, many rules in Φ may be simultaneously applicable, each possibly
via several witnesses. This results in a family of trajectories we denote by
T (G0, Φ).

Example 3. Suppose N, M, and K are positive integers such that N is the
number of vertices initially labeled by w, M is the number of vertices initially
labeled by e and K is the number of vertices labeled by j. For the wandering
scouts example, consider initial graphs of the form

G0(N, M, K) = {{1, ..., N + M + K}, ∅, l0} (1)

where initially there are no edges (so that E0 = ∅), and the initial labeling l0
is defined by

l0(i) =

⎧⎨⎩
w i ≤ N
e N < i ≤ N + M
j N + M < i ≤ N + M + K.

We can define the class of graphs of interest for the wandering scouts scenario
by

G0 = {G0(N, M, K) | N, M, K ∈ N
+ ∧N ≥ 3}.

To illustrate we choose G0 ∈ G0 with N = 5, M = 2, and K = 1. Figure 3
shows a partial trajectory of the system (G0, Φ). Initially there are two enemies
that the scouts must capture and transport. In this trajectory all of the scouts
concurrently attempt to chase and capture the two enemies. This trajectory
models the situation where the enemies and scouts are spatially interspersed.

Figure 4 shows a second possible trajectory of the system. In this tra-
jectory neither of the scouts on the bottom attempts to chase or capture

A Grammatical Approach to Cooperative Control 123

w ww w

w

w

w w

w

w ww w

w

w w

w

w

w w

w

w w

w

w w

w
w w

d2

d2
r1−−→

hh h

h

h h

h

hh

d3

l

e

eeee e
r3−−→

f f
d1

d1

↓r4

jjj

jjjj

j
pp p

r2−−→

c
r1←−−r2←−− r5←−−

Fig. 4. A partial trajectory of (G0, Φ) illustrating the sequential capture of two
enemies.

the enemy. This trajectory might correspond to a situation where a group of
scouts captures and transports an enemy, then returns to patrolling. The next
incursion of an enemy occurs in the area they are patrolling. Since we do not
know beforehand the spatial distribution of the enemies it is important for
our grammar to work for both of these types of trajectories.

�

The set of all graphs reachable from G0 via some trajectory is called the
reachable set R(G0, Φ). The set of all connected components of graphs in
R(G0, Φ) up to isomorphism is denoted C(G0, Φ). We suppose that each reach-
able component type has a single representative in C(G0, Φ). Let G be the set
of all labeled graphs. The components of a grammar C(Φ) are given by

C(Φ) =
⋃

G0∈G
C(G0, Φ).

If no rules in Φ can alter a reachable component, the component is said to be
stable. The set of stable components of a grammar is denoted S(Φ).

Example 4. Suppose G0 = G0(5, 2, 1) is the initial graph defined in Example 3.
The components of the system (G0, Φ) are those pictured in Figure 5. The
system only produces these components because there are only two enemies
in the initial graph.

We will refer to the components of the grammar as C1, C2, ... in the order
they appear in Figure 5. The ellipsis indicates that while the set of components
of the system C(G0, Φ) is finite, the set of components of the grammar, C(Φ)
is infinite. Specifically, it indicates a sequence of graphs Ck beginning at C7

where Ck is a star-graph with a vertex labeled j at its center and all other
vertices labeled p. Then Ck+1 is a star graph with one more vertex labeled p.

�

124 John-Michael McNew and Eric Klavins

w

w d2C1: h

hh

hh

h

d3

C2:

l

e C3:

ff

d1 C4:

jjj

pp

C5:

c

C6: C7: C8: C9: Ck: . . .

Fig. 5. Components of the grammar Φ, C(Φ).

4 Propositions About Graphs

Let G be the set of all labeled, finite graphs. By a proposition, we simply mean
a subset P ⊆ G of graphs. By defining propositions in this manner, we avoid
having to define a syntax and semantics for logical statements about graphs.
Informally, we will describe propositions by logical formula and use double
brackets to denote the set of graphs that satisfy the formula. For example,

[[l(1) = b ∧ ∃x∃y.xy ∈ E]]

denotes the set of graphs G = (V, E, l) such that 1 ∈ V , l(1) = b and E �= ∅. In
general, any closed formula about labels and edges using finite quantification
over V or E and using constant symbols for elements in V is permitted. If P
is a proposition, the we define

(P, Φ) = {(G0Φ) | G0 |= P}

to be a class of systems.

Example 5. Define the proposition P0 to be

P0 = [[G ∈ G0 | N > 2M]].

Then (P0, Φ) denotes a restricted class of systems to which the system (G0, Φ)
defined in Example 3 belongs. �

Definition 4.1 Let ∼⊆ G ×G be an equivalence relation on G. A proposition
P is preserved by ∼ if, for all G, G′ ∈ G, if G ∼ G′ then

G ∈ P ⇔ G′ ∈ P.

If AP is a set of propositions, then AP∼ is the subset of propositions in AP
that are preserved.

A Grammatical Approach to Cooperative Control 125

We often wish to know what propositions are preserved by a given equiv-
alence relation. For example, suppose ∼ is the relation labeled graph isomor-
phism, denoted �. Any proposition that can be represented by a formula not
using constant symbols to represent vertices in V is preserved by �.

This paper makes limited use of Linear Time Logic (LTL) to specify prop-
erties. In particular we use temporal logic formulas of the form

f = A FG P.

Here A is the path quantifier that denotes “Along all trajectories.” The sym-
bol F denotes “eventually” and G denotes “always.” Thus for graph grammar
systems the above formula reads “Along all trajectories it is eventually always
the case that the next graph is in P .” We write (G0, Φ) |= f if the trajecto-
ries of the system are consistent with the formula f . Additionally if P0 is a
proposition we write

(P0, Φ) |= f

when for all G0 ∈ P0, (G0, Φ) |= f .

5 Macrostates

While graph grammars provide a method of programming individual robots,
it is often easier to reason about grammars in the abbreviated notation
of macrostates. Given a temporal logic formula over a set of propositions,
{P1, P2...Pk} it may be possible to find an equivalence relation in which all
propositions in the set are preserved. McNew and Klavins [10] use equivalence
relations to reduce the size of a graph grammar model to make it amenable
to model checking. Here our goal is to find equivalence relations that preserve
the underlying transition system, thus allowing us to reason about issues of
progress and safety without reference to the details of rule application and
the underlying graph.

The most obvious equivalence relation on graphs is graph isomorphism.
This is quite natural given that the grammars we consider regard all vertices
as essentially identical. In the context of self-organization, it is often useful to
represent an equivalence class generated by the isomorphism relation by list-
ing the number of each component type present in graphs in the class. Thus,
suppose that C(G0, Φ) = {C1, C2, ...}. Then v : C(G0, Φ) → N represents all
graphs G ∈ R(G0, Φ) with v(1) components isomorphic to C1, v(2) compo-
nents isomorphic to C2 and so on. We write these representatives in vector
notation. For the system presented in Example 3 where C1 is a component of
type w, C2 = e and C3 = d1 − h, and so on, the vector

v = (4, 0, 1, 0, 0, 0, 0, 1, 0)T

denotes that v(1) = 4, v(3) = 1, v(8) = 1, and all other entries are zero. If v
represents the equivalence class [G]� of a graph G, we write G |= v to denote

126 John-Michael McNew and Eric Klavins

that G is consistent with v and we may write vG instead of just v. This
highlights the fact that v is a proposition. Note that if H |= vG, then H � G.
In keeping with the self-assembly paradigm which is typically addressed in
the context of statistical mechanics, we call v an isomorphism macrostate.

Suppose G and G′ are reachable graphs where vG and vG′ denote the asso-
ciated isomorphism macrostates. Let (r, h) be the action such that fr,h(G) =
G′. Let a = vG′ − vG. For example, a may have the form

a = (−1, −1, 1, 0, 0, 0, 0)

indicating that components of type C1 and type C2 are combined into a com-
ponent of type C3. If a(i) = m < 0, then m components of type Ci are
destroyed by applying the action (r, h). If a(i) = m > 0, then m components
of type Ci are created. We call the vector a a macro-action.

Definition 5.1 Fix a rule set Φ. Let (G0, Φ) be a system. A macro-action a is
in the action set of a system, A(G0, Φ), if there exists graphs G, G′ ∈ R(G0, Φ),
and an action (r, h) such that fr,h(G) = G′ and a = vG′ −vG. The action set
a grammar, A(Φ), is given by

A(Φ) = {a | a ∈ A(G0, Φ) for some initial graph G0 ∈ G}.

Additionally we call the matrix whose columns are the actions in A(Φ) (or
A(G0, Φ)) the action matrix denoted by A(Φ) (or A(G0, Φ)). We write A to
denote the action matrix when its dependence on Φ and possibly G0 is clear.

Definition 5.2 Consider a macro-action a ∈ A(Φ) and a graph H where for
all i, vH(i) = −a(i) if a(i) < 0 and vH(i) = 0 otherwise. If there exists a rule
in Φ and a witness h such that (r, h) is applicable to H and for H ′ = f(r,h)(H)
the new macrostate is given by vH′ (i) = a(i) if a(i) > 0 and vH′ (i) = 0
otherwise, then the macro-action, a, is said to be transparent.

When a macro-action is transparent, then one may determine its applicability
to a macro-state without reference to the rules.

Proposition 5.1 Let v be an isomorphism macrostate and a be a transparent
macro-action in A(Φ). Then a is applicable to v if and only if for every i such
that a(i) < 0, v(i) + a(i) ≥ 0. Furthermore, the new macrostate is given by
v′ = v + a.

Example 6. For the system (G0, Φ) in Example 3, the action matrix A(G0, Φ)
is given by

A Grammatical Approach to Cooperative Control 127

A(G0, Φ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 −1 0 3 3
−1 0 0 0 0 0
1 −1 0 0 0 0
0 1 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 −1
0 0 0 0 −1 0
0 0 0 0 1 −1
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2)

�

If the number of components in C(Φ) is finite, then the macro-actions in
A(Φ) have finite dimension. Under this condition, it is often easier to rea-
son about the macrostates. If this is not the case we often identify another
equivalence relation that does result in macro-action vectors of finite length.

In Example 4 the set of component types of our grammar C(Φ) is shown
to be infinite. In particular, there exists an infinite sequence of star-shaped
graphs with a vertex labeled j at the center and all other vertices labeled by
p. In the final state we want all enemies to be labeled p with an edge to some
vertex labeled j. The degree of the vertices labeled j is not important. By
exploiting the fact that with respect to the desired behavior the star-graphs
are essentially the same, we introduce a new equivalence relation, ∼ that
creates macrostates and macro-action vectors of finite length.

Definition 5.3 Let v be any isomorphism macrostate. Suppose that C(G0, Φ) =
{C1, C2, ...} ordered as in Figure 5. We denote a new truncated macrostate
by ṽ where ṽ(i) = v if i < 7 and ṽ(7) =

∑∞
j=7 v(j).

Thus for any initial graph G0, any reachable graph in the system (G0, Φ) may
be expressed as a vector of length 7. For G0 given in Example 3 the reachable
isomorphism macrostate

v = (4, 0, 1, 0, 0, 0, 1, 0)T

becomes the truncated macrostate

ṽ = (4, 0, 1, 0, 0, 1)T

Note that no rule changes a vertex labeled j to any other label, and when
j appears in the left hand side of a rule it is disconnected from the rest of
the vertices in the rule. This implies that Proposition 5.1 is also true for
macrostates and macro-actions derived from the ∼ equivalence relation.

6 Reasoning About Graph Grammars

For the class of systems (P0, Φ) in Example 5 we wish to prove that

128 John-Michael McNew and Eric Klavins

1. at any given time a scout robot is either patrolling (labeled by w), dis-
rupting (labeled by h and connected to an enemy) or capturing and trans-
porting an enemy (labeled by l or f and connected to a c) and

2. eventually all enemies are detained and remain so.

We may determine whether the rule set Φ in Figure 2 satisfies the first spec-
ification by simply examining all possible transition types. Rules r1, r2, and
r3 are the only rules whose left hand sides have w and each rule changes the
vertex label to h with a connection to a disrupted enemy. Rule r4 changes
h to l or f while rule r5 relabels vertices with l and f to w and disconnects
them from the entire graph. Thus the first specification is met.

Similarly, we may show that the only labels possible for an enemy are
{e, d1, d2, d3, c, p}. And we may show that a vertex labeled p always remains
connected to a vertex labeled j since there is no rule that deletes an edge
between them. This result implies that the second specification may be written
as a temporal logic statement in truncated macrostate notation: That is for
any system whose initial graph has N scouts and K detention centers, the
second specification can be written as

f = A FG z̃

where
z̃ = (N, 0, 0, 0, 0, 0, K)T . (3)

The formula f states that eventually it is always the case that the system is in
a macrostate z̃ with N copies of w, and K graphs, some of which have edges
to vertices labeled p.

6.1 Lyapunov Functions on Trajectories

In proving that our system meets the second specification, we adapt some
standard methods of reasoning about concurrent systems [8] to graph systems
represented in macrostate notation.

Definition 6.1 A discrete Lyapunov function is a function on isomorphism
macrostates V : Nn → N such that

1. V is a positive decreasing function over all trajectories,
2. V(x) = 0 implies for all future states v, V(v) = 0, and
3. V > 0 implies that at least one action (r, h) is applicable.

Note that our definition of a discrete Lyapunov function is related to, but
not exactly equivalent to the standard definition found in discrete systems
literature.

Proposition 6.1 Let P be a proposition and V be a discrete Lyapunov func-
tion for a system (G0, Φ) such that V (G) = 0 for some G ∈ P . Then
(G0, Φ) |= A FG P . In other words, along all trajectories it is eventually
always the case that the current and next graphs are in P .

A Grammatical Approach to Cooperative Control 129

Finding a function V that meets the requirements of Definition 6.1 is highly
dependent on the system and the proposition P . We have the following results
for the case when the desired proposition is an isomorphism macrostate or a
combination of isomorphism macrostates. The results also apply to any type of
macrostate for which Proposition 5.1 holds. Although we develop the following
results in terms of isomorphism macrostates, they also apply to the truncated
macrostates in Definition 5.3.

Proposition 6.2 Let A(Φ) be the set of possible macrostate actions for a
system (G0, Φ) . If there exists a vector w ∈ Nn such that for all a ∈ A(Φ),

wT a < 0

then x �→ wTx is a positive decreasing function on all trajectories in (G0, Φ).

Example 7. For the class of systems (P0, Φ), we propose the discrete Lyapunov
function V(x̃) = wT x̃ where w is given by

w = (0 5 4 3 2 1 0)T . (4)

The action matrix of Φ in truncated macrostate notation is given by

A(Φ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 −1 0 3
−1 0 0 0 0
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5)

We will often refer to the actions individually, so we note that A(Φ) =
(a1 a2 a3 a4 a5) Then

wT A = −(1, 1, 1, 1, 1).

Thus Proposition 6.2 holds for our grammar, which implies that x̃ �→ wT x̃
satisfies the first condition of the Lyapunov function definition. �

Proposition 6.3 Let w be a vector as described in Proposition 6.2. If for all
a ∈ A(Φ) there exists an element i such that a(i) < 0 and w(i) > 0, then

wT x = 0 =⇒ G wT x = 0.

Example 8. Let z̃ in Equation 3 be the desired final macrostate. Then for
w = (0 5 4 3 2 1 0)T , wT z̃ = 0. A review of the action set for our system
(i.e. the columns of the action matrix in Equation 5) demonstrates that for
every action a there exists an element i such that a(i) < 0 and w(i) > 0.
Thus the function x̃ �→ wT x̃ satisfies the second condition of Definition 6.1.
�

130 John-Michael McNew and Eric Klavins

Example 9. We wish to show that whenever wT x̃ > 0, then at least one action
is applicable. Suppose there exists a vector x̃ where wT x̃ > 0 but no action is
applicable. Action a4 is applicable for any macrostate x̃ such that x̃(5) > 0.
Action a5 is not transparent because a component of type 7 must be present
for the macro-action to be applicable. However, we only consider systems
where x̃(7) > 0, thus a5 is applicable if x̃(6) > 0. Thus, we must show that
for all x̃ with

1. x̃(5) = x̃(6) = 0 and
2. wT x̃ > 0,

actions a1,a2, or a3 are not applicable. Under these conditions, either x̃(2), x̃(3),
or x̃(4) must be non-zero. Action a1 is applicable if x̃(2) > 0 and x̃(1) > 0.
Action a2 is applicable if x̃(3) > 0 and x̃(1) > 0. Action a3 is applicable
if x̃(4) > 0 and x̃(1) > 0. Thus it must be the case that x̃(1) = 0. Since
there are M vertices initially marked e and since there is exactly one of these
vertices in each component of type C2, C3, and C4, we have the additional
constraint that x̃(2) + x̃(3) + x̃(4) ≤ M . Note that there is one robotic scout
in component C1, zero scouts in C2, one scout in C3, etc. Thus the number
of robotic scouts in each component type is given by the vector

b = (1 0 1 2 3 3 0).

Because the number of robotic scouts remains constant, for our class of ini-
tial graphs P0 and for any macrostate x̃, we require that bT x̃ = N > 2M .
However,

bT x̃ > 2M

subject to the constraints

x̃(2) + x̃(3) + x̃(4) ≤M

x̃(5) = 0
x̃(6) = 0

can only be satisfied if x̃(1) > 0, which is a contradiction of our supposition
that x̃(1) = 0. Thus for all x̃, whenever wT x̃ > 0, then at least one action is
applicable.

For all systems (G0, Φ) where G0 ∈ P0, the function x̃ �→ wT x̃ meets all
three conditions in Definition 6.1. We conclude that

(P0, Φ) |= A FG(N, 0, 0, , 0, 0, 0, K)T .

�

6.2 Designing Grammars to Avoid Deadlock

For many initial graphs, simple grammars like the one we describe in the previ-
ous section generate deadlock conditions on some of the system’s trajectories.

A Grammatical Approach to Cooperative Control 131

Often more complicated grammars are required to guarantee no deadlock oc-
curs. Lyapunov functions are difficult to find for these grammars and we often
use weak Lyapunov functions to prove such systems satisfy a specification on
terminal behavior.

Example 10. In Section 6.1, we prove that

(P0, Φ) |= f.

where f = A FG z̃ and z̃ = (N, 0, 0, , 0, 0, 0, K)T . Since the size of the
enemy force is unknown we would like to expand the class of initial graphs for
which the grammar models f . Specifically, we would like to show that

(G0, Φ) |= f.

However, we may show by counter example that this is not the case. Consider
the initial graph G0(N, M, K) where N = 3, M = 2, and K = 1. Then the
trajectory

ṽ0
a1−−→ ṽ1

a2−−→ ṽ2
a3−−→ ṽ3

a4−−→ ṽ4
a5−−→ ṽ5

a1−−→ ṽ6
a2−−→ ṽ7

a3−−→ ṽ8
a4−−→ ṽ9

a5−−→ ṽ10

where ṽ10 = (3, 0, 0, , 0, 0, 0, 1)T satisfies f . Consider however the
trajectory

ṽ0
a1−−→ ṽ1

a2−−→ ṽ2
a1−−→ ũ3

where ũ3 = (0, 0, 1, 1, 0, 0, 1)T . No progress can be made from ũ3 since
no macrostate action applies to ũ3. Thus the trajectory does not satisfy f .

�

Example 11. We wish to define a new grammar Υ such that

(G0, Υ) |= f.

We create Υ by adding the following rules to Φ.

Φ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h

d1d1

�� ⇒
h

d2e
��

h

d2d1

�� ⇒
h

d3e
��

h

d2d2

�� ⇒
h

d3d1

��
.

The new grammar is Υ = Φ∪Φ′. The components of our new grammar are the
same as the components of Φ so that C(Υ) = C(Φ). Because the new rules do

132 John-Michael McNew and Eric Klavins

not involve labels p or j, we may still use the truncated macrostate notation
developed in Definition 5.3. The action matrix of the new grammar is

A(Υ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
A(Φ)

0 0 0
1 1 0
−2 −1 1
1 −1 −2
0 1 1
0 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6)

�
Systems with the grammar Υ require slightly different proof machinery

leading to the following definitions and results.

Definition 6.2 Let v be a vector in Nm. We call v an application vector
since v(i) indicates that action ai ∈ A(Φ) is applied v(i) times. If we denote
A(Φ) as A, then the vector Av ∈ Nn is the net change in components after
applying the actions indicated by the application vector v.

Proposition 6.4 There exists a G0 such that there is a cycle in the transition
system of (G0, Φ) if and only if the nullspace of the action matrix A, Null(A),
contains a vector n where the entries in the vector are all non-negative.

Definition 6.3 Let z be a desired final isomorphism macrostate. Let w be a
vector in Nn such that wT z = 0 and for all actions ai ∈ A(Φ), wTai ≤ 0. We
call the function x �→ wT x a weak Lyapunov function.

Proposition 6.5 Fix a grammar Φ, and let x �→ wT x be a weak Lyapunov
function for desired macrostate z. If

1. The set of actions of the grammar A(Φ) cannot generate a cycle,
2. For all a ∈ A(Φ) there exists an element i such that a(i) < 0 and w(i) > 0,

and
3. Whenever wTx > 0, then at least one macrostate action is applicable,

then
(G0, Φ) |= A FG z.

Example 12. Let w = (0 5 4 3 2 1 0)T as before. Let A = A(Υ) given in
Example 6. Then wT A = −(1, 1, 1, 1, 1, 0, 0, 0). Thus x̃ �→ wT x̃ is a
weak Lyapunov function. A basis for the nullspace of A is given by the vectors⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1
0
0
0
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
−1
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
−1
0
0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

A Grammatical Approach to Cooperative Control 133

Clearly there are no elements of the nullspace with all non-negative entries.
Thus no cycle can be generated from the actions in A(Υ). In Example 8
the second condition of Proposition 6.5 is shown to be true for the actions
{a1, ...,a5}. For every new action in Equation 6,there exists an element i such
that a(i) < 0 and w(i) > 0. Thus the second condition is met for the function
x̃ �→ wT x̃.

Finally, we must show that whenever wT x̃ > 0, then at least one macro-
action is applicable. Assume no macro-action is applicable to x̃. From the
previous analysis in Example 9 we know if no macro-action applies to x̃ then
x̃(1) = 0, x̃(5) = 0 and x̃(6) = 0. The three new actions imply that if no action
is applicable either x̃(3) = 1 and x̃(4) = 0 or x̃(4) = 1 and x̃(3) = 0. Since
component C2 contains zero robotic scouts, C3 contains one robotic scout,
and C4 contains two robotic scouts, if the number of robotic scouts N in the
initial graph is greater than two, then clearly there is a contradiction. Thus
wT x̃ > 0 must imply at least one macrostate action is applicable.

The grammar Υ , the class of graphs G0 and the proposed weak Lyapunov
function x̃ �→ wT x̃, satisfy all three conditions in Proposition 6.5. Thus we
may conclude that

(G0, Υ) |= f.

That is, for any initial condition with at least three robotic scouts, eventually
all the enemy will be detained. �

7 Simulation Results

In the wandering scouts example, the graph grammar describes the possible
evolution of the network topology of a group of robots. A graph grammar
does not, however, describe geometry. To incorporate geometry, we must also
design continuous controllers, a process we refer to as embedding the graph
grammar. In the embedding a continuous state x ∈ R2 is associated with
each vertex. In this section we use “robots” to discuss spatial information and
simply vertices if discussing purely topological concepts. For the system in the
wandering scouts example, we suppose the presence of an edge between two
robots i and j indicates i and j have a communication link and can detect
one another’s labels. Without an edge, a robot cannot know the operational
modes of its neighbors except during the isolated moments in which rules are
being locally checked.

We are interested in scenarios where the robots have limited communi-
cation and sensing ranges. The primary issues that must be addressed when
designing the continuous controllers are:

1. Designing controllers that use the network topology to enforce geometric
conditions such as the encirclement condition necessary to capture an
enemy.

134 John-Michael McNew and Eric Klavins

r∗ r+

U

r− rij

(a)

r− rij

Y

(b)

Fig. 6. (a) Attractive-repulsive potential function U for the Wandering Scouts Sce-
nario, (b) Repulsive potential function Y.

2. Designing controllers that guarantee that if progress is possible from a
graph G in the graph grammar, it is eventually possible from any spatial
state with the same underlying graph G.

We briefly describe a simulation of the wandering scouts example and the
continuous controllers used to embed the grammar Υ . In future papers we
will present a more formal description of the embedding process in terms of
hybrid systems. But these issues are beyond the scope of the current paper.

Suppose rij denotes the Euclidean distance between two robots i and j.
Denote by rc the communication and sensing radius of the robots. Let U be
an attractive-repulsive potential function.

U : V ×Σ ×Σ × E × R
2n → R.

Here n is the total number of vertices. Suppose i is the vertex of a robot and
j is any other vertex. If the pair of vertices ij is not in the edge set E or if
rij > rc, then U(i, l(i), l(j), ij, rij) = 0. Otherwise, U has the form pictured in
Figure 6(a).

In the figure, r∗ denotes a desired interagent distance between i and j.
The maximum separation distance is denoted by r+. The discontinuity at r+

is intended to enforce the condition that once an edge is formed it is never
broken by moving outside the communication range. The discontinuity at r−

is intended to enforce collision avoidance. For any edge, the parameters r∗, r+,
and r− may be different for different label pairs.

We also define a purely repulsive potential function

Y : V ×Σ × E × R
2n → R.

If ij ∈ E, then Y = 0, otherwise it has the form shown in Figure 6(b). Here
r− is only a function of a robot’s own label.

The dynamics of the ith robot are given by

A Grammatical Approach to Cooperative Control 135

(a) (b)

ww

hh

ee

d1d1

Fig. 7. (a)Virtual forces on robots before the application of rule r1 (b) Undesirable
stable equilibrium after the application of rule r1.

ẋi = −
∑

{j|ij∈E}
∇U(i, l(i), l(j), ij, rij)−

∑
{j|ij /∈E}

∇Y(i, l(i), ij, rij) + W.

W is continuous random vector process of bounded size that helps guarantee
the motion of any two components is only correlated for short periods of
time. If this is true and assuming a bounded spatial domain, then with high
probability, every macrostate action that is possible in the grammar is also
possible in the embedded system.

The function U has a local minimum at r∗. However the region of attraction
is limited to r− < rij < r+. In fact outside of this region, −∇U may drive rij

away from r∗. Since U is only non-zero when there is an edge, and edges are
created or destroyed via the application of rules, we require that a rule can
only be applied when r− < rij < r+. We accomplish this by placing guards
on the rules that are boolean functions of the geometry.

Additionally, note that we assume for progress to be guaranteed the motion
of the components may only be correlated for small periods of time. Because
the potential fields are both attractive and repulsive, if certain geometric con-
ditions are not met, it is possible for components to become permanently
interlinked. In particular for any edges ij and kl, we must prevent the embed-
ding of those edges from crossing.

Figure 7 demonstrates the simplest case involving an edge existing between
two vertices marked h and d1. The other vertices marked w and e can apply
rule r1 of the rule set Υ . In panel (a) of Figure 7 the double arrowheads
along the edges indicate the direction of the virtual forces generated by −∇U .
The solid arrowheads show the repulsive virtual forces generated by −∇Y.
The half-filled arrows indicate the net virtual forces applied to each robot.
As these arrows show, the net repulsive force on the robots labeled w and e
will eventually drive those robots out of communication and sensing range,
thus this configuration is not stable. Note that there are not half-filled arrows

136 John-Michael McNew and Eric Klavins

0 100 200
0

20

40

60

80

N
um

be
r

of
 P

ris
on

er
s

Time

Fig. 8. The number of captured enemy over time.

associated with the vertices marked h and d1 because in this configuration
the sum of the attractive and repulsive forces is zero. Panel (b) shows how
the forces change if rule r1 is applied. For each of the four robots, the virtual
forces sum to zero. Thus this configuration represents an undesirable stable
equilibrium in which the motion of the two components will remain correlated.
Suppose h is the label preserving injective mapping of Lr1 into G. To ensure
an application of the first rule in Υ creates the proper geometry and that
progress is guaranteed, we place the following guard, gd1, on rule r1.

gd1 ⇐⇒ r− < rh(1)h(2) < r+
∧

k,m∈sense(h(L))

¬cross(h(1), h(2), k, m).

A robot with vertex k is in the set sense(h(L)) if k is not in h(L) and
the distance between i and k, rik is less than the sensing distance, rc. The
boolean function cross determines if possible embedded edges between two
pairs of robots cross.

By carefully defining the guards on the rule set Υ and by carefully design-
ing the potential functions U and Y we can guarantee that: The only way of
changing the network topology is through the application of rules, the net-
work topology and controllers result in the desired geometries, and with high
probability progress always occurs.

We created a MATLAB simulation of the wandering scouts scenario utiliz-
ing the potential function controllers U and Y and the grammar Υ enhanced
by guards. We ran simulations of systems with initial graphs in G0 ranging
in size from 20 to 500 vertices and various distributions of scouts, enemies
and jails. Figure 8 shows the number of captured enemies over time for a
representative run of a system with 200 robotic scouts, 80 enemies and 5
detention centers. We chose purely random motion in the wandering scouts
mode w as the patrol strategy. The decreasing rate of prisoner detention oc-
curs because the likelihood of randomly encountering an enemy decreases as
the number of enemy not detained decreases. A more structured patrol strat-
egy [2] might result in faster convergence to the point where all enemy are

A Grammatical Approach to Cooperative Control 137

captured. However, all scenarios regardless of distribution demonstrated con-
verging behavior. Therefore we conclude that the simulation of the embedding
of the grammar is consistent with the behavior of the grammar.

8 Discussion

In Section 6.1 we created a one-of-a-kind proof for the simple wandering scouts
scenario using Lyapunov methods. These methods are often useful for the
design of small subsystems, but as the specifications and systems become more
complex, one-of-a-kind methods are more difficult to apply and we expect to
eventually use formal verification methods such as Model Checking. One of
the challenges in model checking graph grammars is the enormous state space
generated by graph isomorphism. We demonstrated methods to drastically
reduce the size of the model for a limited class of grammars [10]. Model size is
a major hindrance in model checking large-scale concurrent networked systems
and in future work, we plan to broaden the class of grammars for which we
may efficiently compute reduced models.

In section 7 we created continuous controllers and guards on the rule set so
that these controllers worked in tandem with the graph grammar to achieve
the desired geometries and topologies. This essentially created a locally defined
hybrid system we refer to as an embedded graph grammar. In future work, we
plan to present a formal model of the embedded graph grammar.

We believe the wandering scouts example belongs to a class of problems for
which we may be able to automatically synthesize the grammar, controllers,
and guards of a solution embedded graph grammar. As the size and complex-
ity of networked systems grows, we expect automatic controller synthesis to
become necessary. A key requirement to defining and programming solutions
to this class of problems appears to be a method of specification that directly
relates the continuous and discrete aspects of the problem and includes a
formal notion of “locality.”

References

1. J. Bishop, S. Burden, E. Klavins, R. Kreisberg, W. Malone, N. Napp, and
T. Nguyen. Self-organizing programmable parts. In International Conference on
Intelligent Robots and Systems. IEEE/RSJ Robotics and Automation Society,
2005.

2. J. Cortés, S. Mart́ınez, T. Karatas, and F. Bullo. Coverage control for mobile
sensing networks. IEEE Transactions on Robotics and Automation, 20(2):243–
255, 2004.

3. J. Alexander Fax and Richard Murray. Graph laplacians and stabilization of
vehicle formations. In 15th IFAC Congress, 2002.

4. A. Jadbabaie, J. Lin, and A. Morse. Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules. IEEE Transactions on Automatic
Control, 48(6), 2003.

138 John-Michael McNew and Eric Klavins

5. E. Klavins. Automatic synthesis of controllers for distributed assembly and
formation forming. In Proceedings of the IEEE Conference on Robotics and
Automation, Washington DC, May 2002.

6. Eric Klavins. Universal self-replication using graph grammars. In The 2004
International Conference on MEMs, NANO and Smart Systems, Banff, Canada,
2004.

7. Eric Klavins, Robert Ghrist, and David Lipsky. A grammatical approach to self-
organizing robotic systems. IEEE Transactions on Automatic Control, 2005. To
Appear.

8. L. Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872–923, May 1994.

9. N.E. Leonard and E. Fiorelli. Virtual leaders, artificial potentials and coordi-
nated control of groups. Proceedings of the 40th IEEE Conference on Decision
and Control (Cat. No.01CH37228), vol.3:2968 – 73, 2001.

10. John-Michael McNew and Eric Klavins. Model-checking and control of self-
assembly. In American Control Conference, 2006. Submitted.

11. Reza Olfati-Saber and Richard M. Murray. Distributed structural stabiliza-
tion and tracking formations of dynamic multi-agents. In IEEE Conference on
Decision and Control, 2002.

12. Pedro Lima Paulo Tabuada, George J. Pappas. Motion feasibility of multi-agent
formations. IEEE Transactions on Robotics, Vol. 21 (3):387–392, 2005.

A Distributed System for Collaboration and
Control of UAV Groups: Experiments and

Analysis∗

Mark F. Godwin †, Stephen C. Spry, and J. Karl Hedrick

Center for the Collaborative Control of Unmanned Vehicles (C3UV)
University of California, Berkeley, CA, USA

Summary. This chapter describes a distributed system for collaboration and con-
trol of a group of unmanned aerial vehicles (UAVs). The system allows a group of
vehicles to work together to accomplish a mission via an allocation mechanism that
works with a limited communication range and is tolerant to agent failure. This
system could be used in a number of applications including mapping, surveillance,
search and rescue operations.

The user provides a mission plan containing a set of tasks and an obstacle map
of the operating environment. An estimated mission state, described in a high level
language, is maintained on each agent and shared between agents whenever possible.
This language represents each task as a set of subtasks. Each subtask maintains
a state with information on the subtask status, an agent ID, a timestamp, and
the cost to complete the subtask. The estimated mission states are based on each
agent’s current knowledge of the mission and are updated whenever new information
becomes available. In this chapter, each subtask is associated with a point in space,
although the system methodology can be expanded to more general subtask types.

The agents employ a three-layer hierarchical decision and control process. The
upper layer contains transition logic and a communication process. The transition
logic manages transitions between tasks and between subtasks, which determine the
behavior of the agent at any given time. The communication process manages the
exchange of mission state information between agents. Among other capabilities,
the subtask transition rules provide time-based fault management; if an agent is
disabled or stops communicating, others will assume its subtask after a mission-
dependent timeout period. The middle layer contains a trajectory planner that uses
a modified potential field method to generate a safe trajectory for a UAV based
on the obstacle map and the current subtask objective. The lower layer contains
a trajectory-tracking controller that produces heading and airspeed commands for
the UAV. Properties of the system are analyzed and the methodology is illustrated
through an example mission simulation.

∗ This work was supported in part by the Office of Naval Research under contract
N00014-03-C-0187.

† Corresponding author, markfg@berkeley.edu

140 Mark F. Godwin, Stephen C. Spry, and J. Karl Hedrick

1 Introduction

The use of unmanned aerial vehicles (UAVs) to accomplish both military and
civilian missions is an active area of research. A significant portion of work
to date has focused on control of single UAVs, including trajectory tracking
[1] and trajectory planning [2,3]. In addition, coordinated motion of multiple
UAVs has been studied and demonstrated with static and dynamic formations
of unmanned aircraft [4, 5, 6].

In order to expand the range of missions that UAVs can effectively perform,
it is necessary to develop ways for multiple autonomous vehicles to work
together in collaborative groups [7,8,14]. This involves applying ideas from
the areas of multiagent systems and distributed problem solving to networked
multi-vehicle systems, such as UAV groups.

Approaches to team organization and task allocation can be categorized
by degree of centralization. On one end of the spectrum, in behavioral [9]
or emergent [12] approaches, groups of autonomous agents are designed with
individual behaviors that are intended to produce desired group actions and
behaviors. On the other end of the spectrum, a group of agents may simply
execute commands issued by a central planner. A number of approaches, in-
cluding auction-based allocation [10,11] and hierarchical dispatching [13], fall
between these extremes. The viability of these approaches for a given appli-
cation is closely tied to the communications topology.

While the more centralized approaches can generally promise more optimal
performance, they are also the least scalable and most sensitive to failures of
agents or communication links. A centralized planner might work well in ideal
cases but may not be feasible in the presence of real-world constraints on com-
munication and computation. Furthermore, any central planner or allocation
node represents a single point of failure for the system.

In our system, we consider a group of UAVs with limited communication.
The communication topology varies with time as the aircraft move about,
and does not generally form a connected graph. This rules out a centralized
solution; instead, we seek a distributed solution that does not rely on any
fixed communication topology but exploits whatever communication links are
present at a given time to coordinate activities and disseminate information
throughout the group.

The distributed artificial intelligence community has studied distributed
problem solving and task allocation problems for some time now, although
mostly in the context of systems of software agents. Work with physical agents
includes [9,11,13]. In the ALLIANCE architecture [9], distributed allocation
of tasks between a group of robots emerges as a result of agent behavior
parameters that describe the agents’ tendency to seize tasks from or relinquish
tasks to other agents. In this scheme, there is no specific commitment of an
agent to complete a task. In the Contract Net Protocol [10,11], tasks are
allocated between agents through the use of auctions. The agent with the

A Distributed System for Collaboration and Control of UAV Groups 141

winning bid is awarded the task and commits to completing the task. The
award may be subject to periodic renewal based on task progress.

In this chapter, we describe a distributed task allocation technique based
on opportunistic collaboration and exchange of information. Whenever two
agents are within communication range, they exchange estimates of the mis-
sion ‘state.’ Following the exchange, each agent merges its current mission
state with a mission state received from the other agent.

This approach is similar to the ALLIANCE approach in that tasks are
allocated and possibly reallocated between agents without the presence of any
third party such as an auctioneer. It is similar to the Contract Net approach
in that when allocation or reallocation occurs, it is based on qualification.

The chapter is organized as follows: In section 2, the high level language
that is used to describe the state of a mission is discussed. Section 3 describes
the mission state estimates that are maintained by each agent in the system
and describes the distinction between the local perception of mission state and
a global mission limit state. In section 4, we discuss the internal components
of an agent that execute a mission. In section 5, we explain the simulation
environment used to test the system, and in section 6, we present and discuss
an example mission scenario. Finally, section 7 draws conclusions and looks
ahead to future work.

2 Mission Plan

Given a group of agents, we want to describe a mission to be accomplished
collaboratively. The mission is defined by a mission plan, which consists of a
finite set of a distinct tasks:

M = {T1, T2, . . . Ta}

The tasks Ti may describe a wide variety of objectives, such as searching a
specified area, patrolling a boundary, or tracking a convoy.

Each task Ti consists of a set of subtasks Si and a set of task transition
rules Ri:

T i = {Si, Ri}
where Si contains one or more subtasks which are defined as one distinct
objective that can be accomplished by a single agent. The transition rules,
Ri, are Boolean tests used to determine if and when an agent will switch out
of one task and into another.

The set Si consists of the bi subtasks with in task Ti:

Si = {Si1, Si2, Si3, Si4, . . . Sibi}

with each subtask Sij consisting of a set of planner parameters Pij and a set
of subtask transition rules Rij :

142 Mark F. Godwin, Stephen C. Spry, and J. Karl Hedrick

Sij = {Pij , Rij}

The planner parameter set Pij specifies what type of planner to apply
to subtask Sij and contains the necessary parameters for that planner. If
subtask Sij consisted of visiting a known location and taking a photograph of
the ground, then Pij would contain the coordinates of the location and criteria
for path planning. The planner would determine the path to the location and
any other actions required to take the picture. The subtask transition rules,
Rij , are a set of Boolean tests used to define subtask transitions such as
completion or fault.

Fig. 1. Diagram of an example mission plan

A diagram of an example mission, M1 can be seen in Figure 1. As can be
seen in the dashed box on the left hand side M1 = {T1, T2, T3}. The transition
out of T1 into T2 would be contained in R1, the transition out of T2 into T3

would be found in R2 and so on. As described before, a task may contain
any number of subtasks. These subtasks are represented on the right hand
side. Each subtask can be in three general states, todo, assigned or done.
For example, the rules applied to subtask S2j of T2 are found in R2j . The
transition rules R2j define the transitions assigned→done, assigned→todo and
other desired transitions.

All transitions of subtask Sij are governed by Rij , except for the transi-
tion between todo→assigned which is governed by the planner which will be
described in section 4.3.

2.1 Subtasks as Points

Although a subtask could represent many abstract goals, a large set of sub-
tasks can be generalized as a “point” with rules to govern it and a planner to

A Distributed System for Collaboration and Control of UAV Groups 143

interpret it. The rules specify how to treat the point in space and the plan-
ner plans how to accomplish the subtask. The point in space could designate
a friend/foe to track or a location to survey. In addition to a stationary or
dynamic point a larger number of these points can specify a line, an area or
a volume.

Many tasks/subtasks can be represented as traveling to a point and per-
forming some action upon arrival. For example, basic surveillance is just flying
between points of interest and gathering information at those points. Tracking
a friendly or unfriendly convoy is just trying to reach a point that is continu-
ally being updated with the known or perceived position of the convoy.

In these and other scenarios it is a point or series of points that is important
and it is up to a trajectory planner to take these points and generate the
proper path/plan. For example, in [14] a sinusoidal like trajectory is generated
to burn off the greater relative velocity of the UAV to the ground vehicle
or convey. This entire trajectory is generated knowing only the position of
a ground vehicle and initially specified constant parameters, both of which
would be represented in subtask Sij as part of Pij . If it were desired that
three unmanned vehicles follow a convoy then there would be three subtasks,
all created with similar planner parameters.

3 Mission State Estimates

During operation, the actions of each agent are based on its mission state es-
timate. The mission state estimate contains the information from the mission
plan and is supplemented with additional information on the estimated status
of the tasks and subtasks as known by a specific agent k. We will denote the
mission state estimate of agent k by M̂k .

As will be explained below, each agent updates its mission state estimate
whenever new information becomes available. Due to limited communication
between agents, a agent will usually receive some subset of the information
updates issued by other agents. Therefore, at any given time, the mission
state estimates of two different agents A and B, M̂A and M̂B , will likely be
different.

The mission state estimate of agent k consists of a set of task state esti-
mates, one for each task in the mission plan:

M̂k = {T̂1, T̂2, . . . , T̂a}

where we will drop the k superscript on the components of M̂k in order to
simplify notation.

For each task Ti in the mission, the task state estimate T̂i contains the
information:

T̂i = {Ŝi, τi, Ri}

144 Mark F. Godwin, Stephen C. Spry, and J. Karl Hedrick

where Ŝi is a set of subtask state estimates, Ri is the transition rule set, and
τi is a timestamp that contains the start or end time of task Ti. The set Ŝi

consists of the bi subtask state estimates of task Ti:

Ŝi = {Ŝi1, Ŝi2, Ŝi3, . . . , Ŝibi}

For each subtask Sij , the subtask state estimate Ŝij contains the information:

Ŝij = {Uij , Aij , Cij , τij , Rij , Pij}

where Uij is the status of Sij , Aij is an agent ID number, Cij is the cost to
accomplish Sij , τij is a timestamp for Sij , Rij are the transition rules and
Pij are the planner parameters defined in the mission plan. The ˆ has been
dropped on the elements of Ŝij to simplify notation. The information content
is described in more detail below.

Uij : The status of subtask Sij . The value of Uij can be either todo,
assigned, or done, and is determined as follows:

1. If Sij is believed to be in progress by any agent, then Uij = assigned
2. If Sij is believed to have been completed by any agent, then Uij = done
3. Otherwise, then Uij = todo

It is important to note that in our system, all subtasks are to be completed
exactly one time; once a subtask is done it will always be done and cannot be
restarted. If a cyclic or reoccurring subtask is desired, either a new subtask
can be generated periodically, or the subtask transition rules can be defined
such that the subtask would never be considered done.

Aij : Specifies the identifier of the agent who last set the status of subtask,
Sij . If, for example, agent 3 was assigned to subtask S24, then A24=3.

Cij : If the status Uij of subtask Sij is assigned, then the variable Cij

contains the reported cost for agent Aij to accomplish Sij . If, for example,
subtask Sij consisted of visiting a point in space then Cij might be an estimate
of the time, distance, or energy required to reach that point. In general, Cij

may be computed using any desired cost function. However, all subtasks within
a task must have comparable cost estimates.

τij : A timestamp variable which depends on the value of the subtask status
Uij :

1. If Uij = todo, then τij contains the time Uij was set to todo.
2. If Uij = assigned, then τij contains the time that Sij was assigned to agent

Aij .
3. If Uij = done, then the variable τij contains the time that Sij was com-

pleted by agent Aij .

Note that the status, participating agents, and cost to complete a task are
not specifically stored in the task state estimate T̂i, as they can be determined
directly from the set of subtask state estimates Ŝi. On the other hand, the
timestamp τi that gives the start or end time of a task T̂i cannot be determined
from Ŝi and is therefore stored explicitly in the task state estimate, T̂i.

A Distributed System for Collaboration and Control of UAV Groups 145

3.1 Global vs. Local Information

As discussed above, M̂k is the state of the mission as known by a specific
agent k. It is interesting to consider the existence of a limiting mission state
estimate. Suppose that time is frozen at time t, communication between agents
is unlimited, and the communication algorithm between agents (which will be
described in section 4.2) is allowed to run for some finite number of iterations
n. Denote the resulting mission state estimate of agent k as M̂k

n . If given a
set of K agents there exists an N such that for all n ≥ N ,

M̂1
n = M̂2

n = · · · = M̂K−1
n = M̂K

n := M

then we call M the limit state of the mission at time t.
Depending on the level of access to information, at any given time t, M̂k

may be very different from the limit state of the mission M . The determina-
tion of the existence of a limit state M as well as a number or upper bound
on the number of iterations N required for the information to converge to M
is part of current and future work.

4 Agents

With an understanding of the information that is contained in a mission plan
and a mission state estimate, the contents and functionality of an individual
agent can be discussed. For each agent k, we define an internal state Xk as

Xk =

⎧⎪⎪⎨⎪⎪⎩
AgentID
Position[x, y]
V elocty[vx, vy]
M̂k

⎫⎪⎪⎬⎪⎪⎭
where M̂k is the mission state estimate as described previously. We also define
the message format for the kth agent as

Y k =
{

AgentID

M̂k

}
As shown in Figure 2, an agent in this system contains four major functional
components: communication, transition logic, planning, and low-level control.
The communication, transition logic and planner all interact via the internal
state Xk . This interaction occurs primarily through reading and modification
of the mission state estimate M̂k . The planner generates a plan based on Xk

and passes appropriate commands to the low-level controller.

146 Mark F. Godwin, Stephen C. Spry, and J. Karl Hedrick

Fig. 2. Internal components of an agent, where K is the total number of agents

4.1 Transition Logic

The transition logic block manages transitions between tasks and between
subtasks according to the transition rules specified in Ri and Rij respectively.

The task transition rules Ri are a set of explicit rules that specify under
what conditions “big picture” actions should be executed. For example these
rules can specify when a convoy should be followed, when an area should
be searched or when a group of UAVs should return to base. The subtask
transition rules Rij are applied to each subtask. These rules and the specified
planner parameters Pij result in more specific behaviors such as mapping,
convoy protection or searching. More specifically, the rules contained in Rij

define what it means for subtask Sij to be complete as well as decide if a fault
has occurred.

Referring back to Figure 1, the rules in Ri specify the transitions found be-
tween tasks in the left hand box, and the rules in Rij determine the transitions
found in the right hand box, from assigned→todo and assigned→done. The
transition from todo→assigned requires a cost estimate, so that responsibility
is left to the planner.

From the perspective of an agent there are effectively two different types
of assigned subtasks: those that assigned to the agent itself, which will be
referred to as current ; and those that are assigned to another agent, which
we will refer to as other. Because a planner on one agent cannot assign a
subtask to another agent, it may be more precise to say the planner of agent

A Distributed System for Collaboration and Control of UAV Groups 147

k changes the state of a subtask from todo→current in the context of the
mission state estimate M̂k. An agent can classify a subtask as current or
other by comparing its own agent identifier with the value of Ak

ij .

4.2 Communication

The communication block sends and receives messages and integrates received
messages into an agent’s mission state estimate.

The integration process employs only one operation: overwriting of a sub-
task state estimate Ŝij . The decision to overwrite or not depends on four
pieces of information found in each subtask estimate Ŝij : status (Uij), time
(τij), agent ID (Aij), and projected cost to completion (Cij).

Any numbers of subtasks N on two different agents A and B are com-
pared with their equivalent subtask. Only one question is asked: Will Sij on
agent B completely overwrite Sij on agent A? This takes place on agent A
with information sent from agent B. The ij subscripts have been dropped to
simplify notation.

For each subtask S: Determine the status of SA and SB then check the
appropriate condition in Table 1. If the condition is true then overwrite SA

with SB.

Table 1. Overwrite conditions for a subtask on agent A, from agent B.

Subtask, S Agent A
todo other current done

A
g
en

t
B todo τB ≥ τA τB > τA τB > τA FALSE

other τB ≥ τA (AB = AA)&(τB > τA) FALSE FALSE
current τB ≥ τA τB ≥ τA CB < CA FALSE
done TRUE TRUE TRUE τB > τA

4.3 Planner

The planner block has three principal functions, all of which require the cal-
culation of subtask cost estimates:

1. Choose a subtask when necessary, using current information
2. Calculate an estimate of the cost to complete the current subtask
3. Provide a plan to accomplish the current subtask

When the agent does not have a current subtask, either as a result of
completing its previous subtask, or relinquishing it to a better qualified agent,
the planner will generate cost estimates for all the subtasks with a todo status.
The subtask with the lowest estimated cost will then be chosen as the current

148 Mark F. Godwin, Stephen C. Spry, and J. Karl Hedrick

task for the agent. The planner will then update the state of that subtask,
changing its status to assigned.

When the agent does have a assigned subtask, the planner provides a plan
to accomplish that subtask, as well as providing ongoing estimates of the cost
to finish the subtask.

In our system, the planner is a path planner and each subtask is character-
ized as a point in space. The cost is calculated as the estimated time to reach
the target, accounting for the presence of obstacles. The resulting plan is a
sequence of waypoints that lead to the point in space. To execute the plan,
the low-level controller follows the waypoint sequence to the subtask point.

In general, however, there is no reason the planner couldn’t generate differ-
ent types of path. For example, the planner could produce a path to a target
that minimizes a UAV’s radar cross-section. If the subtask point was attached
to a moving convoy, then the planner could generate a periodic orbital trajec-
tory to sweep out a safe area around the convey, as in [14].

4.4 Low-level Controller

The final layer is the low-level controller that executes a plan. However, as the
details of the low-level control are dependent on the physical platform being
used this will be discussed, along with the vehicle model, in the simulation
section.

5 Simulation

To test and validate our distributed system a MATLAB ©R simulation and vi-
sualization environment was developed. The simulation environment includes
a kinematic aircraft model, a grid-based obstacle map, limited communication
and all the internal processes of the agent. All parts of the simulation have
been designed in a modular way so that different models, controllers and/or
processes can be easily tested, replaced and/or upgraded.

The simulation parameters were chosen to approximate the capability of
our experimental platform at UC Berkeley.

5.1 Low Level Controller & Kinematic Model

If an aircraft operates in a flat plane, at low speed and is considered to be
small relative to the operating environment then a constrained 2D kinematic
model is a reasonable assumption. The governing kinematic equations are:

ẋ = Vaircraft ∗ cos(ψ) + Vwindx

ẏ = Vaircraft ∗ sin(ψ) + Vwindy

ψ̇ = u1

(1)

A Distributed System for Collaboration and Control of UAV Groups 149

where Vaircarft is the constant velocity of the aircraft, ψ is the yaw angle
and the control action u1 is equal to the yaw rate. For the simulations the
aircraft has a fixed velocity of 20 m/s, wind velocity is set to zero, and ψ̇ ∈
[−12, 12]◦/ sec .

Fig. 3. Waypoint tracker and kinematic model variable definitions

The trajectory-tracking controller tracks waypoints given by the planner.
The waypoint tracker controls toward a point, such as (x2, y2) in Figure 3,
using proportional feedback:

u1 = Kp ∗ (ψdesired − ψactual) (2)

where ψdesired and ψactual are the angles as specified in Figure 3, Kp is the
gain of the P-controller.

When the aircraft comes within some specified radius of the current way-
point the waypoint tracker switches to the next waypoint, in this case (x3, y3),
until it has reached its final waypoint.

This trajectory-tracking controller should be improved for a real-world
system; however in simulation with no physical disturbances it is more than
sufficient.

150 Mark F. Godwin, Stephen C. Spry, and J. Karl Hedrick

5.2 Grid-Based Obstacle Map

The obstacles are represented in a grid-space where some length in meters is
defined as one grid unit. For example, a grid-space of 100 x 100 units where
one unit was equal to 50m would represent an area of 5000 m x 5000 m. In
each of these grid-spaces an obstacle can exist or not exist. The UAV on the
other hand lives in continuous space and the grid-space representation of the
environment simply makes it easier to plan a path and test for collision with
obstacles. If a more precise representation of the environment is desired, the
resolution of the grid-space can be increased.

5.3 Limited Communication & Broadcast Simulation

Our broadcast simulation is meant to represent a lower bound on performance
we could obtain from a more refined system. There are much more extensive
solutions available from the networking community; however, we believe that
if our system works well with this representation, then it is likely to work with
many other systems.

Each UAV is given 0.1 seconds to broadcast while all other UAVs are lis-
tening. That is, if there were three UAVs then over a period of 0.6 seconds
each UAV would receive information twice from each other UAV. This would
mean if there were 20 UAVs all within communication range of each other, in
2 seconds each UAV would receive information once from every other UAV.
This rate of communication would likely not be sufficient for applications such
as collision avoidance but would be sufficient for this system, depending on the
maximum communication range and distance between objectives. For a signif-
icantly larger number of UAVs a more elaborate communication methodology
would be required.

Even if a UAV broadcasts, it is not guaranteed that other UAVs will receive
that broadcast. From an inspection of the capabilities of our experimental plat-
form we have developed the distribution below which is used to generate the
plot seen in Figure 4. This is not meant to be a completely realistic simulation
of a data network and is instead meant to limit information, vary the rate of
information exchange, and randomly change the order of communication.

The probability distribution is given by

d =
{

1 r < p ∗ rmax
1

(4r/rmax)2
r ≥ p ∗ rmax

}
(3)

where r is the Euclidian distance between UAVs, rmax is the maximum com-
munication radius and p is the percentage of the max communication radius
that will result in guaranteed communication. In the case of Figure 4 p =
0.10, rmax = 2000 meters and r ∈ [0, 2000] meters.

A Distributed System for Collaboration and Control of UAV Groups 151

Fig. 4. Normalized simulated communication data of 100 samples every 20 meters
with a maximum communication radius of 2000 meters

6 Example Mission Simulation

We will use an example simulation of mission M1 to highlight some of the
capabilities of our system. This is the same mission that is used as a mission
example in Figure 1. In Figures 5-7 a curvilinear line represents the path of
a UAV. A small circle at the end of a curvy line represents the actual UAV.
The subtasks of different tasks are represented by dots and clusters of small
circles represent obstacles. Also, when two UAVs communicate, a straight line
is drawn between them.

A 2000 second simulation of M1 was run with no simulated UAV faults. A
maximum communication radius of 2000 meters and operation area of 5000
meters x 5000 meters are specified for the simulation. The aircraft and com-
munication model are as described in section 5. T1 of M1 can be seen in
Figure 5. The UAVs begin at their start positions and then disperse over the
grid of subtasks represented by S1 to complete T1. T1 results in a sweeping
search of an area defined by {P11, P12, P13, . . . P1b1} and a set of rules defined
by {R11, R12, R13, . . . R1b1}. In this case the greater task T1 is a result of rel-
atively simple identical rules applied to the set of subtasks S1. In a sweeping
search, one UAV is required to visit each point of a subtask at least once.

152 Mark F. Godwin, Stephen C. Spry, and J. Karl Hedrick

After {U11, U12, U13, . . . U1b1} are all set as done, the UAV switches from T1

to T2 as denoted by R1.
The initial stages of T2 can be seen in Figure 6 and show the UAVs after

they have already dispersed toward one of the 7 subtasks of T2. The rules
applied to the subtasks of T2 are the same as those applied to T1 except for
the introduction of time-based fault tolerance.

Fig. 5. Six UAVs during ex. M1, executing T1 @ t=250 seconds

With time-based fault tolerance, if a failure were to occur out of range of
a functioning UAV, the subtask would still be completed. Because a UAV,
through the mission state, knows the time at which a subtask was started and
also knows what needs to be accomplished, it can estimate when in the future
some other UAV should announce completion of that subtask. If this estimated
time passes without confirmation that the subtask has been accomplished then
the status of the subtask is switched from assigned→todo by a UAV. After

A Distributed System for Collaboration and Control of UAV Groups 153

this is done, an available UAV would proceed to accomplish the subtask in
question.

Fig. 6. Six UAVs during M1, executing T2 @ t =620 seconds

In addition, communication-based fault tolerance is applied to all subtasks
of each task. If failure of a UAV were to occur within range of at least one other
UAV, and this could be communicated to the other UAVs, then this knowl-
edge would be integrated back into the mission state. That is, any subtasks
currently associated with the faulted UAV would be set from assigned→todo.

Finally, Figure 7 displays all six UAVs circling at subtask points of the
final task, T3, in default mode. The visualization no longer displays the trail
of each UAV, but it does display all the subtasks of T1, T2 and T3 as their
associate points. The default mode is actually the natural behavior of the
system and is the result of no rules applied to the subtasks of T3, that is
{R31, R32, R33, . . . R3b3}=NULL.

154 Mark F. Godwin, Stephen C. Spry, and J. Karl Hedrick

Fig. 7. Six UAVs during ex. M1, and executing T3 @ t =1199 seconds

7 Conclusions and Future Work

In this chapter, we have presented a distributed approach to multi-agent col-
laboration. We first established a description of a mission plan in terms of tasks
and subtasks, and identified static and dynamic points as a useful means of
defining a large set of possible missions, such as searching or convoy protec-
tion. As a superset of the mission plan, we established a high level language in
which to describe the estimated state of a mission at any time. This involved
augmenting the information contained in the mission plan with information
on status, agent identifier, time, and cost. In addition the operation of an
agents internal functions were described. A functioning multi-agent system
was implemented in a simulation and results of an example mission were dis-
cussed.

In simulation, our system produces robust and consistent behavior de-
spite uncertain communication links. It can execute different types of mis-

A Distributed System for Collaboration and Control of UAV Groups 155

sions/tasks in a fault-tolerant way, and the trajectory planner is able to ac-
commodate the constraints of our aircraft model. In simulation, the number
of collaborating UAVs in the group is limited only by computer memory; in
a real implementation, communication resources would likely be the limiting
factor. However, with reasonable communication bandwidth we believe that
this system can be successfully implemented in real-time on a group of real
aircraft.

In a distributed multi-agent system information is key. Clearly, an agent’s
performance is limited by the availability of information. If all agents had com-
plete information, then a group of UAVs could theoretically achieve a globally
optimal solution. However this is difficult to achieve in any real distributed
multi-agent system. Therefore, the important information must be identified,
described in a concise manner, and widely disseminated as efficiently as pos-
sible. With this information available, good decisions can be made.

Our current and future work is largely committed to further refinement
and formalization of the mission description concepts and the development
of formal proofs. We wish to find a minimum set of rules/conditions that
are required to guarantee that a mission will be completed if the resources
exist. Also, with respect to the communication algorithm, we believe there is
a simplified set of rules that govern the information exchange between agents.

We also wish to prove the existence of the limiting mission state described
in section 3.1. We would also like to determine an upper bound on the number
of required communications required for convergence as it relates to the num-
ber of agents in a group. For example, we can conclude from inspection that
for a group of two agents only one iteration is required to reach the limiting
mission state.

Finally, while each agent only plans one step ahead in the current sys-
tem, we hope to introduce an algorithm that would allow each agent to plan
multiple steps ahead.

References

1. W. Ren, R. W. Beard, “Trajectory Tracking for Unmanned Air Vehicles with
Velocity and Heading Rate Constraints,” IEEE Transactions on Control Systems
Technology, In Press.

2. Y. Kuwata, Real-time Trajectory Design for Unmanned Aerial Vehicles using
Receding Horizon Control, Masters Thesis, MIT, June 2003.

3. I. M. Mitchell and S. Sastry, “Continuous Path Planning with Multiple Con-
straints,” IEEE Conference on Decision and Control, Hawaii, USA, December
2003

4. S. Spry and J. K. Hedrick, “Formation Control Using Generalized Coordinates,”
IEEE Conference on Decision and Control, Bahamas, 2004.

5. R. O. Saber and R. M. Murray, “Flocking with Obstacle Avoidance: Coopera-
tion with Limited Communication in Mobile Networks,” IEEE Conference on
Decision and Control, Hawaii, USA, December 2003.

156 Mark F. Godwin, Stephen C. Spry, and J. Karl Hedrick

6. H. Tanner, A. Jadbabaie, and G. J. Pappas., “Coordination of multiple au-
tonomous vehicles,” IEEE Mediterranean Conference on Control and Automa-
tion, Rhodes, Greece, June 2003.

7. S. G. Breheny, R. D’Andrea and J. C. Miller, “Using Airborne Vehicle-Based
Antenna Arrays to Improve Communications with UAV Clusters,” IEEE Con-
ference on Decision and Control, Hawaii USA, December 2003.

8. A. R. Girard, A. S. Howell, and J. K. Hedrick, ”Border Patrol and Surveillance
Missions using Multiple Unmanned Air Vehicles”, Submitted to IEEE Control
Systems Technology, 2004.

9. L.E. Parker, “ALLIANCE: An architecture for fault-tolerant multi-robot coop-
eration,” IEEE Transactions on Robotics and Automation, 14(2), pp. 220-240,
April 1998.

10. R. Davis and R.G. Smith, “Negotiation as a metaphor for distributed problem
solving,” Artificial Intelligence, Vol. 20, pp.63-109, 1983.

11. B.P. Gerkey and M.J. Mataric, “Sold! Auction Methods for Multirobot Coordi-
nation,” IEEE Transactions on Robotics and Automation, 18(??), pp. 758-768,
Oct. 2002.

12. J. Kennedy and R. C. Eberhart, Swarm Intelligence, Academic Press, 2001.
13. K. Konolige, D. Fox, C. Ortiz, et al., “Centibots: Very large scale distributed

robotic teams,” Proc. of the Intl. Symposium on Experimental Robotics, ISER
2004.

14. S.C. Spry, A.R. Girard, and J.K. Hedrick, “Convoy Protection using Multiple
Unmanned Aerial Vehicles: Organization and Coordination,” Proc. of the 24th
American Control Conference, Portland, OR., June 2005.

Consensus Variable Approach to Decentralized
Adaptive Scheduling

Kevin L. Moore1 and Dennis Lucarelli2

1 Division of Engineering
Colorado School of Mines
1610 Illinois Street, Golden CO 80401
E-mail: kmoore@mines.edu

2 Johns Hopkins University Applied Physics Laboratory
11100 Johns Hopkins Road Laurel, MD 20723-6099
E-mail: dennis.lucarelli@jhuapl.edu

Summary. We present a new approach to solving adaptive scheduling problems
in decentralized systems, based on the concept of nearest-neighbor negotiations and
the idea of a consensus variable. Exploiting some recent extensions to existing results
for single consensus variables, the adaptive scheduling problem is solved by choosing
task timings as the consensus variables in the system. This application is illustrated
via the example of a synchronized strike mission. The chapter concludes with a
discussion of future research directions on this topic.

1 Introduction

In many applications it is possible to decompose a mission or system operation
involving multiple agents, interacting through a sequence of inter-dependent
tasks, into a set of sequences of dependent tasks that must be executed accord-
ing to a prescribed schedule with a prescribed allocation of tasks to resources.
Typically such problems are initially solved though some type of planning and
scheduling algorithm. However, when change occurs that upsets these plans
during execution, mission plans must be adapted. In many cases the luxury to
replan is not available and in the “heat of battle,” new schedules and contin-
gencies for a team must often be determined “on-the-spot,” through team-to-
team communications, usually without the benefit of advanced planning tools
and global domain knowledge. The result is that coordination efforts can dis-
tract team members from the task at hand and that mission success can be
compromised. Of course, human agents in a system often know how to act
on information presented to them. Humans appear to have an almost innate
ability to coordinate complex behaviors in near real-time with heterogeneous
assets in dynamic, uncertain, and adversarial environments. Moreover, it is of-
ten the case that humans can cooperate effectively without full knowledge of

158 Kevin L. Moore and Dennis Lucarelli

the entire coordination plan. There are, however, limits to the complexity and
scale of operations that can be effectively coordinated in real-time with human
cognition aided by standard technologies. This is especially true when con-
sidering cooperative planning and adaptation of time-critical missions amidst
pervasive uncertainty and sophisticated adversaries. These observations lead
us to consider the use of a computational assistant that can help human
agents when change dictates the need for rescheduling mission plans. Such an
assistant will need to embody suitable algorithms for reasoning.

In this chapter we propose a fundamentally new approach to distributed
adaptation and reasoning based on sophisticated yet scalable mathematical
algorithms that are motivated by the idea of a consensus variable. The central
tenet of our approach is that to coordinate complex behaviors some informa-
tion must be shared by agents in the network. We assume the minimal amount
of information required is encapsulated in a time-varying vector, called the co-
ordination or consensus variable. Each agent3 carries “their own” local value
of the coordination or consensus variable and updates that value based on the
value held by the other agents with whom the agent is able to communicate.
Through proper definition of the consensus variable and specification of rules
for updating the value of this variable, it is possible to prove convergence
of the consensus variable between the communicating agents. To apply the
consensus variable approach to the problem of adaptive scheduling, we use
recent results that extend the ideas of consensus variables to include both
forced consensus and the case of multiple consensus variables separated by
hard constraints. We begin by describing the basics of the consensus variable
approach and its extensions. We then illustrate the application of consensus
variables to the adaptive scheduling problem. This is done via the example
of a synchronized strike mission. The chapter concludes with a discussion of
future research directions on this topic.

