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Preface

Design of Experiments (DOE) is a powerful technique used for both exploring new 
processes and gaining increased knowledge of existing processes, followed by opti-
mising these processes for achieving world-class performance. My involvement in 
promoting and training in the use of DOE dates back to the mid-1990s. There are 
plenty of books available in the market today on this subject written by classic stat-
isticians, although the majority of them are better suited to other statisticians than to 
run-of-the-mill industrial engineers and business managers with limited mathemati-
cal and statistical skills.

DOE never has been a favourite technique for many of today’s engineers and 
managers in organisations due to the number crunching involved and the statistical 
jargon incorporated into the teaching mode by many statisticians. This book is tar-
geted to people who have either been intimidated by their attempts to learn about 
DOE or who have never appreciated the true potential of DOE for achieving break-
through improvements in product quality and process efficiency.

This book gives a solid introduction to the technique through a myriad of practi-
cal examples and case studies. The second edition of the book has incorporated two 
new chapters and both cover the latest developments on the topic of DOE. Readers 
of this book will develop a sound understanding of the theory of DOE and practical 
aspects of how to design, analyse and interpret the results of a designed experiment. 
Throughout this book, the emphasis is on the simple but powerful graphical tools 
available for data analysis and interpretation. All of the graphs and figures in this 
book were created using Minitab version 15.0 for Windows.

I sincerely hope that practising industrial engineers and managers as well as 
researchers in academic world will find this book useful in learning how to apply 
DOE in their own work environment. The book will also be a useful resource for 
people involved in Six Sigma training and projects related to design optimisation and 
process performance improvements. In fact, I have personally observed that the num-
ber of applications of DOE in non-manufacturing sectors has increased significantly 
because of the methodology taught to Six Sigma professionals such as Six Sigma 
Green Belts and Black Belts.

The second edition has a chapter dedicated to DOE for non-manufacturing pro-
cesses. As a mechanical engineer, I was not convinced about the application of 
DOE in the context of the service industry and public sector organisations including 
Higher Education. I have included a simple case study showing the power of DOE 
in a university setting. I firmly believe that DOE can be applied to any industrial set-
ting, although there will be more challenges and barriers in the non-manufacturing 
sector compared to traditional manufacturing companies.
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I hope that this book inspires readers to get into the habit of applying DOE for 
problem-solving and process troubleshooting. I strongly recommend that readers of 
this book continue on a more advanced reference to learn about topics which are 
not covered here. I am indebted to many contributors and gurus for the development 
of various experimental design techniques, especially Sir Ronald Fisher, Plackett 
and Burman, Professor George Box, Professor Douglas Montgomery, Dr Genichi 
Taguchi and Dr Dorian Shainin.
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1.1 Introduction

Experiments are performed today in many manufacturing organisations to increase 
our understanding and knowledge of various manufacturing processes. Experiments in 
manufacturing companies are often conducted in a series of trials or tests which pro-
duce quantifiable outcomes. For continuous improvement in product/process quality, 
it is fundamental to understand the process behaviour; the amount of variability and its 
impact on processes. In an engineering environment, experiments are often conducted 
to explore, estimate or confirm. Exploration refers to understanding the data from the 
process. Estimation refers to determining the effects of process variables or factors on 
the output performance characteristic. Confirmation implies verifying the predicted 
results obtained from the experiment.

In manufacturing processes, it is often of primary interest to explore the relation-
ships between the key input process variables (or factors) and the output performance 
characteristics (or quality characteristics). For example, in a metal cutting operation, 
cutting speed, feed rate, type of coolant, depth of cut, etc. can be treated as input vari-
ables and the surface finish of the finished part can be considered as an output per-
formance characteristic. In service processes, it is often more difficult to understand 
what is to be measured; moreover, the process variability in the service context may 
be attributed to human factors, which are difficult to control. Furthermore, the delivery 
of service quality is heavily dependent on the situational influences of the person who 
provides the service.

One of the common approaches employed by many engineers today in manufactur-
ing companies is One-Variable-At-a-Time (OVAT), where we vary one variable at a 
time and keep all other variables in the experiment fixed. This approach depends upon 
guesswork, luck, experience and intuition for its success. Moreover, this type of experi-
mentation requires large quantities of resources to obtain a limited amount of infor-
mation about the process. OVAT experiments often are unreliable, inefficient and time 
consuming and may yield false optimum conditions for the process.

Statistical thinking and statistical methods play an important role in planning, con-
ducting, analysing and interpreting the data from engineering experiments. Statistical 
thinking tells us how to deal with variability, and how to collect and use data so that 
effective decisions can be made about the processes or systems we deal with every day. 
When several variables influence a certain characteristic of a product, the best strategy 
is then to design an experiment so that valid, reliable and sound conclusions can be 
drawn effectively, efficiently and economically. In a designed experiment we often make 
deliberate changes in the input variables (or factors) and then determine how the output 

http://dx.doi.org/10.1016/B978-0-08-099417-8.00001-8
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functional performance varies accordingly. It is important to note that not all variables 
affect the performance in the same manner. Some may have strong influences on the out-
put performance, some may have medium influences and some may have no influence 
at all. Therefore the objective of a carefully planned designed experiment is to under-
stand which set of variables in a process affect the performance most and then determine 
the best levels for these variables to obtain satisfactory output functional performance in 
products. Moreover, we can also set the levels of unimportant variables to their most eco-
nomic settings. This would have an immense impact on financial savings to a company’s 
bottom line (Clements, 1995).

Design of Experiments (DOE) was developed in the early 1920s by Sir Ronald 
Fisher at the Rothamsted Agricultural Field Research Station in London, England. 
His initial experiments were concerned with determining the effect of various fertilis-
ers on different plots of land. The final condition of the crop was dependent not only 
on the fertiliser but also on a number of other factors (such as underlying soil con-
dition, moisture content of the soil, etc.) of each of the respective plots. Fisher used 
DOE that could differentiate the effect of fertiliser from the effects of other factors. 
Since then, DOE has been widely accepted and applied in biological and agricultural 
fields. A number of successful applications of DOE have been reported by many US 
and European manufacturers over the last 15 years or so. The potential applications of 
DOE in manufacturing processes include (Montgomery et al., 1998):

● improved process yield and stability
● improved profits and return on investment
● improved process capability
● reduced process variability and hence better product performance consistency
● reduced manufacturing costs
● reduced process design and development time
● heightened engineers’ morale with success in solving chronic problems
● increased understanding of the relationship between key process inputs and output(s)
● increased business profitability by reducing scrap rate, defect rate, rework, retest, etc.

