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Preface

Over the past several years, significant advances have been made in developing the
discontinuous Galerkin finite element method for applications in fluid flow and
heat transfer. Certain unique features of the method have made it attractive as an
alternative for other popular methods such as finite volume and finite elements in
thermal fluids engineering analyses.

This book is written as an introductory textbook on the discontinuous finite
element method for senior undergraduate and graduate students in the area of
thermal science and fluid dynamics. It also can be used as a reference book for
researchers and engineers who intend to use the method for research in
computational fluid dynamics and heat transfer. A good portion of this book has
been used in a course for computational fluid dynamics and heat transfer for senior
undergraduate and first year graduate students. It also has been used by some
graduate students for self-study of the basics of discontinuous finite elements.

This monograph assumes that readers have a basic understanding of
thermodynamics, fluid mechanics and heat transfer and some background in
numerical analysis. Knowledge of continuous finite elements is not necessary but
will be helpful. The book covers the application of the method for the simulation of
both macroscopic and micro/nanoscale fluid flow and heat transfer phenomena.
Background information on the subjects that are not covered in standard textbooks
is also presented. Examples of different levels of difficulty are given, which help
readers understand the concept and capability of the discontinuous finite element
method and the computational procedures involved in the use of the method.

Chapter 1 of the book presents a brief review of fundamental laws and
mathematical equations for thermal and fluid systems including both
incompressible and compressible fluids and for generic boundary and initial
conditions.

In Chapter 2, different approaches to formulate discontinuous finite element
solutions for boundary and initial value problems are discussed. The numerical
procedures for the discontinuous finite element formulation, elemental calculations
and element-by-element solution are discussed in detail through simple, elementary
and illustrative examples. The advantages and disadvantages of the discontinuous
finite element formulations are also given.
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Chapter 3 is concerned with the development of shape functions and elemental
calculations for discontinuous finite elements. The Lagrangian basis functions,
hierarchical shape functions, spectral elements and special elements are discussed.
A majority of discontinuous finite element formulations use unstructured meshes
made of triangular/tetrahedral elements. Construction of these elements from the
Lagrangian interpolation functions or from coordinate transformations of the
existing finite elements is presented. Numerical integration and elemental
calculations are also given.

Starting with Chapter 4, we discuss the application of the discontinuous finite
element methods for the solution of thermal and fluids problems. Chapter 4 deals
with the heat conduction problems. Heat conduction is the first mode of heat
transfer and the simple mathematical form of the governing equation serves as a
good entry point for a numerical analysis of thermal problems. We present the
detailed discontinuous formulations for both steady state and transient heat
conduction problems. The stability analysis and selection of numerical fluxes for
discontinuous finite element solution of diffusive systems are discussed.

Convection-dominant problems are discussed in Chapter 5, which covers pure
convection, diffusion-convection, and inviscid and viscous nonlinear convection.
The stability analysis and selection of various convection fluxes are also discussed.
Both steady state and transient problems are considered. A good portion of the
discussion is devoted to the numerical stability analysis and control of numerical
oscillations.

Incompressible flow problems are discussed in Chapter 6, where the
discontinuous finite element formulations for both isothermal and non-isothermal
systems are given. The formulations are further used in the later chapters.

Chapter 7 is concerned about computational compressible flows using the
discontinuous finite element method. The numerical procedure for both Euler and
Navier-Stokes equations is presented. The use of various numerical fluxes, flux
limiter and slope limiters in both 1-D and multidimensions is also discussed.

Chapter 8 discusses the discontinuous Galerkin boundary element method for
the numerical solution of external radiation problems. Most numerical books on
thermal and fluid flow analysis either have no or give very little coverage of the
topic of radiation heat transfer. We present the discontinuous concept and its
numerical implementation with the selection of kernel functions for external
radiation calculations. Shadowing algorithms are discussed for detecting the
internal blockages in 2-D, axisymmetric and 3-D enclosures.

Internal radiation occurs in many high temperature processes and is governed
by the radiative transfer equation. The solution of the radiative transfer equation
governing internal radiation is discussed in Chapter 9. This type of equation is
difficult to solve using continuous finite elements but is almost ideal for
discontinuous finite element computations. Detailed procedures for the numerical
solution of the internal radiation problems are given. The analytical formulae for
typical elements used for the discontinuous finite element formulation of 1-D, 2-D
and 3-D simulations are given. Numerical examples include both simple pure
internal radiation systems and complex thermal systems in which multiple heat
transfer modes occur.
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Chapter 10 discusses the use of the discontinuous finite element method for the
solution of free and moving boundary problems. Both moving and fixed grid
methods are discussed and the discontinuous finite element based algorithms for
the solution of these problems are given. The concepts of the methods for moving
boundary problems such as the volume of fluid method, the marker-and-cell
method and the level set method are discussed. Incorporation of these fixed grid
methods and moving grid methods into discontinuous finite element solvers using
both structured and unstructured meshes are presented. The discontinuous finite
element formulation of the phase field model, which has emerged as a powerful
tool for modeling moving boundary problems at local scales, is also given, along
with the 1-D, 2-D and 3-D examples of the evolution of very complex moving
boundaries in phase change moving boundary problems.

The use of the discontinuous finite elements for the simulation of microscale
and nanoscale heat transfer and fluid flow problems is discussed in Chapter 11.
Some of the recently developed models describing the microscale heat transfer
phenomena have mathematical forms that are particularly suited for the
discontinuous finite element formulations. The numerical solution of non-Fourier
heat transfer equations and the lattice Boltzmann equation is also given.

Chapter 12 deals with the discontinuous finite element solution of the thermal
and fluid flow problems under the influence of applied electromagnetic fields. The
basic theory of electromagnetism is presented. Numerical examples are given on
the discontinuous finite element simulation of electroosmotive flows in
microchannels, microwave heating and electrically-induced droplet deformation.

This book is printed in shades of grey. Color versions of some of the figures in
this book can be downloaded in a pdf from springer.com. Computer codes used for
some of the calculations may also be downloaded from the same web site.

Both the theory and applications of the discontinuous finite element method are
still evolving and writing a book on this particular subject proved to be a major
task. It was impossible to accomplish this task without assistance from various
sources. | am most grateful to those whose contributions have made this
monograph possible. | am indebted to Professors C.-W. Shu at Brown University
and P. Castillo at University of Puerto Rico for helpful discussions on the
mathematical theory of the discontinuous Galerkin finite element method. My
appreciation also goes to Professor K. J. Bathe at Massachusetts Institute of
Technology for sharing some of his latest work on the mixed finite element and the
ALE methods and for stimulating comments. Professor H.-M. Yin of Department
of Pure and Applied Mathematics, Washington State University, provided
constructive comments on the basic theory of error analyses. | wish to thank my
current and former graduate students, in particular, Drs. X. Ai, Y. Shu, B. Xu and
X. Cui, who have helped in checking the examples and the exercises. | am also
grateful to Ms. K. Faunce for her assistance in preparing the manuscript and
formatting the final layout of the book, and to Messrs. A. Doyle and O. Jackson of
Springer-Verlag and Ms. S. Moosdorf of LE-TeX for their continuous support.

Ben Q. Li
January, 2005
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Introduction

In this chapter, the governing equations of fluid dynamics and heat transfer are
described. The readers are assumed to have already acquired an adequate
background in the area. Thus, a complete description of these governing equations
is not included, but is well documented in the references at the end of the chapter.
For convenient discussion in subsequent chapters, various forms of the governing
equations used for discontinuous finite element formulations are also described. In
general, fluid dynamics and heat transfer problems are classified as boundary value
problems. Therefore, the standard boundary conditions and initial conditions
required for the solution of these equations are given for various classes of
problems.

1.1 Conservation Laws for a Continuum Medium

Conservation laws describe the physical principles governing the fluid motion and
heat transfer in a continuum medium [1-26]. The continuum description is based
on the basic continuum assumption that all macroscopic length and time scales are
considerably larger than the largest molecular length and time scales. The
mathematical formulations of these conservation laws are given below.

1.1.1 Conservation of Mass

Conservation of mass is a fundamental law governing the behavior of a continuum
medium. It states that the total time rate of change of mass in a fixed region is
identically zero. Physically, this means that the rate of change of the density of a
fluid in motion is equal to the sum of the fluid convected into and out of the fixed
region. Mathematically, the conservation of mass is described by the equation of
continuity,

Dp
—+pV-u=0 1.1
ot P (1.1)
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where p is the density of the fluid, u the velocity vector, and D/Dt the material
derivative defined as follows:

D o0

Here V is a vector differential operator,

o

~ 0
k— .
3 + o2 (1.3)

£ 0 2
V—l&—FJ

<

with i, ] and IZbeing the unit vectors. If the density is a constant or its material

derivative is zero (that is, Dp/Dt = 0), then the flow is incompressible and the
equation of continuity is simplified to

V-ou=0 (1.4)

Mathematically, the above equation means that the velocity field of an
incompressible flow is divergence free. This constraint is important in the
numerical solution of the fluid dynamics equations.

1.1.2 Conservation of Momentum

The law of momentum conservation for a continuum medium is Newton’s second
law of motion. For a moving flow field, the law states that the total time rate of
change of linear momentum or acceleration of a fluid element is equal to the sum
of externally applied forces on a fixed region. Mathematically, Newton’s second
law is expressed as

D
¢§=Vn+m (L5)

where o is the Cauchy stress tensor and f, is the body force per unit volume. The
conservation of angular momentum leads to the symmetry condition on the stress
tensor, that is, o = ¢”.

1.1.3 Conservation of Energy

The law of conservation of energy is the first law of thermodynamics, which states
that the time rate of change of the total energy is equal to the sum of work done by
external forces and the change of heat content per unit time. For an incompressible
fluid, the law of conservation of energy has the form of
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DT

Ty

=-V-q+Q+® (1.6)

In the above equation, T is the temperature, g the flux, C, the specific heat at
constant pressure, and @ the viscous dissipation,

®=1:D (1.7)

where 7 is the viscous part of the stress tensor ¢ and D the strain rate tensor.
Physically, @ represents the energy resulting from the friction between the fluid
elements. The strain rate tensor is defined by the following relation:

D =05(Vu+(Vu)") (1.8)

In Equation 1.6, Q is the internal energy generation, which is a lumped sum of
all source contributions,

Q:Qs +Qr +QR +Qc (19)

where Q, is the heat source degenerated during chemical reactions; Qg is the heat
source resulting from internal radiation; Q. = —pV-u is the energy source resulting
from mechanical work, which is zero for incompressible fluids; and Q, refers to all
other applied heat sources.

1.1.4 Constitutive Relations

All materials are expected to satisfy the fundamental conservation principles of
physics stated above. The dramatic differences in the behavior of different
materials, such as solids, fluids, and viscoelastic materials, stem from the
differences in the way that they resist deformation; or, more generally, in the way
they respond when taken out of equilibrium. The mathematical specification of
these “material response” laws is referred to as the set of constitutive relations for
the material at hand. The mathematical expression of the constitutive relations is
the statement of the dependence of the stress tensor and/or the heat flux q on the
fields D(x,t), T(x,t), and u(x,t). We note here that since the stress rate does not
enter the constitutive relation for fluids, the frame independence principle is
automatically satisfied [2].

In general, the Cauchy stress o in a viscous fluid is decomposed into
hydrostatic and viscous parts,

6=—pl+t (1.10)

where p is the hydrostatic pressure (or the thermodynamic pressure) and | the unit
tensor. The viscous stress tensor t is related to the strain rate tensor by the
following constitutive relation:
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T=3:D (1.11)

where 3 is the constitutive matrix and is a fourth order tensor.

For isotropic fluids, that is, fluids with properties independent of direction, the
fourth order tensor is defined by two material constants, A4 and z. Consequently, the
constitutive relation takes the Navier—Stokes relation, that is, the shear stress is
linearly proportional to the strain rate,

T=A(trD)l + 2D (1.12)

Here the trace of the strain rate tensor, trD, represents a volumetric deformation.
For an incompressible fluid, trD=0.

For incompressible Newtonian fluids, the relation between the shear stress and
the strain rate is given by Newton’s hypothesis:

T=2uD (1.13)

where u is the viscosity of the fluid. Note that for a solid the analogous linear
constitutive relation is that of a Hookean solid.

The constitutive relation for heat conduction is the Fourier law, which states
that the heat flux is proportional to the temperature gradient,

q=—x-VT (1.14)

where k is the thermal conductivity tensor of order two. For an isotropic medium,
k is determined by a single constant,

k=xl (1.15)

where x is the thermal conductivity of the medium.
In general, the thermodynamic pressure of a fluid is a function of density and
temperature, p = p(p, T). For an ideal gas, the following relation exists:

p=pRT (1.16)
where R is the gas constant.
For an incompressible fluid under non-isothermal conditions, the Boussinesq

approximation is often used, which relates the density to the temperature in a
linearized form,

p=po-BT-T,) (117)

where T, is a reference temperature, p, is the density evaluated at T,, and £ denotes
the thermal expansion coefficient,
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B _1op (1.18)
Po Ty,

In all the above equations, the fluid properties, such as C, and x, are a function
of the fluid temperature and pressure, although the dependence on the latter is
negligible for incompressible fluids. For non-Newtonian fluids, the viscosity and
conductivity may also depend on the flow field, or strain rates, and temperature.

1.2 Governing Equations in Terms of Primitive Variables

For many fluid dynamics and heat transfer applications, the mathematical
formulations described above are often written in either the vector form or in the
component forms for various coordinate systems. These types of formulations are
given below for convenience and will be used in subsequent chapters.

1.2.1 Vector Form

By directly applying the constitutive relations given in the last section to the
conservation equations, one obtains the governing equations for fluid flow and heat
transfer in primitive variables. For isotropic, Newtonian and incompressible fluids,
the governing equations take the following familiar forms:

V.uz0 (1.19)
p%“mu-w =-Vp+V-u(Vu+(Vu)' )+ f - pgB(T -T;)  (1.20)

pCpaa—-[—i—pCpu-VT:V-KVT—i—Q—f—(D (1.21)

where the Boussinesq approximation has been used and f is the body force
excluding the gravitational force.

1.2.2 Component Form in Cartesian Coordinates

In the Cartesian coordinate system, the kinematic and constitutive relations are
written in the indicial notation,

ojj = =P +Tjj ; Tjj = 2uD;; (1.22)

. ou;
D; = 0.5(%+§‘] (1.23)
X. .
J
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The conservation equations for mass, momentum, and energy now become

Wi g (1.24)
OX;

8u, o Mo 8{ (aui au-HﬂLfi—pgiﬂ(r—Tr)

ou s
P PPN e T T o | M e ok
(1.25)
il o o et
C,—+pCou; —= +Q+2uD;; D 1.26
Phe o PR axj[axJQ” (1:20)

It is noted that the above equations are written in the Eulerian frame of
reference, with indices i, j = 1, 2, 3. The Einstein convention on repeated indices is
also applied.

1.2.3 Component Form in Cylindrical Coordinates

In a cylindrical coordinate system (r, 6, z), the vector differential operator and the
material time derivative operator are defined by

c 0 210 -0

vei 24 295 9 1.27
"ar Yroee ez (1.27)

D & & uo P

D_0,,9,%0 90 1.28

Dt ot artr a0 (1.28)

where (u,, Ug, U;) are the velocity components and (| Iy, i , ) the unit vectors in
the r, 6, and z directions, respectively. For curvilinear coordinates, the unit vectors
are not necessarily constant. In fact, i, and 1, are a function of angular coordinate
6,

oi, -~ i,

=i,; —% =i 1.29
50 "l oy (1.29)

The constitutive relations and the rate of strain tensors are
O =—P+2uDy; 0gg=—P+21Dyy; 07, =—p+21D, (1.30)

Org =21 Dyg; Op, =214 Dy, Oy =21 Dy (1.31)
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I\)|I—‘

(8u9 Up , 10U j 1 du,
— oo =

or r rae F%

oz ““olaz  or

o, Ma. o _Lfaw o). oo 1fau 1a
2\ o0z r 06

uy

+-L (1.32)
r

j (1.33)

With the above notations, the governing equations for the cylindrical coordinate

system can be written in the following form:

our 1ouy ou, _
or r 06 0z

D 2 d
p[i U_J . +%{a<m”) dow a(ro-zr)}_ -

Dt r or 06 0z r
_pgrﬂ(r _Tr)

o Dug Uty | _ f€+1 orove) , 900 (1) |, Ore

Dt r r or 06 oz r
_Pgaﬂ(r _Tr)

Du, 1| 0(ro,) 0o, O(roy)

Tz |=f 4= zr + z + 7z _ -T
p[ Dt J 2 r[ o oo e | AT

pcp[aT L OT LUy OT uaT]

ot ey T ae e

“rorl "ar) (200 00 ) oz

(1.34)

(1.35)

(1.36)

(1.37)

10 (rk a_Tj+ii(k%a—Tj+3(ku aa—Tj+c1>+Q (1.38)
Z

where the stress components are known in terms of the velocity components, and

the viscous dissipation ® may be explicitly written as

2 2 2
d=2u o, + lau—9+u—r + u, +u au—‘9—u—9+
or rog r 0z or r

Y E TRV LV
MYe0 " a) "Ma T

)’
"0

(1.39)
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1.2.4 Summary

The fundamental equations presented above, in terms of primitive variables
(velocity, pressure and temperature), are most commonly used in computational
fluid dynamics and heat transfer. Other simplified forms of description for specific
cases are also used. For example, equations utilizing the stream function are
employed along with the energy equation to analyze convection problems in 2-D
and axisymmetric geometries. The advantage of the stream function formulation is
that the pressure does not need to be calculated directly during the solution phase.
In discontinuous finite element literature, the fluid dynamics and heat transfer
equations sometimes are written in conservation forms to facilitate computations.
These conservation forms are particularly useful for the solution of compressible
flow problems and will be discussed later in the chapter. For most of this book, the
primitive variable formulations are used, as they are convenient for problems
involving free surfaces, phase changes and regions with multiple connections.

1.3 Species Transport Equations

For flows in which transport processes for other species present in the system are
important, scalar transport equations are needed. Because of convection, these
equations are classified into the advection-diffusion category and are generic in the
sense that they are not specially associated with a particular physical process.
These equations are often used to simulate certain types of chemical reactions, and
to predict the volume fraction of particle orientation for flows containing
suspended particles or fibers. It is often convenient to write the transport equation
for a scalar quantity C; (i=1, 2, ..., n) as follows:

[aci aci] a[D_aci

u = — —_—
+ aXJ Ian

W j 8_)(J ]+ R (1.40)

where £ is a diffusion coefficient and R; is a volumetric source term for C;, which
may be attributed to chemical reactions or other mechanisms.

The presence of chemical species may change the density of the fluid and hence
the flow field. To account for this effect in a hon-isothermal multi-component flow
system, a generic Boussinesq approximation may also be used to represent the
buoyancy forces caused by variations in the auxiliary variables C;,

p=p[l—pT-T)-A(C _Cl,r)"'_ﬂn €, _Cn,r)] (1.41)

where £ = (1/po)( 9pl6C)|c; , is a scalar expansion coefficient and subscript r refers

to a reference condition at which g, is evaluated. This variation in density is only
permitted in the body force term and is used in place of the buoyancy term in
Equation 1.20 for a multi-component system.
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1.4 Governing Equations in Translating and Rotating Frames
of Reference

For some applications, the external boundary to a fluid is also in motion. It is often
more convenient to write the equation in a frame of reference in which the
boundary is at rest. Cases like these happen when the moving frame of reference is
translating with a given linear velocity U, or rotating with a given angular velocity
Q. The equations for these cases can be easily reduced from the equations written
for a frame of reference with arbitrary acceleration (or non-inertial frame). For
momentum equations, the absolute acceleration of a fluid element in a fixed
reference frame related to a reference frame with an arbitrary acceleration in the
following fashion [7]:

DUf _ DUrf . Dur
Dt Dt Dt

+Zqur+Qx(qur)+%><r (1.42)

where subscripts f and r refer to fixed and arbitrary coordinates, and u is the
velocity with which the non-inertial frame moves relative to the fixed frame. Note
that the derivative on the right refers to the arbitrary coordinate system, but not to
the non-inertial frame. Thus, when the reference frame translates with a constant
linear velocity U, uys =U. For this case, the governing equations remain invariant,
and only the boundary conditions are translated. In the case of a frame rotating
with a constant, but without the translation u, =0, the acceleration of a fluid
particle, with respect to this rotating frame of reference, becomes

Du; ou,
S0 = A U Vil £ 200U + QX (@xuy) (1.43)

where V, means the derivative with respect to the coordinates of the rotating frame.
Thus, by substituting the above relation into the governing equations given in the
above sections, one has the equations written for the rotating frame of reference in
terms of the variable u,.

1.5 Boundary and Initial Conditions

The governing equations presented above will not have unique solutions unless
appropriate boundary and initial conditions are specified. These conditions are, in
essence, the physical constraints associated with specific thermal and fluids
systems and are described below [1-26]. While specific forms may differ from
application to application, the boundary conditions are derived based on the
conservation principles: that is, the principles of mass, momentum and energy
conservation, and the principle of thermodynamic equilibrium, applied across the
boundary or interfaces. The jump conditions across a shock wave are discussed in
Section 1.7, in the context of conservation forms of governing equations.
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1.5.1 General Boundary Conditions

On each segment of the boundary of a computational domain €, it is necessary to
prescribe appropriate boundary conditions. The boundary conditions relating to the
momentum equation are either the specification of velocity components,

u=u(s,t) (1.44)
or the specification of surface stresses,
6, =6-N(s,t)=6,(s,t) (1.45)

where t is time, s is a parameter measuring position along the relevant boundary
segment, and n(s,t) is the outward unit normal to the boundary. Note that 5, and o,
are vectors. Subscript a denotes a prescribed quantity. This use of the subscript is
the same hereafter in this chapter until otherwise indicated.

For the solution of the temperature field, the thermal balance on the boundary
demands that either the temperature profile is specified,

T=T,(st) (1.46)
or a heat flux is prescribed,
g=-n-kVT =q,(s,t) (1.47)

where g, includes contributions from both convective and/or radiative heat transfer
along the boundary.

The boundary conditions relating to the chemical species are obtained based on
the mass balance across the boundary, which leads to the specification of the
concentration boundary conditions similar to those of temperatures,

Ci =Cialst) (1.48)
or to the prescription of the mass flux,
qi =-n-D;VC; =q;,(s,1,Cj,) (1.49)
For a mixture of M components, the boundary conditions take the form of
-n-D,VC; +aTn.vT+Cin-u=r,, i=1..,M -1 (1.50)

and
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M

pun=>y"r1 (1.51)

n=1

where ol is the thermal diffusion coefficient, and r; is the rate of chemical

reaction for species i.
Initial conditions for all the primitive variables take the following generic
forms:

u(x,0) =u°(x) (1.52)
T(x,0)=T%(x) (1.53)
C; (x,0)=C? (x) (1.54)

where superscript 0 stands for a prescribed initial quantity.

1.5.2 Free Boundary Conditions

A free boundary refers to the interface between a liquid and a gas phase, when the
latter can be approximated as an effective vacuum. Situations like these occur
where the gas phase has little or no motion. The boundary conditions along the
interface can be derived from the kinematic continuity and mechanical equilibrium
principles. The former requires that the interface remains a free surface, while the
latter demands that the stress is continuous across the interface. Mathematically,
these conditions are stated as follows:

S(x,t)=0 (1.55)
§+u~VS =0 (1.56)
ot

6,=6-N=(2H; — Payp)N+Vysy (1.57)

where S defines the free surface. Comparison with Equation 1.45 shows that the
right hand terms replace o, and represent the gas phase effect. In Equation 1.57,
Pamp IS the ambient pressure in the gas, H, is the mean curvature of the surface, and
y is the surface tension. Also, Vo=V — n(n-V) is the surface vector differential
operator [22, 27].

When contact lines (liquid—gas—solid interfaces) are present, an additional
condition is needed to model the dynamics of the contact line. A commonly used
approximation is the Navier slip condition on the liquid at the solid surface,

at-e-n=U-uj)-t (1.58)
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Here t is the tangential vector to the surface, u;® is the velocity of the solid surface,
and a is a constant of proportionality known as the slip coefficient.

1.5.3 Moving Interface Conditions

Across a moving interface between two fluids, the kinematic condition and the
condition of stress continuity apply. In addition, a no-slip condition at the interface
is required. With superscripts 1 and 2 denoting the two liquids across the interface,
the interface boundary conditions are

S(x,t)=0 (1.59)
B utvs=Luzvs-o (1.60)
ot ot

6l =62 +2H.n+Vy (1.61)
nx(ul-u?)=0 (1.62)

where the normal n points from liquid 1 into liquid 2.

1.5.4 Phase Change Conditions

An important category of moving boundary problems in fluid dynamics and heat
transfer is phase change problems, which describe the phase transition from liquid
to solid, or liquid to gas, or vice versa. For these problems, the mass continuity,
mechanical equilibrium and energy balance equations must also be satisfied across
the interface. With superscripts L and S denoting the liquid and solid respectively,
these conditions are

TH=TS=T™_2H I, (1.63)
k'n-vTE—kn-vTS = p°Ln-(u® —u™) (1.64)
pn-ut—u™ = p°n- (U —u™) (1.65)
nxut-u®)=0 (1.66)

Here T™ is the phase change temperature, u™ is the velocity of the interface; and I'g
= #As; is the Gibbs—Thompson coefficient, with As; being the entropy change
between the liquid and solid per unit volume; and L is the latent heat per unit mass.
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The normal n points from the liquid into the solid. If solidification involves solutal
elements, their effects on the interface shape and the phase change temperature
need to be included as well:

C*n-(u® —u™)=(p_/ ps)Cn-(ut -u™)

=—(p_ ! ps)D"n-vCt +D5n.vC?® (1.67)
cS=«Ct (1.68)
T =T5=T"+mC" -2H_Ig (1.69)

Thus, Equation 1.69 is used in place of Equation 1.63, and Equation 1.67 replaces
Equation 1.65. In the above equations, m =dT/dC" is the rate of change of the
melting temperature with concentration. It is important to note that Equations 1.68
and 1.69 are obtained from the thermodynamic equilibrium principle governing the
behavior of materials at the liquid-solid interface.

In the case of liquid to vapor transition, some modifications are needed, though
the basic principles are the same. The modification is to replace the above
quantities for the solid phase (denoted by subscript S) in Equations 1.63-1.66 with
those for the gas phase. Also, Equation 1.61 is used to satisfy mechanical
equilibrium. In addition, the requirement of the equal chemical potential at the
liquid—gas interface leads to the Clausius—Clapeyron expression for the relation
between the pressure and the liquid—gas transition temperature:

ddT—pm =$—g (1.70)

where C,, =L/(vg—v)), and vy and v, are the specific volumes of gas and liquid,
respectively.

1.6 Governing Equations for Flows Through Porous Media

The above equations are written for single-phase flows. Many engineering
processes involve the movement of gases and liquids through porous media.
Typical examples include distillation and absorption columns that are filled with
various types of particles, fuel cells with porous electrodes and package beds
and/or woods being dried. A complete discussion on the derivation of volume-
averaged governing equations is given by Bear [16]. Here, the main ideas and
mathematical formulations are summarized.

Let us suppose that within the domain of interest Q, there is a region V
containing a rigid porous material saturated with a viscous incompressible fluid,
and a region Q; occupied entirely by fluid. The saturating fluid in V is the same as
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in O, if the two regions share a common permeable interface. Otherwise, the two
fluids may be different. If Vs is the volume occupied by the fluid, and Vs is the
volume occupied by the solid, then V=V + Vs ; and the porosity of the porous
medium is ¢ = Vi /V,. Assuming that the porous medium is homogeneous and
isotropic and the fluid and solid are in local thermal equilibrium, the field variables
can be averaged over V; and V, with the former referring to the pore average and
the latter, volume average. The averaging process gives rise to the following forms
of the governing equations:

(Z—f+V~(pu):0 (1.71)

ou «
§E+(pc||u||m K_yp + 1Ky ) -u

=-Vp+V-(a(Vu+(Vu)'))+pf (1.72)

(pcp)e[%—IH-VT]=V-(keVT)+Q (1.73)

p(%—?w.vcj:v.(po)ev“qc +R (1.74)

where the pore average and volume average quantities are denoted by an overbar
and over-hat respectively,

a= 1 adv, 4= lf adV (1.75)
Vf Vi v \Y

with a being any quantity (scalar, vector or tensor). Note here that in the above
equations, the “~” on u, p, and T were dropped for simplicity. Also, K is the
permeability, a tensor of second order; it may take the following values: K_y ;=

(k)3 and Koy = (174 Jk; )i € is the inertia coefficient; z is an effective

viscosity; and || u; || is the magnitude of the velocity. In the above equations,
subscript e indicates an effective property, which is a function of porosity and the
properties of fluids and solids and is calculated by the following expressions:

(pcp)e = ¢(,0Cp)f +(1_¢)(pcp)s (1-76)
ke =@ (k)¢ +(1—@)ks (1.77)

where subscript s refer to solid matrix properties. Properties without subscripts are
those of fluids.
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The above equations represent a generalization of the standard Darcy equations
for non-isothermal flows in a saturated porous medium. This system is sometimes
referred to as the Forchheimer-Brinkman model for porous flows. With an
appropriate selection of the coefficients, a number of standard flow models can be
derived. For example, if ¢ =0, a Brinkman model is obtained, while if z=¢=0,
the standard Darcy formulation is recovered. The porous flow equations are very
similar in form to the equations of a viscous fluid flow, except that the convection
terms in the momentum equation are replaced by the Darcy—Forchheimer term.

1.7 Governing Equations in Conservation Form

While the governing equations given above are widely used in incompressible fluid
flow applications, for compressible fluid flows, the governing equations often are
written in the conservation form. By definition, a system of partial differential
equations assumes a conservation form if it can be written as follows:

%quV-F(u):J, u(x,0)=uy(x), xeQ, t>0 (1.78)

where F is a tensor and J a vector. Systems not written in this form are non-
conservative systems. By this definition, all the governing equations presented in
the above sections, either in indicial, component, or vector notation, are in non-
conservation form.

The conservation laws of mass, momentum and energy can be recast in the
following conservation form:

o oF oG oH _, (1.79)
o0 ox oy oz

where U, F, G, H, and J are column vectors defined by

Yol

pu

U= PV (1.80)
oW

pe+(u-u)/2)

pu
pu2 TP -7
F= PU=T, (1.81)
PNU =Ty,
ple+U-u)/2)u+ pu—kaT/ox—Uzy, —VT, —WT,,
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o
pUV—TyX
2
G= N +Pp-Ty, (1.82)
PW =T,
ple+(u-u)/2)v+pv—kaT/oy—ury, —vr

—Wt

vy yz

oW
PUW =T
H = W= Ty (1.83)
pWZ TP-74
ple+(u-u)/2)w+ pw—kaT/6z—Uz, —V7, —WT,,
0
Py
I= Ay (1.84)
o

puf, +vf, +wf,)+pd

In the above equations, the shear stresses z; (i, j =X, Yy, z) are calculated by the
following expressions:

ow du ) ow oV
T = H a"'g =T Ty = H E"‘E STy

Here, some explanations of these terms may be helpful. The column vectors F, G
and H are referred to as the flux vectors, and J represents a source term. The
velocity vector u has three components: u, v, and w. The column vector U is the
solution vector. In writing this generic equation in terms of column vectors, we
note that the first elements of the U, F, G, H and J vectors, when added together
via Equation 1.79, reproduce the continuity equation. The second elements of the
U, F, G, H and J vectors, when added together via Equation 1.79, reproduce the x-
momentum equation, and so forth.
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When the viscous effects are neglected, 5; =0 (i, j =X, y, z) and the above
equations reduce to the Euler equations for inviscid fluids. The Euler equations are
often used to predict the shock wave behavior in high speed flows. By definition, a
shock wave is a surface of discontinuity (in the field variables), which is capable of
propagating relative to the material. Common examples of shock waves include the
crash of thunder, the crack of a whip, or the sound of a gunshot or firecracker. The
jump condition across a shock wave can be obtained by integrating the balance
equations in the conservation form, and for an inviscid fluid the jump condition is
given by

[pV-n]=0 (1.85)
[p+mV-n]=0 (1.86)
[Vxn]=0 (1.87)
[h+0.5(V-n)?]=0 (1.88)

where V = u — v is the velocity of the fluid relative to the shock surface, v is the
velocity of the shock surface, m = p; V- n; = p, V- n, is the mass flux through the
shock surface, and h = e + p/p is the fluid enthalpy. The brackets denote the jump
in the indicated quantity across the shock, [A] = A, — A;, where A is any quantity
and subscripts 1 and 2 denote conditions just before and just after the shock.

The conservation form of the governing equations provides a convenience in
numerical computation in that the continuity, momentum and energy equations can
all be expressed in the same generic equation. This is useful for developing
numerical schemes and integral solutions to the equations. In fact, one can easily
derive the integral control volume equations from the local (i.e., differential)
equations once they have been placed in the conservation form. An important
advantage of writing the governing equations in the conservation form is even
more compelling when it comes to the compressible flow calculations. With the
use of the conservation form, the shock capture scheme has a better numerical
quality because the changes in the flux variables are zero across the shock waves.

Exercises

1. Set up a differential volume in a moving fluid and derive the mass
conservation equation.

2. For the same differential volume, apply Newton’s second law to derive the
momentum balance equation.

3. For the same differential volume, apply the first law of thermodynamics to
derive the energy balance equation.

4. Derive the differential form for axisymmetric flow field by simplifying the
governing equations written in the cylindrical coordinate system.
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5. Show that the conservation law forms of governing equations reduce to the
Navier—Stokes equations, when the incompressibility condition is enforced.
6. Derive the boundary force balance equation for a curved liquid-liquid
interface.
7. Starting with the Euler equations, derive the jump conditions across a
shock wave.
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2

Discontinuous Finite Element Procedures

The discontinuous finite element method makes use of the same function space as
the continuous method, but with relaxed continuity at interelement boundaries. It
was first introduced by Reed and Hill [1] for the solution of the neutron transport
equation, and its history and recent development have been reviewed by Cockburn
et al. [2,3]. The essential idea of the method is derived from the fact that the shape
functions can be chosen so that either the field variable, or its derivatives or
generally both, are considered discontinuous across the element boundaries, while
the computational domain continuity is maintained. From this point of view, the
discontinuous finite element method includes, as its subsets, both the finite element
method and the finite difference (or finite volume) method. Therefore, it has the
advantages of both the finite difference and the finite element methods, in that it
can be effectively used in convection-dominant applications, while maintaining
geometric flexibility and higher local approximations through the use of higher
order elements. This feature makes it uniquely useful for computational dynamics
and heat transfer. Because of the local nature of a discontinuous formulation, no
global matrix needs to be assembled; and thus, this reduces the demand on the in-
core memory. The effects of the boundary conditions on the interior field
distributions then gradually propagate through element-by-element connection.
This is another important feature that makes this method useful for fluid flow
calculations. Computational fluid dyanmics is an evolving subject, and very recent
developments in the area are discussed in [4].

In the literature, the discontinuous finite element method is also called the
discontinuous Galerkin method, or the discontinuous Galerkin finite element
method, or the discontinuous method [1, 2, 3,5, 6]. These terms will be used
interchangeably throughout this book.

This chapter introduces the basic ideas of the discontinuous finite element
method through simple and illustrative examples. The keyword here is
discontinuous. Various views have been adapted to interpret the concept of
discontinuity and three widely accepted ones are presented below [5,7]. The
discontinuous finite element formulation for boundary value problems, and overall
procedures for numerical solutions are presented. The advantages and
disadvantages of the various methods are also discussed, in comparison to the



22 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

continuous finite element method. Examples used to illustrate the basic features
and the solution procedures of the discontinuous finite element formulation are
given.

2.1 The Concept of Discontinuous Finite Elements

To illustrate the basic ideas of the discontinuous finite element method, we

consider a simple, one-dimensional, first order differential equation with u
specified at one of the boundaries:

C(u)j—::Jr f(u)=0; x €[a,b] (2.1)

u(x=a)=u, (2.2)
where, without loss of generality, the coefficient C(u) is considered a function of
the field variable u. By defining dF = C(u) du, the above differential equation may
be further written as

d—F+ f(u)=0 (2.3)
dx

The domain is discretized such that Q; = [x;, Xj+1] with j =1, 2, ..., N. Then,
integrating the above equation over the element j, ;, with respect to a weighting
function v(x),

Xist[ OF
f;j l&-f— f(u)

and performing integration by parts on the differential operator, we have

v(x)dx =0 (2.49)

FU(xj.))V(Xjq) - Fu(x;))v(x;)

f "
Xj

On Q; = [x;,Xj+1], u is approximated by u, € H, H being an appropriate function
space of finite dimension, and v by v, taken from the same function space as up,
with j=1, 2, ..., N. Upon substituting (uy, vy) for (up, vi) in Equation 2.4b, we have
the discontinuous Galerkin finite element formulation:

ov(x)

V) f(u)|dx=0 (2.4b)

F(up (Xj42)) Vi (Xj1) = F (Up (X)) v (%)
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OVp (X)

O —Vh(X) f(uy) |dx=0 (2.5)

fXHl
X

]

F(un)

In the continuous finite element approach, the field variable u, is forced to be
continuous across the boundary. As we know, this causes a problem of numerical
instability, when | c(uy) | is large. The essential idea for the discontinuous method is
that uy, is allowed to be discontinuous across the boundary. Therefore, across the
element, the following two different values are defined at the two sides of the
boundary:

uj = limu,(x) and uj = lim u, (x) (2.6)
xdxt xTx;

Furthermore, we note that uy, is discontinuous only at the element boundaries.
The solution u and F(u) are smooth within (but excluding) the boundary. By this
definition, the above equation contains the variables only within the integral limits
Q;. There is no direct coupling with other intervals or other elements. The field
values at a node, or the interface between two elements, are not unique. They are
calculated using the two limiting values approaching the interface from the two
adjacent elements. This feature is certainly desirable for problems with internal
discontinuities, such as those pertaining to shock waves. We will discuss these
specific problems in the chapters to follow.

The discontinuous formulation expressed in Equtation 2.5 may be viewed from
different perspectives, which all involve the cross-element treatments either by
weakly imposing the continuity at the element interface, or by using numerical
fluxes, or by boundary constraint minimization. These views are discussed below,
so that the reader can fully appreciate the concept of discontinuity embedded in the
formulation.

2.1.1 Weakly Imposed Cross-element Continuity

For the continuous finite element solution of boundary value problems, the
consistency condition often requires that the field variable and its derivative be
continuous in the computational domain, which implies the cross-element
continuity requirement for these variables [8, 9]. In the continuous finite element
formulation, the cross-element continuity is strongly enforced. The discontinuous
formulation relaxes this continuity requirement, so that the cross-element
continuity is weakly imposed. This is accomplished if F(u), at the element
boundaries, is chosen as follows [3, 5]:

+FU () =+F@U") ; —Fup(x)=-F(u;) (2.7)

so that the upstream value outside the element interval Q; is used, following the
well known treatment for finite difference schemes. With Equation 2.7 substituted
into Equation 2.5, the following integral equation is obtained:
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F(Up (X)) Vi (Xj11) = F(U7) Vi (Xj2)

ij+1
X:

1

F(uh)% —Vp(X) f(up) |dx =0 (2.8)

This is one popular formulation for discontinuous finite element solutions.
Equation 2.8 may be integrated once again with the result,

F(Up (Xj:2)) Vi (Xj42) = FU7) VR (%)

~(F(un (Xj22)) Vi (xj) = F (U7 va (X))

+ f M1 OF (up (X))

, ax + f(u)lv(x)dx =0 (2.9)

Here we stay with the upwinding rule at x;, because only one boundary
condition is available and it is applied at x;. For this first order equation, F(up") =
F(un(Xj+1)) at xj+1. If one works with a second order equation, a similar rule may be
applied at xj:1. This point will be discussed further in Chapter 4. With these
choices, the above equation is simplified as:

(F(uj*)—F(uj_))vh(xj)+f:MW—i—f(uh) W ()dx=0 (2.10)

or more often, it is written in terms of a jump across the element boundary,

fxxj-liw+ f(up)

| i Vi (X) dx +[F(Uj)]va(xj)=0 (2.11)

where the jump is defined by
[FQujl=Fuj)-F(uj) (2.12)

In deriving the above equations, we have used the upwinding rule: +F(un(x}))= +
F(u;"). This procedure is graphically illustrated in Figure 2.1.

We now look at the implication of the above equation, i.e., Equation 2.12.
Here, in essence, the continuity condition at x; is satisfied weakly with respect to
the weighting function v(x). Note that x; can be an internal boundary or external
boundary. This is in contrast to the continuous finite element formulation, by
which the continuity conditions are satisfied strongly across the element
boundaries, [F(u;)] =0.

We note that since v(x) is arbitrary, Equation 2.11 is equivalent to the following
mathematical statement:
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Xj X
+
Xj+1

Figure 2.1. An illustration of the jump across x; of element j: x; and Xj,; mark the
boundaries of the element

F(uj)-F(uj)=0  for x=x (2.13)

oF (aux(x)) 4 f (U) =0 for xe (ij Xj+1) (214)

Here, F(u}f)—F(uJT):O also implies that u]fzuj‘ for monotone F(u). Thus,
Equation 2.11 is the weak form of Equations 2.13 and 2.14.

2.1.2 Numerical Boundary Fluxes for Discontinuity

Another treatment of the cross-element continuity is based on the use of a

numerical flux to model F(u). This is demonstrated by Cockburn et al. [2, 3].
Using this approach, F(u) is replaced by the following flux expressions:

F(Uy(Xj:0))=h (Ui, ujh) ;s FUa(x;)=h(uj,uj) (2.15)

with an imposed consistency condition,
h(u,u) = F(u) (2.16)
Many different types of flux expressions have been used in the literature for
this purpose, and have been reviewed in a recent paper by Arnold et al. [10]. To

reproduce Equation 2.5, we may use the following definition for the numerical
flux:

h(uj,ut)=F(u7) (2.17)

which basically states that the flux at the element boundary is equal to the flux of
the upstream element. With the numerical flux, the discontinuous finite element
formulation for the 1-D problem is recast as

h(uj+l’ j+1)vh(xj+l) h(UJ, ])Vh(x)
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fXHl
X:

]

OV, (X)
ox

—vp(X)f(uy)|dx=0 (2.18)

F(un)

It is apparent from the above discussion that construction of consistent
numerical fluxes is important in discontinuous finite element calculations. These
fluxes need to be chosen to satisfy numerical stability conditions and various forms
of numerical fluxes and their stability conditions are given in [3,10]. We note that
different forms of numerical fluxes may be used to model various types of
differential equations, and, as such, Equation 2.18 is more general. Selection of
appropriate numerical fluxes for computational fluid dynamics applications is
discussed in Chapters 4—7.

2.1.3 Boundary Constraint Minimization

The third view of the discontinuous treatment across the element boundaries is
from the element boundary constraint minimization approach. To illustrate this
view, we apply the Weight Residuals method to both the elements and their
boundaries,

N
>
=1 %

dF (u(x))
T + f(u)

N +
X1 dF (u(x)) B
v(x)dx+;j;j g V0 dx =0
(2.19)

Performing integrating by parts on Equation 2.19 and noting that the test
function does not have to be continuous across the boundaries because of the
intrinsic assumptions associated with a discontinuous finite element formulation,
we have the following expression:

N Xj+1
;ij WJF f (un) |vi (x) dx
N
+Z( F(uj)— F(uj—)) V() dx=0 220)
=

where (u, v) are approximated by (uy, vi). Different forms of the weighting function
may be used. One of the simple forms uses a linear combination of v,(x), defined
on two adjacent elements as

V(X)) =a Vi +{1-a)vy (2.21)

With the above equation substituted into Equation 2.20, one obtains the
following formulation:
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N
> a(Fup) = FUn))Vvi +@-a)(Fui) - Fui))vi

j=1
N Xj+1
>
=1 %

This expression of the formulation is also general. In fact, when « = 1, one
recovers the upwinding approach, as in Equation 2.11. On the other hand, if we
carry out the integration once more and define the numerical flux as follows:

w + f (Uh) Vi (X) dx=20 (222)

h(uj,uj)=aF(uj)+1-a)F(u}) (2.23)

then Equation 2.22 reduces to Equation 2.18.

From the examples given above, a discontinuous element formulation can be
constructed in three different ways: (1) by weakly imposed boundary conditions
across element boundaries (Equation 2.11), (2) by the use of numerical flux
expressions at the element boundaries (Equation 2.18), and (3) by the minimization
of constraints across element boundaries (Equation 2.22). We note that while these
three approaches treat cross-element discontinuities differently, they all fall into the
general category of the Weighted Residuals method [6]. The first two involve the
integration by parts, while the third one does not. If equations are written in non-
conservative form, or if a conservative form does not exist, it is not straightforward
to perform partial integration of the equations, because there is no “flux”. In this
case, the boundary minimization is more convenient for developing a
discontinuous finite element formulation for these equations.

2.1.4 Treatment of Discontinuity for Non-conservative Systems

As stated in Section 1.7, a system of differential equations may be written in the
“divergence” or “conservation law” form. By the definition given in Section 1.7,
Equation 2.3 is in a conservative form, while Equation 2.1 is not.

In numerical analyses, the primitive variable is often solved instead of the flux
function F(u), and thus Equation 2.1 needs to be applied directly. In this case, from
the definition, dF(u)=C(u) du, we may write,

u;t +1/2
F(ur)—F(ur):f C(u)du:[u]if C([ulit+3(u" +u))dt
U -1/2

(2.24)

where [u]; =u;" —u; is the jump across the element boundary. Since u is a smooth
function, and [u], is small, we may numerically approximate the integral by a mid-
point rule,
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+1/2
f C[ulit+(u" +up))dt=C(3(u" +u7))+O(uF)  (2.25)
-1/2

The relations given in the above two equations allow us to rewrite Equation
2.22 in the following form:

f m[C(Uh)dudh)EX) ()

i

v, (X) dx +aC(%(U}r +u}))[U],~Vh(Xj)

+ Q- a)CL ] +up))[ul; vi (%) +O([uI?) = 0 (2.26)

The last term, however, can be discarded without affecting the accuracy [3].
Thus, for the non-conservative equation stated in Equation 2.21, the discontinuous
formulation is: find un(x) € P, () such that

ijﬂ
X;

]

— =+ f (up ) |vp (x) dx

+(1—oc)C(%(uj* +uj) )[ulj v(x;) + aC(L(uf +u})) [ul; v (x;)

+O([un]}) =0, Y, (x) eR(V)) (2.27)

where P, (€) is a piecewise polynomial of degree | defined over the interval Q; =
[, Xj+1]. The boundary terms are set at uj = u, and U1 = Unag-

2.1.5 Transient Problems

The discussion thus far has been limited to steady state problems. As with other
methods, the treatment of the cross-element discontinuities can be readily extended
to develop discontinuous finite element formulations for transient problems. Let us
illustrate this point by considering a 1-D transient problem of hyperbolic type,
sometimes referred to as convective wave equation, or convection equation, which
is mathematically stated as

a—u+ca—u=0, c>0,xelab], t>0 (2.28)
ot oX

where ¢ is a constant. Any of the above formulations can be applied to develop the
needed integral formulation for a discontinuous finite element solution. Here we
take the boundary constraint minimization approach and integrate the above partial
differential equation with respect to a weighting function v(x), whence we have the
following result:
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ou ou
_h+c_h

fom

For a typical interval, Q; = [x;, Xj+1], ] = 1, ..., N, the above equation reduces to
the following form after integrating the second term:

ij+1
Xj

Comparing this with Equation 2.22, and noticing that F(u) = cu for this problem,
we see that the transient term enters the integral description directly, as in the
continuous finite element method.

Vi (%) dx+z f a““(x) )\ (x)dx =0 (2.29)

duy Oy
ot ox

Vi (X) dx + e c[u] jvn (Xj) + @ —a)clu]jva (X;) =0

(2.30)

2.2 Discontinuous Finite Element Formulation

We may extend the discussions on the 1-D examples to consider a more general
class of problems and formally introduce the discontinuous finite element
formulation for boundary value problems.

2.2.1 Integral Formulation

Let us consider a partial differential equation, written in the form of the
conservation law for a scalar u,

aa—l:+V-F(u)+b:0; U(0,X) = Uy(x) , X, t>0 (2.31)

To start, the computational domain is broken into a tessellation of finite
eIementsQ:U’j“:le. The field variable u is approximated by the interpolation

function uy, defined on each element ©;. Since the function uj is allowed to be
discontinuous across the element boundaries for discontinuous formulations, the
finite element space, over which uy is defined, is sometimes referred to as finite
element broken space, to differentiate it from continuous finite element space [11].

The broken space is denoted by V,J and V) ¢ L(Q), where L%(Q) is the Lebesgue
space of square integrable functions, defined over Q [12].

If the above equation is integrated over €; with respect to a weighting function
v, one has the weak form expression:

+v F(u)+b|dv =0 (2.32)
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We now perform integration by parts on the second term involving the
divergence of flux and obtain the nornal fluxes along the boundary. This procedure
yields the following result:

f 8uh
Q;

Vi 5t F(u,) - Vvy, + by,

dav —|—f vpF(uy)-ndS =0,
0Q;

]

W, eV (2.33)

where n is the local outnormal vector on the element boundary 0<3;. By substituting
numerical fluxes along the element boundaries,

F-n=F,@u-,u") (2.34)

Equation 2.33 can be integrated numerically. The construction of numerical fluxes
is important, and there are many different fluxes for popular fluid flow and heat
transfer problems. These fluxes will be discussed in subsequent chapters for
specific applications.

The integration of Equation 2.33 with an appropriate choice of numerical fluxes
will result in a set of ordinary differential equations,

MdU(j) KU, =F 2.35
& KV =Fo (2.35)

where Uy is the vector of nodal values of variable u associated with element j, K
the stiffness matrix, M the mass matrix, and F the force vector consisting of
contributions from the source and boundary terms.

2.2.2 Time Integration

Time integration can proceed, in theory, by using the general approaches for the
solution of initial value problems. Two important points, however, are noted when
the time integration is carried out for Equation 2.35. First, since the discontinuous
formulation is a local formulation, it often leads to standard explicit structures.
Thus, the explicit methods for time integration are preferred with discontinuous
finite element formulations, whenever possible. Of course, this does not mean that
the implicit method is not possible. In practice, both explicit and implicit
integrators can be applied, though the latter is much less frequently used with
discontinuous formulations. Second, since the explicit methods are prone to
numerical instability, appropriate stability analysis is needed for the time
integration schemes [13-15]. Fortunately, stability criteria have been established
for the most commonly used time integration methods for the fluid flow and heat
transfer applications.

The following equations show some of the commonly used time integration
schemes for the discontinuous finite element applications.
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(1) First order Euler forward:

U™ = U] +AtH (U], t") (2.36)

(2) Second order scheme:

f, = AtH(U",t"); fy = AtH(U] + f,t" +At) ;
U™ =US+05(f, + f,) (2.37)

(3) Third order scheme:
fi=AtH(Ut");  f, = AtH(U] +0.5f,t" +0.5At) ;

Ut =US+2(f +41,+ fy) (2.38)

(4) Fourth order scheme:
fi=AtH(UTt");  f, =AtH(U] +05f;,t" +0.5At);
fa = AtH(U0.5f,,t" +0.5At); f, = AtH(U] + f5,t" + At) ;
Ut =US+2(f +2f,+2f;5+ f,) (2.39)

In the above schemes, H(U',t") = M7(F;(U],t") - K(U7,t")UY). Since these

schemes are explicit, the time step has to satisfy the CFL (Courant-Friedrich—
Lewy) condition for stability. While they represent some of the popular choices,
other schemes are also possible. For example, a Total Variation Diminishing (TVD)
scheme has been used for oscillation-free shock wave simulations [15]. It is noted
that time integration can be most efficiently calculated if the mass matrix is
diagonalized when an explicit scheme is used. For this purpose, the orthogonal
hierarchical shape functions presented in Chapter 3 have been proven to be
extremely useful. The use of these transient schemes will be discussed in
subsequent chapters for the numerical solution of specific problems of fluid
dynamics and heat transfer.

An implicit time integration scheme may also be used with a discontinuous
finite element formulation. However, the use of an implicit scheme results in an
even larger global matrix than a conventional finite element formulation, thereby
eliminating the advantage of localized formulation associated with discontinuous
finite elements. Consequently, almost all discontinuous finite element formulations
presented thus far use the explicit time integration scheme for the solution of
transient problems, for the purpose of facilitating the parallel computation
associated with a local formulation.
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2.3 Solution Procedures

We now consider the general computational procedure by which the discontinuous
finite element method is used to obtain numerical solutions. From the above
discontinuous formulations, it is clear that this method is local, in that the weakly
imposed across-element boundary conditions permit the element-wise solutions.
For each element, the elemental calculation is required, and is essentially the same
as that used in the continuous finite element method. Also, as for the continuous
counterpart, the discontinuous Galerkin formulation is obtained when the same
interpolation functions are used for both unknowns and the trial functions.

One important implication of the above discontinuous formulation is that,
because of a weakly imposed boundary condition across adjacent elements, a
variety of elements or shape functions, including the discontinuous shape
functions, can be chosen for computations. As a result, the discontinuous
formulation embeds the continuous finite element and the finite volume/finite
difference formulations. If, in particular, a constant element is chosen, then the
formulation boils down to the traditional finite difference method. On the other
hand, if the continuous function is chosen, and the cross-boundary continuity is
enforced, one implements the continuous finite element method.

We note that the discontinuous finite element method falls also into the general
category of the Weighted Residuals method for the solution of partial differential
equations. Various familiar forms of domain- and boundary-based numerical
methods can be derived from this general integral formulation, depending upon the
choice of the weighting functions. For the Galerkin formulation, the weighting
functions are chosen the same as the shape functions. The weighting functions,
however, may be chosen differently from the shape functions. For example, if
Green’s functions are chosen as weighting functions, then the well known
boundary element formulation of boundary value problems is obtained [16].

2.4 Advantages and Disadvantages of Discontinuous Finite
Element Formulation

In comparison with the other numerical methods (finite difference and finite
elements), the discontinuous finite element formulations have both advantages and
disadvantages. It is important to understand these issues for developing specific
applications.

2.4.1 Advantages

In discontinuous formulations, the interelement boundary continuity constraints are
relaxed. Various upwinding schemes, proven successful for convection-dominant
flows, can be easily incorporated through element boundary integrals that only
involve the spatial derivative terms in the equations. Inside the elements, all terms
are treated by the standard Galerkin method, leading to classical symmetric mass
matrices and standard treatment of source terms.
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Higher order approximations are obtained simply by increasing the order of the
polynomials or other basis functions. The decoupling of the upwinding convection
terms, and the other terms, yields a very attractive feature of the discontinuous
method, especially in the case of convection-dominant problems. This method
performs very well, and in fact it is often better than the SUPG method, for
advection type problems. Even for linear elements, this method performs
remarkably well [6].

The coupling between element variables is achieved through the boundary
integrals only. This means that ou/ct and the source terms are fully decoupled
between elements. The mass matrices can be inverted at the element level,
rendering the oUg/ot explicit. With an appropriate choice of orthogonal shape
functions, a diagonal mass matrix can be obtained, thereby resulting in a very
efficient time marching algorithm.

The discontinuous finite element formulation is a local formulation and the
action is focused on the element and its boundaries. Whatever the space dimension
or the number of unknowns, the formulation remains basically the same and no
special features need to be introduced.

Because of the local formulation, a discontinuous finite element algorithm will
not result in an assembled global matrix and thus the in-core memory demand is
not as strong. Also, the local formulation makes it very easy to parallelize the
algorithm, taking advantage of either shared memory parallel computing or
distributed parallel computing.

Also, because of the local formulation, both the h- and p-adaptive refinements
are made easy and convenient. Compared with the continuous finite element
method, the hp-adaptive algorithm based on the discontinuous formulation requires
no additional cost associated with node renumbering.

2.4.2 Disadvantages

Like any other numerical methods, the discontinuous finite element method has its
drawbacks. The blind use of this method would certainly result in a very inefficient
algorithm. In comparison with finite elements using continuous basis functions, the
number of variables is larger for an identical number of elements [7, 17]. This is
obvious from the formulations given above, and is a natural consequence of
relaxing the continuity requirements across the element boundaries.

Since the basis and test functions are discontinuous across element boundaries,
second order spatial terms (diffusion) need to be handled by mixed methods, which
enlarge the number of unknowns, or other special treatments. This is a serious
drawback, when compared to the continuous methods where elliptic operators are
handled relatively easily. Also, our experience with the heat conduction or
diffusion problems indicates that if stabilization parameters are not used, the
element matrix may become singular and thus pollute the numerical solution. The
solution algorithm, based on the discontinuous formulation in general, is inferior to
the continuous finite element method in its execution speed for pure conduction or
diffusion problems, in particular steady state heat conduction and diffusion
problems. Thus, for these problems, if memory is not a constraint in applications,
the discontinuous formulation should be avoided.
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In computer-aided thermal and fluids engineering design applications, complex
numerical models are often required to represent a wide range of thermal and fluid
flow phenomena. It is, therefore, unlikely that one single method would be best
suited for modeling all the physical phenomena in a thermal/fluid system. Thus, a
combination of methods, best suited for modeling certain types of phenomena,
would be required, in order to develop the most efficient algorithms for specific
applications. These issues are explored further in subsequent chapters of this book.

2.5 Examples

The examples in this chapter are selected for the purpose of illustrating the basic
concepts of the discontinuous finite element formulation, and the general solution
procedures for the numerical solution to boundary value problems. As a result,
very simple problems are considered.

Example 2.1. Apply the discontinuous Galerkin finite element method to obtain the
numerical solution of the following initial value problem:

% =1 with  u(0) =0; x<[0,2] (2.1e)

and compare the numerical results with the analytical solution with the domain
discretized by two linear elements.

Solution. The analytic solution to the problem is simple, u = x. Now, following the
procedure in Section 2.1 leading to the element-wise formulation, we have the
following integral equation with F replaced by u, and v by ¢:

f Xj+1
Xj

where ¢ is the shape function. Now the domain is discretized into two elements, as
shown in Figure 2.1e.

For simplicity, a linear interpolation is used for each of the elements. When an
isoparametric shape function is used, we have the following relations:

dup (x)

I + f(up)

¢ (x)dx + (uj —uj ) (x;)=0 (2.2¢)

[ @ L
x=0 x=1 Xx=2

Figure 2.1e. Discretization of the domain into two elements
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Uy =g u+du,, ¢(5)=051-S), ¢(£)=0501+¢)
X=¢ X3 +&, Xyp; dx=dg X, +dg, X, =0.5(x, —x,)d&

du, _déy, ¢ A4 _dhde g o 1.9,

dx  dx © dx 2 dx  d& dx dx

Applying Equation 2.11 to the first element x € [0, 1], and making use of the
condition u, =u(07) =0, one has

r

Now with u; =u,, ¢(x=0)=¢,(£=-1) =1, and u(x™ =1) =u, and with the
unknown variable replaced by its local approximation using interpolation functions
in Equation 2.3e, the following expression is obtained for the first element:

TR T A

For this problem, the integration can be carried out analytically, whence we
have the results,

L1A)ee. o [ e

SRR o SO

AN B B W
olg) 2Jal@a+e)de” 8 (l+§)2|l 8l4) 2l1
-1

(2.6e)

duy

o LA )dx+ Uy 4(0)=0 (2.3¢)

Substituting Equations 2.5e-2.6e into Equation 2.4e yields the follwing matrix

equation,
1/-L1Yy 1 0jfuy_1(1
il o ofli)-2ly 7o

which can be solved for u; and u,,
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11 1 0
S YR R b e
-11/\u, 1 u, 1
where u, =u(0%) and u, =u(l").
Now the same procedure is applied to the second element x & [1, 2] with the

fz
1

At this point, u(1~) = u, is known from Equation 2.8e. Furthermore, if the
upwinding scheme is used, the following matrix equation is then obtained:

SR )]s o)

Y4y, (10
‘fo[@]d”

00
The detailed integration is almost the same as for the first element,

Al o2 e o) e

Rearranging, we have the solution for the second element,

L1\(u 3 u 1
* - = - (2.12¢)
-1, 1)\ u, 1 u, 2
where u; = u(1*) and u, = u(2~). The numerical results for this elementary example
are: up =0, u; =0.5u(1M) +u(l?)=1and u, = 2.
As discussed above, the discontinuous shape functions may be used because the
field variable is considered discontinuous across the boundary. The use of

discontinuous shape functions to obtain the same numerical results is illustrated in
the following example.

dun (x)

i $ () dx+(u@)—u@) ) (x))=0 (2.9e)

[“(1)] (2.10¢)

uz

Example 2.2. Re-solve the problem defined in Equation (2.1e) using geometrically
discontinuous linear elements.

Solution. For the purpose of demonstration only, we consider the discontinuous
shape function for the first element that is normalized at x; = 0.2 and x, = 0.8,
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which corresponds to £=0 and & =1 respectively, as shown in Figure 2.2e. Thus the
following expressions are obtained:

Uh=d+dUy; ¢(5)=051-5/08)
X=X+ Xz $,(£)=0.51+£/0.8)
dx=d¢; x; +dg, X, =0.5(x, —%;)d&E/0.8=dE0.5%3/4

ou, o4 O, . Op Oy O 1 2x0.8 1
— =+l === X =——
X o X ox 0 ox  2x0.8 (08-0.2) 0.6

0, 0405 1 2x08 _ 1
x o0& ox 2x08 (08-02) 0.6

0.2 0.8 1.2 1.8
® A 78 L XK ®

x=0 x=1 X

2

Figure 2.2e. An illustration of two linear discontinuous elements

To calculate the integration limits for the normalized coordinate & that
correspond to x = 0 and x = 1, we make use of the isoparametric element to obtain
the integration limits:

0=x=¢ X +¢, X, =0.5(1-£/0.8)0.2+0.5(1+£/0.8)0.8 =>&=-4/3
l=x=¢ X, +¢, X, =0.5(1-£/0.8)0.2+0.5(1+£/0.8)0.8 => £ =4/3
These expressions and integration limits are now substituted into Equation 2.11

for the first element and the resultant equation can be integrated analytically,
whence we have

L8[ o)
+[¢1(—4/3)

fifacon sanfs)- gl e

uz
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4/3
—(1-£/0.8)° ]

1 ¢1J 3 4/3[1_5/0.8] 2.4
dx =75 de =24
"/;[@ " 6f4/3 1+£/0.8 d 32 (1+£108Y:
:%U (2.14e)
Ya\(dg dgy 1 413(1_¢£/0.8
fo [@][W W]dx_ﬁfm[l-i-f/o.S](_l’ Lde

1 4’3[—(1—(;/0.8),(1—5/0.8)](1
732 45|l —(1+£/08), (1+£/08) d

2 2 4/3
_%((1—5/0.8) —(-¢108) J :L( : J (2.15¢)
3

—(L1+£/08), (1+£/08) 12

h(-413)
(6o

:%{16 ‘4} (2.16€)

j(¢l(—4/3), b (—413)) = ( )(4/3 ~1/3)

-4 1

The above results are combined to yield a matrix equation for the first element,

1(-11 +1 16 -4\ -3, 3 1 6.4,-1.6
12{-1,1) 9|-4 1 " 36 -3, 3 3.6 -16, 04

3.4, 1.4
-1 (2.18¢)
36| -4.6, 3.4
3.4,1.4 1
1 i 1 (2.17¢)
36\ -4.6, 34 )\u, ) 2l1

Equation 2.17 is then solved to obtain the numerical solution,

34 14\ u) (18)__(u)_(02
(—4.6 3.4)[u2j:[1.8j_>(u2]‘(0_8j (2.1%)

We see that u; = u(x = 0.2) = 0.2 and u, = u(x = 0.8) = 0.8, which match with the
exact solutions. It is a simple exercise to show that the calculations for the second
element yield the same results as in Example 2.1.
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Example 2.3. Consider this internal radiation problem, defined by the following
differential equation and boundary condition:

‘;—”+u:1, with  u(x=0)=0 (2.20€)
X

Obtain the numerical solution using the discontinuous Galerkin finite element
formulation with two linear discontinuous finite elements, and compare the results
with the exact solution.

Solution. We first obtain the analytical solution to the problem above. The problem

is solved by direct integration and the solution is u(x) = 1- e”*. Application of the
discontinuous finite element formulation for the first element gives the result,

1
J.
where we have applied uy~=u(07) = 0. Now with u* = u; = 0, ¢1(x = 0) = (& =
-1), u(x = 1) = u, substituted, one has

U
Uz

NI R AW W

_ (Y
J;[qu]dx (2.22¢)

The detailed calculations are the same as before, whence we have the following
expressions:

YAy 1A) Y4\ (04 Ok, 1(-11
L[@]dx_ﬁ[ll’ fo[@][W W]dX'E(—L 1) (2.23¢)

The additional term comes from the treatment of u(x),

j;jxj+1[¢l](¢l,¢2)dx%fl[l—f](l_é, 11 £)de

& l1+¢
:1{—%@—5)3, (5_%53)J1
8l (6-1&%) La+ef )

dﬁ"‘Uh -1

i #(x)dx+uy ¢4(0)=0 (2.21e)
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Assembling these expressions into Equation 2.33, one has the matrix equation,

Al e o3 e

Simplifying, we have the following numerical results for the first element:
54 3 + 0.091
. :( = || (U0 (2.26€)
-2,5 )\ u, 3 u, u) 0.636

where u; = u(0") and u, = u(17). This compares with the analytical solution: u(0) =
0and u(1l) =0.632.
For the second element, the same procedure is applied with the result,

sl oGk el )

Rearranging and setting u;~ = u(1 ), we have the numerical values for the second

element,
[ 5, 4) ( U J _ [75/11j _ (ul) :[u(l*_)J _ (0-669] (2.28¢)
25\ u, 3 u, u2") 0.868

which compares with the analytical solution: u(2) = 0.865.

For this simple example, the solutions can be readily obtained using the
continuous finite element method or the finite difference method. For comparison,
the numerical results using different methods are listed in Table 2.le, and
compared with those calculated using the analytic solution.

Table 2.1e. Comparison of numeric results with analytical solution

X 0 1 2
DFEM u(x) 0.04545 0.653 0.868
Analytic (1-e7) 0 0.632 0.865
DFEM u(x ) 0 0.636 0.868
FEM 0 0.643 0.857
FD 0 0.500 0.750

In Table 2.1e, the values of DFEM u(x) are obtained using the averaged
quantities across the element boundary: that is, u(x) = 0.5(u(x’) + u(x")). The
solution is better approximated if we take u(x) = u(x 7), as shown by those given in
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the row associated with DFEM u(x"). The standard continuous finite element
solution (FEM) is reasonably good, although not as good as the discontinuous
finite element solution (DFEM u(x")). The standard finite difference approximation
(FD), with upwinding, seems to be least accurate for this problem.

Example 2.4. Consider a two-dimensional convection problem defined by the
following differential equation and boundary condition:

ou ou ou
E+8_X+E_O X e[~z z]x[-7, 7] x(0,T] (2.29%)

with periodic boundary conditions and initial data
u(x, y,t = 0) = sin(zx)sin(zy) (2.30¢)

Obtain the numerical solutions using the discontinuous finite element method and
discuss parallel computing performance.

Solution. This problem was solved by Biswas et al. [18], and is used here as an
example to demonstrate the parallel performance of the discontinuous finite
element method. Their algorithm employed a discontinuous Galerkin finite element
discretization, with a basis of piecewise Legendre polynomials. Temporal
discretization employes a Runge-Kutta method. Dissipative fluxes and projection
limiting prevent oscillations near the solution discontinuities. Parallel computing
used from 1 to 256 processors. The computed results are given in Table 2.2e. It is
seen from the results that, as the number of processors increases while keeping the
work per processor constant, the discontinuous finite element method achieves a
very impressive parallel computing performance.

Table 2.2e. Scaled parallel efficiency: solution times (without 1/0O) and total execution
times, measured on the nCUEE/2

Number of Work (W) Solution Solution Total Total parallel
processors time (s) parallel time (s) efficiency
efficiency
1 18432 926.92 - 927.16 —
2 36864 927.06 99.98% 927.31 99.98%
4 73728 927.13 99.97% 927.45 99.96%
8 147456 927.17 99.97% 927.58 99.95%
16 294912 927.38 99.95% 928.13 99.89%
32 589824 927.89 99.89% 929.90 99.70%
64 1179648 928.63 99.81% 931.28 99.55%
128 2359296 930.14 99.65% 937.67 98.88%
256 4718592 933.97 99.24% 950.25 97.57%
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Exercises

1. Show that when a delta function is chosen as the weighting function, the

Weighted Residuals formulation gives the finite volume scheme.

2. Solve the problem defined by Equation 2.1e using five linear elements and

compare with the analytic solution.

3. Solve Example 2.1e using five linear continuous finite elements and five

finite volume cells. Compare the results with the results in Exercise 1 and
the analytical solution.

4. Complete the calculations in Example 2.2e for the second element and

compare with the analytic solution.

5. Apply a discontinuous finite element formulation to solve the problem

defined by Equation 2.20e when the domain is discretized into six linear
elements.

6. Solve Equation 2.20e using six linear continuous finite elements and six

finite volume cells respectively and compare the results with those obtained
in Exercise 5.

7. Use discontinuous finite element formulation and three quadratic elements

to solve Equation 2.20e and compare with the results obtained in Exercise 5.

8. Develop a computer code for a discontinuous finite element solution to

Equation 2.20e, and compare the results obtained from the code with those
calculated in Exercises 6 and 7.
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3

Shape Functions and Elemental Calculations

Like its continuous counterpart, the discontinuous finite element method employs
shape functions for local approximations. The use of 1-D linear shape functions
was demonstrated in the last chapter for the discontinuous Galerkin solution of
boundary and initial value problems. There, it was also shown that a discontinuous
finite element formulation hinges critically on local interpolation functions and
involves computations at the element level. The calculations for higher dimensions
require interpolation functions or shape functions defined in multi-dimensions. For
many engineering applications, elements based on linear and quadratic
interpolations may be sufficient. Because the elements for the discontinuous finite
element formulations are embedded in a finite element broken space, and because
the formulations are localized, higher order polynomial interpolation functions can
be easily incorporated in the solution procedure. This flexibility in local
approximation has motivated researchers to develop and apply more accurate, local
spectral basis functions for higher order analysis.

In this chapter, the shape functions, numerical integration, and elemental
calculations used for discontinuous finite element calculations are discussed. The
chapter starts with the procedure and basic criteria for the construction of the
simple 1-D finite elements. The idea is then extended to establish a general
framework for developing standard finite elements in multi-dimensions. A brief
discussion is given on the construction of spectral elements, which are known for
their higher order accuracy of approximations. Hierarchical elements are widely
used in p-type adaptive analysis; and the construction of a variety of hierarchical
shape functions and the selection of hierarchical polynomials for certain
applications are also discussed. The techniques for constructing special elements
and transition elements through coordinate transformation are also presented.
Interpolation error estimates for uniform and non-uniform meshes are presented by
introducing various norms for error measures. These error estimates are of crucial
importance in developing adaptive algorithms for discontinuous finite element
computations. Numerical integration is discussed and the Gaussian quadrature is
given for various classes of elements. Elemental calculations are an important part
of a discontinuous formulation, and are discussed for 2-D and 3-D volume and
surface elements.
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3.1 Shape Functions

Shape functions are local functions restricted to an element, and are of vital
importance to discontinuous finite element approximations. Here, we discuss the
basic ideas for constructing shape functions developed from the Lagrangian
interpolation theory. The Lagrangian interpolation functions make a natural
candidate for local finite element approximations, because of their simplicity
[1-3]. The 1-D shape functions are discussed first and the concept is extended to
the higher dimensions. The elements discussed in this section are generally
classified as standard elements.

3.1.1 1-D Shape Functions

Application of the discontinuous finite element formulation starts with breaking the
computational domain into a tessellation of elements. The shape function is then
constructed over each of the elements. Consider the 1-D discretization as shown in
Figure 3.1, where the domain is discretized into N = 5 elements.

Element j

[ L 4 @ @ L ®
X Xj+1

Figure 3.1. Discretization of a 1-D domain into 5 linear finite elements. Dots denote the
nodal points

For element j, ©; = [X; Xj+1], and by the Lagrangian interpolation theory, the
unknown function u is approximated by a function un(x) local to the element,

u,(x)=ax+b (3.1)

At two end points of €, we require that the approximate function ux(x) assumes
the values of the unknown function,

Up (X)) =U;5  Up(Xjg) =Ujy (3.2)

With these relations substituted into Equation 3.1, the two constants, a and b,
can be determined. The linear functions are re-written in terms of the nodal values
of u,

Up (X) =Uj @5 (X) + U1 $ia(X) (3.3

In the above equation, ¢(x) (i = j, j+1) is the shape function defined over Q;,
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Xj+1 X X—Xj
¢J(X):ﬁ and ¢j+l(x):-—x-, VX EVJ (34)

j+1 j j+H1 T A
Here x € Q; applies to every x in ;. While simple, the shape functions in Equation
3.4 display two important properties: (i) ¢(x) is unit at the node j or x;, and (ii) it is
non-zero on €; and is zero everywhere else. The first property ensures that a local
interpolation function satisfies the conditions stated in Equation 3.3, while the
second property is the statement of element locality. The shape functions above are
called linear shape functions because they vary linearly over Q.

For practical applications, the isoparametric approximation is often used, by
which the shape functions are constructed over a normalized coordinate system.
The element defined in a normalized coordinate system is referred to as a canonical
element. To recast the shape function in normalized coordinates, a normalized
parameter (& € [-1,+1]) is introduced, and is related to x in the following way:

2X=Xj1 =X
(=L (35)
Xjn =%

This is equivalent to transforming €; from the x coordinate to the & coordinate,
or natural coordinate, as shown in Figure 3.2.

Ui uj+1 Ul Uz
. ° — ® °
Xj Xj+1 E=-1 E=+1

Figure 3.2. Mapping of an element, defined on x e [x;, Xj:1], to a canonical element defined
on & e [-1, +1]. The known functions u; and uj,, are mapped as u; and u, in the & coordinate
system

Using the transformation rule given in Equation 3.5, the linear shape functions
#(x) (i =1, 2) may now be written in terms of the £ coordinate system,

4,(&) =3 1-¢) and ¢,(&) = 3 (1+¢) (3.6)

The shape functions, as shown in Figure 3.3, vary linearly over the normalized
range, [-1, +1]. With the shape functions defined in this way, the unknown
function is transformed as a function of &,

u(g) = u(e) = U 41 (5) +Up #2(5) 3.7)

As shown above, a shape function can be constructed either in the original
coordinate system or, more conveniently, in a normalized coordinate system.
While the above discussion illustrates the construction of a linear shape function,
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the same procedure can be applied to develop higher order shape functions. As
seen above, a linear element has two nodes at its ends. For higher order elements,
more nodes are required and at each node the basic condition is satisfied: un(x;) =
u;, with j being the node number. For example, a quadratic element has 3 nodes and
a cubic element has 4 nodes. These higher order shape functions can also be
expressed in terms of the natural coordinate £ e [-1,1]. For a quadratic element,
the above procedure leads to a set of three shape functions, all of quadratic order:

! h(S) #(&)

(;‘:_1 §:+l

Figure 3.3. Linear element shape functions

#h(E)=-350-8) () =1+A-8) ¢s(5) =30+ (3.8)

These shape functions and node arrangement for a quadratic element defined over
[-1,1] are graphically displayed in Figure 3.4.

#2(2)

$i1(S) #:(5)

-1 +1
(@)
® o °
1 2 3
(b)

Figure 3.4. Quadratic element shape functions for a 1-D canonical element: (a) shape
functions and (b) node arrangement
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Similarly, cubic shape functions can be constructed, and when written for a
canonical element {¢ e [-1,1]}, they assume the form of

A () =15 G+EG-A-E) (&) =21+ E)(F -5~ )
$(8) =21+ G+ -8 4 () =—5 A+ HE+G-E) (B9

Pa(&
1\ _;"._-" 1
\ I/
\ ‘f
v S
{ 2
(S
!N /
/ \ ]
I} » .Y
1 N /w\_\ 7
+1
\\. /// \\-.. P
(a)
[ 0 < L ]
1 2 3 4
(b)

Figure 3.5. Cubic element shape functions for a 1-D canonical element: (a) shape functions
and (b) node arrangement

The shape functions of even higher orders may now be constructed readily by
following the same procedure. These functions are in the general class of the

Lagrangian interpolation polynomials of the nth order, w (x), which are defined
by

.. (xX—xj)
Wy (x) e (X —Xj)
(X = %)X = %) - (X=X ) (X = Xye) -+ (X = X,) (3.10)

- (X = X0 ) (X = X4) =+ (X = X)) (K = Xieaa) - (X = X))

where the subscript k is the kth interpolation point, and the superscript n+1 the
total number of interpolation points. Clearly, the Lagrangian interpolation basis
given above maintains the two important properties for shape functions of any
order,
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§kj X:XjE[XOYXn]

0 X & [Xg, X, ] (311)

WE(X)={

where ¢ is the delta function: §;=1ifk=jand &;=0if k=]j.

As we shall show below, the Lagrangian polynomials are also useful for
constructing elements in multi-dimensions. Before we do so, let us look at one
simple example illustrating the use of Equation 3.10.

Example 3.1. Use the Lagrangian interpolation formulae to construct the quadratic
shape functions over a canonical element {& e [-1,1]}.

Solution. Let x = & For a quadratic approximation, three interpolation points are
taken: xo = & =-1, x, = £ = 0.0, and x, = & = 1. From Equation 3.10, we have

2 _ (x=x)(x=xp) _ (£-00)(5-1 1.
(&) =i (X) = (X =) (Xg — Xp) = (—1-0.0)(_1-1) = 25(1 )

(3.1e)

Similarly, the other two shape functions, i.e. $(&) and ¢(&), are obtained by
setting k =1 and k =2 in Equation 3.10.

3.1.2 2-D Shape Functions

For two dimensional analyses, shape functions defined over 2-D geometries are
needed. The triangular and quadrilateral elements are perhaps the most frequently
used elements in thermal and fluids engineering analysis.

3.1.2.1 Triangular Elements
As in the 1-D case, linear elements are considered first. For a linear triangular
element, the unknown function u within each element is approximated as

u,(x,y)=a-+bx+cy (3.12)

where a, b, and c are constant coefficients to be determined. A linear triangular
element has three nodes located at the vertices of the triangle (see Figure 3.6a). The
nodes are numbered counterclockwise by numerals 1, 2, and 3, with the
corresponding values of u denoted by uy, u, and us, respectively. Enforcing
Equation 3.2 at the three nodes, one has

U, :uh(xl’YI):a+le+CYI; u, :uh(X2|y2)2a+bX2 +CY,,

Us =uh(x3,y3) :a+bx3 +Cy,
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@) 2 (b) 2

Figure 3.6. A 3-node triangular element and its shape function: (a) numbering sequence and
(b) distribution of function ¢(x,y)

Solving for the constant coefficients a, b, and c in terms of u;, and substituting
them back into Equation 3.12, one has

3
Uy (%, Y) = > (x, V), (3.13)
i—1

where ¢(x, y) is the interpolation or shape function given by

1

¢ (x,y) = " (@5 +bSx+cfy), j=1,2,3 (3.14)
in which

af =X3Y3 —Y3Xs; bf =y; —y3: ¢ =x5 -3

8 =XgYI —Y3X; bi=Y5 -V G =X -5

e

a3 = X{Y; —YiXz; b3 =yi —y3; €3 =X; — %
and
1 ox7 vy
1
A =5 1 x; y;|=2(bfc; —bjc) = areaof the eth element
1 X3 s

In the above equations, x° and y;® (j = 1,2,3) denote the coordinate values of the jth
node in the eth element.
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From Equation 3.13, we see that the interpolation functions have the following
important property:

1 i=j
A0S YD =d =10 ] (3.15)

Thus, at node i, u(x;,y;) in Equation 3.13 reduces to its nodal value u;. Another
important feature of ¢(x,y) is that it vanishes when the observation point (x,y) is
on the element side opposite to the jth node. Therefore, the value of u at an element
side is not related to the value of u at the opposite node; rather it is determined by
the values at the two endpoints of its associated side. This important feature
guarantees the continuity of the solution across the element sides. These features
are shown in Figure 3.6a, which displays the interpolation functions ¢(x,y) for a
triangular element.

Shape functions for triangular elements can also be expressed in normalized
area coordinates. If we join any point P in the triangle to the vertices of the
triangle, we have three sub-triangles with areas, A;, A,, and Ag, as shown in Figure
3.7. Then the shape functions can be written in terms of normalized area
coordinatesnj,

8; (% Y) =0 (m.m2um3) =11 = Aj /A ,]=1,2,3 (3.16)
with ) satisfying the normalization relation,

m+n, +n3=1 (3.17)

The higher order shape functions can be constructed similarly.

2

Figure 3.7. Area coordinates for a triangular element
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Alternatively, the shape functions can be constructed directly, in terms of the
normalized area coordinates. One simple recursive relation is derived for shape
functions for triangular elements [1],

8 (1. 12.13) = b 3 k) =i ()3 (12w (13) (3.18)

where y(mm) (I=1, 2, 3) is given by the Lagrangian polynomials, and I1+J+K=M
is the order of the polynomial. This relation can be used to generate shape
functions of any order.

Example 3.2. Develop shape functions from the recursive relation for 3— and 6-
node triangular elements.

Solution. For a linear triangle, the highest order of a polynomial is M = 1. From
Equation 3.14, we have in reference to Figure 3.1e (a),

M~ (m)o _m=0_ 3.2
(m)1—(n) 1-0 " 429

¢ (71,m2,m3) = P00 = '//11(’71) =

Similarly,
$2(m,112:113) = ¢(o,1,0) = l//ll(ﬂz) =17, $3(M.12,713) = ¢(o,0,1) = ‘//11(773) =13

This is a different approach to the same problem.

(0,0,1)

(0,0,1)
(0.5,0,0.5)

(1,0,0) (1.0.0) (0,0.5,0.5)

(0.5,0.5,0)

(0,1,0)

@) (b)

Figure 3.1e. Triangular elements and their shape functions: (a) linear element and (b)
quadratic element
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For a quadratic triangle or 6-node triangle, the polynomial has an order of M =
2. Let us consider node 1,

_ _,2 _ 7, — (7)o 172, — (72,)4]
¢l(771,772,773)_¢(2’0’0) valm) [(71)2 = (171)01[G71) 2 — (17,)4]

(7, ~0)(1,~05) _
(1-0)(1-0.5)

m(2n,-1) (3.3¢)

By the same token, the corner nodes have a similar form, that is, ¢(7, 772, 73) =
n(2m —1). For the mid-node, say, node 4, we have the following result in
reference to Figure 3.1e(b):

[n —Gn)ol  [72 — (72)0l
[(n)1 = (m)o11(m2)1 — (172)0]

_n=0) (72-0) _
"(1i05)a305)‘4Mﬂ2 (3.4¢)

¢a (1. 72.713) = a0y = i ()i (72) =

Other mid-node terms can be obtained similarly [1].

3.1.2.2 Quadrilateral Elements

There are four nodes in a rectangular element. This allows us to construct an
interpolation function in the following form, which contains four coefficients a, b,
c,and d,

Un(X,Y,2) = a+bx+cy+dxy (3.19)

Now, we may follow the same procedure given above to obtain shape functions ¢,
j=1,2, 3,4, which may then be written in normalized coordinates through
coordinate transformation.

Alternatively, the shape functions are formed by taking products of one-
dimensional Lagrangian polynomials. Multi-dimensional polynomials formed in
this manner are called “tensor-product” approximations. Let us consider the 2x2
square {(&, n)| —1< & <1} shown in Figure 3.8. For simplicity, the vertices of the
element are indexed with double subscripts as (0,0), (1,0), (0,1), and (1,1), which
correspond to node numbers 1, 2, 4 and 3, respectively. With nodes at each vertex,
we now construct a bilinear Lagrangian polynomial by tensor-product [1],

A (Em) =y (v (), k1 =0,1 (3.20)

where the Lagrangian polynomials w;' are used and m and n are orders of

interpolation functions. Written with the node number as the subscript, the shape
functions for the 4-node element take the following form:
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# (&) = v Ewon) =3 L-O(L-n)
$(Em) = yi (s () = A+ EL-7n)
(&) = vi(©wi(n) = 3L+ (L+n)
(&) = w5 (i () = 5 A= E)A+7)

where the Lagrangian interpolation functions in Equation 3.10 have been used. The
tensor product is general, and can be easily extended to the shape functions of
higher order. This is illustrated through an example below.

A A
11) D . 3
° ° ® °
01 11
£ £
0,0 1,0
° ° ® °
(-1-1) (1-1) 1 2
(@) (b)

Figure 3.8. A canonical square element with 4 nodes: (a) double indexed and (b) node
arrangement

Example 3.3. Construct the shape functions for a 9-node element defined over a
square {(& 7)) —1<¢& 1 <1} and selectively display the function over the 2-D
domain.

Solution. For a 9-node element, the tensor product formula given in Equation 3.14
is extended to the quadratic order in both £and #,

Pun(&m) =wid ©wi' (1), k1=0,1,2,m,n=2 (3.5¢)

Using Equation 3.5e and noting the correspondence between the node number and
subscript index in 1-D shape functions, as shown in Figure 3.2e, one has the shape
functions for a 9—node element,

HEM=2EnA-E)A-n);  $(&n) =2 En+E)A-7)
HEM =L@+ OWrn) g (Em) =2 EnA-E)A+n)
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(-11) 4
® [
0,2
01¢ L1 . e
0,0 1,0 2,0
[ L4 L J ® L 4 L J
(_11 _1) (17_1) 1 5 2
6) (b)

Figure 3.2e. A canonical square element with 9 nodes: (a) coordinates and double indexed
node arrangement, and (b) single indexed node arrangement

Figure 3.3e. The distribution of selected shape functions for a 9—node quadratic element
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ds(Em) =—3n(-E2)A-n);  de(&m) =3 EW+E)A-77)
$r(Em) =5n(A-E2)A+n); ¢y (E) = -2 EQA-E)A-n?)
do(Em) = (1 E2)1-7?) (3.6¢)

Three of these shape functions are selectively plotted in Figure 3.3e.

For engineering analyses, 8-node elements are used frequently. The shape
functions for this type of element may be constructed by starting with the general
interpolation function, solving for the coefficient constants, and then transforming
them into normalized coordinates. This procedure can be very tedious.
Alternatively, they can be constructed by a combination of 1-D and 2-D shape
functions of mixed orders, as shown in the example below.

Example 3.4. Develop shape functions for an 8-node element from shape
functions given for a 9-node element.

Solution. A shape function at a node i needs to satisfy two conditions: (1) 4 =1 at
node i, and (2) ¢; = 0 at other nodes. We start with the mid-point, say, node 5, as

shown in Figure 3.4e. The conditions are satisfied if a Lagrangian interpolation of
a quadratic x linear type is used,

#s(&m)=3(-&2)L-7) (3.7¢)
The other mid-nodes have a similar form; e.g., the shape function for node 8 is

#(&m)=11-&)1-7?) (3.8¢)

We next consider corner node 1. If we start with the a linear interpolation,

®
(_111)

(-1,-1) (1,-1)
e @ ®
5

1

2

Figure 3.4e. A canonical square element with 8 nodes
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Bl (6.17) =3 1=O)(L-7) (3.9)

Itis clear that ¢y iy = 1 at node 1, ¢ i = 0 at nodes 2, 3, 4, 6, 7, but @ i = 0.5
at nodes 5 and 8. The shape function is zero at nodes 5 and 8 if the following
correction is made,

$.(E.71) = Priia (€,17) — 0.5 (£,17) — 0544 (£,1)
=2(1-8)-n) -5 A-E*)A-n) -1 1-&)1-7?)
=i-oHU-n1-£-n) (3.10e)

The shape functions for other corner nodes can be obtained similarly. These shape
functions are given in Table 3.1.

3.1.3 3-D Shape Functions

Three-dimensional element shape functions can be constructed very similarly,
following the procedures illustrated for 2-D elements.

3.1.3.1 Tetrahedral Elements

These elements are the simplest geometric units to approximate 3-D geometries. In
a similar fashion to that discussed for 1-D and 2-D elements, an unknown function
u can be interpolated in a tetrahedron [1, 2].

up(x,y)=a+bx+cy+dz (3.21)

The coefficients a, b, ¢, and d can be obtained in terms of u; at the nodal points,
and then substituted back to yield the final form of the interpolation,

Up (X, Y) = iUy + doU; + d3Us + dyUy (3.22)
where ¢ is defined as

& (x,y,z):#(aie +biex+ciey+diez) (3.23)

Here the above coefficients are determined from the following relations:

e e e e

L X X3 X
a_6Ve ye e e e
1 Y2 Y3 Vs

e e e e

7 75 13 14

1 e e e e
:m(alul +a2u2 +a3U3 +a4U4)
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1 1 1 1
1 |u; u U, u 1
b=—o le i z i =~ (bfu1+b§uz+b§u3+bfu4)
6V Y1 Y2 Y3 Ya| 6V
7 75 1§ 14
1 1 1 1
1 IxF x5 x5 x
C=— vz T :—e(cfu1+c§u2+c§u3+c§u4)
6V~ |Up U Uz Uyl 6V
7 15 15 14
1 1 1 1
1% x5 x5 X 1
= 1e i 3e i = (dful+d§u2 +d§u3+diu4)
VT YL Y2 Y3 Vi 6V
U U, U U,
1 1 1 1
1Ixe x5 x5 X
ve==|"t "2 78 ™M~ Volume of element

~Alye e e
6ly: Y2 Y3 Vs
;75 15 173
where x°, yi¥, %, Ui are x, y, z coordinates, and u; values at node i. From the above

equations, the coefficients a°, b®, ¢¥, di’ are readily obtained by expansion. In fact,
they are the determinants of the cofactors of the relevant matrices.

Figure 3.9. Tetrahedral edge element with edge and node numbering. P is an internal point
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Similar to the 2-D triangular case, we may also use the volume coordinates to
express the shape functions. This is constructed in the same manner as the area
coordinates. As shown in Figure 3.9, the volume coordinate is defined by the ratio
of the subvolume, constructed from point P inside the tetrahedron, connected to
three vertices of a face triangle,

My =V IV 5 1y =Vipag IV 115 =Vippg IV 174 =Vipgp IV (3.24)
Thus, the shape function takes the following form for a linear element:
¢i = ﬂi y | = 1, 2, 3, 4 (325)

The following simple recursive relation may also be used to express the shape
functions in terms of the volume coordinates [1],

$i(70.12.13.14) =Bk =vi (W) ()w i (1wl (ny)  (3.26)

where | +J + K + L =M is the higher order of the polynomial. This relation can be
used to generate shape functions of any order for 3-D tetrahedral elements.

3.1.3.2 Hexahedral Elements
Following the above procedure, an interpolation function is constructed for an 8-
node brick element, which contains 8 coefficients a, b, c, d, e, f, g, and h:

U, (x,y) =a+bx+cy+dz+exy+ fyz+ gxz+hxyz (3.27)

The coefficients are now determined to obtain shape functions ¢, j=1,...,8. A
typical 8-node brick element is shown in Figure 3.10. These shape functions,
written in (X, y, z) coorindates may then be written in normalized coordinates
through coordinate transformation.

v=

2 3

Figure 3.10. A brick element with 8 nodes
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An easier way is to construct the shape functions by taking products of one-
dimensional Lagrangian interpolation functions. Thus, for the 2x 2x2 cube, {(& n,
Q| -1<¢& n, & <1}, shown in Figure 3.11, the vertices of the element may be
indexed with triple subscripts as (0,0,0), (1,0,0), (1,1,0), (0,1,0), (0,0,1), (1,0,1),
(1,1,1), and (0,1,1), which correspond to single number indexed shape functions 1,
2,3,4,5,6, 7, and 8. With a node at a vertex, we construct a bilinear Lagrangian
polynomial by tensor product,

by En. ) = (O My (©) kL, m=0,1 (3.28)

A hexahedron can be transformed into a canonical element, as in the 1-D and 2-
D cases. With the isoparametric transformation, this is easily achieved, as shown in
Figure 3.11. Often the isoparametric transformation is made using the following
transformation rules:

N, Ne
X(f:ﬂvg):ZQ(éU:é’)Xia y(gvnlg):ZQ(é:v']vg)yll
i=1 i=1

Ne
2En.8) =Y #(En.Q)z (3.29)

i=1

where N, is the number of nodes of the element or number of nodes used for
parametric transformation.

(-1-1,1) (-1,1,1)
5 8
(1,-1,1)

6

4 4

(-1,1,-1)
2 <——
2 3
(1,-1,-1) 1,1,-1)
3
(a) (b)

Figure 3.11. A hexagon is transformed into a canonical cube in 3-D: (a) the hexagonal
element and (b) the canonical cube
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Both linear and higher order shape functions can be obtained using this relation.
The procedure is identical to the 2-D case and thus is omitted here. Also, shape
functions for 20-node elements can be described in a precisely analogous way to
that given for 2-D 8-node elements.

The commonly used shape functions for 1-D, 2-D and 3-D elements are
summarized in Table 3.1.

Table 3.1. Elements and shape functions

Elements Shape functions
" 2 h(EO=30-9, hO)=10+9)
o o 3 $ (&) =-35E501-9), ,(5) =(1+)(1-9)
: : 3 $5(£) =160+ 8)
$h () =-5%G+GE-9HL-2)
® ® & o ¢2 (‘f) :]2__(75(1+§)(%7§)(17§)
= . = i $3(&) = U+ &G +EHA-Q)
9 (&) =—F L+ G +EE-2)
3 $(81.62.863) =6
¢2(§1:§2:§3) =&,
¢3(§1,§2,§3)=§3
1 2

i (&1,62.83) =& (25 -1
¢i+3(§1v§2:§3) :4§i¢fj
i=123
j=i+1lifi=12
j=1if i=3

$i (81,82, 85) =56 (38 —1)(3S -2)
¢2i+2(§1:§2v§3) :%éi‘fj (Sé:i —1)
¢2i+3(§1:§2:§3) :%§i§j (3§j -1

¢1o (51: 52:53) = 27515253
i=123
j=i+1ifi=12
j=1if i=3
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Table 3.1. Continued

63

pEm) =3 A-5)a-n)
b, (&) =5 @+ A=)
$3(£m) =5 L+ A+ 1)
$u(&m) =5 A=A+ )

& (5:7714):%50770(14‘6&0)(1'*‘770) ;

4 o 3
& Bios (610,.0) =1 (&) (70)° L+ £,E4)
(L+mon™®);
$° o9 ) do = L-E2)L-1%);
Eo =&&, o =1y
Ei=-1i=14&=1,i=23
1 5 2 ni=-1,i=12;7;=1,i=34
a=0,1,0,1; b =1,0,1,0 for i=1,2,3,4
4 - 3 .
$i (&, &) =5 A+ E)A+70)(70 + &0 1)
s (G, 0) =2 A+ D)L+ Png)
¢ 8 fie Eo =&&i o =1
Ei=-1,i=14&=1,i=23
ni=-1,i=127,=1,i=34
1 5 2 a=0,1,0,1;b=1,0,1,0 for i=1,2,3,4

¢1(§1,§2,§3,§4):§1
$2(61.65.83.84) =6,
$3(81,¢2.65.64) =&
$4(1.82.85.84) =&,

$i(1,£2.63.64) =& (25 1)
¢k+4(§1:§2:§3:§4):4§k§j
¢k+7(§11§2:§3:§4):4§k§4

i=1234;k=123
j=k+1ifk=12
j=1ifk=3
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Table 3.1. Continued

$(Em. &) = 5@+ &) A+m0) L+ <o)

$o =880 =115, G0 =G4
&i=-1,i=1458

&i=1,i=23,6,7
ni=-1,i=125,6
ni=1,i=3,4,78
&i=-1,i=1234
¢i=1,i=56,78

$i (& m.¢) :%(1+§0)(1+770)(1+§o)
x(&o +10 +8o —2);
Biis(Em,0) =1L+ £E47)
x L+ o7 )L+ ¢o¢ M),
i16(£,17.8) =20+ SHET D)L+ ™)
x(L+ ¢ T M), 1=1,2,3,4;
So=&& o =nm;,Co=¢7¢;
Ei=-1,i=1458:; &=1,i=2367
ni=-1,i=1256: 7;=1,1=34,78
&i=-1,i=1234;¢,=1,i=5678
=0,b=c=1fori=1,357

a
a=c=1,b=0fori=24,6,8
d=e=1,f=0,fori=1,234

$ (& n.Q) :%éoﬂogo L+ &) A +19)A+S0)
Bis(EmE) =182 Co L+ &ET D)
x(L+ ")+ G ),
$116(&1,8) = %fodﬂoegof 1+ ffo‘f(kd))
x L+ ™) A+ $od 1)1 =1,2,34;
b (E1.0) =28 0" L+ EEM)
x L+ 707 ™) A+ S O )i =1,....6;
by =(1-E)A-n*)1-S?);
o =& o =11, $0=¢¢i
&=-1,1=1458; &£=1,1=23,6,7
ni=-1,i=1256; n;=1,i=34,7,8

Gi=-1,i=1234;¢i=1,i=5678
=0,b=c=1fori=1,35,7

a_

a=c=1,b=0fori=24,6,8

d=e=1,f=0,fori=1,234
I=m=0,n=1fori=1,6
I=n=0,m=1fori=24

m=n=0,l=1fori=35
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3.2 Construction of Special Elements

For many applications, elements of mixed order are needed for analysis. When this
happens, transition elements are often used. These elements are not listed in
standard element libraries. Below, we consider a technique to construct these
elements from those in the standard libraries.

3.2.1 Non-standard Elements

We consider a case illustrated in Figure 3.12, where the transition elements are
needed to patch the domain approximation from 4-node elements to 9-node
elements. The transition element has 5 nodes with three nodes on the side shared
with the 9-node element. To construct the shape functions for the 5-node element,
we first consider node 5 for which the shape function has a quadratic x linear type,

#5(&m) =31+ EA-1%) (3.30)
n
i 3. e ' 4o * 3
5
5@ Y o —> *>
I3
[ O @ o Q o
1 2 1 2
(@) (b)

Figure 3.12. A 5-node rectangular element patches meshes of 4-node elements to meshes
of 9-node elements: (a) mesh and (b) a 5-node transition element

The addition of node 5 affects only nodes 2 and 3, for which shape functions

need to be corrected. We consider the correction for node 2 first. The shape
function for a linear interpolation has the form,

Bogrial (&) = A+ E)(L-17) (3.31)

which is equal to 0.5 at node 5. This leads us to the following correction to ensure
that the final shape function is zero at node 5 as well:

#2(871) = Poria (,77) = 0.5¢5 (5, 77)
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=21+ -7 - L+ OA-77)
=L@+ &a-n)-n) (332

Similarly, the shape function for node 3 needs to be corrected,

B (Em) =5 U+ O+ ) —F A+ EA-n?) =30+ E(A+n)  (3.33)

Techniques for constructing variable-number-nodes elements are also given in [4].

3.2.2 Construction of Element Shape Functions by Node Collapsing

There are occasions where linear triangle elements need to be expressed in terms of
normalized elements in (& 77). While one can follow the procedure illustrated in
Section 3.1 to obtain the shape functions, an easier way is to collapse a 4-node
element into a 3—node element. As shown in Figure 3.13, one intends to merge
nodes 3 and 4 of a quadrilateral element into node 3 of a new triangular element.
The shape functions for nodes 1 and 2 are unchanged as they are not affected by
the action along the edge defined by nodes 3 and 4. For the new node 3, the shape
function is constructed by adding the shape functions for the old nodes 3 and 4,

#5(Em) = B3 014 (&m)+ Paold (&.m)
= 2=+ +3 1+ EA+n) =5 (1+7) (3.34)
This technique also can be applied to other elements in both 2— and 3-dimensions.

A n
4 3 33.4)

(@) (b)

Figure 3.13. Nodes 3 and 4 are collapsed to transform a rectangular element (a) to a
triangular element (b)
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3.2.3 Spectral Elements

For some applications, spectral elements are required to provide needed high order
spatial resolution. The spectral elements are constructed using the orthogonal
functions, which can be useful to develop diagonalized element matrices and thus
speed up calculations. We consider a 1-D case here. The extension of the 1-D
shape functions to multidimensional elements can be obtained using the tensor
product approach discussed in Section 3.1.2.2.

For a 1-D element, the following interpolation function is constructed using the
Chebychev polynomial T;(¢&) [5]:

NS
u(€)=> aT(&) (3.35)
i=0

where N is the number of Chebychev polynomial terms used in the approximation.
The expansion coefficient a;is calculated using the orthogonality condition for the
Chebychev polynomials:

+1
[ mem@mes=o i (3.36)
where w(&) = 1/,/1— &% is the weighting function. Thus, we have

+1 +1
[ memoues =a [ TEm@wed (337)

In the spectral approximation, the Gauss—Lobatto rules are used to evaluate the
above integrals on both the left and right sides, although the latter can be evaluated
analytically [6]. Applying this rule, we have

+1 — _ (2, i=0,N,
[ mememeans-cy . a={7 0N ewm
and
1 Ns
[ wem@weds =3 T ueEm (339)
_ =
where
iz [o5x/Ng, j=0, Ng
&5 _cosN—S, W; _{”/Nsv 1<j<N, -1 (3.40)
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Substituting back into Equation 3.37, we have the coefficients for the
Chebychev polynomials,

Ng

& =g Jz;cflf (Eu(E) (3.41)
Since T;(&) is defined as
T, (&) =cos(icos &),  i=0,1,2, ... (3.42)

the use of the Gauss—Lobatto [6] rules leads to the following expression:

Ti(&) = COSEI_” (3.43)

which may be substituted back into Equation 3.41 with the result,

Ng

2 re;) _ijz
a = NG ;CT]COSN—S (3.44)

Clearly, this is nothing but a cosine transformation, and the fast Fourier
Transformation (FFT) can be readily applied to expedite the calculations. With
Equation 3.44 substituted back into the original approximation for u, one has the
following expression:

Ng
u(&) => g @u(&) (3.45)
j=0

where ¢(¢) is the spectral interpolation shape function, and is calculated by

2 OuT(ETE)
C G

$i(8) =1 (3.46)

I%i=0

From the above two equations, it is obvious that the shape function has the
desired property,

$i (&) = 9 (3.47)

While the spectral elements here are constructed using the Chebychev
polynomial, the procedure applies to any other orthogonal functions.
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3.3 Hierarchical Shape Functions

Shape functions are the functions restricted to an element, and all the above
elements satisfy two important local constraints: (1) #(x) is unity at node j and
vanishes at all other nodes and (2) ¢#(x) is only non-zero on those elements
containing node j. The elements satisfying these constraints are called standard
shape functions [1]. Hierarchical shape functions, however, maintain only the
second property. They are constructed by adding, hierarchically, higher-degree
corrections to the lower-degree shape functions. Specifically, a hierarchical basis
of degree p + 1 is constructed as a correction to the degree p basis, and the entire
basis need not be reconstructed when the polynomial degree is increased. In this
section, we consider the construction of hierarchical shape functions, which have
been shown to be particularly useful for the discontinuous finite element solution
of certain types of problems [7].

3.3.1 1-D Hierarchical Correction

Let us consider what happens when we add the quadratic correction to the linear
shape function over an element. This means that we construct a piecewise
quadratic hierarchical shape function. The restriction of this function to a canonical
element & e [-1, +1] has the hierarchical form,

U(&) = Uod () + Wb (£) + 3> (£) (3.48)

with the hierarchical shape functions,
$h (&) =31-8); ¢i(&) =31+&); $(5) = L+ E)A-$) (3.49)

Here a, is a constant, but not equal to u,. In fact, du($/d& = -2a, This
interpretation gives a general meaning, but is not necessary. The coefficient a,
needs to be obtained as part of the numerical solution. We note, however, that
#(-1) = ¢1(+1) =1 for the hierarchical functions. The above hierarchical shape
functions are plotted in Figure 3.14. It transpires that only one shape function is
quadratic, and the other two are actually linear, unchanged from the linear
approximations. This is different from the standard quadratic shape functions,
which are all quadratic (see Equation 3.8). Also for the standard element shape
functions, all the coefficients of ¢ were equal to the variables u;.

Hierarchical polynomials of higher order can be constructed similarly by
simply adding the higher order corrections. For example, for a cubic hierarchical
approximation, we may add to Equation 3.48 the following term:

$5(E) = £(&% 1) (3.50)
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$(9)
G #(o) A !

&E-1 &=+l
Figure 3.14. A hierarchical element of quadratic order

with a; being the corresponding coefficient. In general, we can conveniently
construct the hierarchical approximations by adding the hierarchical shape
functions in increased orders,

-k k =even
%) _{ EE T 1) /K k = odd (3:51)

where k > 2 is the order of the polynomial and k! is included for convenience, but
not necessary.

For discontinuous formulation with explicit time integration for transient
problems, there is an advantage of using orthogonal functions to diagonalize the
mass matrix [7]. One of these hierarchical shape functions is based on the
Legendre polynomials [2], which are defined by the following differential equation

[6]:

-9 PE) ~2: ) i+ 9R (@) =0
dg? dg
forée[-1+1], i20 (3.52a)
or by the Rodrigues formula [8]:
P =29 1] ix0 (3:520)
' 2'itdée! o '

The Legendre polynomials have the following useful properties:

f P(é)P(é)dé—z ;PO =1; P(-£)=(-D'P(&),i20 (353

+1°
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dP_1 ©)

=@+DYR () +———

Codx

(i+DP.4(5) = @iI+DR () -iR4(5) ,i=1 (3.55)

The hierarchical shape functions using the Legendre polynomials are defined by

5o (O =30-2), 4,(5) =30+ 2) (356)
40 =252 [ Ao =AE RO,
for ¢ ,(+1) =0, i>2 (3.57)

where the subscript p on ¢ denotes the basis of the Legendre polynomials for p > 2.
A useful property of the above functions is that the bilinear form of the first order
derivatives is orthogonal,

Hdgy, (O ddp(©) . 2i-1 1
[ 22 [ R st =

i j>2 (3.58)

where the first property of Equation 3.53 has been used. This procedure will
diagonalize the submatrix of the diffusion stiffness matrix, starting from (i=2, j =
2).

3.3.2 Canonical Square and Cubic Elements

As for the standard shape functions, the hierarchical shape functions for the
rectangular and brick elements can be constructed using the tensor product of the
1-D shape functions. Thus, making use of Equation 3.51, we have the hierarchical
shape functions

$a(En) =k (E)n () Kk 1>1 (3.59)
for a canonical square element {(&, 7) | & n € [-1, +1]}, and

Ham (§:17.C) = h (A ()¢, () K 1, m>1 (3.60)
for a canonical cubic element {(&, 7, &) | & n, £ € [-1, +1]}. In the above equation,
the basis function ¢(¢) is given by ¢(&) = 0.5(1 - &) and ¢ (&) = 0.5(1 + &), and for

J = 2, ¢() takes either the regular polynomials (Equation 3.51) or the Legendre
polynomials (Equation 3.57) [2, 3, 9].
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The field variable can be interpolated using the hierarchical shape functions
over the canonical element,

p

PP
u(€.n.¢) = Zzza(k,l,m)ﬂdm(éanlé’)

k=0 1=0 m=0

p p p
ZZZa(k,.,m)mm(nwm ©) (3.61)
=

k=0 m=
where p is the order of approximation, and ay,m (k, I, m =0,1) corresponds to the u

value at each corner of the element, and a1, m) (k, I, m > 2) is constant.