2 Consensus Variables

Suppose we have N agents with a shared consensus variable ξ. Each agent has
a local value of the variable given as ξi. Each agent updates their value based
on the values of the agents that they can communicate with. For continuous-
time systems we have the following update rule:

ξ̇i(t) = −
N∑

j=1

kij(t)Gij(t)(ξi(t)− ξj(t)), (1)

3 In this chapter we use the word “agent” loosely. We simply mean an actor or
entity or unit in a system and do not assume any type of formal AI definition
of the term. Practically speaking, for us each team or unit in a mission, or in a
team of teams, is an agent. Further, such agents could be UGVs, UAVs, other
autonomous or automatic systems, or even humans or human teams.

Consensus Variable Approach to Decentralized Adaptive Scheduling 159

where ξi is the coordination variable instantiated on the ith agent, kij(t) > 0
is a weighting factor or gain, and Gij(t) equals one if information flows from
agent j to agent i at time t and zero otherwise. Gij(t) defines the (possibly
time-varying) communication topology between the agents and can describe
both unidirectional and bi-directional communications topologies. We say the
communication graph is static if Gij(t) = Gij . We say a communication graph
has spanning tree if there is at least one node from which there is a path that
can reach every other node. We say that a node is a spanning node if there
is a path from that node that can reach every other node in the graph. Let
A be a set of N agents, negotiating about a consensus variable ξ with a com-
munication topology Gij . We say that A is in (global asymptotic) consensus
if ξi(t) → ξ∗ , ∀i as t → ∞. It is well-known that (1) if the communication
topology forms a spanning tree then convergence can be assured [1]; and (2)
the final value of the convergence variable is a function of both the initial
conditions ξi(0) and the value of the gains kij .

The remainder of this section summarizes two extensions to the single
consensus variable ideas that appear in [2]. First, it is often the case that
we may want to force the consensus negotiation to follow a hard constraint.
Suppose each agent updates their value of the consensus variable assuming an
input ui and has an output yi as follows:

ξ̇i(t) = −
n∑

j=1

kij(t)Gij(t)(ξi(t)− ξj(t)) + biui

yi(t) = ξi(t) (2)

where b = [0, · · · , 0, 1, 0, · · · , 0]T , such that bk = 1 and bj = 0, ∀j �= k. In our
earlier paper we showed that if

uk(t) = kp(ξsp − ξk)

where ξsp is a constant setpoint and kp > 0 is a constant gain, then the
consensus strategy of (2) achieves global asymptotic consensus for A, with

lim
t→∞ ξi(t) = ξsp ∀i

if and only if node k is a spanning node for the communication graph G.
In addition to forced consensus, we may also encounter the need for con-

strained consensus. Specifically, in multi-stage timing missions with heteroge-
neous assets it is rarely the case that a single coordination variable can cap-
ture the information required for the team objective to be achieved. Rather,
most problems rely on the complex interplay of several coordination variables
active in the system at any given time. In general, we can consider multi-
ple sets of agents, Aλ , each with nλ agents that are negotiating internally
about consensus variables ξλ over communication graphs Gλ, each defined by
a topology Gλ

ij(t), with local (meaning within the set of agents) evolution of

160 Kevin L. Moore and Dennis Lucarelli

the consensus variable given by (2). Then we assume set-to-set communica-
tions taking place via a single node in one agent communicating with a single
node in another agent. Further, in many applications one might like to enforce
a non-integrable constraint between consensus variables. In our earlier paper
we showed a mechanism to achieve this results. Specifically, if we let ua

ka be
the input to node ξa

ka , where ξa is the consensus variable for agent Aa , ub
kb

be the input to node ξb
kb , where ξb is the consensus variable for agent Ab and

let ∆ab be the desired constraint between consensus variables ξa and ξb , then
the agent-to-agent constraint rule

ua
ka = −(∆ab − (ξb

kb − ξa
ka))

ub
kb = ∆ab − (ξb

kb − ξa
ka)

leads to global asymptotic global consensus for each set Aa and Ab, with
ξa
i → ξa∗

, ξb
i → ξb∗ , and ξb∗ = ξa∗

+ ∆ab if and only if nodes ka and kb are
spanning nodes for the graphs Ga and Gb, respectively.

3 Synchronized Strike Application

In this section we illustrate our ideas about how to use the consensus variable
approach for mission timing adaptation by using a Synchronized Strike ex-
ample. Figure 1 shows the example mission. In the scenario the MH-J (Unit
1) drops the SF Team (Unit 2) and then returns to base to pick up supplies
needed for the strike. Meanwhile, the Seal Team moves in on the MK-V boats
while the SF Team moves to a forward observation point from which they
can identify the supply drop location. This information, and the return of the
MH-J to base, is needed before the supplies can be dropped. Following arrival
at the proper location, the Seal Team proceeds in its CRRC boat to go to the
target. When the supplies have been dropped, the SF Team is at the target,
and the Seal Team is at the target, it is possible to engage. Note that we have
partitioned the activities of each unit into tasks that separate points of syn-
chronization. Also, we have shown some tasks with two rows, indicating the
possibility of separate contingency plans for accomplishing individual tasks.
For example, in Task 32 it is possible for the Seal Team to simply speed to
the target in their MK-V rather than take the (slower) CRRC boats. For the
purposes of this example, however, we assume that the contingency plans to
be chosen for a given task are characterized by the task’s length. Figure 2
shows the initial plan for the mission. Synchronization times, or consensus
variables, are given by ξa, ξb, ξc, and ξd. The figure shows nominal durations
times for each task and nominal target times for each consensus variable4.

4 It should also be noted that there are several notions of time referred to in this
discussion: there is the actual clock time along which the mission proceeds, there
are timings that units must agree on and take actions to accommodate, and

Consensus Variable Approach to Decentralized Adaptive Scheduling 161

Drop SF Unit

Move to Position Drop CRRC Go to Target

Go to Observe Identify Supply Drop Location Go to Target

Take Supplies to DropReturn for Supplies

Speed to Target

Wait

Go to Observe Identify Supply Drop Location Go to Target

MH-J
(Unit 1)

SF Team
(Unit 2)

MK-V and
Seal Team

(Unit 3)

Task 11 Task 12 Task 13

Task 21 Task 22

Task 31 Task 32

Engage

Fig. 1. Synchronized Strike example timeline.

Figure 3 shows the communication topology of the mission. Nodes associ-
ated with each consensus variable are mapped to the starting and the ending
times of dependent tasks. It is important to note that we show “inputs” into
some of the consensus nodes (e.g., T11 Start) as well as directed offsets be-
tween consensus variables (e.g., T21, representing the duration of Task 21).
These represent novel features of our ideas from the previous sections.

MH53Js
(Unit 1)

MK-V and
Seal Team

(Unit 3)

Timeline

a b c d

3523105

Engage
SF Team

(Unit 2)

Task 11 – 5 Task 12 – 18

Task 21 – 18 Task 22 – 12

Task 13 – 12

Task 31 – 10 Task 32 – 25

0

Fig. 2. Synchronized Strike timeline and consensus variables.

finally there is consensus time reflected in the time derivative of Equation (1). It
is assumed that consensus time evolves on a faster scale relative to the global clock
time. The actual “times” of interest are the steady-state values of the consensus
time. These reflect the timing of the synchronization between units.

162 Kevin L. Moore and Dennis Lucarelli

31T
End

32T
Start

21T
End

21T
Start

12T
End

12T
Start

11T
End

22T
Start

13T
Start

31T Start

11T Start

32T
End

22T
End

Mission
End

13T
End

d

c

b

a

32T

21T

13T

Mission End

Fig. 3. Communication topology for the example.

Using Fig. 3, following the work on consensus variables from [1], and adding
our new results on providing offsets and inputs into the consensus negotiation
process, we can now describe the specific algorithmic solution we propose for
this particular problem. To simplify notation, define

T11End = ξa
1

T12Start = ξa
2

T21Start = ξa
3

T31End = ξb
1

T32Start = ξb
2

T12End = ξc
1

T21End = ξc
2

T13Start = ξc
3

T22Start = ξc
4

T32End = ξd
1

T22End = ξd
2

T13End = ξd
3

MissionEnd = ξd
4

Then the consensus negotiation process is defined by the following equations:

Consensus Variable Approach to Decentralized Adaptive Scheduling 163

ξ̇a
1 = −ka

12(ξ
a
1 − ξa

2)− ka
13(ξ

a
1 − ξa

3) + (T11 − ξa
1)

ξ̇a
2 = −ka

21(ξ
a
2 − ξa

1)
ξ̇a
3 = −ka

31(ξ
a
3 − ξa

1)− kac
32(T21 + ξa

3 − ξc
2)

ξ̇b
1 = −kb

12(ξ
b
1 − ξb

2) + (T31 − ξb
1)

ξ̇b
2 = −kb

21(ξ
b
2 − ξb

1)− kbd
21(T32 + ξb

2 − ξd
1)

ξ̇c
1 = −kc

13(ξ
c
1 − ξc

3)
ξ̇c
2 = −kc

23(ξ
c
2 − ξc

3)− kc
24(ξ

c
2 − ξc

4) + kac
23(T21 + ξa

3 − ξc
2)

ξ̇c
3 = −kc

31(ξ
c
3 − ξc

1)− kc
32(ξ

c
3 − ξc

2)− kcd
33(T13 + ξc

3 − ξd
3)

ξ̇c
4 = −kc

42(ξ
c
4 − ξc

2)
ξ̇d
1 = −kd

14(ξ
d
1 − ξd

4) + kbd
12(T32 + ξb

2 − ξd
1)

ξ̇d
2 = −kd

24(ξ
d
2 − ξd

4)
ξ̇d
3 = −kd

34(ξ
d
3 − ξd

4) + kcd
33(T13 + ξc

3 − ξd
3)

ξ̇d
4 = −kd

41(ξ
d
4 − ξd

1)− kd
42(ξ

d
4 − ξd

2)− kd
43(ξ

d
4 − ξd

3) + PID(SP− ξd
4)

T13 = T13nominal + PID(ξd
4 − ξd

3)
T21 = T21nominal + PID(ξc

3 − ξc
2)

T32 = T32nominal + PID(ξd
4 − ξd

1)

In these equations “PID” denotes a PID controller acting on its argument
and “SP” denotes the setpoint or target objective for the final mission time.
When these equations are solved they converge so that

ξa
i → ξa → T11

ξb
i → ξb → T31

ξc
i → ξc

ξd
i → ξd → SP

with ξc = ξa + T21 and ξd = SP = ξc + T13 = ξb + T32.
To see how the approach works we present simulation results for two situ-

ations. First, suppose there is a need to adjust the engagement time from 35
time units to 32 time units. Then assume that weather reports indicate that
there will be a delay of three time units in Task 13 (dropping the supplies).
The first scenario is modeled by a “setpoint” change to the final mission time,
ξd
4 , while the second scenario is modeled as an additive disturbance to T13. We

further add the restriction that the controller of Task 13 cannot act to offset
more than two units of change over the entire mission (this could reflect, for
example, a fuel limit). Figure 4 shows the outcome of the consensus negotia-
tion for the scenarios we have described. The simulation was initialized with
the nominal plan. The transients observed in Fig. 4 reflect the negotiation
process. The steady-state values in Fig. 4(a) reflect the final negotiated values
of the consensus variables. Figure 4(b) shows the final duration of each key
task. It can be seen that after the disturbance to Task 13, it was necessary for

164 Kevin L. Moore and Dennis Lucarelli

Task 21 to become much shorter so the overall goal could still be achieved.
In terms of the example mission, we interpret this as the SF Team moving
faster to the observation location so as to identify the drop location sooner,
so that the weather delay can be accommodated by allowing the MH-J to
leave sooner on its second mission. Figure 5 shows the timeline resulting from
the negotiations following the change in engagement time and from the task
delay.

ξd

ξc

ξb

ξa

tt

Engagement time change

“Disturbance”

occurs
in Task13

Task13

Task21

Task32

Fig. 4. Negotiation outcomes: (a) consensus variables; (b) task durations.

4 System Architecture

Note that although in the previous section we showed a group of seemingly
centralized differential equations, this is perhaps misleading. In fact, the actual
computations are decentralized. For example, not all the variables associated
with ξa, for example, “live” in Unit 1. Only ξa

1 and ξa
1 evolve in Unit 1. ξa

3

evolves in Unit 2. The architecture we envision for each unit system is shown
in Fig. 6 for the specific example of the previous section. Each individual unit
shows two key components. The Local Consensus Module of a unit negotiates
with the Local Consensus Module of the other units to come to consensus on
the values of the synchronization points that they share. The Global Consen-
sus Negotiator is an internal controller that requests changes in task length

Consensus Variable Approach to Decentralized Adaptive Scheduling 165

MH53Js
(Unit 1)

SF Team
(Unit 2)

MK-V and
Seal Team

(Unit 3)

Task 11 – 5 Task 12 – 18

Task 21 – 18 Task 22 – 12

Task 13 – 12

Task 31 – 10 Task 32 – 25

a b c d

35231050

Task 31 - 10 Task 32 – 22

32191050

Engage

Task 21 – 17 Task 22 – 10

Task 11 – 5 Task 12 – 17 Task 13 – 10

Task 11 – 5 Task 12 – 14 Task 13 – 13

Task 21 – 14 Task 22 – 13

Engagement Time Change

Original Timeline

Second Revised Timeline

Task 13 Delayed by 3 Units

Task 32 – 22Task 31 - 10

Original Plan

First Revised Plan

Second Revised Plan

First Revised Timeline
32221050

Fig. 5. Timeline for setpoint change and disturbance accommodation.

(i.e., contingency selection) based on mismatches between consensus variables.
This module evaluates requests for changes in task length and determines the
best possible contingency plan. In our example such a function is implied
by the summation points and by the saturation limit we placed on Task 13.
However, we expect this module to be implemented as a discrete-event dy-
namic system-type, formal language-based supervisor that evolves according
to an underlying finite state automata. The development of this module is a
significant part of our future research plans on this problem.

Not shown in Fig. 6 are several other architectural elements that would
be included in a complete system. First, implicit in our architecture is an
element to detect and identify change. Second, in later phases of the research
we will consider the role of a module to act as a source of constraint definition
and enforcement. This is where the organizational rules of military command
and control, for example, would be embodied. Finally, a module is needed
to embody logic for: (1) reasoning about change and uncertainty; and (2)
learning to adapt our actions and timings based on such reasoning.

5 Concluding Comments

In this chapter we have presented a new approach to solving adaptive schedul-
ing problems in decentralized systems. Our approach uses the concept of
nearest-neighbor negotiations and the idea of a consensus variable. We be-

166 Kevin L. Moore and Dennis Lucarelli

MH-J COORDINATOR

aξ
11T

End
12T

End

21T
Start

cξ dξ
12T

Start
13T

Start

21T
End

13T
End

Mission
End

aξ

11T
End

21T
Start

cξ dξ
22T

Start
21T

End
22T

End

Mission
End

13T
Start

31T
End

dξbξ
32T

End

Mission
End

MK-V/Seal Team COORDINATOR

32T
Start

32T

21T

12T

11T

31T

Global
Consensus
Negotiator

22T

13T

Global
Consensus
Negotiator

Global
Consensus
Negotiator

Global
Consensus
Negotiator

Global
Consensus
Negotiator

Local Consensus Module

Local Consensus Module Local Consensus Module Local Consensus Module

Local Consensus Module

Local Consensus ModuleLocal Consensus Module

Local Consensus Module

12
InitialT 13

InitialTCoordination Autonomy Module

21
InitialT 22

InitialTCoordination Autonomy Module

SF Team COORDINATOR

32
InitialT

Coordination Autonomy Module

Fig. 6. Architecture for the example.

gan by summarizing the consensus variable approach and describing some
recent extensions to those results. We then showed how to solve the adaptive
scheduling problem by choosing task timings as the consensus variables in the
system. This application was illustrated via the example of a synchronized
strike mission. The notion of a consensus variable is a powerful concept. How-
ever, a number of enhancements are needed to make it useful. We describe
here some key issues that must be addressed:

1. The implementation of our message passing algorithm is essentially a dis-
tributed integration process mediated by a wireless network. Understand-
ing the numerical stability of our algorithm with respect to encoding,
quantization, and time delay in a real system is an important problem to
be addressed. In addition to proper software engineering, theoretical re-
sults must be obtained to ensure stability and to avoid unwanted behavior
in the system when dealing with the realities of communication time de-
lays. Fortunately, there is a line of research addressing dynamical systems
over networks as it pertains to flocks of UAVs and other distributed dy-
namical systems (see [3, 4, 5] and references therein). We are confident

Consensus Variable Approach to Decentralized Adaptive Scheduling 167

that our algorithms can be effectively addressed in this regard with ideas
drawn from this body of work.

2. Operationally, mission adaptation today is largely a manual activity
whereby interacting teams communicate by radio and negotiate a con-
sensus on changes in timing and actions. Missions performed by special
operations forces (SOF) represent an extreme example of both the benefits
and constraints of mission coordination. By adhering to well-established
principles such as stealth, speed, and surprise, SOF forces are generally
able to achieve tactical control over significantly larger and more capable
adversaries for limited time intervals. This efficiency comes at a price, how-
ever. Such missions are carefully choreographed and rehearsed, with little
flexibility for real-time adaptation. Current doctrine involves execution
checklists that specify well constrained communications events derived
from mission plan phase diagrams. There are two problems with execution
checklists from the coordination perspective. First, each communication
event requires a patrol to divert attention from the tactical situation and
initiate coordination tasks, resulting in a general increase in vulnerability.
Secondly, the fixed format of execution checklists greatly limits contin-
gency options for in-situ patrols. In many cases, mission termination is
the only option. Our proposed technology will completely offload basic co-
ordination communications from the patrol and eventually allow in-stride
mission replanning to accommodate changes in resource availability or
mission objectives. As SOF assets become increasingly sophisticated (e.g.
organic UAVs), it will not be feasible to expect the human warfighters to
manage this cognitive load in the same manner they do today.

3. There are important characteristics of the problem we are considering that
may preclude a classical approach to planning and scheduling for online
adaptation of plans and actions resulting from changing battle conditions
or mission objectives and the communication required for that adapta-
tion. An operations research (or similar) approach may be amenable to
the generation of an optimal plan, however, it is unclear how one would
resolve the associated global optimization problem in near real-time in
a distributed manner when a change is required. Constraint satisfaction
problems provide a framework for scheduling and planning and have been
extended to handle problems with temporal constraints [6]. Again, a search
based approach may be suitable for the generation of a mission plan, but
is it unclear how these techniques could be used effectively for real-time
adaptation. Researchers in the “agents” community have recognized that
multi-agent coordination can only be facilitated by establishing protocols
for reactive planning and providing rules for adaptation (see for example
[7]). However, it is novel to take a dynamical system point of view for
planning and scheduling problems. Our approach is differentiated from
classical approaches in that it possesses the following features:
a) It is provable.
b) It is scalable.

168 Kevin L. Moore and Dennis Lucarelli

c) No global communications are required.
d) Uncertainties in constraints and communications can be handled ex-

plicitly and algorithmically.
e) It provides an explicit way to handle structural changes, such as node

loss.
f) The approach can be extended to handle consensus problems about

other variables, such as resources.
g) It can be formulated to include probabilistic considerations, making

it possible to place confidence intervals on contingency options.
4. In operational settings things always go wrong. It is often the case that

communications fail and that information is uncertain. For the system to
be effective the consensus process must properly account for the real-world
“noise” it will encounter. This can be done in two ways. First, the noise
can be handled a priori through proper coordination algorithm design.
In particular, the authors of [1] have developed methods for designing
the gains kij so as to minimize the effects of uncertainty [8]. Second,
though the process of system identification, structural changes can be de-
tected and identified and new gains can be design that will be optimal
for the new situation. The development of learning mechanisms for de-
tecting and identifying the need for adaptation will be an important part
of our research effort. We will also explore the related concepts of situa-
tional observability based on consensus variable trajectories and the idea
of predictive/preemptive coordination based on situational observability.

5. Though not necessarily an explicit part of consensus negotiation, it is the
case that the constraints between consensus variables are often a result of
the actions to be carried out by an agent either before or after a synchro-
nization point. In future research we will attempt to understand how local
constraints affect the consensus negotiation process and its convergence.

References

1. W. Ren, R. W. Beard, and T. W. McLain,“Coordination Variables and Consensus
Building in Multiple Vehicle Systems,” Proceedings of the Block Island Workshop
on Cooperative Control, Springer-Verlag Series: Lecture Notes in Control and
Information Sciences, vol. 309, 2005.

2. K. L. Moore and D. Lucarelli, “Force and constrained consensus among cooper-
ating agents,” in 2005 IEEE International Conference on Networking, Sensing,
and Control, Tuscon, AZ, March 2005.

3. R. Brockett and D. Liberzon, “Quantized feedback stabilization of linear sys-
tems,” IEEE Transactions on Automatic Control, vol. 48, pp. 1279–1289, 2000.

4. N. Elia and S. Mitter, “Stabilization of linear systems with limited information,”
IEEE Transactions on Automatic Control, vol. 46, pp. 1384–1400, 2001.

5. S. Tatikonda and S. Mitter, “Control under communication constraints,” IEEE
Transactions on Automatic Control, vol. 49, pp. 1056–1068, July 2004.

Consensus Variable Approach to Decentralized Adaptive Scheduling 169

6. R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,” Artificial
Intelligence, vol. 49, pp. 61–95, 1991.

7. M. Tambe, “Towards flexible teamwork,” Journal of Artificial Intelligence Re-
search, vol. 7, pp. 83–124, 1997.

8. W. Ren, R. W. Beard, and D. Kingston, “Multi-agent Kalman Consensus with
Relative Uncertainty,” in 2005 American Control Conference, Portland, OR, June
2005.

A Markov Chain Approach to Analysis of
Cooperation in Multi-Agent Search Missions

David E. Jeffcoat1, Pavlo A. Krokhmal2, and Olesya I. Zhupanska3

1 Air Force Research Lab, Munitions Directorate
Eglin AFB, FL 32542, USA
david.jeffcoat@eglin.af.mil

2 Department of Mechanical and Industrial Engineering
University of Iowa
2403 Seamans Center, Iowa City, IA 52242, USA
krokhmal@engineering.uiowa.edu

3 University of Florida, REEF
1350 Poquito Road
Shalimar, FL 32579, USA
zhupanska@gerc.eng.ufl.edu

Summary. We consider the effects of cueing in a cooperative search mission that
involves several autonomous agents. Two scenarios are discussed: one in which the
search is conducted by a number of identical search-and-engage vehicles, and one
where these vehicles are assisted by a search-only (reconnaissance) asset. The coop-
eration between the autonomous agents is facilitated via cueing, i.e. the information
transmitted to the agents by a searcher that has just detected a target. The effect
of cueing on the target detection probability is derived from first principles using
a Markov chain analysis. Exact solutions to Kolmogorov-type differential equations
are presented, and existence of an upper bound on the benefit of cueing is demon-
strated.

1 Introduction

In any system-of-systems analysis, consideration of dependencies between sys-
tems is imperative. In this chapter, we consider a particular type of system
interaction, called cueing. The interaction could be between similar systems,
such as two or more wide area search munitions, or between dissimilar systems,
such as a reconnaissance asset and a munition. In this chapter, we consider
two scenarios: one in which the search is conducted by a number of identi-
cal search-and-engage vehicles, and one where these vehicles are assisted by a
search-only vehicle. The autonomous agents forming the system cooperatively
interact via cueing.

172 David E. Jeffcoat, Pavlo A. Krokhmal, and Olesya I. Zhupanska

In Shakespeare’s day, the word “cue” meant a signal (a word, phrase, or bit
of stage business) to a performer to begin a specific speech or action [6]. The
word is now used more generally for anything serving a comparable purpose.
In this chapter, we mean any information that provides focus to a search; e.g.,
information that limits the search area or provides a search heading.

Search theory is one of the oldest areas of operations research [8], with a
solid foundation in mathematics, probability and experimental physics. Yet,
search theory is clearly of more than academic interest. At times, a search
can become an international priority, as in the 1966 search for the hydrogen
bomb lost in the Mediterranean near Palomares, Spain.

That search was an immense operation involving 34 ships, 2,200 sailors,
130 frogmen and four mini-subs. The search took 75 days, but might have
concluded much earlier if cueing had been utilized from the start. A Spanish
fisherman had come forward quickly to say he’d seen something fall that looked
like a bomb, but experts ignored him.

Instead, they focused on four possible trajectories calculated by a com-
puter, but for weeks found only airplane pieces. Finally, the fisherman, Fran-
cisco Simo, was summoned back. He sent searchers in the right direction, and
a two-man sub, the Alvin, located the 10-foot-long bomb under 2,162 feet of
water [11].

Cueing is a current topic in vision research. For example, Arrington et al.
[2] study the role of objects in guiding spatial attention through a cluttered
visual environment. Magnetic resonance imaging is used to measure brain
activity during cued discrimination tasks requiring subjects to orient attention
either to a region bounded by an object or to an unbounded region of space
in anticipation of an upcoming target. Comparison between the two tasks
revealed greater brain activity when an object cues the subjects attention.

Bernard Koopman [8] pioneered the application of mathematical process
to military search problems during World War II. Koopman [4] discusses the
case in which a searcher inadvertently provides information to the target,
perhaps allowing the target to employ evasive action. The use of receivers on
German U-boats to detect search radar signals in World War II is a classic
example. Koopman referred to this type of cueing as target alerting.

This chapter uses a detection rate approach to examine the effect of cueing
on probability of target detection. Koopman [5] used a similar approach in his
discussion of target detection. In Koopman’s terminology, a quantity γ was
called the “instantaneous probability of detection.” From this starting point,
Koopman derived the probability of detection as a function of time. It is
very clear that Koopman’s instantaneous probability of detection is precisely
the individual searcher detection rate used here. The main difference is that
Koopman considered a single searcher, while we consider the case of multiple
interdependent searchers.

Wasburn [10] examines the case of a single searcher attempting to detect
a randomly moving target at a discrete time. Given an effort distribution,
bounded at each discrete time t, Washburn establishes an upper bound on

Analysis of Cooperation in Multi-Agent Search Missions 173

the probability of target detection. It is noteworthy that Washburn mentions
that the detection rate approach to computation of detection probabilities has
proved to be more robust than approaches relying on geometric models.

Alpern and Gal [1] discuss the problem of searching for a submarine with a
known initial location. Thomas and Washburn [9] considered dynamic search
games in which the hider starts moving at time zero from a location known to
both a searcher and a hider, while the searcher starts with a time delay known
to both players; for example, a helicopter attempts to detect a submarine that
reveals its position by torpedoing a ship.

In this chapter, we use a Markov chain analysis to examine cueing as
a coupling mechanism among several searchers. A Markov chain approach
to target detection can be found in Stone [8], which deals with the optimal
allocation of effort to detect a target. A prior distribution of the target’s
location is assumed known to the searcher. Stone uses a Markov chain analysis
to deal with the search for targets whose motion is Markovian. In Stone’s
formulation, the states correspond to cells that contain a target at a discrete
time with a specified probability. In this research, the states correspond to
detection states for individual search vehicles.

The rest of the chapter is organized as follows. The next section discusses
the effect of cueing on the performance of a cooperative system of several
identical search agents. Section 3 presents analysis of a search system that
involves a search-only vehicle that provides cues to a number of search-and-
engage vehicles.

2 Cooperative Search

Consider a system of N agents engaged in a cooperative search mission, where
the objective of every agent is to find (detect) an object of interest (a target).
The search capabilities of any agent are characterized by the detection rate
θ, i.e. the probability of detecting a target within time interval ∆t:

P[agent i detects a target during time ∆t] = θ∆t+ o(∆t). (1)

Upon detecting a target, an agent discontinues its search by engaging the
detected target; we also say that such an agent becomes inactive. For example,
in a search-and-rescue mission for passengers of a sinking ship the searchers
will try to rescue the passenger(s) they find, instead of continuing the search;
on the battlefield, an autonomous wide-area search munition will attack the
detected target, etc. Moreover, it is assumed that upon engaging a target, the
searcher immediately cues the remaining active agents, thereby potentially
increasing their detection capabilities. Within the presented framework the
informational content of the cueing signal is not important; instead, we are
interested in the degree by which cueing impacts the search capabilities of
individual agents in a cooperative system. In accordance to this, at any time
t ≥ 0 the detection rate of a searcher may change values as

174 David E. Jeffcoat, Pavlo A. Krokhmal, and Olesya I. Zhupanska

θ0 → θ1 → . . . → θN−1, (2)

where θk is the detection rate common to N − k active searchers. Clearly,
θ0 is equal to the initial “uncued” detection rate: θ0 = θ. Also, it is natural
to assume that cueing generally leads to improvement of search capabilities,
whence θk ≥ θ, k = 1, . . . , N − 1. The search mission terminates when there
are no active searchers left, i.e., each searcher has found a target.

The outlined model, complemented by the usual assumptions of indepen-
dence of target detections on non-overlapping time intervals etc., can be for-
mulated as a continuous-time discrete-state Markov chain, or, furthermore,
as a pure death process [3, 7]. The states of the system are identified by the
number k of inactive searchers, k = 0, 1, . . . , N . The presented formulation,
however, differs slightly from the traditional models for birth-death processes
in that it defines the transition rate between states by the search rates of
individual agents (2), versus the rates defined with respect to the entire pop-
ulation [3]. Let SN−k,k be a state of the system in which there are k inactive
searchers, and, correspondingly, N − k active searchers; note that there are(
N
k

)
different states SN−k,k. Defining probabilities PN−k,k(t) as

PN−k,k(t) = P[system is in one of the states SN−k,k at time t],

one can write the system of Chapman-Kolmogorov ODEs governing these
probabilities as

d
dt
PN−k, k(t) = −δ̄kN (N − k) θk PN−k, k(t) + δ̄k0 kθk−1 PN−k+1, k−1(t),

k = 0, . . . , N, (3)

where δ̄ij is the negation of the Kroneker symbol δij

δ̄ij = 1− δij =
{

0, if i = j,
1, if i �= j.

(4)

Equations (3) admit a simple interpretation: since in a state SN−k,k there
are N − k active searchers with search rate θk, the probability of the system
being in this state decreases at rate (N − k)θkPN−k,k(t) as each of N − k
searchers may detect a target and turn the system into a state SN−k−1,k+1. On
the other hand, probability PN−k,k(t) increases at rate kθk−1PN−k+1,k−1(t)
as there are exactly

(
k
1

)
= k states SN−k+1,k−1 that may lead to a (given)

state SN−k,k. Indeed, let Ak = {i1, . . . , ik} be any set containing k inactive
searchers, |Ak| = k. Trivially, Ak can be represented in k different ways as
Ak = Aj

k−1 ∪{ij}, where Aj
k−1 = Ak\{ij} ⊂ Ak, |Aj

k−1| = k−1, j = 1, . . . , k.
Thus, a state SN−k,k with k inactive searchers can only be obtained from
exactly k states SN−k+1,k−1 with k − 1 inactive searchers. Factors δ̄N,k and
δ̄k,0 in (3) have the obvious function of handling the extreme cases of k = 0
and k = N . Denoting PN−k,k(t) = P̂k(t), k = 0, . . . , N , equations (3) can be
rewritten in the matrix form

Analysis of Cooperation in Multi-Agent Search Missions 175

d
dt

P̂ = MP̂, (5)

where P̂ = (P̂0, . . . , P̂N)T , and matrix M = {mij} ∈ IR(N+1)×(N+1) has the
following non-zero elements:

mii = −(N − i)θi, i = 0, . . . , N,
mi,i−1 = iθi−1, i = 1, . . . , N. (6)

Explicitly, the matrix M in (5) can be written as

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Nθ0 0 0 · · · 0 0 0
θ0 −(N − 1)θ1 0 · · · 0 0 0
0 2θ1 −(N − 2)θ2 · · · 0 0 0

. . .
· · · −2θN−2 0 0

0 0 0 · · · (N − 1)θN−2 −θN−1 0
0 0 0 · · · 0 NθN−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

The initial conditions for equations (5) reflect the fact that at t = 0 the system
is in the state SN,0 with probability 1:

P̂0(0) = 1, P̂1(0) = P̂2(0) = . . . = P̂N (0) = 0. (8)

Using (5) and (8) it is straightforward to verify that the probabilities P̂k(t)
satisfy the identity

N∑
k=0

(
N

k

)
P̂k(t) = 1, t ≥ 0. (9)

Clearly, matrix (7) is lower-triangular, hence system (5) has the characteristic
equation of the form

λ

N−1∏
j=0

(
λ+ (N − j)θj

)
= 0, (10)

Assuming that all eigenvalues of M are distinct,

(N − i)θi �= (N − j)θj , 0 ≤ i < j ≤ N − 1, (11)

the solution of the Cauchy problem (5), (8) can be written in a simple closed
form

P̂i(t) =
i∑

j=0

ajie
mjjt, i = 0, . . . , N, (12)

176 David E. Jeffcoat, Pavlo A. Krokhmal, and Olesya I. Zhupanska

with coefficients aji defined recursively as

aji =
mi,i−1 aj,i−1

mjj −mii
, 0 ≤ j < i ≤ N, (13)

aii = −
i−1∑
s=0

asi, i = 1, . . . , N, a00 = P̂0(0) = 1. (14)

One of the possible measures of performance (MOE) for a cooperative search
system is the time required for all N searchers to find targets. In the scope
of the presented approach, this characteristic is embodied by the probability
P0,N (t) = P̂N (t) of the system being in the state S0,N at time t. Noting that
dependencies (14)–(13) can be reexpressed for all 0 ≤ j < i ≤ N − 1 as

aji = βjiaii, where βji =
θj

θi

(
N−1

j

)(
N−1

i

) i∏
s=j+1

[
1− (N − j)θj

(N − i)θi

]−1

, (15)

the probability P̂N (t) can be represented from equality (12) in the form

P̂N (t) = 1−
N−1∑
j=0

(
N

j

) N−1∏
s=j+1

[
1− (N − j)θj

(N − s)θs

]−1

ajj e
−(N−j)θj t, (16)

where ajj are calculated due to (14) and (15) as

ajj = −
j−1∑
r=0

βrjarr, j = 1, . . . , N − 1, (17)

and the usual convention
∏i2

i=i1
(·)i = 1 for i1 > i2 is adopted.

Expression (16) can now be used for the analysis of the effect of cueing on
the cooperation among the searchers. For example, it is easy to see that when
cueing has no impact on the detection rates of the searchers, then P̂N (t) is
equal to the probability of all N agents detecting targets independently:

Proposition 1. If θ0 = θ1 = . . . = θN−1 = θ, i.e. the cueing has no effect on
the detection capabilities of the searchers, then

P̂N (t) =
(
1− e−θt

)N
. (18)

Proof: If all the cued detection rates (2) are equal to the uncued rate θ, then
the product term in expressions (15) and (16) for βji and P̂N (t) reduces to

i∏
s=j+1

[
1− (N − j)θj

(N − s)θs

]−1

= (−1)i−j ,

which immediately yields

Analysis of Cooperation in Multi-Agent Search Missions 177

βji = (−1)i−j

(
i

j

)
, 0 ≤ j < i ≤ N − 1, (19)

and

P̂N (t) = 1 +
N−1∑
j=0

ajj

(
N

j

)
(−1)N−je−(N−j)θt.

The last expression verifies the statement (18) of the proposition provided
that ajj = 1, j = 0, . . . , N − 1. Using the induction argument, we have that
a00 = P̂0(0) = 1 from (14), and, assuming that a11 = . . . = ajj = 1 for some
j, by means of (17) and (19) we obtain

aj+1,j+1 = −
j∑

s=0

as,j+1 = −
j∑

s=0

(−1)j+1−s

(
j + 1
s

)
ass = 1. (20)

The last equality in (20) follows from the Newton binom formula (1−1)j+1 =∑j
j=0(−1)j+1−s

(
j+1

s

)
+ 1.

Obviously, cueing has the purpose of improving the system’s effectiveness
by increasing the cued detection rates θ1, . . . , θN−1. Indeed, it can be verified
that higher values of θ1, . . . , θN−1 increase the probability of detection P̂N (t)
for a given t. Below we demonstrate that under quite general conditions the
effect of cueing on the system’s performance is bounded, i.e., there exists an
upper bound for the state probability P̂N (t) when the cued detection rates
θ1, . . . , θN−1 increase indefinitely.

Proposition 2. Let the cued detection rates approach infinity, θi → ∞, i =
1, . . . , N − 1, in such a way that

lim
θi, θj →∞

(N − i)θi

(N − j)θj
�= 1, i �= j.

Then the probability P̂N (t) of all agents having detected a target at time t has
the limit

lim
θ1,..., θN−1→∞

P̂N (t) = 1− e−Nθt. (21)

Proof: To establish the statement of the proposition, it suffices to rewrite
expression (16) for the probability P̂N (t) in the form

P̂N (t) = 1−
N−1∏
s=1

[
1− Nθ0

(N − s)θs

]−1

a00 e
−Nθ0 t

−
N−1∑
j=1

(
N

j

) N−1∏
s=j+1

[
1− (N − j)θj

(N − s)θs

]−1

ajj e
−(N−j)θj t. (22)

178 David E. Jeffcoat, Pavlo A. Krokhmal, and Olesya I. Zhupanska

Taking into account that a00 = 1, and that under the conditions of the propo-
sition θ0/θs → 0 for all s = 1, . . . , N − 1, and R(θj , θs) e−(N−j)θjt → 0 for all
rational functions R(·) and all 1 ≤ s, j ≤ N − 1, we observe that the second
term in the right-hand side of (22) is approaching

(
−e−Nθt

)
, while the third

term vanishes. This yields expression (21).
A numerical illustration of the performance of the cooperative search sys-

tem as defined by (16) is presented in Figures 1, 2, and 3. In these examples,
the cueing rates dynamics is assumed to follow

θi = θκ
N−i
N−1 , i = 1, . . . , N − 1, for some κ > 1. (23)

Then in the case of 5 searchers (N = 5) the probability of detection P̂5(t) for
various values of κ is displayed in Figure 1. The black line, marked by κ! 1
corresponds to the upper bound (21) for the detection probability P̂5(t).

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

time

p
ro

b
a
b
ili

ty
 o

f
d
e
te

c
ti
o
n

Fig. 1. Probability of detection P̂N (t) for 5 searchers (N = 5).

1 1.2 1.4 1.6 1.8 2
0.26

0.3

0.34

0.38

0.42

0.46

0.5

18.1148

15.9395

13.7643

12.1329

9.9576

11.0452

9.4138

Fig. 2. Isolines of the time to engage, T0.95, for 2 searchers.

Another measure of effectiveness of the considered cooperative search sys-
tem may be considered to be the time to engage, i.e., such a time t = T0.95

Analysis of Cooperation in Multi-Agent Search Missions 179

1 1.2 1.4 1.6 1.8 2

0.26

0.3

0.34

0.38

0.42

0.46

0.5

12.3514

10.1157

9.2214

8.3271

7.88

6.9857

6.0914

5.6443

Fig. 3. Isolines of the time to engage, T0.95, for 10 searchers.

that the probability that all N agents have detected a target by this time is
95 percent:

P[all searchers have detected targets by the time T0.95] = P̂N (T0.95) = 0.95.

Figures 2 and 3 display the curves T0.95 = const for systems comprising 2
and 10 searchers. From these charts it is evident, for example, that in large
systems, where the cueing dynamics obeys relation (23), a more efficient time
to engage is achieved by increasing the initial detection rate θ.

3 Bi-level Cooperative Search Model

In this section we consider a cooperative search mission that involves a dedi-
cated search-only vehicle and N search-and-engage vehicles. As follows from
the adopted nomenclature, the search-and-engage vehicles are capable of con-
ducting stand-alone search for a target, and they engage the target upon
detecting one. Generally, the search capabilities of the search-only vehicle are
assumed to be superior to those of search-and-engage vehicles, and its role is
to provide cues to them, thereby increasing their detection rates. In contrast
to the model considered above, now it is assumed that search-and-engage ve-
hicles do not cue each other. The model for the described scenario builds upon
the Markov chain approach presented in the previous section.

For example, the search-only vehicle has two possible states, as shown
in the left portion of Figure 4. Note that the search-only vehicle transitions
from the “search” state to the “detect and cue” state at rate λ, and that
the transition back to the “search” state is instantaneous, denoted by an
infinite transition rate. That is, once the search vehicle cues a search-and-
engage vehicle, the search vehicle immediately resumes its search for additional
targets.

The states and transition rates for the search-and-engage vehicles are
shown in the right portion of Figure 4. Search-and-engage vehicles have three
possible states, “search uncued,” “search cued,” and “detect and engage,”

180 David E. Jeffcoat, Pavlo A. Krokhmal, and Olesya I. Zhupanska

denoted as U , C, and d, respectively. The transition rate from the uncued
to the cued state depends on the detection rate λ of the search-only vehicle.
We assume that the search-only vehicle will cue only one search-and-engage
vehicle for each target detected, and that the cues are equally distributed to
the uncued search-and-engage vehicles, i.e., the transition rate from “search
uncued” to “search cued” is λ/i if there are i search-and-engage vehicles in
the state U . This assumption implies that the search-only vehicle is aware of
the current state of all the search-and-engage vehicles, and the search-only
vehicle can transmit information to a single search-and-engage vehicle. Even
if a transmission is broadcast on a common frequency, we assume that the
transmitted data can be “tagged” for use only by an individual search-and-
engage vehicle. After a search-and-engage vehicle receives a cue, its detection
rate changes to θ1 (recall that search-and-engage vehicles have the ability to
search independently, so that a vehicle could make a direct transition from
the “search uncued” to the “detect and engage” state at rate θ0). In general,
it is assumed that θ1 ≥ θ0.

Search

Detect and cue

Search

uncued

Detect and

engage

u

Search

cued

/ i

c

Fig. 4. State diagrams for the search-only vehicle (left) and search-and-engage
vehicle (right)

Similarly to the above, let Sijk be a state in which there are i search-
and-engage vehicles (also called “searchers”) in the state U , j searchers in
the state C, and k searchers in the state d, where i + j + k = N . It is easy
to see that for given i, j, and k there are

(
N

i j k

)
= N !

i! j! k! different states

Sijk. Further, it is important to note that there are
(
N+3−1

N

)
= (N+2)(N+1)

2
different triplets (i, j, k) such that i+ j + k = N . By defining the probability
of the cooperative system occupying a state Sijk at time t as Pijk(t), one can
describe the corresponding Markov model with a finite number of states via
the following system of Kolmogorov equations:

d
dt
Pijk(t) =− δ̄kN

[
iθ0 + jθ1 + δ̄i0λ

]
Pijk(t) + δ̄iN δ̄j0

[
jλ

i+ 1

]
Pi+1, j−1, k(t)

+ δ̄iN δ̄k0

[
kθ0
]
Pi+1, j, k−1(t) + δ̄jN δ̄k0

[
kθ1
]
Pi, j+1, k−1(t),

i+ j + k = N. (24)

Analysis of Cooperation in Multi-Agent Search Missions 181

Indeed, in the most general case a state Si,j,k with i uncued searchers, j cued
searchers, and k inactive searchers can be obtained

– from a state Si+1,j−1,k due to a transition U → C, i.e. when one of the
i+1 uncued searchers receives a cueing signal from the search-only vehicle.
Since each of the i+1 uncued searchers is being cued at rate λ

i+1 , and there
are j =

(
j
1

)
states Si+1,j−1,k that can result in the given state Sijk , transi-

tions U → C increase the probability Pijk(t) at the rate jλ
i+1Pi+1,j−1,k(t).

This amounts to the second term in equation (24).
– from a state Si+1,j,k−1 due to a transition U → d, i.e., when one of the i+1

uncued searchers detects a target before receiving a cue by the search-only
vehicle. The search rate of an uncued agent is θ0, and there are k =

(
k
1

)
different states Si+1,j,k−1 that can lead to the given state Sijk . Thus,
due to transitions U → d the probability Pijk(t) increases at the rate
kθ0Pi+1,j,k−1(t), which amounts to the third term in (24).

– from a state Si,j+1,k−1 due to a transition C → d, when one of the j + 1
cued searchers detects a target. The search rate of a cued agent is θ1, and
there are k =

(
k
1

)
different states Si,j+1,k−1 that can lead to the given state

Sijk. Thus, due to transitions C → d the probability Pijk(t) increases at
the rate kθ1Pi,j+1,k−1(t), which amounts to the fourth term in (24).

– finally, the first term in the right-hand side of (24) accounts for the possi-
bility of transition from the given state Sijk to states Si−1,j,k+1, Si,j−1,k+1,
and Si−1,j+1,k correspondingly.

Analogously to (9), probabilities Pijk(t) satisfy

∑
j+j+k=N
i, j, k ≥ 0

(
N

i j k

)
Pijk(t) = 1, t ≥ 0.

Solution of the system of equations (24) is facilitated via representing (24)
in a matrix form, with a lower-triangular matrix. A lower-triangular form of
equations (24) is obtained by introducing the notation Pijk(t) = P̃�(t), where
the index 	 runs from 0 to L = (N+2)(N+1)

2 − 1 = N(N+3)
2 and is determined

by the indices i, j, and k as

	 =
j+k−1∑

r=0

(r + 1) + k =
(j + k)(j + k + 1)

2
+ k for all 0 ≤ j + k ≤ N. (25)

Explicitly, the introduced relation between Pijk(t) and P̃�(t) enumerates as

182 David E. Jeffcoat, Pavlo A. Krokhmal, and Olesya I. Zhupanska

P̃0(t) = PN00(t),

P̃1(t) = PN−1,1,0(t),

P̃2(t) = PN−1,0,1(t),

P̃3(t) = PN−2,2,0(t),

P̃4(t) = PN−2,1,1(t),

P̃5(t) = PN−2,0,2(t),
...

P̃L−1(t) = P0,1,N−1(t),

P̃L(t) = P00N (t).

It is easy to see that such a correspondence between Pijk(t) and P̃�(t) allows
one to represent equations (24) in a matrix form

d
dt

P̃ = M̃P̃, (26)

where the matrix M̃ ∈ IR(L+1)×(L+1) is lower-triangular. The initial conditions
for the above system are formulated similarly to (8):

P̃0(0) = 1, P̃�(0) = 0, 1 ≤ 	 ≤ L. (27)

Since M̃ is generally not diagonal, the solution to the Cauchy problem (26)–
(27) has the form analogous to (12),

P̃�(t) =
�∑

i=0

ai�e
m̃iit, (28)

but the expressions for coefficients ai� are more complicated comparing to
(13):

ai� =
�−1∑
j=i

m̃�j aij

m̃ii − m̃��
, i < 	, (29)

aii = −
i−1∑
j=0

aji, a00 = P̃0(0) = 1. (30)

Above, it is assumed that the eigenvalues of matrix M̃ are all different:

iθ0+jθ1+ δ̄i0λ �= i′θ0+j′θ1+ δ̄i′0λ for all 0 ≤ i+j ≤ N and 0 ≤ i′+j′ ≤ N.

The developed solution to equations (24) is illustrated on a system comprised
by one search-only vehicle and five search-and-engage vehicles (N = 5). The
value of information transmitted in the cues is determined by parameter κ,

Analysis of Cooperation in Multi-Agent Search Missions 183

θ1 = κθ0.

As before, the system’s effectiveness is measured by the probability P̃L(t) =
P00N (t) that all search-and-engage vehicles have detected targets by time t.
Figures 5 and 6 contain graphs of the probability P̃L(t) for the case when
the initial detection rate θ0 of the search-and-engage vehicles is equal to 0.1,
and the cueing effectiveness κ and the search rate λ of the search-only vehicle
vary. In particular, the presented graphs imply that increments in κ have more
pronounced effect on increasing the probability P̃L(t) than increments in λ. In
other words, precise cueing is more valuable than high target detection rate
of the search-only vehicle (in the considered case).

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

time

p
ro

b
a
b
ili

ty
 o

f
d
e
te

c
ti
o
n

Fig. 5. Probability of detection, P̃L(t), for a system of one search-only vehicle and
5 search-and-engage vehicles, where θ = 0.1 and κ = 1.9.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

time

p
ro

b
a
b
ili

ty
 o

f
d
e
te

c
ti
o
n

Fig. 6. Probability of detection, P̃L(t), for a system of one search-only vehicle and
5 search-and-engage vehicles where θ = 0.1 and λ = 1.5.

184 David E. Jeffcoat, Pavlo A. Krokhmal, and Olesya I. Zhupanska

Conclusions

We have proposed a Markov chain approach to quantification of the effect
of cueing in cooperative search systems. It has been shown that cueing can
dramatically affect the probability of detection over a fixed time interval. We
have also shown that there is an upper bound on the benefit of cueing, at
least for the problem defined.

References

[1] Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer
Academic Publishers, Boston (2003)

[2] Arrington, C., Carr, T., Mayer, A., Rao, S.: Neural mechanisms of visual at-
tention: object-based selection of a region in space. J. Cognitive Neuroscience,
12, 106–117 (2000)

[3] Kleinrock, L.: Queueing Systems, Volume I: Theory. John Wiley & Sons, New
York (1975)

[4] Koopman, B.: Search and Screening: General Principles with Historical Appli-
cations. Pergamon Press, New York (1980)

[5] Koopman, B.: The Theory of Search II: Target Detection. Ops. Res., 4, 503–
531 (1956)

[6] Merriam-Webster’s Collegiate Dictionary, 10th Ed. (1999)
[7] Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Pro-

cesses, 4th Ed. McGraw Hill (2002)
[8] Stone, L.: Theory of Optimal Search, 2nd Ed. Military Applications Section,

Operations Research Society of America (1989)
[9] Thomas, L., Washburn, A.: Dynamic Search Games. Ops. Res., 39, 415–422

(1991)
[10] Washburn, A.: The Theory of Search II: Target Detection. In: Haley, B., Stone,

L. (eds) Search Theory and Applications. Plenum Press, New York (1980)
[11] Wools, D.: A Chronicle of Four Lost Nukes. Houston Chronicle (July 2002)

A Markov Analysis of the Cueing
Capability/Detection Rate Trade-space in

Search and Rescue

Alice M. Alexander and David E. Jeffcoat

Air Force Research Lab, Munitions Directorate
Eglin AFB, FL {alice.alexander,david.jeffcoat}@eglin.af.mil

Summary. This chapter presents a search and rescue scenario modeled as a
discrete-state, continuous-time Markov process. In this scenario, there are two ve-
hicle types: search-only vehicles capable of searching for persons in distress, but
not engaging or rescuing them, and search-and-engage vehicles with the capability
both to search and to rescue. All vehicles have two-way communication with other
vehicles. Both vehicle types can search independently, but information provided by
other vehicles improves their detection capability. We develop a Markov model and
use matrix exponentiation to numerically determine the transient state probabilities
for the system. We use as a measure of effectiveness the time required for at least
two search-and-engage vehicles to arrive on scene with a threshold probability. We
then analyze the trade-space between cueing capability and vehicle detection rates.

1 Introduction

The problem of search and rescue can be formulated as a cooperative search.
Baum and Passino [1] investigate the problem of cooperative search for sta-
tionary targets using multiple search vehicles. They analyze vehicle search
patterns based on a detection function specified for each partitioned cell of
the search environment. We consider multiple search vehicles and a single tar-
get, but with a focus on cooperation among the vehicles. Curtis and Murphey
[3] propose a coordination strategy to simultaneously accomplish area search
and task assignment. Slater [10] examines the benefits of cooperation for two
vehicles searching for targets in a region containing both real and false tar-
gets. We consider cooperation among the vehicles, but not false targets. We
analyze a multi-vehicle cooperative search problem in a search and rescue
scenario using a Markov chain formulation. Stone [11] uses a Markov chain
to examine the optimal allocation of resources to detect a target. Jeffcoat
[4] uses a Markov analysis to examine the case of two cooperative searchers
and to determine the effect of cueing on the probability of target detection.

186 Alice M. Alexander and David E. Jeffcoat

This chapter extends [4] by including an additional vehicle type and by using
matrix exponentiation to obtain numerical solutions.

1.1 Problem Description

This chapter considers two different types of vehicles. There is a search-only
vehicle that performs wide area searches. This vehicle has a detection rate of
λ detections per unit time and has the capability to locate persons in distress,
but is not capable of engaging, or rescuing, them. There are M search-only
vehicles in the scenario, where M is an integer. The second type of vehicle is
a search-and-engage vehicle that conducts a limited area search. This vehicle
detects persons in distress with a rate of θ detections per unit time and is
capable of both searching and engaging. We model the search, but not the
engagement. For our purposes, the mission of the search-and-engage vehicle is
complete once it has arrived on scene. There are N search-and-engage vehicles
in the scenario, where N is an integer. The Coast Guard has two primary
search and rescue vehicles, the C-130 Hercules and the HH-60 Jayhawk [8]. In
our model, the search-only vehicle is similar in function to the C-130 Hercules,
while the search-and-engage vehicle is representative of the HH-60 Jayhawk.

We model cooperation among the vehicles using cueing. In this chapter, a
cue is any information that provides focus to a search; e.g., information that
provides a search heading or limits a search area. The vehicles have two-way
communication: every vehicle has the capability to send and receive cues to
and from all other vehicles. In the Coast Guard scenario, a cue could take
the form of a radar signal showing the last known location of a boat or a
verbal description of the coastline closest to where the boat was last seen.
We represent the value of information communicated using the variable k, a
real-valued scalar that remains constant throughout a search. The information
contained in a cue increases the detection rates of the vehicles still engaged in
the search by a factor of k. Once cued, the detection rate of the search-only
vehicle increases to kλ and the detection rate of the search-and-engage vehicle
increases to kθ. Increasing the detection rate by a factor of four is equivalent
to decreasing the search area to one-fourth its original size.

The detection rate of a vehicle might represent the sensitivity of a vehicle’s
sensor set, vehicle speed, or any other factor affecting the capability of the
vehicle to conduct a search. The cueing factor, k, might be used to model
the latency inherent in a communication network, or to represent the value of
information communicated among the search vehicles.

2 Approach

2.1 State Space

We consider a discrete set of possible vehicle states, with transitions between
states possible at any real-valued time greater than zero. The vehicles have

A Markov Analysis of the Cueing Capability/Detection Rate 187

two modes: search mode and detect mode. The search-only vehicles transition
from search mode to detect mode at a rate of λ or kλ. Similarly, the search-
and-engage vehicles transition from search mode to detect mode at a rate of
θ or kθ.

A complete state space table is shown in Table 1 for the case of one search-
only vehicle (M = 1) and four search-and-engage vehicles (N = 4). Table 1
contains all the possible combinations of states. The state space changes as
the values of M and N change, but throughout the chapter we use the M = 1,
N = 4 case to illustrate the techniques.

Table 1. State Space for M = 1, N = 4 Case.

State Number of search-only Number of search-and- Next
vehicles engage vehicles

1 0 0 2,6
2 0 1 3,7
3 0 2 4,8
4 0 3 5,9
5 0 4 10
6 1 0 7
7 1 1 8
8 1 2 9
9 1 3 10
10 1 4 –

The numbers in the “number of search-only” column indicate how many
search-only vehicles have detected the person in distress. The numbers in the
“number of search-and-engage” column indicate how many search-and-engage
vehicles have detected the person in distress. The “next” column indicates the
states to which the system can transition from its current state. For example,
from state one (no vehicles found person in distress), the system can transition
to state two, indicating that one of the search-and-engage vehicles found the
person in distress, or to state six, indicating that the search-only vehicle found
the distressed person. We take as an initial condition that all vehicles are
searching and thus the system begins in state one. There is no transition from
state ten; it is an absorbing state.

2.2 Markov Chain

This stochastic process can be represented as a directed graph (Figure 1).
Each node represents a discrete state. The directed arcs represent the possible
transition routes, and each arc is labelled with the appropriate transition rate.
Defining the system state diagram in this manner allows for ease of scaling,
no matter how large or complicated the system. Ross [9] describes a similar

188 Alice M. Alexander and David E. Jeffcoat

system state diagram for large problems involving call centers, internet-access
modem banks and wireless networking.

Fig. 1. System state diagram.

The system state diagram in Figure 1 graphically depicts the state space
from Table 1. The system begins with all vehicles searching (state one), from
which the system could move to the state where one search-and-engage vehicle
detects the person in distress (state two) or the state where one search-only
vehicle detects the person in distress (state six). The transition from state
one to state two occurs at a rate of 4θ. The rate is 4θ because there are four
search-and-engage vehicles searching, each having a detection rate of θ. The
transition from state one to state six occurs at a rate of λ because this is the
detection rate of a single search-only vehicle. From state two, the system can
transition to state three at a rate of 3kθ or to state seven at a rate of kλ. The
transition rate from state two to state three is 3kθ because there are now only
three search-and-engage vehicles, each searching with a cued detection rate of
kθ. Similarly, the transition rate from state two to state seven is kλ due to
the cue provided by the search-and-engage vehicle in state two. We complete
the rest of the system state diagram in a similar manner.

Figure 1 also shows the measure of effectiveness (MOE), which is the time
required for at least two search-and-engage vehicles to detect the person in
distress (arrive on scene) with a 95% probability. The states within the dashed
box are those in which at least two search-and-engage vehicles have arrived on
scene. We explain the method for calculating the probabilities in the section
on matrix exponentiation.

The system state diagram (Figure 1) represents a Markov chain. In 1907
Andrei A. Markov introduced his ideas on the properties of systems of depen-
dent variables. These systems of dependent variables later became known as
Markov processes. A Markov process is a random process whose future state
probabilities depend only on its current state [5]. A Markov process with a
discrete state space is a Markov chain. We use a continuous time Markov chain
for this model, because transitions between states can occur at any time.

A Markov Analysis of the Cueing Capability/Detection Rate 189

2.3 Kolmogorov Equations

A first principles approach to solving a continuous time Markov chain comes
from the work of Russian mathematician Andrei Kolmogorov [6], who was
the first to derive differential equations for continuous time Markov chains
[2]. The Kolmogorov equations are a system of differential equations, one
for each discrete state. For example, equation (1) is the differential equation
describing the change in probability of state three with respect to time.

d

dt
P0,2(t) = −k(2θ + λ) · P0,2(t) + 3kθ · P0,1(t) (1)

The differential equation is representative of “probability flow” into and
out of a state. In other words, the transition out of state three occurs at a
rate of k(2θ+ l), and into state three, from state two, at a rate of 3kθ. There
is one differential equation for each state, and the solution to this system
of equations provides the transient state probabilities. Jeffcoat [4] uses this
method for finding the transient state probabilities for a two-vehicle problem.
It is obvious that this approach becomes increasingly difficult the larger the
system. There are several other methods that can be used to solve Markov
chains, one of which is matrix exponentiation.

2.4 Matrix Exponentiation

Antoine Rauzy [7] discusses several methods for computing the transient solu-
tions of large Markov models. One of the methods Rauzy discusses is matrix
exponentiation, which is the approach used in this chapter. In order to solve a
Markov chain using matrix exponentiation, we first define the transition rate
matrix, Q, as shown in Table 2.

We develop the transition rate matrix (Table 2) from the system state
diagram (Figure 1). Each off-diagonal element Qij , i �= j, is the transition
rate from state i to state j. If there is no transition from state i to state
j, the transition rate is zero, indicated by a blank in Table 2. The diagonal
entries (*) are set so that each row sums to zero. For example, Q(1, 1) is set
to −(4θ + λ).

Equation (2) provides the transient state probabilities,

P (t) = P (0)eQt (2)

where P (0) is the vector of initial conditions, Q is the transition rate matrix,
and

eQt = I +
∞∑

n=1

Qntn

n!
(3)

In order to solve for P (t), we need to determine the initial condition,
P (0). Throughout this chapter, the initial condition is state 1, or (0, 0),
where no vehicles have detected the person in distress. In other words,

190 Alice M. Alexander and David E. Jeffcoat

Table 2. Transition Rate Matrix, Q.

State 1 2 3 4 5 6 7 8 9 10

1 * 4θ λ

2 * 3kθ kλ

3 * 2kθ kλ

4 * kθ kλ

5 * kλ

6 * 4kθ

7 * 3kθ

8 * 2kθ

9 * kθ

10 *

P (0) = [1 0 0 0 0 0 0 0 0]. We determine numerical solutions for P (t) us-
ing the MATLAB function EXPM. Upon calculation of P (t), we sum P (t)
for all states where at least two search-and-engage vehicles have arrived on
scene, and then determine the earliest time at which this sum exceeds the
95% probability threshold.

Figure 2 graphically displays the process for determining the MOE. The
horizontal axis is time and the vertical axis is the transient state probability.
The plot is the sum of the probabilities of the states in which at least two
search-and-engage vehicles have arrived on scene (states within the dashed
box in Figure 1). The horizontal dashed line is the 95% probability threshold.
The time at which the plot crosses the threshold is the earliest time at which
at least two search-and-engage vehicles have arrived on scene with a 95%
probability.

2.5 Test Setup

A primary purpose of this chapter is to examine the trade space between the
cueing capability k, the detection rates λ and θ, and the number of each vehicle
type. A design of experiments approach is used to examine the significance
of these variables, with each parameter set at one of two levels, “Low” (L) or
“High” (H). We assume that λ and θ remain constant throughout the search,
so that the time to detection is exponentially distributed and the number of
detections over a fixed time interval has a Poisson distribution. In an attempt
to get realistic detection rates, we use representative speeds for each vehicle
type. For example, for the “Low” detection rate for the search-only vehicle,
we use a C-130 cruising speed of 100 knots. Assuming one person in distress
in a 100 square mile search area and a sensor footprint of one square mile,
we get an average detection rate of 0.00032 detections per second. Table 3
provides a test setup with the values used for each parameter.

The low value of the cueing parameter, k = 1, represents a “no cueing”
case; i.e., either no communication or the information communicated has no

A Markov Analysis of the Cueing Capability/Detection Rate 191

Fig. 2. Process to determine MOE.

Table 3. Test setup

Parameters λ θ k M N

Low (L) 0.00032 0.00019 1 1 4
High (H) 0.00064 0.00038 4 2 5

value. When k is four, the cue increases the detection rate of the vehicles by
a factor of four. This is equivalent to a decrease in the search area to 25% of
the original area.

3 Results

Table 4 provides selected results obtained for the thirty-two cases.
The time in the result column is the earliest time at which at least two

search-and-engage vehicles have found the person in distress with a 95% prob-
ability. The results range (approximately) from two hours to twenty minutes.
This range seems reasonable in the context of this scenario. The next section
provides an analysis of these results.

192 Alice M. Alexander and David E. Jeffcoat

Table 4. Results

Case λ θ k M N Result(seconds)

1 L L L L L 7326

2 L L L L H 5638
3 L L L H L 7326
4 L L L H H 5638

29 H H H L L 1749
30 H H H L H 1438
31 H H H H L 1501
32 H H H H H 1247

3.1 ANOVA

Table 5 presents selected outputs of an Analysis of Variance (ANOVA) calcu-
lated using STATISTICA©R . Since the procedure used to calculate the results
is deterministic, only one replication was performed for each case, resulting
in a single degree of freedom for each effect. Table 5 shows that all five main
effects (λ, θ, k, M and N) have a significant impact on the response variable.
In order to better understand the trade-space, we further examine four of the
ten two-factor interactions in the following section.

Table 5. Analysis of variance

Effect SS Deg of Free MS F P

λ 201612 1 201612 4032 0.010025

θ 38843298 1 38843298 776866 0.000722

k 58206655 1 58206655 1164133 0.000590

M 201613 1 201613 4032 0.010025

N 5649841 1 5649841 112997 0.001894

λ by q 30135 1 30135 603 0.025917

λ by k 201612 1 201612 4032 0.010025

θ by k 8611250 1 8611250 172225 0.001534

λ by M 325 1 325 7 0.237922

θ by M 30135 1 30135 603 0.025917

k by M 201613 1 201613 4032 0.010025

λ by N 2812 1 2812 56 0.084385

θ by N 553352 1 553352 11067 0.006051

k by N 1449253 1 1449253 28985 0.003739

M by N 2813 1 2813 56 0.084385

A Markov Analysis of the Cueing Capability/Detection Rate 193

Fig. 3. Interaction effect of θ and k.

3.2 Analysis Plots

Figure 3 displays the interaction effect between the search-and-engage vehicle
detection rate, θ, and the cueing factor, k. θ is plotted on the horizontal-axis
and the time to engage is plotted on the vertical-axis. There are two plots,
one for each level of k. Both plots have a downward slope, indicating that
an increase in the search-and-engage vehicle detection rate decreases the time
to engage. The k low plot (cueing not present) has a greater slope than the
k high plot, showing that q has more impact on the time to engage when
cueing is not present. In other words, if the vehicles are not communicating,
the search capability of each search-and-engage vehicle is more critical.

We plot the interaction effect between the number of search-only vehicles,
M , and cueing, k, in Figure 4. Figure 4 indicates that increasing the number
of search-only vehicles does not significantly affect the time for two search-
and-engage vehicles to arrive on scene, with or without cueing. There is an
effect due to cueing, as shown by the gap between the two lines, but there is
essentially no effect from increasing the number of search-only vehicles. This
could be a result of using a relatively small search area.

Figure 5 is a plot of the interaction effect between the number of search-
and-engage vehicles and cueing. There is a more pronounced downward slope
in the case when cueing is not present (k low), illustrating that when there
is no communication between the vehicles, an additional search-and-engage
vehicle significantly decreases the time to engage.

Figure 6 is a plot of the interaction effect between the search-only vehi-
cle detection rate, λ , and the search-and-engage vehicle detection rate, θ .

194 Alice M. Alexander and David E. Jeffcoat

Fig. 4. Interaction effect of M and k.

Fig. 5. Interaction effect of N and k.

A Markov Analysis of the Cueing Capability/Detection Rate 195

The plots indicate that the search-and-engage vehicle detection rate is more
significant than the search-only vehicle detection rate.

These plots are useful for analyzing the trade-space between cueing capa-
bility and detection rates in a search and rescue scenario.

Fig. 6. Interaction effect of λ and θ.