Similarly, the potential applications of DOE in service processes include:

● identifying the key service process or system variables which influence the process or sys-
tem performance

● identifying the service design parameters which influence the service quality characteris-
tics in the eyes of customers

● minimising the time to respond to customer complaints
● minimising errors on service orders
● reducing the service delivery time to customers (e.g. banks, restaurants)
● reducing the turn-around time in producing reports to patients in a healthcare environment, 

and so on.

Industrial experiments involve a sequence of activities:

1. Hypothesis – an assumption that motivates the experiment
2. Experiment – a series of tests conducted to investigate the hypothesis
3. Analysis – understanding the nature of data and performing statistical analysis of the  

collected data from the experiment
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4. Interpretation – understanding the results of the experimental analysis
5. Conclusion – stating whether or not the original set hypothesis is true or false. Very often 

more experiments are to be performed to test the hypothesis and sometimes we establish a 
new hypothesis that requires more experiments.

Consider a welding process where the primary concern of interest to engineers is 
the strength of the weld and the variation in the weld strength values. Through sci-
entific experimentation, we can determine what factors mostly affect the mean weld 
strength and the variation in weld strength. Through experimentation, one can also pre-
dict the weld strength under various conditions of key input welding machine param-
eters or factors (e.g. weld speed, voltage, welding time, weld position, etc.).

For the successful application of an industrial designed experiment, we generally 
require the following skills:

● Planning skills: Understanding the significance of experimentation for a particular prob-
lem, time and experimental budget required for the experiment, how many people are 
involved with the experimentation, establishing who is doing what, etc.

● Statistical skills: The statistical analysis of data obtained from the experiment, assignment 
of factors and interactions to various columns of the design matrix (or experimental lay-
out), interpretation of results from the experiment for making sound and valid decisions for 
improvement, etc.

● Teamwork skills: Understanding the objectives of the experiment and having a shared 
understanding of the experimental goals to be achieved, better communication among peo-
ple with different skills and learning from one another, brainstorming of factors for the 
experiment by team members, etc.

● Engineering skills: Determination of the number of levels of each factor and the range at 
which each factor can be varied, determination of what to measure within the experiment, 
determination of the capability of the measurement system in place, determination of what 
factors can be controlled and what cannot be controlled for the experiment, etc.

1.2  Some Fundamental and Practical Issues in Industrial 
Experimentation

An engineer is interested in measuring the yield of a chemical process, which is influ-
enced by two key process variables (or control factors). The engineer decides to per-
form an experiment to study the effects of these two variables on the process yield. The 
engineer uses an OVAT approach to experimentation. The first step is to keep the tem-
perature constant (T1) and vary the pressure from P1 to P2. The experiment is repeated 
twice and the results are illustrated in Table 1.1. The engineer conducts four experi-
mental trials.

The next step is to keep the pressure constant (P1) and vary the temperature from 
T1 to T2. The results of the experiment are given in Table 1.2.

The engineer has calculated the average yield values for only three combinations of 
temperature and pressure: (T1, P1), (T1, P2) and (T2, P1). The engineer concludes from the 
experiment that the maximum yield of the process can be attained by corresponding to 
(T1, P2). The question then arises as to what should be the average yield corresponding to 
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the combination (T2, P2)? The engineer was unable to study this combination as well as 
the interaction between temperature and pressure. Interaction between two factors exists 
when the effect of one factor on the response or output is different at different levels of 
the other factor. The difference in the average yield between the trials one and two pro-
vides an estimate of the effect of pressure. Similarly, the difference in the average yield 
between trials three and four provide an estimate of the effect of temperature. An effect of 
a factor is the change in the average response due to a change in the levels of a factor. 
The effect of pressure was estimated to be 8% (i.e. 64−56) when temperature was kept 
constant at ‘T1’. There is no guarantee whatsoever that the effect of pressure will be the 
same when the conditions of temperature change. Similarly the effect of temperature was 
estimated to be 5% (i.e. 61−56) when pressure was kept constant at ‘P1’. It is reasonable 
to say that we do not get the same effect of temperature when the conditions of pres-
sure change. Therefore the OVAT approach to experimentation can be misleading and 
may lead to unsatisfactory experimental conclusions in real-life situations. Moreover, the 
success of the OVAT approach to experimentation relies on guesswork, luck, experience 
and intuition (Antony, 1997). This type of experimentation is inefficient in that it requires 
large resources to obtain a limited amount of information about the process. In order to 
obtain a reliable and predictable estimate of factor effects, it is important that we vary 
the factors simultaneously at their respective levels. In the above example, the engineer 
should have varied the levels of temperature and pressure simultaneously to obtain reli-
able estimates of the effects of temperature and pressure. The focus of this book is to 
explain the rationale behind such carefully planned and well-designed experiments.

A study carried out at the University of Navarra, Spain, has shown that 80% of the 
companies (sample size of 128) in the Basque Country conduct experimentation using 
the OVAT strategy. Moreover, it was found that only 20% of companies carry out 
experimentation with a pre-established statistical methodology (Tanco et  al., 2008). 
The findings of Tanco et al. have also revealed that the size of the industry plays a 
large part in DOE awareness; only 22% of small companies are familiar with DOE, as 
compared with 43% of medium-sized companies and 76% of large companies (sam-
ple size of 133).

Table 1.1 The Effects of Varying Pressure on Process Yield

Trial Temperature Pressure Yield Average Yield (%)

1 T1 P1 55, 57 56
2 T1 P2 63, 65 64

Table 1.2 The Effects of Varying Temperature on Process Yield

Trial Temperature Pressure Yield Average Yield (%)

3 T1 P1 55, 57 56
4 T2 P1 60, 62 61



Introduction to Industrial Experimentation 5

1.3 Statistical Thinking and its Role Within DOE

One of the success factors for the effective deployment of DOE in any organisation 
is the uncompromising commitment of the senior management team and visionary 
leadership. However, it is not essential that the senior managers have a good technical 
knowledge of the working mechanisms of DOE, although the author argues that they 
should have a good understanding of the term ‘statistical thinking’. Statistical thinking 
is a philosophy of learning and action based on the following three fundamental princi-
ples (Snee, 1990):

1. All work occurs in a system of interconnected processes.
2. Variation exists in all processes.
3. Understanding and reducing variation are the key to success.

The importance of statistical thinking derives from the fundamental principle of 
quality put forth by Deming: ‘Reduce variation and you improve quality’. Customers 
of today and tomorrow value products and services that have consistent performance, 
which can be achieved by systematically eliminating variation in business processes 
(ASQ, 1996). However, our managers lack statistical thinking and some of the possible 
reasons for this are as follows:

● A shift in the organisation’s priorities – Global competition has forced managers to rethink 
how organisations are run and to search for better ways to manage. Problem solving in 
manufacturing and R&D, while important, is not seen as particularly relevant to the needs 
of management.