Example 3.5. Find the hierarchical shape functions for an 8-node square element
using the 1-D interpolation function given by Equations 3.49 and 3.51, and write
the explicit form of the interpolation function for the field variable u.

Solution. We use the tensor product rule to obtain the needed shape functions for

vertices and sides of the 8—node element shown in Figure 3.5e.
For the four vertices, we have the linear functions,

¢o,o(§:ﬂ):%(1—§)(1—ﬁ)J ¢1,0(§:77):%(1+§)(1—77)
(&) =5 A+ A+7m);  da(Em) =5 A-E)L+7n) (3.11e)

For the four sides, we have the quadratic functions,

(_111)
®
0,2
0le
0,0 1,0 2,0
® L L]
(-1,-1) (1,-1)

Figure 3.5e. An 8-node element showing the number convention used for the hierarchical
shape functions. The numbers in the brackets are coordinates, and the number pairs without
brackets are used to denote the nodes
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$20(8) =1+ A=) A+n);  412(8) =A+E)A-n)A+7)
$1(8) = A+ )A-A-n); ¢ 2(£) =A-E)A-n)A+7) (3.12)

With the above hierarchical shape functions, we obtain the interpolation for u(&, 7)
over the element,

PP

u(Em) =Y Y aunh(©am)

k=0 1=0

= U060 (&) (17) + Up081(£) o (7) + Uk (£)h (77)
+Uo 1o (£)h () + 32,06 (£)dho (1) + 3216 (£)h ()
+ay,61(8) (17) + 89 200 ()2 () (3.13e)

3.3.3 Triangular and Tetrahedral Elements

For triangular and tetrahedral elements, the area (volume) coordinates can be used.
Again, for linear functions, we have

G =1, G =12, P3=113 (3.62)
Consider the triangle shown in Figure 3.15. Along side 1-2, 73 = 0 and thus,
n+n, =1 (3.63)

The higher order function has the form given by Equation 3.51. Since —-1<£<+1
along the side 1-2, a simple coordinate transformation yields along the side,

=1

n,=1
1 4 2

Figure 3.15. A quadratic triangular element with 6 nodes
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§=2n,-1=n,-n (3.64)

This then allows us to write the higher order polynomials given by Equation
3.5l intermsof 7, — 1,

% 2(771,772)={[(772_’71)k_(771+772)"]/k! k = even
- (12 =)z =712)' ™ =y +72) /KL ke =odd
(3.65)

where k>2 is the order of the polynomial. Similarly, we can write the higher order
functions (k>2) for the other two sides,

P2 3(772,773)={[(773_772)k_(773+772)k]/k! k =even

o (75 =115 —=1,) L= (5 +17,)< 111k k=odd
(3.66)

_ o =n5)* = (73 +m) 1 ! k =even

P2 (12:11) {('71 )00 —13) 7 = (73 +1)* 1/ k! k=odd
(3.67)

The above functions define the polynomials along the three edges. Internal
hierarchical functions are also needed for cases where k > 3. These internal
functions are called bubble functions, and satisfy the condition that they become
zero along all three edges of the triangular element,

¢k,i(’711’72:’73)=’71|772J773K: I+J+K=k-3>0 (3.68)

where Kk is the highest order, and the subscript i denotes the interior interpolation.
In constructing the hierarchical shape functions for the orders of p > 2, we have the
following expressions by the tensor product rule:

G (11.772,113) = 177 jmi_; » Oor mid-nodes on the edge i - | (3.69)

. (111,112, 113) = Mn,138y . for nodes inside triangle (3.70)

The construction of the hierarchical polynomials for tetrahedral elements
follows the same procedure as described above for each face, and then adds the
additional higher functions for the interior nodes. The numerical details involved in
construction are given in [10]. Thus, in addition to the above functions for each
face of a tetrahedron, the hierarchical shape functions are needed for nodes inside
the tetrahedron,
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Bq (111,12, 113) = 7121314 P (3.71)

where ¢, vanishes on all faces as desired, and g, is the polynomial correction,

Gy (T 102, 13) = 10 11 1" 1+ I+ K+ L=q =420 (3.72)

with v denoting the nodes inside the polynomial.

The above procedure is general. If the Legendre polynomials are used for
higher approximations where k > 2, then one can show, by exactly the same
arguments given above, that the polynomial corrections along the edges are

4¢k,p(’7j _77i)

A pizj(miim) = T —

foredgei—j (3.73)

where ¢, (7, —n;) is defined by Equation 3.57. Szabo and Babuska [2] suggest
that the correction to the interior points in the triangle takes the following form:

B pau M1:112,13) =Py (1, —m)P, (215 -1) , A+ pu=k-3,k=3 (3.74)

With these corrections, the hierarchical shape functions of quadratic order or
higher can be obtained by the simple multiplication process,

G (1,112, 113) = 11710, p,i—j » TOr Mid-nodes on the edge i -] (3.75)

G0 (T 12, 113) = anafh, p, 2, (T, 172, 13) | or inside nodes (3.76)

Similarly, the expression for a tetrahedron is obtained by repeating the above
process for each face. For the nodes inside the tetrahedron, the hierarchical shape
functions have the form [3],

G (M1,12,13) = 1211314 P, (17, _771)Pﬂ (2n3 -1)Py(2n, -1),
A+u+0=k-4, k>4 (3.77)

Example 3.6. For a 7-node triangular element, derive the hierarchical order term
for the mid-edge nodes and the interior node using the Legendre polynomials as
correction terms. Develop hierarchical shape functions for the element.

Solution. We first draw a 7-node triangular element as shown in Figure 3.6e. Let
us then consider node 4, the mid-node for edge 1-2. Along this edge, 73 =0and 7,
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+ 1, = 1. Establishing the coordinate &£ along the edge such that —1<£<+1, we
have the following coordinate transform:

m=0-8)12;n,=A+8)12; n3=0, E=m—m (3.14e)
Also, from Equation 3.57, the edge shape function is described by
br,p(&) = V3 (P(&)-1) 5 Py(£) =05(3¢° -1) (3.15¢)

Since 7, =0 along the edge 1-3, and 7, =0 along edge 2-3, the quadratic
hierarchical shape function for node 4 in general should have the form of

¢; (7:712:113) = 292, 01-2 €3] (3.16¢)

where the superscript denotes the node number. Along the edge 1-2, the above two
equations must be equal, and thus we have

¢; (71:172,0) = i, pl-2 (£)=0.25(1+&)(1~ §)¢2, pl-2 &)= #,, p (€3]
(3.17¢)

that is,

B2 p1-2(E) =4y (E)(1-E2) = 2(E2 ~1VB/(1-£2) = 6 (3.18¢)

The hierarchical shape function for node 4 then becomes

¢24(’71v 12:113) = s, p.l-2 (7, —m) = —\/g Thil, (3.1%)

n,=1
1 4 2

Figure 3.6e. A 7-node triangular element
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The shape functions for nodes 5 and 6 can be obtained similarly. For node 7 inside
the triangle, A = = 0, which leads to

b3 (11,72, 113) = MN2M3s,p.00 (71,112, 713) = MM (3.20e)

In summary, the hierarchical shape functions for the 7-node element are given by

¢ (.12 m3) =11 % (.m2.m3) =125 8> (01 112.13) =713
8* . m2.13) = N6 mmy s 8% (11, m2.m15) = 6 15715

8% (11,112.113) = 6 311 #3 (71, 12, 113) = 270 (3.21e)

3.3.4 Obtaining Hierarchical Elements Through Coordinate Transformations

Hierarchical shape functions for various element shapes can also be obtained
through coordinate transformations between other shapes and a 2-D or 3-D
canonical element [7, 9, 11].

We illustrate this point by considering a transformation between a triangle and
a square as shown in Figure 3.16. Here the triangular element defined in (sy, S;)
coordinates is mapped to a square element defined in (t;, t,). Note that the vertical
lines (t;=constant) in the square domain become the lines radiating from the point
(-1, 1) in the triangular domain. The ray (t; = constant) is multi-valued at (s, =1,
s; =1). We then easily develop a hierarchical shape function for the triangular
elements by the substitution of (s, s,) for (ty, to),

Pua (S1,82) = By (1) (t2) = By (t1.(S1,52)) (L2 (51, 82)) (3.78)

The above procedure may also be applied to develop 3-D transformations
between various shapes, such as hexahedrons, prisms, pyramids and tetrahedrons,
and canonical cubic elements {(t, to, t3) | t, o, t3 € [-1, +1]} [7, 11]. For a
tetrahedron defined in coordinates (si, S,, S3), the hierarchical shape functions are

Bram (51,52, 83) = By (t1(S1, 82, 83))d (15 (S1,S2,83))dm (t3(S1,S2,83)) (3.79)
where the (1,1, 3) to (S5, S, S3) transformation is given by

_24t) o _20+t)

1 1 Y2 1—t3

1;s,=t 3.80
S =t (3.80)

The transformation rule given by Equation 3.79 maps the four vertices of the
tetrahedron in (sy, Sy, S3); which are defined at (-1,-1,-1), (1,-1,-1), (1,-1,-1) and
(-1,-1,1), to the eight vertices of a cubic element as shown in Figure 3.17.
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1, =0.5(s, +1)(1—5,)—1

—

$:=10

—

(-1-1) (.- h=051+s)1A-s)-1 (1-1)
h=1 (=0 H=-1

(-1.1) (1.1)

v

Figure 3.16. Transformation between a triangular element and a rectangular element

Figure 3.17. Transformation from a tetrahedron to a canonical cube element

3.3.5 Orthogonal Mass Matrix Construction

For explicit time integration, a diagonalized mass matrix is beneficial for
stabilizing the time marching process with a larger time step. For continuous finite
element approximations, a common procedure to obtain a diagonalized mass
matrix is to use either the Newton—Cotes integration rules; or more simply, to sum
the off-diagonal terms of a row, and then add to the diagonal term of the row
[1,12]. While this procedure can still be used in the discontinuous algorithm, the
localized nature of the discontinuous formulation makes it very convenient to
develop basis functions for diagonalizing the mass matrix. In this regard, there are
many candidates from the class of special functions [6].

Let us illustrate this point by considering a 1-D case. The idea is similar to
Equation 3.58, except that we seek the following term for diagonalizing

1 i 1
[ tp@ap@ae =22 [ R wRGda= 5, forij>2

(3.81)
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Clearly, this property is easily satisfied when the shape function is defined by

6.0(&) = JEIR (&) (3.82)

Thus if the approximate solution is expressed as

k k
UE) = an, (€)= aEIR () (3.83)
i=1 i=1

then the mass matrix will be diagonalized with the ith element calculated by

1 k 1
I NGIGIE S RO ELEERT (384)
] > &)

In this approximation, however, the coefficient a; is not equal to the value of u at
node i. This is unimportant to the discontinuous formulation since the field values
are updated during element-by-element calculations. This approach is equivalent to
treating each element as a separate domain, over which the spectral method is
applied [5]. Of course, when needed, shape functions with this orthogonal property
can be constructed using the procedure given in Section 3.2.3.

This idea can be readily extended to multidimensional problems, and can also
be extended to other element shapes. One of these approaches was reported by
Lomtev et al. [7], who proposed to use the Jacobi polynomial as the principal
function for hierarchical shape functions that preserve the orthogonality property
for mass matrices. These principal functions assume the following form:

42() = PRO(&): gb(&) = [5£) P20y,

_E |+J H B
g, (&)= () T pAv2i0 g (3.85)
where P,“'ﬂ(f) is the Jacobi polynomial with the following properties,

appy . @0 @) d Bl o230
P& (x) 2 dxn[(l X)* L+ x)P (1= x2)" ] (3.86)

fl 1—x)* A+ x)? P& (X)PZ# (X)dx = Sy (3.87)
-1

With these definitions, the hierarchical shape functions for various
multidimensional elements can be constructed, which possess the property of mass
matrix diagonalization [7].
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3.4 Interpolation Error Analysis

Error estimates are important for numerical analysis. In finite element analyses,
both post priori and a priori estimates are computed using various error measures.
Here we consider interpolation errors associated with shape functions.

3.4.1 Hilbert Space and Various Error Measures

Different measures are used for the purpose of error estimates in finite element
calculations. We discuss below the interpolation error analysis, which is perhaps
the most important error analysis.

Useful concepts associated with the mathematical analysis of the finite element
methods, which also apply to local analysis, are discussed in detail in [13,14].
Some concepts and definitions from linear analysis, which are essential for the
measurement of basic interpolation errors, are presented here. Additional
information may be found in references [13-15]. First, if V is a real linear space,
then the mapping a(.,.) : VxV — R is called an inner product if (i) a(.,.) is
symmetric, i.e., a(v, w) = a(w, v), v, we V, (ii) a(v, v) is a scalar product, i.e., a(v,
v) >0, VveV, (iii) a(v, v) = 0 if and only if v = 0, and (iv) a(v, w) is linear with
respect to v, i.e., a(avi+pv,, W) = aa(vy, W) + ga(vy, w) for any scalars o, S €R
and vy, vo,w € V. Second, if a(.,.) is an inner product, then for v €V, the associated
norm ||¢|| is defined by

| v [|=[a(v,v)]"?, vvev (3.88)

If a(.,.) is an inner product with the corresponding norm |||, then we have the
Cauchy-Schwarz inequality,

la(v, w)[<[[vIlll wil, Vv,weV (3.89)

We now define the Hilbert space: V is a Hilbert space if V is complete (that is,
every Cauchy sequence is convergent with respect to ||*||) and V is a linear space
with an inner product with the corresponding norm ||¢||.

A sequence of vy, vy, V3, ..., of elements v; in the linear space V is a Cauchy
sequence if for all £> 0 there is always a natural number N > 0 such that || v — v; ||
< gifi,j > N. Further v; convergesto v if || vi— V|| > 0 asi — .

An L*-function is often used in the literature and it refers to a class of functions
that are square integrable. An L?-function is a member of the L? space,

L2(Q) ={f | f is defined on Q and f f2dx < oo} (3.90)
Q

with the corresponding L%-norm defined as
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= [ ro] (391)

where f = f(x) is a real-valued function defined on Q. The L%norm is a widely used
measure for error analysis in finite element calculations. We note that the L space
is a special case of the Lebesgue space [14]. A Lebesgue space is defined by the
following expression:

LP(Q) ={f: fismeasuableonQandf | f(x)[Pdx < oo} (3.92)
Q

with the corresponding norm given by

1/p
1 £l=( [ 1foPa] fori<pee (3.933)
Q

1/m
I ) = lim (f| f(x)|mdx) _ ess sup| f(x)] forp=oo (3.93b)
m—oo Q xeQ

In finite element literature, the class H™(Q2) of functions is also used to quantify the
smoothness and regularity of functions. To define the class H™(Q), we first define
g as the o™ weak partial derivative, written as [14]

] 123} Qn
g=Dyf = ot oot ot (3.94a)
O™ - OX M O * OX ™
if f, g e Li,.(Q) and if there exists
f fDEgdx = (~1) f gddx (3.94b)
Q Q

for all testing functions ¢ € C”(Q), with C(Q) being the space of infinitely

differentiable functions with compact support. In the above equations, oy, a,, -+, o
are non-negative integers, and | | = au + o + - + .
Now we define the class H™(Q2) by

H™Q) ={f|fel?Q),Dif e *(Q)|alm} (3.95a)

where Dy f denotes the weak derivatives of order || [14] with the following
inner product,
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a(fy, f,) = Z f (D& f,- DZ f,)dx, for f,, f, e H™(Q) (3.95h)
la|<m
It is noted that H™(QY) is a special case of the more general Sobolev space,
which is defined by W (©2) ,

W@ ={f L@ [Tl <0] (396)

where L. (Q) is the locally integrable Lebesgue function and the Sobolev norm is
defined by [14]

” f ”\N;(Q)

la|<k

1/p
Zu DY f ||LD(Q)] forl<p<o (3.97a)

max|| Dy f ||

Iy o = AN DY Tl gy - for p=co (3.97b)

In finite element analysis, seminorms are also used. The Sobolev semi-norm is
defined by [14]

1/p
|l o= [Znoafuu,( )J forl<p<ow (3.97¢)

lal=k

|y oy =MD Pl for p=co (3.97d)

The Sobolev space has important properties, and some of these useful for error
analysis are summarized here. First, we have Wg“ () cWF‘j (@) forO<k<mand

1<p<oo,and W k(Q) cWr'j(Q) fork<0and 1< p<q <. By definition, we

have | f |, ko0 <|l T Also, for an n-dimensional domain Q with Lipschitz

W (©) WE(©Q)
boundary, we have the following important estimate:

Iy oy < C I F gy + ¥ F WX (Q) (3.97¢)

fork>m>0,1<p<o, kK=m>nwhenp=1,andk-m>n/pwhenp>1 A
particularly useful relation is also obtained when m =0,
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0l <CITI Vv feWg(Q) (3.979)

@ Wy (@)
The boundary estimates are also important. For Q with boundary oQ being of
Lipschitz type, we have the following relation [14]:

<CIFIGRITIGLE Y FeWs(Q) (3.979)

It ”LP(aQ) LP(Q) W3 (Q)

forl1<p<oo.
We note that, from the above definitions, we establish the following useful

relations: H'(Q) =W,* (Q) and H(Q) = L3(Q) = W, (Q).
We may further define two measures for error analysis. The first is the H™-
norm, which is defined by

2
IR gy = > [ (DET) a0 (3.982)

lal<m

The second is the seminorm, which is also used in finite element calculations, and
is defined in this book as

| f|m:| f |Hm(g):

1/2
D fg| Dg f |2dx] (3.98b)
|a|=m

Here | f |4 ") measures the L%norm of the partial derivatives of f of order exactly
equal to m. Obviously, these two measures are special cases of the Solobev norm
and seminorm, respectively.

With the above definitions, the following norms can be used as error measures.
For illustrative purposes, 1-D problems are applied to define the measure. Similar
forms can be constructed for multidimensional problems.

The L?-norm error measure is given by

1/2

b
le() o = u(x) —up (9 [, = [ fa | u(x) — Uy (x) Polx (3.99)

The maximum norm measure is defined as
e ||, =[uC)—un(x)|,, = max|u(x)—u,(x)| (3.100)
a<x<b

The H'-norm measure is given by
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1/2

b
[ e(x) |, = [j; (| u(x) fuh(x)|2 +| u'(x) —up '(x)|2)dx (3.101)

Here to simplify the notation, we have used the following defintions: ||*||; =
ll*ll 4%y and [[*]lo = [I*ll L *(c)-

3.4.2 Interpolation Error Analysis for 1-D Elements

An important part of error analysis in finite element solutions is related to the
errors associated with interpolation functions. Consider a function u(¢&) over an
interval £€ [-1, +1] and its Lagrangian interpolation,

p
u(&) = > uh (&) +e(®) (3.102)
k=0

where e(&) is the error of the interpolation and is calculated by the following
expression [6]:

U @) 1
)=~ H@ &)= cN*”(g)H(é &),

qé. ¢ e (-1, +1) (3.103)

Here C is a constant independent of & The interpolation is exact up to order p.

Like the continuous finite element analysis, the discontinuous solutions have a
variety of error estimates. We consider below the L? and H* error estimates, which
are most frequently used in the analysis. Let us consider a linear (p = 1)
approximation for a 1-D problem, & € [-1, +1]. Here, the error for the
approximation is

e(§) =Cu"(O)A+8)A-¢), £ € (-1, +1) (3.104)
where Cy = 1/2! = %. Its maximum possible error is obviously bound by
le(©)|=Cu"(©)I11-&2 < C max [u"(&)] max [1-¢? |=C max |u"(S)]
1< —1<&<1 —1<E<1
(3.105)
An element, for example, element j, x € [x;, X;:1] is transformed into a canonical

element & e [-1, +1] by &= (2X — Xj+1 — X)/(Xj+1 — Xj) = (2X — X412 — Xj)/h; S0 that one
has the result below:
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v d2u@@)  d2u(x) [%T ~h? d2u(x)
u" (&)= i o lde) T2 ae (3.106)

Furthermore, the local maximum norm for a function f(x) defined on [x;, Xj:1] is
given by

@)= max |f(x)] (3.107)

Xj XXy

where (+) means that the actual normal is independent of x € [, Xj+1]. We can write
the above error estimate (Equation 3.105) as

|e(°)|3lefl?éllu"(f)|=0%hjz " (@) o <Ch? " (o), (3.108)

where h = max h;and [[u”(e) || .= max [[u"(e)]| ., j, with N being the number of
1< j<N 1<j<N '

elements.
The L?-norm in local definition is given by

ij
X

]

1/2
lle() [lo,; = 1eZ(X)dXJ (3.109)

where the subscript j means that the estimate is local to element j. For x € [X;, Xj+1],

le@ Iz, = [ e 000

h L .
= ji Ol ~DIPds < oh, ﬁ [ (C@NPds (3.110)

where we have used (£2-1)?<1. We assume that ¢ varies smoothly with & and
expand u’ in the Taylor series,

u" (£ (€)= u" (&) +u® (u)(¢ - &),
=U"(&)+0(L - &) < Cyu" (&) where pe(C,€) (3.111)

with C; being a constant. Here, we have also assumed that for a smooth function,
the term O(¢ - &) is proportional to u'’(&) [14], and the proportional constant is
absorbed into the constant C;. Thus, the error estimate is determined by the
following expression:
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1 Xjt1
eIz ;< Cdh, [ w@nias <cnf [ reorax

Xj

=chilu"@l3 (3.112)

where C is a constant and use has been made of Equation 3.106. The L?-norm error
estimate is now calculated by summing the contributions from all the elements,

lle@ 5 <ch® [lu"()[l 5 (3.113)
where
N - N
5= [ r2eoa=> "l f@lI2 (3.114)
j=1 % X j=1

We now consider the error estimate measured by the H'-norm. By definition,
the H'-norm for the error takes the following form:

lle) [|IZ = f Ve (x) + e 2 ()] dx (3.115)

Xj

We need to calculate the term involving e”(x). Differentiating the error term (i.e.
Equation 3.104), and assuming that d¢/d & is bounded, we obtain

u® () d¢

(&) =u(cENs+—— e

== (&%) (3.116)

and

2
@ + SN 2y ag )

fx 2(x)olx_—f

i

We then notice that from Equation 3.106

[u"(€(NET? <[u" (€ (D] <Clu" ()1 = Cu™® (X) hy (3.118)

[u@ @) @/do) 2 -] <[Cur(c(©)ds/dn]”
<[cur @l (3.119)

where C,, C, and C are arbitrary constants. Using the same argument, we obtain
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le@l15; <chfllu@l5; (3.120)
Summing over the N elements, we have

e’ lIg<ch®[lu"()II§ (3.121)
With this we have the final error estimate ash — 0,

lle@)lIZ=1le@) 15 +Ile'(®) |5 <ch?@+ch?)[Ju (o) [IF <Ch? [lu” (o) I3
(3.122)

where ¢ and C are two constants.
The above analysis is for a linear element. The procedure can also be extended
to higher order elements. Thus, we have the general expression,

lu=U [l <C h P JuP D |, (3.123a)

lu-uU I, <C P [[u®D |, (3.123b)

for the polynomial interpolant U of order p and ue H™"*

is further shown [13] that

. Here C, depends on p. It

lu=U I, <ch™™ [ull, (3.124)

for 0 <m < n and C is a constant. Additional informion on interpolation error
estimates in terms of the Sobolev norms can be found in [14].

3.4.3 Interpolation Error Analysis for 2-D/3-D Elements
The interpolation errors for multidimensional elements are obviously more difficult

to assess than the 1-D elements as shown above. The basic procedure, however,
remains the same. The error estimates for a non-uniform mesh are given by [13]

hp+1—s
lu-u Hsgc(:sin—)s‘lu lpn forueHP?(Q)ands=01  (3.125)
o

for triangular and tetrahedral elements, and

C
lu-uUl Sﬂ—’:h‘”l‘s lul p,y  forueHP?(Q)ands=01 (3.126)
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for rectangles and bricks. Here h is the largest edge of the elements, « is the
smallest angle of the triangle or tetrahedron, and g is the smallest aspect ratio of
the rectangle or brick elements.

A mesh is considered uniform if all angles of all elements are bounded away
from 0 and p and all aspect ratios bounded from zero as the element mesh size h —»
0. For a uniform mesh, it can be shown that the error estimate is given by [13, 14]

lu-Ulls<Ch® = [ul, < ChP ™ lull,,

for ue HP?(Q) ands=0,1,---, p+1 (3.127)

where the polynomial interpolant U is of order p and ue H*** and C and C' are two
constants.

3.5 Numerical Integration

Numerical integration for discontinuous finite element calculations often is carried
out using the numerical quadrature formulae. For some simple cases, analytical
integration is possible and formulae for these cases are included. Since the
Gaussian integration quadrature formulae present the best accuracy for a given
number of points, emphasis will be given to this type of numerical integration
procedure.

3.5.1 1-D Numerical Integration

One-dimensional numerical integration primarily consists of finding the area under
the curve defined by a function f(s). By the Gaussian integration rule, an integral
can be computed using the following formula:

f“ FE)de=> w f(s) (3.128)
i=1

-1

where s; denotes the integration points, w; are the associated weighting parameters,
and n is the total number of integration points. These points are given in Table 3.2.
The error associated with the above quadrature is O(d*"f(s)/d?"s). This means that
an exact integration can be obtained for a polynomial f(s) of up to (2n—1) degree,
if n integration points are used.

Example 3.7. Evaluate the integral | = [11[x2+cos(x/2)]dx using three-point
Gaussian quadrature.
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Table 3.2. Abscissae and weight coefficients of the Gaussian
quadrature formula

f“f(x)dx:iw,—f(aj)
1 =t

ta

0.000 000 000 000 000

0.577 350 269 189 626

0.774 596 669 241 483
0.000 000 000 000 000

0.861 136 311 594 953
0.339 981 043 584 856

0.906 179 845 938 664
0.538 469 310 105 683
0.000 000 000 000 000

0.932 469 514 203 152
0.661 209 386 466 265

w

2.000 000 000 000 000

1.000 000 000 000 000

0.555 555 555 555 555
0.888 888 888 888 888

0.347 854 845 137 454
0.652 145 154 862 546

0.236 926 885 056 189
0.478 628 670 499 366
0.568 888 888 888 889

0.171 324 492 379 170
0.360 761 573 048 139

0.238 619 186 083 197 0.467 913 934 572 691
n=7
0.946 107 912 342 759 0.129 484 966 168 870
0.741 531 185 599 394 0.279 705 391 489 277
0.405 845 151 377 397 0.381 830 050 505 119
0.000 000 000 000 000 0.417 959 183 673 469
n=28
0.960 289 856 497 536 0.101 228 536 290 376
0.796 666 477 413 627 0.222 381 034 453 374
0.525 532 409 916 329 0.313 706 645 877 887
0.183 434 642 495 650 0.362 683 783 378 362
n=9
0.968 160 239 507 626 0.081 274 388 361 574
0.836 031 107 326 636 0.180 648 160 694 857
0.613 371 432 700 590 0.260 610 696 402 935
0.324 253 423 403 809 0.312 347 077 040 003
0.000 000 000 000 000 0.330 239 355 001 260
n=10
0.973 906 528 517 172 0.066 671 344 308 688
0.865 063 366 688 985 0.149 451 349 150 581
0.679 409 568 299 024 0.219 086 362 515 982
0.433 395 394 129 247 0.269 266 719 309 996
0.148 874 338 981 631 0.295 524 224 714 753

89
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Solution. From Table 3.2 for the three Gauss points and weights, we have X; = X3 =
+ 0.77459..., X, = 0.000..., w; =w3 =5/9, and w, = 8/9. Then we have

| = ((-0.77459) + cos(~0.5x 0.77459) ) x 2 +[ 0% + cos0 |x &

+((0.77459)? +c0s(0.5x 0.77459) ) x 2 = 2.585 (3.22¢e)
The integral can be calculated analytically with the result,
L 1 x|
| = f [x? + cos(x/2)]dx = [§x3 —2sin E] =2.585 (3.23¢)
-1 1

In this example, the three-point Gaussian quadrature yields the exact answer to
four significant figures.

3.5.2 2-D and 3-D Numerical Integration

The above 1-D integration quadrature formulae can be easily extended to multi-
dimensions,

+1 p+l n.Am
f f Fsdsdt=">"> ww; f(s.t;) dsct (3.129)
-1J-1 i—1 =1

and

>
=]
>

1 ptl el
f f f f (s,t,u) dsdtdu = W, w;w f (5.1, U) dsdtdu
“tJ-lgA im1 j=1 k=1

(3.130)

The same integration points listed in Table 3.2 can be used to carry out the
numerical integration in each of the dimensions.

Example 3.8. Evaluate the integral [ [*r‘s*drds using two-point Gauss
quadrature and compare it with the analytic solution.

Solution. The weights and abscissas are given in Table 3.2. Choosing points n =3
for the r direction and n =2 for the s direction, we have

S s SR ()

9)l 5
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) =gl ol
== stds=—|(1)| ——=| +(1)|—=
-/ 5|<> =+ 5
The analytical solution for the problem can be easily calculated as well,
+1 p+1
2 5 +1 3 +1_ 4
f f drds = 5( ) ) =2

We can see that the selected integration points are enough to exactly evaluate the
integral.

4

15

3.5.3 Integration for Triangular and Tetrahedral Elements

Numerical integration over a triangle can be performed more conveniently using
the area coordinates, &, & and &,

1 pl-g o
L tasadads =3 f Gt sow (313)
i=1

This formula is credited to Hammar et al. [15]. The triangular integration points
and the associated weighting factors are listed in Table 3.3, where m indicates the
integration order. If m =1, an exaction integration can be obtained for a polynomial
of degree p = 1. For m =3, integration is exact for p<2; and for m =7, p < 4.
Similar weights also exist for tetrahedral elements, which are listed in Table 3.4.

Besides the numerical quadrature rule above, for certain cases the following
analytical integration formulae may also be used for triangular elements to
expedite the calculations:

=& N ['m!n!
[ [ dararases, = (3132)

The above numerical and analytical formulae may also be readily extended to 3-D
integration over a tetrahedral element,

1 pl-g pl-56-G
N R AR CARAEO L EL E
0J0 0
= Z (&1 621183 Sai )W (3.133)
i=1

for the use of numerical quadrature, and
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I'm!niq!

flfl_éfl_éz_é e, dd £d gd (3.134)
0 0 0 6616{2 §3 54 51 §2 §37(|+m+n+q+3)l .
for analytical integration.
Table 3.3. Numerical intergration formulae for triangles
Triangular
Order (m) Figure Error Points  coordinates Weights
) 111
Linear R=0(h 1 T 1
m=1) () 333
111 1
1 3 P 3
3 222 1
Quadratic rR=0(h%) 3 0t l 3
(m=2) 22 1
3 1 -
& Loz 3
2 2
4h 111 27
1 - = -—
333 48
Cubic A R=0(h"
(m=3) q\ ™, (060202 .
3 0.2,0.6,0.2 =
4 0.2,0.2,0.6 48
111
1 T 0.225 000 0000
333
QN S
Quintic %\ R=0(h?) 3 B, Bt 01323941527
m="7) h\ 4 Bofct
5
6 az’ﬂz’ﬂZ
; B0y, B, 0.125939 1805
182'182’0‘2

oy = 0.059 715 8717, f, = 0.470 142 0641
ap =0.797 426 9853, 3, = 0.101 286 5073
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Table 3.4. Numerical integration formulae for tetrahedra

Triangular
Order (m) Figure Error Points coordinates Weights
- 2 1111
Lln_ear R=0(h") 1 2422 1
(m=1)
1 a,B.p.p 0.25
2 .
Quadratic R=0(h%) P B p 0.25
(m=2) 3 B.B.a B 0.25
4 B.B.B.a 0.25
a =0.585 410 20, S =0.138 196 60
L 1111 4
4'4°4"4 5
5 , 1111 9
2'6'6'6 20
Cubic 8 Rr=o(y g, 1111 9
(m:3) 6 2 6 6 20
1111 9
2 4 = === =
4 66 26 20
s Liii 9
666 2 20

3.6 Elemental Calculations

The first step in applying the discontinuous finite element method to a given
boundary value problem is the discretization of a computational domain into a
collection of elements. The calculations are then performed over an element. In
almost all cases, the isoparametric elements are used in calculations. We present
below the use of isoparametric elements for 2-D and 3-D domain calculations and
boundary calculations.

3.6.1 Domain Calculations

For an isoparametric formulation, the points in the elements are mapped to a unit
(or canonical) element, and all ensuing calculations are performed in the mapped
element, which is called the master element. This is shown in Figure 3.18, where a
curvilinear element is mapped to its corresponding master element in the
normalized coordinate system. The transformation between the finite element and
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the master element of a simple shape is invertible; or simply put, the Jacobian of
the transformation matrix is positive. For simplicity, the master element is chosen
to be a square, where local coordinates £ and 7 are normalized, {(&, 7) | & ne[-1,
+1]}.

As discussed above, any variables defined on the element can be approximated
using the shape functions in the form,

N,
Up (&) = > uidh(€.m) (3.135)
i=1

where N, is the number of nodes of the element under consideration.
If we now treat the coordinate variables x and y themselves as functions on Q,
then the shape functions may be used to construct the mapping,

N N
X(Em) =D XAEn): YEn =D viaEn) (3.136)
i=1 i=1

Here (x;, y;) are the (x,y) coordinates of local nodal point i in element Q.. Note that
by this transformation, every element in the discretized mesh can be mapped onto
the master element. This will make the program phase convenient.

Several important properties of this isoparametric mapping need to be
discussed before we consider the detailed computational procedures. First, we note
that the functions x and y are differentiable with respect to the local coordinates &
and 7,

A7
(-1,2) (1,1
Q

A dédn 5#
[
)

(-1,-1) (1,-1)

(a) (b)

Figure 3.18. Transformation of an element in (X, y) (a) into a canonical element in (&, ) (b)
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Ne
(e = Gedz+5hdy =)y 24D ”)df+2y. g,
i=1
(3.137)

dx(¢,17) = —d§+—d Zx,a¢(§”)d§+lea¢(§ﬁ)

¢
(3.138)
In matrix notation,
oX  OX
dx ~ % % dé B d&
{dy} o o {dﬂ}_{dﬂ} (3439
o0& on

where the 2x2 matrix is the Jacobian matrix of the transformation. The invertibility
condition requires that the determinant of the Jacobian be non-zero at &7 € Q.
Thus we have

{dﬂ - J‘l{dx} (3.140)
dn dy

where the inverse of the Jacobian matrix is calculated by

o o

21X oy
Jl=—— 3.141
31| on on (3.141)

ox oy

For an affine transformation, that is, for a one-to-one mapping from Q. to the
master element Q, it is necessary that

[3(&,n)[>0, V&neQ (3.142)

Let us now take a closer look at the physical meaning of the Jacobian J. For this
purpose, we construct a differential area in the master element, da = d&d 7. When
inverted back, dA has its image in the x-y plane as dA =dxdy =|J|d&dn. Thus, |J| is
just the ratio of areas of elements at points (x,y) and (& 7), i.e., |J] = dA/da.

The above procedure can be directly extended to 3-D calculations. In 3-D
domains, the master element is often chosen to be a cube defined by {(& 7,4) | & n,
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¢e [-1, +1]}. The transformation between a finite element and the master element
can be constructed via

Ne Ne Ne
X = ;ximf,n,g); y= ;yimé,n,g): 7= ;zimﬁ,n.g) (3.143)

where N, is the number of nodes of the element under consideration. This will
allow element Q. to be completely determined by specifying the (x, vy, 2)
coordinates of all the nodal points of Q.. With this, the following transformation
property is established between (X,y,z) and (& 7,9):

dx 2‘5‘2;72? de)  (de g"gysz dx
. n on on
Y Yy _|gn 9n on 144
gy 2 a5 oc 377, 377 x oy @ jy (3.144)
O A 2 e S
|0 On O | L OX 0oy o0z |

from which the Jacobian of the transformation and its inverse are calculated by

XX X 05 98 o]
o on og x oy @
1-|Y N . ga_|9n Oon On (3.145)
o on o x oy @
o & & 9% 09 0
|o¢ on o ox oy oz

We may apply the above mapping to calculate the quantities needed for the
element matrices for each element in the mesh. With the function values treated as
boundary conditions at the cross element boundaries, the element matrix is then
inverted and unknowns are obtained at the nodal points.

Example 3.9. Consider a rectangular element as shown in Figure 3.7e(a) below.
The temperature is (100,105,120, 89) at the four corner points. Evaluate J and the
derivatives of the temperature field at £=0and 7 =0.

Solution. For a 4-node element, N, = 4 and the transformation Jacobian is
calculated explicitly by substituting the transformation rule given in Equation
3.136,
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—(A-mx +A=m)% | —A-m)y+ A=)y,
LEmX = Qg | + Q)Y =Qtn)Ya |y g
_L“ J“} (3.24e)

Q8 =1+ 5% | —A+ )y —A+S)Y,
+ {1+ g+ 1+ )X | + L+ ) Y3 + L+ E)Ys

Substituting the coordinates of (x,y) at the four nodal points, we have the Jacobian
evaluated at (£=0, n=0),

2(1-n)+2(1 1+7)—( 10
_1) 2Q-m+2Q+n) |Q+m)=Q+n) | |- ] (3.250)
4|20+ &) +21+ Q)|+ +-5)| |0 5
or
detd =|J| =1/2 (3.26¢)
The inverse of matrix J at (£=0, r = 0) becomes
Joy =13 1
D | 10 (3.27¢)
dxdy = det Jd& d7 = 0.5d& d 7y (3.28¢)

To calculate the temperature derivatives at (£ =0, 77 =0), we use the following
formulae:

(0.1) @.1) 4 3
4 3 (-1,1) (1,1)
n
3
yﬂ
11 1-1
ool X 210 1( ) @
> 2
() (b)

Figure 3.7e. Transformation of a rectangular element (a) into a canonical element (b)
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oT) [T a
X | _ | _ 1 | Jp —Jp|]oé

A R sl o )i 29
oy on on

oT ZT 8¢(§)

Zf - {376} (3.30¢)
o ZT 3¢\(77)

With these quantities, we have the needed temperature derivatives with respect
to the x and y coordinates,

oT

B[ 0

oy

These expressions will be used in the derivation of the element stiffness matrix for
the element.

3.6.2 Boundary Calculations

The boundary for a 2-D domain is basically a curve. For a curved element
boundary, the same isoparametric principles presented above for domain
calculations are applicable. In this case, the curve is mapped onto a canonical 1-D
element by the following transformation:

X(E) =D x4 Y= yis(©) (3.146)
i=1 i=1

where n, is the number of nodes per boundary element. This is illustrated in Figure
3.19.

Thus, a differential arc-length ds in the (x,y) plane can be written in terms of
the normalized coordinate £,

/2
ds(&) = 3(2) | dé = K;’g +(j—§” (3.147)

with the Jacobian of the transformation calculated by
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Figure 3.19. Mapping of a 2-D curve into a 1-D unit element: (a) 2-D boundary element and
(b) 1-D canonical element

d iy \2 1/2
X y
ek %ﬂ
_ [Z Idﬂ(é)

22

Z Yi— d¢ L) ] (3.148)

The isoparametric treatment of a 3-D surface element is not as simple as that of
the 2-D curve boundary. The calculations can be complex if the local normal and
tangential components of the velocity field need to be specified along a curvilinear
surface. This requires a tedious geometric treatment that involves differential
geometry operations, and the rotation of the matrix in local coordinates at the
surface, for the purpose of appropriately imposing velocity and surface stress
boundary conditions [16, 17]. One approach is presented here, which makes use of
local surface coordinates and of sharp edges with a specified local coordinate
system, as well as consistent surface normals. With reference to Figure 3.20, a
local coordinate system (7, ¢, n) is defined at a point on the surface. Note that
during calculations, this local system may be (although it is not required to be)
chosen conveniently so as to be coincident with the normalized coordinate system
for the isoparametric calculations at the element level. The xyz and 7¢h coordinate
systems are related by the following coordinate transformation,

2] (2 9
Fa =J Pl Xoo Yoo Zig P (3.149)
i 0 X!n y’n Zln 0
on oz oz

where the subscript , refers to the derivative, e.g., X,, = ox/on.
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In constructing the Jacobian matrix, we used the following differential
geometry relations:

R=X,l+Y, J+2,K; =X 0+, ]+2,.K (3.150)

=0 xE =Xl + Yoy )+ 2oy K
= ( y”? Z’§ _2'77 y’{ )i\_ (XW] Za{ —Z,,] X,g)j+(X,,7 y,; —y,,, X,év )IZ (3151)

The Jacobian matrix may be inverted analytically with the following result:

B ylg’ Z,n—Z,é’ y!n _(yln Z,n—Z,,] y1n) yvq Z7§_Zl)7 y:g
[J] :m —(Xop Zin=Zig Xan) Xy Zin=Ziy Xon  Xop Zir=Zyy %o
Xlé’ y’n_y'§ X!n _(qu yln_yw] X,n) X,U yi{_qu X!{

(3.152)

Furthermore, a shape (or any) function f(7, ¢) defined over the surface is a
function of (7,4 only, and hence of(n,¢)/on. With these relations, one may then
relate the volume differential operator to the surface operator,

0 9
OX on
0 0
— =1 = (3.153)
oy og
9 9
oz on

Figure 3.20. Transformation between local curvilinear and global Cartesian coordinate
systems



Shape Functions and Elemental Calculations 101

which may be written in the terminology of differential geometry [18],

v-Si.95. aﬁzizr{oi_pi}izrz[ei_Fij
ox oy oy H on  0¢) H o¢  on
(3.154)

WithE =r? = x,2+y,2+2,2

!7]!
G=r? =x,;+y, +z,2 It is stressed that in Equation 3.154, (7, {) is not

necessarily orthogonal so long as they are not collinear. This is important in that
irregular quadrilateral surface elements can be readily handled in 3-D finite
element calculations presented here.

For flow calculations, the consistent normal of the surface at node i is required,
which must satisfy the continuity equation [19],

o _ 1[04 _1 (o4
Rav; nl f 9P 4v; s j; v (3.155)

F=r =X, X+, Vog+2,, 2, H* =EG - F,

o OX

where

[f%d ] +[L%_{jdv]2+[ﬁl%]zdvuz

Note that the integration is carried over all the elements sharing node i. Once the
normal is known, the two tangential directions t; = (t,t},t) and t,=(t2,t2,t2)

(3.156)

can be easily calculated using the cross product relations, t;= bxn, in which b is
an arbitrary space vector such that bxn = 0, and t, = nxb. This ensures that the
local coordinate system defined by t; x t; x n forms an orthogonal triplet at any
node (e.g., node i). This is a strict condition, different from that imposed on (7, &,
n). The velocities (or any other vector quantities) defined in the t; xt; X n system
are now related to those in the xyz system through the following transformation:

Up, oty t](Us
Ug [= |t t§ t2 |l U, (3.157)
U, ng ny n, (U,

Note that the above transformation also applies to force vectors.

The above procedure can be particularly useful for surface tension driven flows
in which the surface stress tensor is a function of the local surface gradient of
temperature or concentration or both. One such calculation is presented for a 3-D
surface driven flow [17]. There, to calculate the surface tension contributions, the
integration of the V term is calculated using the relation given by Equation 3.154.



102 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

The velocities defined in the (x,y,z) coordinates will be converted to those in the
tyxtyxn system using Equation 3.157. For 3-D flow calculations, sharp edges are
formed by the intersection of two surfaces where the tyxt;xn system is not
uniquely defined by the above computational procedure. This causes difficulty
when appropriate velocity and stress boundary conditions are specified along the
edge. To overcome the problem, the normal of the edge needs to be associated with
one of the two joining surfaces, and an additional constraint needs to be imposed
on the selection of a tangential direction. The detailed treatment and examples of
the above surface calculations can be found in [17].

Exercises

o>

10.
11.

Starting with the general interpolation function un(x) = a + bx + cx?,
determine the coefficients a, b, ¢, and construct the shape functions on an
element. Show that these shape functions are the same as given by
Equation 3.8 when defined on £ € [-1, 1].

Obtain the coefficients a7,b’,c’,d’ by expanding the tetrahedral equations

and prove that these coefficients are determents of a relevant cofactor
matrix.

Derive the shape functions for a linear tetrahedral element using the
recursive relation in terms of volume coordinates.

Obtain shape functions for an 8-node element using tensor product.

Obtain shape functions for a 20-node element using the analogous
approach to that given for the 8-node element in Example 3.3.

Using a 2x2 integration rule, evaluate the integral numerically by Gaussian
integration,

1 3
f f (%Y + xy?) dxdy
0 1

Integrate the above expression analytically and compare it with the
numerical integration.

Develop a computer program to perform the element calculations for
triangular and quadrilateral elements.

Consider a quadrilateral element with four corners defined at (1,1), (4,1),
(6,6) and (1,5), which correspond to nodes 1, 2, 3, and 4. Using the 2x2
integration rule and Gaussian integration, apply the computer code to
calculate the inverse of the Jacobian matrix at every integration point.
Prove the relation given in Equation 3.154. Note that the surface vector
differential operator is related to the volume operator: V=V —n( n-V),
where V; is the surface vector differential operator.

Construct a 2-D spectral shape function using tensor product.

Derive shape functions for a 5-node pyramid element by collapsing the
nodes 5, 6, 7, 8 into one node as shown in the figure below.
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4

Conduction Heat Transfer and Potential Flows

In this chapter, the discontinuous finite element formulation for heat conduction
and potential flow problems is discussed. Heat conduction is perhaps the simplest
heat transfer mode, but plays an important role in thermal science and engineering
analyses. For introductory purposes, a simple, steady state 1-D heat conduction
problem in a solid slab is considered first. Through this example, we will illustrate
the similarities and dissimilarities between the discontinuous and continuous
methods for the solution of this class of problems. This is followed by a discussion
on steady state heat conduction problems in multidimensional geometries. The
same discussion style is then followed to present the discontinuous finite element
solution of the transient heat conduction problems. The potential flow problems
and flows in porous media have a similar mathematical structure, and thus can be
analyzed similarly.

One of the important issues in a discontinuous finite element formulation is the
appropriate selection of numerical fluxes across the discontinuous inter-element
boundaries. The theory underlying the selection of numerical fluxes is discussed.
By the general classification of partial differential equations, the steady state
conduction equations are elliptic, and the transient heat conduction equations are
parabolic. The former have no real characteristics, while the latter have one family
of characteristic curves. A simple difference between these two types of equations
is that for a steady state heat conduction problem, a solution is required over an
entire domain, whereas for the transient heat conduction problems, it is possible to
obtain a solution in a small time interval. This difference also determines the
numerical schemes to be applied, and the stability results for the selection of
numerical fluxes. Various consistent and stable numerical fluxes are given for the
discontinuous formulation of both steady and transient heat conduction problems.

For time dependent problems, an appropriate time step is important for
numerical solutions. This remains true with the discontinuous finite element
method; in fact it is even more so because most discontinuous formulations use the
explicit time scheme for marching in time. Higher order accuracy schemes, such as
Runge—Kutta time integrators, are also discussed. The matrix method and the
Nuemann method are presented for analyzing the numerical stability of a time
integration scheme and for selection of a critical time step for transient problems.
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4.1 1-D Steady State Heat Conduction

From the standpoint of heat transfer, this is perhaps the simplest type of problem;
and it offers an entry point into thermal analysis. Many numerical methods such as
the finite element and finite difference/finite volume methods treat this type of
problem as an introductory example. Here it is also used as the first heat transfer
problem for the discontinuous Galerkin finite element solution. The 1-D steady
state heat conduction problem is given by the following equations:

2
?j—-!:O,T(X:O):O and T(x=1)=1on xe[0,1] (4.2)
X

for which the analytical solution is of a simple form: T(x) = x. Here T is the
temperature.

In finite element literature, Equation 4.1 is referred to as the irreducible form
[1]. The equation can also be written in a mixed form, which splits the second
order equation into two first order differential equations,

—d—q=o;q—d—T=o x €[0,1] (4.2)
dx dx

The boundary condition remains the same. For this system of equations, the first
equation in Equation 4.2 has g as its variable and the temperature is not involved.
Consequently, there is a lack of direct coupling of the temperature T with the heat
flux g. This lack of T —q coupling has an implication in numerical stability, which
will be discussed later.

We now apply the discontinuous solution procedure to solve for the
temperature distribution. To do that, the domain is first discretized into N elements
with (N + 1) nodes. For an element defined on € = [x;, xj:1], we follow the
procedures given in Chapter 2 to integrate the two equations with respect to testing
functions w and v, and subsequently perform integration by parts, with the
following result:

X+ dw A _ A
f Oh &dx_qj+le+l+quf— =0 (4.33)
Xj
Xj+1 Xjt1__ dv ~ B -
j; thdX + L Th &dx—TijHl +TJ‘VT =0 (43b)
]

i

where the temperature T and the heat flux g at the element boundaries are replaced
by the generic numerical fluxes, T and ¢ . Other quantities used in the formulation

are given in Figure 4.1,
Selecting the appropriate flux expressions is by no means trivial. A good choice
of the numerical fluxes should satisfy the conditions for the existence and
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uniqueness of the solution, and should make the numerical scheme stable.
Fortunately, for this type of problem, a variety of numerical fluxes that meet these
conditions have been proposed, and their numerical properties have been studied
comparatively in two recent papers [2, 3]. We will return to this subject in the next
section when we discuss the multidimensional problems.

-+ -+

t—

J j+l

Figure 4.1. lllustration of boundary interfacial quantities for element j

At this moment, let us say we have found and constructed suitable numerical
fluxes, which take the following forms:

17, j=

J

T; =105(T] +T{)+Cpp(T] -T{), j=2,N (4.49)
TJ'Jr, J =N+
qj —Cu(Ty =Tj), i=1

Gj =105@) +9j) = Cou(Ty =T[)=Cpa(aj —qj), j=2,-N  (4.4b)
q; —Cu(Ty = T5), j=N+1

where Cy; and Cy, are two constants, the selection of which is discussed later, and
where we have incorporated the boundary conditions at nodes j=1andj=N+ 1
into the numerical flux expressions.

With these numerical fluxes, the element matrix can be formed from the
integral equations. For simplicity, we select the linear elements for the calculations.
Then for the jth element, Q; = [x;, X;+1], the shape functions are given by

#(8)=51-8); $(8) =5 1+&) (4.5)

The temperature T and flux q are interpolated over an isoparametric linear
element,

T (&) =4)T] +A(ET: An (@) = (5)a] +¢2(9)Aju
X(&) = A(E)Xj + B (E)Xjuas N(jy = Xjug — X
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O __ 1 .0¢ 1 (4.6)
&  hg ' oax o hg '

By the Galerkin method, the weighting functions are taken the same as the
shape functions,

V={(). 4, s w={A(£).5, ()} (4.7)

Substituting Equations 4.4-4.7 into the integral formulation (Equation 4.3)
yields the following expressions for element j:

Xji1 d@/dx] ; [ af ] [(c12+o.5)qj+ ] [CMT,-+ ]
j;j [d¢2/dx (4, 42 )¢ Qj+1 i (Cr2 —0.5)0j31 i CuTin

_ (C, -0.9)q; N CuTy (4.84)
(Cy, +0.5)a] 4 CuTia

gl sl

.\ dj+1 i \de fox Tita
o ©5-Ca)T/ ) _[~(Cyr05T) (4.8b)
~(C, +05)T;, ) | (05-C,)T},

These matrix elements are readily calculated using the computational
procedures detailed in Chapter 3. After some algebrea, the following results are
obtained:

Xj41 é _mz 1
ij [@](ﬂ’%)dx_ 6 \1 2] (4.92)
Xji1 d¢l/dx _3[1 1]
ij [d¢z/dX](¢l’¢2)dx_2 11 (4.9b)

With Equations 4.8 and 4.9 substituted into Equations 4.8a and 4.8b and
combining relevant terms, one has the matrix equations for the discretized
temperatures and heat fluxes,

{clz —1/2}( q j{cn 0 }(T; j_[ ~(1/2-Cy,)qj +Cy Ty J
12 Gy Jlaja 0 Cul\Tj (1/2+Cp)ajg +CuTy

(4.10a)
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E{Z 1}( aj j{—clz —1/2}(Tj+ ]:(_(1/2+012)T+,-‘] (4.10b)
611 2]\dju 172 —Cpp |\ Tja (1/2-Co)Tiu

Incorporating the boundary conditions and combining the above two equations,
one has the following numerical implementation:

(1) Elementj=1

1/2 ClZ 0 C]_l TZ_ (l/ 2+ ClZ)qg + C11T2+
(4.11a)
(2) Elementj=2,--,N—-1
h(l) /3 h(]) /6 _C12 -1/2 q]r —(1/2 + C12 )T;
hiy/6 hy/3 172 —Cy || Qja _ (L/2-Cpp)Tin
C, -2 Cy o0 |[Tf ~(1/2-Cyp)q +CyTy
1/2 C2 0 Cu [Tja (L/2+Cpp)a5 +CuuTig
(4.11a)
(3) Elementj=N
h(]) /3 h(J) /6 —C12 -1/2 qﬁ —(1/2 + ClZ)TI\T
C, -2 Cy 0 ™™ —(1/2-Cpp)an +CyTy
172 -1/2 0 Cu N\ Tyu CiuTin
(4.11¢)

Here the boundary conditions are applied such that T, =T(x=0) and
Tns1 =T (x=1). The above equations may be written in matrix form,

KU=F,U;={a].05.0.T T} . i=1,2,..,N (4.12)

which can be easily inverted to obtain solution U,

U=K™F (4.13)
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The numerical solution to the above equations can be solved iteratively, using
the successive substitution method. A typical computational procedure is as
follows. To start, all the variables are initialized to zero. Equation 4.11a is solved
to obtain the data for the first element, where boundary conditions are specified.
Some of these are then used as input data into Equation 4.11b until the last element
is reached, and then Equation 4.11c is completed for solution. Then one can move
backward to start from Equation 4.11a with updated data, and so on, until the
convergence is achieved. Like the continuous finite element method, the L?-norm
error for all unknowns is used to determine the convergence for a discontinuous
finite element solution,

N 1/2
D T = Tia)? + (i = Tj30)? + @Fker — 950)° + @i — G50
j=1
<eg

N =

D Tikal? + Tl + Gt + 0732
=1

(4.14)

where ¢ is the preset tolerance and the subecript k refers to the kth iteration.

For this problem, one may also form a large global matrix and then invert the
matrix to obtain the solution once, as is done using the continuous finite element
method. This would involve solving the matrix approximately of dimension 4N x
4N. This approach would generally defeat the advantage of locality associated with
the discontinuous Galerkin finite element method, since the matrix is considerably
larger than when the standard finite element method is applied with the irreducible
form.

Another way of solving the above equations could be to eliminate the variable
g and solve for the temperature T only. This would almost certainly speed up the
calculations, but also increase the bandwidth of the element matrix. We will show
this through an example in Section 4.6, where the stability analysis is carried out.
Further comparison shows that the saving in CPU time for solving T alone is less
significant than the g-T iterative solution, in particular, for 3-D problems. Let us
look at two specific examples.

Example 4.1. Discretize the domain [0, 1] into three linear elements and use the
successive substitution method to solve element-by-element for the steady state
temperature distribution stated by Equation 4.2. Compare the results obtained,
using different combinations of two stabilization constants Cy, and Cj;.

Solution. Let us illustrate the solution procedure by setting C;; =4, Cy; = 1/2 and h
=1/3. AlsoT, =0 and T,” =1. The coefficient matrix K for the three elements can
be analytically calculated and inverted.

(1) Elementj=1



Conduction Heat Transfer and Potential Flows 111

19 118 -12 -12| (g 0
1/18 1/9 1/2 -1/2 S 0
K, = =k (4.1e)
12 -12 4 0 T, 0
1/2 1/2 0 4 T, q; +4T,
(2) Elementj=2
1/9 1/18 -1/2 -1/2 d, =T,
1/18 1/9 1/2 -1/2 a, _ 0
K, = ; 3+ =(K,) ! B (4.2¢)
1/2 -1/2 4 0 T, 4T,
1/2 1/2 0 4 T, q, +4T;
(3) Elementj=3
19 118 -1/2 -1/2| (q; -T;
1/18 1/9 1/2 1/2 N 4 1
K= AR ECHE (4.3¢)
2 -12 4 0 |'|T, 4T,
1/2 -1/2 0 4 T, 4

The calculation starts with all the variables initialized to zero except the
boundary values. The successive substitution method is used to carry out the
iteration process. No under- or over-relaxation parameters are used. The iteration
sweep is from elements j = 1 through j = 3. The results are shown in Table 4.1e,
where the nodal values of q and T are averaged values. As is seen from the table,
after the first iteration, the effect of node 4 is felt at node 3 and the other two nodes
are practically zero, because of the boundary condition at node 1. The results
converge to the analytical solution (T(x) = x, and g = 1) in about 30 iteration
sweeps.

Table 4.1e. Convergence of the 1-D solution (Cy; = 4)

Number of Node 1 Node 2 Node 3 Node 4
Iterations T q T q T q T q
1 0.0000 0.0000 0.0000 0.0000 0.1378 1.4841 0.9523 2.2049
10 0.0002 | 1.0198 | 0.3393 | 1.0052 | 0.6729 | 0.9931 | 1.0039 | 0.9783
20 0.0000 | 0.9998 | 0.3333 | 0.9999 | 0.6666 | 1.0001 | 1.0000 | 1.0002
30 0.0000 1.0000 0.3333 1.0000 0.6667 1.0000 1.0000 1.0000

The procedure above is applied to the same problem, but with different
combinations of Cy; and Cy;, to test the sensitivity of these parameters. The results
are given in Table 4.2e, where all the results are terminated at the 20th iteration for
the purpose of comparison. All these results eventually converge to the exact
solution. From the table, we see that a combination of C;; = 4 and C;, = 0 gives
better accuracy than other combinations. This is not totally unexpected, because for
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this problem, there is a lack of conviction as to which direction to upwind; and
thus, an averaged value (C;,=0) seems to be a reasonable choice [4]. Stability
theory states that other C,, values are also possible [2].

Table 4.2e. Effect of stabilization constants on convergence (terminated at the 20th
iteration)

Node 1 Node 2 Node 3 Node 4

T q T q T q T q

C,=-1/2| 0.0000 | 0.9996 | 0.3332 | 0.9997 | 0.6666 | 1.0001 | 1.0000 | 1.0003

Cu=4| C;,=0 0.0000 | 0.9998 | 0.3333 | 0.9999 | 0.6666 | 1.0001 | 1.0000 | 1.0002

C;,=1/2 | 0.0000 | 0.9996 | 0.3332 | 0.9999 | 0.6665 | 1.0004 | 1.0000 | 1.0007

Cu=1 0.0007 | 1.0121 | 0.3363 | 0.9995 | 0.6694 | 0.9961 | 1.0011 | 0.9819

Cp=0| C;;=4 0.0000 | 0.9998 | 0.3333 | 0.9999 | 0.6666 | 1.0001 | 1.0000 | 1.0002

C;;=10 | -0.0003 | 0.9807 | 0.3270 | 0.9908 | 0.6604 | 1.0092 | 0.9997 | 1.0193

Example 4.2. Study the effects of mesh on the accuracy of the solution for the
temperature distribution for 1-D steady state heat conduction, with a prescribed
heating source Q =1,

daT
dx?

+Q=0,T(x=0)=T(x=1)=0 on x [0,1] (4.4¢)

Solution. The discretized equations are the same as those given in Equation 4.1e,
except that the body source is added to the force term. The results obtained using
different meshes, with the parameters C, = 0, and Cy; = 4, are given in Figure
4.1e. As expected, the denser mesh yields a closer match between the numerical
and analytical solutions.
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Figure 4.1e. Effect of the mesh size on the accuracy of numerical solution
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4.2 Steady State Heat Conduction in Multidimensions

The above example has demonstrated the basic procedure for the discontinuous
finite element solution of 1-D steady state heat conduction problems. We may now
continue with the ideas and solve the heat conduction problems in
multidimensions. Again, convection and other modes are not considered. We have
seen that the numerical fluxes are important. In fact, since the discontinuous
formulation of the heat conduction problem is very similar to the mixed finite
element formulation of second order differential equations, certain conditions must
be satisfied in order to guarantee the stability of the numerical method. We will
discuss this issue more specifically in Section 4.6.

In what follows, we present the formulation and the computational procedure
for the discontinuous finite element solution of the heat conduction problems over
a multidimensional domain. For these purposes, we consider the heat conduction
problem schematically shown in Figure 4.2,

o Prescribed

heat flux

Prescribed
temperature

Figure 4.2. Definition of 2-D steady state heat conduction problem

V-&WVT+Q=0 eQ (4.15a)
T=Tp €0Qp (4.15b)
-N-xVT =-n-qy =h(T-T,) € 0Qy (4.15c¢)

where subscripts D and N refer to the Dirichlet and Neumann boundary conditions,
respectively, T is the temperature, x the thermal conductivity, Q the heat source, h
the heat transfer coefficient and T., the temperature of the environment.

To develop a discontinuous Galerkin finite element formulation, we first re-
write the problem as a system of first order differential equations, as has been done
for the 1-D problem illustrated in the last section. In doing so, we have the
following set of differential equations:
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q=xVT; V-q=-Q eQ (4.16)

The domain is now discretized with finite elements. Let us consider the
formulation over an element, say, the jth element, as shown in Figure 4.3, which
schematically shows the geometric arrangement of element j and its neighbors in a
typical 2-D mesh. The local numbers of the elements are also marked to show the
relation between element j and its neighbors. Furthermore, the elements are
separated in order to show the inter-element boundary quantities. In the real mesh,
however, the elements are not geometrically separated. Multiplying the first and
second equations in Equation 4.16 by test functions w and v and integrating over
the element, one has

f q-wdv — f KVT -wdV (4.17a)
QJ Qi

)

Integration-by-parts once yields the following weak formulation for the
discontinuous finite element solution:

W.qdV = — f vQdV (4.17b)

j Qj

j;jq-wdv Z—j;)ij-(KW)dV —i—\/:mj KTnj-wdS (4.18a)
(1) @2 @ 3)
ni nj
3)
3
n, ALY
© @
(2)

Figure 4.3. Geometric relation between element j and its neighbors. The elements are
separated to better illustrate inter-element quantities
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f q~VvdV:f dev+f q-nvds (4.18b)
Q 0 00

where nj is the outward normal unit vector to 6€;, the boundary of the element.
We now seek to approximate the exact solution (g, T) with functions (g, Ty) in
the finite element broken space, whence we have the following results:

f q,-wdV = — f T,V - (kw)dV + f KTon, - wdS (4.19)
Qj Qj de

f qh~VvdV:f vQdV +f dn - nvdS (4.19b)
Q Q 00,

where the numerical fluxes (4, fh) are the approximations to (g, T) on the

boundary of element j. To complete the discontinuous finite element solution, these
numerical fluxes must be specified in terms of g, and Ty, and in terms of the
boundary conditions. These numerical fluxes must be suitably selected to render
the discontinuous formulation stable.

Many numerical fluxes have been reported in the literature [2, 3, 5]. Recently,
Arnold et al. [3] have presented a critical review of these fluxes and analyzed their
suitability for the numerical solution of steady state heat conduction problems.
Castillo et al. [2] also performed error analysis of these numerical fluxes for
elliptical problems. Table 4.1 lists the numerical fluxes that are considered
consistent and stable for the solution of the steady state heat conduction problems.

Table 4.1. Numerical fluxes for steady state heat diffusion calculations

Method ay T

LDG [6] {9} - CulTh] - Cr2ln] {Th}+ Cia[Th]

DG [2] {9n} = CulTh] = Cyo[an] T} + Cio[Th] = Coo[an]
Brezzi et al. [7] {a}-a" ([T {Th}

i [8] T3 -CuTyl T}

Bassi-Rebay [9] VT}-a ([M)) {T}

NIPG [10] {VT}-Cullh] {hd+n; [T

Note: Cii, Ca, Cio and Cy are constant matrices, and n; is the outward normal of the boundary of
element j.

In Table 4.1, the operators that calculate the averages and jumps between the
local element and its neighbors are defined for the local element. Referring to
Figure 4.4, the unit vectors n* and n~ are the boundary outnormal vectors to
elements j* and its neighbor j, respectively. The average and jump operators in the
table are defined as follows:
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{a}=05(q"+q7); [al=q"-n"+q -n (4.202)
{T}=05T"+T7); [T]=T"n"+Tn (4.20b)

where we have used the underscored curly and square brackets to denote these
special averages. It is noted that this use of underlined brackets will be implied
throughout this book, unless indicated otherwise.

By these definitions, the jump [q] is a scalar function of g, which involves the

normal components only; and the jump [T] is a vector function of T. The

advantage of these definitions is that they do not depend on assigning an ordering
to the elements.

Figure 4.4 Element j (j*) and its neighbor j

With the numerical fluxes taken from [2], and substituted into Equation 4.19,
one has the final integral representation:

fgj q; - wdV +fgj T,V - (kw)dV
—j;g_ (T} + Cro [Tl — Cool@y D - xwdS =0 (4.213)
qh.dev—f (m_h}—cllm—clzw)-njvdszf vQdV (4.21b)
Q 09, Q

The functions T and q are assumed to vary over the element, according to the
space shape functions such that

N N
Th = Z(Pj @Tj=0" (0T ; gy = Z(Pj (r)g; ; = @' (r)q..i=xy,z
j=1 j=1

(4.22)
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where ®© = (¢,é, ¢, ..., qme)T and N is the number of nodes per element.

Substituting the above local approximation into Equation 4.21, we have the
following expressions:

|

f KCZZq)(DT nndS
0Q;

]

[f <I><I)Tdv]q+[f [V (xD)]®7 dv]1+
Q; = Q;

f x(1/ 2+ Cyp,)DD ndS ]1 —( j x(1/2 - C,)dD ndS \JI(NB)
9Q; Glo

Qj

_ f KkCpy®® m@ndS |-q  —0 (4.23a)
00 —(NB)

[f (V(D)d)TdV]-q—[f (1/2 — Cy,)d®" ndS
Q, = 00,

!

—[ f (1/2 + Cpp) D ndS
0Q;

. T

9 ng) +[j;9j Cud® dS]I

—[ f cncpqﬂds]I(NB) f ®QAV (4.23b)
00, Q,

where n = n; and n = (ny, ny, n;) to simplify notation; ® is the dyadic operator,
(u®v)-w = (w-v)u or u®v = uv; subscript (NB) refers to the quantities belonging to
the neighboring elements; and g = (dy, gy, d;). Also, in deriving the above equation,
the following relations have been used (see Figures 4.3 and 4.4 for relevant
geometric relations):

q'=g-n’,n"=-nTq=q-n"=-qn
Cin"=Cy =-Cypn7, n" =n;,

By the Galerkin procedure, the trial functions (v and w) are approximated in the
same way as the unknown variables (T and q). With these functions substituted
into Equations 4.23a and 4.23b, the following matrix equation is obtained for the
element j:

E 0 0 H, a, s Exxi E><y,i Exzi Huyi|| 2
0O E O H, qy +Z Ewi Ewi Eywi Hyi 9y
0 0 E H, q,| 45 Exi Egi Ezi Hyj q,
3 3y 3 0T i dyi Jui Grill ¢
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NS Exx,B,i Exy,B,i Exy,B,i Hx,B,i gx 0
z ny,B,i Eyy,B,i Eyz,B,i Hy,B,i gy _ 0 (4.24)
=) sz,B,i Ezy,B,i Ezz,B,i Hz,B,i 92 0

Jygi  Jdyei  Jzei Gt T e St

where NS is the number of sides of the element and the matrices are calculated as
follows:

Hi m :fgjd(g?k)%dv' I=x,y,12

JLkm:f %“ dav, I=xy,z2
0Q;

En = | #mdV ; Gr i =—Crgium =Cu [ ddndS
Qj an,i

Eirikm = —EBirg,ikm = szf _K¢k¢mnlnrd5 v Lhr=xy,z

Ji

Hiikm = —(%‘Fclz)f KhdndS , 1=X,y,2
0Q;;
Higikm = —(%—Clz)f KdMdS , 1=X,y, 2
0Q;;
D =-G=Co) [ fdndS, 12 x,y,2
00,
JiBikm = —(%+C12)LQ hdnnidS, 1=xy,z
In

St - fgjmdv

with 0Q);; denoting the interface between the element j and its neighbor element i:

The above matrices can be further combined to yield the following resultant
matrix:
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KU=F (4.25)

where K is the stiffness matrix, U = [q,", @,", @', T'1" = [Gx1, G2, --+» Gxnes Gyt
Oy2 -+ OyNes Ox1s Ox2s «-» Ones T1, Tay --o, Trel - and F is the source vector.

The computational procedure is similar to the 1-D case. Once again, three
different approaches can be implemented to solve the problem. It is recommended
that the element-by-element sweeping method, with successive substitution, be
used for a large-scale problem, for which the discontinuous finite element method
has the distinct advantage. If the element-by-element iterative solution scheme is
employed, then information on the neighboring elements that is available during
computation can be treated as the source term, and moved to the right hand side.
Let us now consider an example below.

Example 4.3. Consider a two-dimensional steady heat conduction problem defined
Over a square,

2 2
5_I+5_Z+Q=o on xxye[-11x[-11] (4.5€)
OX oy

where the heating source Q is given by Q(X,y)=exp[—(x2+Yy?2)], and the
boundary condition is T = 0 at all the edges of the square.

Solution. We consider the use of linear elements for the calculations. The domain
is discretized using the linear triangular elements, which are shown in Figure 4.2e.
For an element, the discontinuous finite element formulation can be developed as
described above. For this problem, we set C,, = 0.

The definition of the numerical fluxes on the boundary is given as follows:

q =q",T =9gp,Cj,-n"=1/2 and Cj,-n"=-1/2 onQp  (4.6e)
q =gy, T =T",Cpp-n"=-1/2and C,-n"=1/2 on oQy (4.7¢€)

For a linear triangular element, the matrices given in Equation 4.24 can be
calculated analytically. Consider a canonical element shown in Figure 4.3e. The
shape function for this element takes a simple form,

A(x,y) XoY3—XsY2 Yoz g |1
DX, Y) = A Y) |===| XY1—XYs Yz i3 | X (4.7¢)
B(X,Y) XYo—=X¥1 Y, X || Y

where S is the area of the element. For element €;, S is calculated by the following
expression:
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Figure 4.2e. Unstructured mesh used for computation of the 2-D steady heat conduction
problem

s-=
2

Yis  Yo3

= 210052~ 9)~ 0~ 56) (3~ o) (4.8¢)

and the single-indexed subcscripts refer to the node number local to the element.
Also, X = x; — xj and y;; = yi — Y.
Taking the derivative of the shape functions, we have

V¢1(X, y) y23 1 X32
VO(X,Y) =| Ve (% Y) | = | Yoy (R o] X |9 (4.9)
Vs (X, Yy) Y1, X21
1
ni ns

001 a0y,

2

6ij2 N2 3

Figure 4.3e. Geometric relation in a single element used for elemental calculations
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With Equations 4.7e and 4.8e, the element stiffness matrices are calculated
analytically with the results,

where I,r

S 2 11
E:f DDAV = 2[1 2 1
o 12

11 2
Y23

oD 1
H, :szfgj[ax]@dv S=
Y12
X32

oD 1

H, =1J :f [ ](DTdV_
y y a, dy 6 %13
X1

Eiwi=-Eirpi=0

Hj; =i = _(%"‘Clz)j;g OO ndS = —(% + Cp)n €
i

Higi=Jd,= _(%_ClZ)LQ QO ndS = —(3 -
ji

GT,i = _GT,B,i = CllCi

=x,y;i=1,2,3,and

Yo3
Ya
Y12

X3
X2

Ya3
Ya
Y12

X3
X2

(4.10e)

(4.11e)

(4.12¢)

(4.13e)

(4.14e)

(4.15e)

(4.16e)

Note that numerical integration may also be applied to obtain the same results.
With Equations (4.10e-16e) substituted into Equation 4.24, we have the
following matrix equation for element j:

y,i

E 0 H9, 0 Hy,
0 E Hylq +Z 0 H
3 3, ol 1] Flag 9y Gr

1 |
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+ 0 0 Hygilld =0 (4.17¢)

=l | Jyei Jdysi Ot T g,y

The above matrices can be combined with the following resultant matrix:
KU=F (4.18¢)

where U is the unknown vector, and K and F are defined as follows:

E 0 Hy 5|0 0 H
K=/0 E H,|+ 0 0 Hy,
NI I e T I

3 0 0 |_|><,B,i gx
F=-) | 0 0 Hysilla

=1 | Jygi Jdysi Ot T (NB,i)

The calculations start with an element located at the boundary, and
progressively sweep into the domain element-by-element. The successive
substitution method may be used for the iterative solution.The calculations require
3000 iterations to converge within a tolerance of ¢ = 10°°. Considerably fewer
iterations are needed if the tolerance is not set so stringent. Stabilization constants
chosen are C;, = 0 and Cy; = 50. The computed temperature contours and a 3-D
view of temperature distribution are given in Figure 4.4e. It is seen that the highest
temperature occurs at the center of the square where the heating source is at its
maximum, which is consistent with the principle of heat conduction. It is noted that
this problem has a four-fold symmetry and, as a result, only a quadrant is needed to
speed up the computations.

4.3 1-D Transient Heat Conduction

In the above two sections, we discussed the discontinuous finite element
formulation for steady state heat conduction problems. Following the same
development style, we now consider the solution of transient heat conduction
problems using the discontinuous method. Again, to illustrate the basic ideas and
solution procedures, we start with a simple transient 1-D heat conduction problem,

oT 02T
—=—,xe[ab 4.26
= xelab] (4.26)
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(a) 2-D contours

(b) 3-D view

Figure 4.4e. Discontinuous finite element solution for the 2-D steady heat conduction
problem: (a) 2-D isothermal contour plot and (b) 3-D view of the temperature distribution

where U = [q,, QyT- I = [Ox1 Ox2s -1 OxNes Oyt Oy2s +oes Oyines T2 Ty ooy Trel's and K
and F are calculated as follows:

with periodic boundary conditions, and the initial condition T(x,0) = sin(x). For

simplicity, all properties assumed to be unity.
To apply the local discontinuous Galerkin method, the heat conduction problem

is first split into a system of two first order equations for variables q(x,t) and T(x,t),

T A _y. T 40 (4.27)

oo
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To obtain a discontinuous finite element formulation, the domain is discretized
into N number of elements. Integration of the above equation over element j e
[xj, Xj+1], with respect to weighting functions v and w, yields

ijxm[a_T_a—g]V(x)dx =0; f [ +—]w(x)dx = (4.28)

We follow the same procedure as discussed in the last section and integrate by
parts once on the spatial derivatives to obtain

fm[ LT, ov
y Lot ox

_ﬁ-m[qW-I-Tg_\:(v]dx+T(Xj+l)W(xj+l) “TOW0G) =0 (4.290)

dx— q(Xj 1)V (Xj41) + 90X ) V(X)) = (4.29)

We now face the choice of selecting the quantities at the element boundaries,
a(Xfe1) A(Xja)s T(xjﬁl) and T (xj,,)- Before generalizing the choice of numerical

fluxes, we consider below two other simpler options for the choices. It is noted that
for the transient problems, the time dependent term makes a coupling between the
temperature field and the heat fluxes, and this linkage provides a natural
stabilization factor for the discontinuous numerical scheme.

4.3.1 Alternating Upwinding Scheme

One choice is intuitive, as suggested in Chapter 2, which is to take the upwinding
value. By this choice, the following values may be used for the interface quantities
in reference to Figure 4.1,

005.0) = 0050) =0 as TOG) =T 0G0 =Ty (4.302)
90) =ax) =a]: T() =T() =T (4.300)

These selections may be interpreted as meaning that the available values at the
neighboring boundary are considered known, and are applied as the boundary
conditions for element j, whenever they become available during the iteration. This
approach was first proposed by Cockburn and Shu [6] and has an order of accuracy
of k+1 for an interpolation of order k [4,11]. With these selections, the weak form
equations can be written as

Xjt1 8T 8v
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Xj+1
f’ [qw+Tg—‘;V]dx—Tj+1:Tj (4.31b)
Xj

where v(xj)=Vv(x}) =w(x},;) =W(Xj,;) =1 has been used.

4.3.2 Central Fluxes

Bassi and Rebay were the first to apply the discontinuous finite element method for
the solution of diffusion-type problems. In their original approach [12], they
proposed the simplest central flux expression, and applied the scheme for
compressible flow calculations, obtaining quite satisfactory results. Their central
scheme basically uses the average of the two values across the boundary,

(X)) = A(Xj.1) = 0.5(A7, +0A7,4) (4.32a)
T(Xj.) =T (X)) =0.5(T;, +T/) (4.32b)

Here, we could choose g and T so that they satisfy the LBB condition for the
mixed finite element formulation. This means that different functional spaces may
need to be used for q and T. However, Bassi and Rebay [12] argue that the fluxes
can be chosen from the same function space. Cockburn and Shu [6] later studied
this method and proved that the method converges at a rate of one order lower
from optimal; that is, where the error estimate is of order k for piecewise
polynomials of degree k [11].

With Equation 4.32 substituted into Equation 4.29, the following weak form
solution for g and T is obtained,

Yi( 9T O

f [vﬁ+a—\;q]dx— 0.50j,1 +0.50] = 0.5q,, — 0.5q; (4.33a)
Xj
Xj41 ow B N N B

f QW+ T |dx—05Tj.; + 05T = 05T, — 05T, (4.33b)
Xj

4.3.3 Unified Representation

The above discontinuous finite element formulations can be expressed in a unified
fashion as follows:

Xj+1 oT, R "
f Vh[a—xh-i-%]dx—qu +4; =0 (4.343)
Xj
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G (9T, | O - T
9T | 9 T.,=0 4.34b
ij Vi [ o + o de—s—TJ i1 ( )

where Ty, is substituted for T, g, for g, and v, forvand w, j=1, 2, .-, N and the
numerical fluxes are defined by

4G=05(9"+q)-Cp(a" -q7); T =05(T " +T)+Cp(T*-T") (4.35)

with Cy, = 0 for the central scheme, and Cy, = 0.5 for the alternating upwinding
scheme.

4.3.4 Numerical Implementation

We further introduce the element shape functions ¢(x) as follows:

Ne Ne
Th(0 =Y 4 T® =0TT; ()= A()q"0 =0Tq (4.36)
k=1 k=1

where N, is the number of nodes of an element. Also, subscript (k) on T and g
refers to the kth node local to the element. Substituting these equations into
Equation 4.34, followed by numerical integration, one obtains the results below:

N
> sty +ZLEKJ"9) T 4T (%)) —Tj 0k (Xj11) = (4.37a)
m=1

Zséfi“)ﬂ‘f?) + Z LG 4 G () — Q1 () =0 (4.37h)

fork=1,2, ..., Ne (k being the kth node local to element j), with matrices S

and L calculated by
.
(km) _ i+ .y (km) i+ d¢k
SGP = [ b s L *fx. L e (4.38)
] J

where subscript (j) =1, 2, ..., N (N being the number of elements) refers to the jth
element. Note that subscripts j and j+1 without a round bracket refer to the two
corner nodes of the jth element numbered globally, €; = [x;, X;:1]. For a piecewise
constant approximation, (j) and j refer to the same, in WhICh case the the node and
the element are numbered the same way.
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The above equation can be rewritten in the matrix form of

¢ (X;) $1(X 1)

S *LwmTo T ¢2(;Xj) ~Tja ¢2()§j+1) =0 (4.39)
Pre (X;) Pre (Xji1)
$1(X;) $1(Xj.1)

STy +Lpd, +4; ¢2(;Xj) ~Gju ¢2()§j+l) =0 (4.40)
Pre (X;) Pre (Xj11)

The mass matrices can be inverted on an element level and we find

A T RO T +Ti05 ~Tjuabjua = 0 (4.41a)
1) +Ka;, +4;0j —0j:10j.1 =0 (4.41b)

where the following defintions have been used:

Q(XJ) ﬂ.(xhl)
e] _ (S(J))il ¢Z(XJ) : 9J+1 _ (S(J))il ¢Z(Xj+l)
Pne (Xj) Pne (Xja1)
Ky =6a) "L (4.42)

For convenience, the matrices for the interpolations of up to quadratic order are
given below:

(1) Piecewise continuous, N = 1:

1 1
a; +h_-(a1Tj —a,Tj4) —F(alTj+l —a,Tj)=0 (4.433)
j j

. 1 1
T; +h_(a3qj _a4qj—l)+h_(a3qj+l_a4qj)=O (4.43b)
] j

(2) Linear interpolation, N, = 2:
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M o
ahn | 1 [ j TG (4j O @
(aqTe5 —anTyy)
{q((]z))j h“) h( ) (1) (j-)
1 (-2)r0 1@
+h(,-)[ ) j(r(m) T@)=0 (4.442)
T 0 .
(i @
{T((Z)J ( j{ @ h(n[ j(asq“) %)
1(-2).0 @
+m( 4 ](%41) q¢jy) =0 (4.44b)

(3) Quadratic interpolation, N = 3:

® o
6 IR T . 9
@ @ 3 |(aT® _aT®
Wl H 0 ) TO TR, 2 (@Tjy —a2T(y)
®3) 1 4 3 ®3)
a3y i)
3
1 3| 3
t—|=y Ty -1 =0 (4.453)
| §
g0 ®
T 3 4 -1\[ %) 9
1@ [+ 2 0 1@ |+2] -3 |(ae® —aq®,)
O [T, 4 | 2 30(j) — (i
©) 1 -4 3 3)
T a3 3
3
B (G . (4.45)
) .
hgy| 2™ :
9

In the above equations, the overdot stands for time derivative and also we take a; =
az = —a, = —a4 = 0.5 for the central scheme and a; = —a, = 1 and a3 = a, = 0 for the
alternating upwinding scheme.

4.3.5 The Runge—Kutta Time Integration

Equation 4.41b requires a time integrator for a numerical solution. A commonly
used time marching algorithm for discontinuous calculations is the explicit time
integration. The various orders of the Runge—Kutta (RK) schemes are given below.
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(1) The first order RK method (the Euler forward method):
k+1 k Kk
To =T +(A0T (4.46)

(2) The second order RK method:

ki = (At)i(j) (II((J)) (4.47a)
kp = (At)I(j) (I?j) +Atk,) (4.47b)
T6 =T +%(kl +K3) (4.47¢)

(3) The third order RK method:

ky = (A0T ) (T () (4.482)
ky = (AT (T, +%Atkl) (4.48b)
kg = (AT, (T(;) - Atk, +2Atk,) (4.48¢)
TG =TE +%(k1 +4k, +Ks) (4.48d)

where the superscript k refers to the kth time step.

It is important to realize that the above explicit time schemes require time steps
that are smaller than a critical value. Normally the CFL criterion for the time step
applies. In Section 4.6.3, we show through stability analysis how to determine an
adequate time step for numerical integration in time.

It should be noted here that the implicit time scheme is also possible, but it can
be cumbersome to use with the discontinuous finite element method and a global
matrix of size larger than the continuous finite element method needs to be solved
(see also discussion following Equation 4.14).

4.3.6 Computational Procedures

One way to solve the above system is to use the iterative procedure as has been
done for the steady state case. By this approach, q is solved first on the given
values of T, and then time integration is applied to obtain T at t + At. This
procedure continues from the boundary and sweeps through the entire domain,
element by element, for every time step.
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Another approach is to eliminate the equation for g, and solve the combined
equation for T. The element calculations, and time marching remain the same as
above. This approach is possible because q is, in essence, an intermediate variable
and can be eliminated. This is point is further discussed at the end of Example 4.4
below.

Yet another approach is to combine all the variables together to form a global
matrix, which is then inverted by LU decomposition to obtain the solution and
march in time. This approach is rarely used, but can be useful for implicit time
marching schemes.

Example 4.4. Calculate the evolution of the temperature distribution in a 1-D slab
with a heating source Q = 1 using linear elements and the alternating upwinding
scheme with the first order time integration. The boundary and initial conditions
are: T(x=0,t)=T(x=1,t)=0, T(x,0)=0. Take all the properties to be one and derive
a matrix equation for the temperature values T by eliminating the variable g.

Solution. The numerical implementation for the linear interpolation is given in the
previous section. Therefore, we have

1 1

q((J)) 1(-11 T((j)) 1 @
@ | hy @ | hy CUGREAREY
a i\ -1 LT ) R\ -2

1
h ( )@(1111) T =0 (4150
(1)
k+1 k
[T((jl))J [T((m] At[ 1 1)[(18))] At( J(aq Cag®. )
@) h (2) h 3 4930
T6) Ut -1 Ul Sl
At
—m( )(Q((?Jrl) ((?;)k (j (4.20e)
J

where superscript k denotes the kth time step and the last term results from the
contribution of the body source.

Choosing the time step At=10"* and hg =0.01, we can proceed to do the
calculations. The computational procedure is as follows. First, all the variables are
initially set to the initial temperature and then g* is solved using the first equation.
Then the time integration is performed to calculate T using the second equation,
and the result is then substituted back into the first equation to calculate g***. This
process continues until the time reaches the specified total time. The calculated
results are shown in Figure 4.5e.

For illustration, we have chosen to solve the variables g and T simultaneously.
For this problem, g is in fact an auxiliary variable, and thus can be eliminated at the
element level to obtain a form for T as follows:
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0.2

Figure 4.5e. Temperature distributions for the 1-D transient heat conduction problem

TV =T¢ —At(AT

o =T By +CT

k
(i-2) TBI(jy +CT(jy + DT (1) +ET(ji2) +Q(j)
(4.21€)

which spreads over five nodes. In the above equation, A, B, C, D, and E are
coefficient matrices and Q is the source vector. This would speed up the
calculations. The values of g, if needed, can then be obtained by processing the
data from {T}*. We note also that, for the alternating upwinding scheme, the spread
is only over 3 points, and thus should be faster than the central scheme.

4.4 Transient Heat Conduction in Multidimensions
Let us now consider the discontinuous formulation for multidimensional problems.
The mathematical equation for heat conduction in a multidimensional domain is

given by

oT

pC

T =T, e (4.49b)

n-kvT =h(T -T,) €8, (4.49¢)
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T(rit=0)=T°(r) e (4.49d)

To develop a discontinuous finite element formulation, Equation 4.49(a) is first
split into two first order equations,

.
q=kvT; pCp%—t=V-q+Q (4.50)

After the domain is discretized, we apply the Galerkin procedure to develop a
discontinuous finite element formulation for an element. This involves integrating
the above equations with respect to the weighting functions (w, v) over element j (r
S Qj),

f q-wdv — f w-kVTdV (4.51a)
Qj Qj

T
f vpC, L dv = f WV -q+Q)dV (4.51b)
Q; ot Q;

The relevant geometric arrangement of the element j and its neighbors is given in
Figure 4.3. We now integrate by parts to obtain

f q-de:—f TV-(kw)dV+f KT, -wdS (4.52a)
Q; Q 2

f VpCpa—TdV—f—f q~VvdV:f dev+f q-nvdS (452b)
Q; ot 0 0 90,

]

where n; is the outward normal unit vector to 6Q;, the boundary of the element.
We now seek to approximate the exact solution (g, T) with functions (qy, Tp) in
the finite element broken space, whence we have the following results:

f q - wdV = — f T,V (kw)dV + f kfun, - wds (4.53)
Q; o} 00,

f VpCp%dV—i—f qh-VvdV:f dev+f iy -m;vds
Q ot Q Q; 00,
(4.53b)

where the numerical fluxes (g, fh) are approximations to (g, T) on the boundary

of element j. To complete the discontinuous finite element solution, these
numerical fluxes must be specified in terms of g, and Ty, and in terms of the
boundary conditions. These numerical fluxes must be suitably selected to render
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the discontinuous formulation stable. Besides those shown in Table 4.1, additional
fluxes, simpler in form, also satisfy the stability criteria for transient calculations.
For convenience, the widely used numerical fluxes tested for transient heat
conduction calculations are listed in Table 4.2. Selection of the numerical flux in
discontinuous continuous finite element formulations for diffusion problems is
recently discussed in [13].

Table 4.2. Numerical fluxes for transient heat diffusion calculations

Method an T,
LDG [6] {9} - CulTh]-Cyrolan] {Th}+ Cio[Th]
DG [2] {9n3—CulTh]=Ciolan] | {Th}+ Cra[Tn] = Croldnl
Brezzi et al. [7] an}-a" ([T {T}
IP [8] {VTu}-CuilTy] T}
Bassi et al. [9] {V_Th}—a’(@) {Th}
NIPG [10] {Vup} - Cyaup] {3+ -[Th]
Bubaska—Zlamal [14] -a;[T,] Thlo,
Brezzi et al. [15] —arﬁ Thlo,
Bassi —Rebay [12] {an} {Tn}
Baumann—Oden [16] {Eh} {i}; [Tl

Note: Cy3, C, Ci, and C, are constant matrices, and n; is the outward normal of
element j.

The operators are the same as defined in Section 4.2. With the numerical fluxes
defined by Equation 4.20 substituted into Equation 4.52a, b, one has the final
integral formulation,

f qh-wdv+f T,V - (kw)dV
Q; Q;

_j;g, ({L}+C12 'm—czzm)ﬂj -wdS =0 (4.53&)

aT,
voc, T gy +f VvV
j;)j p p 8.[ quh

- f (fa} — CulT]— Cyola) - vdS = f vQdV  (4.53b)
0Q; Q;

This is very similar to Equation 4.21, except for the transient term.
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Now with the unknowns approximated using a polynomial basis function,
followed by tedious algebra, one has the final matrix equation for the
discontinuous finite element formulation for the transient heat conduction problem,

000 o017 % E 0 0 H, Y%
000 04 |0 E Hy |1 9
000 0 ||g 0 0 H. |l q
000 M 5 e 3y 3y 0 ¢
NS Exx,i Exy,i Exz,i Hx,i gx
+§ :EyX| Eyy,i Eyz,i Hy,i 9y
= sz,i Ezy,i Ezz,i |_|z,i q
= 2z
i Jyi Jzi Grj T
NS Exx,B,i E><y,B,i E><y,B,i Hx,B,i gx 0
_'_Z ny,B,i Eyy,B,i Eyz,B,i Hy,B,i gy _ 0 (4.546.)
= Ezx,B,i Ezy,B,i Ezz,B,i Hz,B,i qZ 0
i Jdyei  Jdusi Greill - S
X,B,i y,B,i z,B,i T,B,i I (NB.J) T

where the overdot denotes time derivative, e.g., T=aT/at, the mass matrix is
calculated by

Mrin = [ pCothnaV (4.54b)
i

and other matrices are calculated using the expressions given in Section 4.2.

The above matrix form is useful to illustrate the effects of each term and their
interactions. It is, however, inconvenient for computations, because the mass
matrix is singular when an explicit scheme is used. To facilitate computations, the
above equation is re-written in two separate matrx equations,

E 0 O gx Hy NS Exx,i E><y,i Exz,i gx HX,I
0 E 0|lg |+[Hy [T+ {|Epi Eyi Epilla, |+|Hy|T
0 0 E 92 z i=1 sz,i Ezy,i Ezz,i gz |_|z,i
NS Exx,B,i Exy,B,i Exz,B,i gx Hx,B,i 0
+Z Eywei Eywsi Eysi gy +|Hygi|Tneiy =10
i=1 sz,B,i Ezy,B,i Ezz,B,i q ) Hz,B,i 0
—2 J(NB,i)
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dT . .
My d_?+ Z dig, +ZGT'iI+ZGT’B'iI(NB'i)
1 i=1

I=x,y,z i=!

NS
33 i@y =St (4.55b)

i=1 I=x,y,z

With the above equations, the iterative solution can be obtained using the
computational procedure as discussed in Section 4.3.6.

Example 4.5. Show that the LDG numerical flux scheme in Table 4.2 is the same
as the alternating upwinding scheme for the 1-D transient heat conduction problem.

Solution. Let us consider element j € [x;, Xj+1], as shown in Figure 4.6e. As usual,
the second order differential equation is split into two first order differential
equations, and this is followed by integration with respect to the weighting
function pair (v, w),

oT

Xi4 Xj4:
f : 5t~ V-4 V(x)dx =0 and f g+ VT w9 dx =0
X; Xj
(4.22¢)
Xj+1 q
j;j vﬁ+vxv~q X
—(n™ - q(xj )V (Xja) + 0t q(x)v(x]) ) =0 (4.23¢)

fxm[q-wﬂvx-w]dx
—(TXg0)m W (X)) + T )n" - w(x])) =0 (4.24¢)
where q(x) = q(x)i, V, =i0/éx, and w(x) = w(x)i.

To demonstrate that the LDG method listed in Table 4.2 leads to the alternating
upwinding scheme, we start from the general form of the numerical fluxes,

G = {a3-CulT] -Colanl: T, = {Tu}+ Ce2[Ti] (4.25¢)
Atpointj, we have q* =q*i,and " =q7i, C,=n -C,
d-n"=n"-{q}-Cyn~ -[T]-n"-Cy,[q]=0.5(q" -n" +q~-n")
—Cyn™ - [T*'n*+Tn"]-n"-Cpp[q" -n" +q -n7]
=05("+q)-C,(-T"+T7)-C,[-q" +q7] (4.26¢)
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—_—
-+ " -+

< + element j + X
n* j j+1

Figure 4.6e. lllustration of various quantities for element j

T ={T}+Cyp, - [T]=05T* +T")+Cyp -[T*n* +Tn"]
=05(T"+T )+CL[-T"+T7] (4.27¢)
If we take C4; =0, Cy, = 0.5, then we have
q-n~=05(q" +97)-Cp[-q* +q71=0";
T=05T*+T )+Cp[-T*+T ]=T- (4.28¢)
Atpointj+1, " =q*i, g =qi and C, = —n*-C;,, whence one has
a-n"=n"-{g} -Cyn" -[T]-n"-Cy,[q] =05(q" -n* +q~ -n")
—Cyn* - [T'n* +Tn"]-n"-Cp[q"-n" +q -n7]
=05(-q" —q ) -Cy(T " -T)+Cp,[-q" +q7] (4.2%)
T={T}+Cyp, - [T]1=05(T*+T")+Cyp -[T*n* +Tn"]
=05(T " +T7)+CL[-T +T7] (4.30e)
If we take Cy; = 0, Cy, = 0.5, then the above two equations are simplified,
q-n*=05(-q" -q7)+Cp[-q* +q7]=—q",
T=05T*+T ) +Cp[-T++T ]=T" (4.31e)
With these relations, we have for the boundary terms of element j,
GG VG T a) V)

= _q_jllv (Xj_+l) + q]—V (XT) = _q}—+1 + q]— (4.32¢)
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OGN WG + TEONT WO )= T+ 7 (4.33¢)

Substituting the above two equations into Equations 4.22e and 4.24e, and
writing the results in terms of scalar quantities, we have the following expressions:

Xj+1
f v
Xj
f"i“{ ow
qQ-W+u—
X X

J

aT  ow
ot axq

dx—qj,, +0j =0 (4.34¢)

dX*Tjjrl +Tj7 =0 (4359)

which are the same as Equation 4.53.

The discontinuous finite element algorithm developed above may be applied to
solve the transient heat conduction problems defined in a multidimensional
domain. One of these calculations is given here. For this case, we consider the
transient temperature distribution in a unit circle with a fixed temperature at its
edge. The circle is heated by a Gaussian heating source. A problem of this type
often occurs in laser heating processes.

The mathematical statement of the problem is given by

2 2
£:£+£+Q , r2:x2+y2§l (4.56)
ot axz 2

where the heating source Q is in the form of Q = Quexp[-(x* + y?)/a?], and the
boundary conditionis T=0atr =1. Set Qo =1 and a = 1 for the calculations. The
properties of the material are also set to unity.

For this problem, the calculations used an unstructured triangular mesh with
linear elements for both temperature and heat flux unknowns. The central flux
approximation is used to approximate the numerical flux. The mesh distribution
and computed temperature results are given in Figure 4.5. The temperature field
calculated assumes perfect rotational symmetry, despite the unstructured mesh
used, indicating the accuracy of the method. It is noted that for this simple problem
the condition of rotational symmetry would allow us to use a 1-D model rather than
a 2-D geometry.

4.5 Potential Flows and Flows in Porous Media

Both potential flows and flows in porous media have the same mathematical
structure as the heat conduction problems discussed above (see Chapter 1). They
are all classified as diffusion problems. The discontinuous formulation and solution
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procedures are basically identical. For these cases, the flow field is derived from
the gradient of a potential, which satisfies a Poisson equation. Some examples of
the discontinuous finite element solution of porous flow problems are given in
references [10, 17, 18].

(c)t=0.01 (dyt=0.1

Figure 4.5. Computed temperature evolution in a unit circle heated by a Gaussian heating
source: (a) unstructured mesh with linear triangular elements, and (b)—(d) temperature
contour at different time steps

4.6 Selection of Numerical Fluxes

This section discusses the selection of numerical fluxes for diffusion problems. The
selection of these numerical fluxes is based on the stability of a discontinuous
finite element formulation. By the stability of a numerical formulation, one
generally means that the consistency and convergence criteria of the formulation
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are met in a discretized form. Mathematically, the transient and steady state heat
conduction problems are classified into different types of differential equations and
thus the stability criteria are not necessarily the same, though they may be closely
related. For discontinuous calculations, numerical fluxes need to be selected so as
to ensure that the formulation satisfies the consistency and stability conditions.

4.6.1 Stability for Steady State Problems

For numerical schemes, convergence of a numerical solution to an exact solution is
required. For this convergence to occur, the requirements of consistency and
stability must be met. The consistency requirement means that a numerical scheme
represents the differential equations, and their boundary conditions, as the size of
the elements approaches zero. The numerical stability requirement states that the
solution of the numerical scheme for solving a well-conditioned problem changes
only a small amount if the input data change a little. This means that any error
committed in the early stages of iteration will not grow in an uncontrolled manner.
A well-conditioned mathematical problem is one whose solution changes by only a
small amount if the problem data are changed by a small amount. The convergence
rate, or order of accuracy, is measured by the power of the element size h. In this
context, a stable solution of a discretized system will not contain spurious modes
that may pollute the solution, regardless of the size of the elements used. If the
discretized system is represented in a matrix format, KU = F, as it often is, then the
stability condition requires that the stiffness matrix K is non-singular with a
uniformly bounded condition number [19]. The selection of the numerical fluxes
thus needs to satisfy these basic requirements.

4.6.1.1 Stability and Numerical Fluxes

In this section, some basic steps are discussed regarding the stability and
consistency studies, for the purpose of developing or selecting appropriate
numerical fluxes for the discontinuous finite element simulation for steady state
heat conduction problems. In the literature, these problems are classified as elliptic
problems. There are several approaches to this type of problem. Here we follow the
procedures outlined in a recent paper by Cockburn [5], using the theory of partial
differential equations detailed by Evans [20].

We consider below a heat conduction problem with T = 0 along the boundary,

VT =-f €Q; T=0ecoQ (4.57)

To check the consistency requirement, an integral form of the differential
equation is derived, following essentially the same steps given in [16]. Integrating
the above equation with respect to the exact solution T, and carrying out the
integration by parts, we have the integral representation for Equation 4.57,

fQ|VT|2dV:fQ|q|2dV:foTdV (4.58)
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where q=VT, and use has been made of the condition T=0 on the boundary.
Equation 4.58 simply means that if the exact solution is used, this integral
condition should be satisfied. We note that unlike the analysis of the finite
difference method, the analysis of a discontinuous finite element method starts
with the integral form of the differential equation. The consistency and stability
requirements will then be analyzed for the integral form.

If the consistency requirement is to be met, then a choice of discretized g, will
satisfy the above integral equation as the size h goes to zero. The discontinuous
finite element formulation for the above problem is given by two integral equations
for element j,

f qp - waV :—f T,V wdv +f Ton, - wds (4.59)
Q; o} 00

f qp - VvdV = f vidV + f dy-m;vdS (4.59)
Q Q 00,

Letting w = gy in the first equation and v =T, in the second equation, adding
on the elements, one obtains

flqnlde—Z[—f TnV-qth+f thh~njdsJ=0 (4.60a)
Q i Q; 0Q;

Z[f qh~VTth—f Thflh~njd8]:f fT,dV (4.60b)

where Q = UQ; Adding the above two equations together yields the final
expression for the discretized solution,

f | [2dV + ©, = f T, dV (4.61)
Q Q

where the extra terms are collected as the sum of flux terms across the element
boundaries,

On = —Z — | V-(Thqn)dV + (Thgn M +Tod@y -0 ;)dS | (4.62)
i 2 09,

Comparison of Equations 4.58 and 4.61 suggests that if a numerical scheme is
stable and iterates to a converged solution, then ®, must be non-negative and @y,
— 0 as h — 0. Note that if ®, < 0, g, may be unbounded, which will cause
Equation 4.61 to differ from Equation 4.58 and the solution becomes unstable.
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Thus, consistent numerical fluxes T, and 6, must be chosen such that they render
®, non-negative. Let us examine Equation 4.62 again:

O = Zf (Thqn - m; ~Todln - n; —Tyq,-n;)dS

jeN

= Zf Toh — Thdth — Thdn ]dS

jeN

-3 f [t] Tl [T )

jeN

+fag(Th¢lh ~Thd -0 — Ty - n)dS

—Zf (({Th} Th)[ﬂh]+rrh] ({(Ih} q))dS

jeN

+f (T (A — @y)-n —Tyhqy -m)dS (4.63)
oQ

where N is the total number of elements, and 09Q;; means integration once over a
shared internal element boundary, 6Q;€Vn NV .

If we take the following expressions for the fluxes at the internal element
boundaries inside the domain Q,

G ={an}—CulTa] - Coolanls Ty ={Ti}+Cpz [T]-Coola] (464

and for those at the element boundaries that share with the exterior boundary of the
domain 09,

ah =dp —CyyThn; T,=0 (4.65)

then @y, is calculated by

o= > [[(Cala] +Culi)os + [ cuTds =0  (469)
e T - o)

ecEj,

provided Cy; and C,, are non-negative. Note that the boundary conditions are
imposed weakly through the definition of the numerical traces. It is apparent from
the proof above that C;,, which can be either negative or positive or zero, is
selected to set boundary conditions [2]. The above proof shows that the parameters
Cyand Cy, play an important role in ensuring the stability and the accuracy of the
discontinuous formulations.
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Castillo et al. [2] show that to guarantee the existence and uniqueness of the
approximate solution of the DG methods, the parameter Cy; has to be greater than
zero, and the local finite element spaces U(€Y) and Q(€;) must satisfy the
following compatibility condition:

T, eU(Q;): f VTvdV =0,vv € Q(Q;) then VT, =0 (4.67)
Q;

To have a well-posed problem, the approximate solution to Equation 4.57 with
f = 0 should be the trivial solution [20]. For this case, Equation 4.61 becomes

fQ|qh Pav + 3 f (Caoalan]? + CulTJ? ) s + j; CulTy?ds =0 (468)
e

ecEy,

which implies that g, = 0, [T,] = 0 on 6Q, provided that C;;>0. We can now
rewrite the first equation defining the discontinuous method as follows:

VTyvdV =0, Y e Q (4.69)
Q;

which, by the compatibility condition, implies that VT, = 0. Hence T,= 0, i.e., the
trivial solution.

Cockburn and Shu [6] further show that when all the local spaces contain the
polynomials of degree k, the orders of convergence of the L%-norms of the errors in
g and T are k and k+1, respectively, when Cy; is of order O(h™).

The discontinuous method presented above is locally conservative. To see that,
we re-write the two integral equations as follows:

qn-wdv =— [ T, -wdv + Tow-n;dS (4.70a)
Q Q 00,
f qp - VvdV = f fudV + f Vigy -n;dS (4.700)
Q Q 00,

for all w, v e Q(€)) x U(Cy).
4.6.1.2 Discontinuous and Mixed Finite Element Formulations

Zienkiewicz et al. [21] argue that a discontinuous formulation is a mixed finite
element method,

a(gy,v)+b(T,,v)=0; -b(w,q,,)+c(Ty,w) =F(w), Yw, v e Q, xU,,
(4.71)

where Qy, and Uy, are two finite element spaces,
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and the bilinear forms are defined as follows:

a(q,r)Z j; v ¢ f o G2 [q][w]ds (4.733)

b(T,r)ZLjTV.Wdean (AT} + Cyp - [TIIw]S (4.73b)

o(T.v) :Zj: ﬁ , Call 1B + f) CuTvas (4.73¢)
F(r) = f fudV (4.73d)
Q

where 6Q means integrating once along the boundary interface. As a consequence,
the corresponding matrix equation may be arranged to take the following form,
which we have seen in Section 4.2:

& eJlT)¢) 9

This matrix form is typical of the stabilized mixed finite element methods [1,
21]; and the “stabilizing” form c(-,-), usually associated with residuals, is
introduced to meet the stability condition. Thus the relation between the
discontinuous and the mixed finite element formulations is immediately clear. For
discontinuous methods, the “stabilizing” form c(:,-) solely depends on the
parameter Cy;, and the jumps across elements of the function in Uy. Thus, the
discontinuous finite element formulation stabilizes the numerical scheme by
penalizing the jumps, with Cy; being the penalization parameter [5, 6, 21]. A
detailed derivation of discontinuous formulation from the standpoint of the mixed
finite element formulation is given in [21].

We note that the matrix form similar to Equation 4.72 also results from a mixed
finite element formulation and the inf-sup (or LBB) condition needs to be satisifed
to ensure stability, which in turn requires the use of non-equal order interpolation
functions for the temperature and its fluxes [19, 22]. Different types of stabilization
have been applied to circumvent the inf-sup condition so that equal order
interpolation polynomials may be applied to approximate both the temperature and
its gradient components [23, 24].

For discontinuous finite formulations, penalizing the jumps is equivalent to
introducing stabilization by using residuals. To see that the residuals are related to
the jumps, we set R; = g, — Vu, and R, = V-g, — Q and use the weak formulation
of the discontinuous method, and the numerical fluxes to get
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fQ_Rl-wdx:f ((-4n—Cp) [l + Cpolan]) wonds  (4.750)

0Q;

fQ_ Rovdx — f ((—1n+ C)@y] + CualTy])- mvds (4.75b)

forallw, v e Q(Q;)=xU(Q;).

The above discussion indicates that the relaxation on the inter-element
continuity allows a variety of different stabilization schemes to be developed. The
available schemes published in the literature are all developed based on the
stability requirements illustrated above. In Castillo et al. [2], a comprehensive
study of these schemes is carried out in a unified approach. In Table 4.1, the
function a'([Ty]) is a special stabilization term introduced by Bassi and Rebay [9]
and later studied by Brezzi et al. [7].