4 Summary

This chapter analyzes the trade-space between cueing capability and detection
rates in a search and rescue scenario using a Markov chain formulation. Matrix
exponentiation is used to solve for the transient state probabilities. An analysis
is conducted to examine the effects of cueing capability, detection rates, and
numbers of vehicles on the time to engage. We conclude that the number of
search-and-engage vehicles and their detection rate are the most influential
parameters for this specific scenario. We also find that cueing significantly
decreases the time to engage. The Markov chain model provided a useful tool
for the analysis of a search and rescue scenario. We believe this approach could
be used in the analysis of other cooperative search problems.

References

1. M. Baum and K. Passino, “A Search-Theoretic Approach to Cooperative Con-
trol for Uninhabited Air Vehicles,” In Proceedings of the AIAA Guidance, Nav-
igation and Control Conference, Monterey, California, August 2002.

196 Alice M. Alexander and David E. Jeffcoat

2. A. Bharucha-Reid, Elements of the Theory of Markov Processes and Their Ap-
plications, New York: McGraw-Hill Book Company Inc, 1960.

3. J. Curtis and R. Murphey, “Simultaneous Area Search and Task Assignment for
a Team of Cooperative Agents,” in Proceedings of the AIAA Guidance, Naviga-
tion and Control Conference, Austin, Texas, August 2003.

4. D. Jeffcoat, “Coupled Detection Rates: An Introduction,” in Theory and Algo-
rithms for Cooperative Systems, New Jersey: World Scientific Publishing, 2004.

5. J. Kemeny and J. Snell, Finite Markov Chains, New Jersey: D. Van Nostrand
Co., Inc, 1960.

6. A.N. Kolmogorov, Foundations of the Theory of Probability, New York: Chelsea
Publishing Co, 1956.

7. A. Rauzy, “An experimental study on iterative methods for computing transient
solutions of large Markov models,” Reliability Engineering and System Safety,
Vol. 86, Issue 1, October 2004.

8. Regulatory Intelligence Data, “Search and Rescue operations keep Coast Guard
cews busy,” The America’s Intelligence Wire, August 27, 2004.

9. A. Ross, “A comparison of methods for computing transient probabilities for
the Erlang loss system,” Working paper, Lehigh University, 2003.

10. G. Slater, “Cooperation between UAV’s in a search and destroy mission,” in
Proceedings of the AIAA Guidance, Navigation and Control Conference, Austin,
Texas, August 2003.

11. L. Stone, Theory of Optimal Search, 2nd Edition, Military Applications Section,
Operations Research Society of America, 1989.

Challenges in Building Very Large Teams

Paul Scerri1, Yang Xu2, Jumpol Polvichai2, Bin Yu1, Steven Okamoto1,
Mike Lewis2 and Katia Sycara1

1 Carnegie Mellon University
{pscerri,byu,sokamoto,katia}@cs.cmu.edu

2 University of Pittsburgh
{xuy,jumpol,ml}@sis.pitt.edu

Summary. Coordination of large numbers of unmanned aerial vehicles is difficult
due to the limited communication bandwidth available to maintain cohesive activ-
ity in a dynamic, often hostile and unpredictable environment. We have developed
an integrated coordination algorithm based on the movement of tokens around a
network of vehicles. Possession of a token represents exclusive access to the task or
resource represented by the token or exclusive ability to propagate the information
represented by the token. The movement of tokens is governed by a local decision
theoretic model that determines what to do with the tokens in order to maximize
expected utility. The result is effective coordination between large numbers of UAVs
with very little communication. However, the overall movement of tokens can be
very complex and, since it relies on heuristics, configuration parameters need to be
tuned for a specific scenario or preferences. We have developed a neural network
model of the relationship between configuration and environment parameters and
performance, that an operator uses to rapidly configure a team or even reconfigure
the team online, as the environment changes.

1 Intro

Efficient, effective automated or semi-automated coordination of large num-
bers of cooperative heterogeneous software agents, robots and humans has the
potential to revolutionize the way complex tasks are performed in a variety of
domains. From military operations, to disaster response [26, 58] to commerce
[35] to space [18], automated coordination can decrease operational costs, risk
and redundancy while increasing efficiency, flexibility and success rates. To
achieve this promise, scalable algorithms need to be found for the key prob-
lems in coordination. Unfortunately, these problems, including deciding how
to allocate tasks and resources, deciding when and what to communicate and
planning, have NP-complete or worse computational complexity and thus re-
quire approximate solutions.

While automated coordination is a very active research area (e.g., [56, 61,
19]), previous work has failed to produce algorithms or implementations that

198 Paul Scerri et al.

meet the challenges of coordinating large numbers of heterogeneous actors in
complex environments. Most algorithms developed for key problems do not
scale to very large problems (e.g., optimal search techniques [32, 33]), though
some scale better than others (e.g., markets [18]). The rare algorithms that do
scale effectively typically either make unreasonable assumptions or are very
specialized for a specific problem (e.g., emergent behavior [45]). Algorithms
that have been shown to be scalable often rely on some degree of centralization
[31], which may not always be desirable or feasible.

The chapter presents an integrated solution to the problem of automated
coordination for large teams of unmanned aerial vehicles. The solution relies
on three novel ideas. The first novel idea is to use tokens, encapsulate both in-
formation and control, as the basis for all coordination. For each aspect of the
coordination, e.g., each task to be assigned, there is a token representing that
aspect. Control information, included with the token, allows actors to locally
decide what to do with the token. For example, a task token contains control
information allowing an actor to decide whether to perform the task or pass
it off for another actor. Movement of tokens from actor to actor, implements
the coordination. The effect of encapsulating the piece of the overall coordi-
nation with its control information is to ensure that everything required for a
particular decision, e.g., whether a particular actor should perform a particu-
lar task, is localized to the actor currently holding the respective token. This
reduces required communication and avoids many of the problems that arise
when required information is distributed. The key is to be able to find control
rules and control information that can be encapsulated in the token and allow
decisions about that token to be made relatively independantly of decisions
about other tokens. We have developed such algorithms for a range of key co-
ordination problems including task allocation [53], reactive plan instantiation
[52], resource allocation, information sharing [63] and sensor fusion.

The efficiency of the token based coordination algorithms depends on the
routing of the tokens around the network of actors. Individual actors build up
local models of what types of things their neighbors in the network are most
interested in and use these models to decide where to send a token (if at all)
[64]. Previous work has shown that even relatively poor (i.e., often inaccurate)
local routing models can dramatically improve overall performance of a par-
ticular coordination algorithm [63]. The second novel idea in this work is to
exploit the homogeneity of tokens, i.e., the fact that all aspects of coordination
are represented with tokens, to allow actors to exploit the movement of to-
kens for one coordination algorithm to improve the flow of tokens for another
coordination algorithm. The inituition is that, e.g., knowing something about
a task allocation should help the resource allocation which should in turn
help dissemination of important information. For example, if actor A knows
that actor B is performing a fire fighting task in Pittsburgh, it can infer that
resources physically located in Phillidelphia will not be of interest to actor B
and save the overhead of involving actor B in algorithms for allocating those

Challenges in Building Very Large Teams 199

resources. Our results show that exploiting synergies between coordination
algorithms dramatically improves overall coordination performance.

The third novel idea in this work is to develop a general purpose meta-level
reasoning layer, distributed across the team. The meta-reasoning is concep-
tually “above” the token flows and manipulates the movement of tokens in
one of two ways. First, the meta-reasoning layer can extract and manipulate
particular tokens when behavior is not as required. For example, the meta-
reasoning layer may notice that a particular task allocation token is unable to
find any actor to perform the task it represents and bring that unfilled task
assignment to the attention of a human who can decide what to do. Tokens
can be safely extracted because everything related to that token is encapsu-
lated within the token. Second, the meta-reasoning layer can configure control
parameters on all tokens to manipulate the token flows to maximize current
performance requirements. For example, when communication bandwidth is
tightly constrained the meta-reasoning can configure the tokens to move less
(at a cost of quality of performance.) We use a neural network model of the re-
lationships between control parameters and performance to allow rapid search
for parameter settings to meet current performance requirements and online
reconfiguration to adapt to changing requirements.

In previous work, we have shown that by leveraging a logical, static net-
work connecting all coordinated actors, some coordination algorithms can be
made to effectively scale to very large problems [49]. The approach used the
network to relax some of the requirements to communicate and made it pos-
sible to apply theories of teamwork [9, 56] in large groups. The key was the
small worlds property of the network [59] which requires that any two agents
are connected by a small number of intermediate agents, despite having a rel-
atively small number of direct neighbors. The token-based algorithms leverage
this network when moving around the team

The integrated token-based approach has been implemented both in ab-
stracted simulation environments and as a part of domain independent coordi-
nation software called Machinetta [50]. The abstract simulation environments
show the effectiveness of the token based ideas across a very wide range of
situations. In this simulation environment, the token-based algorithms have
been shown to be extremely scalable, comfortably coordinating groups of up
to 5000 actors. Machinetta is a public domain software module that has been
used in several domains [50, 49, 54], including for control of unmanned aerial
vehicles. Machinetta uses the concept of a proxy [42, 23] which gives each
actor a semi-autonomous module encapsulating the coordination reasoning.
The proxies work together in a distributed way to implement the coordina-
tion. Experiments with upto 200 Machinetta proxies running the token based
algorithms have shown that fully distributed coordination feasible.

200 Paul Scerri et al.

2 Problem Description

In this section, we describe the target application and the general coordination
problem that must be addressed.

Target Application: Coordinated Wide Area Search Munitions

Our current domain of interest is coordination of large groups of Wide Area
Search Munitions (WASMs). WASMs are a cross between an unmanned aerial
vehicle and a standard munition. The WASM has fuel for about 30 minutes of
flight, after being launched from an aircraft. The WASM cannot land, hence
it will either end up hitting a target or self destructing. The sensors on the
WASM are focused on the ground and include video with automatic target
recognition, ladar and GPS. It is not currently envisioned that WASMs will
have an ability to sense other objects in the air. WASMs will have reliable high
bandwidth communication with other WASMs and with manned aircraft in
the environment. These communication channels will be required to transmit
data, including video streams, to human controllers, as well as for the WASM
coordination.

The concept of operations for WASMs are still under development, how-
ever, a wide range of potential missions are emerging as interesting [7, 12]. A
driving example for our work is for teams of WASMs to be launched from AC-
130 aircraft supporting special operations forces on the ground. The AC-130
is a large, lumbering aircraft, vulnerable to attack from the ground. While it
has an impressive array of sensors, those sensors are focused directly on the
small area of ground where the special operations forces are operating making
it vulnerable to attack. The WASMs will be launched as the AC-130s enter
the battlespace. The WASMs will protect the flight path of the manned air-
craft into the area of operations of the special forces, destroying ground based
threats as required. Once an AC-130 enters a circling pattern around the spe-
cial forces operation, the WASMs will set up a perimeter defense, destroying
targets of opportunity both to protect the AC-130 and to support the soldiers
on the ground. Even under ideal conditions there will be only one human op-
erator on board each AC-130 responsible for monitoring and controlling the
WASMs. Hence, high levels of autonomous operation and coordination are
required of the WASMs themselves. However, because the complexity of the
battlefield environment and the severe consequences of incorrect decisions, it
is expected that human experience and reasoning will be extremely useful in
assisting the team in effectively and safely achieving their goals.

Many other operations are possible for WASMs, if issues related to coordi-
nating large groups can be adequately resolved. Given their relatively low cost
compared to Surface-to-Air Missiles (SAMs), WASMs can be used simply as
decoys, finding SAMs and drawing fire. WASMs can also be used as commu-
nication relays for forward operations, forming an adhoc network to provide
robust, high bandwidth communications for ground forces in a battle zone.

Challenges in Building Very Large Teams 201

Fig. 1. A screenshot of the WASM coordination simulation environment. A large
group of WASMS (small spheres) are flying in protection of a single aircraft (large
sphere). Various SAM sites (cylinders) are scattered around the environment. Ter-
rain type is indicated by the color of the ground.

Since a WASM is “expendible”, it can be used for reconnasiance in danger-
ous areas, providing real-time video for forward operating forces. While our
domain of interest is teams of WASMs, the issues that need to be addressed
have close analogies in a variety of other domains. For example, coordinating
resources for disaster response involves many of the same issues [26], as does
intelligent manufacturing [44] and business processes.

2.1 Team Oriented Plans and Joint Activities

The problem of coordination we are dealing with here can be informally de-
scribed as determining who does what at which time and with which shared
resources and information. In the following, we provide a formal description
of this coordination problem.

Each member of the team a ∈ A has a copy of the Team Oriented Plan
templates, Templates that describe the joint activities that need to be un-
dertaken in particular situations [43]. These templates are defined offline by
a domain expert. Each template, template ∈ Templates has preconditions,
templatepre under which it should be instantiated into a joint activity, αi. The
template may also have parameters, templateparam that encode specifics of
a particular instance. The same template may be instantiated multiple times
when with different parameters. The joint activity should be terminated when
certain postconditions, templatepost are met. These postconditions may be a
function of templateparam. The templates whose preconditions but not post-
conditions are satisfied at time t are written JointActs(t, T emplates).

A joint activity, αi, breaks a complex activity down into tasks, Tasks(αi) =
{task1

i , . . . , task
n
i }, each intended to be performed by a single actor. Con-

202 Paul Scerri et al.

straints, constraints(αi), exist between the tasks including constraints on the
sequencing of tasks, the simultaneous (or not) execution of tasks and whether
tasks are alternative ways of doing the same thing. The set of roles that should
be executed at time t to achieve αi, given the constraints, at time t is written
CurrTasks(αi, t) = f(Tasks(αi), Constraints(αi)). Each team member has
a capability to perform each task, which is written as capability(a, task, t).
This capability may change over time as, e.g., an agent moves around the
environment. Notice that the actual value of assigning a particular actor to
a particular task depends also on which resources and information that actor
has, as described beow. A templatei does not specify which actor should per-
form which task nor which resources will be used nor what what coordination
must take place [43].

For example, a UAV team might have a template investigating a poten-
tial target, templateimaging. The template will be instantiated when there
is a sensor reading indicating a vehicle at a location X , i.e., templatepre =
SensedV ehicleX and parameterized with the specific location to investigate,
i.e., templateparam = LocationX . The template breaks the investigation task
down into IR, EO and ladar imaging to be performed by three UAVs with
relevant sensing capabilities.

Associates Network

The associates network arranges the whole team into a small worlds network
defined by N(t) = ∪

a∈A
n(a), where n(a) are the neighbors of agent a in the

network. The minimum number of agents a message must pass through to get
from one agent to another via the associates network is the distance between
those agents. For example, if agents a1 and a3 are not neighbors but share a
neighbor distance(a1, a3) = 1. We require that the network be a small worlds
network, which imposes two constraints. First, ∀a ∈ A, |n(a)| < K, whereK is
a small integer, typically less than 10. Second, ∀ai, aj ∈ A, distance(ai, aj) <
D where D is a small integer, typically less than 10.

2.2 The Value of Information

Events and circumstances in the environment are represented discretely as
beliefs, b ∈ Beliefs. Individual actors will not necessarily know all current
beliefs, but typically some subset Ka ∈ Beliefs. If the environment is fully
observable then

⋃
a∈AKa = Beliefs otherwise

⋃
a∈AKa ⊂ Beliefs. When

an actor is assigned to a task (see below) having knowledge of particular
beliefs can improve how well the actor can perform the task. The value of
a piece of information is dependant on the environment, the task, the actor
and time and is written value(b, a, task, time) → R. For example, when a
robot with vision based sensing is assigned to search a building for trapped
civilians, knowledge of where smoke is in the building is less important than

Challenges in Building Very Large Teams 203

to a robot using infrared or acoustic sensors (listening for voices) than using
vision. While in general the mapping between tasks, agents, information and
value is very complex, in practical applications it is often straightforward to
find reasonable, compact approximations.

2.3 Resources

To perform assigned tasks, actors may need resources,Resources = {r1, . . . , rn}.
In this work, resources are modeled as being freely assignable to any actor and
never being exhausted, however only one actor can have access to a resource
at any one time3. A task’s need for a resource is modeled as being independant
of which actor is performing the task. Often there is a set of resources that
are interchangable, in so far as any one of the resources is just as effective
as any of the others. Such sets are written IR = {ri, . . . , rn}. Some inter-
changable resources, taskneed = {IR1, . . . , IRm}, are necessary for execution
of the task. This means that without access to at least one resource from each
IR ∈ taskneed no actor can execute this task. Another set of interchangable
resources, taskuseful = {IR1, . . . , IRk} are useful to the execution of the task,
although the task can be executed without access to one of the interchanable
resources.

Assignment of a resource, r, to actor, a, is written assigned(r, a). The
resources assigned to an actor are resouces(a). Since a resource cannot be
assigned to more than one agent, we require ∀a, b ∈ A, a �= b, resources(a) ∩
resources(b) = ∅.

Consider a task for a UAV to provide a video image of a potential target.
To perform this task the UAV must have appropriate sensors and have access
to some airspace from which it can take the an image. The airspace can
be modelled as a necessary, interchangable resource, with the UAV typically
having a range of options about which airspace to use to take the video.

2.4 Assignments and Optimization

This first step toward effective coordination is to determine what templates
should be instantiated into joint activities, α1, . . . , αn. The joint activities de-
fine the current set of tasks that need to be assigned to actors. Any templates
that are not instantiated, but should be, because their preconditions are sat-
isfied or should be terminated because their postconditions are satisfied, cost
the team value. Performance of any tasks for joint activities that should have
been terminated provide no value to the team. As described above, the joint
activities that should be executed at time t are JointActs(t, T emplates).

Tasks!(t) =
⋃

α∈JointActs(t,Templates) CurrTasks(α, t) defines the set of
tasks that give value to the team if assigned to capable team members at time

3 If multiple actors can access the same resources simultaneously, we represent this
is being multiple resources

204 Paul Scerri et al.

t. The set of tasks that are assigned to an actor, a, is written tasks(a). As with
resources, tasks should be assigned to only one actor, hence ∀a, b ∈ A, a �=
b, tasks(a)∩tasks(b) = ∅. The value an actor provides to the team is a function
of the tasks assigned to it, the resources assigned to it and the information it
knows, contrib(a, tasks(a), resources(a),Ka, t) → R. This function can be a
complex function since interactions between tasks and knowledge can be very
intricate, but in practice simple linear functions are often used to approximate
it. In the case that the task t /∈ Tasks!(t) the agent team can recieve no
value for the execution of the task. The overall coordination problem can be
described as:

∫ ∞

t=0

∑
a∈A

contrib(a, tasks(a), resources(a),Ka, t)− communicationCost (1)

Typically, communication between actors is not free or is limited in some
way (e.g., total volume). Optimization of Equation 1 should be performed
taking into account these communications limitations.

3 Algorithms

To implement coordination in a large team we encapsulate anything that needs
to be shared in a token. Specifically, tokens represent any belief that needs
to be shared, any assignable task or any shared resource. Tokens cannot be
copied or duplicated, but can be passed from actor to actor along links in the
network connecting them. A token, ∆, contains two types of information con-
tent and control. The content component describes the belief, task or resource
represented by the token. The control component captures the information
that is required to allow each agent decide whether to keep or pass on the
token to maximise the expected value to the team. The precise nature of the
control component depends on the type of token, e.g., role or resource, and
is discussed in more detail below. However, common to all is the path the
token has followed through the team, denoted ∆.path. In the remainder of
this section, we describe how key coordination algorithms are implemented
via the use of tokens. Notice, below when an actor decides to move a token
to another actor it calls Pass. In the next section, we describe how the Pass
function sends the token from a to the a ∈ n(a) that is most likely to bene-
fit from reciept of the token, e.g., most likley to be able to use the resource
represented by a resource token.

Information Sharing

Members of a large team will commonly locally sense information that is useful
to the execution of another agents tasks. The value of this information to a

Challenges in Building Very Large Teams 205

team member executing a task was formally defined in Section 2.2. However,
it is not necessarily the case that the agent locally sensing the information will
know which of its teammates needs information or even that a teammate needs
it at all. We have developed a token-based algorithm for proactive sharing of
such information that efficiently gets the information to any agent that needs
it. The algorithm is described in detail in [63]. The control information for
an information token is simply the number of hops through the team that
the information token will be allowed to make before it is assumed that any
team mate that needs the information actually has it. Algorithm 1 provides
the pseudo code for local processing of an information token.

Algorithm 1: Information Token Algorithm
(1)

if token.TTL > 0
(2) token.TTL −−
(3) Pass(token)

Where token.TTL is the number of remaining hops the token can take.
Efficient values for token.TTL are determined emperically and tend to be
approximately log(|A|).

Template Instantiation and Joint Activity Deconfliction

To instantiate a plan template, templatei, into a joint activity, αi, requires
that some team member know that the preconditions, templatepre, for the
plan are satisfied. Since preconditions for a particular template may be sensed
locally by different team members, belief sharing via information tokens is
required to ensure that at least one actor knows all the preconditions. However,
if multiple actors get to know the same preconditions, it may happen that
the template is instantiated multiple times and the team’s effort is wasted
on multiple executions of the same plan. Our approach to this problem is
described in detail in [29], in this chapter we just provide a brief overview.
The approach to avoiding plan duplicates uses two ideas. First, an actor can
choose not to instantiate a template (at least for some time), despite knowing
the preconditions hold and not knowing of another instantiation. For example,
in some cases an actor might wait a random amount of time to see if it
hears about another instance before instantiating a plan. Second, once it does
instantiate the template into a joint activity it informs each of its neighbours
in the associates network. Any actor accepting a role in the joint activity must
also inform its neighbors about the joint activity. It turns out that despite only
a relatively small percentage of the team knowing about a particular joint
activity instance, there is very high probability of at least one team member
knowing about both copies of any duplicated team activity. A team member

206 Paul Scerri et al.

detecting a duplicate plan instantiation is obliged to inform the actors that
instantiated the duplicate plans (this information is kept with the information
token informing of the initiation of the joint activity) who can then initiate a
straightforward deconfliction process.

Task Allocation

Once joint activities are instantiated from templates, the individual tasks
that make up the joint activity must be assigned to individual actors. Our
algorithm for task allocation is extensively described and evaluated in [53]. A
task token is created for each task, t ∈ Tasks(α). The holder of the task token
has the exclusive right to execute the task and must either do so or pass the
token to a teammate. First, the actor must decide whether it is in the best
interests of the team for it to perform the task represented by the token
(Alg 2, line 6). A task tokens control information is the minimum capability
(capability(a, task, t)) an actor must have in order to perform the task, task.
This threshold is the control component of the token. The token is passed
around the team until it is held by an actor with capability above threshold
for the task and without other tasks that would prevent it from performing
the task. Computing thresholds that maximize expected utility is a key part
of this algorithm and is described in [53]. The threshold is calculated once
(Alg 2, line 5), when the task arises due to team plan instantiation. A token’s
threshold therefore reflects the state of the world when it was created. As the
world changes, actors will be able to respond by changing the threshold for
newly-created tokens. This allows the team flexibility in dealing with dynamics
by always seeking to maximize expected utility based on the most current
information available.

Once the threshold is satisfied, the actor must check whether it can perform
the task give other responsibilities (Alg. 2, line 9). If it cannot, it must choose
a task(s) to reject and pass the respective tokens to a neighbor in the network
(Alg. 2, lines 10 and 12). The actor keeps the tasks that maximize the use of
its capabilities (performed in the MaxCap function, Alg. 2, line 10), and so
acts in a locally optimal manner. Extensions to this algorithm allow efficient
handling of constraints between tasks.

Resource Allocation

Efficient teams must be able to assign resources to actors that can make best
use of those resources. As described above tasks have both necessary and useful
resources. Since there is no global view of which actor is doing which task,
the process of allocating resources to tasks must be fully distributed. Each
shareable, discrete resource is represented by an individual token. As with
task tokens, control information on the token is in the form of a threshold.
An actor can hold the resource token, and thus have exclusive access to the
resource, if it computes its need for the token as being above the threshold.

Challenges in Building Very Large Teams 207

Algorithm 2: Task Token
(1) V ← ∅, PV ← ∅
(2) while true
(3) token ← getMsg()
(4) if token.threshold = NULL
(5) token.threshold ← CalcThreshold(token)
(6) if token.threshold < Cap(token.value)
(7) V ← V ∪ token.value

(9) if
P

v∈V Resources(v) ≥ agent.resources
(10) out ← V − MaxCap(V)
(11) foreach v ∈ out
(12) PassOn(new token(v))
(13) V ← V − out

(15) else
(16) PassOn(token) /* threshold < Cap */

However, unlike task tokens, thresholds for resource tokens are dynamic. When
an actor has a resource it slowly increases the threshold (up to some maximum
value) and continues checking whether its need for the resource is above that
threshold. When the token moves around the team, the threshold is slowly
descreases until it is accepted by some agent. The combination of moving the
threshold up and down ensures that whichever actor needs the resource most
at a particular point in time gets that resource.

Algorithm 3: ProcessResourceToken
(1) while true
(2) token ← getMsg()
(3) if token.threshold < Req(token.resource)
(4) // Keep the token
(5) MonitorResourceToken(token)
(6) else
(7) Pass(token)

Algorithm 4: MonitorResourceToken
(1)

haveToken ← true while haveToken
(2) sleep()token.threshold ← token.threshold + inc if

token.threshold > Req(token.resource)
(3) Pass(token)
(4) haveToken ← true

208 Paul Scerri et al.

Sensor Fusion

Individual sensors of individual actors may not be sufficient to determine the
state of some part of the environment. For example, a single UAV may not
have a sufficiently high fidelity sensor suite to independantly determine that
an enemy tank is concealed in a forest. However, multiple sensor readings by
multiple actors can result in the team having sufficiently high confidence in a
determination of the state to take an action. However, in a cooperative mo-
bile team an actor will not always have accurate knowledge about where other
actors are and hence will not know which team mates might have readings
to confirm or refute its own. We encapsulate each sensor reading in an infor-
mation token and forward the token across the team. Each actor individually
performs sensor fusion on the information that it has and creates a new in-
formation token with the fused belief when it is able to combine multiple low
confidence readings into a single high confidence reading. The key to this al-
gorithm is that despite each token visiting a relatively small number of team
members there is high probability that some team member will get to see
multiple sensor readings for the same event, if they exist. As with information
tokens, the control information for sensor-reading tokens (i.e., information to-
kens) is the number of additional hops a token should make before assuming
it cannot be fused at the current time (i.e., TTL).

4 Synergies Between Algorithms

Efficient token-based coordination depends on how well tokens are routed, i.e.,
how efficiently they pass from actor to actor to where the are most needed.
Since routing decisions are made locally, actors must build local models of the
state of the team to make appropriate routing decisions. Notice that whether
to pass a token on is a function of the control information on the token, but
where to route a token, if that is the decision, is a function of the local model
of state. In this section, we describe an algorithm to maintain the localized
decision model by utilizing previously received tokens.

We assume that there is a known relationship between tokens, called rel-
evance. We define the relevance relationship between tokens ∆i and ∆j as
Rel(∆i, ∆j). Rel(∆i, ∆j) > 1 indicates that an agent interested in ∆i will
also be interested in ∆j , while Rel(∆i, ∆j) < 1 indicates that an agent inter-
ested in ∆i is unlikely to be interested in ∆j . If Rel(∆i, ∆j) = 1 then nothing
can be inferred. When an agent receives two tokens for which Rel(∆i, ∆j) > 1
they are more likely to be usable in concert to obtain a reward for the team.
For example, when an actor gets a task token ∆t and resource token∆r repre-
senting a necessary resource for the task, Rel(∆t, ∆r) > 1 and passing them
to the same acquaintance is more likely to gain reward for the team than
passing them to different acquaintances.

Challenges in Building Very Large Teams 209

4.1 Updating Decision Model according to Previous Tokens

Each actor maintains a matrix P [∆, a] → R that estimates that for each
possible token, the probability that each of its associates would be the best
to pass that token to. For example, P [∆k, a] = 0.2 indicates that the actor
estimates that the probability associate a is the best of its associates to pass
token ∆k to is 0.2. Notice that in the implementation we do not actually store
the entire matrix but calculate it as needed, but in the following we assume
so for clarity.

The update function of agent α’s Pα based on an incoming token ∆j ,
written as δP (Pα[∆i, b], ∆j) leverages Bayes’ Rule as follows:

∀b ∈ n(α), ∀∆i, d = first(n(a), ∆j .path)

δP (Pa[∆j , b], ∆i) =

⎧⎪⎨⎪⎩
Pa[∆j , b]×Rel(∆i, ∆j) if ∆i �= ∆j , b = d

Pα[∆j , b] if ∆i �= ∆j , b �= d

ε if ∆i = ∆j , b ∈ ∆j .path ∩ n(α)
(2)

first extracts from the recorded path of the token the acquataince
of the actor that earliest had the token. P is then normalized to ensure∑

b∈N(α) Pα[∆j , b] = 1. The first case in Eqn. 2 is the most important. The
probability that d is the best agent to receive ∆i is updated according to
Rel(∆i, ∆j). The second case in the equation changes the probability of send-
ing that token to agents other than the sender in a way that ensures the sub-
sequent normalization has the desired effect. Finally, the third case encodes
the idea that an actor should typically not pass a token back from where it
came. Details about how Rel is computed to ensure appropriate behavior can
be found in [64].

5 Human-in-the-Loop

The token-based process described above works effectively at controlling large
teams. However, for real-world teams it is essential to have a human-in-the-
loop, controlling the behavior of the team. The need for such control stems
from two key reasons. First, the heuristics used to coordinate the team will
not always work effectively and sometimes human “common sense” will be
required to ensure appropriate behavior. Second, the human may have prefer-
ences for tradeoffs given the current situation, e.g., a willingness to trade off
the quality of task allocation provided bandwidth is reduced. These two ra-
tionales for human control imply an ability for control at both a high and low
level and over a wide range of aspects of behavior. Fortunately, the homogene-
ity of the token-based algorithms allows an effective and general control layer
to be built on top of the control flows providing powerful control for a human
user (or users.) The effect is to allow meta-reasoning over the token-based

210 Paul Scerri et al.

coordination. The specific approach we have developed has two components,
one for high level control and another for more detailed control.

5.1 High-Level Control

The high level control component allows the user to tradeoff high level perfor-
mance measures such as the message bandwidth versus performance task allo-
cation versus resource allocation. To do this we need a model of the interaction
between the environment algorithm configuration and performance. However,
the relationship turns out to be very complex, denying straightforward means
of modeling it. Moreover, non-determining leads to a relatively high standard
deviation in performance. To represent the highly non-linear relationship be-
tween the environment, configuration and performance of the team, we used
multilayer feed-forward neural networks, capable of representing any arbitrary
function [38]. With inspirations from the idea of dynamic rearrangement [13],
we use the concept, called Dynamic Neural Networks [39, 40], which allows
all internal nodes in the network to act stochastically and independently even
though all external input data remain unchanged.

We trained the multilayer feed-forward neural network using genetic algo-
rithms because of the high standard deviation of the function being modelled.
Moreover, in genetic algorithms, the unit of adaptation is not an individual
agent, but a population of agents, which is excellent for dealing with very huge
and noisy training data set. The fitness function was the average of square
error between target output and actual output as follows:∑

d∈D

∑
p∈P

(Od
p,t −Od

p,a)2/sizeof(D).

Where D is the set of training data (d ∈ D), P is the set of system per-
formance measures (p ∈ P), Od

p,t is the target output of the p th performance
parameter of the data entry d, and Od

p,a is the actual output of the p th
performance parameter of the data entry d. The genetic algorithm training
function attempts to minimize this function. The learning process converged
to 20 percent error quickly and slowly converged to 15 percent error after
that. Future work will look at making more accurate models.

Team Control Interface

A user interface, shown in Figure 2 was developed for working with the dy-
namic neural network model. There are two key interaction modes: input-
to-output where the model shows the expected performance of a particular
setup; and output-to-input where the model shows the optimal configuration
to achieve a specified performance profile. In input-to-output mode the inter-
face simply provide inputs to the neural network and displays the output, but
the output-to-input mode is more complex.

Challenges in Building Very Large Teams 211

Fig. 2. The team control interface for online and offline control. Input parame-
ters are shown on the left side, performance measures are shown on the right side.
Check boxes for performance measures are used to specify the constraints for finding
configurations.

Output-to-Input Mode

Using the team neural network in “reverse”, the interface allows a user to
change output parameters and receive a configuration that best meets some
specific performance constraints both in input and output. The user spec-
ifies which performance features to constrain and what values they should
have. In order to find input parameters that meet output requirements, the
interface performs a search over the changeable configuration parameters to
find a configuration that gives the required performance tradeoffs. Notice that
this usage of the neural network allows various coordination algorithms to be
traded off against each other automatically. For example, if the user requests
a descrease in bandwidth usage, the neural network can determine which al-
gorithms to limit that bandwidth usage of to have the least impact on overall
performance.

The user interface can be connected to an executing team allowing the user
to monitor system performance and to change configuration during execution.
Special data collection tokens sample the team to determine current perfor-
mance measures and the state of the environment. When the user specifies
a new performance tradeoffs or the environment changes, the neural network
determines the best configuration for meeting the users needs and sends in-
formation tokens to all actors to get the new configuration initiated.

212 Paul Scerri et al.

5.2 Addressing Specific Problems

Because tokens completely encapsulate pieces of the overall coordination, it
is feasible to examine individual tokens to determine whether that particular
aspect of the coordination is working correctly. If not, or if the user has some
particular preference for how that particular detaileds aspect should work,
then the individual token can be extracted and modified (or its task taken
over by a human.) Because of the independance of tokens, it is possible to
extract any single token without effecting the behavior of the others. However,
it is infeasible to have a human monitor all tokens and determine which are
not performing to their satisfaction. Our approach is to instead have a model
of expected token behavior and bring tokens to the attention of a human
when the tokens behavior deviates from this model. Conceptually, this process
corresponds to identifying details of coordination that may be problematic and
bringing them to the attention of a human.

In practice, autonomously identifying coordination problems that might
be brought to the attention of a human expert is imprecise. Rather than reli-
ably finding poor coordination, the meta-reasoning must find potentially poor
coordination and let the humans determine the actually poor coordination.
(Elsewhere we describe the techniques that are used to ensure that this does
not lead to the humans being overloaded [51].) Notice that while we allow hu-
mans to attempt to rectify problems with agent coordination, it is currently
an open question whether humans can actually make better coordination de-
cisions than the agents. For example, when a task token travels to many actor
repeatedly, it may be that no actor has the required capability for the task
or that the task is overloaded. A human might cancel the task or find an
alternative way of acheiving the same goal.

6 Implementation

To evaluate the token-based approach we have developed both an abstracted
simulator and a fully distributed implementation called Machinetta. The ab-
stract simulator, called TeamSim represents tasks, information and resources
as simple objects and uses simple queues for messages. It allows very rapid
prototyping of algorithms and extensive testing to be performed.

Machinetta is an approach to building generic coordination software based
on the concept of a proxy [22, 43]. Each team member is given its own proxy
which encapsulates generic coordination reasoning. Plan templates are speci-
fied in XML and given to all the proxies. The proxy interacts with its team
member via an abstracted interface that depends on the type of actor, e.g.,
for a robot it might be a simple socket while for a human it may be a so-
phisticated GUI. The proxies coordination together, using the token-based
algorithms described above to implement the coordination. Machinetta prox-
ies have been demonstrated to perform efficient, effective coordination with

Challenges in Building Very Large Teams 213

up to 500 distributed team members. They have been tested in several distinct
domains and were successfully demonstrated in a U.S. Air Force flight test in
October, 2005.

7 Results

In this section we present results of the individual token algorithms, the syn-
ergistic use of the algorithms and the human in the loop control. For results
utilizing Machinetta refer to [50, 52, 49, 54]. Note that these results have for
the most part been previously published elsewhere but are collected here to
present a cohesive picture of the approach.

7.1 Task Allocation

To test the token based task allocation, we developed a simple simulator
where actors are randomly given capabilities, independant of information or
resources, for each of 5 types of task, with some percentage of actors being
given zero capability for a type of task. For each time step that the agent has
the task, the team receives ongoing reward based on the agent’s capability.
Message passing is simulated as perfect (lossless) communication that takes
one time step. As the simulation progresses, new tasks arise spontaneously and
the corresponding tokens are distributed randomly. The new tasks appear at
the same rate that old tasks disappear, thus keeping the total number of
tasks constant. This allows a single, fixed threshold for all tasks to be used
throughout the experiment. Each data point represents the average from 20
runs.

Figure 3 shows the performance of the algorithm against two competing
approaches. The first is DSA, which is shown to outperform other approximate
distributed constraint optimization algorithms for problems like task assign-
ment [32, 16]; we choose optimal parameters for DSA [65]. As a baseline we
also compare against a centralized algorithm that uses a “greedy” assignment
[5]. Results are shown using two different thresholds for the task tokens, T=0.0
and T=0.5. Figure 3(a) shows the relative performance of each algorithm as
the number of agents is increased. The experiment used 2000 tasks over 1000
time steps. The y-axis shows the total reward, while the x-axis shows the
number of agents. Not surprisingly, the centralized algorithm performs best
but not dramatically better than the token based approach. The token based
approach performs significantly better with a threshold of 0.5 than with no
threshold. The real key to the comparison, however, is the amount of commu-
nication used, as shown in Figure 3(b). Notice that the y-axis is a logarithmic
scale; thus the token based approach uses approximately four orders of mag-
nitude fewer messages than the greedy algorithm and six orders of magnitude
fewer messages than DSA. The token-based approach performs better than
DSA despite using far less communication and only marginally worse than

214 Paul Scerri et al.

a centralized approach, despite using only a tiny fraction of the number of
messages.

(a)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of agents

T
o

ta
l r

ew
ar

d

Greedy
DSA
LA-DCOP, T=0.5
LA-DCOP, T=0.0

(b)

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of agents

N
u

m
b

er
 o

f
m

es
sa

g
es

Greedy

DSA

LA-DCOP, T=0.5

LA-DCOP, T=0.0

Fig. 3. (a) comparing the reward versus the number of agents. (b) the number of
messages sent versus the number of agents

7.2 Information Sharing Results

To evaluate the information sharing algorithms, we arranged agents into a
network and randomly picked one agent as the source of a piece of information
i and another as a sink (i.e., for the sink agent U(i) is very large). The sink
agent sent out 30 information tokens (with TTL = 150) with information with
a high Rel to i. Then the source agent sent out i and we measured how long it
takes to get to the sink agent. In Figure 4(b) we show a frequency distribution
of the time taken for a network with 8000 agents. While a big percentage
of messages arrive efficiently to the sink, a small percentage get “lost” on

Challenges in Building Very Large Teams 215

Fig. 4. Frequency distribution over the number of steps to get an information token
to an unknown target location.

the network, illustrating the problem with a probabilistic approach. However,
despite some messages taking a long time to arrive, they all eventually did
and faster than if moved at random. We also looked in detail at exactly how
many messages must be propogated around the network to make the routing
efficient (Figure 5). Again using 8000 agents we varied the number of messages
the sink agent would send before the source agent sent i onto the network.
Notice that only a few messages are required to dramatically affect the average
message delivery time.

4 8 12 16 20 24 28 32
100

200

300

400

500

600

700

Number of Messages

S
te

p
s

Fig. 5. The impact of training messages on delivery time for an information token
in a large network.

7.3 Sensor Fusion Results

To evaluate the sensor fusion approach we use a random network of 100 nodes.
Nodes are randomly chosen as the source of relevant sensor readings. Informa-
tion tokens propogate the sensor readings through the network and we mea-
sure the probability of getting a successful fusion given a fixed TTL (“hops”
on x-axis of graph). Figure 6 shows two cases, one where all three sensor

216 Paul Scerri et al.

readings must be known to a single actor for fusion to be successful (labeled
3/3) and one where three of five readings must be known to a single actor for
successful fusion (labeled 3/5). Notice that a relatively small TTL is required
to have high probability of successful fusion.

Fig. 6. The probability of a successful fusion (y-axis) by at least one actor given a
specific TTL (x-axis) when three of five or three of three readings must be known
by a single actor to perform fusion.

7.4 Token-Based Algorithms Working Together

To evaluate the synergies between algorithms, due to the use of the P model,
we configured TeamSim to simulate a group of 400 distributed UAVs search-
ing a hostile area. Simulating automatic target detection rates 200 pieces of
information, e.g., SAM sites, were randomly “sensed” by UAVs and passed
around the team. Fifty plan templates, each with four independent precondi-
tions were used on each of 100 trials. Each plan template had four tasks to be
performed. Thresholds for the tasks tokens were set such that UAVs needed to
be near the target or reconnasaince site to accept the task. Shared resources
were airspace that the UAVs needed to fly through to complete their tasks.
One resource token was created for each “voxel” of airspace. When all four
tasks in a plan were completed, the team recieved a reward of 10. A maximum
reward of 500 units (10 units x 50 plans) was possible.

Five variations of the integrated algorithm were compared. The most in-
tegrated algorithm used all types of plan tokens to update P . The least inte-
grated algorithm moved tokens randomly to associates when it was decided to

Challenges in Building Very Large Teams 217

move a token. Three intermediate variations of the algorithm used only one
type of token, resource, role or information, tokens to update the local rout-
ing model, P . Figure 7 shows the reward received by the team on the y-axis
and the time on the x-axis. The Figure shows that the team recieved more
reward, faster when using the integrated algorithm. Moreover, Figure 8 shows
that less messages (on the y-axis) were required to get a fixed amout of reward
(on the x-axis) for the integrated approach. Both Figures show that using any
type of tokens to build a routing model is better than using no routing model
at all. Finally, Figure 9 shows that the algorithm scales well with increased
team size. In this case, the y-axis shows the average number of messages per
agent required to achieve a certain amount of reward. Notice, there is some
indication that the average number of messages goes down as the team gets
bigger, but more work is required to determine under what conditions this
holds and what the key reasons for it are.

Fig. 7. The team receives considerably more reward when all previous tokens are
used for local routing decisions.

7.5 Meta-Reasoning

We have evaluated both the low and high level aspects of the human-in-the-
loop control of the large teams.

High Level Control

Using TeamSim we were able to verify that the user was able to reconfigure a
team online and get required changes in performance tradeoffs. The interface
is connected directly with TeamSim, so that users can set team configurations

218 Paul Scerri et al.

Fig. 8. The team requires far fewer messages to coordinate when all previous tokens
are used to make local routing decisions.

Fig. 9. The impact of team size on reward and communication with and without
the use of all tokens for local routing decisions.

and monitor team performance measures online. The user configures the team
at the start of the mission. When performance changes are requested the of-
fline features of the team performance model areneural network is used to
find suitable reconfigurations. The team control interface and reconfiguration
assistance were evaluated over 10 scenarios. Scenarios were selected to provide
situations that would require users to reconfigure their team in order to meet
performance targets. For example, in a mission involving a very large team of
300 agents the user might be requested at some point in the mission to reduce
the number of messages per agent or increase the number of plans instanti-

Challenges in Building Very Large Teams 219

ated. Performance measures are recorded throughout the execution. The data
presented here represents 4 hours of runtime with a user in the loop. At step
1, the initial team configuration is set. At step 2, the user is asked to increase
level of rewards obtained by the team disregarding other performance mea-
sures. Using the output-to-input feature of the team performance model the
user finds a new coordination configuration that increases reward performance
and reconfigures the team. At step 3 network communication bandwidth is
reduced limiting the time-to-live for information tokens to 2 hops requiring
another team reconfiguration to lessen the degradation in performance. At
step 4, the user is again asked to reconfigure to improve reward performance.
Results for six of the performance measures are shown in Figure 10. The bold
lines show average values for the configured system while the lighter lines in-
dicate the values predicted by the output-to-input model. The jagged lines
show the moment to moment variation in the actual performance measures.
Despite the high variability of team performance measures the model quali-
tatively predicts the effects of reconfiguration on average performance values
across all six measures.

Low Level Control

To remove the need for many hours of human input, the interfaces for manip-
ulating individual tokens were augmented with code that made decisions as if
they were made by the human. These “human” decisions were made between
five seconds and two minutes after control was transferred to the human. The
experiments involved a team of 80 WASMs operating in a large environment.
The primary task of the team was to protect a manned aircraft by finding and
destroying surface-to-air missile sites spread around the environment. Half the
team spread out across the environment searching for targets while the other
half stayed near the manned aircraft destroying surface-to-air sites as they
were found near the aircraft. Plans were simple, requiring a single WASM
to hit each found target. If a target was not hit within three minutes of be-
ing found, this was considered abnormal plan execution and meta-reasoning
would be invoked. Meta-reasoning was also invoked when a WASM was not
allocated to hit any target for five minutes. These times are low, but reason-
able since the simulation ran at approximately four times real-time. Finally,
meta-reasoning was invoked when no WASM was available to hit a found tar-
get. Two human commanders were available to make meta-reasoning decisions
(although, as discussed above there were not “real” human commanders).

Six different scenarios were used, each differing the number of surface-to-
air missile sites. Each configuration was run ten times, thus the results below
represent around 30 hours of simulation time (120 hours of real-time). As the
number of missile sites increases, the team will have more to do with the same
number of WASMs, thus we expected more meta-reasoning decisions.

Figure 11 shows that the total number of meta-reasoning decisions does
increase with the number of targets. Over the course of a simulation, there

220 Paul Scerri et al.

Fig. 10. Six performance measures recorded from TeamSim are ploted during the
mission with 3 times of reconfiguration. Thick lines show the average values of actual
performance measures of each configuration setting. Thin lines are the predicted
values by the user interface.

are around 100 meta-reasoning decisions or about one per agent. However, as
Figure 12 shows, only about 20% of these get transferred to a human. The large
number of decisions that are made autonomously is primarily because humans
are not available to make those decisions. This suggests work may need to
be done to prioritize decisions for a user, to prevent high priority decisions
being left to an agent, while the user is busy with low priority decisions.
However, an appropriate solution is not obvious, since new decisions arrive
asynchronously and it will likely not be appropriate to continually change the
list of decisions the human is working on. Finally, notice in Figure 13 that a
large percentage of the meta-decisions are to potentially cancel long running

Challenges in Building Very Large Teams 221

Fig. 11. The number of meta-reasoning decisions to be made as the number of
targets in the environment increases.

plans. The large number of such decisions illustrates a need to carefully tune
the meta-reasoning heuristics in order to avoid overloading the system with
superfluous decisions. However, in this specific case, the problem of deciding
whether to cancel a long running plan was the most appropriate for the human,
hence the large percentage of such decisions for the human is reasonable.

Fig. 12. The percentage of decisions transferred to humans versus the percentage
made autonomously.

8 Related Work

Coordination of distributed entities is an extensively studied problem [9, 8, 24,
28, 55]. A key design decision is how the control is distributed among the group

222 Paul Scerri et al.

Fig. 13. Ratios of different types of meta-reasoning decisions presented to the user.

members. Solutions range from completely centralized [14], to hierarchical [11,
20] to completely decentralized [60]. While there is not yet definitive, empirical
evidence of the strengths and weaknesses of each type of architecture, it is
generally considered that centralized coordination can lead to behavior that is
closer to optimal, but more distributed coordination is more robust to failures
of communications and individual nodes [3]. Creating distributed groups of
cooperative autonomous agents and robots that must cooperate in dynamic
and hostile environments is a huge challenge that has attracted much attention
from the research community [25, 27]. Using a wide range of ideas, researchers
have had moderate success in building and understanding flexible and robust
teams that can effectively act towards their joint goals [6, 10, 22, 47].

Tidhar [57] used the term “team-oriented programming” to describe a con-
ceptual framework for specifying team behaviors based on mutual beliefs and
joint plans, coupled with organizational structures. His framework also ad-
dressed the issue of team selection [57] — team selection matches the “skills”
required for executing a team plan against agents that have those skills. Jen-
nings’s GRATE* [22] uses a teamwork module, implementing a model of coop-
eration based on the joint intentions framework. Each agent has its own coop-
eration level module that negotiates involvement in a joint task and maintains
information about its own and other agents’ involvement in joint goals. The
Electric Elves project was the first human-agent collaboration architecture
to include both proxies and humans in a complex environment [6]. COLLA-
GEN [46] uses a proxy architecture for collaboration between a single agent
and user. While these teams have been successful, they have consisted of at
most 20 team members and will not easily scale to larger teams.

Challenges in Building Very Large Teams 223

8.1 Small Worlds Networks

Research on social networks began in physics [59, 2]. Gaston [17] investi-
gate the team formation on type of social network structures can dramati-
cally affect team abilities to complete cooperative tasks. In particular, using
a scale-free network structure for agent team will facilitate team formation
by balancing between the number of skill-constrained paths available in the
agent organization with the effects of potential blocking. Pujol [41] compared
the merits of small world network and scale free network in the application of
emergent coordination.

Task Allocation

Numerous task allocation algorithms have been proposed, although most do
not consider costs (find only satisfying allocations) or scale very poorly with
team size, or both. Symbolic matching techniques [57, 36] ignore costs com-
pletely which can have disastrous effects on team performance. Combinatorial
auctions [21] are one approach that seek to minimize costs, but are impractical
for very large teams due to the exponential number of possible bids and bottle-
necks formed by centralized auctioneers. Forward-looking, decision-theoretic
models [33] can exploit task decomposition to optimally allocate and reallo-
cate tasks, but also do not scale to very large teams due to the exponential
size of the search space.

Complete distributed constraint optimization algorithms [32, 31] can find
optimal solutions but require impractically long running times and unaccept-
ably high amounts of communication. Some incomplete distributed constraint
optimization algorithms [65] can be scaled to large teams, but these may also
suffer from a high amount of communication, and has been outperformed by
our approach in previous evaluations [34].

Swarm-based approaches [48, 1, 4] provide a distributed, highly scalable
way to perform task allocation and reallocation. Interestingly enough, these
algorithms also rely on threshold-based computations. However, swarm algo-
rithms rely directly on locally sensed stimuli to adjust thresholds and make
decisions, while under our approach actors may use arbitrary information ob-
tained locally or from other actors. This additional level of flexibility can
be leveraged for better performance through synergistic interactions with the
other algorithms presented here.

Human Control

The approach of using sensitivity analysis of multilayer neural networks to
provide inverse relationship from output to input have been applied in several
areas. Especially, Ming Lu et al. [30] demonstrated a simple algorithm for
using a sensitivity analysis of neural networks and X. Zeng et al. [62] provide
theoretical results.

224 Paul Scerri et al.

Peter Eggenberger et al. [13] investigated and introduced the idea of dy-
namic rearrangement of biological nervous systems. Their approach allows
neural networks to have an additional mechanism to dynamically change their
synaptic weight modulations and neuronal states during execution. [15] pre-
sented another idea of dynamic network that dynamically modifying network
structure. The algorithms start with zero or small number of hidden nodes and
later the network change its structure by the number of hidden nodes to find
the structure that fit well with the target system. A. Parlos et al. [37] proposed
a hybrid feedforward/feedback neural network for using to identify nonlinear
dynamic systems. Dynamic back propagation learning is demonstrated as the
dynamic learning algorithm.

9 Conclusions and Future Work

In this chapter, we have presented a novel approach to coordination based on
the concept of tokens. We have shown how such algorithms can be very ef-
fective for scalable coordination, particularly when they are combined into an
integrated algorithm. The homogeneity of the token-based approach allowed
us to build a general meta-reasoning layer over the top of the flows of tokens.
This meta-reasoning layer gives a user powerful tools for ensuring that the
team fulfills their requirements. Future work will examine how to inject fault
tolerance into these algorithms and how the precise details of the associates
network affect behavior.

Acknowledgements

This research has been supported by AFSOR grant F49620-01-1-0542 and
AFRL/MNK grant F08630-03-1-0005.

References

1. William Agassounon and Alcherio Martinoli. Efficiency and robustness of
threshold-based distributed allocation algorithms in multiagent systems. In
Proceedings of AAMAS’02, 2002.

2. Albert-Laszla Barabasi and Eric Bonabeau. Scale free networks. Scientific
American, pages 60–69, May 2003.

3. Johanna Bryson. Hierarchy and sequence vs. full parallelism in action selection.
In Intelligent Virtual Agents 2, pages 113–125, 1999.

4. M. Campos, E. Bonabeau, G. Therauluz, and J.-L. Deneubourg. Dynamic
scheduling and division of labor in social insects. Adaptive Behavior, 2001.

5. C. Castelpietra, L. Iocchi, D. Nardi, M. Piaggio, A. Scalzo, and A. Sgorbissa.
Coordination among heterogenous robotic soccer players. In Proceedings of
IROS’02, 2002.

Challenges in Building Very Large Teams 225

6. Hans Chalupsky, Yolanda Gil, Craig A. Knoblock, Kristina Lerman, Jean Oh,
David V. Pynadath, Thomas A. Russ, and Milind Tambe. Electric Elves: Agent
technology for supporting human organizations. AI Magazine, 23(2):11–24,
2002.

7. Richard Clark. Uninhabited Combat Air Vehicles: Airpower by the people, for
the people but not with the people. Air University Press, 2000.

8. D. Cockburn and N. Jennings. Foundations of Distributed Artificial Intelligence,
chapter ARCHON: A Distributed Artificial Intelligence System For Industrial
Applications, pages 319–344. Wiley, 1996.

9. Philip R. Cohen and Hector J. Levesque. Teamwork. Nous, 25(4):487–512, 1991.
10. K. Decker and J. Li. Coordinated hospital patient scheduling. In Proceedings of

the 1998 International Conference on Multi-Agent Systems (ICMAS’98), pages
104–111, Paris, July 1998.

11. Vincent Decugis and Jacques Ferber. Action selection in an autonomous agent
with a hierarchical distributed reactive planning architecture. In Proceedings of
the Second International Conference on Autonomous Agents, 1998.

12. Defense Science Board. Defense science board study on unmanned aerial vehicles
and uninhabited combat aerial vehicles. Technical report, Office of the Under
Secretary of Defense for Acquisition, Technology and Logistics, 2004.

13. P. Eggenberger, A. Ishiguro, S. Tokura, T. Kondo, and Y. Uchikawa. Toward
seamless transfer from simulated to real worlds: A dynamically-rearranging neu-
ral network approach. In Proceeding of 1999 the Eighth European Workshop in
Learning Robot (EWLR-8), pages 44–60, 1999.

14. T. Estlin, T. Mann, A. Gray, G. Rapideau, R. Castano, S. Chein, and E. Mjol-
sness. An integrated system for multi-rover scientific exploration. In Proceedings
of AAAI’99, 1999.

15. S. E. Fahlman and C. Lebiere. The Cascade-Correlation Learning Architecture.
In Touretzky (ed.), editor, Advances in Neural Information Processing Systems
2. Morgan-Kaufmann.

16. Stephen Fitzpatrick and Lambert Meertens. Stochastic Algorithms: Foundations
and Applications, Proceedings SAGA 2001, volume LNCS 2264, chapter An Ex-
perimental Assessment of a Stochastic, Anytime, Decentralized, Soft Colourer
for Sparse Graphs, pages 49–64. Springer-Verlag, 2001.

17. M. Gaston and M. desJardins. The communicative multiagent team decision
problem: analyzing teamwork theories and models. In Proceedings of the 18th
International Florida Artificial Intelligence Research Society Conference, 2005.

18. Dani Goldberg, Vincent Cicirello, M Bernardine Dias, Reid Simmons, Stephen
Smith, and Anthony (Tony) Stentz. Market-based multi-robot planning in a
distributed layered architecture. In Multi-Robot Systems: From Swarms to In-
telligent Automata: Proceedings from the 2003 International Workshop on Multi-
Robot Systems, volume 2, pages 27–38. Kluwer Academic Publishers, 2003.

19. Barbara Grosz and Sarit Kraus. Collaborative plans for complex group actions.
Artificial Intelligence, 86:269–358, 1996”.

20. Bryan Horling, Roger Mailler, Mark Sims, and Victor Lesser. Using and main-
taining organization in a large-scale distributed sensor network. In In Pro-
ceedings of the Workshop on Autonomy, Delegation, and Control (AAMAS03),
2003.

21. L. Hunsberger and B. Grosz. A combinatorial auction for collaborative planning,
2000.

226 Paul Scerri et al.

22. N. Jennings. The archon systems and its applications. Project Report, 1995.
23. N. Jennings, E. Mamdani, I Laresgoiti, J. Perez, and J. Corera. GRATE: A

general framework for cooperative problem solving. Intelligent Systems Engi-
neering, 1(2), 1992.

24. David Kinny. The distributed multi-agent reasoning system architecture and
language specification. Technical report, Australian Artificial intelligence insti-
tute, Melbourne, Australia, 1993.

25. Hiraoki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, Eiichi Osawa, ,
and Hitoshi Matsubara. RoboCup: A challenge problem for AI. AI Magazine,
18(1):73–85, Spring 1997.

26. Hiroaki Kitano, Satoshi Tadokoro, Itsuki Noda, Hitoshi Matsubara, Tomoichi
Takahashi, Atsushi Shinjoh, and Susumu Shimada. Robocup rescue: Searh and
rescue in large-scale disasters as a domain for autonomous agents research. In
Proc. 1999 IEEE Intl. Conf. on Systems, Man and Cybernetics, volume VI,
pages 739–743, Tokyo, October 1999.

27. John Laird, Randolph Jones, and Paul Nielsen. Coordinated behavior of com-
puter generated forces in TacAir-Soar. In Proceedings of the fourth conference
on computer generated forces and behavioral representation, pages 325–332, Or-
lando, Florida, 1994.

28. V. Lesser, M. Atighetchi, B. Benyo, B. Horling, A. Raja, R. Vincent, T. Wagner,
P. Xuan, and S. Zhang. The UMASS intelligent home project. In Proceedings of
the Third Annual Conference on Autonomous Agents, pages 291–298, Seattle,
USA, 1999.

29. E. Liao, P. Scerri, and K. Sycara. A framework for very large teams. In AA-
MAS’04 Workshop on Coalitions and Teams, 2004.

30. Ming Lu, S. M. AbouRizk, and U. H. Hermann. Sensitivity analysis of neural
networks in spool fabrication productivity studies. Journal of Computing in
Civil Engineering, 15(4):299–308, 2001.

31. Roger Mailler and Victor Lesser. A cooperative mediation-based protocol for
dynamic, distributed resource allocation. 2004.

32. Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. An
asynchronous complete method for distributed constraint optimization. In Pro-
ceedings of Autonomous Agents and Multi-Agent Systems, 2003.

33. R. Nair, M. Tambe, and S. Marsella. Role allocation and reallocation in multi-
agent teams: Towards a practical analysis. In Proceedings of the second Inter-
national Joint conference on agents and multiagent systems (AAMAS), 2003.

34. Steven Okamoto. Dcop in la: Relaxed. Master’s thesis, University of Southern
California, 2003.

35. Committee on Visionary Manufacturing Challenges. Visionary manufacturing
challenges for 2020. National Research Council.

36. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching of
web service capabilities. In Proceedings of the First International Semantic Web
Conference, 2002.

37. Chong K. T. Parlos, A. G. and A. F. Atiya. Application of the Recurrent Mul-
tilayer Perceptron in Modeling Complex Process Dynamics . In IEEE Transac-
tions on Neural Networks, pages 255–266, 1994.

38. Leonid I. Perlovsky. Neural Networks and Intellect: Using Model-Based Con-
cepts. Oxford University Press, 2001.

Challenges in Building Very Large Teams 227

39. J. Polvichai and P. Khosla. An evolutionary behavior programming system with
dynamic networks for mobile robots in dynamic environments. In Proceedings
of 2002 IEEE/RSJ International Conference on Intelligent Robots and System,
volume 1, pages 978–983, 2002.

40. J. Polvichai and P. Khosla. Applying dynamic networks and staged evolution
for soccer robots. In Proceedings of 2003 IEEE/RSJ International Conference
on Intelligent Robots and System, volume 3, pages 3016–3021, 2003.

41. J. Pujol and R. Sanguesa. Emergence of coordination in scale-free networks. In
Web Intelligence and Agent Systems 131-138, 2003.

42. David V. Pynadath and Milind Tambe. An automated teamwork infrastructure
for heterogeneous software agents and humans. Journal of Autonomous Agents
and Multi-Agent Systems, Special Issue on Infrastructure and Requirements for
Building Research Grade Multi-Agent Systems, page to appear, 2002.

43. D.V. Pynadath, M. Tambe, N. Chauvat, and L. Cavedon. Toward team-oriented
programming. In Intelligent Agents VI: Agent Theories, Architectures, and Lan-
guages, pages 233–247, 1999.

44. Paul Ranky. An Introduction to Flexible Automation, Manufacturing and As-
sembly Cells and Systems in CIM (Computer Integrated Manufacturing), Meth-
ods, Tools and Case Studies. CIMware, 1997.

45. C. Reynolds. Authoring autonomous characters. Invited Talk, Distinguished
Lecture Series, Georgia Institute of Technology, Fall 1995.

46. C. Rich and C. Sidner. COLLAGEN: When agents collaborate with peo-
ple. In Proceedings of the International Conference on Autonomous Agents
(Agents’97)”, 1997.

47. P. Rybski, S. Stoeter, M. Erickson, M. Gini, D. Hougen, and N. Papanikolopou-
los. A team of robotic agents for surveillance. In Proceedings of the fourth
international conference on autonomous agents, pages 9–16, 2000.

48. Pedro Sander, Denis Peleshchuk, and Barabara Grosz. A scalable, distributed
algorithm for efficient task allocation. In Proceedings of AAMAS’02, 2002.

49. P. Scerri, E. Liao, Yang. Xu, M. Lewis, G. Lai, and K. Sycara. Theory and
Algorithms for Cooperative Systems, chapter Coordinating very large groups of
wide area search munitions. World Scientific Publishing, 2004.

50. P. Scerri, D. V. Pynadath, L. Johnson, P. Rosenbloom, N. Schurr, M Si, and
M. Tambe. A prototype infrastructure for distributed robot-agent-person teams.
In The Second International Joint Conference on Autonomous Agents and Mul-
tiagent Systems, 2003.

51. P. Scerri, K. Sycara, and M Tambe. Adjustable autonomy in the context of coor-
dination. In AIAA 3rd ”Unmanned Unlimited” Technical Conference, Workshop
and Exhibit, 2004. Invited Paper.

52. P. Scerri, Yang. Xu, E. Liao, J. Lai, and K. Sycara. Scaling teamwork to very
large teams. In Proceedings of AAMAS’04, 2004.

53. Paul Scerri, Alessandro Farinelli, Steven Okamoto, and Milind Tambe. Allocat-
ing tasks in extreme teams. In AAMAS’05, 2005.

54. N. Schurr, J. Marecki, J.P. Lewis, M. Tambe, and P.Scerri. The DEFACTO
system: Training tool for incident commanders. In IAAI’05, 2005.

55. Munindar Singh. Developing formal specifications to coordinate hetrogeneous
agents. In Proceedings of third international conference on multiagent systems,
pages 261–268, 1998.

56. Milind Tambe. Agent architectures for flexible, practical teamwork. National
Conference on AI (AAAI97), pages 22–28, 1997.

228 Paul Scerri et al.

57. G. Tidhar, A.S. Rao, and E.A. Sonenberg. Guided team selection. In Proceedings
of the Second International Conference on Multi-Agent Systems, 1996.

58. T. Wagner, J. Phelps, V. Guralnik, and Ryan VanRiper. COORDINATORS:
Coordination managers for first responders. In AAMAS’04, 2004.

59. Duncan Watts and Steven Strogatz. Collective dynamics of small world net-
works. Nature, 393:440–442, 1998.

60. Tony White and Bernard Pagurek. Towards multi swarm problem solving in
networks. In Proceedings of the International conference on multi-agent systems,
pages 333–340, Paris, July 1998.

61. Michael Wooldridge and Nicholas Jennings. Distributed Software agents and
applications, chapter Towards a theory of cooperative problem solving, pages
40–53. Springer-Verlag, 1994.

62. D.S.Yeung Xiaoqin Zeng. Sensitivity analysis of multilayer perceptron to input
and weight perturbations. IEEE Transactions on Neural Networks, 12(6):1358–
1366, 2001.

63. Y. Xu, M. Lewis, K. Sycara, and P. Scerri. Information sharing in very large
teams. In In AAMAS’04 Workshop on Challenges in Coordination of Large
Scale MultiAgent Systems, 2004.

64. Y. Xu, P. Scerri, B. Yu, S. Okamoto, M. Lewis, and K. Sycara. An integrated
token-based algorithm for scalable coordination. In AAMAS’05, 2005.

65. W. Zhang and L. Wittenburg. Distributed breakout revisited. In Proceedings
of AAAI’02, 2002.

Model Predictive Path-Space Iteration for
Multi-Robot Coordination∗

Omar A.A. Orqueda and Rafael Fierro

MARHES Laboratory
School of Electrical and Computer Engineering
Oklahoma State University
202 Engineering South
Stillwater OK 74078, USA
E-mail: orqueda@ieee.org, rfierro@okstate.edu

Summary. In this work, two novel optimization-based strategies for multi-robot co-
ordination are presented. The proposed algorithms employ a model predictive control
(MPC) version of a Newton-type approach for solving the underlying optimization
problem. Both methods can generate control inputs for vehicles with nonholonomic
constraints moving in a configuration space cluttered by obstacles. Obstacle- and
inter-collision constraints are incorporated into the optimization problem by using
interior and exterior penalty function approaches. Moreover, convergence of the al-
gorithms is studied with and without the presence of obstacles in the environment.
Simulation results verify the validity of the proposed methodology.

1 Introduction

During the last years there has been an increasing interest in controlling for-
mations of mobile robots. The main reason of this interest is the logic expected
out performance of several mobile vehicles over traditionally big structures of
heavily equipped vehicles. For instance, hundred of small robots could cover
better a specific terrain for land-mine removal, space exploration, surveillance,
search and rescue operations than a single complex robot.

Initially, robot formations were based on the imitation of animal behavior.
For example, the imitation of flocking, that is, agents moving together in
large numbers and having a common objective. Studies on flocking mechanism
show that it emerges as a combination of a desire to stay in the group and
yet simultaneously keep a minimum separation distance from other members
of the flock [19]. The first application of flocking behavior was on computer

∗ This work is supported in part by NSF grants #0311460 and CAREER #0348637
and by the U.S. Army Research Office under grant DAAD19-03-1-0142 (through
the University of Oklahoma)

230 Omar A.A. Orqueda and Rafael Fierro

graphics [18]. Reynolds addressed the problem of simulating flocks of birds
and schools of fish with a simple egocentric behavioral model. This model
consisted of collision avoidance, velocity matching, and formation keeping
components. He introduced three heuristic rules that led to the creation of
the first computer animated flocking:

• cohesion rule - aim of proximity keeping to nearby flock-mates,
• separation rule - desire of collision avoidance,
• alignment rule - intention of velocity matching with neighbors.

