Essential
PhysIcCS for

MANUAL

MARTIN YOUNG

SP

CHURCHILL |/
IIIIIIIIIII
ELSEVIER




All of the physics you need... and none of the physics you don’t

Essential
Physics for

MAN UAL
MEDICINE

Essential Physics for Manual Medicine explains the underlying principles
of physics that need to be understood by manual physicians. The book
assumes no previous knowledge of physics, and covers the key principles
underpinning physiology and biochemistry, diagnostic imaging, modalities
and biomechanics in an easily accessible way. Electromagnetism, quantum
physics and atomic and sub-atomic nuclear physics are covered at an
appropriate level for students and practitioners of manual medicine and
related disciplines. Uniquely, topics are linked to clinical examples allowing
easy application of theory to practice.

KEY FEATURES:

e Self-assessment questions at the beginning of each chapter
allow readers to check their existing knowledge prior to
reading the chapter

e Each section builds from basic principles to advanced levels
e Clinical focus.

ISBN 978-0-443-10342-1

CHURCHILL
LIVINGSTONE

ELSEVIER 9780443103421

www.elsevierhealth.com




B Essential Physics for Manual Medicine



To my former pupils, a promise fulfilled .. ..

... and to Lisa, for helping me fulfill it.

For Elsevier

Commissioning Editor: Claire Wilson

Bevelopment Editors: Ailsa Laing and Sally Davies
Project Managers: Anne Dickie and Srikumar Narayanan
Pesigner: Kirsteen Wright

Hlustration Manager: Gillian Richards



Essential Physics
for Manual
Medicine

Martin Young

Private Practice,
Yeovil, Somerset, UK

Simon Venn

Technical lllustrator
Simon Venn Graphic
Shaftesbury, Dorset, UK

CHURCHILL
LIVINGSTONE

ELSEVIER

Edinburgh London New York Oxford Philadelphia St Louis Sydney Toronto 2010




CHURCHILL
LIVINGSTONE

ELSEVIER

First published 2010, {0 Elsevier Limited. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or any information storage and
retrieval system, without permission in writing from the publisher. Permissions may be
sought directly from Elsevier’s Rights Department: phone: (+1) 215 239 3804 (US) or
(+44) 1865 843830 (UK); fax: (+44) 1865 853333; e-mail: healthpermissions@elsevier.
com. You may also complete your request online via the Elsevier website at http://www.
elsevier.com/permissions.

ISBN 978-0-443-10342-1

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data
A catalog record for this book is available from the Library of Congress

Notice

Neither the Publisher nor the Author assume any responsibility for any loss or injury and/or
damage to persons or property arising out of or related to any use of the material contained
in this book. It is the responsibility of the treating practitioner, relying on independent
expertise and knowledge of the patient, to determine the best treatment and method of

application for the patient.
The Publisher

your source for books,
AR A0 journals and multimedia
in the health sciences

www.elsevierhealth.com

Working together to grow
libraries in developing countries

The
www.elsevier.com | www.bookaid.org | www.sabre.org Publisher's
% 3 policy is to use
ELSEVIER BOOKAID  Qapre Foundation paper manufactured

from sustainable forests

Printed in China



Contents

Preface . . . . . . L e e e e e e e e e e e iX
Howtouse thiSbook . 4 s s & s 5 & s & ¢ 5 & 5 ® % 9 & 6 5 5 & & 5 4 5 @ & & Xi
Thetoolsofthetrade . . . . . .. . ... ... ... ... .... 1
Check your existingknowledge . . . . . . ... ... ... .......... 1
Weightsand measures . . . . . . . . . . . . i i i i it e e e e e e 2
Vectorsandscalars . . . . . . . . .. . . . i i it e 7
Algebras. . . . . ;.. . . L i s s 53 R RH B R T BEREE S § % s § 5 mE 9
Trigonometry. . . . . . . . o it i i s s s s s E e B S e e e s s & s s 12
Vectors and scalars (continued) . . . . ... ... ... ........... 15
Coordinatesand planes . . . . .. .. ... ... .. 16
Learningoutcomes . . . . . . . . . ... e e e 24
Check your existing knowledge: answers . . . ... ... ......... 24
Bibliography . . . . . . . . . . . .. i s s E s e e Rk i § s R 25
Natural philosophy . . . . . . . . . . . . .. .. . ... .. ... 27
Check your existingknowledge . . . . . .. ... ... .. ......... 27
Introduction . . . ... . ... .. 28
Velocity, angular velocity and acceleration . . .. ... .......... 30
Mass and momentum. . . . . . . . ... L. e e 31
Foree . ... ... .. .. i i immanBER®a RS § s 32
Newton’s laws and equations of motion . . . . . ... ... ........ 33
WOrkshop . . . @ c i cs s s M r IS R HEEEs o @5 5 b o 5o 36
Gravity . . ... . @ sis s s eenad iR iR R R s P S e e e 36
Energy and Work . . . s s sm 5w 6 b v s i m s n ok 5 e R B e 8 EF R 37
Learningoutcomes . . . . . . o v v v v ittt s e e e e e 46
Check your existing knowledge: answers . . . . ... ... ........ 46
Workshop: ansSwers . & v s s wwm s ¢ s 5 3 5 @G sk & s 56 8 6 88 6 &6 3 5 47
Bibliography . . . s s s s s s mes s s s s s aman s 855 s @6 ES &3 @ 8 47
Applied physics . . . . . . . . e 49
Check your existing knowledge . . . . . . ... ... ... ......... 49
Levers, beamsand moments . . . ... ... ... .. .. ... ... 50
Workshop! . . . 0 L o e e - s G S D S § e e e 57
Bending moments and torsion . . ... ... ... ... .. ... ... .. 58

Second momentofarea ... ... ... .. ... 60



vi

Contents

Polar momentofinertia . . . ... ... ... ... .. ... .. ... ... 62
Centreofgravity. . . . . . . . . . i e e 63
Instantaneous axis ofrotation . . . . . ... ... ... ... ... 0 .. 64
Propertyof materials . . . . . . . ... ... . ... .. .. ... . ..., 65
Stressandstrain . v . v s s w s e e e m mE s s s E G L8 s s 8§ 66
Moduli of elasticity . . s sss s o s s wuw e s ms o555 68585 33 66
Learningoutcomes . . . . . . . . i it it e e e e e e e e e e e 68
Check your existing knowledge: answers . . . .. ... .......... 68
Workshop: anNSWEerS . & s « & oiw s m i 6 5 5 i 8 5 06 8 6 6 5 6 5 0 o 58 8 88 68
Bibliegraphy . . . . . . . . . s ssassasnp s a@® @ @5 85 5 88 @@ 6@ 69
The anatomy of physics . . . . . . . . ... ... ... ..... 71
Check your existing knowledge . . . . . .. ... ... ... ........ 71
The classification of joints . . . . . ... ... ... ............. 72
Fibrousjoints . . . . . . . . . . . . e 74
Cartilaginous joints . . . s s s s ume v wm e W w @ 556 & @6 555 %566 76
Synovialijoints . . . . . . . s ssErRFResEEE I E P F T IS RE GRS 56 77
Structural classification. . . . . ... ... ... .. o L. 83
Ligaments . . . . . . . . . e e e e e e e e 83
The classificationof muscle . . . . . ... ... .. ... .......... 84
Learning OUICOMES] . . . . . s s s s ws e @@ oE e E @ FEE S 69D 05 97
Check your existing knowledge: answers . . . . .. ... ......... 97
Bibliography . . . . . . . . . . . . hm s wE s Eaw R s E 8 ke 98
The physics of anatomy . . . . . . . .. ... ... ... ... . 99
Check your existing knowledge . . . . . .. ... ... .. ......... 99
Jointtmovement . < . i s s s s s s s wmm mwio g o8 S 6 F S B e EE E T 99
Arthrokinematies . c s s s s s s s s s v s s e s a5 56 0 a8 55 102
Jointfeatures . . ... ... ... ... ... .. 105
ROStUre . . . . . . s mom om w0 e G 6§ 116
Gait . ... ... scss sy e e s ERRBREP 0 G EDEES @B E 6 R E 6 120
LLeamiing OULCOMES i« & = & & & & 5 & & & & w6l @ & % 5 F 5 & w8 5 kw5 o 121
Bibliography . . . . . . . . .. e 122
Afonilic stiiliCtliies . . . = v 2 w55 & oo = w5 5 s 2 8 05 @ 5 b 125
Check your existing knowledge . . . . . . ... ... ... ........ 125
Atomic theory . . . . . . . . . e e e 126
Electrons and electronshells . . . ... ... ............... 136
Intramolecular bonding . « « « = s & ¢ 2 s wEm s s @ s B w D Ew e W E 143
Intermolecularbonding . . . . . . ... ... ... o oo 147
Learning OULCOMES . . . & w = w = i 5 5 5 & w0 5 v 5w 5 o & w0 m s w0 w0 & @ 00 148



Contents

Check your existing knowledge: answers . . . . ... .......... 148
Bibliography . . . . . . . . . e e 149
Electricity and magnetism . . . . . . .. . ... ... ... 151
Check your existing knowledge . . . . . . ... ... ........... 151
Intreduction . . .. s nssasemmwn o fa i § s as e dEssndEe 152
Electromagnetism . . . . . . . . ... ... L. 153
Electrostatics .. . .. .. ... .. ... ... ... 154
Electricpotential . . . . . . . . .. ... .. ... . . 155
Conductors andinsulators . . . . . ... ... ... ... ....... 156
Electrodynamics. . . . . . . . . . . i e e e e e e 158
EICCIOMIES . o o v w o m s s mammamen = s s s 58 003w di & o m s e i w e 161
Systems . ... . L s EEEEEEEEEE 5 P ARAEE N E 165
Magnetism . . . . scwmmamommwio s v v s 5 0 o 8 66 0SS ESE S 168
Electromagnetic induction . . . . . ... ... ... ... .. ... ..., 168
The transformer . . . . . . . . . . . ... 169
Electricity in the home and clinic . . . ... ... ............. 171
Learning outcomes . . . . . . . . . ..o e e e e 175
Check your existing knowledge: answers . . . . ... ... ....... 175
Bibliography . . . . . . . . . . e e e e e e 177
Electromagnetic radiation and radioactivity. . . . . . . .. .. 179
Check your existing knowledge . . . . . . . ... ... ... ....... 179
Introduction . . . . . . .. 180
The electromagnetic spectrum . . . ... ... ... ........... 182
Radioactivity v s v s s ssis s smam s 56 6 @ o5 & & w5 wmmmdw wom e s 187
Visible light. . . . . . . . .. . e e 192
Xrays. . . . .. . - ssoss crss s dRd s i nsndudBee s s 194
Learningoutcomes . . . . . . . . . . it i e e e e e e 199
Check your existing knowledge: answers . . . . ... .......... 199
Bibliography . . . . . . . . .. 199
Piagnesticimaging : = s « « = 5 & s » « s 5 % & = 5 5 = 5 5 « 203
IntrodUction . . . . . . . s s s w s e e e ok E e w a 203
The x-ray machine . . . . . . . . . . . . it ittt i e 204
Computed tomography . . . . . . . . . . . . e e 218
Magnetic resonanceimaging . . . . .. .. ... ..o e e 221
Positron emission tomography (PET) . . . . . ... ... ... ...... 226
Diagnostic ultrasonography . . . . . . . .. .. ... .. .. .0 227
Learningoutcomes . . . . . . . . . ... it e e e e e 231
Bibliography . . . . . . . .. e 231

vii



viii

Contents

Making itbetter . . . . . .. ... ... 235
Check your existing knowledge . . . . . ... ... .. .......... 235
Introduction . . . . . ... 235
Ultrasound . . . . . . . . . L e e e e e 235
Cryotherapy ... . ... ... . :icssasssssvnaanimsssmes 238
Electromagnetic field therapies . . . . . ... ... .. ... ....... 238
Magnetic field therapy . . . . . . . .. ... . Lo 239
TENS . . . . - - 8fe o - o v 2w s & 5 8 85 5§ R RN S NS A E W E G 240
Interferential . . ... ... ... ... ... e 240
Electrical muscle stimulation . . . ... ... ... ............ 241
Learningoutcomes . . . . . . . ... .. e 241
Bibliography . s s m s s s s mm s « ¢ 6 8 8 8 6 5 3 s s s s s 8885w wws 242
INAEX. . . 245



Preface

Almost everything that students of manual medi-
cine study at College is physics, even though lec-
turers in some subjects occasionally try to disguise
this. Take, for example, the core subject of bio-
chemistry. Far from being a discipline in its own
right, biochemistry is nothing more than the physics
of the outer electron shells of a rather narrow range
of elements. Physiology is simply what happens
when you get a lot of biochemistry going on; anat-
omy merely describes where the physiology is tak-
ing place and pathology is just an overview of what
can happen when the physiology stops working
properly.

Then there’s neurology, the study of changing
electron potentials and capacitance effects, and
radiography, which is what happens when you put
together nuclear physics and quantum mechanics
with sufficient electrical power. Radiology, mean-
while, is no more than the interpretation of a rather
clever bit of physical chemistry; biomechanics
speaks for itself and orthopaedics is merely biomech-
anics going wrong. Learning to manipulate is the
intuitive application of moments of inertia to third
order levers whilst modalities, such as ultra-sound,
infra red, interferential and the like, are classic
examples of applied physics. In fact, there is really
not much that you're going to do that isn’t physics -
even relativity comes into it, as anyone who has
sat through histology on a Friday afternoon, and
wondered how a one-hour lecture can seem to last
several days, will testify!

[ know of many colleagues who regarded learning
physics as a nightmare but, if they thought that
learning it was tough, they should have tried teach-
ing the subject! [ can still remember my first class,
sitting with mixed expressions of fear, boredom
and resentment. [ already knew from the admis-
sions office that I would be teaching a class with
mixed abilities; however, try to imagine my dismay
when [ discovered that this had been taken — as it
would be in subsequent years — to ridiculous
extremes. Within one body of students were several
who had quit physics aged 14; a fair number who
had rote-learned sufficiently to pass basic

examinations, albeit with little or no actual under-
standing; a majority who had given up at 16 to con-
centrate on Biology and Chemistry; several high
flyers who did well enough at 18 to have taken their
studies further; and, for good measure, a couple of
engineering graduates.

So, where to pitch the level of the course, without
either losing the bottom end or boring the top end?
The seemingly impossible answer to that question
forms the basis of this textbook. Contained within
these pages is stuff that you (probably) already know
like the back of your hand — unless of course you quit
physics aged 14, in which case | would highly recom-
mend starting at page 1. Then there will be the stuff
that you think you know but in fact don't. There is a
world of difference between knowing enough about
a subject to pass an examination and actually under-
standing it well enough to put it into practice: ask
any teacher. If you are going to be treating patients,
it is never enough to try to get away with the former:
you will, sooner or later, be found out.

Read the following section on how to use this
book to its best advantage and you'll quickly dis-
cover which areas need either to be revised or even
learnt afresh as well as discovering the stuff that you
don't know. It doesn’'t matter if you're an honours
physics graduate or finished summa cum laude in
your mechanical engineering degree course, there
WILL be stuff in this book that you don’t know
and, what's really great, is that by reading the next
section, you can easily find out what these bits are
and know which chapters and sections you can skip
with impunity. So yield not to the temptation to
skip the stuff at the beginning and get stuck in to
Chapter 1; this next bit is the instruction manual
for the mobile phone of life — you will probably be
able to make metaphorical calls without reading it,
but to achieve full 3G multi-media functionality,
it will require a further five minutes of your time.

Once done, you will hopefully find this a physics
text like no other. I had the good fortune to be a not
very good physicist (academically, not morally).
That means that, unlike many of the brilliant minds
that tried to teach me, | can understand why
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students have problems understanding certain con-
cepts, what those problems are and how they can
best be addressed. Some of the approaches may be
unorthodox - but if you want orthodox, there are
plenty of those books out there already, although
you may have to shell out a fair amount: [ believe this
is the only book that caters to the unique require-
ments of the manual physician. I have tried to encap-
sulate all the requirements of learning basic science,
diagnostic imaging, treatment modalities, clinical
applications and biomechanics in simple, under-
standable language: a trick that [ picked up and, hope-
fully, perfected in a previous existence as a freelance
writer composing technical articles for lay audiences
(well, nobody would employ me as a physicist).

[ also remain, at heart, a clinician who prefers
treating patients to physics. I fully appreciate that
it can be a dry, difficult subject and have tried,
wherever possible, to spice it up with anecdotes
and clinical facts that will put the material into con-
text for the student of manual medicine.

In writing this book I have also fulfilled a promise
made to my fellow students who struggled through
our biophysics syllabus in bored bewilderment,
longing for a single textbook, written in clear
English that would explain what it was we needed
to know. To the three-quarters of my alma mater
who failed biophysics for want of such a book,
[ offer this volume as evidence of a promise

fulfilled.

Martin F. Young
Yeovil, England



How 1o use this book

One of the best bits of advice | was ever given was, in
a previous existence, by a training officer for a firm of
English wine merchants who was teaching me how to
tutor new recruits to be able to run their own
branches. ‘Check existing knowledge, he would
drum into me once or twice a day. ‘Do nothing until
you have checked their existing level of knowledge.’

Unless you did this, he explained, you would
either patronize the person to whom you were
explaining (by telling them, in detail, things that
they had known for years) or bore them (by losing
them completely within the first sentence or two).
This, as | was to later discover, applies as much to
communicating with your patient as to teaching stu-
dents or professionals. As an undergraduate student,
I rapidly discovered the same dictum applies to
textbooks. Too many academic books seemed
to have been written so that the author could
prove to his professorial colleagues his intellectual
brilliance by dint of terrorizing undergraduates
(completely unnecessarily, we already knew that
they were geniuses; that, presumably, is why they
were made professors and asked to write books in
the first place).

The problem with genius, however, is that it has
difficulty in dealing with and understanding the mun-
dane. One of the professors who taught — or tried to
teach — me physics was regarded as one on the top five
researchers in his field in the whole world. You might
think it a privilege to be taught by such a man;
it may well be, but [ and 95% of my classmates
never got a chance to find out — his lectures were so
bad that, in time-honoured undergraduate fashion,
we decided we could learn more easily from books
(no matter how daunting) and voted with our feet.
Why were his lectures so abysmal? Some thought it
was because his mind wasn't on the job (he often
would stop and stare into space for several minutes
at a time; once, he concluded this hiatus by rushing
out mid-lecture not to return); some thought he was
ill-prepared because his heart only had room for his

true passion, research, from which teaching under-
graduates was an unwanted distraction. My own
theory was that he was just too clever for the job: an
IQ of 180+ and he struggled to understand why
anybody wouldn’t find quantum mechanics a bit of a
doddle (in much the same way he struggled to
find two matching socks or to couple buttons with
button-holes).

Most physics texts have the same problem. They
are written (for the most part) by people who
achieved their first-class honours with effortless
ease and thereafter soared into the stratosphere of
n-dimensional space-time to ponder at length on
the particle path of the Higgs' boson. If they ever
did struggle with a basic concept, it was so long
ago that they have forgotten it.

As an undergraduate, | liked books that had the
reassuring words ‘Basic’, ‘Elementary’ or ‘Essential’
in their title. One somehow thought (often errone-
ously) that the author would not be making the
assumption that you already knew the subject and
had purchased the book as a little light night-time
read. So, as with any class, how do you reach all
levels at once? The answer is to aim at the lowest
common denominator but to give the high-fliers
and the previously informed a fast-track through
to the information they require.

At the start of every chapter, there is either a
quick quiz or an explanation of the knowledge the
user should already have before they proceed.
Answers to the quizzes can be found at the end of
the chapter, along with a rough scale indicating
whether you can skip the chapter completely; skim
through it in order to patch up any leakages in your
grasp of the subject area; or work though it in detail
to learn new material.

This also gives you the chance to go back and
retest yourself at the end of the chapter to ensure
you have mastery before deciding whether it is
appropriate to move on - the crucial thing is to
build on firm foundations. That is why the basic
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sciences are so important, they are the hard core
and concrete on which all that comes after is built.
You are going to learn so much during the course
of your studies that, in many ways, it matters little
what you learned in the past - that represents a
mere drop in the ocean to what is to come. The only
important thing is to make sure you access the

Xii

information in a logical order so that it makes sense,
rather than try to learn facts inisolation. That way the
examiners will be testing your knowledge rather than
your memory, and your future patients will benefit
from treatment by a rounded clinician rather than a
therapist hoping their areas of ignorance won't be
exposed.



Chapter One

The tools of the trade
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CHECK YOUR EXISTING KNOWLEDGE

Section 1

1 If 4x + 4y — 12z = 32, derive an expression for x.
2 Expand (x — y)2x + y)

In the diagram below:

3 What is x?
4 What is 6?
5 What is y?




Section 2

Write in full:
6 1.67 x 10"
7 1.76 x 10°°
8 716 km
9 671 GJ
10 Whatis 3 mm + 4 um?
11 What is 10° x10" x 10% x10%?
12 What is 97
13 What is 97'?
14 What is the Sl unit of temperature?
15 What is the Sl unit of electrical resistance?
16 What is a scalar?

Essential Physics for Manual Medicine

17 An object is acted upon by two forces. One, from the south, acts with a force of 4 newtons; the other,

of equal magnitude, acts from the west.
a In which direction does the object move?

b What is the magnitude of the resultant force?

18 The YZ orthogonal plane is the equivalent to which anatomical plane?
19 If a person’s body undergoes —8, rotation, what action are they performing?

Weights and measures

In order to measure something, you need two ele-
ments: a quantity and a unit. If you enquire as to
the distance to the nearest town and got the reply,
‘miles’ (as can often be the case in certain rural
parts), it is of limited use. Of course, you can infer
that the distance is one that you would be inclined
to measure using miles rather than, say, inches or
parsecs and that it is, by the use of the plural, more
than a single mile; however, knowing whether it was
2 miles or 200 miles would be useful. Units require
numbers to quantify them.

In a similar fashion, ananswer of ‘17’ is even more
unhelpful. Seventeen what? Miles? Kilometres?
Leagues? Furlongs? So numbers, when used for
measuring things, need units to quantify them.

PARSEC

An astronomical measure equivalent to the
distance travelled by light in 3.26 years

(30 700 OO0 000 000 km), a distance that would take
you three-quarters of the way to alpha centauri
proxima, the nearest star (other than the sun) to earth.

LEAGUE

An archaic measure of distance equal to about
three miles, now only remembered from the fairy
tale of the Seven league boots and Tennyson's
‘Half a league, half a league, half a league onward’
from The charge of the light brigade.

FURLONG

Originally the length of a furrow in mediaeval strip
farming; now an eighth of a mile and only
commonly used in horse racing.

Numbers

The problem with numbers is that there are an
awful lot of them. In fact, there are an infinite num-
ber of them — they continue, quite literally, forever:
take the largest number you can imagine ... and
then add one! With smaller numbers, it is often
easier to write the numeral than the number itself:
‘8" is quicker to write (and spell) than ‘eight’;
‘1327’ requires seven pen-strokes, ‘one-thousand,
three-hundred-and-twenty-seven’ needs 78.
Numbers are also much more useful for mathe-
matics than words. Organizing them into representa-
tions of units, tens, hundreds, thousands and having a



‘zero’ allows us to manipulate them arithmetically -
see how easy you find the following sums:

a Twenty-six plus forty-eight plus nineteen
equals?

b XXVI + XLVIII + XIX =

c 26
+48
+19

(The answers are: a) ninety-three; b) XCIII and
c) 93.)

The decimal (base ten) numeral system that we use
is certainly more convenient on an everyday basis,
and having a ‘zero’ enables us to perform mental
calculations that were unavailable to the Romans —
which is why the Greeks and the Arabs, from whom
we obtained our digits (including the zero), were far
more advanced in mathematics than the speakers of
Latin, including the mediaeval scholars of Western
Europe.

However, left to themselves, numbers become
cumbersome for physicists, who must be able to
measure everything from the size of a sub-atomic
particle to the number of such particles in the uni-
verse. There are three ways of doing this: you can
put up with writing down very long numbers, you
can adapt the units you are using or you can find a
short-hand way of recording very large (and very
small) numbers.

The first of these options is impractical. Whereas
the diameter of an atomic nucleus is approximately
0.000 000 000 000 Ol metres — a number that is
tedious to write on a regular basis — the number of
particles in the universe is estimated as being some-
where in the region of 1 followed by eighty zeros, a
number so big that it would fill several lines, take
several minutes to write and even longer to read,
painstakingly counting out the zeros in groups of
three without losing track of one’s place.

It wasn't long before people began adapting units
to suit their needs, as has always been the case (an
inch is the width of a thumb, a foot the length of
a foot, a pace is a yard, and a fathom the arm span
of a man). So, carpenters, in this metric age, use
millimetres; engineers, microns (a thousandth of
a millimetre); molecular scientists, Angstrems
(a ten-millionth of a millimetre). Although this is
convenient if all your measurements are conducted
in the same way and for discussions or recording
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The tools of the trade

of data, it does not allow for easy manipulation of
data. It is important to know and remember that
you can only add, subtract, multiply and divide
quantities if they are in the same units. You can't
add millimetres directly to Angstroms any more
than you can directly add a distance measured in
miles to one measured in kilometres.

Scientific notation

There is, however, a way of recording all numbers in
a convenient way using scientific notation, a univer-
sally agreed system for expressing any number in
terms of its power of ten. You will already be famil-
iar with certain powers of ten:

10? = ten squared =100
10% =ten cubed= 1000

The digit to the top right is the number of times the
main figure is multiplied together:

2*=2x2x2x2=16

The number ten is useful in that multiplying by ten
simply involves adding a nought to the end of the
number you are multiplying (e.g. 10 x 10000 =
100 000); therefore, the power to which ten is
raised is also equal to the number of noughts:

10° =1000000
10"° =10 000 000000

Suddenly, the number of particles in the universe
becomes a much more manageable 105 (estimates
actually range from 1072 to 10%7)!

This convention also skirts around another prob-
lematical area, that of nomenclature. Although peo-
ple are generally agreed as to the meanings of
‘hundred’, ‘thousand’ and ‘million’, thereafter
American English diverges from its mother tongue
and works in increments of a thousand rather than
a million so, on one side of the Atlantic, a billion is
a thousand million (109) and, on the other, it has
traditionally been a million million (10'?), except
in some European countries, such as France, who
have adopted the American convention. As the
numbers get larger, so does the confusion: a British
trillion (10'®) is an American quintillion whilst an
American trillion is a British billion. Because



international finance uses the American conven-
tion, the trend is increasingly to follow this, even
in the UK, but the use of scientific convention
removes all ambiguity ... as well as doing away with
the need to remember how many noughts there are
in a septillion! (For the record, in the US, 24; in the
UK, 42))

For numbers that aren’t exact multiples of ten,
scientific notation uses multiplication so:

2 x 10° =2 000 000
and

2.64 x 10° =2640 000

For numbers between 0 and 1000, it is usual to
write them in full but, just so you know, any num-
ber raised to the power of one is itself (x' is x;
10" is 10) and any number raised to the power of
zero is 1 (x" is 1; 10° is also 1). It is also worth
pointing out at this stage that multiplying powers
is quite simple — you just add them together:

10® x 102=10%*2=10°
or
1000 000 x 100 =100 000 000

It is also, at this stage, worth quickly dealing with
fractional powers: if a number is raised to the
power of a I2, it is the number’s square root; raised
to 13, it is the number’s cube root and so on:

1
100 /2=100=10
1
1000 /3 =31000 =10

Having dealt with the very big, it is a relatively easy
matter to deal with the very small. If a number is
raised to a negative power, it is the inverse of the
positive power:

x Y= l
xY

or

1 1

10° = 1000000 =0.000 001
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SO

1 1
264 x 105 ~ 2640000

=0.000 002 64

Now we have a way of representing any number,
large or small, in a concise, consistent and com-
prehensible manner. This can take us from the
unimaginably small to the incomprehensibly large
(Fig. 1.1); however, bear in mind that the scale in
this figure is not linear but logarithmic; that is, it
rises in powers of ten: 10° is not twice as big as
103, it is one thousand times bigger. If we used a
normal, linear scale, it wouldn't just be a case being
hard to fit Figure 1.1 on the page - it would be hard
to fit into the known universe!

Units

Since the dawn of time, humans have been measuring
things. Thousands of years ago, the ancient Egyptians
and Chinese had discovered sophisticated ways of
measuring distances (for building purposes — walls,
pyramids and the like) and time (the cyclical passage
of astronomical bodies; clocks would come later).
Thousands — possibly tens of thousands — of years
before that, early man had almost certainly found
ways of describing to their friends how far it was
to the mammoth hunting grounds, and to their
womenfolk the enormous size of the mammoth they
had so nearly managed to kill.