As mentioned above, the steady state heat conduction problems fall into the
category of elliptic problems, whose governing equations do not have real
characteristics; thus there are no characteristic curves as there are for hyperbolic
equations (or wave equations) to carry the data into a region from the boundary.
Therefore boundary conditions must be imposed on an elliptic equation. In general,
elliptic problems are more difficult than their hyperbolic and parabolic counterparts
because a solution must exist over an entire domain, whereas for the latter, it still
may be of interest to obtain a local solution in some small interval of time. These
characteristic differences are also reflected in their stability results.

4.6.2 Stability for Time Dependent Problems

A numerical scheme for time dependent problems needs to satisfy the consistency
and stability requirements in the same way as described for steady state problems.
We present L%integral analysis, matrix analysis and Fourier analysis for time
dependent problems.

4.6.2.1 Numerical Fluxes for Transient Problems

Here, we discuss the selection of numerical fluxes based on the LZ-integral
analysis. For this, the procedure discussed in Section 4.6.1.1 is used to obtain the
L2-stability for transient heat conduction problems. That is, we first derive the L*-
stability results for the continuous problem, and then enforce them on the
discretized equations. To do that, we consider a somewhat simpler form of the
transient heat conduction equation with properties set to unity,

T _yor e (4.76a)

T=0 cdQ (4.76b)
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T(r0)=To(r) €Q (4.76c)

The above equation is multiplied by T(r,t) and integrated in time and in space
to give the following expression:

f f T—dth f f T V2T dvdt 4.77)
0 Q

Carrying out the integration, and substituting the definition q = VT, we have the
final result for the L%-stability,

1 2 ! 2 1 2
EfQT (r,)dV +j; fQ|q(r,t)| dvidt — ZfQT r,0)dv  (4.78)

A procedure similar to that used for the stability analysis of steady state
problems can then be applied. The resultant discretized solutions satisfy the
following inequality:

s [0+ [ [ aeoovis [oyd
2Ja 0Jao 0
1o, 1,
=3 [ Téwoav <3 [ TAroav @.79)
2 Q 2 Q

By forcing the third term on the right hand side to be non-negative, one can
show that the stability of the scheme requires Cy; and Cy; to be non-negative. This
procedure is similar to, but more involved than, that for the steady state case. This
is detailed by Cockburn and Shu [6], who further proved that for transient heat
conduction, C;; =0 and Cy; = 0 can also be applied. This is different from the
steady state case. Their analyses and numerical experiments indicate, however, that
the order of the accuracy is sub-optimal for this choice.

Numerical fluxes that pass the stability requirement posed by the above
equation are given in Table 4.2.

4.6.2.2 Stability Analysis Using Matrix

The L% integral analysis given above is closely related to Lyapunov’s theory on
the differential equations [18]. As a result, the matrix equations, resulting from the
discontinuous finite element discretization, can also be used to carry out the
stability analysis. To see that, we rewrite Equation 4.77 without time integration.
The stability requirement is such that the solution of the resulting differential
equation needs to meet the following condition if the solution is stable and unique
[20]:

2 2 <
2dth dv — fTVTdV 0 (4.80)
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The discretized form of the equation takes the following form:

aT _ a7 (4.81)
dt

where A is an N x N matrix independent of t and T is the vector of the N-
dimension. The solution is subject to the initial condition T,. Assuming that A has
eigenvalues A4, 4, -+, Ay, and C is a positive constant, i.e., C > 0, then we have
the following stability theorem [25]:

a. If Re(4) <0,k=1, ---, N, then for each T, R" and suitably chosen positive
constant 4, we have

[T@)] < C[Tofle™ and lim T(t) =0 (4.82)

b.If Re(A) < 0, k = 1,..., N, where the eigenvalues with Re(\,) = 0 are distinct,
then T(t) is bounded fort> 0,

[T <ClTol (4.83)

c. If there exists an eigenvalue A, with Re(y) > 0, then in each neighborhood of
To = 0 there are initial values such that the corresponding solutions behave as
follows:

limT(R)] =+ (4.84)

In case a, the solution T, =0 is exponentially stable, in case b To = 0 is Lyapunov-
stable, and in case c, it is unstable. In all the above, ||+|| denotes the L?-norm.

In addition to the above, we also have the following stability theorem that can
be very useful in our analysis. For a matrix equation given below,

‘Z—I =AT+B@®)T (4.85)

the solution is considered Lyapunov stable (or L>-stable), that is, for a constant C,
it satisfies the following inequality,

[T < CITol (4.86)

if all the eigenvalues of A are such that Re(%) < 0, k = 1, ---, N; and if
[5 11 B(t) | dt < oo, that is, B(t) is bounded.
In particular, for an equation of the form,
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‘;_I = AT+f(t,T) (4.87)

the solution is L-stable, that is,
IT®)] < ClIT|l (4.88)

if all the eigenvalues of A are such that Re(4) < 0, k =1, ---, N, and if the
following condition is met on f(t,T):

i LT

=0 uniformly int 4.89
m=o || T|| y ( )

which means that |[f(t, T)|| < c||T||, with ¢ being a positive constant [26].

The above theorem provides the basis for the Nuemann stability analysis,
which is often employed to determine the time steps for transient calculations. The
theorem also will be used in later chapters for stability analysis.

4.6.3 Fourier Analysis

Let us consider the Fourier analysis of the error and stability of the numerical
schemes for the solution of transient problems. This type of analysis is based on
Neumann’s spectrum analysis and gives the criterion for critical time steps
required for the solution. This can be particularly useful for the discontinuous finite
element methods in that the discontinuous schemes often use explicit methods for
time marching. As usual, the analysis is applied to a 1-D problem,

2
N _pou X &[a,b] (4.90)
ot ox?
with periodic conditions and the initial condition u(x,0) = sin(x) and D denotes the
thermal diffusivity.

The above diffusion equation can be formulated using the discontinuous
schemes presented in Section 4.3.1. The stability analysis of these schemes has
been made recently by Zhang and Shu using the Fourier expansion technique [4].

Here we perform the stability analysis of different, but more general, forms of
the discontinuous finite element formulation using the Neumann stability analysis
method. As discussed in Chapter 2, discontinuous formulations can come in
various forms. The various forms presented so far have been based on the unified
numerical flux approach. Here, as a variation, we consider the formulation based
on the double integration approach or through weakly imposing the cross-element
continuity (see Section 2.1.1).

Towards this end, we split the governing equation above into two first order
differential equations and integrate them over element j € [x;, Xj+1] with respect to
weighting functions,



148 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

T . pA_yg. g+~ 0 (4.91)
ot OX OX

f "
Xj

We integrate by parts twice and apply the appropriate upwinding scheme at the
element boundaries to obtain the following expressions:

oT aq
E—F D—

v dx = fx X{q + %}N(x) =0 (492

f_m [%-s-qh]dx+a1[T}jvh(xj)+(1—al)[T]j+lvh(xj+1):0(4.93a)

X”l OTy Oah
»/;,- [ ot +D— o ]dx
"‘azD[q]jVh(Xj)+(1_052)D[Q}j+1vh(xj+1):0 (4.93b)

Here, values of the constant ¢; and «, are chosen to be 1 or %2, which correspond

to different schemes of flux calculations. That is, it is the full upwind scheme if al
= ap = 1, the central scheme if &4 = a, =, and the alternating upwinding if a; =0
and o, =1 (or ¢ = 1 and o = 0). Also, [e]; denotes the jump condition at the
element boundaries,

[a]; ZQT_QE; [T]; ZTjJr =Ty (4.94)

To demonstrate that the above formulation is consistent with the alternating
upwinding, we note that in the double integration approach, the values of q across
one boundary of the element are the same, and reflects a jump condition on [T] at
the same boundary. We do just the opposite to the other boundary of the element.

The discontinuous Galerkin solution procedure for Equation 4.88 yields the
matrix equations,

N,
(km) - () (i )
> sia +Z'—<n
m=1
Fau[T] () + (A a)[T], 1 h(X;) =0 (4.958)
Ne

(km) (m) [ {km) 4 (m)
Esm +DZ () 403

m=1
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+a;D[a];h (x;) + (L- ) D[a]; 1 hc (X1.2) = O (4.95b)

forj=1,2, -, N, N being the number of elements, and k = 1, 2, -+, Ne, N, being
the number of nodes of element j. Also, subscript (m) ongand T withm=1, 2, ...,

Ne refers to the node number local to the element and S((:f;“) and L((‘}r)“) are matrices

calculated by
(km) e (km) G dey
S(h) :f hdndx and L :f @de (4.96)
Xj Xj

where ¢(x) is the shape function. Since g = (G1, Gz, ..., One)' IS an auxiliary
variable, it is eliminated and the actual scheme for {T} takes a form similar to a
continuous finite element scheme,

T

Ty =AT (o) * BT gy *CTj) + DTy +ET (15 (4.97)

— —()) —
where A, B, C, D, and E denote the coefficient matrices and again the subscript ()
refers to the element. The time step is selected based on the criterion for the
numerical scheme to avoid numerical instability. We now perfom the linear
stability analysis for the discontinuous finite element formulations with the
Runge—Kutta time integration schemes for time marching.

By Neumann’s theory, the round-off error may be expanded in a Fourier series,

oo

260 =T ~Tewa (1) = Y gt = >~ el (4.98)

m=—o00 m=—oo

where T(x,t) is the numerical solution to Equation 4.90.

It is often sufficient to consider a typical component of the series at a nodal
point j,
n at 1Ky X; — e

gj:e e

nglknin (4.99)
where h = Ax, x; = jh, and n is the nth time step. To simplify the notation, we will
set k = ki,. The amplification factor is defined by

n+l iki
el ea(tn+At)e|kjh
G= Jn T _at, _ikh e (4.100)
€] gl

To prevent the error from growing in time, it is required that

|G|<1or Re(a) <0 (4.101)
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This concept applies to any component of a polynomial of order | defined on an
element,

0]
gjt)y=| @ [eM (4.102)
£ ©)

where as usual the subscript () refers to the element.
Setting T = ¢ in Equation 4.97, one has the matrix equation for errors,

() = Ag(jp) + Be(jy + Ce(j) + Dejuy + Eg(jug)
— (Aefi2kh + Befikh +C+ Deikh + EeiZkh)S(J‘)

=C(k,h) g (4.103)

Clearly, the resultant matrix C(k,h) plays the role of amplification factor. One is
then able to use the theory of matrix stability to perform the L2-stability analysis of
the numerical scheme ([4], also Section 4.6.2.2). Using Equation 4.103, we are also
able to determine the critical time step for a particular time integration scheme.

We illustrate the use of Equations 4.97 and 4.103 to study the numerical
stability of the scheme, and to determine the time step for the explicit Runge—Kutta
integration scheme of up to the third order for a piecewise constant approximation.
Setting | = 0, Equation 4.97 takes the following form:

. D
T, = ? (a,locsz_z + (o +ay — 40(,loc2)TJ-_1 + (1304 — 30 +604a,)T;
+(=2+ 3y + 30 — 4040,) T g + (1 - 0g)1— ;) (4.104)
Thus, we have the differential equation for the error,
£; =C(k,h)g; (4.105)

where the amplification matrix has only one term, C(k,h) = (D/h?)C, and C is given
by

C= aq_aze_Zikh + (g +ay — 4(14_a2)e_ikh +(1-30y —3a, + 60405,)
+(=2+ 30y + 30, — 4y, )™ + (1— ) (1 — 1, )X (4.106)
From the theory of stability presented in the last section, the coefficient Re(C)

needs to be negative to ensure that Equation 4.104 has a stable solution. For
example, if &x = & = 0 is taken, C = (1 — e*")?> 0; and thus the solution will be
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unstable. This is confirmed by numerical experiments, as shown in Table 4.3a.
Similarly, if &, = o, = 1is taken, C = (1 - e ™" )?> 0.

We now obtain information on the time step required for a stable solution. Let
us begin by considering the first order Runge—Kutta scheme, which is the Euler
forward method, for time integration. By this scheme, we have from Equation 4.99

n+1 n
- D

gy —&j N
— = C& (4.107)

& ~¢4)
At h? !

Other discretization using the Runge—Kutta schemes can be obtained
similarly. With the definition of the amplification factor, G = g?*l/gj‘ =™ these

discretizations yield the following relations:

G =1+ for first order (Euler forward) (4.108a)
G=1+z +% 2% for second order (4.108b)
G =1+z+12%+1 7% for third order (4.108c)

where z = ADAt/h?. Here, A is the eigenvalue of the matrix C.

To avoid numerical instability, that is, to make the error smaller as time
marching continues, it is required that |G| < 1. Therefore, the stability condition for
the discontinuous finite element scheme, with the Runge—Kutta time integration
schemes of difference order, is such that the time step At is chosen to satisfy

r=——<f (4.109)

where f is determined by the most critical eigenvalue of C, which satisfies |G| <1.
The results using Equations 4.108 and 4.109 are given in Table 4.3.

Table 4.3a. Stability criterion f for the first order Runge—Kutta scheme

oy o 0 0.5 1.0
0 0.0 2.0 0.5
0.5 2.0 2.0 2.0
1.0 0.5 2.0 0.0

Note: f = 0 means that the scheme is unconditionally unstable.

Table 4.3b. Stability criterion f for the second order Runge—Kutta scheme

o o 0 05 1.0
0 0.0 1.3333 05
05 13333 2.0 1.3333
1.0 05 1.3333 0.0

Note: f = 0 means that the scheme is unconditionally unstable.
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Table 4.3c. Stability criterion f for the third order Runge—Kutta scheme

o o 0 0.5 1.0
0 0.0 1.6 0.6282

0.5 1.6 2.5128 1.6

1.0 0.6282 1.6 0.0

Note: f = 0 means that the scheme is unconditionally unstable.

Exercises
1. Consider the problem defined below,

2
ar _or

P aX—2+g(T) e[01],t>0

T(x,0)=Ty(x) e[0]]

aTO.t) _aT(LY

=0 t>0
OX OX
with D > 0 and sup|dg(T)/dT| = M < 0. Defining the energy and its gradient
attime tas
1
Eﬁ):(/)TZOQde; Fa):!jm[aT(Xtﬁ
0 0 Ox
Show that

ng aM_ZUW ]

and further show that if M < 72,

t'LTo F(t) = ti@ﬁl[aT(X’t) ]zdx =0

OX

Hint: to prove the above relations, the Poincaré inequality may prove
convenient. The Poincaré inequality is stated as follows:

fol[dl:jg(x) ]de > ﬂzﬁlu(x)zdxl it u(0)=u(L)=0
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2

> ”Zfl[du(x) ]de ¢ duO) _du@ _
B ol dx ' dx dx

fl d2u(x)
0 dX2
where u is a function that is continuously difrferentiable.
Consider a problem given by the following set of equations,

oT o°T
E:Dax—2+g(l'), e[0]1],t>0
T(x,0) =Ty (X), c[04]

TO,1)=T(0t)=0, t>0

with D > 0 and sup|dg(T)/dT| = 7 % < «. Show that if the solution to the
above problem if unique, then

1
lim E(t):tlimeZ(x,t)dx:O

A wall 0.12 m thick having a thermal diffusivity of 1.5x107° m?/s is
initially at a uniform temperature of 85°C. Suddenly one face is lowered to
a temperature of 20°C, while the other face is perfectly insulated. (a) Using
the explicit discontinuous finite element technique with space and time
increments of 30 mm and 300 s, respectively, determine the temperature
distribution at t = 45 min. (b) With Ax = 30 mm and At = 300 s, compute
T(x,t) for 0< t< tg, where tg is the time required for the temperature at each
nodal point to reach a value that is within 1°C of the steady state
temperature. Repeat the foregoing calculation for At = 75 s. For each value
of At, plot temperature histories for each face and the mid-plane.

Consider steady state heat conduction in a square region of side a (Figure
4.1p). Assume that the medium has a thermal conductivity of k = 30 W/(m
K) and a uniform heat generation of Q, = 10’ W/m®. For the boundary
conditions shown in Figure 4.1p, form the discontinuous finite element

Convection (h;, To)

On

Insulated

e———>

a

Figure 4.1p.
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matrix equations for two different discretizations: (a) the domain
discretized by one quadrilateral element and (b) the domain is discretized
into two triangles. Compare the results obtained by these two different
discretizations. Take h, = 60 W/(m2 °C), T, = 0.0°C, T, = 100°C, qo =
2x10° W/m? and a=1 cm.

5. Consider a steady state heat transfer in a 2-D fin. The fin shown in Figure
4.2p has its base maintained at 300°C and is exposed to convection on its
remaining boundary. Write a discontinuous finite element formulation and
develop a computer code to solve the problem. Use quadrilateral elements
to calculate the temperature distribution. Take h, = 40 W/(m* K), T,
=20°C, and k = 5 W/(m K). Compare the results using constant, linear and
quadratic elements. Compare the results obtained using different numerical
fluxes.

6. For Problem 5 above, develop a transient discontinuous finite element
program and solve the temperature distribution history, assuming T(x,t=0)
=300°C.

7. Consider the square channel shown in the sketch (Figure 4.3p) operating
under steady state conditions. The inner surface of the channel is at a
uniform temperature of 600 K, while the outer surface is exposed to
convection with a fluid at 300 K and a convection coefficient of 50 W/m?
K. From a symmetrical element of the channel, a two-dimensional grid has
been constructed and the nodes labeled. The temperatures for nodes 1, 3, 6,
8, and 9 are identified.

Convection (h;, To)

11 12 13 14 15

I

1 2 3 4 5
——a—P—— a—P——a —P——a—P

k =5 W/(m K), he = 40 W/(m?K), T, = 20°C
To =300°C, b=1cm, a=2 cm
Figure 4.2p.

(a) Beginning with properly defined control volumes, and following
Example 4.3, derive a discontinuous finite element code for the solution of
the problem using a triangular mesh with nodes shown in Figure 4.3p and
determine the temperature T,, T, and T (K).

(b) Calculate the heat loss per unit length from the channel.
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Tl:430 K, T8:T9:600K
T3=394 K, Tg=492 K

Figure 4.3p.

Apply the Fourier analysis to determine the critical time step for a 1-D
transient heat conduction with the Runge—Kutta scheme of second order
for time integration and with linear elements for spatial discretization.
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5

Convection-dominated Problems

Convection is the second mode for heat transfer. It plays a dominant role in
determining the overall behavior of the fluid flow field and the redistribution of
thermal energy in a wide range of thermal and fluids systems. The mathematical
description of convection problems involves first order derivatives in the spatial
coordinates, which differs from pure conduction, where the first order derivatives
do not exist. These first order derivative terms are often the origin of spurious
oscillations that pollute the numerical solution, regardless of the types of
numerical techniques used. This is particularly true whenever there is not enough
diffusion in the system. Many techniques have been designed to suppress these
oscillations, and the discontinuous finite elements provide a natural formulation to
minimize the oscillations while maintaining a high accuracy. The purpose of this
chapter is to discuss the application of the discontinuous finite element method to
the solution of the convection and convection-diffusion problems.

The chapter starts with pure convection and then moves on to study the
convection-diffusion problems. Various discontinuous formulations and their
numerical implementation for these problems are presented. An important issue
concerning the effective use of the discontinuous finite element methods is the
choice of effective numerical fluxes. The selection of these fluxes is discussed in
detail and the L2-stability analyses used for selecting these numerical fluxes are
also presented for these problems. For transient problems, the von Neumann
analysis is presented, which is a powerful tool for determining the critical time
steps, or the so-called CFL conditions, for explicit time marching solutions using
the discontinuous formulations. The subject of non-physical oscillation is discussed
in detail for 1-D steady state convection-diffusion problems, and its origin is
investigated in terms of the eigenvalues of the resultant matrix. Often in the study
of convection problems of practical importance, the convective terms are nonlinear
in nature. The subject of nonlinear convection is discussed in the context of
Burgers’ problems. Various numerical algorithms, designed to minimize the
oscillations associated with the discontinuous finite element solution of the
Burgers’ equations, are presented. These algorithms include the TVD scheme and
its variants for higher order approximations, along with the appropriate use of
slope limiters or flux limiters.
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5.1 Pure Convection Problems

Pure convection problems are idealized systems where viscous effects are
neglected. Without viscosity, the system develops sharp fronts and discontinuities
in the mathematical solution. In the real world, thermal fluids systems in general
are dissipative, meaning that the viscosity, however small it is, is present and plays
an important role in smoothing out the sharp fronts. Nonetheless, a pure convection
problem offers a system for analysis, and for the understanding of the nature of
convection problems. In this section, we first develop a discontinuous formulation
for a 1-D pure convection equation, and then generalize the formulation for
multidimensional problems.

5.1.1 1-D Pure Convection

For the purpose of understanding the nature of this type of problem, the method of
characteristics is discussed before the discontinuous finite element formulation is
presented.

5.1.1.1 Method of Characteristics
The following linear partial differential equation describes the pure convection
effect on the temperature field T(x,t):

oT oT
u =

—=0 5.1
ot OX 61)

where u is the convection velocity and is taken to be a positive constant for the
sake of simplicity. We consider a particular curve x = x(t) in the x-t plane. Then
the total derivative of T(x,t) along the curve is governed by the chain rule,

dT (x(t).t) _ oT(x(B).1) , OT (x(t).1) dx(t) _
a ot ox dt

0 (5.2)

Comparison with Equation 5.1 indicates that the curve has a characteristic of
dx(t)/dt = u. Thus we have the solution for the temperature T(x,t),

ar o) _

o =0 along the characteristic curve u (5.3)

Integrating the above equation yields the following results:
T(x,t)=const; X(t)=ut+ X, (5.4)

where X, = x(0). Since T is constant along the characteristic curve, the solution
may be written as
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T(x,t) =T (xg,0) =T (x—ut) (5.5)

We see that T(x, t) remains a constant along the curves x(t) — ut = X, which are
called characteristic curves. The constant X, is a parameter. The solution T(xt)
carries the initial data T(xo, 0) at the boundary into the x-t domain. A set of
characteristic curves in the x-t plane is called the characteristic diagram. Figures
5.1(a) and (b) show the characteristic curves in the x-t plane.

Ug(X) Uo(x—ct)

Position

@)

Ug(x—ct)

- /

le—— ct—— X
(b)

Figure 5.1. Characteristic diagrams for pure convection problems: (a) 2-D view and (b) 3-D
view

c———

In the fluids literature, the above solution method is called the method of
characteristics [1, 2]. The method can also be employed to obtain a solution to a
system of equations. Let us consider such a system,

oT AaT—B

AL - 5.6
ot 19)4 5.6)
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where A is an N x N matrix, T = [Ty, Ty, ..., Ty]" is a vector of dimension N and B
= [By, By, ..., By]" is the source vector of dimension N. The superscript T denotes
the transpose. If the above equation is to be written in the form of Equation 5.1,
then we need to first find the eigenvalues A of matrix A,

Aa=lla (5.7)
where a is an arbitrary vector of dimension N and | is the identity matrix. For a
pure convection (or hyperbolic) problem, the eigenvalues are distinct and the
following eigenvalue—eigenvector relation exists:

AP = PA (5.8)

where A is a diagonal matrix with terms on the diagonal being the eigenvalues, A;
= 4;6;. P is the eigenvector matrix, P = [py, pa, ..., p,], Where p; of dimension N
being the eigenvector corresponding to the eigenvalue A;.

Premultiplying Equation 5.6 by P~* gives

29T pap T _pa 0T pp1 T

P ot oX ot oX

=P'B (5.9)
and defining two new vectors w and g, both of dimension N,
w=PT; g=PB (5.10)

we can write Equation 5.9 in the following form:

ow oW
St AW =g (5.12)
In component form, Equation 5.11 becomes

oW OW; .
—ii—=g, i=1,2 .. N 5.12
& Ao T (5.12)

Following the steps leading from Equation 5.1 to Equation 5.3, we identify the
characteristic curves for the system of equations as

%:ﬂ,—, i=1,2,...,N (5.13a)

along which w; is determined by the equation,
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dw; .
—t=g;, i=1,2,..,N 5.13b
. (5.13b)

With w so obtained, T is calculated by
T=Pw (5.14)

It is noted that the above equation is derived based on the assumption that A is
a constant. The same procedure also applies when A = A (X, t, Ty, Tp, ..., Ty). In
this case, one can show that the above equations remain the same, except that g
will be replaced by ¢'

g'=g+[o(PY) /ot +[Alo(P 1)/ ox]Pw (5.15)

The solution procedure remains the same as above and thus needs no
elaboration. Let us now discuss an example of using the method of characteristics
for the solution of a pure convection problem.

Example 5.1. Obtain the solution of the temperature distribution governed by the
pure convection equation,

or  oT
E_Fugzo € [~o0,00] x[0,00] (5.1e)
T(xt=0)=Ty(x) xe&[-wo,0] (5.2¢)

where u is the known velocity, which is taken to be a positive constant here, and T
is the temperature.

Solution. The general solution of the above equation can be obtained using the
method of characteristics,

T(x—ut) =T(x,ut) =Ty (Xx—ut) (5.3¢)

The solution represents a wave pack propagating with speed u. The solution (xq,
t;) is then related to t = 0 in the following way:

T (X, ut;) =Ty (X, —uty) =T (% —uty,0) (5.4¢)

For this type of problem, the solution is a set of straight lines in the x-t plane
originating from the boundary of t=0, and therefore depends strongly on the initial
data. Two of these straight lines are plotted in Figure 5.1e. Both of the lines have
the same slope, 1/u. Also, the solution carries the data from the boundary directly
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to the x—t domain. Moreover, along the characteristics, T(x,t) remains constant, and
is determined by its value at the boundary.

T(XZlUtZ)
t T(Xl,Utl)
T(x,0) = To(x)
T(x;—uty,0) T(x,—ut,,0) T(

Figure 5.1e. lllustration of the analytic solution of the temperature field

5.1.1.2 Discontinuous Finite Element Formulation

Having understood the basic nature of pure convection problems, let us now turn
our attention to the discontinuous finite element solution of the 1-D problem given
by Equation 5.1. As usual, we start with discretizing the domain into a collection of
N elements, and then integrating the above equation over element j € [x;, Xj:1] with
respect to a weighting function v(x),

Xj+t 8Th ov —
j;j [VW_UTh &)dX‘FV(Xj_'_l)UT(TH-laTJ-J;l)

_V(Xj)ﬁ(rj_,TjJr):O (5.16)

where we have replaced the convective temperature values at the element
boundaries by the numerical flux expressions (see Figure 5.2 for geometric
definitions). For a constant u or a linear problem, an effective numerical flux is
given by the Lax—Friedrichs flux:

u?(a,lo):u"”b—|u|b‘Ta (5.17)
-+ -+
* element | + XV
i j+1

Figure 5.2. Illustration of boundary interfacial quantities for element j
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which in essence is an upwinding scheme. The unknowns T, may be approximated
with a polynomial of order k = N, -1 as local basis functions,

Ne
Ta(x) = > Ti)4 () (5.18)
i=1

with N, being the number of nodes associated with an element.

Substituting the above equations into Equation 5.16 and taking the Galerkin
approximation, followed by numerical integration, we have the following matrix
equation:

du
M dt(J) +KUjy +KgUgj) +NgaUgjg +Np 2U(ju) =0 (.19

where subscript () refers to the element. For example, U denotes the unknowns
belonging to element j, subscript B refers to the boundary, and U is the vector
containing unknowns at the nodal points of the elements,

T . T .
Uy =Moo T gy s Ugjogy =[Tn, 0,0y 5
U(j+1) = [0101 o 'le]-(errl)

if the Lagrangian interpolation functions are used. The matrices, all of dimensions
Ne X Ne, are calculated by

Xj Xj 11
an :f ! 1¢m¢ndxn Kmn = —Uu J ¢n_aa¢):'] dX, m,n:l, 2'-.., Ne
%]

Xj

u—|uj u+|u|
KB,ll = _T » INBINN, =

u+|uj

u—|uf
NB,1,11= Ta NB,Z,NeNe =

2

with all other elements in Kz, Ng 1, and Np , set to zero.

In particular, if k = 0, that is, if the constant element approximation is used, we
recover the finite volume formulation. In addition, if u>0, then we have the
following matrices (m=n=1),

Mpn = AX=Xj,1 = Xj; Ky =0, Kggg =Ngonn, =0;
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Kgnn, =—Ngg11 =U

The matrix equation is then simplified as
ORI ST T S 5.20
X—qt HUT0 Ty = (5.20)

This is the simple upwinding finite difference (or finite volume) scheme.

The above equations are ordinary differential equations, which can be
integrated in time using various time integrators. For convenience, the matrix
equation may be written in a generic form,

U
=L (5.21a)

with the operator L defined by
L(V) = —M’l(KU(J-) +KpgUj) +Ng1Ujg) + Np 2Ujip) (5.21b)

If a simple Euler forward scheme is used, then we have the following time-
discretized form for Equation 5.21a:

Ut = Ugj) + At"L(UM) (5.22)
or explicitly,
n+l n npa-1 n n n n

where superscript n denotes the nth time step and At” represents the time step,
where the critical time step must be chosen to enforce the CFL condition. It is seen
that the step involves the inversion of the mass matrix. For practical applications,
the mass matrix M may be diagonalized, either through numerical quadrature or by
constructing orthogonal basis functions, as discussed in Chapter 3, to speed up the
calculations.

Other high order explicit schemes, such as the Runge—Kutta integrator, may
also be used. An implicit time scheme is also possible. It is noted that when an
implicit time scheme is used, a global matrix needs to be assembled, which for this
case would be larger than the global matrix generated by the continuous finite
element formulation. In fact, for a 1-D problem, the matrix would be almost twice
as big if linear elements are used, because every node is shared by two elements.

The complete computational procedure for the solution of Equation 5.21 may
now be described. To start, all the values are set to the initial data and a time step is
selected. Then the calculation starts with a boundary where the boundary condition
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is prescribed and sweeps from this element forward until the entire domain is
covered. After a sweep, the convergence is checked. If convergence is achieved,
then the same procedure is applied for the next time step. This calculation is
repeated for every time step until the time elapsed reaches the total time for
simulation. It is noted that in this element-by-element approach, the terms
associated with the adjacent elements are moved to the right of the equation and
treated as source terms. These terms are updated with the U values as soon as they
become available during the course of solution.

It is obvious that the above procedure can be directly applied to the system of
equations (i.e., Equation 5.6), when the system is appropriately decomposed, and
the details are thus not elaborated.

Example 5.2. Consider the following convection problem:

oT oT
—+u—=0 xe[0,1 5.5e
o U €[01] (5.5¢)

with u = 0.1 and the initial conditions,

sin(107x) for 0<x<0.1

(5.6e)
0 for 0.1<x<1.0

T(x,0) :{

Solution. For illustrative purposes, only the linear elements are used. Following the
procedure discussed above, we take the linear elements to discretize the domain
equally, and to obtain the following matrix for a typical element:

2 1 -1 -1 00
M=E ;K=—ﬂ ; Kg = ;
31 2 211 1 0 u

\ [-u o]\ [o o
1710 o ** |0 0

where h = Ax. The explicit forward time integration is employed to march the
solution in time.

The calculations used 200 elements and a time step of 1.0x10™*. The computed
results are plotted in Figure 5.2¢, along with the analytic solution. For comparison,
the finite difference solution with upwinding is also given and plotted in the same
graph. We can see that there is considerable numerical dissipation associated with
the finite volume scheme with upwinding, and the peak is subdued substantially.
The discontinuous finite element solution, even with linear element approximation,
almost reproduces the analytic solution. A little overshoot near the two tails,
however, is noticed.
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Comments. The finite difference (or finite volume) formulation based on the
traditional control volume approach is discussed by Fletcher [3]. For this problem,
the finite volume formulation was obtained from the above discontinuous
formulation by using the piecewise constant approximation over an element. Here,
the discontinuous finite element method is just an extension of the finite volume
method, which is limited to the step function approximation. The discontinuous
finite element method, on the other hand, easily employs the higher order
approximation.

1.0 . A
f —+—Tatt=0 i1
0.8 4 : | * Tn".:ri'ﬁu: (tzao) ‘I I‘.
I T (t=8.0) ] i
] 1 5y ! .
0.6+ ] Tl=||-i:.. du!fu-\:-rcv-(t=8 D) ' §
B
| | |
— 044 P t 3
1
- ~,
0.2 | fi QN
J | Fi AN
Y
0.0 ' / S
02 —_—
0.0 0.2 0.4 06 08 1.0
X

Figure 5.2e. Comparison of numerical solutions for pure convection using constant and
linear elements. In both cases, the upwinding scheme is used

5.1.2 Pure Convection in Multidimensions

As with the 1-D pure convection problems, a multidimensional pure convection
problem takes a simple form,

oT

SLHUVT=0 cQx(07) (5.24)

where, for simplicity, u is taken as a constant vector. To develop a discontinuous
formulation, the domain is first discretized into a tessellation of finite elements,
say, triangular elements for a 2-D geometry, and then the equation is integrated
over an element j with the result,

f [va—T—uT-Vv]dV+f vﬁ-ndeZO (5.25)
Qj 8t BQJ-
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where n; is the outward normal of element j, and €; and o< are its domain and
boundary, as shown in Figure 5.3. The numerical fluxes now are needed to
complete the formulation. For this purpose, the following definitions are used (see
also Figure 5.4):

{T}=05(T"+T"); [(1=T'n"+Tn" (5.26)

Figure 5.3. Schematic of the triangularization of computational domain and element
arrangements.

Figure 5.4. Element j (j*), its neighbor j~ and other quantities used to define numerical
fluxes

Again, the underscored brackets are associated with these definitions only.
With the above equation, the consistent numerical fluxes are given by

uT =u{T}+C, - [T] (5.27)
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where C, is a non-negative definite matrix depending on the value of u-n. The
relative relation of the quantities is schematically shown in Figure 5.4.

With a choice of C, = 0.5|u-n|l, the numerical flux is calculated by the classical
upwinding scheme,

UT, = u{T}+2 |u-n|[T] (5.28)

where 1 is the unit matrix. If, on the other hand, C, = 0.5|u|l, then we have the local
Lax—Friedrichs numerical flux,

UT, = u{T}+3{u|[T] (5.29)

Once the numerical fluxes are selected, the unknowns can be interpolated using
a polynomial basis function. With the Galerkin procedure, the element matrix can
be calculated and the resultant matrix equation has the following form:

NS

K+ Kg;
i=1

NS
U+ NgiUng,i)y =0 (5.30)
i=1

du
MEJF

where M is the mass matrix, K is the volume integral, Kg; and Ng; represent the
boundary integral contribution associated with element j, U is the unknown vector
for element j, NS is the number of sides of the element, and Ug ) is the unknown
vectors associated with the neighboring elements. The above equation may be
further written in the same generic form as Equation 5.21.

As discussed for the 1-D case, time integration can now be applied to obtain a
solution from Equation 5.27 in time. Restriction on the time step applies when
explicit numerical time integration schemes are used.

Aside from the direct solution given above, another approach may also be
applied to solve this problem. Since u is constant, the equation can be re-written as
follows:

T o (5.31)
ot s

u

where s, indicates that the directional derivative is along the u direction. This
system is practically 1-D, and the above solution procedure for the 1-D problem
may be applied directly.

We will see some of these applications in the radiative transfer processes
(Chpater 9) and in the discontinuous finite element solution of the lattice
Boltzmann equations (Chapter 11).

In passing, we note that selection of appropriate time steps and numerical
fluxes for a meaningful numerical solution of pure convection equations requires
requires stability analysis, which is to be discussed below.
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5.1.3 Stability Analysis

As for the solution of heat conduction problems, stability is a critical issue for the
discontinuous finite element method for the solution of pure convection equations.
Numerical fluxes must be selected to satisfy the stability condition. There are
different approaches to stability analysis. In this section, we present the integral
analysis, the discretized analysis and the Fourier analysis; the last also being used
for the determination of the critical time step for explicit time integration, and for
the study of dissipation and dispersion behavior of the numerical schemes.

5.1.3.1 L-Stability — Integral Analysis
Integral analysis is based on the existence and uniqueness theory of partial
differential equations and is a powerful tool for stability analysis. We have seen its
use in considering the heat conduction problems in Chapter 4. Here again, we
follow the approach given by Cockburn [4,5] and Evans [2]. Let us consider the L-
stability for a pure convection problem,

Z—I+V~(UT) =0 eQx(0, #] (5.32)

with periodic boundary conditions. The stability result is first obtained for the
problem of a continuous case. To do that, we multiply the above equation by T and
integrate over space and time to get

10, 1o 5 10,
—fT (r.t)dV +—f f V- w)T (r,t)dth:—fT (r,0)dV (5.33)
2Ja 2Jo Q 2Jq
where use has been made of the following vector identity:
V- (UT2(r, )+ (V-u)T2(r,t) = 2T (r,t)V - (uT (r,1)) (5.34)

Also the periodic condition causes the following integral on the boundary to
vanish:

f V- (uT2(r ) dV = f n-uT2(r,1))dS = 0 (5.35)
Q oQ

In particular, if V-u = 0 or u is a constant vector, a stability result is obtained as
follows:

1 1
EfQTZ(r,t) v :EfQTZ(r,O)dV (5.36)

The same procedure used for stability studies on the discontinuous finite
element solution of heat conduction equations may be employed here to obtain the
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same estimate. In essence, we compare the discrete system with the above analytic
weak form solution, and enforce stability upon the discrete system. Towards this
end, we set v = Ty, in the weak formulation (i.e., Equation 5.25) and then sum over
all the elements with the result,

1 2 m 1 2
EfQT (r.t)dV +f0 O, (t)dt — ZfQT (r,0)dV (5.37)

Equation 5.37 is required to converge to Equation 5.33 when the limit of the
element size approaches zero. This requires that ®,(t) > 0, and goes to zero as the
limit is taken to ensure compatibility. The term ©®(t) collects all the boundary
contributions:

1 ~
O, (t) = ——f v. uTZdV+f uf, - nT,dS
h()ij[ZQj(h) mjhh]
:Zf (u'I:h~nTh—%uTh2-n)dS
7 J o
= f [uT, T, — LuT2]dS
T

-3 fQ_ (uf, — wfT, 3 T, 1dS (5.38)

where the second equation in Equation 5.26 has been used in the third step, and
subscript jo means integrating only once along the element boundary shared by two
elements. It is important to stress that the subscript j means integration along the
element boundary for every element and thus integration is carried out twice along
the bondary of the shared elements. Consequently, if a numerical flux is defined as
follows:

uT =ufT}+C-[T] (5.39)

which is Equation 5.27, then ®y(t) satisfies the stability condition,

®h(t)—z f CTy]-[Tylds (5.40)

provided that C is a non-negative matrix.
At this point, we note that for a piecewise constant approximation, Equation
5.25 reduces to the familiar finite volume formulation,
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[ Frav [ uTnds =0 (5.41)
o, Ot o0,

G

In this regard, the finite volume method is just a subclass of the discontinuous
finite element method, which is consistent with the previous discussions for 1-D
problems.

The discontinuous finite element method is a higher order method. Cockburn
[4] shows that an order of convergence of k + % can be obtained with polynomials
of degree k at most. Also Equation 5.37 provides a dissipative effect (equivalently
the artificial viscosity) for the numerical scheme, where the dissipation is related to
the across-element jumps.

As we have discussed for the heat conduction problems, the residuals are also
related to the stabilization. To see that, Equation 5.25 is integrated once again to
produce

f v[a—T—i—V-(uT)]dV:f RvdV:f (uTy - nv —uT, -nv)dS

ot
(5.42)
In the case of upwinding, the above equation becomes
f RvdV :f u-[T2]ds (5.43)
Q; o TR

which shows that the residuals are directly related to the inflow jump at the
element boundary [4]. We have seen a similar role of residuals in the case of heat
conduction problems (see Section 4.7).

5.1.3.2 L%Stability — Discretized Analysis
The stability of a discretized system can also be carried out either by the Fourier
series method, as seen for the transient heat conduction problems in Chapter 4 (see
Section 4.7), or by the local method, which is discussed in this section. Let us
illustrate this point by a 1-D example,
o1 oT
o +u ax 0 e[0,1] (5.44)

For simplicity, we choose u > 0. We discretize the system into N equations,
with nodes denoted by X;, X5, -+, Xn+1, @S Shown in Figure 5.5. Over each element,
the discontinuous procedure yields the following weak form solution:

Xiv1 (9T, oT, _

VT,V e PX(Xj, Xj,) (5.45)
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where Pk(xj, Xj+1) 1S @ polynomial of order k defined over element j, X € [ Xj, Xj«1]-
Note that if u < 0, the upwinding point would be at j + 1. In the jth element, an
approximation of T is denoted by T.

X1 X2 X3 XN+1

Figure 5.5. Discretization of the 1-D domain for a pure convection problem

By choosing k = 0 (i.e., the space of piecewise constant functions) the
discontinuous formulation reduces to the finite volume formulation,

Xt
f J 1v%dx =vU(Th o —Thiy ) (5.46)
5 ot : ,
that is,
oT
v—=wulT, =T (5.47a)
ot h,j-1 h,j
o, u
Y :F(Th,j—l_Th,j) (5.47b)

Let us now examine the stability condition of the above discrete formulation.
To do that, the Galerkin method is applied, that is, v(x) = Tp(x), whence Equation
5.45 becomes

X _ (0T, aT, _
j;l Th[a—{]+ua—;]dx_Th(Xj)U<Th (Xj)*Tth(Xj)) (548)

This equation can be further written as

X;
f " [aalth“L u%l;]dx =T U (T () =T (7)) (5.49)
Xj

which is integrated over the element to give

d meThZ [ T2 ] .
= 4 dx=—|{u— +Th+(Xj)U(Th (Xj)_Th+(XJ)>
dtJy 2 2 )y,

J
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+ . 2 _ - . 2
4 —(Th (XJ)) Z(Th (XJ+1)) +UTh+(Xj)Th7(Xj) (5.50)

Summing over all the elements, one has the following result:

Xj+1
e

N

2
lu-l—hJr (X) Ty ( J+1)+uTh+(Xj)Th_(Xj)}
j=1

59 . CT0) - Thz(xm) T 206) + T 2(¢)
‘, 5
u N
SEZ T 2(Xj-1) = Tn 2(Xj41) )
—
< 5(Tr200) =T 20n-0) ) (5.51)

where use has been made of the inequality 2ab < a + b? to arrive at the first
inequality.

As we have seen before, the analysis of the discontinuous method uses the L%
norm stability theory. Defining the L*-norm,

1/2

N Xj41
1T lo= | [ Tt o (552)
=17
and using Equation 5.51, we have the following stability result:
GITalf_ 8§~ [T Ui opey 12 553
ET_EZ ) > X_E( h" () —Th (XN+1)) (5.53)
=1 Y X

where |||l = [|*]| 2 denotes the L2-norm. The above formula is useful to check for

consistency. If two solutions are initially close with the same boundary condition
imposed weakly at xo, then these two solutions are bounded by the following
condition:

d T =Too 16 _

m SUSTENES SN & (5.54)
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which means that if the time derivative is computed exactly, then the distance
between the two solutions (measured in the L2-norm) will decrease in time.

The above stability condition serves also as a basis for error analysis. For this
purpose, it is often useful to project the solution into a polynomial space. Let us
further assume that such a projection function exists. Then we have the following
three equations:

i (0T 9T
v’ [_+ u_]dx =0 (5.552)
J; ot Ox
i oT oT Xj+1
k Ae —_ =
j;- vQ [8t+u8x]dx j; VR dx
! J
AU QKT (%)) — Q4T (x)) ) (5.55b)
Xj+1 T T,
fl V[%”%)WZV(XDU(R(Xj)—QkTh+(x,-)) (5.55¢)
Xj X

where Q¥ iis the projection function,

N
Qk: H (X0, Xy ) — UPk(Xjanu)
=1

Note that Equation 5.55a projects the exact equation, Equation 5.55b means that
the projected exact solution is substituted into the weak formulation, and Equation
5.55c is the basic numerical scheme used for numerical solution. We note that
Equation 5.55b has the error term associated with the residual R.

Subtracting Equation 5.55¢ from Equation 5.55b and making use of the
relation, T 7(x;) = T*(x), that is, the exact solution is continuous for a smooth
solution, we obtain the following equation:

e (0QT —Th) , 0QT =T, _ "
j; v[ it +u By ]dx_j; VR(x,t)dx

i i

FVOU(QKT (%)) = Ty (%) + Tt (%)) — QT (x;))  (5.56)

By setting v(x) = QT (x) —T,(x), the preceding equation becomes

0QT-Th) . 0QT ~Ty)
ij (QkT—Th)[ S U h]olx
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Q4T () =Ty ) U QT (x)) =Ty (%)) +Tw " (%)) -Q T * (x,))
+fXMR(x,t)(QkT—Th)dx (5.57)

Use of the relation 2ab < a® + b? allows the first term on the right and the
second on the left to be combined,

_%(QkT _Th )2

Xj+1

Xj

F(QETH06) =T () ) ( QT (x) =T (%)) + T (%)) = QT (x;) )
_ _%(QKT*(XJ._‘_:L) —Th7 (Xj+1) )2 _%(QkT+(Xj)_Th+(Xj))2
QAT () =T () (Q“T~(x)) =T (7))

1 K — _ 2 1 kK — - 2
<3 (QT70)=Th ()" =3 (QT (x) =T (%5:0)) (558)

Combining the above two equations yields the following estimate:

d 2
QT Tl
N
§u§:{;QWuo—n(mnz—aqﬁuﬂg_n(mﬂnﬂ
=1
N Xjr1
+;ij RO, 1)(QT —T, )
N Xj+1
<;ij‘ R(x,1)( QT —T, )dx

<[ Q¥T =T [, IRC D) [ (5.59)

where use has been made of the Schwarz inequality,

Xj+1 X, Xjin o,
f abdx < f a2dx f b2dx (5.60)
Xi Xi Xi

] ] ]
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The consistency analysis indicates that the numerical solution T, and some
projection of the exact solution T to the same space of polynomials that we use to
represent Ty, grow apart slowly in time, i.e.,

%HQ'(T 7|, <IRl, <ch®T()] (5.61)

H k+2 (0‘1)

where we have used the basic estimate given by Cockburn [5], the subscript H**?
(0,1) denotes a Hilbert space and T(0) = T(t = 0) € H**?(0,1). Also, C is a constant
depending solely on k, |u| and T. Integrating over time, we have the error T — Ty
bounded by the following expression:

IT=Tall =[T -Q“T +Q*T -1 |,
<[T-QT|, +QT -,

<[T-Q 7| +[Q*Tt=0)-Ty t=0)] +Ch* T 1025,y (5:62)

Here the first term represents the error between the exact solution and the projected
solution in the finite polynomial space. The second term represents the error in the
approximation of the initial data. The third term is the accumulation of truncation
errors in time, which depend on the discretization and the total time z [4].

5.1.3.3 Fourier Analysis

Fourier analysis is useful for determining critical time steps for transient
calculations; and for the pure convection problems, it is also a valuable tool to
analyze the numerical dispersion and dissipation phenomena associated with wave
propagation. In pure convection problems, the system of equations is hyperbolic.
The solution is characterized by a train of waves propagating with little or no loss
of amplitude. It is important that the numerical solutions do not introduce non-
physical dissipation, which shows up as a broadening of the wave pack and
reduced amplitude, that is, artificial diffusion. It is equally important that the
numerical schemes do not introduce artificial dispersion. Dispersion refers to the
change of the speed at which waves propagate, and it often shows up in a
numerical solution as numerical oscillation [3].

Dissipation and Dispersion. Information on the numerical dissipation and
dispersion introduced by a computational scheme can be obtained by comparing
the Fourier representations of the exact and numerical solutions. For the problem
given by Equation 5.44, the initial condition may be expanded in a Fourier series,

T(x,0) = Z T,em (5.63)

m=—oo
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and the exact solution to the problem at any instant in time is also represented by a
Fourier series,

Tec(x,0) = D Tpemeh (5.64)

m=—oo

Clearly, all the Fourier components in the above equation convect with the
same velocity u, and are not subject to any reduction in amplitude. This is simply a
statement that there is no diffusion effect (or even order derivative) in the equation.
Similarly, a numerical algorithm can be represented by a Fourier series. Taking
into consideration the errors involved in numerical schemes, a numerical solution
may have the following form of the Fourier expansion:

Th (X,t) _ Z Tme—iwteimx _ Z Tme—p(m)te—imq(m)teimx (565)

m=—oo m=—o0

where we have taken o(m)=-—ip(m)+mg(m). For an exact solution, p(m)=0 and
g(m) = u; thus there is no attenuation of the amplitude of T,, as the wave propagates
with a speed u. In general, p(m= 0 and g(m) = u, that is, the amplitude is attenuated
and the propagation speed is altered. For the latter case, if waves of more than one
wavelength are present, they propagate at different speeds, i.e., they disperse. The
change in wave propagation is often more pronounced for short waves (large m).

In the computational literature, dissipation is defined as the attenuation of the
amplitude of the waves, and dispersion is defined as the propagation of waves of
different wave numbers m at different speeds g(m). Dissipation is often associated
with even order derivatives, and dispersion with odd order derivatives.

In numerical analysis, the dissipation and dispersion behaviors of the system
are studied using the amplification factor and the phase angle for a typical Fourier
component. The amplification factor is defined by the ratio of the Fourier
component at two consecutive time steps [6],

_ Thexp(—p(m)(t+ At)) exp(-img(m)(t + At)) exp(imx)
- T, exp(—p(m)t) exp(—img(m)t) exp(imx)

G

= exp(—p(m)At) exp(—img(m)At) (5.66)

By this definition, the amplitude of G, |G|, is related to the dissipation at x and
the phase angle ¢ is associated with dispersion,

|G = exp(- p(M)A) = /(Re(G))? + (IM(G))? (5.67a)

@ = —mq(m)At = tan*(Im(G)/ Re(G)) (5.67h)
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To use the Fourier analysis to understand the basics of numerical dissipation
and dispersion, we consider the 1-D pure convection problem,

ﬂﬂjﬂ: 0 (5.68)
ot OX

with u > 0 and periodic boundary conditions. For the Galerkin approximation, we
have the following discretized matrix equations:

dYyj)

where we have incorporated the upwinding scheme. For a three-element
discretization with periodicity, the matrix system has the form of

M 0 0 . K+Kg 0 Ng.
0 0 M 0 Ng: K+Kg

This is a generalized eigenvalue problem for U, since we know K, M, Kg, and
Ng 1. The dimension of the matrix is (k+1)x(k+ 1) for a polynomial of order k.

We consider the dissipation and dispersion analyses below. Assuming that a
Fourier component takes the following form:

T =Te @(Mtgmimx (5.71)

Lm

and substituting the above equation into the matrix equations, one has an
eigenvalue problem for w,

—(iw(m)M +uD + uF +uGe "™ )T, =0 (5.72)

If a piecewise constant approximation is taken to evaluate the matrices, then the
following result is obtained:

—(io(m)h+u@—e"™))T, =0 (5.73)

with Ax = h. The solution to the eigenvalue problem for a non-trivial T,, is given by
the following expression:

U(l _ efimh)

foo(m) ===

= %(1—cos(mh)+isin(mh)) (5.74)
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which yields the values for p(m) and q(m) as follows:
u u .
p(m) =F(1—cos(mh)), maq(m) =Fsm(mh) (5.75)

The dissipation is measured by the amplitude of the amplification factor,
|G |= exp(—p(m)At) = exp(- c(1— cos(mh))) (5.76)

where ¢ = uAt/h is the Courant number, and the dispersion behavior is given by the
phase ¢ of the amplification factor,

@ =—-mq(m)At = —csin(mh) (5.77)

For this problem, the exact solution can be easily obtained and its mth Fourier
component has the form of

Tox m(X1) = T M0 (5.78)
which has a phase over a consecutive time step t — t+At,

@Pex = —UMAL (5.79)
The change of the phase for the mth wave component is given by

o _ZmamAt _ 1 Gnmh) (5.80)
Pex — MuAt mh

From the above analysis, it is clear that if the time integration is exact, then the
spatial discretization would have attenuation and dispersion given by Equations
5.76 and 5.80. In particular, we have from these two equations,

|IG|>1, ¢lp,—>1,aam—0 (5.81)

Critical Time Step for Time Integration. As for the heat conduction problems, the
Fourier analysis is also used to determine the critical time step for a time marching
scheme for pure convection problems. In this use, the analysis is intended to
prevent the round-off error from growing during time marching, which is
considered as an important stability issue for time integration schemes. The round-
off error £(x,t) is defined as the difference between the exact solution, computed
with infinite accuracy, and the numerical solution with the actual machine. For
illustrative purposes, we analyze an explicit time integration scheme applied to
Equation 5.70,
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M 0 0 K+Kpg 0 Ng.
0 M 0|———+ Ng; K+Kg 0 [U"=0 (582
0 0 M

where n denotes the nth time step. The round-off error £(x,t) is expanded in terms
of a Fourier series,

(o 0]

e(x,t) = Z £ ()eiknX (5.83)

m=—oo

Again, if the piecewise constant is used and the mth Fourier component is
substituted for U in Equation 5.82, then the equation for error becomes

£ty + A1) = [ —UALL—e ™) ) £, (8,) (5.84)

where subscript n denotes the nth time step. Following Neumann’s analysis, we
assume &y(t) = e*, and we have the following relation upon substitution:

G & (t, +At)

—et —(1_c(l-e™))h (5.85)

&m(th)
where G is the amplification factor and ¢ = uAt/h. To prevent the error from
growing in time, it is necessary that

|G |=| et |=|h—uAt(l-e-m)|=1-2c(l-c)l-cosmh) <1  (5.86)

This gives the well known Courant—Friedrichs—Lewy (CFL) criterion for
stability,

c= “TA‘ <1 (5.87)

which is a restriction to be respected. It it noted that while the above restriction is
obtained from the stability analysis, its physical meaning is such that the distance a
particle travels over a time step can not be greater than the mesh size; otherwise the
information about the traveling particle may be lost.

While the Fourier analyses have been used to study different behaviors
associated with a transient numerical scheme, the equation for the amplification
factor (i.e., Equation 5.85) is basically the same as that obtained from Equation
5.76, the two differing only in higher order terms [3, 6]. In fact, in numerical
analysis literature, Equation 5.85 is often used as the amplification factor for
dissipation and dispersion analysis [3].
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5.2 Steady State Convection-diffusion

The above discussion has been concerned with pure convection problems where
the viscosity is neglected, and their numerical solutions found using the
discontinuous finite element approach. Pure convection is an idealization, since in
the real world thermal fluids systems are dissipative. In this section, we focus on
the numerical aspects of the discontinuous solution of convection-diffusion
problems. Convection-diffusion problems are known to exhibit oscillations in their
numerical solutions and suppression of these types of oscillations requires
consideration of various factors. The origin of numerical oscillation associated
with a convection term, and its analysis, is also discussed.

5.2.1 1-D Problem

The steady state convection diffusion equation is a useful system to illustrate the
oscillatory behavior of the numerical solution, when the exact solution changes
rapidly across a thin boundary layer, over which the dissipative mechanism is
significant. For a 1-D steady state convection-diffusion problem with temperatures
fixed at the two boundaries, the mathematical statement is given below,

dT d2T

uU—-D—=0 0,1 5.88a
i o €[0,1] ( )
T(0)=0; T =1.0 (5.880)

From the physical point of view, the above equation represents a balance
between the convection and diffusion mechanisms in the system. The exact
solution for the system is simple and has the following form:

_ aux/D
T(x) =W (5.89)

To develop a discontinuous finite element formulation, the equation is split into
two first order equations,

q_d_TZO; ud_T_ d_q:O (590)
dx dx dx

The domain is then discretized into N elements as shown in Figure 5.5, and the
above equations are integrated over element j. After integration by parts, one has
the following results:

Xj41 Xji1 ~ ~
f qpwdx -+ f Taw,dx — T Wipy +T;"w) =0 (5.91a)
X Xj

i
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Xj+1 a —_—. - ~ —
f (DA — UTy WVy@X — (D53 — (UT)7.0)Vi s + (DGF — @T)F)vi =0
Xj

(5.91b)

where two types of numerical fluxes are used, and subscript x denotes the
derivative, e.g., wy, = dw/dx. The numerical fluxes associated with diffusion are
given by Equation 4.20, which, for 1-D problems, takes the following form:

G=05(q"+97)-Cy(T"-T)+Cp,(a -0") (5.92)
T =05 +T7)~Cp(T"-T7) (5.93)

For convection flux, a simple upwinding scheme is used, and one has the
following convective fluxes:

— utT: u>0

uT)? = ] 5.94
(T {qu u<o (.94)
— uT.., u>0

uT)i, =4 % 5.95
(UT)jn {UTJ-L <0 (5.99)

The unknowns (g, Ty) may be approximated with a polynomial as local basis
functions,

k+1 k+1

T =D TiOAN, a0t =D 6t (5.96)
i=1 i=1

where k is the order of the polynomial and for 1-D problems k+1 = N, with N
being the number of nodes per element. With the numerical fluxes for diffusion
and convection defined above, and making use of the Galerkin approximation
procedures, we obtain the following matrix equation:

HRS O E B e &
J G Ty LJde Gg T Jg1 Ggpy T

E N
[ e,
Je2 G2 J\T )y \O

where, as usual, subscript () refers to the element; subscript B denotes the matrices
associated with element boundary integrals; and E, G, J, and N are matrices
associated with element calculations. Note also that for this problem, J is related to
H such that J = DH". This suggests that appropriate scaling would render J to be H
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transposed [9]. The above matrix equation can be further written in a simplified
form:

KU=F (5.98)

where K is the final matrix including the contributions from both the domain and
boundary integrals, U = (q",T"), and F is the source term. The unknowns U are
obtained by inversion of the matrix equations above.

The numerical procedure for the computations is essentially the same as for
steady state heat conduction calculations discussed in Chapter 4. Again, it is worth
emphasizing that the element-wise sweep, coupled with successive substitution,
provides perhaps the most convenient, though arguably the most efficient,
algorithm for a numerical solution. By this approach, the field is initialized as zero
to start, and an element is selected at the boundary. The calculations are performed
element by element to sweep through the entire domain. The unknowns obtained
for an element are immediately available to the neighboring elements, and are
applied in boundary source terms. The procedure is iterative and iteration is
considered converged if the successive solutions are within a preset tolerance
measured in a norm.

Example 5.3. Consider the 1-D convection diffusion problem defined below,

dar_d’T
UE—DWZO G[O,l] (579)
T©)=0, T(1)=10 (5.8¢)

with u being the convection velocity. Calculate the temperature distribution using
the discontinuous finite element method.

Solution. In the following equations, CJand C{2) are the values of Cy, at the start
and end points of each element. The following values were used for calculations:
c® =c{@ = 0 at inner nodes (central scheme); at the boundary j=1, we set
c¥ =12 and at j = N+1, C2) =-1/2. Also, we set C1;~O(1/h). The matrix
equations for (k = 0) and (k = 1) are given below.

For a constant element approximation (k=0), the matrix equation takes the
following form:

foru>0,

D(CY +c?) 2pCy +u LT

hj ~(cf +sz2))}{% }
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~ W2-COTj—-@W2+COT
D(/2+C2)qj, +D(-1/2+CH)q 4 + DCyy (Tj4 +T;,1) +uT; 4
(5.9¢)
and foru <0,
h; -(CH +C?) {q,}
DCP+c®) 2bcy-u LT
B L L12-COYTjy - U 2+CYT; 4
D/2+CE) g1 + D(-1/2+C3)dj 1 + DCyy (Tjy + Tju) — Ty
(5.10e)

For the linear elements (k=1), the matrix equations have the forms below:

foru>0,
. . _c® _
h;/3 h;/6 cS 1/2 qt
hj/6 h;/3 1/2 -c9 Ui
DCY -D/2 u/2+DCy u/2 Ty
D/2 DC?  —u/2  u/2+DCy |\Tin
~(/2+CHT}
1/2-CcENT
_ ( o 12 ) j+l (5.116)
-D@/2-C3')qj +(DCyy +u)T§
D(L/2+C3)d}.s +DCyy T}y
and foru <0,
hj/3 h;/6 -c -1/2 q!
hj/6 h;/3 1/2 -c? ja
pc® -D/2 -u/2+DCy u/2 T
D/2 pCcd —u/2 —u/2+DCyy |\ Tin
~@/2+CH)T;
1/2-CNTH,
= ( 12 )T (5.12¢)

-D@/2-CQ)a; +DCy, T}
D(@/2+C32)qt,, +(DCyy —u)Tjy
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The above algorithm is implemented and numerical computations were made
for various conditions, including the effects of mesh sizes and the velocity of
convection. Some of these results are given in Figure 5.3e.

L 1

/'t

7 /‘

u=0 s

08— ————-u=1 s
o8f  _ . _ __ =10 Ay

P — N=10 ———e—ee - u = 100 , /o
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Figure 5.3e. Computed results for 1-D steady state convection-diffusion problems: (a) effect
of element numbers on temperature distributions (u = 100, D = 1), and (b) effect of u on
temperature distributions (D = 1)

5.2.2 Origin of Oscillatory Stability

The above results show significant oscillation near the sharp front when 10 linear
elements are used and u is large. These oscillations are clearly non-physical and are
caused by the numerical approximation scheme. To understand this problem, we
consider a piecewise constant approximation (the simplest case) and we also turn
off the upwinding. This gives rise to the following equation:

— (1+0.5/) T4+ 2T;— (1-0.5 AT;11=0 (5.99)

where = UAx/D, i.e., #is a local Peclet number based on the element length Ax.
For this relatively simple case, an exact solution to the above discretized

equation can be obtained [7],

j
Ti=A+ Bo{%} (5.100)

where Ay and B, are chosen to satisfy the boundary conditions (Equation 5.88b).
From the above equation, it is clear that the numerical solution will start to
oscillate between the elements if g > 2, as the terms of (-1) ' appear. The
oscillations will not occur if #< 2, however.
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We may also study the oscillation behavior in the numerical solution by
analyzing the eigenvalues of the matrix of Equation 5.99 when combined with
boundary conditions (Equation 5.88b). This system has the form

(b ¢ TT, [—aTy
abec T3 0
= . (5.101)
a b cf Tya 0
L a bJ[Tn | [€Tna]

where a = —(1+0.50), b = 2, and ¢ = —(1-0.56). The eigenvalues of the above
tridiagonal matrix are calculated by

Aj=b+2(ac)’?cos(k),  j=2,3,....N. (5.102)

The oscillatory solutions for this problem are associated with the occurrence of
complex eigenvalues. It is seen from the above relation that the condition ac > 0 is
required for the eigenvalues 4; to be real. Substituting for a and c gives the
condition

— (1+0.58) (1-054 >0 or B<2. (5.103)

Once again, g > 2 leads to an oscillatory solution, which is consistent with the
analysis following Equation 5.100.

In general, bounds on the eigenvalues A for a matrix A of dimension N x N are
given by the Gershgorin circle theorem [8],

N
|/1—aii|§2|aij| (5.104)

j=i

Thus, the eigenvalues of A lie in the union of circles associated with each row of
A. Carey and Oden [10] use the Gershgorin circle theorem to analyze Equation
5.101 for different values of g. In the range 0< <2 the center of the Gershgorin
circle lies at {~2D/AX?,0} in the complex plane, with a radius of 2D/Ax?; and all
eigenvalues of the matrix in Equation 5.101 lie on the negative real axis. Thus no
oscillation occurs. As g increases, i.e., as D decreases, the radius reduces and the
center of the circle moves closer to the origin. At = 2 the centre is at (-u/Ax, 0)
with radius u/Ax = 2D/AX% For > 2 the radius remains constant at u/Ax but the
center migrates to the origin and the eigenvalues are complex, thereby producing
oscillatory solutions.
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Carey and Oden also studied the spectrum properties of discrete oscillatory
matrices, which help to explain the origin of the numerical oscillations and
dissipations in convection-diffusion problems. Their study led to the following
conclusion: the eigenvalues of the matrix —A must all be negative and real if
oscillation is to be avoided, where A is the matrix associated with Equation 5.101.

As might be expected, an introduction of the upwinding scheme helps to
prevent oscillation. If the same piecewise constant approximation is made, the
discrete equation becomes as follows:

-+ P Tu+2(1-058) Tj— Tj.a=0 (5.105)

Using the same method as discussed above, one can show that the matrix
generated using Equation 5.105 has real eigenvalues for all values of 5. We note
that in general, the upwinding solution is not oscillatory but can be overdissipative.

5.2.3 Steady Convection-diffusion in Multidimensions

With the understanding acquired from the study of the above problem, we now
develop a discontinuous finite element formulation for the solution of the
generalized multidimensional problems of convection and diffusion. We consider a
convection-conduction problem defined below,

UVT —V-kVT-Q=0 €Q (5.106a)
T=T, el (5.106b)
1 -kVT =h(T -T,) el (5.106¢)

where for simplicity, a constant velocity field u is assumed. The problem is also
schematically shown in Figure 5.6.
Again, we split the equation into a set of first order differential equations,

g=kVT; uvT-v.q-Q=0 €Q (5.107)

The computational domain Q is now discretized into N finite elements and the
discontinuous formulation is considered for element j (see Figure 5.3). Multiplying
the first and second equations in Equation 5.107 by test functions w and v and
integrating over the element, one has

f q-wdQ:f KVT - wdV (5.108a)
Qj Q;

f vu-VTdV—f vV-qu:f vQdV (5.108b)
Qj Qj Q;
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Prescribed
heat flux

Prescribed
temperature

Figure 5.6. Definition of a multidimensional steady state convection-diffusion problem

Integration-by-parts once yields the following weak formulation for the
discontinuous finite element solution,

f q-wav :-f TV. (kw)dV +f KTn; - wds (5.109a)
Q; Q; 09Q;
f q-wav — [ Tu-vvdv
Q; Q;
:f vdv +f q-njvdS—f uT n;vdS  (5.109b)
where n; is the outward normal unit vector to 6€;, the boundary of the element.

We now seek to approximate the exact solution (g, T) with functions (g, Tp) in
the finite element broken space, whence we have the following results:

f qp-wdV = — f T,V (kw)dV + f K,n, - wdV (5.110a)
o} Q 0Q;
qn - vvdV — Thll' vvdV = \/de
Qj Q; Q;
+[ @ -mds— f uT, -n,vds (5.110b)
00 20,

where two types of numerical fluxes need to be used. One type is the diffusion
numerical fluxes, (qy,T},), which can be taken from Table 4.1. The convection

numerical fluxes are of the form given by Equation 5.27. For convenience, these
consistent diffusion and convection numerical fluxes are given below:



Diffusion flux: q ={a}-Cy[T]-Cy,[a]

Diffusion flux: T ={T}-Cs[a]l+Cy,[T]

Convection flux: ﬁ = U{L}+ C, m

Note that C, is a matrix for convection flux.
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(5.111a)

(5.111b)

(5.111c)

With the approximation of unknowns using the polynomial basis functions and

the Galerkin approach taken, the following matrix equations are obtained:

E 0 0 H, |[9%
0 E 0 H, |9,
0 0 E H, |q
3 3y J; Gry ‘TZ
Exx,l Exy,i Exz,l I'Ix,i gX
+§: ny,l Eyy,i EyZ| Hy,i ﬂy
-1 sz,i Ezy,i EZX,I Hz,i gz
J><,i Jy,i Jz,i GT,i"‘GT,u,i T
NS Exx,B,i Exy,Bl Exz,B,i Hx,B,i ﬂx 0
+Z ny,B,i Eyy,Bl Eyz,B,i I'Iy,B,i ﬂy _ 0
=1 sz,B,i Ezy,B,i Ezz,B,i I'Iz,B,i gz 0
Jgi Jysi Jzgi Grei T Grusil| T S

(5.112)

where NS is the number of sides of the element, the matrices with subscript i under
summation are those from the boundaries of element j, and those marked with
subscript B represent the contributions from the neighboring elements. The
subscript (NB, i) represent the ith neighbor element that shares the ith side of
element j. The vector S on the right includes the contribution from the source and
boundary conditions, if the element shares its element boundary with the domain
boundary. See Figure 5.3 for element j and its geometric relation to its surrounding
elements.

The above equation is very similar to its counterpart of the pure conduction
matrix equation in Equation 4.24 except for the convection term, which comes
from the convection effect on temperature only. This portion of the contribution to
the matrix is calculated as

GT,u,km = _L/;Q (- Ve )gndS (5.1133)

Jii
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Gr uikm = —GruBikm = L/;Q”(ll'n-‘rll'cu M) G dS (5.113b)

where the definition of the shape functions ¢, and other matrix quantities in
Equation 5.122, were given in Section 4.3.

For actual computations, the matrices may be assembled such that all the
unknowns of element j are stored in the column vector of U = [q,", g,", @,",.T']' =
[qx,ly Ox2) «s qX'Ne’ qy,l’ qyyz, . quNe’ Oz1 Qz2s -4 quNe' Tl, Tz, . TNe]T with Ne
being the number of the nodes of element j, and other available information from
the neighbor elements is included in the force term F, which also includes the
contribution from S. The final matrix equation takes the following form:

KU=F (5.113c)

where K is the resultant matrix having contributions from both the domain and the
boundary. The computational procedure is exactly the same as used for the
discontinuous finite element solution of the 1-D steady convection-diffusion
problems discussed above, and thus is not elaborated upon here.

We emphasize that the oscillatory behavior associated with the 1-D convection-
diffusion problems occurs also in multidimensional convection-diffusion problems.
The analysis of this issue in multidimensional geometry, however, is much more
difficult, because the matrix in general becomes much larger and more complex.
The basic theorem governing the behavior of the matrix still holds, that is, the
eigenvalues of the matrix must remain non-negative and real in order to avoid
spurious oscillation in the numerical solutions.

The above algorithm has been applied to obtain the solution for 2-D steady
state heat convection-conduction problems. One of these results is plotted in Figure
5.7. The solution shown is for the 2-D convection-diffusion problem defined by

2 2
u‘Z_T _ D(‘Z_Z+Zy_T2J (5.114a)
X X

with the boundary conditions

1 y<05

el AL 3 3
T(x,0)=0; E(x,l)—o, T(O, y)_{0 y>05 and T(Ly)=0 (5.114b)

The discontinuous finite element discretization used an unstructured triangular
mesh. The convection flux (Equation 5.111c) is used to model the convective
effect. From Figure 5.7, it is apparent that as the ratio of convection over diffusion
progressively increases, convection plays a more important role and the
temperature contour becomes more distorted, which is consistent with the theory of
transport processes associated with this problem.
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5.3 Transient Convection-diffusion

We now study the time dependent problems of convection and diffusion. Since
much of the framework is the same as for the steady state convection-diffusion
problems, only the general discontinuous finite element formulation for
multidimensional problems is presented here. This is then followed by stability
analyses.

5.3.1 Multidimensional Problem

A transient convection-diffusion problem defined in a multidimensional domain
takes the following form:

oT

SHUVT=V-KVT4Q Qx(07r] (5.115a)
T=T, €dQpx(0,7,] (5.115b)
—n-kVT =h(T -T,) €dQy x(0, 7] (5.115¢)
T(rt=0)=T,(r) €Q (5.115d)

To develop a discontinuous finite element formulation for the problem, the
governing differential equation is split into a system of first order differential
equations,

gq=kvT; %+u-VT—V~q—Q=O (5.116)

The domain is now divided into a set of elements, and we consider a typical
element, say, the jth element as shown in Figure 5.3. Multiplying the first and
second equations in Equation 5.116 by test functions w and v and integrating over
the element, one has the following form of solution:

f q~de:f KVT - wdV (5.117a)
Qj Qj

f va—TdV+f vaTdv—f VV~qu:f WQdv  (5.117b)
Q; ot Q; Q; Q;

Integration-by-parts and approximating the exact solution (q, T) with functions
(an, Ty) in the finite element broken space, one obtains the desired discontinuous
finite element solution,
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Figure 5.7. Computed results for a 2-D convection-diffusion problem showing the effect of
convection on the temperature distribution in the system
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f qp - wdv :_f T,V - (kw)dV +f Kfun, - wdS (5.118a)
Q; Q 0Q;

f va—TdV+f qh-VvdV—f Tu-Vvdv
Q; ot Qj Q;

:f dev+f f]h~njvd8—f uT,-mvdS  (5.118b)
Q 00, 00,

where two types of numerical fluxes are used. One type is the diffusion numerical
fluxes, (g, T, ), which can be taken from Table 4.2. The convection numerical

fluxes are of the form given by Equation 5.27. With the approximation of
unknowns using the polynomial basis functions and taking the Galerkin approach,
the following matrix equations are obtained:

000 07%)[E 0 0 H, ] %
000 0|4, L0 E 0 H g
000 0 |qg 0 0 E H; |q
27 =
000 M|+ [Jx Iy 9 Grull 7
NS E><x,B,i Exy,B,i Exz,B,i Hx,B,i gX
+z ny,B,i Eyy,B,i Eyz,B,i I'Iy,B,i gy
=1 sz,B,i Ezy,B,i Ezz,B,i Hz,B,i qz
Juei Jysi Jagi Grei tGrusil| _
= /(NB,i)
NS E>(x,i Exz,i Exy,l Hx,i =X 0
+Z ny,i Eyy,| Eyzl I'Iy,i gy _ (5119)
=1 sz,i Ezy,i Ezz,i Hz,i qz 0
J><,i Jy,i Jz,i GT,i +GT,u,i T ST

where My is the mass matrix associated with the temperature field, and the
definitions of the other terms are the same as for the steady state parts (see Section
5.2.3 and Equation 5.112). In principle, one could write the above equation in
terms of matrices and vectors,

M dd—LtJ+ KU=F (5.120)

where M is the resultant mass matrix, which, in this case, has a contribution from
the mass matrix associated with temperature.



194 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

From Equations 5.119-5.120, the matrix M is a singular matrix. Thus in
applications, it is often useful to separate the matrix equations into two subsystems
with one for fluxes and the other for temperature:

E 0 0 gx Hx NS Exx,i Exy,i Exz,i gx Hx,i
0 E 0|q |+/H/ |T+> Eu E, Eyilq |+ Hy|T
0 0 E gz Hz =1 sz,i Ezy,i Ezz,i gz Hz,i
NS Exx,B,i E>(y,B,i EXZ,B,i gx Hx,B,i Sx
+Z ny,B,i Eyy,B,i Eyz,B,i gy + I'Iy,B,i I(NB,i) = Sy
=1 sz,B,i Ezy,B,i Ezz,B,i q ) Hz,B,i Sz
—2 J(NB,i)
(5.121a)
dT NS NS
M; d_?+GT,u1+;(GT,i + Gy )T + 2 (Gt gii —l_GT,u,B,i)I(NB,i)

NS
0 nG Y[ D G+ Y isib g, | =S (6:121D)

I=x,y,z i=1 | lI=x,y,z 1=x,y,2

The computational procedures may now be described as follows. For a given
time step, the calculations start from an element located at the domain boundary
and sweep element by element through the entire domain. The unknowns obtained
for the element are immediately available to the neighboring elements, and are
used in boundary source terms. This way the terms with subscript (NB,i) can be
moved to the right-hand side of the equation and added to the source. At every time
step, the two equations above need to be solved iteratively. A typical procedure is
as follows. The temperature is first calculated using Equation 5.121b with the g
values available, and then g is updated using Equation 5.121a. The procedure is
iterative and iteration is considered converged if the successive solutions are within
a preset tolerance (see Equation 4.14). Then the next time step is selected, and the
above procedure is repeated until the total time is equal to the preset value.

As an alternative treatment, the vector g may be eliminated by combining the
two equations above. If this is done, then we have the matrix equation in terms of
T only,

My S KT -F (5.122)

where K is the combined element stiffness matrix and F is the combined source
vector. Equation 5.122 can then be integrated using a time integrator.

Whichever procedure one chooses, the oscillatory behavior associated with
steady convection-diffusion problems may also appear in transient solutions. In
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particular, they may occur near the sharp fronts if appropriate conditions are not
satisfied. To perform the analysis of spurious oscillations in the solution, it is often
more convenient to assemble the element equations shown in Equation 5.122 into a
global matrix equation,

d Tg -1 -1

T:_Mg KgTg +My Fy =—AU+B (5.123)
where subscript g denotes global quantities, A = Mg_lKg and B = Mg_ng. Carey
and Oden [10] analyzed the eigenvalues for the above equation system and show
that, as a rule of thumb, the eigenvalues of the matrix —A must be negative and real
in order to eliminate unphysical oscillations in the numerical solution.

The additional integral and Fourier analysis of the transient convection-
diffusion problems will be discussed in the next section. An important point to
remember is that if an explicit time step is used, the critical time step needs to be
selected. Here, let us consider some calculated results.

The above algorithm, based on Equation 5.121, has been applied to solve a 2-D
convection-diffusion problem. The governing equation for the problem has the
following statement:

AL D(ﬁzT +ﬁJ € [0,1]x[0,1]x (0, %] (5.124a)

%P o

with the boundary conditions

oT 1 y<05
T(x,0,t)=0;—(x1,t)=0; T(O,y,t) = and T(Ly,t)=0
(10 =03 -0 =0 TO.y.1) {0 Y05 M TEYD
(5.124b)
and the initial data
1-x? <0.
Tooyy={ 7 0o (5.124c)
0 y>05

An unstructured mesh and linear triangular elements are used to carry out the
calculations. An explicit time integration is used with a time step selected to satisfy
the restricted CLF condition. The computed results are given in Figure 5.8.

5.3.2 Stability Analysis

5.3.2.1 L-Stability — Integral Analysis
A complete L2-stability analysis, including error bounds, has been given by
Cockburn and Shu [11] for general nonlinear convection-diffusion problems. For a
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basic understanding, a linear problem is analyzed here to show how the stability
criterion from the theory of partial differential equations [2] can be used to enforce
stability on a numerical scheme, and thus to provide guidance on the choice of
numerical fluxes.

The linear convection-diffusion problem to be analyzed is mathematically
stated as

% +V-(uT)=DV?T (5.125)

LSS

t=0.0075

Figure 5.8. Evolution of temperature distribution in a convection-diffusion problem
calculated using the discontinuous finite element method (D/u = 0.01)
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with a periodic boundary condition. Here u is a constant vector. As usual, we first
work out the L-stability result for the continuous case, and enforce the condition
on the discontinuous formulation. Thus, the above equation is integrated with
respect to T over the spatial domain,

fT—dV +f TV-(uT)dV:fTV~(VT)dV (5.126)
Q Q

Integrating by parts, one has

d

—dV+1f Tzu-ndS:f TDVT-ndS—f DVT-VTdV
dt 2Jsa P a

(5.127)

Applying the periodic boundary conditions in Equation 5.127 yields the
following equation,

d

m —dV +f q-qdvV =0 with q=x/BVT (5.128)
Q

Here, q is defined following Cockburn and Shu [11]. Integrating over t e [0, #],
one has the stability result for the continuous case,

lf T2(r, 7 )dV +fo q~qdvzlf T2(r,0)dV (5.129)
2Ja 0o Ja 2Jaq

For the discontinuous finite element formulation, we obtain the following
equation by summing up the contributions from all elements:

%fQThZ(r,TT)dV +fofT fgqﬁdv +®T,C([w]):%LTh2(r,O)dV
(5.130)

where O . ([w]) represents the errors due to the jumps across the inter-element
boundaries. It is calculated by

N
_ T U
Or ¢ (Iw]) = JZ: i) IO CemNds a (5.131a)

where [w(t)] is defined as

w(t) = (Th,qx,h,qy,h,qz,h)T (5.131b)
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and Cg is a matrix:

lul/2 —JD/2 -JDI12 -JDI2

C. - NCYP 0 0 (51310)
JD/2 0 0 0
JD/2 o0 0 0

From Equation 5.130, it transpires that one needs to have ©; o ([w]) > 0to
ensure the stability.

5.3.2.2 L%-Stability — Discretized Analysis

Here we consider the stability analysis of discretized equations. Toward this end,
we consider the 1-D convection-diffusion problem as follows:

oT  oT o°T
+Uu =

—+Uu—=D— 5.132

aax o’ (5132
To simplify the notation below, an inner product operator is introduced,

(ab) = f abdv (5.133)

For an element, e.g., element j, we have the following discretized discontinuous
finite element formulation:

(v%) +(v,a(“+?_|u| ,”"T'“')T)Q_ =(v.aL)q),, (5.134a)
Q; !

(v,)o, = (v.Da(LDC)y, (5.134b)

where v is the weighting function, and the operator a(s;, S;) is defined by the
following expression:

Wi (Xjg) —Wj (XM)J

(v, a(sl!sz)W)gj = (VvW)Qj + SlV(Xj+1)[ >

(5.135)

+52v(xj)(wj (Xj)_wjl(xj)j

2

For a 1-D case, Warburton [12] shows that the above operator may be written
in a general form,
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(v,a(sy, Sz)W)gj =8 (Vj (Xjs1) + Vs (Xj42) )( Wj+1(xj+l)2_ Wy () j

+(V,W)Q,- +S; (Vj (Xj)-i-Vj_l(Xj))[Wj (Xj)_2Wj_1(Xj)j (5.136)

This will equip the operator with the following property:

(v,a(L)T )Qj = —(a(l,l)v,T)Qj (5.137)

Consequently, we have the following relation:
al utul u-jul _
(V,Ejgj +(v,ua(T,T)T )Qj = (v, Da()a),, (5.138)

(v.a)y, = (v.Da(LYT )y = ~(Da@lv,T)y, (5.139)

A combination of the two equations above yields

(v,%} = —(v,ua(”*T'“', iy )Q_ ~(a@yv, Da(LyT),, (5.140)
Q ]

i

Setting v = T, and summing up over all elements, one has the following stability
result:
1d N N
2_ u-Hul u—ul _
Sl 1B= §jlj(T,ua( 20T, §jlﬁ(a<1,1)T, Da(L YT ),

N N
= J%'Z(Tj (%) = Tj1 () = DY _(a@ T, a@nT Jo, <0 (5.141)
j=1 j=1

5.3.2.3 Fourier Analysis

We present a generalized Fourier analysis for the transient convection-diffusion
problems in this section, and will use the analysis to determine the critical time
steps for explicit time integration for the solution of the problem. Toward this end,
we consider the discretized ordinary different equation system of the form,

dU_ AusB (5.142)

dt
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If the simple Euler forward scheme is used for time integration, then the
following numerical implementation is obtained:

U(t + At) = (1 - AADU() + BAL (5.143)

For the purpose of determining the critical time step, B = 0 may be set. As a result,
the above equation can be written for errors,

g(t+At) = (I - AAe(t) (5.144)

where g(t) = U(t) — Uexact(t). Repeated application of the above recursive relation
gives the following equation:

g((m+1)At) = (I — AAt)™1g(0) (5.145)
For a stable time marching scheme, the amplification factor should decrease,

|2((m+ DAY | _

1 5.146
12(0) | (6149

This condition requires that | I — AAt™? < 1, which means

|1- A4At|<1 or At<2/max 4, (5.147)

where 4; is an eigenvalue of the matrix A. The convection often causes matrix A to
be asymmetric and the eigenvalues may be complex. Assuming A4 = v+ ju, we
then have the stability constraint that defines the critical time step used for the
explicit time marching,

a2 (5.148)
12+

Here the imaginary part g provides the oscillation, but not growth. The above
critical time step is obtained from the time marching stability consideration, which
requires that the errors at every ensuing step are not larger than the previous error.
For convection-diffusion problems, the convection term causes numerical
oscillation, as we have seen in the steady state case. For the transient case, the
oscillation levies another time step constraint on the time marching scheme.

Let us determine the time step from the requirement that unphysical oscillation
be suppressed. Using the exponential matrix exp(At), the exact solution to the
differential equation (Equation 5.142) may be written as [13]

d (exp(At)U)

ot =exp(At)B (5.149)
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On integration over [ty,t], one has the following result:
U(t) = exp(-A(t —t))U(t,) + (1—exp(-A(t —t,)))A B (5.150)

Given the initial data U(0) = 0, the above recursive relation will become, after
m time steps,

U(t) ={l-exp(-mAAt)}A !B (5.151)

where we have used t = to+At. To avoid numerical oscillation, we need to have the
condition,

exp(—AAt) >0 (5.152)

Otherwise, exp(-mAAt) will change sign from one time step to the next, which
causes oscillation. Carey and Oden [10] showed that the exponential matrix can be
calculated using the Pade approximations,

_ P(AAY)
T Q(AAY)

exp(—AAt) (5.153)

where P(AAt) and Q(AAt) are polynomials of AAt. In a simple Euler forward
scheme, P(AAt) = I — AAt and Q(AAL) = I. Thus the solution will oscillate if

P(1At)

<0 or 1-AAt<0 (5.154)
Q(4At)

Therefore, if no numerical oscillation occurs for this time scheme, then the time
step must be such that

At < 1
max 4,

(5.155)

In comparison with Equation 5.147, we see that the time step limit to suppress
oscillations due to integration is half that required for stability of the forward time
integration scheme.

Additional analysis of the problem is also given in the context of finite volume
methods, where the time step required for explicit time integration is discussed for
various schemes [3]. Warburton [12] argues that the critical time step should take
into account both the convection and diffusion effects, and he showed that At =
min (c,uh/k?, c,Dh%/k*) to ensure stability, where h is the mesh size, k is the order
of polynomial, and c; and c, are two Courant constants. The first term accounts for
convection, while the second accounts for diffusion. This argument is consistent
with the analysis above.
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5.4 Nonlinear Problems

Thus far, our attention has been on the linear convection and diffusion problems.
Another major class is the nonlinear convection-diffusion problems, where
nonlinear convection plays a crucial role in generating and propagating sharp
fronts and discontinuities such as shock waves in compressible flows. Benchmark
problems for nonlinear convection and diffusion are Burgers’ equations. We
consider both inviscid and viscous forms of Burgers’ equations.

5.4.1 1-D Inviscid Burgers’ Equation

5.4.1.1 Basic Considerations

Let us start with a 1-D inviscid Burgers’ equation, which is an idealized case for
shock wave and rarefaction wave phenomena in compressible fluid flow and heat
transfer systems. The 1-D inviscid Burgers’ equation has the following statement:

a—quua—u=O (5.156a)
ot OX

with the initial data given by

u, X<—=0
u(x,0) =455(5 = X) +52(5 +X) —-0<X<0 (5.156b)
Ug O <X

For this problem, the characteristic curve along which u is constant is given by

o _
dt

du

u=C; —=0 5.157
m (5.157)

where C is a constant. By integrating the above equation, the following expressions
for the characteristic curves are obtained:

x=Ct+x,; u=C (5.158)

The two constant regions in the initial data are carried into the domain from the
boundary, and remain constant along the characteristic curves, which become, on
applying the initial data,

Xo=X-Ct<-95; x-Ct>¢ (5.159)

Over the range —d < xp < ¢, the characteristic curves are dependent upon the
relative values of u_ and ug. In the case of u_ < ug,
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o X o X=X,

C-Z<2<C+=; u=C= (5.160)
t t t

If the limiting case is taken such that x, - J — 0, then we have the following
limits for u:

C(x5)=5lirg1 F=(0=Xg) +5% (8 +X%) =u, (5.161a)
xoié—
C(X§)=§“g1 F=(0=Xg)+ 55 (5+Xg) =Up (5.161b)
x;(ﬂ
u=lim X=X X (5.161c)
x> 1 t

where the first equation is in the region —9<x,<0 and the second equation is taken
in the region 0<xy<-4¢. Thus, the solution becomes

uL<§<uR; u=% (5.162)

If u_ > ug, however, the above limiting process would imply that u, <ug, which
would violate the given condition. Let us then consider the limiting process: d —xg
—0,

C(Xp)= lim 35(5—Xo)+5%(5+Xg) = (5.163a)
-0
x0—>6—
COxg) = lim 255 -x0)+3% (54 %g) =R L (5.163b)
x;(ﬂ
We thus have the following consistent expressions:
X Bt ot (5.164)
t 2 2
To summarize the above results, for initial data,
u. x<0
u(x,0) = {57 x=0, TS (5.165)

uR 0<x



204 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

we have the following solution for u(x,t):

u, if x/t<(u_+ug)/2
u(x,t)=<(u_ +ug)/2 if x/t=(u_+ug)/2 (5.166)
Ug if x/t>(@u_+ug)/2
and for initial data,
u. x<0
u(x,0) =428 x=0,  u_<Ug (5.167)
Ug 0<x

the solution for u(x,t) is given by

u, if x/t<ug
u(x,t)=x/t ifu, <x/t<ug (5.168)
Ug if x/t>ug

These results are plotted in Figures 5.9 and 5.10, where rarefaction waves and
shock waves are generated depending on the initial data. For the case of initial data
UL < Ug, rarefaction waves are generated and the fan of characteristics populate the
area that emanates from the origin, as shown in Figure 5.9. For the case of initial
data u_ > ugr, a shock wave is degenerated and the discontinuity present in the
initial data propagate from the left to the right, as sketched in Figure 5.10. This
basic understanding will guide us to develop various discontinuous finite element
algorithms, which allow appropriate handling of these discontinuities.

5.4.1.2 Discontinuous Finite Element Formulation
We now consider the discontinuous finite element formulation for the inviscid
Burgers’ equation,

ou ou
u =

—+u—=0 u(x,0) = up(x 5.169
el (x,0) = ug(x) (5.169)
with the boundary conditions u(0) = 1 and u(1) = 0. The above equation may be
written in a generic form,

IO
ot OX

(5.170)

where f(u) = 0.5u°.
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Fan of characteristics

u =0 ur=1

(@)

(b)

Figure 5.9. Solution of an inviscid Burgers’ equation with initial data: u_ < ug, which gives
rise to the rarefaction waves: (a) characteristic curves — a fan of characteristics emanating
from the boundary singularity as if a fluid flows out of a source, and (b) a 3-D view of a
wave profile at time t evolving from that at t = 0: u varies from 0 to 1 along the
characteristic fan indicating expansion (or rarefaction) waves spreading out as time
increases
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x = 0.5(u_+ug)t

t A
shock path
u.= 1 Ug = 0
X
(a)
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Figure 5.10. Solution of an inviscid Burgers’ equation with the initial data: u_ > ug. Shock
waves are generated and propagate from left to right: (a) characteristics of shock waves and

(b) 3-D view of shock wave in motion

To apply the discontinuous finite element method, the domain is first
discretized into N elements. The above equation is then integrated with respect to

the weighting function v over element j,

Xiv1( Hu ov (U~
X

ot
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—v(x;)h(uj,uj) =0 (5.171)

where the numerical fluxes /(a, b) have been used at the element boundaries.
Cockburn [4, 5] showed that a well behaved numerical flux needs to satisfy the
following conditions: (i) locally Lipschitz and consistent with the flux f(u), i.e.,
h(u,u) = f(u), (ii) a non-decreasing function of its first argument, and (iii) a non-
increasing function of its second argument. Some of the numerical fluxes have
been widely used in the definite difference approximations, and are found also to
satisfy these consistency conditions. These fluxes are listed below for convenience:

(i) the Godunov flux:

ﬁG(a b) = min o, f(u), ifa<b (5172)
’ max,.r<, f(u), otherwise. '

(ii) the Engquist—Osher flux:
hEO (a,b) = fbmin(f '(s),0)ds +fbmax(f (s),0)ds +f (0) (5.173)
0 0
(iii) the Lax—Friedrichs flux:
HLF(a,b)=%[f(a)+ f(b)-C(b-a)] (5.174a)

C= max |f'(s)| (5.174b)

inf uo(x)ssssupu0 (x)

(iv) the local Lax—Friedrichs flux:
h'F (a,b) =%[f(a)+ f(b)—C(b—a)] (5.175a)

C= max |£'(s)| (5.175b)

min(a,b)(x)<s<max(a,b)

(v) the Roe flux with “entropy fix”:

f(a), if f'(u)>0 for u e[min(a,b), max(a,b)]
hRe (a,b) =1 f (b), if f'(u) <0 foru e [min(a,b), max(a, b)] (5.176)

h'F (a,b), otherwise
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For an inviscid Burgers’ problem, the Godunov flux #° may be used, which is
known to produce the smallest amount of artificial viscosity. The local Lax—
Friedrichs flux produces more artificial viscosity than the Godunov flux, with
similar numerical performance. Cockburn [4] shows that as the degree k of the
approximate solution increases, the choice of the numerical flux does not have a
significant impact on the quality of the approximations.

The calculations can begin once the numerical flux is selected. The unknowns
may be approximated with a polynomial as local basis functions,

k+1

U (6 1) = D U (O () (5.177)
i=1

where k + 1 = Ne, with Ne being the number of nodes per element. Substituting the
above equations into Equation 5.171 and taking the Galerkin approximation by
setting v = uy, followed by the numerical manipulations, we have the following
matrix equation:

dUy;)
M— = L(U) (5.178)

where the subscript (-) refers to the element. For example, U denotes the
unknowns belonging to element j, and U is the vector containing unknowns at the
nodal points of the elements,

UG = [Up Uz, U Iy (5.179)
Ugiogy = [Uea0-01gy » Ugany = 0.0+, u () (5.180)

The operator L depends on the choice of the numerical functional flux and it can be
written in general as

Aﬁ(u"_’u?) ] (5.181)

Xjr1
Loy = [ 722 1@ (uyax +
0 - +
X _h(uj+1nuj+1)

) X
i

Time integration is now applied to solve the ordinary differential equations
resulting from the spatial discretization. If a simple Euler forward scheme is used,
then we have the following time-discretized form for Equation 5.178:

UPsl = Uy, +AtMIL(U") (5.182)

where the superscript n denotes the nth time stepping and At" is the time step, for
which the critical time step must be chosen to enforce the CFL condition. Various
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integration schemes, discussed for linear convection-diffusion equations, can also
be employed to integrate the above system of equations in time. It is noted that the
above approach is linear in accuracy, because of the use of the numerical fluxes
presented above. Higher order schemes require additional considerations, which
will be discussed in Section 5.4.3.

5.4.2 Multidimensional Inviscid Burgers’ Equation

The discontinuous finite element method for 1-D pure convection problems
discussed above is extended to solve multidimensional inviscid Burgers’ problems
in this section. We discuss below the formulation and the use of the chracteristics
decomposition method for the computation of numerical fluxes required to
complete a discontinuous finite element formulation.

5.4.2.1 Discontinuous Finite Element Formulation
Let us consider the generalized Burgers’ equation in a multidimensional domain,

u;+V-Fu)=G(r,tu) eQ t>0 (5.183a)
u(r,0)=0 eQUoQ (5.183b)

where u; = du/at, the nonlinear function F(u) and its derivative are defined as

F(u) = [f(u),g(u) h(W)]; V-F(u) = 5“;;) . a?a(yu) . aha(zu) (5.184)

As usual, to develop a discontinuous formulation for the problem, the domain is
first partitioned into a set of finite elements and a weak form solution is
constructed over an element, say, element j. The procedure involves integrating the
differential equation with respect to a weighting function v, and integration by
parts, to generate a flux term at the boundary,

f voudv + v.F.ndS—f F:VvdV:f v-GdV  (5.185a)
Q; 00 Q; Q,

]
where n is the outward normal of the element and F:Vv is defined by
F:Vv=f(u)-0,v+g(u)-0,v+h(u)-0,v (5.185b)
and v-F-n is calculated by

v-F-n=v-f(u)n +v-g(u)n, +v-h(u)n, (5.185¢)
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Since only the normal fluxes are involved in surface integration, the 1-D forms
of numerical fluxes discussed in the previous section may be used in the normal
direction for this problem. These normal numerical fluxes H, can be constructed
using the values available from adjacent elements during computation and, as in
other cases considered so far, replace the term F-n in the above formulation. This is
very similar to the procedure discussed above for 1-D inviscid Burgers’ equations,
and thus all the flux expressions (such as the Godunov flux, etc.) presented in the
previous section are candidates for multidimensional numerical fluxes, H,.

Let (NB,k) (k =1, 2, 3, ..., NS) denote the indices of the NS elements that are
neighboring elements of element j and let 0Q;y, k =1, 2, 3, ..., NS, be the faces of
Q;, which are shared with the neighboring elements. See Figure 5.3 for the
geometric arrangement of element j and its neighbors. Then the weak form integral
is written as

NS
fij . ; E)Qj,kv (Uh'J “h'(Nka))
Q; Q;

where up; is the nodal values of element j.

For discontinuous formulations, inter-element continuity is not required. Thus,
virtually any polynomial basis functions can be used to construct the approximate
solutions to uy, on €;. For multidimensional problems, the use of tensor products is
a common approach to construct local interpolation functions. Various forms of
interpolation functions were discussed in Chapter 3. The discontinuous finite
element solution has the usual form over a canonical 3-D element,

uy (XY 0) = > Unn(£:77.4) (5.187)
m=1

where ny is the number of terms in a complete polynomial of degree k. With these
substituted into the formulation, and applying the Galerkin approximation,
followed by extensive but routine algebra, we obtain the final matrix form for
Equation 5.187,

dUj
M— P+ KU =S (5.188)

where U is the unknown vector, M is the mass matrix, K is the stiffness matrix,
including the portion of normal numerical flux, and S is the source vector,
including contributions from the neighboring elements. The matrix equation, and
hence the unknowns, can be solved using the same procedure as described in the
previous sections.
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5.4.2.2 Characteristic Decomposition

For a multidimensional problem, the characteristic decomposition method, also
called the flux-vector splitting method, may be used to assist in constructing
numerical fluxes needed for discontinuous finite element formulations. In general,
a flux vector may be expressed as

F(u)=Au=F,(u)u (5.189)

For a hyperbolic system, the Jacobian A may be diagonalized as shown in
Section 5.1 to yield

F(u)=P*APu (5.190)

where the diagonal matrix A contains the eigenvalues of A,

zl
A

A= . (5.191)
AN
The matrix may be further decomposed into two components,
A=A +A” (5.192)

where A" and A~ are composed of non-negative and non-positive parts of A,

ﬁ:ﬂiiw i=1,2 ...,N (5.193)

N

The flux vectors are now written as two components,
F(u) = PY(A" + A")Pu=F(u)" + F(u)~ (5.194)
with the positive and negative fluxes calculated by
F(u)* =PA*Pu=A*u; Fu) =P A Pu=A"u (5.195)

where A" contains only rightward-moving characteristic information, and A
carries only leftward-moving characteristic information: A = A* + A", For scalar
linear advection this is just the upwinding flux.
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The characteristic decomposition of the flux vector allows us to construct the
numerical fluxes at the boundary more effectively. Consider a constant element
approximation. Then we can write

Fj+l/2 :A+UJ +A_Uj+1 (5196)

Thus the flux at the interface can be evaluated using the upwinding methods, and at
the interface x;, F(u)" is calculated by u(x;, t) and F(u) " by u(Xj.s, t).

In passing, we note that the above formulation and decomposition method can
also be used to solve a system of hyperbolic problems, in which case there is a
system of variables defined in either one spatial dimension or multiple dimensions.

5.4.3 Higher Order Approximations and TVD Formulations

In many applications, the linear accuracy approximations presented above are not
adequate, and higher order interpolations are needed. For nonlinear inviscid
convection problems, a higher order discontinuous method is particularly
attractive. It not only provides higher accuracy, but also is more efficient in
suppressing the spurious oscillations appearing in the numerical results, especially
around discontinuities, provided that the higher order scheme is constructed
correctly. For the use of higher order spatial approximations, the order of the time
integration scheme has to be compatible to maintain accuracy. Merely increasing
the spatial resolution may not eliminate these oscillations, as the numerical
schemes may not satisfy the Total Variation Diminishing (TVD) property. To avoid
these oscillatory problems, a numerical scheme needs to be constructed that
satisfies the TVD property, by using a second order accurate numerical scheme on
smooth solutions and adding diffusion to the numerical scheme near
discontinuities. Such numerical schemes, which are often referred to as high
resolution schemes in the literature, are at least second order accurate on smooth
solutions, and minimize the spurious oscillations present near discontinuities.
Cockburn and Shu [14-17] show that for a polynomial of order k, the order of an
explicit temporal integration needs to be k+1 to achieve the desired effects.

To be fully consistent with the literature on the subject, we use =[Xj-112, Xj+1/2]
to define the domain of element j for 1-D problems for both constant and higher
order polynomial approximations. This use will be exclusively for this section
(Section 5.4.1). As such, u; refers to the value at the center of the element j and #; is
the averaged value over element j. Note that u; is the same as #; for a constant
element approximation formulation. The difference between u; and 7 is important
for constructing slope limiters for higher order approximations.

5.4.3.1 Concept of Total Variation Diminishing

Much of the work on higher order approximations has been discussed along with
the TVD scheme. Cockburn and Shu [14] recommend a total variation diminishing
Runge-Kutta scheme; however, Biswar et al. [18] point out that the classical
Runge-Kutta was equally satisfactory. For most applications, an explicit time
integration is used. Since TVD schemes are only first order accurate at the local
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extrema, alternative reconstruction procedures, for which some growth of the total
variation is allowed, have also been developed. Among those, we mention the total
variation bounded (TVB) schemes [14-17], the essentially non-oscillatory (ENO)
schemes [20], and the least extremum diminishing (LED) schemes [19].

To illustrate the concept of a total variation diminishing (TVD) scheme, we
consider a 1-D scalar conservation law, or inviscid Burgers’ equation,

& aw

5.197
ot OX ( )

where f(u) = 0.5u? is the flux function. The total variation (TV) of the solution to
the above problem is defined as

TV(u):f:O

and the total variation for the discrete case is given by

ou

5| 0x (5.198)

V() = | uj —uj| (5.199)

J

A numerical method is considered total variation diminishing, or TVD, if the
following condition is satisfied:

VU™ STV TVE") = > [ ufy —u (5.200)
i

where n is the nth time step and subscript j refers to nodal point j. Harten [21-24]
proved that a TVD scheme is monoticity preserving and a montonic scheme is
TVD.

Harten [21-24] studied the central finite difference (or constant element)
scheme for the above equation,

du; N 2= fjae
dt AX

=0 (5.201)

Here subscript j denotes nodal point j, which, for a piecewise constant element
approximation, is the same as the element j. Also, subscripts j+1/2 and j—1/2
represent the values at the two boundaries of element j. These geometric relations
are shown in Figure 5.11. Harten proved that the scheme is total variation
diminishing, provided that it can be written in the form of

du;
_dtj =Cj2(Ujg—Uj)+Cjq/(Ujg —Uj ) (5.202)
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with non-negative coefficients ¢jy, > 0, Cj2 = 0, and for an explicit scheme
At(Cj_12 + Cj+112) < 1. The coefficiens ¢j_y/, and cj:1, may be nonlinear. Furthermore,
an explicit time integration scheme is required to satisfy the CLF condition.

Uj

Uj+1

Uj1 !

' |

: element j |

[

e

Xj-1 Xj-1/2 X Xj+1/2 Xj+1

Figure 5.11. Construction of a flux limiter, using constant element approximation. The
nodal value is at the center of the element, and the boundaries of element j are marked by
Xj-1/2 and Xjs1/2

The spatial and explicit time discreitization may also be written in the
following form:

u?+l =U? _C?—llz(U? _u?—1)+c?+1/2(u?+1 —u?) (5.203)

where C is an arbitrary constant. Harten’s theorem states that the algorithm given
in a general form of the above equation is TVD, i.e., the criterion expressed by
Equation 5.200 is satisifed if the constants are such that

Ciy20;  Clyp20;  Cjiyp+Ciyp <l V] (5.204)

One thus needs to construct a numerical flux that satisfies the above TVD
criterion. It is important to note that an explicit time scheme may not be TVD even
if it satisfies the CFL condition. For example, one can show that an explicit Lax—
Wendroff scheme does not satisfy the TVD conditions in the range of time steps
that satisfy the CFL condition [6]. It is worth noting that the corrections making a
method TVD are always associated with nonlinear limiting even for linear
convection problems. We consider these limiting corrections below.

5.4.3.2 Flux Limiters

The flux limiter approach is based on the idea of approximating flux expressions to
obtain higher accuracy, while maintaining the TVD property. We limit the flux of u
between elements and subsequently limit spurious growth in u near discontinuities.
Godunov [6] further proved that a linear TVD scheme is doomed to be first order
accurate. To overcome this difficulty, numerical fluxes are constructed by
combining the high and low order approximations,
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fia2 = ij¢1/2 +(Dji1/2[fjl-i|l/2 - ijﬂ/z] (5.205)

where superscripts L and H are the low and high order approximations of f, and
®j., is a correction factor referred to as the flux limiter, and is designed in a
numerical algorithm to satisfy Harten’s TVD condition. Here, to make the
presentation clear, we consider the constant element approximation, which is
equivalent to the finite volume scheme. The purpose of the limiter is to regulate the
diffusion to the solution. It acts as a nonlinear anti-diffusion factor to the lower
order flux approximation, in order to improve its accuracy without generating
spurious oscillations and violating the TVD property. All the numerical fluxes
using flux limiters are constructed similarly and consist of two pieces: a high order
flux (e.g., the Lax—-Wendroff flux) for smooth regions of the flow, and a low order
flux (e.g., the flux from some monotone method) near discontinuities.

We illustrate this point through a simple case study. Consider a pure convection
problem with a constant velocity ¢>0,

a—u+ca—u:0 (5.206)
ot OX

The flux functions for a constant element scheme may be approximated by the
following flux functions:

f a2 =CU; for upwinding (5.207a)
fj}illz =¢0.5(uj +Uj,y) for central scheme (5.207b)

If a combined approximation with a flux limiter is used, the numerical flux takes
the form of

fii2 =0Uj +0.5¢D j/5[U 0 —U; ] (5.208)

and the other term fi_y, is constructed by substituting j=j-1 into the above
equation. Equation 5.208 shows that the flux at the element boundary is
constructed by multiplying the jump in u there by a limiting function. To control
the anti-diffusion correction, the flux limiter should vary depending upon the local
condition of the solution. A suitable choice is to examine the solutions at the
adjacent elements (see Figure 5.11). It is suggested that the limiter be designed to
be a function of the slope ratio of the velocities near the element boundary Xj.1/2,
Fj+172,

Uj—Ujy
Mg =———— (5.209)
Ujr —U;
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With this definition, ©(r) = 0 if r < 0 and Dji, = D(rjs12). Jameson [25]
suggests that the flux limiter be expressed in terms of a special operator =, which is
a function of two variables and defines Z(1, r) = ®(r). The operator needs to have
the following four properties:

1. Z(a,b) = E(b,a) (2.110)
2. Z(ca,cb) = cZ(b,a) (2.211)
3. EZ(a,a)=a (2.212)
4.Z(a,b)=0 ifab<0 (2.213)

As shown from Example 5.4 below, the flux limiter is related to the operator,

O(r)=ELr)=rE@Q1/r)=rd(/r) (5.214)

O(rj,1/2)Ujp —Uj) =E(Ujq —Uj,Uj —Ujg) =P/ Tj,q,)Uj —Uj,)
(5.215)

Using the operator, the problem of dividing by zero can be eliminated. With
these relations, one can show that the constant element scheme satisfies the TVD
condition if the coefficients are calculated using the following expressions:

D(rj,1/2)
2_q)(rj—l/2)+; ; Cjra2 =0 (5.216)

a2

c _cC
j-1/2 2AX

with ¢j_y, 2 0 and Atcj_y, < 1.