● Managers view statistics as a tool for ‘fire fighting’ actions – One of the most difficult 
challenges for every manager is to figure out how to use statistical thinking effectively to 
help them make effective decisions. When a problem arises in the business, managers want 
to fix it as soon as possible so that they can deal with their day-to-day activities. However, 
what they do not realise is that the majority of problems are in systems or processes that 
can only be tackled with the support of senior management team. The result is that man-
agement spends too much time ‘fire fighting’, solving the same problem again and again 
because the system was not changed. These scenarios are as follows:
● A change in the mindset of people in the enterprise – Philosopher George Bernard Shaw 

once said, ‘If you cannot change your mind, you cannot change anything’. It is clear 
that managers, quality professionals and statisticians all have new roles that require new 
skills. Change implies discontinuity and the destruction of familiar structures and rela-
tionships. Change can be resisted because it involves confrontation of the unknown and 
loss of the familiar (Huczynski and Buchanan, 2001).

● Fear of statistics by managers – Even if managers were taught statistics at university, 
it was usually focused on complex maths and formulas rather than the application of 
statistical tools for problem solving and an effective decision-making process. Usually 
managers have their first experience with statistical thinking in a workshop inside the 
company, applying some tools with the guidance of an expert. Although this is the best 
learning method for understanding and experiencing statistical thinking, managers may 
still struggle to apply the principles to a different problem. This fundamental problem 
can be tackled by teaching usable and practical statistical techniques through real case 
studies at the university level.
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Exercises

1. Why do we need to perform experiments in organisations?
2. What are the limitations of the OVAT approach to experimentation?
3. What types of skills are required to make an experiment successful in organisations?
4. Why is statistical thinking highly desirable for senior managers and leaders of 

organisations?
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2.1 Introduction

In order to properly understand a designed experiment, it is essential to have a good 
understanding of the process. A process is the transformation of inputs into outputs. 
In the context of manufacturing, inputs are factors or process variables such as people, 
materials, methods, environment, machines, procedures, etc. and outputs can be perfor-
mance characteristics or quality characteristics of a product. Sometimes, an output can 
also be referred to as response. In the context of Six Sigma, this is often referred to as 
critical-to-quality characteristics.

In performing a designed experiment, we will intentionally make changes to 
the input process or machine variables (or factors) in order to observe correspond-
ing changes in the process output. If we are dealing with a new product development 
process, we will make changes to the design parameters in order to make the design 
performance insensitive to all sources of variation (Montgomery, 2001). The informa-
tion gained from properly planned, executed and analysed experiments can be used to 
improve functional performance of products, to reduce the scrap rate or rework rate, to 
reduce product development cycle time, to reduce excessive variability in production 
processes, to improve throughput yield of processes, to improve the capability of pro-
cesses, etc. Let us suppose that an experimenter wishes to study the influence of five 
variables or factors on an injection moulding process. Figure 2.1 illustrates an example 
of an injection moulding process with possible inputs and outputs. The typical outputs 
of an injection moulding process can be length, thickness, width etc. of an injection 
moulded part. However, these outputs can be dependant on a number of input variables 
such as mould temperature, injection pressure, injection speed, etc. which could have 
an impact on the above mentioned outputs. The purpose of a designed experiment is to 
understand the relationship between a set of input variables and an output or outputs.

Now consider a wave soldering process where the output is the number of sol-
der defects. The possible input variables which might influence the number of solder 
defects are type of flux, type of solder, flux coating depth, solder temperature, etc. More 
recently, DOE has been accepted as a powerful technique in the service industry and 
there have been some major achievements. For instance, a credit card company in the 
US has used DOE to increase the response rate to their mailings. They have changed the 
colour, envelope size, character type and text within the experiment.

In real-life situations, some of the process variables or factors can be controlled fairly 
easily and some of them are difficult or expensive to control during normal production 
or standard conditions. Figure 2.2 illustrates a general model of a process or system.

http://dx.doi.org/10.1016/B978-0-08-099417-8.00002-X
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In Figure 2.2, output(s) are performance characteristics which are measured to 
assess process/product performance. Controllable variables (represented by X’s) can 
be varied easily during an experiment and such variables have a key role to play in 
the process characterisation. Uncontrollable variables (represented by Z’s) are dif-
ficult to control during an experiment. These variables or factors are responsible for 
variability in product performance or product performance inconsistency. It is impor-
tant to determine the optimal settings of X’s in order to minimise the effects of Z’s. 
This is the fundamental strategy of robust design (Roy, 2001).

2.2 Basic Principles of DOE

DOE refers to the process of planning, designing and analysing the experiment so 
that valid and objective conclusions can be drawn effectively and efficiently. In order 

Mould temperature   
Length of moulded part

Gate size

Holding pressure Width of moulded part

Screw speed

Thickness of moulded part
Percent regrind

Type of raw material

Manufacturing 
process of
injection 

moulded parts

Figure 2.1 Illustration of an injection moulding process. 

Controllable variables (factors)

(X1) (X2) …      (Xn)

Input (s) Output (s)

(Y)

(Z1) (Z2) …      (Zn)

Uncontrollable variables (factors)

Process/system

Figure 2.2 General model of a process/system. 
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to draw statistically sound conclusions from the experiment, it is necessary to inte-
grate simple and powerful statistical methods into the experimental design methodol-
ogy (Vecchio, 1997). The success of any industrially designed experiment depends on 
sound planning, appropriate choice of design, statistical analysis of data and teamwork 
skills.

In the context of DOE in manufacturing, one may come across two types of pro-
cess variables or factors: qualitative and quantitative. For quantitative factors, one 
must decide on the range of settings and how they are to be measured and controlled 
during the experiment. For example, in the above injection moulding process, screw 
speed, mould temperature, etc. are examples of quantitative factors. Qualitative factors 
are discrete in nature. Type of raw material, type of catalyst, type of supplier, etc. are 
examples of qualitative factors. A factor may take different levels, depending on the 
nature of the factor – quantitative or qualitative. A qualitative factor generally requires 
more levels when compared to a quantitative factor. Here the term ‘level’ refers to a 
specified value or setting of the factor being examined in the experiment. For instance, 
if the experiment is to be performed using three different types of raw materials, then 
we can say that the factor – the type of raw material – has three levels.

In the DOE terminology, a trial or run is a certain combination of factor levels 
whose effect on the output (or performance characteristic) is of interest.