These three rules are inherently local, and give each member the possibility of
navigating using only its sensing capabilities. From a mathematical point of
view, they allow to pose the flocking problem as a decentralized optimization
problem. The superposition of these three rules results in all agents moving in
a loose (as opposite to rigid) formation, with a common heading while avoiding
collisions [22]. Also, Reynolds’ model includes leader-follower strategies, in
which one agent acts as a group leader and other agents follow the leader
accomplishing the aforementioned rules.

Other authors have addressed the coordination problem of multiple un-
manned vehicles using optimization techniques [2]. Contributions in this area
include work focused on autonomous vehicles performing distributed sensing
tasks [4], decentralized optimization-based control algorithms to solve a vari-
ety of multi-robot problems [9], optimal motion planning [1], and formation
reconfiguration planning (FRP) [25].

More recently, the use of model predictive control (MPC) or receding-
horizon control (RHC) is becoming popular in the multi-robot system liter-
ature [3, 10, 8, 12]. Generally, MPC algorithms rely on the optimization of
a predicted model response with respect to the plant input to determine the
best input changes for a given state. Either hard constraints (that cannot be
violated) or soft constraints (that can be violated but with some penalty) can
be incorporated into the optimization problem, giving to MPC a potential
advantage over passive state feedback control laws. However, there are pos-
sible disadvantages to MPC. For instance, in its traditional use for process
control, the primary disadvantage is the need of a good model of the plant,
but such model is not always available. In robotics applications, the foremost
disadvantage is the computational cost, negligible for slow-moving systems in
the process industry, but very important in real-time applications.

Another important related area of research is motion planning [14]. Among
different approaches on motion planning, we are particularly interested in
algorithms that compute the control action to be applied to the system to
reach a given goal configuration [6, 13]. One of those techniques, useful for
path planning of nonholonomic systems, is path-space iteration (PSI). PSI
methods correct the control action applied to a given system to minimize
the error between an initial path and an acceptable path by using Newton-
Raphson or Gradient type-algorithms [6, 7, 14, 17].

Model Predictive Path-Space Iteration for Multi-Robot Coordination 231

In this chapter, we present two main contributions: (1) a centralized algo-
rithm based on an MPC/PSI to solve a nonholonomic multi-robot coordina-
tion problem; and (2) a decentralized algorithm that incorporates kinematic,
formation, inter- and intra-vehicle collision avoidance constraints. Specifically,
we consider a team of mobile robots (i.e., agents) navigating within a dynamic,
unknown environment. Moreover, any two agents that are interacting in any
way (e.g., sensing, communication) are referred to as neighbors.

The rest of the chapter is organized as follows. Section 2 presents some
mathematical preliminaries and definitions that are used along the chapter.
Section 3 gives the details of the centralized version of the MPC/PSI algo-
rithm. The decentralized version of the algorithm is developed in Section 4.
Conclusions and future work are given in section 5.

2 Mathematical Preliminaries

2.1 Model Predictive Control

The traditional formulation of nonlinear model predictive control (NMPC)
consists of solving an on-line finite horizon open-loop optimization problem
using the current state as the initial state for the plant. The solution to the
problem gives a sequence of control inputs for the entire control horizon;
however, only the first element of the optimal input sequence is applied to the
plant.

Let us consider a nonlinear feedback-controlled system model

ẋ (t) =f (x (t) , u (t)) ,
y (t) =h (x (t)) . (1)

It is assumed that the vector field f ⊆ X × U → X is locally Lipschitz
continuous, x (t) ∈ X ⊆ Rn, u (t) ∈ U ⊆ Rm, ∀t ≥ 0, X is a connected
subspace that represents the state constraints, and U is a compact subspace
that represents the input constraints.

The goal is to find a sampled-data optimal control sequence to drive the
sampled system (1), i.e.,

xk+1 =f (xk, uk) ,
yk =h (xk) , (2)

to an equilibrium point such that the cost function

J (xk+1, . . . , xk+M , uk, . . . , uk+M−1) =
M−1∑
k=0

η (xk, uk) + η (xk+M) (3)

is minimized satisfying the state and the input constraints. η (·) is a smoothing
function, t := kh, and h is the sampling time. Usually, to ensure stability a
terminal constraint is imposed

232 Omar A.A. Orqueda and Rafael Fierro

xM ∈ Xf ⊂ X . (4)

The optimization problem could be re-written as

Pk,M : min
uM

{
Jk,M

(
xk,M , uk,M

)}
(5)

subject to system dynamics (2),
xk,M ∈ Xk,M , and (6)

uk,M ∈ Uk,M , (7)

with xk,M := {xk,1, . . . , xk,M}, uk,M := {uk,0, . . . , uk,M−1}, Xk,M ⊆ RnM and
Uk,M ⊆ RmM are the state and input constraint subspaces expanded for M
components. Throughout this paper, we use the notation ωk,j := ω (k + j|k)
for any function ω (·) evaluated at time k + j with the information available
at time k.

Starting from the actual state xk, the MPC algorithm:
1: solves the optimal problem Pk,M finding the sequence uk,M ,
2: applies the first element of the input sequence uk,M , uk, to the system,
3: shifts the input sequence uk,M , and
4: repeats for xk+1.

For a more detailed discussion about MPC and its properties, the reader
is referred to the bibliography [16].

2.2 Path-space Iteration

Path planning for nonholonomic systems is a well-know research area that has
attracted the attention of many researchers since the end of the 60’s. There
exist several techniques to solve this problem [14, 17], such as search-based,
control-theoretic, and iterative learning (IL) algorithms. Path-space iteration
(PSI) methods are special types of IL algorithms. The main idea is to enhance
the performance of a control system through training, that is, at each new ex-
periment, the control law is updated on the basis of the results of the previous
trial. In particular, path-space iteration methods iterate on the control along
a whole trajectory until a feasible trajectory is found by minimizing a perfor-
mance index in each iteration. An illustration of the method is depicted in
Figure 1.

Let φM (x0, uM) denote the end-point map of the system state that results
of applying a piecewise-continuous control law u (t), given by the elements of
the sequence uM := {u (0) , . . . , u (M − 1)} for t = 0, h, 2h, , (M − 1)h, to
the system (1) evolving from an initial state x0. Let xd be the desired final
configuration of the system at time Mh, and let the final error be defined as

eM (x0, uM) := φM (x0, uM)− xd.

Assuming that there are no obstacles in the configuration space, the path-
space iteration method used in this chapter can be seen as a nonlinear root

Model Predictive Path-Space Iteration for Multi-Robot Coordination 233

Initial path

2nd iteration

1st iteration

3rd iteration Final iteration

Goal

Fig. 1. Path-space iteration example. The final error is minimized in each iteration.

finding problem, where the goal is to find a control sequence uM such that
eM (x0, uM) → 0. To this end we compute the derivative of the error and
iterate over an iteration variable τ

deM (x0, uM (τ))
dτ

= ∇uM
φM (x0, uM (τ))

duM (τ)
dτ

. (8)

If ∇uM
φM (x0, uM) is full rank, then we can choose the following update rule

for uM (τ) minimize the final error

uM (τ + 1) = uM (τ)− α
[
∇uφM (x0, uM (τ))

]†
eM (x0, uM (τ)) , (9)

where α > 0 and
[
∇uM

φM (x0, uM (τ))
]† is the Moore-Penrose pseudo-inverse

of ∇uM
φM (x0, uM (τ)). The gradient ∇uM

φM (x0, uM (τ)) can be computed
from the system (2) linearized about the path resulting from applying uM (τ)

δxk+1 = Φk δxk + Γk δuk, δx (0) = 0, (10)

with Φk := exp (Akh) ∈ Rn×n, Γk :=
∫ h

0
exp (Akτ) dτBk ∈ Rn×m, A (k) :=

∇xf (x (t) , u (t))|t=kh, and B (k) := ∇uf (x (t) , u (t))|t=kh. The convergence
of the iterative algorithm (9) is assured if ∇uM

φM (x0, uM (τ)) is full rank for
all τ , or equivalently, if the time-varying linearized system (10) generated by
linearizing (1) about uM (τ) is controllable [6, 7, 15, 23].

234 Omar A.A. Orqueda and Rafael Fierro

2.3 Graph Theory

Graph theory provides a convenient framework to model multi-vehicle coordi-
nation problems[5, 19]. In this section, some basic concepts relevant to multi-
robot formations are summarized. The reader is referred to the bibliography
for a more detailed treatment [5, 19].

A graph G is a pair (V , E) of a vertex set V ∈ {1, . . . , n} and an edge set
E ∈ V × V , where an edge is an ordered pair of distinct vertices in V . The
adjacency matrix A = {aij} of a graph is a matrix with nonzero elements
such that aij �= 0 ⇔ (i, j) ∈ E . The set of neighbors of node i is defined by

Ni := {j ∈ V : aij �= 0} .

A path from vertex x ∈ V to vertex y ∈ V is a sequence of vertices starting
with x and ending with y such that consecutive vertices are adjacent. A graph
G is said to be connected if there exists a path between any two vertices of G.
An orientation in a graph is the assignment of a direction to each edge, so that
edge (i, j) is an arc from i to vertex j. A graph G with orientation σ is denoted
by Gσ. The incidence matrix B (Gσ) of a graph Gσ is the matrix whose rows
and columns are indexed by the vertices and edges of G respectively, such that
the (i, j) entry of B (Gσ) is equal to 1 if edge (i, j) is incoming to vertex i, −1
if edge (i, j) is out coming from vertex i, and 0 otherwise.

The symmetric matrix defined as

L (G) = B (Gσ)B (Gσ)T

is called the Laplacian of G and is independent of the choice of orientation
σ. For a connected graph, L has a single zero eigenvalue and the associated
eigenvector is the n-dimensional vector of ones, 1n.

Let pi =
(
pi

x, p
i
y

)
∈ R2 denote the position of robot i, and ri > 0 de-

note the interaction range between agent i and the other robots. A spherical
neighborhood (or shell) of radius ri around pi is defined as

B
(
pi, ri

)
:=
{
q ∈ R

2 :
∥∥q − pi

∥∥ ≤ ri
}
.

Let us define p = col
(
pi
)
∈ R2n, where n = |V| is the number of nodes of graph

G, and r = col
(
ri
)
. We refer to the pair (p, r) as a cluster with configuration

p and vector of radii r. A spatial adjacency matrix A (p) = [aij (p)] induced
by a cluster is defined as follows

aij (p) =
{

1, if pj ∈ B
(
pi, ri

)
, j �= i

0, otherwise

The spatial adjacency matrix A (p) defines a spatially induced graph or net
G (p). A node i ∈ V with a spherical neighborhood define a neighboring graph
Ni as

N i (p) := {j ∈ V : aij (p) > 0} . (11)

Model Predictive Path-Space Iteration for Multi-Robot Coordination 235

We assume that N i is connected.
An α-lattice [19] is a configuration p satisfying the set of constraints∥∥pj − pi

∥∥ = d, ∀j ∈ N i (p) .

A quasi α-lattice [19] is a configuration p satisfying the set of inequality con-
straints

−δ ≤
∥∥pj − pi

∥∥− d ≤ δ, ∀ (i, j) ∈ E (p) .

Throughout this chapter, mobile robots are also referred to as agents or α-
agents in the sense defined in [19].

2.4 Robot Model

We are interested in coordinating a team of agents using a model predic-
tive version of a path-space iteration algorithm. We consider a team of Na

nonholonomic robots, as the one shown in Figure 2 (left), modeled using the
well-known unicycle model⎡⎣ ṗi

x (t)
ṗi

y (t)
θ̇i (t)

⎤⎦ =

⎡⎣ cθi(t) 0
sθi(t) 0

0 1

⎤⎦[vi (t)
ωi (t)

]
= F i (t)ui (t) , (12)

where
(
pi

x, p
i
y

)
∈ X i ⊆ R2 and θi ∈ [−π, π] denote the Cartesian position and

orientation of the i-th vehicle, respectively, ui =
(
vi, ωi

)
∈ U i ⊆ R2 is the

velocity (linear and angular) control vector, U i is a compact set of admissible
inputs for robot i, i = 1, . . . , Na, and

F i (t) :=

⎡⎣ cθi(t) 0
sθi(t) 0

0 1

⎤⎦ , (13)

with cθi(t) := cos θi (t) and sθi(t) := sin θi (t).
We assume that all sets U i are equal, then

U0 = U i :=
{(
vi, ωi

)∣∣ ∣∣vi
∣∣ ≤ vmax,

∣∣ωi
∣∣ ≤ ωmax

}
.

We also assume that each robot is equipped with a range sensor, and has
approximate information about its goal position and the number of team
members.

In next sections, we describe two methodologies for multi-robot coordina-
tion that allow a team of mobile robots to reach a goal destination maintaining
a desired formation and avoiding collisions.

236 Omar A.A. Orqueda and Rafael Fierro

d d
d

2

3

32

d

qf

q3 q2

q1

d

Fig. 2. ERSP Scorpion (Evolution Robotics) - Unicycle type robot (left). Centralized
formation configuration (right).

3 Centralized MPC/Path-space Iteration

In this case, the position and orientation of the team is defined by the average
of the positions and orientations of all of its members. We derive the equations
for a formation of three robots (i.e., n = 9, m = 6), but our approach can
be easily extended to any number of robots. Moreover, it is assumed that the
desired formation shape is an equilateral triangle as shown in Figure 2 (right).
Thus, the group dynamics for these three robots become

ẋ (t) =F (x (t))u (t) , (14)
y (t) =Cx (t) , (15)

with

x (t) :=
[
p1x (t) , p1y (t) , θ1 (t) , p2x (t) , p2y (t) , θ2 (t) , p3x (t) , p3y (t) , θ3 (t)

]T ∈ R
9×1,

u (t) :=
[
v1 (t) , ω1 (t) , v2 (t) , ω2 (t) , v3 (t) , ω3 (t)

]T ∈ R
6×1,

C :=
1
3

⎡⎣ 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

⎤⎦ ∈ R
3×9,

F (t) :=

⎡⎣F 1 (t) 0 0
0 F 2 (t) 0
0 0 F 3 (t)

⎤⎦ ∈ R
9×6,

where F (t) is a block-diagonal matrix, and F i (t) is given in (13), i = 1, 2, 3.
Let the states and the inputs computed with the information available at

time k be written into the more compact block vector form [20]

xk,M :=
[
xT

k,1, x
T
k,2, . . . , x

T
k,M

]T ∈ R
nM×1,

uk,M :=
[
uT

k , u
T
k,1, . . . , u

T
k,M−1

]T ∈ R
mM×1.

Let φM

(
xk, uk,M

)
be the M -step-ahead-point map of the system state

that results of applying the input sequence uk,M with the system evolving

Model Predictive Path-Space Iteration for Multi-Robot Coordination 237

from the initial state xk. Then the M -step-ahead predicted formation error is
defined by

ek,M

(
xk, uk,M

)
:= CφM

(
xk, uk,M

)
− yd, (16)

where CφM

(
xk, uk,M

)
is the position of the team in the M -step-ahead sample

time, and yd is the desired position.
The main idea of the PSI method is to iteratively refine the M -step-ahead

control sequence uk,M with a correcting factor dk,M , such that ek,M → 0 as
k → ∞. The correcting factor is computed using a Newton-type algorithm,
and only the firstm elements of the new control sequence vk,M are used as the
actual control law uk. Then, vk,M is shifted one-step ahead using the shifting
matrix

G :=
[

0m(M−1)×m Im(M−1)

0m×m 0m×m(M−1)

]
,

and the process is restarted.
To obtain an expression for the correcting factor dk,M , we first differentiate

the error vector (16) as follows

dek,M

dτ
=
[
C∇uk,M

φM

(
xk, uk,M

)] duk,M

dτ
.

Then, we can use the following discrete update rule to minimize the error

vk,M = uk,M + αkdk,M , (17)

with
dk,M = −

[
C∇uk,M

φM

(
xk, uk,M

)]†
ek,M , (18)

where ∇uk,M
φM

(
xk, uk,M

)
∈ Rn×mM is the gradient of the predicted state

φM (·) with respect to the M -step-ahead control sequence uk,M (·), and (·)†
denotes the Moore-Penrose pseudo-inverse. The gradient ∇uk,M

φM (·) can be
computed from the system equations (14) linearized around a reference tra-
jectory xk,M (·) with input sequence uk,M (·),

δxk,j+1 = Φk,jδxk,j + Γk,jδuk,j , δxk,0 = 0, j = 0, . . . ,M − 1, (19)

with Φk,j := exp (Ak,jh) ∈ Rn×n, and Γk,j :=
∫ h

0
exp (Ak,jτ) dτBk,j ∈ Rn×m,

where Ak,j and Bk,j are block-diagonal matrices given by

Ak,j := [∇x (Fu)]k,j =

⎡⎣ A1
k,j 03×3 03×3

03×3 A
2
k,j 03×3

03×3 03×3 A
3
k,j

⎤⎦
Bk,j := [∇u (Fu)]k,j = Fk,j , (20)

with Ai
k,j :=

⎡⎢⎣0 0 −vi
k,jsθi

k,j

0 0 vi
k,jcθi

k,j

0 0 0

⎤⎥⎦, i = 1, 2, 3.

238 Omar A.A. Orqueda and Rafael Fierro

In general, the predicted state can be expressed as⎡⎢⎢⎢⎣
δxk,1

δxk,2

...
δxk,M

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
Γk,0, 0, · · · 0

Φk,1Γk,0, Γk,1,
. . . 0

...
...

. . .
...∏M−1

j=1 Φk,jΓk,0,
∏M−1

j=2 Φk,jΓk,1, · · · , Γk,M−1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

δuk,0

δuk,1

...
δuk,M−1

⎤⎥⎥⎥⎦ .
(21)

Then, the expression for ∇uk,M
φM

(
xk, uk,M

)
is

∇uk,M
φM

(
xk, uk,M

)
=

⎡⎣M−1∏
j=1

Φk,jΓk,0,

M−1∏
j=2

Φk,jΓk,1, · · · , Φk,M-1Γk,M-2, Γk,M-1

⎤⎦ .
Proposition 1. If the controllability matrix ∇uk,M

φM

(
xk, uk,M

)
has full

rank for all uk,M ∈ RmM and xk,M ∈ RnM , then ek,M

(
xk, uk,M

)
→ 0 as

k →∞.

Proof: Omitted here for space limitations.

Algorithm 5: MPC-PSI
1: k = 0, uk,M non singular
2: Apply uk (first element of the sequence uk,M) to the system
3: Compute ek.M

4: while k < kmax && ‖ek,M‖ > ε do
5: αk = 1
6: exit = false

7: dk,M = −
h
C∇uk,M

φM

`
xk, uk,M

´i†
ek,M

8: while αk > α0
k &&¬exit do

9: vk,M = uk,M + αkdk,M

10: if
‚‚CφM

`
xk, vk,M

´ − yd

‚‚ ≥ (1 − δαk) ‖ek.M‖ then
11: Choose σ ∈ [σ0, σ1]
12: αk = σαk

13: else
14: exit = true
15: end if
16: end while
17: Apply vk (first element of the sequence vk,M) to the system
18: Compute ek.M

19: uk,M = Gvk,M

20: k = k + 1
21: end while

Model Predictive Path-Space Iteration for Multi-Robot Coordination 239

-10 -8 -6 -4 -2 0

-10

-8

-6

-4

-2

0

Fig. 3. Centralized multi-robot formation planning without obstacles

Algorithm 5 uses a backtracking line search over the parameter αk to
reduce the variation in the control action [2]. Figure 3 shows the convergence
of the algorithm for the obstacle-free case.

3.1 Constrained MPC/PSI Problem

Formation keeping in presence of obstacles is not a trivial task. In this section,
we show how to add collision avoidance and formation keeping constraints.
Specifically, let us suppose that the system has to satisfy a set of p inequality
constraints

ci (xk) ≤ 0, i = 1, . . . , p; ∀xk ∈ xk,M , (22)

240 Omar A.A. Orqueda and Rafael Fierro

where ci (·) is a smooth function, and xk,M is the trajectory generated by the
control sequence uk,M . In this work, we use two types of penalties to deal with
constraints, exterior penalties and inner penalties [15, 24]:

• Exterior penalties are continuous differentiable functions equal to zero if
the constraints are satisfied, positive and monotonically increasing if the
constraint is violated.

• Inner penalties [21], or barriers, are functions that tend to infinite on the
border of the constraint.

Inner penalty function approaches are characterized by a function β (xk), such
that β (xk) = 0 if the inequality constraint is not satisfied. More formally,

β
(
ci (xk)

)
=
{

1− exp
[
σici (xk)

]
, if ci (xk) ≤ 0

0, if ci (xk) > 0 (23)

where σi > 0 is a design constant. The signal applied to the system is given
by u′k = β

(
ci (xk)

)
vk, where vk is the first element of the sequence vk,M

computed using (17). In contrast, an exterior penalty function approach is
characterized by a continuous differentiable monotonically increasing function
when the constraint is violated, and null when the constraint is satisfied. Thus,

g
(
ci (xk)

)
=
{
γi
(
1− exp

[
−κi

(
ci (xk) + δi

)])2
, if ci (xk) > −δi

0, if ci (xk) ≤ −δi , (24)

where δi > 0 is the effective width of the barrier and κi > 0 is a positive
constant. Alternatively, one can use [11]

g
(
ci (xk)

)
=

⎧⎨⎩
ci (xk) , if ci (xk) > δi

1
4δi

(
ci (xk) + δi

)2
, if − δi ≤ ci (xk) ≤ δi

0, if ci (xk) < −δi

(25)

where δi > 0 is a design parameter. Figure 4 depicts both functions (24) and
(25). Furthermore, inequality constraints in (22) are transformed into equality
constraints given by

zk,M

(
xk,M

)
=

M∑
j=1

p∑
i=1

g
(
ci (xk,j)

)
.

Now the iterative method is applied to the composite constraint vector

ζk,M

(
xk,M , uk,M

)
=
[
ek,M

(
xk, uk,M

)
zk,M

(
xk,M , uk,M

)] ,
to obtain a path planning solution that satisfies ζk,M = 0 [6]. Then, the
iteration is modified such that

Model Predictive Path-Space Iteration for Multi-Robot Coordination 241

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

c(x)

g(
c(

x)
)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

c(x)
g(
c(
x)

)

Fig. 4. Smooth exterior penalty functions.

dk,M = −
[
Dk,M

(
xk,M , uk,M

)]†
ζk,M ,

with

Dk,M

(
xk,M , uk,M

)
:=
[
C∇uk,M

φM

(
xk, uk,M

)
∇uk,M

zk,M

(
xk,M , uk,M

)] . (26)

The gradient ∇uk,M
zk,M

(
xk,M , uk,M

)
can be computed as

∇uk,M
zk,M

(
xk,M , uk,M

)
=

⎡⎣ p∑
i=1

dg

dci
∇xc

i

∣∣∣∣∣
xk,1

∇uxk,1, · · · ,

p∑
i=1

dg

dci
∇xc

i

∣∣∣∣∣
xk,M

∇uxk,M

⎤⎦ , (27)

with

dg
(
ci (xk)

)
dci

={
2γiκi exp

[
-κi
(
ci + δi

)] [
1− exp

[
-κi
(
ci + δi

)]]
, if ci (xk) > −δi,

0, if ci (xk) ≤ −δi,

or

dg
(
ci (xk)

)
dci

=

⎧⎨⎩
1 if ci (xk) > δi,
1

2δi

(
ci (xk) + δi

)
if − δi ≤ ci (xk) ≤ δi,

0 if ci (xk) < −δi,

and ∇xc
i (xk) depends on the constraint (22). Finally, the following control

law is applied to the original system

242 Omar A.A. Orqueda and Rafael Fierro

u′k = β
(
ci
(
xk,1

))
vk,

with β
(
ci
(
xk,1

))
given by (23).

-10 -8 -6 -4 -2 0

-10

-8

-6

-4

-2

0

Fig. 5. Centralized algorithm with obstacle avoidance using penalty function
(24). The distances between robots are between [0.7577, 1.1229], the convergence
is achieved in τ = 30 iterations.

CASE I: Constraints due to obstacles

Let the constraint given by a circular obstacle of radius r′o centered at P =
(xo, yo) be defined as

ci (xk) = r2o −
(
pi

x − xo

)2 − (pi
y − yo

)2 ≤ 0, i = 1, 2, 3,

Model Predictive Path-Space Iteration for Multi-Robot Coordination 243

-12 -10 -8 -6 -4 -2 0 2

-10

-8

-6

-4

-2

0

2

Fig. 6. Centralized algorithm with obstacle avoidance using penalty function (25).
The distances between robots are between [0.8118, 14.6445], the convergence is
achieved in τ = 27 iterations.

with ro = r′o + rrobot + ε, where ε is a security factor. Then, the inequality
constraint (22) is transformed into the equality constraint

zk,M

(
xk,M , uk,M

)
=

M∑
j=1

g
(
c1 (xk,j)

)
+ g

(
c2 (xk,j)

)
+ g

(
c3 (xk,j)

)
.

Then, for the given formation c (xk) =
[
c1 (xk) , c2 (xk) , c3 (xk)

]T , and the
gradient ∇xc (xk) in (27) is given by

∇xc (xk) = −2
[
p1x − p0x, p1y − p0y, 0, p2x − p0x, p2y − p0y, 0, p3x − p0x, p3y − p0y, 0

]
.

244 Omar A.A. Orqueda and Rafael Fierro

We simulate the above method considering three robots and one obstacle
as shown in Figures 5 and 6. As it can be seen, the team is able to avoid the
obstacle, but the formation shape is no longer maintained.

CASE II: Constraints due to formation keeping

The basic formation should maintain an equilateral triangle. Therefore, the
desired relative positions of the robots of this basic formation with respect to
the formation coordinates are given by

q1d
k =

⎡⎣x1d
k

y1d
k

θ1d
k

⎤⎦ =

⎡⎣xf
k + df

yf
k

θf
k

⎤⎦ ,
q2d
k =

⎡⎣x2d
k

y2d
k

θ2d
k

⎤⎦ =

⎡⎢⎣ xf
k + 1

2d
f

yf
k −

√
3

2 d
f

θf
k

⎤⎥⎦ ,
q3d
k =

⎡⎣x3d
k

y3d
k

θ3d
k

⎤⎦ =

⎡⎢⎣ xf
k + 1

2d
f

yf
k +

√
3

2 d
f

θf
k

⎤⎥⎦ .
In addition, two new sets of constraints are defined for the robots based on
their desired positions. The sets of constraints become

ciρ (xk) =
(
xi

k − xid
)2

+
(
yi

k − yid
)2 − (ρi

)2
, i = 1, 2, 3, (28)

ciξ (xk) =
(
ψi

k − ψid
)2 − (ξi

)2
, i = 1, 2, 3, (29)

where ρi and ξi are design constants, ψi
k := π+ζi

k−θid, ζi
k = tan−1

(
yid−yi

k

xid−xi
k

)
,

ψ1d = 0, ψ2d = − 2π
3 , and ψ3d = 2π

3 , as shown in Figure 7.
The inequality constraints in (22) are transformed into the equality con-

straint

zk,M

(
xk,M

)
=

M∑
j=1

λM−j+1
3∑

i=1

g
(
ciρ (xk,j)

)
+ g

(
ciξ (xk,j)

)
,

where λ is a forgetting factor whose purpose is to allow initial errors in the
formation shape. Then, the gradients ∇ciρ (xk) and ∇ciξ (xk) in (27) can be
computed as follows

∂ciρ (xk)
∂xj

=
{
− 4

3

(
xid − xi

)
, j = i

2
3

(
xid − xi

)
, j �= i

,
∂ciρ (xk)
∂yj

=
{
− 4

3

(
yid − yi

)
, j = i

2
3

(
yid − yi

)
, j �= i

,

∂ciρ (xk)
∂θj

=0, i, j ∈ {1, 2, 3} ,

Model Predictive Path-Space Iteration for Multi-Robot Coordination 245

id

id

id

id

id y

x

q

idii

i

i
i

i

i

i y

x

q

Fig. 7. Angle and distance definition between a virtual leader and a follower in a
given multi-robot configuration.

∂ciξ (xk)
∂xi

=
2
(
γi − γid

) (
yid − yi

)
(xid − xi)2 + (yid − yi)2

,
∂ciξ (xk)
∂yi

= −
2
(
γi − γid

) (
xid − xi

)
(xid − xi)2 + (yid − yi)2

,

∂ciξ (xk)
∂xj

=
∂ciξ (xk)
∂yj

= 0, i �= j,
∂ciξ (xk)
∂θj

= 0, i, j ∈ {1, 2, 3} .

Figures 8-10 depict the result of adding formation keeping constraints to
the path-space iteration problem. Note that the desired formation is achieved
after a few iterations as shown in Figure 8. Furthermore, Figures 9 and 10
illustrate the case of obstacle avoidance. As it can be seen, the formation
shape is successfully maintained during obstacle avoidance maneuvers.

4 Decentralized MPC/Path-space Iteration

A centralized computation of the control law for each robot in a formation
is developed in Section 3. In this section, on the other hand, a decentralized

246 Omar A.A. Orqueda and Rafael Fierro

-10 -8 -6 -4 -2 0

-10

-8

-6

-4

-2

0

Fig. 8. Centralized multi-robot formation planning without obstacles and arbitrary
initial conditions.

MPC/PSI is presented. Each agent (called a follower here) is assumed to
have a limited sensing and communication range. In other words, it is only
capable of avoiding obstacles and following (virtual or real) leaders within a
neighborhood defined by its sensing range. A leader agent sends its position
and the M -step ahead control law to its followers. The followers use this
information to compute their desired positions with respect to the formation.

The control law to achieve a relative desired position is

ek,M = φ
k,M

(
xk, uk,M

)
− yd

k
,

with ek,M , φ
k,M

, and yd
k
∈ RnM . Differentiating this equation, we obtain

dek,M

dt
= ∇uk,M

φ
k,M

(
xk, uk,M

) duk,M

dt
,

24 Omar A.A. Orqueda and Rafael Fierro6

Model Predictive Path-Space Iteration for Multi-Robot Coordination 247

-10 -8 -6 -4 -2 0

-10

-8

-6

-4

-2

0

Fig. 9. Centralized algorithm with obstacle avoidance and formation constraints us-
ing penalty function (24). The distances between robots are between [0.9817, 1.0048],
the convergence is achieved in τ = 42 iterations.

with ∇uk,M
φ

k,M
∈ RnM×mM and uk,M ∈ RmM . Then, the control law be-

comes
vk,M = uk,M − αk

[
∇uk,M

φ
k,M

(
xk, uk,M

)]†
ek,M , (30)

where the gradients are computed in analogous fashion to the centralized case
given in Section 3. Thus,

∇uk,M
φ

k,M

(
xk, uk,M

)
=

⎡⎢⎢⎢⎢⎣
Γk,0 0 · · · 0

Φk,1Γk,0 Γ 1
k

. . .
...

...
...

. . . 0∏M−1
j=1 Φk,jΓk,0

∏M−1
j=2 Φk,jΓk,1 · · · Γk,M−1

⎤⎥⎥⎥⎥⎦ .

Model Predictive Path-Space Iteration for Multi-Robot Coordination 247

248 Omar A.A. Orqueda and Rafael Fierro

-10 -8 -6 -4 -2 0

-10

-8

-6

-4

-2

0

Fig. 10. Centralized algorithm with obstacle avoidance and formation con-
straints using penalty function (25). The distances between robots are between
[0.7269, 1.0698], the convergence is achieved in τ = 48 iterations

Now, a path planning algorithm is used to determine the path of the leader
of the formation. The other agents are controlled by (30). In order to use this
controller, a virtual leader or group of leaders has to be defined for a particular
robot. In this work, the leader for each member of the formation is chosen from
Ni (q) in equation (11). Then, formation keeping is assured by equations (29),
where ψid, i = 1, 2, 3, depends on the choice of the leader.

Figure 11 shows the result of simulating a formation of 7 robots in an
obstacle-free environment. Figure 12 presents the same formation but with
the presence of an obstacle. Finally, Figure 13 depicts the results of obstacle
avoidance using formation keeping constraints. Note that the controller (30)

24 Omar A.A. Orqueda and Rafael Fierro8

Model Predictive Path-Space Iteration for Multi-Robot Coordination 249

with constraints (29) allow the agents to avoid inter-collisions by adequately
defining the parameters ψid, ρi, and ξi.

-12 -10 -8 -6 -4 -2 0 2
-14

-12

-10

-8

-6

-4

-2

0

2

Fig. 11. Decentralized multi-robot formation control without obstacles.

5 Conclusions

In this work, we develop a centralized and a decentralized optimization-based
strategies for multi-robot coordination. Both strategies use a Newton-type ap-
proach for solving a model predictive control optimization problem, avoiding
the use of any optimization solver package.

The centralized strategy requires that a team leader performs all the com-
putations and broadcasts all the resultant control sequences to its followers.

250 Omar A.A. Orqueda and Rafael Fierro

-15 -10 -5 0

-14

-12

-10

-8

-6

-4

-2

0

Fig. 12. Decentralized multi-robot formation control with obstacle avoidance.

On the contrary, the decentralized strategy allows distributed optimization,
reducing computational and communicational burdens. However, it should be
noted that the robot or robots acting as leaders must, at least, broadcast
the information about their positions and projected movements to the their
followers with the decentralized strategy.

The convergence of both algorithms is very fast, as shown in the simula-
tion experiments. The main drawback of both methodologies is the need of a
feasible control sequence in the initial setup. This problem could be solved by
using a holonomic motion planner to find such a sequence. Currently, we are
implemented the algorithms presented herein on the Marhes experimental
testbed2.

2 http://marhes.okstate.edu

Model Predictive Path-Space Iteration for Multi-Robot Coordination 251

-12 -10 -8 -6 -4 -2 0 2
-14

-12

-10

-8

-6

-4

-2

0

2

Fig. 13. Decentralized multi-robot formation control with obstacle avoidance and
formation constraints.

6 Acknowledgments

The authors thank Professor Teo Kok Lay for his suggestion on the formula-
tion of the constrained optimization problem.

References

1. C. Belta and V. Kumar. Optimal motion generation for groups of robots: A
geometric approach. ASME Journal of Mechanical Design, 126:63–70, 2004.

252 Omar A.A. Orqueda and Rafael Fierro

2. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, Cambridge, UK, March 2004.

3. J. Bullingham, A. Richards, and J. P. How. Receding horizon control of au-
tonomous aerial vehicles. In Proceedings of the American Control Conference,
pages 3741–3746, Anchorage, AK, May 2002.

4. J. Cortés, S. Mart́ınez, T. Karatas, and F. Bullo. Coverage control for mobile
sensing networks. IEEE Transactions on Robotics and Automation, 20(2):243–
255, April 2004.

5. R. Diestel. Graph Theory. Springer-Verlag, New York, 2000.
6. A. Divelbiss and J.T. Wen. Nonholonomic motion planning with inequality

constraints. In Proceedings of the IEEE Conference on Decision and Control,
pages 2712–2717, San Antonio, Texas, December 1993.

7. A.W. Divelbiss and J.T. Wen. A path space approach to nonholonomic mo-
tion planning in the presence of obstacles. IEEE Transactions on Robotics and
Automation, 13(3):443–451, June 1997.

8. W. B. Dunbar and R. M. Murray. Model predictive control of coordinated
multi-vehicle formations. In Proceedings of the IEEE Conference on Decision
and Control, pages 4631–4636, Las Vegas, NV, Dec. 10-13 2002.

9. J. T. Feddema, R. D. Robinett, and R. H. Byrne. An optimization approach to
distributed controls of multiple robot vehicles. In Workshop on Control and Co-
operation of Intelligent Miniature Robots, IEEE/RSJ International Conference
on Intelligent Robots and Systems, Las Vegas, Nevada, October 31 2003.

10. R. Fierro and K. Wesselowski. Optimization-based control of multi-vehicle sys-
tems. In V. Kumar, N.E. Leonard, and A.S. Morse, editors, A Post-Workshop
Volume 2003 Block Island Workshop on Cooperative Control Series, volume 309
of LNCIS, pages 63–78. Springer, 2005.

11. C.J. Goh and K.L. Teo. Alternative algorithms for solving nonlinear function
and functional inequalities. Applied Mathematics and Computation, 41(2):159–
177, January 1991.

12. T. Keviczky, F. Borrelli, and G.J. Balas. A study on decentralized receding
horizon control for decoupled systems. In Proceedings of the American Control
Conference, volume 6, pages 4921–4926, Boston, MA, June 2004.

13. J.J. Kuffner and S.M. LaValle. RRT-Connect: An efficient approach to single-
query path planning. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 95–101, San Francisco, CA, April 2000.

14. J.C. Latombe. Robot Motion Planning. Kluwer Academic Publications, Boston,
MA, 1991.

15. F.C. Lizarralde. Estabilização de sistemas de controle não lineares afins por um
método do tipo Newton (in Portuguese). PhD thesis, Universidade Federal do
Rio de Janeiro, COPPE, Ŕıo de Janeiro, RJ-BRASIL, September 1998.

16. D.Q. Mayne, J.B. Rawings, C.V. Rao, and P.O.M. Scokaert. Constrained model
predictive control: Stability and optimality. Automatica, 36(6):789–814, June
2000.

17. D-O. Popa. Path-Planning and Feedback Stabilization of Nonholonomic Control
Systems. PhD thesis, Rensselaer Polytechnic Institute, Troy, NY 12180, April
1998.

18. C.W. Reynolds. Flocks, herds, and schools: A distributed behavioral model.
Computer Graphics, 21(4):25–34, July 1987.

Model Predictive Path-Space Iteration for Multi-Robot Coordination 253

19. R. Olfati Saber. Flocking for multi-agent dynamic systems: Algorithms and
theory. Technical Report CIT-CDS 2004-005, Control and Dynamical Systems,
Pasadena, Cal, June 2004.

20. N. Sadegh. Trajectory learning and output feedback control of nonlinear discrete
time systems. In Proceedings of the 40th IEEE Conference on Decision and
Control, pages 4032–4037, Orlando, Florida USA, December 2001, December
2001.

21. E.D. Sontag. Control of systems without drift via generic loops. IEEE Trans-
actions on Automatic Control, 40:413–440, 1995.

22. H.G. Tanner, A. Jabdabaie, and G.J. Pappas. Stable flocking of mobile agents,
part I: Fixed topology. In Proceedings of the IEEE Conference on Decision and
Control, pages 2010–2015, Maui, Hawaii, USA, December 2003.

23. J.T. Wen and S. Jung. Nonlinear model predictive control based on predicted
state error convergence. In Proceedings of the American Control Conference,
pages 2227–2232, Boston, MA, June 2004.

24. J.T. Wen and F. Lizarralde. Nonlinear model predictive control based on the
best-step Newton algorithm. In Proceedings of the 2004 IEEE Conference on
Control Applications, pages 823–829, Taipei, Taiwan, August 2004.

25. S. Zelinski, T.J. Koo, and S. Sastry. Optimization-based formation reconfigura-
tion planning for autonomous vehicles. In Proceedings of the IEEE International
Conference on Robotics and Automation, number 3, pages 3758–3763, Septem-
ber 2003.

Path Planning for a Collection of Vehicles
With Yaw Rate Constraints

Sivakumar Rathinam1, Raja Sengupta1 and Swaroop Darbha2

1 CEE Systems,
University of California,
Berkeley, CA 94702, USA
E-mail: rsiva@berkeley.edu

2 Mechanical Engineering,
Texas A & M University,
College Station, TX 77843-3123

Summary. Multi-vehicle systems are naturally encountered in civil and military
applications. Cooperation amongst individual “miniaturized” vehicles allows for flex-
ibility to accomplish missions that a single large vehicle may not readily be able to
accomplish. While accomplishing a mission, motion planning algorithms are required
to efficiently utilize a common resource (such as the total fuel in the collection of
vehicles) or to minimize a collective cost function (such as the maximum time taken
by the vehicles to reach their intended destination). The objective of this chapter is
to present a constant factor approximation algorithm for planning the path of each
vehicle in a collection of vehicles, where the motion of each vehicle must satisfy yaw
rate constraints.

1 Introduction

The motivation for this work stems from the need to develop combined motion
planning and resource allocation algorithms for multi-vehicle systems such as
those envisioned in [1]. Reference [1] describes a collection of miniaturized, self-
propelled vehicles that are capable of searching a particular area, identifying
targets, and mapping areas of interest. In such a collection, it is imperative
that fuel be efficiently used to accomplish missions. The vehicles considered
in this work have the following constraints:

1. Each vehicle has a limited fuel capacity; this implies that the distance
that can be traveled by a vehicle is limited.

2. The yaw rate of every vehicle in the collection is bounded. At a constant
speed, this constraint is equivalent to a constraint on the minimum turning
radius of the vehicle.

256 Sivakumar Rathinam, Raja Sengupta and Swaroop Darbha

It is assumed that vehicles in the collection have the ability to communicate
with each other. It is also assumed that there is no loss and/or corruption
of information when vehicles communicate with each other. Given a set of
vehicles, targets with yaw rate constraints on the vehicles and the approach
angles at the targets, the problem P addressed in this chapter is

• to optimally assign each vehicle, a sequence of targets to visit, and
• to find the optimal paths of the vehicles to their respective targets that

satisfy yaw rate constraints, so that a collective cost function is minimized.
The cost function considered is the total distance traveled by all the vehi-
cles to traverse their assigned targets.

Once the optimal distance path between any pair of targets is determined
using the well-known result of L.E. Dubins [2] in the motion planning lit-
erature, problem P can be posed as a Multi Vehicle-Asymmetric Traveling
Salesman Problem with the costs satisfying triangle inequality3. The yaw rate
constraints present in the problem P make the costs asymmetric. For example,
the distance traveled by any vehicle to travel from a target A with a heading
ψA to another target B with a different heading ψB is, in general, different
from the distance traveled by the vehicle from target B with a heading ψB to
target A with a heading ψA.

Asymmetric Traveling Salesman Problem (ATSP) is a well known combi-
natorial optimization that is known to be NP-hard. Currently, there are no
algorithms with a constant approximation factor available for solving ATSP
problems even when the costs satisfy triangle inequality. Approximation factor
β(P,A) of using an algorithm A to solve the problem P (objective is minimize
some cost function) is defined as

β(P,A) = sup
S

(
C(S,A)
Co(S)

), (1)

where S is a problem instance, C(S,A) is the cost of the solution by
applying algorithm A to the instance S and Co(S) is the cost of the optimal
solution of S. The algorithm by Markus Blaser given in [22] for a single vehicle
ATSP problem (visiting n targets) has an approximation factor 0.999 logn.
Hence, the bound → ∞ as n → ∞. There are also other kind of algorithms
where the bound→∞ due to the data but are independent of n. For example,
the algorithm by Kumar and Li given in [21] has an approximation ratio which
is a increasing function of dmax

dmin
. Here, dmax = maxi,j d(i, j) and dmin =

mini,j d(i, j), where d(i, j) denotes the costs between two targets i and j. In
this chapter, we present an algorithm with an approximation factor to solve
problem P by making certain assumptions about the positions of the targets.
This will be discussed later in the next subsection.

3 If i, j, k denote the targets to be visited and d(i, j), the distance to travel from
the ith to the jth target, then satisfying triangle inequality means that d(i, j) ≤
d(i, k) + d(k, j)

Path Planning for a Collection of Vehicles With Yaw Rate Constraints 257

1.1 Related Work

A series of papers by Chandler et al. in [3],[4],[5],[6] and [9] discusses the
complexity and other related issues that arise in cooperative control of UAVs.
Task allocation and multi-assignment problems are solved using network flow
and auction algorithms in [7],[8] and [9]. Theju et al. in [10] present methods
for solving the multi-vehicle, target assignment problem in the presence of
threats with the goal of minimizing the maximum path length. A hierarchical
decomposition approach involving both target assignment and feasible tra-
jectory generation is addressed in [11]. Mixed Integer Linear Programming is
used to solve task assignment problems with timing constraints in [12],[13].
Cooperative path planning for teams of vehicles with different types of timing
constraints are addressed in [15]. Dynamic programming is used to solve a
cooperative search problem with several UAVs in [16].

Relevant to this work is the paper by Yang et al. [17] where they consider
path planning for a UAV with kinematic constraints given fixed initial and
final positions in the presence of obstacles. The UAV in their work is required
to tour a target and then reach the final position. This is related to the single
vehicle problem addressed in this chapter. A bound on the tour distance for
a single vehicle was derived in [22]. A more general version of problem P was
also formulated in [18].

In this chapter, we present algorithms with an approximation factor of
3
2 (1 + 1.33π) for the single vehicle and 2(1 + 1.33π) for the multiple vehicle
case. The assumption is that the Euclidean distances between any two targets
and the Euclidean distance between the initial position of each vehicle and a
target is greater than twice the minimum turning radius of the vehicles. This
is reasonable assumption in the context of unmanned aerial vehicles which
carry sensors that have footprints that are greater than 2r.

2 Problem Setting

As a first approximation, it is reasonable to ignore the dynamics of a vehicle
for purposes of resource allocation. Even with this simplifying assumption,
the motion planning is a non-trivial problem. Since the primary focus is on
resource allocation that accounts for motion planning constraints, we are not
particularly concerned that the resulting motion plans may not be flyable
trajectories; however, we do assume that there are flyable trajectories close
to the motion plans. We treat each vehicle as a Dubins car that travels at a
constant speed and has a bound on its yaw rate. Basically, the motion of each
vehicle in the collection is governed by the following equations:

˙x(t) = vo cos θ(t) (2)

˙y(t) = vo sin θ(t) (3)

258 Sivakumar Rathinam, Raja Sengupta and Swaroop Darbha

˙θ(t) = Ω where Ω ε [−ω,+ω] (4)

where vo denote the velocity of the vehicle and ω represents the bound on the
yaw rate of the vehicle. The maximum yaw rate is related to the minimum
turning radius, r, for the vehicle through the following relation: r = vo

ω .
The assumption regarding motion planning is that the fuel spent by the

vehicle in moving a given distance is directly proportional to the distance
covered. This assumption implies that minimal fuel path is the same as the
minimal distance path. Due to the constraints on the fuel capacity, the aim
here is to minimize the fuel consumed by the vehicles to arrive at their re-
spective targets. Hence the problem in motion planning is to find out minimal
distance paths that a vehicle should follow from its present position to a de-
sired future location, e.g., a target, subject to path constraints. L.E. Dubins
[2] gives the optimal path the vehicle must travel for this problem subject
to the path constraints. This result transforms the above motion planning
problem to an algebraic problem as follows:

The curve joining the two points (x1, y1, θ1) and (x2, y2, θ2) that has mini-
mal length subject to a limit on the yaw rate, consists of at most three pieces,
each of which is either a straight line or an arc of of a circle of radius r. This
curve must necessarily be

1. An arc of an circle of radius r, followed by a line segment, followed by
an arc of circle of radius r.

2. A sequence of three arcs of circles of radius r.
3. A sub path of a path of type 1 or 2.
Henceforth, the optimal path between any two targets will be referred to

as a Dubins path in this chapter. Examples of such paths are shown in figures
1 and 2.

Fig. 1. Shortest path - {cw, s, ccw}.

Path Planning for a Collection of Vehicles With Yaw Rate Constraints 259

Fig. 2. Shortest path - {cw, s, cw}.

3 Resource Allocation Problem

Let (t(x, j), t(y, j)) denote the position coordinates of the (target) tj . Simi-
larly, let (v(x, i), v(y, i)) indicate the initial position of the vehicle vi. Let each
vehicle start at a initial heading αi. Given a set of n vehicles, m targets and
the angles of approach at each target t(θ, j), the problem is to

• Assign a sequence Pi of targets to each vehicle such that {t1, t2...tm} =⋃
i Pi, where Pi

⋂
Pj = Φ if i �= j. Pi is a sequence of targets {ti1, ...tik}

to be visited by the ith vehicle. For example, the ith vehicle moves
from (v(x, i), v(y, i), v(α, i)) to (t(x, i1), t(y, i1), t(θ, i1)) and then from
(t(x, i1), t(y, i1), t(θ, i1)) to (t(x, i2), t(y, i2), t(θ, i2)) and so on. After reach-
ing tik, it comes back to its initial position. The paths of each vehicle when
it travels between the targets should satisfy the maximum yaw rate con-
straints.

The objective is to minimize
∑n

i=1 Cost(Pi), where Cost(Pi) is the distance
traveled by the ith vehicle.

4 Single Vehicle Path Planning

In this section, we present an algorithm for the single vehicle path planning
problem (i.e., when n = 1). The Algorithm(SV TP) to solve the single vehicle
problem is as follows:

1. Ignoring the yaw rate constraints on the vehicle, use Christofides algo-
rithm [23] to find an approximate tour for the Euclidean TSP problem.
The output is a sequence of vertices {t1, t2, ...tn} for the vehicle to visit.

260 Sivakumar Rathinam, Raja Sengupta and Swaroop Darbha

2. Use the above sequence and construct Dubins paths between any two
consecutive targets. For example, the vehicle v1 moves along the Dubins
path from (v(x, 1), v(y, 1), v(α, 1)) to (t(x, 1), t(y, 1), t(θ, 1)) and then from
(t(x, 1), t(y, 1), t(θ, 1)) to (t(x, 2), t(y, 2), t(θ, 2)) and so on.

4.1 Analysis

The following result shows the bound for this algorithm. Using the result
of Savla et al. [22], we first bound the ratio of the length of Dubins path
between any two targets to the corresponding Euclidean distance between
them. Let the length of the Dubins path from p1 = (v(x, 1), v(y, 1), v(α, 1))
to p2 = (t(x, 1), t(y, 1), t(θ, 1)) be denoted as D(p1, p2). Assume that the the
Euclidean distance between p1 and p2 is E(p1, p2). The following result is a
simple consequence of the result given in [22].

Lemma 1. If E(p1, p2) ≥ 2r, D(p1,p2)
E(p1,p2) ≤ 1 + 1.33π.

Proof: D(p1, p2) is upper bounded by E(p1, p2) + 2.66πr as given in [22],
where r is the minimum turning radius. Since by assumption E(p1, p2) ≥ 2r,
D(p1,p2)
E(p1,p2)

≤ 1 + 1.33π.
Once the distances between the individual points are bounded, it can be

combined with the Christofides’ result to get an approximation for the single
vehicle problem.

Theorem 1. Algorithm(SV TP) solves the single vehicle problem with an ap-
proximation factor 3

2 (1 + 1.33π).

Proof: The Christofides’ algorithm has an approximation factor of 3
2 [23].

This is assuming all the points are on a Euclidian plane. Lemma 1 basically
implies that the maximum ratio of the distance of the path constructed using
the Dubins path to the Euclidian distance between any two points is 1+1.33π.
Combining these two results, the Algorithm(SVTP) has a bound 3

2 (1+1.33π).

5 Multiple Vehicle Path Planning

In this section, we present an algorithm for the multiple vehicle ATSP problem
(n > 1). The Algorithm(MV TP) for the multi vehicle path planning problem
is as follows:

1. Construct a complete graph with vertices corresponding to all the vehicles
and targets. Assign zero cost to an edge that joins any two vehicles. Assign
the Euclidean distance as the cost to each edge between any other pair of
vertices.

2. Find a minimum spanning tree of the constructed graph using Prim’s
algorithm [23]. The minimum spanning tree will contain exactly n − 1
zero cost edges, where n is the number of vehicles (figure 3).

Path Planning for a Collection of Vehicles With Yaw Rate Constraints 261

3. Remove the zero cost edges to get a tree for each vehicle.
4. For each tree corresponding to a vehicle, double its edges to construct a

Eulerian graph (figure 4). Then construct a tour for each vehicle based
on the Eulerian graph. A tour for each vehicle is a sequence of vertices
(targets) for it to visit (figure 5). (This step is similar to Tarjan’s algorithm
for a single vehicle Euclidean TSP [23]).

5. Use the sequence derived from the previous step for the each vehicle and
construct Dubins paths between any two consecutive targets as in the
single vehicle case (figure 6).

Fig. 3. Calculate the minimum spanning tree (MST). In this example, there are 3
vehicles, hence MST will have 2 zero cost edges.

5.1 Analysis

First we show that multi-vehicle problem without any yaw rate constraints
has an approximation factor of 2. Then as in the single vehicle case, each edge
is replaced with a path that satisfies the yaw rate constraints and a bound
similar to the single vehicle problem can be obtained.

Let G(V,E) be a graph with vertices V = {v1, v2...vn, t1, t2...tm}. The
graph is complete, that is, there is a edge eab between any pair of vertices
a and b. Each edge is assigned a cost C : E −→ R+ such that C(eab) is
the Euclidean distance between vertices a and b if either a or(inclusive or) b
/∈ {v1, v2...vn} and C(eab) = 0 if both a and b ∈ {v1, v2...vn}

262 Sivakumar Rathinam, Raja Sengupta and Swaroop Darbha

Fig. 4. After removing the zero cost edges, double the edges of the MST to get a
Eulerian graph for each vehicle

Fig. 5. Compute the TSP tour based on the Eulerian graph for each vehicle

Lemma 2. The minimum spanning tree MST of the graph G computed using
the Prim’s algorithm has n− 1 zero cost edges.

Proof: Start the Prim’s algorithm at a vertex representing a vehicle. Since,
the Prim’s algorithm is greedy, it will add n−1 zero costs edges before adding
a target vertex. The algorithm cannot add more than n − 1 zero cost edges,
because it would form a cycle otherwise. Hence there will be exactly n − 1
zero cost edges.

Path Planning for a Collection of Vehicles With Yaw Rate Constraints 263

Fig. 6. Use the sequence got from the TSP tour and construct Dubins paths between
the corresponding targets.

Now the following theorem gives a bound for visiting all the targets based
on the Euclidean distances.

Lemma 3. Step 4 of Algorithm(MV TP) produces a sequence of targets for
each of the vehicle to visit and has a factor of approximation of 2.

Proof: Consider the optimal tours for all the vehicles for the graph G(V,E)
based on the cost function C. From each tour, remove one of the two edges
that connect to the vehicle vertex to yield a tree for each vehicle as shown in
the figure 7. Now, add an appropriate set of n−1 zero cost edges to join all the
trees connected to the vehicles to make a tree (that connects all the vertices),
say T ′ (figure 8). Clearly the cost of T ′ must be greater than the cost of the
minimum spanning tree. Hence the cost of the tour constructed using Step 4
of the Algorithm(MV TP) must be lower bounded by Cost(MST).

LetMSTi represent the tree for the ith vehicle after removing the zero cost
edges from the minimum spanning tree. Each tree MSTi must be a minimum
spanning tree for the subset of targets connected to the corresponding vehicle.
Hence doubling the edges results in a Eulerian graph for the corresponding
subset of vertices with a cost ≤ 2MSTi (This can be done because triangle
inequality is satisfied). As given in [23], a TSP tour can be constructed for
each vehicle with a total cost upper bounded by 2

∑
iMSTi or ≤ 2MST .

Hence the tour constructed has a cost which is less than two times the cost
of the optimal tour.

Now, the following is the result for the approximation factor of the
Algorithm(MV TP).

264 Sivakumar Rathinam, Raja Sengupta and Swaroop Darbha

Fig. 7. Removes edges to form a set of trees with each tree containing exactly one
vehicle vertex.

Fig. 8. Adding the zero cost edges to form a tree.

Theorem 2. Algorithm(MV TP) solves the multiple vehicle problem with an
approximation factor 2(1 + 1.33π)

Proof: Follows from lemma 1 and lemma 3.

Path Planning for a Collection of Vehicles With Yaw Rate Constraints 265

0 5 10 15 20

0

5

10

15

20

In kms −>

In
 k

m
s

−
>

After removing the zeros cost edges as in step 3 of multiple vehicle algorithm

0 5 10 15 20

0

5

10

15

20

In kms −>

In
 k

m
s

−
>

Tour for each vehicle based on the Euclidean distances

0 5 10 15 20

0

5

10

15

20

In kms −>

In
 k

m
s

−
>

Paths travelling by each vehicle after imposing the kinematic constraints

Fig. 9. A simulation result showing the application of the multiple vehicle algorithm
to 6 vehicles visiting 40 targets. In the figures ‘*’ indicates a vehicle and ‘.’ indicates
a target.

266 Sivakumar Rathinam, Raja Sengupta and Swaroop Darbha

A simulation result of the multiple vehicle algorithm with the paths trav-
eled by each vehicle is shown in figure 9. The positions of vehicles and targets
were randomly generated in a 20 km × 20 km square with the Euclidean dis-
tances between any pair of the points ≥ 2r. The radius of curvature r was
assumed to be 0.5 km. The angles of approach at each target was also uni-
formly generated in the interval [0, 2π]. 6 vehicles were required to visit 40
targets exactly once satisfying the yaw rate constraints.

6 Conclusions and Future Directions of the Current
Work

This chapter presented approximation algorithms for a collection of vehicles
satisfying yaw rate constraints. The vehicle was modeled as a simple uni-
cycle model with yaw rate constraints. Even if the dynamics of the vehicle
is included, as long as the distances traveled satisfy the triangle inequality
constraints, the results given in this work can be generalized. There are many
future directions for this work. The issues that can addressed are multiple task
targets; missions with timing constraints and order constraints; and stochastic
uncertainty.

7 Acknowledgements

Rathinam and Sengupta’s research was supported by ONR AINS Program
- grant # N00014-03-C-0187,SPO #016671-004. Darbha’s research was sup-
ported by a summer faculty fellowship at AFRL, Wright-Patterson AFB.

References

1. http://www.fas.org/man/dod-101/sys/smart/locaas.htm .
2. Lester E. Dubins, “On curves of minimal length with a constraint on average cur-

vature, and with prescribed initial and terminal positions and tangents”, Amer-
ican Journal of Mathematics, vol 79, Issue 3, pages:487-516, July 1957.

3. Phillip Chandler and Meir Pachter, “Research issues in autonomous control of
tactical UAVs”, American Control Conference, pages:394-398, 1998.

4. Phillip Chandler, Steven Rasmussen, and Meir Pachter, “UAV cooperative path
planning”, Proceedings of the GNC, pages:1255-1265, 2000.

5. Phillip Chandler and Meir Pachter, “Hierarchical control of autonomous control
of tactical UAVs”, Proceedings of GNC, pages:632-642, 2001.

6. Phillip Chandler, Steven Rasmussen, and Meir Pachter, “UAV cooperative con-
trol”, American Control Conference, 2001.

7. Kendall Nygard, Phillip Chandler, and Meir Pachter, “Dynamic Network Flow
Optimization Models for Air Vehicle Resource Allocation”, Proceedings of the
American Control Conference, Arlington, 2001.

Path Planning for a Collection of Vehicles With Yaw Rate Constraints 267

8. Corey Schumacher, Phillip R. Chandler and Steven R. Rasmussen, “Task al-
location for wide area search munitions via network flow optimization”, AIAA
Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada,
August 6-9, 2001.

9. Phillip Chandler, Meir Pachter, Darba Swaroop, Jeffrey M. Fowler, Jason K.
Howlett, Steven Rasmussen, Corey Schumacher and Kendall Nygard, “Complex-
ity in UAV Cooperative Control”, Proceedings of the American Control Confer-
ence, Anchorage, Alaska, May 8-10, 2002.

10. Theju Maddula, Ali A. Minai and Marios M. Polycarpou, “Multi-Target assign-
ment and path planning for groups of UAVs”, S. Butenko, R. Murphey, and P.
Pardalos (Eds.), Kluwer Academic Publishers, December 4-6, 2002.

11. Randall W. Beard, Timothy W. Mclain, Michael A. Goodrich and Erik P. Ander-
son, “Coordinated target assignment and intercept for unmanned air vehicles”,
IEEE Transactions on Robotics and Automation, 18(6),pages:911 -922, December
2002.

12. John Bellingham, Michael Tillerson, Arthur Richards, Jonathan P. How, “Multi-
Task Allocation and Trajectory Design for Cooperating UAVs”, Cooperative Con-
trol: Models, Applications and Algorithms at the Conference on Coordination,
Control and Optimization, November 2001.

13. Arthur Richards, John Bellingham, Michael Tillerson, and Jonathan P. How,
“Co-ordination and Control of Multiple UAVs”, AIAA Guidance, Navigation,
and Control Conference, August 2002.

14. Mehdi Alighanbari, Yoshiaki Kuwata, and Jonathan P. How, “Coordination and
Control of Multiple UAVs with Timing Constraints and Loitering”, Proceeding
of the IEEE American Control Conference, June 2003.

15. Timothy Mclain and Randal Beard, “Cooperative path planning for timing crit-
ical missions”, Proceedings of the American Control Conference, Denver, Col-
orado, June 4-6, 2003.

16. Matthew Flint, Marios Polycarpou and Emmanuel Fernandez-Gaucherand, “Co-
operative Control for Multiple Autonmous UAVs Searching for Targets”, 41st
IEEE Conference on Decision and Control, Las Vegas, Nevada USA, December
2002.

17. Guang Yang and Vikram Kapila, “Optimal path planning for unmanned air
vehicles with kinematic and tactical constraints”, , Proceedings of the 41st IEEE
Conference Decision and Control, Volume 2, pages:1301 - 1306, 10-13 December
2002.

18. Swaroop Darbha, “Teaming Strategies for a resource allocation and coordination
problem in the cooperative control of UAVs”, AFRL Summer Faculty Report,
Dayton, Ohio, 2001.

19. Zhijun Tang and Umit Ozguner, Motion planning for multi-target surveillance
with mobile sensor agents”, to appear in IEEE Transactions on Robotics, 2005.

20. Markus Blaser, “A new approximation algorithm for the asymmetric TSP with
triangle inequality”, Proceedings of the fourteenth annual ACM-SIAM symposium
on Discrete algorithms, pages:638 - 645, 2003.

21. Ratnesh Kumar Haomin Li, “On Asymmetric TSP: Transformation to Symmet-
ric TSP and Performance Symmetric TSP and Performance Bound”, Submitted
to Operations Research.

22. Ketan Savla, Emilio Frazzoli, and Francesco Bullo, On the point-to-point and
traveling salesperson problems for Dubins’ vehicle, American Control Conference,
Portland, Oregon, June 2005.

268 Sivakumar Rathinam, Raja Sengupta and Swaroop Darbha

23. Christos H. Papadimitriou and Ken Steiglitz, Combinatorial optimization: al-
gorithms and complexity, Prentice-Hall 1982, Dover publications 1998.

Estimating the Probability Distributions of
Alloy Impact Toughness: a Constrained

Quantile Regression Approach

Alexandr Golodnikov1, Yevgeny Macheret2, A. Alexandre Trindade3, Stan
Uryasev4 and Grigoriy Zrazhevsky4

1 Department of Industrial and Systems Engineering
University of Florida, Gainesville, FL 32611, USA

2 Institute for Defense Analysis
Alexandria, VA 22311, USA

3 Department of Statistics
University of Florida, Gainesville, FL 32611, USA

4 Department of Industrial and Systems Engineering
University of Florida, Gainesville, FL 32611, USA

Summary. We extend our earlier work, Golodnikov et al [3] and Golodnikov et
al [4], by estimating the entire probability distributions for the impact toughness
characteristic of steels, as measured by Charpy V-Notch (CVN) at −84◦C. Quantile
regression, constrained to produce monotone quantile function and unimodal density
function estimates, is used to construct the empirical quantiles as a function of
various alloy chemical composition and processing variables. The estimated quantiles
are used to produce an estimate of the underlying probability density function,
rendered in the form of a histogram. The resulting CVN distributions are much
more informative for alloy design than singular test data. Using the distributions
to make decisions for selecting better alloys should lead to a more effective and
comprehensive approach than the one based on the minimum value from a multiple
of the three test, as is commonly practiced in the industry.

1 Introduction

In recent work, Golodnikov et al [3] developed statistical models to predict
the tensile yield strength and toughness behavior of high strength low alloy
(HSLA-100) steel. The yield strength was shown to be well approximated by
a linear regression model. The alloy toughness (as evaluated by a Charpy V-
notch, CVN, at −84◦C test), was modeled by fitting separate quantile regres-
sions to the 20th, 50th, and 80th percentiles of its probability distributions.
The toughness model was shown to be reasonably accurate. Ranking of the
alloys and selection of the best composition and processing parameters based

270 Alexandr Golodnikov et al.

on the strength and toughness regression models, produced similar results to
the experimental alloy development program.

Models with the capability to estimate the effect of processing parameters
and chemical composition on toughness, are particularly important for alloy
design. While the tensile strength can be modeled with reasonable accuracy by,
for example, Neural Networks (Metzbower and Czyryca [10]), the prediction
of CVN values remains a difficult problem. One of the reasons for this is that
experimental CVN data often exhibit substantial scatter. The Charpy test
does not provide a measure of an invariant material property, and CVN values
depend on many parameters, including specimen geometry, stress distribution
around the notch, and microstructural inhomogeneities around the notch tip.
More on the CVN test, including the reasons behind the scatter and statistical
aspects of this type of data analysis, can be found in McClintock and Argon [9],
Corowin and Houghland [2], Lucon et al [8], and Todinov [13].

Developing alloys with minimum allowable CVN values, therefore, results
in multiple specimens for each experimental condition, leading to complex
and expensive experimental programs. In addition, it is possible that opti-
mum combinations of processing parameters and alloy compositions will be
missed due to the practical limitations on the number of experimental alloys
and processing conditions. This issue was addressed by Golodnikov et al [4],
in a follow-up paper to Golodnikov et al [3]. The statistical models developed
therein, could be used to simulate a multitude of experimental conditions with
the objective of identifying better alloys on the strength vs. toughness dia-
gram, and determining the chemical composition and processing parameters
of the optimal alloys. The optimization was formulated as a linear program-
ming problem with constraints. The solution (the efficient frontier) plotted on
the strength-toughness diagram, could be used as an aid in successively re-
fining the experimental program, directing the characteristics of the resulting
alloys ever closer to the efficient frontier.