The problem with ancient measuring systems
was that they were either comparative (my club is
bigger than your club) or local to one tribe or one
area. On a day-to-day basis, this was not a problem
but, as civilization became more international, the
need for uniformity became more pronounced.
One only has to look at the story of the cubit to
get an idea of size of the problem.

Originally, a cubit was the distance from one’s
fingertips to one’s elbow. Quite obviously, this var-
ies from one individual to the next but will suffice
if the measurement is a personal one (I want to
cut a piece of wood as long as the measurement |
just made) or if there’s only one carpenter in town
and he’s willing to make house calls in order to
measure up for jobs.

As soon as commerce was invented, this defini-
tion lost its usefulness — as anyone familiar with
the story of The King's New Bed will know (a king
kept having problems ordering a bed that he had



1024

1021

1018

1015

]012

10°

106

10°

100

10-3

10-6

109

10-12

10-15

10-18

Distance (in metres) to the edge of the visible universe

Mass of the Earth (kg)

Diameter (in metres) of the Milky Way galaxy

Mass of free water on the Earth (kg)

Number of metres in a light year
Age of the Universe (in seconds)

Distance (in metres) to the sun

Average human lifespan (in seconds)

Speed (in metres per second) of light in a vacuum
Temperature (in Kelvin) of Sun’s core

Frequency (in Hertz) of bat's squeak

Speed (in metres per second) of sound at sea level
Height (in metres) of Mount Everest

Gravitational force (in Newtons) on Earth's surface
Number of atoms in a square metre of outer space
Wavelength of microwaves (metres)

Wavelength of infra-red radiation (metres)
Wavelength of visible light (metres)

Lowest artificially obtained temperature (Kelvin)

Separation of atoms in a solid (metres)
Wavelength of x-rays (metres)

Binding energy of helium nucleus (Joules)

Diameter (in metres) of atomic nuclei

Energy of an ultra-violet photon (Joules)

Charge (in coulombs) on an electron

Figure 1.1 e From the very small to the very large.

CHAPTER 1

The tools of the trade

measured as 6 feet long by 4 feet wide until he found
a carpenter with feet the same size as his own; there-
after, he made models of his foot for his citizens to
use for measurements throughout his realm and
so everyone lived happily ever after ... except for
a couple of carpenters who had had their heads
removed for failing to make a bed that came up to
royal requirements).

A number of non-fictional rulers tried to stan-
dardize the cubit; the trouble was — much like the
eponymous king — they presumably used their own
personal cubit as the standard. This means that the
biblical cubit (as used to lay down Noah's Ark,
God presumably having Noah’s arm measurements
down pat when issuing his omnipotent blueprints)
at 56 cm was different from that of the Egyptians
(53 cm), which, in turn, was different from that of
the Romans (44 cm), which was slightly shorter
than that of the British (46 cm).

Where trade failed to agree communal weights
and measures, empires enforced them. The Romans
at one time ruled almost half the population of the
known world and, even if they failed in the long-term
standardization of the cubit, from them, we get the
mille or mile, a thousand (double) paces ... even if
the statute mile is approximately 140 yards longer
than the Roman one ... and, for various technical
reasons, 265 yards less than a nautical mile.

' Fa
THE MILE

The Roman foot measured 11.68 modern inches,
divided, as is its modern day successor, into 12 parts
(uniciae). Five feet made for one passus (from pace,
meaning ‘double step’) and the mille passus

(Roman mile) was 1000 paces or 5000 feet long - for
the record, the cubit was one and a half feet long.

The statute mile of 5280 feet is so-called as it was
formalized in a Parliamentary statute in 1592 by
Elizabeth |, having been in usage since the 13"
century. Different countries (including the US) had
slight variations on this distance (the US Survey mile is
longer by '/ inch) and it was not until 1959 that a
standard length was agreed.

The nautical mile of 2025 yards bears only a
coincidental relationship to the statute mile, being a
measure of 1 (one minute = one-sixtieth of a degree)
of latitude.

v,
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The Imperial system

The British Empire, being predominantly a vehicle
for trade, had a little more success at imposing its
weights and measures upon the world ... indeed,
that is why the system of feet and inches; ounces
and pounds; pints and gallons is called the Imperial
system (of, or pertaining to, an empire). Even then,
different towns often had differing ideas as to what
constituted a pound and what qualified as short
measure and, even today, there is a difference
between the amount - and spelling — of units: a
US gallon is 3.79 liters and a UK gallon, 4.55 litres.

If you think this haphazard, bear in mind that,
until the need for conformity was driven by railway
timetabling in the mid-19'" century, different towns
not only could have different weights and measures
but even their clocks were set differently, not just
by seconds but by minutes!

The MKS system

Whilst science was still limited to the leisurely
pursuit of gentleman amateurs, such variations mat-
tered little as long as there was internal consistency;
however, as the pace of scientific and technical
advance started to snowball in the early 19th cen-
tury, scientists began to seek a means of developing
international conformity. The first international sys-
tem devised was called the metre-kilogram-second
(MKS) system whereby scientists agreed to use
metres for measuring all distances, kilograms for
mass and seconds for time. There was, of course, a
schism almost straight away with some scientists
championing centimetres, grammes and seconds
(CGS system), which, as you will see later, explains
some of the derived units with which we have been
historically endowed.

Importantly though, there was also, for the first
time, international agreement as to what the exact
definition of these quantities should be.

A metre had already been defined by the French
Academy of Science in the post-revolution fervour
for change as '/10 000 oo of the quadrant of the
Earth’s circumference running from the North Pole
through Paris to the equator. The kilogram was
defined as the mass of 1000 cubic centimetres of
water, the second as '/gg 400 of the average period
of rotation of the Earth on its axis relative to the
Sun. Unfortunately, as measurements became ever
more precise, the definitions were no longer accu-
rate enough: the Earth’s crust is a dynamic, moving
structure subject to alteration at short notice; its
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rotation is also (very) gradually slowing. The density
of water changes according to temperature and
pressure (not to mention to regional fluctuations in
the Earth’s gravitational field).

The problem was temporarily solved by relating
the definitions of mass and length to the parameters
of two lumps of platinum and iridium (and thus
highly inert and resistant to oxidation) that were
kept locked in a Parisian vault ... which was fine
if you were a Parisian scientist but was a bit tough
on anyone else who wanted to calibrate their
instruments.

Today, wherever possible, we use highly precise
definitions based on constant phenomena that are
observable by any scientist working anywhere in
the world or, indeed, off it. A metre is now defined
as the distance travelled by light in a vacuum in
1299 792 458 of a second; a second is 9 192 631 770
cycles of radiation associated with the transition
between the two hyperfine levels of the ground
state of the caesium-133 atom (a statement that
will be understandable by the end of Ch. 8). A kilo-
gram, however, remains as the mass of a cylinder of
French platinum-iridium until somebody can think
of anything better.

The Sl system

By this time, three new units had been added, all
named after eminent scientists: a unit of force
(the newton, N), defined as that force which gives
to a mass of one kilogram an acceleration of one metre
per second per second; a unit of energy (the joule, J),
defined as the work done when the point of
application of a newton is displaced one metre in
the direction of the force; and a unit of power (the
watt, W), which is the power that, in one second, gives
rise to energy of one joule.

These additional units, which built upon the MKS
system, were called the Systeme International
D’unités, known as the SI system. Since its formal
adoption in 1960, many more units have been added.
There are now seven basic units (Table 1.1): in
addition to the metre, the kilogram and the second,
we now have the ampere, A, for electric current; for
luminous intensity, the candela, cd; for temperature,
kelvin, K; and for quantity of substance, the mole, mol.

The three original derived units have also been
built upon considerably; however, all these other
ST units can — as Tables 1.2, 1.3 and 1.4 show — be
defined in terms of these seven basic units, either
directly or indirectly. Many of these units have their
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Unit Symbol Definition

Metre m The distance travelled by light in a

vacuum in '/ag9 792 455 SECONd

Kilogram kg Defined by the international
prototype kilogram of platinum-
iridium in the keeping of the
International Bureau of Weights and

Measures in Sevres, France

The duration of 9 192 631 770
periods of radiation associated with
a specified transition of the cesium-
133 atom

Second S

Ampere A The current that, if maintained in two
wires placed one metre apart in a
vacuum, would produce a force of
2 x 1077 newton per metre of

length

Kelvin K 1127316 Of the triple point of pure
water (corresponding to —273.15°
on the Celsius scale and to
—459.67° on the Fahrenheit scale). It
is calculated by extrapolating the
point at which an ideal gas and
constant pressure would reach zero

volume

Mole mol The amount of a given substance
that contains as many elementary
entities as there are atoms in 0.012

kilogram of carbon-12

Candela  cd The intensity in a given direction of a
source emitting radiation of frequency
540 x 10'2 hertz and that has a
radiant intensity in that direction of

!/sa3 watt per steradian

own special names (such as the newton and
joule). At this stage, there may appear to be an
alarming number of these units with peculiar
names that define quantities of which you may
never have heard - and the lists given are by no
means complete, these are merely the units that
a health professional is likely to encounter! How-
ever, by the time you have finished the book, all
these terms should be like regular acquaintances.
Do not try to memorize them all at this stage,
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rather familiarize yourself with the names and
use the table as a reference so that, when you
encounter a new term or an unfamiliar symbol,
you can refer back and learn the detail in its cor-
rect context.

There is one other trick to know about when it
comes to units, which can — and often does — serve
as an alternative to scientific nomenclature. In
everyday conversation, it becomes a bit tedious to
say ‘it’s six times ten to the three metres to the
nearest town' so, instead, we say ‘it's six kilo-
metres’, ‘kilo’ being a prefix meaning ‘one thou-
sand’. Scientists do the same in their everyday
conversation too: there are a stack of these prefixes,
some of which — kilo (10%), centi (1072), milli
(1073) - you will be familiar with as you will with
their common abbreviations: k, ¢ and m respec-
tively. Table 1.5 shows the abbreviations and sym-
bols from 1072* to 10%*, which, whilst not
exhaustive, is enough for most eventualities that
you are likely to encounter. So you are now able to
express large and small quantities in two ways, by
saying, for example:

6.5 x 107 watts or 65 megawatts
8.9 x 107 '° joules or 890 attojoules

Vectors and scalars

Even when you have put together a quantity with
its unit, there is one other consideration that may
need to be made, that of direction. With units such
as mass, there is no directional element: 5 kg is
5 kg whether it is heading north or south, upside
down or back to front. Such units are known as
scalars. Quantities such as temperature and time
are also scalar.

By contrast, it is easy to appreciate that, for other
measures, direction is all-important. Movement of
600 m in a westerly direction is not at all the same
thing as movement of 600 m in an easterly direc-
tion; the same applies to velocity, force and mag-
netic field strength. So for these quantities, known
as vectors, direction must also be specified and,
unless the vectors are all acting in the same direc-
tion, we need to be able to resolve the vectors if
we wish to multiply or add them. For this, we need
some basic mathematical tools: algebra and trigo-
nometry, which we will also utilize elsewhere in
the book. For those who sailed through this section
in the test at the start of the chapter, move on to
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Quantity

Unit

Symbol
Acceleration () Metres per second per second m/s? = ms™?2
Area (4) Square metre m?
Current density (j) Ampere per metre Am? = Am 2
Density (p) Kilogram per cubic metre kg/m® = kgm 3
Luminance (L) Candela per square metre cd/m? = cdm 2
Ampere per metre A/m = Am !

Magnetic field strength (H)

Substance concentration (c)

Mole per cubic metre

mol/m® = mol.m—3

Volume (V) Cubic metre m
Velocity (v) Metres per second m/s = ms~'
Wave number (o) Reciprocal metre m™'

Table 1.3 Some d

ts with special names and sym

Quantity Unit Symbol Derivation

Angle, plane Radian rad 2nrad = 360°

Angle, solid (€2) Steradian Sr The angle that, having its vertex in the centre of
a sphere, cuts off an area of the surface of the
sphere equal to the square of the radius

Capacitance (C) Farad F m2 . kg™'.s* . A% (= “h)

Electric charge (@) Coulomb G s.A

Electric conductance (o) Siemens S milikanilitslASIELAAY

Electric potential difference (V) Volt v m?.kg.s3. AT (=Y

Electrical resistance (R) Ohm Q m2 kg.s 2. A2 (="

Energy/work (W) Joule J m2.kg.s2(=N.m)

Force (F) Newton N m.kg.s2

Frequency (fv) Hertz Hz Sl

Inductance (L) Henry H m?.kg.s2. A2 (= ")

Luminous flux (d,) Lumen Im cd . sr!

Magnetic flux () Weber Wb M2 KoL ST AT (= Vi)

Magnetic flux density () Tesla i kgllismaiiam =i sy

Pressure (p) Pascal Pa m~' . kg.s7? (= N2

Radiation, absorbed dose (=) Gray Gy At fds Eter A1

Radiation dose equivaience (0,) Sievert Sv M

Radionuclide activity (4) Becquerel Bq sl




Table 1.4 Some Sl units with derived unit names
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Quantity Unit
-1
Absorbed dose rate  Gray per second Gy.s 102 Yotta y
Angular Radian per second per  rad.s 2 102 Zetta 7
acceleration () second
108 Exa E
Angular velocity Radian per second rad.s~'
() J02 Peta B
Electric charge Coulomb per cubic cm3 1048 Tera T
densit! metre
il 10° Giga G
Electric field Volt per metre V! G
strength (£) 10 i i
3 .
Exposure, X- & Coulomb per kilogram  C.kg™' i il k
y-ray 10? Hecto h
Moment of force Newton metre N.m 10’ Deka da
(Fm) 1 T
10 Deci d
Thermal Watts per metre per wm~ k™! ) .
conductivity (4) kelvin 10 Centi c
g ik
Viscosity (rr) Pascal second Pas 10 Milli m
10~ Micro i
107 Nano n
‘Coordinates and planes’; for those who did not,
there now follows a short crash course in the basic 10ma Pico p
mathematics you will need to become an adequate 10-15 Femto f
physicist.
0FAS Atto a
Algebra 107 Zepto z
02 Yocto y

It is surprising that many people, who have no pro-
blems with arithmetic, often stumble when it
comes to algebra — yet all that has happened is that
numbers, which represent specific instances or
events, have been replaced with letters to signify
general rules. There is a linguistic equivalent: if
you say, “I need to drink two litres of water a day”,
this relates only to you . .. it may be a matter of per-
sonal preference, desire, pathology or neurosis. The
statement is true and valid but it is not a generality,
it applies only and specifically to the person making
the statement; however, if you were instead to say,
“One needs to drink two litres of water a day”, the
statement can then apply to any individual and
implies that it is necessary for people as a whole to
drink that much in order to maintain their health.
Thus, if we say that if bananas cost $2/kg; the
cost of 10 kg is $20, we are covering only one single

instance — the statement is no longer true if the
price of bananas changes. By contrast, if we say that
bananas cost $a/kg, therefore the cost of 10 kg is
$10a, we have made a statement that is true for
all eventualities — you can replace the term a with
whatever the current price happens to be and you
have means to calculate the cost of 10 kg bananas.
It is possible to go even further: what happens if
you want a different quantity of bananas? Ten kilo-
grams of bananas is, after all, rather a large quantity
for any primate who has actually stopped swinging
from branches. Therefore, we can say that, if the
cost of bananas is $a/kg, then the cost of b kg
is $ab. We can then substitute the appropriate

9



numerical values for a and b and we have a means to
calculate our banana expenditure.

There are similar generalized rules for addi-
tion, subtraction and division. Until you become
comfortably familiar with algebra, it often helps
with understanding the statements if you substitute
real numbers (of your choice) for the algebraic
letters:

e If a boy is b years old and his younger sister is

g years old, the boy is (b - g) years older than his

sister.

(If aboyis 9 years old and his younger sister is 6 years

old, the boy is (9 — 6 = 3) years older than his sister.)
e If 5 lorries carry a load of [ kg each and 8 vans

carry a load of v kg each, then the total load
carried is (5! + 8v) kg.

(If 5 lorries carry a load of 1000 kg each and 8 vans

carry a load of 350 kg each, then the total load carried

is (5 x 1000 + (8 x 350) = 7800 kg).
* If a syndicate of s people win a prize of $p, then
they each get:

8P
s

(If a syndicate of 10 people wins a prize of $100 000,
then they each get:

100 000

$-— 5 =$10000)

There are also rules for simplifying algebraic
expressions:

For addition and subtraction (once again, you
can check the rules by inserting real numbers of
your own, you will find the rules work whatever
your choice of number; an example is given in the
first instance; thereafter, you can provide your
own):

2a+a=3a {ifa=6,then(2x6)+6=3 x6=18}
10b-b=9b

5c~-5c=0

6d+e-d-3e=5d-2e

For multiplication:

3xfxg=3fg
h x h=h?

ixixi=i®

10
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For indices:

P2 xpB=jrizjs
k6 = k3 =K6-3 =3
(2=rxr=p8
m? + m? =2m?
3n% x 2n*=6n"
9p®

9p3+3p= $=3p2

V(16q2)=4q

And, finally, you will need to know and understand
how to use and manipulate brackets. Brackets are used
to remove ambiguity from mathematical expressions.
Take the arithmetical statement 4 x 3 +2 =7

There is no way to tell whether this means ‘four-
times-three, then add two’ {(4 x 3) + 2 = 14} or
‘four times three-plus-two’ {4 x (3 + 2) = 20},
unless you add brackets. The following rules apply
to removing brackets:

3(r+7s)=3r+21s

t(4t - 3u) = 4t2 + 3ut

2v(3v + 6w -2) =6v2 + 12vw - 4v

3(x +4y) +4(3x-2y) =3x + 12y + 12x -8y
=15x + 4y

(2z + ) X (32-20) =622 -4z + 3z - 202

=622-za - 202

(NB Multiply the first term in the left hand bracket,
2z, by the first and then the second term in the
right hand bracket and then do the same for the
second term in the left hand bracket.)

By this rule, we should note that:

(2x-y)? + 4x2 -y?
But rather:

(2x-y)* =(2x-y) x (2x-y)
=4x2 = 2xy - 2xy + y? = 4x2 - 4xy + y?

(NB: If you were wondering why the y? term is posi-
tive, it is because two negatives multiplied together
make a positive — just as they do linguistically: “‘I'm
not saying ‘No'” means that you are in fact saying ‘Yes'.)

You will most often encounter algebra in formulae,
when it is a relatively simple matter of substituting



numerical values that relate to the instance with
which you are dealing for the algebraic letter. For
example, if we takethe world s most famous equation:

E =mc?

and we wish to know how much energy (E) can be
gained from S kg of mass (m) - knowing as we do
that the speed of light (¢) is 3 x 10® ms™' - then
the equation becomes:

E=5x(3x10%2=45x 10" kg.m.s ' =450 PJ

However, equations and formulae aren’t always writ-
ten in the manner that we want to use them. This
doesn’t matter; any equation contains other equations
just itching to get out ... all you have to do to release
them is play detective using a few simple rules.

It helps if you think of an equation as a set of
balance scales with the equals sign acting as the cen-
tral fulcrum. An equation states that both sides of
the balance are in equilibrium. There are all kinds of
things you can do to an equation — add to it, subtract
from it, divide it, multiply it, square it, etc. — so long
as you do the same thing to BOTH sides of the equa-
tion, just as you would to keep the scales balanced.

To return to Einstein’s classic; it may be that
we actually want to calculate the mass we would
requiretocreate | megajoule of energy. The formula
as it is written doesn’t tell us this, so we need to use
our detective skills to isolate m in order that the
equation is written in terms of m = something. If
we were to divide BOTH sides of the equation by
¢? then we would not be affecting its balance:

E mc?
2 ¢?
However,
c?+c?=1,
and
1xm=m:
Therefore:
E
T2

Therefore m = 10°/(3 x 10%)% = 1.11 x 107 'g

A similar trick can be performed using addition or
subtraction. If we take one of the equations of
motion that you will be meeting in the next chapter:
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v2=u?+2as

where v is the object’s velocity, u is its initial velocity,
a its acceleration and s the distance travelled. You
may like to quickly test your skills at substitution by
seeing how fast a car is travelling if it accelerated from
10 ms™" at a rate of 20 ms ™2 over a distance of 20 m.

{The answer is 30 ms™! (don'’t forget, you will
need to take the square root of the product; the
formula is for »? not v) and, in case you were won-
dering, ms~' means m/s or ‘metres per second’.}

However, say that you knew the initial and final
velocities and the distance travelled, and wanted
to work out your acceleration. You would need to
manipulate the equation so that it is expressed in
terms of a =.

This can be done by subtracting u? from both
sides of the equation, which (as u* — u? = 0) elimi-
nates it from the right hand side completely so that:

v?-u?=2as

We can then use the same division technique as
before (this time, dividing by 2s), to arrive at:

v2-y?
2s

E ] CLINICAL FOC

You will get plenty of chance to practise equation
transformation during the course of this book -
where appropriate, the derivation of equations is
given: not because you have to learn them but, by
understanding how the formulae came to be and
what their relationship is to other formulae, it makes
them much easier to remember and to understand.
So, it is important that, when you come to such a
derivation, you don’t just skip through it; rather, you
should work carefully line by line and then close the
book and make sure you can recreate the steps you
have just studied independently.

Although you may seldom need to use the formulae
you will encounter, you will need to have a deep
familiarity with the concepts and relationships that
they represent. Whether you are interpreting an
x-ray or testing the strength of a leg muscle, you
need to understand the physical implications of the
relationships involved and the effects of changing
the variables therein.
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Trigonometry

The only branch of trigonometry with which we will
need to deal in any detail is that relating to a very
special sort of triangle, those in which one of the
internal angles is a right-angle (90°) as shown in
Figure 1.2. As the sum of all triangles’ internal
angles is 180°, this means that the sum of the other
two angles must also be 90°.

In a right-angled triangle, all three sideshave differ-
ent names. The only thing about this that can
be slightly confusing is that the name of two of the
sides can vary as they are named in relation to the angle
that one happens to be discussing; however, one side —
the longest one - is always called the hypotenuse
(Fig. 1.3). The other two sides are known as the oppo-
site (the side opposite the angle under consideration)
and the adjacent (the side next to the angle).

Before we start studying angles, there is one law
relating to the length of the sides that is useful to
know: Pythagoras’ theorem.

This states that the square of the hypotenuse is
equal to the sum of the squares of the other two
sides. This is represented in Figure 1.4 and can be
expressed algebraically as:

c?=a?+b%orc="(a+b?

You can check this yourself by drawing two lines
at right angles to each other, one 3 cm long, the
other 4 cm long. If you join together their free
ends to make a right-angled triangle and measure
the hypotenuse, you will find that it is 5 c¢m long,
which is predicted by Pythagoras’ theorem:

c=V(@a%?+b?%=V(3%+4%)=(9+16)=V25=5¢cm

b
Figure 1.2 e A right-angled triangle with sides of lengths

a, b and c. The internal angles are 6, v and 90° and
total 180°.
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(B) opposite

Figure 1.3 ¢ The nomenclature of a right-angled triangle.
Two of the sides — the opposite and adjacent — are named in
relation to the angle that is being studied. The names are
therefore interchangeable depending on whether we are
referring to the angle 0 (A) or v (B).

Obviously, this theorem can be rearranged in order
to be expressed in terms of a = ... or b = ...
(you could try doing this as an exercise), so we
now have a method of calculating the length of the
third side of a right-angled triangle if we know the
other two.

We have also previously seen how to calculate
the third angle if we know the other two. We shall
now concentrate on finding the value of an angle if
two sides are known, or the value of a side if one
side and one angle are known.

There are three main relationships of which you
need to be aware. Take the right-angled triangle in
Figure 1.2.

The sine of angle 0 is equal to the ratio of the
opposite side and the hypotenuse:

sinf=a/c

The cosine of the angle 0 is equal to the ratio of the
adjacent side and the hypotenuse:

cosf=b/c
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D

EIIE _‘ 42°
b

Figure 1.5 ¢ Example 1.

] , . Example 2
Figure 1.4 ¢ A graphical representation of Pythagoras’
theorem: a square with sides equal to the length of the To find an angle given two sides (Fig. 1.6)
hypotenuse (c) has the same area as squares with sides equal To find 0:

to the length of the other two sides of the triangle (@ and b).

sin 0 = opposite/hypotenuse
Finally, the tangent of the angle 0 is equal to the ~ sin9=2/9=0222
ratio of the opposite side to the adjacent side.

tanf@=a/b

To solve problems using these formulae, you will
need either a calculator that has trig functions (make
sure that it is set to work in degrees [deg] rather than
radians [rad] or gradients [grad]), a book of trigono-
metric tables or a slide rule. They are best demon- 0
strated by illustrative examples followed by practice.

Example 1
To find a side, given the length of one side and one &
angle (Fig.1.5) 2
In this case, we know the length of the hypote-
nuse and the angle adjacent to the side whose
length we are trying to find, b.
cosf =b/c
= cos42’=b/10
= b=10xcos 42°=10x 0.743=7.43cm
Note: we could also have used the law of angles
to calculate the third angle and then use the formula
for sin 0 to calculate b. P ——

Now that we have two lengths, you can use Pytha-
goras’ theorem to calculate the third {6.69 cm}. Figure 1.6 e Example 2.

13



We can then use the function called arcsine to cal-
culate the value of 0 (on calculators, this can appear
as [inv] [sin], [arc sin] or [sin™'])

= O =arcsin0.222=12.8"

Note: There are similarly named inverse functions
for cosine (arccosine) and tangent (arctangent).

Conclusion

If most of this material was previously unfamiliar to
you, your brain may now be reeling; however, like

Essential Physics for Manual Medicine

any new or half-remembered skill, all it takes to
become proficient is a little practice so, before pro-
ceeding, attempt the quiz below. If you get full
marks (the answers are at the end of the chapter),
give yourself a pat on the back and move on; if
you don’t, work out what you have done wrong
and restudy the material above until you feel
completely confident.

Once you have mastered this section, then you are
ready to proceed and should be equipped to deal with
(almost) all of the mathematics that you will encoun-
ter in this book; however, it is also a section to be
revisited if you find yourself at any stage floundering.

[-] SELF-ASSESSMENT QUIZ|

1 IfAlfhasa bananas and Basil has b bananas, how many more bananas than Basil does Alf have?
2 If r people in a restaurant split the cheque of $c equally, how much does each person pay?
3 If p physiotherapists each treat g patients and c chiropractors each treat d patients, how many patients

get treated?
4 13 +4y —6z2+ 7y +y —4x + 2z =

a Simplify this equation.

b Express the result in terms of x =
5 3h x6i x hx2i=

a Simplify this equation.

b Express the result in terms of i =
6 Expand (4x — 7y)
7 2s(3t — 2u)(3t + 2s)

a Expand this equation

b Express the result in terms of u =
8 In the diagram below:

a What is x?

b What is 61?

45cm

A

9 In the diagram below:
a What is 0?
b What is x?
¢ What is y?

14
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< X >
10 In the diagram below:

What is x?
What is y?
What is y?

50°

5¢cm /
al T
< X =>

Vectors and scalars
(continued)

Resolving vectors

Whereas scalar quantities can be multiplied, divided,
added and subtracted with impunity to give a scalar
answer, when vectors are involved, a different ap-
proach is required. Although vectors need not act at
90° to each other, many of those that we encounter
are (for reasons that need not concern you yet) going
tobedoing so.

In typeset print, such as you have in this book,
vectors are denoted by bold typeface, so a vector
might be written a or, if the vector describes trans-
lation from point A to point B, then it would be
written AB. In handwriting, there are a number of
ways to indicate a vector; however, as you only need
to know one, probably the simplest to use is the
underscore. Thus, a is recorded as a and AB as AB
(One can also use an overscore, with or without an
arrow or hook at the end.)

So, if an object travels from point C to point D,
in a straight line (Fig.1.7), it is moving from coordi-
nates (1, 2) to (5, 5). We can call this vector CD
and it can be represented as:

=

YA
6

(5.9)

(1.2)

»
>

0 1 2 3 4 5 6 X

Figure 1.7 e Translation from C to D using vector CD.
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Figure 1.8 e Solving vector CD using Pythagoras’ theorem.

That is, movement of +4 units in the x direction
and +3 units in the y direction. We can use Pytha-
goras’ theorem to calculate that the vector must
have magnitude 5 units (Fig.1.8).