The three principles of experimental design, namely randomisation, replication and 
blocking, can be utilised in industrial experiments to improve the efficiency of experi-
mentation (Antony, 1997). These principles of experimental design are applied to 
reduce or even remove experimental bias. It is important to note that large experimen-
tal bias could result in wrong optimal settings or, in some cases, could mask the effect 
of the really significant factors. Thus an opportunity for gaining process understanding 
is lost, and a primary element for process improvement is overlooked.

2.2.1 Randomisation

We all live in a non-stationary world, a world in which noise factors (or external dis-
turbances) will never stay still. For instance, the manufacture of a metal part is an 
operation involving people, machines, measurement, environment, etc. The parts of the 
machine are not fixed entities; they wear out over a period of time and their accuracy 
is not constant over time. The attitudes of the people who operate the machines vary 
from time to time. If you believe your system or process is stable, you do not then need 
to randomise the experimental trials. On the other hand, if you believe your process is 
unstable and without randomisation, the results will be meaningless and misleading; 
you then need to think about randomisation of experimental trials (Box, 1990). If the 
process is very unstable and randomisation would make your experiment impossible, 
then do not run the experiment. You may have to look at process control methods to 
bring your process into a state of statistical control.

While designing industrial experiments, there are factors, such as power surges, 
operator errors, fluctuations in ambient temperature and humidity, raw material vari-
ations, etc. which may influence the process output performance because they are 
often expensive or difficult to control. Such factors can adversely affect the experimen-
tal results and therefore must be either minimised or removed from the experiment. 
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Randomisation is one of the methods experimenters often rely on to reduce the effect 
of experimental bias. The purpose of randomisation is to remove all sources of extra-
neous variation which are not controllable in real-life settings (Leon et al., 1993). By 
properly randomising the experiment, we assist in averaging out the effects of noise 
factors that may be present in the process. In other words, randomisation can ensure 
that all levels of a factor have an equal chance of being affected by noise factors 
(Barker, 1990). Dorian Shainin accentuates the importance of randomisation as ‘exper-
imenters’ insurance policy’. He pointed out that ‘failure to randomise the trial condi-
tions mitigates the statistical validity of an experiment’. Randomisation is usually done 
by drawing numbered cards from a well-shuffled pack of cards, by drawing numbered 
balls from a well-shaken container or by using tables of random numbers.

Sometimes experimenters encounter situations where randomisation of experi-
mental trials is difficult to perform due to cost and time constraints. For instance, 
temperature in a chemical process may be a hard-to-change factor, making complete 
randomisation of this factor almost impossible. Under such circumstances, it might 
be desirable to change the factor levels of temperature less frequently than others. In 
such situations, restricted randomisation can be employed.

It is important to note that in a classical DOE approach, complete randomisation 
of the experimental trials is advocated, whereas in the Taguchi approach to experi-
mentation, the incorporation of noise factors into the experimental layout will super-
sede the need for randomisation. The following questions are useful if you decide to 
apply randomisation strategy to your experiment.

● What is the cost associated with change of factor levels?
● Have we incorporated any noise factors in the experimental layout?
● What is the set-up time between trials?
● How many factors in the experiment are expensive or difficult to control?
● Where do we assign factors whose levels are difficult to change from one to another level?

2.2.2 Replication

In all industrial designed experiments, some variation is introduced because of the 
fact that the experimental units such as people, batches of materials, machines, etc. 
cannot be physically identical. Replication is a process of running the experimental 
trials in a random sequence. Replication means repetitions of an entire experiment 
or a portion of it, under more than one condition. Replication has three important 
properties. The first property is that it allows the experimenter to obtain a more accu-
rate estimate of the experimental error, a term which represents the differences that 
would be observed if the same experimental settings were applied several times to 
the same experimental units (operator, machine, material, gauges, etc.). The second 
property is that it permits the experimenter to obtain a more precise estimate of the 
factor/interaction effect. The third property is that replication can decrease the exper-
imental error and thereby increase precision. If the number of replicates is equal to 
one or unity, we would not then be able to make satisfactory conclusions about the 
effect of either factors or interactions. The factor or interaction effect could be sig-
nificant due to experimental error. On the other hand, if we have a sufficient number 
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of replicates, we would safely be making satisfactory inferences about the effect of 
factors/interactions.

Replication can result in a substantial increase in the time needed to conduct an 
experiment. Moreover, if the material is expensive, replication may lead to exorbitant 
material costs. Any bias or experimental error associated with set-up changes will be 
distributed evenly across the experimental runs or trials using replication. The use of 
replication in real life must be justified in terms of time and cost.

Many experimenters use the terms ‘repetition’ and ‘replication’ interchangeably. 
Technically speaking, however, they are not the same. In repetition, an experimenter 
may repeat an experimental trial condition a number of times as planned, before pro-
ceeding to the next trial in the experimental layout. The advantage of this approach 
is that the experimental set-up cost should be minimal. However, a set-up error is 
unlikely to be detected or identified.

2.2.3 Blocking

Blocking is a method of eliminating the effects of extraneous variation due to noise 
factors and thereby improving the efficiency of experimental design. The main objec-
tive is to eliminate unwanted sources of variability such as batch-to-batch, day-to-day, 
shift-to-shift, etc.. The idea is to arrange similar or homogenous experimental runs into 
blocks (or groups). Generally, a block is a set of relatively homogeneous experimen-
tal conditions (Bisgaard, 1994). The blocks can be batches of raw materials, different 
operators, different vendors, etc. Observations collected under the same experimental 
conditions (i.e. same day, same shift, etc.) are said to be in the same block. Variability 
between blocks must be eliminated from the experimental error, which leads to an 
increase in the precision of the experiment. The following two examples illustrate the 
role of blocking in industrial designed experiments.

Example 2.1

A metallurgist wants to improve the strength of a steel product. Four factors 
are being considered for the experiment, which might have some impact on the 
strength. It is decided to study each factor at 2-levels (i.e. a low setting and a high 
setting). An eight-trial experiment is chosen by the experimenter but it is possible 
to run only four trials per day. Here each day can be treated as a separate block.

Example 2.2

An experiment in a chemical process requires two batches of raw material for 
conducting the entire experimental runs. In order to minimise the effect of 
batch-to-batch material variability, we need to treat batch of raw material as a 
noise factor. In other words, each batch of raw material would form a block.
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2.3 Degrees of Freedom

In the context of statistics, the term ‘degrees of freedom’ is the number of independ-
ent and fair comparisons that can be made in a set of data. For example, consider the 
heights of two students, say John and Kevin. If the height of John is HJ and that of 
Kevin is HK, then we can make only one fair comparison (HJ−HK).

In the context of DOE, the number of degrees of freedom associated with a process 
variable is equal to one less than the number of levels for that factor (Belavendram, 
1995). For example, an engineer wishes to study the effects of reaction temperature 
and reaction time on the yield of a chemical process. Assume each factor was studied at 
2-levels. The number of degrees of freedom associated with each factor is equal to unity 
or 1 (i.e. 2 − 1 = 1).