The objective of this paper is to build on our previous two papers, by
estimating the entire distribution function of CVN at −84◦C values for all
specimens of steel analyzed in Golodnikov et al [3], and for selected specimens
on the efficient frontiers considered by Golodnikov et al [4]. As a tool we use
quantile regression, simultaneously fitting a model to several percentiles, while
constraining the solution in order to obtain sensible estimates for the under-
lying distributions. To this end, Section 2 outlines the details and reasoning
behind the methodology to be used. The methodology is applied to the steel
dataset in Section 3.

2 Estimating the Quantile Function With Constrained
Quantile Regression

For a random variable Y with distribution function FY (y) = P (Y ≤ y) and
0 ≤ θ ≤ 1, the θth quantile function of Y, QY (θ), is defined to be

Estimating the Probability Distributions of Alloy Impact Toughness 271

QY (θ) = F−1
Y (y) = inf{y | FY (y) ≥ θ}.

For a random sample Y1, . . . , Yn with empirical distribution function F̂Y (y),
we define the θth empirical quantile function as

Q̂Y (θ) = F̂−1
Y (y) = inf{y | F̂Y (y) ≥ θ},

which can be determined by solving the minimization problem

Q̂Y (θ) = arg min
y

⎧⎨⎩ ∑
i|Yi≥y

θ|Yi − y|+
∑

i|Yi≤y

(1− θ)|Yi − y|

⎫⎬⎭ .
Introduced by Koenker and Bassett [5], the θth quantile regression func-

tion is a generalization of the θth quantile function to the case when Y is a
linear function of a vector of k + 1 explanatory variables x′ = [1, x1, . . . , xk]
plus random error, Y = x′β + ε. Here, β′ = [β0, β1, . . . , βk] are the regression
coefficients, and ε is a random variable that accounts for the surplus variabil-
ity or scatter in Y that cannot be explained by x. The θth quantile function
of Y can therefore be written as

QY (θ|x) = inf{y | FY (y|x) ≥ θ} ≡ x′β(θ), (1)

where β(θ)′ = [β0(θ), β1(θ), . . . , βk(θ)]. The relationship between the ordinary
regression and the quantile regression coefficients, β and β(θ), is in general
not a straightforward one. Given a sample of observations y1, . . . , yn from Y ,
with corresponding observed values x1, . . . ,xn for the explanatory variables,
estimates of the quantile regression coefficients can be obtained as follows:

β̂(θ) = argminβ(θ)∈Rk+1

{∑
i|yi≥x′

iβ(θ) θ|yi − x′
iβ(θ)| +

+
∑

i|yi≤x′
iβ(θ)(1 − θ)|yi − x′

iβ(θ)|
}
.

(2)

This minimization can be reduced to a linear programming problem and solved
via standard optimization methods. A detailed discussion of the underlying
optimization theory and methods is provided by Portnoy and Koenker [11].
The value Q̂Y (θ|x) = x′β̂(θ) is then the estimated θth quantile (or 100θth
percentile) of the response variable Y at x (instead of the estimated mean
value of Y at x as would be the case in ordinary – least squares – regression).

Instead of restricting attention to a single quantile, θ, one can in fact solve
(2) for all θ ∈ [0, 1], and thus recover the entire conditional quantile function
(equivalently, the conditional distribution function) of Y . Efficient algorithms
for accomplishing this have been proposed by Koenker and d’Orey [7], who
show that this results in Hn distinct quantile regression hyperplanes, with
IE(Hn) = O(n log n). Although Bassett and Koenker [6] show that the esti-
mated conditional quantile function at the mean value of x is a monotone
jump function on the interval [0, 1], for a general design point the quantile

hyperplanes are not guaranteed to be parallel, and thus Q̂Y (θ|x) may not
be a proper quantile function. This also usually results in multimodal esti-
mated probability density functions, which may not be desirable in certain
applications.

In order to ensure proper and unimodal estimated distributions are ob-
tained from the quantile regression optimization problem, we introduce addi-
tional constraints in (2), and simultaneously estimate β(θj), j = 1, . . . ,m,
over a grid of probabilities, 0 < θ1 < · · · < θm < 1. That is, with
Q(θj |xi) = x′

iβ(θj) denoting the θjth quantile function of Y at xi, we solve
the following expression for the ((k + 1) × m) matrix whose jth column is
β(θj):

argminβ(θj)∈Rk+1, j=1,...,m

∑n
i=1

∑m
j=1 {(1− θj) [Q(θj |xi)− yi]+ +

+ θj [yi −Q(θj |xi)]
+
}
,

(3)

where for a real number z, (z)+ denotes the positive part of z (equal to z
itself if it is positive, zero otherwise). The following additional constraints are
imposed on (3).

• Monotonicity. This is obtained by requiring that quantile hyperplanes
corresponding to larger probabilities be larger than those corresponding
to smaller ones, i.e.

Q(θj+1|xi) � Q(θj |xi), j = 1, . . . ,m− 1, i = 1, . . . , n. (4)

• Unimodality. Suppose the conditional probability density of Y , fY (·|x),
is unimodal with mode occurring at the quantile θ∗. Let θm1 < θ∗ < θm2 ,
for some indices m1 < m2 in the chosen grid. Then, the probability density
is monotonically increasing over quantiles {θ1, . . . , θm1}, and monotoni-
cally decreasing over quantiles {θm2 , . . . , θm}. Over {θm1 , . . . , θm2}, the
probability density first increases monotonically up to θ∗, then decreases
monotonically. The following expressions, to be satisfied for all i = 1, . . . , n,
formalize these (approximately) sufficient conditions for unimodality:

Q(θj+2|xi)− 2Q(θj+1|xi) +Q(θj |xi) < 0, j = 1, . . . ,m1 − 2, (5)

Q(θj+3|xi)− 3Q(θj+2|xi) + 3Q(θj+1|xi)−Q(θj |xi) > 0,
j = m1, . . . ,m2 − 3, (6)

Q(θj+2|xi)− 2Q(θj+1|xi) +Q(θj |xi) > 0, j = m2, . . . ,m− 2. (7)

Requiring monotonicity leads immediately to (4). Substantiation of (5)-
(7) as sufficient conditions for unimodality (in the limit as m → ∞) is not
so straightforward, and is deferred to A. We summarize these requirements
formally as an estimation problem.

Estimation Problem (Unimodal Conditional Probability Density). Con-
ditional quantile estimates of Y based on in-sample data y1, . . . , yn and

272 Alexandr Golodnikov et al.

Estimating the Probability Distributions of Alloy Impact Toughness 273

x1, . . . ,xn, can be obtained by solving (3) over the grid 0 < θ1 < · · · < θm < 1,
subject to constraints (4) and (5)-(7). The resulting θth quantile estimate at
any given in-sample design point xi, Q̂(θ|xi) = x′

iβ̂(θ), is by construction
monotone in θ for θ ∈ {θ1, . . . , θm}. Constraints (5)-(7) are approximate suf-
ficient conditions for unimodality of the associated density.

Estimation Problem 1 can be solved in two steps. First omit the unimodal-
ity constraints by solving (3) subject only to (4). Analyzing the sample of m
empirical quantile estimates thus obtained, determine indices m1 and m2 that
define a probable quantile interval, θm1 < θ̂∗ < θm2 , around the mode of the
empirical density function, θ̂∗. In the second step the full problem (3)-(7) is
solved.

Although the literature on nonparametric unimodal density estimation is
vast (see for example Cheng et al [1]), we are not aware of any work that
approaches the problem from the quantile regression perspective, as we have
proposed it. In fact, we are not proposing a method for density estimation
per se, rather quantile construction with a view toward imparting desirable
properties on the associated density. As far as we are able to ascertain, Taylor
and Bunn [12] is in fact the only paper to date dealing with constrained
quantile regression, albeit in the context of combining forecast quantiles for
data observed over time. Focusing on the effects of imposing constraints on
the quantile regression problem, they conclude that this leads in general to a
loss in the unbiasedness property for the resulting estimates.

3 Case Study: Estimating the Impact Toughness
Distribution of Steel Alloys

In Golodnikov et al [3], we developed statistical regression models to pre-
dict tensile yield strength (Yield), and fracture toughness (as measured by
Charpy V-Notch, CVN, at −84◦C) of High Strength Low Alloy (HSLA-100)
steel. These predictions are based on a particular steel’s chemical composi-
tion, namely C (x1), Mn (x2), Si (x3), Cr (x4), Ni (x5), Mo (x6), Cu (x7),
Cb (x8), Al (x9), N (x10), P (x11), S (x12), V (x13), measured in weight per-
cent, and the three alloy processing parameters: plate thickness in mm (Thick,
x16), solution treating (Aust, x14), and aging temperature (Aging, x15). As
described in the analysis of Golodnikov et al [3], the yield strength, chemical
composition, and temperature data, have been normalized by their average
values.

Finding that the CVN data had too much scatter to be usefully modeled
via ordinary regression models, Golodnikov et al [3] instead fitted separate
quantile regression models, each targeting a specific percentile of the CVN
distribution. In particular, the 20%th percentile of the distribution function
of CVN is of interest in this analysis, since it plausibly models the smallest of
the three values of CVN associated with each specimen (which is used as the

minimum acceptability threshold for a specimen’s CVN value). Letting Q̂(0.2)
denote the estimated 20th percentile of the conditional distribution function
of log CVN, the following model was obtained:

Q̂(0.2) = 0.000− 0.1x2 + 0.04x4 − 0.419x6 + 0.608x7 − 0.144x10

− 0.035x13 − 0.693x14 + 1.692x15 − 0.004x16. (8)

(CVN was modeled on the logarithmic scale in order to guarantee that model-
predicted values would always be positive.) Although not quite as successful
as the model for Yield, the R1(0.2) = 52% value and further goodness of fit
analyses showed this model to be sufficiently useful for its intended purpose,
the selection and ranking of good candidate steels (Golodnikov et al [3]).

Using the method described in Section 2, we now seek to extend (8) by
estimating the CVN conditional quantiles functions for several quantiles si-
multaneously, and for all specimens of steels described in Golodnikov et al [3]
and some points on the efficient frontier determined by Golodnikov et al [4].
This dataset had an overall sample size of n = 234. We used a grid of m = 99
quantiles, {θj = j/100}, j = 1, . . . , 99. The resulting histograms estimate the
conditional densities, and are presented in B. Each histogram is based on the
99 values, {Q̂(0.01), . . . , Q̂(0.99)}.

We discuss three of these histograms, that illustrate distinct types of be-
havior of interest in metallurgy. The three dots appearing in each histogram
identify the location of the observed values of CVN at −84◦C5. The most
decisive cases are those where the entire probability density falls either above
or below the minimum acceptability threshold of 2.568 for CVN (0.943 on
the log scale). The histogram on Figure 2 corresponding to steel #16, is an
example of the former, while the first histogram of Figure 5 (steel #28 with
Thick= 51, Aust= 1.05 and Aging= 0.84) is an example of the latter case.
The first histogram of Figure 1 (steel #1) illustrates the intermediate case,
less desirable from a metallurgy perspective, since a positive probability for
CVN values to straddle the minimum acceptability threshold leads to greater
uncertainty in the screening of acceptable specimens.

4 Summary

We extended our earlier work, Golodnikov et al [3] and Golodnikov et al [4],
by estimating the entire probability distributions for the impact toughness
characteristic of steels, as measured by Charpy V-Notch at −84◦C. Quantile
regression, constrained to produce monotone quantile function and unimodal
density function estimates, was used to construct empirical quantiles which
were subsequently rendered in the form of a histogram. The resulting CVN
distributions are much more informative for alloy design than singular test

5 If less than three dots are displayed, then two or more CVN values coincide.

274 Alexandr Golodnikov et al.

Estimating the Probability Distributions of Alloy Impact Toughness 275

data. Using the distributions to make decisions for selecting better alloys
should lead to a more effective and comprehensive approach than the one
based on the minimum value from a multiple of the three test, as is commonly
practiced in the industry. These distributions may be also used as a basis for
subsequent reliability and risk modeling.

References

1. M. Cheng, T. Gasser and P. Hall (1999). “Nonparametric density estimation
under unimodality and monotonicity constraints”, Journal of Computational
and Graphical Statistics, 8, 1-21.

2. W.R. Corowin and A.M. Houghland, (1986). “Effect of specimen size and ma-
terial condition on the Charpy impact properties of 9Cr-1Mo-V-Nb steel”, in:
The Use of Small-Scale Specimens for Testing Irradiated Material, ASTM STP
888, (Philadelphia, PA,) 325-338.

3. A. Golodnikov, Y. Macheret, A. Trindade, S. Uryasev and G. Zrazhevsky,
(2005). “Modeling Composition and Processing Parameters for the Development
of Steel Alloys: A Statistical Approach”, Research Report # 2005-1, Department
of Industrial and Systems Engineering, University of Florida.

4. A. Golodnikov, Y. Macheret, A. Trindade, S. Uryasev and G. Zrazhevsky,
(2005). ”Optimization of Composition and Processing Parameters for the De-
velopment of Steel Alloys: A Statistical Approach”, Research Report # 2005-2,
Department of Industrial and Systems Engineering, University of Florida.

5. R. Koenker and G. Bassett (1978). “Regression Quantiles”, Econometrica, 46,
33-50.

6. G. Bassett and R. Koenker (1982). “An empirical quantile function for linear
models with iid errors”, Journal of the American Statistical Association, 77,
407-415.

7. R. Koenker, and V. d’Orey (1987; 1994). “Computing regression quantiles”,
Applied Statistics, 36, 383-393; and 43, 410-414.

8. E. Lucon et al(1999). “Characterizing Material Properties by the Use of Full-
Size and Sub-Size Charpy Tests”, in: Pendulum Impact Testing: A Century of
Progress, ASTM STP 1380, T. Siewert and M.P. Manahan, Sr. eds., American
Society for Testing and Materials, (West Conshohocken, PA) 146-163.

9. F.A. McClintock and A.S. Argon (1966). Mechanical Behavior of Materials,
(Reading, Massachusetts), Addison-Wesley Publishing Company, Inc.

10. E.A. Metzbower and E.J. Czyryca (2002). “Neural Network Analysis of HSLA
Steels”, in: T.S. Srivatsan, D.R. Lesuer, and E.M. Taleff eds., Modeling the
Performance of Engineering Structural Materials, TMS.

11. S. Portnoy and R. Koenker (1997). “The Gaussian hare and the Laplacian tor-
toise: Computability of squared-error versus absolute-error estimators”, Statis-
tical Science, 12, 279-300.

12. J.W. Taylor and D.W. Bunn (1998). “Combining forecast quantiles using quan-
tile regression: Investigating the derived weights, estimator bias and imposing
constraints”, Journal of Applied Statistics, 25, 193-206.

13. M.T. Todinov (2004). “Uncertainty and risk associated with the Charpy impact
energy of multi-run welds”, Nuclear Engineering and Design, 231, 27-38.

A Substantiation of the Unimodality Constraints

Let F (x) = P (X ≤ x) and f(x) = F ′(x) be respectively, the cumulative
distribution function (cdf), and probability density function (pdf), for ran-
dom variable X , and assume the cdf to be continuously differentiable on IR.
Suppose f(x) > 0 over the open interval (xl, xr), whose endpoints are quan-
tiles corresponding to probabilities θl = F (xl) and θr = F (xr). Then for
θ ∈ (θl, θr), the quantile function of X is uniquely defined as the inverse of
the cdf, Q(θ) ≡ F−1(θ) = x. Now, differentiating both sides of the identity
F (Q(θ)) = θ, we obtain for x ∈ (xl, xr),

f(x) =
1

dQ/dθ

∣∣∣∣
θ=F (x)

. (9)

This implies that since f(x) > 0 on (xl, xr), dQ/dθ > 0, and therefore Q(θ)
is monotonically increasing on (θl, θr). Differentiating (9) once more gives

f ′(x) = − d
2Q/dθ2

(dQ/dθ)2

∣∣∣∣
θ=F (x)

. (10)

With the above in mind, we can now state our main result.

Proposition 1 If Q(θ) is three times differentiable on (θl, θr) with d3Q/dθ3 >
0, then f(x) is unimodal (has at most one extremum) on [xl, xr].

Proof : Since d3Q/dθ3 > 0, it follows that d2Q/dθ2 is continuous and mono-
tonically increasing on (θl, θr). Therefore, d2Q/dθ2|θl

< d2Q/dθ2|θr , and there
are 3 cases to consider:

(i) d2Q/dθ2|θl
< d2Q/dθ2|θr < 0. Recalling that dQ/dθ > 0 for all θ ∈

(θl, θr), it follows from (10) that f ′(x) > 0. Therefore f(x) is monotonically
increasing and has no extrema on (xl, xr). Consequently, the maximum
value of f(x) on [xl, xr] is attained at x = xr.

(ii) There exists a θ∗ ∈ (θl, θr) such that d2Q/dθ2 < 0 on (θl, θ
∗), and

d2Q/dθ2 > 0 on (θ∗, θr). Then f ′(x) > 0 on [xl, x
∗), and f ′(x) < 0 on

(x∗, xr]. Therefore, f(x) has exactly one extremum on [xl, xr], a maxi-
mum occurring at x∗ = Q(θ∗).

(iii)0 < d2Q/dθ2|θl
< d2Q/dθ2|θr . As in case (i), but the numerator of (10)

is now positive, which implies f ′(x) < 0. Therefore f(x) is monotonically
decreasing and has no extrema on (xl, xr). Consequently, the maximum
value of f(x) on [xl, xr] is attained at x = xl. �

The three unimodality constraints (5)-(7), are the discretized empirical
formulation of the three cases in this proof. To see this, let δ = 1/(m+1) be the
inter-quantile grid point distance, and Q(θ) denote the conditional quantile
function of Y , where for notational simplicity we suppress the dependence of
Q(·) on the xi. We then have that for large m,

276 Alexandr Golodnikov et al.

Estimating the Probability Distributions of Alloy Impact Toughness 277

dQ(θ)
dθ

∣∣∣∣
θj

≈ Q(θj+1)−Q(θj)
δ

d2Q(θ)
dθ2

∣∣∣∣
θj

≈ Q′(θj+1)−Q′(θj)
δ

≈ Q(θj+2)− 2Q(θj+1) +Q(θj)
δ2

(11)

d3Q(θ)
dθ3

∣∣∣∣
θj

≈ Q′′(θj+1)−Q′′(θj)
δ

≈

≈ Q(θj+3)− 3Q(θj+2) + 3Q(θj+1)−Q(θj)
δ3

. (12)

Now, recall for example that the pdf of Y is required to be monotonically
increasing over quantiles {θ1, . . . , θm1}. Since this corresponds to case (i) in
the Proposition, from (11) a sufficient condition (in the limit as m → ∞)
is that Q(θj+2) − 2Q(θj+1) + Q(θj) < 0, for all j = 1, . . . ,m1. Similarly,
the pdf of Y is required to be monotonically decreasing over {θm2 , . . . , θm}
which corresponds to case (iii), and can be obtained by having Q(θj+2) −
2Q(θj+1) +Q(θj) > 0, for all j = m2, . . . ,m. Finally, over {θm1 , . . . , θm2} the
pdf of Y has at most one mode. From the statement of the Proposition, this
is ensured if Q(θj) has a positive 3rd derivative, which from (12) corresponds
to Q(θj+3)− 3Q(θj+2) + 3Q(θj+1)−Q(θj) > 0, for all j = m1, . . . ,m2.

B Histograms for Selected Distributions of log CVN at
−84◦C

Fig. 1. Estimated distribution of log CVN at −84◦C for Steels #1-12. The location
of each of the three observed CVN values is indicated with a dot.

0.0 0.5 1.0 1.5

0.
00

0.
10

0.
20

Logarithm of CVN at −84C

Steel # 1

0.0 0.5 1.0 1.5

0.
00

0.
10

0.
20

0.
30

Logarithm of CVN at −84C

Steel # 2

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

Logarithm of CVN at −84C

Steel # 3

0.0 0.5 1.0 1.5

0.
00

0.
10

0.
20

0.
30

Logarithm of CVN at −84C

Steel # 4

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

Logarithm of CVN at −84C

Steel # 5

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

Logarithm of CVN at −84C

Steel # 6

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

Logarithm of CVN at −84C

Steel # 7

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

Logarithm of CVN at −84C

Steel # 8

0.0 0.5 1.0 1.5

0.
0

0.
4

0.
8

Logarithm of CVN at −84C

Steel # 9

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 10

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

Logarithm of CVN at −84C

Steel # 11

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

Logarithm of CVN at −84C

Steel # 12

278 Alexandr Golodnikov et al.

Estimating the Probability Distributions of Alloy Impact Toughness 279

Fig. 2. Estimated distribution of log CVN at −84◦C for Steels #13-18. The location
of each of the three observed CVN values is indicated with a dot.

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

Logarithm of CVN at −84C

Steel # 13

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 14

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

Logarithm of CVN at −84C

Steel # 15

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 16

0.0 0.5 1.0 1.5

0.
0

0.
4

0.
8

Logarithm of CVN at −84C

Steel # 17

 Thickness = 13, Aust T = 1.019, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
4

0.
8

Logarithm of CVN at −84C

Steel # 17

 Thickness = 13, Aust T = 0.957, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

Logarithm of CVN at −84C

Steel # 17

 Thickness = 25, Aust T = 1.019, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 17

 Thickness = 25, Aust T = 0.957, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 17

 Thickness = 41, Aust T = 1.019, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 17

 Thickness = 41, Aust T = 0.957, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 18

 Thickness = 13, Aust T = 1.019, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 18

 Thickness = 13, Aust T = 0.957, Aging T = 1.026

Fig. 3. Estimated distribution of log CVN at −84◦C for Steels #18 (continued)
and #24. The location of each of the three observed CVN values is indicated with
a dot.

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

Logarithm of CVN at −84C

Steel # 18

 Thickness = 25, Aust T = 1.019, Aging T = 1.026

0.0 0.5 1.0 1.5
0.

0
0.

2
0.

4

Logarithm of CVN at −84C

Steel # 18

 Thickness = 25, Aust T = 0.957, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

Logarithm of CVN at −84C

Steel # 18

 Thickness = 41, Aust T = 1.019, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

Logarithm of CVN at −84C

Steel # 18

 Thickness = 41, Aust T = 0.957, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 24

 Thickness = 19, Aust T = 1.049, Aging T = 0.842

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 24

 Thickness = 19, Aust T = 1.049, Aging T = 0.935

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 24

 Thickness = 19, Aust T = 1.049, Aging T = 0.979

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

Logarithm of CVN at −84C

Steel # 24

 Thickness = 19, Aust T = 1.049, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 24

 Thickness = 19, Aust T = 0.988, Aging T = 0.842

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 24

 Thickness = 19, Aust T = 0.988, Aging T = 0.935

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 24

 Thickness = 19, Aust T = 0.988, Aging T = 0.979

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

Logarithm of CVN at −84C

Steel # 24

 Thickness = 19, Aust T = 0.988, Aging T = 1.026

280 Alexandr Golodnikov et al.

Estimating the Probability Distributions of Alloy Impact Toughness 281

Fig. 4. Estimated distribution of log CVN at −84◦C for Steels #19-20. The location
of each of the three observed CVN values is indicated with a dot.

0.0 0.5 1.0 1.5

0.
0

0.
4

0.
8

Logarithm of CVN at −84C

Steel # 19

 Thickness = 13, Aust T = 1.019, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 19

 Thickness = 13, Aust T = 0.957, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

Logarithm of CVN at −84C

Steel # 19

 Thickness = 25, Aust T = 1.019, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 19

 Thickness = 25, Aust T = 0.957, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 19

 Thickness = 41, Aust T = 1.019, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 19

 Thickness = 41, Aust T = 0.957, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

Logarithm of CVN at −84C

Steel # 20

 Thickness = 13, Aust T = 1.019, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
4

0.
8

Logarithm of CVN at −84C

Steel # 20

 Thickness = 13, Aust T = 0.957, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 20

 Thickness = 25, Aust T = 1.019, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 20

 Thickness = 25, Aust T = 0.957, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 20

 Thickness = 41, Aust T = 1.019, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 20

 Thickness = 41, Aust T = 0.957, Aging T = 1.026

Fig. 5. Estimated distribution of log CVN at −84◦C for Steel #28. The location of
each of the three observed CVN values is indicated with a dot.

0.0 0.5 1.0 1.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Logarithm of CVN at −84C

Steel # 28

 Thickness = 51, Aust T = 1.049, Aging T = 0.842

0.0 0.5 1.0 1.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Logarithm of CVN at −84C

Steel # 28

 Thickness = 51, Aust T = 1.049, Aging T = 0.935

0.0 0.5 1.0 1.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Logarithm of CVN at −84C

Steel # 28

 Thickness = 51, Aust T = 1.049, Aging T = 0.979

0.0 0.5 1.0 1.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Logarithm of CVN at −84C

Steel # 28

 Thickness = 51, Aust T = 1.049, Aging T = 1.026

0.0 0.5 1.0 1.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Logarithm of CVN at −84C

Steel # 28

 Thickness = 51, Aust T = 0.977, Aging T = 0.842

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 28

 Thickness = 51, Aust T = 0.977, Aging T = 0.935

0.0 0.5 1.0 1.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Logarithm of CVN at −84C

Steel # 28

 Thickness = 51, Aust T = 0.977, Aging T = 0.979

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

Logarithm of CVN at −84C

Steel # 28

 Thickness = 51, Aust T = 0.977, Aging T = 1.026

282 Alexandr Golodnikov et al.

Estimating the Probability Distributions of Alloy Impact Toughness 283

Fig. 6. Estimated distribution of log CVN at −84◦C for 6 points on the efficient
frontier.

0.0 0.5 1.0 1.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Logarithm of CVN at −84C

Point # 1 on the efficient frontier

0.0 0.5 1.0 1.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Logarithm of CVN at −84C

Point # 2 on the efficient frontier

0.0 0.5 1.0 1.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Logarithm of CVN at −84C

Point # 3 on the efficient frontier

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

Logarithm of CVN at −84C

Point # 4 on the efficient frontier

0.0 0.5 1.0 1.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Logarithm of CVN at −84C

Point # 5 on the efficient frontier

0.0 0.5 1.0 1.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Logarithm of CVN at −84C

Point # 6 on the efficient frontier

A One-Pass Heuristic for Cooperative
Communication in Mobile Ad Hoc Networks

Clayton W. Commander1,2, Carlos A.S. Oliveira3, Panos M. Pardalos2, and
Mauricio G.C. Resende4

1 Air Force Research Laboratory, Munitions Directorate, Eglin AFB, FL USA
clayton.commander@eglin.af.mil

2 Department of Industrial and Systems Engineering, University of Florida,
Gainesville, FL USA pardalos@ufl.edu

3 School of Industrial Engineering and Management Oklahoma State University,
Stillwater, OK USA coliv@okstate.edu

4 Internet and Network Systems Research Center AT&T Labs Research, Florham
Park, NJ USA mgcr@research.att.com

Summary. Ad hoc networks have been used in the last few years to provide com-
munications means among agents that need to accomplish common goals. Due to the
importance of communication for the success of such missions, we study the problem
of maximizing communication among a set of agents. As a practical tool to solve
such problems, we introduce a one-pass randomized algorithm that maximizes the
total communication, as measured by the proposed objective function. Agents in this
problem are routed along the edges of a graph, connecting their individual starting
nodes to their respective destination nodes. This problem, known as the Coopera-
tive Communication Problem in Mobile Ad Hoc Networks, is known to be NP-hard.
We present a new heuristic and motivate the need for more advanced methods for
the solution of this problem. In particular, we describe 1) a construction algorithm
and 2) a local improvement method for maximizing communication. Computational
results for the proposed approach are provided, showing that instances of realistic
size can be efficiently solved by the algorithm.

1 Introduction

Advances in wireless communication and networking have lead to the devel-
opment of new network organizations based on autonomous systems. Among
the most important example of such networks systems are mobile ad hoc net-
works (MANETs). MANETs are composed of a set of loosely coupled mobile
agents which communicate using a wireless medium via a shared radio chan-
nel. Agents in the network act as both clients and as servers and use various
multi-hop protocols to route messages to other users in the system[17, 18].
Unlike traditional cellular systems, ad hoc networks have no fixed topology.

286 Clayton W. Commander et al.

Moreover, in a MANET the topology changes each time an agent changes
its location. Thus, the communication between the agents depends on their
physical location and their particular radio devices.

Interest in MANETs has surged in the recent years, due to their numerous
civilian and military applications. MANETs can be successfully implemented
in situations where communication is necessary, but no fixed telephony system
exists. Real applications abound, especially when considering adversarial en-
vironments, such as the coordination of unmanned aerial vehicles (UAVs) and
combat search and rescue groups. Other examples include the coordination of
agents in a hostile environment, sensing, and monitoring. More generally, the
study of protocols and algorithms for MANETs is of high importance for the
successful deployment of sensor networks – which are themselves composed
of a large number of autonomous processors that can coordinate to achieve
some higher level task such as sensing and monitoring.

The lack of a central authority in MANETs leads to several problems in
the areas of routing and quality assurance[6]. Many of these problems can be
viewed as combinatorial in nature, since they involve finding sets of discrete
objects satisfying some definite property, such as for example connectedness
or minimum cost. Among the challenging problems encountered in MANETs,
we can cite routing as one of the most difficult to solve, because of the tempo-
rary nature of communication links in such a system. In fact, as nodes move
around, they dynamically define topologies for the entire network. In such an
environment, it is difficult to determine if two nodes are connected, since any
of the intermediate nodes may leave the network at any time.

This scenario makes clear the importance of close coordination among
groups of nodes if a definite goal needs to be attained. If at all possible, a
plan must be devised such that communication among nodes is maintained
for as long as possible. With this objective in mind, we study in this chapter
algorithms that would allow a set of agents to accomplish a mission, with
definite starting and ending positions, but at the same time maximizing the
communication time among the agents involved.

This chapter is organized as follows. We first present a graph formulation
and discuss the computational complexity of the problem in Section 2. Next,
in Section 3 we discuss some of the previous work on areas related to coop-
erative communication in wireless systems. Potential solution techniques are
presented in the following sections. In Section 4, a simple construction algo-
rithm for the maximum communication problem is proposed. In Section 5,
a hill-climbing method for improving an initial solution for the problem is
presented. Then, in Section 6 a one-pass local search heuristic is presented,
combining the ideas discussed on the preceding sections. The numerical results
from computational experiments are analyzed on Section 7. Finally, conclud-
ing remarks and future research ideas are presented in Section 8.

A One-Pass Heuristic for Cooperative Communication 287

2 Problem Statement

In MANETs, bandwidth and communication time are usually severely con-
strained resources. To allow for successful interaction among nodes, we pro-
pose the solution of the cooperative communication problem on ad hoc net-
works (ccpm). In this problem, the objective is to determine a set of routes
to be followed by mobile agents who must cooperate to accomplish some
preassigned tasks. The function we try to maximize represents the total com-
munication time for all agents along the computed trajectories. As described
in this section, the Cooperative Communication Problem in MANETs can be
modeled as a combinatorial optimization problem on graphs.

Consider a graph G = (V,E), where V = {v1, v2, . . . , vn} represents the
set of candidate positions for the wireless agents. Suppose that a node in G
is connected only to those nodes that can be reached in one unit of time. Let
U represent the set of agents, S = {s1, s2, . . . , s|U|} ⊆ V represent the set of
initial positions, and D = {d1, d2, . . . , d|U|} ⊆ V the set of destination nodes.
Let N(v) ⊆ 2V , for v ∈ V , represent the set of neighbors of node v in G.
Given a time horizon T , the objective of the problem is to determine a set
of routes for the agents in U , such that each agent ui ∈ U starts at a source
node si and finishes at the destination node di ∈ D after at most T units of
time.

For each agent u ∈ U , the function pt : U → V returns the position of the
agent at time t ∈ {1, 2, . . . , T}, where T is the time limit by which the agents
must reach their destinations. Then at each time instant t, an agent u ∈ U
can either remain in its current location, i.e., pt−1(u), or move to a node in
N(pt−1(u)).

We can represent a route for an agent u ∈ U as a path P = {v1, v2, . . . , vk}
in G where v1 = su, vk = du, and, for i ∈ {2, . . . , k}, vi ∈ N(vi−1) ∪ {vi}.
Finally, if {Pi}|U|

i=1 is the set of trajectories for the agents, we are given a
corresponding vector L such that Li is a threshold on the size of path Pi.
This value is typically determined by fuel or battery life constraints on the
wireless agents.

We assume that the agents have omnidirectional antennas and that two
agents in the network are connected if the distance between them is less than
some radius r. More specifically, let δ : V × V → R represent the Euclidean
distance between a pair of nodes in the graph. Then, we can define a function
c : V × V → {0, 1} such that

c(pt(ui), pt(uj)) =

{
1, if δ(pt(ui), pt(uj)) ≤ r
0, otherwise.

(1)

With this, we can define the CCPM as the following optimization problem:

288 Clayton W. Commander et al.

max
T∑

t=1

∑
u,v∈U

c(pt(u), pt(v)) (2)

s.t.
ni∑

j=2

δ(vj−1, vj) ≤ Li ∀ Pi = {v1, v2, . . . , vni}, (3)

p1(u) = su ∀ u ∈ U, (4)
pT (u) = du ∀ u ∈ U, (5)

where constraint (3) ensures that the length of each path Pi is less than or
equal to its maximum allowed length Li.

Oliveira and Pardalos[17] have shown that ccpm is NP-hard via a re-
duction to 3sat[1]. Furthermore, to find an optimal solution at each time
t ∈ {1, 2, . . . , T} remains NP-hard. This can be shown by a reduction to
maximum clique[1], another well-known NP-hard problem. The computa-
tional complexity of the problem does not allow for real-world instances to be
solved exactly. This motivates the need for efficient heuristics to solve real-
world instances within reasonable computing times. In the upcoming sections,
we describe one such algorithm and present the framework for a different, non
deterministic heuristic.

3 Previous Work

Communication is an important measure of collaboration between entities
involved in a mission. It allows different agents to perform the set of tasks
that have been planned, and at the same time to implement changes in the
case that an unexpected event occurs. Moreover, high communication levels
are necessary in order to perform complicated tasks, where several agents
must be coordinated. We describe in this section the main concepts found in
the literature related to optimizing communication time in ad hoc network
systems.

One of the main difficulties concerning the maintenance of communication
is an ad hoc network is determining the location of agents at a given moment in
time. Several methods have been proposed for improving localization in this
situation. Moore et al.[16], for example, presented a linear time algorithm
for determining the location of nodes in an ad hoc network in the presence of
noise. Other algorithms for the same problem have been suggested by Capkun
et al.[7], Doherty et al.[13], and Priyantha et al.[19].

While such algorithms can be useful in determining the correct location of
nodes, they are only able to provide information about current positions, and
are not meant to optimize locations for a specific objective. Packet routing,
on the other hand, has been previously studied with the goal of optimizing
some common parameters, such as latency, cost of the resulting route, and
energy consumed. For example, Butenko et al.[6] proposed a new algorithm

A One-Pass Heuristic for Cooperative Communication 289

for computing a backbone for wireless networks with minimum size, based on
a number of related algorithms for this problem[5, 8, 15].

Another problem involving the minimization of an objective function over
all feasible positions of agents in an ad hoc network is the so-called location
error minimization problem. In the location error minimization problem, given
a set of measurements of node positions (taken from different sources), the
goal is to determine a set of locations for wireless nodes such that errors in the
given measurements are minimized. This problem has been formulated and
solved using mathematical programming techniques, by the use of a relaxation
for the general problem into a semi-definite programming model[20, 3, 4].

In this chapter we consider a different optimization problem (ccpm) over
the relative position of nodes in a wireless network. The ccpm has the ob-
jective of maximizing the total communication time of a given set of wireless
agents. The problem has been proposed by considering military situations
where a set of agents needs to accomplish a mission. It has been proved[17]
that the problem is NP-hard, which makes clear the necessity of fast algo-
rithms for the practical solutions of instances with large size. We present a
method for constructing and optimizing solutions for the ccpm in the next
sections.

4 Construction Heuristic

In this section, we propose a construction heuristic to create high quality
solutions for the ccpm. Our objective is to provide a fast way of constructing
a set of paths, connecting wireless agents from their initial positions S to the
destinations D such that the resulting routes are feasible for the problem.
The union of such sequences of nodes will uniquely determine the cost of
the solution, which is calculated using equation (2). The algorithm also tries
to create solutions that have as large a value as possible for the objective
function.

The pseudo-code for the construction heuristic is showed in Figure 1. The
algorithm starts initializing the cost of the solution to zero. The incumbent
solution, represented by the variable solution, is initialized with the empty
set.

The next step consists of finding shortest paths connecting each source
si ∈ S to a destination di ∈ D. Standard minimum cost flow algorithms can
be used to calculate these shortest paths. For example, the Floyd-Warshall
algorithm[14, 22] can be used to compute the shortest path between all pairs
of nodes in a graph. The Dijkstra algorithm[12] can also be used to perform
this step of the algorithm (with the only difference that, being a single-source
shortest path algorithm, it must be run for |U | iterations, one for each of the
|U | source-destination pairs).

In the loop from lines 4 to 10, the algorithm performs the assignment of
new paths to the solution, using the shortest path algorithm described above.

290 Clayton W. Commander et al.

First, a source-destination path si-di is selected, and based on this a shortest
path Pi corresponding to this pair is generated. Notice that, if the length
(number of edges) of the shortest path Pi is more than T there is not feasible
solution for the problem, since the destinations cannot be reached at the end
of the requested time horizon. The algorithm checks for this condition on
line 6.

If all source-destination pairs are found to be feasible, then a solution is
generated by the union of all Pi. Notice that once agent i reaches node di it
can simply loiter at di during all remaining time (until instant T), as shown
in line 7. The sequence of nodes found as a result of this process is then added
to the solution in line 8 of the algorithm, and the optimum objective value
is updated (line 9). Finally, a complete solution is returned on line 11, along
with the value of that solution.

procedure ShortestPath(solution)
1 c ← 0;
2 solution ← ∅;
3 Compute all shortest paths for each (si, di) pair;
4 for i = 1 to |U | do→
5 Pi ← SP(si, di);
6 if length of Pi > T then return ∅;
7 let agent i stay in di until time T is reached;
8 solution ← solution ∪ Pi;
9 c ← c + number of new connections generated by Pi;
10 rof
11 return (c, solution);
end ShortestPath

Fig. 1. Pseudocode for the Shortest Path Constructor.

Theorem 1. The construction algorithm presented above finds a feasible so-
lution for the ccpm in O(|V |3) time.

Proof: A feasible solution for this problem is given by a sequence of posi-
tions starting at si and ending at di, for each agent ui ∈ U . Clearly, the
union of the shortest paths provide the required connection between each
source-destination pair, according to the remarks in the preceding paragraph;
therefore the solution is feasible. Suppose that, in line 3, we use the Floyd-
Warshall algorithm for all-pairs shortest path[14, 22]. This algorithm runs in
O(|V |3) time. Then, at each step of the for loop we need only to refer to the
solution calculated by the Floyd-Warshall algorithm and add it to the variable
solution. This can be done in time O(|V |), and therefore the for loop will
run in at most O(|V ||U |) time. Thus, the step with highest time complexity
is the one appearing in line 3, which implies that the total complexity of the
algorithm is O(|V |3).

A One-Pass Heuristic for Cooperative Communication 291

5 Local Search Heuristic

A construction algorithm is a good starting point in the process of solving
a combinatorial optimization problem. However, due to the NP-hard nature
of the ccpm, such an algorithm provides no guarantee that a good solution
will be found. In fact, it is possible that for some instances the solution found
by the construction heuristic is far from the optimum, and not even a local
optimal solution.

To guarantee that the solution found is at least locally optimal, we pro-
pose a local search algorithm for the ccpm. A local search algorithm receives
as input a feasible solution and, given a neighborhood structure for the prob-
lem, returns a solution that is guaranteed to be optimal with respect to that
neighborhood.

For the ccpm, the neighborhood structure is defined as follows. Given an
instance Π of the ccpm, let S be the set of feasible solutions for that instance.
Then, if s ∈ S is feasible for Π , the neighborhood N (s) of s is the set of all
solutions s′ ∈ S that differ from s in exactly one route. Obviously, considering
this neighborhood, there are |U | positions where a new path could be inserted;
moreover, the number of feasible paths between any source-destination pair
is exponential.

Thus, in our algorithm, instead of exhaustively searching the entire neigh-
borhood for each point, we probe only |U | neighbors at each iteration (one
for each source-destination pair). Also, because of the exponential size of the
neighborhood, we limit the maximum number of iterations performed to a
constant MaxIter.

We use randomization to select a new route, given a source destination
pair. This is done in our proposed implementation using a modified version of
the depth-first-search algorithm[11]. A randomized depth-first-search is iden-
tical to a depth-first-search algorithm, but at each step the node selected to
explore is uniformly chosen among the available children of the current node.
Using the randomized depth-first-search we are able to find a route that may
improve the solution, while avoiding being trapped at a local optimum after
only a few iterations.

A description of the local search procedure in form of pseudo-code is given
in Figure 2. The algorithm used can be described as follows. Initially, the
algorithm receives as input the basic feasible solution generated on phase 1
(the construction phase). A neighborhood for this solution is then defined to
be the set of feasible solutions that differ from the current solution by one
route, as previously described.

Given the basic feasible solution obtained from the construction subrou-
tine, the neighborhood is explored in the following manner. For each agent
ui ∈ U , we reroute the agent on an alternate feasible path from si to di (lines 3
to 13). Recall that a path Pi is feasible if the total length of this path is less
than Li and the agent reaches its target node by time T . This alternate path
is created on line 5 using a modified depth-first-search algorithm[2]. The mod-

292 Clayton W. Commander et al.

procedure HillClimb(solution)
1 Compute cost c of solution;
2 while solution not locally optimal and iter < MaxIter do→
3 for all agent pairs (si, di) do→
4 Remove Pi from solution;
5 Find alternate feasible path P ′

i

using the randomized DFS algorithm;
6 compute cost c’ of new soluton
7 if new solution is feasible and c’ > c then
8 c ← c’;
9 iter ← 0;
11 else
12 Restore path Pi;
10 fi
11 rof
12 iter ← iter + 1;
13 elihw
end HillClimb

Fig. 2. Pseudocode for the Hill Climbing intensification procedure.

ification to the DFS is a randomization which selects the child node uniformly
during each iteration. This procedure is efficient in that it can be implemented
in polynomial time, as shown bellow.

Theorem 2. The time complexity of the algorithm above is O(kTu2m), where
k = MaxIter, T is the time horizon, u = |U | and m = |E|.

Proof: Notice the the most time consuming step of the algorithm is the
construction of a new path (line 5). However, using a randomized depth-first-
search procedure this can be done in O(m) time[2]. Each iteration of the while
loop (lines 2 to 13) will perform local improvements in the solution using the
re-routing procedure to improve the objective function. An upper bound on
the best solution for an instance of this problem is Tu(u − 1)/2 (the time
horizon multiplied by maximum number of connections). Each improvement
can require at most MaxIter iterations to be achieved. Therefore, in the worst
case this heuristic will end after O(kTu2m) time.

6 Combining Algorithms into a One-Pass Heuristic

The two algorithms described in Sections 4 and 5 can be combined into a single
one-pass heuristic for the ccpm. The pseudo-code for the complete algorithm
used can be seen in Figure 3. The new algorithm now behaves as a single-start,
diversification and intensification heuristic for the ccpm.

The total time complexity of this heuristic can be determined from Theo-
rems 1 and 2. Taking the maximum of the two time complexities determined

A One-Pass Heuristic for Cooperative Communication 293

previously, we have a total time of O(max{n3, kTu2m}), where T is the time
horizon, u = |U |, n = |V |,m = |E|, and k = MaxIter is the maximum number
of iterations allowed on the local search phase.

procedure OnePass(Instance)
1 Input: Instance of the ccpm, with n nodes, m edges,
and a set U of agents;
2 solution ← ConstructionHeuristic(Instance);
3 solution ← HillClimbHeuristic(solution);
4 return solution ;
end OnePass

Fig. 3. Pseudocode for the One-Pass Heuristic

7 Computational Results

The algorithm proposed above was tested to verify the quality of the solutions
produced, as well as the efficiency of the resulting method. The test instances
employed in the experiments were composed of 60 random unit graphs, dis-
tributed into groups of 20, each group having graphs with 50, 75, and 100
nodes. The communication radius of the wireless agents was allowed to vary
from 20 to 50 units. This has provided us with a greater base for compari-
son, resulting in random graphs and wireless units that more closely resemble
real-world instances.

The graphs used in the experiment were created with the algorithm pro-
posed by Butenko et. al.[10, 9] in the context of the Broadcast Scheduling
problem. The routines were coded in fortran. Random numbers were gen-
erated using Schrage’s algorithm[21]. In all experiments, the random number
generator was started with the seed value 270001.

Results obtained in our preliminary experiments are reported in Table 1.
In this table, the results of the one-pass algorithm (OnePass column) are
compared to a simple routing scheme where only the construction phase is
explored (the SP Soln column). The solutions shown in the table represent
the average of the objective function values from the 5 instances in each class.

The numerical results provided in the table demonstrate the effectiveness
of the proposed heuristic when the improvement phase is added to the pro-
cedure. The proposed heuristic increased the objective value of the shortest
path solutions by an average of 38%. One reason for this is the fact that, when
agents are routed solely according to a shortest path, they are not taking ad-
vantage of the remaining time they are allotted (i.e., the time horizon T) and
the values from the distance limit given by L.

Our heuristic, on the other hand, allows wireless agents to take full ad-
vantage of these bounds. The algorithm can do this by adjusting the paths

294 Clayton W. Commander et al.

Instance Nodes Radius Agents OnePass SP Soln Agents OnePass SP Soln Agents OnePass SP Soln

1 50 20 10 63.6 52.4 15 152 120.8 25 414.66 353.6
2 50 30 10 83.8 58.4 15 182.2 124.4 25 516.2 415.6
3 50 40 10 95.4 67.4 15 228.6 171.8 25 695 474.8
4 50 50 10 115.4 64.4 15 275.8 167.4 25 797.4 485.4

5 75 20 10 76.8 59 20 270.2 228.6 30 575.2 464
6 75 30 10 85.8 56 20 299.6 241.2 30 725.4 554
7 75 40 10 96.4 64.4 20 386 261 30 862.6 595.4
8 75 50 10 125 67.8 20 403.2 246.8 30 1082.4 670.8

9 100 20 15 113.6 100.4 25 333.4 269.4 50 1523.2 1258.8
10 100 30 15 166.2 124.4 25 511.2 365 50 1901.4 1515.8
11 100 40 15 203.4 141 25 600.6 389.8 50 2539.2 1749.4
12 100 50 15 255.8 151.8 25 756.8 479.6 50 3271.2 2050.6

Table 1. Comparative results between shortest path solutions and heuristic solu-
tions.

to include those nodes within the range of other agents. In addition, at any
given time an agent is allowed to loiter in its current position, possibly wait-
ing for other agents to come into its range. This cannot occur in the phase 1
algorithm because, according to the shortest path routing protocol, loitering
is forbidden.

We notice that our method provides solutions that are better than the
shortest path protocol. The time spent on the algorithm has always been
less than a few seconds, therefore the computational time is small enough for
the problem sizes explored in our experiments. We believe, however, that the
quality of the solutions and computational time can be further improved using
a better implementation, and more sophisticated data structures to handle the
information stored during the algorithm.

8 Conclusions and Future Research

In this chapter we presented a heuristic approach to solve the cooperative
communication problem on ad hoc networks. This problem, known to be NP-
hard, is of importance in the planning of operations involving high levels of
collaboration among team members. The proposed algorithm creates a high
quality solution for the problem using two phases: 1) a construction heuristic,
which uses shortest path algorithms to create a feasible solution, and 2) a
local search algorithm, which improves the solution previously found in order
to guarantee local optimality.

This chapter reflects the current stage of our research in this problem.
We plan to extend the algorithmic methods presented in this chapter using
more efficient optimization strategies. We will use the two phase algorithm

A One-Pass Heuristic for Cooperative Communication 295

described as the starting point for a greedy randomized procedure (GRASP
metaheuristic). This will allow us to escape local minima inherent to the
approach used in this chapter, and find solutions closer to the desired global
optimum.

Acknowledgments

The first and third authors have been partially supported by NSF and U.S.
Air Force grants. The second author has been partially supported by a grant
from the Measurement & Control Engineering Center/NSF.

References

1. M.R. Garey, D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, 1979.

2. R.K. Ahuja, T.L. Magnanti, J.B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, 1993.

3. P. Biswas and Y Ye. A distributed method for solving semidefinite programs
arising from ad hoc wireless sensor network localization. Technical report, Dept
of Management Science and Engineering, Stanford University, 2003.

4. P. Biswas and Y. Ye. Semidefinite programming for ad hoc wireless sensor
network localization. In Proceedings of the third international symposium on
Information processing in sensor networks, pages 46–54. ACM Press, 2004.

5. S. Butenko, X. Cheng, D.-Z. Du, and P. M. Pardalos. On the construction of
virtual backbone for ad hoc wireless network. In S. Butenko, R. Murphey, and
P. M. Pardalos, editors, Cooperative Control: Models, Applications and Algo-
rithms, pages 43–54. Kluwer Academic Publishers, 2002.

6. S.I. Butenko, X. Cheng, C.A.S. Oliveira, and P.M. Pardalos. A new algorithm
for connected dominating sets in ad hoc networks. In S. Butenko, R. Murphey,
and P. Pardalos, editors, Recent Developments in Cooperative Control and Op-
timization, pages 61–73. Kluwer Academic Publishers, 2003.

7. S. Capkun, M. Hamdi, and J. Hubaux. Gps-free positioning in mobile ad-hoc
networks. In HICSS ’01: Proceedings of the 34th Annual Hawaii International
Conference on System Sciences (HICSS-34)-Volume 9, page 9008, Washington,
DC, USA, 2001. IEEE Computer Society.

8. X. Cheng, X. Huang, D. Li, W. Wu, and D.Z. Du. A polynomial-time approx-
imation scheme for the minimum-connected dominating set in ad hoc wireless
networks. Networks, 42(4):202–208, 2003.

9. C.W. Commander, S.I. Butenko, and P.M. Pardalos. On the performance of
heuristics for broadcast scheduling. In D. Grundel, R. Murphey, and P. Pardalos,
editors, Theory and Algorithms for Cooperative Systems, pages 63–80. World
Scientific, 2004.

10. C.W. Commander, S.I. Butenko, P.M. Pardalos, and C.A.S. Oliveira. Reactive
grasp with path relinking for the broadcast scheduling problem. In Proceedings
of the 40th Annual International Telemetry Conference, pages 792–800, 2004.

296 Clayton W. Commander et al.

11. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, Cambridge, MA, 1992.

12. E. W. Dijkstra. A note on two problems in connexion with graphs. Numer.
Math., 1:269–271, 1959.

13. L. Doherty, K. S. J. Pister, and Ghaoui L. E. Convex position estimation in
wireless sensor networks. In Proc. IEEE INFOCOM, Anchorage, AK, 2001.

14. R.W. Floyd. Algorithm 97 (shortest path). Communications of the ACM,
5(6):345, 1962.

15. M.V. Marathe, H. Breu, H.B. Hunt III, S.S. Ravi, and D.J. Rosenkrantz. Simple
heuristics for unit disk graphs. Networks, 25:59–68, 1995.

16. David Moore, John Leonard, Daniela Rus, and Seth Teller. Robust distributed
network localization with noisy range measurements. In SenSys ’04: Proceed-
ings of the 2nd international conference on Embedded networked sensor systems,
pages 50–61, New York, NY, USA, 2004. ACM Press.

17. C.A.S. Oliveira and P.M. Pardalos. An optimization approach for cooperative
communication in ad hoc networks. Technical report, School of Industrial En-
gineering and Management, Oklahoma State University, 2005.

18. C.A.S. Oliveira, P.M. Pardalos, and M.G.C. Resende. Optimization problems
in multicast tree construction. In Handbook of Optimization in Telecommunica-
tions, pages 701–733. Springer, New York, 2006.

19. N.B. Priyantha, H. Balakrishnan, E.D. Demaine, and S. Teller. Mobile-assisted
localization in wireless sensor networks. In INFOCOM 2005. 24th Annual Joint
Conference of the IEEE Computer and Communications Societies, volume 1,
pages 172–183, 2005.

20. C. Savarese, J. Rabay, and K. Langendoen. Robust positioning algorithms for
distributed ad-hoc wireless sensor networks. In USENIX Technical Annual Con-
ference, 2002.

21. L. Schrage. A more portable FORTRAN random number generator. ACM
Transactions on Mathematical Software, 5:132–138, 1979.

22. S. Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11–12,
1962.

Mathematical Modeling and Optimization
of Superconducting Sensors with Magnetic

Levitation ∗

Vitaliy A. Yatsenko1 and Panos M. Pardalos2

1 Space Research Institute of NASU and NSAU
Kiev, Ukraine
E-mail: vitaliy yatsenko@yahoo.com

2 Center for Applied Optimization,
Department of Industrial and Systems Engineering
University of Florida
Gainesville, FL 32601, USA
E-mail: pardalos@ufl.edu

Summary. Nonlinear properties of a magnetic levitation system and an algorithm
of a probe stability are studied. The phenomenon, in which a macroscopic super-
conducting ring chaotically and magnetically levitates, is considered. A nonlinear
control scheme of a dynamic type is proposed for the control of a magnetic levita-
tion system. The proposed controller guarantees the asymptotic regulation of the
system states to their desired values. We found that if a non-linear feedback is
used then the probe chaotically moves near an equilibrium state. An optimization
approach for selection of optimum parameters is discussed.

1 Introduction

The suspension of objects with no visible means of support is a fascinat-
ing phenomenon [1],[2], [14]. To deprive objects of the effects of gravity is a
dream common to generations of thinkers from Benjamin Franklin to Robert
Goddard, and even to mystics of the East. This modern fascination with
superconducting levitation stems from four singular technical and scientific
achievements:(i) the creation of superconducting gravity meters; (ii) the cre-
ation of high-speed vehicles to carry people at 500 km/hr; (iii) the creation
of digitally controlled magnetic levitation turbo molecular pump and (iv) the
discovery of new superconducting materials.

The modern development of super high-speed transport systems, known as
maglev, started in the late 1960s as a natural consequence of the development

∗ This work is partially supported by Airforce, CRDF and STCU grants

298 Vitaliy A. Yatsenko and Panos M. Pardalos

of low-temperature superconducting wire, the transistor and chip-based elec-
tronic control technology [6],[8]. Maglev provides high-speed running, safety,
reliability, low environmental impact and minimum maintenance. In the 1980s,
maglev matured to the point, when Japanese and German technologists were
ready to market these new high-speed levitated machines.

At the same time, Paul C.W. Chu of the University of Houston and
co-workers in 1987 discovered a new, higher-temperature superconductivity
(HTS) in the non-inter-metallic compounds (nyttrium-barium-copper oxide).
Those premature promises of superconducting materials have been tempered
by the practical difficulties of development. First, bulk YBCO (yttrium bar-
ium copper oxide) was found to have a low current density, and early samples
were found to be too brittle to fabricate into useful wire [7],[8]. Scientists are
interested in YBCO because when it is cooled below around 90 Kelvin, which
can be accomplished with liquid nitrogen, it becomes a superconductor. The
two most important properties of YBCO are that it has no electrical resistance
and that it expels a magnetic field.

However, from the very beginning, the hallmark of these new supercon-
ductors was their ability to levitate small magnets. This property, captured
on the covers of both scientific and popular magazines, inspired a group of
engineers and applied scientists to envision a new set of levitation applications
based on superconducting magnetic bearings.

In the past few years, the original technical obstacles of YBCO have grad-
ually been overcome, and new superconducting materials such as bismuth-
strontium-calcium-copper oxide (BSCCO) have been discovered. Higher cur-
rent densities for practical applications have been achieved, and longer wire
lengths have been produced with good superconducting properties. At this
juncture of superconducting technology, we can now envisage, in the coming
decade, the levitation of large machine components as well as the enhance-
ment of existing maglev transportation systems with new high-temperature
superconducting magnets.

A levitation phenomenon is created by opposing magnetic fluxes. Com-
monly it refers to levitated high-speed trains equipped with superconducting
magnets, proposed by James R. Powell and Gordon T. Danby of Brookhaven
National Laboratory in the late 1960s. Pursued since 1970 by the Japan Rail-
way Technical Research Institute, which is presently building a second maglev
test track 40-km long. In the 1980s demonstration maglevs were built in Ger-
many. We can imagine the relative velocity of 100–200 m/sec between moving
bodies with no contact, no wear, no need for fluid or gas intervention, and no
need for active controls.

The superconductivity phenomenon was a significant step to improve sus-
pensions. Most, but not all, conductors of electrical current, when cooled
sufficiently in the direction of absolute zero, become superconductors. The
superconducting state itself is one in which there is zero electrical resistance
and perfect diamagnetism. Free suspension of a probe of a superconducting
gravimeter is realized by the Braunbeck-Meisner phenomenon. Here we con-

Superconducting Sensors with Magnetic Levitation 299

centrate on a new high sensitive cryogenic-optical sensor and a method of
estimation of the gravitational perturbation acting on the levitated probe
[13], [14].

In this chapter we describe basic properties of a magnetic levitation, the-
oretical background, and control algorithms of a probe stability. Bilinear con-
trol schemes of the static and dynamic types are proposed for the control of
a magnetic levitation system. The proposed controllers guarantee the asymp-
totic regulation of the system states to their desired values. We also describe a
simple superconducting gravity meter, its mathematical model, and design of
nonlinear controllers that stabilize it at an equilibrium state. Furthermore, an
accurate mathematical model of asymptotically stable estimation of a weak
noisy signal using the stochastic measurement model is proposed.

2 Stability and Levitation

Levitation can be achieved using electric or magnetic forces or by using air
pressure, though some purists would argue whether flying or hovering is lev-
itation. However, the analogy of magnetic levitation with the suspension of
aircraft provides insight into the essential requirements for levitation; that is,
lift alone is not levitation. The success of the Wright machine in 1903 was
based, in part, on the invention of a mechanism on the wings to achieve sta-
ble “levitated” flight. The same can be said about magnetic bearing design –
namely, that an understanding of the nature of mechanical stability is crucial
for the creation of a successful levitation device.

Simple notions of stability often use the paradigm of the ball in a potential
well or on the top of a potential hill. This idea uses the concept of potential
energy, which states that physical systems are stable when they are at their
lowest energy level.

The minimum potential energy definition of stability is good to begin with,
but is not enough in order to understand magnetic levitation. Not only one
must consider the stability of the center of mass of the body, but it is also
necessary to achieve the stability of the orientation or an angular position of
the body. If the levitated body is deformable, the stability of the deformed
shape may also be important.

The second difficulty with the analogy with particles in gravitational po-
tential wells is that we have to define what we mean by the magnetic or
electric potential energy [6]. This is straightforward if the sources of the levi-
tating magnetic or electric forces are fixed. But when magnetization or electric
currents are induced due to changes in the position or orientation of our lev-
itated body, then the static concept of stability using potential energy can
involve pitfalls that can yield the wrong conclusion regarding the stability of
the system.

To be rigorous really in magneto-mechanics, one must discuss stability in
the context of dynamics. For example, in some systems one can have static

300 Vitaliy A. Yatsenko and Panos M. Pardalos

instability but dynamic stability. This is especially true in the case of time-
varying electric or magnetic fields as in the case of actively controlled magnetic
bearings. However, it is also important when the forces (mechanical or mag-
netic) depend on generalized velocities.

In general, the use of concepts of dynamic stability in the presence of mod-
eling error due to uncertainties, rooted in modern nonlinear dynamics, must
be employed in order to obtain a robust position control of a magnetic levi-
tation system. This theory not only requires the knowledge of how magnetic
forces and torques change with the position and orientation (i.e., magnetic
stiffness), but also the knowledge of how these forces change with both linear
and angular velocities.

Earnshaw’s Theorem. It is said that a collection of point charges can-
not be maintained in an equilibrium configuration solely by the electrostatic
interaction of the charges. Early in the nineteenth century (1839) a British
minister and natural philosopher, Samuel Earnshaw (1805–1888), examined
this question and stated a fundamental proposition known as Earnshaw’s the-
orem. The essence of this theorem is that a group of particles governed by
inverse square law forces cannot be in stable equilibrium. The theorem natu-
rally applies to charged particles and magnetic poles and dipoles. A modern
statement of this theorem can be found in Jeans [[3], [5]: “A charged particle
in the field of a fixed set of charges cannot rest in stable equilibrium.” This
theorem can be extended to a set of magnets and fixed circuits with constant
current sources. To the chagrin of many a would-be inventor, and contrary
to the judgment of many patent officers or lawyers, the theorem rules out
many clever magnetic levitation schemes. This is especially the case of levita-
tion with a set of permanent magnets as any reader can verify. Equilibrium is
possible, but stability is not.

Later we will address the question of how and why one can achieve stable
levitation of a superconducting ring using an active feedback. However, here
we will try to motivate why superconducting systems appear to violate or
escape the consequences of Earnshaw’s theorem. One of the first to show how
diamagnetic or superconducting materials could support stable levitation was
Braunbeck (Braunbeck, 1939).

Earnshaw’s theorem is based on the mathematics of inverse square force
laws. Particles which experience such forces must obey a partial differential
equation known as Laplace’s equation. The solutions of this equation do not
admit local minima or maxima, but only saddle-type equilibria. However,
there are circumstances under which electric and magnetic systems can avoid
the consequences of Earnshaw’s theorem:

• time-varying fields (e.g., eddy currents, alternating gradient);
• active feedback;
• diamagnetic systems;
• ferrofluids;
• superconductors.

Superconducting Sensors with Magnetic Levitation 301

The theorem is easily proved if the electric and magnetic sources are fixed
in space and time, and one seeks to establish the stability of a single free-
moving magnet or charged particle. However, in the presence of polarizable,
magnetizable, or superconducting materials, the motion of the test body will
induce changes in the electric and magnetic sources in the nearby bodies. In
general magnetic flux attractors such as ferromagnetic materials still obey
Earnshaw’s theorem, whereas for flux repellers such as diamagnetic or Type I
superconductors, stability can sometimes be obtained. Superconductors, how-
ever, have several modes of stable levitation:

• Type I or Meissner repulsive levitation based on complete flux exclusion;
• Type II repulsive levitation based on both partial flux exclusion and flux

pinning;
• Type III suspension levitation based on flux pinning forces;
• Type IV suspension levitation based on magnetic potential well.

In the case of Meissner repulsive levitation superconducting currents in
the bowl-shaped object move in response to changes in the levitated magnet.
The concave shape is required to achieve an energy potential well.

In the case of Type II levitation, both repulsive and suspension (or attrac-
tive) stable levitation forces are possible without shaping the superconductor.
Magnetic flux exclusion produces equivalent magnetic pressures which result
in repulsive levitation whereas flux attraction creates magnetic tensions (simi-
lar to ferromagnetic materials) which can support suspension levitation. Flux
penetration into superconductors is different from ferromagnetic materials,
however.

In Type III superconductors, vortex-like supercurrent structures in the
material create paths for the flux lines. When the external sources of these flux
lines move, however, these supercurrent vortices resist motion or are pinned
in the superconducting material. This so-called flux-pinning is believed to be
the source of stable levitation in these materials (Brandt, 1989, 1990).

Type IV suspension levitation described in details in the next section.
Finally, from a fundamental point of view, it is not completely understood

why supercurrent-based magnetic forces can produce stable attractive levi-
tation while spin-based magnetic forces in ferromagnetic materials produce
unstable attractive or suspension levitation. Given the restricted assumptions
upon which Earnshaw’s theorem is based, the possibility that some new mag-
netic material will be discovered, which supports stable levitation, cannot be
entirely ruled out.

3 Dynamics of Magnetically Levitated Systems

This section considers mathematical models of a sensor based on the princi-
ple of magnetic levitation. The sensor consists of two superconducting cur-
rent rings and a levitated probe placed between them (see subsection 5.1).

302 Vitaliy A. Yatsenko and Panos M. Pardalos

Fig. 1. Construction of the sensitive element.

The stability is provided by a set of superconducting short-circuited loops
placed around the floating ring. A novel method using short-circuited super-
conducting loops as stabilizers has been proposed. We showed that for a given
magnetic configuration there exists a minimum current in the levitated ring
below which the system is unstable.

The newly developed superconducting gravimeter (Fig. 1) represents a
spring type device [13], [14]. An analogue of the mechanical spring of our
device accomplishes the magnetic returning force acting on a superconducting
probe in a non-uniform magnetic field of superconducting rings or a permanent
magnet (in another variant). Due to the high stability of superconducting
currents of rings a highly stable non-dissipative spring is created.

As shown by [10], a set of variables uniquely defining an energy state can
be determined for any electromechanical system possessing power function
and storing energy in the form of magnetic field energy. In this case such
variables will be mechanical displacements (mechanical degrees of freedom)
qj , j = 1, 2, . . . , l (l is the number of degrees of freedom), as well as total
magnetic fluxes Ψm and currents Im, m = 1, 2, . . . , n (n is the number of
superconducting rings).

There are inner couplings between magnetic variables

Ψm =
n∑

i=1

LimIi, m = 1, 2, . . . , n, (1)

where Lim are mutual inductances, Lii are internal conductances. In the case
of superconducting current rings, magnetic-flux linkages Ψm retain constant

Superconducting Sensors with Magnetic Levitation 303

value independently of variations of a ring position. This circumstance allows
us to consider the relations (1) as a system of n equations for currents Ii,
i = 1, 2, . . . , n, where Ψm (m = 1, 2, . . . , n) are constants.