Addition of vectors

If
4 3
a= [0_ and b= [4}
Thena + b =

4] [3]_[7

o)+ [3]-14)
which is represented graphically in Figure 1.9.

From this, we can see that the same rules apply
to vector addition (and subtraction) as to normal
numbers. In order to resolve the vectors graphically,
we construct a triangle of vectors. First we draw a,
then, starting at the end-point of a, we draw b.
Finally, we draw a line from the start-point of a to
the end-point of b. The dimensions of this line,
known as the resultant and indicated with a double
arrow, give us the answer to the sum a + b.

Coordinates and planes

There is a whole new language that needs to be
learned when it comes to describing the human
body, both in its relationship to the outside world
as well as its relationship to other bits of itself.
Unfortunately for the student, there is not one but

16
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o
o

Figure 1.9 e Graphical addition of vectors. In order to add
the vectors a and b, draw them sequentially, then connect the
start and end point with a straight line (called the resultant).
The new vector a+b is indicated with a double arrow.

two systems for doing this: the anatomical and the
biomechanical and your chosen profession means
that you will need to learn both!

The anatomical system is really just a simple mat-
ter of memory; in practical terms, the inevitable regu-
lar usage in classroom and clinic means that rote
learning is not necessary. You can, however, speed
the process by deliberately using them as of ten as pos-
sible in your notes — much as you would practise a for-
eign language; indeed the 4000-6000 new words you
are going to acquire during your studies almost consti-
tute a new language — ‘Medispeak’ — in themselves (by
comparison, the average English speaker is said to use
between 800 and 1500 words in a typical day).

In contrast, the biomechanical system requires
very little memorization, though it is more concep-
tually challenging.

The anatomical system

The first thing to understand in both systems is the
bodily position to which the terms refer. The anato-
mical position is the starting point for all anatomical
references: it doesn't matter if the body to which
you are referring is doing a handstand, lying face down
or curled up into a ball - the head is still superior (or
cephalad) to the feet, and the feet inferior (or caudal)
to the head; the navel anterior (or ventral) to the



spine, and the spine posterior (or dorsal) to the navel.
The same is true of medial, lateral, left, right and all
the other terms detailed in Table 1.6.

As you can see from Figure 1.10, in the anatomi-
cal position, the person is positioned standing
upright with the palms facing forwards (supinated).
Thereafter, the only real confusion comes from
overlap of terms. In older books, and still quite reg-
ularly in the USA, the terms ventral and dorsal are

Table 1.6 Glossary of anatomical descriptive terms

Term Meaning

Abduction Movement of a joint away from the
centre line

Adduction Movement of a joint towards the
centre line

Anterior At the front

Caudal Towards the feet

Cephalad Towards the head

Coronal The plane running through the body from

plane left to right

Cranial 0Of, pertaining to, or in the direction of the
head

Deep Further from the outer surface

Distal Further from the origin

Dorsal 0Of, or towards the back

Dorsiflexion Movement of the ankle and foot upwards

Eversion Movement of the foot so that the sole
faces outward

Horizontal See transverse plane

plane

Inferior Lower

Inversion Movement of the foot so that the sole faces
inward

Left Of or to the left

Lateral Away from the centre

Lateral Rotational movement of a joint away from the

rotation centre (€.g. in the case of the shoulder,
so that the palm faces outward)

Medial Towards the centre

CHAPTER 1
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Term Meaning
Medial Rotational movement of a joint towards the
rotation centre (e g. in the case of the shoulder,
so that the palm faces inward)
Median plane  See sagittal plane
Palmar 0Of, pertaining to or in the direction of,
the palm
Plantar Of, pertaining to, or in the direction of,
the plantar surface (sole) of the foot
Plantarflexion =~ Movement of the ankle and foot downwards
Posterior Towards the rear
Pronation Movement of the arm so that the palm faces
downwards
Proximal Nearer to the origin
Right Of or to the right
Rostral Towards the nose (or, originally, beak)
Sagittal A plane through the body from front to back
plane (technically, down the mid-line; planes not in
the mid-line are referred to as para-sagittal)
Superficial Nearer to the surface
Superior Higher
Supination Movement of the arm so that the palm faces
upwards
Transverse A plane running though the body parallel to
plane the ground
Ventral 0Of, or toward the front of the body

used. As these terms have dual meanings (dorsal,
for example, can mean ‘of the back’ — as in a fish's
dorsal fin — as well as ‘toward the back’); interna-
tionally, they have been replaced by the less ambig-
uous anterior and posterior respectively. The same
applies to cephalad (or cranial) and caudal, which
have been superseded by superior and inferior.

When it comes to planes, however, the attempts
to replace the traditional transverse, coronal and
sagittal planes with horizontal, frontal and median
have met with seeming indifference, at least
amongst clinicians. We shall, therefore, bow to pop-
ular demand and use the former terms.

Movement of joints is also not quite as straight-
forward as it might be. The terms flexion and

17
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/— Anterior or ventral

Posterior or dorsal
L Lateral
Medial

POSTERIOR ASPECT

=g

—— Inferior or caudal

— Superior or cranal

Distally

Proximally

=

— Supination LEFT LATERAL ASPECT

— Pronation
Distally

Lateral rotation
Medial rotation

Figure 1.10 e The terminology of descriptive anatomy: movements (A) and planes (B) of the body.

extension are seemingly unambiguous: flexion of a
joint involves approximating (bringing closer
together) the surfaces above and below (proximal
and distal to) the joint; extension, taking them
further apart. However, this isn’t always clear — for

18

example in the shoulder, where flexion is considered
as movement anteriorly. This can lead the unwary
into the trap that all flexion is anterior movement
and, by corollary, all extension posterior; however,
owing to a quirk of embryological development,
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Figure 1.10—cont’d

flexion of the knee (whilst following the rule of
approximation) takes place posteriorly. When it
comes to the ankle, in order to avoid even more con-
fusion the terms flexion and extension are aban-
doned: upward movement is termed dorsiflexion
(the superior surface of the foot is called the
dorsum) and downward movement is termed plantar-
flexion (the sole is the plantar surface).

The terms abduction and adduction would be
completely straightforward if it were not so easy
to confuse two words with only one letter different.
If we again consider the shoulder, abduction is the
movement away from the centreline we make when
we lift our arms up sideways; adduction is the
movement back down again.

The final pair of movements have also evolved dual
terms. Staying with the shoulder and starting with the
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anatomical position, turning the palm so that it rests
against the thigh is either internal or medial rotation.
Turning it the other way so that the palm faces out-
wards is external or lateral rotation. We shall adopt
the terms in bold, although as you will now see, there
is another way to describe all these movements and
planes which was designed to remove all possible con-
fusion, . .. at least, that was the intention!

The orthogonal system

By describing the body in terms of three orthogonal
axes, we can remove all synonyms and ambiguity from
the system. Although (in my experience) clinicians
much prefer the anatomical system, research papers
and biomechanics textbooks not infrequently use the
orthogonal system so, as is often the case, it is incum-
bent upon the manual physician to be bilingual.

Once again, the system begins with the anatomi-
cal position. The axes used in a three-dimensional
graph (x, y and z) are then superimposed upon the
body. The best way to visualise this (Fig.1.11) is
to imagine your own body being impaled by three
spears at right angles to each other. The intersection
of the three spears (the x axis, the y axis and the
z axis) is called the origin.

In theory, the system should be wonderful. By
referring to the scales on the three axes, it is possible
to describe the exact position of any point within or
relating to the body. The planes of the body can also
be defined: the X-plane is bordered by the y and z
axes; the Y-plane, by the x and z axes and the Z-plane
by the x and y axes. It is also possible to precisely
describe any movement of any part of the body, be
it rotation, translation or a combination of the two.

So why is it that this wonderful system, free
from the vagaries of linguistics, has not been univer-
sally embraced? Because, of course, there is no uni-
versal agreement as to which axis should run in
which direction or which direction from the origin
should be positive and which negative. Conventions
seem to vary, not only from country to country, but
even from author to author.

This doesn’t stop the system being widely used
in biomechanics textbooks and, so long as the book
is internally consistent, this doesn’t stop you from
understanding the author — providing they define
their orthogonal system at the outset. It does, how-
ever, stop you being able to automatically translate a
reference to the Z-plane as being the, say, coronal
plane or rotation about the x axis as being flexion

19
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Figure 1.11 e The orthogonal system.

or extension. This is the reason the terms have
never become lingua franca amongst clinicians.

Therefore, in order to explain the system, we
must define our axes. If you subsequently encoun-
ter different axial definitions, all the principles
you are about to learn remain the same: you will
just need to mentally transpose your x, y, and z.
So, if you care to imagine yourself as the unfortunate
being impaled, in the system we shall be using, the
spear running from left to right is the x-axis; positive
x is to your left, negative to your right. The spear
travelling from superior to inferior is the y-axis; posi-
tive y is upwards, negative y is downwards. Finally,
the z-axis is represented by the spear transfixing
you from front to back (anteroposteriorly); positive
z is sticking out forwards, negative z to the rear.

By adding a scale to the axes (say, in metres),
we can now map any point in the body in terms of

20
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its x, y and z coordinates (x, y, z): for example, if
the origin is at the body’s mid-point, level with the
second sacral tubercle, the left first ray (big toe)
would be at (0.02, — 0.9, 0.2), that is 2 cm to the left,
90 cm down, 20 cm forwards (this will obviously
vary, dependent on the size of the person and their
position). We canalso describe the planes of the body
using this system (Fig. 1.12). The transverse plane,
which is bounded by the x and z axes, now becomes
the Y-plane; the coronal plane, bounded by the x
andy axes becomes the Z-plane and the sagittal plane,
defined by the y and z axes, is now the X-plane.

Movement too can be described in terms of the
three directions. However, before we move on to
describe this, to a biophysicist there are two types
of motion: rotation, which is movement about a
fixed point, and translation, which is movement in
a plane. These are easier to understand if we switch
for a moment from a three-dimensional to a two-
dimensional system.

Z plane ——
|

Figure 1.12 ¢ Representation of planes in the orthogonal
system.



Translation

Imagine a ruler, lying on a piece of paper. As well as
a numbered scale, the ruler has three letters: A, B
and C (Fig. 1.13). If you slide the ruler across
the page without altering its alignment, then it
has undergone a translation. If the paper is
squared and has the x-axis running along the bot-
tom and the y-axis along the side, you can define
the translation in terms of the positive or negative
distances travelled by each point:

'x]
B4
So, in terms of Figure 1.14, the ruler has translated:
[+3
| -3

in the Z-plane.

Rotation

This transformation occurs when an object is moved
around a single point, known as the centre of rota-
tion. All points within the object move through
the same angle, ). The centre of rotation may lie
within the object (Fig. 1.15A) or at a distance from
it (Fig 1.15B).

100 110 120 130 140 150

20

80

Figure 1.13 e Translation of an object. Note how all points
on the ruler move the same distance along parallel lines.
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Figure 1.14 e By adding axes and scales, it is possible to
quantify a translation. Here, as movement is bounded by the x
and y axes, it is taking place in the Z-plane. All points in the
ruler have moved by +3 units along the x axis and —3 units
along the y axis.

Multifunctional transformations

Most movements consist of a combination of transla-
tion and rotation. For example, Figure 1.16 shows a
transformation that would be impossible by either
translation or rotation alone. However if we combine
the previous two examples and translate the ruler by:

+3

-3
and then rotate through 30°, we arrive at the posi-
tion shown.

Three-dimensional movement

Exactly the same rules apply when there are three axes
instead of two; by introducing the z-axis, we can
now describe exactly the same movements using
three-dimensional objects (Fig. 1.17). The only dif-
ference is that, instead of rotating around a single
point, the object moves around a line (axis) and that,
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Figure 1.15 e Rotation of an object. Here, the points move through the same angle, 6, but wil move different distances,
depending on how far they are from the centre of rotation. This can be located within the object being moved (A), in which case

Centre of rotation
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o——— Centre of rotation

)
)

<

)

S

the object will spin like the hands of a clock or, at a distance from the object (B), causing it to swing.

(A)

Figure 1.16 e In order to undergo the transformation pictured below (A), the ruler must undergo both translation and

rotation (B).
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(A) ®)
Figure 1.17 e Exactly the same rules can be extended to three-dimensional objects. They can be rotated, although now this
takes place about an axis (the axis of rotation, with all points moving the same angle about the axis, A) or translated, again all
points move through the same distance in the same direction, B).

Positive axis

Figure 1.18 e Theright-hand rulefor determining the direction of positive rotation aboutan axis. By gripping a positive axis with the
thumb pointing away from you, the fingernails act as arrows to indicate the direction of positive rotation.
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when translation occurs, a three-dimensional matrix is
used so that movement along the z-axis can also be

described:

X

y
¥4

So this gives a system for describing, highly specifi-
cally, translation of the body or any part thereof.

However, most joint movement in the human
body consists of rotational movement — that is flex-
ion and extension; abduction and adduction; medial
rotation and lateral rotation are all described in
terms of positive or negative rotation about a given
axis. Positive rotation is clockwise movement around
a positive axis; negative rotation is anticlockwise
movement around a positive axis.

To easily remember which is positive, you need
to know the right hand rule. If you imagine giving
a thumbs-up sign using your right hand, and then
use the hand to grip any one of the three positive
axes with the thumb pointing away from the origin,
then the fingers indicate the direction of positive
rotation about that axis (Fig. 1.18).
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So, flexion and extension become positive and
negative rotation about the x-axis. In most joints,
extension is positive x-axis rotation (+0,) and
flexion, negative x-axis rotation (—0,); however,
because the knee works ‘backwards’ these move-
ments are reversed in this joint — the orthogonal
system though remains consistent, clockwise
movement about the x-axis (knee flexion) is still
positive, and anticlockwise (knee extension) is neg-
ative. In the foot, plantarflexion is —0, and dorsi-
flexion +0,.

In the orthogonal system we have described
above, movement about the y-axis replaces the
terms internal and external rotation; however, in
the right arm, internal rotation represents positive
y-axis rotation (+0,), whilst, in the left, external
rotation is (+0,) and vice versa for (—0,). The same
variation applies for z-axis rotation: abduction is 40,
on the left and —0, on the right; adduction —0, on
the left and +0, on the right.

This may seem complex but, when you consider
the system in its own rights, rather than trying
to hold both systems in your mind at the same
time, it has a crystal clear purity to it and a concise,
universally comprehensible nomenclature.

I i
w Learning Outcomes

e Introduce the methods by which scientists record numbers and units

e Outline the evolution of weights and measures and explain those systems that the clinicianislikely to encounter
e Ensure that the student has an adequate knowledge of algebra and trigonometry

e Differentiate between vector and scalar quantities and explain how these may be mathematically

manipulated

e Compare and contrast the anatomical and orthogonal systems for describing body movement and position.

CHECK YOUR EXISTING KNOWLEDGE: ANSWERS

Mark your answers using the guide below to give yourself a score:

Section 1

1 x=0Bz—-y+8 [2
2 22 —xy - y* [2]

3 12cm [3]

4 22.6° [3]

5 67.4° [3]
Section 2

6 1670 000 000 000 [1]
7 0.000 00000176 [1]
8 716 000 metres [1]
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9 671 000 000 000 J [1]
10 0.003 004 m (3.004 mm or 3004 pim) [1]
11 10% =1 000 000 [1]
12 3 [1]
13 g =011 (2
14 Kelvin [2]
15 Ohm [2]
16 A quantity that has magnitude but no directional dependence (e.g. mass) [3]
17 a It will move North East [2]
b 565N [3]
18 Median or sagittal [3]
19 They are spinning to their right. [3]
(If you didn’t get this answer, it does not necessarily mean that you are wrong, there is variation amongst
orthogonal conventions. It does, however, mean that you should read the section on Coordinates and
planes to familiarize yourself with the conventions that will be used in this book.)

How to interpret the resuits: i
36-40: You have afirm grasp of the basic tools needed to understand the language in this book. As long
as you understand any mistakes you may have made, you can move on to the next chapter.

25-35: Although you have some understanding of the basics, you should revise the areas in which
you scored poorly before moving on.

0-34:  You will need to study this chapter in some detail in order to acquire the grounding needed for
future chapters.

VY SELF-ASSESSMENT QUIZ ANSWERS

Algebra and trigonometry revision section

1 a-b

2 Sc/r

3 pg + cd

4 a) 9x + 12y — 4z, b)x =@z — 12y)/9

5 a) 36h%° = B hi)’ b)i=(1/36h?)=1/6h
6 16x° — 56xy + 49y°

7 a) 18st? + 12ts? — 12uts — 8us?

b) u = (18st? + 12ts? — 12uts)/8s°. This can be further simplified to u = 3t (3t + 2s — 2u)/4s

8 a) 7.8 cmb)60°
9 a) 1025cm b)21.3° c) 68.7¢
a) 596 cm b) 40° c) 7.78cm
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CHECK YOUR EXISTING KNOWLEDGE

1 Separate the following units into vectors and scalars:

a Velocity f Momentum
b Speed g Force

c Acceleration h Energy

d Mass i Work

e Angular velocity j  Temperature

2 Which gquantity can be calculated by averaging the gradient of a graph of velocity against time?
State Newton’s three laws
4 A car starts from rest and accelerates at 3 ms~2 for 8 seconds.

a What is its final velocity?

b How far has it travelled?

5 A motorcycle travels at 15 ms~' for 500 m, and then it accelerates constantly for 5 seconds until it is
traveling at 30 ms .

a How long does it take to travel the first 500 m?

b What is its rate of acceleration?

¢ How far does it travel whist accelerating?

d Assuming no further acceleration, how long does it take to travel the next 500 m?

6 If two objects have a mutual gravitational attraction of 60 N at a separation of 10* km, what will their
attraction be at:

a 2 x 10*km
b 10%km

w
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7 If an object of mass 10 kg, is raised to a height of 30 m against a gravitation field of 10 Nkg "

a How much work is being done?
b If it is being lowered at 0.5
8 Give the Sl unit(s) for:

a Temperature f  Weight

b Heat g Work

c Force h Pressure

d Distance i Acceleration
e Mass j Area

9 20 m? of gas is at a pressure of 1atm and 20°C.

increased to 50 m3, what will the pressure be now?
10 If the volume is then decreased to 10 m3, but the pressure is kept constant, what will the new

temperature of the gas be?

Introduction

If algebra and trigonometry owe their origins to the
Greeks, then 17" century Europe was the birth-
place of modern science ... and, quite frankly (in
Europe), nothing much came in between — the ‘dark
ages’ were named for their dearth of intellectual
enlightenment rather than levels of ambient light.
Historians generally regard this period as extending
from the fall of the Roman Empire in the 5" cen-
tury AD to the onset of the mediaeval period in
the late 9" century. By contrast, anthropologists
have extended it until the European Renaissance
(literally ‘new birth') in the 12t century; some,
indeed, mark it as late as the 15" century — a thou-
sand years of academic regression and stagnation.

Intellectually, the period can be regarded as start-
ing with the destruction of the Royal Library of Alex-
andria, which, since the 3™ century BC, had held an
immense store of knowledge; contemporary accounts
suggest hundreds of thousands of scrolls. Ironically,
the date of destruction — indeed, whether the library
was truly destroyed, broken up into smaller collec-
tions or dissipated by lack of patronage and more
pressing political concerns — is unknown; one of the
more salient features of the Dark Ages was the lack
of documentary evidence in a period where perhaps
only one person in a thousand was literate.

Outside of Europe, the flame of human develop-
ment was kept flickering by the Chinese, Indians
and Arabs who became sophisticated in astronomy
(at that time indistinguishable from astrology) and
mathematics (remember that oh-so-useful zero).
Indeed, some historians regard the spark that
ignited the renaissance as the opening up of the
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Near and Far East by travellers such as Marco Polo,
bringing not just technological innovations including
gunpowder, spectacles and pasta but scientific
knowledge to augment that from the classical litera-
ture extant from the previous millennium.

The principal tributary to which the river of
modern science can be traced is probably Roger
Bacon (?1214-71292), a Somerset-born Franciscan
friar, philosopher, alchemist and medic; the ‘Father
of Science’, ‘Dr Miribalis’ (Fig. 2.1). In his most
famous work, Opus Maius, he outlined his unsur-
passed knowledge of gunpowder, optics, mathemat-
ics, moral philosophy, theology, grammar ...and
experimental science, of which he was probably
the inventor and certainly an ardent practitioner.

It is Bacon who is credited with having invented
the ‘Scientific Method’ - hypothesis tested by
experimentation and observation. This may now

Figure 2.1 ¢ ‘Dr Miribalis’, Roger Bacon, a Franciscan monk
who lived and died in the 13th century, is regarded by many as
the father of modern science for his introduction of the scientific
method of hypothesis tested by experimental observation in
contrast to the theological argumentation of the day.



seem basic in the extreme but, before Bacon, sci-
ence was a matter of metaphysical debate and reli-
gious dogma; he sowed the seeds from which
sprang the randomized controlled trials in today’s
biomedical journals.

Bacon, though, would not have thought of himself
as a scientist but as a philosopher — a lover, and seeker,
of knowledge. . .as would those who followed him, cul-
minating with [saac Newton. They were natural philo-
sophers, interested in the secrets of the world around
them (‘scientists’ were not invented until the 18" cen-
tury) and it was these men who laid down the ground
rules for the physics that we still use today.

However, for such men to flourish, two things
were needed: freedom of expression and cross-fer-
tilization of ideas (combined, perhaps, with a slight
sense of competition). Bacon had little of either
and, like other individual geniuses in the centuries
that followed him, most notably Leonardo da Vinci
(1452-1519) and Galileo Galilei (1564-1642), his
work was often curtailed or even destroyed. The
all-powerful authority of the Church regarded sci-
ence as a direct challenge to the fundamentals of
the bible and was ruthless in suppressing anything
that contradicted that view.

Galileo suffered particularly badly in this
respect, suffering imprisonment by the Inquisition,
house arrest and finally (under pain of a rather hor-
rible death) being made to recant his ‘heretical sup-
port for the Copernican heliocentric system. The
Church had determined that it simply wasn’t possi-
ble for sunspots to rotate about the Sun or Jupiter’s
moons around Jupiter: the Pope had decreed that
the Earth was the centre of the Universe around
which everything rotated. The Pope was appointed
by God, and therefore infallible; the Inquisition
took care of any thing that might interfere with that,
including Galileo.

The opportunity for the requisite level of intel-
lectual freedom and learned discourse came with
the Restoration of the British monarchy in 1660,
following a protracted Civil War, regicide and
Cromwell's puritanical ‘Commonwealth’, which
proscribed everything from Christmas to dancing.

Within months of Charles Il regaining the
English throne, the finest minds of the day were
meeting on a regular basis; two years later, a Society
for ‘The promoting of Physico-mathematicall
Experimentall Learning’ was formed and, in 1663,
Charles II granted it a royal charter. The Royal Soci-
ety still exists today and there are few higher acco-
lades in the field of science than the honorific ‘FRS’
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(Fellow of the Royal Society) after one's name. The
membership of the time reads like a “‘Who's Who'
of physics — Robert Hooke and Christopher Wren
(who are probably better remembered as the men
behind the rebuilding of London after the Great
Fire of 1666, in particular St Paul's cathedral),
Robert Boyle and, of course, Isaac Newton. It was
these men and their peers who provided much
of the groundwork that still forms the basis of
physics today and which forms the content of this
chapter.

Many of the terms that you will meet in this
chapter are misleadingly familiar. ‘Energy’, ‘Weight’,
‘Heat’ and ‘Power’ are all words that you hear

and use on a weekly, if not daily, basis. However, be
warned, in physics they have a specific and

highly precise meaning that may well be different
from that employed in everyday use and, when

you use them in this context, you must be aware
of this.

This will also be true of areas other than

physics and it is important as a clinician that you
can differentiate between lay usage of terms

and professional usage. Examples of such
medical words include ‘rheumatism’, ‘arthritis’
and ‘sciatica’.

If a patient comes in complaining of ‘rheumatism’,
they almost certainly mean that they have a deep
aching somewhere; if you are speaking to a
consultant rheumatologist (or, indeed, most
healthcare professionals) it means that they have
one of a number of rather rare, often inter-related
connective tissue disorders such as polymyalgia
rheumatica (PMR) or systemic lupus
erythematosus (SLE).

‘Arthritis’, to most people, suggests ‘joint pain’ or
‘wear and tear’; to a manual physician, it means an
inflammatory arthropathy such as rheumatoid
arthritis, ankylosing spondylitis or Reiter’s syndrome
(the term ‘degenerative joint disease’ now tends to
be used in preference to the completely separate
disease process of osteoarthritis, which frequently
coexists with ‘true’ arthritis).

Similarly, ‘sciatica’ specifically means pain arising
from the damage to the sciatic nerve (there are
many other things that can give pain in the back
of the leg). Patients will often use the term to mean
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any pain in the leg; general practitioners, usually
failing to consider alternative aetiologies, use the
term loosely to describe pain in the buttock,
posterior thigh and/or leg. Manual physicians -
particularly those involved with manipulation — need
to use the term with great diagnostic specificity and,
more importantly, realize that it describes a
symptom and not a condition. There exists a
multitude of conditions that can cause sciatica and
it is important to treat the cause rather than the
symptom.

Velocity, angular velocity
and acceleration

In everyday speech, ‘velocity’ and ‘speed’ are inter-
changeable; in physics, they are (usually) not. Both
are measured in units of distance (displacement)
per unit time (metres per second; miles per hour
etc.); however, velocity is a vector quantity (having
magnitude and direction) whilst speed is scalar
(having magnitude alone).

Acceleration is change in velocity (deceleration
is expressed as negative acceleration; both are
measured in metres per second per second = ms~2).
This can, therefore, be caused by a change in the mag-
nitude of the velocity or a change in its direction (or
both). Put in terms of driving a car, using the brake
oraccelerator causes a change in both speed and veloc-
ity; however, using the steering wheel causes a change
in velocity even if the speed remains constant.

In terms of graphical representation (Fig. 2.2), if
time (¢) is plotted on the x-axis and displace ment (s)
on the y-axis, then the slope of the graph repre-
sents the velocity: the change in displacement,
As, divided by the change in time At. Whereas
this is straightforward if the graph is a straight line
(i.e. constant velocity). If it is not, then the mean
velocity needs to be obtained using a method of
calculation known as calculus. If you are unfamiliar
with this, read the Fact File below before pro-
ceeding; if calculus is old hat, then you will easily
appreciate that velocity can be written as:

V=ds/dt

Similarly, if we plot the results of this graph with
velocity (v) on the y-axis and time (¢) on the x-axis,
we get a gradient representing acceleration (a). If
this is a straight line, then acceleration (the rate of
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a = constant

ds
dt

>t

Figure 2.2 ¢ A graph of displacement against time. The
slope (tangent) of the graph represents the velocity. When
the value of this tangent is plotted against time, then tangent
of the resultant graph represents acceleration. In this case,
as the change of velocity (i.e., the acceleration) was
constant, the graph is a straight line. The final example
demonstrates the case where the velocity is variable. In order
to calculate the velocity from the displacement against time
graph, we must repeatedly take the tangent and then work
out the average. This is done using differential calculus.

change of velocity) is constant; if not, then calculus
can calculate the average gradient:

a=%/ =d’s/dt®

This, for example, is why the Earth is accelerating
around the sun, although its speed is constant (bar
the loss due to friction of a millisecond per century),
its velocity is constantly changing as it describes



an ellipse around the sun. This can be inconve-
nient on occasions; however, if we measure dis-
placement in terms of the number of degrees (0)
traversed per unit time we can measure the angu-
lar velocity (m):

w=d0/dl

Because the rotation is about a specific axis, which can
be changed, angular velocity is also a vector quantity.

mFact SR
CALCULUS

The basic premise behind calculus is that, if you

look at a small enough piece of a curve, it appears to
be a straight line. This is the same reason that, for
centuries, people assumed the Earth is flat; the curve
is changing so slowly that, when we look around us,
the bit we can see appears to be a level plane.

This means that, if our graph of, say, displacement
against time (= velocity) isn’t a convenient straight line
and we can’t therefore measure the slope, we can
breakit down into very small sections. The slope of each
section is a straight line and can be measured in the
normal way. By adding up the individual gradients and
averagingthem, we getaresultfor, in thiscase, velocity.

We can use the same principle to calculate the area
under each very small part of the line; knowing this
tells us, in this example, the total distance travelled.

The first instance is called differential calculus and,
rather than write 4% / A Which would refer to the
gradient of the whole of a straight line, we write %/,
showing that we have worked out the gradient using
calculus.