 ∴ Degreesof freedom for a main effect Number of levels 1

The number of degrees of freedom for the entire experiment is equal to one less 
than the total number of data points or observations. Assume that you have performed 
an eight-trial experiment and that each trial condition was replicated twice. The total 
number of observations in this case is equal to 16 and therefore the total degrees of 
freedom for the experiment is equal to 15 (i.e. 16 − 1).

The degrees of freedom for an interaction is equal to the product of the degrees of 
freedom associated with each factor involved in that particular interaction effect. For 
instance, in the above yield example, the degrees of freedom for both reaction tem-
perature and reaction time are equal to one and therefore, the degrees of freedom for 
its interaction effect is also equal to unity.

Assume that an experimenter wishes to study the effect of four process or design 
parameters at 3-levels. The degrees of freedom required for studying all the main effects 
is equal to 8(( )3 1 4 8). The degrees of freedom for studying one interaction in 
this case is equal to 4(( ) ( ) )3 1 3 1 4 . The degrees of freedom therefore required 
for studying all six interactions (i.e. AB, AC, BC, BD, AD and CD) is equal to 24.

2.4 Confounding

The term ‘confounding’ refers to the combining influences of two or more factor effects 
in one measured effect. In other words, one cannot estimate factor effects and their 
interaction effects independently. Effects which are confounded are called aliases. A list 
of the confoundings which occur in an experimental design is called an alias structure or 
a confounding pattern. The confounding of effects is simple to illustrate. Suppose two 
factors, say mould temperature and injection speed, are investigated at 2-levels. Five 
response values are taken when both factors are at their lower levels and high levels, 
respectively. The results of the experiment (i.e. mean response) are given in Table 2.1.

The effect of mould temperature is equal to 82.75 − 75.67 = 7.08. Here effect 
refers to the change in mean response due to a change in the levels of a factor.
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The effect of injection speed is also the same as that of mould temperature (i.e. 
82.75 − 75.67). So is the calculated effect actually due to injection speed or to mould 
temperature? One cannot simply tell this as the effects are confounded.

2.4.1 Design Resolution

Design resolution (R) is a summary characteristic of aliasing or confounding pat-
terns. The degree to which the main effects are aliased with the interaction effects 
(two-factor or higher) is represented by the resolution of the corresponding design. 
Obviously, we don’t prefer the main effects to be aliased with other main effects.  
A design is of resolution R if no p-factor effect is aliased with another effect contain-
ing less than (R−p) factors. For designed experiments, designs of resolution III, IV 
and V are particularly important.

Design resolution identifies for a specific design the order of confounding of the 
main effects and their interactions. It is a key tool for determining what fractional facto-
rial design will be the best choice for a given problem (Kolarik, 1995). More informa-
tion on full and fractional factorial designs can be seen in the later chapters of this book.

Resolution III designs: These are designs in which no main effects are con-
founded with any other main effect, but main effects are confounded with two- 
factor interactions and two-factor interactions may be confounded with each other. 
For example, studying three factors or process parameters at 2-levels in four trials 
or runs is a resolution III design. In this case, each main effect is confounded with  
two-factor or second-order interactions.

Resolution IV designs: These are designs in which no main effects are confounded 
with any other main effect or with any two-factor interaction effects, but two-factor 
interaction effects are confounded with each other. For example, studying four factors 
or process parameters at 2-levels in eight trials or runs is a resolution IV design. In this 
case, each two-factor interaction is confounded with other two-factor interactions.

Resolution V designs: These are designs in which main effects are not confounded 
with other main effects, two-factor interactions or three-factor interactions, but two-factor 
interactions are confounded with three-factor interactions. For example, studying 5 factors 
or process parameters at 2-levels in 16 trials or runs is a resolution V design. In this case, 
each two-factor interaction is confounded with three-factor or third-order interactions.

2.4.2 Metrology Considerations for Industrial Designed Experiments

For industrial experiments, the response or quality characteristic will have to be meas-
ured either by direct or indirect methods. These measurement methods produce 

Table 2.1 Example of Confounding

Mould Temperature Injection Speed Mean Response

Low level Low level 75.67
High level High level 82.75
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variation in the response. Measurement is a process and varies, just as all processes vary. 
Identifying, separating and removing the measurement variation leads to improvements 
to the actual measured values obtained from the use of the measurement process.

The following characteristics need to be considered for a measurement system:
● Accuracy: It refers to the degree of closeness between the measured value and the true 

value or reference value.
● Precision: It is a measure of the scatter of results of several observations and is not related 

to the true value. It is a comparative measure of the observed values and is only a measure 
of the random errors. It is expressed quantitatively as the standard deviation of observed 
values from repeated results under identical conditions.

● Stability: A measurement system is said to be stable if the measurements do not change 
over time. In other words, they should not be adversely influenced by operator and envi-
ronmental changes.

● Capability: A measurement system is capable if the measurements are free from bias (accu-
rate) and sensitive. A capable measurement system requires sensitivity (the variation around the 
average should be small compared to the specification limits or process spread and accuracy).

2.4.3 Measurement System Capability

The goal of a measurement system capability study is to understand and quan-
tify the sources of variability present in the measurement system. Repeatability and 
Reproducibility (R&R) studies analyse the variation of measurements of a gauge and the 
variation of measurements by operators, respectively. Repeatability refers to the variation 
in measurements obtained when an operator uses the same gauge several times for meas-
uring the identical characteristic on the same part. Reproducibility, on the other hand, 
refers to the variation in measurements when several operators use the same gauge for 
measuring the identical characteristic on the same part. It is important to note that total 
variability in a process can be broken down into variability due to product (or parts vari-
ability) and variability due to measurement system. The variability due to measurement 
system is further broken into variability due to gauge (i.e. repeatability) and reproducibil-
ity. Reproducibility can be further broken into variability due to operators and variability 
due to (part × operator) interaction (Montgomery and Runger, 1993).

A measurement system is considered to be capable and adequate if it satisfies the 
following criterion:

 
P

T
� 10%

where P/T = Precision-to-Tolerance ratio, which is given by

 
P

T

6σ̂measurement error

USL LSL

where USL = Upper Specification Limit of a quality characteristic, 
LSL = Lower Specification Limit of a quality characteristic

Moreover,

 ̂ ˆ ˆσ σ σ2 2 2
measurement error repeatability reproducibility

(2.1)

(2.2)
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There are obvious dangers in relying too much on the P/T ratio. For example, 
the P/T ratio may be made arbitrarily small by increasing the width of the specifica-
tion of tolerance band. The gauge must be able to have sufficient capability to detect 
meaningful variation in the product. The contribution of gauge variability (or meas-
urement error) to the total variability is a much more useful criterion for determining 
the measurement system capability. So one may look at the following equation to see 
whether the given measurement system is capable or not.