We will assume that the determinant ∆ of (1) is not equal to zero. Then
it can be solved for currents

Im =
∆m

∆
, m = 1, 2, . . . , n, (2)

where ∆m is the determinant of the current Im.
If we place the solution of (2) into the following formula for the energy of

magnetic field of the current loop system

W =
1
2

n∑
i,m=1

LimIiIm, (3)

then the energy will be expressed in terms of magnetic-flux linkages Ψi, Ψm

and the inductance Lim

W =
1
2
∆−2

n∑
i,m=1

Lim∆i(Ψi, Ψm, Lim)∆m(Ψi, Ψm, Lim), (4)

∆ = ∆(Ψi, Ψm, Lim), i,m = 1, 2, . . . , n. (5)

It follows from (4) that energy W depends only on mechanical coordinates
qj , which are incorporated in mutual inductances Lim (i �= m). Because of this,
in “pure mechanical” terms it is either power function or potential energy. The
formula for magnetic force (White, 1959) prompts which precisely mechanical
function will be the energy of magnetic field. This formula appears as

∆ = ∆(Ψi, Ψm, Lim), , i,m = 1, 2, . . . , n,

i.e. the magnetic force is a partial derivative with respect to magnetic en-
ergy expressed in terms of magnetic-flux linkages and coordinates, taken with
opposite sign.

But this is precisely the definition of force as a function of potential energy
of any power field. Therefore, energy of a magnetic field in form (4), where
Ψi, Ψm = const , is the potential energy of magnetic interaction of n ideal
currents, i.e.

W = Um = Um(Lim(qj)), i,m = 1, 2, . . . , n. (6)

If the system is located in an external power field, e.g. in gravitational one,
gravitational energy UG should be added to magnetic potential energy. Then
the total energy of the system is

U = Um + UG. (7)

304 Vitaliy A. Yatsenko and Panos M. Pardalos

For the system of circuits inner linkages between magnetic variables take the
form

Ψ1 = LI1 + L12I2 + L13I3 + L14I4,

Ψ2 = L12I1 + LI2 + L23I3 + L24I4,

Ψ3 = L13I1 + L23I2 + LI3 + L24I4,

Ψ4 = L14I1 + L24I2 + L34I3 + LI4, (8)

and energy of magnetic field (3) with respect to (8) can be written as

W = Um =
1
2
(LI2

1 + L12I1I2 + L13I1I3 + L14I1I4 + L12I1I2 +

+ LI2
2 + L23I2I3 + L24I2I4 + L13I1I3 + L23I2I3L14I1I4 +

+ LI2
3 + L34I3I4 + L24I2I4 + L34I3I4 + LI2

4) =

=
1
2
(Ψ1I1 + Ψ2I2 + Ψ2I3 + Ψ1I4). (9)

All the coils of the sensor are modeled by thin short-circuited ring-shaped
loops of similar radius, therefore internal inductances of the loops are L1 =
L22 = L33 = L44 = L.

By solving the system of equations (8), we find expressions for currents
and substitute them into (9) thus defining dependence of magnetic potential
energy on mechanical coordinates:

Um = Ψ2
1 (2L)−1{2(1− y14)(1 − y2

23)− (y13 − y24)2 − (y13 − y34)2 +
+ 2y23(y12 − y24)(y13 − y34) +

+ 2p[(y12y34 − y13y24)(y12 − y13 − y24 + y34)−
− (1− y14)(1 − y23)(y12 + y13 + y24 + y34)] + p2[2(1− y2

14)(1− y23)−

− (y12 − y13)2 − (y24 − y34)2 + 2y14(y12 − y13)(y24 − y34)]} ×
× [(1− y2

14)(1 − y2
23)− y2

12 − y2
13 − y2

24 − y2
34 +

+ (y12y34 − y13y24)2 + 2y14(y12y24 − y13y34) +

+ 2y23(y12y13 − y24y34)− 2y14y23(y12y34 − y13y24)]−1 =

= Ψ2
1 (2L)−1(M +Np+Qp2)D−1, (10)

where yim = LimL
−1; p = Ψ2Ψ

−1
1 , and relative mutual inductances yim =

yim(q1, . . . , q0) are functions of coordinates.
In order to define the explicit relation yim(q) we will introduce the inertial

coordinate system Oξηζ, whose Oη axis coincides with the axis of stationary
loops 1, 4 of the sensor; i1, i2, i3 are basis vectors of the system Oξηζ. We
place in the center of mass of the sensor the origin of the coordinate system
associated with it, with basis vectors i11, i12, i13 and with its O1, ζ1 axis

Superconducting Sensors with Magnetic Levitation 305

coinciding with the axis of the loops 2, 3. We will describe position of the
center of mass of the probe by cylindrical coordinates ρ2, α, ζ and orientation
of trihedron O1ξ1η1ζ1 with respect to system Oξηζ will be described by Euler
angles (υ is a nutation angle, ψ is a precession angle, ϕ is a proper rotation
angle).

As it is seen from formula (10), the potential energy depends on all six mu-
tual inductances yim, but y14, y23 = const . Therefore, only four inductances
y12, y13, y24, y34 are to be determined. All of them are calculated in a similar
way.

Let us define the following notation: Ri (i = 1, 2) are radius-vectors of
centers of rings mass in the system Oξηζ; dl1, dl2 are elements of arcs of
rings 1, 2; R12 is a radius-vector connecting the center of the i-th ring with
the respective element dli; e is a radius-vector of the center of the ring 2 in
the system O1ξ1η1ζ1. Then mutual inductance can be calculated by Neumann
formula

y12 =
L12

L
=

1
20π

∮ ∮
dl1dl2
|R12|

, (11)

R12 = R2 + e + a2 − a1 −R1, (12)

where

Ri = ρi cosαi1 + ρi sinαi2 + ζii3,

ai = a(cosλii11 + sinλii12), i = 1, 2,
e = ei13, dli = a(sinλiii1 − cosλiii2)dλi.

Since the ring 1 is fixed and coordinate system Oξηζ is selected such that
its axis Oη coincides with the axis of ring 1, all coordinates describing position
of the ring 1 have the following values:

ρ′ρi, α1 =
π

2
, ζ1 = 0, ϑ1 =

π

2
, Ψ1 = 0, φ1 = 0. (13)

Then for fixed ring 1

R1 = ρ1i2,

a1 = a(cosλ1i1 + sinλ1i3),
dl1 = a(sinλ1i1 − cosλ1i3)dλ1,

and for the sensor:

306 Vitaliy A. Yatsenko and Panos M. Pardalos

R2 = ρ2 cosαi1 + ρ2 sinαi2 + ζi3,

az = {[cos(λ2 + λ) cosΨ − sin(λ2 + φ) sinΨ −
− sin(λ2 + φ) sinΨ cosϑ]i2 + sin(λ2 + φ) sin ϑi3},

e = e sinφ sinϑi1 − e cosφ sinϑi2 + e cosϑi3,
dl2 = a{[sin(λ2 + φ) cosΨ + cos(λ2 + φ) sinΨ cos θ]i1 −
− [sin(λ2 + φ) sinΨ − cos(λ2 + φ) sinΨ cosϑ]i2 −

− cos(λ2 + φ) sin ϑi3}.

By performing elementary transformations, we obtain

y12 =
1

40π

∫ 2π

0

dλ1

∫ 2π

0

[sinx4 cosλ1 cos(λ2 + x6) +

+ sinλ1 sin(λ2 + x6) + cosx4 sinx5 sinλ1 cos(λ2 + x6)]×

×
{

1
2

+ e2 + ρ2
1 + x2

1 + x2
3 +

1
2
[cosx4 sinx5 −

− cosλ1 sin(λ2 + ϕ6)− cosx5 cosλ1 cos(λ2 + x6)]−
− 2ρ1x1 sinx2 + x1[cos(x2 − x5) cos(λ2 + x6) +

+ sin(x2 − x5) cosx4 sin(λ2 + x6)− cosx2 cosλ1]−
− ρ1[sinx5 cos(λ2 + x6) + cosx4 cosx5 sin(λ2 + x6)]−

− e(sinx4 sinx5 cosλ1 + cosx4 sinλ1)−
− 2ex1 sin(x2 − x5) sinx4 + 2eρ1 sinx4 cosx5 −

− x3[sinλ1 − sinx4(λ2 + x6)] + 2ex3 cosx4

}−1/2

dλ2,

where dimensionless variables are introduced

x1 =
ρ2

2a
; x2 = α; x3 =

ζ

2a
; x1 = υ; x5 = ψ; x6 = ϕ. (14)

Thus, the collection of formulas (10) and (11) determines dependence of mag-
netic potential energy on coordinates of the sensor, and total potential energy

U = Um −mgρ (15)

provided that direction of a gravitational force coincides with the direction of
Oη axis.

The integrals in the formula (11) are not taken in general form. Only in the
case, where axes of fixed loops coincide, integral relationship can be reduced to
linear combinations of complete elliptic integrals. In our case, where magnetic
forces are large as compared with perturbing ones, the potential energy can
be expanded into the following power series:

Superconducting Sensors with Magnetic Levitation 307

U = U0 +
6∑

j=1

(
PU

Pq

)∣∣∣∣
0

(qj − qj0) + (16)

+
1
2

6∑
j,n=1

∂2U

∂qj∂qn

∣∣∣∣
0

(qj − qj0)(qn − qn0),

where derivatives are calculated at the point qj0:

x10 = x10; x20 =
π

2
; x30 = 0; x40 =

π

2
; x50 = x60 = 0. (17)

After simple manipulations the final expression for potential energy can be
rewritten as

U =
∑

i,m=1
i�=m

(
∂Um

∂yim

∂yim

∂x1

∣∣∣∣
0

−mg
)

(x2 − x10) +

+
1
2

5∑
j,n=1

4∑
r,s=1
r �=s

4∑
i,m=1
i�=m

(
∂2Um

∂yim∂yrs

∂yim

∂xj

∂yrs

∂xn
+
∂Um

∂yim

∂2yim

∂xj∂xn

)∣∣∣∣
0

×

× (xj − xj0)(xn − xn0), (18)

where

∂Um

∂yim
=
Ψ1

2L
[(Mim +Nimp+Qimp

2)D − (M +Np+Qp2)Dim]D−2;

∂U2
m

∂yim∂yrs
=
Ψ1

2L
[(Mim,rsD

2 −MimDDrs −MrsDDim −MDDim,rs +

+ 2MDimDrs) + p(NimDDrs −NrsDDimNDDim,rs + 2NDimDrs) +

+ p2(Qim,rsD
2 −QimDDrs −QrsDDim −QDDim,rs + 2QDimDrs)]D−3

(expressions forM , N , Q, D are clear from formula (10), symbol Mim denotes
derivative of M with respect to yim);

308 Vitaliy A. Yatsenko and Panos M. Pardalos

M12 = −M24 = [y12 − y24 − y23(y13 − y34)];
M13 = −M34 = [y13 − y34 − y23(y12 − y24)];

N12 = 2[y34(y12 − y13 − y24 + y34) + (y12y34 − y13y24)−
− (1− y14)(1 − y23)];

N13 = −2[y24(y12 − y13 − y24 + y34) + (y12y34 − y13y24 +
+ (1− y14)(1 − y23)];

N24 = −2[y13(y12 − y13 − y24 + y34) + (y12y34 − y13y24) +
+ (1− y14)(1 − y23)];

N34 = 2[y12(y12 − y13 − y24 + y34)− (y12y34 − y13y24) +
+ (1− y14)(1 − y23)];

Q12 = −Q13 = [y12 − y13 − y14(y24 − y34)];
Q24 = −Q34 = [y24 − y34 − y14(y12 − y13)];

D12 = −2[y12 + y34(y12y34 − y14y24)− y14y24 − y13y23 + y14y23y34)];
D13 = −2[y13 + y2(y12y34 − y13y24)− y14y34 − y12y23 + y14y23y24)];
D24 = −2[y24 + y13(y12y34 − y13y24)− y12y14 − y23y34 + y13y14y23)];
D34 = −2[y34 + y12(y12y34 − y13y24)− y13y14 − y23y24 + y12y14y23)];
M12,12 = M13,13 = M34,34 = Q12,12 = Q13,13 = Q24,24 = Q34,34 = −2;
N12,12 = 4y34; N13,13 = 4y24; N24,24 = 4y13; N34,34 = 4y12;

D12,12 = −2(1− y2
34); D13,13 = −2(1− y2

24);

D24,24 = −2(1− y2
13); D34,34 = −2(1− y2

12);
M12,13 = 2y14; M12,24 = 2;

N12,13 = −2(y24 + y34); N12,24 = −(y13 + y34);
Q12,13 = 2; Q12,24 = 2y23;

D12,13 = 2(y14 − y24y34); D12,24 = 2(y23 − y13y34);
M12,34 = −2y24; M13,24 = −2y14;
N12,34 = 2[2(y12 + y34)− y13 − y24];
N13,24 = 2[2(y13 + y24)− y12y34];
Q12,34 = 2y23; Q13,24 = −2y23;

Superconducting Sensors with Magnetic Levitation 309

D12,34 = 2(2y12y34 − y13y24 − y14y23);
D13,24 = 2(2(y13y24 − y12y34 − y14y23);

M13,34 = 2; M24,34 = 2y14;
N13,34 = −2(y12 + y24); N24,34 = −2(y12 + y13);

Q13,34 = 2y23; Q24,34 = 2;
D13,34 = 2(y23 − y12y24); D24,34 = 2(y14 − y12y13);

y14 = y23 = const ; yim =
1
5k

[(1 + k
′2)K(k)− 2E(k)];

∂yim

∂x1
=

1
5b

[2k
′2K(k)− (2− k2)E(k)];

∂2yim

∂x2
1

= −2
∂2yim

∂x2
3

=
k3

5k′2 [1];

∂2yim

∂x2
2

= − 1
10k′2 (kρ1 + kd+ b){b[2] + k2(ρ1 + d)[1]};

∂2yim

∂x2
4

=
∂2yim

∂x2
5

=
k

40k′k {k
′2[(2 − 3k2 + 2k4)E(k)−

− k
′2(2 − k2)K(k)]− 4kd(d+ b)[1]};
∂2yim

∂x3∂x4
=

1
20k′2 {b[2] + 2k3d[1]};

∂2yim

∂x2∂x5
=

1
20k′2k

(kρ1 + kd+ b){b[2] + 2k3d[1]};

[1] = [k
′2K(k)− (1− 2k2)E(k)];

[2] = [k
′2(4 + k2)K(k)− (4− k2 − 2k4)E(k)];

at im = 12 b = k′, d = e, ρ1 = 0;
at im = 13 b = k′, d = −e, ρ1 = 0;
at im = 24 b = −k′, d = e, ρ1 = 2h;

at im = 34 b = −k′, d = −e, ρ1 = 2h;

K(k), E(k) are complete elliptical integrals of the 1st and 2nd kind of the
absolute value of kim , and k2

im = [1 + (x1 − ρ1 − d)2]−1; k
′2 = 1− k2.

The zero term Um(q0) is omitted in decomposition (16) since potential
energy is determined accurately to a constant, and equality to zero of the
coefficient is the necessary condition of equilibrium of (x1 − x10) the system
with a gravitational force. Using the following condition

∂Um

∂y12

∂x12

∂x1

∣∣∣∣
0

+
∂Um

∂y13

∂y13
∂y1

∣∣∣∣
0

+
∂Um

∂y25

∂x24

∂y1

∣∣∣∣
0

+
∂Um

∂y34

∂y34
∂x1

∣∣∣∣
0

= mg (19)

we can find the value of x10 at which gravitational force of SE is balanced by
magnetic interaction forces, and which is placed into expression (16).

310 Vitaliy A. Yatsenko and Panos M. Pardalos

In order to obtain the dynamic equations of the sensor, we use the results
discussed above and formula for kinetic energy of a free body in the form (16):

T =
1
2
m(ρ̇2 + ρ2α̇2 + ζ2) +

1
2
A(υ̇ sinϕ− ψ̇ sin υ cosϕ)2 +

+
1
2
B(υ̇ cosϕ+ ψ̇ sin υ sinϕ)2 +

1
2
C(ϕ̇ + ψ̇ cosυ])2. (20)

Let us suppose that the principal moments of inertia of the sensor with
respect to axes rigidly bound to coordinate system A, B, C are equal to 4ma2

and let us go over to dimensionless coordinates x1, . . . , x6 and dimensionless
time τ = tω by introducing characteristic frequency of sensor oscillations ω.
Then dimensionless kinetic energy T̃ will be

2T̃ = 2T (4ma2ω2)−1 = ẋ2
1 + x2

1ẋ
2
2 + ẋ2

4 + ẋ2
5 + ẋ2

6 + 2ẋ5ẋ6 cosx4. (21)

Applying Lagrange equations of the first kind

d

dt

∂L

∂qi
=
∂L

∂qi
, (22)

where L = T − U is Lagrange function, we obtain the required dynamic
equations of the sensor:

ẍ1 = x1ẋ
2
2 − γ

∂U

∂x1
− x1ẋ

2
2 − γ

∂2U

∂x2
1

∣∣∣∣
0

(x1 − x10);

ẍ2 = −x−2
1

[
2x1ẋ1ẋ2 γ

∂2U

∂x2
2

∣∣∣∣
0

(
x2 −

π

2

)
+ γ

∂2U

∂x2∂x3

∣∣∣∣
0

x5

]
;

ẋ3 = − γ ∂
2U

∂x2
3

∣∣∣∣
0

x3 − γ
∂2U

∂x3∂x4

∣∣∣∣
0

(
x4 −

π

2

)
;

ẍ4 = −ẋ5ẋ6 sinx4 − γ
∂2U

∂x2
4

∣∣∣∣
0

(
x4 −

π

2

)
− γ

∂2U

∂x3∂x4

∣∣∣∣
0

x3;

ẍ5 = − sin−2 x4

[
ẋ4ẋ5 sinx4 cosx4 − ẋ4ẋ6 sinx4 + γ

∂2U

∂x2
5

∣∣∣∣
0

x5 +

+ γ
∂2U

∂x2∂x5

∣∣∣∣
0

(
x2 −

π

2

)]
;

ẍ6 = − sin−2 x4

[
ẋ4ẋ6 sinx4 cosx4 − ẋ4ẋ5 sinx4 + γ

∂2U

∂x2
5

∣∣∣∣
0

x5 cosx4 +

+ γ
∂2U

∂x2∂x5

∣∣∣∣
0

(
x2 −

π

2

)
cosx4

]
. (23)

Here the numeric value γ = Ψ2
1 (8Lma2ω2)−1 is determined from condition

Superconducting Sensors with Magnetic Levitation 311

γ
∑

i,m=1
i�=m

∂Um

∂yim

∂yim

∂x1

∣∣∣∣∣
0

=
g

2aω2
. (24)

Thus, the expressions for potential and kinetic energies and differential
equations of motion of the sensor in the form convenient for numerical analysis
of stability and dynamics of gravity-inertial devices are obtained.

4 Optimal Synthesis of Chaotic Dynamics

In the optimization methods described in [12] sensor dynamics throughout
the state space are represented either with a single set of coupled maps

yi(n+ 1) = fi[y(n), γ, a], i = 1, . . . , N, y ∈ R
N (25)

or a set of ordinary differential equations

ẏi(t) = fi[y(t), γ, a], i = 1, . . . , N, y ∈ R
N , (26)

where y ∈ Γ ⊂ Rn is a state vector; a ∈ Rn is a parameter vector; γ rep-
resents a noise term. If γ(t) = 0 and a = const, the equation (26) defines
a deterministic dynamical system. The time series of sensor measurement is
then a sequence of observations {sn},M = 1, where sn = h[y(t = n # t)],
with a measurement function h and a sampling #t. The number of observed
variables is assumed to be sufficient to embed the dynamics. The functions
{fi} may be of any form, but are usually taken to be a series expansion. This
method has been successfully tested with Taylor- and Fourier-series expansion.
In this manner, the modeling is done by finding the best expansion coefficients
to reproduce the experimental data. Often, the form of the functions {fi} is
known, but the coefficients are unknown. For example, this situation occurs
frequently with rate equations for measurement processes. The added infor-
mation greatly reduces the number of undetermined parameters, thus making
the modeling computationally more efficient.

The modeling procedure begins with the step of choosing some trial coef-
ficients. The error in these parameters can be computed by taking each data
point x(tn) as an initial condition for the model equations. The predicted
value y(tn+1) can then be calculated for CM’s as

yi(n+ 1) = fi[x(n), a], i = 1, . . . , N,

or for ODE’s as

yi(tn+1) = xi(tn) +
∫ tn+1

tn

fi[y(t′), a]dt, i = 1, . . . , N (27)

and compared to the experimentally determined value. It is well known that
more stable models can often be obtained by comparing the prediction and the

312 Vitaliy A. Yatsenko and Panos M. Pardalos

experimental data several time steps into the future. For the present analysis,
we will predict the value only to the time of the first unused experimental data
point. The error in the model is thus obtained by summing these differences

F =
1

N(M − 1)−Nc

M∑
i=1

N∑
j=1

1
σ2

ij

[yj(ti)− sj(ti)]2, (28)

where Nc is the number of free coefficients ai, M is the number of data
points, and σij is the error in the jth vector component of the ith calibration
measurement. The task of finding the optimal model parameters has now been
reduced to a minimization problem. Thus, the best parameters are determined
by

min
a
F (a, y), αmin

i ≤ αi ≤ αmax
i , i = 1, . . . , r, (29)

where αi are the system characteristics of the sensor (fractal dimension, point-
wise dimension, information dimension, generalized dimension, embedding di-
mension, Lyapunov dimension, metric entropy et al.)

A minimal embedding of dimensionN is determined by means of Hausdorff
dimension d or any other generalized dimension. The essence of the present
method is as follows. We consider relatively slow parameter a. As a result, we
should solve the corresponding constrained optimization problem.

Therefore the ability to determine these coefficients rests upon the strength
of the algorithm employed to search through the space of parameters. Since
this has been formulated as a standard F 2

ν identification problem, the normal
statistical tests can be applied. Typically, Fν � 1 implies that the modeling
was successful; however, more sophisticated tests can be applied as well, e.g.,
the F test. If the experimental errors σij are unavailable, the normalization
factor can simply be removed from equation (28). This means that the Fν

tests cannot be applied, but the best possible model can still be determined
by locating the global minimum of Fν in the parameter space.

4.1 Construction of the Sensor

Mechanically, the sensor represents a free body designed as a rigid pack of two
coaxial short-circuited superconducting coils, and suspended in magnetic field
of two stationary superconducting current coils whose axes in nonperturbed
state coincide with the axis of the sensor. The probe is positioned between
stationary coils. The distance between each stationary coils and nearest to
it a free coil is much less than the distance them. The stationary coils are
powered by currents with the same direction and strength. Then, they are
shorted out, and magnetic fluxes induce into free coils from stationary coils,
such that each coil is attracted to the next stationary coil, i.e. the sensor is
stretched by magnetic forces. An acceleration component is registered by a
superconducting magnetometer.

Superconducting Sensors with Magnetic Levitation 313

Stationary suspension coils are connected in such a way that after their
energizing with currents they form two independent loops with a common
section which incorporates a measuring coil. Currents flowing in the formed
loops are subtracted at the measuring coil. Since loops are powered by the
same currents, at the initial instant of time a current in measuring coil is
equal to zero. When the probe is displaced along its axis under the effect
of acceleration, a current in one stationary coil increases by the value ∆I2
whereas in the other it decreases by ∆I2. In this case the current ∆I1 +∆I2
will flow through the measuring coil .

However, increments of currents of opposite signs arise only in case of
displacement along the axis. But, if perturbations arise in the direction per-
pendicular to the axis or along the angle of inclination of sensor axis, currents
in both loops either increase or decrease. Current in the measuring coil will
not vary. Due to the symmetry of the magnetic system, the sensor is invariant
to the mentioned perturbations.

5 Chaotic Dynamics of the Levitated Probe

The connection of the shift y1 of the probe in the magnetic field by means of
measured signal u3 and an output signal of the sensor can be described by an
equation for state variables y3, . . . , y6 and some functional z (a model of the
quantum interferometer S). This model admits [9],[11] the following bilinear
model (BM)

ẏ = Ay + (Bu1 + Cu2
1)y +Du1 + Eu2

1 + Fu3 +Gu4, z = Ly, (30)

where A, B, C, D, E, F , G, L are matrix; y ∈ Ŷ ⊂ R2; z ∈ R1.
Then there exists some possibilities for optimization of information char-

acteristics of the measurement using the parameter matrix a and control u(n̂).
On the base of these characteristics we can provide a matrix and topological
behaviours of discrete approximation of the BM {T, Ŷ , S, Ψ} using symbolic
dynamic methods. Here {T̂ n; n ∈ Z} is cascade; T : Ŷ → Ŷ , Ψ : Ŷ → L is the
map “input-output” of the system S, L is a finite alphabet. A further opti-
mization of the sensor can be reached near a Smale’s horseshoe of additional
Lebesgue measure of the dynamical system {T, Ŷ , S, Ψ}.

The requirement of the equilibrium of the probe is provided by a feedback

̂̇u1 + α̂û1 = α̂r(y − u0)

in the simplified model
ÿ − û4 = û1 + û3.

Here u0(t) is a fixed relation of the time of a probe; û1 = d2u1, û3 = f2u3,
û4(y) = g2u4 = δy+ K̂(y)y, δ, r, α̂ are constants, K̂(y) = (1/B̂)(y2− 1)(y2−
B), B̂ > 1. Under the parameter r = 0, the feedback realizes the three stable

314 Vitaliy A. Yatsenko and Panos M. Pardalos

states y = 0,±
√
B̂ and two saddle points y = ±1. Under some values of the

parameters (δ, α̂, r, B̂) the probe u0 will be move from one point to another.
However under different values of the parameters we will have a limit

cycles and a chaotic mode. If u0 = û3 = 0 and r = r0 then the origin of the
coordinate system will be unstable saddle point of the spiral type. A numerical
model of a measurement has chaotic properties (strange attractor) which can
be used for constructing a better sensitivity measurement.

Using the linear model near a stable point of the probe

ẋ = Ax+Du1 + Fu3 +Gu4, z = Lx, x ∈ R
2, (31)

a normalized polynomial Θ(λ) = α1λ
2 + α2λ + α3 with a negative real part

of roots and the method of synthesis of a nonperturbed motion under control
y = 0, u1 = 0, we can find a stabilizing control

u1 = −(α3 + a11)a−1
17 α

−1z. (32)

6 Nonlinear Dynamics and Chaos

Consider a coil element of length, β, carrying constant current I moving over
a continuous-sheet guideway. In the high speed limit, the force on the coil will
be given by the field due to an image coil below the guideway of opposite
current direction.

Under these very generous assumptions we can derive an equation for the
vertical motion (called heave) of the form

mz̈ + δż − µ0I
2β

2πz
= −mg +m

V 2
0 4π2A0

Λ2
cosωt, (33)

where ω = 2πV0/Λ and an arbitrary damping term has been added. This
system can be written in the form of a third-order autonomous system of
first-order differential equations:

ż = v,

v̇ = −cv +
b

z
− a+ f cosφ,

φ̇ = ω. (34)

This system of equations can easily be numerically integrated in time using
a Runge–Kutta or other suitable algorithm. The trajectory is easily projected
onto the phase plane of z versus v. As the amplitude of the guideway waviness
is increased, one can see a change in the geometry of the motion from elliptical
to a distorted ellipse to chaotic motion. The chaotic motion is better viewed by
looking at a strobescopic view of the dynamics by plotting (zn, vn) at discrete
values of the phase φ = ωt or tn = 2πn/ω. This picture is called a Poincaré

Superconducting Sensors with Magnetic Levitation 315

map (Moon, 1992). In contrast to the unordered continuous time the Poincaré
map shows a fractal-like structure. This type of chaotic motion with fractal
structure is called a strange attractor. It indicates that the dynamics are very
sensitive to the initial conditions.

Chaotic-like dynamics in a levitated model moving over a rotating-wheel
guideway have been observed by Moon [8].

The magnetic force between a permanent magnet and a temperature
superconductor such as YBCO is hysteretic near the critical temperature.
Hystcretic forces are both nonlinear and dissipative and can produce com-
plex nonlinear dynamics. A permanent magnet is restrained to move laterally
over a YBCO superconductor. As the gap between the magnet and the su-
perconductor is decreased, the dynamics of the magnet become increasingly
complex in a pattern called period doubling. Subharmonic frequencies appear
in the spectrum of the form mω/n, where n = 2, 4, . . . , 2k. This bifurcation
behavior is shown in the Poincaré map as a function of the magnet-YBCO
gap. At a critical gap, the motion becomes chaotic. Another tool for observ-
ing chaotic motions is to plot a return map on one of the state variables, say
Xn+1, versus Xn, where Xn is the displacement of the magnet at discrete
times synchronous with the driving amplitude – that is, tn = 2πn/ω. The
return map shows a simple parabolic shape. This map is similar to a very
famous equations of chaos known as the logistic map (Moon, 1992):

Xn+1 = aXn(1−Xn). (35)

For a > 3.57 the dynamics may become chaotic, and this equation generates
a probability density function.

This simple experiment again indicates that although magnetically levi-
tated bodies are governed by deterministic forces, the nonlinear nature of the
forces can generate complex and sometimes unpredictable dynamics which are
sensitive to initial conditions and changes in other system parameters. Thus,
care in design of such systems should include exploration of the possible non-
linear behavior of levitation devices.

7 Conclusions

In this chapter, we describe a superconducting gravity meter, its mathemati-
cal model, and a nonlinear controller that stabilize a probe at the equilibrium
state. We have also presented a mathematical model of the superconducting
suspension which is based on a magnetic levitation. A nonlinear control algo-
rithm has been implemented for the purpose of maintaining chaotic behavior
in the sensor.

316 Vitaliy A. Yatsenko and Panos M. Pardalos

References

1. E. Brandt. Levitation in physics. Science, 243:349–355, 1989.
2. E. Brandt. La Lévitation. Recherche, 224–229, 1990.
3. W. Braunbeck, W. Freishwebende Körper in electrischen and magnetischen Feld.

Z. Phys., 112(11–12):753–763, 1939.
4. R. Horst, P. Pardalos. Hadbook of Global Optimization. Kluwer Academic Pub-

lishers, Dordrecht, 1995.
5. J. Jensns. The Mathematical Theory of Electricity and Magnetism. Cambridge,

CUP, 1925.
6. V. Kozorez, O. Cheborin. On stability of equilibrium in a system of two ideal

current rings. Dokl. Akad. Nauk UkrSSR, Ser. A, 4: 80–81, 1988.
7. F. Moon. Chaotic vibrations of a magnet near a superconductor. Phys. Lett. A,

132(5):249–251, 1988.
8. F. Moon. Chaotic and Fractal Dynamics. John Wiley & Sons, New York, 1992.
9. P. Pardalos, P. Knopov, S. Urysev, V. Yatsenko. Optimal estimation of signal

parameters using bilinear observation. In Rubinov, A. and Gloveredited, B., edi-
tors, Optimization and Related Topics. Kluwer Academic Publishers, Dordrecht–
Boston–London, 103-116, 2001.

10. D. White, G. Woodson, G. Electromechanical Energy Conversion. John Wilev
and Sons. Inc., New York,1959.

11. V. Yatsenko. Estimating the signal acting on macroscopic body in a controlled
potential well. Kibernetika, 2:81–85, 1989.

12. V. Yatsenko and P. Pardallos. Global optimization of cryogenic-optical sensor.
In Sensors, Systems, and Next-Generation Satellites, K. W.H. Fujisada, J. Lirie
(Eds.), Proc. SPIE 4550, 2001.-P. 433 - 441.

13. V. Yatsenko, P. Pardallos, and J. Principe. Cryogenic-optical sensor for the higly
ensitive gravity meters. Advance Sensor, Systems, and Next-Generation Satellites
V, Proc. SPIE, 4881:549-557, 2002.

14. V. Yatsenko. Functional structure of the cryogenic optical sensor and mathe-
matical modeling of signal. Cryogenic Optical Systems and Instruments, Proc. of
SPIE, 5172:97-107, 2003.

Stochastic Optimization and
Worst–case Decisions

Nalan Gülpinar, Berç Rustem, Stanislav Žaković

Imperial College London,
Department of Computing, South Kensington Campus,
London, SW7 2AZ, UK.
E-mail: {ng2,br,zakovic}@doc.ic.ac.uk

Summary. In this chapter, we are concerned with decision making methods for
dynamic systems under uncertainty. We consider expected value optimization of
stochastic systems and worst-case robust strategies. Stochastic decision-making in-
volves uncertainty and consequently risk. An important tool to address the inherent
error for forecasting uncertainty is worst-case analysis. From the risk management
point of view, minimax yields the best strategy determined simultaneously with the
worst state of the underlying system. Worst-case analysis is a robust framework for
decisions under uncertainty as the actual performance of the decision has a non-
inferiority property. The significance of robust strategies is increasingly recognized
as attitudes towards risk evolve in diverse areas. We present worst-case approach to
macroeconomics policy making and financial portfolio management.

1 Introduction

Worst-case analysis (minimax) is a robust framework for decision making un-
der uncertainty. The starting point for the worst-case optimization is based on
Rustem & Howe [12]. Minimax solution is determined simultaneously with the
worst state of the underlying system. The actual performance of the decision
has a non-inferiority property. The significance of worst-case robust strate-
gies is increasingly recognized as attitudes toward risk evolve in economics,
financial markets and engineering.

Model-based policy design entails a reasonable specification of the underly-
ing model and an appropriate characterization of the uncertainties. The latter
can be an exogenous effect, parameter uncertainty or uncertainty regarding
the structure of the model (which requires a setting that admits rival struc-
tures). In this chapter we consider methods that address those types of uncer-
tainty and present two applications of minimax to decision making, namely
macroeconomics policy making and financial portfolio management. The un-
certainties are characterized either in terms of a number of rival scenarios
or ranges in which the uncertain parameters or exogenous effects may vary.

318 Nalan Gülpinar, Berç Rustem, Stanislav Žaković

Such characterization of uncertainty leads to discrete and continuous mini-
max models. The discrete minimax approach determines the optimal strategy
in view of all specified rival scenarios simultaneously, rather than any sin-
gle scenario. The continuous minimax strategy provides a guaranteed optimal
performance in view of continuum of scenarios varying between upper and
lower bounds. Thus, there are an infinite number of future scenarios in the
continuous minimax framework.

Financial portfolio management problem can be modeled using single-stage
and multi-stage stochastic programming [4], [9]. The future is seen in terms of
scenarios that are essentially a discrete set of realization of uncertainties. In
the multi-stage case, each scenario evolves into a set of scenarios in the next
stage, with associated probabilities [2]. Instead of risk and return forecasts
over a single-stage, the forecast takes the shape of a scenario tree, which di-
vides the investment horizon into discrete time intervals, at which the portfolio
may be rebalanced. Classical measure of risk in the Markowitz mean-variance
approach requires the knowledge of the first and second moments of the distri-
bution of returns and capture errors in the data such as mean and covariance
matrix of the returns. Therefore, the imprecise nature of the moment fore-
casts needs to be tackled to reduce the risk of decision-making on the wrong
scenario.

An alternative worst-case approach is theH∞ formulation [1]. TheH∞ ap-
proach transforms the original minimax problem with box constraints, which
may be convex with respect to the uncertain variables, to a concave maximiza-
tion problem by an appropriate choice of a penalty parameter γ. This requires
the solution of a minimax problem, convex in the minimization (i.e. policy)
variables and concave in the maximization variables (i.e. uncertainties). This
is a saddle point. If the original intention is to design a robust policy for a
given range of uncertainties, H∞ is not really an appropriate tool. The for-
mulation is also extremely sensitive to the choice of γ which may result in
policies which are either more optimistic or more pessimistic than intended.
However, it does provide some degree of robustness cover.

The rest of this chapter is organized as follows. In section 2, we describe
minimax approach and discuss some issues that arise from the approach. Sec-
tions 3 and 4 focus on applications of worst-case analysis to macroeconomics
policy making and financial portfolio management, respectively. Section 5
summarizes our conclusions.

2 The Minimax Approach

The general minimax optimization problem can be defined as:

min
x∈X

max
v∈V

F (x, v),

s.t. X ⊂ Rn, (1)
V ⊂ Rm,

Stochastic Optimization and Worst–case Decisions 319

where F : Rn+m → R. The aim of the worst-case approach is to minimize the
objective function with respect to the worst possible outcome of the uncertain
variables v. Therefore, x is chosen to minimize the objective function, where
nature chooses v to maximize it.

If V is a finite set, (1) becomes the discrete minimax problem:

min
x

max
v∈V

F (x, v),

s.t. V = {v1, v2, ..., vk}. (2)

Introducing a more familiar notation,

F (x, vj) = f j(x), j = 1, 2, ..., k

the discrete minimax problem (2) can be reformulated as

min
x

max
j=1,2,...,k

f j(x). (3)

It can be shown that minimax problem (3) is equivalent to the following
nonlinear programming problem:

min
x,z

z,

s.t. f j(x) ≤ z, ∀j = 1, 2, ..., k, (4)

Using the fact that the maximum over a set of scalars is equal to the
maximum over their convex hull, (3) can be equivalently expressed as the
continuous minimax problem

min
x

max
β

k∑
i=1

βif
i(x)

s.t.

k∑
i=1

βi = 1, (5)

βi ≥ 0, ∀i.

If V has an infinite number of elements, then (1) is called continuous minimax
which can be stated as the following semi-infinite optimization problem

min
x,z

z,

s.t. F (x, v) ≤ z, ∀v ∈ V, (6)

Notice that there is an infinite number of constraints corresponding to the
elements in V .

Let
Φ(x) = max

v∈V
F (x, v), (7)

320 Nalan Gülpinar, Berç Rustem, Stanislav Žaković

for all x. We call Φ(x) the max function. Therefore, (1) can be written as

min
x∈X

Φ(x). (8)

To solve (8) a quasi-Newton algorithm is used. The algorithm generates a
descent direction based on a subgradient of F (x, .) and uses an approximate
Hessian in the presence of possible multiple maximizers of (7) as well as a
step size strategy that ensures sufficient decrease in Φ(x) at each iteration.
Problem (8) poses several difficulties:

• Φ(x) is in general continuous but may have kinks, so it might not be
differentiable. At a kink the maximizer is not unique and the choice of
subgradient to generate a search direction is not simple;

• Φ(x) may not be computed accurately as it would require infinitely many
iterations of an algorithm to maximize F (x, y);

• a global maximum is required in view of possible multiple solutions. The
use of a local maximum cannot guarantee a monotonic decrease in Φ(x).

When the cost or objective function is convex with respect to the uncertain
variables the maximum will correspond to one or more vertices of the hyper-
cube defined by the upper and lower bounds on the uncertain variables. If the
objective function is concave with respect to the uncertainties the maximum
may lie anywhere within the hypercube.

The minimax algorithms and applications to a number of problems in
engineering, finance and macroeconomics are presented in [12], [15], [16]. In
this chapter we present both discrete and continuous minimax models arising
in macroeconomics and finance.

3 Macroeconomics Policy Making

In recent years, a number of central banks have announced inflation tar-
gets and have adopted an explicit inflation targeting framework for optimal
macroeconomics policy making. Orphanides and Wieland [10] use a simple
macroeconomics model of inflation (πt), output gap (yt) and interest rates
(rt) to investigate different motives for inflation point versus inflation zone
targeting. In the first case, the policymaker varies short-term nominal inter-
est rates in order to stabilize inflation around a point target whereas in the
second case, the emphasis is on containing inflation within a target range.
Inflation point targeting arises naturally in linear models of the economy with
a quadratic loss function for the policymaker (the L-Q model in [10]). Or-
phanides and Wieland show that inflation zone targeting may be motivated
by a non-linear, or more precisely, zone-linear Phillips curve relationship be-
tween the change in inflation and the output gap (the ZL-Q model in [10]).

In the minimalist macroeconomics model of [10], the two key variables for
the policy decision process are inflation and output. The policy instrument is

Stochastic Optimization and Worst–case Decisions 321

the short term nominal interest rate. The dynamic structure of the model is
represented by a single lag of inflation in the Phillips curve and a single lag of
the output gap in the aggregate demand equation. It is appropriate, therefore,
to interpret the length of a period to be rather long, say half a year to a year.

3.1 Worst-case Inflation Targeting

In every period t, the policymaker sets the interest rate, rt, with the objective
to maintain inflation πt, close to a desired target and output gap yt close to
the economy’s natural level. To describe the policymaker’s welfare loss during
a period t, a per-period loss function is specified as

lt = l(πt, yt).

The per-period loss facing the policymaker in period t + 1, lt+1, can be ex-
pressed as a weighted average of the deviation of inflation π from its desired
target π∗ and the output deviation from the economy’s natural level y:

lt+1 = ω(πt+1 − π∗)2 + (1− ω)y2
t+1, ω ∈ (0, 1). (9)

The following two equations describe the evolution of the economy:[
πt+1

yt+1

]
=
[

1 αρ
0 ρ

] [
πt

yt

]
+
[
−αξ
−ξ

]
rt +

[
αδ + αut+1 + et+1

δ + ut+1

]
, (10)

where rt represents the real interest rate, et+1 and ut+1 are random, zero-mean
shocks:

−σ ≤ ut, et ≤ σ, ∀t, (11)

and α, ρ, δ, ξ are given model parameters. The objective function is defined in
terms of a sum of discounted per-period losses as follows:

F (r, v) =
∞∑

t=0

βtlt+1, (12)

with the uncertainty v = (ut, et)′ and the discount factor β < 1 .
An alternative approach, which could be used in this framework, is con-

sidered by Tetlow and von zur Muehlen in [14] and Hansen and Sargent in
[5]. In these approaches, the policymaker chooses the parameters x1 and x2

of the feedback law
rt = x1πt + x2yt (13)

to minimize welfare losses that are maximized over v. This rule is referred to
as feedback rule. We can then formulate the minimax problem as

min
x1,x2

max
v∈V

F (x, v), (14)

where the objective function F is given by (12), the constraints on the systems
are given by the model (10) and the feedback law is represented by (13).

322 Nalan Gülpinar, Berç Rustem, Stanislav Žaković

3.2 The H∞ Approach

Another approach to robust design, with minimax origin, is the H∞ frame-
work (Basar and Bernhard [1]). Consider the following problem

min
x

max
v

F (x, v)

s.t. ‖v‖22 ≤ C. (15)

If F is convex in x and convex in v, the solution of this problem lies on
the boundary of the constraint ‖v‖22 ≤ C. Furthermore, generally, there are
multiple maximizers. The constraint is implicitly imposed using a penalty
formulation that discourages the transgression of the constraint. Thus, the
H∞ formulation is given by

min
x

max
v
F (x, v) − γ2‖v‖22, (16)

This problem is convex in x and, for smaller values of γ, convex in v. Hence, it
can have multiple maxima. As γ increases, the augmented objective function
(16) becomes concave in v at some value of γ. It is this value of γ that H∞

seeks. Since the transformed objective is now convex in x and concave in v, it
yields a robust solution that is also a saddle point.

H∞ is not concerned with the original robust decision problem. H∞ was
developed for the specific purpose of generating feedback controls that will
ensure a robust policy if the underlying uncertainty (noise) deviates from
its base. It is designed to have a unique worst-case, corresponding to the
saddle-point solution. It transforms the original problem to the determination
of a saddle–point that provides some degree of robustness. Furthermore, the
computation is highly sensitive to the choice of γ. The results for two different
choices of γ illustrate this point and are presented in Figures 1 and 2. In the
former, for γ = 1, we observe two maxima (i.e. two worst-case realizations
of the shocks (u, e)) for our macroeconomics model, consisting of worst-case
paths for interest rate, inflation and output gap.

In Figure 2, with γ = 3, the uncertainties are forced towards zero and we
have a saddle point. Therefore, only one maximum is observed for interest
rate, inflation and output gap.

Robustness and Optimality of Minimax

Let x∗, v∗ solve (1). Then, the following inequality is valid for all feasible v

F (x∗, v∗) ≥ F (x∗, v).

Let x∗∗, v∗∗ be the optimal solution of (16). Then

F (x∗∗, v∗∗)− γ2‖v∗∗‖22 ≥ F (x∗∗, v)− γ2‖v‖22, for all feasible v.

Stochastic Optimization and Worst–case Decisions 323

Fig. 1. Inflation patterns for γ = 1. Two maxima encountered.

The above inequalities simply state the optimality of v∗, v∗∗ for the corre-
sponding problems (1) and (16). They also signify the robustness of minimax
in that performance is assured to improve if the worst-case v∗ or v∗∗ does not
happen. Similarly, under the same assumptions, for all feasible x, we have

F (x∗, v∗) ≤ F (x, v∗),

and

F (x∗∗, v∗∗)− γ2‖v∗∗‖22 ≤ F (x, v∗∗)− γ2‖v∗∗‖22.

3.3 Expected Value Optimization

We also consider expected value optimization of nonlinear function F (x, v)
and compare the results obtained with the minimax approach. Random shocks
ut, et are now assumed to be normally distributed, zero-mean variables:

ut, et ∼ N(0, σ2), ∀t.

We formulate the problem as minimization of expected value of F (x, v) as

min
x1,x2

E(F (x, v)),

s.t. v = (ut, et)′ ∼ N(0, σ). (17)

324 Nalan Gülpinar, Berç Rustem, Stanislav Žaković

Fig. 2. Inflation patterns for γ = 3. One maximum encountered.

Let xe be
xe = argminE(F (x, v)).

Given the minimax solution (x∗, v∗), the following inequality is valid

F (x∗, v∗) ≤ F (xe, v∗).

In the computational experiments, we set π∗ = 0, t = 20, β = 0.9 and the
same weight w = 1

2 for both inflation and output gap. The model parameters
are estimated by Orphanides and Wieland [10]. We present the results of our
computational experiments obtained with different bounds on the uncertain-
ties in Table 1. As the shocks (uncertainties u, e) are additive in the model,
the feedback rules x∗ = (x∗1, x∗2)′ are the same for all cases. Notice that the
objective function values increase as the boundaries on uncertainties are in-
creased. The results of minimizing expected value show a similar conclusion -
the control xe = (xe

1, x
e
2)

′ is the same due to the shocks appearing linearly in
the model, and also the expected loss increases as the uncertainty increases.
It can be observed from the results that expectation of the loss is always lower
than the worst-case

Ev(F (xe, v)) ≤ F (x∗, v∗).

We evaluate the consequence of applying the expected value optima xe

(corresponding to different levels of uncertainty) when the worst-case scenario
v∗ is realized; in other words, F (xe, v∗) is computed. We also investigate the

Stochastic Optimization and Worst–case Decisions 325

consequence of adopting the worst-case optima x∗ (corresponding to different
bounds) in view of stochastic uncertainty, that is Ev(F (x∗, v)). The results of
cross evaluation are presented in Table 1.

Table 1. Minimax and expected value optima and their cross evaluation.

Minimax Optimum

bounds x∗
1 x∗

2 F (x∗, v∗) Ev(F (x∗, v))
1
2
σu, 1

2
σe 5.217 1.873 10.943 6.583

σu, σe 5.217 1.873 43.772 26.334
3
2
σu, 3

2
σe, 5.217 1.873 101.252 72.638

Minimized Expectation

distribution xe
1 xe

2 Ev(F (xe, v)) F (xe, v∗)

N(0,
σ2

u
4

), N(0, σe
4

2) 1.857 1.930 4.013 12.564
N(0, σ2

u), N(0, σ2
e) 1.857 1.930 16.053 66.543

N(0, (3σu
2

)2), N(0, (3σe
2

)2) 1.857 1.930 36.119 129.733

We compare adopting the worst-case feedback rule in the stochastic frame-
work and the expected value optimization feedback rule when the worst-case
is realized. The expected performance of the former (completed using Monte
Carlo simulation) is observed to be much better than the performance of the
latter (for example 6.583 is the expectation, while the worst-case value is
10.943):

Ev(F (x∗, v)) ≤ F (x∗, v∗).

The situation rapidly changes when xe, the feedback rules obtained from
minimizing expectation are used. In case when such rules are used and the
worst-case scenario happens, the loss could increase up to 60%

F (x∗, v∗) ≤ F (xe, v∗).

Therefore, although the expected value optimization performs better on the
average, minimax approach guards against the worst possible scenarios and
provides the upper bound for the loss function. Should any other scenario be
realized, then better performance and lower loss are guaranteed.

4 Financial Portfolio Management

In financial portfolio management, the maximization of return for a level of
risk is the accepted approach to decision making. A fundamental example
is the single-stage Markowitz [9] model in which expected portfolio return is
maximized and risk measured by the variance of portfolio return is minimized,
[9]. The single-stage asset allocation problem can be extended to a multi-stage
framework using stochastic programming. In the multi-stage case, after the

326 Nalan Gülpinar, Berç Rustem, Stanislav Žaković

initial investment, one can rebalance the portfolio (subject to any desired
bounds) to maximize profit at the investment horizon and minimize the risk
at discrete stages and redeem at the end of the stage. In this section we
are concerned with both single-stage and multi-stage mean-variance financial
portfolio management problems.

4.1 Single-stage Mean-Variance Optimization

Markowitz Model

The single-stage model of Markowitz considers a portfolio of n assets defined
in terms of a set of weights wi for i = 1, · · · , n, which sum to unity. In other
words, the initial budget is normalized to 1 as 1′w = 1. Given an expected
rate of return r̄, the optimal portfolio is defined in terms of the solution of
the following quadratic programming problem:

min
w
{< w, Λw > |w′r = r̄, 1′w = 1, w ≥ 0}

where Λ is the covariance matrix of asset returns. The quadratic program
yields the minimum variance portfolio. Many traditional portfolio analysis
models seek only to maximize expected return. This can be achieved with
a classical stochastic linear programming formulation which incorporates the
mean term. This is a risk-neutral approach which does not take risk-attitudes
into account.

If the investor currently has holdings of assets 1, . . . , n, then vector p
(scaled so that 1′p = 1) represents the current position. If the investor cur-
rently has no holdings (wishing to buy), then p = 0. Let b and s define de-
cision variables for transactions of buying and selling, respectively. Then the
allocation of the initial budget is represented with the following constraints:

p + b− s = w (18)

Transaction costs, τ , incurred by moving to strategy w from current position
p, subject to costs cb, cs can be incorporated into the mean-variance opti-
mization model. The transaction cost of the purchase or sale is formulated
as

c
′
bb + c

′
ss = τ (19)

The trade off between expected return and risk is achieved by solving the
following quadratic programming problem;

min α(w −w)
′
Λ(w −w)−

[
(w −w)

′
r− τ

]

Stochastic Optimization and Worst–case Decisions 327

subject to
1

′
w = 1

p + b− s = w

c
′
bb + c

′
ss = τ

w,b, s ≥ 0

where the scaling constant α determines the level of risk-aversion optimized
for. By sliding from α = 0 (total risk-seeking) to α =∞ (total risk aversion),
the entire range of efficient investment strategies is obtained. These investment
strategies basically defines the efficient frontier.

Single-stage Minimax Portfolios

The mean-variance framework is based on a single forecast of return and risk.
In reality, however, it is often difficult or impossible to rely on a single forecast.
There are different rival risk and return estimates, or scenarios. The inaccu-
racy in forecasting can be addressed through the specification of rival scenar-
ios. These are used with forecast pooling using stochastic programming; for
example see [6], [7], [8]. Robust pooling using minimax has been introduced
in [11] and [12]. Minimax optimization is more robust to the realization of
worst-case scenarios than considering a single scenario or an arbitrary pool-
ing of scenarios. It is suitable for situations which need protection against risk
of adopting the investment strategy based on the wrong scenario. There are
two minimax models; discrete and continuous. The discrete minimax approach
determines the optimal investment strategy in view of all specified discrete ri-
val scenarios simultaneously, rather than any single scenario. Its disadvantage
is that it requires the specification of a number of discrete scenarios. An al-
ternative approach that addresses the specification of the return forecast in
terms of a range given by upper and lower bounds is the continuous minimax.
The continuous minimax strategy provides a guaranteed optimal performance
in view of continuum of scenarios varying between upper and lower bounds.
Thus, there are an infinite number of future scenarios in the continuous min-
imax framework. The reader is referred to [11], [13] for single-stage minimax
problem and to [3] for the corresponding continuous minimax model, but a
short summary is as follows.

Discrete Minimax

Let J and I be a number of rival return and risk scenarios, respectively. Let
K denote the number of benchmarks provided. A compact representation of
the minimax portfolio allocation problem is as follows:

min
w

{
α ·max

i,k
{(w −wk)

′
Λi(w −wk)} −min

j,k
{(w−wk)

′
rj − t(w)}

}
(20)

328 Nalan Gülpinar, Berç Rustem, Stanislav Žaković

where i = 1, · · · , I, j = 1, · · · , J and k = 1, · · · ,K. Function t(w) represents
the transaction costs incurred by moving to strategy w from current position
p, subject to costs cb, cs. In order to solve (20), we reformulate the problem
as a quadratically constrained mathematical program:

min αν − µ+ γb
′
s

subject to
1

′
w = 1

p + b− s = w

c
′
bb + c

′
ss = τ (21)

(w −wk)
′
Λi(w −wk) ≤ ν, i = 1, · · · , I, k = 1, · · · ,K

(w −wk)
′
rj − τ ≥ µ, j = 1, · · · , J, k = 1, · · · ,K
w,b, s ≥ 0

If I = 0 (no risk scenarios provided), then quadratic constraints are omit-
ted and the objective function becomes minw−µ ≡ maxw µ, which is a purely
linear problem. If J = 0 (no return scenarios provided), then linear perfor-
mance constraints are omitted and the objective function becomes simply
minw ν. When K = 1, then only one benchmark portfolio is considered.

Continuous Minimax

The classical Markowitz framework can be extended to the continuous mini-
max with upper and lower bounds on the return scenarios and various rival
risk scenarios. The minimax model integrates benchmark relative computa-
tions in view of scalable (not fixed) transaction costs. Assume that the return
forecast of assets is defined by the bounds rl ≤ r ≤ ru. In view of I rival
risk scenarios and a range of return forecasts, the mean-variance optimization
problem can be formulated as the following minimax problem;

min
w

{
max

rl≤r≤ru
−{(w−w)

′
r− τ} + α ·max

i
{(w −w)

′
Λi(w −w)}

}
(22)

where τ represents the transaction costs. We define

x+ − x− = w −w

so that x+,x− ≥ 0 and x+ · x− = 0. Notice that if w > w, then x+ > 0 and
x− = 0; if w < w, then x+ = 0 and x− > 0. Since the expected return of
portfolio is a linear function of r, there are worst-case scenarios which are at
the lower or at the upper bounds of given range. In other words, either x+

i r
l
i

or x−i r
u
i is realized. Thus, the minimax problem (22) becomes

min
x+,x−

{
−{(x−)

′
ru + (x+)

′
rl − τ} + α ·max

i
{(x+ − x−)

′
Λi(x+ − x−)}

}

Stochastic Optimization and Worst–case Decisions 329

This is equivalent to the following quadratically constrained mathematical
program whose optimal solution provides the worst-case investment strategy,

min
x+,x−

−{(x−)
′
ru + (x+)

′
rl − τ} + αν + γb′s + β(x+)′x−

subject to
1

′
w = 1

p + b− s = w

c
′
bb + c

′
ss = τ (23)

x+ − x− = w −w

(w −w)
′
Λi(w −w) ≤ ν i = 1, · · · , I

w,b, s,x+,x− ≥ 0

where γ and β are penalty terms.
We evaluate the performance of the discrete and continuous minimax in-

vestment strategies (obtained by solving the minimax optimization problems
(21) and (23), respectively) in terms of the worst-case risk-return frontiers. For
the computational experiments, three covariance matrices are estimated us-
ing the historical data which consists of monthly prices of 10 FTSE100 stocks
through the 1990’s. The forecast bounds are determined around the historical
mean and the bounds are chosen as (10%± standard deviation) for each asset.
In order to use in the discrete minimax model, we selected three rival return
scenarios within this range; namely at the lower bound, upper bound and
central mean. The minimax mean-variance optimization model constructs an
optimal portfolio simultaneously with the worst-case scenario.

Figure 3 illustrates the performance of continuous minimax (at the top)
and discrete minimax (at the bottom) approaches and noninferiority of contin-
uous and discrete worst-case optimization models over 3 selected rival return
scenarios within the range of return forecast. These results show that the
worst-case investment strategy has the best lower bound performance which
can only be improved when any scenario other than the worst-case is realized.
Therefore, non-inferiority of minimax optimization ensures the robustness of
the strategy. Note that in Figure 3 (at the bottom), the discrete worst-case in-
vestment strategy coincides with the efficient frontier obtained by evaluating
the minimax strategy on lower-bound based scenario. In this case, benchmark
relative worst-case strategy is adjusted to cover lower-bound based scenario
as the rival worst-case.

4.2 Multi-stage Mean-variance Optimization

In this section, we first briefly summarize multi-stage mean-variance optimiza-
tion model; see [4] for more details. Then we extend it to mean-variance mini-
max model with multiple rival risk and return scenarios. The minimax model

330 Nalan Gülpinar, Berç Rustem, Stanislav Žaković

Fig. 3. Robustness of continuous minimax and discrete minimax models.

integrates benchmark relative computations in view of scalable (not fixed)
transaction costs. Minimax mean-variance optimization constructs an opti-

Stochastic Optimization and Worst–case Decisions 331

mal portfolio simultaneously with the worst-case scenario. Robustness arises
from the non-inferiority of the worst-case optimal strategy.

Multi-stage Mean-Variance Model

We consider n risky assets and construct a portfolio over an investment horizon
T . After the initial investment (t = 0), the portfolio may be restructured at
discrete times t = 1, . . . , T −1 in terms of both return and risk, and redeemed
at the end of the investment horizon (t = T). Multi-stage portfolio opti-
mization entails the construction of a scenario tree representing a discretized
estimate of uncertainties and associated probabilities in future stages. The
multi-stage stochastic mean-variance approach takes account of the approx-
imate nature of the discrete set of scenarios by considering a variance term
around the return scenarios. Hence, uncertainty on return values of instru-
ments is represented by a discrete approximation of a multivariate continuous
distribution as well as the variability due to the discrete approximation.

A scenario is defined as a possible realization of the stochastic variables
{ρ1, . . . ,ρT }. Hence, the set of scenarios corresponds to the set of leaves of the
scenario tree, NT , and nodes of the tree at level t ≥ 1 (the set Nt) correspond
to possible realizations of ρt. A set of interior nodes of the scenario tree,
excluding the root node and leaves, is denoted by NI . A node of the tree (or
event) is represented by e = (s, t), where s is a scenario (path from root to
leaf), and stage t specifies a particular node on that path. The root of the tree
is 0 = (s, 0) and the ancestor (parent) of event e = (s, t) is a(e) = (s, t − 1).
pe is the conditional probability of event e, given its parent event a(e). Figure
4 displays an example of scenario tree. The approaches to generate scenario
tree are described in [2].

Fig. 4. Scenario tree for multi-stage mean-variance.

Let we,be, se define decision variables for asset allocations and transac-
tions of buying and selling at node e, respectively. The dynamic structure of

332 Nalan Gülpinar, Berç Rustem, Stanislav Žaković

the model is captured by investment strategy which is defined by asset weights
at each interior node of the scenario tree as follows:

re ◦wa(e) + (1− cb) ◦ be − (1 + cs) ◦ se = we, e ∈ NI (24)

Since transactions of buying and selling at the last stage are not allowed, asset
weights at t = T are computed as

re ◦wa(e) = we, e ∈ NT (25)

We require subsequent transactions (buy = bt, sell = st) not to alter the
wealth within the stage t. Hence, we have the condition

1
′
be − 1

′
se = 0, e ∈ NI (26)

The allocation of the initial budget of 1 can be represented with the following
constraints:

p + (1− cb)b0 − (1 + cs)s0 = w0 (27)
1′b0 − 1′s0 = 1− 1′p (28)

The expected wealth at the last stage WT is the expected portfolio return and
computed as

WT =
∑

e∈Nk
T

Pe(wa(e) −wa(e))
′
re

The risk is measured as the variance of the portfolio return relative to the
benchmark w and formulated as

T∑
t=1

αt

∑
e∈Nt

Pe

[
(wa(e) −wa(e))′(Λe + r̂er̂′e)(wa(e) −wa(e))

]
where Pe is probability of event e and computed as Pe =

∏
i=1,...,t p(s,i). αt

weights the risk of period t and the portfolio risk is measured as a weighted
sum of risk at t = 1, . . . , T .

The multi-stage portfolio reallocation problem can be expressed as the
minimization of the trade off between risk and expected wealth subject to
constraints which describe the growth of the portfolio along all the various
scenarios and bounds on the decision variables. Box constraints are defined
on we, be, se for each event e ∈ NI to prevent the short sale and enforce any
restriction imposed by the investor.

min
w,b,s

γ

T∑
t=1

αt

∑
e∈Nt

Pe

[
(wa(e) −wa(e))′(Λe + r̂er̂′e)(wa(e) −wa(e))

]
−
∑

e∈Nk
T

Pe(wa(e) −wa(e))
′
re

Stochastic Optimization and Worst–case Decisions 333

subject to

p + (1− cb)b0 − (1 + cs)s0 = w0

1′b0 − 1′s0 = 1− 1′p
re ◦wa(e) + (1− cb) ◦ be − (1 + cs) ◦ se = we, e ∈ NI

1
′
be − 1

′
se = 0, e ∈ NI

re ◦wa(e) = we, e ∈ NT

wL
e ≤ we ≤ wU

e , e ∈ NI

0 ≤ be ≤ bU
e , e ∈ NI

0 ≤ se ≤ sU
e , e ∈ NI

The level of risk aversion optimized for is determined by the scaling constant
γ. When γ = 0, the pure risk-seeking investment strategy (at the highest end
of the efficient frontier) is obtained by solving a linear programming problem.
When γ = ∞, completely risk-averse strategy (at the lowest end of the effi-
cient frontier) is obtained by solving the quadratic programming problem (by
ignoring the expected portfolio return).

Multi-stage Minimax Portfolios

Multi-stage mean-variance optimization framework can be extended to worst-
case design with multiple rival return and risk scenarios. The optimal portfolio
is constructed (relative to benchmark) simultaneously with the worst-case to
take account of all rival scenarios. The portfolio is balanced at each stage
incorporating scalable (not fixed) transaction cost and its relative performance
is measured in terms of returns and the volatility of returns.

Assume that the risk scenarios are considered at each event of the future
realizations. Therefore, we have the same number of covariance matrices, Ie,
at each node of the scenario tree, e ∈ Nt for t = 1, · · · , T . The covariance
matrices and scenario tree are an input to the minimax model. Rival return
scenarios are determined by the scenario tree as number of events at the
first stage since investors wish to survive at the first stage. For instance, the
scenario tree in Figure 5 consists of three rival return scenarios. Let K denote
the number of rival return scenarios. Given the rival risk and return scenarios
(or scenario tree), the general minimax model for multi-stage asset allocation
problem is formulated as follows;

334 Nalan Gülpinar, Berç Rustem, Stanislav Žaković

��

�
�
�
�
�
�
�
�

���
���
���
���

���� ������ ����

������ ������ ������ ������

����

��
��
��
��
��
��
��
��

����

��
��
��
��
��
��
��
��

����

��
��
��
��
��
��
��
��

����

��
��
��
��
��
��
��
��

��

�
�
�
�
�
�
�
�

���
���
���
���

����

210
r r r

r

p p p p p

01

00 01 10 20
p

21 22

rr r
10

20 21 2210

20
00

r
21

r
22

01

W
T

W W
T

2
31

T

00

V 2

VVVV

V
0

V
1

VV

Fig. 5. Multi-stage worst-case mean-variance on a scenario tree.

min
w,b,s

{
γ

T∑
t=1

αt

∑
e∈Nt

max
i

[
Pe(wa(e) −wa(e))

′
(Λi + r

′
ere)(wa(e) −wa(e))

]}

+ min
w,b,s

⎧⎨⎩−min
k

⎡⎣ ∑
e∈Nk

T

Pe(wa(e) −wa(e))
′
re

⎤⎦⎫⎬⎭
≡ min

w,b,s

{
γ

T∑
t=1

αt

∑
e∈Nt

max
i

[
J i
e(w)

]
−min

k

[
W k

T (w)
]}

where

J i
e(w) = Pe(wa(e) −wa(e))

′
(Λi + r

′
ere)(wa(e) −wa(e))

W k
T (w) =

∑
e∈Nk

T

Pe(wa(e) −wa(e))
′
re

for i ∈ Ie, k = 1, · · · ,K, t = 1, · · · , T and e ∈ Nt. Let νe and µ be the worst-
case risk at node e ∈ Nt and the worst-case return, respectively. In order
to solve the minimax problem above, we reformulate it as a quadratically
constrained mathematical program

min
w,b,s

γ

T∑
t=1

αt

∑
e∈Nt

νe − µ

subject to

Stochastic Optimization and Worst–case Decisions 335

Fig. 6. Minimax versus single scenario optimization and the worst-case analysis.

p + (1 − cb)b0 − (1 + cs)s0 = w0

1′b0 − 1′s0 = 1 − 1′p
re ◦ wa(e) + (1 − cb) ◦ be − (1 + cs) ◦ se = we, e ∈ NI

1
′

be − 1
′

se = 0, e ∈ NI

re ◦ wa(e) = we, e ∈ NT∑
e∈Nk

T

Pe(wa(e) − wa(e))
′

re ≥ µ, k = 1, · · · , K

Pe(wa(e) − wa(e))
′

(Λi + r
′

ere)(wa(e) − wa(e)) ≤ νe, i ∈ Ie, e ∈ Nt,

t = 1, · · · , T

wL
e ≤ we ≤ wU

e , e ∈ NI

0 ≤ be ≤ bU
e , e ∈ NI

0 ≤ se ≤ sU
e , e ∈ NI .

336 Nalan Gülpinar, Berç Rustem, Stanislav Žaković

The worst-case risk νe for each event e ∈ Nt is calculated as the maximum risk
value, which is computed by implementing the minimax strategy on specific
rival risk scenarios and selecting maximum one among Λi, i ∈ Ie. The worst-
case return µ is obtained as the minimum expected return at the last stage
among W 1

T , · · · , WK
T corresponding to each sub-scenario tree.