Example 5.4. Prove the relations given in Equations 5.214, 5.215 and 5.216.

Solution. The proofs can be made using the definitions of the operator = and its
properties:

O(r) = 2L r) = 2(rd) = rE(1/ 1) = rELL/ 1) = ro(L/ 1) (5.13¢)
D(rj11/2)(Uj —Uj) = (Ujug —Uj)EQ Tj4q/0) =E(Uj —Uj, U5 —U )
=(Uj —Uj_)EA/ 1) = (Uj —u; ) )PQA/rj,,) (5.14€)

To prove Equation 5.216, we start with the constant element (or finite
difference) equation,
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du; fiao—Ti
dt] __ j+l/2AX j-1/2 (5.156)

Substituting the numerical flux, combined from the upwinding and central
differencing, one has

du. c
j
ot _E(uj +0.50 9/ (Ujg —Uj)—Uj 3 —05D ;45 (u; —u j—l))
c
= —m{z(uj —Uig) + D@12 @/ 1j12)(Uj —Ujg)

— @ 4/p(rj_12)(Uj —Ujg)}

c
ZE(Z F D@ 0(Fagy) 1) — P j—l/Z(rj—lIZ))(ujfl —-u;)  (5.16e)

Comparison with Equation 5.216 gives the needed result immediately.

Further analysis shows that the discretized form using a flux limiter can also be
written in the general form given in Equation 5.203 (see Example 5.5 below) with
the following coefficients:

1 D(rfly/2)
Ciae = 5+§5(1—5)(n'—+—<1>(r,-”_1,2) ; Clyyp =0 (5.217)
j+l/2

where 6= cAt/Ax. In this case, the Harten TVD conditions reduce to 0<Cj; <1,

O(rn
0<cCl, :5+%5(1—5)[%—q>(rp_1,2)Js1 Vj (5.218)
j+1/2
This will hold true if
0< 20 5. 0<d(r)<2 Vr>0 (5.219)

r

In addition,we require that ®(r) = 0 if r <0, as stated above.

A variety of flux limiters is devised in the literature and some of the popular
ones are plotted in Figures 5.12 and 5.13. They are given below also for
convenience:
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For linear methods (Z(1, r) = ®(r)):

Godunov slope: ®(r) =0 (5.220)
Centered slope (Fromm): ®(r) =0.5(+r) (5.221)
Upwinding slope (Beam-Warming): ®(r) =r (5.222)
Downwinding slope (Lax-Wendroff): ®(r) =1 (5.223)

For higher order methods:

Minmod: Z(a,b) = S(a,b)min{|a|,|b|} (5.224)

2|a]lb]

Van Leer: Z(a,b) =S(a,b)
lal+[b]

(5.225)

Monotonized central: Z(a,b) = S(a,b)min{w,z lal,2|b |} (5.226)

Superbee: E(a,b) = S(a,b) max{min{ 2|a|,|b[},min{|a|,2|b[} (5.227)

where S(a, b) = 0.5(sgn(a)+sgn(b)).

As can be seen above, the linear methods do not give rise to a TVD scheme. To
guarantee second order accuracy and avoid excessive compression of solutions,
Sweby suggested a reduced portion of the TVD region as a suitable range for the
flux limiting function. The Sweby TVD region and the nonlinear flux limiters are
illustrated in Figure 5.13.

5.4.3.3 Slope Limiters
As shown above, the way the element boundary fluxes are computed determines
the spatial order of accuracy of the numerical algorithm and controls the amplitude
of the local jumps at an element interface. If these jumps are monotonically
reduced, the scheme provides more accurate initial guesses for the solution of the
local Riemann problems (the average values give only first order accuracy).
Besides the flux limiters for reconstructing numerical fluxes, the slope limiters are
also commonly, maybe more commonly, used for the TVD schemes. Van Leer
[26] discussed the second order, piecewise-linear reconstruction in the design of
the MUSCL (Monotonic Upstream Scheme for Conservation Laws) scheme. The
third order, piecewise parabolic reconstruction scheme was developed by Colella
and Woodward [27] in their Piecewise Parabolic Method (PPM). We consider
below slope limiters for discontinuous finite element applications.

A slope limiter method is based on a geometric approach to construct a higher
order approximation for the fluxes in Equation 5.201. The idea is to reconstruct the
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variable u at the element boundaries from the values in the element and its
neighbors and then use the variable in the flux expressions. We illustrate the
concept using the piecewise constant approximation. Knowing the numerical data
u(x;,t"), we can construct a piecewise approximation to u,

D A Beam-Warming Fromm
2 ]
1 Lax—Wendroff
/ Upwinding
1 2 3 r

Figure 5.12. The shaded region is the TVD region and four slope limiters for linear methods

O A
2
1]
/
./"
./.
T T T >
1 2 3 r

Figure 5.13. The Sweby TVD region (marked by shading) and nonlinear slope limiters:
thicker solid line — minmod, double-dot dash curve — the monotonized central limiter, dash
line — superbee, and lighter solid line — van Lear
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J(X,tn):U(Xj,tn)-i-GT(X—XJ), Xj71/2<X<Xj+l/2 (5228)

and the approximation #(x,t") is then used to calculate the numerical fluxes at the
element boundaries at x = X_1> and X = Xj:1. In Equation 5.228, U(x;.t") is the

averaged value over element j (see Figure 5.11 and also Equation 5.230 below) and
the slope is interpolated using the averages at the element boundary from adjacent
elements,

One could choose the central flux or upwinding flux for o". Whatever the
choice may be, it needs to produce a polynomial for u(x,t") such that the average
over the element is the same,

T t") = = [ 0 ) (5.230)
j = Ax - , .

Thus, one has the freedom of constructing any slope as needed, so long as the
above condition is satisfied. Figure 5.14 shows the procedure by which a piecewise
approximation is made from the element-averaged values.

Some of the standard formulae for slopes (assuming same-size elements) are
given as follows:

Godunov slope: o} =0 (5.231)
Tn
u j+l
hn
uj
Tn
up,
L 4 @ @
Xj-1 X Xj+1

Figure 5.14. Reconstruction of u(x) in an element from element-averaged values (horizontal
lines) and extratpolate u at the element boundaries. Over each element an approximation to
the slope is made. The reconstructed solution passes through the element average at the
element center and has the computed slope (slant lines)
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n j+1 Uj—l
Centered slope (Fromm): o = (5.232)
! 2AX
i
o —qgn
Upwinding slope (Beam-Warming): o} = JA 11 (5.233)
X.
j
an ol
Downwinding slope (Lax-Wendroff): o = ”i ! (5.234)
X

By the Taylor expansion, one can show that the latter three methods (Fromm,
Beam-Warning, Lax-Wendroff) are second order accurate for sufficiently smooth
solutions. This is one order better that the straight upwind version (assuming zero
slope). Numerical experience indicates that the use of the above standard numerical
fluxes sometimes would actually introduce oscillation near the discontinuity as
shown in Figure 5.15. This is because the values used for numerical flux estimation
are extrapolated to the element boundaries without error control. Thus special care
has to be taken to construct a slope limiter that is both higher order accurate and
oscillation free.

: Piecewise
| linear function
I

|
I
|
|
|
|
U3 : u(x,t")
i
|
|
|

| | | |
| | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | —eo—+—o
| | | | |
| | | | |
| | I | |
I ! ! I I
X1 Xj Xk X2 Xjsg X

Figure 5.15. A linear function causes oscillation at the shock front. The solid line is the
exact solution and the dots are numerical solutions

Several choices of slopes that satisfy the TVD condition are reported in the
literature, which include:

Setting slope to zero: Godunov method: 0'? =0 (5.235)
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Minmaod slope limiter: 0? =minmod(a,b) = S(a,b) min{|a|,| b |} (5.236)

|al+[b]

Monotonized central:a? =S(a, b)min{ , 2]|al, 2|b |} (5.237)

where a and b are the upwinding and downwinding fluxes, respectively, which are
calculated by

THE T u

a= - p=t 1 (5.238)
AX AX

The concepts for both slope limiters and flux limiters can be extended to
multidimensional calculations in regular grids with ease. For unstructured meshes,
however, a procedure can be tedious [19]. In general, it involves: (1) reconstruction
of a local 1-D stencil, by inserting equidistant dummy nodes on the continuation of
each mesh edge, (2) interpolation/extrapolation using the adjacent elements
containing node j, (3) interpolation using the actual triangle T containing the
dummy node k, and (4) extrapolation, using a least square reconstruction (L2
projection) for the gradient at node j. The detailed procedures for each of these
steps are discussed in Kuzmin and Turek [19].

Example 5.5. Consider a pure convection problem with a constant convective
velocity c,

a_u+ca_u=0 e, t>0 (5.17¢)
ot OX
u(x,0)=uy(x) eQ (5.18¢)

Develop discontinuous finite element formulations using the constant element
approximation incorporating (1) a slope limiter and (2) a flux limiter.

Solution. The spatial discretization using a constant element gives the following
conservation expression:

de + f(U(Xj+1/2,t))— f(U(Xj_1/2yt)) B
dt AX

0 (5.19)

where the overbar denotes the average over an element and f = cu. We construct
the slope limiter from the calculated values in the elements,

u(x,t") =u(x;,t") + (x=x;)o (5.20e)
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Since the propagation speed c is a constant, we can use a method of
characteristics to evaluate the flux integral (for the reconstructed solution as it
propagates through the end points of each element). A fairly standard approach is
to linearize the flux function about some appropriate mean state, decompose the
solution into characteristic variables of the linearized system and perform the same
kind of linear wave propagation analysis.

In the space-time plane we can plot the characteristics for the advection
equation for the outflow condition (see Figure 5.4e). If the discretization for the
slopes only includes the jth and (j +1)th elements, then the time step must satisfy
CAt < Ax. Otherwise we would have to use the reconstruction from the (j—1)th
element. Similarly, we can plot the characteristics for the advection equation for
the inflow condition (see Figure 5.5¢) and we back-track into the (j—1)th element
to evaluate the inflow flux for element j.

We now use values of the polynomial reconstructed u at the nth time level to
evaluate the flux integral at the inflow and outflow boundaries. Given a piecewise
linear reconstructed solution each of the flux integrals can be evaluated. Thus, we
have the flux expression at X1z,

tn+1 tn+1

[ 1oz d= [ g0
t t

tn+1

= j:n f(l](Xj+l/2 —C(t _tn)))dt

tﬂ+1

. f C@ + (Xj 1172 — Clt—t") — x;)o ")t
tn

AXAt

2 A42
CeAt
o" o"

=CcAtu! +c
] i 2 i

(5.21¢)

In deriving the above, we back-track along the characteristics to find the value U
at (Xj12, t) for (", t**). A similar expression can be obtained for the inflow integral
using the information from the neighboring elements.

Thus, one can express approximations for the right hand integrals in terms of
element averages:

tﬂ+1 tﬂfl

— — 1
uj”+l = an —|—E{j:n f(u(inllz,t))dt—j:n f(U(XJ+l/2,t))dt}

_ 1 _ AXAt C2At?
—_in n n _
=Uj +E{cAtujl+c > e > o,
_ AXA 2At2
— ety - XA io-n}

1T

1 S AXAt  C2At?
uy —E{CAI(UF —u}‘l)+(c - ](

5 5 of —0?1)} (5.22¢)
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Re-arranging, one has the final expression,

o _Z_Axt{ap . %(1_%:)(0? - 0?1)} (5.23¢)

where o is the slope limiter, which one can choose from the list of the slope
limiters discussed in Section 5.4.3.2.

tn+l

Uj'(Xjs1/2:8) =

Uj'(Xjya/2 —C(t—t")

Xj-1 X Xj+1/2 Xj+1

Figure 5.4e. Characteristics plots in the x-t plane. Initial data at t at element j is carried
over into the domain and leave out the out-flow boundary of element j.

tn+1

Ui (Xj_qy2.t) =

Uiy (Xjgyp —c(t—t")

Xj-1 Xj-1/2 Xj Xj+1

Figure 5.5e. Characteristics plots in the x—t plane. Initial data at t at element j—1 is carried
over into the domain and enter through the left-hand boundary of element j
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We now turn to the derivation of a flux limiter expression. We start with
Equation (5.19¢) and integrate it using a Euler forward scheme to obtain the
following result:

1 on At
u-"+1=uj"+§(Fj“_1,2—Fj"+1,2) (5.24e)

where F is the averaged boundary flux and is calculated by (see also Equation
5.21e)

tn+1

1 N _ c
Filyz =+ ft O 2, D)t = Oy + 2 (A —cAt) o]y (5.256)

tn+1

1 5 _ c
F;H,zzﬂftn 002, D)dt = O] +2(AX—cAt)o]  (5.26¢)

The two equations above are nothing but the flux formulations with piecewise
reconstruction.

So far we have assumed ¢ > 0 but we can also obtain the flux expression for the
condition of ¢ < 0 using the same approach. The results for both cases may be
summarized as follows:

cujy +05c(Ax —cAt)oly if ¢ >0
Flys = (5.27¢)
cuj —0.5¢(Ax + cAt)o if ¢ <0
The flux expression may be further written in a simplified version,
- At
Fly,=c0 +c'T +m 1|24 A 5.28e
j-1/2 j j-1 2 AX j-1/2 ( )

where A = Axg(o7,,o7) with g being a function of &, o7 is the flux limiter, and
¢ and c” are calculated by the following expressions:

- _c-lcl.

. L _cHlel

5 5 (5.2%)

By writing the time interval averaged flux function in this way, we have
changed the numerical strategy from a local element reconstruction approach
towards controlling the flux contribution from jumps in the averages between
elements. In particular, we use the flux limiter, intead of the slope limiter, to
approximate the numerical fluxes at the element boundaries. Equations 5.27e and
5.28e also reveal the relation between a slope limiter and a flux limiter.
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From the analysis of the units of A, we devise the flux limiting function, which
allows us to control the boundary flux by multiplying the jump in element averages
by a flux limiting function,

Ay = O(riy )@} ~Tjy) (5.308)

where the flux limiter is calculated by

ol -af
D(rfly,) =—4—4 (5.31¢)
uj —uj,
with
_Ji-1 ifc>0 (5.326)
“lj+1 ifc<o0 '

The ratio rj_y, can be thought of as a smoothness indicator near the element
interface at x;_1,. If the data is smooth we expect the ratio to be approximately 1
(except at extrema). Near a discontinuity we expect the ratio to be far away from 1.
The flux limiter, @, will range between 0 and 2. The smaller it is, the more limiting
is applied to a jump in element averages. Above 1 it is being used to steepen the
effective reconstruction.

Using this notation one can write down the scheme in terms of the flux limiter
(0= cAt/AX),

_ _ n ol-o _ _
Ut =u) - o - uj,) - ( ){q)("jnu/z)(ujnu—UF)
()@ -0 forc>0 (5:33¢)
_ _ o(l-o n
uJn S I(H 41— n)— d-9) {q)(rjn—llz)(ujn —anfl)
—D(r,y2) (U — JF)} forc <0 (5.34¢)

In the above equations, the second term represents the upwinding scheme flux
contributions, the third term the limited downwinding element interface flux
contribution, and the fourth term the upwinding element interface flux
contribution. The above equation can be written in a general form,

n+l _ —

Uj ™ =07 =Cjyp (@ ~Uj4) +Clyyp @y —07) (5.35¢)

which has been used in the discussion of TVD with flux limiters in Section 5.4.3.2.
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5.4.3.4 TVD-Runge—Kutta Schemes
In a series of recent papers [14-17], Cockburn and Shu presented a TVD-Runge-
Kutta scheme for the discontinuous finite element solution of nonlinear hyperbolic
conservation equations. Their procedure essentially involves three steps: (1)
discontinuous finite element space discretization, (2) explicit Runge-Kutta time
integration and (3) generalized slope limiters to ensure the TVD properties. Their
schemes are, strictly speaking, TVB (total variation bounded), which is a
modification of TVD.

These steps may be better illustrated through an example, for which the
Burgers’ equation should serve the purpose,

ou_ o _, (5.239)
ot OX
where f(u) = 0.5u? is the flux function.
The first step involves the space discretization of the domain into a collection
of elements and integrating locally over an element (say, element j) to obtain the
weak form solution,

Js

where integration by parts has been taken, and the boundary fluxes have been
replaced by the numerical fluxes h(u).

For this type of problem, the numerical fluxes can be taken as the approximate
Riemann solver. Some examples of the numerical fluxes that satisfy the stability
criteria are the following:

V- udv +fd vh(u)i“-n,-ds—f f(u)%dvzo (5.240)
0 Qj

i

(1) the Godunov flux:

D=0 e 6261
(2) the Engquist—Osher flux:

h(a,b) = j;bmin(f '(s),0)ds+f0bmax(f (s),0)ds + f (0) (5.242)
(3) the Lax—Friedrichs flux:

h(a,b) =1[f(a) + f (b) - C(b—a)],

C=  max |f'(s)] (5.243)

infuo(x)ssssupuo(x)
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These fluxes are part of the list discussed in Section 5.4.2.1, but given here for
convenience. The above fluxes are useful for piecewise constant approximations
and, when used with an explicit Euler forward time integrator, give linear order
accuracy. These fluxes are not suitable for high order TVD schemes without slope
or flux limiters. By interpolating unknowns using polynomial basis functions, and
carrying out the necessary element calculations, one generally arrives at a system
of ordinary differential equations,

dug) _ L) (5.244)
dt
where L is the operator and Uy = [u(Xj-u2t), ..., u(xt), ..., u(xj+1,2,t)]T are the

unknowns, or coefficients of the polynomial basis functions, associated with
element j. Also, U includes unknowns from neighboring elements. Note that for
hyperbolic problems, the discontinuous finite element method has order k + %
accuracy when polynomials of degree k are used.

The second step for the calculations involves the Runge—Kutta time integration.
This is an explicit Runge-Kutta method specially modified for the discontinuous
finite element solutions [14]. If [0, T] is partitioned into N time steps with At" = t™*
-1, n =20, 1, ..., N-1, then the time-marching algorithm is numerically
implemented as follows:

Set U’ =U,

Forn=0,1, ..., N-1, calculate U"" from U" by the following procedures:
(1) Set UM =y"
(2)Fori=1,2, ..., K(=k+1) compute the intermediate functions,

i—1
Ul =3 gy wits wit =yt 4 A g (i
2 ar )
(3) Set U™t = YK
where k is the order of the spatial polynomial.

Gottlieb and Shu [28] show that the following properties are required of the
coefficients ¢; and £ in order for the scheme to be TVD:

if ﬂ| # 0 then ay =0,
o) = 0
i o =1

and if the single Euler forward time step (that is, W" = U + (8, / & )AtL(UM))
satifies the CFL condition [4, 5],
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8o = max | At" max{B; / a; }|
0<n<N

Thus, the stability of the Runge—Kutta schemes follows from the stability of the
intermediate steps for the mapping U™ — W' : W" = UM + (8 /a;)At(U™). In other

words, to render a Runge-Kutta scheme stable, every single Euler forward
intermdiate step needs to be stable. This is a crucial aspect of the TVD-Runge—
Kutta scheme.

Since a TVD-Runge-Kutta scheme is explicit, the round-off errors must be
fenced in. For a discontinuous formulation using polynomials of order k, a (k+1)-
stage Runge-Kutta scheme (i.e., order k +1) must be used. A von Neumann
analysis shows that for a 1-D problem with f(u) = cu or (éu/ot+cou/ox=0), ¢
being a constant, the following CLF condition is required to ensure the stability:

At 1
c|—<
Ax  2k+1

(5.245)

where k is the order of polynomials for space discretization [5]. This is much
smaller than a Euler forward scheme alone, which is easily recovered from the
above equation by setting k = 0.

For discontinuous finite element space discretizations, Cockburn [4,5] shows

that the Euler forward mapping U™ i W' is not stable in the L2-norm, except in

the case where polynomials of degree 0 are used. If the polynomials of degree k are
used, the intermediate single Euler forward step may not be stable. For example,
for k = 1, that is, a piecewise linear approximate solution, the single Euler forward
step is unconditionally unstable for any fixed ratio of At/Ax. On the other hand, if a
Runge-Kutta method of second order (k + 1 = 2) is used, it is conditionally stable
for |c|At/Ax < 1/3. This means that even though a single Euler forward step is not
stable, the TVD-Runge—Kutta scheme is stable according to Equation 5.221. Thus,
the stability of the complete Runge-Kutta scheme cannot be deduced from the
stability of the single Euler forward step.

It is shown that with the use of a piecewise constant approximation the TVD
property means

TV@U") = Z |Tj41 T (5.246)

1<GN

where the overbar represents the element-averaged value. Note that for a constant
element approximation, Ug, = u;. For discontinuous solutions that are not piecewise
constant, the above result still holds if the following sign conditions are met for a

single Euler forward step mapping u — w [4, 5]:

SIN(U 172 —Uja72) =SON(U 0 —T;) ;
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SgN(U 7,1 2 —Ujgy2) =sgn(U; —U; ) (5.247)

For higher-order approximations, these properties need to be ensured by the
generalized slope limiter. Note that the result expressed by Equation 5.246 is,
strictly speaking, the total variation diminishing in means (TVDM) for a higher
order approximation [5].

The generalized slope limiter is constructed in a procedure similar to that
discussed above for slope limiters for constant elements. For a piecewise linear
approximation of u over the element for the purpose of evaluating fluxes,

ou(x,t"
Ux,t") =0 +(x - x; )%. xeQj =[x 42, Xj.12]  (5.248)

The generalized slope limiter SP(:) is then defined as

u(x,t")=SPU) =0

ou r noogh_g"
+(x—x;) min mod{ 2 , 2 HlA 1 2 A ’1} (5.249)
X .

where Aj = Xj12 — Xj+12 and also

minmod(a.b.c) = {sgn(a)mln(|a| [bl.|¢]). if sgn(a) = sgn(b) =sgn(c) (5.250)
otherwise
At the boundary of element j, the projection has the following form:
Uity =0j +min mod( Vil -0, —u) oy —Uj”_l) (5.251a)
U, =) —minmod(a7 —v;,,, 07, ~ 07,07 07 ) (5.251b)

where U =U(x;,t") and the values at the boundary are calculated by the
following expression:

_ 0
vl =y ") = T(x;, ") + (x - Xi)ﬁ , Xe[Xj g2 Xj12]  (6.252)
]
Two of the slope limiters used for discontinuous formulations are given in Figure

5.16. The limiting procedure prevents the overshooting at the boundaries: the
overshooting causes the oscillation in solution near the discontinuities.
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Thus, we have a complete TVD-Runge—Kutta scheme for the numerical
solution of inviscid Burgers’ equation using a discontinuous Galerkin formulation.
Let [0, T] be partitioned into N time steps with At" =t™ —t"(n=0,1, ..., N - 1)
and let SP(-) be the generalized slope limiter. Then the time-marching algorithm is
numerically implemented as follows:

Set U° = SP(U,)
Forn=0,1,...,N-1, calculate U™ fromU" by the following procedures:

(1) Set U =y"
(2) Fori=1,2, ..., K(=k+ 1) compute the intermediate functions,

ulll — sp

i—-1
> oW [ w =yl +ﬁAtL(U[”)
1=0 il

(3) Set U™t = yIKI

where k is the order of the spatial polynomial.
We consider below an example illustrating the difference between a TVD-
Runge—Kutta scheme and a non-TVD-Runge—Kutta scheme.

—
—

Figure 5.16. Slope limters: the MUSCL limiter (a) and the less restrictive SP limiter (b).
Local means are denoted by the horizontal solid line. Also shown are the linear function u in
the element of the middle before limiting (dashed diagonal line) and the resulting function
after limiting (diagonal solid line)
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Example 5.6. Consider the 1-D inviscid Burgers’ equation,

2
‘2—‘: + 63(%} -0 (5.36¢)
X

with discontinuous initial data

1.0, if x<0
u(x,0) = . 5.37e
(x0) {—0.5, if x>0 ( )

Develop a discontinuous finite element formulation with the TVD-Runge-Kutta
time integration, with the MUSCL slope limiter, and compare the results obtained
without the use of a TVD scheme.

Solution. Let f(u) = 0.5u® Then the discontinuous formulation has the form,

ou ~ ov
v-—dV +f vh(u)l-n-dS—f f(u)—dv =0,
j;— ot 0Q; . Q, ox

]

Qj =[Xj1/2:Xj41/2] (5.38e)

For a piecewise constant approximation, the above can be integrated to yield
the result,

du 1

EZE(hm/z _hj—lIZ): L(u) (5:3%)

where to simplify the notation, the subscript on u has been dropped. We take the
slope limiter as follows:

- S -
Uji1/2 =U; +Em|n mod(uj+1—uj U —uj_l) (5.40¢e)

1 .
+ — — o
Ujpr/2 =Ujug —Emln mod(uj+2 —Uj,q, Uj, —U; ) (5.41e)

and use the Godunov flux as the monotone numerical flux,

2 . .
Uja1)2<USUT,y) 0.5u%, if U,y <UTa)

2 .
max,. 0.5u°, otherwise

j+1/2SUSUjL0

h(Uji/2: U as2) = (5.42¢)

For this choice, the time step is restricted to
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At (5.430)

~amax|uj |
The TVD second order accurate Runge—Kutta (RK) scheme is given by
ul =y + AtL@U™) (5.44¢)
u™t =0.5u" +0.5u + 0.5AtL(u™) (5.45¢)
The non-TVD method is
ul = y" — 20AtL(u") (5.46¢)
u™ =u" + AL ") - LAt uM) (5.47¢)

Gottlieb and Shu [28] solved the program using the above algorithm and the
results are given in Figure 5.6e. Clearly, the TVD-RK scheme is superior, and
shows no oscillation near the discontinuity.

exact

exact Y
TVD [ ° non-TVD

B |

(@ (b)
Figure 5.6e. Comparison of numerical solutions to the inviscid Burgers’ equation obtained

from the TVD and non-TVD-Runge—Kutta discontinuous methods: (a) with TVD and (b)
without TVD [28]

For multidimensional problems, the construction of a slope limiter can be
complex and difficult. Cockburn and Shu [17] give the general procedure for
constructing such a limiter for various elements. Here we consider the triangular
elements only, as they are the most frequently used for discontinuous finite
element analyses. As for the 1-D case, the linear slope needs to satisfy the
following conditions:

1. If uy is linear, then SP(uy,) is linear,

2. For every element of the triangularization, the mass is conserved,
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f SP(uh)dV:f u, dV
Qj Q;

3. On each element, the gradient of the SP(uy) is not bigger than that of uy.

To construct the slope limiter for a triangular element that satisfies the above
properties, the following procedure is taken. First, the element and its neighbors
are defined as shown in Figure 5.17, when m is the middle point of the edge on the

boundary of element j, and b; denotes the center of the triangle ©;, i =0, 1, 2, 3.
Then, the averaged value of u is calculated by

U :if u,dV = uy (), i=0,1,2 3. (5.253)
i Qi Qj

and
u(my, Qg) =up(my) —Ug =ay (g, —Uq, ) +a,(Ug, —Ug, )

= AT(My, Q) (5.254)

For a piecewise linear function,

3 3
Up (X, Y) = > Un (M)A (X, Y) =T, + Y 0n (M, Qo) (xy)  (5.255)
i=1 i=1

where m;(i =1, 2, 3) is the middle point of the ith edge of the triangle (see Figure
5.17).

=\

Figure 5.17. Geometric relations used to construct general slope limiters in a triangular
mesh



Convection-dominated Problems 235

The slope limiter can be constructed for the triangle as follows:

3
SP(Uy) =T, + Y (0" max(0,A,)— 6 max(0,—A))(x,y)  (5.256)
i=1

where the following definitions are used:

i=3 i=3
8" =min LM © 07 =min LM (5.257)
T2 max(0, A;) Y15 max(0,-A;)

Ai = m(L’Ih (mi ) QO)v VAU(mi ' QO)) (5258)
In the above a modified minmod function is used,

a, if |a|< Mh?

. (5.259)
min mod(a, b)

m(a,b) = {

where h is the size of the element, and M is a given constant.

Cockburn and Shu [17] developed a discontinuous finite element method for
the solution of a double Mach problem, a benchmark problem used for fluid
dynamics calculations. The results are presented in Figure 5.18.

5.5 Viscous Burgers’ Equations

The preceding section has been focused on inviscid Burgers’ equations when the
system exhibits no dissipation, because the viscosity is neglected. In the real world,
viscosity is always present, and plays an important role in both providing
stabilizing effects for the Galerkin based numerical algorithms, and smearing the
sharp discontinuity in the solution.

5.5.1 1-D Burgers’ Equation

Let us consider the 1-D Burgers’ equation,

au  eu %
—+u—=D—, xe[01 5.260
o ox o ox? o4 (5:260)
with the boundary conditions u(0,t) = 1 and u(1,t) = 0 and the initial condition u(x,
0)=0.

To develop a discontinuous formulation, the above equations are first split into
two first order differential equations,
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Rectangles P1, Ax = Ay = 1/60

Rectangles P1, Ax = Ay = 1/120

o ] o} za )

Rectangles P1, Ax = Ay = 1/240

g [ ] [} za ) a0

Rectangles P1, Ax = Ay = 1/480

Figure 5.18. The TVD-Runge-Kutta discontinuous finite element solution of a double Mach
benchmark problem [17]

OX ot OX OX
The domain is now discretized and integration is carried out over element j €
[x;, Xj+1]. After integration by parts, we arrive at the weak form integrals (see Figure
5.2 for geometric relations),
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Xj+1 Xj41 o B R
fx QthX+fx_ UpWydx — 0y Wi, g +07wf =0 (5.262a)

i i

i1 Juy, Xj+1 2 o ~ B
f J WVdXJFf (Ddh — uf)vydx — (DGji1 — hjia)Viga
Xj Xj

+(DGt —hi V) =0 (5.262b)

where two types of numerical fluxes are used. The numerical fluxes associated
with diffusion are given by Equation 4.20,

G=05(a" +97) —Cyy(u™ —u")-Cp,(q" —q*) (5.263a)
G=05U*"+u")+Cpp(u —ut) (5.263b)

The convective numerical flux h may be approximated in two ways: one is to use
the convective numerical flux given by Equation 5.27, and the other is to choose
one from the function fluxes defined by Equations 5.172-5.175 [19]. If Equation
5.27 is used, uou/ox is treated approximately as u.ou/ox, where u. is assumed a
constant, but changes its value during each iteration. This should give the first
approximation as shown in the example below.

The unknowns (g, uy) may be approximated with a polynomial as local basis
functions,

k-+1 k-+1

U (D) =D uOAC) =0Tu; g =D aOA()=d'q  (5.264)
i=1 i=1

where k is the order of the polynomial and k +1 = N,, N, being the number of nodes
per element. With the numerical fluxes for diffusion and convection defined above,
we may start to carry out calculations. If the convective numerical flux is used and
the Galerkin approximation is invoked, then we have the following matrix

equation:
HAEREHHRRAD
0 MJu);, LI Glu);, LIs Gellu);
Eg: N Eg2 N 0
{5 05 200 e
B1 “B1\U /iy B.2 B2 \U/(jn) 0

where the overdot denotes the time derivative, subscript () refers to the element,
subscript B denotes the matrices associated with element boundary integrals, and
E, G, J, and N are matrices associated with element calculations, but they can be a
function of u because of the need to update the variable during each iteration.
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The above equation is very similar to that given in Section 5.4.2 and thus the
same method can be applied to solve it, the difference being that, in this case, the
variable u (hence u.) needs to be updated during each iteration, since the problem
is nonlinear.

Example 5.7. Develop a discontinuous formulation for the 1-D viscous Burgers’
equation defined by Equation 5.260 and discuss the results. Use linear elements
and the convective numerical flux approximation.

Solution. The domain is discretized to N elements. For linear element
approximations, we have

Un (%, 1) = Uy (D) (X) + U ()45 (X) 5 G (X, 1) = Q1 (D) (X) + 02 (1) 45 (%) (5.29€)

The diffusion numerical fluxes then become

e Ug j=1

A _{(1/2 Ci)uj + @/ 2+Cuj j#1 (5.48¢)

G- U1 i=N

Ujn = {(1/2 C]FZZ))UJ{L +(1/2+C:|Fz )UJ+1 J £ N (5496)

§ A} —Cay(Up —uj) j-1

q}r Wyq+ J ll_ o(1) J__ Sy (5.50e)
(/2+Ci)qj +(1/2-C5)aj —Cyy(uj —uj) j#1

G~ 0j1 —Cra(Ujg —Uys) j=N

947/ 24c2 1/2-c? C F AN

(1/2+Cp5")aj, +( )1 -Cu(Uja—ujy) j#
(5.51e)

If the convective numerical fluxes are used, then we have

+ - + - - -
e uju; uj >0, h_l UjUjg Ujp >0 (5.526)
J +,+ + ! ]+ - ot - '
uju; uj <0 UjUjg U <O

The final matrix equations, after some algebra, take the following forms:

E{Z 1} aj |, [-c¥ -v2]ui)_(-w2+ciu;
6 11 2)am.) [ /2 —c@\uja) (@W2-cPui,

(5.53¢)
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m{z 1}( uj j+ DCjy -D/2 (q}']
611 2](uja D/2 DCE |\ dju

{ 1/2  1/2 Hu} 0 }[ uj ]{Dcn 0 }( uj J
-1/2 -1/2]| 0 ujy |(Uja 0 DCy [(Uja
- (D‘ D(/2 ;Z)CS?OI} * DCyuj 0y J (5.54¢)
(1/2+Cp )qj+l +DCyyUjy — hj+1

For the calculations, C;, =0 in the interior. To incorporate the boundary
conditions, we set Cy = 1/2 when j=1 and c!} =—-1/2 when j=N+1. For the
results shown below in Figure 5.7e, the Euler forward time scheme is used and the
time step was At = 10~%. From these results, it is clear that upwinding seems to give
the best results and downwinding is simply a disaster. The mesh size is important,
as a coarse mesh generates considerable oscillation, particularly near the

discontinuity front. As the mesh size progressively reduces, the resolution becomes
better. For this problem, a mesh of 100 linear elements provides the best results.

5.5.2 2-D Viscous Burgers’ Equation

Just as the one-dimensional heat conduction equation has a multidimensional
counterpart, so can the one-dimensional Burgers’ equation be extended to
multidimensions. The two-dimensional Burgers’ equation is written as

2 2
LY B R AR (5.2662)
ot ox oy ox?  oy?

2 2
N GOV, V), (5.266b)
ot ox oy ox2  oy?

The two-dimensional Burgers’ equations are basically two-dimensional momentum
equations for incompressible laminar flow, with the pressure terms dropped.

Like the one-dimensional Burgers’ equation, exact solutions can be constructed
[3] using the Cole-Hopf transformation. In two dimensions, the Cole-Hopf
transformation introduces a single function @, to which u and v are related as

_p® _p®

uz—ax; Ve__ OX (5.267)

As a result, Equations 5.266a—b are transformed to a single equation,
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1.2

/"4 —s8—— upwind flux
[T SN {1 — —2— - central flux
—-—0—-— downwind flux

X ) ’ X ’
(b) (©)
Figure 5.7e. Calculations for the viscous Burgers’ equation (D =0.001): (a) effect of

upwinding schemes (N = 20, t = 0.5), (b) effect of mesh size (upwinding, t = 0.5) and (c)
evolution of variable u at different times (N = 100, upwinding)

2 2
aip_(a ®,0 CI’j:o (5.268)

_+_
ot \ox?  oy?

which is the two-dimensional diffusion equation. With appropriate boundary
conditions, the above equation can be solved and the velocities can be derived
using Equation 5.267. Of course, Equation 5.266 can be solved directly using a
discontinuous fintie element scheme presented in this chapter.

If convective numerical fluxes are used to approximate the convection term,
then the final matrix equation would be very similar to Equation 5.119 and the
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computational procedure then follows from the discussion ensuing there. However,
better approximations are expected if the viscous effects are very small and if the
TVD-based approach is used. In deriving the discontinuous finite element
algorithm for the solution of the multidimensional Burgers’ equation, the TVD-
Runge—Kutta discontinuous scheme should be an attractive approach, especially
when the viscous term is small in comparison with the convection. Kuzmin and
Turek [19] show that for a convection-dominant Burgers’ equation, the slope
limiter is required to obtain a higher resolution scheme for a numerical solution.

Exercises
1. Starting from Equation 5.6 and assuming A is a function of T, derive
Equation 5.14.
2. Consider the first order hyperbolic equation,
u +Uu u_ 0
ot OX
1 x<0
u(x,0) =<1-x 0<x<1
0 1<x
Calculate the characteristic curves and plot the characteristic curves
emanating from x = 0.5 and x = 1.5. Calculate the time at which the two
curves meet.
3. Develop a discontinuous finite element formulation for the two-
dimensional wave problem,
ou ou adu
—+Cc—+c—=0
ot OX
and compare the results with those reported in Biswas et al. [18].
4. Consider a convection-diffusion equation with the initial and boundary data

given below:

or oT o°T
— +c—=D=—+g(T), 01,t>0
ot OX ox? 9™ =lod]

T(X0)=To(x),  e[0]]
TOt)=TLt)=0, t>0

with D > 0 and sup|g(T)| = M < co. Defining the energy at time t as
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E(t) = j;lTZ(x,t)dx,

we then have the derivative of the above term,

dE(t)_sz dx _2f [Dﬁ+ (r)—ca— dx

Show that the energy for this system is bounded by the following
expression:

M 2
D72

@4— D72E(t) <

or
2

E(t) < E(0)exp(- 72Dt)+ '\2'”4 (1—exp(- z2Dt))

Hint: to prove the above relation, the inequalities of Holder, Poincaré and
Young may be needed.
a) Holder’s inequality: if p,g € R, p,q >0, 1/p + 1/q = 1, then

f|uv|dx<f|u|de f|v|qu

b) Young’s inequality: if p,g € R, p,g >0, 1/p + 1/q = 1, fand g are real
positive quantities, then

1/p

fg s£+%

P q

The Poincaré inequality is given in Problem 1 in Chapter 4.
5. Consider the pure convection system,

M _ AN Coat>0
o ox

u(x,0) =ugy(x), e[0]]
u(0,t)=u(@,t)=0, t>0

where A is a constant matrix with A = AT. Show that
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d !+
aj;uudx—o

where u is a vector of n dimensions.

6. Consider Burgers’ equation with the initial and boundary data:

2
MM _p%Y o] t>0
ot oX ox?

u(x,0) = ug(x), e[0]]
u0,t)=u@t)=0, t>0

with D > 0. Let w = u;— u,, where u; and u, are two solutions to the above
problem. Define the energy term,

1
E(t) = f W2 (x,t)dx
0
and show that

1
LU 4f At Yy (. yax < cE()

Further show that since E(t) = 0, then E(t) = 0, so long as |C| < .

Develop a discontinuous finite element code to solve a 1-D pure
convection problem. Compare the results obtained with linear and higher
order elements. Use different time marching schemes.

Develop a discontinuous finite element code to solve a 1-D convection-
duffision problem. Compare the results obtained with linear and higher
order elements. Perform the stability analysis. Compare the results obtained
using different numerical fluxes.

Develop a discontinous finite element code to solve a 1-D viscous Burgers’
equation and study the solution as a function of diffusion coefficient.
Compare the results obtained using constant, linear and quadratic elements
and using linear and higher order Runge—Kutta time integrators.
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6

Incompressible Flows

Incompressible flows occur in a wide range of thermal and fluids systems, where
the transport of energy and species is dominated by the convection mechanism.
Understanding of the flow field distribution and its effect on thermal and species
transport is thus of critical importance in these systems. The general mathematical
description of fluid motion is given in Chapter 1, which consists of balance
equations for momentum, mass and energy, the latter being required for a non-
isothermal fluid flow system. These equations consist of a set of coupled,
nonlinear, partial differential equations in terms of the velocity components,
pressure and temperature. The momentum balance equations are also referred to as
the Navier-Stokes equations. For an isothermal flow system, or a system in which
the thermal field has a negligible effect on flow, the energy equation may be
decoupled from the Navier—Stokes equations and the continuity equation.

For the purpose of numerical computations, the Navier—Stokes equations are
often solved using two approaches: the primitive variable (e.g., velocity—pressure)
approach and the vorticity—stream function (or derived variable) approach. While
the derived variable approach is popular for 2-D problems, its extension to a
general 3-D description can be rather complex and thus there have been limited
applications of a 3-D derived variable approach. Probably the majority of
numerical simulations have employed the primitive variable approach. Most of the
computational fluid dynamics codes commercially available today are also
developed on the primitive variable formulation. An important advantage of the
primitive variable formulation is that the extension of a 2-D formulation to its 3-D
counterpart is straightforward.

In practical applications, flows often are in the turbulence regime. The effects
of turbulence on incompressible viscous flows are usually modeled using the
concept of eddy viscosity, which is computed from a k—& engineering turbulence
model or its variations. The differential equations for k and & are structurally
similar to the energy transport equation and are usually discretized and calculated
in the same way, except in the near wall region, where a special treatment is
required for the standard k—& model. Of course, for stratified flows, additional
terms need to be added due to buoyancy effects. The actual implementation for
flow calculations involves the use of an effective viscosity in place of the laminar
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viscosity. Consequently, the computational algorithms used for laminar flow
simulations can be modified relatively easily for incompressible turbulent flow
calculations.

This chapter starts with a discussion of the discontinuous finite element
solution of the Navier-Stokes equations for isothermal incompressible flows using
the primitive variable approach. Other variations of the formulation are then
discussed. This is followed by the discontinuous formulation, using the derived
variable approach. The chapter ends with a discussion on the discontinuous
formulation for non-isothermal fluid flow problems.

6.1 Primitive Variable Approach

The primitive variable approach refers to the direct solution of the Navier-Stokes
equations in terms of velocity and pressure. This is in contrast with the derived
variable approach by which the velocity field is derived from other field variables.
The primitive variable approach is perhaps the most widely used method for the
numerical solution of the Navier—Stokes equations. A major advantage of this
approach is that the formulations and numerical algorithms developed and tested
for 2-D calculations can be directly extended to 3-D calculations. The
incompressibility constraint, however, poses a considerable difficulty for numerical
algorithm development.

In the finite element solution of incompressible flow problems, the study of the
divergence-free constraint leads to the well known LBB (or inf-sup) condition, by
which the interpolation order for the pressure field is required to be one order
lower than that for the velocity field, in order to have a stable numerical solution
[1, 2]. The LBB condition is, in essence, a modification of the coersiveness
condition of the Lax—Milgram theory [3] for a mixed finite element setting, and is
a key condition required for a mixed finite element procedure to be well-posed and
optimal [2, 4, 5]. The inf-sup condition may also be derived from convergence
considerations or the finite element matrix equations [6, 7]. The use of the LBB
condition for the stability analysis of various mixed finite element formulations can
be found in [6-10]. From the constrained optimization point of view, the pressure
field is a Lagrangian multiplier and the continuity is the constraint. The saddle
point of the augmented dual optimization, or variational, functional gives the
solution to the Navier—Stokes equations. Strictly speaking, this saddle point is
derived for the Stokes flow problems [1]. Since the discontinuous finite element
method is in some sense a stabilized mixed finite element method, it inherits
certain features of the continuous finite element method, for the incompressible
fluid flow calculations in particular.

The development of a discontinuous finite element formulation for
incompressible fluid problems is based on the ideas and methodologies discussed
in Chapters 4 and 5. We consider the continuity and the Navier—Stokes equations,
written in terms of velocity and pressure [11],

Vu=0 eQ (6.1)
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ou 1_,

—+U-Vu=-Vp+—Vu+f €Q 6.2
o (u-v) P+ = € (6.2)
u=u, €dQ (6.3)

where u = (uy, uy,U,) is the velocity field, p is the pressure, f is the external body
force, and Re is the Reynolds number, defined by Re = UplL/u where p is the
density of fluids, u is the viscosity, and U and L are the characteristic scales of
velocity and length associated with the flow fields. Here we take Q to be the
bounded domain with its boundary denoted by 6Q, where for illustrative purposes
a simple Dirichlet boundary condition is imposed. It is noted that other types of
boundary conditions can be readily incorporated.

To develop an integral formulation suitable for a discontinuous finite element
solution, the governing equations (Equations 6.1-6.2) are split into a set of first
order partial differential equations,

V-u=0 (6.4)
1
=—Vu 6.5
I=Re (6.5)
U, +(U-Vu=-Vp+V.z+f (6.6)

where u; = du/ot.

The Dirichlet boundary condition remains unchanged. The computational
domain is now discretized into a finite number of elements. Multiplying the above
equations by smooth test functions v, g and v respectively, and integrating by parts
over an arbitrary element €; (see Figure 4.3), we have the following integral
representation:

—f uwdv+ [ u.nvds =0 6.7)
Q

j 0Q;
Jo

J

Jo

1

+f pv.nds+f g:VvdV—f z:(v@n)ds:f f-vdv (6.9)
00, Q; 00, Q;

z:ng:—lf ro~ng+i u-o-ndS (6.8)
Re Q; Re 90

ut-vdV—f u-V~(v®u)dV+f u-nu~vd5—f pVv - vdV
Q; 0Q; Q;
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where ® is the dyadic operator, (U®V)-w = (w-V)u. In some literature, u®v is also
written as uv, i.e., u®v = uv. Also, use has been made of the following relation:
v-(u -Vu) = V-(u-(v®u)) — u-V-(v®u) and of the boundary condition. The above
equations define the weak form of the incompressible Navier—Stokes equations. To
develop numerical solutions, the exact solution (pxzxu) is approximated with
functions (ppxz, xuy) in the finite element broken space and the function fluxes at
the interface of the elements are replaced by the numerical fluxes. We then have
the discontinuous finite element formulation of the incompressible fluid flow
problems,

—f u-Vvdv + [ &P mvds =0 (6.10)
Q

j 0Q;

1 1 R
roodV = — f u -V-adVJr—f W .o-ndS  (6.11
fg._h - Re Q; h - Re 0 h = ( )

J

f ut-vdV—f uh-V~(v®uh)dV+f up, - nug; - vdS

—f pnV - vdV +f Ppv-ndS +f 7, - VvdV
Q; 0Q; Q;

1

—f fh:(v®n)ds=f f.vdv (6.12)
00, Q

Here, G;, G, Gy, 7 and p, are the numerical fluxes, which are discrete

h !
approximations to traces on the boundary of elements, where Uy and 7, are referred
to as the diffusive numerical fluxes, G; is referred to as the convective numerical

flux, and G? and p, are referred to as the incompressible numerical fluxes which

are related to the incompressibility condition on the velocity. Also, n is the
outward normal of element j.

With this discontinuous finite element formulation, the same order
approximation can be used for the pressure and the velocity fields [12]. To ensure
the numerical stability of the discontinuous finite element method, the numerical
fluxes must be chosen carefully. These numerical fluxes are defined in terms of the
jump operators introduced in Chapters 4 and 5. Thus, on the interface of the
interior elements 8Q;;€0QiNAQY;, the mean values {} and jumps [] for p, cand u
are defined as follows:

{p}=3(p"+p7); [PI=p'n" +p™n" (6.13a)

B=3C"+) =" n"+z" 0" (6.130)
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{W=5W"+u); [ul=u"®n" +u" ®n" (6.13c)

Note that the jumps {i}and [z] are both vectors, and jump [u] is a tensor of rank

two. Also, + and — refer to the inside and outside element j (see Figure 4.4).

For incompressible fluid flow calculations, Cockburn et al. [12 — 16] suggest
the use of three different numerical fluxes. The first one accounts for viscous
diffusion, which is based on the study of heat conduction problems in Chapter 4;
the second for convection, which was discussed in Chapter 5 for convection-
diffusion problems; and the third for the incompressibility condition.

The diffusive numerical fluxes are constructed as follows. If <) lies inside the
domain Q, the diffusive fluxes U7 and z, are taken in the form of

If € lies on the boundary, the diffusive fluxes are taken in the form of
ay =ug; 7, ={z}-Cy(u-u,)®n (6.14b)

The purpose of parameter C;; and Cy; is to enhance the stability and accuracy of
the discontinuous finite element method. It is worth noting that since the numerical

flux G7 is independent of the variable =, it is possible to eliminate it from the

equations by using Equation 6.11 to solve ¢ in terms of u in an element-by-
element manner.
The convective numerical fluxes are constructed based on the local flow

conditions. For the convective flux f in Equation 6.12, the standard upwinding
flux scheme is used, namely,

ag = limu(x - su(x)) (6.15)

£—0

The numerical fluxes G} and p, are related to the incompressibility condition on
the velocity. They are constructed as follows. If Q) lies inside the domain €, G
and p, are taken in the form of

Gf ={u}+ Dy [p]+Dyptr(u]) ; pn ={p}-D1,-[p] (6.162)

where Dy; and D, are constant and constant matrix respectively. On the boundary,
they can be defined by

Qf =u,; ph=p" (6.16b)
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As usual, the unknowns can be approximated using the local polynomial basis
functions,

uhwa.f@u phwa.chTp o = Zﬂwdﬂ

where N. is the number of nodes associated with the element, and the unknown
functions are found as follows:

u,u)=ui+u, j+uk

g:(!x’_y’_z 2x =y =2z

Uy = Uiz Uz o Un,) T Withk=x,y, 2

P=(P1, Pay o P,)T

Zxx Exy  Exz

Syx 2y 2y

Zx Ly Znz
T . _
zkm = (ka,lvakm,Z!""O-km,NE ) with k! m=XxYy,z

O =(4, ¢, -, ¢Ne)T

With these numerical fluxes substituted, and making use of the Galerkin
approximation, Equations 6.10-6.12 can be calculated. The discretized form of
each of these equations is presented below.

To obtain the discretized form for Equation 6.10, that is, the continuity
equation, we set D;, =0 and obtain from Equation 6.16

Gf ={u}+Dy[p]=0.5(u* +u™)+Dy(p'n* +pn°) (6.17)

With this choice substituted into Equation 6.10, one has the following integrals:

11,

+[ aQ_o.5<1>c1>Tno|s]~g(NB)+[fm_D11<1>c1>Tds]g(NB) =0 (6.18)
] ]

(V@)@Tdv]~g+[f 0.5®¢>Tnd8]-g+[f Dlld)@TdSJp
0Q;j 9Q; -

i
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The above can be further written in matrix form,

u, NS Uy NS
(Ko Ky Kg) u, _Z(Ex,i Eyi Eui) u, —ZHl,iE
u, i=1 u, i=1
NS uy NS
+> (B Eyi Eui)|Uy| 4D HiPg, =0  (6.19)
i= i—1
I Yz Jnsiiy I

where NS is the number of boundary nodes per element, (NB, i) represents the
neighboring element sharing the ith side of element j, and other quantities are
defined by the following expressions:

o'dv; K, = 8iDcDTdv
o, 02

oD oD
K= =ao'dv; K,= | =—
" o, OX g o, 0y

Exvi:f 0.50d" (n;;-1)dS; Ey,i:f 0.50dT (n;; - j)dS ;
oQ

29,
e |
oQ

Here n;; denotes the normal pointing outward from the ith side of element j. Also,
0Q;; represents the interface between element j and its neighbor element i: 0Q; =

UM o0 j.i- The above matrices can also be written in terms of the component form.

Jii

0.50dT (n;;-K)dS ; Hy; = f D, ®D" dS
90, ;

Jii

For example, an element in matrix E,; is calculated by

Epiqr = f 0.5¢y¢, (n;,; -K)dS, q,r=12 ..., N

Jii

We now turn to the calculation of Equation 6.11. By selecting the following
numerical flux,

up ={u}+[u]-C, =0.5(U™ +u")+CpN" - (U" ®N" +u” ®n")
=(0.5+Cp)u* +(0.5-Cyp,)u” (6.20)

and with Cy, = Cy,-n", Equation 6.11 becomes

f cbcDTdv];km_[—if (ék-VcD)qﬂdv]gm
Qj ReJ g,
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+ if (0.54 Cp) DT (n-8)dS |u,.
Re 0Q;

+[%f (05— Cpp)0d" (n- ek)ds] aey . (Km=xy,2) (6.21)

where &, =i, &, = j,and &, =k. The result can also be written in the following

matrix form:

KZm + KkU ReZEﬂk iU — G;Ezz,k,iﬂm,ms,i) =0

(k, m=x,Y,2) (6.22)

where the matrices are calculated by

K = f dDTdV
Q,

E21,k,i :fQ (05+C12)(Dq)T (nj’i ék)dS

0Qjj
Ex ki ZfQ (0.5—Cpp)@dT (n; - §)dS
ji
At last, we consider Equation 6.12. To obtain a discretized form, the

appropriate numerical fluxes are selected,

L Th)

er—\

Ph :{p_h}:O.S(pf{+pg); L_

[ep]=zp N +z, 07, [u,]=u;j ®n* +u; ®n~

. . 1 ifu -n*>0
¢ —aquf +(1l-a)u; with a=sgnLu; -n")= h
h h+( JUp gn(, uy, ) {—1ifu;-n+<0

7 =Lh}_cll%_g]®cﬂ =(05-Cpp)zy +(0.5+Cp,)z,  (6.23)

Substituting the above numerical fluxes into Equation 6.12 yields the following

integrals:
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f @@Tdv]gk—[f (V~(ékuhCD))<DTdV]~g
Q Q

+ f a(uhonj)CDCDTdS
90

]

f (ék’VCI>)<I>TdV]p+[f 0.5<DCDTn-éde]
Q; - 00,

]Hk +[LQ_(1—6¥)(Uh 'n)q)q)Tds]!k(NB)

P

3
_o.5q>q>Tn.ékds]E(NB) +Z[f (- VO)DTAV ];km
BQJ m=1 Q;

S

m=1

(0.5—Cyp,)®P"n-&,dS

]

] zkm

3
= f (05+ Cpp)DDTN- 6,8 [Zynng) = f ® fdV |
—J oo, Q;
m, k=x,Y, z; l=éX=iA, ézzéyzi, é3=éz=|2 (6.24)
with u = du/dt. The corresponding matrix equation is given by
M Ol (Koo Ky Kallug| s |Eaiily
M gy ny Kyy Kyz Ey +Z ESl,iQy
: i1
M u, Kx sz K, u, I ESl,in
Ns | EgpiUy Lsx Ns [ Hayxi Ns | Haz i
+Z Esjiu, Lay E+Z Hauy.i E+Z Hazyi |Pne.p
= | Eaiy, (NED) Ls, =1 Hayg, = {Hap,zi
NS L o Zq
—Z Ja1xi | Zyx [T I3y | Zyy |+ 3020 | 2y,
= Zp Zy 2,
NS zxx ;xx zxz
*z Ja2.xi | Zyx I3y 2y +I322i| 2y,
=1
' Zoc Jn.i) Zoy e Z2 Jingi)




256 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

P P X S

=XX =XX =Xz =X
+Gy| Iy [+Gy| Iy |+G,| Iy, =8y (6.25)
zZX zzy zZZ §Z

where the source term and the matrices are calculated by

M:f OPTdV
Qj
8((Dur) T
Ky = ——2d'dV =
& fQj oq V.oar=xyz

E31,i :f auh-nj'id)CDTdS

Jii

Eszi = f (1—a)up 'njyiq)(DTdS
oQ

Ji

foL)
L :f —o'dV, q=xY,1z
. o, 04

HSl,q,i = H32,q,i = f O.5¢>®Tnj'i équ , 0=XY,2
oQ

Ji

oD
Gy = —@'dV, q=xY,.z
I Q, aq

J31qi = j(; . (O-S_ClZ)CDq)Tnj,i €40S, g=x, Y,z

Ji

Jgi= [ (05+C)00 N &dS, a=x ¥

Inl
§q:f of,dvV, g=xy.z
Q;

Equations 6.19, 6.22 and 6.25 represent the discretized discontinuous finite
element formulation for the Navier-Stokes equations with the continuity
constraint. The unknown variables for this system include three components of
velocity field, pressure and nine stress components. An iterative computational
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procedure is required to solve these equations. In practice, the successive
substitution method works well for this type of problem. A typical computational
procedure starts with the initial condition for velocity and then the pressure and
stresses are calculated using the element-by-element sweep. To carry out a time
marching, Equation 6.25 is solved using an explicit time scheme, with a time step
selected to satisfy the CFL condition, to advance the velocity field (u™*) with the
known pressure (p") and the stress components (Z") and the velocity field (u") at
the previous time steps. The pressure (p™') and the stresses (™) are then
calculated from this velocity field u™* using Equations 6.19 and 6.22. Because of
the nonlinearity, (p™*), (2"*) and u™"* at the time step (n+1) need to be determined
iteratively using, say, the successive substitution method. The iteration continues
until convergence is achieved at the time step (n+1). This procedure repeats for
every element and every time step.

The above discontinuous finite element formulation has been applied to
simulate incompressible fluid flows driven by a moving lid in a 2-D cavity. The
dimensionless governing equations for this problem take the following component
form:

a—u+ﬂ:0 (6.26a)
ox oy

2 2
ua—u+v(f7)—u:—@+i 6_L21+8_L21 (6.26b)
OX oy ox Relox® oy

2 2
u@+vﬂ:_a_p+i 8_\2/+a_\2/ (626C)
ox oy oy Relox oy

with the following boundary conditions:

u(x=0,y)=v(x=0,y)=0, u(x=Ly)=v(x=1y)=0 (6.26d)
u(x,y=0)=v(x,y=0)=0, u(x,y=1)=1, v(x,y=1)=0 (6.26€)

where the lid velocity is normalized to one and the motion is from the left to right
or in the positive x direction.

The computations were made using an unstructured mesh with linear triangular
element approximation. Since this is a steady state case, the transient terms are set
to zero. The iterative procedure starts with an initial guess of the field variables,
followed by the element-by-element computation of the velocity, the stress and the
pressure, with imposed boundary conditions. The successive substitution method is
applied to perform the iteration until the variables converge within a preset
tolerance. The finite element mesh and computed results are given in Figure 6.1 for
different Re numbers.
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=1000

(d) Re
driven cavity: (a) unstructured mesh,

1000

=100

(c) Re
Figure 6.1 Computed results of a velocity field in a lid

(b

=50, (c) Re =100 and (d) Re

d) velocity at (b) Re

widely used in the framework of finite difference approximations. The method was
first proposed by Chorin [17] and is also known as the projection method. This
method is considered useful for the solution of transient Navier—Stokes equations.

The fractional step method is based on the operator splitting concept and has been
There are many variations of

6.2 Fractional Step (Projection) Approach

the projection method. However, it essentially

*

step approximation for any time step. Two time steps are used in
In the first time step, a provisional velocity u is obtained. In the
the velocity then is corrected by accounting for a pressure gradient

25
2%
© 5
g E
= O
ks
> o
cC C
—

second step

and an equation of continuity.

We consider splitting the velocity into two parts,

(6.27)

u*+u"

u

such that u* is made to satisfy the momentum equation without the pressure,
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*

ou _ . i 2
v Y (uu)+[RejV u (6.28)

and the u" is made to satisfy a portion of the pressure p,

ou”
—=-V 6.29
= (6.29)

If the explicit time marching scheme is used, then the provisional velocity field
u is calculated with information available at the nth time step by integrating
Equation 6.28,

U+ AtV - (u"u) —(%}VZU* =u" (6.30)
e

This is a convection-diffusion and reaction equation. The provisional velocity
field is then corrected to account for the pressure using Equation 6.29,

un+1 — u*_Athn+1 (631)
and the pressure correction term is calculated using the Poisson equation:

*

1
Vvp" = —v.u 6.32
p A (6.32)

which is obtained by making the final velocity u™* satisfy the continuity condition,
0=v-u"t=v.u" - AtvZp"! (6.33)

We note here that in this version of the projection method, the pressure field is
solved from a Poisson equation with the source term coming from the divergence
of the provisional velocity field. Also, the source term in the momentum involves
only the information required at the previous time step. Consequently, this
approach does not need to satisfy the LBB condition, and an equal order
interpolation can be applied for both the velocity and the pressure fields.

In the actual implementation, however, it is more convenient to define a
potential function ¢ such that

*

Vip=-v.u (6.34)
and relates the potential to the pressure variation (see Equation 6.32),

pr+l=—g/ At (6.35)
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With this definition, we can show that

f Yy — f V2pdV = — f V-u'dv (6.36)
a0 ON Q Q

In practice, dg/on = 0 is imposed at a solid boundary but the values on an open
boundary are adjusted so that the above relation is satisfied. To ensure the no-slip
condition, it is often necessary to impose the following relation:

u' = —{%T (6.37)

where s is the tangential direction.

The governing equations developed above using the fractional step approach
can be solved using the discontinuous finite element. In fact, we treat the first
equation (Equation 6.30) in the sequence as a convection-diffusion and reaction
equation, for which the discontinuous Galerkin formulation has been developed
(see Chapter 5); and the Poisson equation (Equation 6.34) can be solved using the
discontinuous schemes that have been discussed in Chapter 4. For a moderate size
problem, the continuous finite element method may be used to solve for the
Poisson equation, whereas the discontinuous finite element method is employed for
the solution of the convection-diffusion and reaction equation in vector form. This
combined approach has been presented in the context of the solution to an
incompressible flow problem over a 2-D domain using the derived variable
approach.

6.3 Vorticity and Stream Function Approach

The Navier—Stokes equations can also be written in terms of vorticity and stream
functions. This approach is one of the most popular methods for the solution of
incompressible fluid flow problems in 2-D geometries. This approach is also called
the derived variable method, because the velocity field is not directly calculated
from field equations, but derived from the stream function field. A major
advantage of this approach is that the staggered-grid arrangement is not required
when the finite difference method is used. In the context of finite elements, the
unequal order interpolation becomes obviated. The staggered-grids and unequal
order interpolations, which sometimes complicate programming procedures, need
to be used when the primitive variable approaches are employed for the solution of
the Navier-Stokes equations. Another major advantage associated with this
approach is that the pressure field, which can be troublesome to treat in a
numerical scheme, is eliminated from the formulation, and is not required to be
solved. This can be particularly useful for thermal fluids systems in which
information on a pressure distribution is not needed. The applications of this
method include the convective heat and mass transfer in materials processing
systems.
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In general 3-D formulations, the stream function is generalized as a vector
potential, because the concept of a stream function does not apply. First, we
consider the general 3-D vorticity—vector potential formulation and its variation,
and then deduce from them, the 2-D dimensional formulation.

In the fluid dynamics literature, the vorticity @ and a vector potential y are
related to the velocity field u through the following two relations:

®=Vxu (6.38)
u=Vxy (6.39)

Note that the second equation comes directly from the incompressibility (or
divergence free) condition,

V-u=V-(Vxy)=0 (6.40)

With the above definitions, the Navier-Stokes equations can now be written in
terms of the vorticity and the potential vector,

Viy = -0 (6.41)
o0 1,
E+V-(um)—(m~V)u—ﬁV ®=0 (6.42)

The first equation above is simply a vector Poisson equation, and is obtained by
combining Equations 6.38 and 6.39, with V-y = 0 imposed on the vector function.
Apparently, this imposed divergence free condition is consistent with Equation
6.40 can be used freely for an arbitrary vector y. To derive the second equation,
which is the momentum balance equation, one needs to take the curl of the Navier—
Stokes equations (Equation 6.2) and substitute into it the definition of vorticity (i.e.,
Equation 6.38). Note that the pressure has been eliminated from the equation,
because of the vector identity, VxVp = 0. For confined flows, boundary conditions
for both vector potential and vorticity may also be derived by substituting vorticity
and vector potential functions into the no-slip conditions along the walls [18 — 20]:

oy, ow ov

Xy, =v,=w,=0; o, =—— @, =— on surface x=const
ox v TV T L S

oy, ) ow ou _

— =y, =y, =0,=0; o, =—; o, =—— onsurface y=const
oy oy dy

o, C o _ 4 on surface z=const
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We note that Equation 6.42 has three components, but only two of them are
independent. This approach requires at least two components of the vorticity
equation and three components of the vector Poisson equation. However, Aziz and
Hellums [20] reported that the vorticity—potential approach was faster and more
accurate than a method based on the primitive velocity—pressure formulation.

For unconfined flows, such as flows involving inlets and outlets, Harasaki and
Hellums [21, 22] showed that the boundary conditions for the inflow and outflow
can be simplified, if two potentials are used in lieu of y. Their formulation is based
on the basic vector decomposition theorem that an arbitrary vector can be split into
a curl free and a divergence-free (or solenoidal) part. Thus, with a dual potential
approach, the velocity is defined by

u=Vxy+Vg (6.43)

Clearly, this definition of velocity satisfies Equation 6.36. The continuity condition
on the velocity field immediately leads to the following Laplace equation for ¢

V=0 (6.44)

Because VxVp = 0 and V-y = 0, other governing equations are the same as before.
The boundary conditions for the potential are of the Neumann type,

n-Vé=-n-u (6.45)

On a solid boundary, n-V¢= 0. There were also other choices for the potential ¢,
which can also be applied to make it even easier to specify certain inflow and
outflow boundary conditions [18 — 21]. It is noted that the potential ¢ satisfies the
Laplace equation, which along with the preceding condition gives a solution ¢ = 0,
if there exists no flow throughout.

Other hybrid forms of the velocity and vorticity approach have been reported.
One of the approaches uses the dependent variables as the vorticity and velocity
components. The vorticity dynamics equations are the same as Equation 6.42 and
the velocity components are solved from the following vector equation:

Viu=-Vxo (6.46)

which is easily obtained by taking the curl of Equation 6.38 and using the
condition V-u =0.

The use of the derived variable approaches described above, and the details of
numerical implementation, including the boundary conditions, can be found in the
works of Liu and Shu [19].

Compared with the limited use of the general 3-D vorticity—vector potential
approach, the 2-D vorticity—stream function is far more popular among the
computational fluid dynamics and computational heat transfer communities. The
vorticity—stream function form of the Navier—Stokes equations can be rather easily
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deduced from the above vorticity—vector potential equations. For a 2-D geometry,
only one component of the vorticity and stream function fields survives and other
components vanish. Without loss of generality, we take the two velocity
components in the x-y plane. Then we have o= @, and w = ys,

K=vxu: u=-Yi.¥5 g (6.47)

Equations 6.41 and 6.42 now reduce to two scalar equations for the variables
and y,

Vzw:a) eQ (6.48)
90 v .(wo) =2V < (6.49)
ot Re

u=u, €06Q (6.50)

Here, for an illustrative purpose, a simple velocity boundary condition is applied.
Other boundary conditions can also be employed for computations. From the
definition of stream functions, the no slip boundary condition puts the following
constraint fory,

n-Vy =n-u, €6Q (6.51)

The equations can be solved using the discontinuous finite element method.
They can also be solved using the combined continuous and discontinuous finite
element methods. The latter is used below, as this gives an opportunity to illustrate
the combined approach to fluid flow problems. For this problem, the stream
function field is solved using the continuous finite element method, whereas the
vorticity field is solved using the discontinuous finite element method. To develop
the required discontinuous finite element formulation, the higher order derivatives
are split into first order derivatives,

1

=_V 6.52
o= Vo (6.52)
ow
E‘FV’(U@)ZV'G (653)

We discretize the domain into a collection of elements of finite size, and
integrate the above equations over a typical element with respect to weight
functions v and s, followed by integration by parts to obtain the discontinuous
finite element formulation,
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f Reoh-st:—f oV -sdV +f s~ NdS (6.54)
Q; Q; 90

f va—w“dV—f @pUy, - VvdV + @pUp, - NvdS
Q; ot Q; 2Q;

—_ f on-VVdV + [ &-nvds (6.55)
Q 00,

where n is the normal pointing outward from element j. In the above formulations,
the numerical fluxes are used and they are defined as a central flux,

@, =05" +o7); 6,=05("+0") (6.56)

where + and — refer to element j and its neighbors (see Figure 4.4). The numerical
fluxes for convection are modeled differently using the upwinding scheme,

+ for u,-n>0
@, = h (6.57)
oy, for u,-n<0
or the Lax—Friedrichs upwind biased flux,
up, -na; =%(uh-n(wh— + o) —a(oy — o)) (6.58)

where « is the maximum of |uj, - n| either locally or globally.

For the stream function field, the continuous finite element formulation may be
applied, which takes the following form:

- f Ty - VwdV = f o wdV (6.59)
Q; Q;

Note that the inter-element jump terms vanish, since the continuity is enforced
across element boundaries for the continuous finite element method. For this
reason, C, elements are required for the finite element solution of the stream
function . It is also remarked that the equation for the stream function field may
be solved using the discontinuous finite element method. In fact, the formulations
presented in Chapter 4 for the steady state heat conduction equations with an
applied source may be directly employed here. For a moderate sized 2-D pure
diffusion problem, however, the continuous finite element method often performs
better.

Once the stream function field is obtained, the local velocity is derived from the
following relation:
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AN (6.60)

Liu and Shu [13] showed that the above numerical scheme, combining the
continuous and discontinuous formulations, has a stability property

2
d o |l

+2]loy <0 6.61
ot llon (6.61)

The general solution procedure may be described as follows: (1) specify the values
for wand wat time t = 0, (2) solve the vorticity transport equation for w at time t +
At using the discontinuous formulation and element-by-element sweep starting at
the boundary, (3) iterate for new  values at all points by solving the Poisson
equation, applying the new , using the continuous finite element method, (4) find
the velocity components u = dy/oy and v = —0ylox, (5) determine the values of @
on the boundaries using w and o values, and (6) return to Step 2 if convergence is
not achieved.

Two of the calculated results derived from the approach above are given in
Figure 6.2 for two different Re numbers [18]. In Figure 6.2a, a uniform rectangular
mesh of 256 x 256 was used with the P%/Q? method at t =8 for Re = 70000/27. In
Figure 6.2b, a mesh doubling both the x and y directions was used with the P/Q*
method at t = 8 for 20000/(2x). For both cases, the shear layers are dominated by
thin layer structures and the flow develops roll-up structures. Further numerical
simulations with various grids and conditions indicate that physical viscosity
dominates the numerics at these high Reynolds numbers, suggesting that the built
numerical dissipation of the discontinuous finite element method is rather small. In
general, higher order methods have a better resolution and a minimized
contribution from numerical viscosity.

6.4 Coupled Flow and Heat Transfer

In this section, a coupled fluid flow and heat transfer analysis is made of natural
convection in a square cavity. The governing equations for this problem can be
written in the dimensionless form as follows:

ML N (6.62)

x oy
2 2
ou = — 1@4_ E a_u+a_u (663)
oy VRa ox VRal ox2 oy?
u— @ oy las @ ‘/ (8— a_}_ (6.64)
Ra oy o ay
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(b)

Figure 6.2 Contour of vorticity distribution at t = 8. Thirty equally spaced contour lines
between ® = -15 to o = +15. (a) Results are computed for Re = 70000/2z using a 256 x 256
mesh with the P%Q? method. (b) Results are computed for Re = 20000/2 using a 512 x 512
mesh with the PY/Q* method [18]

(6.65)

or,,or_ 1 [T o7
ox 0y RaPr|ox?  oy?

where U = o (Ra Pr)Y%/L; L and L/U are used as the velocity, length and time
scales. Also, Ra ( Ra = pfg(T, =T, )L ua ) is the Raleigh number, Pr (Pr =v/a)
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is the Prandtl number, « is the thermal diffusivity, x is the molecular viscosity, p is
the density, gis the thermal expansion coefficient, and g is the gravity acceleration.
Moreover, the dimensionless temperature is written as T = (T — T, )/(T, =T4),
where the superscript * denotes the dimensional temperature. The dimensionless

boundary conditions on temperature are prescribed as follows:

T(x=0,y)=0; T(x=1y)=1; %—(x,y:O):%(x,yzl):O (6.66)

The velocity boundary conditions are such that all velocity components are set to
zero on all walls.

A /
===
(‘/// ///// - - //// //
i/
/ / // LS - S /] //J
e )
( / [ / 4 /T/— ////////// /
‘ A - oy

Temperature field Velocity field
Pr=1.0 and Ra = 1x10*

Temperature field Velocity field
Pr=1.0 and Ra = 5x 10*
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Temperature field Velocity field
Pr=1.0and Ra=1x10°

Temperature field Velocity field
Pr=1.0and Ra = 5x10°

Figure 6.3. Numerical results obtained from the discontinuous finite element formulation
for natural convection in a square cavity for different Ra numbers

For this coupled problem, the thermal and fluid flow fields need to be solved
simultaneously. For the purpose of demonstrating the usefulness of the
discontinuous algorithms, the discontinuous finite element formulation is used for
the solution of both fluid flow and heat transfer equations. The flow is assumed
incompressible and thermal effects are accounted for using the Boussinesq
approximation. The discontinuous formulation for the fluid flow is given in Section
6.2, while that for convection is taken from Chapter 5. The solution procedure is
iterative and requires updating of both fluid flow and thermal fields. The
computations used unstructured mesh, with linear triangular elements used for
fluid flow, pressure, and temperature fields. The computed results are shown in
Figure 6.3. As can be seen, fluid flow has a very strong effect on temperature
distribution. The calculations here compare very well with reported results for this
problem.
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Exercises

1.

Consider an incompressible, inviscid fluid flow of constant density in an
open domain Q with smooth boundary. The flow is governed by the
following continuity and momentum equations,

V-u=0 eQ,t>0

2—?+U~Vu=—Vp e, t>0

and is subject to the following boundary conditions:

n-u=0 €0, t>0
ur,t)=0 €, t=0

where u is the velocity and p is the pressure. Using the techniques
discussed in Chapters 4 and 5, show that

E(t) = fQ u(x,t)-u(x,t)dv = E(0), t>0

Consider an incompressible, viscous fluid flow in an open, bounded region
Q. The flow is governed by the continuity and the Navier—Stokes
equations,

V-u=0 eQ,t>0

%J+U~Vu:—Vp+/‘tAu+f eQ,t>0

and is subject to the following boundary conditions:
u=0 €0Q,t>0
u(r,t)=0 eQ,t=0

where u is the velocity, f is the body force and p is the pressure. Using the
techniques discussed in Chapters 4 and 5, show that

E(t) = fg u(x,t)-u(x,t)dv < E(0)e 3 +%(1—e*aﬂ), t>0

where C and a are two positive constants.
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Develop a discontinuous finite element code for simulating incompressible
flows in a channel. Perform the calculations using different orders of
approximations and compare the results.

Develop a discontinuous finite element code for simulating natural
convection and heat transfer in a 2-D cavity. Apply the code to study the
fluid flow with various Rayleigh numbers.

Develop a discontinuous finite element code, using the projection method
and the primitive variable formulation, for simulating transient flows in a
2-D cavity. Compare the results with those obtained using the derived
variable approach presented in [13].
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7

Compressible Fluid Flows

In this chapter, we discuss the application of the discontinuous finite element
method for the solution of compressible fluid flow equations. One of the major
challenges in compressible flow calculations is to devise a numerical scheme for an
effective treatment of various discontinuities existing in the solution. In our study
of inviscid Burgers’ problems in Chapter 5, we showed through very simple
examples how a discontinuity present in the initial data is being carried into the
domain by the motion of a compressible fluid. This type of discontinuity occurs in
various forms including shock waves, rarefaction waves and contact
discontinuities. These discontinuities represent, mathematically, the singularities at
which multiple solutions exist. Development of an effective algorithm in a general
compressible flow setting requires, therefore, a careful consideration of the local
behavior of the fluid flow field.

The discontinuous Galerkin finite element method has been developed to
provide a higher order computational algorithm for the calculation of high speed
compressible fluid flow problems with various discontinuities. The relaxation of
the cross-element continuity requirement permits a variety of choices to
incorporate different types of numerical fluxes to enhance the computational
performance. Many of these numerical fluxes have their origin from finite
difference approximations, which we know now are just the consequence of using
lower order polynomials (i.e., the piecewise constant or zero order polynomial) in
the discontinuous finite element formulation. These numerical fluxes have also
been tested succesfully in the finite difference calculations for lower order
approximations. An extension of the numerical fluxes to the higher order setting
embedded in the discontinuous finite element fommulation has been a subject of
recent research.

This chapter starts with the study of 1-D inviscid compressible fluid flow
problems. The basic properties of the Euler equations, the exact and approximate
Riemann solvers, and the low and high order discontinuous finite element
formulations are discussed. We then extend the discontinuous formulation to the
cases of the inviscid and viscous compressible flows in multidimensional
geometries. The arbitrary Lagrangian-Eulerian (ALE) description of the
compressible flow problems is then discussed. The discontinuous finite element
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formulations within the ALE framework and the computational procedures are
presented.

7.1 1-D Compressible Flows

This section is concerned with some basic properties of the Euler equations, the
Riemann solvers, and the discontinuous finite element solution of the equations in
1-D geometry. The shock tube problem is studied as a numerical example.

7.1.1 Governing Equations

General equations for compressible fluid flows were given in Section 1.8. In the
absence of diffusive phenomena due to viscous stresses, a 1-D compressible flow
problem is described by the following hyperbolic equation set, namely the Euler
equations, representing the conservation of mass, momentum, and energy:

N FU) (7.1)
ot OX
where the U and F are vectors defined as
P pu
U=|pul, F=|pu?+p (7.2)
pe puh

In the above equation, p is the density, pu is the momentum, e is the energy, p is
the pressure, and h is the dynamic enthalpy. This last variable is related to the other
quantities by the following relation:

h:eJrB,e:E+%u2 (7.3

P

with E being the internal energy. This system of three differential equations in four
independent variables (o, pu, peandh) is closed by the equation of state, which is
derived from thermodynamic principles. If the gas is calorically perfect and
polytropic, then the pressure is related to the other variables by the relation,

P +lu2 (7.4)

e=
p(r-1) 2

where yis the ratio of specific heats and takes the value of 1.4 for an ideal gas—air
is often approximated as an ideal gas in compressible flow studies [1, 2]. Unless
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otherwise indicated, the ideal gas law is assumed for the equation of state in this
chapter.

7.1.2 Basic Properties of the Euler Equations

Understanding of the basic structure of the solution of the Euler equations is of
great importance, both in developing an effective numerical scheme and in
interpreting numerical solutions. To study the basic properties of the Euler
equations, it is constructive to write Equation 7.1 in a quasi-linear form,

oy ou
—+AU)—=0 7.54
5 AV (7.52)

where A is the Jacobian matrix,

oF,;
Il 7.5b
SRy (7.5b)
or explicitly,
1 0
oF
A=-5= —z(r-3u B-yu  y-1 (7.5¢)
3-2
3(r=2u’ —7a—,21 Z5ru? +},a—,21 n
with a = (7p/p)"? being the speed of sound.
Further we assume that the initial data has a discontinuity at x = 0,
U if x<0
U(x0)={ " ) (7.5d)
Ug if x>0

This is the well known Riemann problem, which has played a fundamental role in
compressible flow studies. Figure 7.1 schematically sketches the Riemann
problem.

The Jacobian matrix A has three distinctive eigenvalues,

A=uUu-a; A,=u; lz=u+a (7.63)

which is sometimes written as an eigenvalue matrix A,

A=l0 4 0 (7.6b)
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{k U(X,t)
UL

Ur

\

Figure 7.1. Schematic of the Riemann problem

Corresponding to these eigenvalues are the right eigenvector matrix R and its
inverse R™,

1 1 1
R=(R®,R® RO®)=lu-a u u+a (7.7a)
h—ua 4u® h+ua

h+a(u-a)/y -u-(aly) 1

Rfl=72a21 @a?/7)-2n 2 -2 (7.7b)
h-au+a)/y -u+(aly) 1

where 7 =y -1 and each eigenvector R is calculated by substituting each
eigenvalue into the matrix equation,

AR®D = 4RO (7.7¢)
Similarly, one has the left eigenvector matrix L,
L0
L=|L® (7.8a)
LO)
where LY is the row vector and is obtained by the following relation:

LOA = 4L (7.8b)

We further have the bi-orthonormal condition for L® and R?,



Compressible Fluid Flows 277

LOR( 1 =] (7.80)
0 ifiz]

and the inverse relation,
L=R'and L'=R (7.8d)
From the study of the inviscid Burgers’ equation, it is known that the three
eigenvalues (4, 4, 43) correspond to three characteristics, which imply three
different jump discontinuities in the solution of the Euler equations. The
characteristics and the structure of the solution of the Euler equations are shown in
Figure 7.2. These characteristics are useful in sampling the solution to the Riemann
problem from data, and are discussed below
Associated with 2, is the contact discontinuity,
Aa(Ust) = Ao(Usp) = S, (7.92)

where S; is the speed of the movement of the contact discontinuity. This is a linear
degenerate case. The rarefaction wave corresponds to the condition,

AU <A4U.) (7.9b)

and the shock wave satisfies
ﬂS(UR)<SB </13(U*R) (7.90)

with Sz being the shock wave speed. The cases of 1; and A, are the nonlinear-
genuine cases.

U|_ / UR

b 4

Figure 7.2. Structure of the solution of the Riemann problem in the x-t plane for the time
dependent, 1-D Euler equations



278 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

7.1.3 The Rankine-Hugoniot Conditions

Conditions for the jump discontinuities may be obtained by a direct integration of
the Euler equations. To do that, we define the variable and the operator,

~ 0 =»~0
G=(F\U),;, V=i,—+Ii,— 7.10
(F.U) o (7.10)
whence the 1-D Euler equations become
V.-G=0 (7.11)

Consider a control volume shown in Figure 7.3, which contains a jump
discontinuity marked by S. Integration of Equation 7.11 over the control volume,
followed by the use of the Gaussian theorem, yields

f vV.GdV = [ G-nds=0 (7.12)
Ccv CS

where CV and CS are the volume and surface of the control volume. As shown in
Figure 7.3, the discontinuity S divides the control volume into two parts (CS =
CS;UCS;), which allows Equation 7.12 to be rewritten for each of the subcontrol
volumes (i.e., CV; and CV)),

f V.GV — Gnds= [ Gonds+ [ G.nds=0
CcV; (CS+S), CS; St

(7.133)

CS

X

Figure 7.3. Control volume and control surfaces used to derive the jump conditions
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f V.GdV — G-ndS:f G-nds+ [ G-nds=0
v, (CS+5), cs, S,

(7.13b)
Adding the two equations together, noting that S = CS;NCS; and n = ng = — ng,

and then making use of Equation 7.12, one has the jump discondition across the
discontinuity,

f [G]-nds = 0 (7.14)
S
where [] is used to denote the jump,

[G]=G,-G, (7.15)

with subscripts 1 and 2 denoting regions 1 and 2, respectively.
Thus, for 1-D Euler equations, the jump conditions across a discontinuity are
written as

P pu
puln +pu+pn, =0 (7.16)
pe puh

If the discontinuity S is parameterized such that S = x(t), ¢ = x(t)/dt, and

n=(n,,n)= \/127 - \/% (7.17)
then one has, upon substitution of the above equation into Equation 7.16,
—[p]+[pu]l=0 (7.18a)
—c[pu]+[pu? + p]=0 (7.18b)
—c[pe]+[pun]=0 (7.18c)

where [g] = gy — Ja, With g, being the data behind and g, ahead of the discontinuity
and c (c = x(t)/dt) is the velocity with which the discontinuity moves.

The above equations are written with the frame at rest. Consider that the
discontinuity is a shock wave, which moves at a speed of S;. Written in the frame
that moves with the shock wave speed Ss, these jump conditions in the star region
(see Figure 7.4: the star region is the region where quantities with subscript *
reside) become
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0. = plg (7.19a)
p*a*z +P.= pRaé + Pr (7.19b)
0.(E. + p.) =G (Eq + pg) (7.19¢)

with 0,= u,— S; and g = ur— Ss. From the above relations, it is straightforward to
show that the shock wave speed S; is calculated by the following expression:

S, —u, +a, \/(72—”1%} + (72—‘1j (7.20)
Y4 R 7V

Then, the other variables of interest can also be determined [2].

Y ue=xt cd raref.
St = x/t
T Wi // Sp= x/t
SHL = X/t / W*R
/
/
! W
/
W, / R
X
@)
t A cd t g
cd
raref. ¢, raref, shock . shock
/
/
/
/
/
/
/
/
(d) X

Figure 7.4. Four different solutions of a general Riemann problem (from left to right): (a)
rarefaction, contact discontinuity and shock (RCS), (b) shock, contact discontinuity and
rarefaction (SCR), (c) rarefaction, contact discontinuity and rarefaction (RCR), and (d)
shock, contact discontinuity and shock (SCS). W = (p, u, p)"
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7.1.4 1-D Riemann Solver — Exact Solution

The above discussion can be extended to the general Riemann problem, for which
possible wave patterns are shown in Figure 7.4. The start region, whose properties
are marked with subscript *, contains a contact discontinuity and is the region
between the left and right waves.

The solutions for the pressure and the particle velocity for the Riemann
problem defined by Equations 7.8-7.9 are summarized in the equations below,
assuming that the ideal gas law applies. The detailed derivation of these equations
can be found in [3].

The solution of the pressure p- is given by the root of the algebraic equation,

fL(p, oL, uL, PL) + Fr(P, priUR, PR) +UR —U =0 (7.21a)
with
A [ if hock
(P=Pr)prs; if p>p_ (shock wave)

fL(p, oL UL, pL)=
=N

7-1
28, {(p/pL)” —1} if p<p_ (Rarefaction wave)

(7.21b)
1/2 .
(p- DR)(%) if p> pg (shock wave)
fr(P, PR UR, PR) = »
%{(p/pR)“ —1} if p<pgr (Rarefaction wave)

(7.21c)
2 (-1
Al=—— B, = P (7.21d)
" (DL S+ "
2 (-9
AR =—— Br = P (7.21e)
"+ Der oD "
and the solution for the particle velocity u- is
1 1
U =E(u +u)+5(fR(p*)— fL(p.)) (7.22)

The solutions to other quantities are considered below, depending upon the
specific conditions:
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(i) Left shock wave (left region of Figure 7.4(b), x < 0),

ot o y+1p. y-1 e
+1 * -
P =P —] St :uL—aL[— +—] (7.23a)
a1 2y p. 2y

(i) Right shock wave (right region of Figure 7.4(a), x > 0),

ﬁ_}.ﬁ _ 1/2

| y+lp. y-1

ey = —+ 1S, =U, +a,| ——+"— 7.23b
PR pR{ﬁgﬁ""lJ R R R[ 27 P 2y j ( )

(iii) Left rarefaction waves (left region of Figure 7.4(a), x < 0)

y-1

Uy ?
P = /DL[ . j e aL( :3)* j (7.24a)
L

The rarefaction waves are enclosed by the head and tail, whose speeds are
given by the following characteristics:

&
HL dt

2—): =Uq — 8y (7.24b)

_uL_aL;STL: =
TL

HL

and the waves in the fan are given by
2
—1 =3
p= pL%+ o (U _%)]V 1

u =L[aL+7T_luL +—tx—]

Wi = 7 (7.24¢)
p= pL[ﬁ+ﬁ(uL —%)]%
(iv) Right rarefaction waves (right region of Figure 7.4(c), x > 0)
renlB] snenl2] &
Sir :%HR =U, +85; S :%TR = U + ag (7.25b)
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2
-1 1
p=pRL,%— (yil)aR (Ug _TX')]“

_L[_ 7 x]
U—7+1 aR+2UR+T

We, = (7.25¢)

2y
_1 7
p = pu 2~ G (e~ D]

The above equations provide the exact solution of the complete wave structure
of the Riemann problem at any point (x,t) in the relevant domain of interest xg<x<
X.; t>0, with x. <0 and xz>0. The numerical solution of the above equations is
discussed in Toro and Reimann [3], and Gottlieb and Groth [4].

7.1.5 1-D Riemann Solver — Approximate Solution

Numerical schemes for compressible flow calculations require the solution of the
Riemann problem, and for many schemes the solution is needed for every element
boundary at each time step. The exact solution shown above requires a Newton
iteration procedure and thus can be computationally expensive. This has motivated
researchers to develop approximate Riemann solvers that can reduce computational
time. One of the popular ideas in this category is the approximation proposed by
Roe [5]. Roe’s algorithm rests with the linearizing of the nonlinear term and thus
the Roe solver is less expensive than the exact solver.

Roe’s solver was derived based on the finite volume approach, which is in
essence the constant element approximation used in discontinuous finite elements.
According to Roe, the linearized Euler equation for the 1-D compressible flow
problem is given by

Ly (7.26)
ot OX

with the matrix A evaluated at the interface j+1/2 (see Figure 7.5),

oF(U,U )

A:Aj+1/2(Ulej+1): 20U

(7.27)

j+1/2

where to be consistent with Roe’s original derivation, the constant element
approximation has been used. Note that for a piecewise-constant approximation,
the node number coincides with the element number (see Figure 7.5). Three

conditions are imposed on the matrix: (1) locally Lipshitz, Fj.,—F;= Kj+1/2(U,-+l—
u), (2 Kj+1/2 is diagonalizable and all its eigenvalues are real, and (3)
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Ajia2 (UU) = Aj (U). These conditions will make the numerical scheme
conservative and consistent with the original differential equation.

Element j
® | ® | e
Xj-1 Xj-172 Xj Xj+1/2 Xj+1

Figure 7.5. Constant element spatial discretization for the derivation of Roe’s solver: (-)
marks the element boundaries and (e) the center of the element

In the case of the Euler equations, the linearized Jacobian matrix Km/z may
be calculated using an averaged state,

UR® U U ,UR) (7.28)

where subscripts L and R denote a left and right state, respectively. For a first order
scheme, Roe’s average is calculated by

T

- (Uyp) L +Wuyp)r ()L +(hp)r

u. =4 , , 7.29
j+1/2 PLPR \/z_{_\/g \/E+\/g ( )

For the linearized Riemann problem, the flux can be calculated using the
following expression:

Fia2 =05[FUL) + F(Ug)I-05R |A|R(UL -Ug) (7.30)

where subscripts L and R denote the values to the left and right of the interface j+
1/2 and also we have the following decomposition relation for matrix A=0F/oU,

A=R!AR (7.31)

with R being the matrix of the right eigenvectors of A.

7.1.6 Discontinuous Finite Element Formulation

Let us now consider the discontinuous finite element solution to the 1-D Euler
equations. As usual, the domain is discretized into N elements and the governing
equation is integrated with respect to a weighting function W over element j € [x;,
Xj+1]1
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(U OF
—+—|Wdx= 7.32
f |G G W ex=o (7:32)

Integration by parts of the spatial derivative term yields the following weak
form solution:

Xj1 Xiy1

! Wa_UdX _f Faﬂdx
. ot . ox

i i

+ AU 0 U LW (xig) — U T U W (x7) =0 (7.33)

where, as usual, the element boundary function terms have been replaced by
appropriate numerical fluxes,

Fra=hUU5OW0GL):  Ff=hUTUDWK)  (7:34)

By introducing the element basis functions ¢ (x) as follows:

Ne Ne
Un(t) = > U000 W) = > WO )40 (x) (7.35)
I=1 1=1

with N, being the number of nodes per element, Equation 7.33 can be written in a
matrix form,

du,; ~ -
(§)) (Ne) (1@ (Ne) 1@ _
it —KU(j)+h(U(j) ,U(M))OM—h(U(H),U(j))ej =0 (7.36)

where U= (U® U@, ... UM\ and the matrices are calculated by

¢(l)(xj) ¢(l)(xj+1)
~ @ (x:) @ (x:.1)
K=s'L;e =57 S ey =8t ’ S
g™ (x;) ¢ (x1.41)
Xj+1 Xj+1
S:fj WoWT dx L:f’ [%}wdx (7.37)
Xj Xj

Some terms of various orders are explicitly written below for the convenience
of the subsequent discussions:
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(1) Ne = 1:
1A -
U; +h—[h(uj,um)—h(uj,l,uj)] =0 (7.38a)
j
) N = 2:
o W
Uh | 31 \[YH | 1(-2V 2.0
@l nl1 1 loo Tl 4 )MYGYiGm)
Ugy ) T Ugy ) 0
L4 )@ yo
(3) Ne=3:
] — — [6))
Ui . i 4 : Ui . 2
@[ L] 5 Sllye L L 3 lrye o
Yoy |'ngl 2 0 2| Y0 [T | 2 U Y i)
@® )
U -4 4 6)Ug
9
L1 3ki® oy
hy| o2 hU iU 5) =0 (7.38c)
P13

where the overdot denotes the time derivative, superscript () refers to node number
local to the element and subscript (j) refers to the jth element. Note that in Equation
7.38a, subsecript j refers to the jth node number, which is the same as the jth
element for a constant polynomial approximation. Equation 7.36 can be expressed
in the form of ordinary differential equations,

Wy _ L(U) (7.39)
dt '

where L is the operator and U without subscript includes the variables both in
element j and its neighboring elements.

Time integration can be carried out numerically, for example, using the Runge—
Kutta integration schemes. With the generalized slope limiter, the Runge—Kutta
methods can be described as follows. Let [0, T] be partitioned into N time steps
with At" = t™ —t" (n = 0, 1, ..., N-1) and SP(-) be the generalized slope limiter,
then the time-marching algorithm is numerically implemented as follows:

Set UZj) =SP(Uy)
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Forn=0,1,...,N-1, calculate U[‘j*)l from U{;, by the following procedures:
[0] _ yn
(1) Set Ug = Ugj)
(2) Fori=1,2, ..., K(=k + 1) compute the intermediate functions,

i—1
ulll = sp Za“W("j)] w(j, =ul) +ﬂ" atL(ut)
1=0

n -

(3) Set U(}) = um
fK=1, a,=p,=1
FK=2, ay=8o=1, ay =0y =1/2, B, =0 and j,, =1/2

where k is the order of the spatial polynomial and superscript [*] denotes the
intermediate time steps of the Runge—Kutta scheme. This process repeats for each
element and marches to the next time step.

It is important to stress here that a Runge—Kutta scheme is explicit and thus the
time step chosen for the simulations need to satisfy the CFL condition. For a
spatial discretization using polynomials of degree k, a (k+1)-stage Runge—Kutta
scheme of order k+1 needs to be used.

7.1.7 Low Order (Finite Volume) Approximations

It is easily shown that if the shape function is taken as a step function valid only
within the element, we have from Equation 7.38a the classical finite volume
formulation (or the piecewise constant discontinuous finite element formulation),

du; 1 -~ .
ot T " Ta)—h(U7,U5) =0 (7.40a)
i
du; 1 ~ . A
dt L(U) _h_ h(U j+le j+;|_) - h(U IE ) j) (740b)

i

where the node number and element number are the same, which is denoted by
subscript j. For piecewise constant element approximations, the Euler forward
scheme may be used. Thus, the above equation becomes

U3 = U] - 2 (U700, U ) - AU ). U5 ) (7.41)
h;
where superscript n denotes the nth time step and At = t*** — t". We consider now
how to incorporate the Godunov and Roe flux expressions into the above equation
for a low order solution.
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7.1.7.1 The Godunov Scheme

The variable update in Godunov-type schemes is done on the cell-averaged
conservative variables [6-8]. The update requires an estimation of numerical fluxes
at cell interfaces and a successive integration in time over a time step. Hence, the
first step of a Godunov scheme approximates the point values of the solution at
each interface by a piecewise-constant reconstruction. The values of the
conservative variables at a grid point are considered to be a piecewise-constant
approximation of the true solution over the cell, centered at that grid point, which
is a cell average of the solution. So, the spatial error is of the same order as the cell
size Ax, and the scheme is only first order accurate in space. High order accuracy
generalizations of the scheme have been proposed based on high order polynomial
reconstructions of pointwise values from cell-averaged values. Let us illustrate this
step by applying the operator P to the ensemble of the cell-averaged state values,
with U(t") representing the solution at time t". Hence, P(-,U(t")) will represent the
high order accuracy polynomial approximation inside any cell of the computational
domain at time t". This reconstruction produces a discontinuity in the state
variables at each interface, which is taken as the initial condition for the local
Riemann problem,

%JJr—aFa(U) =0, te[th,t"] (7.42)
X
u" X < X
U(X,tn) :{ nJ } j+1/2 (743)
j+1 > Xjis2

This is shown in Figure 7.6.

Ui
a Uj:l
U
L 1 | |
| Loyt |
| (I — |
[ | [ |
| | | |
| | | |
I S N S
Xj-1 Xj Xj+1 X

Figure 7.6. Schematic of the Godunov scheme for velocity update: open square (o)denotes
the element interface or cell boundary and a dot denotes (e) the middle point of the element

Consider the point Xj.1/, at time t", where U? and U }‘+1 are the values to the

left and right of the point. Within a neighborhood of Xj.1/,, the classical Riemann
problem applies. This is schematically shown in Figure 7.6. For example, if U}‘ >
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}‘+1 > 0, we have a shock moving from the left to the right. Hence u'j1 is the

solution at (Xj:12,t"). On the other hand, if U] <U,; <0, we have a rarefaction

n

moving to the left and U |, is the solution at (x;1,t"). These quantities will be the

solution until a shock/rarefaction moves in from adjacent cells. If U ;‘ <0 and

?+1 >0, we have a rarefaction wave that will give a constant value at Xj.1,. AS

long as the CFL condition for time stepping is satisfied, the value at Xj.1, is a

function of U] and U {,; only. The solution to the Riemann problem is given by

U(U ?,U ;Ll). Thus the Godunov scheme is given by the following expression:
At — —
ujt=uj —h—[F(U Ui U -FUULU)] (7.44)
i

The requirement that the shocks or rarefaction waves from adjacent grid points do
not touch leads to the CFL condition,

(At/hj)m?x|F(U?)|£1 (7.45)

which needs to be respected during transient calculations.

7.1.7.2 The Roe Scheme

The Godunov scheme requires the solution of the Riemann problem locally at each
grid point and is thus computationally intensive. In Roe’s scheme, an approximate
Riemann solver is applied. Applying Roe’s approximate solver at Xj.1,, we have
the following Riemann problem:

ou

E+AUX =0, teft",t"] (7.46a)
u? X< Xi,

U (X,tn) ={ nJ j+1/2 (7.46b)
Uiy X> X

The numerical fluxes are calculated using Equation 7.30 and thus the Roe scheme
may be written as follows:

U™ =U] —(At/h))IFLy, —Fiy)l (7.47)

Besides the two flux schemes described above, other flux schemes have been
developed, and are summarized in Chapter 5. Some of these schemes, for example,
the Lax—Friedrichs fluxes, do not require the solution of the local Riemann
problem. These flux schemes can be extended to high order approximations.
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7.1.8 High Order TVD Approximations

We take the quadratic approximation to illustrate how numerical fluxes and slope
limiters can be applied in a TVD scheme for compressible flow calculations. As an
alternative to other fluxes considered in Section 7.1.6 above, we employ the local
Lax—Friedrichs flux [9-11],

A" (a,b) = [F (@) + F(5) - Ao - )] (7.482)

B= max [F'(u)| (7.48b)

min(a,b)<u<max(a,b)
S =max(|F'(a)],|F'(b)|) for convex F(U) (7.48c)

In the case of low order (FV) approximations, the Lax—Friedrichs fluxes take
the following form:

HLLF(U,-,U,M)=§(F<U,-)+F(U,-A)—%(um—uj)J (7.49)
i

Use of a TVD-Runge—Kutta scheme requires the construction of the general
slope limiter, U = SP(W). The limiter is generalized from the inviscid problems
discussed in Chapter 5, and is calculated by the following procedures:

Compute an intermediate value W,
W (x,t)=U; +(6Uj/ax)(gj ~Uja), xelXja2: X 2]
Compute U;,,,, and U}, by

U Taaso =Wy + MW gy —W3 W -Wj 4 Wi, - W)

IR
U gz =Wj —mW; ~Wiy, Wy W Wi, ~W))

If U7, =W and Ujy, =Wiy,, then U =W
If not, then U =W +m(W;,W; -W,_;,W;,; ~W;)(dU ; /ox)

where the overbar on W and U denotes the averages over element j. The function
m() is the modified minmod function defined in Section 5.4.3.

With U evaluated at the boundaries of the element as described above, and
substituted into Equation 7.48, the numerical fluxes are calculated. These
numerical fluxes are then substituted into Equation 7.38 or 7.39, which is then
integrated using the Runge—Kutta scheme as described in the paragraph below
Equation 7.39.

Take as an example the second order accurate Runge—Kutta scheme for a linear
spatial approximation ( k =1), we then have the following four steps:
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Step 1: UPj) =SP(U,)
Step 2: Forn=0, 1, ..., N-1, calculate U[‘j*)l from U}, as follows:
(1) Set Ugj) = Ugy,
(2) Fori=1, 2 (= k+1) compute the intermediate functions,
WS = Ul At (Ut)
Uil = SP(W(p)
W) = UG
WEj = uff + au(ut?)
UL} = SParsW(j) + e W) = %SP{U[((}]) +Uh+ ad (0

n+l _ 102
(3)set U(jy =U

7.1.9 Numerical Examples

We consider three examples in this section. In the first example, the evolution of a
scalar function is calculated. The problem is defined as follows:

ou au

—+—=0, xe[01 7.50a

% o e[01] ( )
1 0.5

u(x,t=0) = X <D (7.50b)
0, otherwise

with periodic boundary conditions at x =0 and x = 1.

For this case, the local Lax—Friedrichs flux is used along with various orders of
approximation. For constant elements, the first order Euler time integration method
is used without the slope limiter. For linear elements, the second order
Runge—Kutta method is used with the general slope limiter. For quadratic
elements, the third order Runge—Kutta method is used with a linear slope limiter.
The computed results are plotted in Figure 7.7, showing the effects of
discretization and order of approximations.

Figure 7.7(a) compares the numerical results at t = 0.5 obtained using the
different types of approximations but with the same number of elements (N = 51),
N being the number of elements. Examination of these results indicates that
considerable numerical dissipation occurs with the piecewise constant element
(FV) approximation, as is evident by the strong flattening of the sharp edge of the
square pulse. As discussed in Chapter 5, this dissipation comes from the numerical
approximation and the behavior of the exact solution should be such that the initial
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rectangular-shaped wave remains its shape and the data is carried into the domain
from the boundary. The use of linear elements improves the results substantially
and shows considerably less dissipation.

constant element
08 2 linear element
quadratic element

0.6

0.4

0.2

(b)

Figure 7.7. Computed results of pure convection using different types of approximations at t
= 0.5: (a) different space discretizations (N=50) and (b) effects of the number of elements (t
=0.5 and with quadratic elements)
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Figure 7.7(b) plots the results at t = 0.5 obtained using different numbers of
linear elements. With N = 21, the results are already improvements over the
constant element approximation as shown in Figure 7.7(a). Continued
improvements are obtained as the discretization is refined. With N = 160, the
results match almost exactly with the analytic solution.

As the second example, we consider the nonlinear transport of a scalar
function, which is the typical inviscid Burgers’ equation,

ou 0 (u?
EJF&(?j =0, xe[0]] (7.51a)
u(x, t =0)=ug(x)=0.25+0.5sin(7x) (7.51b)

with periodic boundary conditions at x = 0 and x = 1.

0.8

0.6

0.4

0.2

| | | | |
-0.8 -0.4 0 0.4 0.8

Figure 7.8. Computed results for Burgers’ equation at different time steps using linear
elements. Data used for calculations: N = 80, t = 10™, linear spatial approximation with a
second order Runge—Kutta method

For this problem, the solution is smooth up to t = 2/z, and then it develops a
moving shock wave, which interacts with a rarefaction wave. This results in a
sonic wave. The calculations were made using a linear approximation with the
second order Runge—Kutta time integration. The general slope limiter is used.
Figure 7.8 shows the numerical results.

The third problem is the shock-tube problem. This is a very interesting test case
because the exact time dependent solution is known and can be compared with the
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solution computed by applying numerical discretizations. The problem is
schematically illustrated in Figure 7.9. The initial solution of the shock-tube
problem is composed of two uniform states separated by a discontinuity that is
usually located at the origin. This particular initial value problem is known as a
Riemann problem. The initial left and right uniform states are usually introduced
by giving the density, the pressure, and the velocity. This initial set represents a
tube where the left and right regions are separated by a diaphragm, and filled by
the same gas in two different physical states. If all the viscous effects are negligible
along the tube walls and it is assumed that the tube is infinitely long in order to
avoid reflections at the tube ends, then the exact solution of the full Euler equations
can be obtained on the basis of a simple wave analysis. At the bursting of the
diaphragm, the discontinuity between the two initial states breaks into leftward and
rightward moving waves, which are separated by a contact surface. Each wave
pattern is composed by a contact discontinuity (C) in the middle, and a shock (S) or
a rarefaction wave (R) at the left and the right sides separating the uniform state
solution. All the available combinations produce four wave patterns: RCR, RCS,
SCR, and SCS, which are self-similar, that is they depend only on x/t. These four
patterns are illustrated in Figure 7.4. A fifth pattern is possible in theory, and it
contains a vacuum state between two central contact discontinuities, which occur
between two rarefaction waves. This case is of theoretical interest only, because it
expresses the limit of the perfect gas equations at zero pressure and temperature,
but it can never occur in reality.

diaphram Rarefac. cd shock

(,O,U,E)L (,O,U,e)R

Xo Xo

(@) (b)

Figure 7.9. Schematic of a shock tube problem: (a) initial condition and (b) wave
propagation

The shock tube test case corresponds to the Riemann problem. The governing
equations for the above problem, with viscous effects neglected and the gas
property of y= 1.4, are the Euler equations,

VL FU) _

0 7.52a

ot OX ( )
U ’

U (x,0) :{ : X<% (7.52b)
Ug, X > X,
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where initial conditions are given by

P 1 P 0125
U =lpul=| 0 |;Us=|pu|=| O (7.52c)
oh 2.5 poh 0.25

The results are obtained using the TVD RK scheme with the slope limiter. The
following data were used for calculations: N=101, At=10", t up to 0.5, and linear
elements with a second order Runge—Kutta method. The results of the transient
flow for density, velocity, energy and pressure at t=0.5 are shown in Figure 7.10,
which compares well with the exact solution [2, 4].

The solution is composed of, from left to right, a constant undisturbed left state,
then a continuous expansion wave moving to the left, followed by a constant state,
a contact discontinuity moving to the right, followed by a constant state, and then a
shock wave moving to the right in the undisturbed right state.

25 —-——— - i

15

Figure 7.10. Computed results for the shock tube problem

7.2 Multidimensional Inviscid Compressible Flows

We now consider the discontinuous finite element formulation for computational
compressible flows in multidimensions.

7.2.1 Governing Equations

The full three-dimensional Euler equations in a multidimensional domain are
written in conservation form as follows:
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%UW.F(U):o (7.53)

where U is a vector of dimension 5 and F is a tensor,

P pu
pu pul+p
U=spv,; FLU)=:puv ;
pW pUW
pe phu
pu pu
pVu L WU
F,U)=<pwW+p:;F, U)=1pw (7.54)
LYW PWW+ P
phv phw

Before discussing the discontinuous finite element formulation, let us consider
some of the basic properties of the 3-D Euler equations.