 
ˆ

ˆ
%

σ

σ
measurement error

total

1� 0

Another useful gauge to evaluate a measurement system is to see whether or not 
the measurement process is able to detect product variation. If the amount of measure-
ment system variability is high, it will obscure the product variation. It is important 
to be able to separate out measurement variability from product variability. Donald J. 
Wheeler uses discrimination ratio as an indicator of whether the measurement process 
is able to detect product variation (Wheeler and Lynday, 1989). For more information 
on discrimination ratio and its use in gauge capability analysis, I would advise readers 
to refer to his book entitled Evaluating the Measurement Process (see reference list).

2.4.4 Some Tips for the Development of a Measurement System

The key to managing processes is measurement. Engineers and managers, therefore, 
must strive to develop useful measurements of their processes. The following tips are 
useful when developing a measurement system for industrial experiments.

1. Select the process you want to measure: This involves process definition and determination 
of recipients of the information on measurements, and how that information will be used.

2. Define the characteristic that needs to be measured within the process: This involves 
identification and definition of suitable characteristics that reflect customer needs and 
expectations. It is always best to have a team of people comprising members from quality 
engineering, process engineering and operators in defining the key characteristics that need 
to be measured within a process.

3. Perform a quality check: It is quite important to address the following questions during the 
development of a measurement system:
● How accurately can we measure the product characteristics?
● What is the error in our measurement system? Is it acceptable?
● Is our measurement system stable and capable?
● What is the contribution of our measurement system variability to the total variation? Is 

it acceptable?

2.5  Selection of Quality Characteristics for Industrial 
Experiments

The selection of an appropriate quality characteristic is vital for the success of an 
industrial experiment. To identify a good quality characteristic, it is suggested to 

(2.3)
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start with the engineering or economic goal. Having determined this goal, iden-
tify the fundamental mechanisms and the physical laws affecting this goal. Finally, 
choose the quality characteristics to increase the understanding of these mechanisms 
and physical laws. The following points are useful in selecting the quality character-
istics for industrial experiments (Antony, 1998):

● Try to use quality characteristics that are easy to measure.
● Quality characteristics should, as far as possible, be continuous variables.
● Use quality characteristics which can be measured precisely, accurately and with stability.
● For complex processes, it is best to select quality characteristics at the sub-system level 

and perform experiments at this level prior to attempting overall process optimisation.
● Quality characteristics should cover all dimensions of the ideal function or the input– 

output relationship.
● Quality characteristics should preferably be additive (i.e. no interaction exists among the 

quality characteristics) and monotonic (i.e. the effect of each factor on robustness should 
be in a consistent direction, even when the settings of factors are changed).

Consider a certain painting process which results in various problems such as orange 
peel, poor appearance, voids, etc. Too often, experimenters measure these characteristics 
as data and try to optimise the quality characteristic. It is not the function of the coating 
process to produce an orange peel. The problem could be due to excess variability of 
the coating process due to noise factors such as variability in viscosity, ambient tem-
perature, etc. We should make every effort to gather data that relate to the engineering 
function itself and not to the symptom of variability. One fairly good characteristic to 
measure for the coating process is the coating thickness. It is important to understand 
that excess variability of coating thickness from its target value could lead to problems 
such as orange peel or voids. The sound engineering strategy is to design and analyse an 
experiment so that best process parameter settings can be determined in order to yield a 
minimum variability of coating thickness around the specified target thickness.

In the context of service organisations, the selection of quality characteristics is not 
very straightforward due to the human behavioural characteristics present in the delivery 
of the service. However, it is essential to understand what characteristics can be effi-
ciently and effectively measured. For instance, in the banking sector, one may measure 
the number of processing errors, the processing time for certain transactions, the waiting 
time to open a bank account, etc. It is important to measure those quality characteristics 
which have an impact on customer satisfaction. In the context of health care services, 
one can measure the proportion or fraction of medication errors, the proportion of cases 
with inaccurate diagnosis, the waiting time to get a treatment, the waiting time to be 
admitted to an A&E department, the number of malpractice claims in a hospital every 
week or month, etc.

Exercises

1. What are the three basic principles of DOE?
2. Explain the role of randomisation in industrial experiments. What are the limitations of 

randomisation in experiments?
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3. What is replication? Why do we need to replicate experimental trials?
4. What is the fundamental difference between repetition and replication?
5. Explain the term ‘degrees of freedom’.
6. An experimenter wants to study five process parameters at 2-levels and has decided to 

use eight trials. How many degrees of freedom are required for studying all five process 
parameters?

7. What is confounding and what is its role in the selection of a particular design matrix or 
experimental layout?

8. What is design resolution? Briefly illustrate its significance in industrial experiments.
9. What is the role of a measurement system in the context of industrial experimentation?

10. State three key factors for the selection of quality characteristics for the success of an 
industrial experiment.

11. What are the three Critical-to-Quality (CTQ) characteristics which you believe to be criti-
cal in the eyes of international students who are pursuing a post-graduate course at the 
University?
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Understanding Key Interactions in 
Processes

3

3.1 Introduction

For modern industrial processes, the interactions between the factors or process 
parameters are a major concern to many engineers and managers, and therefore 
should be studied, analysed and understood properly for problem solving and pro-
cess optimisation problems. For many process optimisation problems in industries, 
the root cause of the problem is sometimes due to the interaction between the factors 
rather than the individual effect of each factor on the output performance character-
istic (or response). Here performance characteristic is the characteristic of a product/
service which is most critical to customers (Logothetis, 1994).

The significance of interactions in manufacturing processes can be illustrated by 
the following example taken from a wave-soldering process of a PCB assembly line 
in a certain electronic industry. The engineering team of the company was interested 
in reducing the number of defective solder joints obtained from the soldering pro-
cess. The average defect rate based on the existing conditions is 410 ppm (parts per 
million). The team has decided to perform a simple experiment to understand the 
influence of wave-soldering process parameters on the number of defective solder 
joints.

The team initially utilised an OVAT approach to experimentation. Each process 
parameter (or process variable) was studied at 2-levels – low level (represented 
by −1) and high level (represented by +1). The parameters and their levels are given 
in Table 3.1. The experimental layout (or design matrix) for the experiment is given 
in Table 3.2. The design matrix shows all the possible combinations of factors at 
their respective levels.