If we want to calculate the area under a line, we use
integral calculus.

s= |v.dt

This is the shorthand way of saying that the distance
travelled is the area enclosed by the line on a graph of
velocity against time.

In order to understand this text, you do not need to be
able to perform calculus but you will need to know how
it is possible to deal with curved lines on graphs (note
also that any line on a graph is called a ‘curve’ — even if
it is straight!) )
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Mass and momentum

In the same way that physicists differentiate speed and
velocity, ‘mass’ and ‘weight’ are also separate entities.
Mass (m) is a measure of the quantity of matter in an
object and, within the SI system, is measured in kilo-
grams. It does not matter where the mass is - outer
space, the centre of the Earth, the surface of the
sun — the mass remains constant. By contrast, weight
(W) is the force by which a mass is attracted to a
gravitationally massive object (such as the Earth):

W=mg

where g is the acceleration of free fall, which can
vary depending on location (Table 2.1). Although
we measure our weight in kilograms, it should in
fact be measured in newtons; we can get away with
it because we are in a (reasonably) constant gravita-
tional field. If we were in free-fall or outer space,
our weight would be 0 N, although our mass would
be unchanged.

Thisbrings us to another property, momentum (1),
which is dependent on mass rather than weight. If we
were to runinto a brick wall, it would hurt: how much
it hurt would depend on how heavy we are and how
fast we are running, so it is no surprise to learn the
momentum is the product of these two factors:

I=mv unitskg.ms™'=Ns (1IN = 1 kgms~?)

However, even if we were weightless — say, in outer
space — it would hurt just as much when we hit the
wall; our mass is still the same.

i

Free fall acceleration

Body

Earth 9.8 ms™?
Moon 1.6 ms™2
Jupiter 253ms™?
Pluto 06ms™2
Sun 270.7 ms 2

Neutron star 1.4 x 10" ms 2

31




I ] cuncaLrFocus

Weight, is something that is — or should be — of keen
interest to any primary contact medical professional.
Obesity carries with it an increased risk for a plethora of
conditions: diabetes mellitus, with its neurovascular
complications; atherosclerosis, the commonest cause
of heart disease; hypertension with the increased risk
of cerebrovascular incidents; and, probably, asthma,
depression and hormonal problems.

To the clinician, weight is a relative measurement
and is obviously related to, amongst other things,
height. Rather than absolute weight, Body Mass
Index (BMI) is used; this is calculated by dividing
weight (in kilograms) by the square of the patient’s
height (in metres).

W (kg)
BMI=
h2(m?)

The results are then interpreted using the scale for
adults (see Table 2.2; different scales are used for
children and teenagers).

Common sense is needed when applying these
scales — a highly muscular athlete or body-builder
can easily have a BMI well above normal levels
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Entrapment syndromes, such as carpal tunnel
syndrome, are also more common in the morbidly
overweight owing to decreased subcutaneous
space (which is taken up by adipose deposition),
and the overweight have a higher incidence of
accidents and - because of their increased
momentum - tend to suffer greater injury in falls.

The level of the problem has spiralled in the last two
decades. In the USA, 20% of adults are obese and
12% of children. This is particularly worrying
because, whereas adults become obese by storing
fat in subcutaneous cells, which swell accordingly, if
a child is subject to an excessive calorific load, their
bodies will respond by creating more storage cells.
This makes it far more difficult to lose weight — even
if the cells are only storing normal levels of fat, their
profusion will mean an elevated BMI.

European countries (particularly the UK) and Japan are
following in America’s — increasingly deep - footsteps.
The current generation of schoolchildren is the first in
250 years whose expected lifespan is less than that of
their parents; obesity is the principal reason for this.

Force

Once again, this is a term, the specificity of which,
in physics, is in sharp contrast to the generality of
meaning in the vernacular. To the scientist, force
(F) is something that changes an object’s velocity,
remembering that velocity is a vector quantity with
both magnitude and direction. As we saw when dis-
cussing weight, force is measured in newtons (N)
and can be calculated using the formula:

without being obese; the relationship between
waistline and chest size is a good secondary
marker. Awareness of risk factors (being female,
black, middle aged, of lower socioeconomic status
and having a familial history) is also helpful as early
intervention in a progressively overweight patient
offers a better prognosis.

For the manual physician, there are also the
biomechanical consequences to consider.
Increased weight means increased loading on
weight-bearing structures. Back pain is more
common in the obese and osteoarthritis is generally
twice as common, though this figure is even higher
in hips and higher still in knees and ankles.

F =mass x acceleration

or, more concisely:

F=ma

AE} DICTIONARY DEFINITION

Table 2.2 Body mass index

—— FORCE
BMI Status Although normally defined as ‘that which changes a
J body's velocity’, you may see alternative definitions
il T Tt of force: ‘that which changes a body’s momentum’
18.5-24.9 Normal or ‘that which accelerates a body’. As acceleration
: is defined as change of velocity and momentum is
25.0-29.9 Overweight directly proportional to velocity, these statements

are in fact all consistent and all true.

30.0 and over Obese
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Newton’s laws and equations
of motion

Reading this far, you will already have gathered that
Sir Isaac Newton (Fig. 2.3) was an important man in
the history of physics; arguably, he is the most
important. Bom in 1642, the year that Galileo died,
Newton was something of a prodigy. Although he
seems to have been a solitary, reclusive child, pre-
ferring introspection to classes (which probably
bored him), he flourished whilst at Cambridge Uni-
versity; by the age of just 27, he was Lucasian Pro-
fessor of Mathematics (the same chair is now held
by Stephen Hawking). In 1665, when bubonic
plague hit London and Cambridge, he withdrew to
the family home in Lincolnshire and devoted him-
self to developing the ideas that would make him
famous.

( ") Fact File y

ISAAC NEWTON 1

Newton, despite being president of the Royal Society
from 1703 until his death in 1727, did not appear to
be a great believer in scientific collaboration. He was
intolerant of criticism, harboured lifelong grudges and
was vindictive towards rivals - he tried, and nearly
succeeded, in ruining the German mathematician,
Liebnitz, who had (whilst Newton kept his own

work secret) independently discovered

‘differential calculus’ (using a much more
user-friendly method that Newton’s ‘fluxions’)

which we still employ today.

\ .,

Figure 2.3 ¢ Newton as he appeared at the time
of publication of Principia in 1687.

CHAPTER 2

Natural philosophy

Typically for Newton, he did not choose to pub-
lish them until 1687, and then only because he was
afraid someone else might claim credit for them.
Philosophiae  Naturalis  Principia Mathematica
(The Mathematical Principles of Natural History),
commonly referred to as the Principia, is probably
the most important scientific book of all time,
although Darwin’s On the Origin of Species might
give it a close run.

Although he achieved excellence in many other
fields: optics (he discovered diffraction), fluid
mechanics, history, theology and alchemy and was
an able administrator (for 28 years he was master
of the Royal Mint) and politician (twice a member
of parliament), it is for the work on mechanics and
gravitation that he owes his principal fame.

His three laws of motion govern and quantify
most of the everyday movement that we observe.
Let us consider them in order.

F ] cuncaFocus

Both Isaac Newton and Albert Einstein
demonstrated classic signs of Autistic Spectrum
Disorder: obsessive interests, difficulty in social
relationships and problems in communicating.
Although many autistic people are intellectually
impaired (occasionally with specific ‘savant’
capabilities), these two physicists had key
symptoms of high functioning Asperger’s (HFA),
where brainpower is not only unimpaired but often
appears to be enhanced, at least in areas requiring
logical rationale.

Newton in particular seems like a textbook case: as
a child, he was a loner and, when engrossed in
work, he hardly spoke. He was lukewarm or bad-
tempered with the few friends he had and often
forgot to eat (one anecdotal tale tells of his
landlady insisting he eat and giving him an egg and
a watch with which to time it. When she returned,
Newton was staring at the egg and boiling the
watch).

If no one turned up to his lectures, he gave them
anyway, talking to an empty room. He even had a
nervous breakdown at 50, brought on by depression
and paranoia.
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Newton’s first law of motion

Every body continues in its state of rest or in uniform
motion in a straight line unless acted on by an exter-
nal force.

You may recognize this as being the definition of
force, stated the other way around. Put in simpler
terms, things keep on doing what they are already
doing (standing still or moving) unless something
happens to alter this.

The ‘standing still’ bit is obvious and completely
in accordance with our everyday observations —
objects don't spontaneously start moving unless
engendered by something or someone (the external
force). The ‘moving’ bit requires a bit more consid-
eration —at first glance it might seem at odds with
everyday observation: if we throw a ball into the
air, it doesn’t carry on travelling in a straight line,
it describes a curve (called a parabola) and returns
to Earth — we even have the saying ‘what goes up
must come down'. Similarly, we all know that a
freewheeling bicycle will not keep travelling for-
ever; unless we pedal, it will slow and eventually
stop.

Newton's flash of genius was to realize that
rather than being examples of deviation from this
law, such objects are behaving in the observed man-
ner because they are being acted on by external
forces: the ball’s velocity is reduced and reversed
by the force of gravity, pulling it towards the centre
of the Earth; the bicycle (although post-dating
Newton by 200 years) is nevertheless slowed by
friction in the wheel bearings, between road and
tyre and against the air molecules that must be
pushed aside in order to progress. In a world where
it is impossible to escape these effects, Newton
managed to appreciate these forces for what they
were and envisage what would happen if they were
removed — indeed, if we threw our tennis ball in the
vacuum of outer space, away from gravitational
influences, it would keep going indefinitely. The
nearest we can come to appreciating this is by
reducing friction to a minimum and looking at the
behaviour of objects moving on ice. Intuitively, we
know that an ice-skater will slow far less than a
bicyclist over a similar distance (the sport of curling
relies on this) and, over a short distance, an object
sliding across a smooth sheet of ice may not appear
to slow at all. This tendency for an object to keep on
doing what it is already doing (conservation of
momentum) is termed inertia.
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The story of Newton sitting in his mother’s orchard and
asking himself why an apple had fallen downwards
rather than upwards is probably apocryphal; however,
his intuitive leap regarding his first law may have been
due to the fact that his was living during a period,
which began in Bacon's time, known as the ‘Little Ice
Age’. During the time of his confinement to the
country, England experienced long, bitterly cold
winters — indeed, during this period England recorded
its lowest ever recorded atmospheric pressure (931
millibars) and, reputedly, its coldest ever temperature.

The River Thames was frozen sufficiently to bear the
weight of not just skaters but of a coach and horses
and, in the Fenlands of Lincolnshire, (which, lying
below sea level, flooded every winter), there would
have been skating aplenty. Had Newton not had
access to those now climatically rare natural ice-rinks,
perhaps he would never have received the spark that
ignited his unique insights into motion.

&

Newton’s second law of motion

The rate of change of a body's momentum is propor-
tional to the applied force and takes place in the
direction in which the force acts.

Once again, this law follows what we already know
intuitively and can be inferred from what we already
know about physics. Let us take once again the analogy
of the bicycle (whose mass remains constant and,
therefore, whosechangein momentum is solely depen-
dent on its change in velocity), being acted upon by an
external force (the wind). We know from experience
that the change in the bicycle's velocity will depend
on the strength of the wind and its direction (a head
wind will slow us down; a tail wind speed us up).

We could also have deduced this from our existing
knowledge. We know that momentum is proportional
to velocity (I = mv) and, therefore, that change in
momentum, Al, is proportional to change in velocity.
We also know that change in velocity is acceleration
and that acceleration is proportional to force (F = ma).

Newton’s third law of motion

For every action, there is an equal and opposite reaction.
This is the shortest, most oft quoted and superfi-
cially simple of the three laws. The recoil of a gun in



firing is familiar and easy to understand: the bullet
(light but very fast) zooms forwards whilst the
much heavier gun kicks back a lot more slowly.
The momentum of the two objects is equal in mag-
nitude but opposite in direction. Much less intuitive
but far more common is the consequence of living
on a gravitationally massive spheroid. We are used
to seeing a book resting on a table, our feet upon
the floor and are aware that both are subject to
the force of gravity; however, if it were not for the
fact that the table and floor (or, more properly,
the molecular bonds therein) were pushing back
with an equal and opposite reaction, we — and the
book — would plummet towards the centre of the
planet to be incinerated in the magma lying a few
kilometres below our feet.

The equations of motion

Newton's laws lay down some fundamental truths
about the way the world around us moves and reacts
but these are laws of qualification; they tell us how
but not how much. From the laws and, with
Newton's knowledge of calculus, it is possible to logi-
cally derive equations that allow us to accurately cal-
culate an object’s velocity, acceleration, distance
travelled or time taken. Although these equations of
motion have been superseded by Einstein’s equations
of relativistic motion, unless you are accelerating
towardsor travellingat the speed of light, the relativis-
tic component of the equations become so small as
to be immeasurable and, in the everyday setting of
Planet Earth, the equations revert to those of Newton.

If we draw a graph of velocity against time for a
car that is already moving and is continuing to accel-
erate we would end up with the diagram shown in
Figure 2.4. At the beginning (¢t = 0), the car is
moving with its initial velocity, u (if it had been sta-
tionary, u would have been equal to zero and the
line would have started at the origin instead of half-
way up the y-axis). Now we know that the slope of
the graph gives the acceleration (Av/At) and the
area under the graph gives the distance ([v.df). As
this is a straight-line graph, the calculations are
quite straightforward. (Understanding the deriva-
tions is not essential, the equations are easy enough
to memorize but, if you do understand how they are
arrived at, it is always possible to recreate them
from first principles if memory fails.)

The velocity at any point is obviously the
initial velocity (u) plus the change in velocity
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>t

Figure 2.4 e Velocity. A graph of the changing velocity of a
car (v) during time (t). At the start of the measurements, the
car is already travelling with an initial velocity (u).

(acceleration, a) multiplied by the amount of time
for which that acceleration has been occurring (1).
Put mathematically:

v=u+at

To calculate the distance, we need to know the area
under the graph. If you are comfortable with calcu-
lus, this can be done by integrating:

[v.dt = (u+at).dt = ut +') at?

If you prefer visual methods we can easily calculate
the area under the graph (Fig. 2.5).

The formula for the area of a rectangle is length x
breadth = ut.

The formula for the area of a triangle is:

height x width _ txat Y at?
2 -2 T2

Figure 2.5 e Distance. A graphical solution to the question of
how far the car has travelled (s), which is equal to the area
under the graph.
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The area under the graph is the sum of these two
shapes:

s=ut+'fpat?
The third equation of motion can be obtained

by a little juggling. From the first equation, we
know:

v=u+at

Rewriting this in terms of ¢ gives:

If we drop this value of t into the second equation of
motion:

ux(v-u) . ax(v-u)?

a a?
_ux(v-u) (v-u)?
a a 23

2uv -2u? +v2 - 2vu + u?
- 23

Multiplying both sides by 2a gives:

2as =2uv-2u?+v?-2vu + u?
=2uv-2uv + u?-2u? +v?
=2 2

Rewriting this in terms of v° gives:

v2=u?+2as

Workshbp -

The equations of motion, whilst easy to use, may
require manipulation to put them into the form you
require. If you struggled with the questions at the
start of the chapter, you may like to practise on
the questions below before moving on. Answers
are given at the end of the chapter.

1. Amanis in a 100 m sprint. He accelerates at
4 ms~2 for the first 20 m and runs at a constant
velocity thereafter until the last 10 m when he
starts to decelerate at 0.1 ms™ .

a. How fast is he travelling after 1.5 s?
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b. How far does he travel in this time?
c. How fast is he travelling at 20 m?

d. How long does he take to cover the next
10m?

e. How far can he travel in 1s?

f. How long does he take to cover the middle
section (20—90 m)?

g. What is his velocity as he crosses the finishing
line?
h. What was his time for the race?

Gravity

Of the forces that glue together the universe, grav-
ity, despite being the first to be identified and its
effects understood (Sir Isaac Newton again), is the
most mysterious. As we have seen above, it is grav-
ity that causes mass to have an associated weight
and this is directly proportional to the strength of
the gravitational field.

It is also this mutual attraction of masses that
keeps the planets orbiting the sun and satellites
orbiting planets ... although, in reality, the Earth
does not orbit the sun, both bodies orbit a common
point; however, because the sun is so much more
massive than the Earth, that point is within the vol-
ume of the sun itself. In a similar way, not only are
we attracted to the Earth, but the Earth is also
attracted towards us (although the former is stron-
ger by a factor of 10%*1). When the bodies are of a
more similar size, as with the Earth and moon, the
mutual attraction is more obvious. When the moon
and sun's gravitational fields line up (during the
new moon), we get a much larger tidal range (spring
tides) than we do when they oppose each other
(neap tides). Without the moon, we would have
no tides at all; the effect is due entirely to the gravi-
tational pull of the moon on the water of the Earth’s
oceans.

The mutual attraction of two objects is calcu-
lated using Newton’s law of gravitation:

GM M,
= 2

Fq

where F, is the gravitational force produced between
twoobjects of mass M; and M, whose centres are sepa-
rated by distance r. G is the Universal Gravitational
Constant, which is equal to 6.67 x 10~'" Nm?kg *



and, as with other such constants, does not need to be
memorized! As the masses of any pair of objects are also
likely to be constant, the force is proportional to the
inverse of the distance of separation squared. This rela-
tionship is known as the inverse square law and it is an
important one - it is not just a rule of gravitation, you
will encounter it again in other fields, so it is worth
making sure that you have a thorough understanding
of it now.

We intuitively know that, the further you
are from an object, the weaker the gravitational field.
However, the manner in which it drops in intensity is
very specific and relates to the square of the dis-
tance. Thus, if you double the distance, the field will
only be one-quarter as intense; triple it and the field
drops to one-ninth of its original intensity; quadruple
it, the field is only one-sixteenth of the value and so
on. The same is true in reverse: twice as close gives
four times the strength of field; eight times as close,
sixty-four times the strength.

(ﬂFact R \

GRAVITY

Although its effects are easily calculated, both in
everyday and relativistic situations, we are not much
nearer to understanding what gravity is and how and
why masses are mutually attracted than was Newton.
The interactions that bind together molecules and
atoms are stronger than gravity by a factor of up to 10°%8
although they act over very much smaller distances.
This explains, amongst other things, why solids behave
as they do (we don't fall though them, nor are we
irresistibly attracted towards them) even though they
are - as we shall see in later chapters — 99.99% empty
space. These forces and their mediating particles
(photons, gluons etc.) have been studied for decades;
nobody has yet succeeded in identifying a ‘graviton’,
which remains a hypothetical particle.

MOON

What is a moon? In fact, our moon and Earth only just
stop short of being a binary or twin planetary system.
The centre of rotation lies (just) within the planetary
mass of the Earth, otherwise there would be a good
case for regarding them both as planets orbiting around
each other. This argument certainly holds for Pluto and
its moon Charon, which is half the size, although
considerably less dense. Not only do both orbit a centre
of mass that is outside Pluto, but two other, smaller
satellites, Nix and Hydra, orbit this same point, i.e. they
orbit both the twin dwarf planets rather than Pluto itself.

/
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Energy and work

Energy is defined as: the capacity of a system to do work.

It can take many forms; you will be familiar with
people talking of ‘chemical energy’, ‘thermal
energy’, ‘electrical energy’ or ‘nuclear energy’. This
differentiation largely relates to the form in which
the energy is being stored. For example, chemical
energy is the energy stored in the molecular and
atomic bonds within substances, which can be
released in chemical reactions; nuclear energy, the
energy stored within the bonds between the funda-
mental particles in atomic nuclei, is the source of
the energy for nuclear power stations (nuclear fis-
sion) and for stars (nuclear fusion). In addition,
there is ‘mechanical energy’, which, at this stage,
will be our main area of focus; this, however, can
also take several different forms.

Energy is usually given the symbol, E, though
sometimes you may see it, rather confusingly, as W.
In this text, we shall be using E for energy and
W for work.

As you will recall from the previous chapter, in
the SI system, energy is measured in joules —
although, as you will also recall from the previous
chapter, whereas physicists seldom deviate from
SI units, clinicians frequently do and, as discussed
below, you will need to have a familiarity with sev-
eral other ways of measuring energy in order to
interact with the society in which you live and will
be practising (see below).

Work is also measured in joules and is defined as:
the process of energy transfer.

It is calculated by multiplying the force (F) used
and the distance moved in the direction of the
force, sometimes called the displacement (s). This
fits well with our intuitive knowledge: if we are
pushing a heavy object, the amount of work we do
will depend on the amount of force that we use
and how far we push it. This relationship can be
written as:

W=Fs

So energy can be stored and, when it is transferred,
this process is called ‘work’. Stored energy is
referred to as potential energy (because it has the

potential to do work).
Gravitational potential energy is the energy pos-

sessed by a body by virtue of its position in a gravi-
tational field. If a mass, m, is lifted through a height,
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h, against the force of gravity, g, then the amount of As stated earlier, there are other forms of mechani-

work done is:
W =mgh joules

However, energy can never be created or destroyed,
a principle known as conservation of energy.
Therefore the potential energy (E,) of the mass is
also:

Ep =mgh joules

The energy is stored and can be used again to do
work. This is the manner in which a pendulum
clock works. When the clock is wound up, a lead
weight is lifted. This weight gradually descends,
transferring its energy to the pendulum, which
would otherwise slow and stop owing to the effects
of friction in its bearings and air resistance.
This does not, of course, violate the principle of
energy conservation: the gravitational potential
energy is converted into mechanical energy (running
the pendulum), which, in turn, is converted into
thermal energy (heat from friction).

Kinetic energy is the energy of movement -
obviously, a moving body must have energy, which
can do work (although this will slow the body
down). The work needed to slow the body to rest
can be calculated. We know that W = Fs and also
that F = ma.

Therefore: W = (ma)s
From the equations of motion, you will recall that:

vZ=u? +2as
However, as we are slowing the body to rest:

v2=0%+2as or as=v?/2

So, if:

W=mas. W=m(?/2)
Or:

wW="mv?

So, the kinetic energy of a moving object is:

Ek ="'/, mv? joules
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cal energy, such as elastic energy, which will be
dealt with in the following chapter. Other types of
energy will be detailed in later sections of the book.

] cuncaLroc

As we saw in the last chapter, you will need to be
multitingual when it comes to units. Although, as a
scientist, you will always use the joule, your patients
are not scientists and, when it comes to diet and
nutrition, they will most probably talk in terms of
calories consumed.

The calorie has an interesting history — it is actually
a metric unit and was defined as the amount of
energy required to raise the temperature of one
gram of water by 1°C (specifically from 14.5"C to
15.5°C). The Sl equivalence is 4.18 joules. However,
this is not the calorie that you see written on the side
of food packaging. This is in fact a kilocalorie and
is usually differentiated by capitalization - the
Calorie. The typical adult requirement lies between
2000 and 4000 Calories a day depending on size,
metabolism and activity (if 16 kJ seems like a ot of
energy, bear in mind that we only convert the energy
at about 5.5% efficiency).

Just for the record, the imperial unit for energy is the
British thermal unit (BTU, still used by heating
engineers), which is the amount of energy required

to raise the temperature of 1ib of water by 1°F,
approximately 1055 J. The therm, used by gas
companies to measure consumption, is 100 000 BTU.

Heat and temperature

Temperature is actually quite a tricky concept to
pin down with a definition. It is best defined as:
the 'hotness’ of an object (reflected by the intensity of
the motion of its constituent particles) and is a prop-
erty that determines whether there will be heat flow
between two objects (one of the fundamental laws
of thermodynamics states that heat will flow from a
hotter object to a cooler object until the two are at
the same temperature). It is a function of the mean
kinetic energy of the particles within a system.

It has symbol T and, in the SI system, is
measured in kelvin (K).

Heat is defined as: the internal energy of a system
(i.e. the combined kinetic energy of all the atoms
and molecules within the system).



It is given the symbol Q and is measured in joules (J).

Heat, therefore, is not solely dependent on tem-
perature but is the product of temperature, mass
and a property called thermal capacity (a sub-
stance’s ability to store heat).

The difference between heat and temperature is
best understood by comparing and contrasting two
different systems; let us consider:

* A spark from a fire
e A warm bath of water.

The first of these has a high temperature (perhaps
850 K); indeed, if one were to land on your skin,
it would cause a nasty burn as it rapidly transferred
its thermal energy (the rate of transfer of thermal
energy is proportional to the difference in tempera-
ture between the two objects). However, despite its
high temperature, a spark does not have much heat.
Because it has only a low mass, the amount of
energy contained in a spark is fairly insignificant;
if you were to put the spark into a cup of cold
water, you would probably need a very sensitive
thermometer to measure any appreciable change in
the temperature of the water. By contrast, a bath
has a much lower temperature, perhaps a pleasant
330 K. However, water has a high thermal capacity
and mass. Its energy is therefore much greater than
a single spark.

There are three temperature scales with which
you will need to be familiar: Fahrenheit, Celsius
(sometimes still called centigrade) and Kelvin. The
problem (for scientists) with the first two scales is
that, whilst they are convenient for everyday usage,
they are not absolute scales: they don't start at zero;
therefore, 70°C is not twice as hot as 35°C. This
makes them very inconvenient for use in equations.

Daniel Fahrenheit was a Polish doctor who built
and calibrated the first really accurate thermo-
meters, initially using alcohol (in 1709) - the revo-
lutionary (and more practical, though considerably
more toxic) mercury thermometer was to follow
S years later. To avoid regular recourse to negative fig-
ures, he eventually set the freezing point of water at
32°F and the average temperature of the human body
at 96°F. On the Fahrenheit scale, water boils at 212°C.

Some three decades later, the Swedish astrono-
mer Anders Celsius had the more logical idea of
setting 100 degrees between the freezing and boiling
points of water (hence the occasional use of ‘degrees
centigrade’) and this scale is now used in most
countries of the world in everyday measurements.

Natural philosophy CHAPTER 2
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Although Anders Celsius is credited with the invention
of the scale, he originally placed the freezing point of
water at 100°C and the boiling point at 0°C, thus
creating a scale in which a decreasing reading
indicated increasing temperature. It was a biologist
colleague, Carolus Linnaeus, the inventor of the
modem taxonomical system of naming living
organisms by genus and species, who put

the scale into the more logical orientation that we

use today.

A century would pass before physicists demanded an
absolute scale for temperature, and Sir William
Thomson (who became Lord Kelvin for his work on the
transatlantic telephone cable) would be the man to
provide it. He had observed that, for every 1°C drop in
temperature, a gas will contract by '/,, of its volume
as measured at 0°C. From this, he inferred that there
must be a point at which the volume would reach zero,
beyond which it would be impossible to go. The actual
value of 0 K - ‘absolute zero’ - is —273.15°C
(—459.67°F) at which point, the intemal energy of the
substance would also be zero. The temperature is a
hypothetical one, to reach absolute zero would take an
infinite amount of energy; however, scientists have
succeeded in creating temperatures just a few ten-
millionths of a Kelvin above absolute zero at which
strange physical effects can occur: liquids can flow
uphill, solids shatter like glass and electricity can flow
without any resistance.

Whenever you see the symbol for temperature in an
equation, you must use a value in Kelvin - Celsius and
Fahrenheit will produce nonsensical results.

To convert Celsius to Kelvin:
K="C+273.15

To convert Fahrenheit to Celsius:
°C= 5/9 x ("F-32)

Should you need to convert Celsius to Fahrenheit:
°F= 9/5 x ("C+32)

If you are American, there is one other scale that you
may encounter, the Rankine scale (°R). This scale does
for Fahrenheit what kelvins do for Celsius, i.e. establish
a scale that starts at absolute zero:

“R= °F +459.67

\_ J
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Fahrenheit recognized that mercury — unique in being
a metal that is liquid (its freezing point is —39°C
(—38°F)) at the range of temperatures experienced
climatically — expands at a constant rate in direct
proportion to the temperature. By channelling this
expansion up a thin, flat capillary tube, he was able to
accurately measure temperature change with a device
that, unlike the alcohol thermometer, was much less
bulky and not significantly affected by changes in
atmospheric pressure. He set 1°F as being the
expansion of mercury by 0.01% of its volume ... so,
despite all appearances to the contrary, there is a
metric element to the Fahrenheit scale!

I ] cuncaLrFocus

Body temperature is one of the vital signs monitored
by primary contact healthcare professionals in order
to gauge their patients’ wellbeing. A normal
temperature may vary considerably during the
course of 24 hours, being at its lowest in the early
morning (2 am -5 am) when it may be down to 35.8°C
(96.4°F) and at its highest in late afternoon or early
evening (4 pm - 8 pm). These figures though only
apply tooraltemperatures (rectal readings are usually
05°C

(0.9° F) higher and axillary temperatures 0.5° C lower)
and to adults (infants’ rectal temperature is often as
high as 38.3°C (101°F) and seldom falls below 37.2°C
(99°F) until three years of age).