7.2.2 Basic Properties of the Split 3-D Euler Equations

The basic properties of a split Euler equation system are similar to those seen in
1-D Euler equations. The x-split, 3-D Euler equations have the following form:

o RWU) _

0 7.55
ot OX ( )

with the Riemann boundary conditions,

u if x<0
U0 =1 "= (7.56)
Ug if x>0
The Jacobian matrix A for the problem is given by
0 1 0 0 0
o m-u?-a’?  @B-pu - -w g
A=—mn= —uv v u 0 0 (7.57)
ouU
—uw W 0 u 0
Lul(y-Fh-a’] h-ju? -y —aw
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where

1 a2 . . T
h==u-u+ vy =y-1;u=(u,v,w) (7.58)
2 y-1

The x-split system is hyperbolic in nature and has the real eigenvalues,
A=u-a, Ah=43=4,=U; ,y=u+a (7.59)

The matrix of the corresponding right eigenvectors is given by

1 1 0 0 1
u-—a u 0 0 u+a
R=| v v 10 v (7.60a)
w w 01 w
h—-ua fu-u v w h+ua
and its inverse is given by
h+a(u-a)/y -u-(aly) -v -w 1
(4a2/y)-2h 2u 2v 2w -2
R*lz% —va’ly 0 2a?/7 0 0 |(7.60b)
—2wa?/y 0 0 2a/y 0
h—a(u+a)/y —-u+(aly) -v -w 1

These quantities are useful for constructing Roe’s approximate solver for the
Riemann problem. The characteristics and structure of the solution of the x-split
Euler equations are very similar to the 1-D Euler equations and are plotted in
Figure 7.11.

(u, u, u)
th po //ka

Uu—a p-L // - u+a
o u*L// Usg o
uL /// Ur
VL // VR
/ WRr

X

Figure 7.11. Structure of the solution of the x-split 3-D Riemann problem
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7.2.3 Discontinuous Finite Element Formulation

To develop a discontinuous finite element formulation, the computational domain
is first discretized into a tessellation of elements. Over a typical element, say,
element j, Equation 7.53 is integrated with respect to a testing function vector W.
Upon integration by parts, we obtain the weak statement of the problem,

f W—deL W~F(U)-ndS—f VW :FU)dv =0 (7.61)
Qj
We now replace the function fluxes at the element boundaries by numerical

fluxes and (W, U) by the approximations (W, Uy) to complete the discontinuous
finite element formulation,

fwh—dv+9§ Whﬁ(Uh)dS—f YW, -FUp)dV =0 (7.62)
00, Q

i

where A are the numerical fluxes. Various numerical fluxes suitable for the
solution of the inviscid Burgers’ equation were listed in Chapter 5. These
numerical fluxes are equally applicable for the multidimensional calculations with
relevant changes.

If, for example, the Roe flux function is chosen,

HU, . Up) = 3[FU) +FUI-n-1AlU; -up)

=FU;) n+A Uy -U;) (7.63)

and the Galerkin approximation is used, then the integral equation for the
discontinuous formulation becomes

f ¢—dV +9§ 4F(Ur)-nds —ﬁggA—uh- ds

—f YV -F(U,)dV :—f #AU;dS (7.64)
Q 90,

In the above two equations, ¢ is the shape function and A is the n-split Jacobian
matrix, evaluated using the Roe averages. The other terms are defined as follows:

|[A|l=L|A|R, A1=LAR (7.65)
| A |=diag(| A4 ), A~ =diag(min(/4,0)) (7.66)

with L and R being the matrices of the left and right eigenvectors of A.
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For flows that involve discontinuities, slope or flux limiters must be used to
suppress the oscillations as shown above. These limiters are the extension of the
1-D counterparts discussed in Chapter 5. Construction of these limiters for an
unstructured mesh in a multidimensional domain is not trivial [12].

With these considerations taken into account, the solutions are approximated
using the local polynomial basis functions. Then, one obtains a system of ordinary
differential equations,

Lo _ Ly (7.67)
dt '

where L is the operator and Uy, is the vector of unknown variables defined at the
nodal points of element j.

Equation 7.67 can be integrated using the Runge—Kutta integration scheme.
The TVD scheme can also be used, provided that appropriate limiters are used.
This integration procedure and also the computational process are very similar to
the 1-D case and thus require no further elaboration.

Bassi and Rebay [13] were among the first to propose the discontinuous finite
element scheme, and applied it to study the compressible flow around a cylinder.
Their results show that accurate solutions can be obtained on a relatively coarse
mesh using a higher order representation of the unknowns and of the geometry of
the domain boundary. They further show that no limiting procedure is needed if the
solution is sufficiently smooth. They caution, however, that the discontinuous
finite element method requires a higher order approximation of curved boundaries,
if accurate numerical results are to be computed. They recommend that for curved
boundaries, elements of the order of m > 2 be used. Some of their results are given
in Figure 7.12.

7.3 Multidimensional Compressible Viscous Flows

The compressible viscous flows are governed by the Navier—Stokes equations,
which may be written in conservation form,

6,U +V-F,(U)-V-F,(U,VU)=0 (7.68a)

where U and F. are the vector, and the convective Euler flux tensor, defined by
Equation 7.54. The viscous flux tensor is given by

0

z-)(X

FxU,VU) = Ty (7.68b)

TXZ

_UTXX +ery +Wrt,, —qx_
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Fy(U,VU) = Ty
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Figure 7.12. Computed results for 2-D compressible flows passing around a cylinder, using
the discontinuous finite element method: (a) meshes (128 x 32) used for calculations and (b)

March contour [13]
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F.U,VU) = Ty (7.68d)

Uy +VTy + W7y =0 |

Ty :%yg—i—% [%+;—a2/j+be~u (7.68e)
Ty :%y%—%y(g—i+%j+ybv-u (7.68f)
T, :%y%%y(g—i+%J+be~u (7.689)
Ty =Ty = ,u(%]+%] (7.68h)
Ty =Tpy = y(%+%} (7.68i)
Ty =Ty = y(g—j+;—a\:(v] (7.68j)
—— (7.68K)

where g4 is the bulk viscosity.

The vector F,(U,VU) is a function of VU, which leads to second order
derivatives when the viscous fluxes are evaluated. The second order derivatives are
not accommodated directly in a weak formulation using a discontinuous finite
element space. Thus, as for the incompressible flows, the auxiliary variables are
introduced to split the second order derivative terms into a system of first order
partial differential equations,

S-VU =0 (7.69)
oU +V-F,(U)-V-F,(U,S)=0 (7.69b)

Following the procedure given for the inviscid compressible flow calculations,
the discontinuous finite element formation starts with the integration of the
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governing equations with respect to a testing function W over element j. Upon
substituting numerical fluxes for the function fluxes at the element boundaries, and
replacing the exact solution with approximate solutions taken from the finite
element broken space, we have the integral formulation of the Navier-Stokes
equations,

f WS,dQ — WUdS+f YWU,dQ = 0 (7.70a)
Q 00, Q

if WU, dQ + wﬁ@h)da—f VW -FU)dQ
dt Q; 9Q; Q;

]

+9§ wﬁv(uh,sh)da—f YW-F,0U;,S,)dQ=0  (7.70b)
00, Q

For this problem, three different types of numerical fluxes are required. First,
the convective fluxes H may be selected as either the Godunov fluxes or the Roe
approximate fluxes or other qualified numerical fluxes. With these fluxes, the
discontinuity at the element boundaries is treated as an n-split Riemann problem, n
being the boudnary normal of element j. We saw in the last section how the Roe
flux functions are incorporated into the discontinuous formulation. Second, the
viscous fluxes A, need to be constructed. The theoretical basis for the construction
of these viscous fluxes was given in Chapter 4. Thus, in principle, the fluxes listed
in Table 4.2 can be used. For the simplest case, a central approximation, which
gives a suboptimal convergence rate, was chosen first by Bassi and Rebay [14].
This same idea can also be applied to the U fluxes, U. If these choices are made,
we then have the following numerical fluxes for the discontinuous finite element
formulation of the Navier—Stokes equations:

(i) Convective fluxes,

HU; . Uf) = 1[FU) + FUR)]-n- AU} -UR)

=FU;) n+A Uy -Up) (7.712)

(i) Viscous fluxes

H, (Ui S5.U5,Siin) = L[FU; . S;) + FUR SHTn (7.71b)
(iii) U fluxes
U, Ugin) =3, +Up)n (7.71c)

With these flux expressions substituted into Equation 7.69, followed by
numerical integration, one has the following ordinary differential equations,
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dug;
() (7.72)

where L is the matrix operator and Uy is the vector of unknown variables defined
at the nodal points of element j.

The system can be integrated using the Runge-Kutta time integrator as
discussed in Section 7.1.6.

Bassi and Rebay [14] applied the above discontinuous finite element
formulation to solve the Navier-Stokes equations for compressible flows in a 2-D
domain. They used the Godunov fluxes, instead of Roe’s approximate fluxes, for
the convective fluxes, and simple central schemes for U fluxes and viscous fluxes.
Some of their results obtained using the constant, linear, quadratic and cubic
approximations are given in Figure 7.13.

(@ (b)

(©) (d)

Figure 7.13. Numerical results of compressible viscous flows over an airfoil computed
using the discontinuous finite element method: (a) finite element mesh, (b) linear element
approximation, (c) quadratic approximation and (d) cubic approximation [14]
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Baumann and Oden [15] present a discontinuous Galerkin finite element
method technique to obtain a compact, higher order accuracy and stable solver.
The method involves a weak imposition of continuity conditions on the state
variables and on inviscid and diffusive fluxes across inter-element and domain
boundaries. Auxiliary variables are not needed in numerical fluxes constructed by
them. Dolejsi [16] recently presented a discontinuous finite element formulation,
which employs the internal and boundary penalty terms to provide numerical
stability. These methods are applied to the compressible viscous flow calculations.

7.4 ALE Formulation

The arbitrary Lagrangian—Eulerian (ALE) formulation is developed as a moving
grid treatment of discontinuities in compressible flow fields. In this Section, we
discuss some basics of the formulation, and the discontinuous Galerkin solution of
the ALE equations for compressible fluid flow problems. The theoretical
background of the ALE description of continuum mechanics problems can be
found in the work of Huge and others [17-20], answering the need for a general
framework within which flow—structure interactions can be effectively modeled.

7.4.1 ALE Kinematic Description

We consider, as shown in Figure 7.14, three different coordinate systems to
describe the motion of a particle.

First, the motion of particle p, initially located at X, is described by %(X,t). At
t, its position is x = x(X,t). If we fix our focus at x, then the particle occupying x
can be considered coming from its position at X, and follows the motion described
by ¢(X,t). Likewise, the particle occupying X may be considered coming from that
located at X, and follows the motion of y(X,t). Thus, the particle motion may be
considered coming from X via x(X,t), or via a combined motion of y(X,t) and
o(X,t). Different views of motion can be made, depending upon which coordinates
or descriptions are used. All these descriptions, however, refer to the same global
inertia frame with its origin at O (see Figure 7.14).

Perhaps, what is important for dynamics is the velocity and acceleration, which
are related to the motion. Thus, a time derivative of y(X,t) with X fixed,

oX
u=

ot

_ o)
X ot

=u(Xt)
X

is the velocity of the particle observed by a person standing still at O. Here the
particle is identified, with its initial position at X. However, its current position is
at x=¢(X,t) at t, and x;=¢(X,ty) at t;, etc. In this view, the eyes of the person are
fixed on the particle as it moves through space. This is the so-called Lagrangian
description, as discussed above, where X and t are independent variables to
describe the motion.
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C(0) = R(0)

C=continuum
R=reference

X = x(X,0), X =y(X1), X=¢(%,1)

Figure 7.14. Various configurations used for the ALE description.

If, on the other hand, a probe is placed at x all the time, then it will pick up the
velocity of the particle when the particle passes x at t. Later, it will pick up the
velocity of another particle that occupies x at t; > t. The same person, standing still
at O, with his eyes focused at position X, will observe a velocity at x and at t as
u(x,t),

oX
U=

x| _ox(X1)
== =

X ot

_ ot (x ).
X at

=u(x,t) (7.73)
X

and at different t;, he observes another velocity u(x,t;) at x. This velocity u(x,t,) is
no longer the velocity associated with the particle originally at X. In fact, in this
description, the observer cannot remember, and does not care, who passes through
x at any time. We take t and x as the independent variables. This is the Eulerian
description.

If the person standing still at O focuses his eyes at position X, he will observe a
velocity at X and at t as w(X,t), which is calculated by taking the time derivative of
y with X fixed,
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_ow(X.Y)

Ve

— (%, t) (7.74)
X

and at different t;, he observes another velocity w(X,t;) at X.
If, now, the person changes his position and stands at X then with his eyes
focused at x, he will observe a velocity at x and at t as v(X,t),

L

= V(& 1) (7.75)

X
These velocities observed above are related. To derive a relation, we note that
X =x(X,1) = d(X,t) (7.76)

Taking the time derivative and utilizing the relation X =y(X,t), we have by the
chain rule of differentiation,

ox
ot

_ AR,
X ot

_ ap(kt)

L B0, WX, 1) -
X ot

X oy ot X

or
- OX . o N OX;
u(x,t) = v(x,t) + —w(x,t) = u(x(x),t) =u(x,t) or u; =v; +—w;
oX OX;
(7.78)

Here, Oxi/0% represents the scale change of the particle when it passes through the
referential frame X, and is often called the deformation tensor.
We may also write

—Lw=u —v; (7.79)

Let us now consider the acceleration. By definition, the material time derivative is
the acceleration,

au(X,t)| _ au(x,t)| L Qu(x.t) ox

ot |x ot X X atl
LD v - DD
=— +u(x,t)- Vu(x,t) S (7.80)

where use has been made of the chain rule and the relation x=y (X, t).
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Again the left is the acceleration of the particle identified by X, and the
observer’s eyes are fixed on the particle. The two terms on the right represent the
local time derivative (time rate reading of a probe fixed at x) and the effect of
neighboring points when the observer’s eyes are focused on the position X.

We also have the acceleration for the referential frame,

au(X,t)| _ au(x, 1) +au(>“<,t)g
at | ot | % ot

X

:_a“g"t) WD VU

X

X

or

oux.b)| _ au(x,t)| . au(x,t) ax oK

o |y At fp 0 ax ax atly
U)X e oo
= ) + = w(x,t) - Vu(x,t)
=%§(’t) + (u(X,t) — v(X,1)) - Vu(x,t)
=%§;'t) + (u(x,t) = v(x,1)) - Vu(x,t) (7.81)

where V = 9/6% . Note that the velocity u is the same quality and represents the
velocity of the particle. Thus, we have

au(X,t)|  au(x1)| Du(x,t)
— ’t — ,t -V ,t = 782
T 0 vD) VUt == (7.82)
In general, for a physical property g, we have the following relation:
Dg _ M (Lagrangian) (7.83a)
Dt ot [y
=% +u(x,t)-Vg(x,t) (Eulerian) (7.83b)
X
:59(6):"[) +w(x,t)-Vg(x,t) (referential) (7.83c)
%
:% LU ) = V(1) -Vg(x,t)  (mixed) (7.83d)
%
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Clearly, v = 0 corresponds to the Eulerian description, v = 0 to the Lagrangian, and
v = u = to the referential. Any mixed description can also be written. These
relations will be useful for deriving conservation laws in the ALE description.

7.4.2 Conservation of Mass

We are familiar with the equation of mass conservation in fluids, which is
expressed in spatial coordinates as

o:%+ V- (Ul t)p(x.0)

+ p(% OV -u(x,t)+ u(x,t)- Vo(x,t)

+ p(x, 1)V -u(x,t) (7.84)

For incompressible fluids in particular, we have
V-u(x,t)=0 (7.85)

where V is the vector differential operator with respect to x. Let us now consider
mass conservation in the Lagrangian description. We have then for two different
configurations, Qpatt=0and Qatt=t,

dm = pdR(x) = p,d2(X) (7.86)

Since dQ = JdQ,, we have pJ = py and J is the determinant of the Jacobian, J=
|ox/6X|. We can choose an initial configuration in which p, = constant. Then we
have the following relation:

o0p)| _d i\
S (Jp)=0 (7.87)

where d/dt refers to the time derivative in the Lagrangian frame with X fixed. Now
carrying out the operations, we have

d dJ do op
—(Jo)=p—+J—=pIV-U+J—+Ju-Vp=0 7.88
Op)=p ot o= g - p (7.88)

or

op Dp op
V.Ut +4u-Vp=—LtpV-u=—L+V-(pu)=0 7.89
P ot pP=pi P ot (pu) (7.89)
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where V is expressed in terms of spatial coordinates x. This is the same as the
spatial description.
The change of volume is then given by the following expression:

d d - J
—(dQ,)=—(JdQ) = J dQ = =dQ 7.90
1£(009)=—-(d0) 90 (7.90)
with the time derivative of the Jacobian calculated by
1
j - Adet(F) t(F)M det(F)tr(F1E)
At At
=Jtr(FHUF) = Jtr(1) = J tr(D) = JV -u

Note that we have used the following relations: tr(F*IF) = F:IF=IF: F* = tr(l), F
= ox/oX, D = 0.5(Vu+(Vu)") and J = det(F), where | =Vu is the velocity gradient
tensor.

The equation for the conservation of mass in the ALE description is obtained
by substituting the relation in Equation 7.83d into Equation 7.84,

+ (u(x,t) = v(x,1))-Vo(X,t) + pV-u=0 (7.92)

X

ap(x,1)
ot

7.4.3 Conservation of Momentum

By definition, Newton’s law applies only to the inertial frame. For the case under
consideration, it means that it applies only to the observed acceleration by the
person standing still at O with his eyes fixed on the particle. More specifically,
Newton’s law is written as

P(X1)

duot( D _ £B(x 04 £5(X.10) (7.92)

where superscript B and S represent the body and surface forces acting on the
particle identified by X. This is the Lagrangian description, and the law of
conservation of momentum or Newton’s second law. It is noted here that the
independent variables here are X and t.

If we now write the above conservation law in terms of x and t, then we have

Jix t)(au( t)

which is the Eulerian description. Note that subscript x here refers to the Eulerian
coordinates.

X

+u(x,t)- Vu(x,t)J =B t)+ f3(xt) (7.93)
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If we express the conservation of momentum in the mixed frame, we then have

p(x,t)%

+ (U, ) - v(x, 1) - Vu(x, ) = FE(x,t) + f 5 (x,t)
%
(7.94)
which is sometimes called the mixed description.

If the conservation of momentum is written in the referential frame, then we
have

I.R) p(i,t)(%

+F Uk 1) - v(X,1))- %U(?,t)J

= F8(),t)+ FS(X,1) (7.95)

where we have the Jacobian J and the deformation gradient tensor F defined as
follows:

Fij =% /oX; or J(x,X) =| Fy |=] 0x; /X | (7.96)
and also use has been made of the following relation:

p(%,1)dQAR) = p(x,1)dQA(x) or

dO(X)
dO(x)

p(xt) = p(X1) = p(X,1)J(x,X) (7.97)

Equation 7.95 is called the referential description.

7.4.4 Conservation of Energy

The same approach presented above can be employed to obtain the equation for the
conservation of energy. Let us consider the Eulerian description of energy
conservation,

p%+pu-VE=V~(u-c)+u~f+V~(W) (7.98)

Once again, with the relations in Equation 7.83 substituted into the above
equation, we have the ALE description for the conservation of energy,

p%z +p(U-V)-VE=V-(U-6)+U-f+V-(xVT) (7.99)

X
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7.4.5 Summary of ALE Equations

Donea et al. [20] showed that all of the above descriptions (Lagrangian, Eulerian,
mixed and referential) can be generalized as follows:

d(=\ ~ 0

= J)=J§j(p(wj—uj)) (7.100a)
d =\ = 0 Y dajj

E(pui3)= J E(,ovi (w; —uj))+J[pbi +aTjJJ (7.100b)
d( = =0 B = (o)

- J)—Jgj(pe(wj uj))+J[puibi+ aj J (7.100c)

where e = O.5ui2 + E and E is the internal energy. Also, the right hand side is the
time derivative in the Lagrangian description, and the right hand side refers to the
derivative in the Eulerian description (see Equation 7.83b). The Jacobian is given
by

ox

oxX

J= (7.100d)

7.4.6 Constitutive Relations

Constitutive relations must be invariant under changes of reference frames. This
means that the quantity remains the same under arbitrary rigid body rotation, which
is referred to as material-frame-independence. This constraint has important
implications in solid mechanics as it involves the specification of the material’s
behavior as a function of stress rate. Often the Jaumann rates, or similar types of
stress rates, need to be used. For fluids, the constitutive relations involve only
stresses, which are frame-indifferent. Thus the same constitutive relations for the
Eulerian frames should be applicable to the ALE description [21].

7.4.7 ALE Description of Compressible Flows

With the above results, the governing equations for compressible flows in an ALE
framework are written as follows [22, 23]:

0U +Vy F (U)-Vy -F,(U,Vu)=0 (7.101a)

where the vector of variables, and convective and diffusive fluxes, are given by the
following expressions:
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P(Uj —ng)
P g
ou, pU (U =Vi7)+pdy
U=33pU,r; FoiU) =75i9pUp(Uj =V{)+pSjp 5
o U, pUz(u; =V )+ pds
pe
pe(u;=Vi)+ pu;
0
O-jl
FiU,Vu)=ni0j, (7.101b)
O'j3
U045 tU,04, + U303 —(;

on.
. %:o; J =detJ (7.101c)

Jiy =0x 10X 5 my =335

ij

where u=(uy, Uz us) = (u, v, w) and V9=(V,% V,% V5?) is the velocity of the grid
movement. It is seen that the grid movement affects the convection terms only, and
the diffusion fluxes are the same as before, thanks to the constitutive relation.

We further note that the above formulation is general. Compared with Equation
7.83d, we have v = V9 When the grid velocity V¢ is set to zero (V®=0) the
Eulerian description of the Navier—Stokes equations are recovered. Furthermore, if
grid velocity is set to the local velocity u, we have Lagrangian fluid equations
where material interfaces are exactly resolved.

7.4.8 Discontinuous Finite Element Formulation

The discontinuous finite element formulation is also very similar to that already
given in Section 7.4, aside from the factor 7;. The computational procedures are
thus very similar. An important computational issue of solving the Navier—Stokes
equations in an ALE frame is the determination of the grid velocity. A common
approach to update the grid velocity is to solve the following diffusion equation:

V- (a(X)VV9) =0 (7.102)

with a(x) being a parameter, and Dirichlet conditions on both the moving wall
boundary and on the outer boundaries of the computational domain.

The above equation may be solved like the classical elliptic equations. An
alternative approach is proposed by Lomtev [22], who used concepts from graph
theory to update the grid movement; and thus, no matrix inversion is needed, with
the additional advantage of minimizing the grid distortion.
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The use of the ALE formulations for compressible flow calculations, with and
without shock wave formations, and some of the computational details are given in
[23].

Exercises
1. Consider the nonlinear pure convection (inviscid Burgers’) equation,

a—u+ua—u=0, e, t>0
ot oX

u(x,0) = -x?, xeQ, t>0

Find the characteristics, sketch the characteristics diagrams and find the
solution.

2. We consider a simplest detonation model (or Semenov’s model), which is
obtained by simplifying the compressible flow equations and has the
following form:

oC
=-r iC!T l t>0
Po ot (P0 )
or oP
———=0r(p,,C,T), t>0
Po%p o ot Qr(po )

P=Rp,T, t>0

subject to the initial conditions:
T(0)=Ty; C(0)=Cy

where py is the density of the combustable reactant, C is the concentration,
C, is the specitic heat, r is the reaction rate, Q is the heat generation of the
combustion reaction and T is the temperature. For this particular model,
p = po, that is, the density is a constant.

Show that for a reaction rate expressed by the Arrhenius equation,

E
r=KpCexp|—
oo |

the above equation set can be combined to yield one equation for the
temperature,
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oT E ). _
E: K (T, —T)exp(ﬁj ; TO) =T,

where Ty, is a constant given by

Ty —#C(O)ﬁ-T(O)

- CppO(Cp _R)

Solve the equation to obtain T(t) and plot and discuss the evolution of the
temperature for the detonation process.

3. Consider the 1-D Euler equations for isentropic compressible flows. Show
that the flows are governed by the following equations:

U FU)
ot OX
2
U:(pj, F(U):( Pl j
pu pu+p
p=p(p)=Cp”

Study the characteristics of the above partial differential equations.

4. Consider the small perturbations u and o' to a motionless gas. Let u and p
= o + py, Where p, is a constant density value. Show that when linearized,
the isothermal Euler equations reduce to

., , 2 _g o adp

ot P T et py o

Analyze the characteristics of the Jacobian matrix of the above equations.
Show also that the combination of the above two equations yields

where a is the speed of sound,

a? = op(po)
op

5. Develop a discontinuous finite element code to solve 1-D Euler equations
for compressible flows. The code should allow us to use different orders of
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approximation in space and in time and also different types of flux
approximations.

Consider the 1-D Euler equations for compressible flows through a
diverging channel,

6_U+6_F_H:0
ot ox
where
P o dA| 0
U:{pu]; F= pu2+p;H=d—[p
pE (PE +plu *Lo

The channel is 3.3 m long, with its cross section given by
A(X) =1,400 +0.347tanh(0.8x —4) m?

Inlet. M = 1.5, p=47880 Pa, p=1.22145 kg/m®
pu = 429.2101 kg/m?s, pE =19909.39 J/m®

Exit: either supersonic or subsonic.

Solve with the discontinuous finite element code developed in Problem 5
using (1) Lax—Friedrichs explicit, (2) Godunov explicit, and (3) TVD.
Employ constant, linear, quadratic and cubic approximations. Compare and
discuss your results.

Solve the Euler equations for the two-dimensional domain shown
below.

- 3
1.0 0.8
Inflow
-y
. L0 , o
b 1 T L
V.
U oF, P o
E+6_X::0' U=|pV;|, Fi=| piVj + pdj

pE PEV, + pV,
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Inlet:M =2, y=1.4, T =288.33K

a=+/yRT =340.4616 m/s, p=1.225571 kg/m?

u=680.9232 m/s, v=0, p=10331.22 kg/m?

pE =Y—E1+ p(u? +v?) =54800.37kg/m?

N[

Initial conditions: Use inlet conditions as initial conditions for all nodes.
Boundary conditions for the problem: Supersonic inlet. Supersonic exit.
Slip wall conditions.

Develop a discontinuous finite element code to solve the above equations.
Use constant, linear and quadratic approximations on a triangular mesh.

8. For the 2-D problem shown in Problem 4, the Navier-Stokes equation has

the form given below. Develop programs to solve the Navier—Stokes
system of equations for Problem 4 using the discontinuous finite element
method. Repeat these programs for a geometry in 3D with the depth of x;
direction given as 1 in the figure.

oU oF, oG,
—t—t—"=
ot ox; 0
Yo AV 0
U=|pVi|; Fi=|pVj+pd | G =| -7
PE PEV, + pV, -7V, +

9. Formulate the shock tube problem in an ALE configuration and develop a
discontinuous finite element code to solve the Riemann problem for the
shock tube using the ALE Euler equations.
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8

External Radiative Heat Transfer

Thermal transfer by radiation is an important heat transfer mechanism in thermal
systems. Unlike heat conduction and convection, thermal radiation does not require
direct contact between the heat transfer parties. Rather, it is a result of the
electromagnetic energy radiated from a body at a temperature above absolute zero.
In general, thermal radiation problems are classified into two categories. The first
category is concerned with the thermal radiation exchange between surfaces, which
involves no intervening media. The second category deals with the thermal
radiation transfer through absorbing and scattering media. In the heat transfer
literature, the former is often referred to as external radiation, while the latter as
internal radiation. The mathematical formulations are different for these two
categories, and therefore, naturally lead to the use of different computational
approaches.

Thermal radiation problems can be difficult to solve, and thus there are only
limited cases where simple solutions are possible. For most practical applications,
in which heat flows and temperatures need to be found, numerical solutions are
often needed, and may require considerable computational effort. Many methods
have been reported in the literature and an extensive review of the methods
available today is documented in Modest [1] and Siegal and Howell [2]. Here we
focus on the numerical algorithms that have been developed on the basis of the
discontinuous Galerkin finite element formulation for the solution of thermal
radiation problems. Since the external and internal thermal radiation problems are
described using different mathematical equations, it is convenient to discuss the
subject in two consecutive chapters.

In this chapter, we consider the solution of the external radiation exchange
problems by the discontinuous Galerkin finite element method. We start with the
basic concept of external radiation between surfaces, and develop an integral
representation of the surface energy exchange in an enclosure, on the basis of
thermal energy balance. The use of the discontinuous Galerkin method for the
solution of the integral equation is then discussed for 2-D, 2-D axisymmetric and
3-D geometries.

Perhaps the most important part of algorithm development for the numerical
solution of external radiative heat transfer is an accurate estimation of kernel
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functions, which would require the detection of a third party blockage in complex
geometric arrangements. The calculations involving blockage detection can be
difficult, cumbersome, and time consuming. Various ideas have been developed in
the past [3—7] but a systematic description of the algorithms for geometries of all
dimensions appears to be lacking. Undoubtedly, the algorithms should have some
common features. However, the enclosures of different dimensions can have very
different geometric complexities that warrant different numerical treatments. A
systematic description of these shadowing algorithms is provided in this chapter.
This allows for a better appreciation of these common and different features, and
thus helps to develop more efficient algorithms. The detection algorithms described
in this chapter combine the best ideas published in the literature. These techniques
make use of the organized data structure and the advanced computer graphics
schemes used for hidden line removal [3-11]. These algorithms could be
considered to be the most efficient schemes to date for the numerical solution of
external radiation problems.

The numerical solution of mixed heat transfer problems involving conduction,
convection and radiation is discussed. A solution strategy is presented, which is
based on a combination of the discontinuous Galerkin method and the conventional
finite element method. Of course, the solution of these mixed mode heat transfer
problems can be obtained using the discontinuous Galerkin method alone.
However, for engineering applications, and for multiphysics model development, a
combined approach can be more beneficial if it enables the use of the best
properties of each of the methods, or if it is built within an already existing
software framework.

For illustrative purposes, some simple examples are presented and discussed in
detail. The chapter ends with several more examples of varying degrees of
difficulty, covering 2-D, 2-D axisymmetric and 3-D geometries with and without
internal geometric blockages.

8.1 Integral Equation for Surface Radiation Exchanges

If the media are not radiatively participating, the thermal radiation energy will
exchange between surfaces, which in many engineering applications define an
enclosure, as shown in Figure 8.1. The surface radiative energy transfer depends on
the local surface temperature of the enclosure and the properties of the surfaces,
but not upon the intervening media, which neither absorb, emit, nor scatter. This
condition is often satisfied by a vacuum or a transparent medium. This section
discusses the basic concept for surface radiation transfer and the equation
governing the heat flux distribution along the surfaces.

8.1.1 Governing Equation

Let us now consider the radiation exchange among surfaces that form an enclosure,
as illustrated in Figure 8.1. It is assumed that there are no radiation-absorbing or
scattering media in the enclosure. Surface element J emits the thermal energy to
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the other surfaces of the enclosure, while receiving the energy from these surfaces.
The heat flux q(r;) is supplied to the surface element J to sustain the radiation heat
transfer, and is determined by the heat balance on point j, involving incoming and
outgoing radiation energy fluxes. Referring to Figure 8.2, the general expression
for the heat flux exchange between two surfaces | and J is given by the following
integral [1,2]:

Figure 8.1. Schematic of thermal radiation exchanges among surfaces in an enclosure

00 g =27 G=nrl2
Q(l'u)f f f gﬂ,i(li%igi!ri)
A=0 o ¢=0 6,=0

Ipsi(4,1)cosé; sinGdEdgdA

Z cos&cos&l
aﬂ.l(ﬂ’(oileilrl)ll](ﬂ’ (p]lejun) | | dA dﬂ,
'—I'

(8.1)
where the radiation intensity emitted from point j is defined by
Iﬂ,j(/la(ﬂr,jvar,jvri) = gﬂ,j(/11¢r,jvgr,jari)lbﬂ,,j(/qvvri)
C0sH; cos&k
_Z ,DZLJ(}b Drj» rj!(ojvej!rl)lﬂ,k(/1 P O, 1) ——————
| Tk —Tj |
(8.2)

In the above equations, A is the frequency of the thermal rays, or essentially
electromagnetic waves, 7 is the radiant intensity, ¢ is the emissivity, p is the
reflectivity, @ is the angle between the normal of the surface and radiation



322 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

exchange direction, and ¢is the azimuthal angle. Note that in this chapter the
radiant intensity | always has subscripts. This should not be confused with the use
of | (which does not have a subscript) for surface or surface elements. Also,
subscript b refers to the blackbody radiation, and thus by its definition the
blackbody radiation intensity is directionally independent. Subscript r refers to the
reflected radiation. Also, 6;is the angle between the normal of the differential
element centered at point j and the direction of the reflected radiation at point j and
¢rjis the azimuthal angle similarly defined. The geometric relations of these
quantities are illustrated in Figure 8.2.

(b)

Figure 8.2. Schematic representation of the surface energy interchange between two
surfaces | and J. (a) Energy exchange between surfaces A; and A;, where S = |r; — rj| and (b)
spherical coordinates showing the angular relations
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While the above formulations are general, for most engineering applications,
the surfaces of an enclosure can be well approximated as gray, diffuse surfaces [2].
Within the framework of these approximations, the integration over the wavelength
A can be carried out analytically. After these analytical operations and
rearrangement, the following boundary integral formulation is obtained for the
radiative heat flux q(r) at the surface of an enclosure:

q(e) + £()E, (r) = £(r) 9§ K(r.r) L= o) gy Jaree) @)

where Ej is the blackbody emissive power and is calculated by the integration of
the blackbody radiation intensity over the entire spectrum of wavelengths,

00 p=2x O=rnl2
E, (r) = f f f Iy, (A,r)cos@sinddddpd A = o T4(r)
=0 J ¢=0 =0

(8.4)

with oy being the Stefan—Boltzmann constant. Here, use has been made of the
spectral distribution of Planck’s blackbody radiation [1],

2hc3
2°[exp(hcy /AkgT) —1]

I, (4,T)= (8.5)

where 7 is the Planck constant, ¢, is the speed of light, and kg is the Boltzmann
constant. Notice that the subscript i on r; has been dropped out and r; replaced by r’
to simplify the notation. This will remain true hereafter unless indicated otherwise.

8.1.2 Kernel Functions

In Equation 8.3, K(r,r’) is the kernel function for the integral, which for 3-D
problems takes the following form [1]:

K@) = n-(r—r)n'(r- r')l _ ¢os6, cosdy. B ©6)

;z|r—r'|4 7z|r—r'|2

where y assumes a value of one when the surface element | sees the surface
element J, as illustrated by the ray connecting i to j; otherwise it is zero if the ray is
blocked. Also, 6 is the angle at point r, and & at point r’. This is illustrated in
Figure 8.2. Thus the parameter y is a strong function of the geometric
configuration, which makes the kernel function highly irregular for a geometrically
complex enclosure.

Equation 8.6 is the kernel function for a general 3-D geometry. For 2-D and
axisymmetric configurations, the kernel function can be analytically integrated
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along the z or @direction. For 2-D geometry, the integration of the kernel function
is straightforward,

K(r,r‘):_f f X”'(rﬂlrr')_”;l(lzrl)dz'dz

n-(r—r')n"(r—r'"
= 3 X (8.7)
2| r —r'|

For an axisymmetric configuration, however, integration along the & direction
is much more involved. The derivation is given here for completeness. Referring to
Figure 8.3, n denotes the unit normal of element | at the azimuth angle ¢' being
zero, and n’ refers to the unit normal of element J with any azimuth angle ¢'. The
mathematical expressions for n and n’ are as follows:

n = (cos#,0,sind) and n'=(cosd'cosg',cosd'sing',sind") (8.8)

Substituting these terms into Equation 8.6, the kernel function is rearranged in
terms of the azimuth angle ¢',

_(c+d'cosg')(c"+d"cos¢')
z(c+dcosg')?

K(¢') = (8.9)

where the coefficients are calculated by the following expressions:

XIL

Y

Figure 8.3. Schematic of thermal radiation exchanges between two ring surfaces | and J in a
cylindrical enclosure
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c=r’+r+z [c'=z;sind-rcosd [c"=z;sin@+r;cosd’
d=-2rr, ' d'=r;cosé "=—r; cos '

Integration with respect to ¢’ and making use of the following relation:

i{tanl( c=d n? } B i (8.10)
d¢ c+d 2 2(c+dcosg)

one has the final expression for the kernel function,

¢ -
K(g) = ZIK(¢')d¢': —E{A¢+ Btan{ C_g tanﬁ}rc&}
T
0

c+ 2 c+dcosg¢
(8.11)

where the coefficients are given by

- s ausas .
Ao 80" g o) (E1d")(d' T red”) ¢ cdef
d d(Cz—dz)\/Cz—dz
C- def ;e:dc—cd ;f:dc—cd
d?-c? d d

Further integration of Equation 8.11 requires knowledge of the geometric
configuration, which is discussed in Section 8.3.2.

8.2 Discontinuous Galerkin Finite Element Formulation

We now derive the discontinuous Galerkin finite element formulation for the
surface radiative energy exchanges in an enclosure. By the Galerkin method, the
global residuals are forced to zero by use of the orthogonality condition, thereby
minimizing the error that could arise from the integral stated in Equation 8.3. More
importantly, the double integral enables the shadowing elements to be detected that
could be missed by the direct application of the traditional boundary element
method [3,11]. Thus, Equation 8.3 is integrated once again over the entire surface,
with shape functions ; used as the weighting functions,

i{ q(r) + &(r)Ey (r)



326 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

—g(r)§ K(r,r')

Equation 8.12 involves integration over the surface only, and thus the surface
element method can be applied naturally to discretize the domain and obtain the
solution [12]. Both E, and g can be interpolated over each of the boundary
elements by use of the shape functions discussed in Chapter 3,

1—e(r')

Ep(r') + =)

a(r')

dF(r‘)}wi 47 (r) =0 (8.12)

N, N
AN = "y ; Ex()=> viE (8.13)
1=1 1=1

Now, with the boundary discretized and the shape functions chosen as described
above, Equation 8.12 becomes

N N, N
> f P RGGEOREON)
k=1 oJ BE | j=1 1=1

xf E, (r) + —£0) g(r)zyx,q, A7) K (e ey, d () = 0 (8.14)
BE,

Following standard boundary element procedure, the above equation may be
written in matrix notation,

Aq =BE, (8.15)

where an underscore beneath the boldfaced letter denotes the vector, and the
elements of matrices A and B are calculated by the following expressions:

Aij_f wi v dI(r)
BEy
- f g(r)z f 1= g(r [ K(r,r)d0(r)y; dT(r) (8.16)

Bjj ——f e(Nyiy;dl(r)
BE,

N
+ &(r) f wi K(r,r)dT(r") w; dI'(r) (8.17)
‘/;Ek Zl: BE, J
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Depending on the boundary conditions, Equation 8.15 can be rearranged into a
standard matrix form,

KU=F (8.18)

where K is the global matrix, U the vector containing unknowns, and F the force
vector. The solution of the above equation can be solved using the standard LU
decomposition method.

Several points are worth noting. First, Equation 8.12 permits the use of both
continuous and discontinuous shape functions. In some of the literature, Equation
8.12 is referred to as the Galerkin boundary integral formulation, as the field
variable is defined on the surface only. In the discontinuous finite element sense,
cross-boundary continuity is not required as a result of the use of the kernel
function. Second, for this particular formulation, the final matrix is not local to an
element only. The kernel function links all the surface elements together;
consequently, the global matrix involves contributions from all surface elements,
although discontinuous elements are used. This is different from the discontinuous
finite element formulations discussed in previous chapters. Third, the kernel
function is not based on the diffusion theory, and thus it does not necessarily
satisfy the diffusion with a point source. In fact, the kernel function describes the
straight line path relation between two points on two surface elements, which is
much different from commonly known diffusion behavior. Therefore, if there
exists a blockage between the two surfaces, then the thermal ray emitted from one
surface will not be able to reach the other surface. In the case of diffusion,
however, the field variables would bend around or diffuse through the blockage to
reach the other surface. Because of these characteristics, the kernel function can be
discontinuous, and thus special treatments must be applied to ensure correct
detection of these internal blockages in complex geometries, in order to obtain an
accurate evaluation of the kernel functions.

8.3 Shadowing Algorithms

The evaluation of kernel functions for surface radiative energy exchange
calculations can be carried out in a fairly straightforward manner, if the internal
blockages are not present, and the surface of the enclosure is convex everywhere
[13, 14]. We will illustrate this point in Example 8.1 below. When a blockage
occurs between the surface elements either by the internal structures or by the non-
convexness of the enclosure surface, an accurate evaluation of the kernel functions
requires a tedious procedure to detect these geometric blockages [3-11]. While the
idea is to find out if a line emitted from a point on a surface element is intercepted
by any objects in the enclosure before it reaches its designated point on another
surface element, a general, efficient computational procedure — namely the
shadowing algorithm — for this type of calculation requires careful geometric and
floating point considerations. Perhaps the most important aspect of surface
radiation exchange computations is the design and implementation of a shadowing
algorithm that allows an efficient and effective detection of any geometric
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obstructions by third parties embedded in a configuration (see Figures 8.1 and 8.3).
This is also the most difficult, time consuming, and error-prone part of a
computational scheme for thermal radiation exchange calculations, without which
these computations can be carried out routinely using essentially any integration
algorithms available [12-14].

>< Initialize the list for element |

e
i
(Choose a pair of elements | &D

Delete element J
from the list

(nitialize 3rd part list for mutually seen elemenB
1&J

'

( Primary clipping )

Check partial blocking
between elements | & J by
element K

Partial blocking

™

Adaptive integration & checking
between elements | & J

Not blocking

Are all integration
points of elements | & J
checked?

Are all
pairs checked?

Are all elements
checked?

Figure 8.4. Outline of the shadowing algorithm for detection of third body blockages during
external radiation calculations
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Two mechanisms can prevent a radiation ray from reaching its designated
destination, and must be identified in the algorithm. In the first case, the surface
element does not see at all the destination point the ray is supposed to reach. This is
essentially the case of self-blocking, which occurs with a curved or ring element. In
the second case, the ray is blocked by a third party element, due to a geometric
configuration, which is coined third party blocking. In both cases, the kernel
function is zero. The blockage of a ray can be further differentiated into the
categories of partial blocking and total blocking, for which special treatments are
required. While kernel functions can be evaluated by integration with final
checking alone for every pair of elements, this brute force approach can be
prohibitively expensive, especially for large-scale calculations involving complex
3-D geometries, and thus should be avoided whenever possible. An efficient
algorithm should be able to eliminate all those elements that are not needed, and to
perform only on those elements that are absolutely necessary for the
computationally intensive integration with blockage detection. The shadowing
algorithms developed based on these ideas for the detection of blockages in 2-D,
axisymmetric and 3-D configurations are described below. These algorithms all
involve data structure creation, sorting, primary and secondary clipping, and
adaptive integration, but differ in the details of geometric treatments. The outline
of the shadowing detection and adaptive integration algorithm is illustrated in
Figure 8.4. Although the general procedures are the same for the geometric
configurations of all dimensions, the details are sufficiently different that the
detection algorithm development for the 2-D, axisymmetric and 3-D geometries is
discussed in separate sections.

8.3.1 Shadowing Algorithm for 2-D Geometry

The shadowing scheme for a 2-D geometry is considered first, because it is the
most intuitive and easy to envision. Before starting the search and sort procedure, a
list of elements actively engaged in thermal radiation with element I, from which
radiation emits, is created and initialized. The data structure creation follows a
similar procedure to that given in Bastian and Li [15], and should be applicable to
the problems of all dimensions. This list is updated as the procedure proceeds. The
first step tests the signs of the product of the surface normals of the two elements
(e.g., elements | and J) with the vector connecting the two elements (i.e., R in
Figure 8.5). This is equivalent to testing the sign of n-(r — r") n’-(r — r’). If the sign
of n-(r — r’) n"-(r — r’) is positive, the two elements can see each other. If the sign
of n-(r — r’) n’-(r — r') is zero or negative, the two elements are considered to be
unable to see each other. Based on this sign test convention, elements | and J can
see each other, whereas elements | and J’ cannot, as shown in Figure 8.5. After this
test, the elements that are unseen by element | are discarded from the list. The
kernel function for them is set to zero, and no further considerations are given to
them in terms of thermal radiation exchange with element I.

For those elements remaining in the list, a test is conducted to determine the
blockage. The procedure involves additional three steps, the basic idea of which is
illustrated in Figure 8.6. Again, before the test is started, another list of third party
elements is created and initialized for each pair of mutually seen surface elements,
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determined as described in the previous paragraph. The algorithm here consists of
the coarse screening and the detailed checking. First, a rectangular primary window
is set up using the maximum and minimum coordinates of the pair of mutually seen
elements, i.e., elements | and J (see Figure 8.6). For this purpose, the standard clip
algorithm routinely used in computer graphics for clipping objects, proves to be
extremely effective, is thus directly applied [16-18]. The elements lying outside
the window are deleted from the list of blocking elements. This check will throw
out a majority of unblocking third party shadowing elements from the list of
blocking elements. Those screened through this check are further clipped out and
discarded from the list of blocking elements, if they lie outside the irregular
window defined by 1'2'12. The algorithms used to clip out the elements out of the
irregular window, such as 1'2'12, are more involved and computationally intensive.
However, the basic procedure is the same as for clipping against a triangle, which
is performed during the integration. Thus, the elements are discarded from the list
if they lie outside the window 1'2'12. Those lying partially or completely inside the
window are further checked for blocking while integration is performed.

Figure 8.5. Geometric relations between mutually seen and unseen elements: radiation
emitted from point i can reach point j but is unable to reach point j’ because of the self-
blockage by the element J’

For those elements remaining in the list, a test is conducted to determine the
blockage. The procedure involves an additional three steps, the basic idea of which
is illustrated in Figure 8.6. Again, before the test is started, another list of third
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party elements is created and initialized for each pair of mutually seen surface
elements, determined as described in the previous paragraph. The algorithm here
consists of the coarse screening and the detailed checking. First, a rectangular
primary window is set up using the maximum and minimum coordinates of the pair
of mutually seen elements, i.e., elements | and J (see Figure 8.6). For this purpose,
the standard clip algorithm routinely used in computer graphics for clipping
objects, proves to be extremely effective, is thus directly applied [16-18]. The
elements lying outside the window are deleted from the list of blocking elements.
This check will throw out a majority of unblocking third party shadowing elements
from the list of blocking elements. Those screened through this check are further
clipped out and discarded from the list of blocking elements, if they lie outside the
irregular window defined by 1',2",1,2. The algorithms used to clip out the elements
out of the irregular window, such as 1'2',1,2, are more involved and
computationally intensive. However, the basic procedure is the same as for
clipping against a triangle, which is performed during the integration. Thus, the
elements are discarded from the list if they lie outside the window 1',2,1,2. And
those lying partially or completely inside the window are further checked for
blocking while integration is performed.

Second clip Primary clip
window window
5 e
\}\\“ e
[
Third party
partial blocking
Element
eliminated after
first check

Figure 8.6. Primary and secondary clip windows for screening out third party shadowing
elements for blocking the radiation exchange between elements | and J

Numerical integration is performed to compute A; and Bj for each pair of
mutually seen elements | and J, while checking for blockage by each remaining
element in the list of partial blocking elements attached to the pair. Some of these
partially blocking elements may or may not block every ray between the two
elements. To determine if a third party element actually blocks a ray between
elements I and J, the third party element is first checked against a triangle, formed
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by an integration point on element | and element J. The detailed algorithm for
clipping against the triangle is given in Figure 8.7, where three different scenarios
are depicted. For case 8.7a, the third party element K lies outside the triangle, and
thus integration along element J from point i is not affected. As a result, numerical
integration is carried out for element J and point i without further checking. For
case 8.7, the third party completely blocks a ray from point i to any points on
element J. Thus, the kernel function is set to zero and no integration is carried out
for element J. For case 8.7c, which is the most common, the third party element is
partially blocking, and therefore every ray from point i to any integration point on
element J needs to be further checked (see the next paragraph for detail). To
determine to which case the third party element K belongs, the following rule
based on the geometric considerations is applied. The nodes of the triangle formed
from point i and element J are numbered anti-clockwise, which allows one to
determine the surface normal, n, of the triangle as positive, when pointing out of
the paper. Two vectors are created by connecting one point of element K, say a’

(see Figure 8.7c), to two end points of one side of the triangle, e.g., |, and T, . The

cross product of the two vectors, T, x I, is then dot with the surface normal n, of
the triangle. If the dot product is positive, then the element K is inside the triangle
and belongs to the category of Figure 8.7c. If both ng -1, x 1, and n, -1, x I, are

negative, and I, (i =1, ..., 4) is formed from the same side of the triangle, then the
third party element K belongs to the category of Figure 8.7a. If both n - I, x I, and

n, -1, x I3 are positive and I, (i =1,...,4) is formed from two different sides of the

triangle, then the element K belongs to the category of Figure 8.7c, where a third
party element totally blocks the point to element J.

For the case illustrated in Figure 8.7c, an adaptive integration algorithm is
applied, while the ray connecting point i to an integration point on element J is
checked for blockage, as illustrated in Figure 8.8. In this case, the interception
point P is calculated by simultaneously solving the two linear equations describing
lines a’b’ and ij. The blockage occurs if P lies on line a’b’ or element K; otherwise
line ij is not blocked. In applying the adaptive integration, two successive
numerical integrations, with twice as many integration points in the current step as
those in the preceding one, are employed. The error between the two successive
integrations is checked and the calculation is considered converged, when it is
smaller than a preset value. Our experience indicates that a preset value of 0.001 as
a relative error with respect to the diagonal term yields a reasonably fast
convergence with sufficient accuracy.

At this point, it may be constructive to revisit the treatment of the third party
blockage when a single surface integration is applied. The drawback associated
with the traditional boundary element algorithm is the possible miss in detecting
the third party shadowing in some special cases. This point is illustrated in Figure
8.9. Because the numerical integration is carried out between the nodal points (1’ or
2') and element J, and point a is not included in integration (see Equation 8.3), the
shadowing effect of element L, a third party element that actually partially blocks
the view between elements | and J, is not accounted for, thereby resulting in
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numerical errors. The Galerkin boundary element method, however, requires the
double integration of elements I and J, which in turn requires the use of internal
points on either elements, and thus will be able to detect the existence of element L.

Figure 8.7. Three geometric arrangements for third party obstruction of radiation exchange
between point i and element J in relation to the testing triangle: (a) no obstruction, (b) total
obstruction and (c) partial obstruction
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Figure 8.8. Detailed testing of blockage of radiation between points i and j by a third party
element K

Figure 8.9. Comparison of strategies for detecting third party shadowing by the traditional
and Galerkin boundary element methods. The traditional method uses the triangle formed by
1’12, where the Galerkin used triangle 1'12 and other triangles such as al12

8.3.2 Shadowing Algorithm for Axisymmetric Configurations

The geometric considerations for an axisymmetric configuration can be quite
different from the simple 2-D case, although there are some similarities. This is
because the self-blocking must be checked, even if a linear surface element is used.
This is shown in Figure 8.3.

As in the 2-D case, the shadowing algorithm starts with the creation of a list of
elements actively engaged in thermal radiation with element I, from which
radiation emits. This list is updated as the procedure proceeds. The first step tests
the signs of the product of the surface normals of the two elements (e.g., elements |
and J) with the vector connecting the two elements, i.e., R in Figure 8.3. This is
equivalent to testing the sign of (n-R) (n"-R). If the sign is negative, the two
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elements can see each other. Otherwise, the two elements are considered as not
seeing each other. In axisymmetric cases, the following rule is very useful and can
be easily proved. Elements | and J are not mutually seen, if element I cannot see
both sections of element J at ¢ = 0 and ¢ = &, as shown in Figure 8.10. In other
words, elements | and J are unseen by each other, if both (n‘R,) (n'R;) and (n-Ry,)
(ny'Rp) are positive or zero. After this test, the elements that are unseen by element
| are discarded from the list. The kernel function for them is set to zero and no
further considerations are given to them in terms of thermal radiation exchange
with element I.

Figure 8.10. Geometric relations between mutually seen and unseen elements: radiation
emitted from point i can partially reach element L, but is unable to reach element J

For those remaining in the list, further testing is performed to determine the
blockage. The procedure is identical to that used for 2-D calculations, except that
the detection for axisymmetric geometry uses the window as shown in Figure 8.11.
This check eliminates a majority of unblocking third party shadowing elements
from the list of blocking elements. Those screened through this check are further
clipped out and discarded from the list of blocking elements, if they lie inside the
two triangles defined by Aiipi; and Aigyjp, as illustrated in Figure 8.12. Based on
this criterion, element K does not block elements | and J that see each other. Thus,
those lying partially or completely outside these two triangles are further checked
for blocking while integration is performed.

The blocking region on element J by the third party element K is determined by
the azimuthal angle ranging from ¢, to &,". This region is calculated analytically in
this study. Due to the fact that the geometry is symmetric with respect to the
plane ¢ = 0, the blocking region on element J is confined from ¢ =0to ¢ = m.
The surface of the third party element K shown in Figure 8.13 can be expressed as

X2 +y?—(kt+1)%>R? =0 (8.19)



336 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

where the parameters are defined as t = z/zj, Ry = (RaZy — RoZa)/(Zp—Za), kK = (R; -
R)/R, , and Ry = (Ry — Ry) (Z; =Z.)/(Zy— Za) + Ra. The normal vector on the surface
of element K is obtained by the gradient of Equation 8.19,

ne ={x, y—~(kt+)R7k/z;} (8.20)

The ray emitted from element | can be described as the following equations
with the parameter t:

x=a+(bcosg'-a)t; y=btsing'; z=z;t (8.21)

r==—=== . 0
1
1 Clip window
J /
1
1

I

|
Element eliminated |
I
I
I
1

after first check

memm A m i m 4 -Axis

Figure 8.11. Clip windows used for primary checking of shadowing elements for
axisymmetric configurations

Figure 8.12. Two triangles formed by iiyi; and igjyj, provide un-shadowing zones between
point i and contour j
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Figure 8.13. Detailed geometrical description between point i and contour j by a third party
element K

Therefore, the normal vector of element K can be further expressed in terms of the
parameter t and the azimuth angle ¢,

n, ={a+ (bcosg'-ajt, btsin¢', —(kt+1)R,2k/zj} (8.22)
The criteria for which the ray E is tangent to the surface of element K must
satisfy the relation, n, E =0. This gives

aficosp'= @/ _2|f[2_)t1_ L 28 (8.23)

where o= a/R, and g=b/R,.
The solution of the above equation, ¢', represents the minimum angle that does

not block the ray E reaching the contour j on element J at z = z;. The intersection

of F and the surface of element K can be determined by the solution of Equations
8.19and 8.21, i.e.,

(a + (B cosg'—a)t)’ + 7 sin® ¢'=(kt +1)° (8.24)

The location, where the ray ﬁ: is tangent to the surface of element K, is calculated
by solving for t and is written as follows:

_ (1) £ J(1-a*)1- B +k(2+K))

! B2 —a* —k(2+K)

(8.25)
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If the solution of Equation 8.23 exists but the parameter t falls out of the range
z,/7,<t<z,/z, , theray ij, may intersect the end disks at the top or the bottom of
the third party element K. The intersections are defined by two azimuthal angles,

C (@4 PO 20+ (0% - &)

Cosg, = 8.26
Pa 2aBt(L—1) (8.26)
where t=2z,/z; and &, =R, /R, ;and
2 2\2 o 2 2 g2
cos g, = (@ + BN —2at+(a” - &) ©.27)

2aft(1-1)

where t =1z, /z; and &, =R, /R;.

To effectively determine the shadowing regions on element J, blocked by the
third party element K, the following algorithm is developed. In the algorithm, every
third party element blocking the ray from the radiating point i and the contour j is
treated as a hollow cone. Three angles defined in Equations 8.23, 8.26 and 8.27 are
used for determining any possible blocking regions.

(1) for any third party element K

Initiate, = ¢, =0;

If ¢, exists, theng; = ¢, ;
ifR,_, >Ry, then ¢, =7 ;

If ¢, exists, then g, = ¢, ;
if R, >Rq, then ¢, =7 ;

If both ¢, and ¢, exist, then g, = min(4,,4,);
ifR,_,, >R, and R,_, >Ry, then ¢, =7 ;

¢min,K = min(¢1!¢2) ,
¢max,K = max(¢1, ¢2) ;

If 4 existsandz, /z; <t<zy/z; , then g = .

If ¢max,K =0, then ¢max,K =7

K=K+1
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Go to (1) to check next possible third party element.

The process will continue until all possible third party elements are checked. The
final blocking region is determined by U“, (gmin k #max.k ) » Where N, denotes the

total number of third party elements. Therefore, the integration in Equation 8.11
should be evaluated in the regions { (0, 7) — Uk, (gmin,K dmax,K ) }-

8.3.3 Shadowing Algorithm for 3-D Geometry

The shadowing algorithm for a 3-D configuration also follows the outline given in
Figure 8.7. As in the 2-D case, the algorithm starts with sorting by signs. Prior to
the four-step procedure, a list of elements actively engaged in thermal radiation
exchange with element | from which radiation emits is created and initialized. This
list, labeled as the main list, may be taken as the entire set of surface elements if
there exists no prior information on inter-element relations, which would be the
case with | = 1. The list initiated may be shorter, starting with | > 2, because
information obtained from the previous testing can be used to preclude some
elements from the list to speed up the computation. For example, if elements 1 and
2 are not seen by each other, then element 1 would be excluded from the list for
element 2 when it is created. Once it is created, the list is updated as the
searching/sorting procedure proceeds. As the first step, elements are sorted by
testing whether two elements can see each other at all. To do that, we consider the
signs of the dot product of the surface normals of the two elements (e.g., elements |
and J) with the vector connecting the two elements (i.e., R; in Figure 8.14). This is
equivalent to testing the signs of n-(r — r’) and n’-(r — r’). The thermal rays may
reach each other between the two elements, or the two elements can see each other,
if n-(r - r’) and n’<(r — r’) have different signs. Otherwise, the thermal rays emitted
from either of the elements cannot reach the other, or the two elements cannot see
each other. Based on this sign test convention, elements | and J can see each other
(see Figure 8.2), whereas elements | and J’ cannot, as shown in Figure 8.5. After
this test, the elements that are not seen by element | are discarded from the main
list. The kernel function related to them is set to zero and no further considerations
are given for them in the procedures ensuing.

The primary clipping is now performed on the elements remaining in the main
list, which are considered mutually seen at this moment, to determine the foreign
elements for the potential third party blockage of surface radiation exchanges
between an element pair of element | and one other element (say element J)
selected from the main list. The basic idea of the primary clipping is illustrated in
Figure 8.15. Again, before the test is started, another list of third party elements, or
the blocking list, is created and initialized for each pair of mutually seen surface
elements in the list. This third party or blocking list is a subset of the main list
excluding, but attached to, the pair of mutually seen elements, i.e., elements | and
J. To begin, a primary window of brick shape is set up using the maximum and
minimum coordinates of the element pair. The elements in the blocking list are
checked against the primary window. For this purpose, the standard 3-D clip
algorithm routinely used in computer graphics for clipping objects, proved to be
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extremely effective, is thus directly applied [18]. The elements lying outside the
window cannot possibly block the thermal rays traveling between elements | and J,
and thus are deleted from the blocking list. This check will delete a majority of
unblocking third party shadowing elements from the blocking list. For example, as
shown in Figure 8.15, this procedure will drop out element L from further
consideration but still keeps element K, which is considered a potential candidate
for a third-party blockage. Depending on the relative geometric positions of mutual
elements | and J, a good portion of the elements can be eliminated, thereby
reducing the computational burden for the most tedious ray-tracing checking and
adaptive integration.

Element J

Figure 8.14. Schematic illustration of two 3-D surface elements unseen by each other

The next step involves the secondary clipping, which eliminates the elements
not blocking any ray from element | to element J from the active list. This is done
as follows. A pyramid is formed by selecting a corner point, say point i, of element
I and connecting it to all the corners of element J. A remaining third party element,
or active element in the blocking list, is now checked against the pyramid. The
detailed algorithm for clipping against the pyramid is given in Figure 8.16, where
three different scenarios are depicted. For case 8.16a, the third party element K lies
outside the pyramid. For case 8.16b, the third party totally blocks a ray from point i
to any points on element J. For cases 8.16¢ and 8.16d, which are the most common
scenarios, the third party element is partially blocking, and therefore every ray
from point i to any integration point on element J needs to be further checked; that
is, the final checking is required during detailed integration.

To determine which of the three cases the third party element K belongs to, the
following rule, based on the geometric considerations, is applied. A pyramid is
formed by four lines, which all originate from point i, and each connect to a
different vertex of element J. Each of these four lines may pass through the plane
defined by element K. One of these lines, marked by ij, is illustrated in Figure
8.16¢c. By the similarity rules of plane triangles Aipg and Aicr, we have the
following relation:
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Figure 8.15. Primary testing window against which unblocking elements are eliminated and
potentially blocking elements are retained

m=(r,-n,); rp=r+mt; t=(r; —ri)~nJ/(rC—ri)-nJ (8.28)

where p is the interception point of line ij with element J, and n; is the outnormal
of element J. Note that pq = [(r, —r;)-n, |, which is the distance between point i

and plane J. Thus, if 0 <t <1 ort <0, then element K lies outside the pyramid, that
is, either above element J or below point i. The element is then eliminated, and a
new check for a different element is started. The third party element, or element K,
blocks the ray from point i to element J if the following two conditions hold for
any one of the four lines connecting point i to the four corners of element J:

t>1 and p isinside elementJ.

To test if p is inside element J, the algorithm as illustrated in Figure 8.17 is
employed. The nodes (1,2,3,4) of element J is set up clockwise, and two vectors
are created by connecting the interception point p to two nodes of one side of
element J, e.g., pl and p2. The cross product of the two vectors, plxp2, is then
dotted with the surface normal n; of element J. If the dot product is positive, then
the point j (or p) is inside the element J. If the points inside are less than the
number of corners of element J, then element K is partially blocking, as in case
8.16c¢. If all corner points of element J are inside the shadowing area, then element
K is totally blocking (see Figure 8.16b). If, during checking, a totally blocking
element (or case 8.16b) is found, then the kernel function is set to zero, and a new
round of checking starts with a new Gaussian point on element I. If there are
partially blocking elements but no totally blocking elements, then final checking is
required.
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The shadow of
element k

Element J

Element K

@) (b)

Element J
Element J

Element K

Element |
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Figure 8.16. Four different scenarios of third party element blockage of thermal rays
emitted from point i to element J: (a) no third party blocking, (b) total third party blocking,

(c) and (d) partial third party blocking

!

ny

Figure 8.17. Procedure for testing if p is inside element J; n; is the normal of the element

The above procedure, however, cannot positively determine cases illustrated in
Figures 8.16b and 8.16d, which show that element J may be either totally or
partially blocked, even if all interception points lie outside element K. Thus for all
those elements whose intersection points are all outside, but 0 <t <1, additional
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checking is required. This check involves calculating the intersection point k with
element K by line ij. Point k can be calculated by simply exchanging the
corresponding points of element J with element K, or

m:(rj—ri); re =r; + mty; t1:(rc—ri)~nK/(rj—ri)-nK (8.29)

Thus, element K blocks the view from point i to element J, if 0 <t <1 and k is
inside element K. Of course, the same procedure sketched in Figure 8.17 can be
used to determine if k is inside element K.

It is noted that the purpose of this secondary check is to establish the active list
of partial blocking elements and can be expensive since all the corners of the
elements must be checked. Hence if either p or k is considered blocking during
checking, then element K remains in the active list for final integration and a new
check is started for the next element waiting to be checked. After this secondary
checking procedure, the active list contains only those elements that will most
likely block the view between elements | and J. Whether or not they indeed block,
will be checked during final integration, which is described below.

Fd par‘ty / /
element K

8-

3d par
: elements ; i

(@) (b)

Figure 8.18. Procedures used to determine the blockage of the thermal ray emitted from i to
j by element K. (a) Element K is not parallel (m-n, =0) to the thermal ray ij and k is the
interception point between the thermal ray and element K. (b) third party elements are
parallel (m-n, = 0) to the thermal ray ij, and element K blocks thermal ray ij, but element
L does not

After the secondary clipping of partial blocking elements as described above,
the actual integration over elements I and J is now performed, along with the
detailed final check of the third party element blockage of the thermal ray
originating from an integration point on element | to another on element J (see
Figure 8.18). In this study, the Gaussian integration quadrature is used. Other
integration rules can also be applied. If the blocking list is empty, or no active
element is in the list, the integration is carried out without further checking.
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Otherwise, final checking of blockage is performed for those elements active in the
blocking list, when integration is taken over element J. In this case, each line (or
light ray emitting from integration point i on element I, and ending at integration
point j on element J) is checked against all partially blocking elements active in the
blocking list, determined from the secondary clipping. If the ray connecting two
integration points of respective elements | and J is blocked by the third party
element K, the value of integration is set to zero. If not, this integration is
calculated. The idea of determining various scenarios of third-party blocking
during final numerical integration is illustrated in Figure 8.18. Here a line is
constructed between points i and j, and the interception point k of the line with the
third-party element K is calculated by substituting relevant parameters into
Equation 8.29. The interception point k is then tested using the same procedure as
illustrated in Figure 8.17 to see if it lies inside element K.

When the line ij is parallel (i.e., m-nc= 0) to the third party element (see Figure
8.18b), Equation 8.29 is no longer applicable. In this case, care is taken to ensure
that the line passes through the element, and the interception points between the
plane edges and the line are calculated. If one of these interception points is
between points i and j, then the third party element blocks. If none of these points
lie on the line between points i and j, then the third party element does not block.

In order to obtain an accurate value of integration, an adaptive integration is
applied. Two successive numerical integrations, with twice as many integration
points in the current step as those in the preceding one, are employed in the present
study. Other ways of refinement are also possible; for instance, two successive
orders of numerical integration may be used instead. The error between the two
successive integrations is checked, and the calculation is considered converged, if
the error is smaller than a preset value. Our experience indicates that a preset value
of 0.001 as a relative error, with respect to the diagonal term, yields a reasonably
fast convergence with sufficient accuracy.

The Galerkin formulation requires surface integration over both elements | and
J. This mandates that the above search and integration algorithm is carried out for
integration of element J with every integration point i on element | and then
integration of element | with every integration point j on element J.

The above procedure continues until the initial list associated with element I is
exhausted. Then a new surface element is selected and a list of candidate elements
is created. The three-step searching and integration computational process is
followed. This is repeated until every surface element is calculated.

It is noted here that there are similarities between the secondary clipping and
the final check for blockage during adaptive integration, though the latter is
computationally more involved. Thus some procedures described in the secondary
clipping are applicable to the final check. Additional checks as shown in Figure
8.18 are also employed in this final check stage, to ensure all blockages are
detected accurately. Since both procedures can be very time consuming, the
secondary clipping helps to save time if the integration points per element exceed
the number of corners of the element. For relatively simple geometries and
relatively few elements, few integration points are needed and thus the secondary
clipping may not necessarily speed up the calculations significantly. For complex
geometries, partial blocking occurs very frequently and often the number of
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integration points needed to accurately integrate the kernel functions is
significantly larger than the number of corners. For these cases, the secondary
clipping provides a useful means to shorten the list to be checked during
integration, and thus allows savings in computing time.

8.4 Coupling with Other Heat Transfer Calculations

In most engineering applications, surface radiation often is not the only heat
transfer mechanism, and other phenomena also coexist, such as heat conduction,
fluid convection, phase changes, etc. Thus it is required to couple the discontinuous
Galerkin surface method described above with other methods to solve the problems
involving mixed heat transfer mechanisms. Here we consider the procedure for
coupling the discontinuous and convectional finite elements for the analysis. A
similar idea can also be applied for the coupling of surface calculations with other
domain methods. Below, a coupling problem is considered for a 3-D thermal and
fluid flow system, in which the surface radiation, heat conduction, Marongani
convection, and buoyancy driven flow are all present. Figure 8.19 shows the finite
element mesh used to model the furnace. The chamber of the furnace has a
cylindrical roof and a protruded blockage. The roof is fixed at a higher
temperature, and by surface radiation the liquid pool below is heated up. The
outside of the chamber is at room temperature and the system loses heat to the
environment through radiation, which follows the Stefan—Boltzmann law. Because
the free surface of the metal is exposed to the radiation, the surface temperature is
not uniform. As a result, the Marangoni convection and buoyancy flow arise due to
the surface tension and gravity effects. The melt flow and heat transfer are
governed by the Navier—Stokes equations and the energy balance equations within
the solid wall, the melt, and the surroundings. The governing equations for the
fluid flow and heat transfer phenomena are given as follows:

V-u=0 (8.30)

pZ—l:+pu -Vu=-Vp + V-y(Vu +(Vu)’ )—p,Bg(T —T,ef) (8.31)
oT

pCpE—FpCpu-VT =V -kVT (8.32)

where u is the velocity, p is the density, T is the temperature, u is the viscosity, Sis
the thermal expansion coefficient, g is the gravity, C, is the specific heat, T, is the
reference temperature, and k is the thermal conductivity. The above equations,
along with Equation 8.3, describe the surface radiation exchanges in the enclosure
formed by the liquid surface, and the surfaces of the furnace facing the liquid. The
boundary conditions for the problem are:
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Figure 8.19. Schematic of an industrial furnace, where surface radiation, conduction, and
convection coexist.

kn-VT = —so(T*-T*) €oQ, (8.33)

trn=Ytvr can, (8.34)
dT

u-n=0 €0Q, (8.35)

T=T, cdQ, (8.36)

where 0Q); is the outer surface of the furnace, 0Q; is the top liquid surface, 0Q; is
the top inner surface, and y is the surface tension, which may be a function of
surface temperature. Note that Equation 8.34 represents a shear stress balance
along the interface, which causes a fluid motion when the surface temperature is
not uniform. This type of flow is often referred to as the Marangoni flow, or
surface tension driven flow. The finite element discretization for the solution of
convection and conduction heat transfer leads to the following matrix equations
[19-23]:

A(U)+K +5—10E|\/|;)1ET B; {U} { F } (©.37)
0 D;(U)+L; || T
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where & is the penalty number. This matrix equation is then solved together with
the matrix, which describes the surface radiation exchange between the liquid
surface and surfaces of the furnace above it, in order to obtain information on fluid
flow and temperature distribution in the system. The elements of the matrices are
calculated using the following expressions [19-23]:

Lt :fKVw~Vy/TdV; BT:f GrT(gWT)dV—f 97 ¢.vds
o) o aa OT

Ei:f VTV GT:—f Gy dS Mp:fWTdv
Q 0Q Q

G

A(U):fgpt// u-vy'dv; DT(U):prpr/wa/TdV

<o =( [ vu-vuTavs + [ Q-9 VT Jav

where y is the shape function and i, ]k =(X V,7). The coupling of surface

radiation calculations with the finite element calculations is represented by the term
Gr. Here gy for the liquid is calculated by the external radiation calculations. The
numerical algorithm integrating the external radiation and finite element
calculations can be developed with either direct coupling or iterative coupling.
These two types of coupling strategies are described below. The merits and
drawbacks of both direct and iterative coupling schemes, as applied to mixed mode
heat transfer calculations, are discussed along with Example 8.5 in Section 8.5.

8.4.1 Direct Coupling

While there are many different ways to couple the boundary and finite element
methods, the simplest and most natural way is to make use of the physical
constraints for the flux and field variables along the common boundaries [24—-26].
This is the approach taken here. To facilitate computation, the direct matrix
inversion procedure is replaced by one LU decomposition procedure and n+1
times of back-substitutions. To do that, Equation 8.15 is re-written as follows:

ALyq, :ALU(Q|,1+Q|,2 +"’+Q|,n—1+an)
= BlEb,l + BZEb,Z + et BnEb,n (838)
where Ay stores the LU-decomposed matrix of A, B; the ith column of the

matrices B, and Ey, the ith element of the vector E. With Ay, one back-substitution
is needed to solve for q';; from the following equation:
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q'i=AwB; (8.39)

The result is multiplied by E,,; = (a:T)T; to give qi = [q';i(o:T7)]1T.. Applying this
procedure to each column of B and summing up the results, one has the following
expression:

ar =Y _dii(eTHT, (8.40)
i=1

The advantage of this approach is that q';; is constant if & is constant, and thus
needs to be calculated only once. Also, in deriving Equation 8.40, we have
assumed the temperature at the node points does not experience a jump. With
Equation 8.40 substituted into Equation 8.37, the final expression is obtained for
the vector potential distribution within the finite element region,

KU=F (8.41)

where K is the resultant stiffness matrix, U is the unknown potential vector in the

finite element region, and F is the modified force vector that represents the effects
of the applied heating source.

8.4.2 Iterative Coupling

The direct coupling procedure described above can be difficult to apply and may
also be slow for large scale problems. For these cases, an iterative coupling
procedure may be employed instead. The iterative procedure starts with an initially
guessed wall temperature distribution to calculate the radiant boundary heat flux
distribution using the discontinuous Galerkin method. The calculated heat flux
values are then input back into the algorithm for the calculation of fluid flow and
temperature distributions in the system. The wall temperature distributions are then
updated and the radiant boundary heat flux distribution is recalculated. This
recalculated heat flux is then used to update the fluid flow and temperature field
and so on and so forth. The procedure continues until the criterion set for
convergence is met.

In practice, both direct and iterative procedures have been applied. While it is
difficult to draw a precise guideline for which of these coupling procedures should
be used for what conditions, a rule of thumb is that the direct method can be more
effective for 2-D, or small to moderate size problems, whereas the iterative
procedure outperforms the direct coupling for large scale problems. In addition, the
iterative solver does not require the temperature at nodal points to be the same, and
thus the usual jump condition for a discontinuous formulation needs not be
modified. A more thorough discussion on the subject is given at the end of this
chapter through a numerical example, i.e., Example 8.5.
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8.5 Numerical Examples

The numerical examples selected here are intended to illustrate the external
radiation computational procedures and the performance of the discontinuous
Galerkin boundary element method as applied to the external radiation
calculations. We start with a 2-D problem of simple geometry without internal
obstruction, and detail the basic computational procedure for the solution of the
problem using a few elements for discretization. This same problem is then solved
using the discontinuous Galerkin boundary element method with a refined
discretization for a more detailed description of heat flux distribution along the
walls. The criterion is also given to check the accuracy of the numerical
computations for external radiation problems. The problems of more complex
geometries, involving internal extrusions that block the radiative energy exchange
between surface elements, are then considered. These complex problems are not
examined in full detail, but are sufficiently complete to demonstrate the capability
of the algorithms described. As the last example, a coupled problem involving
conduction, convection, and external radiation phenomena is discussed.

Example 8.1. As a first example, we consider surface radiation in a 2-D cavity.
The cavity is 3 mx3 m in cross section, with side wall and roof at 1700 K and
1400 K, respectively. The radiant heat fluxes along the four walls need to be
determined when the bottom wall is at 600 K. All the surfaces are taken to be gray
and diffuse and have an emissivity of 0.5. The problem is illustrated in Figure 8.1e.

Solution. This problem is solved both analytically and numerically, using the
discontinuous Galerkin method described. In the analytical approach, a few
elements are used for the sake of demonstrating the computational procedure. The
numerical approach uses a mesh of considerably more elements for a refined
description of the heat flux distribution. For both approaches, the criterion for
checking the accuracy of the solutions is discussed.

Analytical Approach. This problem may be solved using radiosity and emissive
power as variables, which are given in introductory heat transfer books [25, 26].
Here we solve the problem analytically from the discontinuous Galerkin solution
procedure described above. This will allow us to illustrate the computational
procedure in full detail. For this purpose, the cavity is discretized into four
elements, with each wall treated as an element. Further we use the constant element
approximation, which means that the temperature and heat flux are approximated
using a box function over each element. Thus, Equations 8.16 and 8.17 are
simplified as,

Aj = Lo —(L-&)F;L; (8.1e)

Bij :_gié‘ij Li +8i Flj Li (826)
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Figure 8.1e. Surface radiation exchange in a simple 2-D cavity

where the subscript i and j refer to the ith and jth elements, respectively, and F;; is a
geometric factor calculated by the following expression:

1 T )
Ry :EfLi ij K(r,r)dr(r) dT(r) (8.3¢)

Since K(r,r") is a function of both geometric location and the product of the
cosines between the normals of the two participating walls and the vector
connecting two points on the two surface elements, its evaluation has to take into
account the relative geometric orientations of the two walls. For two adjacent
walls, say, elements 1 and 2, which are perpendicular each other, the factor Fy, is
calculated as follows:

E f f C0s 6, cos‘9J dAdA (8.4¢)
12 — AL N 2|rl 2 .

where we have used cosine instead of vectors for convenience. From Figure 8.2e,
we have the following geometric relations:

Si :|ri —rj|:1l(3—xi)2+yi2 (8.5¢)

cos o, = i = i (8.6e)
r-nl Jex) ey
B-x)_  (B-x)

(8.7¢)

n-r| Je-x)2+y/’
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(0.3) 3 (3.3)

° x.0 1 (3.0)

Figure 8.2e. lllustration of the integration procedure for geometric factor calculations

Substituting these relations into Equation 8.4e, Fy, is calculated analytically,
F12:O.293

The same procedure may be applied to other pairs of participating elements.
Without repeating the numerical details, we give the results for these F; factors,

For =Fp =Fg =Fy =Fyy =F34 =Fy3 =F;, =0.293

Fiy=Fp =F33=F4; =00
The last relation should be obvious from the geometric relation shown in Figure
8.2e. Substituting these factors, and the sides of the elements, into Equations 8.1e
and 8.2e, we can calculate the coefficients A;; and Bj;. For example, with &= &= &
= 0.5, Ap; and By, are calculated with the results,

Ay =—(1-¢&)F,L =-0.5%x0.293x3 =-0.4395

Note here that both A;; and B;, have a length unit (m). Furthermore, the
temperatures of all the walls are known, which allow us to calculate the blackbody
emissive power at each wall,

E, = o T, = (5.67x10°%)(600)* = 7.348 kW/m?*
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Ep, =0T, = (5.67x1078)(1700)* = 473.6 kW/m?
Eys =0 T5 = (5.67x107°)(1400)* = 217.8 kW/m?
Eps =0T, = (5.67x107%)(1700)* = 473.6 kW/m?

With the coefficients A;; and Bj; calculated as described above and substituted
into Equation 8.15, we have the following matrix equation:

3.0000 -0.4395 -0.6210 -0.4395)\( q;
-0.4395 3.0000 -0.4395 -0.6210 || g,
-0.6210 -0.4395 3.0000 -0.4395 || g3
-0.4395 -0.6210 -0.4395 3.0000 )\ g4

-1.5000 0.4395 0.6210 0.4395 [ 7.348 540.5262
| 0.4395 -1.5000 0.4395 0.6210 || 473.6 | | -317.3419
0.6210 0.4395 -1.5000 0.4395 || 217.8 | 94.1575

0.4395 0.6210 0.4395 -1.5000 )\ 473.6 -317.3419

Inverting the above matrix using Gaussian elimination, or any other matrix
methods, we obtain the heat fluxes along the four walls,

o) 159.040
Gy | |-97.4039
q; | | 35.7678
q,) (-97.4039

Here the heat flux is in kW/m?. As a check, the total heat flow balance in the cavity
is calculated,

4 4
ZQi ZZQiLi ~10° W
i1

i=1

This shows that the total radiative energy in the cavity is conserved, which
confirms that the calculated results are correct.

Discontinuous Galerkin Approach. Figure 8.3e compares the heat flux distributions
along the surface of a simple 2-D cavity, which are calculated using the analytical
method and the Galerkin boundary element scheme with 32 constant elements or
32 linear elements. The linear boundary element mesh is also shown, and the
constant elements are defined such that the quantities such as heat flux and
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emissive powers are evaluated at the center of the element. The numerical
calculations used 5 integration points, which seems to be a reasonable choice,
resulting in an error of less than 0.001% in identity at worst. This means that all
radiation leaving point r must be intercepted by the enclosure surfaces,

fﬁ K(r,r)dr(ry=1 (8.8¢e)
T;=1400K
:| P'J_‘
1} i
:: -k
~
=]
=3 | 3
- =
b
]
T =600 K
(a)
120
-157.0 v
= 115
S —
2 1575 T
c H110 2
2 o o
g -158.0 \ w n 4105 2
o e
§ -158.5 74 - 100 E
‘; o o é
i -1500-4 o . . o%\g . e ] % %
2 15054 —m— numerical (bottom) 1% <
’ —e— analytical (bottom)
—o— numerical (side) 48
-160.04 = —o— analytical (side)
T T T T 80
0.0 02 04 06 08 10
3
(b)

Figure 8.3e. Discontinuous Galerkin solution of external radiation energy exchange using a
refined mesh: (a) mesh discretization with dots representing the nodal points, and (b)
comparison of the numerical results with the analytic solution for boundary heat flux
distributions. Here £is the non-dimensional length of side: £ =x/L (or y/ L)

For this simple problem, one integration point gives an error of about 3-5%.
Larger errors occur near the corner. Inspection of these results shows that the
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numerical results using both types of elements are in good agreement with the
analytical solutions. We note here also that the analytical solutions used the view
factor, and assumed a constant heat flux along one side. As such, the analytical
solutions should be viewed as an approximation, or a reference, with which
numerical solutions are compared. A further check of the overall heat balance gives
a relative error of 0.02% for constant element. Here, the error being measured is
the difference between the analytical solution and the average of the numerical heat
fluxes along one wall, divided by the analytical value. The negative sign for the
heat flux indicates that the heat flows into the surface or out of the square
enclosure. These results are consistent with the physical processes. For instance,
the fluxes are higher near edges of the bottom wall and lower at the center, which
is attributed to the fact that the edges are influenced more by the side walls at
higher temperatures. This is seen in the computed results by both linear and
constant elements. The results from the linear elements, however, show
discrepancies at the corner where the heat flux is physically discontinuous, because
of an abrupt change in curvature from one side to the adjacent one.

Example 8.2. Develop a discontinuous Galerkin boundary element algorithm for
the numerical solution of surface radiation heat transfer in a 2-D cavity with
geometric obstruction.

£.0x10° | == left wall _T=400K._
- bottom wall R

7.0x10° 1

1
B

A 00

M 006

L -
£.0x10 \‘

% 9.0x10° 4 \ 1
55 - “u T=400K L
3 -1.0x10° 4 “,_ k. Iy
2 4.1x10° - \‘
L] "
4.2x10° 4 TR
. L -
1.3x10° 4 ey

0.0 0.2 04 0.6 0.8 1.0
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Figure 8.4e. Boundary heat flux distribution in a 2-D enclosure with complex geometric
blockages. The insert shows the 2-D geometric configuration used for calculations.
Significant blockage occurs between surface elements of the cavity: e= 0.5, x* = x/3, y* =
y/7, width of the bottom = 3 and height of the block =7

Solution. In this example, a 2-D cavity with various geometric obstructions is
considered. The problem definition and the discretization for numerical
computations are given in Figure 8.4e. The discontinuous Galerkin solution used
64 constant elements and adaptive integration algorithms were invoked to treat the
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kernel function for the elements that are partially shadowed by the third party
elements. The normalization factor is also checked for this computation and the
error is less than 0.5%. The calculated results are consistent with thermal radiation
heat transfer principles and the temperature distribution along the left sidewall
shows a perfect symmetric profile [1, 2].

Example 8.3. Implement the discontinuous Galerkin boundary element algorithm
described in Section 8.3.2 for the numerical solution of radiative heat transfer in a
cylinder with internal blockage as shown in Figure 8.5e(a).
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Figure 8.5e. A cylindrical cavity with two internal concentric cylinders that result in partial
blocking of radiation between some surfaces of the enclosure: (a) geometric arrangement
and (b) heat flux distribution along the right side wall of the outer cylinder. Parameters used
for calculations: &= 0.5 for all walls and other conditions are shown in the figure
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Solution. As in the 2-D case, the numerical algorithm for an axisymmetric
geometry is also checked by analytically calculating the geometric factors and the
heat fluxes for an axisymmetric cavity without internal blockages. The procedure is
very similar to that given in Example 8.1. It is important that this checking be
carried out after the blockage detection algorithm has also been implemented. As
expected, for the case without internal blockage, the detection scheme should
signal a full view between any two surface elements in the cavity.

After this checking, the discontinuous Galerkin algorithm then can be used to
predict the surface radiation exchange in more complex configurations involving
geometric blockages. One of these calculations for a hollow cylindrical geometry
with two cylindrical rings lying inside the cylindrical cavity is shown in Figure
8.5e(a). For the calculations, 80 constant elements are used, which are determined
following the usual procedure for mesh independence check, and adaptive
integration algorithms were invoked to treat the kernel function for the elements
that are partially shadowed by the third party elements. The calculated results are
shown in Figure 8.5e(b), which are consistent with thermal radiation heat transfer
principles. The identity condition is checked as well and the worst error is less than
0.2%. For the axisymmetric problems, the identity condition is slightly different
from 2-D and 3-D cases, and is given by the following expression:

§r'(r, rYK(r,r)di'(r)=1 (8.9¢)

The heat flux distribution along the right side wall shows the clear shadowing
effects provided by the two internal hollow cylinders. The thermal radiation from
the left surface at a higher temperature impinges upon the right surface. In the
region where the internal blockages occur, a lower heat flux is calculated. In the
region corresponding to the gap between the two internal blockages, the heat flux
is high, which is attributed to the fact that the thermal radiation from the left
surface is not blocked.

Example 8.4. Consider the radiative heat transfer in a 3-D cavity with blockages
and calculate the heat fluxes at the walls of the enclosure using the algorithm
discussed in Section 8.3.3.

Solution. This example considers the surface radiation exchange in a rather
complex 3-D closure with several internal blocks of various heights. The boundary
element meshes and boundary conditions used for computations are given in Figure
8.6e(a). The computed results are selectively plotted in Figures 8.6e(b) and (c). To
check the calculations, the identity condition is also calculated and the error is less
than 2%. Detailed analysis shows that a major portion of the error comes from the
integration between two surface elements that are very close together. The error
can be reduced with a further refinement of mesh sizes. It is worth noting that in
some calculations reported in the view factor calculations, an error of as high as
70% in identity condition was reported, when much less complex blockages are in
place [5].
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Figure 8.6e. Surface radiation calculations in a complex 3-D geometry: (a) meshes and
thermal conditions used for calculations, (b) heat flux on the left lateral surface of the
enclosure and (c) heat flux on the top surface of the enclosure. The dimensions of the
enclosure is 1.2 m x 1.2 m x 1.2 m, and the temperature used to normalize the heat flux is
1400 K. Emissivity of all surfaces is 0.5, and side surface temperatures of the internal
obstructions vary from 400 K to 1700 K. The front surface is removed for the purpose of
illustration

Example 8.5. Calculate the temperature distribution and fluid flow in a furnace as
shown in Figure 8.19.

Solution. This example considers calculations involving combined heat transfer
modes are presented. The radiation algorithm described in Section 8.3.3 has been
successfully integrated with a finite element code, following the procedure given in
Section 8.4. The finite element code is capable of performing steady state and
transient fluid flow and heat transfer calculations in 2-D, 3-D and axisymmetry
geometries [20-22]. The computed results for an industrial processing system are
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shown in Figure 8.19, where the coupling of conduction, convection, and radiation
is considered.

Figure 8.7e. Calculated results of mixed mode heat transfer in an industrial furnace using
the coupled Galerkin boundary/finite element method: (a) temperature distribution in the
furnace, (b) body-cut view of temperature distribution, (c) body-cut view of velocity
distribution in the liquid pool — maximum velocity is 1.9 mm/s and (d) particle trajectory
plot. Parameters for calculations: liquid pool is 0.15 m x 0.3 m x 0.3 m and filled with Ga
melt. The top surface temperature is 340 K and the environment is at 295 K. The emissivity
of all surfaces is 0.5 and the thermal conductivity and specific heat of the furnace walls are
10 W/m K and 130 kJ/kg K, respectively. The gravity is in the opposite x direction (see
Figure 8.19). The maximum temperature is 340 K and the minimum temperature is 328 K
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The calculations used 25984 8-node brick finite element elements, which are
determined to be the “optimal” mesh for the simulation after a grid independence
check [20]. There, a total of 2400 constant boundary elements was used for surface
radiation calculations. The nonlinear solution is obtained using the successive
substitution method. Because E, is proportional to the fourth power of local surface
temperatures, a relaxation parameter of 0.1, which is common in mixed mode
calculations, was used to obtain converged results. The convergence was achieved
in 21 iterations and residuals are progressively smaller. For this problem, the
criterion for nonlinear convergence is set, such that the relative error is less than
1x10™,

The calculated results are plotted in Figure 8.7e where the overall temperature
distribution, the particle tracing, and the velocity fields in a few cutting planes are
given. The metal surface is heated up by the radiation from the cylindrical roof at a
higher temperature. As a result, the temperature at the middle of the surface is
lower than that at the sides of the surface. This temperature field creates a surface
force field such that a higher pulling force exists at the middle of the surface,
which pulls the fluid particles on the surface from the side towards the center of the
surface. Because of the mass conservation and also buoyancy forces, a
recirculating flow pattern develops, which is clearly revealed in the cutting plane
representations.

As shown in this example, the coupling of surface radiation calculations and the
finite element calcualtions for engineering applications can be achieved either
directly or iteratively. Numerical experience indicates that the coupling may be as
tedious as it gets, or as easy as one would like, depending on the strategies to be
implemented. The direct coupling involves incorporating the boundary element
matrix A™'B into the finite element global matrix by treating the entire boundary
integral as one macro-finite element. The implementation of this direct procedure
can be very cumbersome and will result in a significant change in the finite
element global matrix structure (see Section 8.5.1). For linear problems with a
moderate boundary size, this approach is favored, in that the increase in the
bandwidth of the global matrix is relatively small, and the results can be obtained
directly without iteration between surface and domain calculations. On the other
hand, for highly nonlinear problems with a large boundary element size, the direct
coupling greatly increases the finite element global matrix bandwidth, and the
iterative solution is thus more effective and also easy to implement. For cases
falling in between, experience is the key to obtaining faster solutions.

Exercises

1. A 10 m by 30 m rectangular cavity has an emissivity of 0.6 for the two
longer walls, placed at the top and bottom, and 0.4 for the shorter ones,
placed on two sides. The wall temperatures are uniform at 1000°C for the
top and bottom walls, 300°C for the left side wall and 700°C for the right
side wall. Using both the analytical and numerical methods, determine the
net heat transfer along the four walls and compare the analytic and
numerical results.
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A cylinder 40 cm in diameter and 40 cm high has the bottom disk surface
maintained at 950 K with &= 0.75. The vertical cylindrical surface is
perfectly insulated. The top disk has a 20-cm-diameter hole in the center
with a surface temperature of 650 K and £= 0.5. The top surface is a
blackbody wall at 400 K. Calculate the heat loss, emissive power, and
irradiation for all three surfaces to the top surface, and the temperature of
the vertical cylindrical surface.

A room is represented by the following 3-D enclosure of a rectangular
prism, where the ceiling is 10 m x 6 m with an emissivity of 0.8 and is kept
at a constant temperature of 42°C by an embedded electric heater. Heaters
are also used to maintain the floor at 50°C, which has an emissivity of 0.9.
The right wall, 10 m x 4 m in size, has an emissivity of 0.7 and reaches a
temperature of 10°C during a cold, winter day. The front wall, 6 m x 4 m
in dimension, and also other walls, are all well insulated, with an
emissivity of 0.65. Calculate the net radiation heat transfer from each
surface, using one element for each wall and a constant element
approximation. Calculate the heat flux distribution on the walls using the
following mesh discretization consisting of a 1 m x 1 m element with
constant element approximation. Compare the calculated total heat flux for
two different discretizations.

A 1 m diameter cylinder, 1 m long, is maintained at 1000 K and has an
emissivity of 0.65. Another cylinder, 2 m in diameter and 1 m long,
encloses the first cylinder and is perfectly insulated. Both cylinders are
placed in a large room maintained at 300 K. Calculate the heat lost by the
inner cylinder.
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9

Radiative Transfer in Participating Media

In the last chapter, surface (or external) radiation exchange between the walls of an
enclosure was considered. An important assumption associated with external
radiative heat transfer is that the enclosure either bounds a vacuum or is filled with
non-participating media. A medium is considered participating in radiative thermal
transfer if it absorbs, emits, or scatters a thermal ray as it travels through the
medium. Radiative heat transfer in a participating medium is also referred to as
internal radiation, which occurs in many engineering thermal systems. An example
of internal radiation is a high temperature combustion gas mixture, which is known
to absorb, emit, and scatter the thermal energy. Another example is the
semitransparent melt from which optical single crystals are pulled out. For the
problems of radiative transfer in a participating medium, the absorption, emission
and scattering effects must be considered in order to provide an accurate estimate
of thermal energy transfer in the system.

Thermal radiation in participating media is governed by the radiative transfer
equation, which describes the energy balance along a thermal ray. Owing to the
importance of internal radiation transfer in thermal engineering applications, many
numerical techniques have been developed to predict the phenomena and to assist
in thermal designs involving radiative heat transfer. The widely used numerical
algorithms include the finite difference, discrete ordinates, Monte Carlo, zonal
method, and finite element methods as well as other approximation methods such
as exponential kernel approximation, direct numerical integration, reduction of the
integral order, and the YLX method. These methods have been documented in
detail in two recent monographs on radiation heat transfer [1, 2].

This chapter discusses the discontinuous Galerkin finite element method for the
solution of thermal radiative transfer problems involving participating media. The
application of the discontinuous method to the solution of the internal radiative
heat transfer problems has attracted attention only recently, and the literature is still
expanding. It starts with the differential-integral equation governing the transfer of
the radiation intensity and the boundary conditions required for the solution. Two
popular approximation methods for the solution of the radiative transfer equation
are also presented, which will be used to compare with the numerical solutions.
The general discontinuous Galerkin formulation for the solution of the radiative
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transfer equation is then presented. This is followed by a discussion of detailed
numerical procedures. Analytic expressions are given for 1-D, 2-D and 3-D
elemental calculations, whenever possible, so that they can be used to develop an
efficient computer code. These expressions are derived for linear elements, which
are the most frequently used elements in practical applications. Higher order
elements in general would require numerical integration, for which the general
expressions are also provided.

For the understanding of the discontinuous Galerkin procedure for numerical
solution, examples are useful. A simple 1-D example, for which both analytic and
approximate solutions are available, is considered first, and analyzed in detail. This
simple example is chosen to illustrate the very basic steps to develop a
discontinuous Galerkin solution procedure. Other more complex examples are
given for both 2-D and 3-D geometries and for heat transfer problems involving
conduction, convection and internal radiation. The chapter ends with an example of
practical significance to show how the discontinuous Galerkin method can be
combined with other numerical methods to develop numerical models for thermal
system design applications.

9.1 Governing Equation and Boundary Conditions

Radiative transfer in a participating medium is described by the radiant intensity,
and is affected by the interaction between the traveling thermal rays and the
medium, which includes emission, absorption and scattering. The governing
equation and the boundary conditions are derived based on the local optical or
thermal balance.

9.1.1 Radiative Transfer Equation

The radiative transfer equation governs the distribution of the radiant intensity
I(r,s), sometimes called radiation intensity, which is a function of both coordinates
r and direction s [3]. The radiant intensity is defined as radiative energy flow per
unit solid angle, and unit area normal to the thermal rays. The transfer equation is
derived from the local conservation of radiative energy, as shown in Figure 9.1,
and has the following general form [1, 2]:

101,(r,s.t) n ol (r,s,t)
c ot s

=B (01, (rs,1) + 5, (N1, (1, 1)

+ 22O [ s yoss)d (9.)
Az 4z

where £,(r) = x,(r) + o,(r) is the extinction coefficient, x,(r) is the absorption
coefficient, s = sinécosgi + sindsing j + cos@k, Q(s) is the solid angle associated
with s, o,(r) is the scattering coefficient, and dQ = sinddédd¢ is the differential
solid angle. The phase function d(s, s’) satisfies the following condition:
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Figure 9.1. Schematic representation of internal radiation heat transfer and symmetry
boundary condition

1 d(s,5)dQ' =1 (9.2)
Ar Y4

In Equation 9.1, c=ds/dt is the speed with which radiation intensity travels. All
the quantities are a function of location in space, time and wave numbers. The
intensity and the phase function are also dependent upon directions s and s". For
many engineering applications, thermal radiation reaches equilibrium far faster
than other heat transfer mechanisms and thus a quasi-steady state approximation is
often used. This allows us to drop out the transient term. To facilitate discussion, it
is further assumed that all quantities are spectral independent, although the
numerical algorithms discussed later in this chapter apply equally to the case where
these quantities are spectral dependent as well. With these approximations taken
into account, Equation 9.1 is simplified as

M: —ﬂ(r)l(r,s)+x(r)lb(r)+ﬂf I(r,s)®(s,s)dQ" (9.3)
0s Ar J 4
This equation is a first order integral-differential equation for the radiant intensity,
and is of the hyperbolic type. In Equation 9.3, the first term on the left measures
the change in I(s, r) over a differential distance in the s direction, the first term on
the right represents the loss to the medium due to absorption or scattering, the
second is the local emission, and the third represents the contribution to the
intensity in the s direction that results from the scattering of intensity in other
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directions. The equation needs to be solved for | in each given direction s at every
position.

9.1.2 Boundary Conditions

Like any other boundary value problems, the solution of the radiative transfer
equation requires the knowledge of intensity distribution on the boundary
surrounding the participating medium. For an opaque surface emitting and
reflecting diffusively, the exiting intensity is independent of direction. At a point r
on a surface facing the participating medium, the thermal balance leads to the
following equation for intensity | (see also Figure 9.1):

I(r,s):g(r)lb(r)+1_+(r)f I(r,s")]s"ny [dQ'’ (9.4)

s'n, <0

where n is the surface normal pointing into the medium and s is the direction of
irradiation (i.e., incoming radiative heat flux). Here, the first term on the right
represents the emission from the surface, and the second term on the right
represents the reflected portion of the incoming thermal energy. In the case of a
black surface, &r)=1 and the last term disappears. The boundary condition is then
simplified to

I(r,s)=1,(r) (9.5)

In thermal radiation, an opaque surface is defined as the surface of a medium
with transmitivity being zero, which means that radiation cannot penetrate it. For
an opaque surface that emits diffusively but reflects specularly, the intensity
leaving the surface has two contributions: one from diffusive emission and the
diffusive part of reflection, and the other from the specular part of reflection. Thus,
the thermal balance gives the following expression for the outgoing intensity:

d
I(r,s):g(r)Ib(r)+p7(r>bfs"nw<ol(r,s‘)| s'ny, [dQ'+ p®(r)I(r,ss)

(9.6)

where s; is the specular direction, defined as the direction from which a light beam
must hit the surface in order to travel in the direction of s after a specular
reflection. Also, p® and p° are, respectively, the diffusive and specular reflectivities
of the surface. This direction can be determined using the kinematic relation
between the incident and the reflected waves [2].

For an opaque surface with arbitrary surface properties, the reflectivity is a
function of location and direction. Thus, we have for the outgoing intensity,

I(r,s):g(r)lb(r)+f p"(r,s's)I(r,s)|s"ny, |[dQ’ (9.7)
s“n,, <0
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with p”=pl 7. For a semitransparent surface, external radiation may propagate into
the enclosure and an effective emissivity may then be used in the above equations.
If the bounding surface is totally transparent or is an opening, then the emission
from the boundary does not exist, or £=0.

When systems possess certain symmetry, the symmetry boundary conditions
can be applied, which take the following form:

I(r,s)=1(r,s")
n-s=-n-s (9.8)
sxs -n=0

where the s* is the symmetric radiation direction of s, in respect to the tangent of
the boundary, with both s and s* lying on the plane of t-n (see Figure 9.1).

With the radiation intensity distribution known, various quantities of interest to
radiation heat transfer can be calculated. Two of them are the heat fluxes and their
derivatives, which are determined by the following expressions for gray media:

o= [ 190 9.9)

V-q(r) = x(40.T*(r) — f 1(r,5)dQ) (9.10)
4z

Note that Equation 9.10 often appears as a source term in the thermal energy
conservation equation.

Another quantity that is also important for internal radiation calculations is the
incident radiation G(r),

G(r) = L I1(r,s)dQ 9.11)

where G is the irradiation or incident radiation onto a surface.

9.2 Approximation Methods

The integro-differential equation describes the radiative intensity that depends on
five variables: three space coordinates (r) and two direction coordinates (s). The
solution of the problem represents a challenging task. Before we present the
discontinuous finite element formulation, it is constructive to discuss two popular
approximation methods: the discrete ordinate method and the spherical-harmonics
method. These methods are very often used to obtain the solution of the radiative
transfer equation, and will be used later in this chapter to check the numerical
solutions from the discontinuous finite element computations.
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9.2.1 The Discrete Ordinate Method

The discrete ordinate method was first proposed by Chandrasekhar [3] to study the
stellar and atmospheric radiation phenomena. The method was later extended to
study general radiative heat transfer problems [4, 5]. The basic idea of the discrete
ordinates is that the integrals over directions are replaced by numerical quadratures
of discrete different directions; that is

Lﬂur,s)dgziz;wu(r,si) 9.12)

where the w; values are the quadrature weights associated with the directions s;, i =
1,2,3,...,n. As a result, the integro-differential equation (i.e., Equation 9.3) is
approximated by a set of n first order partial differential equations,

ol(r,s: n
(aI’SSJ)_—ﬂ(l’)l(r,sj)+zc(r)lb(r)+%;Wi|(r,si)¢,(sj,si),
i=1,2,...n (9.13)

The boundary condition can be integrated following the same procedure. For an
opaque, diffuse surface,

1—&(r)

Z wl(r,s;)|si-ny |,s-n, >0 (9.14)

si-ny <0

I(r,s;) = e(r)ly(r) +

To carry out the numerical computation, a thermal ray is released from a point on
the enclosure surface, s;n,, > 0, and is allowed to travel along the direction of s;
until it strikes another point, s;-n, < 0, to be absorbed or reflected. Here n, is the
surface normal pointing inward to the enclosure. The n equations can be solved
using the standard numerical or analytical methods.

9.2.2 The Spherical Harmonics Method

The spherical harmonics method seeks the solution of I(r, s) by transforming the
equation of radiative transfer into a set of simultaneous partial differential
equations through eliminating the direction dependence. By this method, the
radiative intensity at location r within the medium is treated as a scalar function on
the surface of a sphere of unit radius surrounding the point r. As such, the intensity
is expressed in terms of spherical harmonics,

00 |

1(r,s) = Z Z 1™ (r)Y,™ (s) (9.15)

1=0 m=—I
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where 1/"(r) depends on r only and Y,"(s) is the spherical harmonics defined by

1/2
Y™ (5) = (~1)(mimD/ 2{%} eI pIM (cosg) (9.16a)

and satisfies the following eigenvalue differential equation:

m 2y m
L O sing2 @), 1 0N 00) yqiymg,p)=0
sin@ og op sin“d o

(9.16b)

Here #and ¢ are the polar and azimuthal angles of the direction unit vector s, and
P" (cosé) is the associated Legendre polynomials. To obtain the solution, Equation

9.15 is substituted into the integro-differential equation, and then integrated over
the solid angle of 4n with respect to the spherical harmonics as weighting
functions. The use of the orthogonal property of the spherical harmonics then
results in a set of (N+1)? partial differential equations, where N is the highest order
retained for 1. Ou and Liou [6] gave the general expression for the intensity
calculations for constant properties,

0 .0 um O .0 _m azlm+1_a)A| i\
21+1

where

m =_¢(|+m+1)(|+m+2) Im+1+\/(l—m+1)(l—m+2)

m+1
X 2(21 +3) I+ 2(21-1) e (O47D)
v :+\/(| —m+1)(I-m+2) h”lll—’/(l +m=1)(1+m) -t ©.170)

2(21+3) 2(21-1)

zr :_\/(I—m+l)(l+m+1) i Ja=my(1+m) i (0.170)

+
21+3 I+ 2021-1)

where o = o/f3 is the single scattering albedo. In practice, the approximations with
N >3 are rarely used. Most applications use N=1 or the P, approximation.

For an isotropic medium, the governing equation for the P; approximation may
be expressed in terms of incident radiation G. With the lengthy derivations
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relegated to the textbooks by Modest [1], and Siegel and Howell [2], only the
governing equations are given below,

V%G = 3k?(1- Aw)(1-w)(G -4r 1) (9.18)
and for an opaque, diffuse surface, the boundary condition becomes

2—¢
¢ 3-Aw

N-VG+G =4rl,, (9.19)

The heat flux and its derivatives in the domain can then be calculated from
Equations 9.9 and 9.10. The physical domain of participating medium radiation
may be bounded or unbounded. In the case of a medium surrounded by opaque
surfaces, the boundary condition is the Marshak type and the value of the constant
A is equal to 2. If the model is a truncation of an infinite domain, the boundary
condition is of the Mark type and A = 32 [1, 2].

Below we consider an example of radiation in a 1-D slab with participating
medium. The problem is solved analytically using different methds presented
above and these analytic expressions will be used to check the numerical
calculations using the discontinuous finite element method.

Example 9.1. Raidation in a 1-D slab filled with an absorbing but non-scattering
medium is perhaps the simplest configuration for radiative transfer study (see
Figure 9.1e). Here, steady state radiation from a diffuse, gray source wall (1) across
a non-scattering medium goes to a sink wall (2). Conduction and convection are
neglected. The walls have prescribed temperatures T, and T,, and are black (g = &
=1). The medium is assumed to be adiabatic with an absorption coefficient of «.
The spacing between the plates is L, and the optical depth 7 is based on the
coordinate normal to the plates, z. Derive analytic expressions for the radiative heat
transfer.

I(r,s)

Figure 9.1e. Radiative transfer in a 1-D slab



Radiative Transfer in Participating Media 371

Solution. We will use three different analytical techniques to solve this same
problem. These analytic solutions will be compared with the discontinuous finite
element solutions discussed in the next example.