In the experimental layout, the actual process parameter settings are replaced by 
−1 and +1. The first trial in Table 3.2 represents the current process settings, with 
each process parameter kept at low level. In the second trial, the team has changed 
the level of factor ‘A’ from low to high, keeping the levels of other two factors con-
stant. The engineer notices from this experiment that the defect rate is minimum, 
corresponding to trial condition 4, and thereby conclude that the optimal setting is 
the one corresponding to the fourth trial.

The difference in the responses between the trials 1 and 2 provides an estimate 
of the effect of process parameter ‘A’. From Table 3.2, the effect of ‘A’ (370 − 420 
= −50) was estimated when the levels of ‘B’ and ‘C’ were at low levels. There is 
no guarantee whatsoever that ‘A’ will have the same effect for different conditions 
of ‘B’ and ‘C’. Similarly, the effects of ‘B’ and ‘C’ can be estimated. In the above 
experiment, the response values corresponding to the combinations A (−1) B (+1), 

http://dx.doi.org/10.1016/B978-0-08-099417-8.00003-1
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A (−1) C (+1) and B (−1) C (+1) are missing. Therefore OVAT to experimentation 
can lead to unsatisfactory conclusions and in many cases it would even lead to false 
optimum conditions. In this case, the team failed to study the effect of each factor 
at different conditions of other factors. In other words, the team failed to study the 
interaction between the process parameters.

Interactions occur when the effect of one process parameter depends on the level 
of the other process parameter. In other words, the effect of one process parameter on 
the response is different at different levels of the other process parameter. In order to 
study interaction effects among the process parameters, we need to vary all the fac-
tors simultaneously (Anderson and Whitcomb, 2000). For the above wave-soldering 
process, the engineering team employed a Full Factorial Experiment (FFE) and each 
trial or run condition was replicated twice to observe variation in results within the 
experimental trials. The results of the FFE are given in Table 3.3. Each trial condition 
was randomised to minimise the effect of undesirable disturbances or external factors 
which were uncontrollable or expensive to control during the experiment.

As it is an FFE, it is possible to study all the interactions among the factors A, B 
and C. The interaction between two process parameters (say, A and B) can be com-
puted using the following equation:

I E EA,B A,B A,B
1

2 1 1( )( ) ( )

where EA,B (+1) is the effect of factor ‘A’ at high level of factor ‘B’ and where EA,B(−1) 
is the effect of factor ‘A’ at low level of factor ‘B’.

For the above example, three two-order interactions and a third-order interac-
tion can be studied. Third-order and higher order interactions are not often impor-
tant for process optimisation problems and therefore not necessary to be studied. 
In order to study the interaction between A (flux density) and B (conveyor speed), 

(3.1)

Table 3.1 List of Process Parameters and Their Levels

Labels Process Parameters Units Low Level (−1) High Level (+1)

A Flux density g/c/c 0.85 0.90
B Conveyor speed ft/min 4.5 5.5
C Solder temperature °C 230 260

Table 3.2 OVAT Approach to Wave-Soldering Process

Run A B C Response (ppm)

1 −1 −1 −1 420
2 +1 −1 −1 370
3 +1 +1 −1 410
4 +1 +1 +1 350
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it is important to form a table (Table 3.4) for average ppm values at the four possible 
combinations of A and B (i.e. A(−1) B(−1), A(−1) B(+1), A(+1) B(−1) and A(+1) B(+1)).

From Table 3.4, the effect of ‘A’ (i.e., going from low level (–1) to high level

( ) )) . .

.

+ +1 1 0at high level of B(i.e. 378 75 311 5

67 25ppm

Similarly, the effect of Aat low level of B 4 9 25 398 75

1 5ppm

0

0

. .

.

Interaction between Aand B
1

2
67 25 10 5

28 375

[ . . ]

.

In order to determine whether two process parameters are interacting or not, one 
can use a simple but powerful graphical tool called interaction graphs. If the lines in 
the interaction plot are parallel, there is no interaction between the process param-
eters (Barton, 1990). This implies that the change in the mean response from low to 
high level of a factor does not depend on the level of the other factor. On the other 
hand, if the lines are non-parallel, an interaction exists between the factors. The 

Table 3.3 Results from a 23 FFE

Run  
(Standard Order)

Run  
(Randomised Order)

A B C Response 
(ppm)

1 5 −1 −1 −1 420, 412
2 7 +1 −1 −1 370, 375
3 4 −1 +1 −1 310, 289
4 1 +1 +1 −1 410, 415
5 8 −1 −1 +1 375, 388
6 3 +1 −1 +1 450, 442
7 2 −1 +1 +1 325, 322
8 6 +1 +1 +1 350, 340

Table 3.4 Average ppm Values

Run  
(Standard Order)

A B Average 
ppm

1, 5 −1 −1 398.75
3, 7 −1 +1 311.50
2, 6 +1 −1 409.25
4, 8 +1 +1 378.75
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greater the degree of departure from being parallel, the stronger the interaction effect 
(Antony and Kaye, 1998). Figure 3.1 illustrates the interaction plot between ‘A’ (flux 
density) and ‘B’ (conveyor speed).

The interaction graph between flux density and conveyor speed shows that the 
effect of conveyor speed on ppm at two different levels of flux density is not the 
same. This implies that there is an interaction between these two process parameters. 
The defect rate (in ppm) is minimum when the conveyor speed is at high level and 
flux density at low level.

3.2  Alternative Method for Calculating the Two-Order 
Interaction Effect

In order to compute the interaction effect between flux density and conveyor 
speed, we need to first multiply columns 2 and 3 in Table 3.4. This is illustrated in 
Table 3.5. In Table 3.5, column 3 yields the interaction between flux density (A) and 
conveyor speed (B).

Having obtained column 3, we then need to calculate the average ppm at high 
level of (A × B) and low level of (A × B). The difference between these will provide 
an estimate of the interaction effect.

A B Average ppm at high level of A B Average ppm at low level of (A( ) BB)

(
1

2
398 75 378 75

1

2
311 50 409 25

388 75 360 375

28

. . ) ( . . )

. .

.3375
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Figure 3.1 Interaction plot between flux density and conveyor speed. 
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Now consider the interaction between flux density (A) and solder temperature. The 
interaction graph is shown in Figure 3.2. The graph shows that the effect of solder 
temperature at different levels of flux density is almost the same. Moreover, the lines 
are almost parallel, which indicates that there is little interaction between these two 
factors.

The interaction plot suggests that the mean solder defect rate is minimum when 
solder temperature is at high level and flux density at low level.
Note: Non-parallel lines are an indicator of the existence of interactions between 

two factors and parallel lines indicate no interactions between the factors.