Measurement of temperature has become a much
easier affair since the advent of new types of
thermoelectric digital thermometers, which do away
with mercury and glass altogether (although it is still
worth learning how to use the traditional oral
medical thermometer: it has the advantage of never
needing new batteries!). Particularly, the tympanic
instruments that can be inserted into the ear and
give an accurate reading at the click of a button
have made the assessment of body temperature far
less cumbersome and time consuming and are a
particular boon with paediatric patients.

There are two things that it is worth bearing in mind
with temperature readings outside of the normal
range. Firstly, a person’s temperature can be too
low as well as too high. Hypothermia (a core
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temperature of less than 35°C (95°F)) is a not
uncommon clinical finding, particularly in the elderly,
either in lower socioeconomic groups or with
impaired thermoregulation from pathologies such as
heart complaints or pneumonia. Secondly, pyrexia
(an elevated temperature) may tell you that the
patient has something wrong with them, but it does
not tell you what. The majority of pyrexia is from self-
limiting viral infections but a persistently elevated
temperature without obvious cause is a cause for
concern and further investigation. This is particularly
true if manipulative therapy is proposed as a treatment
prctocol and unexplained pyrexia of more than 100°F
for three days or longer is regarded as an indication for
radiological investigation prior to adjustment.

The principal causes of pyrexia of unknown origin are:
® |nfection.

Abscess, TB, bacteria, viruses, parasites etc.
e Neoplasms

Especially lymphomas
e Connective tissue diseases

Inflammatory arthropathies, SLE, arteritis etc.
e Other

Drug reactions, sarcoidosis, inflammatory
bowel disease, pulmonary embolism,
intracranial pathology.

Pressure and partial pressures

If you have read and understood the section above
on temperature, you will hopefully have gained an
intuitive feel for the fact that there is a link between
temperature and pressure; in fact, many of the defi-
nitions given above have the caveat ‘at constant
pressure’ or ‘at one atmosphere of pressure’ invisi-
bly appended to them.

Pressure is defined as: the forces acting at 90° to
a unit area of a surface. It is given the unit p and, in
the SI system, is measured in pascals (Pa) although,
as you will see, there are several systems for mea-
suring pressure in everyday usage.

Although this definition appears a little verbose,
it can be summarized as:

P=—
A

which is consistent with the definition of the pascal
that you may recall from Chapter | as being | new-
ton per metre squared. We use this simple fact on a



daily basis without thought. To give maximum pres-
sure, a small point of contact is needed as with
drawing pins or sharpened knives; to minimize pres-
sure, as with snowshoes and tractor tyres, a large
contact area is employed.

Atmospheric pressure is caused by the molecules
in the air (i.e. N3, O3, CO,) striking against surfaces
(i-e. us!). This is dependent upon:

* The number of molecules hitting at a given
moment

* The transfer of momentum when they strike (you
will recall that the momentum of a molecule is
proportional to both its mass and its velocity).

Because we live with the atmosphere on a daily
basis, it is not surprising that 1 atmosphere (1 atm) is
sometimes used as a measure of pressure; you will
sometimes see experiments or definitions that are ‘at
standard temperature (8°C) and pressure (1 atm)’ or
‘STP’. Unfortunately, atmospheric pressure can vary
quite considerably both with elevation (which is why
atmospheric pressureis always quoted by weathermen
at sea level) and with changing weather systems. One
atmosphere has, by international agreement, been set
to 101 325 Pa — thus removing the vagaries of altitude
and altering weather systems.

The highest ever-recorded atmospheric pressure was
814 mm (32.06") of mercury in Mongolia in 2001, 7%
higher than normal; the lowest, 653 mm (25.69") of
mercury, which is 14% lower than normal. This
occurred in the Western Pacific during Typhoon Tip in

October 2005.
A
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Atmospheric pressure is an important consideration
for the clinician as changes in the barometer reading
have implications for our health. You may have
heard people claim that they know when bad
weather is on the way because their ‘gammy leg’ or
similar ancient injury plays them up. Far from being
an old wives’ tale, there is considerable evidence
that degenerative joint disease (osteoarthritis) is

CHAPTER 2

significantly more painful in low-pressure weather
systems (and in colder weather).

Similarly, there is also a link between atmospheric
pressure and rheumatoid arthritis (which tends also
to be affected by extremes of temperature) and
fibromyalgia. Some psychiatric conditions,
particularly those involving impulsive behaviour, also
worsen when the pressure dips.

Meteorologists and medics both measure pres-
sure in millimetres (or inches) of mercury. The
principle on which a mercury barometer works is
shown in Figure 2.6. The force of air molecules
pushing down on the mercury in the dish in which
the open end of the tube is sitting is enough to push
up the mercury in the vacuum sealed side of
the tube to a height of 760 mm (29.92 inches or
1 atmosphere), plus or minus atmospheric variation.
Medics also use millimetres of mercury (mm Hg) to
record blood pressure.

There are a number of other units of pressure
that you may well encounter when listening to
weather forecasts, recording histories from divers
or inflating the tyres on your motor car. These are
detailed in Table 2.3.

Vacuum
760 mm
Mercury column
—— Glass tube
o o
E E
a a
© o
o o
e 5
. —1+ Mercury in dish

Figure 2.6 ¢ The classical mercury U-tube barometer.
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Table 2.3 Different units commonly used in the measurement of pressure

Unit

Pascal (Pa)

Comments

The SI unit of pressure = 1 Nm 2

Pascal equivalence

Atmosphere (atm)

Commonly used by divers. Pressure in a fluid = depth x g x density (the
pressure at the deepest point on the ocean floor is 830 atm). It is also used to
describe the contents of pressurized containers

1atm = 101 325 Pa

Bar (b)

A unit from the CGS system, more often encountered as the millibar (mb),
which is used as a standard on aneroid barometers and by meteorologists
(these are the figures you will see on weather charts). The bar is also used
for European tyre pressures

1b=10%Pa

Millimetres of
mercury (mm Hg)

Used for barometric measurement and in taking blood pressure

1 mm Hg = 133.3 Pa

Inches of mercury

Used for barometric measurement in the USA (blood pressure is still recorded

1 inch Hg = 3386 Pa

(Hg or in Hag) in mm Hg)
Kilograms per metre  Although at first sight this is the logical SI unit, rather than the derived 1kgm % =98Pa
squared (kgm’z) pascal, it should be remembered that the kg only exerts pressure if in a

gravitation field . .. which accounts for the conversion factor
Pounds per square The imperial unit of pressure, encountered on filling station forecourts — most 1 psi = 6895 Pa
inch (psi) care tyres are filled to about 30 psi, around twice atmospheric pressure
Torr Equal to the mm Hg 1t=1133.3Pa

§ ] cunicaL Focus

Blood pressure is made up of two components:
systolic pressure (the surge created when the
heart pumps) and diastolic pressure (the residual
pressure in the arteries when the heart is

resting between beats). The apparatus used to
measure blood pressure is called a
sphygmomanometer (pronounced sfig-mo-man-
om-meter) comprising an inflatable cuff, which is
placed around the patient’s arm and pumped up to
the point where it constricts the arteries sufficiently
to prevent arterial flow (Fig. 2.7). Modern, electronic
cuffs (Fig. 2.8) are self-inflating and give a digital
readout in seconds; however, the traditional manual
method is still an important skill for the clinician to
master.

Once the pulse has been occluded, the cuff is then
slowly deflated until a pulse is detected using a
stethoscope; this is the systolic pressure. As the cuff
continues to deflate, the sounds become muffled
and then rapidly disappear, this is the point at which
turbulent flow ceases, the diastolic pressure. Blood
pressure classification is detailed in Table 2.4. It is
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worth noting that blood pressure is frequently
elevated through anxiety and ‘white coat syndrome’
on the first visit to a clinician and hypertension
should only be diagnosed if the readings remain
high on two or more consecutive visits.

All primary healthcare workers should be involved in
the monitoring of blood pressure; high blood
pressure is one of the great silent epidemics of the
Western world and predisposes towards heart
failure, cerebrovascular incidents, renal failure and
atherosclerosis. With malignant hypertension, there
is a 50% chance of death within 12 months.

On average, one-quarter of the Caucasian and one-
third of the black population will have essential
(primary) hypertension, which accounts for 95% of all
cases, the incidence increasing with age. Only half of
sufferers are aware they have the condition and, of
those who are aware, only half manage adequate
control; in other words, 75% of hypertensives and
one-fifth of the general adult population are damaging
their health with an elevated blood pressure.
Detection and monitoring at the primary care level is a
major public health concern.




Figure 2.7 e The traditional sphygmomanometer. Portable
versions, such as this, use dials. Desktop systems tend to still
employ a mercury column to indicate pressure.

Figure 2.8 « Modemn electronic blood pressure cuffs inflate
automatically and give a digital readout in seconds.

Although we have discussed ‘air molecules’” when
considering atmospheric pressure, this is in fact a
misnomer; there are no such things as ‘molecules
of air’, rather the molecules that comprise the stuff
we breath are, as we have already said, a mixture
of gases. Each one of those gases contributes to
the overall pressure of the atmosphere; each has a
partial pressure, the total of which add up to atmo-
spheric pressure:

Natural philosophy

Table 2.4 Classification of adult blood pressure*

Category Systolic Diastolic
(mm Hg) (mm Hg)

Optimal < 120 < 80

Normal < 130 < 85

High—normal 130-139 85-89

Stage | hypertension 140-159 90-99

(mild)

Stage |l hypertension 160-179 100-109

(moderate)

Stage Il hypertension 180-209 110-119

(severe)

Malignant >210 >120

*Where systolic and diastolic fall into different categories, the higher
category is used.

PN2 + P02+ PC02 + Polher= Patmosphere

0.78 atm + 0.21 atm + 0.03 atm + 0.07 atm
=1atm

So the partial pressure of each gas is related to the
concentration of that gas in the mixture and to the
total pressure of the mixture. The partial pressure
of any constituent gas can be calculated by deter-
mining the pressure that that gas would exert if
all other gases were removed. This is known as
Dalton’s Law.

Af’} DICTIONARY DEFINITION

DALTON’S LAW

Dalton’s law, which is also sometimes known as
Dalton’s law of partial pressures was formulated in
1801 and states that the total pressure exerted by a
gaseous mixture is equal to the sum of the partial
pressures of each individual component in a gas
mixture. Mathematically, it can be expressed by the
formula:

Piotal = P1+ P2+ P3+ ... Py
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The partial pressure of a gas in a liquid is directly
related to the amount of that gas dissolved in the
liquid. This, in turn, is determined by the partial
pressure of the gas in the atmosphere adjacent
to that liquid. The gases will form an equilibrium
whereby the partial pressure of the gas in solution
becomes equal to its partial pressure in the atmo-
sphere adjacent to the solution. This is known as
Henry's Law. If this equilibrium is changed - the
proportion of a substance in the gas alters or the
pressure of the gas itself is modified - then a new
equilibrium will be reached with the new partial
pressures of the dissolved gases reflecting this. This
situation is reflected in Figure 2.9.

I ] ouncaLFocus

In the lungs, the air in the alveoli constitutes the
environment surrounding pulmonary capillaries
through which blood moves. Separating the blood
and the air are the extremely thin alveolar and
capillary membranes, both of which are highly
permeable to carbon dioxide and oxygen.

This means that gases can move in both directions
through the respiratory membrane. Oxygen enters

Gas molecules
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blood from the alveolar air because the Po, of
alveolar air is greater than the Po, of the incoming,
deoxygenated blood. Simultaneously, carbon
dioxide molecules exit from the blood into the
alveolar air - the Pco, of venous blood is much
higher than the Pco, of alveolar air. This two-way
exchange of gases between alveolar air and
pulmonary blood converts deoxygenated blood to
oxygenated blood.

By the time blood leaves the pulmonary capillaries
as arterial blood, equilibration of oxygen and carbon
dioxide across the membranes has occurred, or as
near to equilibration as can be obtained in the time
available. Arterial blood Po, and Pco, therefore
usually equal or very nearly equal alveolar Po, and
Pco, (Table 2.5).

The gas laws

Given their relationship to the velocity of interacting
particles, and recalling that temperature is a function
of the kinetic energy of a substance, you will hopefully
be unsurprised to learn that there is a direct link
between temperature and pressure. This link has been
quantified in the gas laws, of which there are three:

in gaseous phase
O O [} [ ] [ ] O
e O O|O0 ® ° N 5 o o
©c e o0 O © O © @ O e O
o O e 0o O o o ° o o
®¢ O O O O e ¢ ¢ O O e
@) o O [ ] @) @) o) O O ) ®
(@] [ ] O O O O O [ ) O O O
® ® Py o [ ] o [} o [ ]
O O [ ] O O
O §O O O [ ] (@] [ J
° @) @) [
@) [ J O
O O [ J o Py °
O e o °
O @® O @) [ J O
[ J [ J O
Water
in beaker
Gas molecules
in liquid phase
N.B. N.B. N.B.
InGas @=12 InLiqud @=2 InGas @=24 InLiqud @=4 InGas @=36 InLiqud @=6
0=36 0=6 __ O=24 O=4 _ 0=36 0=6
) ®) ©

Figure 2.9 e Relative pressures. The partial pressure of gases dissolved in a liquid will form the same proportions as is
found in the gases adjacent to the liquid once equilibrium has been reached (A). If the partial pressures in the
atmosphere change, the partial pressures in the liquid rapidly reach a new equilibrium as more particles will dissolve
into the liquid that evaporate away from it (or vice versa) until a new balance has been obtained (B). If the overall
pressure of the atmosphere changes, the gaseous partial pressures will all increase by the same amount and, thus, so

will the liquid partial pressures (C).
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Arterial blood Venous blood

Po, 160 mm Hg = 0.21 atm 100 mm Hg = 0.13 atm 100 mm Hg = 0.13 atm 40 mm Hg = 53 matm
Pco, 0.2 mm Hg = 26 matm 40 mm Hg = 53 matm 40 mm Hg = 53 matm 46 mm Hg = 60 matm
PHo0 0 47 mm Hg = 62 matm = 47 mm Hg = 62 matm = 47 mm Hg = 62 matm =

Boyle’s law states that the volume of a fixed
mass of a gas is inversely proportional to pressure
(if the temperature remains unchanged).

BOYLE'S LAW

Robert Boyle (1627-91), whom we have already
encountered as one of the founding members of
the Royal Society, formulated the first of the gas
laws in 1662. It was also discovered independently
by Edme Mariotte four years later and is therefore
sometimes referred to as the Boyle-Mariotte law. It
is defined as: for a fixed amount of gas kept at a
fixed temperature, pressure and volume are
inversely proportional. This can be expressed
mathematically as:

1
VocE or pV=constant="R;

As we have already defined the pressure of a gas
(the atmosphere) as being due to the number of col-
lisions of its constituent molecules against an oppos-
ing surface, it should not come as any surprise that
by doubling the volume (and thus halving the num-
ber of molecules per cubic metre), we also halve the
pressure.

By contrast, Charles’ law states that, if the pres-
sure is kept constant, the volume of a gas will be
proportional to the temperature (which, you will
recall, we are measuring in kelvin). If you imagine
a syringe with a frictionless plunger containing a
gas, then if the molecules are given more thermal
energy, they will move faster. This will mean they
hit the plunger with greater momentum and push
it backwards (thus increasing the volume), until
the pressure has returned to its previous level.

CHARLES’ LAW

Charles’ law was actually first published in 1802, but
the author Joseph Gay-Lussac cited unpublished
work by Jaques Charles (who also invented the
hydrogen balloon) dating back to 1787. It states: for
a fixed amount of gas kept at a fixed pressure,
temperature and volume are directly proportional.
This can be expressed mathematically as:

v
— =constant = R,

VT
xT or <

Having laws that cover situations whereby the
temperature and pressure are kept constant, the
third law deals with keeping the volume constant
and is known as the Gay-Lussac law. This states
that, for a fixed mass of gas at a constant volume,
the pressure is directly proportional to the (absolute)
tenperature. This can be visualized by imagining that
the syringe plunger is fixed. As the gas cannot now
expand, it hits the walls of the syringe with increasing
force (per unit area) and the pressure increases.

GAY-LUSSAC’S LAW

Sometimes known as the pressure law, in order to
differentiate it from another law formulated by the
same French chemist, Joseph Gay-Lussac
published the third gas law in 1802. It states that:
for a fixed volume of gas, temperature and pressure
are directly proportional.

This can be expressed mathematically as:

P =constant =

T Ra

pxT or
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By combining these three equations, we arrive at the  or
ideal gas equation, this states that, if we take a gaseous
system and make changes to it, then the start (s) and
end (e) states will be related as follows:

PsVs _ PeVe
Ts  Te

pVv
——- =constant
T

Learning Outcomes

If you have understood the contents of this chapter, you should now understand:
e The concepts of velocity and acceleration

* The effects of mass, momentum and force

¢ Newton’s laws and the associated equations of motion

e The relationship between energy, work, heat and temperature

e The behaviour of gases and their response to changes in pressure, volume and temperature.

CHECK YOUR EXISTING KNOWLEDGE: ANSWERS

Mark your answers using the guide below to give yourself a score:

1 Vectors: a, c, e, f, g; Scalars: b, d, h, i, j [1 each]
2 Acceleration [3]
3 | Each body continues in its state of rest or in uniform motion in a straight line unless acted on by

an external force
I The rate of change of a body’s momentum is proportional to the applied force and takes place
in the direction in which the force acts
Il For every action, there is an equal and opposite reaction [2 each]
a24ms '[3] b96m (3]
a333s[3 b3ms 23 c1125m[4] d16.7s[3]
a 15N [2] b 600 N [2]
a3000J 2] b1.25J[2]
a kelvin b joule ¢ newton d metre e kilogram f newton g joule h pascal i metres per second squared
j square metres [1 each]
9 0.4atm [2]
10 1465 K (1192°C) [2]

o ~NO O

0-39: You VW|I|:need to study thls chapter fuIIy before proceedlng, the contents represent some of
the fundamentals on WhICh your future understandlng will be based.

46



Workshoﬂp‘: AnsWers

lav=u+at

Thereforev =0 + (4 x 1.5) =6ms

1b s =ut+ }af.

Natural philosophy

1

Therefore s = (0 x 1.5) + (0.5 x 4 x 1.5

=45m
1c P =0 +2as.

Therefore V2 = 0% + (2 x 4 x 20) = 160
Therefore v = V160 = 12.7 ms ™’

1d If he is travelling at 12.7 ms™
motion for this)

CHAPTER 2

, it will take him 10/12.7 = 0.79 s (you should not need the equations of

1e Trick question! As his velocity is now constant and you calculated it in 1c, the answer is 12.7 m
1f Same procedure as 1d. 70/12.7 = 5.51 s
1g V2 = (° + 2as. At 90 m we know his velocity is 12.7 ms™"; this now becomes his initial velocity for the

last 10 m

Therefore V2 = 12.7° + (2 x =0.1 x 10) = 161.3 -2 = 159.3
Therefore v = ¥159.3 = 12.6 ms ™'

1h This needs to be calculated in three sections. For the first 20 m: v = u + at. Therefore t = (v - u)/a.

We know from 1c that, at 20 m, he is travelling at 12.7 ms

=i

Therefore t = (12.7 - 0)/4 = 3.18 s.
For the constant velocity section: (20-90 m) t = 5.51 s (1f).
For the last 10 m: t = (v — u)/a.

From 1c, u=12.7ms '; from 1g, v = 126 ms .

1

Therefore t = (12.6 - 12.7)/0.1 = -=0.1/0.1 = 1 s.
The total time taken is 3.18 + 5.51 + 1 =9.69 s . .. congratulations, you have just equalled the world record!
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CHECK YOUR EXISTING KNOWLEDGE

1 An object weighs 50 N. Using a lever, it can be moved using a force of 10 N
a What is the mechanical advantage of the lever?
b If
2 |dentify
a A wheelbarrow
b The biceps muscle moving the elbow
c A seesaw
3 A balanced seesaw has total length 4 m. A child weighing 150 N climbs on one end
a What moment do they generate?

b A second child climbs on the other end. How far from the pivot must they sit if they weigh 250 N
and wish to balance the seesaw?
4 The forearm weighs 20 N and its centre of mass acts at 0.15 m from the elbow.

a What moment does it generate if held horizontal?
b What moment does it generate if held at 45°?
c If
5 Construct diagrams to demonstrate:
a A positive bending moment
b Negative shear force
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6 What is the relationship between shear force and bending moment?
7 What is the relationship between the intrinsic shear forces and:

a The beam’s own weight
b The beam’s length

8 What is the relationship between the intrinsic bending moment and:

a The beam’s own weight
b The beam’s length
9 Which is stronger, a steel I-beam
a Why?
10 State:
a Hooke's law
b The class of material to which it applies

Levers, beams and moments

The lever is perhaps the simplest of all machines; its
existence pre-dates the wheel and is testified to by
the existence of the Pyramids and Stonehenge. “Give
me a fulcrum and a lever long enough and 1 will move
the earth,” boasted Archimedesin the 3™ century BCE.
Stone Age technology was less prosaic, but — together
with rollers and ramps — enabled the movement and
erection of blocks of stone weighing over 10 tonnes at
sites such as Stonehenge, Avebury and Carnac.

[t is important for us to understand levers, and
the mathematics associated with them: the biome-
chanics of the human body is fundamentally little
more than a series of interconnected levers.

Three elements make up a lever system: the load
(the thing that is being moved), the fulcrum (the
point around which the lever turns) and the effort
(the force used to move the lever).

Two factors define a lever. The first of these is the
mechanical advantage (MA), also known as the force
ratio. A lever is a magnifying force — the amount by
which it magnifies the force is given by the MA:

_ load
~ effort

For example, if an object weighs 30 N but the lever
allows a person to move it using just 5 N (Fig. 3.1):

30
MA= — =
A 5 6

Note: the MA does not have any units; it is, in effect, a
ratio. Of course, it is not possible to do this without a

50

trade-off, otherwise we would be getting energy for
free and violating pretty much every law of physics.
The payback comes with the fact that, although we
don’t have to push so hard, we do have to push further.
The ratio of the distance moved by the effort (Sg) to
the distance moved by the load (S;) is called the
distance ratio (DR), also known as the velocity ratio:

Se
DR= S,
If a system is 100% efficient, which, of course, is
only ever hypothetically possible, then these two
factors will balance each other out: moving the load
using the lever in Figure 3.1 will require only /4 of
the effort but the load will only move '/ of the
distance compared with the effort.

EFFICIENCY OF A SYSTEM

The fact that systems are never 100% efficient means
that these two factors can be used to calculate the
actual efficiency of a system (n):

n="%pr

This conversely means that, if we know the efficiency
of a system, we can (if we know the weight of the
object) calculate the force needed to move it given a
set lever or the size of lever/fulcrum position needed to
move it given a set force.

4

Levers come in three flavours, depending on the rel-
ative position of the elements that make up a lever
system:




Effort
Fulcrum
(A)
@
(B)

A\N\

(C)

Figure 3.1 e A lever system comprises the fever itself, which
is raised on a fulcrum around which it turns so that a force
(effort) can be used to move a load (A). If the distance from
the fulcrum to the effort in one direction is greater than the
distance from the fulcrum to the effort in the other, the effect
of the effort is magnified. This effect, called the mechanical
advantage, is calculated by dividing the load (30 N) by the
effort (5 N). In this example (B), the mechanical advantage is
6; that is, the effort is being multiplied six-fold; however,
although this enables us to lift a load six times as heavy, the
ratio of the distances from the load to the fulcrum compared
with the effort to the fulcrum wil also be 1:6 (C). This, in turn,
means that for every centimetre we want to raise the load, we
must move the other end of the lever by 6 cm - this is the
distance ratio.

First order lever

These are the type of system that most people
envisage when the word ‘lever’ is mentioned - a
crowbar moving a heavy rock is an example of a first
order lever whereby the fulcrum lies between the
effort and the load (Fig. 3.2). Other examples

Applied physics CHAPTER 3

Effort

Fulcrum

Fulcrum

(o)

Figure 3.2 e In a first order lever, the fulcrum lies between the
effort and the load (A) as is the case with a claw hammer
pulling out a nail (B). Examples of first order levers in the human
body are rare, but the action of the anterior or posterior
cervical muscle on the head, with the atlanto-occipital joint
acting as the fulcrum, comprises such a system (C).

include a children’s seesaw, pliers cutting a wire or
a claw hammer pulling out a nail.

Although this form of lever is perhaps the most
familiar, and is the most efficient for moving heavy
loads, it is not, in general, a practical arrangement
for the human body. However, the action of the
intrinsic muscles of the upper cervical spine in
moving the head either backwards or forwards
(the atlanto-occipital joints acting as the pivot) does
constitute a first order system.
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Second order lever

In this type of system, the load lies between the
effort and the fulcrum (Fig. 3.3). The most obvious
example of such an arrangement is the wheelbarrow:
the pivot is the wheel axle; the load is in the barrow
and the effort applied to the handles. Again, this
is not wusually a practical arrangement for the

Effort

i

Effort

Figure 3.3 e In a second order lever, the load lies between
the effort and the fulcrum (A). Everyday examples of this
include the classic wheelbarrow (B). Examples of second order
levers in the human body are amost non-existent; however, the
action of the gastrocnemius and soleus muscles of the calf
(which insert into the calcaneus) in raising the foot on to ‘tiptoe’
(the metatarsophalangeal joints acting as the pivot) and the
body’s centre of gravity (which lies anterior to the line of actionof
the calfmuscles)acting as the load can be said to comprise such
a system (C).
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musculoskeletal system; however, one example of a
second order system is the action of the gastrocne-
mius and soleus muscles on the foot and ankle. When
we stand on tiptoe, the load is transmitted via the
ankle joint, the pivot is the metatarsophalangeal
joints and the effort is applied via the tendinous inser-
tion of the muscles into the calcaneus (the Achilles’
tendon), which lies posterior to the ankle joint.

Third order lever

In a third order lever, we have the one remaining
permutation of load, fulcrum and effort: the effort
lies between the fulcrum and the load. This is the
system in which we are most interested as it used
to move almost every joint in the body. If we flex
our elbow to lift a pint of beer to our lips, the ful-
crum is the elbow, the load is the beer and the
effort is provided (primarily) by the insertion of
the biceps muscle into the bicipital aperneurosis,
approximately 4 cm distal to the elbow joint.

Another example of a third order lever is a pair
of tweezers: the fulcrum is the meeting point of
the two arms, the load is the object being gripped
by the two ends and the effort is provided by your
fingers squeezing together the two arms.

Muscle action

Not all muscles act directly on the bones they move to
articulate a given joint. Although most do — called
direct action — there are muscles that precipitate
movement indirectly, called indirect action. Examples
of direct action are seen all over the body: think of the
action of biceps brachialis (Fig. 3.4) as a classic exam-
ple. Some muscles, however, do not insert directly in
to the two bones that they articulate. Perhaps the best
— and most easily understood — example of this is the
action of the four quadriceps muscles, which, in this
circumstance, can be considered as a functional whole.

The quadriceps (Fig. 3.5) arise from the femur and
act to extend the knee. The muscle faces a problem,
however: if the knee is flexed, it has to somehow
‘get round the corner’. It achieves this by inserting
into the superior pole of the patella, a large sesamoid
bone that acts as a pulley, its reciprocally curved deep
surface sliding between the two condyles of the
femur. A tendon then runs from the inferior pole of
the patella to the tibial tuberosity, so that contraction
of the muscle will extend the knee: the quadriceps
move the patella; the patella moves the tibia.



Effort

@ Fulcrum

Fulcrum

Figure 3.4 e A third order lever is one in which the effort lies
between the load and the fulcrum (A). The fingers operating on
apair of tweezers to lift an object is a good example of an
everyday third order system (B). Third order levers have the
disadvantage of having a mechanical advantage of less than 1,
although the distance ratio will correspondingly be greater

than one. In the human body, this has the consequence that

a small amount of muscle contraction will cause a larger amount
of joint movement, albeit at the expense of strength. Third
order systems are widely employed in the human body, a classic
example being the action of the biceps brachialis muscle (C).
The biceps exerts a direct action between the arm and the
forearm.