We demonstrate the robustness of minimax and compare the performance
of the minimax strategy with a single scenario-based optimization in Figure 6.
For the experiments, we consider the same historical data of randomly selected
ten FTSE100 stocks and 3 rival risk scenarios used in discrete single-stage min-
imax optimization. The scenario tree with 3 stages and 4-2-2 branching topol-
ogy is generated using the simulation based method, described in [2]. There-
fore, we have four rival return scenarios (represented by Ri for i = 1, · · · , 4
in Figure 6). The top four plots in Figure 6 are the efficient frontiers ob-
tained from optimizing with each of the rival return scenarios alone. The
curve in the middle of Figure 6 is the robust minimax strategy based on all
rival risk and return scenarios. The bottom four curves in Figure 6 represent
what actually would happen if the worst of the four return scenarios (with
respect to the optimized portfolio in question) was actually realized. Not sur-
prisingly, the more optimistic the worst-case risk-return frontier associated
with a particular return scenario, the worse the failure when the worst-case
occurs. A worst-case optimal strategy would yield the best decision deter-
mined simultaneously with the worst-case scenario. Therefore, the worst-case
strategy protects against risk of adopting the decision based on the wrong sce-
nario. In order to illustrate the effect of scenario trees on the performance of
worst-case analysis, the multi-stage minimax strategies are backtested using
different scenario trees. The scenario trees with 3 stages and 2-2-2 and 4-2-2
branching topologies are generated by antithetic variates (ANT), sequential
method (SEQ) and Sobol low-discrepancy (SOBOL) random generator.

Figure 7 presents backtesting results of multi-stage minimax investment
strategies at 75% risk level. These results show that a view of the future defined
in terms of a scenario tree and its branching structure play an important role
on the performance of multi-stage stochastic programming models.

5 Conclusions

In this chapter, we address issues arising in optimization under uncertainty.
Special emphasis is given to robustness of minimax and algorithmic issues,
such as multiple solutions and finding global worst-cases. In particular discrete
and continuous models are discussed and contrasted with stochastic optimiza-
tion. A number of examples illustrates applications of worst-case analysis. Ex-
pected value optimization is compared with worst-case robust strategies. The
cost of implementing a worst-case robust decision needs to be evaluated in
view of its expected performance in a stochastic setting. A decision based on

2

4

6

8

10

12

0 20 40 60 80 100 120 140

P
or

tfo
lio

 V
al

ue

Time (months)

Index
ANT
SEQ

SOBOL
SOBOL1

2

4

6

8

10

12

0 20 40 60 80 100 120 140

P
or

tfo
lio

 V
al

ue

Time (months)

Index
ANT
SEQ

SOBOL
SOBOL1

Fig. 7. Backtesting with different scenario trees generated with 3 stages 2-2-2 and
4-2-2 branching, at 75% risk level.

Stochastic Optimization and Worst–case Decisions 337

expected value optimization, on the other hand, needs to be justified in view
of the worst-case.

Acknowledgments

This research was supported by EPSRC grant GR/T02560/01. The authors
are grateful to anonymous referee for helpful comments and suggestions.

References

1. T. Basar and P. Bernhard, H∞-Optimal Control and Related Minimax Design
Problems, Birkhauser, Boston, 1991.

2. N. Gulpinar, B. Rustem, and R. Settergren, Journal of Economics Dynamics
and Control 28, 1291 (2004).

3. N. Gulpinar and B. Rustem, Forthcoming in Numerical Methods in Finance,
2005.

4. N., Gulpinar, B. Rustem, R. Settergren, Innovations in Financial and Economic
Networks, 3, (2003), p. 46-63.

5. L. Hansen, L. and T. J. Sargent, Review of Economic Studies 66, 873 (1999).
6. P. Kall, “Stochastic Linear Programming”, Springer, Berlin, (1976).
7. M. J. Lawrence, R. H. Edmunson and M.J., O’Connor, Management Science

32, 1521 (1986).
8. S. Makridakis and R. Winkler, Management Science 29, 987 (1983).
9. H., Markowitz, Journal of Finance 7, 77 (1952).

10. A. Orphanides and V. Wieland, European Economic Review 44, 1351 (2000).
11. B. Rustem, R. Becker and W. Marty, Journal of Economic Dynamics and Con-

trol 24, 1591 (2000).
12. B. Rustem and M. Howe, “Algorithms for Worst-Case Design and Applications

to Risk Management”, Princeton University Press, London and New Jersey,
(2002).

13. B. Rustem and R. Settergren, in Computational Methods in Decision Making,
Economics and Finance: Optimization Models, 75 , Kluwer Academic Publishers
(2002).

14. R. J. Tetlow and P. von zur Muehlen, Journal of Economic Dynamics and
Control 25,911 (2001).

15. S. Zakovic, C. C. Pantelides and B. Rustem, Annals of Operations Research 99,
59 (2000).

16. S. Zakovic, B. Rustem and V. Wieland, in Decision and Control in Management
Science, Kluwer Academic Publishers, (2002).

338 Nalan Gülpinar, Berç Rustem, Stanislav Žaković

Decentralized Estimation for Cooperative
Phantom Track Generation

Tal Shima1, Phillip Chandler1 and Meir Pachter2

1 Air Vehicles Directorate, Air Force Research Laboratory
Wright-Patterson AFB, OH
E-mail: shima tal@yahoo.com, phillip.chandler@wpafb.af.mil

2 Department of Electrical Engineering
Air Force Institute of Technology
Wright-Patterson AFB, OH
E-mail:meir.pachter@afit.edu

Summary. A decentralized estimation-decision strategy is derived for a team of
electronic combat air vehicles (ECAVs) deceiving a network of radars. For the de-
ception, a phantom target track is cooperatively generated by each ECAV applying
range delay on the individual radar pulses. To continuously obtain a feasible phan-
tom track, the team must tightly coordinate the phantom’s trajectory so as not to
violate any of the system constraints. The coordination is performed by a decen-
tralized decision process for which each ECAV periodically transmits its constraints
on feasible tracks. To perform the decision process with minimal communication
between the ECAVs, a decentralized estimation algorithm is proposed where each
ECAV continuously estimates the states of its teammates and their respective radar
position based on their individual transmitted constraints. Thus, all the informa-
tion obtained in the individual messages is extracted and group coordination is
obtained. Moreover, if there are gaps in communication the team coordination can
be maintained. Simulation results confirm the viability of the proposed decentralized
estimation-decision team strategy.

1 Introduction

Radio detection and ranging (radar) is achieved by transmitting radio waves
and listening to the returning echoes [3]. Detection is achieved if the return-
ing echoes are strong enough to be distinguished from the background noise.
Ranging can be determined by measuring the radio waves round trip time to
the target. Radar system electronic counter measures were developed early
on [3]. The earliest and simplest is chaff, consisting of metal-coated dielectric
fibers; dispensed in large numbers, they can produce strong radar echoes. An-
other simple method is noise jamming by raising the level of the background
against which target returns must be detected. A more sophisticated method

340 Tal Shima, Phillip Chandler and Meir Pachter

involves creating a false phantom target by delaying a received pulse, from a
threat radar, for a period corresponding to the desired additional range of the
false target. This method is often termed range deception.

Electronic combat air vehicles (ECAVs) are designed so as to have low
detectability, making them essentially invisible to conventional radars. In or-
der to spoof an enemy radar, an ECAV can employ various electronic counter
measures, including range deception as discussed above. In [2] such a problem
was analyzed. Different feasible phantom tracks were investigated and closed
form solutions were obtained for the ECAV’s trajectory given specific phan-
tom tracks. As a counter measure, a radar network can simultaneously track
a target and by correlating the tracks distinguish between feasible and phan-
tom targets. To counter this ability, a team of ECAVs, consisting of the same
number of vehicles as radars, can cooperatively engage a radar network and
create a coherent phantom target track without being detected [2]. In [1] a
cooperative control algorithm for such an ECAV team deceiving a radar net-
work has been proposed and different phantom track trajectories have been
studied.

Cooperative control algorithms can be implemented in a redundant cen-
tralized manner in which the decision algorithm is replicated over the multiple
agents in the team. Assuming perfect communication all vehicles will have the
same information set and thus come up with the same team plan. This will
result in synchronized action. However, in a realistic scenario communication
constraints are expected. Information flow constraints, such as communication
delays, may produce different information sets for the different UAVs in the
team leading to multiple strategies. For the team phantom track deception of
a radar network, this will result in multiple uncorrelated tracks, defeating the
deception process.

In this chapter a cooperative decision-estimation algorithm is proposed
for cooperatively creating a radar phantom track with communication con-
straints. The remainder of this chapter is organized as follows. In the next
section the one-on-one radar deception problem is posed. Then, the group
decision process and its requirements are discussed. The estimation process
of team members’ states and the related decision process is then presented.
Concluding remarks are offered in the last section.

2 One-On-One Problem

In this section we present, based on [2], the problem of radar deception by one
ECAV. The deception is performed using a range delay of the radar signal
and thus the ECAV is positioned on the line of sight (LOS) between the
stationary radar and the phantom target. The range delay and the ECAV’s
motion determine the phantom target track. A schematic view of the two
dimensional deception geometry is shown in Fig. 1.

Decentralized Estimation for Cooperative Phantom Track Generation 341

Fig. 1. One-on-one deception engagement

For simplicity we assume that the ECAV and phantom target have con-
stant speeds, denoted vE and vT respectively. We define the normalized pa-
rameter

α ≡ vT /vE > 0 (1)

Without loss of generality we normalize the ranges from the radar to the
ECAV and to the phantom target, r and R respectively, by the initial range to
the phantom target R0; and normalize the speeds by vE . Thus, the normalized
equations of motion for the ECAV, expressed in a polar coordinate system (r,
θ) attached to the stationary radar, are

ṙ = cosφE ; r(0) = r0/R0 (2a)
θ̇ = sin φE/r ; θ(0) = θ0 (2b)

342 Tal Shima, Phillip Chandler and Meir Pachter

where φE is the control and r0 is the initial range from the radar to the ECAV.
Note that we assume that, due to antenna limitations, the ECAV’s range to
the radar is confined to r ∈ [rmin, rmax].

For the phantom target these equations are

Ṙ = α cosφT ; R(0) = 1 (3a)
θ̇ = α sin φT /R ; θ(0) = θ0 (3b)

where φT is the control. Note that the phantom target must be placed within
the operational envelope of the radar and thus its range is confined to R ∈
[0, Rmax]

By construction the angle θ is identical in both systems; and thus, given
φT , the angle φE is selected such that the relationship from Eqs. (2b) and
(3b) holds

sin φE/r = α sinφT /R (4)

Consequently
cosφE = ±

√
1 − (αr sin φT /R)2 (5)

Using Eqs. (2), (3), and (5) we obtain

Ṙ = α cosφT ; R(0) = 1 (6a)
θ̇ = α sin φT /R ; θ(0) = θ0 (6b)

ṙ = β
√

1 − (αr sinφT /R)2; r(0) = r0/R0 (6c)

where β = 1 or −1 and is selected such that the ECAV’s constraints are not
reached and to maintain that r ≤ R ∀ t > 0 (i.e. the ECAV is between the
radar and the phantom target, on the LOS). Note that the system has three
states (R,θ,r), two outputs (R,θ), and one input (φT). For a solution to exist
the following condition must be satisfied

| sinφT | ≤
R(t)
αr(t)

∀ t > 0 (7)

meaning that the phantom target angular rate does not exceed the maxi-
mum angular rate achievable by the ECAV. For a detailed analysis of feasible
trajectories under different constraints see [2].

3 Team Decision Problem

Let V = {1, 2, ..., n} be a set of ECAVs employing range deception on a
network of n radars; and let T = {1, 2, ..., n} be the set of these radars. The
team must cooperatively create a phantom target while not exceeding any of
the ECAV kinematic restrictions.

A schematic view of the cooperative deception problem is shown in Fig. 2
where (R,θ) is a globally known polar coordinate system and each ECAV i ∈ V

Decentralized Estimation for Cooperative Phantom Track Generation 343

Fig. 2. Multiple radars deception engagement

also has a local polar coordinate system (Ri, θi). Without loss of generality
we assume that the radars are positioned on a line.

The ECAVs coordinate by exchanging information regarding feasible phan-
tom trajectories. Thus, we employ a decision process in which each ECAV
communicates to his teammates two variables, φu

Ti and φl
T i, representing the

sector for a feasible phantom target heading φT (see Fig. 3). This sector, com-
puted based on the maximum angular rate the ECAV can follow, transformed
to the global coordinate system, is

Si =
[
−φl

T i, φ
u
Ti

]
∪
[
π − φl

T i, π + φu
Ti

]
; i = 1, ..., n (8)

where

φu
Ti = φTimax + θi − θ ; i = 1, 2, ..., n (9a)

φl
T i = φTimax − θi + θ ; i = 1, 2, ..., n (9b)

and φTimax is computed from Eq. (7) such that

φTimax = sin−1 Ri

αri
≤ π/2 ,

Ri

αri
≤ 1 ; i = 1, 2, ..., n (10)

Note that if Ri

αri
> 1 then φTimax = π/2, meaning that the ECAV can follow

any phantom target heading. Using Eq. (8) the sector for a feasible target

344 Tal Shima, Phillip Chandler and Meir Pachter

Fig. 3. Feasible phantom target heading

heading is
S = S1 ∩ S2... ∩ Sn (11)

The required phantom target heading φr
T is an input to the system. It is

computed based on the required phantom path trajectory, chosen based on
operational considerations. The actual target heading is selected such that

φT = arg
φ∈S

min|φ − φr
T | (12)

Note that only if φr
T ∈ S then φT = φr

T ; and if Eq. (12) has two solutions
then we choose the one with the smaller value.

An example of the cooperative deception engagement between 3 ECAVs
and 3 radars is presented in Figs. 4, 5. The required and actual phantom
target trajectories, as well as those of the ECAVs, are plotted in Fig. 4. The
instantaneous LOS at t = 0, 1, ..., 5 from the phantom target to the 3 deceived
radars, are also plotted. The required and actual heading as well as the relevant
constraints from each ECAV (φu

Ti) are plotted in Fig. 5. From both figures
it is evident that up to about 3.2 sec from the beginning of the scenario the

Decentralized Estimation for Cooperative Phantom Track Generation 345

actual phantom trajectory exactly follows the required one. At that moment
the angular rate limit of ECAV 2 is reached. From then on this constraint is
active and the actual phantom trajectory can no longer follow the required
one. Note that since the coordinate system of ECAV 1 coincides with the
global one and it can follow any phantom target heading, its constraint φu

T1

is constant and equal to π/2.

−4 −3 −2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

X

Y

Phantom
ECAV1
ECAV2
ECAV3

Actual

Required

t=1sec

t=2sec

t=3sec

t=4sec

RADARs

t=0sec

Fig. 4. Trajectories for the deception engagement between 3 ECAVs and radars

The decision process discussed above may be implemented in a centralized
manner, performed on one of the ECAVs. The selected phantom heading φT

may then be transmitted to the rest of the group. The process can also be
implemented in a redundant centralized manner in which the algorithm is
replicated across the UAV group. Provided there exists perfect communication
then all ECAVs will come up with the same phantom target heading, resulting
in a synchronized action generating a phantom target.

346 Tal Shima, Phillip Chandler and Meir Pachter

0 1 2 3 4 5
40

50

60

70

80

90

100

110

Time [sec]

T
 [d

eg
]

ECAV 1:
T1
u

ECAV 2:
T2
u

ECAV 3:
T3
u

Phantom

Required

Actual

Fig. 5. Constraints in a deception engagement between 3 ECAVs and radars

4 Estimation-Decision Process

The decision process presented in the previous section assumes perfect com-
munication within the ECAV team. For coordination under limited communi-
cation bandwidth, each ECAV employs an estimator on its teammates states.
This process enables the continuous estimation of each ECAV’s constraints,
which are required for the cooperative decision process.

Consider the two variables φu
Ti and φl

T i that each ECAV transmits to the
group. Since, based on Eqs. (9)-(10), these variables contain information on
the states of vehicle i ∈ V they may be viewed as noiseless measurements.
Thus, we define the measurements of each system as

zi1 = φu
Ti + θ + ω1 (13a)

zi2 = φl
T i − θ + ω2 (13b)

where ω1 and ω2 are fictitious white noises and θ is the angle from the globally
known reference system.

From Eqs. (6) the equations of motion are

Decentralized Estimation for Cooperative Phantom Track Generation 347

Ṙi = α cosφTi ; Ri(0) = 1 (14a)
θ̇i = α sin φTi/R ; θi(0) = θi0 (14b)

ṙi = β
√

1 − (αri sin φTi/Ri)2 ; ri(0) = ri0/Ri0 (14c)

where
φTi = φT − θi + θ (15)

Note that the heading φT is the input to the system, known to the entire
team. Using Eqs. (13)-(15) an EKF can be constructed for all i ∈ V . Thus,
each ECAV can employ n − 1 EKFs on its teammates. An example of an
estimation process is given in Figs. 6, 7 for α = 1.5, φr

T (t) = π/4+ tπ/20, and
a communication rate of 1Hz. From Fig. 6 it is evident that the trajectory
estimation is quite accurate, and is converging. From Fig. 7 it is evident that
the angle θ is estimated quite accurately after only one observation update,
while the estimation of the range r converges more slowly. This is expected
since the measurements include direct information only on the angle θ (by
subtraction of the two measurements).

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

X

Y

Actual
Estimate

Fig. 6. Trajectory Estimation of ECAV no. 3.

348 Tal Shima, Phillip Chandler and Meir Pachter

0 1 2 3 4 5
0

1

2

3

4
r

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
rr

or
: r

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

Time [sec]

0 1 2 3 4 5

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Time [sec]

E
rr

or
:

Actual
Estimated

Actual
Estimated

Fig. 7. State Estimation of ECAV no. 3.

Each ECAV knows the phantom’s position in the global coordinate system
(R, θ). Thus, using the estimates of the teammates states (θi, Ri) the position
of each radar i ∈ T being deceived can also be estimated. An example of
such an estimation process for the same scenario described above is plotted
in Fig. 8 in a Cartesian reference frame. Note that the initial estimate is
(X̂, Ŷ) = (0.05,−0.17) and it is evident that after the first observation update
the estimation error is very small.

Using the estimation process discussed above each ECAV can continuously
estimate the constraints of its teammates on the feasible phantom target tra-
jectory. Thus, team coordination can be retained with a slow communication
rate or even when there are gaps in the communication.

5 Conclusions

A novel estimation-decision strategy, for the cooperative deception of a radar
network by a team of ECAVs, has been proposed. For the deception, a phan-
tom target track is cooperatively generated by each ECAV applying range

Decentralized Estimation for Cooperative Phantom Track Generation 349

0.19 0.195 0.2 0.205 0.21
0

0.005

0.01

0.015

0.02

X

Y

t=4

t=3

t=2

t=1

t=5−

t=4−

t=3−

t=2−

 RADAR position

Fig. 8. Position Estimation of radar no. 3.

delay on the individual radar pulses. The team must tightly coordinate the
phantom’s trajectory so as not to violate any of the system constraints.

The coordination is performed by a decentralized decision process for
which each ECAV periodically transmits his constraints on feasible tracks. It
has been shown that for the continuous generation of a phantom target track
by a team of ECAVs there is no need for high bandwidth communication.
For team coordination, each ECAV estimates its teammates states enabling
it to continuously estimate each ECAVs constraints, which are in turn re-
quired for the cooperative decision process. The respective radar position of
each ECAV can also be estimated based on the communicated constraints on
feasible target tracks.

References

1. D.H.A. Maithripala and S. Jayasuriya. Radar deception through phantom track
generation. In Proceedings of the American Control Conference, Arlington, Vir-
ginia, 2005. American Automatic Control Council.

2. M. Pachter, P.R. Chandler, K.B. Purvis, S.D. Waun, and R.A. Larson. Multiple
RADAR Phantom Tracks from Cooperating Vehicles using Range-Delay Decep-

350 Tal Shima, Phillip Chandler and Meir Pachter

tion, pages 367–390. in: Theory and Algorithms for Cooperative Systems, Editors:
Grundel D., Murphy, R. and Pardalos, P.M., World Scientific Publishing, 2004.

3. G. W. Stimson. Introduction to Airborne Radar, pages 439–455. Scitech Pub-
lishing, Inc., 2nd edition, 1998.

Information Flow Requirements for the
Stability of Motion of Vehicles in a Rigid

Formation

Sai Krishna Yadlapalli, Swaroop Darbha and Kumbakonam R. Rajagopal

Department of Mechanical Engineering,
Texas A&M University,
College Station,
TX -77843-3123, USA.
E-mail: kris5372@tamu.edu, {dswaroop,krajagopal}@mengr.tamu.edu

Summary. It is known in the literature on Automated Highway Systems that in-
formation flow can significantly affect the propagation of errors in spacing in a
collection of vehicles. This chapter investigates this issue further for a homogeneous
collection of vehicles, where in the motion of each vehicle is modeled as a point mass
and is digitally controlled. The structure of the controller employed by the vehicles
is as follows: Ui(z) = C(z)

P
j∈Si

(Xi − Xj − Lijz

z−1
), where Ui(z) is the (z- transfor-

mation of) control action for the ith vehicle, Xi is the position of the ith vehicle, Lij

is the desired distance between the ith and the jth vehicles in the collection, C(z)
is the discrete transfer function of the controller and Si is the set of vehicles that
the ith vehicle can communicate with directly. This chapter further assumes that
the information flow is undirected, i.e., i ∈ Sj ⇐⇒ j ∈ Si and the information
flow graph is connected. We consider information flow in the collection, where each
vehicle can communicate with a maximum of q(n) vehicles. We allow q(n) to vary
with the size n of the collection. We first show that C(z) cannot have any zeroes
at z = 1 to ensure that relative spacing is maintained in response to a reference
vehicle making a maneuver where its velocity experiences a steady state offset. We
then show that if the control transfer function C(z) has one or more poles located
at z = 1, then the motion of the collection of vehicles will become unstable if the
size of the collection is sufficiently large. These two results imply that C(1) �= 0

and C(1) must be well defined. We further show that if q(n)
n

→ 0 as n → ∞, then
there is a low frequency sinusoidal disturbance of at most unit amplitude acting
on each vehicle such that the maximum error in spacing response increase at least

as Ω
“q

n3

q3(n)

”
. A consequence of the results presented in this chapter is that the

maximum of the error in spacing and velocity of any vehicle can be made insensitive
to the size of the collection only if there is at least one vehicle in the collection that
communicates with at least Ω(n) other vehicles in the collection. We also show that
there can be at most one vehicle that communicates with Ω(n) vehicles and that
any other vehicle in the collection can only communicate with at most p vehicles,
where p depends only on the chosen controller and the its sampling time.

352 Sai Krishna Yadlapalli, Swaroop Darbha and Kumbakonam R. Rajagopal

1 Introduction

Recent advances in a variety of technologies such as communication, com-
putation, sensing and actuation have enabled the development and increased
the possibility of deployment of collections of Unmanned Vehicles (UVs) (or
simply vehicles) for a wide variety of tasks. UVs are central to automating
driving tasks in an Automated Highway System (AHS) [1], the dynamic po-
sitioning of mobile offshore bases for creating a runway for large aircrafts [2]
and for information gathering in dangerous environments [13]. There seem
to be potentially many advantages to deploying UVs in collections for certain
tasks: flexibility, ease of reconfiguration and lower cost of deploying collections
of smaller UVs as compared to deploying a larger UV being some of them.
In order to realize these potential advantages, the problem of coordinating
the motion of the collection of vehicles must be addressed and this chapter is
devoted to an analysis of this problem.

It is conceivable that a collection of vehicles will be required to maintain
(or remain close to) specified discernible geometric patterns during its motion.
We call such a collection of vehicles as a formation if every vehicle aids in the
maintenance of the specified geometric pattern by coordinating its motion
through communication with or sensing other vehicles in the collection. Of
recent interest in the research community is the rigid formation of vehicles,
where it is desired that the distance between any two vehicles remain constant
throughout the motion. In such a case, the desired motion of every vehicle in
a formation is determined by the desired motion of a few vehicles in the
collection. Since vehicles in a formation are coupled dynamically by feedback,
errors in spacing and velocity (defined as the deviation in the position and
velocity from their respective desired values) of a vehicle propagate from one
vehicle in the formation to the other.

In an AHS, such rigid formations (referred to as a platoons) are desired
from the viewpoint of maintaining safety and enhancing the throughput of
vehicles on a section of a congested highway. A rigid formation is helpful for
localization in partially known environments in the case of mobile robots [7],
and in drag reduction via close formation flight [4, 5].

An issue with the design of controllers for vehicles in a collection is that
of collective stability of the controlled motion of vehicles. This issue arises
because errors in spacing and velocity of a vehicle propagate to others in the
collection. Intuitively, the collective stability requires the following: With a
specified identical controller on every vehicle and with the vehicles starting at
their desired positions and velocities, for any given bound, ε, is there a bound,
δ, independent of the size of the collection, on the magnitude of any disturbing
force that can act on any vehicle, so that as the errors in spacing and velocity
propagate with the choice of controllers, they always remain smaller than
ε ? The requirement of the independence of δ from the size of the collection
captures the scalability of the stability of motion with the specified controllers.
We will mean that controller is scalable if the above requirement of collective

Information Flow Requirements for the Stability of Motion 353

stability of controlled motion is met. Since no formation can ever be rigid,
we will say that an “approximately rigid formation” can be synthesized if one
can synthesize a scalable controller.

In this chapter, we are interested in the synthesis of scalable controllers,
which take into account an additional consideration - that of spatial shift-
invariance (i.e. controller is not dependent on the index of the vehicle or the
size of the collection). From a practical viewpoint, such a controller is easy to
develop and implement on every vehicle. This is important for applications
such as the Adaptive Cruise Control (ACC) System for ground vehicles, be-
cause one does not know a priori how many vehicles with an ACC System are
placed in succession in traffic. In [9, 6], controllers that used the information
about the index of the vehicle in the collection were synthesized; however, for
them to achieve an approximately rigid linear formation, the control gains had
to increase with the index of the vehicle in a geometric manner and from a
practical viewpoint, this is unrealistic since it will lead to saturation of control
effort even with small errors in spacing and velocity. For this reason and for
the simplicity of treatment, we only consider the restricted class of controllers
for further investigation.

The synthesis of an “approximate rigid formation” is strongly influenced
by the communication pattern between the vehicles. If the formation has the
knowledge of the information of a reference vehicle in the collection, then
errors in the spacing and velocity resulting from a disturbance acting on a
vehicle, can be made to attenuate as it propagates from one vehicle to an-
other [3, 8]. To date, it is believed that the information of one vehicle must be
available to Ω(n) 1, where n is the number of vehicles in the formation, if one
were to construct approximate rigid formations. The results in [3, 8] and even
in this chapter point in this direction. The following question naturally arises
and is the focus of investigation in this chapter: How does a pattern of commu-
nication amongst vehicles affect the propagation of errors? Specifically, with
a specified pattern of communication amongst them, can an approximately
rigid formation be synthesized? If the answer to the latter question is in the
affirmative, one can employ the same controller in each of the vehicles irre-
spective of the size of the collection, i.e., one can design a “scalable” control
system with the given information flow.

The main results of this chapter concern the necessary conditions on the
information structure for the synthesis of approximately rigid formations and
are as follows: If the motion of each vehicle can be represented as the motion
of a unit mass under the action of a control force and a disturbance and that
the information flow graph is undirected, we show that there is no “scalable”
control system if every vehicle can only communicate with at most q(n) ve-
hicles, where n is the size of the collection and q(n) satisfies lim

n→∞
q(n)

n = 0.

We show this result by constructing a sinusoidal disturbance of at most unit

1 A function p(n) is Ω(q(n)) if there exists a non-zero constant c �= 0 and a N∗ > 0
such that p(n) ≥ cq(n) for all n > N∗

354 Sai Krishna Yadlapalli, Swaroop Darbha and Kumbakonam R. Rajagopal

magnitude acting on each vehicle at an appropriately chosen low frequency
that results in a maximum error in spacing is of Ω(

√
n3

q3(n)). A consequence
of this result is that at least one vehicle in the collection must communicate
with at least Ω(n) other vehicles in the collection for a “scalable” controller to
exist. We also show that if the controller incorporates an integral action, the
motion of the collection is necessarily unstable for all sizes of the collection
greater than a critical value.

We also show that there can be only one vehicle communicating with
Ω(n) vehicles. All other vehicles can only communicate with p other vehicles,
where p is dependent only on the plant and controller transfer functions and
the sampling time. The chapter is organized as follows: In Section II, we
formulate the problem precisely for one-dimensional formations and prove the
results stated above. In Section III, we provide corroborating simulations. In
Section IV, we summarize the results of this chapter.

2 Problem Formulation for a String of Vehicles Traveling
Along a Straight Line

In this section, we consider a string of vehicles moving along a straight line.
The first vehicle, which we call reference vehicle, executes maneuvers with
bounded velocity and acceleration. The reference vehicle is referred to as lead
vehicle in the Automated Highway System (AHS) literature. For each i ≥ 2,
the ith vehicle desires to maintain a fixed following distance Li,i−1 from its
predecessor. Initially, all vehicles are assumed to be at their desired position
and the velocity of all the vehicles are identical. Since, most of the applications
require implementation of control law digitally, it would be helpful to consider
z-transformations. A detailed treatise of the z-transformations and digitally
controlled systems can be found in [12].

2.1 Model of a Vehicle

Let x(t) denote the position of a vehicle measured from the origin of an inertial
reference frame at time t. Let T be the sampling time of the controller. We
assume that the position of the vehicle remains constant in the time period
[kT, kT + T) for k ≥ 0 and is x(kT). For the sake of brevity, we represent
x(kT), u(kT) and d(kT) by x(k), u(k) and d(k) respectively. Then one may
express the Z transformation, X(z), of x(k) in terms of the z transformations,
U(z) and D(z) of u(k) and d(k) respectively as follows:

X(z) =
T 2(z + 1)
2(z − 1)2

[U(z) + D(z)] +
z

z − 1
x(0) +

Tzv(0)
(z − 1)2

. (1)

where v(0) is the initial velocity of the vehicle.

Information Flow Requirements for the Stability of Motion 355

2.2 Further Assumptions and Formulation of the Problem

We make the assumption that the information flow graph is undirected; if a
vehicle A transmits the information concerning its state directly to a vehicle
B, then vehicle B transmits the information concerning its state directly to
vehicle A. Therefore, if Si is the set of vehicles the ith vehicle in the collection
can communicate directly with, this assumption implies that j ∈ Si ⇒ i ∈ Sj .
If the ith vehicle, Vi, and the jth vehicle, Vj , are in direct communication with
each other, we refer to the ordered pair (i, j) as a communication link. We
particularly assume that the information available to the ith vehicle in the
collection is xi(k) − xj(k) − Lij , where j ∈ Si and Lij is the desired distance
to be maintained between the ith and the jth vehicles. We restrict the size of
Si (given by |Si|) to be at most q, which may be a function of the size, n of
the collection.

We also assume that the information flow graph representing the commu-
nication pattern is connected. By connectedness, we mean that every vehicle
in the collection should be able to communicate with every other vehicle in the
collection, even if they are not communicating directly, through a sequence of
already existing communication links. We further assume that the structure
of the control law used by each vehicle, other than the reference vehicle, is the
same. Specifically, we consider the following structure

Ui(z) = −C(z)
∑
j∈Si

(Xi(z) − Xj(z) − Lijz

z − 1
), (2)

where C(z) is a rational discrete transfer function. Let xref (k) ∈ 	 be the
position of the reference vehicle at instant k. The desired position xi,des(k) is
related to the position of the reference vehicle xref through a constant offset
Li, i.e., xi,des(k) − xref (k) − Li ≡ 0. We define the error in spacing, ei(k) of
the ith vehicle to be the deviation of its position from the desired position,
i.e.,

ei(k) := xi(k) − xi,des(k) = xi(k) − xref (k) − Li.

Since the desired formation corresponds to the vehicles moving as a rigid body
in a pure translational maneuver, the desired deviation Lij := xi,des(k) −
xj,des(k) is constant throughout the motion and equals Li − Lj .

Let Ei(z) be the Z transformation of the error in spacing, ei(k) of the ith

vehicle. Let xref (k) be the position of the reference vehicle at instant k and let
x̄(k) := xref (k)−xref (0) be the displacement of the reference vehicle from its
initial position in the time period [kT, (k + 1)T). Then Xref (z) = xref (0)z

z−1 +
X̄(z). If all the initial positions of the vehicles were chosen to correspond to
the rigid formation, then xi(0)−xref(0)−Li ≡ 0. With such a choice of initial
conditions and the choice of control law given in equation (2) for the plant
described by equation (1), evolution equations for the errors in spacing can
be expressed compactly as:

356 Sai Krishna Yadlapalli, Swaroop Darbha and Kumbakonam R. Rajagopal

[In−1 +
C(z)T 2(z + 1)

2(z − 1)2
K1]E(z) =

T 2(z + 1)
2(z − 1)2

D(z) + X̃(z), (3)

where E(z) and D(z) are the respective Z transformations of the vector of
errors of the following vehicles and the disturbances acting on them. The
term X̃(z) is a vector of dimension n − 1 and every element of this vector
is X̄(z). The term In−1 is an identity matrix of dimension n − 1 and K1 is
the principal minor obtained by removing the first row and column of the
Laplacian K of the information flow graph defined as follows: For j
= i,
Kij = −1 if vehicles i and j communicate directly; otherwise Kij = 0. The
ith diagonal element is defined as Kii = −

∑
j �=i Kij . The Laplacian K is

essentially the stiffness matrix obtained by connecting springs of unit spring
constant between vehicles that communicate directly.

2.3 Problem Formulation

The following are the objectives of the control law given by equation (2):

1. In the absence of any disturbance on every vehicle in the formation, it is
desired that for every i ≥ 2, limk→∞ ei(k) = 0, when the reference vehicle
executes a maneuver where its speed asymptotically reaches a constant
value.

2. In the presence of disturbances of atmost unit in magnitude, it is desirable
that there exist a constant MR > 0 such that max{|ei(k)|, |ėi(k)|} ≤ MR

for every size of the collection.

The second objective ensures that the control law given by equation (2)
is scalable. The problem is to determine conditions on the information flow
graph (through constraints on K1) and on the controller (through constraints
on C(s)) so that these two objectives are met.

2.4 Analysis

Let us analyze the first requirement. Since the speed of the reference vehicle
reaches a constant value, vf , asymptotically, we have: limk→∞ v̄(k) = vf =
limz→1

(1−z−1)2

T X̄(z). Therefore, limz→1(1 − z−1)3X̄(z) = 0. Since, the first
requirement must be satisfied in the absence of disturbing forces we have
D(z) ≡ 0. If det[In−1 + C(z)T 2(z+1)

2(z−1)2 K1] is Schur, we have:

limz→1(1 − z−1)E(z)

= limz→1[In−1 + C(z)(z+1)T 2

2(z−1)2 K1]−1(1 − z−1)X̃(z),

= limz→1[(z − 1)2In−1 + T 2C(z)(z+1)
2 K1]−1z2 limz→1(1 − z−1)3X̃(z) = 0.

Therefore, the steady state error requirement is readily met if det[In−1 +
C(z)T 2(z+1)

2(z−1)2 K1] is Hurwitz, i.e., if the controlled motion of formations is stable.

Information Flow Requirements for the Stability of Motion 357

The second condition, in fact, concerns the stability of the controlled motion
of formations.

Below we prove the main result concerning the stability of the controlled
motion by using the mechanical analogy between the Laplacian of the infor-
mation flow graph and the stiffness matrix, which essentially provides a way
to address the propagation of errors. A route to instability in structural me-
chanics, for systems that do not have a rigid body mode, is that the smallest
eigenvalue of the stiffness matrix converges to zero. In the context of vehicles,
the smallest eigenvalue of the Laplacian K is zero, which corresponds to the
rigid body mode, i.e., all vehicles have the same non-trivial displacement. A
way to get a system without a rigid body mode is to ground one of the vehi-
cles; in our case, for the sake of analysis of propagation of errors, there is no
loss of generality in attaching the reference vehicle to the ground, that is, we
set X̄(z) = 0 from Equation 3.

The mechanical analogy indicates the following line of proof:

1. The smallest eigenvalue, λ, of K1 goes to zero as n → 0.
2. Let v be the corresponding eigenvector scaled in such a way that ||v||∞ =

1. The analogy indicates the examination of e(k) when d(k) = sin(ωkT)v
where ω is the first natural frequency or close to the first natural frequency.

Convergence of the Smallest Eigenvalue of K1

Since K1 is symmetric, we use Rayleigh’s inequality to construct an upper
bound for the smallest eigenvalue, λ. For that we construct an assumed mode,
va, in the following way: We keep the reference vehicle grounded and displace
other by one unit. Since the assumed mode shape indicates the amount by
which every mass is displaced, all the elements of va, are equal. From the use
of Rayleigh’s inequality, it follows that:

λ ≤ < v, K1v >

< v, Lv >
≤ qr

n − 1
≤ q(n)

n − 1

The above result holds for information flow graphs which are only subject
to the constraint that each vehicle may only communicate with a specified
number of vehicles. In certain types of regular formations such as a square
formation or a cubic formation, where each vehicle can only communicate with
vehicles within a certain distance from it, more structure can be imposed on
the graphs such as the one dealt in the following proposition:

Proposition 1. Consider information flow graphs that are connected. Sup-
pose each vehicle in the collection may only communicate with m other vehicles
in the collection, m being a constant. Further, suppose that the distribution of
vehicles is such that the number of vehicles p(k), with k as the length of the

358 Sai Krishna Yadlapalli, Swaroop Darbha and Kumbakonam R. Rajagopal

communication path 2 to the reference vehicle be bounded by:

αkr ≤ p(k) ≤ βkr, k = 1, . . . , l0

for some positive constants α , β and r. The term l0 is the diameter 3 of the
graph considered. Then, the smallest eigenvalue λ of K1 converges to zero in
the following manner: There exists a N∗ > 0 such that for all n > N∗ for any
such information flow graph considered,

λ ≤ m

α
(
β

α
)

r+3
r+1

1

n
2

r+1
. (4)

Proof: We will use Rayleigh’s inequality again to construct an upper bound
for the smallest eigenvalue λ, of K1. The assumed mode va, is constructed
as follows: Using Bellman-Ford or a similar algorithm, we find the length of
the communication path, li of the ith vehicle from the reference vehicle and
assign it to the ith entry of va. Then, entries in va corresponding to any two
communicating vehicles, will differ atmost by unity. Then,

< va, K1va >=
1
2

n∑
i=1

∑
j∈Si

(vi − vj)2 ≤ 1
2

n∑
i=1

|Si| =
mn

2

Let us now consider < va, va >= 12p(1) + 22p(2) + · · · + l20p(l0).

α(12+r + · · · + l0
2+r) ≤< va, va >≤ β12+r + · · · + l0

2+r (5)

Therefore using Rayleigh’s inequality,

λ ≤ va, K1va

va, va

≤ mn

2
1

12p(1) + . . . + (l0 − 1)2p(l0 − 1) + l20p(l0)

≤ mn

2α

1
12+r + 22+r + . . . + (l0 − 1)2+r

≤ mn

2α

1∫ l0−1

0 x2+rdx

=
mn

2α

r + 3
(l0 − 1)r+3

.

2 For vehicles A and B that do not communicate directly, the length, l, of the
communication path between A and B is the minimum number of intermediate
vehicles V1, V2, . . . , Vl such that (1) A and V1 communicate directly, (2) Vl and
B communicate directly and (3) for all 1 ≤ i ≤ l − 1, Vi and Vi+1 communicate
directly.

3 The diameter of a graph, l0, is the maximum value of the length between all
possible pairs of vehicles that do not communicate directly.

Information Flow Requirements for the Stability of Motion 359

Next, we formulate an upper bound on l0. Since the total number of vehicles,
excluding the reference vehicle, in the collection is n−1, it follows that p(1)+
. . . + p(l0) = n − 1 and hence n − 1 ≤ β

∑l0
k=0 kr. Using the fact that:

l0−1∑
k=0

kr ≤
∫ l0

0

xrdx =
lr+1
0

r + 1
≤

l0∑
k=0

kr.

it follows that

n ≤ 1 + β
(l0 + 1)r+1

r + 1

⇒ l0 + 1 ≥ (
(n − 1)(r + 1)

α
)

1
r+1 .

From the above inequality, we are guaranteed that l0 → ∞ as n → ∞ for all
information graphs considered. It follows that there exists a N∗ > 0 such that
for all n > N∗ and for any information flow graph considered in this corollary,
the following inequality holds:

λ ≤ mn

2α

r + 3
(l0 − 1)r+3

≤ mn

α

(β

l0 + 1

)r+3

(2(l0 − 1)r+3 ≥ (l0 + 1)r+3∀l0 ≥ l∗)

≤ m

αn
2

r+1

(β

r + 1

) r+3
r+1

Remark 1. If r < 1, the bound in the corollary is a tighter one than the one
given by Lemma 1.

In the latter part of the chapter, various information flow graphs are con-
sidered, where the vehicle communication pattern is randomly assigned sub-
ject to the constraint that every vehicle can at most communicate directly
with a pre-specified number of vehicles. The numerical results obtained for
them corroborate with the above bound. Next, we use the upper bound on
the convergence of λ of K1 to 0 for analyzing the propagation of errors due
to disturbances acting on the vehicles.

Analysis of the Propagation of Errors

Since λ → 0 as n → ∞,

1. If C(z) does not have a pole at z = 1, there exists a sinusoidal distur-
bance acting on each vehicle of at most unit amplitude and of frequency
proportional to

√
λ that results in amplitudes of errors in spacing of the

order of Ω
(√

(n−1)3

q(n)3

)
.

360 Sai Krishna Yadlapalli, Swaroop Darbha and Kumbakonam R. Rajagopal

2. If C(z) has a pole at z = 1, then there is a critical size N∗ of the collection
such that for all n > N∗, at least one root of the equation

1 + λ
T 2C(z)(z + 1)

2(z − 1)2
= 0

is outside the unit circle; in other words, the controlled motion of the
collection is unstable.

Lemma 1. If C(z) has a pole at unity and if λ → 0 as the size of the collec-
tion, n, approaches ∞, then there exists a critical size N∗ of the formation,
such that for any size n > N∗ of the formation, the motion of the formation
becomes unstable.

Proof: For the problem considered in this section, if C(z) has l poles at unity,
it can be factored as C(z) = L(z)

(z−1)l , (l > 0) for some L(z) that does not have
any poles at the origin. We can write the closed loop characteristic equation
∆(z) as,

δ(z) := (z − 1)l+2 + λ
T 2L(z)(z + 1)

2
= 0.

Consider the following bilinear transformation which maps the z-plane to w-
plane:

w =
z − 1
z + 1

Because of the above mapping, δ(z) is Schur (i.e., all roots of δ(z) lie inside
the unit cricle) if and only if the roots of ∆(w) = 1 + λ C̄(w)T 2(1−w)l+1

2l+2wl+2 have
negative real parts. We note that ∆(w) is Hurwitz only if L(0)
= 0. We further
note that ∆(w) is Hurwitz iff wm∆(1/w) is Hurwitz, where m is the degree of
the polynomial ∆(w). Next, we analyze the root locus of Φ(w) = 1 + K C̃(w)

wl+2 ,
K := 2l+2T 2

λ and C̃(w) = 1
C̄(1/w)(1− 1

w)l−1 . Since C̃(w) is always proper, it
is clear that the root locus of Φ(w) has at least l + 2 asymptotes. Thus, as
K → ∞, (l+2) root loci move along lines that make the following angles with
the positive real axis.

φj =
180o + 360o(j − 1)

l + 2
, j = 1, 2,, l + 2

Since l ≥ 1, it is clear that at least one asymptote, along which one encounters
a RHP pole, resulting in the instability of the closed loop as K increases. In
other words, for arbitrarily small λ, if C(z) has a pole at a unity, the motion of
the formation becomes unstable. Hence, if C(z) has more than a pole at unity,
it is evident that there exists a critical size N∗ of the formation, such that
for any size n > N∗ of the formation, the motion of the formation becomes
unstable.

Information Flow Requirements for the Stability of Motion 361

Remark 2. From Φ(w) and the subsequent analysis, it is apparent that if
C(1) < 0 and l = 0, then one root is outside the unit circle, resulting in
instability of motion.

The following theorem addresses the main result for platoons and it relates
the propagation of errors in a platoon due to a disturbance of at most unit
magnitude acting on each vehicle.

Theorem 1. If C(z) does not have a pole at unity and C(1) is positive, then

errors in spacing grow at least as O
(√

n3

q3(n)

)
; in other words, no control law

of the type considered in this chapter is scalable to arbitrarily large collections
if q(n)

(n) → 0 as n → ∞.

Proof:
Consider the error propagation equation (3) with X̃(z) = 0.

[In−1 +
C(z)T 2(z + 1)

2(z − 1)2
K1]E(z) =

T 2(z + 1)
2(z − 1)2

D(z). (6)

We consider sinusoidal disturbances acting on all the vehicles, given by
d(k) = sin(ωkT)v. Using the assumed form of disturbance vector, equation
6 can be simplified as:

E(z) =
T 2(z + 1)

2(z − 1)2 + λT 2(z + 1)C(z)
D(z). (7)

Since C(z) does not have a pole at unity, C(1)
= 0. The frequency response
of the discrete transfer function is obtained by moving along the unit circle,
i.e., z = ejwT . We use the following parametrization of ejwT , to simplify the
expression:

ejw̄T =
1 + jwT/2
1 − jwT/2

.

It should be noted that every point on the unit circle can be uniquely pa-
rameterized. The frequency of the sinusoidal disturbance, wo, is assumed to
be

√
λC(1)rad/s. Then, the maximum amplitude of the error response is

||e(k)||∞ is given by the magnitude of the following complex number:

T 2(1 − jwoT/2)

w2
oT 2 (1 − (1 − jwoT/2)C̄(jwo)

C̄(0)
)︸ ︷︷ ︸

θ(wo)

,

where C̄(jwo) = C(1+jwoT/2
1−jwoT/2). Since θ(wo) has a root at zero, let |θ(wo)| =

wo
p|θ̃(wo)|, where θ̃(0)
= 0 and p ≥ 1. Therefore, the amplitude ratio is

362 Sai Krishna Yadlapalli, Swaroop Darbha and Kumbakonam R. Rajagopal

1
(wo)p+2

| (1 − jwoT/2)
θ̃(wo)

|.

As λ → 0, it is evident that wo → 0 and hence, the amplitude ratio grows to
infinity as

α

|θ̃(0)|
1

(
√

λ)p+2
,

where p ≥ 1 and α = (1√
C̄(0)

)p+2. Since p ≥ 1 as λ → 0, e(k) grows at least
as

α

|θ̃(0)|
1

(
√

λ)3
.

Therefore, the maximum amplitude of the errors in spacing over all the vehi-
cles for sufficiently large size of the formation is of Ω(1

(
√

λ)3
). Hence, a scalable

control algorithm requires an information flow graph, where at least one ve-
hicle in the collection communicates directly with at least Ω(n) vehicles.

The following result shows the limitations due the digital control of motion
of vehicles.

Theorem 2. There is a limit m∗ on the maximum number of vehicles con-
nected to each vehicle other than the reference vehicle, which depends on the
controller, C(z) and its sampling time T .

Proof: We consider sinusoidal disturbances acting on the vehicle of the form
d(k) = sin(ωkT)vm, where vm is the eigenvector of K1 corresponding to λm,
the largest eigenvalue of K1. The equation 6 can then be simplified as

E(z) =
T 2(z + 1)

2(z − 1)2 + λmT 2(z + 1)C(z)
D(z). (8)

Next, we analyze the root locus of ∆(z) = 1+ µC(z)(z+1)
(z−1)2 , where µ = λmT 2

2 .
Since C(z) is proper, it is clear that as µ → ∞, one root of ∆(z), goes to ∞.
Let µ∗ be the critical value where this branch of root locus crosses the unit
circle. Hence for all µ > µ∗, at least one root of ∆(z) is outside the unit circle,
resulting in instability of controlled motion. Hence for the stability of closed
loop characteristic equation we require:

λm ≤ 2µ∗

T 2
. (9)

Let m is the maximum number of vehicles in the collection each vehicle
can communicate with, apart from the reference vehicle. Let p be the index
of the vehicle with m as its degree 4. We construct the assumed mode shape,

4 There could be more than one such vehicle. As per the remark that follows, it
does not matter which one is picked.

Information Flow Requirements for the Stability of Motion 363

vm as follows: We displace the pth vehicle by one unit, and let the rest of the
vehicles grounded. We have from the Rayleigh’s inequality:

λm ≥ < vm, K1vm >

< vm, vm >
≥ m

Using the above derived bound in 9, we get m < 2µ∗

T 2 = m∗ for stable
motion of digitally controlled vehicles. Hence, every vehicle other than the
reference vehicle can only connect to a maximum of m∗ vehicles.

Remark 3. For a given size of vehicles, it can be seen that as the sampling
time increases, the closed loop characteristic equation becomes unstable. The
critical sampling time is, T ∗ =

√
2µ∗
λm

.

3 Simulations

For the purposes of numerical simulation, we consider the motion of collection
of vehicles moving in a straight line. Each vehicle is assumed to be a point
mass. The structure of the control law used is as mentioned in equation (2).
We consider a string of vehicles moving in a straight line trying to maintain
constant distance amongst them. We describe the corresponding results below.
We consider six vehicles, indexed from 1 to n. The set of vehicles that the first
vehicle communicates with directly is the second vehicle, i.e. S1 = {2}. For i =
2, . . . , n − 1, the set Si of vehicles the ith vehicle communicates with directly
is {i−1, i+1} and Sn = {n−1}. A PD (Proportional-Derivative) controller is
used for feeding back the error in spacing and is given by C(z) = 2+ 5(1−z−1)

T .
Figure 1 shows the convergence of λ to 0 as the length of the string increases.
Figure 3 shows the propagation of errors in spacing in a string of six vehicles.
It shows how errors amplify in response to a sinusoidal disturbance acting on
the last vehicle along the string, as we move away from the reference vehicle
(vehicle indexed 1).

The above simulations are repeated with randomly generated information
flow architectures. The convergence of λ to 0 for various random graphs with
a maximal degree constraint of 4 is shown in Figure 4. It can be observed
that though the information flow graphs are random, the upper bound on λ of
K1 seems to hold good for all the cases even for a small size of the collection.
Figure 5 shows the migration of dominant pole towards z = 1 as the size
of the collection of vehicles increases. In Figure 6 illustrates how the critical
sampling time varies with the size of the collection. From Remark 2.4 we infer
that for a fixed size of collection and the sampling time, as we increase m, at
some point the digitally controlled motion of the vehicles becomes unstable.
Figure 7 shows the stable motion when m = 8 with a sample time, T = 100ms
and C(z) as specified earlier. It should be noted that the condition posed in
Remark 2.4 is a necessary condition, but not sufficient. Hence, it is possible
that controlled motion can become unstable even when m < m∗.

364 Sai Krishna Yadlapalli, Swaroop Darbha and Kumbakonam R. Rajagopal

4 6 8 10 12 14 16 18 20 22 24
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of vehicles in array

Lo
w

es
t e

ig
en

va
lu

e
of

 K
1

actual values
formulated upperbounds

Fig. 1. The variation of λ (lowest eigenvalue of K1) with n, for a string of n vehicles
with each vehicle connected to the vehicles directly behind and ahead of it.

Fig. 2. Predecessor and follower based information flow pattern in the string

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

1.5

time

E
rr

or
s

in
 p

os
iti

on
 tr

ac
ki

ng

e
2
(t)

e
3
(t)

e
4
(t)

e
5
(t)

e
6
(t)

Fig. 3. Propagation of the errors along the string

4 Conclusions

In this chapter, we have considered information flow graphs for a collection of
vehicles, where there is a constraint on the maximum number of vehicles in the
collection every vehicle can communicate with directly. We have related how
the smallest eigenvalue λ of a principal minor of the Laplacian of information
flow graph goes to zero. We then showed that the motion of vehicles is unstable

Information Flow Requirements for the Stability of Motion 365

4 6 8 10 12 14 16 18 20 22 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
S

m
al

le
st

 e
ig

en
va

lu
e

of
 K

1

Formulated Upperbounds

Actual values of Various
 Random Graphs

Fig. 4. Variation of λ with n , for a string of n vehicles, connected in a random
fashion to a maximum of 4 other vehicles

0.96 0.97 0.98 0.99 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Real Axis

Im
ag

in
ar

y
A

xe
s

Direction : Migration of the poles towards z = 1
 with the increase of number of vehicles

Fig. 5. Plot showing the migration of the dominant pole to outside of unit circle
with increase in the number of vehicles

366 Sai Krishna Yadlapalli, Swaroop Darbha and Kumbakonam R. Rajagopal

2 3 4 5 6 7 8 9 10
0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0.145

Number of the vehilces in the string (N)

C
ri

tic
al

 s
am

pl
in

g
tim

e
(T

*)

Fig. 6. Plot showing the variation of critical sampling time, T ∗ with the size of the
collection.

0 10 20 30 40 50
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time (t)

E
rr

or
s

in
 s

pa
ci

ng
, e

i(t
)

 m = 8

Fig. 7. Plot showing the errors in spacing of the vehicles for a digitally controlled
stable motion

Information Flow Requirements for the Stability of Motion 367

if the controller transfer function C(z) had one or more poles at z = 1 and
that it must have no zeroes at z = 1 to track ramp inputs resulting from the
reference vehicle moving at a constant velocity. We further showed that if λ →
0, there is a disturbance of sufficiently low frequency acting on each vehicle
of at most unit magnitude which results in errors in spacing of Ω

(√
n3

q(n)3

)
.

The error propagation and the stability results for the continuous systems are
analogous and are discussed in [14].

References

1. D. Swaroop and J. K. Hedrick, String Stability of interconnected systems IEEE
Transactions on Automatic Control, vol 41 , pp. 349-357, March 1996.

2. Aniruddha G. Pant, Mesh stability of formations of Unmanned Aerial vehicles,
Ph.D Thesis, University of California, Berkeley, 2002.

3. D. Swaroop, String Stability of interconnected systems: An application to pla-
tooning in automated highway systems, Ph.D. Thesis, University of California,
Berkeley, 1994.

4. Singh, Sahjendra N., Rong Zhang, Phil Chandler, and Siva Banda, Decentral-
ized Adaptive Close Formation Control of UAVs, AIAA 2001-0106, 39th AIAA
Aerospace Sciences Meeting & Exhibit, Reno, NV, Jan. 2001.

5. Pachter, Meir, John J. DAzzo, and Andrew W. Proud, Tight Formation Flight
Control, AIAA Journal of Guidance, Control and Dynamics, Vol. 24, No. 2,
MarchApril 2001.

6. Khatir M., and E.J. Davison, Bounded Stability and Eventual String Stability of
a Large Platoon of Vehicles using Non-Identical Controllers, 2004 IEEE Control
and Decision Conference, Paradise Island, Dec. 2004, to appear.

7. Tolga Eren, Brian D. O. Anderson, A. Stephen Morse, Walter Whiteley, and Peter
N. Belhumeur. Operations on rigid formations of autonomous agents. Communi-
cations in Information and Systems, 2004. to appear.

8. Peter Joseph Seiler, Coordinated control of Unmanned Aerial Vehicles, Ph.D The-
sis, Department of Mechanical Engineering, University of California, Berkeley,
2001.

9. Swaroop, D., Hedrick, J.K., Chien, C.C. and Ioannou, P.A.,“A Comparison of
Spacing and Headway Control Laws for Automatically Controlled Vehicles, ” Ve-
hicle System Dynamics Journal, Vol. 23, No. 8, pp. 597-625, 1994.

10. J. A. Fax and R.M.Murray, Information Flow and cooperative control of vehicle
formations, Proceedings of the IFAC World Congress, Barcelona, Spain, pp. 2360-
2365, July, 2002.

11. P. J. Seiler, Aniruddha Pant and J. K. Hedrick, Preliminary Investigation of
Mesh stability for Linear Systems, IMECE99/DSC-7B-1, 1999.

12. G. F. Franklin, J. D. Powell and M. L. Workman, Digital Control of Dynamic
Systems, Prentice Hall, 1997.

13. Aniruddha Pant, Pete Seiler, T. John Koo, Karl Hedrick, Mesh Stability of
Unmanned Aerial Vehicle Clusters, Proceedings of American Control Conference
2001, pp. 62-68.

14. Sai Krishna Y, Swaroop Darbha and K.R. Rajagopal Information flow and its
relation to the stability of motion of vehicles in a rigid formation, Proceedings of
American Control Conference 2005, pp. 1853-1858.

Formation Control of Nonholonomic Mobile
Robots Using Graph Theoretical Methods

Wenjie Dong1 and Yi Guo2

1 Department of Electrical & Computer Engineering
University of Central Florida
Orlando, FL 32816

2 Department of Electrical & Computer Engineering
Stevens Institute of Technology
Hoboken, NJ 07030
E-mail: yguo1@stevens.edu

Summary. In this chapter, formation control of mobile robots with nonlinear mod-
els is considered. Two controllers are proposed with the aid of the dynamic feedback
linearization technique, the time-scaling technique and properties of Laplacian ma-
trix. The proposed controllers ensure the group of mobile robots to move in a desired
formation. Existing results in formation control using graph theoretical methods are
extended to nonlinear systems of high dimensions. Simulation results show the ef-
fectiveness of the proposed controllers.

1 Introduction

Cooperative control of multiple systems has received a lot of attention recently
due to its challenging features and application importance. To name a few,
multiple vehicles are used in rescue mission, moving a large object, troop
hunting, formation control, and cluster of satellites [37, 22, 13, 36, 2, 12,
13, 31, 16, 38, 23]. Different control strategies have been proposed, which
include behavior based approach, virtual structure approach, leader following
approach, and graph theoretical approach.

Arkin [1] studied cooperation without communication for multiple robots
foraging and retrieving objects in a hostile environment. Later, this behavior-
based approach was extended to formation control of multiple robots [2]. In
the behavioral approach [2, 15, 27, 34, 32, 30], the control action for each robot
is defined to be a weighted average of the control associated with each desired
behavior. Possible behaviors include collision avoidance, obstacle avoidance,
and formation keeping. Using this approach, it is easy to derive control strate-
gies even when vehicles have multiple competing objectives. Generally, it is
hard to analyze the behavioral performance analytically.

370 Wenjie Dong and Yi Guo

The virtual structure approach was proposed for formation control of mo-
bile robots by Lewis [19]. It is used to formation control of spacecrafts and
multi-satellite systems [29, 16]. In the virtual structure approach, the entire
desired formation is treated as a single entity. Desired states for each vehicle
in the formation can be specified by place-holders in the virtual structure.
Using this approach, it is easy to prescribe the coordinated behavior for the
group and the virtual structure can maintain formation during maneuvers.
However, the requirement of the formation to act as a virtual structure limits
the class of potential applications.

The leader-following approach is another important method [35, 8, 9, 22,
33]. In this approach, some mobile robots are designated as leaders while
others as followers. The leaders track desired trajectories, and the followers
track desired trajectories with respect to the leaders. The advantage of this
approach is its simplicity in that the reference trajectories of the leaders are
pre-defined and the internal stability of the formation are guaranteed by in-
dividual robot’s control laws. A disadvantage is that the whole system fails if
the leader fails.

The graph theoretical approach was proposed for cooperative control of
multiple linear systems by Fax and Murray [11]. Different control laws were
designed with the aid of graph theory [24, 10, 7, 17]. Communication links
among systems are described by Laplacian matrices. Each vehicle is treated as
a vertex and the communication links between vehicles are treated as edges.
Stability of the whole system is guaranteed by stability of each modified in-
dividual linear system. However, the methods are limited to linear models of
vehicle systems.

In this chapter, we discuss formation control of nonholonomic mobile
robots using graph theoretical methods. We propose two formation control
approaches to achieve formation stability. In the first approach, the robot’s
model is transformed to a linear system by dynamic feedback linearization.
The controller is then designed based on graph theory. In the second ap-
proach, with the aid of the time-scaling technique, a time-varying parameter
is introduced in the control law. The two controllers ensure the group of mo-
bile robots to move in a desired formation. While most existing results use
linear vehicle models, we discuss cooperative control of nonholonomic mobile
robots and design global controllers to achieve formation. We extended ear-
lier results using graph theoretical methods to nonlinear systems with high
dimensions.

The rest of the chapter is organized as follows. In Section 2, we introduce
terminologies in graph theory which will be used in the chapter. In Section
3, the formation control problem is defined. In Section 4, we design two con-
trollers for the above defined problem. In Section 5, simulation results are
presented. Finally, we conclude the chapter in Section 6.

Formation Control of Nonholonomic Mobile Robots 371

2 Graph Theory

In this section, some terminologies and basic properties used in this chapter
are listed. Interested readers please refer to literature [6, 21, 5].

A directed graph G consists of a set of vertices V and a set of edges E ⊂ V2,
where e = (α, β) ∈ E and α ∈ V, β ∈ V. The first element of e is denoted
tail(e), and the second of element of e is denoted head(e). For all e, we assume
that tail(e)
= head(e), which means that the graph has no self-loop. We also
assume that each element of E is unique. A graph is called un-directed if
(β, α) ∈ E for any (α, β) ∈ E. The in-degree of a vertex α, denoted di(α), is
the number of edges with α as its head. The out-degree of a vertex α, denoted
do(α), is the number of edges with α as its tail. A vertex is called balanced
if its in-degree is equal to its out-degree. A graph is called balanced if all of
its vertex is balanced. Let Ẽ be the set of reverse edges of G obtained by
reversing the order of nodes of all the edges. The mirror of G denoted by Ĝ

is an un-directed graph with vertices V and edges E ∪ Ẽ.
A path on G of length N from α0 to αN is an ordered set of distinct

vertices {α0, . . . , αN} such that (αi−1, αi) ∈ E for all i ∈ [1, N]. A graph is
called strongly connected if any two different vertices α and β in V there exists
at least one path from α to β. A graph is called disconnected if there exists a
disjoint subsets of vertices which cannot be joined by any path. The diameter
D of a strongly connected graph G is the maximum distance between any two
vertices of G. For any vertex β in V, the neighbor of β, denoted by Jβ, is the
set of all vertices α such that (α, β) ∈ E.

Assume that the vertices of G are enumerated and each is denoted as αi.
The adjacency matrix of a graph, denoted as G(G), is a square matrix of size
|V| and defined by

Gi,j =
{

1, if (αi, αj) ∈ E

0, otherwise.

The degree matrix of a graph, denoted D(G), is also a square matrix of size
|V| and defined by Di,i = do(αi) and Di,j = 0(i
= j). Assume the graph G

is strongly connected, D is nonsingular. The Laplacian matrix of the graph is
defined as

L = I − D−1G.

Some properties of Laplacian matrix are very useful [17].

Property 1. Zero is an eigenvalue of L. The associated eigenvector is 1.

Property 2. If G is strongly connected, the multiplicity of the zero eigenvalue
is one.

Property 3. All eigenvalues of L lie in a disk of radius 1 centered at the point
1 + 0j in the complex plane.

372 Wenjie Dong and Yi Guo

Property 4. If G is strongly connected, then each nonzero eigenvalues λ of L
satisfies

λ ≥ 1
D
∑

i∈V
di,i

.

Let A = {aij}m×n and B = {bij}p×q are two matrices, the Kronecker
product of A and B is defined as

A ⊗ B =

⎛⎜⎝ a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎞⎟⎠ .

By the definition, the following properties are easily derived.

1. given three matrices A, B, and C,

A ⊗ (B + C) = A ⊗ B + A ⊗ C,

(B + C) ⊗ A = B ⊗ A + C ⊗ A,

2. If AC and BD exists, then

(A ⊗ B)(C ⊗ D) = AC ⊗ BD.

3 Problem Statement

Assume there are m mobile robots moving on the plane. For simplicity, all
robots are assumed to have the same structure. Noting the results in literature
[4, 20], we assume that there exist suitable transformations such that the
kinematics of robot j(1 ≤ j ≤ m) can be transformed globally or locally into
the following chained system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ż1,j(t) = u1,j(t),
ż2,j(t) = z3,j(t)u1,j(t),

...
żn−1,j(t) = zn,j(t)u1,j(t),
żn,j(t) = u2,j(t),

(1)

with (z1,j(t), z2,j(t)) being the X and Y positions of robot j in the X − Y
plane.

Remark 1. For many types of wheeled mobile robots, we can always find global
or local transformations such that the kinematics of the robots are transformed
into chained form (1) with the first two states being the position of the robot
in the plane [20]. See Section 5 for one example.

Formation Control of Nonholonomic Mobile Robots 373

Let graph G describe the communication links between the group of mo-
bile robots and LG be the Laplacian matrix corresponding to the graph G.
Each vertex represents a robot and each edge represents a communication
link between two robots. For each robot i, Ji denotes its neighbors. In this
chapter, we assume that each robot only knows its own state and the relative
positions to its neighbors. That is, in the controller design, ui(t) is assumed
to be a function of zi(t) and zi(t) − zj(t) for each j ∈ Ji.

Given constant vectors [hj,x, hj,y] ∈ R2(1 ≤ j ≤ m) which form a desired
form F in the plane. m robots are said to be in formation if

z1,j(t) − hj,x = z1,i(t) − hi,x(i
= j) (2)
z2,j(t) − hj,y = z2,i(t) − hi,y(i
= j). (3)

In this chapter, the formation control problem is defined as designing con-
trol laws ui(t)(1 ≤ i ≤ m) such that m robots are in formation as time tends
to infinity, i.e., design control laws ui(t)(1 ≤ i ≤ m) such that

lim
t→∞(z1,i(t) − z1,j(t)) = hi,x − hj,x(i
= j) (4)

lim
t→∞(z2,i(t) − z2,j(t)) = hi,y − hj,y(i
= j). (5)

Remark 2. In the formation control, (2)-(3) means that points (z1,j(t), z2,j(t))(1 ≤
j ≤ m) form the same form as (hj,x, hj,y)(1 ≤ j ≤ m). Since (z1,j(t), z2,j(t))(1 ≤
j ≤ m) are positions of mobile robots in the plane, the m robots form the
desired formation F.