Exact (analytic) solution. Because scattering is not present, § = k. The different
equation for the radiation intensity I, Equation 9.3, becomes

dl
—=—xl +«l 9.1e
ds b (9.1e)

From the theory of linear differential equations, the general solution for this
first order differential equation is,

| = I(O)exp[—j;sr(ds']Jrexp[j;srcds')]flbexp[—j:"/cds']ds"

(9.2¢)

To obtain the exact form for this problem, 1(0) needs to be specified. To do
that, we select the following coordinates for the convenience of expressing the
solution (see also Figure 9.1.1e):

z
z':f kdz', z=su, p=cosé
0
z S
s=z/u, kds=xdz/u=dr/u and z':f KdZ'//JZf xds'/u
0 0

The radiation intensity | is a function of s; and, from the above, is a function of
both position z and direction g (or ). Note that for the problem to be one-
dimensional, the intensity is constant along the azimuthal direction everywhere in
space (see Figure 9.2e). For convenience, we may express the intensity in the
following way:

I u>0

|(T,/¢)={|+ 14<0 (9.3¢)

then at the upper and lower walls (both being diffuse),
l.(r=0)=0q. /7, I.(r=7)=q/x (9.4e)

where g denotes the heat flux supplied to the wall, and has only the z component
for this problem. Here subscript + is used to indicate intensity in the forward
hemisphere (« > 0), or from the lower surface to the upper surface, and subscript —
indicates intensity in the backward hemisphere (x < 0), or from the upper surface
to the lower surface.
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Figure 9.2e. Coordinate system used for deriving analytic solutions

If s is replaced by /4, then the exact solution can be obtained as follows:

I+(r,y):q—+exp —1]+f I (z)exp _roerlde’ (9.5e)
4 H 0 H
L(r,y):q?exp h—t —f ) I, (z') exp _rorjds (9.6e)

The first terms on the right-hand side of these two equations represent the
contribution to the intensity at location 7 in direction g from the wall. The
g/ zterms represent the (diffuse) intensity leaving the walls, and the exponential
terms are the transmissivities along the path. The second terms on the right-hand
side represent the contribution to the intensity at location 7 in direction x from
emission along the path between location z and the wall. The hemispherical fluxes
at location 7 in the slab may be obtained by integrating the intensity field (see
Equation 9.9), using the azimuthal symmetry (dQ = -2z dw)

1 -1
q = 27rf | pdp; q = 27rf ey (9.7¢)
0 0

Substituting Equations 9.5e and 9.6e into the above relations gives
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0. - 2j;l[q+,lexp[—£]+j:Eb(r')exp[T'yT]%dr'}udu (9.8¢)

-1 7L
Q= j; {q,zexp —f Ep(z)exp

The net radiative flux at location zthen is obtained as follows:

-7 T'—71

]ldr'}ydy
U

(9.9¢)

2z V3
q:f I(r,&)cos&dQ:f d(of I(z,6)cosdsingda
Ly 4 0 0

+1
=2r [ Mwoudu=q, -q.
=2{q+,1 &0+ [ Ep(r)E(r— )
0
Q. Es(r, —7)— f b ()Ey (- z’)dr'} (9.108)

where the exponential integral functions E, have been used. These functions are
defined as

E (r) = j;l,u”’Z exp(—z/p)du, n>0 (9.11e)

Its properties and recursive relations are given in Modest [1], along with the values
tabulated forn=1, ..., 4.

Two-flux (S;) solution. Here we consider the solution of the problem using the
discrete ordinates method, which is an approximate method. Since the medium
does not scatter, the discrete ordinate equation simplifies (see Equation 9.13),

%:—m(z,si)ﬂdb(z),i=1,...,n (9.12¢)

where n is the number of discrete ordinates. The equations can be written in terms
of the optical depth, and z may be used instead of s,

d|+,i
Hi dr

di_,
L (9.13¢)

Hhoi=ly, —4 4z
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where the same notations as in the exact solution are used here. Since Iy, is constant,
these equations may be integrated right away, leading to

li=1,+Coe ™" 1, =1, +C e (9.14e)

The integration constants C. and C_ may be found from the boundary
conditions (Equation 9.4e) as

r=0: I i=l,=1,+C,, or  C,=ly,—lp;
=7 =l =1, +Ce’ M or C_=(l,,—lp)e '  (9.15€)

where | ;= L(z=0) and | y, = I_(z=7). Thus, we have the results,

L=ty + (g = 1) A 1 =1y + (1, — 1, )e el (9.16¢)
n/2
q= w'm(l, ~1.)
i=1
n/2
=D o an((hag = Tp)e ™ = (lyp = lp) —e M) (9.17e)

i=1

So far, the derivation is general up to the nth order. For the non-symmetric S,
approximation, we have n =2, w;' =2z and g4 = 0.5. The flux is then calculated,

n/2

A= W sl — 1) =7 ((lg — lp)e > —(lyz — 1y) —e )
i=1

(9.18¢)

P-1 Solution. In terms of the optical depth 7, the governing equations for the P,
approximation can be written as

1di} did o
=l,; —2+17=0 9.19%
3d, o=y th (9.19)

Combining the two equations above, we have the second order differential
equation for 17,

d2|g_
dr?

319 =31, (9.20e)
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The general solution to the problem is given by
19(2) = 1, + Ce V37 +C,e¥37; 19(2) =/3Ce V3" —{3Ce"3"  (9.21e)

where C; and C, are two integration constants to be determined. The other term
may now be calculated using either equation in Equation 9.20e.

By the P; approximation, the radiant intensity 1(z,z) is constructed in the
following way:

1z, 1) = 13 (D) + 12 ()Y = 10(0) + 17 (D)

At the two boundaries, the boundary condition is satisfied in an integral sense

2],
1 0

f 1(0, 4)ud i1 = 0 and f (zy, ) pd gt = 0 (9.22¢)
0 -1

which, after 1(z,z) substituted, and integration is completed, yields the following
boundary conditions:

18(0)+212(0) = Iy; 10(r)=212(z) = Iy (9.23¢)

These two boundary conditions then allow us to determine the integration
constants C; and C,,

o Pl =1)-Bp(up=1o) . o _ Bz = 1) =By(ly = 1y)
! byb — b,y ’ byb, — b,b,

(9.24e)
b =1+2/43; by=1-2/43; by=be V3% b, =be®®  (9.25¢)

The heat flux at location 7 is then calculated by integrating the radiative intensity
over the entire solid angle (see also Equation 9.9),

+1 +1
q(r) = 27rf1 |(z, ) ud pt = 27 . 13()+ 12 (@) ) ud =%ﬂlf(r)
(9.26¢)

Note that the solution for g may also be obtained by directly solving for the
incident radiation G and then g.
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9.3 Discontinuous Finite Element Formulation

We discuss below the application of the discontinuous finite element method to the
solution of radiative heat transfer problems. The method was first used by Reed
and Hill [7] to solve a neutron transport equation. An advantage of this method is
that no inter-element continuity is enforced, and thus approximation functions are
from a finite element broken space, which means that at the same geometric point,
the field variable may be considered discontinuous (see Figure 9.2) [8].

&

f
f(x.y)

fix.y)

=i

Figure 9.2. Finite element broken space

To apply the method, the domain is first discretized into a collection of finite
elements. In this study, unstructured meshes are used, with triangular elements for
2-D problems and tetrahedral elements for 3-D problems. Let us take a 2-D
problem to illustrate the integral formulation. Specifically, we consider the ith
element in a 2-D mesh, as shown in Figure 9.3, and integrate Equation 9.3 over the
element with respect to a weighting function v(Q,r),

f f v(@Qn)s- VIdAdQ
AQ J A

:f f V@) (—B(r)1(r,s) + S(r,s))dAdQ (9.20)
A J A

where A, is the area of the element under consideration (i.e., the ith element), r =

Xi +y] and S(r, s) is the source function defined by

o(r)
T

e I(r,s)®(s,5)dQ’ (9.21)

4z

S(r,s) = x(r)ly(r) +
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In the above equations, we have also used the definition, s-VI(r,s) = dl(r,s) /5s.
Applying integration by parts once to Equation 9.20, we have the following
expression:

f ffls~Vv(r,Q)dVdQ+f fv(r,gz)ﬁn.sdrdg
AQy J Ve A JT

=f f (—B(r)1(r,s) + S(r,s) V(r, Q) dVdQ 9.22)
A Jv,

where T is the boundary of the element and superscript + means taking the value
outside the element boundary and where n is the outnormal of the element
boundary. In deriving the above equation, we have used the divergence theorem,

s~fr¢lndA—s.fveIV¢dV:s~j;e¢VIdV (9.23)

to convert the domain integral into the boundary integral. Note that in selecting the
values of | on the boundary, we have chosen those lying just outside the element
under consideration. This choice is made in order to be consistent with the
upwinding scheme.

We now integrate by parts once again and also use the divergence theorem to
convert the volume integral into the surface integral. We then have the following
integral formulation for the radiant intensity I:

+
y
2
Side 2 Side 1
p(x.y)
3 £ i 1
Side 3
() X
(@) (b)

Figure 9.3. Illustration of the discontinuous finite element formulation for 2-D internal
radiation transfer in absorbing and emitting media using unstructured triangular meshes: (a)
element i, its boundary normals, and its neighboring elements, and (b) local node number
and side number of a typical triangular element (or ith element)
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ffv(r,Q)s~VldVdQ+ ffv(r,gz)n]n.s drdQ

ADy Ve A, T

:f f(fﬂ(r)I(r,s)+S(r,s))v(r,Q)dVdQ (9.24)
A Jv,

Note that in the conventional finite element formulation, the terms on the element
boundary disappear when they are combined with neighboring elements or [I] = 0.
In the discontinuous finite element formulation, however, these terms do not cancel
each other when elements are assembled. Instead, the following limiting values are
used:

|7 = lim I(r;) and 15 = lim I(r;) (9.25)
ri—>I~

! ri—>r" ! j

where the superscripts + and — denote the front side and back side of the normal
vector, respectively. By this convention, the values denoted by superscript “~” are
inside the element and those by “+” are outside the element (see Figure 9.3b). This
definition is slightly different from the one-D case [4] but the essential idea is the
same.

The above treatment assumes that the two values Ij+and Ij‘across the element

boundaries are not the same, and these jumps are often denoted by the following
expression:

(1, =17 -1; (9.26)

These jumps may also be modeled by the generic numerical fluxes that are single-
valued at the boundaries and are a function of field values across the inter-element
boundaries [8-10]. For the problems under consideration, the simplest and most
effective treatment of the jump condition is by using the upwinding procedur there,
which in the discontinuous finite element literature is sometimes referred to as the
inflow boundary value,

I, if n-s<0
[I]j_{ 0J if n-s>0 (®.27)

Appropriate interpolation functions now may be chosen from the finite element
broken space that does not demand continuity across the inter-element boundaries
[8-10]. A natural choice of shape functions for internal radiation applications is
made by taking a step function for the solid angle and a polynomial function for the
spatial variation, v(Q,r) = y/{AQ ) ). Here y(AQ)) is the step function of the solid
angle differential centered at €, and ¢(r) is the shape function of the spatial
coordinates. Substituting this testing function into the integral expression and re-
arranging, one has the following relation:
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fms.j\‘/ ¢V|(r,s)dVdQ+fAQ fr¢[|]n-dedQ

:f f[fﬂ(r)qﬁl(r,s)+¢S(r,s)]dVdQ (9.28)
A Jv,

which is the final form of the integral presentation of the radiative transfer
equation. It is noted that Equation 9.28 reduces to the finite volume formulation if
a constant shape function ¢(r) is used, and to the finite element formulation, across
the element interface, when [I] = 0 is enforced. From this perspective, Equation
9.28 represents a general integral formulation for all these integral-based methods.

Following the standard procedure for elemental calculations, Equation 9.28 can
be readily calculated, once the shape functions are specified. Assembling all these
discretized terms together for the element, the final results can be expressed in
terms of the following matrix form:

KU=F (9.29)

where U, as usual, contains the unknown intensity vector and the matrix elements
are summarized as follows:

Ki :j;quv¢j-fAQ|sdev +j;e¢,¢,—/:’dVLQIdQ

NS
+;max(0,—fmls-nde)frkqwde (9.30)

F,:j:/equ(r,s)dV dQ

AQ,
NS
+ max(O,—f s-n dQ)f 4i1ns, AT (9.31)
kz:; A, k r, j'NB,j

with NS being the number of boundaries associated with the ith element.
For those elements associated with a boundary element, the boundary condition
is imposed as follows if the boundary is gray:

Ng
I+(r,s,):g(r)lb(r)+# Z I‘(r,sj')|sj'~n|AQ'j (9.32)

j=0,sj"n>0

where Ng, is the number of discretized solid angles.
The following equation is used for the symmetry boundary condition:

17 (rs) =17(r.s) (9.33)
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Here s* is the symmetric direction of s with respect to the boundary. Equation 9.29
can be obtained for each element and its neighbors, and the calculations are then
performed element by element. Thus, with Equation 9.29, the calculation for the ith
element starts with selecting a direction and continues element by element until the
entire domain and all directions are covered. Because of the boundary conditions,
iterative procedures are required. Experience suggests that the successive
substitution method seems to work well for these types of problems.

A few points are worthy of noting. First, if the jump condition [I] is set to zero
in Equation 9.28, which means that the inter-element continuity is enforced, then
the conventional finite element formulation is recovered. Second, if the zeroth
order polynomial is chosen as the spatial interpolation function, then we have the
common finite volume formulation. Thus, in this sense, the finite volume method is
a subclass of the discontinuous finite element method, and uses the lowest order
approximation to the field variables.

Before numerical implementation is discussed for multidimensional problems,
we first consider two examples of internal radiation in a 1-D slab, which is filled
with participating media. These examples are used here to illustrate in detail the
discontinuous finite element procedure for the solution of internal radiation
problems with and without a scatttering medium. Numerical results are obtained
using both linear and constant element approximations, the latter being the same as
the finite volume approach.

Example 9.2. Solve the 1-D radiation problem defined in Example 9.1 using the
discontinuous finite element method. Show the details of numerical
implementation using three linear elements. Based on that, develop a discontinuous
code and use the code to solve the radiative heat transfer problem using 20 linear
elements.

Solution. This is perhaps the simplest system for which the discontinuous
computational procedures can be illustrated in detail. For this purpose, a mesh
consisting of three equal-sized linear elements is used, which is shown in Figure
9.3e, where E; and N; represent global element j and node i.

In the discontinuous approximation, two values are associated with a node,
which we denote by | *and I ~. For consistency, the value inside the element is | ~
and that outside is | *, as shown in Figure 9.2e(b).

Now, let us consider the jth element denoted by Ej, AV € [z, zj:1]. The
discontinuous Galerkin formulation (i.e., Equation 9.28) gives

fm.fz, (/zs~VIdde+fAQI(¢.(nj.s)“])Z}HdQ
:f fzmﬁ(—ﬁ(r)l(r,s)+8(r,s) )dzd© (9.27¢)
AQ J z;

with n; being the outward normal of element j and subscript i refers to the local
node number.
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Ny —@— £~
(NB,2) nj2
E
3 _+ 1
Zj+1
N 3—@— = e
E» El
=11
N - -
E; -+ 2
we NBA) |
z=0
(@) (b)

y
B=m
(©
Figure 9.3e. Discretization of a 1-D problem. (a) Element and node numbers and (b) jump
condition across the element boundaries: 1 and 2 corresponding to “ —  are the local node

numbers of element j, (NB,1) and (NB,2) are the neighboring elements adjacent to 1 and 2,
and n;; and n;, are outward normals of element j. Also, 1 and 2 corresponding to “ + ” are
local node numbers of elements (NB,2) and (NB,1). Note that node 1 of element j and node
2 of neighboring element (NB,1) have the same coordinate z;, but have different values of 1,

i.e., 1 “and 1. (c) Control angle used for the calculations.

First, the angular discretization is considered. For the 1-D problem, the
radiation intensity is independent of ¢, which means ¢, =0, and ¢, = 27, whence
the integration over the Ith discretized solid angle AQ; can be carried out
analytically,
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AQ = dQ = singdéd e
AQY AQ,
=(p, —¢,)(cos 6, —cosb,) = 27(cosb;, —cosb,) (9.28¢)
§ = f sdQ
AQY
= 0 + 0] —0.57(c0s 26, — c0520,) K = Ak (9.29)

Next we consider the spatial discretization. For a 1-D linear element, the shape
function has the following properties:

#(£)=0501-2); ¢,(5)=0.5(1+¢)
Lh=dly+dlo 2=d21+¢,2,
dz=dg 2, +dg, 2, =0.5(z, - z,)d& =0.5/,;,d¢

dg _dgde 05 1 34, 1
dz d&édz 050 ¢

oy ~ R
az ot ’

where the subscript | denotes the Ith direction, and ¢; = (z, — zy); is the length of
element j. Letting i =1,2 in Equation 9.27e and using the result from Equation
2.5e, we have

Zj11
f f’ 8¢l|<|1. %@mz. sdzdQ
A
Zjy:
—K. sdejJ1 8¢1 6¢2 z\ ‘
AQ, 2 "oz Py

B 110.51—¢&) 11
‘A“f_llo-5(1+§)][ (7 ]W dg[lzul

Ao [-1 17y
Sl o

for the first term on the left side of the equation, and
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9.31e
6 1 2 ( )

:ﬂmufj[—%(l— )3,(«5—%53)Jl &(2 1}

for the matrix coefficients of the first term on the right side of the equation. With
S(r,s;) being a constant, the source term can be calculated analytically,

Zi( @y _ AQ|£J'S 1[15] _AQ|fJ—S
fm.j; [%]Sdzm_ 4 fl 1497 (9.32€)

The element boundary terms represent jump conditions across the element
boundary and require careful treatment. For element j, the shape function has the
following values at the two boundaries:

¢1(Zj+1):¢1(§:1) =0; ¢1(Zj) =g (=-D=1
$2(251) =42 (E =D=1; $,(z;)=¢,(E=-1)=0

=1 =1 =long —lg i [ =12 =17 = ling, — 2
o[y ST o1 4]
"o ol Lo o)liz-1;
o oLk ol ol ]
(NB,1)
[y ST ST
27lo 1), Lo 1l —1;
o 2l o 3]
=— +
0 1)l )e, L0 11wy

This allows the boundary integration to be carried out analytically, whence we
have the following results:

i

+

Jo aoiomira=n [ a@a0;, 900
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L[ 4@)0-9d49 =05 S, (9.33¢)
{

J o #0030 =0, [ 20,2 900
+[|.]1fm A(2;)(nj1-9)dQ =1, 5[], (9.34¢)

The above two equations can be written in matrix terms,

(nji - ST =—(=nj; ~§)[5i1 X H['h}

0 2 JLIN:2
e [E 0
=—(-nj; s){ 0 5&}{'5—'2} (9.35¢)

where &y is the delta function, i.e., & =1 if i=k and & =0 if i zk. The application
of the upwinding condition (i.e., Equation 9.27) yields the following results:

connft J1ot]

10 10
:max(o'_njyl.g)[o O}{:l}_max(o,—nj,lﬁ)[o OHﬂ
) (NB,1)

enes 2 O] (269
00 0 Ol O
_ max(O,—nj,z §I)|:O 1:||: :1 :|_ maX(O,—nj,Z §|)[0 1:”: Iy j|
, (NB,2)
(9.37¢)

Note that to simplify the notation, the subscript E; on the first term of the right
hand side has been dropped. Equations 9.30e-9.32e and 9.36e-9.37e are
substituted into Equation 9.27e to give

Aoy —L1) AQ (21 (10
{T(—l, 1)+ 6 (1, 2j+max(o‘_nj'1's')(o 0]

0 o [!
+max(0,—nj.2'§)(o 1)}{'22}
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AQ ;S 1 0)[1
T
2 0 0 0 (NB)

0 0 O
+max(0,-nj , ~§,)( j{ } (9.38¢)
0 1)1y (NB.2)

The above analytical expression can be derived for any elements and any solid
angle discretization. A computer program can be readily developed to calculate
these quantities efficiently.

As a check, we consider the simple three equally sized element mesh, with the
size ¢; = 1/3 m. The absorption coefficient is 1.0 m™, the scattering coefficient is 0,
and the temperature of the medium is T = 100 K. The angular space is discretized
into 1 x 2, which denotes the azimuthal angle is parted into 1 angle, and the polar
angle is parted into 2 angles. Therefore, there are two control angles in this
problem, and the variables associated with the control angle | = 1,2 can be
calculated with the following results:

AQ, =27(cosé, —cosb,) = 2z(cos0—cos(x/2) =2x
AQ, =27(cosb, —cosb,) =2x(cosx/2—-cosx) =2x
5, = Ak =0.57(cos 26, —cos26,) k = = k
5, = Aw,K =0.57(cos 260, —c0s26,) k = -z k
Nj1-S =K 2k =-1x Nj2 51 =K-k=nr
1S =—K- (k) =7 n,-5 =k (~K) =7
max(0,-nj, -5 ) = max(0,—(-r)) = max(0,z) =
max(0,-nj, -5) = max(0,w) = n
max(0,-n;, -§)=max(0,-n) =0
max(0,-nj,;-s,) =max(0,-n) =0

The source of the element can be calculated by

S=kl,=1.0 x 5.67 x 107 x (100)* = 1.805
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For element 1 as shown in Figure 9.1e, we have for | =1

)56 o]

1 0)I
_2zS$ H{ ){ 2,1} (9.39%)
2><3 0 0 O (NB,1)
or
2269 1.9207 | .
1| _[1890) (7 031z (9.400)
1222 2.269 || 11| [1.890 ] L0 0)] 0 Jygy
Similarly, for 1 = 2,
2269 1.9207 I 1. 0
12 |_[18907 (0 0 (9.41e)
1222 2269 | 1o, | [1.890 | (0 7 )[ iz Jng .

We can now apply the above formulae to obtain solutions element by element.
The procedure is iterative, starting with the radiant intensity | initially set to zero
everywhere and sweeping from one side of the boundary to the other. Let us start
with element 1 for 1=1, (Iz1)ne1) = lwi1= 0, lwa1 being the value of the domain
boundary. Consequently, Equation 9.40e is solved with the result for element 1,

I 11

eleml 10,8804
(9.42¢)

~ |8.8040

I2,1

We now proceed to calculate the values for element 2. Noticing that (I5,1)ns,1) =
(1,1)#*™ = 8.804 for element 2, we have again from Equation 9.40e

[ Il,l
|2,1

Similarly, for element 3, (I,1)ns1) = (1) % = 1.3313. We thus obtain the
solution for element 3 as follows:

[ Il,l
21

The same procedure can be applied with Equation 9.41e except that (112)ne.1
should be used instead. After all elements are calculated, the intensity at a global

elem 2

(9.43¢)

0.9255
1.3313

(9.44¢)

“m3 11,3544
1.5623




Radiative Transfer in Participating Media 387

node is obtained by simple averaging. For example, the first node is, with element
1 only,

I, = It (9.45¢)

| —+—analytical solution
—e—DFE (N, =3, N,=2)

elem
4]

A DFE (N, =21, N =16)

o
04
-2
-4
6 T T T T T T T T T T T
0.0 0.2 04 , 06 0.8 1.0
(a)
analytical solution
144 A DFE solution
= FVM solution
e 2-Flux model u
12
g
5 10

(b)

Figure 9.4e. Comparison of the numerical and analytic solutions for 1-D radiation transfer
problem: (a) boundary heat flux distribution and (b) distribution of divergence of the heat
flux
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For the second node, the intensity is an averaged value,
I, = 0.5(15"M 4 | 2lem2) (9.46¢)

The intensities of other nodes of the mesh can be calculated by the same
method. With this, the relative error is calculated and compared with the
convergence criterion,

NSZ

NQ NS)
k41 k k41
D OIAQ; - TiAQ; /Zlijmj
i=L = =L

Here for the present case, the subscript k denotes the kth iteration, and the
convergence criterion is set to 1.0 x 10°°. After the convergence is reached, the
heat flux in the medium is calculated by Equation 9.9, and for the simple 3-element
mesh and 2-solid-angle angular space discretization, the numerically calculated
heat flux is compared with the analytical solution as in Figure 9.4e(a).

With the above data, a computer code is developed and the results using 20 (N
=21) linear elements are also shown in Figure 9.4e. Clearly, excellent agreement
exists between the numerical and analytic solutions, suggesting that the
discontinuous finite element method is useful for this type of problem. Even a 3-
element mesh gives a reasonably good trend. It is noted, however, that the two-flux
model gives an averaged value in the half sphere, and thus it lies in between the
intensities at different directions. The computed results for the distribution
divergence obtained from the two-flux model and the discontinuous finite element
(DFE) method are also plotted in Figure 9.4e(b), along with the solutions obtained
from analytical techniques. Examination of these results illustrates that the DFE
results with linear elements match well with the analytic solutions. For comparison,
results from a piecewise constant approximation are also shown and denoted by the
finite volume method (FVM).

max <1.0x107% (9.47e)

Example 9.3. Solve the same problem of internal radiation in a 1-D slab but with a
scattering medium.

Solution. One of the important phenomena in radiative transfer processes is
scattering, which changes the local energy balance. This problem illustrates the
effects of scattering medium on internal radiation. To describe the scattering effect,
the source term is used such that the radiation intensity in one direction at a certain
point is affected by the intensities in all directions at the point. The scattering effect
can be rather easily handled by the discontinuous method as a source term S(r,s)),
and normally requires an iterative procedure. Some calculated results obtained
using the discontinuous formulation for a 1-D radiation slab, filled with isotropic
scattering media of different scattering paramters, are shown in Figure 9.5e.
Inspection of these results shows that for a medium with a larger scattering
coefficient, the scattering effect on the radiation intensity increases as the intensity
is further away from the boundary at which it originates, and the largest effect
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occurs when the intensity reaches the other boundary. In fact, for the intensity at
6=0, the value of the intensity is reduced by 40% when it reaches the upper
boundary with the scattering coefficient o =1. The effect at the lower boundary at
which (6 =0) originates, however, is rather small. As a result of scattering, the
heat flux (absolute value) is smaller near the walls; however, the distribution is
anti-symmetric, as expected. Figure 9.5e(b) compares the results of the boundary
fluxes calculated using the DFE method for different scattering coefficients.

6
124 analytical solution for 6=0

® DFE solution for o =0

A DFE solution for 6 =0.5 4 ./'
104 = DFE solution for 6 =1.0 A

A
aAd e
08 27 ./.:A/:/./.
A g
N A
- a8
06 o 01 re 24
./-"753/
0.4 P Lyl
-/. A
02 ) alte —=— 5=0.0
.2 2 ././ —A— =05
—e— 5=1.0
0.0
6 T T T T T T
00 02 o4 o6 08 10 0.0 0.2 0.4 0.6 0.8 1.0
. . ;0 X ,
(@) (b)

Figure 9.5e. Effect of scattering on radiative transfer calculated using the discontinuous
finite element method: (a) intensity distribution and (b) wall flux distribution

9.4 Numerical Implementation

The above 1-D examples have illustrated some basic procedures involved in the
use of the discontinuous finite element method for the solution of internal radiation
problems. In this section, numerical details are given to form the matrix equations
for the discontinuous Galerkin finite element formulation. We discuss these
procedures for the 2-D and 3-D calculations. The 1-D case will be given in the
example section. The 2-D axisymmetric case requires special treatment, which we
relegate to Section 9.6 for discussion.

9.4.1 2-D Calculations

Let us consider again the ith element and its neighbors as shown in Figure 9.3a. For
the sake of discussion, the inter-element boundaries are plotted separately. The
nodal values of the variable are defined within the element. Since discontinuity is
allowed across the element boundaries, the common geometric node does not have
the same field variable value. This is an essential difference between the
conventional and the discontinuous finite element formulations.

For a 2-D linear triangular element, the shape functions may be written in terms
of natural coordinates,
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| |4
é |=| 4 (9.34)
$] [

Here 4; (j =1, 2,3) is defined by the area ratio, 4;= Aj/A., where A is the area of the
element and A; the sub-triangular area formed from two vertices and point p inside
the element (see Figure 9.3b). With relevant global coordinates substituted in 4,
the shape functions take the following form:

) Apz —Xpz Y3 || 1
$ |= ﬁ Asr Xz Yap || X (9.35)
#3 Ar X Y LY

where the definition of elements in the matrix of Equation 9.35 is given by the
following equations:

1 1
Yi Yj

Xi Xj

Yi Yj

Aj = Yy = (9.36)

,Xij:

X:

i Xj

]

The radiation intensity inside the element is interpolated using the above shape
functions,

1%, y;8) = 11(8)41 (X, ¥) + 12(8)d2 (X, y) + 15 () (X, ¥) (9.37)

Substituting the above equation into Equation 9.28, and noting that the intensity
with control angles is constant due to a step function approximation, one has the
following expression:

4 I
f s-f b [V Vi, V] 1, |dAdQ
A, Ja, "

I3

% (1L
+fm|fr z (& ¢ ¢l H}z (n-s)drdQ
3

# L] (@
= [ [ A-p|kfa b gli|+ |6 |sc90a0  (©38)
Ay J A,
# is] 1o
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For a 2-D triangular element, the above integration can be carried out
analytically. Taking the derivative of the shape functions,

Va —Xz Y ;

\v =—| =X Y. R 9.39
& oA 31 Ya L} (9.39)

Vs X2 Y2

and noticing that V¢ (i = 1, 2, 3) is independent of the area integral, one has

&
f f & |[s- Vs V,s- Va]dAdQ
AQd A, 4

A
:f b dA [ [s- Vs Vs Valdo = 2D (9.40)
Ae AQ 3
s
where D is a matrix andS is calculated by
5:-Vé 5:Vg 5 -V

D=|5-Vé §-Vé § Vg (9.41a)
5-Vé 5-Vg 5V

5 — f $dQ = [0.5(6, — &) — 0.25(sin 20, —sin 26,)]
AQ,
x[(sing, —sing)i — (cos@, —cosg) ]

—0.25(c0s 26, — c05260,)(¢, — ¢y )k (9.41b)

The second integral in Equation 9.38 represents the jump condition (or
numerical fluxes) across the boundary of the ith element and its neighbor (see
Figure 9.3a). For a linear triangular element, it is split into three terms, one for each
side of the element,

4 [}
fm fr ¢ [ é2, 431 [1]2 |(n-s)dTAQ
e [,
% [}

- [ |&|iaggllin)ar [ oso
Iy AQ
# (1L
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h [l
+fr3 Z [ o] EHZ dl“fml(na.s)dQ (9.42)
3

The line integration associated with the element can be carried out analytically.
For side 1, ¢,=0; and ¢+ ¢ =1, we therefore have the following matrix
expression:

" #
[lela & suri-[ aa ¢ o
Iy Iy 0

| ad #ald—-a) O . 210
:f -t)a (Q-a)1l-¢) O leﬂ:gll 2 0 (9.43)
°l o 0 0 000

where L; is the length of side 1 (see Figure 9.3b). The term involving the solid
angle integration can also be treated analytically,

-n-§ = © (—n;-s)dQ
|

=[0.5(6, — 6,) — 0.25(sin 26, —sin 26, )]
x[(sin ¢, —sing,)n;, —(Cos @y — COS @y )Ny ]

—0.25(cos 26, — 0526, ) (@, — @ )Ny, (9.44)

Note that for a 2-D problem, n,= 0. In the DFE treatment, the jump terms have
to be selected depending on the sign of -n-§ This is different from the

conventional finite element formulation in which the across-element continuity is
enforced, and the inter-element boundary terms cancel each other. One treatment
that works effectively with linear elements is the upwinding scheme. By this
scheme, one has

[I]l Il elemi |1
-ny -5, [, | = max(0,-n, -5))[ I, —max(0,—n, -5))| I, (9.45)
[I]S |3 |3 (NB.1)

By the same token, the calculations for the other two sides can also be
performed analytically. By definition, we have (I;)ng1) = (I;")""" (see Figure 9.3b).
Thus the calculated results for these two sides may be summarized below for
convenience,



Radiative Transfer in Participating Media 393

é [k
[ |&|esglin dar [ n;-s)a0
T AQ
¢3 [1]s
L |1 elem i |1
:?]COfBM_M_D max(0,—n ; -§,)1| I, -1, (9.462)
E s Jine. iy

where Cof By is a matrix obtained by setting to zero the elements in the kth row
and Ith column of matrix B, which is defined by

2 11
B=|1 2 1 (9.46b)
11 2

The first term on the right hand side of Equation 9.38 represents the attenuation
of radiation intensity due to extinction. It may be calculated analytically when A(r)
is a constant with the result,

h
[ daf |&|iba1smo
AQ A "

hh b
=p[ daf bk bt oA
e et o

BAAQ
12
11 2

2 11
121 (9.47)

If all these discretized terms are assembled together, the equation for the
element can be written in terms of the following matrix form:

KU=F (9.48)

where the expressions for the matrix elements are summarized as follows:

NS

AQ L _

Kij = %D” + ﬂA.’T.Z ! B'J + E ?k[COfB(;;,kA,k)]ij maX(O,—nk . SI)
k=1

(9.49)
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F— f 4sda [ do
A AQ

NS N,
L _
+;Fk maX(O, Ny - § )Zl [COfB(4,ky4,k) ]U I(NB,k),j (949b)
— =

with NS being the number of boundaries associated with the ith element and N, the
number of the nodes of the element (see also Equation (9.62) below). The
integration involving S(r,s) is discussed in Section 9.5.3.

The calculations will start with those associated with a boundary element,
where the boundary condition is imposed for a gray boundary as follows:

NQ
17(r,5)) = g(r)lb(r)+1_;(r) Z 1= (r,s; ‘)|sj “n |AQ'J- (9.50)
j=0.5;:n<0

and the following equation is for the symmetry boundary condition,
1(r,s,)=1(rs)) (9.51)

Here s* is the symmetric direction of s, with respect to the boundary, and can be
calculated by Equation 9.8. Note that Equation 9.28 can be obtained for each
element and its neighbors, and the calculations are then performed element by
element. Thus, with Equation 9.28, the calculation for the ith element starts with
selecting a direction and continues element by element until the entire domain and
all directions are covered. Because of the boundary conditions, iterative procedures
are required. The successive substitution method seems to work well for this type
of problem. In the above, it is assumed that the medium is not scattering and thus
the scattering term is set to zero. When the scattering term is known, the source
term can be readily calculated using the Gaussian integration and included in the
force vector {f}.

Let us now illustrate the above procedure through a numerical example of
radiation in a 2-D cavity.

Example 9.4. We consider a 2-D problem of internal radiative heat transfer, which
is schematically illustrated in Figure 9.6e(a). The cavity is filled with an absorbing
and non-scattering medium. The absorptivity of the medium is x=1.0. The
discontinuous finite element procedure discussed above is used to solve the
problem.

Solution. Since the medium is non-scattering, o =0. At x=0 and x = 1 the
boundaries are black cold walls, that is, the emissivity and temperature of the wall
are one and 0 respectively. Symmetry boundary conditions are applied at y=0 and
y=1. The temperature is assumed to vary from the left to the right and the variation
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is described by the function, T(x,y) = 100(1+0.75sin(27x)). Since the symmetry
boundary condition is applied at the top and bottom walls, and the temperature
varies only with the x coordinate, the analytic solution for the problem can be
obtained by integrating the radiative transfer equation as shown in Example 9.1,

q(x) = ZEJ;X 1y (X)E, (X — X') dx'— 272"'/;1|b(x')E2(X'f dx'  (9.48¢)
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Figure 9.6e. Internal radiation in a 2-D square: (a) prescribed temperature distribution and
boundary conditions, (b) unstructured triangular mesh, (c) schematic of angular space
discretization, and (d) the heat flux gy distribution along x/L obtained by the discontinuous
finite element (DFE) method and the analytical solutions for three extinction coefficients

A=0.1, A=05and #=1.0

This problem is solved using the DFE method in a 2-D unstructured triangular
mesh consisting of 1142 elements, as shown in Figure 9.6e(b). The unstructured
mesh is generated using the front advancing technique. The angular space
discretization is 2x 8; that is, the angular space is divided into 2 in the azimuthal
direction (6) and 8 in the polar direction (¢), which is shown in Figure 9.6e(c). The
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distribution of the non-dimensionalized radiative heat flux g* = q,/(100%c;) at
boundary y = 0.0 is computed for various conditions, and is plotted in Figure
9.6e(d), along with the analytical solutions. Apparently, excellent agreement is
obtained between the analytical and the discontinuous finite element solutions for
various = k parameters.

9.4.2. 3-D Calculations

The above procedures are applicable to 3-D calculations. The element arrangement
for 3-D is shown in Figure 9.4a. For a 3-D element, the area integral above is
replaced by a volume integral, and the boundary line integral above by a surface
integral, respectively. For a linear tetrahedral element, the integrations can be
carried out analytically.

In an analogy to a 2-D triangular element, the shape function for a tetrahedral
element has the following form when written in the global coordinate system:

) Vosa  —Xpza  —Yoza —Zoa
& _ 1 Vi Xar Yau Zasm

¢ | 6Ve| Vap —Xaz Yoo —Zap
s Vizs Xz Yz Zig

(9.52)

N < X B

where the definition of elements in Equation 9.52 is as follows:

Side 1

(b)

Figure 9.4. lllustration of the discontinuous finite element formulation for 3-D internal
radiation transfer in absorbing and emitting media using unstructured tetrahedral meshes: (a)
element i, its surface normals, and its neighboring elements, and (b) local node number and
side number of a typical tetrahedral element (or ith element)
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Xi Xj X 1 1 1
Vik =Yi Yi Ye[sXik =Yi Yj Y|
zi 7 1z zi 7z
1 1 1 1 1 1
Yik =|Zi  Zi i i =X X5 X (9.53)
Xj  Xj o X Yi Y Yk

Here the lower case x;, y; and z; denote the coordinates X, y, and z of the jth node of
the tetrahedron under consideration (see Figure 9.4b).
The radiation intensity within a tetrahedron is interpolated by

4
|(X,Y:ZJS)ZZ¢| 1i(8) = 11(S) + 2 15(S) + 3 15(8) + ¢4 14(5)

i=1

(9.54)

Substituting the above expression into Equation 9.28 yields
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(9.55)

Once again, the derivative of the shape functions can be obtained analytically

with the following result:

Vi —Xozs —You Loy 0
\Y% X Y. Z ~
9 _1 341 341 || 5 (9.56)
Vs | J|=Xpo —Yarz —Zusp c
Ve, Xz Y3 Zim

where J=6V, is the Jacobian of the tetrahedral element.
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This will allow us to analytically integrate the volume terms in Equation 9.28.
Following the same procedure as for the 2-D calculations, we have the following
result for the 3-D tetrahedral elements:

h

f f b [s- V.5 V,s-Vs,s- Ve, JdAdQ
AQI Ve %
A

N glih=8

:f dV | [s- VS V,s- Vs Ve 1dQ
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V¢4
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V¢4
V¢4

_»l
_»nl
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Il

(9.57)
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where S is the same as given by Equation 9.44. Note that, for linear elements, V¢,
(i=1,2,3,4) is constant and is defined solely by the nodal coordinates of the
tetrahedral element and thus can be taken outside the volume integral. The
consideration for the solid angles and sign of —n;s (j=1, 2, 3, 4) is also the same as
for the 2-D case discussed above, except that n now refers to the outnormal of the
boundary surfaces of the tetrahedral element and has three components. After some
algebraic manipulations, one has the final result for the surface integral along the
element boundary:

b [k
% [1]:
fr,. i CN ety BRCHDLE

s [114
|1 elem i |1

=ﬁC0fC L maX(O—n--§) |2 _ |2 (958)

12 (5-1.5-1) Tl Iy I, .

s La Jone. i)

where A; is the jth face of the element and CofCy, is a matrix obtained by setting
to zero the elements in the kth row and Ith column of the matrix C, which is
defined by
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(9.59)

N )
= kN e
=N R e
N PP

Also, the absorption term can be integrated analytically if £is a constant,
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raJv. | ¢
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2 111
_AVAQ |1 2 11 =ﬂVeAQ|C (9.60)
20 |11 21 20 '
1112

Again, the above equations for 3-D calculations can be summarized in the same
matrix form as given by Equations 9.48 and 9.49.

9.4.3 Integration of the Source Term

The S(r,s) term has two contributions; one describes the emitting effect, and the
other, the scattering effect. The integration of these two terms is now considered.

9.4.3.1 The Emitting Contribution
The emitting term is related to the temperature of the medium. For a gray medium,
one has

(N =0cT*(")/z (9.61)

We can approximate the temperature at point r and then calculate 1y(r) using
Equation 9.61. Alternatively, we can directly interpolate for I,(r) using the shape
function and the nodal intensity values. If the later is taken, then one has the
following expression:

NS
ROEDIXIGLY (9.62)
i=1

with N, being the number of nodes of the element under consideration.
Therefore, the integration of the emitting term is calculated by numerical
quadratures,
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,Sr:ff Gl (r)dQdv = AQZI x(N)¢ (Ng; (N1, ;dV

- AQ.ZEz«(m)«ﬁ. (1) (W 1 35| (9.63)

m=1 j=1
where Ny is the number of integration points, wy, the integration weights, and [J(ry)|

the Jacobian. If the absorption coefficient « is a constant, then the integration can
be calculated analytically,

figr = KAEAQ' Z Bjjly,; fora2-D triangle (9.64a)

fig = KV AQ' ZCU Ip,; for a 3-D tetrahedron (9.64b)

where matrices B and C are given by Equations 9.46b and 9.59, respectively.

9.4.3.2 The Scattering Contribution

It is known that particles present in a medium will scatter the radiative intensity
traveling in one direction into all other directions. Likewise, the radiation in other
directions may also be scattered by the particles into the given direction in a
scattering medium. Scattering effects are usually classified into isotropic scattering
and anisotropic scattering. The former scatters energy to all other directions with
the same energy distribution, whereas anisotropic scattering redirects radiation
energy in different directions with varying energy distributions. The isotropic
scattering function is simple and easy to calculate, that is,

d(s,s') =1 (9.65)

Anisotropic scattering is more complex and certainly needs more computing
time since the scattering function is directionally dependent. There are two
different models being used for anisotropic scattering functions: forward scattering
and backward scattering. Forward scattering means more energy is scattered into
the forward direction than the backward direction. Backward scattering means just
the opposite, that more energy is scattered into the backward direction. The
scattering functions, either forward or backward, may be described by the
following generic expression:

Ng,

d(s,s") = ch P;(cos@) (9.66)
j=1
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where Ng is the number of the terms used to represent @ and wis calculated by

@ =080 ¢c0sd'+(1—cos’ 8)(1—cos® 8')"* cos(p'—p) (9.67)

and P; is the Legendre polynomial, which has the following properties:

2n+1
Po(x) =1 P(X)=x, Pi(x)= -

XPy (¥) = —— P4 (%) (9.68)

For the calculations given here, the values of coefficient ¢;in Equation 9.66 are
taken from the work of Kim and Lee [11], where the coefficients of the polynomial
for different models are obtained by slightly modifying the Mie coefficients [11,
12].

Equation 9.66 describes the dependence of the scattering function on the
directions for anisotropic scattering phenomena. In calculations, the angular space
is discretized into a finite number of control angles. While the scattering function
at the axle direction of a control angle may be used as the average scattering
function, a better approach is to average the scattering function over each control
angle using the following expression [13]:

fAQfA d(s,s)dQdQ!
fmf dodQ

The above computational procedure, and scattering functions, can be readily
incorporated into the discontinuous finite element formulation as a source term.
The integration of the source term may be made using the integration quadrature
rules,

@(s,s") =

(9.69)

fioe =fv "(r)fAQIZf AI(r,s;)D(s,5)dQAQAV

No

_ZG(rm)Wm;?%(rmHJ(rm)|z|(rm's )Q)(sl,s )AQ|AQ (9.70)

where subscript i refers to the node number local to the element, N, is the number
of discretized angles, and ry, = (Xm, Ym: Zm)- The force, calculated as described above,
is then added to the ith node of the element.

Example 9.5. Employ the above numerical procedure to solve a 3-D cube filled
with an absorbing, emitting and scattering medium.
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Solution. This is perhaps the most general problem of internal radiation in a 3-D
geometry. When the medium is scatterting, the radiation of a given direction is
redirected into all other directions. Radiation in other directions may also be
scattered into the direction under consideration in a scattering medium. The
scattering effect is included as part of the source term for radiation. Scattering
effects are usually classified into two categories: isotropic scattering and
anisotropic scattering. The former scatters energy to all other directions with the
same energy distribution, whereas the latter scatters radiation energy to different
directions with varying energy distributions.
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Figure 9.7e. Comparison of heat flux distributions computed using the DFE, FVM and
Monte Carlo methods for radiative heat transfer in a cube filled with anisotropic scattering
media. (a) Mesh distribution. (b) Scattering function distributions used for computations. (c)
Heat flux g,* distributions along x/L at y/L = 0.5 and z/L = 0.5 on the top surface of the cube
with scattering albedo ® =o/B=0.5 and pB=1.0. (d) Heat flux g,* distributions along x/L at y/L
= 0.5 and z/L = 1 on the top surface of the cube with scattering albedo @ = o/5= 0.5 and
£=2.0

The calculated results for anisotropic scattering are given in Figure 9.7e. The
present calculations are also compared with those obtained using the Monte Carlo
method. The comparison between the DFE results and those reported in Jendoubi
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and Lee [5] is gratifying for all these cases, suggesting that the DFE method is
useful for the radiative heat transfer calculations.

9.5 Radiation in Systems of Axisymmetry

In some cylindrical systems, such as combustion chambers, boilers, gas turbines
and optical crystal growth furnaces, an axisymmetric approximation often may be
made to predict the thermal performance. An important implication of this
approximation is that the axisymmetric and periodic conditions associated with
these systems can be applied, and thus fully three-dimensional calculations may be
replaced by the corresponding two-dimensional calculations, thereby resulting in
savings in both computational cost and storage requirement.

9.5.1 Governing Equation in Cylindrical Coordinates

For the systems of axisymmetry, the cylindrical coordinate system is more
convenient to use. For radiative heat transfer in the systems, the temperature and
radiative properties vary only in the r and z directions, but not in the azimuthal
direction ¢.. Here, ¢ is the azimuthal angle in the cylindrical coordinate system
and independent of azimuthal direction angle ¢. With the coordinate system shown
in Figure 9.5, the radiative transfer equation can be written as

) SR

Figure 9.5. Schematic illustration of an internal radiation problem in cylindrical coordinates
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s-VI(r,s) =sin@cos¢e

al(r,z;s) sin@sing al(r,z;s) -+ cosO ol(r,z;s)
or r op oz

o(r)

—= I(r,s)®(s,s)dQ" (9.71)
Ar Ly 4

= —=pO)1(r,s) + x(r)ly(r) +

where ¢ is the azimuthal direction of radiation intensity. From the geometric
relation shown in Figure 9.5, it is clear that ¢, +¢ = constant along s. It is important
to note here that for an axisymmetric problem, the radiation intensity also depends
on the polar (i.e., ) direction. However, as shown below, the axisymmetry and
periodic conditions intrinsic with an axisymmetric problem may be used to map the
quantities at any ¢ using the data at ¢ =0, thereby making the calculations possible
over a 2-D mesh.

Let us consider a typical element, that is, the ith triangular element and its
neighbors, as shown in Figure 9.3a. Remember that this 2-D triangular element
generates a corresponding 3-D element by rotating around the z axis at a prescribed
angle. For the sake of discussion, the inter-element boundaries are plotted
separately. The nodal values of the variable are defined within the element to
conform to the rule of selecting interpolation functions from the finite element
broken space. Because discontinuity is allowed across the element boundaries in
the discontinuous formulation, the common geometric node does not have the same
field variable value. This is a crucial difference between the conventional and the
discontinuous finite element formulations.

For a 2-D linear triangular element located on the r-z plane, the shape
functions may be constructed as follows:

& 1 My —Zy Ryl
$ |= K Mg —Z3 Ry ||z (9.72)
¢ My, —Zi; Ry [T

where A, is the area of the triangular element on the r—z plane, and the definition of
elements in the matrix of Equation 9.72 is as follows:

(9.73)

The radiation intensity inside the element is interpolated using the above shape
functions,

1(z,1;8) = 11(8) (2, 1) + 1,(8) 2 (2,1) + 15(S) (2, 1) (9.74)
Substituting the above equation into Equation 9.28, and noticing that the

intensity with control angles is constant due to a step function approximation, one
reaches the following expression:
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9.5.2 Volume Integration

#3

Let us consider the first term in Equation 9.75, which involves the volume
integration over a 3-D element generated by the ith triangular element. Taking the

derivative of the shape functions,

Va -Zy3 Ry C
v =——| -Z R

# oA 31 Ra F}
Vs -Z;p Ry

one has the following result:
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where S is calculated by the expression,

§:f sdQ
AQ

(9.76)

(9.77)

=[0.5(6, — 6,) —0.25(sin 26, —sin 26, )][(sin ¢, —sin ¢, ) — (oS, —COS ;) j]
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—0.25(cos 28, —c0s 26, )(@, —(pl)|2 (9.78)

and Aj is a vector given by

Ng
Aij :Le¢v¢jdv :A¢c;¢|(rm’zm)v¢j(rm’Zm)erm|J(rmvzm)|
(9.79)

Here, the integral is evaluated numerically using the Gaussian quadrature. Ny is the
number of integration points, and J is the Jacobian.

The first volume integral on the right hand side of Equation 9.75 may be
calculated numerically with the result,

4 By Bo By
[ aaf |6k alsmdv = By By B (9.80)
Ay A
¢3 BSl BSZ BSS

where the matrix element By is calculated by

Ng
Bij = AQIA¢CZ¢| (rm I )ﬂ(rm ! Zm)¢j (rm I )Wm I |J (rm ! Zm)| (981)

m=1

The evaluation of the scattering term was discussed in Section 9.4.5. Below we
discuss the integration over surfaces in Equation 9.75. As shown below, some of
these calculations are simplified considerably with the use of the symmetric and
periodic conditions associated with a cylinder.

9.5.3 Surface Integration Over I,

The second integral in Equation 9.75 represents the jump condition (or numerical
fluxes) across the boundary of the ith element and its neighbor (see Figure 9.3b).
For a linear triangular element, the second integral is split into three terms, one for
each side of the element,

% [}
fmfr & [ 2,651 [1]2 |(n-s)dTdQ
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3




Radiative Transfer in Participating Media 407

4 [
+A¢ch b (4 to 5] 111 dyfm(n2~s)dfz
‘s [11s
4 [
+A(pch b (4o 5] 111 dyfﬂ(na-s)dg (9.82)
| g5 N, -

where L;, Ly, and Lz are the lengths of the corresponding three sides of the
triangular element on the symmetry plane (see Figure 9.3b).

The surface integrals can be evaluated numerically. Thus, one has the following
result for the surface integral:

% [
fmfr & [ d2. &1 [1]2 [(n-s)dTdQ
"4 [11;

Cli CpH C1k3 [1L

3
=) Cofuaiy|Ch Ch Ch[lIL; (9.83)
! Ci Cgp Cg|llks

where the elements of matrix C* are calculated by the following numerical
integration:

K _ . .
ci=ae. [ padr [ (ns)a0
Ng
= A¢)cnk §Z¢ (rmvzm)¢j (rm’zm)erm | J (rmrzm)l (984)
m=1

Also, Cofyy s (k =1,2,3) means setting to zero the elements in the (4 —k)th row
and the (4 —k)th column of the matrix with the index pair (4 -k, 4—k) referring to
the low double indexes of the matrix element C, 4. For example, Cof(y_1, 41y =
Cof3, 5y means forming a new matrix from matrix C? by setting the elements in the
column and row of Ca; to zero. Note that the above expression has been written for
a curved element. For a linear element, the Jacobian J is a constant, which can be
taken out of the summation term.

In the discontinuous finite element treatment, the jump terms at the element
boundaries have to be selected depending on the sign of n;- 5. This is different from
the continuous finite element formulation in which the across-element continuity is
enforced, and the inter-element boundary terms cancel each other out, such that a
jump condition does not arise. One treatment of these jump terms that works
effectively with linear elements is the upwinding scheme [4, 5]. This scheme is also
used here,
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[1], [1],
(nj §) [I]z :_(_nj §) [I]z
[1], [
|1 elem i |1
=max(0,-n; -3) I, —max(0,-n; -s)| I, (9.85)
s '3 (NB, j)

Similarly, the calculations for the other two sides can also be performed
analytically.

9.5.4 Integration Over I,

The surface integration over I, entails the evaluation of the following two terms:

) 1L
[ [ et & #llin (s
e [,
% [
= [ [lets & #10k (o s)arae
e [];
% [
*fAQI frb Z [4 ¢ 4] H}g (np -5)dTdQ (9.86)
3

where I'y and I', denote the top and bottom surfaces, respectively (see Figure 9.6).
For an axisymmetric problem, the surface normals for these two surfaces are
calculated by the following expressions:

n, =—sin(Ap, /2)i +cos(Ap, /2)] (9.87)
n, = —sin(Ag, /2)i —cos(Ap, /2)] (9.88)
Examination of the integrals above shows that the surface integrals can be

carried out over the triangular element on the r-z plane. Consequently, we have the
following expressions:

% [1L
[ [lema & #1in @9
e [
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Dy D, Dis [lL [IL
=| Da1 Dy Doz §(ne-8)| [1L | +(np-S)| [1]2 (9.89)
Ds; D3 Dsg [l [l J,

where the matrix element Dj involves a pure 2-D calculation and may be
calculated numerically using the standard Gaussian quadrature,

NQ
Dj = [ AAAT = Al 20y (T 20 [ I z)| (0.90)
r—-z m=1

Here T';_, means the area on the r—z plane is used. Note that for a linear triangular
element, the above expression may also be evaluated analytically, for the purpose
of which some of the formulae given in Chapter 3 should be useful.

The jump conditions across the element interface can be treated using the
upwinding scheme for both the top and bottom surfaces. The use of this scheme
leads to the following expressions:

Figure 9.6. Schematic illustration of the mapping of radiation directions for axisymmetric
problems
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_[I]l_ Il_elemth I1

(n, -S)|[1], | = max(0,—n, -S)| I, —max(0,-n; -3)| I, (9.92)
_[']3_ |3_ I3 NBt
_[I]l_ Il_EIemLb Il

(ny -S)[[1], | = max(0,—ny -3)| I, —max(0,-ny -s)[ I, (9.92)
_[|]3_ |3_ I3 NBb

Here, NBt and NBb denote neighbor elements for the top and bottom surface,
respectively. Note that only one neighboring element exists for the top or bottom
surface, as shown in Figure 9.6.

9.5.5 Mapping

An important assumption in our calculations is that the intensities are needed only
at the nodal points of the triangular element on the r-z plane. The quantities are
stored in memory during calculation. The intensities at any other location in the
entire cylinder can be obtained from the intensity values stored at the triangular
element through an appropriate mapping procedure. The mapping procedure
exploits the symmetry and periodic conditions associated with the axisymmetry of
the problem. If the angle of the rotation Ag is appropriately selected, then the
intensities in the neighboring elements along the ¢ direction can be mapped from
those at nodes P1, P2, and P3, respectively. This procedure allows the 3-D
calculations to be performed using the 2-D mesh on the r—z plane only.

The mapping procedure for finite volume analysis of radiative heat transfer was
studied by Chai et al. [13, 14]. Here, a similar idea is applied to incorporate the
mapping into the DFE formulation to facilitate the radiative heat transfer
calculations over a 2-D mesh. From Equations 9.91 and 9.92, it is clear that when
the upwinding procedure is used, intensity values at the adjacent elements are
needed in order to calculate the in-flow contributions from either the top or the
bottom surface. Since the intensity is stored at the nodal points of the element on
the r—z plane, the intensity field at the neighboring elements may be obtained using
the axisymmetry and periodic conditions. As shown in Figure 9.6, the element
a-b—c—d is on the middle (or r-z) plane, and a—b—c,—d; is the element that shares
the same boundary with the top surface a-b—c—d, while the element a-b—c,—d;
shares the same boundary with bottom surface a-b—c—d. The angle between the
lines P1P2 and P1;P2; and that between the lines P1P2 and P1,P2,, isequal to Ag
and —A g respectively, because of the angular discretization.

Because the radiation intensity possesses axisymmetry or rotational symmetry,
one thus has the following relation between the intensities at the three elements
under consideration:

lipe =0)=1li(p. =—Ap) =li(p. =Ap),i=1, ... N, (9.93)
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where N, is the number of discretized polar angles. The indexes oni+ 1 andi-1
are cyclic, such that i+1—1 ifi=N,, and i—1— N, if i =1. Thus, all the
intensities on the other planes are the same as those on the symmetry (i.e., r-z)
plane with an appropriate rotation. To comply with the condition of axisymmetry,
the net radiation energy flux across any plane passing through the r = 0 axis should
be zero. Thus, the following relation among the intensities at ¢, = 0 is:

li(p=0)= INW—i+1((p:O) (9.94)

This condition implies that, to avoid numerical errors, N, needs to be an even
number, which imposes a constraint on the way the polar angle discretization is
made. While this constraint may be a nuisance, it is beneficial in that only half of
the radiation directions need be solved, thereby permitting an increasing speed of
computation.

With reference to Figure 9.6, the intensity in the direction 1 at ¢.=0 is parallel
to that in the direction 2 at ¢, =—A¢ and also to that in the direction 6 at ¢, =Ae.
This periodic condition should hold true for other corresponding directions as well.
This condition, in combination with the axisymmetry condition discussed above,
allows us to obtain information on the intensities at the top I'y and bottom T'y from
those saved at the element defined at the r—z plane. To illustrate this, we first
consider the intensity Iy, of direction 2 at the top surface. The quantity I, is mapped
from the known values at the r—z plane as follows:

Ly =ly(pc=0)and 1" =13 (¢, = Ap) =11 (p, =0) (9.95)

The same relation applies to the intensities at the other directions. The mapping can
be applied in a similar fashion to the intensities at the bottom surface with the
results,

la” = la(pc =0)and 1, " = I3(pe = -Ap) = I5(p; =0) (9.96)

Clearly, the same relation can be used for the other directions as well. Here, to be
consistent with our notations, subscript + refers to the outside of the elements.

9.5.6 Treatment of the Emitting and Scattering Term
We may follow the same procedure in Section 9.5.3.1 to calculate the emitting

term, taking into account the axisymmetry. Using quadrature rules, the integration
can be carried out numerically,

Ne
Fior = j; e f , Alb(ndoav = Aa.; j; RCUGEICINEY



412 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

Ng N,
=AQAP Y > k(s 2 )b (T, 2o )y s Zi YWy [ (1 20 ) | (9.97)

m=1 j=1

The scattering term in the axisymmetric system may be treated in a very similar
fashion to that given in Section 9.5.3.2 for 2-D and 3-D geometries. With the
appropriate interpolation, the integration of the source term can be readily carried
out over the r—z plane only. If the numerical integration is used, we then have the
following expression:

Ng
_ [ o) Z . N
Pl _j:/e 4r vj‘AQ = Amﬁ(")'(F,S)q)(S,S)deQdV

Ng
o(lhy,Z
= ¢c2%wm¢l(rm’zm)rm RICY]
m=
Ng
XD (1,8 )D(s),5')AYAQ | (9.98)
-1

where subscript i refers to the node number local to the element and Ng is the
number of control solid angles for integration. The force, calculated as described
above, is then added to the ith node of the element.

Example 9.6. Use of the above numerical procedure to solve the internal radiation
in an irregular 2-D cavity of axisymmetry filled with a cold medium.

Solution. We consider a conical enclosure filled with a cold medium (T, =0.0).
The enclosure is 2 m high with a top radius of 2.1547 m and a bottom radius of 1
m. The top and side walls are black and cold, whereas the bottom wall is black and
at T,, =100 K. The extinction coefficient of medium gis 1.0 m™, but the scattering
albedo w (w=01p) varies from 0.0 to 1.0. The computations used a mesh consisting
of 400 linear triangular elements and an angular discretization of 12 x 8. With an
increased scattering albedo, the boundary heat flux goes up because more energy is
scattered to the boundary than is absorbed by the medium. The results calculated
using the DFE method agree well with the finite volume results (FVM, [19]) for
different scattering albedos, as shown in Figure 9.8e.

9.6 Use of RTE for External Radiation Calculations

Radiation exchange between surfaces is the other important category of radiation,
and the solution of the external radiation problems using the discontinuous
Galerkin boundary element method was discussed in Chapter 8. Unlike the
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radiation in the absorbing medium, radiation between surfaces occurs in a vacuum
or a non-absorbing medium. The prediction of external thermal energy exchange
between surfaces is often complicated by the fact that some applications of surface
radiation exchanges involve complex geometric arrangements that are either
designed to obstruct radiation exchanges or are an integral part of an overall
thermal system design. It was shown in Chapter 8 that a very complex, time
consuming part of a numerical algorithm for external radiation heat transfer
calculations is to detect these internal blockages between a thermal ray from one
surface to another in an enclosure.

Since the radiative transfer equation (RTE) describes the transfer of radiative
energy in a medium, it should also be applicable to the special cases where the
medium is not participating. Consequently, the RTE should be able to be used to
solve the external radiation problems. There are perhaps two important advantages
associated with this approach, though it rarely is considered in the literature. The
first advantage is that a detailed geometric obstruction present in the enclosure
needs no special treatment and the domain needs to be discretized as usual for
internal radiation calculations. This eliminates a major headache in developing
very precise third party detection algorithms. The second advantage is that if a
code is developed for internal radiation calculations, then there is no need to
develop another separate code for external radiation calculations. Both external and
internal radiation problems can be handled using a unified approach, thereby
simplifying the computational procedure. This is particularly important for
developing multiphysics models for practical applications.

Here we consider the use of the RTE to solve the external radiation problem on
the basis of the discontinuous finite element procedures discussed above. We will
further demonstrate this use of RTE through a 2-D example with internal blockage
and compare the results with those obtained using the Galerkin discontinuous finite
element method discussed in Chapter 8.

0.5
FVM(12%8) w=0.0

FVM(12X8) 1=0.4
FVM(12X8) 1=0.8
o FVM(12X8) »=1.0
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Figure 9.8e. Comparison of computed non-dimensional heat flux along the outer sidewall of

the cone filled with absorbing, emitting and scattering media with the results reported in the
literature (FVM) for different scattering albedos = 0.0, »=0.4, »=0.8 and w=1.0
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The radiative transfer equation (RTE), when applied to a non-participating
medium, reduces to a very simple form,

ol
—=0 9.99
> (9.99)
Here the transient effect is neglected.

Taking a two dimensional domain, we have from Section 9.3 the following
discretized form of discontinuous finite element formulation,

ly NS [1L
§.fM¢.v¢jdA :z +;nk§frk¢,¢jdr Ht ~0 (9.100)

This can be further written in matrix form, as has been demonstrated repeatedly in
the previous sections.

Thus, the computational methodology developed for the solution of internal
radiation in 1-D, 2-D, 3-D and axisymnmetric geometries can be directly applied to
solve the external radiation problems. This is done by simply setting the relevant
properties (i.e., absorptivity, scattering coefficient, scattering functions, and
emissivity) of the medium to zero. The properties of the surface of the enclosure
are considered in the boundary conditions for internal radiations. We present one
numerical example below.

Example 9.7. Consider a 2-D enclosure with an internal blockage as shown in
Figure 9.9e(a), along with the temperature boundary conditions. The emissivity of
all boundaries is 1.0, and the medium in the enclosure is non-participating. Solve
the problem using both the discontinuous Galerkin boundary element method and
the discontinuous Galerkin finite element method. Discuss the numerical results.

Solution. Because the blockage exists in this enclosure, the calculation of radiative
energy transfer between the surfaces requires the detection of the third party
blockage. The algorithm developed in Chapter 8 is applied here. To ensure the
numerical accuracy, a total of 320 boundary elements are used to discretize the
boundary of the enclosure. On the other hand, the calculation using the RTE
approach requires the full discretization of the domain. For this problem, a
structured triangular mesh is used, which has 2304 elements, but the boundary is
just discretized into 96 boundary elements, and the angular space discretization is
Ox¢p =2 x80. The calculated heat flux of the bottom surface is calculated and
compared with the solution of the boundary element method. The reuslts are shown
in Figure 9.9¢e, where the results of the two methods agree very well, suggesting
that the RTE can indeed be applied to solve the external radiation problems with
good accuracy. To further compare the speed of the DFE method and the boundary
element method, numerical experiments were performed, where both meshes for
the boundary element and the discontinuous calculations have 120 boundary
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elements. Since the geometry is symmetric, the symmetry boundary condition can
be easily implemented using the discontinuous Galerkin method. Numerical
calculations show that for this particular testing problem, the discontinuous finite
element method is faster than the boundary element method to obtain the results of
the same accuracy.
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Figure 9.9e. Comparison of external radiation transfer calcuations using the discontinous
Galerkin boundary and finite element methods: (a) a 2-D cavity with internal blockage,
along with the wall temperatures, and the cavity is filled with a non-participating medium
and (b) calculated radiation heat flux distribution along the bottom wall
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9.7 Coupling of the Discontinuous Method with Other Methods

There have been well-established numerical methods for the solution of a wide
range of heat transfer problems such as heat conduction and convection. Thus, it is
natural to test the idea of coupling the discontinuous Galerkin method with these
well known methods for the mixed heat transfer calculations that involve internal
radiation and conduction/convection. This way, the advantages of each method can
be fully utilized. To demonstrate such a coupled approach, we again consider a
problem of combined conduction and internal radiation in a gray medium. The
differential heat balance equation may be readily written,

aoT "

with the termV-q, calculated using the radiative transfer equation as described
above. The coupling entails the use of the conventional method for heat conduction
and the discontinuous method for the internal radiation calculations. Since the
radiation heat flux contribution appears as a divergence term in the source part of
the heat balance equation, it opens up two possibilities for coupling the



416 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

discontinuous and conventional finite elements for the mixed heat transfer
calculations. The two coupling approaches are described below.

In the first approach, the heat balance equation is formulated following the
same procedure as used in the conventional finite element method. This will lead to
a global matrix equation with the nodal temperatures as the unknowns. To
incorporate the internal radiation effect, V-q, is calculated over a finite element
where the internal radiation takes place and then is coupled to the global matrix
equation as a source term. This represents a simple and direct approach. In this
way, the boundary condition on n-q. is required, which of course must satisfy the
total heat flux (g, +q,) balance along the boundary [8-10].

In the second approach, which is often taken by many researchers using the
finite volume formulations for temperature calculations, the term Vg, is integrated
out and n-q, at the element boundaries are used. If this approach is taken for the
conventional and discontinuous finite element coupling, then one would have the
following expression embedded in the conventional finite element formulation for
the heat balance equation:

f\/iV.qrgﬁdV :£Viqr.n¢d3—1;iv¢.qr dv (9.102)

Thus, this approach requires the information on g, in the interior of an element and
along the domain boundaries. By this approach, a specification of total heat flux
(n-g; and n-qc) at the boundary term is required, which is more convenient for
problems involving different phases [10]. It is noted here that V-q; is not calculated
using a numerical differentiation of g, and thus there is no loss in numerical
accuracy if V-q; is used. It is noted also that if the shape function ¢ is chosen as a
delta function, the volume term on the right hand side vanishes and the formulation
reduces to the popular finite volume formulation.

By either of these approaches, the combined heat conduction and radiation
calculations require iterative procedures. In a typical iteration process, the
temperature distribution is calculated using the conventional finite elements while
the internal radiation intensities are calculated by the discontinuous finite elements.
The iteration starts with the calculation of temperature without radiative heat
transfer. The solution of the intensity distribution, and hence the divergence of heat
fluxes, are then calculated using the temperature information. The radiation heat
flux divergence is then treated as a heating source and the temperature distribution
is updated. This process repeats itself until a convergence on temperature and
intensity is obtained.

9.8 Constant Element Approximation

As mentioned at the end of Section 9.4, the discontinuous Galerkin formulation
includes the conventional finite element and finite volume formulations. The latter
is recovered if one chooses to use the constant element formulation for the spatial
approximations. This holds true for radiative transfer problems.
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Consider a 2-D case using a triangular mesh. The treatment is identical to other
dimensional and/or other mesh cases, including the geometry of axisymmetry. Our
starting point is Equation 9.28. If a constant element is applied, then for the
element i under consideration, we have

$j=1, Vg =0and I;=1for j=1,2,3 (9.103)

Thus, the first term in Equation 9.28 vanishes. The second term becomes

NS NS
;fri dijAQI(nj-s)dQ[l];Lj max(0,—n; - 5)(1gemi — Ingj)

(9.104)
The first and the second terms on the right can also be calculated easily,
f sav [ da= gaAQ, (9.105)
A AQ
f sav [ do=sAAQ (9.106)
A AQ
The above equations can be summarized
NS
[Z Lj max(0,—n - §) + BAA | Igtemi
j=1
NS
= Lymax(0,—n ;- §)ngj + Seremi AAL (9.107)

=1

where Sgiemi IS the source term evaluated using the information at element i. The
source calculation can be done using numerical integration as stated in Section 9.4,
with one integration point rule.

Example 9.8. Use both the analytical and discontinuous finite element methods to
solve the problem of combined conduction and radiation in a 1-D slab,

Solution. This example is concerned with a combined heat transfer problem that
involves heat conduction and internal radiation. The problem is again 1-D with the
wall set at different temperatures so that heat conduction is required to predict the
temperature distribution. Here the first approach is taken to couple the
discontinuous and conventional finite element methods for the combined
calculations and the divergence of the radiation heat fluxes is treated as a
volumetric source.



418 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

We consider a stagnant, gray, non-scattering medium between black, parallel
walls. The medium has a constant thermal conductivity k and a constant absorption
(or extinction) coefficient Ky(= K¢). The medium is adiabatic (has no energy
sources or sinks), and the walls are isothermal at temperatures T, and T,. The exact
formulation of the coupled radiative and conductive transfer in this problem is
carried out as follows.

Analytic solution. The conductive heat flux normal to the slab at any location z is

g, = k3T (9.49€)
dz

From Equation 9.9 and example 9.1, the radiative flux normal to the slab at any
location is

1
@ =27 [t~ 2{q+,1E3(r)—q,2E3(rL 1)
+sgn(r—r')j;TL Eb(f')E2(|z’—r'|)dr'} (9.50¢)

where 7 = xz for x independent of wavelength and position. The energy balance
equation then becomes

9, da. _, (9.51¢)
dz dz
Making use of the Leibtnitz rule and introducing the non-dimensional
temperature T =T /T,, we obtain a nonlinear, integro-differential equation for the
temperature distribution [2],

~ ~ 1 _ LI
Nd7 =T7* 3 Ex(7) + T Ex (2, — 1) +f T4(T')El(|7_7'|)drl}
0

(9.52¢)

with boundary conditions T (0)=1 and T(z,)=T,. The parameter N is the
conduction-radiation parameter based on T,

N _KE _4k (9.53¢)
3k

where k; is the radiative conductivity. The conduction-radiation parameter is a
measure of the relative importance of energy transport by radiation and conduction
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in a gray medium. For N — O radiative transfer dominates (radiative equilibrium)
and for N — oo conduction dominates (non-participating medium).
Integrating Equation 9.52e and evaluating at =0 gives

L:_4Nd—T(T:0)+1—2T”24EE(TL)_2fLT”"(T)EZ(f)dT (9.54¢)
o’l dT 0

This expression can be integrated numerically to obtain the temperature
distribution in the slab [1, 2].

Discontinuous Galerkin Solution. The combined continuous/discontinuous finite
element method is used, as discussed in Section 9.7. The calculated temperature
distributions across the 1-D slab are depicted in Figure 9.10e as a function of
radiation numbers. Shown also in the figure are the analytical solutions taken from
Modest [1] and Siegal and Howell [2]. Once again, for the entire range of the
radiation parameter, the comparison between the analytical and numerical solutions
is excellent; validating the combined discontinuous/conventional finite element
approach for the combined conduction/radiation problem. It is noted that the
coupled thermal system, however, represents a highly nonlinear system, and
appropriate relaxation parameters are required to obtain converged results. Our
experience shows that selection of these parameters is often dependent on the
radiation numbers. For the calculations shown in Figure 9.10e, for example, a
relaxation value of 0.04 was used, when the radiation number is 0.001.
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Figure 9.10e. Dependence of temperature distribution across the slab bounded by two black
walls upon the radiation number N. Combined heat conduction and internal radiation are
considered. The parameters used for calculations: T(0) = 1, T(L) = 0.5, and T, = Thign
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Example 9.9. Obtain numerical solution of mixed convection and radiation in a 2-
D cavity.

Solution. In this example, natural convection in a simple cavity filled with a
participating medium is considered. The two side walls of the cavity are fixed at
two different temperatures, which combine with the gravitational forces to drive
the melt flow in the cavity. As a result of the melt being thermally absorbing and
emitting, internal thermal radiation plays an important role in redistributing the
thermal energy. The mathematical equations governing the mixed heat transfer
phenomena are given as follows:

V-u=0 (9.55€)
ou 2

E+U«Vu:—Vp+PrV u-PrRa(T -1 (9.56e)
%w VT =V?T -ReV-q,, (9.57¢)

where Pr=v,/a;, Ra=g,f; TnL’ /v, and Rc=n?LoTg/k;. The radiative

heat transfer in both the melt and solid is described by an integral-differential
equation, which becomes, when non-dimensionalized,

r ds Az J 4z

where (= fAL)is the optical thickness, g is the extinction coefficient and @ is the

single scattering albedo.
The divergence of the radiative heat flux in the energy balance equation can be
calculated once the radiation intensity distribution is known,

1v.9, = 40— o), - 122 [ 1(r9)da (9.59%)
T 7 4z
In the above equations, the following scale factors are used: L for length, «, /L for
velocity, L?/e; for time, T, for temperature, g, for gravity, b, for magnetic

field intensity, n2oT,+ for heat flux, and n?oT,+ /7 for radiation intensity.

To solve the above equations, appropriate boundary conditions need to be
applied. For the system under consideration, the following constraints are applied
at the boundaries:

u=0 atall boundaries;
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T=Ty atx=0; T=T; at x=1;
g.+Rcg, =0 aty=0andy=1

(128) L (1, 8|87 d Q"+ £(ry) 1 () (9.60¢)

§'n>0

Iw(erg):

where T, is the boundary temperature and ¢ is its emissivity. The unit vector i is
the surface normal pointing out of the domain.
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Figure 9.11e. Internal radiation effects on melt flow and temperature distributions (Ra=10°,
r=1.0): (a streamline and b temperature) Rc = 0, and (a streamline and b temperature)
Rc=1

The solution of the above problem is solved using the coupled discontinuous
and conventional Galerkin finite element methods, with the former for the radiative
transfer equation and the latter for other equations. The procedure follows the first
approach described in Section 9.7. The calculated results are given in Figure 9.11e,
which compares with fluid flow and temperature field distributions in the cavity
with and without internal radiation considered. Clearly, the internal radiation has a
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strong effect on flow and heat transfer in this system. When internal radiation is not
considered, both flow and temperature distributions are anti-symmetric in the
cavity. The flow is nested by two rotating vortices and the thermal boundary layers
form along the vertical sidewalls, which is the well known natural convection
phenomena in opaque fluids [16-18].

The flow and temperature distributions are sensitive to internal radiation when
the medium inside the cavity participates in the energy transfer. Due to the fourth
power law of radiation, the bulk temperature of the medium is increased. There are
also dramatic changes in temperature distributions near hot and cold walls. The
fluid near the hot wall is heated directly by the energy emitted by the high
temperature wall, while the fluid near the cold wall has to release the heat to the
low temperature wall in order to keep the energy balance within the cavity.
Consequently, the temperature distribution is no longer anti-symmetric. The
temperature gradient near the cold wall is much higher than that near the hot wall,
and the contours of temperature near the boundaries are closer and almost parallel
to the vertical walls.

Example 9.10. A Multiphysics Model for Crystal Growth

This is a full numerical model for an industrial crystal growth process. This
example is included here to show that the discontinuous and continuous finite
elements can be seamlessly integrated using the approach discussed above to
develop a comprehensive numerical model for thermal processing systems of
practical significance.

We consider in particular a process for the single crystal growth from oxide
melt. In this process the crucible is heated by Joule heating, which is induced by a
set of surrounding coils, and is responsible for melting the material contained in the
crucible through the combined mode of heat conduction, convection, and radiation.
The whole furnace is placed in a container of much larger size whose wall
temperature is controlled at a fixed value. During the growth, a seed crystal is
dipped into the melt. With the dynamic control of the thermal environment in the
furnace, a crystal grows as it is pulled from the melt. The crystal exchanges
thermal radiation with the melt surface, the crucible wall and the inner surfaces of
insulation materials, all of which are at different temperatures and exhibit different
surface emissivities. In addition, internal radiation takes place within a semi-
transparent crystal and oxide melt. The system under consideration assumes
axisymmetry. Other assumptions are given in Song et al. [17].

The mathematical description of the above problem consists of the Maxwell
equations for electromagnetic field distribution, the momentum equation for fluid
flow, the energy balance equation for heat conduction and convection, the
solid—liquid interface energy balance for the moving boundary, radiative transfer
equation for internal radiation, and the surface energy balance equation for external
surface exchange between the melt and crystal surface and the furnace walls.

The comprehensive model is developed using a variety of different numerical
methods and an iterative procedure is employed to couple these methods together.
The electromagnetic field is described by the Maxwell equations, which are solved
using a hybrid boundary element and finite element method [20]. The fluid flow,
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convection and conduction equations are solved using the conventional Galerkin
finite element method. The liquid—solid front represents a free surface unknown a
priori and is solved using the deforming finite elements. The radiative heat transfer
equation is solved using the discontinuous Galerkin method as described in this
chapter and the external radiation exchange between the melt and crystal surfaces
to the surface of the furnace is calculated using the discontinuous Galerkin
boundary element method described in Chapter 8. The iterative coupling of the
external and internal radiation calculations with the fluid flow calculations follows
the iterative procedure described in Chapter 8 and the first approach in Section 9.7,
respectively.

Vmae=1.7 cmis

Vma=1.5 cmfs

(©) (d)

Figure 9.12e. The effect of optical thickness (z) on the melt flow (a and c) and temperature
distribution (b and d) in an optical single crystal growth process
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Figure 9.12e shows the results of the effect of the melt optical thickness on the
temperature distributions in the melt and the crystal, melt streamline contours, and
the solidification shapes. The melt is considered to be totally transparent when its
optical thickness is zero, whereas it is opaque when its optical thickness tends to
infinity. It is seen that the temperature gradient in the optically thin melt decreases
as its optical thickness increases. This is attributed to the fact that the contribution
of internal radiation is significant for the optically thin melt, and consequently,
more Joule heating is required to maintain the constant radius of the crystal. The
higher temperature gradient in the melt drives a stronger melt flow by thermal
buoyancy and Marangoni-flow driving forces. As the optical thickness becomes
high enough, the melt becomes nearly opaque and the heat conduction and
convection dominate over the internal radiation. The interface shape in the
optically thin melt tends to be flatter with an increase in the optical thickness of the
melt. However, the shape becomes more deeply convex toward the melt, as the
optical thickness of the melt continuously increases. In general, the interface shape
is strongly dependent upon the temperature distributions in the melt and the crystal.
For the case under consideration, the interface exhibits a higher deflection with a
larger temperature gradient in the melt. Further calculations show that the melt
becomes practically optically opaque when the optical thickness is about 10000.
Additional information on model development and simulations can be found in
Song et al. [17].

Exercises

1. A semi-infinite, absorbing-emitting, non-scattering medium 1 m thick at
uniform temperature is in contact with a gray-diffuse wall at T,,=3000 K
and with emissivity &, =0/75. The medium is gray, and has a constant
absorption coefficient x = 0.20 cm™. Determine the net radiative heat flux
at the wall (in W/m?).

2. Obtain an expression for the temperature distribution T(y) in a stagnant,
conducting, absorbing, emitting, isotropic scattering, gray slab of thickness
L, with no internal generation in terms of the wall temperatures T,, and
emissivities & , the thermal conductivity of the medium x; the extinction
coefficient K, and L.

3. A stagnant, conducting, absorbing, emitting, scattering, gray medium of
thickness L =10 cm is heated on one side with a constant heat flux of 1.588
W/cm? The other side is maintained at a constant temperature of 500 K.
The effective (constant) thermal conductivity of the medium is 0.02 W /cm
K and the effective extinction coefficient for isotropic scattering is 1 cm ™.
Both walls have an emissivity of 0.8. Determine the temperature of the
heated wall. Compare this result with the limiting results of pure
conduction and radiation. Compare the results obtained using the two flux
(S2) method, the P; method, and the discontinuous Galerkin method.

4. Two infinite parallel plates at temperatures T; and T,, having respective
emissivities g and &, and are separated by a distance D. The space
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between them is filled with a gray medium having a constant absorption
coefficient k. Show that the temperature distribution in the medium is
given by the solution: (T*-T)/(T,* -T,)) = (6,1 -05)/(; L+ &, - -1).
Use the discontinuous Galerkin method to obtain the temperature
distribution and compare with the analytic solution.

A gray gas is contained between two parallel plates, as shown below. The
plates both have emissivity € =0.5. Plate 1 is held at a temperature T, =
1500 K, and plate 2 is at T,= 700 K. The medium between the plates is
also gray, non-scattering and has a uniform absorption coefficient of x=
0.1m™. The plate geometry is shown below.

Predict the heat flux between the surfaces (W/m?) and plot the temperature
profile [T*(a) - T, 1/(T* =T,}) in the gas with a=xx. Solve the problem
using the two-flux method.

A rectangular enclosure, infinitely long in directions normal to the cross
section shown, has the conditions and properties listed in the figure. The
enclosure is filled with an absorbing, emitting, non-scattering gray gas in
radiative equilibrium (no heat conduction or convection and no internal
sources). Find the heat flux that must be supplied to each surface to
maintain the specified temperatures. Develop a discontinuous Galerkin
finite element code for the numerical solution of the energy equation
including radiative transfer.

&,Ty
a, Ty
D=1Im = 1
a=0.5m & T
y
| 6‘4,T4

Develop a Galerkin finite element formulation for the two-dimensional
analysis of radiative heat transfer with an emitting, absorbing, and
conducting gray medium in a two-dimensional rectangular enclosure that is
infinitely long in directions normal to the cross section shown. There is no
scattering in the medium. The rectangular region has a uniform heating g™
W/m?® throughout its volume. The steady two-dimensional temperature
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8.

distribution is to be determined. For simplicity, use a grid having the same
increment size in both the x and y directions. All of the boundary walls are
black and are at the same temperature T,

.
é
,ﬁ
,ﬁ
-
,ﬁ
o
é
ﬁ

A parallel plate channel is heated with a uniform heat flux q along the
outside of both of its walls. A semi-transparent absorbing, emitting, heat
conducting medium is flowing between the walls with fully developed
Poiseuille flow having a parabolic velocity distribution u(y). The medium
has absorption coefficient a and thermal conductivity k. Thermal properties
are assumed constant. The channel wall interior surfaces are black. Set up a
discontinuous Galerkin finite element procedure to determine the
distribution of temperature within the medium across the channel.
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10

Free and Moving Boundary Problems

Many different thermal fluids systems involve moving interfaces or internal
boundaries. An important feature these systems often have in common is the
presence, in the mathematical model, of an initially unknown (free) boundary or a
boundary that moves throughout the analysis, the determination of which is an
important part of the solution procedure. Practical examples involving a moving
boundary include, but are not limited to, piston-driven flows, extrusion of liquids,
bubble and droplet deformation and oscillation, solidification, epitaxial growth of
thin films, electrodeposition, glass forming and coating of solid substrates. The
effect of these moving interfaces often contributes significantly to the physics of
the problems and it is thus essential to solve these problems accurately.

Free and moving boundary problems are challenging owing to the complexity
associated with the often severely deformed boundaries and/or broken surfaces,
multiple time and length scales, and the nonlinearity resulting from the coupling of
the interface dynamics with the dynamics of the material. Only in special cases can
problems of this type be solved analytically. An accurate mathematical description
of these problems of practical significance usually requires numerical solution.
Ideally one would like to track the moving boundary as a sharp front (allowing
discontinuities in quantities such as stress and energy across the interface) without
smearing the information at the front. Also, one would like to solve the field
equations within each region separated by the interfaces with a satisfactory
accuracy. If the interfaces become multiply connected, it is desirable to follow the
evolution of the interfaces through such topological changes.

Numerous numerical techniques have been developed for solving free and
moving boundary problems, because of their great fundamental and practical
signficance. The computational approaches in general fall into two main
categories: (a) moving grid methods and (b) fixed grid methods. Floryan and
Rasmussen [1] presented a survey of these methods. Recent advances in the area
are discussed by Scardovelli and Zaleski [2]. A comprehensive review of level set
methods and their applications, which have become increasingly popular for free
and moving boundary problems, is given by Sethian and Smeraka [3]. Use of the
phase field theory to model the moving surface phenomena driven by local
curvature and surface energy is reviewed by Anderson and McFadden [4].
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This chapter discusses the numerical solution of free surface and moving
boundary problems within the discontinuous finite element setting. A description
of surface geometry and the differential and integral relations for curved surfaces
developed from the theory of differential geometry are presented first. A derivation
of the boundary conditions at moving boundaries is given within the framework of
thermodynamics and fluid mechanics, which is valuable in appreciating both the
physics governing these boundaries and the development of numerical schemes for
the solution of these problems. These derivations rarely appear in a single
textbook. This is followed by a discussion of both the moving grid and the fixed
grid methods for free and moving boundary problems; these methods have been
successfully implemented in the framework of other numerical methods such as
finite volumes and finite elements. The procedures for incorporating these methods
into the discontinuous finite element formulations are given. Recently, the phase
field theory has received considerable attention for modeling microstructures and
free/moving boundary problems. Unlike the numerical methods, which are
developed to enforce the interface boundary conditions, the phase field model is
developed based on the microscopic physics that governs the interfacial
phenomena. The discontinuous finite element formulation of the phase field model
for 1-D, 2-D and 3-D simulation of microstructure evolution in solidification
systems is presented. The discontinuous finite element solution of coupled flow,
thermal and phase field equations is discussed. Discontinuous algorithms are also
presented for numerical analysis of grain misorientation and crystal lattice
distortions as the source of the driving force for grain boundary interaction during
polycrystalline liquid—solid transformation.

10.1 Free and Moving Boundaries

In many fluid dynamics problems, the computational domain is restricted by a free
or moving surface. A problem involving a free and a moving boundary is shown in
Figure 10.1. An important feature of this type of problem is that the shape of the
surface is unknown a priori as it is dependent upon the flow and temperature
fields. The solution of these problems demands that the free/moving surface and
the flow and thermal fields are determined simultaneously during a computational
process. The equations for fluid flow and thermal transport defined in Chapter 1
continue to apply in the case where free/moving boundaries are present. Because
the position of the moving boundaries is not known before the solution, it is
necessary to impose additional boundary conditions in order to determine the shape
of the moving boundaries. While these boundary conditions may vary from
problem to problem, the general requirement is that at the moving boundary, the
kinematic and mechanical equilibrium conditions must be satisfied for fluid flow,
and the energy and species conditions are met if the thermal and concentration
fields are involved. The boundary conditions for moving and free surfaces were
summarized in Section 1.6. They will be revisited in some detail in Section 10.3.

In the literature, a free surface is referred to as the interface between a gas and a
liquid, as illustrated by the boundary between the gas and liquid 2 in Figure 10.1.
This designation comes from the large difference in the densities of the gas and the
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liquid (e.g., the density ratio for water and air is ~1000). A consequence of this
large difference in density is that the inertia of the gas phase may be ignored in
comparison with that of the liquid. Thus, the liquid flows independently, or freely,
with respect to the gas and the free surface is unconstrained to move. The only
influence of the gas is the pressure it exerts on the liquid surface.

Moving boundary Liquid 2
51
Ny
0/
Q Liquid 1

VI S S Y

Figure 10.1. A two fluid system involving moving boundaries: a free surface defined by y,
and an internal moving boundary by

A moving boundary, on the other hand, is referred to as the interface between
phases of comparable densities, such as a phase boundary between a solid and a
liquid or an internal moving boundary between two different liquids. In many
studies, a free surface is also considered as a moving boundary or vice versa. This
view is also taken in this book, because the numerical technique is essentially the
same for both free and moving boundaries. A distinction between a free surface
and a moving boundary to a large extent is arbitrary. However, they share a
common feature, that is, the position of the interface or boundary, either free or
moving, is unknown a priori and must be part of the solution.

10.2 Basic Relations for a Curved Surface
In this section, the basic relations for a curved surface are discussed. These include
both the geometric relations and the differential and integral relations for curved

surfaces. These relations are useful in describing the boundary conditions at a
moving boundary and in developing numerical algorithms.

10.2.1 Description of a Surface

A moving boundary in essence is a surface in motion. Many different ways may be
used to define the geometry of a moving boundary. The most common approach is
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to define a 3-D surface by two surface parameters as shown in Figure 10.2. By this
definition, a surface is traced out by a position vector, r,

r=r(x(&.n).y(&mn).2(5.n)) (10.1)

Clearly, a surface is mapped out by the above equation as & and 7 move on the
surface.

Curved surface

Figure 10.2. Local (& n, n) and global (x, y, z) coordinates for a curved surface

As shown in Figure 10.2, the global Cartesian coordinates (x, y, z) are a
function of the local coordinates (&, 7, n), which are erected on the surface. For the
convenience of subsequent discussion, we define the following geometric
parameters (see also Section 3.6.2),

E=r;r.; F=r.r,; G=r,,T,;
L=rg-n; M=rg, -n; N=r,, n;
H=EG-F?;  ¢&=r.IVE; A=r.IVG (10.2)

where subscript “,” denotes the differentiation, e.g., r,, = or/on, and the hat “*” on
£and n means the unit vector along the direction of £and 7, respectively.

With the above notations, the unit normal vector to the surface is calculated by
the following expression,

G Dty ety ned,
lrxr|  JEG_F?2 H,

(10.3)
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In a surface coordinate system, the normal vector varies along the surface. The
tangential derivatives of the normal vector, which appear in various surface
relations, are calculated by

_FM -GL FL-EM

, r,.+ r, 10.4a

é Hl é H1 n ( )

- FN -GM ot FM —EN ., (10.4b)
Hl Hl

An important geometric property of the surface is the mean curvature, H, which
is calculated by the following expression [5, 6]:

_EN-2MF +LG

2H=-V -n= 10.5
? EG-F?2 (10)

where Vs is the surface vector differential operator [5] and its definition is
discussed in the next section (see Equation 10.7).

For many applications, a surface may be more conveniently defined as a
function of height, h = f(x, y, t). In this definition of a moving boundary, the
surface normal and curvature can be readily calculated once the expression for f is
known. For convenience, the formulae for the surface normal and the curvature of
various common surfaces are listed in Table 10.1. These functions are useful when
the moving boundary is single-valued.

In the fluid mechanics literature, a moving boundary is also denoted by a
phase-characteristic function x( x, y, z, t) with x = 1 in phase 1 and ¢y = 0 in phase 2
[2]. The advantage of this generic definition is that it is valid for both single-valued
and multiple-valued surfaces.

Example 10.1. Like vectors, we may define a curvature vector k for a curve as
follows:

_ s

K=—
ds

(10.1¢)

which points to the origin of the curvature as shown for the curve in Figure 10.1e.
This definition is independent of the orientation of the curve. The magnitude of the
curvature is calculated by

|| = K| = (10.2¢)

ds|
ds

which is related to the radius of curvature of the curve R by
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Table 10.1. List of functions, normals and curvatures for various surfaces

Function Normal, n = Curvature, 2H =
y—f(x)=0 —f . fz
i —m [+ 1,252
% 2=fy) =0 ) (f -y P+, 2) 4 Ty (14 1,2
o NI —2f ey
F[L+ 2+ f 2132
2=1(r0)=0 | (—f,;—f1f,1)gt gt +f (g,
9=yt 2+ (fy/)2+1 1207 ) 0
z-f(r)=0 (-f D) fy . frr
P2+ P21 yJ(f,2 1)
g[r-f@=0 (-f2D) ff, [+ f,°]
Ol r—f@zo)=0 G—folfi-f,)d 7 —(fd)t+ f*l((fd)*1 fyg)ﬂ
d=\14(f,16)% 41,7 +(d_1fyz)vz
r-f@0)=0 | @ttt h? 2421 ,° _f_l(t_gj
b=y1+(f,/ )2 (bf)° bf ) 5
r=10.0)=0 @1 -t 1, ) 2 (etfysing, (e7%f,),
- ) f > | e fsing fsin?@
% e=\/1+(f,9/f) +(T¢r]10)
&l r-f@)=0 @G-folf)a™h; (2f2+ f,%)sing (af ysind) »
A l—1+(f,9/f)2 af 3sin@ f2sing

R=— (10.3e)
Calculate the surface divergence of the normal vector for the curve shown in
Figure 10.1e and discuss the meaning of the signs in terms of curvature vector.

Solution. With the above definitions for the curvature, we may link k to the
outnormal for the curve as shown in Figure 10.1e,

k = x(s)n(s) (10.4e)
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where n(s) (such as ny(s) and ny(s) as shown in Figure 10.1e) is the outnormal of
the curve at any point on the curve. Its direction is defined by the right-hand rule
such that the outnormal points to the right when one walks along the curve in the
direction of s as marked in the figure. This is consistent with the line integral that
the left side is the interior of the integral domain when one walks along the s
direction. From Equation 10.4e, it is clear that x can be either negative or positive,
depending on the relative orientation between k and n(s). If k and n(s) have the
same direction, x = |K|; on the other hand, if k is opposite to n(s), then x=—|k|.

y/\ An

Origin of
curvature

N

n
n, AN

Concave K ,
L/ ds M
1% N
Origin of ny Convex
curvature ny' |

An’

X
Figure 10.1e. A 2-D curve with local normals and curvature vectors
By definition, the curvature can also be calculated by the surface divergence of

the normal vector, x = —V¢n. For a concave curve, one has from the geometric
relation shown in Figure 10.1e,

dn_, 1.A0-t

1
V. .n=t- 1
s =t """ 20.R R

-k (10.5€)

The minus sign of x here is merely an indication that the curvature vector Kk is
opposite to n(s) or k = xkn(s) = —(L/R)n(s).
For a convex curve, on the other hand, one can show that

not.dn_g dCn)_  1Aft_ 1
V,-n=t ds_s e t “OR_ R K (10.6e)

The minus sign of xin this case represents the fact that xis positive and K is in the
same direction as n(s), or k = kn(s) = (1/R)n(s).

From the above two equations, we see that the radius of curvature for a curve
can also be calculated by the following expression:
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1

—-4v 10.7e

R ds ( )
This relation will be used in Section 10.3.2 for deriving stress balance relations at a

moving interface.
By definition, the Gaussian mean curvature for a curve is given by

2H =« (10.8e)

which may be positive or negative in order to be consistent with .
This description should be valid for a 3-D surface, where the surface curvature
or Gaussian mean curvature is given by the following relation:

with x; and x, being the two principal curvatures of the surface.

10.2.2 Differential and Integral Relations for Curved Surfaces

Some differential and integral relations developed in the area of differential
geometry for a curved surface are useful for the description of moving boundary
problems. These relations are briefly discussed here in vector notations. Detailed
derivations of these relations, their tensor representations including the use of the
Christoffel symbols and their applications to flows in a thin surface layer can be
found in [5-7].

Perhaps a good starting point for the subject is the tangential derivative or
surface gradient on a curved surface, which is denoted by V¢ = t-V. Its use for
general surface element calculations was discussed in Section 3.6.2. The surface
gradient is also related to the spatial gradient as follows:

V,=V-n(n-V)=(I-nn)-V (10.6)

where | is the unit tensor, I; = &;. A proof of this relation is straightforward and is
left as an exercise at the end of the chapter. Written in surface coordinates only, the
surface vector differential operator becomes

Vsz%rg(Gi—FiJ+%rn(—Fi+ Eij (10.7)
HZ2 “\ o0& an) H2 o on

For a special case where the two parametric curves (& 7) on the surface are
perpendicular, F = 0 and H,?= EG — F = EG, whence we have [5]

1 o 1 0

Vo==F,—+=r, — 10.8
STE fos G Mon (108)
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A vector may be represented using the local coordinates (& 7, n) erected on a
curved surface. Let this vector be V. When expressed in the local coordinate
system, V takes the form of

V =Ver 4V, 1, +Von (10.9)

m
The surface divergence of this vector can be written as
Ve V=V Vel )+ Vg (V, 1, )+ Vg (Vi) (10.10)

Through vector analysis and the use of relations defined in Equation 10.2, it is
straightforward to show that

~

o

on

1 0 1
Ve (Ver,:) :——(H1V§)3 Ve (V,r,) ™
1

e (Hv,) o1

The last term in Equation 10.10 has an important geometric implication and its
expansion is given in detail here,

1 o0& on
. 12rﬂ_[_Fa(\/nn)+Ea(vnn)j
1 ¢ on
v Y,

:—H"2 re .(Gn“,; —Fny,])+—H”2 r, .(Env,] —Fnyé)Jrn.VSVn

1 1
.y, ENZ2FM+GL _ 5y (10.12)

H,>

where use has been made of the relation, n-V,= 0 and those given in Equation 10.2.
From the above equation, we have the vector identity for the surface divergence
operator,

Ve-(V,n)=V,Vi-n+n-VV, (10.13)

If we further set V, = 1, then we have the well known expression for surface
curvature upon combining Equations 10.12 and 10.13:

V,-n=-—2H (10.14)

which is the relation that has been most frequently quoted in the literature on free
surface calculations.
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Another vector identity for surface gradient is frequently used in surface related
calculations,

V.- (UxV)=V-V,xU-U-V xV (10.15)

which is useful for deriving the Stokes theorem on a curved surface [6].

@)

Solid Surface

(b)

Figure 10.3. Illutration of relations for curved surfaces, n, m and t are perpendicular to each
other and form a right-hand system: n = m x t: (a) a 3-D surface and (b) a 2-D curve and the
definition of contact angle &

Some integral relations derived for solid geometry have their counterparts in
the surface differential geometry. One often-used relation is the surface divergence
theorem,

f Vs-VdS:f m-VdF+f (V.-mn-Vds (10.16)
S JS S

It is important to note that the second term on the right of Equation 10.16 is an
extra term arising from a curved surface, which shows the curvature contribution to
the continuity. Here m is a unit vector normal to the curve bounding the surface
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and is tangential to the surface. In this way, m is also related to the contact angles.
A contact angle &is defined as the angle between two of the interfaces at the three-
phase line of contact, cosd =m-A. The relation between n and m is shown in Figure
10.3 for both 2-D and 3-D cases.

For a plane surface, n is not a function of (¢, 7) and the curvature of the surface
is zero or V¢n= -2H=0. Therefore, for a plane surface, the following relation is
obtained:

f Vs-VdS:f m-Vdr (10.17)
S dS

which is nothing but the well known Gaussian divergence theorem for a 2-D
coordinate system.

Some very useful relations can also be derived from Equation 10.15. If we let V
= ¢c, ¢ being a constant vector, then V¢V = ¢V, -V + ¢V, whence we have the
following relation:

j;c-vsqﬁds:LSm-ch+j;(Vs-n)¢n-cdS (10.18)

This relation may be employed to project the curvature effect onto a plane surface;
the technique is sometimes used in a deforming grid method to satisfy the normal
stress balance condition along the moving interface [8]. From Equation 10.17 and
noticing that c is an arbitrary constant vector, one can easily deduce the following
vector relation:

j;vs¢dS:J;S¢mdF+fs(Vs-n)¢ndS (10.19)

If ¢ is chosen as a scalar constant, then we can convert the surface integral for a
curvature calculation into a line integral along the curve bounding the surface,

mdr=— f (V. -n)nds (10.20)
oS S

This relation is considered useful for imposing the boundary conditions along an
interface for the discontinuous formulation using piecewise constant approximation
or finite volume method [9].

The Stokes curl theorem for a curved surface is now considered. By taking V =
C, ¢ being a constant vector, and substituting it into Equation 10.14, we have the
following relation upon the use of the divergence theorem:

c-fVSdeS:c- medF+c~f(V-n)ndeS (10.21)
S S

S
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The fact that ¢ is a constant vector leads immediately to the Stokes theorem for a
curved surface,

stdeS:f medr+f(v-n)n><Uds (10.22)
S oS S

e

Once again, we see that an extra term arises from the effect of curvature. For a
plane surface, the second term on the right vanishes and the relation becomes the
well known Stokes theorem for a 2-D system.

A choice of V = ¢V would give us the following differential and integral
relations, when the divergence theorem is used,

V (Vw)=Vp -V +V y (10.23)
[ Ty 99 Fpyas
_ j;sqﬁm-vst//dl" +fs¢(VS NV dS (10.24)
Since n -V =0, n being perpendicular to V, we have
fs (Ved- Ve + ¢V 2p)dS = f gm-Vpar (10.25)
Interchanging ¢ and  in Equation 10.24 yields the following relation:
fs (Ve Vo +wV2g)dS
_ fasy/m-vsqﬁdl" +fsyx(vs NV pdS (10.26)

Subtracting Equations 10.26 from 10.24, we have Green’s theorem for a curved
surface,

JL 69w —pvigas= [ m-@Vg-gVardr (10.27)
In particular, if w is a constant, one has the following simplified relation:
f V2pdS— f m.-V.4dT (10.28)
S S

This is again the Green theorem for a 2-D coordinate system, which is known from
calculus textbooks.
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It is noted that in the above formulae, Vi is a vector tangential to the surface,
and this choice causes the curvature term to vanish. If an arbitrary vector V is
chosen to replace Vs, then the curvature contributions will need to be included.

10.3 Physical Constraints at a Moving Boundary

We now discuss physical constaints imposed on a moving boundary, which lead to
the kinematic, stress, and thermal conditions at the boundary. These conditions are
required to determine the moving boundaries and the field variables during the
solution phase.

10.3.1 Kinematic Conditions at a Moving Boundary

In Chapter 7, the Rankine—Hugoniot condition was derived for a discontinuous
boundary caused by a shock wave. This relation is also applicable here for a
moving boundary. Let us assume that the interface moves at a velocity U with its
normal component being U, = U-n. Here n is the outnormal of the interface point
from phase 1 to phase 2. In the case where there is no phase change, the interface
velocity satisfies the following continuity relation:

U,=U;-N=U,-Nn (10.29)

In the case of phase change, say, evaporation from the liquid to vapor phase,
there may be a mass flow per unit surface m from phase 1 to phase 2. Written in
the frame of reference to the moving boundary, we have the relative velocity u’ =
u-n — U,. Applying the mass conservation over a different control volume across
the interface, as was done in Chapter 7, we have the following relation,

P’y = pou'y =M (10.30)
or in an Eulerian frame of reference,
pl(ul'n_un)ZPZ(UZ'n_Un)Zm (10.31)
In the case of m =0, one recovers Equation 10.29 immediately.
The tangential velocity is continuous across a moving boundary due to the no-
slip boundary condition.
For a person who sits on and moves along with the interface, he/she sees no

rate change of the interface, dy/dt = 0, with  being the interface parameter.
Relating this Lagrangian description to an Eulerian description, one has

—~="24u-Vy=0 (10.32)



442 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

The above equation should be interpreted in a weak form in that the derivatives
of the discontinuous function y are singular or do not exist [2]. In this weak
formulation, the equations are interpreted by the spatial integrals of the equations.
Equation 10.32 may be further written as

a aZ+un 0; with y=—— d and n:& (10.33)

dt ot [Vl Vx|

Clearly, this equation represents volume evolution and corresponds to the interface
motion with velocity u.

10.3.2 Stress Conditions at a Moving Interface

Stresses develop in moving fluids and are a function of surface normal. A stress
tensor o has 9 components, or gy ( i,j =1,2,3). Hence, o-n is the force acting on the
surface whose normal is n. This force in general is in a different direction from
normal and can be deomposed into tangential and normal components: t-c-n and
n-c-n. A fluid element on a moving interface cannot exprerience an infinite
acceleration. Consequently, the stresses must be continuous across the interface
plus an additional surface force such as surface tension.

For a curved surface, the surface tension contributes to the stress balance to
both the normal and tagential directions. This is shown in Figure 10.4a.

To derive the needed relation, we consider a differential surface element as
shown in Figure 10.4b. The balance of the normal stress balance across the
interface yields the following relation along Sy:

déy d49y
-0, -d5,dS, +o, -dS,dS, +2ydS, sm( j+27dS sin — =0
(10.34)

where y= y(Sy, S,) is the surface tension and in writing the above balance equation,
we have combined the contributions in the normal direction,

ya 0 SS90 [ 0y S 1gn90 5 Gin 9% (1035
2s, 2 2 s, 2 )" 2 2

X X

A similar equation is derived for the variation along S,. Furthermore, if dé is
small, sin(d&/2) ~ d6/2, whence we obtain the following equation:

do
— 0y + O, + 7/[ gzx +ds—yJ =0 (10.36)
X y

Making use of the definition of curvature (see Example 10.1), we have the final
expression for the normal stress balance across the moving interface,
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Figure 10.4. Stress balance on a curved surface: (a) overall balance, (b) normal stress
balance and (c) tangential stress balance

1 1

—0, +0, =y —+— (10.37)
1 2 Rx y

We now consider the balance of the tangential stress in the x direction,

1 0 do
(Txn,z _Txn,l)dsxdsy +(7+Edsx 537 ]dsy COSTX

X

1 oy do,
—| y==ds dS, cos—=*=0 10.38
[7 2 X3S J ¥ (10.3)
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where zis the tangential (or shear) stress. Taking the differential quantities to their
limit of zero gives the expression required for the tangential stress in the x
direction,

0
Tyno = Txna = asyx (10.39)
Similarly, we have the tangential stress balance in the y direction,
o (10.40)

T 2 -7 1= T
yn, yn, asy

The above relations for stress balance (i.e., Equations 10.37-10.40) can be
summarized and written in vector notation:

6,-N—-6,-n=yRT+RHN+V y (10.41a)
or in tensor notation,
0yjiNj — Og;N; = 7R+ Ry, +(7i—nmnjr.;) (10.41b)

where we have used the relation: V¢ = Vy — n(n-Vy) and n is the normal point
from medium 1 to medium 2.
If for a free surface, that is, medium 1 is a gas, then o, = — P,d;. Thus we have
-6, n=Pn+yRI+RIN+Vy -y (10.42a)
or

In particular, for a spherical droplet with a constant surface tension and with flow
stress neglected,

P-P, =2)R! (10.43)
which is the well known Laplace—Young relation [10].

10.3.3 Thermal Conditions at a Moving Interface

At a moving boundary, the thermal condition is derived based on the energy
balance across the moving interface. Following exactly the same procedure as
shown above for the mechanical balance, we obtain the energy balance statement
across the moving interphase:
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Upn —don = =Pl -Npp (10.44)

where gy, is the heat flux into the interface from phase 1, g, is the heat flux
leaving the interface from phase 2, L, is the heat released per unit mass at the
boundary when phase 2 is converted to phase 1, uy; is the velocity of the interface
with which phase 1 moves into phase 2 and nj, points from phase 1 to phase 2.
Note that pyus-ny; is the mass of phase 1 produced per unit surface per unit time at
the moving boundary.
Written explicitly for a phase change boundary, the above equation becomes
Ox 1
n-k,VT; —n-k,VT, = p1Lyuy -n=—p; Ly e (10.45)

where Qin=-n-kiVT; and n=ny, have been substituted into Equation 10.44 and
Equation 10.33 has been used.

To be in thermal equilibrium, the temperature must be the same at the interface,
and hence we have the following relation:

T, =T,=T (10.46)

where T; is the interface temperature, which may depend on the concentration or
other surface-related quantities at the interface.

When the interface is a boundary between two different phases, T; = Ty, is the
temperature at which phase transformation takes place. Here subscript ph stands
for phase. From thermodynamics considerations, Tp, is a function of pressure,
concentration and curvature of the interface. Although insignificant for most
thermal fluids applications, the curvature effect becomes conspicuous for
microscale problems, and is responsible for the interfacially driven phenomena
such as solidification microstructure formation and spinodal decomposition.