Moment of inertia

The direction of pull of a muscle — called its line of
action — is an important consideration when consider-
ing the turning force created in a joint by a muscle.
This turning effect is known as a moment of inertia
(moment for short) and applied to any object that is
able to rotate about an axis such as the forearm, which
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rotates about the elbow or, in the first instance, a
door, which rotates about its hinge (Fig. 3.6).

In Figure 3.6, we see four ways in which a force
could be applied to the door and we know intui-
tively from our daily experience what will happen
if we push the door in each of the instances A-D.
Force A will not move the door as it is not generat-
ing a turning force, merely pushing the door into its
hinges. Force C will move the door with all of the
force directed in the right direction but we
all know the door will move much more easily if
we push further away from the hinge, exactly as is
the case with a lever and its fulcrum, as is the
instance with Forces B and D.

So, from this we can deduce that there are two
factors that govern the size of the turning force or
moment. The first is the distance from the pivot to
the point where the force is being applied; the sec-
ond is the direction in which the force is being
applied, the line of action. The formula from which
we can calculate a moment (I) is obtained by multi-
plying the force (F) by the perpendicular distance
(d) from the line of action of the force to the axis:

I=Fd

NOTE: Remember, however, that force is a vector
quantity and, therefore, only the component of
force perpendicular to the door need be considered.

This is best understood by reconsidering the four
examples on an individual basis. If we consider
example C (Fig. 3.7) first, we do not need to
resolve the vector of forces because all of the force
is being directed at right angles to the door. The
distance, s, from the line of action of the force
(F = 10N) is 20 cm; therefore, the moment is:

I=Fd=10x0.2=2 Nm [note the units]

In example D (Fig. 3.8), the force is again acting
perpendicularly to the door but this time the per-
pendicular distance from the line of action of the
force to the axis of rotation is 80 cm.

I=Fd=10x0.8=8 Nm

When we consider example C (Fig. 3.9), we have
a more complex situation as the calculation of the
perpendicular distance from the line of action of
the force to the pivot now requires some consider-
ation and a little bit of trigonometry. If we look at
the situation in (A), we can see the distance that
we need to calculate, d. In order to do this, we need
to construct a short series of right-angled triangles
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Figure 3.5 e In contrast to the biceps brachialis muscle, the quadriceps muscles exert an indirect force between
the thigh and the shin with the patella acting as an intermediary, enabling the muscle tendon to cope with the
biomechanical problems created by operating with the knee in flexion.

Ge—=rc—P

p———P

f

3

Axis

Door

B

V\A—/V
Figure 3.6 e Four different forces being applied to a door.
Each creates a turning force known as a moment, which can

be calculated as the product of the applied force and the
perpendicular distance from the line of action of the force to

the pivot.
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Figure 3.7 e A force of 10 N being applied at right angles to
a 1 m door at a distance of 20 cm from the axis (hinge).
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Figure 3.8 e A force of 10N being applied at right angles to
a 1 m door at a distance of 80 cm from the axis (hinge).
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Figure 3.9 e A force of 10 N being applied at 30° to a 1 m door at a distance of 80 cm from the axis (hinge) (A). In order to
calculate the moment of inertia, it is necessary to calculate the perpendicular distance from the line of action of the force to the
axis, d. To do this, we draw a vertical line from the extension of the axis of rotation and construct a second line perpendicular
to it to create three triangles I, Il and Il (B). As | and Il are exactly the same shape, we know that 8 = 30° (C). This means that
A = 180° — 30°= 150° and that, likewise, in lll y is also 30° (those of you familiar with all the rules of triangles will have spotted

this at once). Therefore d = 80 x sin 30° = 40cm. / = Fd = 10 x 0.4 = 4 Nm.

so that we can use basic trigonometry to calculate
the angles and lengths required.

If we draw a vertical line from the intersection of
d and the extension of the axis and a perpendicular
to this, which intersects F, there are now three
right-angled triangles, I, 11 and I1I.

As triangles | and II are exactly the same shape,
their internal angles must be the same and so 6 must
be 30°. As there are 180° on astraight line, this means
A must be 180°— 30° = 150°. The same principle

shows that y = 180° — 150° = 30°. This means that
we now have the ability to calculate all the dimen-
sions of triangle I11: we know it is a right-angled trian-
gle with hypotenuse of 80 cm and internal angles 90°,
30° (and, by rule of internal angles, 60°). Therefore:

d=sin30x80cm=0.5x80cm=40cm
Therefore the moment:

I=0.4x10=4Nm
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In the final example, A (Fig. 3.6), the line of action
is perpendicular to the axis; therefore, the distance
is zero:

I=Fd=0Nm

From the standpoint of the manual physician, doors
have only a limited interest: they can be closed to
allow privacy and opened to admit a patient. Let us
therefore take an example that instead relates to the
human body.

Example 1

In Figure 3.10, the biceps brachialis muscle is holding
the arm stationary against two forces, a 20 N weight
held in the hand and the weight of the forearm itself,
which is regarded as operating through its centre of
gravity. We wish to know what force the muscle
needs to generate in order to maintain this posture.
All the moments acting on a body are summative
(that is, they can be added and subtracted); however,
it is necessary to realize that those acting in a clock-
wise direction (in this case the action of the muscle)
will counter those acting in an anticlockwise direc-
tion. It is convenient to regard those moments acting
in a clockwise direction as being positive and those
acting in an anticlockwise direction as negative. This

Essential Physics for Manual Medicine

is by no means essential, so long as you make one
direction positive and the other negative, the maths
will come out right. Because this is a purely voluntary
notion, it is always a good idea to state your conven-
tion at the outset, so, in this case: clockwise = +ve.

If the arm is stationary, then the sum of the pos-
itive moments must be equal to the sum of the neg-
ative moments:

Iweight + liorearm + lbiceps =0
which can be written as:

3/=0Nm

Calculating the moments created by the mass and the
forearm weight is quite straightforward as the perpen-
dicular distance from the lines of actions of the forces
to the axis is simply the distance from the elbow at
which the forces act. In the case of the forearm’s cen-
tre of gravity, this is 12 cm; in the case of the weight
held in the hand, 20 cm (remember that these quanti-
ties will need to be converted into metres). As the
weight is given in newtons rather than kilogrammes,
it will not need to be converted; therefore:

I weight = Fuweight X dweight = =20 X 0.2= -4 Nm
Iforearm =Fforearm X dforearm =-10x0.12=-=1.2 Nm

(B)

Figure 3.10 ¢ Example 1: the biceps brachialis muscle is countering a negative
(anticlockwise) moment produced by the combined forces of the weight of the forearm -
acting through its centre of gravity — and a weight being held in the hand (A). What force is

generated by the muscle (B)?
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So:
2.tlanticlq:)ckwise = (_6 + 1.2) Nm.= -5.2 Nm

So, the anticlockwise (—ve) moment being gener-
ated by the action of the biceps brachialis muscle
is —5.2 Nm (assuming, of course, for the sake of
simplicity, that this is the only muscle involved
in flexion of the elbow). We can construct a
second diagram (B) showing the dimensions

Workshop
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pertinent to the biceps brachialis muscle. We
know that:

’biceps =Fbiceps X dbiceps

As it is the force that we are trying to calculate, we
can rearrange this as:

Fhiceps = Ibiceps = dbiceps
=-5.2 = (cos 31° x 0.07)
=-5.2+0.06=-86.7N

If your mind is reeling slightly after that or, indeed if it is not but you didn’t actually work the example through, it
would be as well to use the following example to test your skills. The answers can be found at the end of the

chapter.

Consider the following scenario:

e The centre of rotation is in the femoral condyles (A)

e The weight of the leg (= Mg) is 80N
¢ The distance, d, is 300 mm
e The leg is held horizontal and stationary

e The quadriceps muscles insert 60 mm from the centre of rotation (A) to the tibial tuberosity (B) at an angle

(@mAd) of 25°

¢ The line of action of the muscle is 75° anticlockwise from the vertical.

Question 1: Determine the moment due to the weight of the leg.
Question 2: If the person was wearing a shoe weighing 3 N and the length of the leg (distance from A to the
centre of mass of the boot) was 40 cm, what force is required by the quadriceps muscles to resist this new

moment of inertia?
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Manipulation creates moments of inertia and the
size of the moment is not just dependent upon the
force of the thrust but also on the position of the | .
hands, the contact point. The greater the distance
from the axis of rotation, the greater the moment of
inertia. This means that manipulative adjustments
are not so much dependent on the strength of the
physician but rather on their skill.

For the clinically experienced manipulator, the
adjustment itself becomes largely intuitive — the hand
position; the direction and degree of force; the decision
to use assisted or resisted techniques; the employment
of gentle, long lever releases or more specific short
lever adjustments are all arrived at by experience, the
individual patient and personal preference.

However, for the student intern, this lack of past ‘5 s>
practice on which to draw needs to be .
compensated f‘?' by a thprough grounding in the Figure 3.11 e The standard nomenclature of a cantilevered
anatomy and biomechanics of all of the body’s I-beam.

articulations and complete understanding of the
relationship between applied force and its rotational

and translational consequences body — in which we are interested. However, the

mechanics of hollow tubes are a lot more compli-

It has been estimated that the average manipulative cated than those of the solid rectangular beams used
physician — whether chiropractor, manipulative by the architects of yore, so let us begin there.

physiotherapist or osteopath — causes one iatrogenic Beams have a fairly standard nomenclature
fracture during their career, usually without significant (Fig. 3.1 ]), although you will occasionally see height,
complications. However, no reliable epidemiological h referred to as depth, d. In this example, the beam
data exist, and estimates of frequency vary between is cantilevered, that is fixed at one end. The force, F,

1:85 000 and 1:400 000 manipulations. Like many
uncommon events, they are hard to research and often
remain undiagnosed — the patient will merely report
feeling ‘sore’ for several weeks after an adjustment.

generates a turning force in the beam but, as the beam
is fixed, it cannot turn; instead, the beam can bend,
giving rise to a bending moment. A shearing force is
also generated within the beam. As with moments of

The most commonly affected bones are the ribs, inertia, these have conventions as to which direction
where fractures can remain radiologically occult, is positive and which is negative (Fig. 3.12).

and for which there is no remedial treatment. These Returning to our example, it is possible to gener-
are usually due to undiagnosed bone pathology, ate simple diagrams that show the shear force and
affecting the integrity of the underlying bone (most bending moment at any point along the length of
commonly osteoporosis but there have also been the beam (Fig. 3.13). As with moments of inertia,

cases involving osteomalacia, Paget’s disease,

i 4 multiple forces are summative.
tumours and infection).

A shear force diagram is constructed by moving
along the beam from its origin and summing the
. . forces distal to any given position. A bending
Bendlng moments and torsion moment diagram is obtained in much the same
way, except that the moment is, as we would
A beam - in engineering terms — is a long, slender expect from our previous experience with moments
structural element that can support both transverse of inertia, the sum of the product of each force (F)
and axial loads. For physical therapists, we may and its distance (x) from the origin.
admire the beams in a half-timbered mediaeval We can also consider a non-cantilevered beam
house but it is bones — the beams that support the (Fig. 3.14). Exactly the same process is employed to
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Positive bending Negative bending

Ir Ir

I ]

Positive shear Negative shear

Figure 3.12 e Sign conventions for bending moments and
shear forces in beams.

generate the diagrams, though the sign convention
will, of course, be different. In both cases, the shear
force or bending moment is calculated by determin-
ing the area of the graph at the appropriate point.
There is, however, a problem with these beams:
we have assumed that the beams themselves are
weightless. Anyone who has tried to lift a solid oak
beam of the type we are considering will know that

f,

Bending moment
F

L

Shear force

F

0

@)
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this is far from being the case. We can construct
diagrams that show the shearing force (S) and bend-
ing moment (M) generated by the weight of the
beam itself, both for cantilevered and simply sup-
ported beams, by considering the beams as still
being weightless, but now with weights at regular
intervals all along them (Fig. 3.15).

The mathematical laws by which we can calcu-
late and relate these two quantities are, unsurpris-
ingly, given that they relate to the area enclosed by
a line on a graph, governed by calculus.

dMm
ax =S
Therefore:

- IF.dx: IdS:S and'S.dx: [dM:M

To put this into English (and don't worry, you're not
going to be asked to start calculating actual forces,
it's the concept that you need to grasp):

* The shear force is equivalent to the rate of change in
the bending moment as you move along the beam

TF1+F2+F3
Bending moment
0]
F3.c
F2b
Fla
F1+F2+F3  Shearforce
F2+F3
F3
0

\\
'
/

Figure 3.13 e Shear force and bending moment diagrams for cantilevered beams with simple (A) and

complex (B) load combinations.
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Figure 3.14 ¢ Shear force and bending moment diagrams for non-cantilevered (‘simple’) beams with simple (A)

and complex (B) load combinations.

Cantilever beam

W (F/unit length)

Bending moment

WL Shear force

Figure 3.15 e The self-loading characteristics of a beam can
best be understood by considering a ‘weightless’ beam with
succession of closely packed small loads. This means we can
use calculus to determine the bending moment and shear
force at any point.
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* The areas contained in the diagrams of shear
force and bending moment are equal and opposite
¢ In addition to external forces, the intrinsic weight
of the beam also generates shear forces and bending
moments. In the case of the former, these are
directly proportional to the weight and to length of
the beam; however, the bending moment is
proportional to the squares of the weight and length.

This means that, if you double the length of,
say, a 15" century, well-seasoned oak beam, you
will also double its weight; therefore, the shearing
force will increase four-fold. However, the bending
moment will increase sixteen-fold.

Second moment of area

This brings us to the next physical property that we
need to consider. The second moment of area, I, is
a measure of how well the geometry of a beam
resists bending. It is defined as:

= [y*dA

and has units m*



As before, our understanding of this needs to be intu-
itive rather than mathematical, the implications of
this formula are that the contribution to the rigidity
of a structure by any part of it is proportional to the
integral of the square of the area’s distance from the
neutral axis (Fig. 3.16).

This leads to a very interesting phenomenon.
For those of you who thought that engineers used
[-beams (Fig. 3.17) in order to save money by
reducing the amount of steel employed in their gir-
ders and lintels, think again — an I-beam is actually
stronger than an equivalent piece of solid steel. This

y COMPRESSION
- } ___________ Neutral axis - - -
TENSION

Figure 3.16 e The second moment of area of a beam is
much more dependent of the material furthest from the
neutral axis. | = |'y? dA

L

—» w/2<T7
!
Lo

— W—>

+— W —>

Figure 3.17 e Solid beams can actually be less rigid than
their hollow, lighter, engineered counterparts.
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seems such a counterintuitive concept that it is
worth investigating a little further. The formula
for the moment of area for a solid rectangular
cross-section is given by:

I, = WH%12

If we put in some typical figures for a girder of, say,
height 0.4 m and width 0.3 m this gives a value for
I, of 0.0016 m*.

Now let us consider the I-beam. Here, we can
take away the contribution to the second moment
of area given by the ‘cut out’ sections. We should
remember though that these don’t contribute much
to the rigidity as they are close to the neutral axis of
the beam. The two crosspieces of the ‘1" by contrast
contribute much more significantly. The formula
for an I-beam is given by:

I, = (WH® -wh®)/12

Again, using typical values for w and h of 0.2 m and
0.35 m respectively, I, = 0.00088 m*. So the sec-
ond moment of area is only 55% but if we consider
what has happened to the weight of the beam, it
has decreased by a factor of 2.4. This significantly
diminishes the self-loading from the beam's own
weight; therefore, for a beam of fixed length in
the case we have just considered, the resistance to
shearing increases by 32% and the bending moment
decreases by 74%.

The same argument can be used to calculate the
second moment of area for a hollow rectangular
beam and, most importantly for us in our consider-
ation of bones, of the relative rigidities of a circular
cross-section of a solid and a hollow tube. If we put
in figures typical of, say, a human femur whereby
D = 005m and d = 0.015m, then the second
moment of area for the solid shaft is:

I, =7D%64=31x 10" "m*
Whereas for the hollow bone:

Iy =m(D*-d*)/64=3.0 x 10" 'm*
You can see that, in the case of the tube, there is
almost no difference between the values of a solid

cylinder and its hollow equivalent yet, in the exam-
ple above, the cylinder has only half the weight.

61




] cuncaLFocus

Of course, human bones are not actually hollow. The
outer layer of cortical bone, composed mainly of
calcium hydroxyapatite, its surface corrugated by
reactions to stress patterns (trabercular lines) and
ridged by the pull of the Sharpey fibres that anchor
tendons and ligaments, does contain a hollow tube;
however, this tube is packed with a lightweight
lattice of cancellous bone (Fig. 3.18).

These needle-like spicules, oriented along lines of
stress, honeycomb the internal area of bone and
support the marrow. They add to the overall strength
of the bone but, more importantly, give the brittle
cortical bone the flexibility it needs to resist loading
and shearing forces without shattering.

As ever, shape specifies function and there are five
main types of bone within the body:

Long bones are distinguished by the presence of a
longitudinal axis (diaphysis), flared ends (metaphysis)
and specifically adapted articular ending (epiphysis).
It is this shape that defines long bones rather than
their actual size — although the longest bones in the
body (the femur, tibia, fibula, humerus, ulna and

Articular cartilage

Epiphysis —— Spongy bone
Epiphyseal plate
) Red marrow cavities
Metaphysis ——
Compact bone
Medultary cavity
Endosteum
——— Yellow marrow
Diaphysis —
Periosteum
Metaphysis —

Epiphysis

N

Figure 3.18 e A longitudinal section of the right tibia showing

the relationship between compact and cancellous bone.
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radius) are long bones, so are some of the shortest,
the phalanges that form the fingers and toes.

Short bones lack this traditional appearance and
often have no obvious longitudinal axis, instead
possessing a cuboid appearance - indeed, one
short bone is actually called the cuboid (the most
lateral tarsal bone). Most short bones are found in
the tarsi of the feet and carpi of the wrist and are
often named for their distinctive shapes - the
navicular (from the Latin meaning ‘little ship’, the
same root from which we get navy) has the shape of
a boat hull; the lunate looks like the crescent moon,
from which it gets its Latin name (still recalled in the
adjectival form, lunar); the cuneiforms are wedge-
shaped (from the Latin cuneus).

Flat bones are usually broad and thin and often
have a protective rather than a load-bearing
function. Many skull bones (particularly those of the
calvarium), the scapulae (shoulder blades), sternum
(breast bone) and ribs are all examples of flat bones.

Irregular bones are often clustered together in
groups and, as the name suggests, have unusual
shapes and a variety of sizes. The facial bones and
the vertebrae that form the spine (Fig. 4.6) are good
examples of irregular bones.

Sesamoid bones often form spontaneously,
embedded in the tendons of muscles that are being
subjected to articular stresses or friction. The patella
(kneecap) is the largest of these bones — and the
only one that is universally present, although they
are common in the hallux (big toe) and occasionally
found in the thumb or fingers.

Polar moment of inertia

Having established the rules for the behaviour of
structures in bending and shearing, there is one final
stressor that we need to consider — torsion. The
ability of a geometric structure to resist twisting
forces is measure by its polar moment of inertia,
J, a property, as you might expect, closely related
to second moment of area. Indeed, the formulae
for the two are very similar; for a solid shaft:

J=nD¥32
and for a hollow one:

J==a(D*-d*) /32



Therefore exactly the same arguments apply to the
increasing importance to the torsional rigidity
provided as one moves away from the axis of rota-
tion. As with second moment of area for a cylinder,
this increased with the fourth power of the distance;
therefore a hollow shaft will have almost the same
polar moment of inertia as a solid one, but with a
fraction of the weight.

[I CLINICAL FOCUS

A little bit of mathematics quickly demonstrates
exactly why bones are hollow. Let us consider two
shafts with the same cross-sectional area, one
solid, the other hollow, in this case the femur

from the previous example whereby D, = 0.05 m
and d = 0.015 m. This has the same cross-
sectional area as a solid shaft of bone with

Ds = 0.017 m. The torsional angle, 8, is given by
the formula:

0=TL/JG

We have already defined J as the polar moment of
inertia; T is the torque, the turning force; L is the
length (for a femur we shall take this as 0.4 m); and G
is the shear modulus, a concept we shall be
exploring in more detail later in the chapter but which
for the moment can be regarded as a measure of a
given material to shear strain. For bone, the figure is
typically around 5 GPa. If we assume the femur is
subjected to a torquing force of 10 Nm:

For the solid shaft:

Js =wD?/32=8.2x10"°m*
8s =TL/JsG=(10x0.4)/(8.2 x 10~° x 5 x 10°)
=0.00975 rad = 3.5°

For the hollow shaft:

Jn =a(D}-d*)/32=6.1x10""m*
0, =TL/JpG=(10 x 0.4)/(6.1 x 10~7 x 5 x 10°%)
=0.00026 rad = 0.9°

For the same weight and expenditure of material,
the difference is that between a crippling spiral
fracture and normal function — something worth
remembering the next time you pivot on your foot to
kick a football!
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AE} DICTIONARY DEFINITION

TORQUE

Torque is a twisting force, also called the moment
of force as it produces a moment of inertia. If the
body to which it is applied is fixed, it will twist rather
than turn the body.

Centre of gravity

In our previous example of a moment of inertia act-
ing on a limb, we considered the whole mass of the
extremity to be acting through a single point - from
a mathematical standpoint, this concentration of
mass makes calculations far simpler. This imaginary
point is known as the centre of gravity, although phy-
sicists generally refer to it as centre of mass as they
also wish to consider bodies acting outside gravita-
tional fields or large cosmic bodies that exert gravi-
tational forces upon each other. When it comes to
patients, the terms are interchangeable.

In simple, homogeneous, symmetrical structures,
the location of an object’s centre of gravity may coin-
cide with the geometrical centre of the body. An asym-
metrical object composed of a variety of materials with
different densities, such as a human being, may well
have a centre of gravity located at some distance from
its geometrical centre. In some extreme cases, such as
irregularly shaped objects or hollow bodies, the centre
of gravity may occur at a point that is actually external
to the physical material, for example between the legs
of a chair or in the hollow centre of a football.

Although calculating an object’s centre of gravity
involves summation of the moments acting on the
body using integral calculus, there is (fortunately)
an easier, practical method. When an object is sus-
pended from a single point, its centre of gravity lies
directly beneath that point. Therefore, by suspend-
ing the object from three separate points and mark-
ing the vertical from those points using a plumb
line, cross-triangulation will give us the centre of
gravity (Fig. 3.19).

As this procedure can involve ethical difficulties
with humans, it is useful to note at this point that, in
the average person, the centre of gravity lies approxi-
mately 4-5 cm anterior to the second sacral tubercle.

Published tables and handbooks list the centres
of gravity for most common geometrical shapes. For
a triangular metal plate such as that depicted in
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Figure 3.19 ¢ Whenever an object is suspended from a
single point, its centre of gravity lies directly beneath that
point. Therefore, the centre of gravity, G, of an object such as
a triangle can be located by suspending the plate by a cord
attached at point A, and then by a cord attached at point B.
When suspended from A, the line AD is vertical; when
suspended from B, the line BE isvertical. The centre of gravityis
at the intersection of AD and BE. Although G can alsobe
calculated mathematically, for complex, irregular objects, the
suspension method is frequently more practical.

Figure 3.19, the calculation would involve a summa-
tion of the moments of the weights of all the particles
that make up the metal plate about point A. By equat-
ing this sum to the plate’s weight W, multiplied by
the unknown distance from the centre of gravity G
to AC, the position of G relative to AC can be deter-
mined. The summation of the moments can be
obtained easily and precisely by integral calculus.

The point G can be located by suspending the
plate by a cord attached at point A, and then by
a cord attached at C. When suspended from A,
the line AD is vertical; when suspended from
C, the line CE is vertical. The centre of gravity is
at the intersection of AD and CE. When an object
is suspended from a single point, its centre of grav-
ity lies directly beneath that point.

Instantaneous axis of rotation

When a rigid object rotates in a plane, at every
instant of time there is a point, either within that
body or at a distance from it, which does not move.
An axis perpendicular to the plane through this
point is called the instantaneous axis of rotation
(IAR). It is a concept that is more easily understood
visually than descriptively (Fig. 3.20A).
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It Instantaneous axis
*’ of rotation (IAR)

- Individual IARS
S og contained within
{ ] a locus
\\\ ... I,l

Figure 3.20 ¢ When an object such as a human vertebra
moves between two points, it rotates about an
instantaneous axis of rotation (IAR) (A). In reality, this
movement comprises an infinite number of smaller
movements, each with their own IAR (B). If enough of these
are plotted, it is possible to establish a locus that contains
all of the IARs for each possible movement in that plane.

The reason that it is termed instantaneous axis of
rotation is that, at every instant, the axis of rotation
can be different. If Figure 3.20A represents the end
points of a vertebra’s range of motion in flexion and
extension, then there exists an infinite number of
points representing every possible rotation therein.
If sufficient of these points are mapped, which can
be done using a technique known as videofluoro-
scopy, a locus of points can be formed (Fig. 3.20B)
and these represent the IARs of normal ranges of
motion. These loci alter with degenerative changes
and other pathology and are useful in understanding
both normal and abnormal motion, particularly in
the spine where the three-joint complex between
each functional spinal unit creates motion much
more complex than in single articulation —a concept
that is explored in more detail in the following
chapters.



Property of materials

There are four properties of materials in which we
are interested, demonstrated in varying degrees by
different types of material found within the human

body.

Elasticity

Elasticity is the tendency of a material to return to
its original shape once a deforming stress has been
removed. Crystalline structures, such as the calcium
hydroxyapatite from which cortical bone is made,
have only a small degree of elasticity from slip
planes, areas where atoms can slip over each other
and from edge dislocations, natural faults within
the crystal structure that can ‘give’ when stretched,
sheared or compressed. By contrast, polymeric
structures, such as the collagen from which our soft
tissues (skin, tendon, cartilage, muscle, blood ves-
sels, fascia etc.) are formed consist of long-chain
molecules. These molecules often have a degree of
curl or bend to them; application of stress will
straighten out the molecules causing them to
lengthen — in the case of elastic by up to thirteen
times its original length. When the stress is
removed, the molecule will return to its ‘natural’
shape ... and, therefore, its original length.

Truly elastic materials obey Hooke’s law, named
after the inaugural member of the Royal Society
whom we encountered in Chapter 2. This states
that, for an elastic material, the extension, x, is pro-
portional to the force applied, F:

Fax
F= kx

where k, the constant of proportionality is called
the spring or force constant.

So, for an elastic material, if we plot force against
extension, we will get a straight line whose gradient
is k. In reality, most materials only exhibit this
idealised behaviour during the first stages of
elastic deformation (Fig. 3.21). The point at which
this occurs is called the limit of proportionality
(because, beyond it, extension is no longer propor-
tional to the force applied); however, the material
still demonstrates elastic behaviour in that it will
return to its original length when the force is
removed.
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Figure 3.21 ¢ Graph of force against extension. During the
ideal elastic phase, the extension is proportional to the force
applied. When the limit of proportionality (P) is reached, this
ideal behaviour is no longer demonstrated although the
material’s deformation remains reversible up to the elastic
limit (E). After this, the material becomes plastic; further
deformation has a degree of irreversibility about it such that,
when the force is removed, there has been a degree of
permanent deformation of length OX. When the yield point (Y)
is reached, the material will continue to extend without the
application of additional force until it fails at its breaking
point (B).

Plasticity

Plasticity is the tendency for a material to suffer
permanent deformation — that is, not to return to
its original dimensions once a deforming stress has
been removed. Plastic behaviour begins once a
material has reached its elastic limit. In an ideal
plastic material, the additional deformation is all
permanent; however, few materials are ideal and
there will often be some degree of return until the
material reaches its yield point. After this, it will
continue to lengthen spontaneously until it fails at
its breaking point. You will most likely have seen
this behaviour in bubble gum, where a big blob at
the end of a thin strand will stretch away under its
own weight causing an increasingly thin connecting
strand that will eventually snap, frequently causing
the gum to land on an unsavoury surface that ren-
ders it subsequently unchewable.

Viscoelasticity

Another property that we need to consider, which
is particularly prevalent in living, organic materials,
is the tendency of constantly loaded materials to
deform elastically over time. This is known as
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viscoelasticity. With the development of modern
materials, we are all much more familiar with such
substances, which are now commonly used in ortho-
paedic mattresses and pillows. It you have ever lain
on such a mattress, you will know that it gives a
rather odd sensation: at first, the mattress seems
rather uncomfortably hard but, after a few seconds,
you feel yourself sinking into it as it deforms to your
body's shape ... that is, the heavier you are, the
greater the deformation. When you get up, it takes
a while for the dent left by your body to vanish
but again, after a few seconds, it does until the mat-
tress is again a smooth surface. This property is
demonstrated by many of the body’s soft tissues.