In the following, we omit the argument t for state variables, for example,
z1,i(t) is simply written as z1,i.

4 Controller Design

4.1 Approach I

To design the controller, we first transform (1) into a linear system by the
dynamic feedback linearization technique.

Lemma 1. If ζ1,j(t)
= 0(∀t), by the dynamic controller⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ζ̇1,j = ζ2,j ,
...

ζ̇n−3,j = ζn−2,j ,

ζ̇n−2,j = r1,j ,
u1,j = ζ1,j ,
u2,j = (r2,j − gn−1,j(z4,j , . . . , zn,j , ζ1,j , . . . , ζn−3,j))/ζn−2

1,j ,

(6)

374 Wenjie Dong and Yi Guo

where gn−1,j is calculated by following recursion

g2,j = z3,jζ2,j ,

gk,j = (k − 1)zk+1,jζ
k−2
1,j ζ2,j +

k∑
l=3

∂gk−1,j

∂zl,j
zl+1,jζ1,j

+
k−1∑
l=1

∂gk−1,j

∂ζl,j
ζl+1,j , (k = 3, . . . , n − 3),

system (1) is transformed into

q̇j = Avqj + Bvrj (7)

where Av = I2 ⊗ A0, Bv = I2 ⊗ B0, qj = [qT
1,j , q

T
2,j]

T , rj = [r1,j , r2,j]T , and

A0 =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎦ , B0 =

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎦ , q1,j =

⎡⎢⎢⎢⎢⎣
z1,j

ż1,j

...
dn−2z1,j

dtn−2

⎤⎥⎥⎥⎥⎦ , q2,j =

⎡⎢⎢⎢⎢⎣
z2,j

ż2,j

...
dn−2z2,j

dtn−2

⎤⎥⎥⎥⎥⎦ .

Proof: The result can be obtained by direct calculation.
Let

q = [qT
1 , . . . , qT

m]T , r = [rT
1 , . . . , rT

m]T ,

A = Im ⊗ Av, B = Im ⊗ Bv,

we have
q̇ = Aq + Br. (8)

Let
�j,1 = [hj,x, 0, . . . , 0]T ∈ Rn−1,
�j,2 = [hj,y, 0, . . . , 0]T ∈ Rn−1,
�j = [�T

j,1, �
T
j,2]

T ,
� = [�T

1 , . . . , �T
m]T ,

and
ρ = L1(q − �),

where L1 = LG ⊗ I2(n−1), we have the following result.

Lemma 2. If the communication graph G is directed and strongly connected
and ρ = 0, the robots are in formation F.

Proof: Since L1(q−�) = 0, q = �+a1. Therefore, z1,j −hj,x = zn,j −hj,y(1 ≤
j ≤ m), which means the robots are in formation.

Next, we design r such that ρ converges to zero.

Formation Control of Nonholonomic Mobile Robots 375

Lemma 3. For system (8), if the communication graph G is directed and
strongly connected, the control law

r = ΓL1(q − �)

makes ρ converge to zero, where Γ = I2m ⊗ Γ1, Γ1 = [g1, g2, . . . , gn−1] is
chosen such that the matrix A0 + λB0Γ1 is stable (Hurwitz) for each nonzero
eigenvalue λ of the communication Laplacian matrix LG.

Proof: We follow the idea in the proof of proposition 4.3 [17]. First, it is easy
to prove that the eigenvalues of A + BΓL1 are those of Av + λBvΓv for λ an
eigenvalue of LG. Next, we consider the following system[

q̇

�̇p

]
=
[

A + BFL1 −BFL1

0 0

] [
q
�p

]
:= Π

[
q
�p

]
(9)

where �p = [h1,x, h1,y, . . . , hm,x, hm,y]T . Define the subspace S by

S =
{[

q
�p

]
: L1(q − �) = 0

}
.

For any vector σ ∈ S,

σ =

⎡⎣1⊗ a + b ⊗
[

1
0

]
b

⎤⎦
where a and b are vectors. Therefore,

Πσ =
[
1⊗ A0a

0

]
∈ S,

which means S is Π-invariant and the restriction of the transformation induced
by Π on S is diag[A0, 0]. The eigenvalues of the restriction of the transforma-
tion induced by Π on the quotient space R2mn/S are those of A0 +λB0Γ1 for
λ a nonzero eigenvalue of LG. By the assumption that these eigenvalues have
negative real parts, the quotient space is stable. Therefore, for any solution
[q, �p]T of (9), it tends to the subspace S as time tends to infinity. From the
definition of S, L1(x − �) tends to zero.

In Lemma 3, λ may be several different values. Γ1 is designed to simulta-
neously stabilize A0 +λB0Γ1 for all non-zero eigenvalues λ. Noting the special
structures of A0 and B0, we have the following lemma.

Lemma 4. If the communication graph LG is directed and strongly connected
and n ≤ 4, there always exists Γ1 = [g1, . . . , gn−1] such that A0 + λB0Γ1 is
stable for each λ(
= 0) of LG.

Proof: Noting the special structures of A0 and B0, we have the following
characteristic polynomial

376 Wenjie Dong and Yi Guo

det(αIn−1 − A0 − λB0Γ1) = αn−1 − λg1α
n−2 − · · · − λgn−2α − λgn−1.

By Kharitonov theorem [3], it can be proved that the characteristic polynomial
is stable if Γ1 is chosen as follows.

g1 < 0, g2 < 0 if n = 3;
g1 < 0, g2 < 0,− g1g2

2D
∑

i∈V
dii

< g3 < 0 if n = 4.

In Lemma 4, we assume n ≤ 4 because the dimensions of many wheeled
mobiles are less than four. For high dimension systems, we can use Kharitonov
theorem [3] to find Γ1 if it exists.

Theorem 1. For system (1),if the communication graph G is directed and
strongly connected, controller (6) with

r = ΓL1(q − �)

make (4) and (5) satisfied, where Γ = I2m ⊗ Γ1, Γ1 = [g1, g2, . . . , gn−1] is
chosen such that the matrix A0 + λB0Γ1 is stable (Hurwitz) for each nonzero
eigenvalue λ of the communication Laplacian matrix LG. Moreover, Γ1 always
exists if n ≤ 4.

Controller (6) solve the formation control of nonholonomic mobile robots
with the aid of graph theory. In the formation control, u1,j is required to be
non-zero all the time, which means that each robot is required to move along
X-axis. By the proof, this can be guaranteed by suitably choosing the control
parameters and the initial conditions of the dynamic controller.

4.2 Approach II

To overcome the singularity of the controller, we propose another controller
in two steps under the condition that the communication graph is directed,
balanced, and strongly connected. In the first step, u1,j(1 ≤ j ≤ m) are
designed such that (4) is satisfied based on the properties of Laplacian matrix.
In the second step, u2,j(1 ≤ j ≤ m) are designed such that (5) is satisfied with
the aid of the time-scaling technique and the properties of Laplacian matrix.
In the first step, we have the following lemma.

Lemma 5. For system (1), if the communication graph is directed and strongly
connected, control law

u1,j = α̇ −
∑
i∈Jj

(z1,j − z1,i − hj,x + hi,x), 1 ≤ j ≤ m (10)

make (4) satisfied, where α(t) is any differentiable function.

Formation Control of Nonholonomic Mobile Robots 377

Proof: Let
y1 = [y1,1, y1,2, . . . , y

T
1,m

where
y1,j = z1,j − α − hj,x,

with the control law (10), we have

ẏ1,j = −
∑
i∈Jj

(y1,i − y1,j).

So
ẏ1 = −LGy1. (11)

Since the graph G is directed and strongly connected, LG is a symmetric
nonnegative definite matrix. There exists an non-singular matrix S such that

S−1LGS = Λ = diag[0, J2, . . . , Jm]

where Jj is the Jordan form corresponding to eigenvalue λj > 0(2 ≤ j ≤ m).
Let the state transformation ξ = ST y1, we have

ξ̇ = Λξ.

Therefore,

ξ(t) =

⎡⎢⎢⎢⎣
ξ1(0)
ξ2(t),

...,
ξ(t)

⎤⎥⎥⎥⎦
where ξj(2 ≤ j ≤ m) exponentially converge to zero. Noting y1 = Sξ, so

y1,j(t) =
m∑

i=1

sj,iξi(t) = sj,1ξ1(0) +
m∑

i=2

sj,iξi(t).

Since LGS = SΛ,

LG

⎡⎢⎢⎢⎣
s1,1

s2,1

...
sm,1

⎤⎥⎥⎥⎦ = 0

Noting LG is a Laplacian matrix corresponding to a directed strongly con-
nected matrix,

s1,1 = s2,1 = · · · = sm,1.

So,
lim

t→∞ y1,i = lim
t→∞ y1,j(i
= j).

Therefore, limt→∞(z1,i − z1,j) = hi,x − hj,x(i
= j).

378 Wenjie Dong and Yi Guo

In control law (10), α is a control parameter which plays an important role
in designing u2,j in the next step with suitable assumption.

In the second step, we first have the following lemma.

Lemma 6. For system (1), if the communication graph is directed, balanced
and strongly connected, with the control law (10), u1,j(1 ≤ j ≤ m) expo-
nentially converge to α̇ with the least rate λ2(LG) (i.e., the least non-zero
eigenvalue of LG). If α̇(t) ≥ ε > 0 for t ≥ T1, there exists a finite time
T2(> T1) such that u1,j(t) ≥ ε/2(1 ≤ j ≤ m) for t ≥ T2.

Proof: By the proof of Lemma 5,

lim
t→∞ y1,j(t) = c

where c is a constant. Since the communication graph is balanced,
∑m

j=1 y1,j/m
is an invariant quantity of system (11) and

c =
1
m

m∑
i=1

y1,i(0).

Let
e = [e1, . . . , em]T = y1 − c1,

then
ė = −LGe (12)

and
m∑

i=1

ei = 0.

Let
V =

1
2
eT e

differentiate it along (12), we have

V̇ = −eT LGe ≤ −λ2(LĜ)eT e = 2λ2(LĜ)V (∀e
= 0.)

Therefore, e exponentially converges to zero with the least rate λ2(LĜ). Since

u1,j = ż1,d −
∑
i∈Jj

(y1,j − y1,i),

u1,j exponentially converge to ż1,d. Noting ż1,d(t) ≥ ε for t ≥ T1, there exists a
finite time tj such that u1,j(t) ≥ ε/2 for t ≥ tj . Let T2 = max{tj, 1 ≤ j ≤ m},
u1,j(t) ≥ ε/2(1 ≤ j ≤ m) for t ≥ T2.

Formation Control of Nonholonomic Mobile Robots 379

In Lemma 6, z1,j increase monotonically with time for t > T2, which means

z1,j → ∞ ⇔ t → ∞.

Therefore, we can use the following time-scaling technique. Let

z
(1)
i,j =

dzi,j

dz1,j
, (2 ≤ i ≤ n, 1 ≤ j ≤ m),

v = [v1, v2, . . . , vm]T = [u2,1/u1,1, . . . , u2,m/u1,m]T

we have
z
(1)
j = A1zj + B1vj , (1 ≤ j ≤ m) (13)

where zj = [z2,j , . . . , zn,j]T ,

A1 =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎦ , B1 =

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎦ .

Using Kronecker product, (13) can be written as

z(1) = Az + Bv (14)

where z = [zT
1 , . . . , zT

m]T , A = Im ⊗ A1, B = Im ⊗ B1, v = [v1, . . . , vm]T , and

z(1) = [
dzT

1

dz1,1
, . . . ,

dzT
m

dz1,m
]T .

Define
hj = [hj,y, 0, . . . , 0]T ∈ R

n−1(1 ≤ j ≤ m),

and let ωj be as follows

ωj = (zj − hj) −
1
|Jj|

∑
i∈Jj

(zi − hi), (1 ≤ j ≤ m),

then
ω = [ωT

1 , . . . , ωT
m]T = L(z − h)

where L = LG ⊗ I(n−1) and h = [hT
1 , hT

2 , . . . , hT
m]T .

Since (5) is satisfied if ω tends to zero. Therefore, we only need to design
v such that ω converges to zero. Let the control law

v = Γω, (15)

where Γ = diag[Γ1, . . . , Γ1], we have the following result.

380 Wenjie Dong and Yi Guo

Lemma 7. Assume the communication graph is directed, balanced and strongly
connected, let Γ1 = [g1, g2, . . . , gn−1], if the matrix A1 +λB1Γ1 is stable (Hur-
witz) for each nonzero eigenvalue λ of the Laplacian matrix LG, then the
control law (15) makes ω converge to zero.

Proof: Along the proof of Lemma 3, it is omitted here.
By Lemma 7, we can obtain the control law for time t ≥ T2. Next, we give

the controller of system (1) for all time.

Theorem 2. For system (1), if the communication graph is directed, balanced
and strongly connected, the control law{

u1 = α̇1− LGy1,
u2 = diag[u1,1, . . . , u1,m]ΓL(z − h) (16)

makes (4)-(5) satisfied, where α̇ ≥ ε > 0, Γ1 = [g1, . . . , gn−1] and such that
A1 +λB1Γ1 is stable (Hurwitz) for each nonzero eigenvalue λ of the Laplacian
matrix LG.

Proof: By Lemma 5, (4) is satisfied. For t ≥ T2, (5) is satisfied by Lemma
7 if the state is bounded at time T2. It is only needed to show z is bounded
during time interval [0, T2]. Noting the structure of system (1), z is bounded
due to the boundedness of u1,j and u2,j.

Control law (16) solves the formation problem in this chapter. With this
control law, the robots move in formation as time tends to infinite. In the
control law, α is a design parameter. Since α̇ > 0, the robots always move on
the plane. It should be noted that in this controller there is no singular point.
Most of the existing results on the cooperative control of mobile robots with
graph theory are based on linear models. This chapter shows how the graph
theory can be applied successfully to the cooperative control of nonholonomic
mobile robots.

5 Illustrative Examples

Consider five wheeled mobile robots moving on a plane (Fig. 1). The five
robots are the same and have the following kinematics (Fig. 2).⎡⎢⎢⎣

ẋ
ẏ

θ̇

φ̇

⎤⎥⎥⎦ =

⎡⎢⎢⎣
cos θ
sin θ

tanφ/l
0

⎤⎥⎥⎦Rv1 +

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦ v2 (17)

where q = [x, y, θ, φ]T is the system state, (x, y) represents the Cartesian
coordinates of the middle point of the rear wheel axle, θ is the orientation of
the robot body with respect to the X-axis, φ is the steering angle; l is the
distance between the front and rear wheel-axle centers, R is the radius of rear

Formation Control of Nonholonomic Mobile Robots 381

x

y

o

Robot 1
Robot 2

Robot 3

Robot 4

Robot 5

Fig. 1. Five mobile robots on a plane

driving wheel; v1 is the angular velocity of the driving wheels, and v2 is the
steering velocity of the front wheels. φ ∈ (−π/2, π/2) due to the structure
constraint of the robot.

Fig. 2. Structure of a mobile robot

Let the state transformation

z1 = x, z2 = y, z3 = tan θ, z4 =
tan φ

l cos3 θ
, (18)

and the input transformation

u1 = v1R cos θ, u2 =
v2l cos2 θ + 3 sin θ sin2 φu1

l2 cos5 θ cos2 φ
, (19)

system (17) is transformed into

382 Wenjie Dong and Yi Guo

ż1 = u1, ż2 = z3u1, ż3 = z4u1, ż4 = u2. (20)

By the dynamic feedback linearization procedure, we can obtained a linear
system (7) with n = 4. With the results in the last section, we can obtain the
controller (6). By the inverse transformation, we can obtain the controller of
the original system. In the simulation, the formation is defined by points (0, 0),
(15, 0), (0, 15), (8, 25) and (25, 15) (see Fig. 3). Assume the communication
link is shown as Fig. 4, Fig. 5 is the simulation result with this information
graph. If the communication link is shown as Fig. 6, the group of mobile robots
moves as in Fig. 7. The simulation results show that the proposed control law
(6) is effective. In the simulation, the singular point never occurs since the
robots always move forward.

−10 −5 0 5 10 15 20 25 30
−10

−5

0

5

10

15

20

25

30

h
1
 h

2

h
3

h
4

h
5

Y

X

Fig. 3. Desired formation

Fig. 4. Information link

Formation Control of Nonholonomic Mobile Robots 383

−10 0 10 20 30 40 50 60 70
−10

0

10

20

30

40

50

60

70

X

Y

Fig. 5. Trajectories of the group of mobile robots in X-Y plane with controller (6)

Fig. 6. Information link

We can easily obtain controller (16) too. In the controller, we choose α =
0.1t. Fig. 8 is the simulation result with the information graph in Fig. 6. The
simulation results show that the proposed control law (16) is effective if the
communication graph is connected.

6 Conclusion

This chapter considers the formation control of mobile robots with nonlinear
models. Two cooperative controllers are proposed based on the graph theory.
Simulation results show the proposed controllers are effective. In this chap-
ter, we do not consider collision and obstacles. How to consider them into
controller design is an ongoing research work.

384 Wenjie Dong and Yi Guo

−10 0 10 20 30 40 50 60 70
−10

0

10

20

30

40

50

60

70

X

Y

Fig. 7. Trajectories of the group of mobile robots in X-Y plane with controller (6)

−30 −20 −10 0 10 20 30 40 50
−20

0

20

40

60

80

100

120

140

160

X

Y

Fig. 8. Trajectories of the group of mobile robots in X-Y plane with controller (16)

References

1. R.C. Arkin, “Cooperation without coomunication: multiagent schemabased
robot navigation,” J. of Robotic Systems, vol.9, pp.351-364, 1992.

2. T. Balch and R. C. Arkin, “Behavior-based formation control for multirobot
teams,” IEEE Trans. on Robotics and Automation, vol.14, no.6, pp.926-939,
1998.

3. S.P. Bhattacharyya, H. Chapellet, L.H. Keel, Robust Control: The Parameter
Approach. Prentice Hall, 1995.

4. Campion, G., Bastin, G., and d’Andrea-Novel, B., “Structure properties and
classification of kinematic and dynamic models of wheeled mobile robots,” IEEE
Trans. Robotics and Automation. Vol.12, pp.47-62, 1991.

5. F.R.K. Chung. Spectral Graph Theory, volume 92 of Regional Conference Series
in Mathe- matics. American Mathematical Soc., 1997.

6. R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics.
Springer-Verlag, 1997.

Formation Control of Nonholonomic Mobile Robots 385

7. A.K. Das, R. Fierro, and V. Kumar, Control Graphs for Robot Networks. Nor-
well, MA: Kluwer, 2002, Cooperative Control and Optimization of Applied Op-
timization, ch. 4, pp.5573.

8. J.P. Desai, J. Ostrowski, and V. Kumar, “Controlling formations of multiple
mobile robots,” Proc. of the IEEE Int. Conf. on Robotics and Automation,
(Leuven, Belgium), pp.2864-2869, 1998.

9. J.P. Desai, J.P. Ostrowski, and V. Kumar, “Modeling and control of forma-
tions of nonholonomic mobile robots,” IEEE Trans. Robot. Automat., vol.17,
pp.905908, Dec. 2001.

10. P.N.B.T. Eren and A.S. Morse, “Closing ranks in vehicle formations based on
rigidity,” Proc. IEEE Conf. Decision and Control, Las Vegas, NV, Dec. 2002,
pp. 29592964.

11. J.A. Fax, and R. M. Murray, “Information Flow and Cooperative Control of
Vehicle Formations,” IEEE Trans. on Automatic Control, vol.49, pp.1465-1476,
2004.

12. R. Fierro, A. Das, V. Kumar, and J. Ostrowski, “Hybrid control of formations
of robots,” Proc. of the IEEE Int. Conf. on Robotics and Automation, (Seoul,
Korea), pp.157-162, May 2001.

13. F. Giulietti, L. Pollini, and M. Innocenti, “Autonomous formation flight,” IEEE
Control Systems Magazine, vol.20, pp.34-44, 2000.

14. A. Jadbabaie, J. Lin, and A.S. Morse, “Coordination of Groups of Mobile Au-
tonomous Agents Using Nearest Neighbor Rules,” IEEE Trans. on Automatic
Control, vol.48, pp.988-1001, 2003.

15. R.T. Jonathan J. Lawton, R.W. Beard, and B.J. Young, “A Decentralized Ap-
proach to Formation Maneuvers,” IEEE Trans. on Robotics and Automation,,
vol.19, pp.933-941, 2003.

16. W. Kang and H.-H. Yeh, “Co-ordinated attitude control of multi-satellite sys-
tems,” Int. J. of Robust and Nonlinear Control, vol.12, pp.185-205, 2002.

17. G. Lafferriere, J. Caughman, and A. Williams, “Graph theoretic methods in
the stability of veicle formations,” Proc. of Ameircan Control Conf., Boston,
pp.3729-3734, 2004.

18. N.E. Leonard and E. Fiorelli, “Virtual leaders, artificial potentials and coor-
dinated control of groups,” Proc. of the IEEE Conf. on Decision and Control,
(Orlando, Florida), pp.2968-2973, 2001.

19. M.A. Lewis and K.-H. Tan, “High precision formation control of mobile robots
using virtual structures,” Autonomous Robots, vol.4, pp.387-403, 1997.

20. Leroquais, W. and d’Andrea-Novel, B., “Transformation of the kinematic models
of restricted mobility wheeled mobile robots with a single platform into chained
forms,” Proc. of the IEEE Conf. Decision and Control, 1995.

21. R. Merris, “A survey of graph Laplacians,” Linear and Multilinear Algebra,
Vol.39, pp.19-31, 1995.

22. M. Mesbahi and F.Y. Hadaegh, “Formation flying control of multiple spacecraft
via graphs, matrix inequalities, and switching,” AIAA J. of Guidance, Control,
and Dynamics, vol.24, pp.369-377, 2001.

23. P. Ogren, E. Fiorelli, and N. E. Leonard, “Cooperative control of mobile sen-
sor networks: adaptive gradient climbing in a distributed environment,” IEEE
Trans. Automatic Control, Vol.40, no.8, pp.1292-1302, 2004.

24. R. Olfati-Saber and R. M. Murray, “Distributed structural stabilization and
tracking for formations of dynamic multiagents,” Proc. IEEE Conf. Decision
and Control, Las Vegas, NV, Dec. 2002, pp. 209215.

386 Wenjie Dong and Yi Guo

25. R. Olfati-Saber and R. M. Murray, “Consensus protocols for networks of dy-
namic agents,” Proc. of American Control conf., pp.951-956, 2003.

26. R. Olfati-Saber and R. M. Murray, “Consensus Problems in Networks of Agents
with Switching Topology and Time-Delays,” IEEE Trans. on Automatic Con-
trol, vol.49, pp.101-115, 2004.

27. L.E. Parker, “ALLIANCE: An architecture for fault tolerant multirobot coop-
eration,” IEEE Trans. on Robotics and Automation, vol.14, pp.220-240, 1998.

28. W. Ren and R. W. Beard, “Consensus of information under dynamically chang-
ing interaction topologies,” Proc. of American Control Conf., pp.4939-4944,
2004.

29. W. Ren and R. W. Beard, “Formation Feedback Control for Multiple Spacecraft
Via Virtual Structures,” submitted to IEE Proceedings - Control Theory and
Applications, 2004.

30. M. Schneider-Fontan and M. J. Mataric, “Territorial multi-robot task division,”
IEEE Trans. on Robotics and Automation, vol.14, pp.815-822, 1998.

31. D.J. Stilwell and B.E. Bishop, “Platoons of underwater vehicles,” IEEE Control
Systems Magazine, vol.20, pp.45-52, 2000.

32. K. Sugihara and I. Suzuki, “Distributed algorithms for formation of geometric
patterns with many mobile robots,” J. Robot. Syst., vol.13, no.3, pp.127139,
1996.

33. H.G. Tanner, G.J. Pappas, and V. Kumar, “Leader-to-Formation Stability,”
IEEE Trans. on Robotics and Automation, vol.20, pp.443-455, 2004.

34. M. Veloso, P. Stone, and K. Han, “The CMUnited-97 robotic soccer team: Per-
ception and multi-agent control,” Robot. Auton. Syst., vol.29, pp.133143, 1999.

35. P.K.C. Wang and F.Y. Hadaegh, “Coordination and control of multiple mi-
crospacecraft moving in formation,” The J. of the Astronautical Sciences, vol.44,
no.3, pp.315-355, 1996.

36. P. K. C. Wang, “Navigation strategies for multiple autonomous mobile robots
moving in for- mation,” J. of Robotic Systems, vol.8, no.2, pp.177-195, 1991.

37. H. Yamaguchi, “A cooperative hunting behavior by mobile robots troops,” Int.
J. of Robotics Research, vol.18, pp.921-940, 1999.

38. Y. Yang, A.A. Minai, and M.M. Polyearpou, “Decentralized cooperative search
by networked UAVs in an uncertain environment,” Proc. American Control
Conf., Boston, Massachusetts, 2004, pp.5558-5563.

39. Z. Lin, B. Francis, and M. Maggiore, “Necessary and sufficient graphical con-
ditions for formation control of unicycles,” IEEE Trans. on Automatic Control,
vol.50, pp.121-127, 2005.

Comparison of Cooperative Search Algorithms
for Mobile RF Targets Using Multiple

Unmanned Aerial Vehicles

George W.P. York, Daniel J. Pack and Jens Harder

Department of Electrical and Computer Engineering
United States Air Force Academy USAF Academy, CO 80840-6236
E-mail: {george.york,daniel.pack}@usafa.af.mil

Summary. In this chapter, we compare two cooperative control algorithms for mul-
tiple Unmanned Aerial Vehicles (UAVs) to search, detect, and locate multiple mobile
RF (Radio Frequency) emitting ground targets. We assume the UAVs are equipped
with low-precision RF direction finding sensors with no ranging capability and the
targets may emit signals randomly with variable duration. In the first algorithm the
UAVs search a large area cooperatively until a target is detected. Once a target is
detected, each UAV uses a cost function to determine whether to continue searching
to minimize overall search time or to cooperate in localization of the target, joining
in a proper orbit for precise triangulation to increase localization accuracy. In the
second algorithm the UAVs fly in formations of three for both search and target
localization. The first algorithm minimizes the total search time, while the second
algorithm minimizes the time to localize targets after detection. Both algorithms
combine a set of intentional cooperative rules with individual UAV behaviors opti-
mizing a performance criterion to search a large area. This chapter will compare the
total search time and localization accuracy generated by multiple UAVs using the
two algorithms simulations as we vary ratios of the numbers of UAVs to the number
of targets.

1 Introduction

Recently, military applications of UAVs have received considerable interest
[1, 2, 3]. In most cases these UAVs, however, were individually controlled by
human operators with significant training. We believe the frontier of UAV re-
search lies in the autonomous control of multiple UAVs and their cooperative
task completion. This chapter contributes toward that end by developing two
cooperative search and localization algorithms for multiple UAVs and com-
paring their search time and localization accuracy for mobile RF emitting
targets.

In this chapter we focus on a scenario where multiple homogeneous targets
must be detected and localized by multiple homogeneous UAVs. Our targets

388 George W.P. York, Daniel J. Pack and Jens Harder

are mobile and the signals are emitted randomly with arbitrary duration.
We assume that each UAV has a limited communication range and a limited
bandwidth. The communication range is assumed to be larger than the UAVs
sensor range. Each UAV continually transmits to neighboring UAVs its loca-
tion and the sensed direction toward any targets it has detected. Each UAV
has sufficient memory to maintain a map showing the status of its neighboring
UAVs over time. The UAV’s RF sensor is assumed to only capable of direction
finding (DF) with low precision (i.e., +/- 7 degrees). Finally, we assume the
UAVs aprior knowledge of the search boundary and there are no objects to
avoid within the area.

By fusing emergent swarm behaviors with intentional cooperation tech-
niques among distributed systems, we demonstrate effective target search/lo-
calization with multiple UAVs. We compare two algorithms: (1) the UAVs
search independently, then either cooperate in locating detected targets or
continue searching independently; (2) the UAVs search and locate in trian-
gular formations with each group working independently. Using MATLAB-
based simulation, we compare the two approaches, varying the ratio of UAVs
to targets to observe the trade-off in localization accuracy versus total task
completion time. The task completion time includes search, detection, and
localization of all targets in a predefined area. Our comparative analysis for
the two cooperative control algorithms showed that the second algorithm,
flying in formation, produced a higher accuracy in localization, but a much
longer total search/localization time compared to the value obtained when
the first algorithm was used. On the other hand, the first algorithm, in which
the UAVs search independently and use a cost function to determine when to
cooperate on localization, had a much reduced total search time at the cost
of less accuracy in target localization.

2 Cooperative Control Algorithm I

Each UAV can operate in one of four stages: (1) global search for targets, (2)
approach detected target, (3) orbit and locate target, and (4) local search for
lost mobile target. A UAV can switch from one stage to another at anytime
based on the cost involved in performing a particular task. Thus, a UAV that
is engaged in the approach detected target phase can switch to any other three
stages based on its current information of the environment.

2.1 Stage One: Global Search

To minimize the global search cost (time, fuel, distance traveled), each UAV
keeps track of the flight trajectory history of all neighboring UAVs including
its own. Each UAV attempts to fly a path as far away as possible from the
paths of others, maximizing the search area. Since our targets are mobile, do
not continually emit and can evade detection, we allow the UAVs to re-visit

Comparison of Cooperative Search Algorithms for Mobile RF Targets 389

areas that were previously searched. This is accomplished by using the path
history of UAVs. When a location is visited by a UAV, we set the history
value within the UAV’s sensor range to a maximum value and then decrease
this value incrementally over time. The UAVs seek out locations with no
information (not previously visited) or aged information. A UAV uses the
following rules [5] to determine the next search point.

1. Fly to a point with the minimum explored history
2. Fly to a point farthest from other neighboring UAVs and the search

boundaries
3. Fly straight (maximize fuel efficiency)

These rules are incorporated in the following cost function:

search = H(
∑ 1

Di
+
∑ 1

Dj
)(

√
|φ|
π
p

+ 1) (1)

where H corresponds to a numerical value representing the explored history of
a location. Di represents the distance from the location to each known UAV i
and Dj represents the shortest distance from the location to each search area
boundaries j. Symbol φ is the turn angle required in radians and symbol p
represents the number of discrete points used to determine a turning angle.
Instead of exhaustively calculating this cost function for all potential points,
only a finite number of points equally spaced on a 180 degree arc in front of
the UAV are evaluated.

We have found the cost function in equation 1.1 sucessfully implements
the above three rules, encouraging the UAVs to seek out unexplored locations
but allowing them to return to previously search areas as our targets can tem-
porarily disappear. On average the overall search time appears to be reduced
(compared to random search and ”lawn mower” search patterns [5]) due to
the Di and Dj terms forcing the UAVs out over the search area. Finally the
φ term prevents excessive turning (dampens oscillations) resulting in less fuel
consumption or greater flight times, which is a critical concern for the smaller
UAVs.

2.2 Stage Two: Approach Detected Target

When a UAV detects a target it then flies on a trajectory directed toward a
tight orbit (minimum turn radius) around the target’s estimated position. Its
neighboring UAVs must decide whether to also cooperate with this UAV to
improve the accuracy of target localization or to continue searching for other
targets to minimize overall search time. The decision to switch between the
first two stages for a UAV is governed by the overall emergent behavior of
collective UAVs based on the following cost function computed by each UAV.
Once a UAV learns that a target is detected, it computes the following cost

390 George W.P. York, Daniel J. Pack and Jens Harder

value and determines whether to switch from the global search stage to the
approach detected target stage.

cooperate = w1
D

Dmax
− w2(n − s) + w3(m − p) (2)

D represents the estimated Euclidean distance from the current UAV loca-
tion to the newly detected target. Dmax corresponds to a normalized distance
reflecting maximum distance possible in the search area. n is the preferred
number of UAVs to accurately locate a target and s is the number of UAVs
currently engaged in cooperatively locating the specified target, m stands for
the total estimated number of targets in the search space, and symbol p rep-
resents the number of targets that have been detected or located. Finally,
symbols wi are the weights an operator can choose to influence the behavior
of a UAV. When the cost function generates a positive number, the global
search stage continues while a negative number indicates that the particular
UAV should switch its operation to the approach detected target stage. The
first term determines the relative distance of the current UAV to a detected
target (if a new target is detected) and determines whether to approach the
target based purely on the distance the UAV must travel to reach the tar-
get. The second term contributes to the decision by evaluating the number of
UAVs that have already committed to locating the detected target. The final
term contributes by evaluating the status of the global search task. If there
is a large number of estimated targets that have not been detected, the cost
function tends to become positive. If most of the targets have been detected, it
influences the cost function to become negative, thus encouraging the current
UAV to cooperate with others to locate the newly detected target.

We have found the cost function in equation 1.2 to be a simple and useful
means for the UAV to quickly evaluate the tradeoff of whether it should help a
neighboring UAV to locate a target (with greater precision) or instead continue
the global search task to reduce the overall search time. The wi terms allow
the operator to aprior influence which side of this trade-off is more important
for a given mission, reducing search time or reducing localization accuracy.
One drawback to this cost function is it is most optimum if m is known aprior.
If the operator’s estimate for m is incorrect, the UAVs will still sucessfully
perform the search/localization tasks, but in a less optimum manner.

Each UAV continually transmits its estimated location and, if available, its
estimate of the angle to the target to neighboring UAVs. A UAV continues to
approach a detected target unless a designated number of UAVs have already
entered the orbit around the target.

2.3 Stage Three: Orbit and Locate Target

Once within the estimated target localization orbit, a UAV switches to the
orbit and locate target stage. Since the sensor only detects the angle of arrival
and has no ranging capability, the UAVs must triangulate to estimate the

Comparison of Cooperative Search Algorithms for Mobile RF Targets 391

Fig. 1. Three UAVs in optimal geometry for triangulating. The target can lie any-
where in the cone shaped areas determined by the accuracy of the sensor’s DF angle
and sensors maximum range.

target’s location. The UAVs within the orbit adjust their velocities to form
equi-angle distance among the UAVs (or 90 degree separation if only two
UAVs) to improve the accuracy of the estimated target location, as shown in
Fig. 1. The estimated localization error versus the number of UAVs in ideal
geometry for triangulation is plotted in Fig. 2. This is used as a measure of
merit to determine the optimal number of UAVs necessary to locate targets
against all other requirements of the global search (i.e., finding other undiscov-
ered emitters). For example, one could assign all UAVs to locate one emitter
at the expense of hindering the global search. Fig. 2 indicates that accuracy
improves little with more than three UAVs, thus we limit the number of UAVs
cooperating in target localization to three.

When only one UAV is available and must localize on its own, it triangu-
lates with its prior estimated angles as it flies around the target. The target
can move during this process, increasing the localization error.

2.4 Stage Four: Local Search for Lost Mobile Target

The local search stage is initiated for UAVs (one to three) that have committed
to locate a target when the target ceases to emit signals after it has been
detected but before it is located. The committed UAVs then form an orbit
with the radius greater than the one designated to locate a target. The radius
continues to grow over time if the target is not re-detected. As the orbit radius
grows, the UAVs continue to search for the target. Once the radius reaches a
pre-defined maximum value, the UAVs engage in a local search pattern similar
to the one in the global search stage, only in a smaller area with a maximum

392 George W.P. York, Daniel J. Pack and Jens Harder

0 1 2 3 4 5 6
0

50

100

150
Intersecting Area versus Number of UAVs

Number of UAVs in Orbit

In
te

rs
ec

tin
g

A
re

a
(u

ni
ts

2)

Fig. 2. Determining the optimal number of UAVs to locate a target. This figure
shows how the location accuracy improves as the number of UAVs increases, assum-
ing the UAVs are in ideal geometry.

of three UAVs. If a target is still not detected after a designated time interval,
the UAVs return to the global search stage.

Currently, the radius of a local search orbit is a function of time, existence
of signal, and two past trajectory points of the target emitter. As the time
between emitter signals grow, the radius of the orbit will grow. At each point
in time, UAVs involved in the local search uses the following two equations to
determine the local orbit.

When no emitter signal is present, the local orbit equation is as follows.

(x − [ex(t − 1) + cx(ex(t − 1) − ex(t − 2))])2+

(y − [ey(t − 1) + cy(ey(t − 1) − ey(t − 2))])2 = (r(t) + kt)2 (3)

ex(t−1) and ey(t−1) are the last estimated x and y location values of the
emitter; ex(t−2) and ey(t−2) are the second last estimated x and y location
values of the emitter; r(t) represents the radius of the current orbit; cx and cy

are constants chosen to weigh the movement of the emitter location based on
the past history; and kt represents the increase in the local orbit radius based
on the elapsed time (t) and a constant (k) to accommodate the movement
of the emitter location. When an emitter signal is detected, the local orbit
equation yields to

(x − ex(t))2 + (y − ey(t))2 = r(t)2 (4)

Comparison of Cooperative Search Algorithms for Mobile RF Targets 393

2.5 Simulation

Currently we have implemented our cooperative control algorithms in a MAT-
LAB simulation. A simple example of three UAVs going through these four
stages versus one target is shown in Fig. 3.

The initial locations of the three UAVs and three targets are randomly gen-
erated. Each UAV resides at the center of a large circle. The black dot at the
center of a circle indicates the current UAV location. The radius of the circle
represents the UAV sensor detection range as it sweeps 360 degrees. Similarly,
each target is located at the center of the small circle, again represented with
a black dot, and the radius of the small circle represents a circular orbit of the
UAV’s maximum turn radius around a target emitter where UAVs must fly to
accurately locate the target. The trajectory history of UAVs and the targets
are recorded and are shown in the figure by dotted lines within gray paths.
Each UAV keeps track of the status of the search space and maintains a search
map where each search location contains a numerical value which varies based
on the search history of the particular location. Since the emitters we want
to detect can be silent for an unspecified duration of time and are mobile,
the UAVs not only must record the history of their past trajectories but also
have a mechanism to slowly diminish numerical values for visited locations
over time to realistically model the decaying intelligence gathered in the past.
Such a scheme allows our UAVs to revisit the same spot and detect targets if
those targets were ‘silent’ during previous flyovers.

3 Cooperative Control Algorithm II

The first algorithm performs well during the search stage, spreading the UAVs
out to minimize search time. This approach has a disadvantage during target
localization, however, as it takes time for the neighboring UAVs to join on
localization orbit and the target may stop emitting in the process. This results
in either a non-optimum localization due to poor geometry or a loss of the
target resulting in more time spent in local search.

This motivated the second approach of having a set of three UAVs fly in
an equilateral triangle formation as shown in Fig. 4. Instead of taking time to
get on a proper orbit, the formation simply attempts to fly directly over the
target, achieving the optimum geometry for triangulation when the centroid
of the formation passes over the target. During the general search stage each
formation leader follows the search strategy developed in the first algorithm,
using the same cost function. This formation-based algorithm generally takes
longer for the global search since the formations can not cover as much area
as the individual UAVs when they are spread out [6].

394 George W.P. York, Daniel J. Pack and Jens Harder

(a) (b) (c)

(d) (e) (f)

Fig. 3. Snapshots showing the progression of three UAVs searching, detecting, and
localizing a moving target. Frame (a): This frame shows the initial locations of three
UAVs (large circles) and one target (small circle). Frame (b): This frame shows the
cooperative search mode where the three UAVs are spreading themselves across the
area based on the search cost function. The top UAV detects a target (indicated
by the black line showing the estimate angle to the target) and notifies the other
two UAVs. Frame (c): Upon receiving the target discovery information, the nearby
UAVs compute the ‘search versus locate’ cost function to determine whether or not
to help localize the emitter. The frame shows that two UAVs have decided to join
the efforts. The closest UAV starts an orbit, refining the location estimate on its
own. Frame (d): The emitter turns off before the UAVs are in the proper geometry,
so they switch to the local search mode. Frame (e): While the UAVs are in the local
search mode, the target emits again within range of the UAVs, and they resume
flying to the best geometry to locate the target. Frame (f): The three UAVs orbit
around the detected emitter and adjust their positions to be equi-angle apart from
each other for optimal triangulation.

3.1 Formation

We desire an algorithm to have a set of UAVs join in formation and maintain
the formation without undue computation or communication requirements.
Several authors have proposed simple methods such as Monteiro et al’s at-
tractor dynamics [8] and Spears’ physics-based methods [7]. Our method is
similar as illustrated in Fig. 5.

Comparison of Cooperative Search Algorithms for Mobile RF Targets 395

RF Target

Leader

Left

Right

Leader

Left

Right

Flight Path

Fig. 4. Illustrating the triangular formation and the path required to ideally locate
the RF target.

The UAVs first determine who their nearest two neighboring UAVs are.
The one with the highest priority (known a priori) is designated the leader and
the other two are the followers. The leader flies following the general search
rules of Algorithm One. The two followers join in formation behind the leader
by being attracted or repelled by their neighboring two UAVs as shown in
Fig. 5. They are attracted up to a predefined range from the other UAVs and
then repelled if they get too close. The UAVs continually adjust their velocity
and trajectory incrementally as necessary to maintain this relationship. This
simple method allows the UAVs to initially decide which formation to join
and maintain the formation.

The follower first finds two attract/repel points (influenced by their two
closest neighbors), then combine these to determine the resultant waypoint.
An attract/repel point is found by

M =
√

(x1 − x2)2 + (y1 − y2)2 (5)

xa = x2 + r
x1 − x2

M
(6)

396 George W.P. York, Daniel J. Pack and Jens Harder

UAV

Neighboring UAV

Neighboring UAV

ideal range

repelattract

result

Fig. 5. Method to maintain formation. Following UAVs gravitate to a predefined
range from their closest two neighboring UAVs using attractive and repelling forces.

ya = y2 + r
y1 − y2

M
(7)

where r is the ideal formation range, (x1, y1) is the UAV’s location, (x2, y2) is
one of the neighboring UAV’s location, and (xa, ya) is one of the attract/repel
points. The other attract/repel point (xb, yb) is found similarly using the third
UAV’s location.

The waypoint goal (xw, yw) for the UAV is then computed

∆x =
(xa − x1) + (xb − x1)

2
(8)

∆y =
(ya − y1) + (yb − y1)

2
(9)

xw = x1 + ∆x (10)

yw = y1 + ∆y (11)

The UAV then attempts to fly to this goal waypoint, constrained by its
flight dynamics (current trajectory, allowable velocity range, and the max-
imum bank angle for the given velocity). The following UAVs continually
recompute the waypoint goals and effectively follow the leader in formation.

With this simple approach, there is no limit to the number of UAVs in a
formation; however, the emergent property appears to be triangular forma-
tions of three. Occasionally a fourth UAV will temporarily join a group. When
two formations pass closely to each other, occasionally a UAV will transfer to
another formation due to the simple priority scheme.

Comparison of Cooperative Search Algorithms for Mobile RF Targets 397

Fig. 6. Simulation using the formation algorithm. The squares indicate targets
already located.

3.2 Formation Simulation

Fig. 6 is a snapshot from our MATLAB simulation using this formation ap-
proach. From the traces the snapshot shows that the two formations located
three targets (squares) with four remaining. The upper-right formation is in
the process of turning to fly over a target detected by one of the followers.

4 Results

In this section we present a comparative study to demonstrate how well the
two algorithms compare against the competing requirements of minimizing
the global search time and minimizing the target location error. We varied
the ratio of the number of UAVs to the number of targets to get an indication
of the scalability of the two approaches.

For our experiment, we changed the number of UAVs from 3 to 9, changed
the number of targets from 1 to 9, and averaged the results from 100 simu-
lations each. The initial target and UAV locations were randomly selected in
a 50 km x 75 km area. The UAVs flew in a velocity range of 115 to 260 kph
(cruise at 115 kph) with a minimum turn radius of 0.5 km. The target’s max-
imum velocity was 37.5 kph, and a target traveled in random directions for
random distances. A target emitted randomly, on for an average of 6.8 minutes
and off for an average of 4.8 minutes. The sensor provided estimates every 12
seconds. We used both one degree and seven degree directional sensors. The
maximum sensor range was assumed to be 4.3 km and the UAVs tried to fly
an orbit of 2.2 km from the estimated target location for the first algorithm’s
localization. For the second algorithm, the formation tried to maintain an
equal distance of 4.3 km between UAVs. The final localization estimate for a

398 George W.P. York, Daniel J. Pack and Jens Harder

specific target was delayed until the target stopped emitting, giving the UAVs
the maximum time possible to get in the proper geometry. Since the emitters
can turn off at any moment, quite often the ideal number of UAVs and proper
geometry may not have been achieved before a localization estimate is made.

When target localization estimates were made, we tracked the number
of UAVs cooperating during the localization (instead of cooperating with the
global search task). Figures 7 and 8 compare the average localization cooper-
ation for the two algorithms. For the second algorithm, the UAVs are working
in formations of three, so on average 2.5 UAVs cooperated regardless of the
ratio of UAVs to targets. The average number of UAVs was not the ideal three
since occasionally only two UAVs would be in range when a target stopped
emitting and the localization estimate was made. For the first algorithm, as
shown in Fig. 7, we can see the trade-off in the number of UAVs operating
in the cooperative target localization stage and the global search stage. As
expected, the best localization cooperation (> 2.5 UAVs) was achieved when
9 UAVs faced only 1 target, while the cooperation reduced (1 UAV) as the
ratio changed down to 3 UAVs versus 9 targets. This amount of cooperation
had a direct impact on the localization accuracy, as seen in Figures 9 through
12.

1
3

6

9

3

6

9
1

1.5

2

2.5

3

of Targets

Average Localization Cooperation − Algorithm 1

of UAVs

A
ve

ra
ge

 #
 o

f U
A

V
s

he
lp

in
g

lo
ca

te

Fig. 7. Plot of the average number of UAVs cooperating for each localization es-
timate when the number of UAVs changes from 3 to 9 and the number of Targets
changes from 1 to 9 for Algorithm I

Figures 9 through 12 compare the average localization error generated
using the two algorithms with the one degree accurate sensor and the seven
degree accurate sensor. For Algorithm II, flying in formation produced a more
consistent localization error for all the UAV/target ratios. For the 1 degree
sensor the average error was around 0.20 km while for the 7 degree sensor

Comparison of Cooperative Search Algorithms for Mobile RF Targets 399

1
3

6

9

3

6

9
1

1.5

2

2.5

3

of Targets

Average Localization Cooperation − Algorithm 2

of UAVs

A
ve

ra
ge

 #
 o

f U
A

V
s

he
lp

in
g

lo
ca

te

Fig. 8. Plot of the average number of UAVs cooperating for target localization when
the number of UAVs change from 3 to 9 and the number of targets change from 1
to 9 for Algorithm II

it was around 0.36 km for Algorithm II. For Algorithm I, the localization
error improved as the amount of localization cooperation improved. For the
1 degree sensor, the average error for 3 UAVs versus 9 targets was > 0.4 km,
and the error reduced to 0.16 km for 9 UAVs versus 1 target. For the 7 degree
sensor using the first algorithm with 3 UAVs versus 9 targets, the error was
0.57 km, and for the case with 9 UAVs versus 1 target, the error was 0.38
km. Thus, flying in formation appears to consistently improve localization
accuracy. However, the cost is in the total search/localization time, as shown
in Figures 13 and 14.

Figures 13 and 14 compare the total search and localization time for each
of the cases for both algorithms. For Algorithm I, the best time (19 minutes)
occurred as expected when 9 UAVs faced only one target; the time increased
up to 174 minutes when 3 UAVs faced 9 targets. The total time for Algorithm
II was much worse as the formations covered less area over time. The total
times ranged from 60 minutes for 9 UAVs versus 1 target case to 417 minutes
for the 3 UAVs versus 9 targets case.

5 Conclusion and Future Work

In this chapter, we introduced two algorithms for multiple UAVs to coopera-
tively search, detect, and locate RF mobile targets. The authors are not aware
of any work that attempts to solve the current problem reported in the litera-
ture. We showed preliminary analysis work on the optimum number of UAVs
required to locate targets; introduced a search cost function used to maximize

400 George W.P. York, Daniel J. Pack and Jens Harder

3

6

9

1

3

6

9

0.1

0.2

0.3

0.4

0.5

0.6

of UAVs

Average Localization Error − Algorithm 1 − 1 degree sensor

of Targets

Fig. 9. Plot of the average localization error in kilometers when the number of UAVs
changed from 3 to 9 and the number of Targets changed from 1 to 9 for Algorithm
I using a 1 degree accurate sensor.

3

6

9

1

3

6

9

0.1

0.2

0.3

0.4

0.5

0.6

of UAVs

Average Localization Error − Algorithm 2 − 1 degree sensor

of Targets

Fig. 10. Plot of the average localization error in kilometers when the number of
UAVs changed from 3 to 9 and the number of Targets changed from 1 to 9 for
Algorithm II using a 1 degree accurate sensor.

the use of multiple UAVs to individually and in formation search an area;
proposed an algorithm to locate targets by cooperatively arranging multiple
UAVs into the proper geometry, showed a quicker method of locating by flying
a cooperative formation in the ideal geometry for localization; and illustrated
a scheme to locally search targets that have stopped emitting but are expected
to emit again. We demonstrated our proposed algorithms using simulated re-
sults. Our comparative analysis for the two cooperative control algorithms

Comparison of Cooperative Search Algorithms for Mobile RF Targets 401

3

6

9

1

3

6

9

0.1

0.2

0.3

0.4

0.5

0.6

of UAVs

Average Localization Error − Algorithm 1 − 7 degree sensor

of Targets

Lo
ca

liz
at

io
n

E
rr

or
 (

km
)

Fig. 11. Plot of the average localization error in kilometers when the number of
UAVs changed from 3 to 9 and the number of Targets changed from 1 to 9 for
Algorithm I using a 7 degree accurate sensor.

3

6

9

1

3

6

9

0.1

0.2

0.3

0.4

0.5

0.6

of UAVs

Average Localization Error − Algorithm 2 − 7 degree sensor

of Targets

Fig. 12. Plot of the average localization error in kilometers when the number of
UAVs changed from 3 to 9 and the number of Targets changed from 1 to 9 for
Algorithm II using a 7 degree accurate sensor.

showed that Algorithm II, flying in formation, produced higher accuracy in
target localization, but a much longer total search/localization time. On the
other hand, Algorithm I, in which the UAVs search independently and use
a cost function to determine when to cooperate on localization, had a much
reduced total search time at the cost of less accuracy in target localization.

We have several plans to expand this research. Triangulating with direc-
tional sensors is known to occasionally produce very inaccurate results, partic-

402 George W.P. York, Daniel J. Pack and Jens Harder

3

6

9

1

3

6

9

0

50

100

150

200

250

300

350

400

450

of UAVs

Total Search/Localization Time − Algorithm 1 −(50x75 km)

of Targets

T
im

e
(m

in
ut

es
)

Fig. 13. Plot of the average total search/localization time in minutes when searching
a 50x75 km area as the number of UAVs changed from 3 to 9 and the number of
Targets changed from 1 to 9 for Algorithm I.

3

6

9

1

3

6

9

0

50

100

150

200

250

300

350

400

450

of UAVs

Total Search/Localization Time − Algorithm 2 − (50x75 km)

of Targets

Fig. 14. Plot of the average total search/localization time in minutes when searching
a 50x75 km area as the number of UAVs changed from 3 to 9 and the number of
Targets changed from 1 to 9 for Algorithm II.

ularly when two UAVs are in an improper geometry close together in angle.
We are working on improving triangular localization using a Kalman filter
technique [9] as well as a rate-change-of-angle approach [10]. We plan to in-
crease accuracy of simulator with 6 DOF UAV models and real RF DF sensor
models. We also plan to experiment with hardware, first using robots in 2-
D environment to compare the two cooperative control algorithms. We plan

Comparison of Cooperative Search Algorithms for Mobile RF Targets 403

to follow this with experiments flying UAVs at the United States Air Force
Academy test range.

References

1. Beard, R., Mclain, T., Goodrich, M., and Anderson, E. (2002). Coordinated Tar-
get Assignment of Intercept for Unmanned Air Vehicles, IEEE Transactions on
Robotics and Automation, vol. 18, no. 6.

2. Chandler, P., Rasmussen, S., and Pachter, M. (2000). UAV Cooperative Path
Planning, AIAA Guidance, Navigation, and Control Conference and Exhibit, pp.
1255-1265.

3. Dunbar, W. and Murray, R. (2002), Model Predictive Control of Coordinated
Multi-vehicle Formations, Proceedings of the 41st IEEE Conference on Decision
and Control, pp. 4631-4636.

4. Coffey, T. and Montgomery, J. (2002). The Emergence of Mini UAVs for Military
Applications, Defence Horizons, No. 22, pp. 1 - 8.

5. Pack, D. and Mullins, B. (2003). Toward Finding an Universal Search Algorithm
for Swarm Robots, Proceedings of the 2003 IEEE/RJS Conference on Intelligent
Robotic Systems (IROS), pp. 1945-1950.

6. York, G. W. P. and Pack, D. J. (2004). Minimal Formation Based Unmanned
Aerial Vehicle Search Method to Detect RF Mobile Targets, Proceedings of the
2nd Annual Swarming Conference: Networked Enabled C4ISR.

7. Spears, W., Spears, D., Hamann, J., and Heil, R. (2004). Distributed, Physics-
Based Control of Swarms of Vehicles, Autonomous Robots, Volume 17(2-3).

8. Montereiro, S., Vaz, M., and Bicho, E. (2004). Attractor Dynamics generates
robot formations: from theory to implementation, Proceedings of 2004 IEEE In-
ternational Conference on Robotics and Automation.

9. York, G. W. P., and Pack, D. J. (2005). Comparative Study on Time-Varying
Target Localization Methods using Multiple Unmanned Aerial Vehicles: Kalman
Estimation and Triangulation Techniques, Proceedings of the 2005 IEEE Inter-
national Conference On Networking, Sensing and Control.

10. Gilbert, H. D., McGuirk, J. S., and Pack, D. J. (2005). A Comparative Study
of Target Localization Methods for Large GDOP, World Scientific, publication
pending.

Lecture Notes in Economics
and Mathematical Systems
For information about Vols. 1–496
please contact your bookseller or Springer-Verlag

Vol. 497: J. Inkmann, Conditional Moment Estimation of
Nonlinear Equation Systems. VIII, 214 pages. 2001.

Vol. 498: M. Reutter, A Macroeconomic Model of West
German Unemployment. X, 125 pages. 2001.

Vol. 499: A. Casajus, Focal Points in Framed Games. XI,
131 pages. 2001.

Vol. 500: F. Nardini, Technical Progress and Economic
Growth. XVII, 191 pages. 2001.

Vol. 501: M. Fleischmann, Quantitative Models for Rever-
se Logistics. XI, 181 pages. 2001.

Vol. 502: N. Hadjisavvas, J. E. Martínez-Legaz, J.-P. Penot
(Eds.), Generalized Convexity and Generalized Monoto-
nicity. IX, 410 pages. 2001.

Vol. 503: A. Kirman, J.-B. Zimmermann (Eds.), Econo-
mics with Heterogenous Interacting Agents. VII, 343 pa-
ges. 2001.

Vol. 504: P.-Y. Moix (Ed.), The Measurement of Market
Risk. XI, 272 pages. 2001.

Vol. 505: S. Voß, J. R. Daduna (Eds.), Computer-Aided
Scheduling of Public Transport. XI, 466 pages. 2001.

Vol. 506: B. P. Kellerhals, Financial Pricing Models in
Continuous Time and Kalman Filtering. XIV, 247 pages.
2001.

Vol. 507: M. Koksalan, S. Zionts, Multiple Criteria Decisi-
on Making in the New Millenium. XII, 481 pages. 2001.

Vol. 508: K. Neumann, C. Schwindt, J. Zimmermann,
Project Scheduling with Time Windows and Scarce Re-
sources. XI, 335 pages. 2002.

Vol. 509: D. Hornung, Investment, R&D, and Long-Run
Growth. XVI, 194 pages. 2002.

Vol. 510: A. S. Tangian, Constructing and Applying Ob-
jective Functions. XII, 582 pages. 2002.

Vol. 511: M. Külpmann, Stock Market Overreaction and
Fundamental Valuation. IX, 198 pages. 2002.

Vol. 512: W.-B. Zhang, An Economic Theory of Cities.XI,
220 pages. 2002.

Vol. 513: K. Marti, Stochastic Optimization Techniques.
VIII, 364 pages. 2002.

Vol. 514: S. Wang, Y. Xia, Portfolio and Asset Pricing. XII,
200 pages. 2002.

Vol. 515: G. Heisig, Planning Stability in Material Requi-
rements Planning System. XII, 264 pages. 2002.

Vol. 516: B. Schmid, Pricing Credit Linked Financial In-
struments. X, 246 pages. 2002.

Vol. 517: H. I. Meinhardt, Cooperative Decision Making
in Common Pool Situations. VIII, 205 pages. 2002.

Vol. 518: S. Napel, Bilateral Bargaining. VIII, 188 pages.
2002.

Vol. 519: A. Klose, G. Speranza, L. N. Van Wassenhove
(Eds.), Quantitative Approaches to Distribution Logistics
and Supply Chain Management. XIII, 421 pages. 2002.

Vol. 520: B. Glaser, Efficiency versus Sustainability in Dy-
namic Decision Making. IX, 252 pages. 2002.

Vol. 521: R. Cowan, N. Jonard (Eds.), Heterogenous
Agents, Interactions and Economic Performance. XIV,
339 pages. 2003.

Vol. 522:C.Neff, Corporate Finance, Innovation, andStra-
tegic Competition. IX, 218 pages. 2003.

Vol. 523: W.-B. Zhang, A Theory of Interregional Dyna-
mics. XI, 231 pages. 2003.

Vol. 524: M. Frölich, Programme Evaluation and Treat-
ment Choise. VIII, 191 pages. 2003.

Vol. 525: S. Spinler, Capacity Reservation for Capital- In-
tensive Technologies. XVI, 139 pages. 2003.

Vol. 526: C. F. Daganzo, A Theory of Supply Chains. VIII,
123 pages. 2003.

Vol. 527: C. E. Metz, Information Dissemination in Cur-
rency Crises. XI, 231 pages. 2003.

Vol. 528: R. Stolletz, Performance Analysis and Optimi-
zation of Inbound Call Centers. X, 219 pages. 2003.

Vol. 529: W. Krabs, S. W. Pickl, Analysis, Controllability
and Optimization of Time-Discrete Systems and Dyna-
mical Games. XII, 187 pages. 2003.

Vol. 530: R. Wapler, Unemployment, Market Structure
and Growth. XXVII, 207 pages. 2003.

Vol. 531: M. Gallegati, A. Kirman, M. Marsili (Eds.), The
Complex Dynamics of Economic Interaction. XV, 402 pa-
ges, 2004.

Vol. 532: K. Marti, Y. Ermoliev, G. Pflug (Eds.), Dynamic
Stochastic Optimization. VIII, 336 pages. 2004.

Vol. 533: G. Dudek, Collaborative Planning in Supply
Chains. X, 234 pages. 2004.

Vol. 534: M. Runkel, Environmental and Resource Policy
for Consumer Durables. X, 197 pages. 2004.

Vol. 535: X. Gandibleux, M. Sevaux, K. Sörensen, V.
Tââ‚¬â„¢kindt (Eds.), Metaheuristics for Multiobjective
Optimisation. IX, 249 pages. 2004.

Vol. 536: R. Brüggemann, Model Reduction Methods for
Vector Autoregressive Processes. X, 218 pages. 2004.

Vol. 537: A. Esser, Pricing in (In)Complete Markets. XI,
122 pages, 2004.

Vol. 538: S. Kokot, The Econometrics of Sequential Trade
Models. XI, 193 pages. 2004.

Vol. 539: N. Hautsch, Modelling Irregularly Spaced Finan-
cial Data. XII, 291 pages. 2004.

Vol. 540: H. Kraft, Optimal Portfolios with Stochastic In-
terest Rates and Defaultable Assets. X, 173 pages. 2004.

Vol. 541: G.-y. Chen, X. Huang, X. Yang, Vector Optimiza-
tion. X, 306 pages. 2005.

Vol. 542: J. Lingens, Union Wage Bargaining and Econo-
mic Growth. XIII, 199 pages. 2004.

Vol. 543: C. Benkert, Default Risk in Bond and Credit
Derivatives Markets. IX, 135 pages. 2004.

Vol. 544: B. Fleischmann, A. Klose, Distribution Logistics.
X, 284 pages. 2004.

Vol. 545: R. Hafner, Stochastic Implied Volatility. XI, 229
pages. 2004.

Vol. 546: D. Quadt, Lot-Sizing and Scheduling for Flexible
Flow Lines. XVIII, 227 pages. 2004.

Vol. 547: M. Wildi, Signal Extraction. XI, 279 pages. 2005.

Vol. 548: D. Kuhn, Generalized Bounds for Convex Mul-
tistage Stochastic Programs. XI, 190 pages. 2005.

Vol. 549: G. N. Krieg, Kanban-Controlled Manufacturing
Systems. IX, 236 pages. 2005.

Vol. 550: T. Lux, S. Reitz, E. Samanidou, Nonlinear Dy-
namics and Heterogeneous Interacting Agents. XIII, 327
pages. 2005.

Vol. 551: J. Leskow, M. Puchet Anyul, L. F. Punzo, New
Tools of Economic Dynamics. XIX, 392 pages. 2005.

Vol. 552: C. Suerie, Time Continuity in Discrete Time Mo-
dels. XVIII, 229 pages. 2005.

Vol. 553: B. Mönch, Strategic Trading in Illiquid Markets.
XIII, 116 pages. 2005.

Vol. 554: R. Foellmi, Consumption Structure and Macro-
economics. IX, 152 pages. 2005.

Vol. 555: J. Wenzelburger, Learning in Economic Systems
with Expectations Feedback (planned) 2005.

Vol. 556: R. Branzei, D. Dimitrov, S. Tijs, Models in Co-
operative Game Theory. VIII, 135 pages. 2005.

Vol. 557: S. Barbaro, Equity and Efficiency Considerations
of Public Higer Education. XII, 128 pages. 2005.

Vol. 558: M. Faliva, M. G. Zoia, Topics in Dynamic Model
Analysis. X, 144 pages. 2005.

Vol. 559: M. Schulmerich, Real Options Valuation. XVI,
357 pages. 2005.

Vol. 560: A. von Schemde, Index and Stability in Bimatrix
Games. X, 151 pages. 2005.

Vol. 561: H. Bobzin, Principles of Network Economics.
XX, 390 pages. 2006.

Vol. 562: T. Langenberg, Standardization and Expectati-
ons. IX, 132 pages. 2006.

Vol. 563: A. Seeger (Ed.), Recent Advances in Optimizati-
on. XI, 455 pages. 2006.

Vol. 564: P. Mathieu, B. Beaufils, O. Brandouy (Eds.), Ar-
tificial Economics. XIII, 237 pages. 2005.

Vol. 565: W. Lemke, Term Structure Modeling and Esti-
mation in a State Space Framework. IX, 224 pages. 2006.

Vol. 566: M. Genser, A Structural Framework for the Pri-
cing of Corporate Securities. XIX, 176 pages. 2006.

Vol. 567: A. Namatame, T. Kaizouji, Y. Aruga (Eds.), The
Complex Networks of Economic Interactions. XI, 343 pa-
ges. 2006.

Vol. 568: M. Caliendo, Microeconometric Evaluation of
Labour Market Policies. XVII, 258 pages. 2006.

Vol. 569: L. Neubecker, Strategic Competition in Oligo-
polies with Fluctuating Demand. IX, 233 pages. 2006.

Vol. 570: J. Woo, The Political Economy of Fiscal Policy.
X, 169 pages. 2006.

Vol. 571: T. Herwig, Market-Conform Valuation of Opti-
ons. VIII, 104 pages. 2006.

Vol. 572: M. F. Jäkel, Pensionomics. XII, 316 pages. 2006

Vol. 573: J. Emami Namini, International Trade and Mul-
tinational Activity, X, 159 pages, 2006.

Vol. 574: R. Kleber, Dynamic Inventory Management in
Reverse Logisnes, XII, 181 pages, 2006.

Vol. 575: R. Hellermann, Capacity Options for Revenue
Management, XV, 199 pages, 2006.

Vol. 576: J. Zajac, Economics Dynamics, Information and
Equilibnum, X, 284 pages, 2006.

Vol. 577: K. Rudolph, Bargaining Power Effects in Finan-
cial Contracting, XVIII, 330 pages, 2006.

Vol. 578: J. Kühn, Optimal Risk-Return Trade-Offs of
Commercial Banks, IX, 149 pages, 2006.

Vol. 579: D. Sondermann, Introduction to Stochastic Cal-
culus for Finance, X, 136 pages, 2006.

Vol. 580: S. Seifert, Posted Price Offers in Internet Auction
Markets, IX, 186 pages, 2006.

Vol. 581: K. Marti; Y. Ermoliev; M. Makowsk; G. Pflug
(Eds.), Coping with Uncertainty, XIII, 330 pages, 2006.

Vol. 582: J. Andritzky, Sovereign Default Risks Valuation:
Implications of Debt Crises and Bond Restructurings.
VIII, 251 pages, 2006.

Vol. 583: I.V. Konnov, D.T. Luc, A.M. Rubinov (Eds.), Ge-
neralized Convexity and Related Topics, IX, 469 pages,
2006.

Vol. 584: C. Bruun, Adances in Artificial Economics: The
Economy as a Complex Dynamic System. XVI, 296 pages,
2006.

Vol. 585: R. Pope, J. Leitner, U. Leopold-Wildburger, The
Knowledge Ahead Approach to Risk, XVI, 218 pages,
2007.

Vol. 586: B. Lebreton, Strategic Closed-Loop Supply Chain
Management. X, 150 pages, 2007.

Vol. 587: P.N. Baecker, Real Options and Intellectual Pro-
perty: Capital Budgeting Under Imperfect Patent Protec-
tion. X, 276 pages, 2007.

Vol. 588: D. Grundel, M. Robert, P. Panos, O. Prokopyev
(Eds.), Cooperative Systems: Control and Optimization.
IX, 401 pages, 2007.

Vol. 589: M. Schwind, Dynamic Pricing and Automated
Resource Allocation for Information Services: Reinfor-
cement Learning and Combinatorial Auctions. XII, 293
pages, 2007.