We consider a phase transformation of liquid to solid. The transformation may
be denoted by the following reaction:

L, < S, (10.47)

where L, stands for liquid and S for solid. An analysis of the Gibbs free energy at
the phase interface shows that the phase transformation temperature T, is given by
[11].

Ty =Tpn =Toh +M.CL —2HI 6 (0) -V, / u(0)+g.p (10.48)

where Tpho is the phase transformation temperature of a pure material at a flat
surface and standard pressure (1 atm). Also, m_ is the slope of the liquidus line in a
phase diagram, C_ is the liquid concentration, g_ is the derivative of the
temperature with respect to the pressure, and p is the pressure relative to the
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standard pressure. In addition, H is the curvature, 75 = /@) T /(pL) is the surface
energy coefficient, v, the interfacial velocity in the normal direction, which is
positive with the normal point from solid to liquid for a solid-liquid phase
transformation, () is the interfacial mobility, which is related to the molecular
kinetic coefficient, and & denotes the orientation of the crystal being grown from

the liquid. The curvature term represents the classical Gibbs—Thompson effect [11,
35].

For many thermal fluids systems, mass transfer is also involved. The boundary
conditions at a moving interface involving species transport can be obtained in a
manner similar to Equation 10.44 by considering the species conservation across
the moving interface.

Example 10.2. Derive the Gibbs—Thompson relation and the interfacial kinetic
effect term in Equation 10.48 for a sphere undergoing solidification. Assume that
the properties of the liquid and the solid are the same and neglect the concentration
effect.

Solution. We consider the Gibbs—Thompson relation first. From the definition of
the Gibbs free energy, we have for the liquid and solid phases,

G =H,-ST; Gy=H,-ST (10.10e)

where G stands for the Gibbs free energy, H for enthalpy, and S for entropy, and
subscripts denote the liquid and the solid respectively.

For solidification on a planar surface, the liquid and the solid are at the
thermodynamic equilibrium, and thus G, = G. Consequently, we have

H, -H h -h L
g1 s _ (10.11¢)
S-Sy s;—sg As

T
where the lower case h and s denote the enthalpy and entropy measured per unit
mass.

For solidification on a curved surface, an excessive energy is required to
overcome the surface energy (tension) effect to create a near surface. The increase
in the Gibbs free energy for the growth of a layer of solid with thickness AR upon a
spherical solid, due to the presence of the curvature, has to taken into account the
surface energy required to growth the layer. Then the total Gibbs free energy
change is thus given by

AG =G, -G = (L—AST;) p4rR?AR +87RARy (10.12¢)

The y term means the excessive energy required to create the new surface. At the
equilibrium, AG = 0, whence we have the following result:
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T, =T, -2y I(RpAs) =T,, — 2HI & (10.13¢)

where 7=y A4s=yTy/(oL). This is the well known Gibbs—Thompson relation

Let us now consider the kinetic term. This term arises from the non-equilibrium
effect at the interface between the solid and liquid. A non-equilibrium condition
exists at the interface, because any motion of the interface requires a driving force
at the interface, which causes departure from local equilibrium. This driving force
is provided by the local kinetic motion of the molecules that go into and out of the
liquid phase. The net rate of atomic jumps across the interface measures the growth
rate due to the balance between the molecular attachment and detachment. This
rate represents the growth of the solid and is calculated by the following relation:

vV, =V, [1— exp(— iG_l"_" D (10.14e)
gli

where Ry is the gas constant. The free energy favors the growth of the solid phase
for solidification, and is calculated by the following expression,

where subscript M denotes quantities per unit mole and AT=T7;, — 7; is the Kinetic
undercooling. Since the undercooling is small, we may expand the exponential
term, and thus we have from Equation 10.14e

AS AT

v, anOLMJ (10.16€)

R, T
g'm

where use has been made of 7, ~ 7;. Rearranging, we have the expression,

AS VooR,T
To=T, v, —om | Yo | Tn0Tgm (10.17¢)
VooRgTn | 4 ASy,

We note that in general, yand x are a function of crystal orientations.

10.4 Moving Grids vs. Fixed Grids for Numerical Solutions

We now turn our attention to the numerical algorithms for the solution of moving
boundary problems. Both the moving and fixed grid methods have been developed
to solve free surface problems [1, 2]. The moving grid method is also called the
Lagrangian method, whereas the fixed grid method is referred to as the Eulerian
method. There are advantages and limitations associated with these methods.
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In moving grid methods, the field equations are solved on a mesh that moves in
accordance with the moving boundary, and the interfaces are represented by
continuously updated discretization and/or remeshing. In a typical finite element
algorithm using the moving grid technique, the moving or free surface shapes are
the boundaries of separate flow regions, and the change of these shapes is
constantly traced by deforming the elements in each of the regions. With the
moving grids, boundary conditions at a moving interface are applied at the exact
location of the interface. The moving grid approach provides an accurate account
of the shape morphology but is limited to relatively simple shapes.

The fixed grid approach is based on the incorporation of the interface boundary
conditions as sources in the momentum and energy equations. For example, in the
case of solidification problems, the release of the latent heat can be incorporated
into the source for the energy balance equation. In this approach, mesh is not
deformed. Different flow regions are modeled by different material properties.
There are different Eulerian approaches for moving boundary problems; the
difference mainly lies in the way in which the interface is evolved and interpolated.
Two popular and relatively straightforward approaches are the volume of fluid
(VOF) and the marker in a cell (MAC) methods. One other approach is the level
set method, where the interfaces are implicitly defined as the zero level set of a
continuous function. This function is updated in order to capture the motion of the
interfaces. A major advantage of the fixed grid approach is that it can handle
complex geometry of free and moving surfaces with ease. Since the boundary
conditions at a moving boundary are included in the governing transport equations,
a fixed grid method leads to the smearing of boundary information. With extremely
fine grids, however, the fixed grid techniques may also match the accuracy of the
Lagrangian grid method.

Both the moving and fixed grid approaches can be incorporated into a
discontinuous finite element formulation for moving boundary problems. In the
next two sections, we discuss the basic ideas of the moving and fixed grid methods
and the use of these methods in a discontinuous finite element setting for the
numerical solution of problems involving free surfaces, internal moving interfaces
and phase change boundaries.

10.5 Moving Grid Methods

In this approach, a free surface or moving boundary is tracked by constructing a
Lagrangian grid that is embedded in and moves with the boundary. Because the
grid and fluid move together, the grid is made to explicitly track the free surface or
the moving boundary.

The use of moving grids to solve thermal and fluid flow problems is not
entirely new. In Section 7.4, the arbitrary Lagrangian—Eulerian (ALE) formulation
was introduced for computational compressible fluid dynamics involving shock
waves and other discontinuities. The same formulation has also been applied to
solve moving boundary problems involving incompressible fluid flows and flow
structure interactions [12—14]. For modeling of geometrically complicated moving
boundaries, a costly remeshing procedure is required with the Lagrangian approach
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[15]. Most moving grid methods are applied to the surfaces of relatively simple
geometry. To reduce the cost of remeshing, a simple and yet effective grid-moving
strategy is employed, which may be considered as a special implementation of the
ALE formulation [16]. It is noted that the moving grid technique provides the most
precise means to exactly locate the interface positions, with the boundary
conditions precisely applied along these boundaries. This is desirable for the
problems where a precise knowledge of the moving boundary shapes is required.
One such case is the deformation of a single droplet by electric forces (see Section
12.6). We consider below the moving grid techniques and their application within
the framework of the discontinuous fintie element formulations for numerical
solution of two types of commonly encountered moving boundary problems: (a)
moving boundaries between fluids and (b) interphase boundary between two
phases.

10.5.1 Moving Boundaries Between Fluids

We consider a fluid flow system consisting of two immiscible fluids and a gas
phase as shown in Figure 10.1. There two moving boundaries exist, with one
marking the interface (i.e., free surface) between the liquid and the gas, and the
other the interface between the two liquids. Further we assume that the fluids are
both incompressible and isothermal. The temperature effects can be readily
incorporated if needed. In reference to Figure 10.1, the mathematical description of
the problem is given by the following equations:

V'Uj =0 eﬂlUQZ (10.49)
ou |
p?_i_puj.Vuj :_ij +V-1+F EQIUQZ (1050)

where j (= 1, 2) refers to the two fluids. The solution of above fluid flow equations
may be obtained by applying the appropriate boundary conditions discussed in
Section 10.3. For the problem being considered, these conditions are expressed by
the following equations:

B
£12 Uy V=0 €QN0, (10.51)
Ny-6,-Ny = —Pamp +2Hy, €Q2 Qg (10.52)
t, 6, Ny =V, €Qy(1Qs (10.53)
01 Vg =00, vy =0 € NQ (10.54)
at +U - Zfl_T'HJZ' X1 = 1 2 :
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n-6,-N =N -6,-N =2Hy, €NQ, (10.55)
-0t -6, N =Vy, €NQ (10.56)
nyx(U;-u,)=0 €Q;NQ, (10.57)
f v =V, cQ,UQ, (10.58)
040,

where y; represents the moving boundary, Vj is the initial volume of the fluids, and
o = — pn + 1 is the stress tensor. Note that Equation 10.54 combines Equations
10.29 and 10.32.

The constraint of the volume conservation (i.e., Equation 10.58) means that the
total mass remains unchanged for a closed system. This constraint is added to the
system of equations and usually results in a unique additive pressure constant that
satisifes the mass conservation of a constraned system. We note that this constraint
applies to the steady state flows. In transient flows (with no net inflow or outflow),
the volume is conserved naturally through initial conditions and problem
definition.

The basic idea of a moving grid method is such that the nodes (or grid points)
on a moving surface move at the same velocity and remain on the moving surface
by deforming the computational grids. Since the nodes always track the moving
interface, the method is also called the front tracking technique. To avoid mesh
distortion, the nodes in certain regions are also allowed to move during
calculations. One simple way of deforming the mesh is illustrated in Figure 10.5,
where nodes in the mesh are constrained to move in a designated direction.

Since the moving boundaries are unknown a priori, the coordinates of the
boundaries are constructed from the finite element interpolation basis functions,
just as the variables are interpolated using the shape functions,

x:;xims); y:;ymﬁ,(s); z:;zims) (10.59)

where s is the surface coordinates and n. is the number of nodes per each element
lying along the moving boundary. During the calculations, (x;, Vi, z;) is solved as
part of the final solution and thus is updated at each time step.

In writing Equation 10.50, the time derivative is the Eulerian time derivative:
the nodal field values (i.e., U, y;) are for nodes fixed in space. With a moving grid
algorithm, the nodes are allowed to move so that the geometry of the moving
boundary is precisely tracked. Consequently, these nodes are not fixed in the
Eulerain frame of reference. Since the nodes are moved in certain designated
directions so as to allow the instant positions of these nodes to be monitored, they
are not fixed in the Lagrangian frame of reference carried by the fluid particles.
Thus, the time derivative in Equation 10.50 must be transformed to time
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derivatives that follow the moving nodes in the designated directions. This is
essentially the mixed Lagrangian—Eulerian description discussed in Section 7.4.

The required transformation between the two time derivatives is given by the
following relation:

S _dl _0 %y (10.60)
st dt, ot ot

where X, is the coordinates of a node point in the moving-node region, V is the
spatial derivative with respect to the Eulerian frame of reference and o/ét is the
Eulerian time derivative. This is precisely the same equation obtained by
combining Equations 7.80 and 7.81 and identifying ox/ct as v in Equation 7.85,
which is the velocity observed at a moving node. Consequently, to account for the
effect of grid movement, the governing equations need to be modified only by the
following substitution:

Free surface Node-moving

Internal moving

boundary \

Figure 10.5. Front tracking of moving and free boundaries using the Lagrangian method.
The curved lines are grid lines in the moving mesh region and straightlines are non-moving
grid lines. Dash lines are grid lines at t = t, which are moved to solid curves at t =t + At.
Note that all the nodes within the moving grid region, which in this case is defined by the
free and the internal moving boundaries, are moved as so to miminize grid distortion. Here,
nodes in the moving grid region are constrained to move in designated node-moving
directions
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0 5 Ky
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o & ot

(10.61)

The treatment of these conditions at the non-moving (or fixed) boundaries is
exactly the same as discussed in Chapter 6. The conditions at the moving
boundaries, however, need to be added to the discretized momentum equations for
these fluids. To incorporate the moving boundary conditions in a discontinuous
finite element formulation, we consider a pair of elements that share a common
moving surface as shown in Figure 10.6. Let us assume that the boundary is an
internal moving boundary between the two liquids. Then, for element j,, a normal
velocity Un, (Unz = Ueement 2:N) and ti-o’y-n; are assumed, and —ty-6,:n; = Vgyip —
ty-6’1-ny is applied along the moving surface boundary. This allows the calculation
of the tangential component of the velocity (i.e., u;, =t;-u,) and the normal stress
component ny-c,-n;. With these quantities known, ny-6;-n; = 2Hy1, + ny-6,-n; and
t;-u, are applied, and t;-6,-n; and Un; (Uni = Ueement1-N) are calculated for element
J1- The differences, |u,; — Uy, and |t;-61°N; — t3-671-ny|, are included for convergence
check. If convergence is not achieved, u,, and t;-61-n; are updated and the above
calculations for elements j, and j, will be repeated.

Liquid 2

Moving
boundary

Liquid 1

Figure 10.6. Two elements share a common moving boundry

It is noted here that the above scheme represents just one of the ways the
interface boundary conditins are incorporated. One could also choose to specify
other velocity and stress components to develop a different iterative procedure.

For a free surface problem, we partition the domain such that element j; lies in
the gas phase. Then o, is known and no calculations will be required for element j,.
We can apply the stress conditions, both normal and tagential, on element j; only
and find all the component velocities at the free surface boundary.

An algorihtm for the discontinous finite element solution of moving surface
problems now may be described as follows. We employ an explicit time scheme to
be consistent with the field calculations. Then the free boundary position is
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calculated by integrating, along the free/moving surface boundaries, Equation
10.51 and one of the relations in Equation 10.54, using the available information
on the velocity field at the previous time step. Equations 10.49 and 10.50 for fluid
flows are then solved as described in Chapter 6. For elements in the moving node
region, Equation 10.61 is used instead to account for the node movement. For the
two elements sharing the common moving boundary, the boundary conditions are
applied as discussed above for Figure 10.6. The iterative procedure continues until
convergence is achieved for this time step. This then is repeated for the next time
step.

For steady state calculations, one can follow the above time marching scheme
until steady state is reached. Alternatively, one can solve a steady state problem
directly by setting transient terms to zero. A basic algorithm that works well for a
continuous finite element solution using segragated solver should be applicable
here. This algorithm is based on the updating of free surface using the normal
velocity condition and is dsecribed below. One starts with an initial guess of the
free/moving boundary location yy, then the flow is calculated by applying the
boundary conditions the same way as for the transient algorithm described above.
Then the kinematic condition on the normal component of the velocity at the free
boundary is used to update the location of the free surface y,,

u2~n2=0 EanQ3 (1062)
and the location of the internal free boundary ys (see Figure 10.1),
u;-n; =0 €O NQ, (10.63)

The calculations continue with updated ¢ until convergence is achieved.

In the above algorithms, the normal stress component is applied as a stress
boundary condition, which involves the calculation of the Gaussian mean
curvature. The mean curvature is related to y; by the following expression:

2H =-V,n (10.64)

where n is calculated using the relations developed in Section 10.2. The calculation
for surface gradient appearing in the tangential stress balance can be carried out by
following the procedure given in Section 3.6.2.

In the above discussion, the curvature contribution to the stress balance is
assumed to be calculated by directly integrating Equation 10.64. This would
involve a considerable effort in reconstructing the free surface in order to obtain a
desired acuracy. A simplified procedure may be applied using the integral relations
obtained from the theory of differential geometry in Section 10.2.2. We consider
the stress term arising from the Galerkin formulation of the momentum equation,

qu-odvz o-n4dS + c-nq},ds—fo.vgﬁ,dv (10.65)
Q 00 Q

')
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where we have applied Green’s theorem and 6 = 60 Uo<Y; with subscripts f and |
representing the moving and fixed boundaries, respectively. Since the standard
procedure can be applied for the fixed boundary term, we single out the free
boundary term for consideration. For simplicity, we consider the treatment of the
free surface,

f c-n¢,dS:f (= Pamh + 2H 70 ) dS (10.66)
00 20

The second term involving the curvature is integrated further using the theorem of
surface divergence given in Section 10.2.2,

f 2Hyn¢§dS:—f (V. -n)yn 4ds
0Q; 0Qy

_ ymgdr,, — fm V. (74)dS (10.67)

{)Qf,m

where n and m are surface normal and surface boundary normal, as shown in
Figure 10.3. Note that the term involving m permits the prescription of contact
angles between gas, liquid and solid. Clearly, the above idea directly applies to an
internal moving boundary as well, with obvious substitutions.

For steady state calculations, an algorithm based on the normal stress balance
may also be applied [17]. In fact, it becomes more efficient if curvature effects are
strong. In this case, the function describing a free/moving boundary is first
expanded globally over the entire surface and the normal stress balance equation is
solved using the collocation method to determine the expansion coefficients for the
surface function. For many applications, collocation points are taken to be the
Gaussian integration points at a boundary element used for fluid flow calculations.
This scheme was considered to converge very fast; the only drawback is the direct
estimate of the curvature, which involves a second order derivative. Thus, a higher
order approximation is necessary when this approach is taken [17].

10.5.2 Moving Phase Boundaries

In thermal and fluids applications involving phase transitions, the phase boundaries
are unknown and need to be determined as part of the solution. These problems are
often encountered in the solid-to-liquid and liquid-to-gas transitions. We discuss
these types of problems below.

10.5.2.1 Solid—Liquid Phase Transition

For problems involving the solid—liquid transformation, the moving boundary is
marked by the inerface between the liquid and solid phases and at the boundary
mass transfer may also take place if there are impurity elements in the phases. In
reference to Figure 10.7, the governing equations for a solidification problem
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decribing the conservation of momentum, energy and species are written as
follows:

V-u=0 €Q (10.68)
pa—u+pu~Vu =-Vp+V-t
ot
—PIBr (T =T )+ Bea(CL—Cree )]+ £ € (10.69)

|
PiCo -+ piCyuj VT =V-(VT)+Q; €@ U (1070)

oC;

Liquid
Q
TT— Moving
n interface
Qs
Solid

Figure 10.7. Illustration of a moving phase boundary defined by the solid—liquid interface

where C; (j =1,2) denotes the concentrations of the physical phases (liquid, solid)
present in the system, f is the body force excluding the gravitational force, and the
standard Boussinesq assumption has been used to account for solute and
temperature effects. Also, C is the concentration of a foreign element, Q; and R; are
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the generation terms for the energy and species. Although written for a two-phase
system, the equations can be readily modified to describe a multiphase system. For
this type of problems, the velocity in the solid region is often specified by
applications.

The boundary conditions for the equations are standard for fixed boundaries.
For a moving boundary, the kinematic conditions, species conservation and
mechanical and energy balances must be satisifed. From discussion in Section
10.3, these conditions are written as follows:

Tn=T =T, €QUQ, (10.72)
OX ¢
kin-VT, —ksn-VT, = pLn- US—F eQ, UQq (10.73)
OX ¢ OX ¢
,0|n- U|—7 —psn~ US —F =0 €Q|UQS (1074)
I’]X(US—U|)=0 EQ|UQS (1075)
OX OX
Csn~(us ——fj—c, ﬂn-[u, ——szn-(—ﬂ D,VC, + DSVCS)
ot s ot Ps
eQUQ, (10.76)
C,=xC, €Q,UQ, (10.77)
dT
T =T =Ty +ECI eQ UQ, (10.78)

where L is the latent heat released when the liquid is converted to the solid, n is the
normal pointing from the liquid to the solid, x; is the coordinates of the interface (u;
= Ox¢lot being the interface velocity at whcih the solid extends into the liquid) and
Tm is the melting temperature. Here the pressure and curvature effects on T,, are
neglected. Note that Equation 10.73 is obtained by letting s =1, | =2, L = Ly, Uj — Us
= Oxi/ot — Us = ug;, Qjn = n-kVT; (j = I,s) and n =—ny, in Equation 10.44.

The deforming grid approach presented above for moving boundary problems
can be modified for the numerical solution of a phase change problem. A major
modification would be for the presciption of thermal boundary condition on the
elements across the phase boundary. We consider this modification for a
discontinuous finite element formulation. To accurately track the interface, we
apply Equation 10.72 on element j, (see Figure 10.6) and solve for k;VT,. Equation
10.73 is then applied on element j; and T is determined. Then |TsTy| is used to
check the convergence and TTy, is used to determine in which direction to move
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the boundary. Specific location X; is determined by the linear interpolation between
the temperatures of the elements and oxidot ~ (X; (t+At) —x;(t))/(At). With this
location determined, the whole procedure is repeated. Numerical experience with
continuous finite element formulations shows that this type of approach based on
the detection of the isothermal line provides a more accurate front tracking than the
algorithm based on the energy balance equation [18, 19].

A discontinuous-based algorithm for the solution of the above problem may be
described as follows. At a typical time step, an inital phase boundary is available
from the previous time step, and the governing equations for variables (u, z, p, T,
g) are solved using the discontinuous formulations given in Chapter 6. For the
elements across the moving boundary, the boundary conditions and moving
boundary shape are determined as described above. The iteration continues with
updated values until all variables are converged. The procedure is then repeated for
the next time step.

An important advantage of the above algorithm is that it works for both the
steady state and transient simulations. Thus, for a steady state calculation, one
simply turns off the transient terms and replaces oxg/dt by a steady state velocity of
phase boundary movement [20].

10.5.2.2 Liquid—Vapor Phase Transition

In the case of evaporation from liquid to vapor such as boiling, the algorithm above
may be used with some straightforward modifications. If we consider a pure liquid
evaporates into its vapor phase, then the fluid flow and heat balance equations
apply to the liquid only,

V-u=0 €, (10.79)

pZ—L:eru-Vu:—VerV-r—pﬁTg(T ~T)+ T €Q (10.80)
aT

pCpEijCpuVT =V-(kVT)+Q €Q (10.81)

The boundary conditions at the vapor—liquid interface are again derived from
the relations given in Section 10.2,

p%+pu-n:rh e NQ, (10.82)
OX ¢
—k|n'VT| =0 Ln- U—W =mL EQ| ﬂQg (1083)

T =T (R) €QNQ (10.84)
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N-6-N=—p, +2Hy €Q NQ, (10.85)
dy

te-n=-—2V.T €Q NQ, (10.86)
dT

Pamb = Psat €€ an (10.87)

where subscript sat stands for saturation, T is the saturation temperature at the
liquid pressure, n points from the liquid to the vapor phase, m is the mass flux or
rate of evaporation per unit area, and L is the latent heat released per unit mass
when the vapor is condensed into the liquid. To obtain Equation 10.83, we have
substituted 1 = 1, L = Ly, oxdot — u; = ug, Qin = —n-k\VT, and n = ny, in Equation
10.44 and used the definitions of m = p(u — u;)-n and ox{/ot = u;.

The numerical solution of these types of problems follows the procedure
similar to that described above. These deforming grid methods would be useful for
modeling the details of the vapor—liquid interface.

A typical algorithm using a discontinuous finite element formulation would be
as follows. For a given time step, the calculation starts with an initial or previously
determined interface shape. The governing equations are then solved using the
discontinuous finite element method discussed in Chapter 6, with Equations 10.83—
10.87 applied. Equation 10.83 is used to determine the mass flux m and the moving
boundary coordinates are determined using Equation 10.84. The calculations iterate
until convergence and continue for the next time step.

10.6 Fixed Grid Methods

In the fixed grid methods, the governing equations are solved in the Eulerian frame
of reference. The interface mechanical balance conditions are written as a
interfacial body force. The governing equations take the following form:

Vou;=0 e UQ, (10.88)

ou;

F2HyS(X =X ¢ IN+(Vop)o(x—x;)+F € UQ, (10.89)

where n is the interface normal pointing from fluid 1 to fluid 2, the terms involving
y represent the contributions from the free/moving interfaces and the delta function
is defined as

1 X=X¢

5(x—xf):{0 e, (10.90)
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The above equations can be solved using the discontinuous finite element
method presented in Chapter 6, once the geometry of moving boundary x: is
known. All the fixed grid methods involve two computational procedures for a
free/moving surface problem: (1) solving the equations described above in an
Eulerian mesh and (2) evolving a moving interface based on the flow calculations,
using the volume grid, or surface (line) grid or particles. A typical senario of fixed
grid methods for free surface calculations is shown in Figure 10.8. The
discontinuous framework for the solution of transport equations in an Eulerian
mesh was discussed in detail in Chapter 6. We consider below three popular
methods for evoloing the moving surface: the volume of fluid (VOF) method, the
marker and cell (MAC) method and the level set method.

Fixed
grid

/F:O

Moving
interface

Figure 10.8. Illustration of fixed grid methods for free surface calculations

10.6.1 Volume of Fluid Method

The volume of fluid is based on the idea that the free surface is tracked by the
following advection equation [1, 21],

%Jru-w: =0 (10.91)

where F is the volume of fluid, which is assigned a value of 1 in the liquid and 0 in
the gas or the other fluid. Steep gradients in the variable F represent free surface
locations.

A general volume of fluid scheme consists of two distinct steps. In the first
step, the fluid volume is reconstructed on the basis of the fractional fill states. This
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reconstruction represents an estimate of the spatial location of the fluid within the
mesh. The fluid volume is then advected on the basis of the reconstruction and a
given velocity field. This advection itself leads to new fractional fill states. The
reconstruction of the fluid volume within an element depends upon its fill state and
the fill state of its neighbors. Neighbors are defined here as elements sharing a
common side. For instance, for a structured mesh, a quadrilateral element has up to
four neighbors sharing its four sides. A brick element has up to six neighbors. For
an unstructured mesh, however, the number of the neighboring elements is not the
same and is decided by a specific mesh generator.

Slopes and curvatures are computed by using the fluid volume fractions in
neighboring cells. The essential element in this process is to remember that the
volume fraction should be a step function, i.e., having a value of either one or zero.
Information on the volume fractions in neighboring cells can then be used to locate
the position of fluid (and its slope and curvature) within a particular cell.

We discuss below the implementation of the VOF method for structured and
unstructured meshes.

10.6.1.1 Structured Mesh

An important step in the VOF method is the reconstruction of the free surface.
Figure 10.9 illustrates the two ideas used for construction of the interfaces from the
volume of fluid data. The SLIC, which stands for Simple Line Interface
Calculations, was first proposed by DeBar [22]. The method, as shown in Figure
10.9(a), applies the piecewise constant approximation to model the interface. An
abrupt stair stepping interface is obtained, in contrast with the moving grid method,
which constantly tracks the interface shape. A more popular method used today is
the PLIC method, which stands for the Piecewise Linear Interface Calculations.
The method was first introduced by Parker and Youngs [23]. The basic idea of the
algorithm is illustrated in Figure 10.9(b). It is noted that across the element
boundary, the interface has a jump.

Surface Reconstruction. For simplicty, a two-dimensional (2-D) computational
domain with square cells is considered. Other regular cells can be extended rather
easily by following the same procedure. We further consider the VOF/PLIC
method, by which the interface is constructed by cutting a cell using a straight line
defined by the equation,

nX+nyy=a (10.92)

The determination of the constants (n,,ny, ) of Equation 10.92 is in general carried
out in two steps: (1) evaluation of the interface normal n = (ny, ny), and (2)
determination of the line constant ¢, so that the fraction of the cell area cut by this
line and occupied by the reference phase is equal to F.

If the cut volume and the normal direction n in a computational cell are known,
the constant « is then obtained by a simple integration and by enforcing the
volume conservation. This can be done either with a numerical rootfinding
technique or directly with analytical formulae describing the relation = « (F).
For a 2-D problem, an analytic expression is derived to solve for « [2],
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a? a-n.h 2 a—nyh 2
Fij: {l—Hv(a—nxh)( ax j —Hv(a—nyh)(—]

2n,n, a
(10.93)
Heaviside function defined as
1 if x>0
H = 10.94
o) {o, if x <0 (10.99

With the above equations, « can be calculated once the normal vector n and mesh
size h are known. Also, for convenience of description, the double index is used.

In the VOF/PLIC reconstruction the normal vector n is determined by the
volume fraction gradient. A simple approach is the Parker and Youngs method
[23], which has gained popularity in finite volume solutions. The method is
illustrated using a 3 x 3 block of square cells shown in Figure 10.10, with Ax = Ay
= h. Here, the normal n is first estimated at the four corners of the central cell (i, j),
that is, element ij, with a finite difference formula, for example the x component ny
at the top-right corner is given by

Nyiv1r2,j+1/2 = (Fagja + Fagj —Fijsa—Fj) /2h (10.95)

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

—]

03% 090124 | 09132 N|0.317 0.3140 A 0.9124 | 09132 0.3176
09136 | 1.0 1.0 0.9124 /0.9136 1.0 1.0 0.9124\

0.9132 1.0 1.0 0.9136 Y-%?’Z 1.0 1.0 0.9136

(a) SLIC (b) PLIC

Figure 10.9. Reconstruction of interfaces for a circle using the SLIC (a) and the PLIC (b)
methods. The solid line is a smoothed line connecting the middle points of the reconstructed
interfaces in each element. The SLIC method forces the reconstructed interface to align with
one of the mesh coordinates. The PLIC method, on the other hand, allows the reconstruction
to be tangential to the interface. Numbers indicate the fraction of fluid volume in the element
[24].
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Similar expressions can be derived for the y component n, and n at the other
three corners. Then the required cell-centered vector is obtained by averaging the
four cell-corner values

Nyivi = Mivay2,jor2 FNisasz,jaarz FNicyz,joare T Nicayz jo1s2) 14 (10.96)

With n and « so determined using Equations 10.93 and 10.96, the interface in a
cell is constructed as a straight line. The front of the surface is constructured with
the above procedure applied to every qualified cell. There are many improvements
to the above simple method since it was introduced [2, 9, 24, 25].

j*1

i-1 i i+1

Figure 10.10. lllustration of the VOL/PLIC reconstruction of free surface [1]. Note that
across the boundary there is a jump in F

Advection of Fluid Volume. The advection of the fluid volume stems from a mass
balance around each element. This is done by integrating the equation for the
volume of fluid, i.e., Equation 10.91, with the result,

f F v :—f Fu.nds (10.97)
v, Ot s

where V-u = 0 is used [21, 24]. Here, V; is the total volume of element i and the F
value under the surface integral is taken at the boundary of the element. To
simplify the notation, we use a single index on an element. According to the
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reconstruction procedure discussed above, the F value has a jump across the
element interface (see Figures 10.9 and 10.10). The time rate of change of F;is
approximated by a forward difference over a given time step,

I:n+l

T A" _ f Fu. ndS_—Z Qi (10.98)

where superscripts n and n+1 denote values from the two successive time steps.
Obviously, the time step restriction applies here [21]. Also, Qikis the flow rate of
fluid into element i across side k. The net flow rate into element i is simply the sum
of Qikover all sides k. Once the various flow rates Qixare evaluated at a given time
step n, the fluid volume can be advected by determining the new fractional fills
F™! By mass conservation, we have the relation for side k shared by elements i
and j,

Qik =—Qjk (10.99)

The treatment of the jump in F at the element boundary during advection is
discussed in [21] and a similar idea is presented here. Consider the two elements i
and j in Figure 10.11 that are separated by acommon edge k. We rewrite Qixas

Q = —f fu-nds ; 0< f, <1 (10.100)
S

where f; is the fraction of side k touched by fluid within element i, and n is the
normal vector pointing outward from element i along side k. The integral in
Equation 10.100 is evaluated over the entire area S of side k. The fractional area fj
contains information about the reconstruction of fluid along two elements sharing
side k and is determined solely by the two elements. The use of fy should be
obvious. In general, fi is taken as an averaged value of the two elements sharing
side k, if both elements contain fluid, as shown in Figure 10.11(b). For the case
where one of the elements is empty, the simple rule states that no fluid would come
from the empty element. The empty element, however, can receive fluid from the
adjacent element that contains fluid. Figure 10.11 shows the typical situations for
the advection of fluid.

The volume fraction obtained by the above VOF advection step needs to be
adjusted locally and globally in order to eliminate unphysical partial elements and
to satisfy the requirement of global mass conservation [21].

One important correction is in the near wall region. When an element has one
side attaching the wall, there may be a certain amount of volume left in the ith
element, which makes it practically impossible to empty these near-wall elements.
As time advances, the bulk of fluid may leave behind a row of partial elements,
forming artificial droplets, rather than empty elements. A practice is to reset a
partial element to zero if it is not adjacent to at least one full element. Similarly, a
partial element is reset to be full if its immediate neighbors are all full elements to
avoid an isolated partial element inside the fluid bulk.
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The global balance of the fluid volume is usually not maintained due to the
imperfection of the velocity field. Since the continuity equation is expressed in a
Galerkin weak form when the discontinuous finite element is applied, a
divergence-free condition is not satisfied exactly. The error in the approximation
will cause an artificial compressibility of the fluid during the Lagrangian advection
step, and introduce local and global imbalance in the fluid volume. The error may
accumulate with a time marching scheme and thus it is necessary to make
adjustments to ensure the global balance of the fluid volume. One procedure is to
adjust the volume fraction of partial elements by using the summation of local
imbalances,

Vim F
Fo=F, 4mb" P (10.101)
Zi I:inpi

where F, and V, are respectively the volume fraction and the volume of partial
elements and the summation is taken over all partial elements. Also, Vi, is the
amount of the total volume imbalance, which is the difference between the volume
flowing across the external boundary (in—out) and the change of total volume
inside the domain. During the process, if the volume fraction of a nearly full
element has an unphysical value greater than one, it is reset to one.

Side k Side k

(@ (b)

Figure 10.11. Schematic of advection of the volume of fluid across the element boundary:
(a) advection of fluid into an empty element and (b) advection of fluid between two partially
filled elements. The heavy dark vertical line indicates the f;, values to be used for advection

10.6.1.2 Unstructured Mesh

The VOF method can also be incorporated into the computational algorithms using
an unstructured mesh, which often is the choice for the discontinuous finite
element computations. While the basic concept and computational procedures
remain the same as for the structured mesh, the actual implementation differs
considerably, particular in the part of geometric considerations, because of
different orientations and organization of the mesh used for specific applications
[26, 27]. The VOF implementation for an unstructured mesh also involves two
steps, which are described below.
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Free Surface Reconstruction. For an unstructured mesh, the SLIC method is
difficult to apply and algorithms are developed on the basis of the piecewise linear
reconstruction. Unlike the structured mesh, the number of the neighboring
elements is not necessarily the same for an unstructured mesh. Thus, additional
local data and data structure need to be stored for calculations. Consider the case
shown in Figure 10.12. The interface is determined from the intersection of the free
surface and the the boundaries of the element under consideration, i.e., element i.
Using the PLIC method, the intersection line is given by the following relation,
which is the same as for the structured mesh

gx)=n-x-c=0 (10.102)

If the unit normal vector n is known, the constant ¢ is computed by requiring the
volume fraction of the polygon of fluid enclosed by the corresponding line
interface to be equal to the given volume fraction for element i.

For an unstructured mesh, the simple geometric relations developed in the last
section are not applicable. For the purpose of computing n = VF/|VF |, the method
of least squares gradient is useful [26]. By this approach, the volume fraction
Taylor series expansions Fis are formed from the reference element volume
fraction to each neighbor of known volume fraction Fy. The sum of the quantities
(Frs— F)? over the list of immediate neighbors is then minimized in the least
squares sense. This procedure results in a 2 x 2 linear system:

for element i with N; immediate neighbors. Here, matrix A;, force vector b; and
unknown vector VF; are calculated by

N2 L x y N X F
Xik ik Yik ik Fik
— di kz_: dik 0 di
Ai N Ni 5 ! bi B N; ;
Xik Yik Yik Yik Fik
0 di kz_;dik — di
(VFi)x
VE - 10.104
i |:(VFi)y ( )

with Xik = Xkc - Xic, Yik = ykc - yic, Fik = Fk = Fj and dik = (Xik2 + Xik2)1/2. Also,
superscript ¢ denotes the value at the centroid of that polygonal element and
subscripts i and k refer to the ith and kth elements, respectively.

The solutions of the linear system (Equation 10.103) are obtained with the
result,

(VFi)x= (b1A2—b7 A)/( Arx Az —Arz Az1) (10.105a)
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(VFi)y = (b2A11—b7 Axy )I( Arn Az —Arp Asr) (10.105b)

The special case of (( Ay Az —Arz Az) ~ 0 corresponds to the physical condition of
an almost constant volume fraction field in the neighborhood of element i. Thus the
interface reconstruction procedure is applied only to wet elements (0 <F < 1).

The computation of the line constant ¢ in Equation 10.102 cannot be carried out
analytically as is done for the structured mesh. If the conservation of fluid volume
in the ith element is imposed, the line constant c is the root of the following
equation [42,43],

A (c)=F" (10.106)

The root can be obtained numerically by a root finding algorithm. With ¢ being
known, the vertices of the reconstructed polygon of fluid delimited inside the ith
element by the interface line can be determined. The algorithm for this type of
calculation is commonly applied for data visualization and established techniques
can be used for this purpose [28—-30].

Dy

A

Figure 10.12. Element i and its N;(=9) neighbors for reconstruction of free surface [26]

VOF Evolution. The scheme presented above for the evolution of fluid volume in a
structured mesh is not easily adapted here. Instead, for an unstructured mesh, a
Lagrangian—Eulerian advection seems to work well [26, 27]. The idea is to move
the fluid portion of an element in a Lagrangian sense, and compute how much of
the fluid remains in element i, and how much of it passes into each of its
neighboring elements. The algorithm involves four basic steps, as illustrated in
Figure 10.13.

To start, the fluid portion inside a non-empty element is used to construct a
polygon in that element, which is denoted as element i in Figure 10.13(a). If the
element is full, the polygon of fluid coincides with the element. The vertices of this
polygon are material points in the fluid flow. Each material point undergoes a
Lagrangian displacement (&, ) according to the velocity components (u, v),
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u :d—(’g; v:d—é'g (10.107)

where the velocities are calculated by solving the governing equations.
This polygon is then set in a Lagrangian motion and the vertices of this polygon
at the end of the next time step are calculated by

Xpnew = Xpolg +UAL (10.108)

(a) Volume of fluid prior to (b) Volume of fluid in element i
advection in element i. is advected into other elements.

(c) Budget of VOF orginating (d) VQF in element i after
from element i. advection

Figure 10.13. lllustration of the evolution of volume of fluids on an unstructured mesh
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This procedure is shown in Figure 10.13(b). The resulting polygon intersects
with the mesh and the budget of fluid volume in each of the involved neighboring
elements is determined. This process is illustrated in Figure 10.13(c). The next step
is to collect all the contributions to the fluid volume from all the adjacent elements
and sum them as the final fluid volume in element i, as shown in Figure 10.13(d).
This completes the VOF evolution.

As for the structured mesh case, both local and global adjustments are needed
to remove the unphysical fluid volumes and to ensure the global mass balance.
This is identical to that discussed at the end of Section 10.6.1.1.2.

10.6.2 The Marker-and-cell Method

The marker-and-cell (MAC) method is perhaps the earliest and yet easiest
numerical method devised for time-dependent, free-surface flow problems [31, 32].
This scheme is based on a fixed, Eulerian grid, structured or unstructured. The
location of fluid within the grid is determined by a set of marker particles that
move with the fluid, but otherwise have no volume, mass or other properties. A
surface is constructed by the profiles of these particles.

One of the most important atributes of the MAC method is its capability of
capturing very complex free surface shapes. Figure 10.14 shows a typical free
surface problem that can be solved using the MAC method. Here the complex
rolling structure is faithfully represented by the profile of the marker particles.
Both volume and surface markers have been used in the literature; the basic idea
and algorithm are very similar. Here we outline the surface marker algorithm
presented by Chen et al. [32] for a structured mesh computation. The same
procedure is also applicable to an unstructured mesh.

In the MAC method, evolution of surfaces is computed by moving the markers
in accordance with local fluid velocities. Some special treatments are required to
define the fluid properties in newly filled grid cells and to cancel values in cells
that are emptied.

To advect the marker particles, a simple bilinear interpolation is used to find
the velocity inside an element,

Ne
U y) = Y w0y y)u (10.109)
i=1

where x and y are the coordinates of the marker point and N, is the number of
nodes per element. The marker particles are then advected in a Lagrangian manner
using a straightforward first order explicit scheme,

XM= xPu(x, yMAL ;o yM =yl v(x!, yMAt (10.110)

where superscripts (i.e., n, n+1) represent the time step. Once the points have been
advected, a parametric representation of the interface is constructured from the
particle locations.
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For a 2-D curve, a cubic polynomial with continuous first and second order
derivatives, cubic splines, represents a good choice [32]. The parametric
representation is often periodic as the interfaces are mostly self-connected (drops,
bubbles, periodic wave trains, . . .). For a 3-D surface, construction of a smoothed
surface from the marker particles can be time consuming.

As the interface evolves, the markers drift along the interface following
tangential velocities and more markers may be needed if the interface is stretched
by the flow. The markers need to be redistributed in order to ensure a
homogeneous distribution of points along the interface. This is done at each time
step using the interpolating curve (x(s), y(s)). As s is an approximation of the arc
length, if a redistribution length | is chosen, the new number of markers is Nyey =
sy/l and the points are redistributed as (x"", yi"" = (x(il), y(il)). Here I is usually
chosen as h, which yields an average number of one marker per computational cell.
Decreasing this length does not apparently improve the accuracy and in some cases
leads to instabilities [32].

Figure 10.14. Mark-and-cell simulation of roll-up structure of fluid motion

10.6.3 The Level Set Method

The level set method is a computational technique for tracking a propagating
interface over time. This method has been used in a variety of aspects of image
processing and is now adopted for computational free surface flows [3, 33]. In the
level set method, free surface flows are modeled as immiscible gas—liquid two-
phase flows. The free surface is identified as a zero level set, i.e. ¢ (x, t) = 0, where
X = (X, ¥) in two dimensions or x = (X, y, z) in three dimensions. The sharp jumps in
density and viscosity at gas—liquid interfaces can cause numerical instabilities if
not treated properly. To ease this problem, fluid properties, such as density,
viscosity, etc., are smeared over a narrow transition zone around the free surface.
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As discussed in Section 10.2, the kinematic boundary condition at a free surface
can be interpreted in a Lagrangian way: a particle on the surface always stays on
the surface. This condition translates into a constraint for a level set value of a
point on the contour with motion x(t). The value must always be zero on the
surface,

P(x(t),t)=0 (10.111)

where ¢ is the level set function. By the chain rule, we have the differential
equation,

o dX(t)

+V¢( (t).1)- (10.112)

Written in terms of the interfacial velocity, the equation for the advection of the
level set function is obtained,

%+U'V¢:O (10.113)

where u = (u, v) in two dimensions or (u, v, w) in three dimensions is the fluid
velocity. Thus, the evolution of the level set function defines the motion of a free
surface.

Defining F, as the speed in the outward normal direction,

n =m-n ; n =V—¢ (10.114)
dt

V&1l 0

the evolution for ¢is described by the Hamilton—Jacobi equation,
Z?JFF [Vé|=0 (10.115)

which shows that ¢ evolves as a signed distance function.
To model the free surface evolution, the level set function ¢ is initially assigned
with a signed distance function,

—-d for xeQ,
¢=<0 for xeoQ, (freesurface) (10.116)
d for xeQ,

where d is the absolute normal distance to the free surface. For immiscible
incompressible fluids, because of large density and viscosity jumps, particularly
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the density jump, the properties are often calculated by modeling the surface with a
small transition zone defined as |¢| < & where &, the half-thickness of the interface,
is typically one or two grid distances. By defining an infinitely differentiable
smoothed Heaviside function H(¢) [3],

0 if ¢g<-¢
H, (4) = %b+§+%sin(”?¢)] it Jg<e (10.117)
1 if ¢>+¢

the density and viscosity are smoothed in such a way that they are (o1+p.)/2 and
(tut+ )12 at the surface front (¢=0), respectively, and near the interface,

APD=pt(p = p)HUP):; HP= uot( = p2)HAP) (10.118)

The surface tension is spread over the transition zone as a o&-function-like
volume force in the momentum equation [16],

2H(@)y Xfn + Vsy A @) =Ty (10.119)

where f, is the body force, n is the normal, 2 H(¢) is the curvature that is computed
in terms of ¢,

2H() =V | yp =Vl

. 10.120
Ve (10120)

$=0

and the delta function &(¢) is obtained by taking the gradient of the smoothed
Heaviside function,

if |g>e
+cos(”—)] it |gj<e

&

0
5(¢)=V¢H(¢)={ [1 (10.121)

1
2¢

Thus, the kinematic and dynamic boundary conditions at the free surface are
automatically embedded in the formulation of the level set method. This is
certainly a very useful feature when it comes to numerical implementation.

Since the level function is defined as the distance from the interface, it is
necessary that ¢ perserves this feature as evolution continues. This means that ¢
must be a distance function, and satisfies the following condition [3, 35]:

IV(¢)|=1 (10.122)

By Equation 10.113 (or equivalently Equation 10.115), the level set function
will cease to be an exact distance function even after one time step. In moving
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surface problems, it is possible that steep gradients develop in ¢, making it difficult
to maintain a finite thickness of transition zone. This would cause the numerical
errors in computation of the normal and curvature of the moving surface. To avoid
these problems, the level set function is reinitialized after evolution over a time
step. One widely applied algorithm for reinitializing ¢ to be an exact signed
distance function from the moving boundary is to iteratively solve the following
equation:

?= S(do)1- V) (10.123)
T

until it reaches a steady state, at which time the feature of signed distance function
is preserved in ¢,

[Vg| =1 at r > (10.124)

Note here that 7 is a pseudo-time introduced to satisfy the constraint of ¢ being a
signed distance function. Here ¢gy(x) = é(x,t) and @(x,t) is calculated using Equation
10.115. Clearly, with Equation 10.123, given a function ¢y(x) that is not a distance
function, one can always evolve it into a function f that is an exact signed distance
function satisfying Equation 10.124.

To determine the level set function ¢ from Equation 10.123, the sign function
S(¢y) needs to be specified. Sussman et al. [35] suggest the use of the following
equation for S(g):

o

g% + &2

S(do) = (10.125)

where parameter ¢ is taken to be on the order of the grid size.

Equations 10.115 and 10.123 both are of the Hamilton—Jacobi type and are
particularly suited for the numerical treatment using the discontinuous finite
element schemes [34].

Thus, a typical level set algorithm for modeling the free-surface problems
would involve the following computational steps: (1) the field variables are solved
using the discontinuous flow solvers with a previously determined interface shape;
(2) the function F, in Equation 10.117 is then calculated from the field distribution;
(3) the level set function ¢(x,t) is initialized, if not yet, as a signed normal distance
from the moving boundary; (4) the function ¢#(x,t) is evolved using Equation
10.115 and the result ¢(x, t+At) is denoted as ¢y(x); (5) with ¢(x), Equation 10.123
is continued in zmarching until steady state and the result is denoted as #(x, r=x);
(6) the level set function is reset to @(X, 7=o0), i.e., let @Xx, t+At) = #X, 7=0).
Steps 1 to 6 are repeated for the next time step. For this explicit time scheme, a
critical time step needs to be observed, that is, the time step needs to satisfy the
CFL condition.
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10.6.4 Fixed Grid Methods for Phase Change Problems

The fixed grid methods presented above for flow calculations may be considered as
flow-based moving boundary methods and can be readily modified to predict the
interface morphologies for phase change problems. An important aspect of this
modification is to estimate the interface velocity. While in principle these methods
can be used to solve phase change problems, only the level set method has gained
popularity. There are also algorithms developed based on the enthalpy formulation,
which is very effective in treating phase change phenomena and has been used in
various applications. We discuss below these flow-based methods and enthalpy-
based methods.

10.6.4.1 Flow-based Methods

As for the moving grids method, the flow-based fixed grid methods discussed in
the previous sections can also be modified to solve the phase change problems. If
pure materials are considered, the governing equations for the problems should
also include the thermal balance equation,

V‘Uj =0 GQ]_ UQZ (10126)
ou;
IDE-F/DUJVUJ:—VF)J +V'Tj

F2HyS(X =X IN+(Vp)d(x—x¢)+F €QUQ,  (10.127)

j ffS

where ofy/ot is the fraction of new phase formed (e.g., f; is the solid fraction if the
solidification is considered), and F includes the drag forces resulting from phase
change and/or solids [36]. Also, the properties of the materials are assumed to be
the same for solidification problems. For liquid—gas transition, the equations apply
only to the liquid phase.

To calculate the velocity of the phase boundary, the energy balance along the
interface is often used,

kin-VT, —k,n-VT, = p;Lu; -n (10.129)

where n is the normal of the phase boundary pointing from phase 1 to phase 2 and
u; is the interface velocity with which phase 1 moves into phase 2. At the
interphase boundary, the temperature must be the same,

T, =Tpn =Tph +M.C +2HI 6 (0) -V, | u(6)+g,p (10.130)
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where T; is the interface temperature. Note that Equations 10.129 and 10.130 are
the same Equation 10.44 and 10.48, which are reproduced here for convenience.

For phase change problems, the velocity at which the moving interface evolves
is often defined by the interfacial energy balance. Consequently, Equation 10.129,
is used to calculate the velocity for the evolution of the phase interface. In the case
of the level set method, this velocity will be used to estimate F also. In addition,
the condition set by Equation 10.130 needs to be met. Thus, if the fixed grid
methods described in the above sections, VOF, MAC and LSM, are used, some
obvisous modifications are necessary, which often result in an iterative procedure
within a time step [35, 37, 38].

We take the level set method as an example to illustrate the necessary
modifications required to solve this type of problem. The level set method has been
used in solving both solidification and vaporization problems within the framework
of finite volumes [35, 38]. A typical level set algorithm, when incorporated into a
discontinuous finite element formulation, involves 7 steps instead of 6, as
discussed in Section 10.6.3. In step 2, Equation 10.129 is used to calculate velocity
and hence F, in Equation 10.115. Step 7 is added to check if T satisfies Equation
10.130. This is usually done by interpolation to find the temperature at the interface
T;. If Equation 10.130 is satisfied, then the calculation continues with the next time
step. If not, it will go back to step 1 and iterate between step 1 through step 7 until
Equation 10.130 is satisfied. Then the calculation continues with the next time step.

It is worth noting here that when the properties of the materials cannot be
assumed to be the same, such as for the case of liquid—vapor transition occurring in
boiling, the governing equations and boundary conditions need to be modified
accordingly [37].

10.6.4.2 Enthalpy-based Methods
Useful numerical methods, other than the three flow-based approaches described
above, have been developed specifically to solve the phase change problems. These
methods have met with success and can be readily incorporated into a
discontinuous finite element setting as well. These methods are based on the
enthalpy formulation and are very useful for phase change problems involving a
transition temperature range, which is often characterized by a mushy zone [11, 36,
39].

By observing that the latent heat, L, corresponds to the isothermal change in the
enthalpy, h, for a material at the transition melt temperature, T, the following
relationship is introduced,

h(T) = fTT Cp (T)dT + LH, (T —Ty) (10.131)

where H, is the Heaviside function. From the above definition, the equivalent (or
effective) specific heat, C~, is then introduced by

Cp*(T)=$=Cp*(T)+ Lo(T -T,,) (10.132)
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where ¢ is the delta function. Through the use of this formulation for the specific
heat, the heat flux jump condition is eliminated from the problem. This approach is
computationally effective since a two region problem with a jump condition has
been reduced to a single region problem with rapidly varying properties. For
application in a discontinuous finite element setting, the above equation is replaced

by

Cp*(T):%:Cpﬂ)+L5*(T—Tm,AT) (10.133)

where & is the delta form function; &" has a larger but finite value in the interval
AT entered about T, and is zero outside the interval. The interval AT is often
referred to as the “mushy” zone and corresponds to the difference between the
liquidus and solidus temperatures for a material. For pure materials that change
phase at a specified temperature, this is an approximation; but it is accurate for
non-pure substances that have truly distinct liquidus and solidus temperatures.

With the above definition of the effective heat capacity, the energy balance
equation is simplified as

pcp*%+pu-VT=—v-q+Q e, UQ, (10.134)

Though the equivalent specific heat model is useful for latent heat effects,
caution needs to be exercised with regard to the time integration of this type of
phase change model. In general, the transition temperature, AT, is small compared
to the overall temperature variation. Thus, the time-stepping algorithm must be
controlled such that every node undergoing phase change attains a temperature
value in the interval bracketed by AT. If a nodal point steps over this temperature
interval, the latent heat effect is not registered by the node and an incorrect
temperature response and energy balance will be predicted. Some approaches have
been developed to alleviate the problem and are described below.

One approach is to evaluate the specific heat at a point by computing the slope
of the enthalpy—temperature curve based on the temperature at the point. The
method performs satisfactorily if at a given time step the integration points in an
element may not detect the presence of the solidification front in the element. An
alternative approach, which is considered more accurate and convenient, is to
compute the required specific heat at a point by the following expression [39, 40]:

1/2
c, -2 0139
VT VT

This equation is computed by first determining the enthalpy at the nodes of the
element using the provided enthalpy—temperature curve, that is, Equation 10.131.
The element shape functions are then used to approximate the enthalpy distribution
within the element as well as the temperature distribution in the usual manner. The
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value of the C« at the integration point is then computed using the above formula.
A drawback of this method is that if the time step is large enough so as to allow the
solidification front to pass an element altogether, the proper amount of latent heat
will not be released in the element, thereby resulting in a faster than desired
temperature drop. Experience indicates that this method works best with linear
elements [39].

For transient problems, the change in enthalpy from the value at the previous
time step and the change in temperature from the value at the previous time step
may be used to construct an effective specific heat model,

_dh_h@")-h(T")

=T T T (10.136)
where the superscripts refer to the time step numbers. As this method always
detects the passage of the solidification front at an integration point, it performs
better than the previous methods on coarser meshes. Equation 10.136 may also be
evaluated using the nodal values, leading to yet another approximation. A
deficiency of this approach is that even though the correct amount of energy is
always released, the rate of release is typically lagged in time.

10.7 Phase Field Modeling of Moving Boundaries

The fixed and moving grid approaches presented above are devised to treat the
boundary conditions for a continuum mechanics description of fluid flow and heat
transfer involving moving boundaries. The physics governing the microscopic
phenomena within the interfacial layer is not considered in these continuum
descriptions. Phase field models present a statistical mechanics description of the
interfacial phenomena within and near the interphase layer, with allowance for the
molecular or microscopic physics, and have emerged as a viable approach to study
both free and moving boundary problems [4, 40]. The phase field theory is
particularly powerful in modeling the thermal and fluids phenomena driven
dominantly by interfacial forces [4]. In what follows, we present the basic ideas of
phase field models, their coupling with momentum and energy balance equations
for thermal systems and the discontinuous finite element formulation for the phase
field models. Numerical results are also given to illustrate the capability of the
phase field model to resolve fine structures under various conditions.

10.7.1 Basic Ideas of Phase Field Models

The phase field theory is developed as a result of studying nonlinear critical
phenomena during phase transitions in superconducting materials and other
physical systems [40]. From the statistical mechanics perspective, particles are
described by Langevin’s dynamic equation [41, 42], which incorporates the
stochastic fluctuating forces, in addition to the systematic forces. The central idea
in phase field modeling of phase transitions is the concept of localized statistical
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averaging, that is, coarse-graining: which means that some of the microscopic
degrees of freedom in a given system are integrated out, leaving an effective
system (characterized by an effective free energy or Hamiltonian) with fewer
degrees of freedom embodied by the coarse-grained order parameter (block
magnetization in the Ising spin model, density difference for simple liquids, etc.).
We have seen the volume averaged momentum equations for flows in porous
media (see Section 1.7). The coarse grain averaging is similar, but is carried out
over a molecular ensemble.

In statistical mechanics, all static thermodynamic quantities such as entropy are
calculated from the partition function Z, which is related to the free energy F,
where Z = exp(-F(T)/k,T), and k, is the Boltzmann constant. By the coarse-grain
averaging process, a block is selected and averaging is carried out over a number of
molecules in the cell for a microscopic quantity (e.g., magnetic spins in the Ising
model) yielding a block quantity, and then summing over those microscopic
quantities that give rise to a given block yields a localized partition function Z',
which is related to a coarse-grained free energy F, where Z' = exp(-F([4], T)/kyT).
Here ¢ is the phase field parameter, which marks the change from one phase to
another. In this way, Z is a sum of all Z’ in the system. The square brackets indicate
that F[¢] is a functional of the phase parameter ¢. The phase field model for phase
transition and interfacial phenomena is concerned about the behavior of the phase
field parameter ¢, which is related to the coarse grain free energy. In general, the
free energy F([4], T) is a functional of the phase field parameter ¢ and it assumes
the following form:

FALT) = [ (3621900 F + (60T )d0 (10.137)

where ¢ is the interfacial gradient thickness parameter and f(¢#(r), T) is a potential
function and is a function (but not functional) of ¢(r) and temperature. Because the
phase field model is formulated locally and is able to resolve the microscopic
phenomena, it has been adopted to model the interfacial phenomena in thermal and
fluids systems that are diffusive in nature [4, 43].

Figure 10.15 shows a typical double wall function associated with phase
transition as a function of the phase parameter for a 1-D system. At a temperature
above the critical point, that is, the transition point, there exists only one stable
phase corresponding to the minimum of the potential function. This is illustrated in
Figure 10.15(a). When the temperature drops below the critical point, two phases
will co-exist, as marked by the double dip in the potential function distribution, as
shown in Figure 10.15(b).

In a time-dependent system, an evolution of the phase parameter r,t)
represents the evolution of the interface. The phase field model is derived based on
the fact that the system evolves towards a state that minimizes the free energy,

ohrt) F
T +1(r,t) (10.138)



478 Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

where 7 is the relaxation time, and 7(r,t) represents the stochastic noise that
describes the random effects of the environment, and is averaged to zero over the
realization of the noise field #7(r,t). For most thermal and fluids applications, this
term may be set to zero. At the static equilibrium, or the steady state,

9F o (10.139)
o¢

The variational derivative in Equation 10.138 can be carried out explicitly with
time held constant,

COM i 1
T>T, T<T.
y 4
@) (b)

Figure 10.15. Potential energy above (a) and below (b) the cirtical temperature T, for phase
transition
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where 5@(r)/5¢(r') = &(r—r'), &(r—r') being the delta function. With this substituted
into Equation 10.138, we have the following evolution equation for the phase field

or, ).

r%;&v%—ﬂ (10.141)
ot o

With f known, this equation can be used to evolve the free surfaces and boundaries.
The phase field model has been used in other physical systems and here it is used
to describe some of the thermal fluids systems that involve free surface and
interfacial boundaries.

Figure 10.16 sketches the distribution of the phase field parameter ¢ as a
function of distance (x) across the interface or moving boundary. Far away from
the interface (x = 0), the phase field ¢ assumes constant values. Near the interface,
there exists a very sharp change in ¢(x). The change of #(x) measured by d¢(x)/ox
shows almost a delta function, and its width represents the interfacial thickness
between the two phases.

Q

Y

<
v

Figure 10.16. 1-D phase field model illustrating the phase transition at x = 0 and the
derivative of the phase parameter with respect to the x coordinate

It is noted that the phase field behavior shown in Figure 10.16 is very similar to
that of the level set function. One should realize that the latter is based on a
mathematical description of a signed distance function from the sharp interface,
and the signed function needs to be adjusted during each time step. This is in
contrast with the phase field model, which has its roots in statistical mechanics and
the phase field parameter ¢ evolves continuously based on the physical description
of interfacial phenomena.

10.7.2 Governing Equations for Interfacial Phenomena

In the phase model description, the equations describing the interface balance are
built into the governing equations and the interface boundaries are evolved using
the phase field parameters. The phase field parameter ¢ can be used to evolve a
free or moving or phase boundary in thermal fluids systems [4, 44]. With ¢ as a
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parameter marking a moving interface, which itself evolves, the Navier—Stokes
equations and the energy balance equations for a moving boundary problem are
written as

V.u=0 (10.142)
¢(pz—l:+u-Vuj:—Vp+V-r+yCV¢+pg+F (10.143)
pCa—T+pCu-Vu:Vk-VT +pL% (10.144)
ot ot
r%;gzvzqﬁ—ﬂ (10.145)
ot o¢

where 7 is the share stress, L is the energy release from one fluid to the other and
is the chemical potential. For the sake of simplicity, subscript j denoting different
phases is dropped and the materials properties are assumed to be a function of ¢.
The above equations can be solved with the appropriate boundary conditions
imposed [43]. Note that F contains the drag force result from liquid—solid
transition, which is also a function of the phase field parameter.

In the above equations, both phases across the interface boundaries are
included. The interfacial contributions to the momentum and thermal balance
equations are accounted for through two source terms including interfacial
mechanical and thermal energies. To see that Equation 10.143 yields the interfacial
mechanical force balance equation, we integrate the momentum equation over a
small pillbox across the interface, and obtain the following equation:

(=pl+71);-n=(pl+1), n+2HN+V y (10.146)

where subscripts denote different flow regions. This is nothing but the interfacial
mechanical balance equation discussed in Section 10.2.3.

Example 10.3. Derive an expression describing the expansion of a bubble in a fluid
using the phase field model, neglecting the fluid motion.
Solution. With the fluid motion neglected, the growth model can be readily

derived. For this problem, a potential ¢ is the difference between the energy inside
and outside the bubble. The phase field model then becomes

T%=82V2¢—ﬂ (10.18e)
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We assume that the order parameter is a function of time and distance from the
center of the bubble,

#(r,t) = g(r —R(1)) (10.19¢)
where R(t) is the radius at time t. Substituting into the phase field model, we obtain

2
RN, 20 2200 N (10.20¢)
dt or o¢ or ror 0o¢

The first two terms on the right cancel because of the following relation:

2
—%+52%=0 (10.21e)
o9 ar

Equation 10.20e further is multiplied by o#/or and integrated from the center of the
bubble to infinity,

—T?TT [gfldr_z foml[gf] dr —fom%\; ‘?’dr (10.22¢)

Since ¢ changes sharply near the interface, the second term can be
approximated to the first order 1/r = (8r + R) = 1/R, whence we have the following
differential equation for the rate change of the bubble radius:

_,OR_ 82(3__AVaJ (10.23¢)
dt R »

where AV, =V(x) — V(0) and y is the surface tension,

y:gfo [gf] (10.24¢)

Integration of the equation over time with the initial condition R(t=0) =R,
yields the change of the radius as a function of time,

2 _ 2
% (R() = Ry) + 20'2 m 20 — AV, R(t) _&
V AV 20 -AV,R, T

a a

t (10.25¢)

In the case of static equilibrium, the time dependent term in Equation (4.23e)
disappears, and we recover the force balance equation at the bubble surface,
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2 _av, (10.26¢)
Re

which identifies the potential difference to be the pressure difference inside and
outside the bubble. With R, the solution for Equation 10.23e can be written as

RM-Ry . Re —R(D) _ 262

= t (10.27¢)
Re Re - RO Re2 T
We have two limiting cases,
AV, . . £2AV,
R(t) =Ry + 2t if Re— 0and ——= = const. (10.28e)
o7 o7
and
2 2 482 .
Re(t)=R; ———t ifRe—> (10.2%)
T

The second limit clearly shows the curvature effect, which is typical for interfacial
phenomena, and when it is neglected, the radius expands at a constant speed.

There are certain advantages associated with the use of a phase field model for
free surface and moving boundary problems. The model is, in general, easy to
construct and non-equilibrium conditions can be imposed by boundary and initial
conditions. The interface energy emerges naturally and is linked to microscopic
states in the materials. Numerically, a unified equation makes the numerical
formulation and computer implementation easy. At present, the phase field model
has been primarily used in modeling phase change or phase transition problems,
where the internal moving boundaries and inter-phase front morphologies often
evolve in a rather complex pattern.

10.7.3 Discontinuous Finite Element Formulation

The discontinuous formulations for the fluid flow and heat transfer problems
presented in previous chapters should be directly applied here. The interfacial
contribution may be treated as the source/sink terms and incorporated into the force
term at the right hand side of the matrix equation. The phase field model is in
essence a diffusion model with a nonlinear source term that drives the interface
evolution. These equations can be easily discretized and solved using the
discontinuous finite element formulation developed for heat conduction problems
in Chapter 4. To illustrate the procedure of coupling a phase field model and other
mechanical and thermal balance equations, a discontinuous formulation for a phase
change problem that involves the evolution of a solid-liquid interface is presented
below. We first consider the cases without the fluid flow and other local
phenomena. These complications are then included. These results demonstrate the



Free and Moving Boundary Problems 483

usefulness of the phase field theory for modeling interfacial phenomena driven by
local forces.

10.7.4 Phase Field Modeling of Microstructure Evolution

Microstructure evolution during solidification represents a moving boundary
problem with very complex internal boundary shapes. In addition, the spatial and
temporal resolutions required to resolve these fine structures are so small that
intensive computation warrants massive parallel computing for a realistic
simulation. For this purpose, the discontinuous finite element method should be a
very suitable candidate.

10.7.4.1 Governing Equations

Let us consider a typical solidification problem as illustrated in Figure 10.17,
where the liquid solidifies as a result of applied cooling. Here we are concerned
with the modeling of the microscale features such as dendritic structures formed
during freezing. The governing equation for phase field modeling of the local
solidification process is given by the following pair of equations describing the
phase field evolution and temperature distribution, with convection neglected:

T Lyl -ve
LY@ =V (10.147)
r(n)%=[¢—/1T(1—¢2)](1—¢2)+V~[A~V¢] (10.148)

where g(¢) = (10-15¢4+6¢7) and A is a tensor of local materials properties and
crystallographic orientations of the solid,

Cooling

Figure 10.17. Schematic of a solidification problem
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A A Agg
A = A21 A22 A23 (10149)
Az Az Ags

with its components determined by the following expressions:

Aji :Wz(n)%, i=12,3
OX;
Ay =-W (n)%(n)csc2 6; Az =W(n) W (n) cos g
80 00
Ay =W(n)%(n)csc2 0; Ay =W (n) W (n) sing
80 06
Agy =-W(n) avg/én) sin@; Agy =-W(n) avg/(gn) sing (10.150)

Here n is the normal of the moving surface and (6,¢) the Euler angles. The
outward normal n and other parameters are related to the phase field parameter,

n=—2_; r(n) = roaZ(n) , W(n) =Woa, (n) (10151)

Vg

where 7, and W, are two parameters, and a; is a complex function of the phase field
parameter,

de, (0p1x)* +(0p10y)* +(0p102)*
1-3¢, |V¢|4

a (n) = (1-3&,)| 1+ (10.152)

where & is the anisotropic parameter. For a 2-D problem, the phase field equation
reduces to the well known expression [44],

=2
£ 00 g g)p-1+302aST (1 9)]
m Ot
(o2 gy O (a0 O 0P
+V-(e°V¢) P (g€ 6y)+6y (ee aX) (10.153)

In the above equation, ¢ =& [1+xcos(46)]. Also, T represents the temperature, ¢ is
the phase field, S is the supercooling temperature, £ is a mean value of & which
indicates interface thickness, y; is the strength of anisotropy, and & is the angle
between the normal of the interface and the positive direction of x axis. Also, o and
m are the dimensionless parameters related to the local real material properties
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such as interfacial energy, kinetic coefficient, specific heat, latent heat, thermal
conductivity and the melting temperature. The detailed procedure to derive
Equation 10.153 is given in Wang et al. [44].

10.7.4.2 Discontinuous Formulation
Equation 10.148 is basically a heat conduction equation, for which the
discontinuous finite element solution was discussed in detail in Chapter 4. The
matrix equation is the same as Equations 4.54-4.55. The only difference here is
that the energy release due to solidification (i.e., the term associated with g(¢) in
Equation 10.149 needs to be included as a source term, which is trivial once the
evolution of phase field parameter is known.

The phase field equation, however, represents a rather complex nonlinear
equation. To develop a discontinuous finite element formulation, the equation is
split into the following first order differential equations:

R=A-V¢ (10.154)
r(n)%=Q(¢,T)+V~R (10.155)

where Q(¢,7) = [¢—AT(L - ¢7)](L - ¢7).

The computational domain is now discretized into a tessellation of triangular
finite elements in a 2-D geometry, or of tetrahedral elements in a 3-D geometry.
Other shapes of elements are also possible. Following the procedures detailed in
Section 4.5, the above two equations are multiplied by a pair of test functions (w,v)
and integrated over element j,

f Rwdv = [ (A-Vg) - wdv (10.156a)
Q; Qj

0¢ _ .
fgj r(n)ﬁvdv _Lj (V-R+Q(g,T)vaV (10.156b)

We now integrate by parts and replace fluxes at the element boundaries with
the qualified numerical fluxes to obtain the following integral representation of the
phase field model equations:

f R-de:—f ¢V-(A-W)dv+f pw-A-nds  (10.157a)
Q Q 00,

f T(n)Va—TdV-l—f R~VvdV:f Q(¢,T)vdV+f R-n;vdS
Q; ot Q; Q; 0
(10.157b)
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where nj is the outward normal unit vector to 6Q;, the boundary of element j.

Approximating the unknowns using the interpolation functions, selecting
appropriate numerical fluxes and applying the Galerkin procedure, we obtain a set
of ordinary differential equations for the discretized values for the phase field
parameter. These equations are summarized together with the equations for
temperature,

Up = La(9) (10.158a)
do

My =L@ (10.158b)

Uy = Ly(T) (10.158¢)

M, (L_tI L (T) (10.158d)

where L is the operator, ¢ is the vector for nodal values of the phase field
parameter ¢, and M is the mass matrix. The subscripts refer to the relevant
variables. The two unknown vectors Ug and Ug are defined as follows:

a, R,
Ug =14, |: Ur=|R, (10.159)
q R,

Equations 10.158a—d can be solved using an explicit time integration scheme.
The computational procedure is given below:

(1) Given the initial and boundary conditions, Ug is obtained by solving
Equation 10.158g;

(2) Using Ug, Equation 10.158b is solved to obtain o¢/dt;

(3) Equation 10.158c is used to obtain Ug;

(4) With Ug and od/ct, 0T/ét is obtained by solving Equation 10.158d;
(5) Advancing T and ¢ by T = T +(At)oT/ot and ¢= d+(At)o d/ot;

(6) Repeat steps (1) to (5) until convergence is achieved.

In performing time integration, the time step needs to be controlled to ensure
numerical stability.

10.7.4.3 Numerical Examples
The above discontinuous finite element algorithm for coupled heat transfer and
phase field distribution has been implemented to predict microstructure evolution
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in solidification systems [45]. Numerical examples are presented here to illustrate
certain features of the modeled microstructures. The examples include the 1-D,
2-D and 3-D calculations, with the 1-D data primarily used to test the accuracy of
the phase field model.

Moving Boundary in 1-D Solidification. A 1-D solidification problem is useful for
the purpose of checking the accuracy of the code and determining appropriate
mesh sizes and other information used for adequate numerical simulations. The
analytic solution to a 1-D problem is known [46]. A finite difference solution of the
phase field model for 1-D solidification is also available in Fabbri and Voller [47].
For this problem, the initial temperature To=0.015, and the temperature at the cold
end is Teog= —0.085. To start the process, the temperature distribution and interface
location are calculated by the analytic solution after a short period of solidification,
t,=0.1846 [47].

Figure 10.18 plots the temperature distribution at t = 0.8, from both the analytic
solution and the numerical results obtained from the discontinuous Galerkin
method described above. The CP and KP are two different versions of phase field
models reported in the literature [4]. The mesh size is 0.004 and the time step is set
to be 10°°. From the figure, we can see that the KP model and the CP model render
very similar results and both match well with the analytic solution [47].
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Figure 10.18. Comparison of 1-D solidification between analytic solution and finite element
formulation

Microstructure During 2-D Solidification. Figure 10.19 illustrates the evolution of
dendritic structures formed during solidification, the typical structure found in ice
freezing from water. In this case, the growth starts from a circle of solid nucleus,
with a radius of 0.1, located at the center of the domain. Growth gradually occurs
as atoms are frozen from the adjacent liquid onto the solid from all the directions.
The strength of anisotropy is 0.04, and six modes were used in this simulation.
From these figures, it is clear that with an increase in latent heat, the solid crystal
evolves from a hexagon shape to a snowflake shape
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These results demonstrate that the discontinuous formulation of the phase field
model is capable of modeling very complex moving boundary problems. In this
sequence of figures, we see that the dendrite grows very fast in certain
crystallographic orientations, of which & has the maximum value and the fastest
growth rate. Some small side dendritic tips grow from the main root branch.
Finger-shaped dendrite growth is obtained with tip splitting. However, the needle-
shaped crystal, which is demonstrated in Wheeler et al. [48], is not found in this
calculation. The shape of dendritic tips can be determined by many parameters,
such as the assumed interface thickness & , the strength of anisotropy vy, the
supercooling parameter S, as well as the calculated domain and its spatial

resolution.
O O Q
(al) t=0.04 (b1) t=0.04 (c1) t=0.04
(a2) t=0.12 (b2) t=0.16 (c2) t=0.16
(a3) t=0.20 (b3) t=0.28 (c3) t=0.36

Figure 10.19. Dendrite growth under adiabatic conditions for various latent heat: At =
5.0 x 107°, (al)—(a3) K = 0.8; (b1)-(b3) K = 1.2; and (c1)—(c3) K = 1.6. K is non-

dimensionalized latent heat
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3-D Simulations. The discontinuous finite element phase field model is also
applied to simulate a 3-D dendritic growth during solidification. As one might
expect, these simulations are extremely computationally intensive because of very
fine grids and the time resolutions required to obtain these fine features of
microstructures. For this type of problem, the continuous finite element method
would become rather inefficient, largely because of the huge global matrix formed.
The discontinuous finite element method, however, does not require the assembly
of a global matrix and it is thus less demanding for in-core memory. One of these
structures obtained using the discontinuous finite element method is presented in
Figure 10.20. The simulations used 200° linear elements.

(@) (b)

Figure 10.20. A 3-D view of microstructure of a single dendrite during solidification
predicted by the phase field model: (a) viewed from 45° and (b) viewed from 135°

10.7.5 Flow and Orientation Effects on Microstructure Evolution

Solidification involves complex local phenomena, which can be affected by
various parameters of both liquid and solid during solid—liquid transitions and
simulated using the phase field model. For instance, the formation of nuclei from
the liquid phase can be simulated by introducing the noise term 7(r,t) in Equation
10.138 [49]. Other effects such as fluid motion and crystal orientations on
solidification microstructure formation can also be included in the phase field
model. The discontinuous finite element method, being local in nature, presents a
very powerful numerical tool for the phase field analysis of these problems. We
present below the discontinuous finite element calculations of fluid flow and
crystal orientation effects on the microstructure evolution during solidification.

10.7.5.1 Flow Effects on Microstructure Evolution

Under certain conditions during solidification, microstructure features such as
dendrites branch into the surrounding liquid and are known to be affected by the
liquid convection. The basic equations governing fluid flow, heat transfer and
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phase field evolution during a dendritic solidification process were given in Section
10.7.2. These governing equations, that is, Equations 10.142—-10.144 and (10.149),
are solved using the discontinuous finite element method to study the effect of the
fluid flow in the liquid pool on the microstructure formation.

Assuming that the liquid is incompressible, an algorithm for the solution may
be described as follows. For the fluid flow and thermal equations, Equations
10.142-10.144 are solved using the discontinuous finite element methods
presented in Chapter 6. The calculation of the phase field model, i.e., Equation
10.148, is the same as described in the previous section.

One of these calculations is given in Figure 10.21 for 2-D dendritic
solidification for the non-dimensional times of 15, 66, and 96, with and without the
fluid flow in the liquid pool considered. The shape of the dendrite is revealed by the
phase field parameter. The left column shows the evolution of the dendrite with the
liquid pool assumed to be quiescent at the three different times. The right column
shows the velocity field around the dendrite and its effect on the morphology of the
dendrite at the same times. Unlike the case of growth without flow, the temperature
contours are not symmetric in all four directions, causing the dendrite to grow
accordingly. The flow compresses the thermal boundary layer near the tip of the
arm growing in the upstream direction while expanding it on the downstream side.
The thermal boundary layer thickness near the tip of the dendrite arm
perpendicular to the flow is not affected much by the flow. As a result of the
smaller thermal boundary layer thickness near the tip of the upstream arm, and
therefore higher temperature gradient, its growth rate is increased. The growth rate
of the downstream arm, on the other hand, is reduced because of the lower
temperature gradient there. The perpendicular arm is shifted slightly toward the
flow direction with no significant effect on its growth rate. The higher temperature
gradient on the upstream side also promotes the growth of side branches while on
the downstream side the lower temperature gradient provides a more homogeneous
temperature that inhibits the growth of side branches.

10.7.5.2 Microstructure Evolution During Polycystalline Solidification
The phase field model presented above assumes that a single grain grows into the
liquid with and without being affected by local fluid flows. In many practical
systems, grains with different orientations are nucleated and grow in a competitive
environment. These grains will eventually meet and interact with each other. The
evolution of a crystalline phase needs to include the physical effects of crystalline
orientation, or of misorientation at grain boundaries. Developing numerical models
to simulate these phenomena has received considerable attention recently and a
comprehensive review on the subject and various models developed for this
purpose is given by Granasy et al. [49].

The basic idea is to include extra terms in the free energy that are associated
with the grain orientation effects. VVarious models have been proposed [48-50] and
here we present the model for a pure material given by Warren et al. [50],

L 1
F= f{zéer(V%H—w)+sg(¢)|v9|+§gzh(¢)|v9|2 N f(¢,T)}dV
(10.160)
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with the flow field

without the flow field

(@ t=15

with the flow field

without the flow field

(b) t=66

with the flow field

without the flow field

(c) t=96

Figure 10.21. Phase field modeling of evolution of solidification microstructure with and

without fluid flow
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Figure 10.22. Simulation of the impingement of four particles growing from the corners

where the homogeneous free energy density (¢, T) is a double-well potential that
has its local minima at the ¢ values corresponding to the solid (¢ =1) and liquid (¢
= 0) phases, ¢ is the gradient-energy coefficient related to the thickness of the
interface, T is the temperature and I is the gradient penalty function [50].

The two terms (second and third under integral) have been added, which
represent the energy cost of grain boundaries. Here, the parameter 6 represents the
local orientation measured with respect to a fixed axis of the crystal lattice. The
values of @ span —7/IN < € < zIN, where N is the rotational symmetry of the
underlying crystal lattice. Also,  is defined as the direction of a normal to ¢, i.e.,
tan(w)=(ogloy)/(0@lox), s and ¢ are the coupling constants, and g and h are
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specified as a function of . The monotonic nature of g and h is required if the
effects of crystalline orientation are to be reduced or eliminated in the liquid phase.

By the same variational procedure given above, the following dimensionless
governing equations for the evolution of phase parameter ¢ and crystal orientation
Gare derived,

7 % = £+ pL- PM(p) - 254V 6] - 2PV O (10.161)
Gl
PV O)ry6? - V{gﬁ{ﬁ + gz}v a} (10.162)

where m(¢) = ¢ — 0.5 + o¢ (1-¢). The defintions and paremeters for calculations
are given in [50].

Equations 10.161, 10.162 and 10.147 describe the effect of the crystallographic
orientation of the solid grains, once formed during solidification, on the growth of
the crystals. This set of equations may be solved using the discontinuous finite
element method. For the purpose of demonstrating the effects of orientation only,
the fluid flow is neglected. The impingement and coarsening of the grains as a
change in orientation is displayed in Figures 10.22 and 10.23.

In Figure 10.22, three simulations of the impingement of four particles are
plotted. In Figure 10.22a, the orientations of the two left grains are the same and
differ by 7/4 from the right gains. The right and left grains coalesce with each
other, respectively. A grain boundary is formed along the vertical centerline. In
Figure 10.22b, the orientations of the two left grains are the same but the two right
grains have different orientations. It shows a dihedral angle after impingement. In
Figure 10.22c, orientations of the four particles are all different. This leads to an
unstable quadrijunction.

(b) t=50 (c) t=100

Figure 10.23. Simulation of the impingement and coarsening with many simultaneously
introduced nuclei into an undercooled melt. Crystals with different orientations are obtained
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Figure 10.23 shows an isothermal simulation of the impingement and
coarsening with many simultaneously introduced nuclei into an undercooled melt.
This is a case of multi-crystalline solidification, where grain boundary formation
and grain coarsening are obvious.

Exercises

1. A local coordinate system erected at a surface point is given by (& 7, n)
with their unit vectors defined as E=&,i+&,]+&,k, f=nd+&j+EK

and n=A=7,i + &y i+ e;ZIZ . Show that a transformation can be constructed

such that
0 0
OX gx ny Ny %
0 0
Ty Y oy
o) &) &

With the above transformation, further show that

ég§+—77+n(V) V,+n(n-V)

where

O _(n i ; 0
n(n-V):n%_(nXHnyank)m

Vs :_5"'17;

0¢
With the additional relation,

_4d@ _dm:m _ dnodn_ oy
dn dn dn dn

show that
Vy-n=V-.nlg-n(n-Vn)=V-n|g

where S means evaluating the integral at the surface and V; is the surface
vector differential operator.
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Consider a curved surface defined in a spherical coordinate system,
F=F(VY,2)=F(R,0,0)=R-r(0,90)=0

Show that the spatial gradient of F is given by

VE_[OFE,r OF v 1 oF_; bor Y or
"R RaG" <”R5|n08go " "R00 Rsind op

where “*” denotes the unit vector.
Show that the tangential vectors in the polar and azimuthal directions for
this surface are given by

ol o 28 - o
ol +1ly ¢ Tyl Frsindi,

t, = =
0 ' ¢ -
Nre+r? 1/r25|n29+r(§

from which the normal vector can also be calculated,
n=t,xt,

Show that this gives the same expresion as calculated by taking the spatial
gradient of n as follows:

_VE
"V

~

rsin
J1+(1 ar ¥ +( 1 arj2 v

roo rsind op

Show that the curvature for the 3-D surface can be calculated by taking
either the spatial gradient evaluated at F = 0 or the surface gradient, that is,

o 2+1-v

n
F=0 Rl Rz )

From the above curvature result, show that if the surface is axially
symmetric, that is, independent of ¢, then

1.1 1 ((2r2+r2)sine d [ rrysing
Jr2 +r2 do\ Jrz+r2

_+ =

R R, rZsing
Consider a 3-D surface expressed in the spherical coordinates. Assume that
the surface has a 3-D deformation given by the following expression,

r= a(:l-+(§em + Rem )Yem (Q))

where Y is the spherical harmonics and Q is the solid angle.
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Show that with the definition of F,
F=r- a(1+ (gem + Rem )Yem (Q)) =0

the surface normal n and curvature H for this deformed surface are
calculated, to the first order in (& + Rem), by the following expressions:

& & a(f&m + REm ) aYem & a(gem + REm ) aYem (Q)

1 1
! 0 a l+(‘§em + Rem )Yem (Q) 00 ¢ a(lJr(‘fem + Rem )Yem (Q))Sin 4 00
1oF )2 ( 1 cLF)Z
\/1+(r 00) *\Vsing op

P oyr - (&, +R,, )oY
If _Ie(é‘:em + Rem )ﬁ_lf/’ _(geglngem) a(ep

n=

IR

and

R 2
oh =2, GentRen)| 1 i(smei}La_ Y1 (Q)
r a sin@ 06 96 ) sin? @ 9¢?

N

é + @YJ‘ (@)ele+1)-2)

4. Consider a solidification change problem that involves the motion of both
solid and liquids, with us and u, denoting the solid and liquid velocities,
respectively. Show that for this case, the velocities of the liquid and the
solid relative to the interface are given by the following expressions:

Ug'=Ug —Uj; Uj'=U; —U;

where u; is the interface velocity. Show that the mass balance and energy
balance across the interface are expressed by the following expression:

(psusl)'ns +(p|u,')~n| =0
and

(Psﬂsus'+q5)‘”s +(P|ﬂ|u| +q )~n| =0
where H is the enthalpy and ns points from the solid to the liquid. Let L=
H, — Hs, where L is the latent heat per unit mass, that is, the heat related

when liquid converts into solid. Show further that the energy balance
across the interface can be written as

(a1 =-9s)-n = pLug'n=—-pLu,"n

Show that the above equation reduces to Equation 10.44 if ug = u, = 0.
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Integrate Equation 10.89 across a pillbox across a moving interface
between two fluids and show that the resulting equation reduces to
Equation 10.41, that is, the stress balance condition at the interface, as the
size of the pillbox reduces to zero.

Starting with the Clausius—Clapeyron relation,

dp gzt —Ed
dT; Av

show that for constant properties, the integration of the above relation
yields the following relation for a material undergoing solidification:

P, —p T T; 2H
%: L{T—'—1]+ACP(Ti!Zn£T—']+Tm —Ti]+ /4

P = Ps m m Ps

where Av = gt = p %, Ty, is the melting temperature, As=s, — s, H the
curvature, and T; is the interface temperature.
Further show that if AC, = 0 and p= g = p, the above equation reduces to
the classical Gibbs—Thompson relation,
oot 20’ 1 opp,
pL

For the above case, show that the interfacial energy balance yields the
following relation:

ksn-VTs —kn-VT, = p(L—AC, (T, =T;))u; -n

Clearly, for AC, = 0, we have the same relation as Equation 10.44.

A solid at the solidification (or melting) temperature T, is confined to a
half-space x > 0. At time t = 0, the temperature of the boundary surface at x
= 0 is raised to T, which is higher than T, and maintained at the
temperature for times t > 0. As a result, melting starts at the surface x = 0
and the solid—liquid interface moves in the positive x direction. Write down
the governing equations and boundary conditions for this problem and
obtain the analytical solution for the problem using the method of
separation of variables.

Develop a discontinuous finite element code to calculate the temperature
distribution and phase model, and compare the numerical solution and
analytic solution derived in Exercise 7.

Develop a discontinuous finite element code and incorporate the volume of
fluid algorithm for free surface calculations. Compare the results with and
without the global balance adjustment.

Modify the code developed for Problem 8 and use the level set method to
track the surface. Apply the code to solve a boiling problem and compare
the results with those reported in [38].

Develop a discontinuous finite element code for a 2-D simulation of
solidification using the phase field model given in Section 10.7.4.
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11

Micro and Nanoscale Fluid Flow and Heat Transfer

Recently, there has been much interest in understanding micro/nanoscale fluid flow
and heat transfer phenomena. This interest is largely driven by rapid advances in
micro devices for microelectronic, microeletromechanical and biomedical
applications. Two recent monographs have been devoted to the topic of fluid flow
in micro and nano channels and structures, and that of microscale heat transfer in
rapid thermal laser processing of thin films, respectively [1, 2].

Studies show that as the time and length scales are reduced, some of the
assumptions used or implied in the macroscopic description of the fluid flow and
heat transfer phenomena based on the continuum theorem may become invalid and
modifications are needed to improve the mathematical description. For the cases of
gas flow in microchannels, for example, the near-wall analysis suggests that the
no-clip condition, which has been taken for granted in macroscopic fluid
mechanics, is no longer valid. The collision of the molecules with the walls results
in a slip of the molecules along the solid wall. There also have been attempts to
directly apply the Boltzmann transport equation to describe the fluid flow
phenomena at microscales.

One of the widely observed phenomena associated with the microscale thermal
transport is the phase-lag behavior, which occurs in thin films under irradiation by
a pulsing laser. When the pulse duration and the length scale are reduced to a level
comparable with the mean free path of the phonons, the temperature gradient and
the heat flux no longer travel at the same speed, making invalid the equal-speed
assumption implied in the classical Fourier law for heat conduction. An appropriate
description of the thermal phenomena at microscales thus requires the modification
of the existing heat transfer equations.

Research indicates that a mathematical description of microscale heat transfer
phenomena may be very similar to that for macro phenomena with relevant
modifications for certain specific applications and that the description can be vastly
different for other conditions.

In this chapter, we focus on two classes of mathematical description of fluid
flow and heat transfer problems at micro and nanoscales for which the
discontinuous finite element methods are particularly suited. The first class is
based on the modification of the existing macroscopic theory for microscopic
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description, whereas the second class is concerned with a direct description of
microscopic phenomena on the basis of the Boltzmann transport theorem. Relevant
background information on the fundamentals for these two approaches is provided.
The numerical solution of the relevant governing equations arising from these two
classes of mathematical description by the discontinuous finite element method is
discussed, along with numerical examples for microscopic heat transfer in laser
annealing of thin films and for the lattice Boltzmann solution of Taylor vertex
flows and flow over a cylinder.

11.1 Microscale Heat Conduction

The classical heat conduction equation and its discontinuous formulation were
presented in Chapter 4. An important assumption embedded in the equation is that
the temperature gradient and heat flux propagate at the same speed in the media.
As the scales, either spatial or temporal or both, become smaller, the local level
phonon—phonon interaction, the electron—phonon interaction, and the phonon—
photon interaction may become significant and must be specifically taken into
consideration. These interactions can be especially important when the spatial
scales are on the order of the mean-free path of phonons, and the time scales are on
the order of relaxation times characterizing these microscale interactions. For
metals, the relaxation time is around the order of a picosecond, whereas for
dielectric crystals and insulators, the relaxation time is on the order of nanoseconds
to picoseconds. These fast transient effects may dramatically change the heat
transfer phenomena at a local level and it is known that the classical heat
conduction models are inadequate to describe the microscale interactions [2].

Different models have been proposed to characterize these interactions by
adding additional terms to the classical heat conduction equation. For metals, the
electron—phonon interaction is dominant and is modeled by the electron-gas model.
By this model, the electron gas and metal lattice are heated up in the medium by a
mechanism that involves the excitation of electron gas, and heating of the metal
lattice through electron—phonon interaction in short time increments. For
semiconductors, insulators and dielectric materials, however, the reference to free
electrons is not applicable, because the electrons are bound more strongly to the
lattices. The dominant local effect of these materials is phonon scattering and
collision, and the contribution from electron gas is often neglected. The popular
model describing these phonon—phonon interactions is the phase-lag model.
Phonon interaction may also be described by the phonon radiative transfer model,
which assumes that the phonons propagate in the medium following an equation
similar to that of radiative heat transfer.

11.1.1 Two-temperature Equations

The photon—electron interaction is a dominant model for heat transport in metals.
In the free electron model, the electrons are modeled as a gas and frequently collide
with the lattices [3]. The heating mechanism involves two steps: the excitation of
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the electron gas, and the heating of the lattice through phonon—electron collisions
in short time increments. The two-temperature model for electron—phonon
interaction involves two sub-models, with one for the temperature of the electron
gas and the other for the temperature of the lattice. Mathematically, these processes
are described by the following two equations [4]:

oT,

Cr = V-kVT, -G(T, -T,) (11.1)
G % =G(T,-T) (11.2)

where the subscripts e and | refer to the electron gas and metal lattice, respectively.
Also, C is the volumetric specific heat, and G is the electron—phonon coupling
factor determined by

7 (nvk,)?
T 18k

G (11.3)

where n is the number density of the electron gas, k; is the Boltzmann constant, and
v is the speed of sound. The values of G for various metallic materials are given in
[2].

The above two equations can be combined to produce a single temperature
equation either in terms of the electron gas temperature T, or the lattice temperature
T,. In terms of the lattice temperature, the following single temperature is obtained:

V2T c, ot 2T
vor, | Se |V T _[Ce*C TN [CC )T (11.4)
G) ot k ot Gk ) at?

The electron gas temperature is then calculated by T, =T, + (C/G)o T//¢t.

From the computational point of view, the two-temperature model may be more
efficient, and indeed it is particularly suitable for treatment by the discontinuous
finite element formulation [5, 6].

11.1.2 Phonon Scattering Equation

In dielectrics, electrons are bound and not able to move freely in the structure. The
thermal transport is dominated by phonon collision and scattering. The popular
model describing the heat transfer by the phonon—phonon interaction is the phase
lag model, which consists of two equations,

T 4v-q=Q(ry (105)
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aq cC 1 [,
A 22T +—q =N |v2q +2v(V- .
= 3 o~ 4="; [ q ( Q)] (116)

where z is the relaxation time for the momentum-nonconserving process, z is the
relaxation time for normal momentum-conserving process, C is the volumetric
specific heat and c is the speed of sound (or phonon) in the solid. The first equation
is the thermal balance equation for solids; Q is the external heating source. The
second equation is a constitutive relation linking the heat flux g to the temperature
gradient VT, and the equation is derived from the generalized phonon thermal
conductivity relation. The two relaxation times represent the microscopic effects on
the heat transfer in solids.

The above equations may be combined by eliminating the heat flux, and with Q
set to 0, the resulting equation is written in terms of temperature,

VT

2 2
+9;N VT __3 o1 30T (11.7)

ot rpc? ot c2 ot

which has the same form as the equation for the lattice temperature in the two-
temperature model. Comparison of Equation 11.4 to the preceding equation shows
that the two equations have the same form, though the microscopic mechanisms are
different. Equation 11.7 sometimes is referred to as the thermal equation. It is seen
that with both 7z and 7 set to zero, but zc? being finite, we easily recover the
classical heat conduction equation from Equation 11.7.

Equations 11.5 and 11.6 are related to the dual-phase-lag model, which treats
the temperature gradient and heat flux in a cause—effect relation. Mathematically,
the model assumes the following form:

qr,t+z4)=-kVT(r,t+77) (11.8)

The first-order expansion of the above equation in both 7, and 7 gives the
following equation:

ovVT(r,t)

a(r, )+, % = KVT (1, 1) —key =

(11.9)

Equations 11.5 and 11.9 may be combined to obtain a single equation for
temperature distribution,

2
VT 414 avatT +E{Q+ aQ}=£a—T+T

o°T

q

Ty — — 11.10

k Yot | adt a ot? (11.10)
From Equations 11.9 and 11.10, the roles of 7, and 7 can be identified.

Basically, 7, and 7 are two characteristic times or phase lags that relegate the
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behavior of heat flux and temperature at the microscale. They represent the
properties of materials, reflecting their internal structure responses to the applied
conditions. If 7z < 7 , the heat flux travels faster and is the cause for the
temperature gradient, which is the effect, and travels slower. If 7, > 7 , however,
the temperature gradient precedes the heat flow, or the temperature gradient is the
cause, and heat flow is the effect. If 7= 17, = 7, then the heat flow and temperature
gradient travel at the same speed and we recover the classical heat conduction
equation. To see that, we set 7= 7, = 77 in Equation 11.10 to obtain

oy LT Q. 9lger 10T QI (11.11)
a ot k ot a ot Kk

where a = k/C is the thermal conductivity. The above equation is satisfied by the
following solution:

XL ) (11.12)
a ot k
which is nothing but the classical heat conduction equation. Mathematically, the
equation is parabolic in nature, of which the discontinuous finite element solution
was discussed in Chapter 4.
If 7z =0 and Q = 0, Equation 11.10 is simplified as the thermal wave equation
hypothesized by Morse and Feshback [2],

2

_ 10T 7o (11.13)
gop Lo 2
a ot a ot

The equation is hyperbolic in nature and its solution displays the wave
behavior. Here the temperature disturbance propagates as a wave in a medium, and
the thermal diffusivity appears as a damping effect in heat propagation. This is in
contrast with the diffusive nature associated with the classical Fourier heat
conduction equation. This is expected, in that when a cause—effect relation does
not exist, or the temperature gradient and heat flux travel at the same speed,
diffusion becomes the dominant mode for spreading the temperature distribution.

Tzou [2] further shows that the relaxations are related to the two-temperature
model constants and the phonon scattering constants,

9N (phonon scattering)
T 5 2TR
(11.14)

2 C : :
21 %|:1+ C—'} (phonon —electron intereaction)
9

In this way, the two phase-lag model includes both the two-temperature model and
the thermal wave model.
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11.1.3 Phonon Radiative Transfer Equation

This model is obtained by solving the Boltzmann equation for an acoustically thin
medium, in which the phonon mean free path is smaller than, or comparable to, the
thickness of the film. The starting point is the 1-D Boltzmann equation with the
relaxation approximation,

ﬂ+vxﬂ=—1 falgea
ot OX T T

(11.15)
where f is the distribution function for phonons with a vibrating frequency @, vy is
the 1-D phonon velocity, and t is the relaxation time. Also, superscript eq
represents the equilibrium state.

The phonon intensity | in heat transport is obtained by summing up the
distribution function over the three phonon polarizations p,

(@, x,1,Q) = Zv(Q)f (@, %, )hwD(®) (11.16)
p

where v is the speed of phonons in the direction defined by the solid angle Q, h is
the Planck constant and D(w) is the density of states per unit volume in the
frequency domain of lattice vibrations. The projection of the velocity to the x axis
is vy = v(Q)cos(6) = v(Q)u. Note that use of f * in Equation will give 1*.

Substituting Equation 11.16 into Equation 11.15 and carrying out the algebra,
we have the phonon radiative transfer equation,

101 a1 1
Sy = | 11.17
v8t+y8x+w 2VTJ:1 du ( )

which was first derived by Majumdar [7]. The above equation can be solved using

the methods discussed in Chapter 9. The heat flux and internal energy at any point
in space may be calculated by the following expressions (see also Chapter 9):

wp )
:f f TudwdQ; E:f f “IvidedQ (11.18)
ard o 47 J 0

where dQ = sinddAddgis the differential solid angle and ap is the Debye cutoff
phonon frequency. The two terms are related by the 1-D energy balance equation,

+1 op jeq _
%—E%—@: f f ! da)d,u (11.19)

From the above equation, 1* can be expressed as an integral of I because 1* =
1*%(w, T(x)) only. This relation has been used in deriving Equation 11.17.
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11.2 Discontinuous Finite Element Formulation

The discontinuous finite element formulation for the electron—lattice model and the
radiative transfer model are very similar to that discussed in Chapters 5 and 9, and
thus will not be elaborated upon here. We mention, however, that in the electron-
gas temperature model the extra term can be simply treated as a source term. The
radiative transfer equation describing the phonon interaction has a transient term
and thus an additional time marching scheme is required to obtain the solution.
Time integrators discussed in previous chapters (see Section 2.2.2, for example)
can be used for this purpose. Such a scheme should be readily incorporated into the
algorithms described in Chapter 9. It is worth noting that Equation 11.15 may be
solved numerically using the lattice Boltzmann approach as discussed in Section
11.5.

Let us turn our attention to the two-phase lag model and consider the
discontinuous finite element formulation for the numerical solution of the
temperature distribution described by Equation 11.10. We study a general case of a
pulsing laser heating process, where the length scale is comparable to the skin
depth of the electromagnetic waves of the laser beam. To facilitate the
discontinuous finite element formulation, Equation 11.10 is split into two first
order partial differential equations,

aT
Q-V-a=Cypp (11.20)

aq 0
A+rq = —k[VT + 17 a(vﬂ} (11.21)

For a thin film of thickness comparable to the skin depth of laser-induced
electromagnetic waves, the general 3-D Gaussian laser pulses may be modeled as
an internal energy source near the irradiating spot, namely,

_ 2,2 42
Q-1 D exp[—i——x pa —t—] (11.22)

where R is the surface reflectivity, t, is the characteristic duration time of the laser
pulse, Iy is the laser intensity, ¢ is the penetration depth of heating energy, and r is
the radius of the laser beam.

Because the physical dimensions of the media are small (in microns) and time
duration is short (ps), a non—dimensionalized equation is easier to work with for
this type of problem. By introducing the following dimensionless parameters:

N Y S 4 L3 1]

2fary " 2\fary 2 Jary

A=
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kyzg V[T (1) -To] N 21,[mat,
= TW=————(q; y=—">-"—-"0
(1-R)lyva A-R)I, A-R)I,

where Ty is the reference temperature. Equations 11.20 and 11.21 can be rewritten
in the non—dimensionalized form of

Rl
ow
2w+¥= -VO-¢&; é(ve) (11.24)

with y being the dimensionless heating source expressed as

2
ex p[—5—¥—(i) ] (11.25)

X,Y,Z,
w( &)= 2A§p y :,

and vV = (o/oX , a/aY , 6/6Z) .
The solution of the above equations requires boundary and initial conditions.

For the calculations presented below, the following boundary and initial conditions
are used, which in terms of dimensionless parameters, become

w-n=w,n, +wyn, +w,n, =0, X,Y,ZeoQ (11.26a)

O(X,Y,Z,E=0)=0; %(X,Y,Z,§=0)=O:
o0&
w(X,Y,Z,E=0)=0, X,Y,Z €oQ (11.26b)

where n is the outward normal vector at the domain boundary 0Q. Note that the
above boundary conditions on the temperatures approximate the situation where
the heat transfer coefficient is very large at the two boundaries. Other boundary
conditions such as periodic or reflection conditions may also be applied.

To develop an integral formulation that is suitable for discontinuous finite
element solutions, the computational domain is first discretized into a tessellation
of finite elements, that is, triangles in 2-D geometries and tetrahedrons in 3-D
geometries. Then, the governing equations (Equations 11.23 and 11.24) are
multiplied by a pair of test functions (v,v) and integration over any of the elements
Q; with the result,
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f [g—ngv w— y/]dV—O (11.27)
fQ v-[g—vg—I—Zw—&—Vﬁﬁ—fT%(V&)]dV =0 (11.28)

i

where v = (vy, Vy, V;). Integration by parts of the flux term gives

f [vg—g—ww V"”]d9+ DQ_M'”d7=0 (11.29)
fg_[ g§+2VW OV-v—&V- vgg]dg
+fm[é+§h[ g?]]V”dV 0 (11.30)

where use has been made of the numerical fluxes (é, ﬁ(e, 66’/65), W) to replace the
function fluxes at the element boundaries.

By Galerkin’s approach, the shape function is taken in the same manner as the
test function. Thus, the variables are interpolated over an element as follows:

Ne

O(X.Y,Z,8) =D ¢i(X.Y,2)0;(5) =" 8 (11.31a)
=

Ne

8—§(x Y.z, 5)_le:¢,(x Y, Z)[a—é(g)] —0Té (11.31b)
N,

W(X,Y,Z,8) =Y 4 (X.Y.Z2)w;()=0"w (11.31c)
j=1

where ¢ is the shape function, N. is the number of nodes per element and the dot
on the top of a variable denotes the time derivative.

As discussed in Chapters 4 and 5, a variety of numerical fluxes can be chosen
for a discontinuous finite element solution. The fluxes in the above equations can
be calculated by the following expressions:

W-n=aWw?*-n)+@-a)w-n) (11.32)
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(6+&h)n =a(9+ +& (g_gI]“i +(l—a)[(9 +& (g—gj_Jni

(11.33)

where the indices — and + denote the back and front sides of the vector, n is the
outward normal, i is the unit vector and n; = n-i . Note that in the above definition,
a =1 represents the use of the one-side upwinding scheme. Taking « to be %, one
has the central flux approximations, which were first used by Bassi and Rebay [8]
and will be used for the results calculated below as well. The central flux
approximations provide the simplest and most efficient expressions for numerical
flux calculations and their mathematical properties have been studied recently [9].
Other numerical flux expressions summarized in Table 4.2 may also be used for
the calculations.

Following the discontinuous finite element procedures outlined in Chapters 4
and 5 and carrying out the calculations at the elemental level, one has the following
matrix equation for the element:

MU+KU=F (11.34)

where the unknown vectors, force vectors and matrices take the following forms:

0 6 Fy
U= WX ,U: V%VX , F: FWX ,
WV WV FWY
w W, Fuz
M, ©0 0 0 0 Ky Ky Ky
M, M 0 0 K., K 0 0
M= * " i = (11.35)
M, 0 M, O Ky 0 K, 0
M, 0 0 M, Ky, 0 0 K,

with 8 =80(&/5, and W =Aw(&Y A& The matrix elements are calculated using the
following expressions:

Mng dDTdO

Qj

MW:f lolife)
Qj

K, = 2f dDTdV
Qj
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where NS is the number of sides of element j.

The above algorithm has been applied to study the heat transfer phenomena in
pulsing laser heating of thin films. The case studies include 1-D, 2-D and 3-D
problems. These results are given in Figures 11.1-11.3.

Figure 11.1 compares the analytic solution and the numerical results obtained
using the discontinuous Galerkin finite element method as described previously.
This is a 1-D problem for which the analytic solution is obtained using the method
of Green’s function [6]. Numerical calculations used 200 linear elements and the
time step is chosen as 0.001 to satisfy the stability criterion. As seen from the
figure, excellent agreement exists between the analytic and the numerical solutions.
At £ = 0.1, a thermal wave peak has just formed and the wave behavior of the
thermal signal propagation is apparent in Figure 11.1, where a sequence of peaks
indicates the propagation of the thermal wave initiated by the pulsing laser. At &=
2.4, the thermal wave is reflected at the insulated end (X = 2) and propagates in the
negative X direction. As time goes by, the temperature distribution along the bar
becomes more and more even. Eventually the wave behavior disappears and a
uniform temperature profile is attained.

It is known that the dual phase parameter z provides the relaxation mechanism
for the temperature gradient, and hence it is termed the phase lag of the
temperature gradient. On the other hand, 7, describes the relaxation mechanism for
the heat flux g, and therefore is termed as the phase lag of the heat flux. Physically,
these two parameters characterize the thermal wave behavior in the medium. If zr <
75, then the temperature gradient is ahead of the heat flux, which means that the
temperature gradient is the cause and the heat flux is the result. This is the case
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where 7 (or &) = 0, which is shown in Figure 11.1(a). If 7+ > 7, (i.e., & > 0.5),
then the heat flux precedes the temperature gradient, which means that the heat
flux is the cause and the temperature gradient is the effect. Thus, with an increase
in 71, the temperature gradient across the film is relaxed, or more specifically,
delayed. One such case is calculated using the discontinuous finite element model
and the results are shown in Figure 11.1(b), along with the analytic solutions.
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Figure 11.1. Computed results of a thermal wave in a 1-D thin film: (a) comparison of the
propagation of temperature distributions in the 1-D problem obtained analytically using the
method of Green’s function, and numerically by the discontinuous Galerkin finite element
method (& = 0.0); and (b) transient development of temperature distribution with dual phase
lags along the 1-D domain that is irradiated by a pulsing laser beam (& = 1.0). Other
conditions used for computations: A = 0.05 and &, = 0.0

Figure 11.2 plots the temperature propagation in a two-dimensional restricted
converging—diverging channel. The domain can be divided into four regions: the
uniform inlet region, converging region, diverging region and uniform outlet
region, as shown in Figure 11.2(a). A steady pulse laser beam with a width of 0.2
and a characteristic duration of 0.1 irradiates a portion of the inlet of the channel
with the heating source taken in the form of

S S B¢ £.2.S B SRR
WX .Y,8) = 2Aégpexp[ ( )] (11.36)

The calculations used an unstructured mesh shown in Figure 11.2(b), which is
obtained using the front advancing automatic meshing generation scheme [6]. The
mesh consists of a total of 7610 linear triangular elements. Figure 11.2(c) depicts
the time snap shots of temperature distributions in the plate with (& = 0.0). At £=
1.0, the thermal waves arrives at the two boundary walls (Y = £0.5) in the uniform
inlet region, and the wave front starts to enter the compression region (X = -0.5).
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At £ = 1.0, the thermal wave front reaches the diverging region while the wave
reflections occur at the walls in the converging region. At £= 1.5, the wave front is
leaving the diverging region, and the whole thermal wave field evolves into a quite
complex structure. Unlike the wave in the converging region, no strong wave
reflection is observed at the boundary walls in this region because of the diffusive
effect of the diverging region. At &= 2.0, the wave arrives at the right side wall (X
=1.0) and continues to evolve.