Creep

The final property in which we are interested is also
time-dependent, though this time is over hours, days
or years rather than seconds and minutes. Creep is
the slow deformation of a solid over a period of time
as the result of a continuous applied stress.

Stress and strain

So far in this section, we have been using the terms
‘force’ and 'stress’ as apparent synonyms; however,
they are only equivalents in certain circumstances.
Stress — another one of those words that have a very
specific meaning to physicists, different to its lay
meaning — is actually defined as the force per unit
area applied to a body. As such, its units are new-
tons per metre squared, which, as you may recall
from Chapter 1, is the definition of a Pascal (Pa).
So, in fact, the terms ‘force’ and ‘stress’ are only
synonyms when applied to either the same body
or a body with identical dimensions.

Stress may be described in a number of different
ways. Tensile stress is a deforming stress that tends
to stretch an object; compressive stress, that which
tends to shorten it. Bulk stress refers to overall
force per unit area (pressure) from the environment
surrounding an object and shear stress is that which
produces an angular deformation, the tangential
force per unit area.

In addition to the stress applied to an object, we
also need to know the amount of deformation that
has occurred. This is known as the strain and is
the fractional change in dimension produced by a
stress. In the simplest case, where the stress is
uni-dimensional (as is the case in both tensile strain
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Figure 3.22 e The effects of tensile stress. A force, F, per
unit area, A, has produced a deformation causing a change in
length, L, by AL (i.e., to a new length of L + AL).

and compressive strain) this is the simple ratio of
the change in length divided by the original length
(Fig. 3.22). There are equivalent ratios for bulk
strain (change in volume/original volume) and shear
strain (the angular displacement produced).

Moduli of elasticity

The spring constant of Hooke’s Law is of limited
value as it is unique for any given specimen and is
dependent on the dimensions of the object as well
at the material from which it is made. Of more
use is a standardized measure of the ‘stiffness’ of a
material and such a measure was defined by
Thomas Young in the early 19th century. It is after
him that the best know and most commonly used
modulus of elasticity, Young’s modulus, is named.
Young’'s modulus (E) is defined as:

tensile stress
~ tensile strain

E=(a)/(*4)

Because strain is a ratio and, as such, is dimensionless,
the units of Young's modulus are the same as for those



Steel 200
Brass 100
Aluminium 70
Glass 65
Concrete 30
Cast Iron 27
Bone 25
Nylon 20
Wood (oak)* 12
Spider silk 11
Wood (cedar)* 6
Coliagen 4
Polystyrene 3
Rubber 0.001

*along the direction of the grain

of stress, pascals. Typical values for Young's modulus
for a range of materials are given in Table 3.1.

As with stress and strain, there are other moduli
of elasticity. Compression is treated in the same
way as tension — the bulk modulus is calculated by
dividing bulk stress by bulk strain (fractional change
in volume).

The ability of a material to resist a turning force is
given by the shear modulus, G or i, (also known as
the modulus of rigidity). This is defined in terms of
the amount of rotation produced by a given stress:

G=(F/A)/tan®

CHAPTER 8

Applied physics

There is one further feature of which you need to be
aware. When most substances elongate, they also
become thinner (similarly, when they compress,
they become thicker). The degree to which this
happens is called Poisson’s ratio. As a ratio, the
quantity has no units and is quantified as the ratio
of the transverse strain to the longitudinal strain —
the proportional change in width (w) divided by
the proportional change in length ({):

op = (Aw/w) /(Al/]).

As the tendons of fusiform muscles will visibly
decrease in diameter as the force of the muscular
contraction increases, this means that we not only
have to consider the strength of the muscular
contraction but the reduction in Young’s modulus as
the force of the contraction increases and the
tendinous diameter decreases.

We must also consider that tendons and cartilage
are viscoelastic materials and, as such, respond
variably over time; therefore, their response to
loading and unloading and repetitive loading is
non-linear. For example if we consider tension of the
articular cartilage of the knee, we find that rapid,
body-weight tension increases its effective
Poisson’s ration (EPR) from typical values of 0.16
to 0.5. By comparison, typical values for steel are
0.28 and the average for aluminium compounds
is 0.33.

However, this figure continues to increase after the
loading has been removed, reaching 0.7 some

20 seconds later. It then decreases relatively slowly;
after ten minutes, the value is still 0.3 and it does not
approach its starting value again for almost half an
hour (under compression this return is achieved in
8-10 minutes).

This means that, with repetitive loading and/or
tension, the starting EPR will be higher each

time and, consequently, the effective strain will
also be greater and the effective Young’'s modulus
less.

The combination of these factors explains why
tendinous and cartilaginous injuries are most
common at the start of exercise and when the
musculoskeletal structures are fatigued and
emphasizes the importance of warm-up and
warm-down regimes in athletic training.
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Learning Outcomes

Introduce the concepts of levers, beams and moments and their application to the human body
Outline the part that bending moments, torsion and shear have to play in musculoskeletal biomechanics

Ensure that the student has an adequate knowledge of second and polar moments of area as they apply to
skeletal architecture

Differentiate between various properties of materials and synthesize these with anatomical structures within
the body

Develop the concepts of centre of gravity and instantaneous axis of rotation.

CHECK YOUR EXISTING KNOWLEDGE: ANSWERS

How to mterpret the results' ‘

OO wWN

~

™
oo o oD

a 5[2] b 50cm [2]

a 2ndclass[3] b 3rdclass[3] ¢ 1% class [3]

a B00NmMm [5] b 2.4m|[5)

a 3 Nm [5] b 2.12Nm [5] c¢ equal and opposite to b [2]

See Figure 3.13 [5 each]

The shear force is equivalent to the rate of change of the bending moment (or you have expressed this

mathematically): [F.dx = [dS =Sand [S.dx = [dM = M [5]

Directly proportional [2] b Directly proportional [2]

Moment proportional to square of weight [2]

Moment proportional to square of length (2]

The |-beam [1] b It has less preloading and only a slightly smaller moment of area [5]
Force and extension are proportional [2]

Elastic materials [2]

60—65 You have a firm grasp of the baS|c tools that you need to understand the language in this

book. As Iong as you understand any mlstakes you may have made you can move on to the
next chapter i |

40-60 AIthough you have some understandmg of the basrcs you should revise the areas in which

you scored poorly before moving on

0-40:  You will need to study this chapter in some detail in order to acquure the grounding

Work Shop Answers B

needed for future chapters

Rather that simply state the answers, it might be helpful to indicate how they were obtained, just in case you
didn't get them right . .. or were uncertain how to get them at all.

The first thing that we are required to do is to state our sign convention: clockwise = positive

Question 1

We know that the sum of moments, Z/ = O, therefore lhnuscie + Imass = O OF Imass = — Imuscie

We also know that | = Fd where F = force and d = perpendicular distance from the line of action of the
force to axis. In this case, we have already been given d, which, as the leg is being held horizontaly and
gravity is acting vertically, is 300 mm = 0.3 m

Therefore, | = Fd = 80 x 0.3 = 24 Nm
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Question 2

Applied physics

il CHAPTER 3

¢ Once again, we begin with the knowledge that the sum of moments must equal zero:

%I = 0, therefore Imyscie + lmass + lshoe = 0, or

(Imass + /shoe) = — Imuscle

e We can calculate Isnoe in exactly the same way as we just calculated /pass

lshoe =Fd =3x0.4 =1.2Nm

¢ Therefore, the total clockwise moment = 24 + 1.2 Nm = 25.2 Nm and the total anticlockwise moment

= — 252 Nm.
* Inuscie = Frdm, SO Fpdy = —
¢ To calculate dm:

cost = opposite/hypotenuse
cos40° = d,,,/600

252

Therefore d,, = 60c0s40° = 46 mm

* Fodm=—252

Therefore F,
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Chapter Four

The anatomy of physics

CHAPTER CONTENTS

Check your existing knowledge . . . . .. Al Saddle joint (sellaris) . . ... ... .. 81
The classification of joints . . . ...... 72 Condyloid joint (ellipsoid) . . . .. ... 81
Fibrousjoints . .. ............. 74 Bicondylar joint . . ........... 83
SUtUres . . . . o o 74 Structural classification . .. ... .. .. 83
Syndesmosis . . ..o 75 Ligaments . : .: ... . ce5 085 %% 83
Car[i[aginous joints _____________ 76 The classification of muscle . ... .. .. 84
Primary cartilaginous joints . . . . . . . 76 Skeletal muscle . .. .......... 84
Secondary cartilaginous joints . . . . . 76 Tendons . ................ 86
Synovialjoints . . . . ... ......... 77 Leamingoutcomes . ............ 97
Hinge joint (ginglymus) . . . ... ... 79  Check your existing knowledge:
Plane joint (gliding joint) . . . ... ... B0 ANSWEIS .. saseszrswxuyenmes 97
Pivot joint (trochoid) . . . .. ... ... 80 Bibliography . . . ... ... .. .. .. .. 98
Ball and socket joint
(spheroidal joint) . . . .. .. .. .... 81

CHECK YOUR EXISTING KNOWLEDGE

1 What is an amphiarthrosis?

Dentate, serrate and limbus are all examples of what type of joint?

3 What type of joints are the following (use functional as well as anatomical descriptors in your
answers)?

a knee (femorotibial)

b shoulder (glenohumeral)

¢ interphalangeal

d intervertebral disc

Give an example of a saddle (sellaris) joint?

How would you manage a Grade Il ligamentous sprain?

6 Which two molecules combine to give muscle its contractile strength and which other molecule is
required for this to happen?
7 Why are the following muscles so named?

a sternocleidomastoid
b flexor digitorum profundus
¢ rhomboid

N
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8 Describe the arrangement of the muscle fibres in the following types of muscle:
a Unipennate
b Strap
¢ Fusiform
Now check your answers against those given at the end of the chapter.

For example, the Greek word for ‘joint’ is arthron.
Once you know this, then understanding words
derived from this root becomes much easier:

The classification of joints

Various attempts have been made at classifying e Arthrosis is a joint (the plural is arthroses)
joints in order to bring a degree of generalization « Arthritis is inflammation of a joint, just like
from which we can gain understanding. Unfortu- appendicitis is inflammation of the appendix
nately, the different systems — often using Latin « Arthropathy is disease of a joint, just like
terminology — can intimidate the novice with a pathology means the study of disease
bewildering array of complex, unrelated, polysyl- e Arthralgia is joint pain, just like neuralgia is

labic labels.

Many anatomical terms — which naturally tend to
spill over into biomechanics - are of Latin or Greek
origin, subjects that are seldom taught in schools
today but were the universal language of the natural
philosophers who first categorized and classified the
human body.

Becoming a clinician requires you to learn a whole
new terminology of several thousand words;
however, if you can understand the etymology -
where the roots of the word come from — you will
find it far easier.

nerve pain

For thisreason, this book willregularly give the roots of
a new word to help you build your clinical vocabulary.
It also helps to invest in decent medical and English
dictionaries; that way you can understand terms rather
than having to learn them by rote.

The first thing to realize is that there are, in effect,
two ways in which you can organize joints: by their
structure or by their function. Which way you chose
largely depends on whether you are an anatomist
(structuralist) or an orthopaedist (functionalist). As a
student of manual medicine, you are, at various
times, required to be either or both and therefore
familiarity with both systems is required. Figure 4.1
summarizes these two different approaches.

il N
STRUCTURE FUNCTION
Fibrous Synarthrosis
Cartilaginous Amphiarthrosis
Synovial Diarthrosis
N g

Figure 4.1 e Structural vs functional approach to joint classification.
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In reality, there is considerable overlap between
the two systems. In a fibrous joint, two adjacent
bones are held tightly together by strong connective
tissue. Obviously, such an arrangement does not
allow for any significant movement so, functionally,
this type of joint is termed a synarthrosis, from the
Greek syn (together) and arthron (a joint). There-
fore, as a rule, fibrous joints are synarthroses.

Cranial osteopaths, craniosacral therapists and
chiropractors using cranial treatment methods
would all take issue with the standard classification
of sutural joints as ‘unmoveable’ synarthroses.
However, such a debate is really about semantics;
the amount of flexion in the cranial sutures, once
fully formed, is minimal and, in later life, becomes
still further reduced.

The significance of this movement — what might best
(to avoid misunderstanding and controversy) be
termed ‘synarthrotic cranial micro-motion’ — remains
a matter of speculation and, often heated, debate.

Other joints have cartilaginous elements to
them, an arrangement that usually allows a degree
of flexibility within the joint without free move-
ment. A joint that allows limited movement in this
way is called an amphiarthrosis, again from the
Greek (amphi, on both sides; arthron, a joint). In
general, cartilanginous joints are amphiarthroses.

Finally, joints that have a synovial capsule
(Fig. 4.2) have all the elements required for free
movement, restricted only by the joint anatomy
and the soft tissue holding elements. A joint that
is freely moveable is referred to as a diarthrosis
(Greek: dia, through; arthron, joint), although the
amount of movement can vary considerably: take,
for example, joints of the upper and lower limbs.
In a quadrupedal animal, there is relatively little
difference between the joints of the fore and hind
limbs. In humans, although the template is the
same, the joints of the lower extremity are much less
flexible but able to bear the weight of the body;
the joints of the upper limb allow a remarkable
degree of dexterity, but at the expense of stability —
try walking on your hands or writing with your toes!

This is the trade-off that must always be made:
high mobility equals low stability; high stability

CHAPTER 4

Periosteum

Articular
(hyaline)
cartilage

Synovial
(joint)
cavity

Fibrous
capsule

Synovial
membrane

Synovial
fluid

Figure 4.2 ¢ Components of a synovial joint.

equals low mobility. It is at the extremes that these
classifications start to become blurred: at what
point do you differentiate ‘some movement’ from
‘free movement? How little movement is ‘no move-
ment? In practice, an intervertebral disc (a cartilag-
inous joint) has more movement than the proximal
joint between the tibia and fibula (a synovial joint);
craniopaths would disagree that cranial sutures are
immobile. As ever, when you try to classify some-
thing, there will be exceptions that do not fit the
generalizations; as ever, it is always best to know
the rules and then understand the exceptions.

Although you might assume that the number of
joints in the adult human body is fixed (at 360), this is
not the case. The manual physician needs to be
aware that up to one patient in 20 will have been
born with extra or fewer joints than normal. This is
particularly true in and around the vertebral column
and spinal manipulative therapists need to be
cognisant with the biomechanical implications and
consequences of this.

See Table 4.1 for common causes of extra or fewer
joints.
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‘Table 4.1 Common causes of extra and fewer joints

Extra joints Fewer joints

e Sacral lumbarization e Lumbar sacralization
e Spinal accessory joints e (Costotransverse fusion
e Supernumerary ribs e Congenital block

e Polydactyly vertebrae

e Luschka’s rib e Syndactyly

e Psuedoarthroses e Srb’s anomaly

e Sesamoid bones e Agenesis

Fibrous joints

The most consistent feature of fibrous joints is the
absence of a joint space; any cavity between the
two articulating bones tends to be filled with fibrous
connective tissue. There are three types of fibrous
joint found in the human body:

Sutures

Found between the bones of the skull, sutures show
significant change throughout a lifetime. In infants,
the bones of the skull do not make contact with
each other and the dura mater, the outer lining of
the brain, is directly palpable in the gaps between
the bones. These gaps are called fontanelles. The
most prominent of these is the anterior fontanelle
(Fig. 4.3), bounded by the frontal and parietal
bones. This fontanelle (the ‘soft spot’) has gone by
the age of 24 months and, by the age of 6-7 years,

Figure 4.3 ¢ A model of an infant skull demonstrating the
anterior fontanelle.
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the cranial sutures are, for the most part, united.
From the third decade onwards, the fibrous inter-
osseous tissue starts to ossify, forming an osseous
union of the adjacent bones known as a synostosis
(Greek: syn, together; osteon, bone).

S
Al U DICTIONARY DEFINITION

FONTANELLE

The word fontanelle comes from the French meaning
little fountain. The most probable agetiology for the
word is from cases where the intracranial pressure
was raised from, say, hydrocephalus. The
fontanelles would therefore bulge and, if they burst,
either accidentally or as part of treatment, blood and
cerebrospinal fluid would spurt out in a fountain.
There is more than one type of suture;
unfortunately, there is no official agreement as to
their classification. However, the system detailed
below offers the best understanding as to the types
of sutural joint that have been identified.

True sutures

With ‘true’ sutures, margins of opposing bone are

connected by a series of interlocking processes and

indentations that fit together like a jigsaw puzzle.

* Dentate sutures
Deep interdigitations, similar to meshing cogs.
Examples include the sagittal suture.

* Serrate sutures
Fine, tooth-like, serrated interdigitations,
similar to interlocking combs. Examples
include the metopic suture.

* Limbus sutures
These complex sutures are best understood by
breaking down the articulation between
two bones into thirds. In the first third, bone A
will overly bone B; in the last third, bone B will
overly bone A, and in the middle third, the
two bones interlock. Examples include the
lamboid and coronal sutures.

False sutures

Not all opposing cranial bones lock together; some
merely lie adjacent to each other with the sum of
the articulation being the interosseous fibrous
attachment. Such joints are therefore generally less
rigid than true sutures. There are two types of false
suture:



° Squamous sutures
O The bevelled edges of the articulating bones
overly each other. Examples include the
temporoparietal suture.

* Plane sutures

O The flat edges of the bone do not overlap but
instead buttress each other. Examples include
the joint between the two maxillae.

Schindylesis

This Greek word means ‘cleft’ or ‘fissure’ which
accurately describes the union of a ridged bony prom-
inence with a similarly shaped cleft. A good example
of this is the way in which the triangular rostrum of
the sphenoid locks into the alae of the vomer.

Clinical conditions can arise when sutures

close prematurely. If the coronal suture closes early,
it will not allow further anteroposterior skull
development and there will be compensatory lateral
growth; this is termed brachycephaly. If the sagittal
suture closes early, the converse is true and an
elongated head is called dolichocephaly. Early
closure of the metopic suture between the two
frontal bones leads to a cone-shaped forehead,
trigonocephaly.

Unilateral closure of a paired suture causes

cranial asymmetry known as plagiocephaly.
Depending on how early closure occurs and how
many sutures are involved, a child can be left with a
reduced cranium, microcephaly, with mental
retardation and other cranial disorders (epilepsy,
nerve palsies etc.) from compression of neurological
structures.

The most common failure of closure is the midline
of the palate (palatines and/or maxillae) causing a
cleft palate. In cleidocranial dysplasia, there is
general midline failure, usually including failure of
sutural closure, clavicular agenesis, spinal changes
and pubic symphysis defects as well as digital
hypoplasia and shortness of stature.

Peg and socket

The correct anatomical term for a peg and socket
joint is a gomphosis (Greek: gomphos, a bolt). The
only place in the human body where such joints
are found is the insertion of the roots of the teeth
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Figure 4.4 ¢ A peg and socket joint (Jomphosis).

into the sockets (alveoli) of the jaw (mandible and
maxilla). The details of this arrangement are shown
below (Fig. 4.4).

Syndesmosis

In this type of fibrous joint, two bones are united by a
sheet of fibrous tissue. The term syndesmosis again
has Greek origins: syn means together; desmos, a bond.
It is at this point that the relationship between fibrous
joints and synarthroses begins to break down. Some
syndesmoses are aimed at giving rigidity: for example,
the interosseous membrane between the tibia and
fibula forms, in the ankle, part of the mortice into
which the tenon of the talus fits (Fig. 4.5). If this were
not solidly immobile, then it would be impossible to
stand - the talus would simply separate the two bones
above it and slide upwards towards the knee!

By contrast, the equivalent membrane between
the ulna and radius allows the two bones to supinate
and pronate — over 180° of movement! The degree
of movement is dependent on a number of factors:
the distance between the bones, the angle of inser-
tion of the membrane and the flexibility of the
membrane itself. Despite the mobility of the
radio-ulnar syndesmosis, it is still strong enough to
act as an anchor point for the tendinous insertions
of several forearm muscles.
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Figure 4.5 ¢ Schematic diagram of the ankle joint: the
interosseous membrane renders the distal talofibular joint a
syndesmosis.

Cartilaginous joints

As suggested by the name, these joints are united by
cartilage rather than by fibrous matter. As with
fibrous joints, you will discover that there are sev-
eral ways in which these joints can be classified;
however, once you can understand the terminology,
which system you decide to use then becomes a
matter of informed choice.

Primary cartilaginous joints

These joints, mainly found in the immature skeleton,
are also known as synchondroses (Greek: syn,
together; khondros, cartilage). In order for a long
bone to grow, the shaft of the bone (diaphysis from
Greek: dia meaning through; phyesthai, to grow,
therefore ‘to grow through’) and the end of the bone
(epiphysis: as above but epi meaning upon, therefore
‘to grow upon’) are united by the epiphyseal growth
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Figure 4.6 o In this x-ray of a child, the growth plates are
clearly evident Unlike bone, cartilage is radiolucent; therefore,
the femoral heads and bones of the pelvis appear to be

floating in space, the interconnecting cartilage growth plates

are radiologically invisible. Image reproduced courtesy of Michelle
Wessely, IFEC, France.

plate, which allows an actively growing zone in which
a cartilaginous template ossifies to allow bone expan-
sion (Fig. 4.6). When full growth is achieved, the
growth plate also ossifies, forming a synostosis and
uniting the bone.

Secondary cartilaginous joints

By contrast, secondary cartilaginous joints are
amphiarthrotic, allowing a biomechanically signifi-
cant amount of movement. In these joints, which
are more commonly called sympheses (Greek syn,
together; phyesthai, to grow), we also see, for the
first time, the appearance of hyaline cartilage, lining
the articular surfaces of bone. This cartilage can
either be continuous, as it is in the joint between
the sternum and manubrium, or it can be inter-
rupted by articular discs, as is the case in the ante-
rior intervertebral joints of the spine (Fig. 4.7) and
the pubic symphysis (Fig. 4.8).

Sympheses are all found in the midline and are, for
the most part, confined to the axial skeleton.
Although more concerned with the transmission of
forces than with movement, they are still prone to
the types of injury that are frequently seen by
manual physicians.
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Invertebral In reality, the disc, which can be regarded as a
foramen nucleus of glycoproteins contained within concentric

rings of fibrocartilage (called ‘annular fibres’ because
Pedicle of Vertebral of their resemblance to annular tree rings), slips
upper vertebra body nowhere. Rather, damage to the annular fibres

(Grade 1) can allow the nucleus to track outwards

forming a bulge (Grade Il) or hemiating into the spinal
Nucleus column causing damage either to a single nerve root
pulposus (Grade I, Fig. 4.9) or to the spinal cord and/or
A | multiple nerve roots (Grade IV).
nvertebral

({((w]]])
N

Superior disc
articular

process

Because the spinal cord stops growing before the
Annular axial skeleton is mature, it finishes at the level of
fiores L2/L3 and the lower nerve roots hang down like a
horse’s tail, in Latin cauda equina, before exiting the
spine at the appropriate level. Compression of
these can cut off the nerve supply to the legs,
bladder and lower bowel, causing paralysis and
incontinence, and requiring urgent decompressive

Inferior surgery.
articular process

Pedicle of
lower vertebra

Spinous process

Figure 4.7 o A functional spinal unit showing the SynOViaI jOints
intervertebral disc and facet (zygoapophyseal) joints. The
discis an example of a secondary cartilaginous joint and is

amphiarthrotic, being primarily concemed in distributing the The commonest joints in the body — and the ones,
forces associated with weight bearing; the facet joints are generally, of most interest to the manual physician —
plane (gliding joints) and their combined diarthrotic motion are the freely moveable (diarthrotic) synovial joints.

allows considerable movement within the spinal column. The components that make up a synovial joint are

detailed in Figure 4.2. As with cartilaginous joints,
the bone of the articular surfaces is lined with a
smooth coating of hyaline cartilage (except in the
temporomandibular joint, the sternoclavicular and
the acromioclavicular joint where the articular sur-
faces are covered with dense fibrous tissue instead).
Here, however, the similarity stops.

Pubicum superius

Cavitas
symphysialis
Discus ) )
interpubicus SYNOVIUM
) The term synovium was introduced by the 16" century
Arcuatum pubis .
physician, Paracelsus (bom Theophrastus Bombastus
Figure 4.8 ¢ The pelvis showing key features of the pubic von Hoenheim), whose abilities in other fields have
symphysis. since been eclipsed by his reputation as an alchemist.

Although some sources regard the coinage of the
word as arbitrary, it is possible that it comes from a
hybridization of the Greek word syn, with and the Latin,
ovum meaning egg. Synovial fluid is clear but has a
higher viscosity than water and it has been suggested

The commonest injury to a secondary cartilaginous that Paracelsus thought that it resembled egg white
joint — and one that is often treated by chiropractors, (albumen).
physiotherapists and osteopaths - is a ‘slipped disc’. % P
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Figure 4.9 e Because discs are not visualized on plain film x-ray (A), magnetic resonance (MR)
imaging is the modality of choice to assess damage to discs. (B) A sagittal T1-weighted MR image
shows a disc extrusion on the left at L5 (arrow). (C) A T1-weighted axial image and (D), a T2-weighted
sagittal image, demonstrate that the large paracentral extrusion is occluding the left lateral recess and
compressing the anterior aspect of the thecal sac (arrows). The disc has also lost some of its

height. Image reproduced courtesy of Michelle Wessely, IFEC, France ) Clinical Chiropractic, 2006.

The key feature of a synovial articulation is the
joint space (in reality, more a potential than an
actual space, particularly when weight bearing).
Unlike the two classes of joints that we have previ-
ously examined, there is no connecting tissue
between the two (or more) bones involved in a
synovial joint. Instead, the joint is contained with
a ligamentous capsule, the interior surface of which
has cells that secrete synovial fluid, which acts to
lubricate the joint’s surfaces and allows them to
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glide smoothly across each other. As a consequence,
most synovial joints have considerably more move-
ment than their fibrous and cartilaginous counter-
parts and are thus classified as diarthrodial. Their
movement is restricted by the anatomical para-
meters of the joint, the supporting ligaments and
the biomechanical limitations of the articulating
muscles.

The major classification system for synovial
joints is based on the anatomical relationship



between the two articulating surfaces. This is
useful for the clinician because, as we shall see
later, there are rules of movement associated
with these different types of joint that have clin-
ical implications. Unfortunately, you will see a
variety of terms used to describe each type of
joint. In this text, the descriptive English terms
will be used (as they are much easier to remem-
ber and actually tell you something about the
joint — much as ‘peg and socket’ is a more useful
term than ‘gomphosis’), although the variants
that you may discover in other sources are also
given. The classification of synovial joints, with
examples of each type, is detailed below and
summarized in Table 4.2.

Hinge joint (ginglymus)

The simplest and, most probably, the easiest type
of synovial joint to understand, the hinge joint or
ginglymus (Greek: ginglymos, a hinge) is also the
second most common in the body - all you have
to do is to use a finger to beckon and you will
understand why: the interphalangeal joints of the
fingers and toes are all simple hinge joints.

In a hinge joint, the articulating bones act, as the
name suggests, in the same manner as the hinge of a

(B)

Hinge (Ginglymus)  Interphalangeal joints
Elbow (compound)
Plane (Gliding) Zygoapophyseal joints
Acromioclavicular (complex)
Pivot (Trochoid) Proximal radio-ulnar joint |
Atlanto-odontoid joint
Ball & (Spheroidal)  Hip.
socket ~ Shoulder (humeroscapular joint)
Saddle (Sellaris) | 1?‘ rhetacarpophalangeal joint
Sternoclavicular joint
Condyloid  (Ellipsoid) Radiocarpal (compound)
2" _ 5™ metacarpophalangeal
joints
Bicondylar  (Condylar) Knee (complex, compound)

Temporomandibular (complex,
compound)

door, allowing the joint to move from extension
(straight) to a flexed position that is usually limited
by approximation of the soft tissues on the flexor
surfaces (Fig. 4.10). Sideways motion is precluded

Trochlear
notch

Olecraron
process

Figure 4.10 e A hinge joint (ginglymus). A schematic representation (A) and anatomical example,

the elbow (humero-ulnar joint) (B).
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by strong collateral ligaments, which are usually
continuous with the joint capsule.

In reality, the motion of these joints is slightly
more complex than a simple mechanical hinge as
we shall see later.