In Figure 11.3, a simple cubic geometry is considered to illustrate the thermal
wave propagation in a 3-D domain. The laser beam arrangement is schematically
shown in Figure 11.3(a). The computational domain is a 2 x 2 x 0.5 cubic box,
which is insulated from the ambient along the boundaries. A steady pulse laser
beam with a radius of 0.1 and a characteristic duration of 0.1 irradiates a portion of
the center of the top surface of the box with the heating source taken in the
following form:

1 _(0.5—2)_x2+\(2_£2
"’(X’Y’Z’é)_zAgp exr{ A A7 (ép)] (11.37)

The unstructured mesh for the discontinuous finite element computations has a
total of 96000 linear tetrahedral elements. Figure 11.3(b—d) depicts the time
evolution of the temperature distribution on the Z = 0.5 plane with & = 0.0. Once
again, the wave-like characteristic of the propagation of the thermal wave in the
system is observed.

11.3 Micro and Nano Fluid Flow and Heat Transfer

Study of fluid flows in microscale systems has been documented in a recent
monograph by Karniadakis et al. [1], where fundamental equations and their
application to micro systems have been discussed. For incompressible flows in
microscale systems, the Navier—Stokes equations formulated for continuum media
are also applicable under normal conditions, and the numerical techniques
discussed in the previous chapters may be directly applied to perform flow
simulations. One important point in this regard is that in order to numerically
simulate these flows, the equations should be non-dimensionalized, using
appropriate time and length scales, to prevent floating point problems from
occurring and to ensure accuracy. For flows involving gases, however, the
compressible effects may become important and the commonly used no-slip
boundary conditions need to be modified to allow for the slip of fluid molecules
along the walls.

Theoretically, the Navier—Stokes equations are the first order approximation of
the Chapman—Enskog solution to the Boltzmann equation, and are accurate only up
to O(Kn) [10]. The Knudsen number (Kn) characterizes the regimes from free
molecular to continuum flows and is defined as the ratio of the mean free path of
the molecules over the characteristic dimension,
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Figure 11.2. Computed results of thermal wave propagation in a converging—diverging
channel: (a) geometry and pulse laser heating arrangement for the 2-D
converging—diverging channel problem, (b) the unstructured triangular mesh for the
discontinuous finite element computations, and (c—f): evolution of temperature distributions
at various instances: (b, wave-like) & = 0.0, (c) £=0.1, (d) £=0.5, (e) £= 1.0, and (f) &=
1.5. Parameters used for calculations: A=1.0and & = 1.0
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(c) (d)

Figure 11.3. Evolution of temperature distributions of the 3D problem on the z = 0.5 plane
at various instances (wave-like & = 0.0): (a) problem definition, (b) £=0.1, (c) £=0.5, and
(d) £=1.5. Parameters used for calculations: A=1.0and & =1.0

Aokl (11.38)

Kn=—-=
H 2zd?pH

where A is the mean free path of the molecules, d is the diameter of the molecules,
H is the characteristic length, k, is the Boltzmann constant, T is the temperature,
and p is the thermodynamic pressure. The Kn number may also be defined in terms
of the non-dimensionalized numbers used in continuum fluid flow studies,

Kn =2 Ma (11.39)
2 Re
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where y is the specific heat ratio, Ma = u/(}RT)"? is the Mach number, R is the

specific gas constant, Re = puH/u is the Reynolds number, and u is the flow
velocity. The local Kn number is a measure of degree of rarefaction of gases in
flows in microscale or nanoscale channels. Different regimes of fluid flow with Kn
as the indicator are schematically sketched in Figure 11.4. The continuum
description of fluid flow motion is applicable within the range of Kn — 0 to Kn =
0.1. The no-slip boundary conditions at the walls, however, must be relaxed for the
flows with Kn=0.001 to 0.1. As the Kn number increases, the rarefaction effects
become more pronounced and eventually the continuum assumption breaks down.
The transition flow occurs when the characteristic dimension becomes comparable
to the fluid mean path. In the range of Kn = 1 to Kn — oo, the solution of free
molecule flows is required, which needs to take into account the individual
molecule behaviors. Thus, the streaming velocity at the wall is comprised of flows
of incident molecules and the scattered molecules by the wall.

Mavier-Stokes Equations @  p-=========== -
Euler Burnett

No-slip Slip-conditions

107 10" 10° 10' Kn — o0
i i =
w v .
Continuum Slip Flow Transition Flow Free-molecule
Flow Flow

Figure 11.4. Classification of flows from free molecular flows to continuum [11]

In Chapman—Enskog’s perturbation theory, the system is considered as a first
order perturbation from the equilibrium Maxwellian distribution, and the
distribution function f is expressed in a power series,

f=f@Q4+Knf®+Kn2f® +... (11.40)

where the small perturbation parameter is taken to be Kn [11]. Consistent with the
Navier—Stokes equations, which is accurate to O(Kn), the boundary conditions to
the same order accuracy are needed for the velocity. This leads to the following
slip condition of gas velocity at the wall:

o, = 22T Hn X _ 220 U (11.41)
o on o on
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where subscript s denotes the stream direction parallel to the wall, and n is the
normal of the wall. Of course, in the direction perpendicular to the wall, the
velocity is zero.

This is consistent with Maxwell’s derivation for dilute, monatomic gases [12],
which also includes the temperature effects and wall velocity u,

=2—0/1% 3 u ot

o on 4pTg o

(11.42)

Us — Uy,

The corresponding temperature jump relation at the wall was derived by von
Smoluchowski [11] as

2-o01 2y AT

T-T, = —
oy 1+y Pr os

w

(11.43)

Here, the parameter o measures the reflection of molecules diffusively from the
walls. At o = 0, the molecules reflect specularly, indicating a reversal of their
normal velocity due to normal momentum transfer to the wall. At o =1, on the
other hand, the molecules reflect diffusively when reflected from the wall with zero
tangential velocity. Thus, the values of o and o7 depend on local characteristics
near the wall including surface roughness, fluid temperature and pressure.

The above first order slip conditions are found to be applicable to the
Navier—Stokes equations when the Kn number is in the range of 0.001 — 0.1. For
Kn > 0.1, further corrections may be needed. Karniadakis et al. [1] suggest the
following correction in place of the no-slip condition:

U.—u _2-0 A oy 3 u 0T (11.44)
* " o H-blon 4pT, s

where b is an empirical constant. Other higher order corrections to the boundary
conditions may be obtained from the direct solution of the Boltzmann equation [13,
14].

For these flows, it is not difficult to devise the discontinuous finite element
solution. In fact, the algorithms presented in the previous chapters can be directly
applied, with allowance made for the slip conditions in the stream directions.

11.4 The Boltzmann Transport Equation and Numerical Solution

One of the celebrated fundamental equations in statistical mechanics is the
Boltzmann transport equation, which characterizes the kinetics and dynamics of the
distribution of microscale particles, such as electrons, phonons, photons,
molecules, etc. As suggested in Figure 11.4, the Boltzmann equation, which is an
integral-differential equation, is applicable over the entire spectrum of Kn. We
discuss the basics of the equation and its numerical solution in this section.
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11.4.1 The Boltzmann Integral-Differential Equation

The Boltzmann integral-differential equation (or the Boltzmann transport equation)
describes neutral and charged particle transport phenomena and expresses the
global non-equilibrium distribution in terms of the local equilibrium distributions.
The equation enables application of the properties of equilibrium systems to the
study of a non-equilibrium system. For a system with a non-uniform particle
density and temperature, in each place there is a local range where the thermal
velocities are given by an equilibrium distribution function. The distribution is
temperature dependent and varies from place to place. Whenever a particle is
scattered, or collides with the medium, its thermal velocity immediately after the
collision will be that of the equilibrium distribution at the collision point. The
equation is derived based on the balance of randomly moving particles within a
medium with a temperature gradient and takes the following form [15, 16]:

ﬂ+v-Vf+E-V\,f
ot m

:fff (F'f,'— f f)UoL(V, vy — V'v; )dvy'dv'dy,  (11.45)
vid vid oy

where f(r, v, t) is the distribution function and its physical meaning is interpreted as
the particle distribution at r, v and t, m is the mass of the molecule, F is the
external force, and v is the velocity of individual molecules. The integration is
carried out over the entire space of the velocity. Note that this equation involves 7
independent variables (3 spatial variables, x, y, z; 3 velocity variables, v,, v, v;; and
time t). Also, ow(v, vy, V', vy') is the differential scattering cross-section for the
collision of two particles. These two particles have velocities (v, v;) before
collision and (v', v4') after collision. In the equation, zz=|v — vy =| v’ — v{/| is the
relative speed and f ' = f(r, V', t), etc.
The above equation may also be written in a simplified form,

of F

E+V~Vf+a-vvf:f f (f'fi'— f f)uoe(u,Q)dQdv, (11.46)
vid Q

where dQ = sin@d@ g is the differential solid angle subtended at the center of
mass. In writing Equation 11.46, we have also used the following definitions:

(11.47)

The distribution function f is defined such that f(r, v, t)dxdxdydv,dv,dv, =
probability of finding a particle phase space volume dxdxdydv,dv,dv, centered at r,
v and t. The distribution function f has a unit of m>(ms ™) ~ and it satisfies the
following conservation relation:
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fvfr,f(ryv,t)drdvl = frln(r,t)dr =N (11.48)

where n is the density of particles and N is the total number of the particles in the
system.

The Boltzmann integral-differential equation may also be written in a
simplified form involving differential operators only,

af _ (ﬂj (11.49)
dt dt ).

where the left hand side represents the dynamics of the particle and the right hand
side is the collision term,

%:%w-vnivvf (11.50)
m
df e
(E] “ :f fQ(f f ) o (1, Q)dQav, (11.51)
co Vi

This form is convenient for the derivation of the lattice Boltzmann equation, which
has been used for simulation of various microscale flows (see Section 11.6 below).

As the Boltzmann equation describes the microscopic phenomena, its use for
the study of microscale thermal and fluid flow phenomena is obvious. It is known
that a macroscopic description of transport phenomena is essentially an assemble
average of microscopic phenomena. In fact, the continuity, the Navier—Stokes and
the energy balance equations can be directly derived from the Boltzmann equation.
This allows us to establish the direct link between the microscopic and
macroscopic descriptions of physical phenomena in thermal fluids systems. We
outline basic procedures by which these macroscopic equations are derived from
the microscopic Boltzmann equation.

Let yAr, v, t) be a generic variable for thermal fluids such as the flow velocity,
momentum and Kinetic energy. Microscopically, this variable is transported along
with molecules. We obtain the transport equations for these quantities by
integrating them with the Boltzmann equation over the entire velocity space, viz.,

of F
fvl//adv+fvy/V~Vf dVJerV/E'V"de
:f!//f f (F f,'— f f,)uo(u,Q)dQdv,dv (11.52)
\Y vidJ Q

In the derivations given below, we will use the averages that are defined as
follows:
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p:%f widv; fa‘/’fdv (11.53)
A\

where the integration is carried out over the entire molecular velocity space. With
the above definitions and noticing that F is a function of r only, but not of v, and
making use of the symmetry condition of the scattering cross-section, we have the
following transport or transfer equation:

oy

o(ny) F
+V-(nv n—m—nv- V n—-v
" (nvy) - o pon—-Vo

1 ! J 1 1
:fo f[’// +y'—y —y (= f f)po(u,Q)dQdvdv
vd v, J o
(11.54)

where n is the number of particles per unit volume.
It is known that before and after a collision of molecules, the mass, momentum
and energy are conserved. These conservation properties are written as

v'ty,'-w -y =0 (11.55)

This will make the collision term vanish, which basically means that the collision
does not create or destroy conservation properties at a fixed location but only shift
them in the velocity space. For example, a collision process conserves the
momentum. The specific conservation properties of interest to thermal fluids, that
is, mass (m), momentum (mu) and energy (mu?), are a function of velocity only,

oy
=V 0 11.56
ek (11.56)
or
oy ———
nE—nvon//:O (11.57)

Combining Equations 11.54-11.57, we have the governing equation for the
conservation properties,

a(gt"’)w (") - nE V=0 (11.58)

from which the equations for the conservation of mass, momentum and energy are
derived.

Letting yA(r, v, t) = m and substituting into the above equation, we have the
continuity equation,
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%+V-(pu):0 (11.59)

where p=nm and u=V. Note that u is the macroscopic velocity used in the
Navier—Stokes equations, which is just an assemble average of molecular velocity.

To obtain the momentum equation, we let y(r,v,t)=mv, and note that ovi/ov; =
dij, whence we have the macroscopic momentum equation for u,

Ao v (pw)-pE—o (11.60)
ot m

The second term can be further simplified such that

where by definition the second term is calculated by
P — U)W, —uj):mf (V —u)(v; —uj) fdv (11.62)
\%

Here w = v — u is the velocity of the particle relative to the local macroscopic flow
velocity u and w =0. Further, the fluctuating velocity correlation term (i.e., the
second term in Equation 11.56) may be decomposed into two components,

P=3p(i~u)?; oy =pd;—p (Vi ~u)(v; -uj) (11.63)
With u = v substituted, we thus have the momentum balance equation,

%+V~(puu) =-Vp+V-6+ pfiy (11.64)

where fi,; = F/m is the external force per unit mass including the contribution from
gravity. This is the Navier—Stokes equations for momentum transport. We see here
that the shear stress is basically the transport of the fluctuating velocity momentum
and the viscosity goes to oppose the shear motion and inter-molecular penetration.
If the above equation is further combined with Equation 11.59, we have the
following well known expression for the macroscopic momentum balance,

p%+pu~Vu=—Vp+V'6+pf+pg (11.65)

where f; = f + g has been subsituted and f is the external force excluding the
gravitational force.
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Letting yAr, v, t) = mv?, and going through the same procedure above, one has
the energy balance equation,

p%+pu-VE:—pV~u—V-q+c:Vu (11.66)

where the last term on the right side represents the viscous dissipation, E is the
internal energy per unit mass and q is the heat flux representing energy flow per
unit area per unit time,

1
E=— —uff 11.67
2nfvlv uPfdv (11.67)

q:%ff(v—u)|v—u|2dv (11.68)
A\

In deriving the energy balance equation, we have used the continuity equation and
the momentum equation to eliminate the term associated with F. In addition, the
following statistic-averaging relations have also been applied,

V2= —u)? +u? (11.69)

Visz = (v —Ui)z(Vj —Uuj)

+20; (v; —Up)(v; —u;) + U (v — ;)2 + 0 (11.70)

Equations 11.59, 11.65 and 11.66 constitute the macroscopic description of
hydrodynamics of a fluid in motion, which is derived from the statistical average of
the Botlzmann transport equation. It is clear that the macroscopic variables, that is,
mass (p), velocity (u), heat flux (q), stress (o), pressure (p) and the internal energy
(E), are linked to the microscopic variables through averaging processes. We
summarize these macroscopic and microscopic relations below,

o= mf fdv (11.71)
\%
1
u :—f fvdv (11.72)
n \%

q:%ff(v—u)|v—u|2dv (11.73)
A\
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_1 PR

E—2nfvf|v uldv (11.74)
p=3p (v -up)? (11.75)
oij = P& —p (Vi —u;)(vj —u;) (11.76)

The Boltzmann integral-differential equation is also useful for the calculation
of transport properties such as viscosity, thermal conductivity and diffusivity for
fluids. The mathematical theory developed for this purpose has been discussed in
detail by Chapman and Cowling [10]. The use of the fluctuating theory for
calculating the transport properties is also discussed by Isihara [15] and Kubo et al.
[16]. Boundary conditions for the solution of the Botlzmann equations in confined
regions are discussed by Cercignani [17] and Harris [18]. They can also be used to
provide higher order slip boundary conditions for gas flows in micro/nano
structures.

11.4.2 Numerical Solution of the Boltzmann Transport Equation

The Boltzmann transport equation (or the Boltzmann integral-differential equation)
is a very complex mathematical expression. It has seven independent variables and
it would be a formidable task to solve the Boltzmann transport equation directly.
Two classes of computational techniques are devised to solve the transport
equation [19-22].

The first class involves the deterministic methods, and the transport equation is
discretized using a variety of methods and then solved directly or iteratively.
Different types of discretization give rise to different deterministic methods.
Methods in this category includes discrete ordinates, spherical harmonics, collision
probabilities, nodal methods, spectral Galerkin methods, and others. By these
methods, a discretization of the velocity space is made first, which transforms the
equation into a system of linear, hyperbolic partial differential equations. The
discontinuous Galerkin finite element method or other numerical methods are then
used to discretize the physical space and solve the resulting system of differential
equations.

The second class of techniques includes the Monte Carlo methods. By these
methods, a stochastic model is constructed in which the expected value of a certain
random variable is equivalent to the value of a physical quantity to be determined.
The expected value is estimated by the average of many independent samples
representing the random variable. Random numbers, following the distributions of
the variable to be estimated, are used to construct these independent samples.
There are two different ways to construct a stochastic model for Monte Carlo
calculations. In the first case the physical process is stochastic and the Monte Carlo
calculation involves a computational simulation of the real physical process. In the
other case, a stochastic model is constructed artificially, such as the solution of
deterministic equations by a Monte Carlo technique.
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The direct solution of the Boltzmann equation has been used to study the flow,
heat transfer and temperature distribution in a binary mixture of rarefied gases. To
obtain the high order accuracy of the velocity distribution function, the complicated
nonlinear collision integrals are computed by the deterministic numerical kernel
method. The overall quantities (the heat flow in the mixture, etc.) and the profiles
of the macroscopic quantities (the molecular number densities of the individual
components, the temperature of the total mixture, etc.) are obtained once the
distribution function is known. The use of the Boltzmann equation for the study of
microscopic transport phenomena has been reported for a wide range of the Kn
number [19-21]. In a recent monograph, Aristov [22] has also documented various
numerical schemes for the direct solution of the Boltzmann equation and their
applications.

Perhaps the major difficulty with the direct solution of the equation is the
precise treatment of the differential scattering cross-section associated with the
molecular collision process. Fortunately, for a majority of thermal and fluids
applications, approximations can be made to simplify the equation [23]. In the two
sections below, we discuss the Bhatnagar—Gross—Krook (BGK) approximation and
the discontinuous finite element solution of the Boltzmann—-BGK equation.

11.5 The Boltzmann—-BGK Equation and Numerical Solution

In this section, we discuss the continuous Boltzmann—-BGK equation and the
numerical solution of the equation using the discontinuous finite element method.

11.5.1 The Boltzmann—-BGK Equation

As discussed above, the Boltzmann equation describes the evolution of the
distribution function f of a fluid. The fluid density, momentum and energy can all
be found from the distribution function by considering the appropriate integral. In
theory this appears straightforward; however in practice it can be difficult because
of the complicated form of the collision term on the right hand side of Equation
11.45. A large amount of the detail of the two-body interaction, which is contained
in the Boltzmann collision operator, is unlikely to significantly influence the values
of the macroscopic quantities [18]. Thus, the integral can be replaced by a
simplified collision operator that retains only the qualitative and average properties
of the actual collision operator. Any replacement collision function, however, must
satisfy the conservation properties, such as the conservation of mass, momentum
and energy, imposed on the fluid system [23].

A widely used approximate collision operator for thermal fluids applications is
the BGK assumption by which the molecular collision operation is approximated
by a time differencing using a single relaxation time [23],

(ﬂ e (11.77)
dt coll v .
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where 7 is the relaxation time characterizing the molecular collision, and f © is the
Maxwell—Boltzmann equilibrium distribution function,

n (v—-u)?
expl — 11.78
(@27 k,T /m)e/2 p[ 2ka/mj (11.78)

fO(r,v,t) =

in which k;, is the Boltzmann constant, d is the dimension of the space, m is the
mass of the particle, and n, u (u = V) and T are the macroscopic number density,
velocity and temperature, respectively. It is noted that strictly speaking, the
Maxwell-Boltzmann equilibrium distribution function used in statistical mechanics
is Equation 11.78 with u = 0 [15-18]; Equation 11.78 was used in the BGK
approximation to the collision operator [23]. It is noteworthy also that other
equilibrium distribution functions, such as the Bose—Einstein distribution, may be
used for other particle systems.

Once the distribution function is known, the macroscopic properties can be
calculated using the following definitions:

n:ffdv; nu:ffvdv; nE:ff(v—u)zdv (11.79)
\' \' \'

The derivative V, f cannot be calculated directly because the dependence of the
distribution function on the microscopic velocity is unknown. Following the
procedures stated in [24, 25], the derivative may be approximated by
v, f=v, O (11.80)
Then, defining an equilibrium distribution function as
fe4=fO _¢(F/m).v, f=0-z(F/m)-v,)f©
=@1+z(F/m)-v,)fO (11.81)

we have the well known Boltzmann—-BGK transport equation,

—feq
ﬂ+V-Vf: -f
ot

(11.82)

We note here that if the external force is absent (i.e., F = 0), f* = ©.

11.5.2 Discontinuous Finite Element Formulation

For the purpose of numerical solution, Equation 11.82 may be more conveniently
written with v normalized as a unit vector. This can be done by introducing a
velocity scale vp, and thus we have the following equation:
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of . _f-fe
Vot Vo7

(11.83)

with ¥ being the unit velocity vector, i.e., V= v/v,.

The above equation is very similar in form to the radiative transfer equation for
radiation intensity I, whose solution was discussed in Chapter 9, the only
difference being the presence of a time derivative term here. Consequently, the
discontinuous finite element procedure detailed in Chapter 9 for radiative transfer
calculations can be directly applied here, with a straightforward modification for
the transient term.

Integrating the above equation with respect to a weighting function over
element j yields the following integral representation:

R N I

where AQ is the control angle for the velocity space. Following the procedure
given in Chapter 9, we can easily derive the following discretized formulation for
element j,

]dVd Q)

(11.84)

M%+Kf -F (11.85)
2 TKEo =Eao) :

where fg = [, £, ..., $™],7, N being the number of nodes per element, M is
the mass matrix, and K and F are caluclated in the same fashion as discussed in
Chapter 9. The solution procedure involves an iterative process by which the
numerical solution is obtained element-by-element, once an explicit time
integration scheme is applied.

11.6 The Lattice Boltzmann Equation and Numerical Solution

The Boltzmann—-BGK equation may also be integrated in certain discrete directions
of velocity, similar in the way the discrete ordinates are applied in the solution of
radiative transfer equation (see also Chapter 9). In the literature, the equation is
discretized based on the quadrature rule that leads to the lattice Boltzmann
equation, which has been widely used in simulating a variety of fluid flows and
heat transfer at microscales [26, 27]. In this section, we discuss the derivation of
the lattice Boltzmann equation from the Boltzmann—BGK equation, the boundary
conditions characterizing the interactions between gas molecules and the solid
walls, the discontinuous finite element formulation, and the numerical procedures
for the solution of the lattice equation. Numerical examples using the
discontinuous formulation are given for Taylor vortex flows and flow pass over a
cylinder.
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11.6.1 Derivation of the Lattice Boltzmann Equation

The lattice Boltzmann equation can be derived in two ways [26]. One of them
originates from the lattice gas automata model and the other from the Boltzmann
transport equation. An important observation in the lattice gas automata
simulations is that the fluid motion can be calculated by assuming that the
molecules in the system are massless and the molecules move at the same speed
but with different directions. From the lattice gas dynamics point of view, the
density of molecules change as a result of collision and thus an accurate
representation of the collision operator is important. The other approach to derive
the lattice Boltzmann equation is by the direct integration of the Boltzmann
transport equation. This approach is considered more rigorous and is discussed
below.

The starting point is the Boltzmann-BGK equation (i.e., Equation 11.82). For
the purpose of selecting appropriate discrete directions for integration over the
velocity space, the equation is non-dimensionalized by using the reference time ts,
number density no, temperature T and mass my. In this case, the reference velocity
can be chosen as ¢ = (k;T/mg)¥? which is the speed of sound for an ideal gas
consisting of molecules with mass mg at temperature T. Non—dimensionalized, the
Boltzmann—-BGK equation takes the following form:

* * *(eq)
PSR S

T

(11.86)

where the non-dimensionalized equilibrium distribution function with F = 0 is
given by the Maxwellian distribution,

d/2 LR
£ (e _ £40) :n*( 1 ] exp{_u} (11.87)
2 2

In the above equations, d is the spatial dimension, and the superscript * denotes the
dimensionless quantity, f* = f/fy, u* = u/cs, n* = n/n,, t* = t/t;, and v* = v/c,. Also,
the references of length |, acceleration ag and distribution function f, are cts, Csfts,
and ne/cs’, respectively.

In order to solve Equation 11.86 numerically, a discretized velocity and spatial
space needs to be chosen. For this purpose, the distribution function f (x*,v*,t*) is
expanded as a power series in v*. At a low Mach number, a Hermite polynomial is
generally used because of its symmetric property [28—34]. The Hermite polynomial
of order n is defined as [28]

_1\n
Ho 2 CD gy (11.88)
w

where the weighting function is defined as
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. 1 1 . .
@ (v )=Wexp(—5v -V j (11.89)

In the above equations, H™ is the nth-order tensor and a polynomial of order n.
The differential operator is defined in [28] and some of the typical operations are
given as follows:

2
V=Vi= a*, szvivj': ? *;
o ov; v
83
V3=V\V,Vy =——— et (11.90)
ov; OV oV,

The first few polynomials are given below [28]:

HO 1
Hi(l) =V’

HE v o, (11.91)
H =iV v = (Vidj + V785 +V k)

where the index i, j, k refers to the component of the velocity vector v;*.
With the Hermite polynomials defined above, the particle distribution function
can be expressed as

(V) = a)(v*)ziaim) < YHM (V) (11.92)
= n!
Here the subscript i is an abbreviation for the multiple indices {iy, iy, ..., in}.

Written in full, we should have the following expression:

N N N
. w(v*)[awmw) £3 aOHO £ 3 aPHE 1+ 3 aldHD 4
i—0 i.j=0 i,Jk=0
(11.93)

If the velocity v has 3 components, then N = 3. In Equation 11.92, ai(”) is the
Hermite polynomial coefficient, which is calculated by

a( — f FAH (v dv * (11.94)
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For the Maxwell-Boltzmann equilibrium distribution function (Equation 11.87),
the first few Hermite coefficients are calculated with the result,

a®=n" a® =n"u’; al? =n"yu; (11.95)

Since the Hermite expansion has the feature that a velocity moment of a given
order is solely determined by the Hermite coefficients up to that order [29], the
summation in Equation 11.92 can be truncated to several lower-order terms,

M
O V) = a)(v*)Z%ai(”) o EYHO ) (11.96)
n=0

For a momentum calculation, M equals 2; for an energy calculation, M equals 3.

We may now discretize the velocity space at each discretized space point x
using quadratures. Let vi* and w; (i = 0, 1, ..., N.) be the nodes and weights of a
numerical quadrature (see also Chapter 3). If p(v*) is a polynomial with a degree
not greater than 2N_+1, we have

Ny
f o ()P =3 wp(v) (11.97)
i=1

where N is the order of integration. Thus, the Hermite polynomial coefficient can
be calculated using the numerical quadrature,

Ny

al" = f @ (V") I**)Hi”(v*)dv* =ZM (11.98)

a(V =1 ZU(Vi )

For the same reason, we use numerical quadrature for macroscopic property
calculations,

* N

i.x x Wi fi*Vi*.
] nu = *\ !
Z:: @ (Vi)

N *
nNE' =) 41— 7 (11.99)

where E* = E/E, with E, = ¢;”. Equation 11.100 may be rewritten using the relation
p* = m* n* with m* = m/m,, whence we have the following expressions for
macroscopic variables:
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* . wm' ;" wim v
P :Zw( _E o)

i=1

N
. Ixwm (v —u®)?
E _E; e (11.100)

By neglecting the high order terms, Equation 11.87 can be expanded as a power
series up to the second order in u* [30-32],

1\¢/2 Vv u*-u”
£70) = n*(—j exp| — exp(v”™ -u”)exp| —
> p| = [PV u”Jexp) - —

*

* 2 * *
:n*m(v*)|:1+v*~u*+(v u)-_u 2u } (11.101)

By defining the following new variables,

fo=wm f, /T o(v)) (11.102)

vi=Yi Vil Vi3 g3 (11.103)
cg c¢c ¢C

YU Y a3 (11.104)
Cc CCy C

we obtain the lattice Boltzmann equation in the form of,

o o)
?+e B VAR A | (11.105)

3

T

where superscript ** means ¢ = (3)“c, is used as the velocity scale instead of c,

and the equilibrium distribution function is given by

(11.106)

o - w 9(g;-u™)? “ou™
760 = 5w 14 3e; U™ + (€i-u’)” 3u”-u
1 1 1 2

2

Dropping out the superscript as often is done in the fluid mechanics literature,
we have the lattice Boltzmann equation written in the following familiar form [26]:
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Mo v o izfi ™ (11.107)

and other related expressions are given as

9(e; -u)? .

fi(eq) :/7Wi 1+3ei .u+M_3uTu (11108)
NL N|_ 1 NL

=N "f: opu= ef: pE== f (e —u)? 11.109

where F = 0 has been assumed.

At this point, we may recall Equation 11.15, which was used in the derivation
of the phonon radiative transfer equation in Section 11.1.3. Comparison of
Equations 11.107 and 11.15 suggests that the BGK assumption was implied in
Equation 11.5. For phonon scattering applications, however, the Bose-Einstein
distribution function may be used instead [2].

Turning to Equation 11.107, the numerical quadrature provides guidance on
selecting the direction i in the lattice Boltzmann equation. Various quadrature
schemes can be used. One popular scheme is the 9-bit lattice, which is shown in
Figure 11.5(a). By this scheme 9 directions are selected in the phase space for 2-D
problems, viz.,

e, =(0,0), i=0, (11.110a)
e; = (cos(z(i-1)/2), sin(z(i - 1)/2)), i=1,234 (11.110b)
g = \/E(COS(ﬂ'(i -4.5)/2), sin(z(i - 4.5)/2)), i=5,6,7,8(11.110c)

with w; = 4/9, for i = 0; 1/9 for i = 1,...,4; 1/36 for i = 5,...,8. The 9-bit lattice can
be easily extended to 3-D calculations. Application of the same numerical
quadrature results in a 27-bit lattice for 3-D problems,

e, = (0,0,0), i=0 (11.111a)
e, =(x10,0), (0,£1,0), (0,0,+1),  i=1.2,...6 (11.111b)
e, =(+1,+1,0), (+1,0,+1), (0,+1+1),  i=78,..18 (11.111c)

e, =(+L+1+1), i=1920,..26 (11.111d)
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with w; = 8/27 for i = 0; 2/27 fori =1, 2, ..., 6; 1/54 fori =7, 8, ..., 18; 1/216 for i =
19, 20, ..., 26. Construction of this 27-bit lattice for a cube can be a straightforward
superposition of the 2-D 9-bit lattice in three dimensions. For 3-D problems, a 15-
bit scheme may also be employed [35],

eo =(0,0,0), i=0 (11.112a)
e; =(£1,0,0), (0,+1,0), (0,0,+1), i=12..6 (11.112b)
e;=(*L+1+1), i=78..,14 (11.112c)

with w; = 2/9 fori = 0; 1/9 for i =1, ..., 6; 1/72 for i =7, ..., 14. The 15-bit lattice
for 3-D calculations is illustrated in Figure 11.5(b).
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Figure 11.5. Velocity lattices for lattice Boltzmann calculations: (a) a 9-bit lattice for 2-D
computations and (b) a 15-bit lattice for 3-D computations [35]

The lattice Boltzmann equation can also be used to derive the macroscopic
Navier—Stokes equations [26]. The procedure involves the small parameter
expansion of the distribution function f similar to that used by Chapman—Enskog’s
approach [10] to the solution of the Boltzmann integral-differential equation and
summing up in all discrete directions i. The detailed process is given in [26, 30],
where it is shown that the relaxation time 7 is related to the kinematic viscosity as
follows:
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(11.113)

It is important to note that the quantities in the above equation are dimensionless.

11.6.2 Boundary Conditions

In the lattice Boltzmann simulation, boundary conditions on the fluid velocity are
usually imposed on the particle distribution function. Chen and Doolen [23]
discuss this point in their review. Typically, the following boundary conditions are
applied.

11.6.2.1 Bounce Back Boundary Conditions (No Slip)

The no-slip velocity condition on a motionless wall is modeled by a particle
distribution function bounce-back scheme. Bounce-back means that, when a
particle distribution streams to a wall node, the particle distribution scatters back to
the node it came from. For the 9 velocity 2-D lattice as shown in Figure 11.5(a), for
instance, the idea of bounce-back can be illustrated in Figure 11.6(a). In this
diagram, the physical boundary is assumed to lie midway between the closest
lattice points in the flows and the closest boundary point (i.e., a point that lies
inside the solid surface). This assumption is motivated by the analysis of Ziegler
[36] who showed that, if the rigid boundary was located midway between the
nearest lattice sites, the bounce-back scheme would produce second order

N
/ AN

N O—b -a—O P>

#/III\H

(a) Bounce-back (no slip) (b) Symmetric (free slip)

Figure 11.6. Schematic illustration of the bounce-back (a) and symmetric (b) boundary
conditions for lattice Botlzmann simulations

11.6.2.2 Symmetric Boundary Conditions (Free Slip)

On a free stress surface, one can use a symmetric boundary condition (“free slip”)
on a particle distribution function. This condition states that a particle distribution
function is equal to that on the opposite side of the symmetric surface with equal
and opposite normal components of velocity. The free slip boundary condition is
shown in Figure 11.5(b).
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11.6.2.3 Inflow and Outflow Boundary Conditions (No Gradient)

The additional two boundary conditions are inflow and outflow conditions, which
are illustrated in Figure 11.7(a) and 11.7(b), respectively. These arrangemens result
in no gradient of a particle distribution function in the inflow or the outflow.

£ £ 3 3

i lo— 11 -—03 | <«—o03 )

8 L i i
(@) Inflow (b) Outflow

Figure 11.7. Inflow (a) and outflow (b) boundary conditions used for lattice Boltzmann
simulations

11.6.2.4 Force Field Conditions

Another way to treat a boundary is to impose an artificial force field to the fluid.
This method was proposed by Goldstein et al. [37]. The main idea is to add an
artificial body force to the Navier—Stokes equation and choose an appropriate value
so that the points inside the solid objects move with the correct velocity. This
method was to impose boundary conditions on curved and moving surfaces in a
lattice Boltzmann simulation of a turbulent stirred tank, and good agreement with
experimental results was obtained for the mean flow and turbulent statistics [38,
39]. The advantage of this technique is that it can provide a relatively simple way
of handling complex geometries and moving objects such as the impeller blades in
the stirred tank.

11.6.2.5 Moving Wall Conditions

In the case of moving solid wall or moving wall in the shear flow, besides the
artificial force field, there is another approach to impose the boundary condition.
The particle distribution function can be set as a bounce-back plus an extra term in
order that the velocity on the solid wall is the same as the real value. This approach
was used to simulate the solid—fluid suspension systems [40, 41].

11.6.3 Discontinuous Finite Element Formulation

To develop a discontinuous finite element formulation for the lattice Boltzmann
equation (Equation 11.107), we integrate the equation with respect to the weighting
function ¢ over element j,
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[ o Grevtfov= [ of-2teteeo oy (11.114)
Q Q

i i

The above equation is integrated once and the fluxes at the element boundaries are
replaced by numerical fluxes. This procedure vyields the final integral
representation for the lattice Boltzmann equation,

f ¢%—fti dV—ei~f fiv¢dv+f fie,-ngdr
Q Q 0Q;

]

J
+1f ¢fidV:f £,y (11.115)
TJq; Q;

With an appropriate choice of numerical fluxes at the element boundaries and
interpolation basis functions, the above equation can be readily integrated
numerically. Following the procedures developed in Chapter 5, one reduces the
original partial differential equation to a system of ordinary differential equations,

duy; )
e L(U; ) (11.116)

where L is the operator and U; g = [f®, £, ..., £@, ..., f™],T. As usual, subscript
(j) refers to the jth element and superscript (k) on f to the kth node local to element
j- The equations can be integrated using the Runge—Kutta time marching scheme to
obtain a numerical solution.

The discontinuous formulation presented above is applied to simulate a two
dimensional Taylor vortex flow in a rectangular domain (30x120) with periodic
boundary conditions. The initial velocity field is as follows:

uy, (x, y,0) = —cos(k;x)sin(k,y) (11.117a)
uy (x,¥,0) = (k; /ky)sin(k; x) cos(k, y) (11.117b)

where k; =k, = nt/16.
For this problem, the analytic solution is also available, which takes the
following form:

U, (X, y,t) = —exp(=vt(k,® +k,?))cos(k, x)sin(k,y) (11.118a)
Uy (X, Y, 1) = (ky /Ky ) exp(=vi(k,” +ky,?))sin(k;x) cos(k, y) (11.118b)

which can be used to compare with numerical simulations. The simulation uses a
structured mesh, with linear triangular elements used to approximate the local
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distribution of the partition function f. The Euler forward time integration is used
and the time step size is 0.01 to satisfy the CFL condition.

1.2
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e DFELBM (t=100)
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Figure 11.8. Discontinuous finite element solution of the lattice Boltzmann equation: (a)
comparison with analytic solution, (b) 3-D view of the y component of the velocity field at t
=100 and (c) vortex structure in the flow field at t = 100
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Figure 11.9. Simulation of steady and unsteady flows passing a cylinder: (a,b) unstructured
triangular mesh, (c,d) stream lines and vorticity distribution in a steady flow and (e, f) stream
lines and vorticity distribution in an unsteady flow [42]

The computed results for the Taylor vortex flow are given in Figure 11.8. As is
seen, the computed results compare well with the analytical solution, validating the
discontinuous finite element method presented. The 3-D view of the instantaneous
flow distribution and the vector flow field at t = 100 are also plotted. Strong vortex
flow is observed.
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The discontinuous finite element procedure has recently been applied by Shi et
al. [42], who used a spectral basis function for local interpolation. The numerical
flux is approximated by Roe’s flux model. They applied the discontinuous finite
element model to study the flow passing a circular cylinder. Figure 11.9, taken
from their work, shows the unstructured meshes (a,b) and computed results include
both steady state flows passing a cylinder (c,d) and vortex shedding (e, ).

Exercises

1.
2.

Solve Equation 11.15 using the discontinuous finite element method.
Consider that a 1-D domain is heated by a pulsing laser heating source
irradiating at X = 0 along the X direction, with the heating source given by

expl- >~ ()]

X, &)=
y(X,8) 26, N

Show that the analytic solution for the temperature distribution takes the
following form:

X & -~ .
e(x,§)=fx ﬁe(x,§|x,f)u(x,f)d:dﬁ

Here, the Green function G(X, & | )Z,E) is in the form of

G(X ] X,8) = & ¥ sinh(— &)
L
LZN: W EATIDED o507 X ) cos(A, X) IILE ENPI

XL m=1 \/E
if >0
+
2 N g ARI2)(E-E) . sinh[(& — &)y~ 4]
v e cos(4, X)cos(A, X)
Xy m%l ﬁ
if <0
and
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where X, is the dimensionless length of the solid, S=1,2— (1 + &An/2)%,
A = mn/2, and N is the number of the terms when £ is changing from
positive to negative.

Develop a discontinuous finite element formulation for a 1-D laser heating
problem and compare the results with the analytic solution shown above.
The correlation function is defined by

s/2

.1
(X(t)X(t+r)):SILrTO1€§f X ()X (t+7) dt

—s/2

By the Fourier transformation, show that the above equation can also be
written as

(XOX(t+7))= %j;xG(w)cos(wr)da)

2
(o) = im ¢

2 s/2 )
f X (t)e 1 dt
S| J 52

and further show that

foo<><(t)><(t+r)>dr = %G(O*)
0

The Langevin equation is given by the following ordinary differential
equation:

dv
E‘ng— X(t)

Using the equations derived in Problem 4, derive the relation,

1 ™ G(w)
<V2(t)>zgj; o2 +a)a)2da)

Furthermore, show that if G(w) = const and <v?(t)> = k,T/m, then

m

ST

fx(X(t)X(t—H'))dz'
0

which is the well known Green—Kubo relation for calculating transport
coefficients.
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From the definition of the heat flux,
1 2 £ (0)
q:Em (v—u)|v—ul| f™ gdv
\

where

1/2
g= _1[2ka] A-V(/nT)
m

n
derive the following relation:
g=-kvT

where Kk is the thermal conductivity, and is calculated by

2k, 2T
k = 3';” fVA-wlf@)(wf—g)dv

and

m 1/2
Wl:(zkaJ (v=u)

Derive the Navier—Stokes equations, the equation of continuity, and
Equation 11.113 starting with the lattice Boltzmann equation.

Develop a discontinuous finite element code for the solution of the lattice
Boltzmann equation for a 2-D channel flow.
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12

Fluid Flow and Heat Transfer in Electromagnetic
Fields

In many thermal and fluids systems, external fields such as the electromagnetic
fields are imposed to achieve a certain desired performance through the interaction
of the fluids, or fluid motion with the imposed fields. Practical systems include
induction and microwave heating, electromagnetic stirring, magnetic control of
turbulent flows and thermal fluctuations, plasma spaying and micro actuation in
fluidic devices, etc. Strictly speaking, the general, rigorous mathematical
description of the electromagnetic field in a moving medium and its mutual
coupling with the thermal field and fluid motions in the medium should be made
within the framework of Einstein’s relativistic theory. For most engineering
applications, however, the speed of the motion is much smaller than that of the
light, and thus the commonly known magnetohydrodynamic theory provides an
adequate theoretical basis for the description of the electromagnetic, thermal and
fluid flow fields and their interactions. The magnetohydrodynamic equations are a
nonlinear set consisting of the Maxwell equations, the Navier—Stokes equations
and the thermal and species transport equations, with the coupling between the
fields made through constitutive relations and sources/sinks.

In order to accurately interpret the behavior of an electromagnetically assisted
thermal fluid system for both fundamental understanding and process design,
information on the distribution of the thermal, fluid flow and electromagnetic fields
is required. This in turn requires the solution of the magnetohydrodynamic
governing equations. Thus far, we have discussed extensively the application of the
discontinuous finite element methods to the solution of the thermal and fluid flow
equations for various systems. These methods, as will be shown below, may be
applied with straightforward modifications in the source/sink terms, for the
analysis of thermal and fluid flow systems under the influence of an
electromagnetic field. The solution of the Maxwell equations is a subject of
computational electromagnetics and many different techniques, both analytical and
numerical, have been developed. Recently, the discontinuous finite element
formulation has also been extended to solve the complete set of the Maxwell
equations. One important aspect of the Maxwell equations, which is different from
the thermal fluids equations, is that the former will in general transcend the region
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of a conducting fluid and, ideally, extend to all of space. Consequently, the solution
of these equations needs to discretize the entire space, even though the interest of
the solution is primarily in a confined region for thermal fluids applications. This is
in contrast with the solution of the thermal and fluid flow equations, which is often
obtained only in a region of interest.

This chapter is concerned with the discontinuous finite element solution of
these electromagnetically induced thermal and fluid flow problems. It starts with a
brief discussion of the magnetohydrodynamic theory of the electromagnetic field
and its interaction with the thermal and fluid flow fields. The use of the
discontinuous finite element method is then presented for the solution of the
Maxwell equations. The coupled solution of electromagnetic and thermal fluids
systems is also discussed. Numerical simulation of electromagnetically driven fluid
flow and thermal systems is illustrated through examples taken from the
applications in the areas of microwave heating, electrokinetically driven flows in
microchannels and electrically induced free surface deformation.

12.1 Maxwell Equations and Boundary Conditions

In this section, we briefly discuss the Maxwell equations and the boundary
conditions that are relevant to electromagnetically induced thermal and fluid flow
applications. An in-depth discussion of the electromagnetic theory and its
applications has been documented in well known textbooks [1-3].

12.1.1 Maxwell Equations

The electromagnetic field distributions in continuum media are governed by the
Maxwell equations, which represent one of the most elegant and concise ways to
describe the fundamentals of electricity and magnetism. The Maxwell equations
are four vector equations summarizing the basic laws governing the
electromagnetic field behavior in a medium [1-3],

vxE=-28 (12.1)
ot
vxH=L (12.2)
at
V-B=0 (12.3)
V-D=p, (12.4)

where E is the electric field, D is the electric displacement field, B is the magnetic
induction (magnetic flux density) field, and H is the magnetic field. Also, p; is
“free” (including both induced and impressed) electric charges, which do not
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include bounded charges such as induced dipoles in dielectrics. The current density
consists of both the impressed and induced contributions: J = J. + J;, J; being
impressed and J. induced. The relations between E and D, and between B and H,
are specified by the constitutive equations,

D=¢oE+e&oP =6o(l+ y.)E=¢E (12.5)
B = uoH+ oM = o (1+ 7 JH = uH (12.6)

where g is the permittivity of free space, P is the polarization, u is the
permeability of free space, and M is the magnetization. In a linear, isotropic
medium, which we consider in this chapter, £ and u are constants. In general H (or
D) is not a unique function of B (or E), but depends upon the earlier time evolution
(hysteresis). Also, & and yy are related through the following relation:

where c is the speed of light.

Just as the mass is conserved in a fluid flow system, so are the electric charges,
which cannot be created or destroyed. The continuity equation for charge
conservation has the form of

Pe y.3-0 (12.8)
at

which follows from the Maxwell equations. Specifically, Equation 12.8 is a
combination of Equations 12.2 and 12.4.

12.1.2 Boundary Conditions

As for other boundary value problems, boundary conditions need to be specified to
obtain the electromagnetic field distribution in a domain. The boundary conditions
that the electric and magnetic fields must satisfy can be deduced by a standard
procedure, which involves creating a pillbox-shaped differential volume at the
interface between two media, integrating the Maxwell equations over the volume
and taking the relevant limits. We give below the boundary constraints for the
electric and magnetic fields but omit the detailed procedures to derive these
conditions, which one can find in standard textbooks [1, 2].

12.1.2.1 Interface Boundary Condition

At the interface between two media, the tangential electric field must be continuous
and the normal component of the electric displacement field suffers a jump. These
two conditions are mathematically stated as

nx(E,—E,)=0 (12.9)
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n-(D,-D,)=o0, (12.10)

where o is the free surface charge density. Also, at the interface between two
media, the tangential magnetic field experiences a jump, and the normal
component of the magnetic induction field is continuous,

nx(Hy—H,)=J, (12.11)
n-(B,-B,)=0 (12.12)

where J; is the tangential surface currents along the interface. Here the normal is
outward from medium 2 to medium 1. We note that only two of the above four
boundary conditions are independent: one from Equations 12.9 and 12.10 and the
other from Equations 12.11 and 12.12.

Sometimes, when the current density is used as a variable, the boundary
condition needs to be prescribed for it. The same pillbox procedure gives the
surface charge conservation at the interface in the following form [4, 5]:

0
n~(Jl—J2)+VS~JS+%:O (12.13)

where Vg is the surface derivative operator. Here, o includes both external and
induced surface charges, but does not include the polarization surface charge on
dielectric surfaces.

The above boundary conditions are general. For special cases, these conditions
take simpler forms. We consider several special and yet commonly encountered
situations below.

12.1.2.2 Perfect Conducting Surface
If medium 2 is assumed to be a perfect conductor, then E, and B, are zero and we
have, E=E;and B=B,

nxE=0and n-B=0 (12.14a)

where n is outnormal pointing away from the conducting medium. Note that in this
approximation, the conducting boundary can support a surface current and surface
charge,

n-D=o, and nxH=J, (12.14b)

Here the physics is such that n-D; = g + N-D, = oes + ops, Where oy are “free”
surface charges and ops=n-D, induced charges. Thus strictly speaking, n-D, is not
“truly” zero but its effect is simulated by ops. These conditions are often used to
model a metal surface of a waveguide or cavity, such as a microwave oven for
thermal processing or hyperthermia.
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12.1.2.3 Impedance Condition
The impedance condition is often used in computational electromagnetics. By
definition, impedance Z (Z = R + jowlL + 1/(jwC)) is the input impedance for an R-
L-C circuit and we also have 1/Z as the admittance for an R-L-C circuit. But in
general for an electric circuit, V=2I, V being the voltage, and | the current. In this
sense, the impedance acts as a resistance.

For a distributed electromagnetic field, the impedance is calculated by the
following expression:

n<E _ |8 E,
=——— (eg., Z= m for a plane wave) (12.15)

T T y

Note that the analogy is suchthat E < Vand H < I.

If medium 2 is an imperfect conductor (for example, a conductor coated with a
thin layer of dielectric on the surface), then the following impedance condition
applies at the interface:

E-(n-E)n=7nZynxH or nxE =nZo[H—-(n-H)n] (12.16)

Note that E - (n-E)n=nx(nxH). For the 2-D case, we have, with E =ZE, and
H=7H,,

oE, . oH, .
L= jk%Ez or — &= jkerH, (12.17)

where 7= (un/&2)" is the normalized intrinsic impedance of medium 2 and Z, =
(11l €)™ is the intrinsic impedance of free space. By definition, 1/7 is the intrinsic
admittance of medium 2.

12.1.2.4 Sommerfield Radiation Condition

If all sources are immersed in free space, then the electric and magnetic fields are
required to satisfy the Sommerfield radiation condition,

r“_[?; {VX[E} jkf{ﬁﬂ:(gj (12.18a)

where r=4x?+y?+z%. For a 2-D problem, r=,/x2+y2 and the above

condition simplifies to

. 0 Ez : Ez _ 0
fL'T‘.C {E(HZJJF jk[HZH = (Oj (12.18b)
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12.1.2.5 Symmetry Boundary Condition
The symmetry boundary condition for the electromagnetic fields is applied as
follows:

For calculating E,
Hxn=0 (perfect magnetic conductor) (12.19a)
VxExn=0 (perfect magnetic conductor) (12.19Db)
For calculating H,
Exn =0 (perfect electrical conductor) (12.20a)

VxHxn=0 (perfect electrical conductor) (12.20b)

12.2 Maxwell Stresses and Energy Sources

The Maxwell stresses and energy flux are important quantities that are directly
responsible for fluid motion and thermal balance. They appear either as a source
term in the momentum and thermal balance equations or as additional terms in the
boundary conditions.

The Maxwell stresses represent the interaction of the electric and magnetic
fields and are of the following general form [2]:

T=DE+BH-0.51 E-E{g—(a—gj p]+H-H(/¢—(a—'u] p} (12.21)
op )1 op )+

In the Maxwell stresses, the first two terms are directly responsible for bulk flows
and the last two terms cause the interface shape to change because they add to the
pressure if £ and w are constant. In the case that these properties are a strong
function of the density, the last terms will also contribute to the flow motions,
which are often referred to as the electrorestrictive and magnetorestrictive stresses.
For simplicity, we take both d&/6p and 6/op to be zero.

When an electromagnetic field is present, the momentum balance for the fluid
flow needs to include the Maxwell stress tensor,

p%ltjz—Vp+V-c+V-(DE+BH) (12.22)

and the thermal balance equation needs to incorporate the Joule heating effects,

pC%:—V-Q+J'E (12.23)
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where q is the heat flux and the last term results from the self-interaction of the
electric field, namely the Joule heating source.

The mathematical description of electromagnetically induced thermal and fluid
flow problems consists of the Maxwell equations 12.1-12.4 and Equations 12.21-
12.23. These equations constitute the basis for the mathematical description of
magnetohydrodyanmic phenomena.

12.3 Discontinuous Formulation of the Maxwell Equations

The use of the discontinuous finite element method for the solution of the Maxwell
equations has recently received much attention. Some useful algorithms have been
proposed and are discussed in this section. Their use for practical process design of
electromagnetically assisted thermal and fluids systems, however, has yet to be
tested. More information is also needed to assess the numerical performance of the
discontinuous schemes in comparison with other established methods such as the
finite element method, the boundary element method, the finite difference time
domain method and the method of moments.

12.3.1 Solution in Time Domain

The Maxwell equations are first order vector partial differential equations. As a
result, the discontinuous finite element method may be applied directly to solve
these equations. To develop a discontinuous formulation, the Maxwell equations
are re-written in the following conservation form [6, 7]:

%+V~F:S (12.24a)

where the variables are defined as follows:

Q:(BJ; . :( e; xE j; S:[(ﬂ_ﬂref)aHiI/atJ (12.24b)
D —eixH (g_gref)aE /ét

In the above equations, the superscript i denotes the incident fields, and e; is the
unit vector in the ith Cartesian coordinate direction.

Following the general procedure for a discontinuous formulation of boundary
value problems, the above equation is integrated over element j with respect to
testing functions. With unknowns approximated using the polynomial basis
function, followed by elemental calculations, one has the following equation:

dQ
i L(F,S) (12.25)

where L is the discretized matrix operator.
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The above matrix equation can then be integrated in time using the
Runge—Kautta integrator, once the numerical fluxes are determined. Kopriva et al.
[6] tested the above algorithm and used the fluxes by solving a Riemann problem.
Their results compare well with the analytic solution for a 2-D scattering problem.
Hesthaven and Warburton recently studied the stability, convergence and accuracy
of the method [7]. The construction of a locally divergence-free function space for
the discontinuous solution of the Maxwell equations has also been proposed, which
uses the Lax—Friedrichs fluxes [8, 9].

12.3.2 Solution in Frequency Domain

For applications in electromagnetic wave propagation, the vector wave form of the
Maxwell equations is may also be written in frequency domain. With E(x, t) (or
H(x, t)) = E(X)exp(jmt) (or H(X)exp(jot)), the frequency-based vector wave form
for a charge-free medium can be obtained by combining the original Maxwell
equations,

V x (1, 'V xE) —kZ&.E = — jouyd (12.26)
V-E=0 (12.27)

where E =E(x) and, for convenience, this holds true for frequency-domain based
method from here on unless indicated otherwise. In solving the above equations,
the V-E =0 condition may pose a problem. Perugia et al. [10] proposed a
discontinuous finite element formulation with the constraint V-E =0 enforced by an
internal penalty approach, which is often used in the calculations of incompressible
fluid flows. Houston et al. [11] recently presented a non-stabilized discontinuous
finite element formulation for the solution of the Maxwell equations in frequency
domain.

12.3.3 Solution in Other Forms

For many thermal and fluid flow applications, the Maxwell equations may be
reduced to the other forms that can be solved using the techniques discussed in
Chapters 4 and 5. This is illustrated through numerical examples discussed below.

12.4 Electroosmotic Flows

Over the past decade, considerable attention has been received in the research area
of electroosmotic flows in micro- and nano-channels, which are essential
components for microfluidics or on-chip laboratories for biochemical applications.
As the ratio of the volume over the surface area becomes small in these fluid
systems, the surface and interfacial phenomena become increasingly important. In
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this section, we discuss the basic principle of this type of electrically driven flow
and the discontinuous finite element algorithms for the flow simulation.

12.4.1 Governing Equations

Electroosmotic flows, which were discovered many decades ago, are driven by the
interfacial electric forces near the interface between the electrolyte and a solid wall
[12]. The polarization of charges near the solid surface results in a double layer or
Debye layer at the channel walls, where electrochemical reactions at the
wall-liquid interface cause a surplus of ions in the liquid near the wall surface.
These ions are closely adsorbed near the wall surface and balance the negative
charges on the wall so that the bulk of the liquid remains electroneutral. When an
external electric field is applied along the channel, however, a shear force gradient
is produced in the double layer, which causes a motion of bulk fluid or
electroosmotic flow, thereby pumping the bulk electrolyte in the direction of the
electric field. As a result of the motion, a drag will be produced at the wall, which
as usual opposes the fluid motion. This flow is illustrated in Figure 12.1.

r 3
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Figure 12.1. lllustration of the Debye double layer near the solid wall and flow regions
separated by the slip plane [11]

The thickness of the double layer or the Debye layer is typically on the order of
1-10 nm. If the channel size is larger than the Debye thickness, then the
description of the flow in the Debye layer may be decoupled from the bulk flow.
Santiago [13] has recently analyzed the inner motion near a charged surface.
According to his analysis, the electroosmotic flow velocity of the bulk fluid is
proportional to the magnitude of the electric field E applied parallel to the wall,
with a constant proportionality termed the electroosmotic mobility . For these
cases, the flow in the bulk channel can be modeled by a slip condition, where the
velocity parallel to the walls us is given by

Us —Upan = E (12.28)
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with subscript s referring to the direction along the surface of the wall, w4 = — &llu,
and ¢'the {~potential [13]. This condition is similar to the Maxwell correction to
the gas flows in small channels. The slip condition, however, becomes invalid
when the size of the channel is comparable to the Debye layer. Experiments
suggest that the slip model breaks down in a channel of width below 100 nm [14,
15].

Studies further show that near the wall surface, the ion density follows a
Maxwellian distribution [12],

S exp(— ze(y = Yuly yw)’/’j (12.29)
Cooi ka

where ¢; is the concentration of species i, z; is the valence of species, e is the
electric charge, y is the electric potential in the double layer, and k, is the
Boltzmann constant.

For this type of problem, electrostatics is applicable and thus two of the
Maxwell equations (Equations 12.1 and 12.4) can be combined, giving rise to the
Poisson equation. Substituting Equation 12.29 into the Poisson equation, we have
the following Poisson—Boltzmann equation for .

:_—chwexp[ ,,(y y"")vj (12.30)

where the right hand side represents the contribution from the ionic charges in the
liquid solution (—p./¢), and the sum is taken over all ionic species. If we apply e™ =
1 —x + O(x?) and note that ¢, ;z; = 0, then the above equation simplifies to

V2 ZZ coi =2 (12.31)

gkb

where Ap is the Debye length defined as

Ap = ng—sz (12.32)
e 25,

We note that the Debye length increases with temperature and that the charge
density in the system is given by

pe =62 (12.33)
peS
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Equation 12.31, coupled with the potential equation for the applied electric
field distribution and the momentum balance equation, completes the mathematical
description of electroosmotic flows in micro or nanochannels. We summarize these
equations in non-dimensionalized form below for such flow in a microchannel,

V2 = (kh)?y (12.34)
v2$=0 (12.35)
V-u=0 (12.36)
Re{%uﬂu-v)u} =-Vp+VaU+(k*hH)yV ¢ (12.37)

where the length is scaled by the channel width h, the potential ¢ by the value of
the applied potential (¢), the potential y by the zeta potential ¢ the velocity u by
pedluH, where H is the distance between reservoirs 1 and 2 (or two electrodes),
and the pressure by ge&llhH. In the above equation, Re is the flow Reynolds
number defined as

Re:p(zg—gj(%j (12.38)

It is noted that Equations 12.34 and 12.35 represent two contributions to the total
electric field in the system,E=-Vy - V4.

12.4.2 Discontinuous Finite Element Formulation

To implement the discontinuous finite element method, the governing equations
(Equations 12.34-12.37) are rewritten as a set of first order differential equations,

s=Vy (12.39)
Vs = (kh)’y (12.40)
q=V¢ (12.41)
V.q=0 (12.42)
V-u=0 (12.43)

=Vu (12.44)
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Re[ut +(u-V)u]:—Vp+V~z+f (12.45)
f =(k*hH)y q (12.46)

Multiplying Equations 12.39-46 by smooth test functions v, o, v, r, r, w and w
respectively, and integrating by parts over an arbitrary element €, followed by
replacing the fluxes at the element boundary by numerical fluxes, we have the
following integral representations:

f sh~rdV:—f vV - rdv +f Jn, - rdS (12.47)

Q 0 00

—f s - Vrdv +f §h~njrdS:(kh)2f ry, dV (12.48)
Q 09, Q

f qh-de:ff 4V -wdV +f dun ;- wdS (12.49)
Q Q 00
qh-devzf G - wdS (12.50)
Q 09,

—f U, - Vvav +f VP -n;dS = 0 (12.51)
oY 00,

f zh:ng:—f Up-VoodV + [ 07.o-n,ds (12.52)
Q Q 09

i

Ref (uh)t-vdV—Ref up - V(veuy)dv
Q; Q

]

+Ref uh~nj0ﬁovd87f P,V - vdV +f Bov-n,ds
00, Q; 0Q;
+ zhiVVdV—f gh:(veanj)dszf fovdv  (12.53)

As discussed in Chapter 5, the numerical fluxes need to be selected based on
the diffusion and convection mechanisms. With appropriate fluxes selected, and
the unknowns approximated using the local interpolation functions, the matrix
equations can be obtained for the above integral equations,

KU, =F (12.54)
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where Uy, is the vector containing the unknowns local to element j, v, q, ¢, u, 1,
and p. The solution procedure is iterative and involves an element-by-element
sweep over the entire computational domain as detailed in Chapters 4 and 6.

The above algorithm has been applied to simulate electroosmotic flows in a
cross-channel configuration. An unstructured triangular mesh is used, as shown in
Figure 12.2a. The conditions used for the calculations are such that an insulated
condition is imposed at all walls for ¢, and ¢=1 at the left entrance, ¢=0 at the
right outlet, and ¢ =0.5 at the top and bottom outlets. For the potential field y due
to the surface charge, the insulation condition is imposed at all entrances, and y =
—1 at the walls. For the flow field, u=(1,0) at the entrance, and the outflow
conditions are applied at all other outlets. The computed results are plotted in
Figure 12.2.

(c) (d)

Figure 12.2. Computed results for electroosmotic flows: (a) unstructured mesh used for
computations, (b) the potential distribution for the external electric field, (c) the electric
potential distribtution due to charge distribution and (d) the velocity field
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12.5 Microwave Heating

Microwave heating has been widely used in the food and materials processing
industries, and in hyperthermia treatment of cancer patients. The essential idea of
microwave heating is that the resonance excitation of the dipoles in dielectric
materials generates a heating source. The governing equations for the
electromagnetic and thermal field distributions in general consist of the frequency-
based vector wave equation derived from the Maxwell equations and the energy
equation [16],

Vx—V x E—k2e,E =  jopy] (12.55)
He
o1 _ -

pCIL— v (V)43 E (12.56)

where superscript * denotes the complex conjugate. The thermal radiation
boundary conditions are prescribed for the temperature solution. The condition for
the electromagnetic field on the microwave cavity wall is such that the tangential
electric field is zero,

E, =nxE=0 (12.57)

where subscript t refers to the tangential component. Also, for the port with wave
incident,

nx(VxE)+ynx(nxE)=U"n (12.58)

where U™ is due to the incident wave and for the port with electromagnetic wave
being transmitted,

Nx(VxE)+ynx(nxE)=0 (12.59)

where (=1l 1,) is the relative magnetic permeability, &(= £-jou/(gow)) results
from a combination of the induced current (oE) and the displacement current
(jwe(e-je")E), with o, = gowe'+0, and ko the system parameter, ko> = oo

We consider a hybrid continuous edge finite element and discontinuous finite
element method for the solution of the electromagnetic and thermal field
distribution in a microwave heating system.

The edge finite element formulation starts with the three-dimensional wave
equation in frequency domain, or Equation 12.55. After multiplying the equation
by a vector weighting function W and integrating over the microwave cavity (or
computational domain) and making use of the vector Green’s theorem identity and
the boundary conditions, we have the integral representation of the vector wave
equation [17-19],
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fff[ﬁvXE-va—kzchE]dv=—ff JouW J; dv
[e) Q

—ﬁ[}/e(an)(an)JrW-U"‘C]dS (12.60)
0Q

Following the standard finite element procedure and using the edge elements to
approximate the unknown field, we have the final global matrix,

KE=F (12.61)

where E is the unknown vector of nodal values of the electric field over the entire
computational domain. Note that Equation 12.61 results from conventional edge
finite element formulation and cross-element continuity is strongly enforced. This
is in contrast with the discontinuous finite element formulation, which weakly
enforces the across-element continuity. The solution of Equation 12.61 is obtained
using the sparse matrix solver coupled with the matrix rearrangement using the
minimum degree dissection. The detailed solution procedure is given in a recent
paper [20].

The temperature calculations are obtained using the discontinuous finite
element formulation stated in Chapter 4. In this case, the Joule heating is treated as
a heating source for the balance equation and easily incorporated once the electric
field distribution is known. The computational procedure for this type of problem
can be either iterative or hierarchical. If the electrical conductivity is a function of
temperature, then the solution requires an iterative procedure between the
temperature and electromagnetic calculations over each time step. If the electrical
conductivity can be taken as a constant, then a hierarchical coupling is possible. In
this case, the electric field needs to be calculated once, and the Joule heating source
is input into the thermal balance equation for the temperature distribution
calculations. A set of these calculations is given in Figure 12.3.

12.6 Electrically Deformed Free Surfaces

Here we consider a problem involving a deformation of droplet surfaces by an
electric force. The application of this phenomenon has been in electrospray and
electrostatic levitation. Figure 12.4 illustrates the system to be analyzed. An
electrically conducting droplet is charged positively and placed in an electrostatic
field generated by a pair of electrodes far apart. The field is positioned upward
such that the Coulomb force resulting from the interaction of the charges and the
applied electric field will be able to levitate the droplet in air by counterbalancing
the downward gravitational force. Aside from supporting the weight of the droplet,
the electric field will also produce a normal stress. This electric stress is distributed
non-uniformly along the surface, causing the shape of the droplet to deform. The
equilibrium surface of the droplet is determined by the balance of normal stresses
acting on the surface, which include the Maxwell stress, the hydrostatic stress and
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surface tension effects. We note also that the tangential stress for the droplet under
an isothermal condition is constant and thus does not induce an internal flow in the
droplet. A thermally induced flow inside the droplet may also occur, the study of
which has been presented elsewhere for electrostatic levitation applications [21].
Here we are concerned about the numerical calculation of the equilibrium shape of
the droplet under both normal and microgravity conditions.

(b) Cut-view of calculated temperature distribution

Figure 12.3. Numerical results from a hybrid continuous edge finite element and
discontinuous node element model for a microwave heating system used for food
processing: (a) 3-D view of temperature distribution, and (b) cut-view of the temperature
distribution in a food package subjected to microwave irradiation
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For a general case of a droplet with a dielectric constant & placed in an electric
field, the Maxwell equations can be simplified in terms of a scalar potential or
electric potential @,

v2p=-L c0,UQ, (12.62)
&
AD D
871:80 2 c0,NQ, (12.64)

where p, is the electrical charge and ¢ the electric permittivity. Here the domain of
the droplet is denoted by €, and the free space outside the droplet by Q,. When
Equation 12.62 applies to the free space, p, = 0. If the droplet is electrically
conducting, for example, a semiconductor or metal melt droplet, the whole droplet
is at the same potential and all the charges are distributed on the surface of the
droplet. Consequently, the above equations are simplified as

VZq):O EQZ (1265)

D = Djpgige =Py €210, (12.66)

gOaE:_Ge eMNQ, (12.67)
on

ﬁaeds:—ﬁgon-vcbds:Q eQNQ, (12.68)

20, 20,

®=-Ercosf r—o (12.69)

where @, is a constant and is determined by Equation 12.69. In the above
equations, @ is the electric potential outside the droplet, o, is the surface charge, &
the electric permittivity of the free space, E the applied electric field, and Q the
total charge impressed on the droplet. Equation 12.68 represents the conservation
of electric charges and the electric field generated by the electrodes is described by
Equation 12.69.

The surface deformation of an electrically levitated droplet is determined by the
balance of the electrostatic pressure, hydrostatic pressure and surface tension along
the surface. This balance equation is given by

7V -n=pgz+Py—05s,(n-VD)? (12.70)
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Equation 12.70 is basically the same as the normal stress balance equation
discussed in Section 10.3, with modification made to take into account the electric
effect.

Figure 12.4. Schematic representation of an electrically conducting droplet in an applied
electric field. The electric field generated by a pair of electrodes placed far apart points
upward to counterbalance the effect of gravity

To compute the free surface shapes, the electric pressure must be resolved first.
This requires the solution of the electric field, which in turn is affected by the
shape deformation. Thus, an iterative procedure is needed to solve the field
distribution and the force balance equation simultaneously. To calculate the electric
field defined by Equation 12.65 for an electrically conducting droplet, the entire
free space outside the droplet must be considered. We consider the use of the
boundary integral method for the electric field calculations, which is then coupled
with the weighted residuals method for the determination of the equilibrium shape
of the droplet.

To develop a boundary integral formulation of the electric potential in Q, that
involves a boundary at infinity, it is perhaps more constructive to consider the
closed computational domain as shown in Figure 12.5, and then to let the outer
boundary approach to infinity. To facilitate the treatment of the boundry condition
at infinity, we conisder a simple transformation, @, = @ + Eyrcosé such that @ =
0 at infinity, a condition we need to take advantage of a boundary formulation.
From the theory of electrostatics, the boundary integral formulation of the electric
potential ® may be obtained for any point r; in {2, using Green’s theorem [2],

%C(ri)dn(ri)—i- i (Dl(n~VG)rdF+§d)l(n-VG)rdF =
o9, o0
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f G(n- V,)rdl + nge(n-wpl)rdmfmerdg (12.71)
o0 Q,

o0,

where C(rj) is a geometric constant. The Green function G for an axisymmetric

vector potential and its normal derivative can be derived from the consideration of
a single current loop in free space [22],

G(r;,r) = 4 K () (12.72)

\/(ri ”)2 +(Z—Zi)2

oG 4

N Jreny+(z-z)

x{nr [E(x)-K(x)] nr('r_ri)JrnZ(z_Z‘)E(k)} (12.73)

or

C(r-r)2+(z-7,)?

Figure 12.5. Boundary element discretization. Q, is the exterior region modeled by
boundary elements, €, the interface, 9Q the boundary at infinity, and e the node points
along the interface, which are used for both the electric field and shape deformation
calculations
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where K(x) and E(x) are the elliptical integrals of the first and second kinds,
respectively, and x the geometric parameter defined as

2 anr
(r+12+(z; -2)?

(12.74)

The two integrals involving A& represent the contribution from the boundary
at R — co. With the following asymptotic behavior of G and @1,

®,(r;,R)~O(R?), %(n ,R)~O(R®) as R—> (12.75)

G(r,R) = O(R?), %(G,R) ~O(R?®) as R (12.76)

and also d' =R (0)d@, it is straightforward to show that the two integrals each
approach to zero as R — oo,

fd)l(n~VG)rdF—>0 and§G(n~V<Dl)rdF—>Oas R—>w (12.77)
Q oQ

With this relation, Equation 12.71 can be simplified to involve integrals along
the boundary of the droplet only. This way, the condition at R — oo is directly
incorporated into the boundary integral formulation.

We now apply the inverse transformation, ® = ®; — Ercosd and obtain the final
boundary integral equation for the electric potential @,

6—q)G + En,G — Eza—G dI' — CEz
n on

0G
Cd(r; +f CD—dF:f
1 (I) /0, an 00, 8

Following the boundary element discretization [23, 24] and recognizing that the
potential on the surface is a constant, one has the final matrix form for the
unknowns on the surface of the droplet,

(12.78)

H{@O}:—G{%}+ EG{%}—HE{Z} (12.79)

This is then solved along with Equtation 12.68.

For the purpose of droplet shape calculations, the normal stress balance
equation (i.e., Equation 12.70) may be more conveniently written in spherical
coordinate system,
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1 (2r2+r92)5in9_ d [ rrysin @

7
r<siné /r2+r32 do /r2+r92

=-K -Brcos¢-—P,
v

(12.80)

where a is the radius of the undeformed sphere, r the non-dimensionalized radial
coordinate, K = a PJ/y, B = pga’ly and P,, = —g(n-V®)*/2 for electrostatically
levitated droplets. The Weighted Residuals method may be applied to solve the
above equation once the potential field distributions are known. To do that, the
surface of the droplet is discretized and defined by r;, the distance between the
surface node and the center of the droplet, as shown in Figure 12.5. The solution
of Equation 12.80 by the Weighted Residual method is constructed by integrating
the equation with respect to a weight function y; along the droplet surface,
(2r? + 1,2 )sing

1
Lgl{rz sind| r? +r,?
d ( Irysiné@

40\ et

where ry = dr/d6. Integrating by parts, one reduces the order of derivatives by one,
that is, the second order derivative is reduced to the first order derivative. This
allows Equation 12.81 to be written as

HJr K + Brcos@+;Pm }(//ids 0 (12.81)

1 rr, i(2rP+17)
déo +r2y/i[K+Brcos¢9+EPm sin@dd =0
0 Jri+r? Y
(12.82)
The variables r and ry are interpolated by
N
- dy; d&
r=) vifh,; o = i——= (12.83)
> Sontnde

where N is the number of nodes per element and v is the shape function.

The constraints of the volume conservation and the center of the mass of the
levitated sphere are needed to determine the shape and position of the droplet. The
aspect of imposing constraints for free surface problems was discussed in Chapter
10. In dimensionless form, the two constraints are expressed as

f r3sinade — 2 (12.84a)
0
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gf r* cos@sin0dé = z, (12.84b)
0

where z. is the center of mass. The free surface may now be discretized into N

elements and Equations 12.82—12.84 are integrated numerically. Both continuous
and discontinuous elements can be applied. If a continuous element is applied, the
results may be arranged in the following matrix form:

[a1 & by n R
Q1 A2 Qg3 b, p) F
Ain-2 An-1n1 An-in bn -1 ] I:n -1
8ni 8y by r, F,
b, b . . bn_1 b, 0 K 2
| &G G . . Cn_1 Ch 0 -1]{z 0
(12.85)

where the coefficients a;;, b;, ¢; and F; are calculated by

d€]2 dr dy; dy; dr
Ly 2ty | T2 | Vi
.l ‘”'[df de de ) Mhdede apyjan)|
" ar ¥ ( doy T ag :
- J[dg] )
(12.86)
v, |de
b = rey;sin@|—|d& (12.87)
-1 dé
c —§fl ry - cosdsin 0|22 dé (12.88)
g i Vi dé: ’
v, __|de
F=- Broy, cos@sin 6 E dé (12.89)
-1

Both discontinuous and continuous element approximations have been used for
calculations. The accuracy for both approximations is the same, as expected. It is
noted that even for continuous element approximations, the discontinuous elements
provide a natural choice for the fluxes at the sharp corners, where a discontinuity in
flux occurs. While other types of approximation may also be made to treat the
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discontinuity (for example, the finite difference approximation may be used just for
the elements having their notes at the corners), numerical experience suggests that
discontinuous elements perform the best for this type of problem [24].

The free surface deformation of a copper droplet levitated in a uniform electric
field against gravity is shown in Figure 12.6. The droplet is charged positively and
the total charge is 1.56 x10~° (C) which is within the limit of Q.=1.06x10° (C) for
droplet rupture [25]. The droplet deformation is such that the lower part of the
surface is flatter and the droplet points upward in the direction opposite to that of
gravity. For the system shown in Figure 12.4, the electrostatic force (the electric
charge times the electric field) acting on the lower portion of the droplet is smaller
and in the negative z direction, while the force on the upper portion is bigger and in
the positive z direction. This, combined with gravity and the surface tension effect,
gives the final shape as shown in Figure 12.6.

As a contrast, Figure 12.6 also plots the surface deformation of a copper droplet
in microgravity. This case represents a somewhat idealized situation in that there is
no free charge impressed on the droplet against gravity. The deformation of the
droplet in this case is caused by the interaction of the induced charges on the
surface of the droplet with the applied electric field. As the induced surface charges
are distributed symmetrically, the electrostatic forces are equal in magnitude and
acting in the opposite directions on the lower and upper portions of the droplet,
causing the droplet to deform symmetrically.

Y (mm)
=]
|

Figure 12.6. Comparison of free surface profiles of a Cu droplet in normal and
microgravity: (1) Eg=3.3 x 10° V/m and Q=156 x 10°cC (Coulombs) (normal gravity),
(2) Eq=33 x 10° V/m and Q = 0 C (microgravity gravity), and (3) un-deformed liquid
sphere
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12.7 Compressible Flows in Magnetic Fields

As a last numerical example, we consider a full 3-D calculation of compressible
flows under the influence of magnetic fields. The discontinuous finite element
algorithm for this type of calculation has been developed by Warburton and
Karniadakis [26]. A locally divergence-free discontinuous finite element
formulation was also presented in a recent paper by Li and Shu [27]. We consider
below some of the essential ideas of the algorithm given by Warburton and
Karniadakis and details of the algorithm development can be found in their original
paper.

The equations for compressible magnetohydrodynamics (MHD) may be written
in conservative form using fluxes,

ouU ~ aF):deal B aF)I/deal B aFZIdeaI . aF)\(/iSC . aF;’/isc . 8|:;/isc

—= (12.90)
ot OX oy 0z OX oy oz

V-B=0 (12.91)
U=(p.pu, pv, pW,B,,B,, B, E) (12.92)

where the flux function is split into the inviscid and viscous fluxes, an approach
similar to that discussed in Chapter 5 for general convection—diffusion problems.

The presence of the constraint V-B = 0 implies that the equations do not have a
strictly hyperbolic character and thus require special treatment. Two ideas have
been implemented. One is based on the introduction of a stream function for the
magnetic field, similar to that used in incompressible flow calculations discussed in
Chapter 6. The other is to reformulate the Jacobian matrix to include the divergent
mode, which is suitable for 3-D simulations. This term is then included as a source
contribution.

The inviscid fluxes and their derivatives in the interior of the elements are
evaluated and the correction terms (jumps) for the discontinuities in the flux
between any two adjacent elements are added. A one-dimensional Riemann solver
is used to model a numerical flux at the element interface. At a domain boundary
the specified conditions are used. The exterior boundary is treated as the boundary
of a “ghost” element, so that the same Riemann solver can be used at all element
boundaries.

The viscous terms are treated in two steps. First, the spatial derivatives of the
primitive variables are calculated using the discontinuous Galerkin approach. This
process is then repeated for each of the viscous fluxes using these derivatives. The
Dirichlet boundary conditions for the momentum and energy characteristic
variables are imposed weakly or explicitly after the fluxes have been evaluated and
then the result is projected using the orthogonal basis.

The main algorithm was developed by Karniadakis and Warburton for the
discontinuous finite element solution of Equations 12.90-12.92, which involves 12
major steps:
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e Step 1. Read in initial conditions U(x, 0) and evaluate all fields at all
element quadrature points. Set n = 0.

e Step 2. Calculate the fluxes IEn at the Gauss quadrature points Q' on the
element interfaces. At domain boundaries use the prescribed boundary
conditions for the exterior values of the fields. Interpolate the fluxes F,to

the quadrature points QF. Scale the fluxes with the edge Jacobian divided
by the volume Jacobian.

e Step 3. Calculate the inviscid flux terms Fy%a! | Fjdeal | Fjdeal t the element

quadrature points.
e Step 4. For each component of the state vector U, = (U(x,t")), calculate

(OF% 1 0x +0F, ™ 19y + OF,* | 92).

e Step 5. Form ﬁn —F, (where F, is the flux at interior edge side) and add it

to the divergence of the inviscid fluxes calculated in Step 4.
e Step 6. Calculate the spatial derivatives of the primitive fields.
e Step 7. Use the derivatives of the primitive fields to construct the viscous

flux terms K™, F/°, and F}*.
e Step 8. Take the divergence of the viscous flux terms and subtract the
results of Step 5.

e Step 9. Take the inner product of the result from Step 8 with the
orthogonal basis. Evaluate the resulting polynomials at the quadrature

points and place it in Uf (x,t""%).
e Step 10. Update the vector of the unknowns, that is, U(x,t"1) = U(x,t")
+AL2 B Uf(x,t"9) using an Adams-Bashforth integration scheme.

e Step 11. Increase n by one. If t" < the termination time return to Step 2.
e Step 12. Output final values of the state vector U(x,te") .

(@) (b)

Figure 12.7. Computed results for compressible magnetically driven flows in a 2-D
geometry: (a) flow stream lines and (b) magnetic stream lines [24]
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Their algorithm has been tested for a 2-D compressible magnetohydrodynamic
problem and the results shown in Figure 12.7.

Exercises

1. Consider a conducting medium (1) in air (2). The medium is charged with
surface charge density being o;. Create a Gaussian surface as appears in the
figure below. Show that

E,= % (points in the outnormal direction)
2

and that the normal stress due to the charge and E; is given by

air
&2

| | Gaussian
a
surface

This force tends to pull the interface towards the air, and to tear the
medium one apart. Further show that the normal stress balance along the
interface is given by

2

75— 2Hy

—Po+,og¢//+Pa—260

with H being the mean curvature.

2. Develop a discontinuous finite element code for the simulation of
electroosmotic flows in a microchannel following the integral formulation
given in Section 12.5.

3. Derive the boundary conditions (Equations 12.9-12.12) from the Maxwell
equations.

4. Assuming that the electromagnetic field oscillates time-harmonically with
a frequency of w, derive Equation 12.26 from the Maxwell equations.

5. Starting with a differential volume, and applying the Newton’s second law,
derive Equation 12.22.
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6. Following the discontinuous finite element solution procedures, obtain the
detailed matrix expression for the operator L in Equation 12.25.
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amplification matrix, 150
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analysis
Fourier, 144, 147, 169, 176, 178, 179,
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integral, 144, 145, 169, 195
matrix, 144
numerical, 80, 177, 180, 430
stability, 30, 110, 129, 145, 147, 149,
150, 168, 169, 180, 195, 198, 248
approximation functions, 376
see also interpolation functions
arbitrary Lagrangian—Eulerian (ALE)
formulation, 273, 304, 448, 498
area coordinates, 52, 53, 60, 91
averaging, 14, 387, 462, 477, 522

basis functions, 33, 45, 71, 78, 134, 163,
164, 168, 182, 189, 193, 208, 210,
228, 237, 252, 285, 299, 450, 535,
538, 549

Bhatnagar—Gross—Krook (BGK)
approximation, 524, 525, 531

bilinear form, 71, 143

body force, 2, 5, 8, 249, 455, 458, 471,
534

Boltzmann integral-differential equation,
518, 519, 523, 532

Boltzmann transport equation, 501, 517,
518, 523, 527

boundary conditions, 1, 9, 10, 11, 12, 21,
27, 32, 96, 99, 107, 109, 110, 113,
115, 124, 132, 139, 141, 144, 185,
186, 189, 190, 204, 235, 240, 249,
257, 261, 262, 263, 267, 327, 345,

356, 363, 364, 366, 367, 374, 375,
380, 394, 395, 414, 418, 420, 430,
431, 439, 446, 448, 449, 452, 453,
456, 457, 471, 474, 476, 480, 486,
508, 513, 516, 517, 523, 526, 533,
534, 535, 544, 545, 546, 548, 556,
566, 567
outflow, 262, 534
periodic, 41, 123, 169, 178, 197, 291,
293
Riemann, 296
slip, 516, 523
boundary flux, 25, 218, 225, 226, 227,
389
Boussinesq approximation, 4, 5, 8, 268
bulk viscosity, 301
Brinkman model, 15
Burgers’ equation(s), 157, 202, 204, 205,
206, 209, 210, 213, 227, 231, 232,
233, 235, 238, 239, 240, 277, 293,
298

Clausius—Clapeyron relation, 13
Cartesian, 5, 100, 432, 434, 549
chain rule, 158, 306, 470
Chapman—Enskog approximation (or
solution), 513, 523, 532
characteristic
curve, 105, 144, 158, 159, 160, 202,
205, 241
decomposition, 211, 212
characteristics, 105, 144, 158, 159, 161,
162, 204, 205, 206, 223, 224, 277,
282, 297, 327, 517
coarse grain averaging, 477
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condition(s)
kinematic, 12, 441, 453, 456
stress, 442, 452
conduction equation, 105, 423, 505
conductivity, thermal, 4, 113, 345, 358,
418, 485, 504, 505, 523, 540
conservation form(s), 8, 9, 15, 17, 295,
299, 549
conservation of
mass, 1, 274, 308, 309, 520, 525
momentum, 2, 309, 310, 455
consistency, 23, 25, 138, 139, 140, 144,
173, 176, 207, 380
contact discontinuity, see discontinuity
continuity equation, 16, 101, 247, 252,
464, 520, 522, 545
convection (see also specific types), 8, 15,
21, 28,32, 33,41, 113, 157, 158,
159, 160, 161, 162, 163, 165, 166,
167, 168, 169, 171, 172, 173, 175,
176, 177, 178, 179, 181, 182, 183,
185, 187, 188, 189, 190, 191, 192,
193, 194, 195, 196, 197, 198, 199,
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319, 320, 345, 346, 349, 358, 364,
370, 415, 420, 422, 423, 483, 489,
554, 566
convergence, 110, 111, 112, 138, 139,
142, 165, 171, 248, 257, 265, 302,
332, 344, 348, 359, 388, 416, 452,
453, 456, 458, 486, 550
convex, 290, 327, 435
coordinate(s)
area, 52, 53, 60, 91
transformation, 45, 54, 60, 73, 77, 99
volume, 60, 73, 102
Courant—Friedrich—Levy (CFL) condition,
31, 129, 157, 164, 180, 208, 214,
228, 257, 287, 289, 472, 536
critical
time step, 105, 147, 150, 157, 164,
169, 176, 179, 195, 199, 200, 201,
208, 472
value, 129
current density, 545, 546
curvature, 11, 354, 429, 433, 434, 435,
436, 437, 438, 439, 440, 441, 442,

445, 446, 453, 454, 456, 460, 471,
472, 482
cylindrical coordinates, 6, 403

Darcy formulation, 15
Forchheimer—Brinkman model, 15
Debye layer, 551, 552
decomposition, 209, 212, 262, 284, 327
characteristic, 211, 212,
LU, 130, 347
Spinodal, 445
description
Eulerian, 305, 308, 309, 310, 311,
312, 441
Lagrangian, 304, 308, 309, 311, 441
Lagrangian—Eulerian, 451
spatial, 309
diagonal matrix, 160, 186, 211
differential geometry, 99, 100, 101, 430,
436, 438, 453
diffusion
coefficient, 8, 11, 243
heat, 115, 133
Dirichlet boundary condition, 249, 566
discontinuity, 17, 21, 23, 25, 27, 204, 221,
226, 233, 235, 239, 273, 275, 278,
279, 288, 294, 302, 389, 404, 564,
565
contact, 277, 280, 281, 294, 295
discontinuous approximation, 380
discontinuous Galerkin (DG) formulation,
32, 231, 260, 363, 380, 416
dispersion, 169, 176, 177, 178, 179, 180
displacement, 467, 544
electric, 545
displacement current, 556
distribution function, 506, 516, 518, 519,
524, 525, 527, 529, 530, 531, 532,
533
particle, 528, 533, 534
divergence, 27, 30, 248, 259, 261, 377,
387, 388, 415, 416, 417, 420, 439,
440, 550, 566, 567
dot product, 332, 339, 341
double layer (or Debye double layer),
551,552

eigenvector, 160, 276
left, 276
right, 284, 297, 298
electric field(s), 544, 545, 549, 551, 552,
553, 555, 556, 557, 559, 560, 565



electroosmotic flows, 550, 551, 553, 555
element(s), 33, 119, 411, 414, 537
4-node quadrilateral, see Table 3.1
8-node brick, see Table 3.1
9-node quadratic, see Table 3.1
linear, 33, 34, 36, 48, 50, 53, 60, 87,
93, 107, 110, 119, 130, 137, 164,
165, 166, 184, 185, 238, 239, 291,
292, 293, 295, 303, 352, 354, 364,
380, 382, 388, 392, 398, 407, 476,
489, 511
master, 93, 94, 95, 96
rectangular, 54, 65, 66, 78, 96, 97
triangular, 50, 51, 52, 53, 66, 73, 74,
75,76,77,78, 91, 119, 138, 166,
195, 233, 234, 257, 268, 376, 377,
389, 391, 396, 404, 405, 406, 407,
408, 409, 410, 412, 512, 535, 542
canonical, 47, 48, 49, 50, 61, 69, 72,
77, 84,93,94,97,99, 119
curved, 98, 407
hierarchical, 45, 70, 77
spectral, 45, 67, 68, 569
tetrahedral, 58, 60, 73, 74, 87, 91,
376, 396, 397, 398, 485, 513
enthalpy, 17, 274, 446, 473, 474, 475,
476, 496
enthalpy-based method, 473
equation(s)
conduction, 144, 169, 239, 264, 423,
485, 502, 504, 505
continuity, 16, 101, 247, 252, 464,
520, 522, 545
convection, 28, 158, 161
diffusion, 147, 181, 240, 312
elliptic, 144
energy, 8, 247, 556
heat transfer, 8, 268, 501
hyperbolic, 274
magnetohydrodynamic, 543
Maxwell, 423, 543, 544, 545, 549,
550, 552, 556, 559, 569
porous flow, 15
radiative transfer, 363, 364, 366, 368,
379, 389, 395, 404, 414, 416, 423
error, 45, 84, 354, 359
estimates, 45, 80, 84, 87
relative, 332, 344, 354, 359, 388
Euler equation, 283, 296
Eulerian description, 305, 308, 309, 310,
311, 312, 441
Eulerian mesh, 459
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Eulerian method, 447
Explicit time integration, 31, 70, 78, 128,
169, 179, 195, 199, 201, 212, 214,
486, 526
external radiation, 319, 320, 329, 348,
350, 354
kernel functions, 323, 324, 325
formulation, 326
Shadowing algorithm, 327, 328
2-D, 329, 331, 333
axisymmetry, 334, 337, 338
3-D, 339, 341, 343
coupled with other heat transfer
modes, 345

finite difference, 21, 23, 32, 40, 41, 106,
140, 164, 165, 166, 213, 216, 258,
260, 273, 363, 461, 487, 549, 565
finite element broken space, 29, 45, 115,
132, 188, 191, 250, 302, 376, 378,
404
finite element space, 29, 227, 229, 301
finite volume, 21, 32, 106, 163, 164, 165,
166, 170, 171, 172, 201, 215, 283,
287, 379, 380, 388, 410, 412, 416,
439, 461
flow, 2, 8, 248, 274, 301, 473, 513, 566
compressible, 8, 125, 273, 274, 275,
283, 290, 299, 301, 304, 313
free surface, 468, 469, 499
in lid-driven cavity, 258
incompressible, 2, 248, 260, 301, 513,
566
isothermal, 247
Stokes, 248
turbulent, 248, 543
flow-based method, 473
fluctuations, 543
fluid, 2, 3, 4, 448, 470, 566
compressible, 15, 202, 273, 274, 304,
448
incompressible, 2, 3, 4, 5, 13, 15, 248,
250, 251, 257, 260, 308, 448, 470,
550
Newtonian, 4, 5
viscous, 3, 15, 269
flux, 23, 25, 124, 222, 298, 391, 554, 566
Engquest—Osher, 207, 227
Lax—Friedrichs, 162, 168, 207, 208,
227, 289, 290, 291, 550
numerical, 23, 25, 26, 27, 30, 105,
106, 107, 113, 115, 116, 119, 124,
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217,218, 220, 221, 225, 227, 232,
237, 238, 240, 250, 251, 252, 253,
254, 264, 273, 285, 288, 289, 290,
298, 302, 304, 378, 391, 406, 485,
486, 509, 510, 535, 550, 554, 566
Roe, 207, 287, 298, 302
flux limiters, 157, 215, 217, 218, 222,
226, 228, 299
Minmod, 218, 222
Van Leer, 218, 220, 245
Monotonized central, 218, 222
Superbee, 218
formulation
boundary constraint minimization, 23,
26, 28
discontinuous finite element, 21, 22,
25,26, 27,29, 31, 33, 34, 39, 45,
46, 105, 119, 122, 124, 132, 134,
138, 140, 143, 147, 158, 181, 187,
191, 197, 198, 204, 209, 232, 248,
250, 256, 257, 263, 268, 273, 287,
295, 296, 298, 302, 303, 304, 312,
367, 3717, 378, 396, 401, 414, 430,
448, 452, 456, 458, 474, 476, 482,
485, 503, 507, 526, 534, 539, 543,
550, 557, 566
weakly imposed boundary condition,
27,32
free boundary, 11, 453, 454
free convection, see natural convection
free energy, 445, 446, 447, 477, 490, 492
free surface flows, 469, 499

Galerkin method (or formulation), 21, 32,
33,108, 110, 123, 108, 110, 123,
172, 260, 319, 320, 325, 344, 348,
349, 363, 364, 380, 416, 417, 453,
487, 523

gas constant, 4, 447, 516

Gauss—Lobatto, 67, 68,

Gauss—Legendre (or Gauss) quadrature,
90, 567

Gibbs free energy, 445, 446

Gibbs—Thompson coefficient, 12

Gibbs—Thompson effect (or relation),
446, 447, 497

Godunov flux, 207, 208, 210, 227, 232

gradient, 4, 138, 143, 222, 234, 258, 309,
310, 336, 422, 436, 461, 465, 471,
4717, 490, 492, 501, 502, 504, 505,
511, 512, 518, 534, 551
surface, 101, 436, 438, 453, 495
gravity, 267, 345, 358, 420, 521, 560, 565
Green's theorem, 560
surface, 440, 454, 556, 560
vector, 566
grid, 260, 288, 289, 304, 312, 359, 430,
439, 448, 449, 450, 451, 468, 471
fixed, 429, 430, 447, 448, 458, 459,
472,473, 474
moving, 304, 429, 430, 447, 448, 449,
450, 451, 460, 476

Hermite polynomials, 528
Hilbert Space, 80

H™(Q), 81, 82
hydrodynamics, 522
hydrostatic pressure, 3, 559
hyperbolic equation, 274

incompressibility condition, 250, 251
impedance, 547
implicit scheme, 31
indicial notation, 5
inequality, 80, 145, 146, 173, 175, 242
Holder, 242
Schwarz, 80, 175
Poincaré, 242
Young, 242
inf-sup condition, 143, 248
initial conditions, 1, 9, 130, 165, 295, 450,
482, 508, 567
inner product, 80, 81, 198, 567
integration by parts, 22, 27, 30, 106, 139,
181, 209, 227, 236, 263, 285, 298,
377
inter-element boundaries, 105, 197, 378,
389, 404
internal energy, 3, 274, 311, 506, 507,
522
internal radiation, 3, 39, 319, 363, 364,
365, 367, 377, 378, 380, 388, 389,
396, 402, 403, 412, 413, 414, 415,
416, 417,419, 421, 422, 423, 424
1-D, 380, 388
2-D, 377, 395, 412, 414
3-D, 396, 402
cylindrical (axisymmetry), 403



emitting/scattering, 319, 320, 363, 364,
365, 365, 369, 385, 388, 389, 394,
399, 400, 401, 402, 406, 411, 412,
413, 414, 420, 550
used for external radiation, 412, 413
interpolation, 29, 32, 34, 35, 45, 46, 47,
49, 50, 51, 52, 54, 55, 57, 58, 60,
65, 67, 68, 72,73, 74, 80, 84, 87,
102,124, 127, 128, 130, 143,
163, 210, 212, 222, 248, 259, 260,
378, 380, 404, 412, 450, 457, 468,
474, 486, 535, 538, 554
bilinear, 468
linear, 34, 57, 65, 130, 457, 468
intersection, 337, 338, 342, 343, 465
isoparametric, 34, 37,47, 61, 47, 61, 93,
94, 98, 99, 107
elements, 93
transformation, 61
iteration, 110, 111, 112, 122, 124, 139,
183, 194, 237, 238, 257, 283, 359,
416, 457

Jacobian, 94, 95, 96, 97, 98, 100, 211,
275, 284, 296, 298, 308, 309, 310,
311, 397, 400, 406, 407, 566, 567
determinant, 95, 308
matrix, 95, 100, 275, 284, 296, 298,
566
Joule heating, 422, 424, 548, 549, 557
jump discontinuity, 278
jump operator, 115, 250

L?-norm, 80, 81, 83, 85, 86, 110, 146,
173, 174, 229

Ladyzhenkaya—Babuska—Brezzi condition
(LBB), see also inf-sup, 125, 143,
248, 259

laser annealing, 502

lattice Boltzmann equation, 519, 527,
530, 531, 532, 534, 535, 536, 540

least squares, 465

Lebesgue space, 29, 81

Legendre polynomials, 41, 70, 71, 75, 369

level set function, 470, 471, 472, 479

level set method, 448, 459, 469, 471, 473,
474, 497

Mach number, 516, 527

magnetic field, 420, 422, 498, 543, 544,
545, 546, 547, 548, 556, 566, 568

magnetic permeability, 556
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magnetohydrodynamics (MHD), 566
marker—and—cell (MAC), 459, 468
mass
conservation, 308, 359, 441, 450, 463
flux, 10, 17, 458
matrix, 30, 31, 33, 70, 78, 79, 134,
164, 168, 193, 210, 486, 526
Maxwell equations, 422, 543, 544, 545,
549, 550, 552, 556, 559, 568
Maxwell stresses, 548
Maxwellian distribution, 516, 527, 552
mean
free path, 501, 502, 506, 513, 515
value, 250, 484
micro system, 513
microstructure evolution, 430, 486, 489
microwave heating, 543, 544, 556, 558
mixed finite element formulation (or
method), 113, 125, 143, 248
monotonic, 493
moving boundary, 12, 422, 429, 430, 431,
433, 436, 441, 444, 445, 447, 448,
449, 450, 451, 452, 453, 454, 456,
457, 458, 459, 472, 473, 476, 479,
480, 482, 483, 488
moving grid, 304, 429, 430, 447, 448,
449, 450, 451, 460, 473, 476

nanoscale flow and heat transfer, 501
natural convection , 265, 268, 420, 422
natural coordinates, 389
Navier—Stokes equations, 247, 248 250,
256, 258, 260, 261, 262, 299, 302,
303, 312, 345, 480, 513, 516, 517,
521, 532, 543
nonlinear, 157, 195, 202, 209, 212, 214,
215, 218, 219, 227, 238, 247, 257,
277, 283, 293, 359, 418, 419, 429,
476, 482, 485 524, 543
convection, 157, 195, 202
norm, 80, 81, 82, 83, 85, 86, 110, 146
173, 174, 183,229
normal derivative, 561
no slip, 12, 260, 261, 263, 513, 516, 517
533, 542
numerical
dispersion, 176
dissipation, 165, 176, 178, 265, 291
integration, see quadrature
stability, 26, 105, 106, 139, 150, 250,
304, 486
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optical thickness, 420, 421, 423, 424

ordinary differential equation, 30, 164,
208, 228, 286, 299, 302, 486, 535,
539

orthogonal, 31, 33, 67, 68, 69, 70, 71, 79,
101, 164, 325, 369, 566, 567

parabolic, 105, 144, 218, 505
partition, 209, 228, 231, 286, 452, 477,
536
Peclet number, 185
permeability, 14, 545, 556
permeable interface, 14
phase
angle, 177
lag, 501, 502, 503, 504, 505, 507,
511, 512
phase change, 8, 12, 13, 345, 441, 445,
448, 456, 473, 474, 475, 482, 483
phase field model, 430, 476, 477, 479,
480, 481, 482, 483, 485, 487, 488,
489, 490, 497
phase field theory, 429, 430, 476, 483
phase transition, 12, 454, 476, 477, 478,
479, 482
piecewise, 28, 41, 69, 125, 128, 125, 218,
219, 220, 225, 228
constant, 126, 150, 166, 170, 172,
178, 180, 185, 187, 213, 219, 228,
229, 232, 273, 283, 288, 291, 388,
439, 460
linear, 218, 223, 229, 230, 234, 465
polynomial, 28, 125
Poisson equation, 138, 259, 260, 261,
262, 265, 552
porosity, 14
porous flow(s), 15, 138
phonon radiative transfer equation, 506,
531
phonon scattering, 502, 503, 505, 531
Prandtl number, 267
pressure, 3, 4, 5, 8, 11, 13, 239, 247, 248,
249, 250, 256, 257, 258, 259, 260,
261, 262, 268, 274, 281, 294, 295,
431, 445, 446, 450, 456, 458, 482,
517, 522, 548, 553, 559
electric, 560
hydrostatic, 3, 559
thermodynamic, 3, 4, 515
primitive variables, 5, 8, 11, 566

quadrature, 45, 88, 89, 90, 91, 164, 343,
368, 399, 401, 406, 409, 411, 526,
529, 531, 567

quadrilateral, 50, 66, 101, 460

radiation heat transfer, 321, 354, 355,

356, 363, 365, 367, 413
see also radiative heat transfer

radiative heat transfer, 10, 319, 356, 363,
368, 370, 376, 380, 394, 402, 403,
410, 416, 420, 423, 502

radius of curvature, 433, 435

Rankine—Hugoniot condition(s), 278, 441

Rayleigh number, 270

Reynolds number, 249, 265, 516, 553

Riemann solver, 227, 273, 274, 283, 289,
566

Riemann problem(s), 218, 275, 276, 277,
280, 281, 283, 284, 288, 289, 294,
297, 302, 550

Runge—Kutta (RK) method, 41, 105, 128,
129, 149, 150, 151, 164, 212, 227,
228, 229, 231, 233, 245, 286, 287,
290, 291, 293, 295, 299, 303, 535,
550

TVD, 227, 229, 231, 232, 233, 236,

290

scattering,
anisotropic, 400, 401, 402, 541
backward, 400
cross-section, 518, 520, 524
forward, 400
isotropic, 388, 400, 402, 424
scattering function, 400, 401, 414
semi-norm, 82
shape function, 21, 31, 32, 33, 34, 36, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 60, 61, 62, 65, 66,
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325, 326, 327, 347, 378, 379, 382,
383, 389, 390, 391, 396, 397, 399,
404, 405, 416, 450, 475, 509, 563
sharp front(s), 158, 185, 195, 202, 429
shock, 9, 17, 23, 31, 202, 204, 206, 221,
273,274,277, 279, 280, 281, 282,
289, 293, 294, 295, 441, 448
singular matrix, 194
singularity, 205
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233, 234, 235, 286, 290, 291, 293,
295
Sobolev space, 82
solidification, 13, 424, 429, 430, 445,
446, 447, 448, 454, 473, 474, 475,
476, 483, 485, 487, 489, 490, 491,
493
Sommerfield radiation condition, 547
source/sink
heat, 3, 113
volumetric, 8, 417
space, 21, 22, 29, 33, 80, 81, 82, 101, 115,
116, 125, 132, 142, 145, 169, 172,
174, 176, 223, 227, 229, 288, 292,
301, 304, 365, 367, 371, 424, 450,
497, 506, 518, 519, 520, 523, 525,
526, 527, 529, 531, 544, 550
broken, 29, 45, 115, 132, 188, 191,
250, 302, 376, 378, 404
free, 545, 547, 559, 560, 561
spatial coordinates, 157, 308, 309, 378
spurious oscillation, 157, 190, 195, 212,
215
spectral element, 45, 67, 68
speed of sound, 275, 503, 504, 527
spherical coordinates, 322, 495
stability condition, 26, 139, 151, 169, 170,
172, 174, 270
Stefan—Boltzmann constant (law), 323,
345
stream function, 8, 247, 260, 261, 262,
263, 264, 566
streamline, 421, 424
stress
normal 439, 442, 443, 452, 453, 454,
557, 560, 562, 568
tensor, 2, 3, 101, 442, 450
surface
deformation , 544, 559, 565
divergence, 434, 435, 437, 438, 454
normal, 99, 329, 332, 334, 339, 341,
366, 368, 396, 408, 421, 433, 442,
454, 496
radiation, 320, 327, 339, 345, 346,
347, 349, 354, 356, 359, 413
symmetry boundary conditions, 367

tensor, 2, 3, 4, 6, 14, 15, 54, 55, 61, 67,
71, 72,74, 101, 210, 251, 296,

Index 577

299, 306, 309, 310, 436, 442, 444,
450, 483, 528, 548
product, 54, 55, 61, 67,71, 72, 74,

210

test function, 26, 33, 114, 187, 191, 249,
485, 508, 509, 554

tetrahedral, 60, 73, 74, 87, 91, 376, 396,
397, 398, 485, 513

thermal conductivity, 4, 113, 345, 358,
418, 485, 504, 505, 523, 540

thermal radiation, 319, 320, 321, 324,
328, 329, 334, 335, 339, 355, 356,
365, 366, 420, 422, 556

thermal waves, 512

time-dependent, 468, 477

time step

critical, 105, 147, 150, 157, 164, 169,

176, 179, 195, 199, 200, 201, 208,
472

total derivative, 158

transition temperature, 13, 474, 475

transport equations, 8, 448, 459, 519, 543

trial function, 32, 117

truncation error, 176

TVB (Total Variation Bounded), 213, 227

TVD (Total Variation Diminishing), 31,
157,212, 213, 214, 215, 217, 219,
221, 226, 227, 228, 229, 230, 231,
232, 233, 236, 290, 295, 299, 315

two-temperature equation (or model), 502,
503, 505

unconditionally unstable, 151, 229

upwinding, 24, 27, 32, 33, 36, 41, 112,
124, 126, 128, 130, 131, 135, 148,
163, 164, 165, 166, 168, 171, 172,
178, 182, 185, 187, 211, 212, 215,
217, 218, 219, 220, 221, 222, 226,
239, 240, 251, 264, 377, 378, 384,
392, 407, 409, 410, 510

vector
outward normal, 115, 132, 133, 167,
188, 209, 250, 380, 381, 470, 484,
486, 508, 510
unit, 2, 6, 115, 132, 188, 369, 421,
432, 438, 486, 510, 525, 549
view factor(s), 354, 356, 360
viscosity, 4, 5, 14, 158, 181, 235, 248,
249, 265, 267, 301, 345, 469, 470,
471, 521, 523, 532
viscous dissipation, 3, 7, 522



578 Index

viscous stress tensor, 3
volume
coordinates, 60, 73, 102
integral, 168, 377, 396, 398, 406
volume of fluid (VOF) method, 448, 459,
460, 462, 464, 467, 497, 498, 499
von Neumann analysis, 157, 229
vorticity, 247, 260, 261, 262, 263, 265,
266, 537

wave
equation, 28, 144, 505, 556
front, 512, 513
number, 177, 365

propagation, 176, 177, 223, 294, 513,
514, 550
reflection, 513
weak form, 25, 114, 125, 143, 170, 171,
174, 188, 209, 210, 227, 236, 250,
285, 301, 442, 464
weak formulation, 114, 143, 170, 174,
188, 301, 442
weighted residual formulation (or
method), 27, 32, 560, 563
weighting functions, 32, 108, 124, 132,
147, 325, 369
well-posed problem, 142



	Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer
	Front Cover
	Title Page
	© Springer-Verlag London Limited 2006
	Preface
	Contents
	1 Introduction
	2 Discontinuous Finite Element Procedures
	3 Shape Functions and Elemental Calculations
	4 Conduction Heat Transfer and Potential Flows
	5 Convection-dominated Problems
	6 Incompressible Flows
	7 Compressible Fluid Flows
	8 External Radiative Heat Transfer
	9 Radiative Transfer in Participating Media
	10 Free and Moving Boundary Problems
	11 Micro and Nanoscale Fluid Flow and Heat Transfer
	12 Fluid Flow and Heat Transfer in Electromagnetic Fields
	Index



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