Plane joint (gliding joint)

A plane joint is no more than a simple apposition of
two flat surfaces whereby the articular surfaces slide
over each other in order to facilitate a, normally
small, amount of movement. This movement is often
limited by strong ligaments — as is the case in the
intracarpal and intratarsal joints, which are, effec-
tively, amphiarthroses — and, even was it not, the sur-
faces are unable to slide far in opposing directions
without becoming disassociated.

Although it is easiest at this stage to regard the sur-
faces of plane joints to be flat, in reality most have slight
curvatures that affect and modify the dynamics of the
joints. Plane joints are the most common synovial joints
found in the human body: the majority of intervertebral
joints are plane joints (Fig. 4.7), as are those found
between the bones of the ankle (tarsi) and wrist (carpi).

[] CLINICAL FOCUS

The biomechanical disadvantage of a gliding joint is
that only its supporting ligaments provide its strength;
there is frequently no anatomical limitation to its
movement. As a result, partial or full dislocation of
such a joint is almost invariably unstable and will
require surgical intervention (Fig. 4.11).

(A)

(B)

Essential Physics for Manual Medicine

Figure 4.11 e There is partial disassociation of one of the
articular facets of C6-C7 (rectangles) with a resultant increase
in the interspinous distance owing to the forward tilt of the
‘perched’ vertebra (arrow line). The forward position of C6 in
relation to C7 is also clearly seen (lines). Also visible is a
fracture line involving the spinous process and lamina of C6
(arrows). Image reproduced courtesy of Michelle Wessely, IFEC,
France ic Clinical Chiropractic, 2006.

For spinal manipulators, it is particularly important to
identify such injuries as adjustment to ‘perched
facet’ syndrome or to a dislocated spine could have
catastrophic consequences.

Pivot joint (trochoid)

By comparison, the pivot joint is highly specialized,
complex and uncommon. As can be seen from the
schematic (Fig. 4.12), a cylindrical projection of bone

Figure 4.12 ¢ A pivot (trochoid) joint. A schematic representation (A) and anatomical example, the

atlanto-odontoid joint (B).

80



is held against a concave opposing surface by means
of a robust ligament. This arrangement allows for
maximum rotation with a minimum of translation.

Examples of pivot joints include the proximal
radio-ulnar joint and the joint between the atlas
and the dens (odontoid process) of the axis.

Ball and socket joint
(spheroidal joint)

These highly mobile joints — the body’s equivalent
to the universal joint — consist of an (almost) round
‘ball’ that sits in a hollow socket (Figure 4.13). The
two most obvious examples are the shoulder and
hip.

Saddle joint (sellaris)

The way in which a saddle joint articulates is far
easier to understand when visualized (Fig. 4.14)
than when described; however, technically the joint
consists of two concavo-convex surfaces with the
direction of maximum concavity occurring at right
angles to the direction of maximum convexity.
The concavity of the larger surface is opposed to

The anatomy of physics CHAPTER 4

the convexity of the smaller surface and the concav-
ity of the smaller to the convexity of the larger.

In order to hold this image in your mind, imagine
two horse riding saddles. If you were to turn the sec-
ond saddle upside-down and turn it through 90° and
then place it on top of the first saddle, then you would
have a good approximation both of the appearance of
the joint and the way in which it functions, although
this is dealt with in greater detail later in this chapter.

Saddle joints are relatively uncommon; the clas-
sic example usually given is the joint between the
first metacarpal and the trapezium, although the
calcaneocuboid and ankle are also sellar joints.

Condyloid joint (ellipsoid)

The easiest way to appreciate a condyloid joint is to
think of a shallow ball and socket joint where the
two surfaces are oval rather than round (Fig. 4.15).
Because of the oval (or ellipsoidal) shape of the
joint, the rotational aspect of the joint's movement
is very much more restricted that it is in a ball and
socket joint; this is discussed in great detail later
on. The wrist joint between the ulna and radius dis-
tally and lunate and scaphoid proximally is an exam-
ple of a condyloid joint.

Acetabulum

Head of
femur

Figure 4.13 e A ball and socket (spheroidal) joint. A schematic representation (A) and

anatomical example, the iliofemoral joint (B).
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1st Metacarpal

Trapezium

® ®
Figure 4.14 « A saddle joint (sellaris). A schematic representation (A) and anatomical example,
the first carpometacarpal joint (B).

Scaphoid

Lunate

Ulna Radius

(A) B

Figure 4.15 ¢ A condylar joint (ellipsoid). A schematic representation (A) and anatomical example,
the radiocarpal joint (B).



Bicondylar joint

Many anatomical and even biomechanical texts do
not include this classification of synovial joint, pre-
ferring to lump the knee and the jaw (temporoman-
dibular joint) in with hinge joints. However, because
these joints have convex condyles (knuckles) articu-
lating with flat or slightly concave surfaces, they are
anatomically quite distinct from hinge joints and —
to a manual therapist — their biomechanical function
is also quite different; therefore, it is essential that
the distinction be made between the two. Bicondy-
lar joints are further complicated by the presence of
fibrocartilaginous structures (menisci) within the
joint capsule.

Structural classification

In addition to the classification system above, there
is a secondary system for classifying synovial joints.
The two systems are used in conjunction rather than
being opposing systems. As we have seen from the
examples above, most synovial joints are the simple
approximation of two bones with the features typi-
cal to such an articulation: fibrous capsule; ligamen-
tous support; synovial membrane and fluid; articular
cartilage. These joints, without any complicating
features, are called simple joints.

If the joint contains additional features, such as
an articular disc or a meniscus, then it is said to be
complex. The acromioclavicular joint, which often
contains a rudimentary disc, is an example of a com-
plex synovial joint.

If the articulation involves more than two bones
(or one of the bones has more than one articular
process), it is termed a compound joint. The ankle
joint (Fig. 4.5) and the wrist (Fig. 4.15) are exam-
ples of compound joints.

It should be noted that joints can be both com-
pound and complex. The knee is an example of
such a joint. Although only two bones are involved,
the femur has two separate condyles making it
compound and the menisci qualify it as a complex
joint.

Ligaments

Ligaments are often represented as the internal struts
that give biomechanical rigidity to otherwise floppy
joints; however, this is both an over-representation
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of the intrinsic strength of most ligaments and an
over-simplification of the way in which joints gain
their stability.

Although we have seen that this can be the case
in some joints where there is unidirectional instabil-
ity, such as plane joints, these joints are generally
small, as are the muscles that move them (if any;
several tarsi and carpi only move as part of a larger
functional unit). Although ligaments yield little to
tension, they are pliant and do not resist normal
joint movement; they are designed to help check
abnormal or excessive movements. However, the
way in which they do this is only partly through
their intrinsic strength; indeed, if the stability of
larger, more powerful joints was dependent only
upon the strength of their ligaments, they would
have to be so bulky and cumbersome that the joints
would become unwieldy and so restricted in move-
ment as to be useless.

Instead, joints gain their stability in part from
their shape and angulation and, in the case of com-
plex joints, from the additional structures within,
such as the menisci (‘cartilages’) of the knee
and, in part, from an additional feature of ligaments,
without which many of them would snap every time
your body was subjected to physical stress.

Obviously, this does not happen and the reason is
because the ligament has within it nerve endings
that are sensitive to stretch. As the ligament tight-
ens, these mechanoreceptors increase their firing
activity sending fast signals to the brain. In part
(and together with the information from Golgi ten-
don organs, see below), this endows the body with a
highly useful sense: proprioception, or the ability to
know where our body is in space. Without this
sense, not only would you not be able to put your
finger on your nose with your eyes shut, but you
would also find walking impossible without staring
intently at your feet and, even then, you would tend
to lurch as if you were drunk.

In addition we have a complex array of neuro-
muscular reflexes, which provide our joints with
much of their stability. If, say, you start to turn over
on your ankle, the information from the ligaments
on the outside of the ankle cause the ankle’s ever-
tors to reflexively contract and help pull the ankle
straight again, thus preventing a sprain.

The classification of ligaments is easy: they are
either intrinsic, a thickening or condensation of
the synovial joint capsule; extrinsic, separate from
the joint capsule; or, occasionally, a mixture of
the two. The nomenclature of ligaments is now,
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mercifully, a much more simple matter than once it
was and a good reason for ensuring your anatomy
and biomechanics texts are relatively modern. Until
quite recently, ligaments frequently had eponymous
names — such as the ‘Y'-shaped ligament of Bigalow
or the ligament of Struthers — which often varied
from one part of the world to another and told
you nothing about the ligament except the name
of the anatomist who discovered it or the surgeon
who first found out how to sew it back together
again. Now, all ligaments are named for their attach-
ments with modifiers (anterior, superior, medial
etc.) where confusion might otherwise arise.

B ]

Injury to a ligament (a sprain) is graded according to

severity:

e A Grade | sprain consists of damage to the
microfibres of the ligament with no obvious
visible deficiency

e A Grade Il sprain involves a tear of partial
thickness; the ligament still has some residual
integrity — the severity of the condition, and its
recovery, is dependent on the proportion of
damaged to undamaged fibres

e A Grade lll sprain involves a complete rupture of
the ligament, which will require surgical
reattachment (if possible or appropriate)

Such injuries usually benefit from rehabilitation once

biomechanical integrity has been re-established.

This will involve treatment not merely to the ligament

but retraining of the nerves and their stabilizing

reflexes and well as the joint and its associated
muscles

The classification of muscle

Muscles consist of fibres, which are actually individ-
ual cells called myocytes (Greek: myos, muscle;
kytos, hollow). These are grouped together into
the fasciculi (Latin: fascis, bundle) that, in turn,
make up muscle sections that are compartmenta-
lized by containing fascia. The individual cells con-
tain myofibrils (approximately Tpm in diameter)
that can be thought of as very thin ribbons. These
ribbons are, in turn, made up of myofilaments,
interlocking strands of actin and myosin that are
the powerhouse of muscles (Fig. 4.16).
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It is important to remember that the number of
cells we have is fixed early in life. When we ‘bulk
up’ at the gym we are not increasing the number
of myocytes; rather, we are increasing the number
of myofilaments, enlarging the muscle fibres and
thus allowing more powerful contractile forces of
100 Wkg ! or more to be generated.

In smooth muscle, which is typically found in
visceral structures such as the gut wall, where its
slow, peristaltic contractions move food along the
alimentary tract, the actin and myosin are not
organized in any particular manner. In other parts
of the body, however, they form regular, repeating
units that, under the microscope, form stripes or
bands called striations. This type of muscle is thus
called striated muscle.

There are two types of striated muscle. Cardiac
muscle is found only in and around the heart and is
peculiar in generating its own intrinsic contractile
impulses and for its resistance to fatigue — a heart will
beat, on average, once per second for the whole of your
life without pausing for rest. However, the heart, and
its muscular structure, is only of interest to the manual
therapist when its function impinges on treatment and
is the province of physiology and pathology textbooks.
Skeletal muscle by contrast, is a matter of the keenest
interest for those involved in manual medicine.

It should be noted that some sources call smooth
muscle ‘involuntary’ (its actions are controlled by
the autonomic nervous system and are not ordinarily
under conscious control) and skeletal muscle ‘volun-
tary’. These terms are misleading, although much
skeletal motion is under our conscious control, there
is plenty (breathing, blinking etc.) that is not.

Skeletal muscle

Most of the muscle in the body is skeletal muscle; in
fact, the average human body comprises 43% of the
stuff! The function of muscles is intimately related
to that of joints, so much so that, from a clinical
standpoint, it is almost pointless to separate them.
A dysfunctional joint will develop dysfunctional
muscles; dysfunctional muscles will cause a dys-
functional joint — and both require optimal neuro-
logical control, adequate vascular supply and
unimpeded lymphatic drainage to work properly.
Understanding this is what (in part) is meant by
taking an holistic approach (we shall discuss one of
the other parts under kinematic chains in the next
chapter).
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Whole muscle

Bundle of fibres

Cell (muscle fibre)

Myofibri

filament filament

Figure 4.16 e The structure of skeletal muscle.

Having already looked at the way in which joints  of joint — there are also further sub-classifications of
are organized, it will come as little surprise to learn  skeletal muscles and these can be by the way they
that similar classifications exist for muscle: we have attach themselves, by the way in which they receive
already seen that there are different types of muscle, their vascular supply or by their shape, which is
in much the same way that there are different types intrinsically linked to their function.
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Tendons

Most skeletal muscles move joints. The forces that
they develop are transferred to bones, occasionally
by means of aponeuroses or fascia, but primarily
via tendons. These take the form of straps or cords,
usually of round or oval cross section. Made of type
I collagen — which has sufficient elasticity to allow
the tendon to stretch by up to 6% of its length
without damage - tendons are continuous with
the muscle fasciculi at one end whilst, at the other,
they send down deep anchoring Sharpey fibres into
the periosteum and cortex of the bone. If the ten-
don is particularly long, or has to bypass other struc-
tures, it travels through synovial sheaths, as is the
case with many of the muscles of the hands and
feet, which are located in the forearm and leg (if
you use your fingers to pretend to play the piano,
you can see these synovial sheaths moving under

the skin of the back of the hand).

Although synovial sheaths protect tendons from
damage and help lubricate them to ease their
sometimes lengthy and tortuous passage, they are
not without problems. Trauma, repetitive strain or
other pathological factors can often lead to
inflammation within the tendon and a vicious circle
develops: the inflammation causes swelling, the
swelling causes the tendon to rub against the
sheath, the rubbing causes inflammation ... and
so on.

This condition is known as stenosing tenosynovitis
(a bit of a mouthful, but stenosis means narrowing;
tenosynovitis is a compound word: (Greek)

tenon, tendon; synovitis, inflammation of a synovial
membrane). The commonest site for this

condition, which can often be very resistant to
treatment, is in the tendons of abductor policis
longus and extensor policis brevis - the

tendons share a common sheath. The condition

is known eponymically as de Quervain’s

disease.

Where the tendinous attachment is broad-based
like a sheet, it is termed an aponeurosis. These
types of tendon often don’t attach to bone but
instead anchor into interosseous membranes or
broad, fibrous bands known as raphés.
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Nerve supply

Tendons appear white because their vascular supply
is sparse; however, they are rich in sensory nerve
endings, primarily Golgi tendon organs, which
transmit proprioceptive information to the brain to
augment that from muscle spindles. The efferent
nerves to muscles run to the neuromuscular junc-
tion, where the a-motor neuron reaches the muscle
fibre. Several short fibres are given off, ending in
elliptical areas called the motor end plate. In mus-
cles where fine control is required, such as the mus-
cles of the hands and fingers, only a few myocytes
are served by a single axon; in large, powerful mus-
cles, several hundred fibres will be served, a more
economical arrangement but one that leads to
coarser control. The motor neurone, and the fibres
it controls, is called a motor unit. When an action
potential is propagated along the axon, it causes
the muscle to contract.

Physiology

Muscle contraction is, at the molecular level, an
extraordinary and fascinating phenomenon involving
double-hinged molecular cross-bridges between the
myofilaments of actin and myosin (Fig. 4.17). When
muscle is relaxed, the cross-bridges are detached,;
during contraction, they attach and the necks of
the cocked heads pivot on their hinges providing

Actin molecules

Myosin molecules

Actin advances

SSignectiscects
Q

TR

Myosin recoils

Figure 4.17 e The action of myosin and actin
molecules, producing contractile forces in muscles.



the power stroke that moves the two myofilaments
in relation to each other and shortens the muscle.
The energy for these actions comes from splitting
adenosine triphosphate (ATP). Shortage of ATP
means that the myosin is unable to detach from
the actin, causing cramp - it is also the mechanism
that causes rigor mortis in death.

With regard to muscle, the term ‘relaxed’ is a relative
one; even at rest, a muscle has some degree of
contractile force — this is what ‘muscle tone’ is, the
amount of contraction in a muscle when it is not being
used. Only if the nerve to a muscle is severed — or
damaged in a disease such as poliomyelitis — will the
muscle become truly flaccid (and completely
paralysed). Without any neurological input to maintain
tone, the muscle will quickly start to waste away.

A certain amount of ATP is stored in muscle cells
and, once this is exhausted, the mitochondria of
the muscle cells can oxidise creatine phosphate,
fatty acids and glucose to produce more ATP.
Because oxygen is required for these metabolic pro-
cesses, they are termed aerobic (Greek: aer, air;
bios, life). During prolonged, vigorous exercise, the
blood cannot supply oxygen fast enough and the
cells have to rely on anaerobic metabolism of glu-
cose and glycogen to rapidly supply ATP. Although
rapid, the process is much less efficient, producing
much less ATP per molecule and making the
unwanted waste product, lactic acid. It is this chem-
ical that makes muscles feel ‘stiff’ after unaccus-
tomed exercise.

Vascular supply

The way in which a muscle receives its blood supply
has important implications for both its function — as
we have just seen above — and, in cases of injury, its
rate of healing. This is particularly true in older
patients who may have a compromised vascular sys-
tem; this can lead to areas that are relatively avascu-
lar that can be resistant to healing. The arterial
supply to muscle can be classified into five basic
mechanisms given, with examples, in Table 4.3.
The venous drainage has approximately the same
territories as the arterial supply. It is known that an
important factor in venous drainage is the pressure
exerted on the walls of the vein by contraction of
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the muscle surrounding it; another reason why
mobilization and appropriate usage of a muscle is a
factor in healing.

Types of skeletal muscle

Not all skeletal muscle is the same; not surprising
really when you consider the difference in demands
between, say, the postural muscles of the back (sus-
tained activity, coarse motion) and those of the hand
(fine control, intermittent activity). These differing
types have been — as, by now, you will not be sur-
prised to learn — classified in several different ways.

First of all, there is a neurophysiological differen-
tiation. When a nerve activates a motor end plate,
it elicits a ‘twitch’, peak force being reached in
25-100 milliseconds, depending on the type of
muscle involved. If the nerve can deliver a second
impulse within this time, an additional twitch can
be produced, adding to the first and building the
contractile force to a higher level. This mechanical
summation can, up to a point, continue; therefore,
the higher the frequency of nerve impulses, the
more force is produced. Muscles that rely on ‘rate
recruitment’ to generate their contractile force
are known as fast twitch (or phasic) muscles.

There is, however, a second strategy for increas-
ing the amount of contractile force within a muscle
and that is to recruit more muscle fibres -
obviously, a response that involves all of the fibres
within a muscle rather than just a few will be more
powerful. Muscles that employ this technique are
called slow twitch (or tonic) muscles.

A second, anatomical classification is used so
commonly that we don't even tend to think of it
in physiological terms: have you ever stopped to
wonder why red meat is red and white meat, white?
The answer lies in the presence of myoglobin, a
substance similar to haemoglobin that can store oxy-
gen in muscle cells (and is red in colour). Muscle
that is required to sustain moderate workloads for
a sustained length of time utilizes this oxygen stor-
age capacity, together with well-developed mito-
chondria and dense vascularization, to produce a
steady, adequate, efficiently generated supply of
ATP to its myofibrils.

At the other extreme are myocytes that meet
their energy requirements through anaerobic glyco-
lysis, which enables large amounts of energy to be
liberated quickly but is less efficient. These cells
are capable of short bursts of intensive activity but
rely on periods of relative quiet in between to allow
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Type 1 Single vascular pedicle supplies whole of muscle belly

Example
Tensior fascia lata

Vascular supply
Ascending lateral circumflex femoral artery

Type Il Major vascular pedicle supported by minor pedicles that can also
support the muscle

Example
Gracilis

Vascular supply
Medial circumflex femoral artery

Type Il Two separate dominant pedicles with separate supplies

Example
Gluteus maximus

Vascular supply
Superior and inferior gluteal artery

Type IV Multiple small pedicles that cannot, in isolation, support the muscle

Example
Sartorius

Vascular supply
* Muscular branch of the femoral artery

Type V Dominant vascular pedicle with multiple secondary pedicles

Example
Latissimus dorsi

Vascular supply
Thorocodorsal artery + thoracolumbar Perforators

lllustrations reproduced from Gray's Anatomy (online edition), 2004, edited by Susan Standring, with permission from Elsevier.
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Table 4.4 ‘F.eat‘ureé-,ef ,§ke_ietal muscle variants

Type lIA

CHAPTER 4

The anatomy of physics

Type lIB

Type |
Colour Red Red White
Function Sustained, postural forces Powerful, fast movements Powerful, fast movements
Twitch speed Slow Fast Faster
ATP production Aerobic Aerobic Anaerobic
Capillaries High density High density Low density
Fatigue resistance High High Low
Power output Low Intermediate High
Fibre diameter Small Intermediate Large

glycogen reserves to be replenished and intracellular
pH to be restored.

Red muscle can be slow or fast twitch but, obvi-
ously, it would be little use in having slow twitch
white muscle. This has led to the development of
the current labelling system for skeletal muscle:

* Type l. Red/slow twitch
* Type IIA. Red/fast twitch
e Type 1IB. White/fast twitch.

Their differing properties are summarized in
Table 4.4.

Although some textbooks will refer to certain
muscles as being of these various types, it is impor-
tant to remember that, in humans, all muscles con-
tain all three types of fibre, although not in equal
ratios. It should also be borne in mind that this ratio
can — and does — change in response to the type and
regularity of the demands placed upon it: different
ratios will be found in those training for the mara-
thon compared to sprinters compared to ‘couch
potatoes’. Remember, the overall number of myo-
cytes will remain the same but it is possible for a
Type I to change into a Type IIA or IIB; if the body
demands required it, the innervation and internal
cell physiology can adapt accordingly. The mecha-
nism for this change is gene expression.

Naming of skeletal muscle

You have, by now, encountered the names of several
muscles, most with rather unwieldy names from
dead languages and none with any of the promised
explanations as to aetiology. The reason for this is
that muscle naming is far simpler than it might

actually seem and it is better to understand the sys-
tem before learning several hundred separate ety-
mological origins.

F ] cunicaFocus

As with joints, the number of muscles in the human
body is not fixed, there are several muscles that
appear to be optional design features. Most muscles
are consistently present, although occasional
individuals may suffer from congenital absence.
There are also a number of muscles that have only
ever been found in a very few cadaveric dissections;
again these individuals were rare exceptions rather
than the rule.

Between these two extremes lie a surprising number
of muscles that you may or may not have,
depending largely on your genetic inheritance. For
example, there is a comparatively large muscle that
runs from your thoracolumbar junction to the region
of your hip by the name of psoas minor ... or at
least, there is in about 60% of us; the remainder
simply don’t have one, its absence doesn’'t seem to
have any adverse effect; in fact, nobody seems
entirely certain as to what the purpose of the muscle
is (or was).

By contrast, palmaris longus appears to once have
been a muscle that was of use in brachiating
(swinging from branch to branch); however, one in
eight of us have rightly decided that, as a species,
this is a habit we are unlikely to be adopting much in
the evolutionary future and have dispensed with it
altogether. A further 9% have anomalous variants
with odd attachments: extra or missing muscle
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bellies or absence of the muscle on one side only.

Although we can no longer find a use for the muscle,
surgeons can and use the excessively long tendon

for grafting.

Other variable muscles include those for abducting
the first and fifth toes and rolling the tongue.

Most muscles are named in one of three ways:
for their shape, their action or their attachments.
Muscles have a minimum of two attachments
(many have more) and cross a single joint (or, occa-
sionally, two). As they contract, they move the
joint. Usually, one end of the muscle remains sta-
tionary whilst the other moves towards it. The sta-
tionary end (as a rule, the proximal end) is called
the origin; the moving end, the insertion. In some
muscles — such as latissimus dorsi — the muscle
can function in either direction and so the origin
and insertion are reversible.

You are probably already aware of several mus-
cles named for their shape, even if you weren't
aware that this was the case. The deltoid muscle is
named for its triangular shape (from the same
Greek root as describes a river delta or delta-wing
jet); the rhomboid muscle after a rhombus, a geo-
metric shape that is approximately diamond-
shaped. There are several others: ‘quadratus’ means
square (as in quadrangle); ‘rectus’ means straight;
‘teres’, round.

Shape-related names can also refer to the anato-
mical features of a muscle. For example, ‘biceps’
means that the muscle has two heads (similarly, ‘tri-
ceps’ means three heads and ‘quadriceps’ four);
‘digastric’ tells you that the muscle has two (di-)
bellies (gastric, the same adjective we use to
describe the stomach or belly).

Then there are muscles whose name merely
describes their attachments. These can be a particu-
lar mouthful until you understand their composite
nature. Sternocleidomastoid, a muscle in the neck,
attaches to the mastoid process of the skull at its
proximal end and to the sternum and clavicle at
the other (now you know to what the cleido in cleio-
docranial dysplasia — see above — refers). A slightly
easier example is coracobrachialis, a muscle that
runs from the coracoid process (a projection of
bone from the scapular, just below the midline of
the clavicle) to the brachii (the anatomical name
for the arm, which is why swinging from handhold
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to handhold by your arms — with or without pal-
maris longus to help you - is called brachiating).

Finally — well, almost finally — there are the most
usefully named muscles. Naming a muscle for its
shape tells you little or nothing about what it may
do; naming for attachments allows you to infer what
it might do by visualizing what happens when the
muscle contracts between the two attachments,
but only if you know your anatomy in detail. How-
ever, a large number of muscles are named for their
action, which is particularly useful to manual med-
ics as it saves having to memorize the information.
So, for example, it is fairly obvious that, if digits
are your fingers (and toes) then a muscle called
‘flexor digitorum’ flexes the digits and ‘extensor
digiti minimi’ extends the smallest digit (the little
finger). Once you know that ‘pollex’ is the Latin
word for thumb (just as ‘hallux’ is for the big toe)
then you know what all the muscles that flex,
extend, oppose, adduct and abduct the appendage
are called ... or would do if it weren't for one, tiny
additional wrinkle.

Quite often, there is more than one muscle for
doing a particular job and the need arises to differ-
entiate between them. This often involves the use
of terms we have already discussed as modifiers.
For example the biceps muscle in the arm is not
unique, one of the hamstring muscles also has two
heads so the former is properly termed ‘biceps bra-
chii’ and the latter ‘biceps femoris’ (femoral - as in
femoral nerve — means ‘of the leg’). Similarly, there
are two muscles whose primary function is to pro-
nate the arm, turning it so that the palm is faced
downwards. Fortunately, they are of quite differing
shapes, so one is called ‘pronator quadratus’ and the
other ‘pronator teres’ — the square and smooth pro-
nators. There are though other modifiers: medial
and lateral; superficial and deep; internal and exter-
nal; superior and inferior which can be added so
that many muscles have three or even four parts
to their name like rectus capitis posterior minor a
straight muscle that runs (from the posterior arch
of the atlas) to the head (capitis, as in capital city)
at the back of the body and is smaller than another
muscle that is also straight and does much the same
thing (the rectus capitis posterior major starts off at
the axis, which is why it is bigger).

A full list of terms and meanings with examples of
named musclesisgivenin Table 4.5. It isworth taking
time to learn these basic building blocks for muscle
names; there are only a few dozen yet they combine
to make the names of hundreds of muscles.



The anatomy of physics | CHARTER 4

Shape Meaning Example
Deltoid Triangular -

Gracilis Slender -

Lumbrical Worm-like Lumbricales
Quadratus Square Quadratus lumborum
Rectus Straight Rectus femoris
Rhomboid Rhombus-shaped -

Serratus Serrated (tooth-like) Serratus anterior
Teres Smooth Teres minor
Biceps - Two heads Biceps brachialis
Triceps Three heads -

Quadriceps Four heads -

Digastric

Two bellies -

Sternocleidomastoid From the sternum and clavicle to the mastoid process -
Coracobrachialis From the coracoid process to the arm =

L

Levator Elevates Levator scapula

Depressor Lowers Depressor septi

Extensor Extends Extensor carpi radialis

Flexor Flexes Flexor carpi radialis

Abductor Abducts Abductor pollicis

Adductor Adducts | Adductor hallucis

Opponens Opposes (movement of thumb to fingers) Opponens pollicis

Constrictor Constricts Middle constrictor of pharynx
Dilator Dilates Dilator pupillae

Rotatores Rotates -

s

i i

Anatomical location e.g. Abdominis* (of the abdomen) Rectus abdominus

Relative location Superficialis Flexor digitorum superficialis
Profundus (deep to) Flexor digitorum profundus
Internal/internus Internal pterygoid
External/externus External pterygoid
Middle Middle scalene
Anterior Anterior scalene
Posterior Posterior scalene
Infra (below) Infraspinatus
Supra (above) Supraspinatus
Superior Gemellus superior
Inferior Gemellus inferior

*There are numerous other examples: brachii (arm), femoris (leg), oris (mouth), pectoralis (chest) — you should be familiar