3.3 Synergistic Interaction Versus Antagonistic Interaction

The effects of process parameters can be either fixed or random. Fixed process 
parameter effects occur when the process parameter levels included in the experi-
ment are controllable and specifically chosen because they are the only ones for 
which inferences are desired. For example, if you want to determine the effect of 

Table 3.5 Alternative Method to Compute the 
Interaction Effect

A B A × B Average ppm

−1 −1 +1 398.75
−1 +1 −1 311.50
+1 −1 −1 409.25
+1 +1 +1 378.75
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Figure 3.2 Interaction plot between solder temperature and flux density. 
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temperature at 2-levels (180°F and 210°F) on the viscosity of a fluid, then both180°F 
and 210°F are considered to be fixed parameter levels. On the other hand, random 
process parameter effects are associated with those parameters whose levels are ran-
domly chosen from a large population of possible levels. Inferences are not usually 
desired on the specific parameter levels included in an experiment, but rather on 
the population of levels represented by those in the experiment. Factor levels rep-
resented by batches of raw materials drawn from a large population are examples of 
random process parameter levels. In this book, only fixed process parameter effects 
are considered.

For synergistic interaction, the lines on the plot do not cross each other (Gunst 
and Mason, 1991). For example, Figure 3.1 is an example of synergistic interaction. 
In contrast, for antagonistic interaction, the lines on the plot cross each other. This is 
illustrated in Figure 3.3. In this case, the change in mean response for factor B at low 
level (represented by −1) is noticeably high compared to high level. In other words, 
factor B is less sensitive to variation in mean response at high level of factor A.

In order to have a greater understanding of the analysis and interpretation of inter-
action effects, the following two scenarios can be considered.

3.4 Scenario 1

In an established baking school, the students had failed to produce uniform-sized 
cakes, despite their continuous efforts. The engineering team of the company was 
looking for the key factors or interactions which were most responsible for the vari-
ation in the weight of cakes. Here the weight of the cakes was considered to be the 
critical characteristic to the customers. A project was initiated to understand the 
nature of the problem and come up with a possible solution to identify the causes of 
variation and, if possible, eliminate them for greater consistency in the weights of 
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these cakes. Further to a thorough brainstorming session, six process variables (or 
factors) and a possible interaction (B × M) were considered for the experiment. The 
factors and their levels are given in Table 3.6.

Each process variable was kept at 2-levels and the objective of the experiment 
was to determine the optimum combination of process variables which yield mini-
mum variation in the weight of cakes. An FFE would have required 64 experimental 
runs. Due to limited time and experimental budget, it was decided to select a 2(6−3) 
fractional factorial experiment (i.e. eight trials or runs). Each trial condition was 
replicated twice to obtain sufficient degrees of freedom for the error term. Because 
we are analysing variation, the minimum number of replicates per trial condition is 
two. Table 3.7 presents the experimental layout or design matrix for the cake baking 
experiment. According to the Central Limit Theorem (CLT), if you repeatedly take 
large random samples from a stable process and display the averages of each sam-
ple in a frequency diagram, the diagram will be approximately bell-shaped. In other 
words, the sampling distribution of means is roughly normal, according to CLT. It 
is quite interesting to note that the distribution of sample standard deviations (SDs) 
does not follow a normal distribution. However, if we transform the sample SDs 
by taking their logarithms, the logarithms of the SDs will be much closer to being 
normally distributed. The last column in Table 3.7 gives the logarithmic transforma-
tion of sample SD. The SDs and log(SD) can easily be obtained by using a scientific 

Table 3.6 List of Baking Process Variables for the Experiment

Factors Label Low Level High Level

Butter (cups) B ¼ ½
Milk (cups) M ¼ ½
Flour (cups) F ¾ 1
Sugar (cups) S ½ ¾
Oven temperature (°C) O 200 225
Eggs E 2 3

Table 3.7 Response Table for the Cake Baking Experiment

Run B M B × M O F S E Weight 
(Grams)

log(SD)

1 −1 −1 +1 −1 +1 +1 −1 102.3, 117.6 1.034
2 +1 −1 −1 −1 −1 +1 +1 114.6, 120.3 0.605
3 −1 +1 −1 −1 +1 −1 +1 134.6, 126.7 0.747
4 +1 +1 +1 −1 −1 −1 −1 116.4, 123.9 0.725
5 −1 −1 +1 +1 −1 −1 +1 112.6, 130.6 1.105
6 +1 −1 −1 +1 +1 −1 −1 150.6, 141.7 0.799
7 −1 +1 −1 +1 −1 +1 −1 133.6, 122.4 0.899
8 +1 +1 +1 +1 +1 +1 +1 155.8, 138.6 1.085
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calculator or Microsoft Excel spreadsheet. Here our interest is to analyse the interac-
tion between the process variables butter (B) and milk (M) rather than the individual 
effect of each process variable on the variability of cake weights.

In order to analyse the interaction effect between butter and milk, we form a table 
for average log(SD) values corresponding to all of the four possible combinations of 
B and M. The results are given in Table 3.8.

Calculation of interaction effect (B × M):

Effect of butter B at high level of milk (M)( ) . . .0 905 0 823 0 082

Using Eq. (4.1),

B M / 82 3675 225
1

2
0 082 0 3675 1 2 0 0 0 0[ . ( . )] [ . . ] .=

Figure 3.4 illustrates the interaction plot between the process variables ‘B’ and ‘M’.
Figure 3.4 clearly indicates the existence of interaction between the factors butter 

and milk. The interaction plot shows that variability in the weight of cakes is mini-
mum when the level of butter is kept at high level and milk at low level.

Effect of butter B at low level of milk (M)( ) . . .0 702 1 0695 0 3675

Table 3.8 Interaction Table for log(SD)

B M Average log(SD)

−1 −1 1.0695
−1 +1 0.823
+1 −1 0.702
+1 +1 0.905
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Figure 3.4 Interaction plot between milk and butter. 
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3.5 Scenario 2

In this scenario, we illustrate an experiment conducted by a chemical engineer to 
study the effect of three process variables (temperature, catalyst and pH) on the 
chemical yield. The results of the experiment are given in Table 3.9. The engineer 
was interested in studying the effect of three process variables and the interaction 
between temperature and catalyst. The engineer has replicated each trial condi-
tion three times to obtain sufficient degrees of freedom for the experimental error. 
Moreover, replication increases the precision of the experiment by reducing the SDs 
used to estimate the process parameter (or factor) effects.

The first step was to construct a table (Table 3.10) for interaction between TE and 
CA. The mean chemical yield at all four combinations of TE and CA was estimated. 
In order to determine whether or not these variables are interacting, an interaction 
plot was constructed (Figure 3.5).

As the lines are not parallel, there is an interaction between the process varia-
bles CA and TE. The graph indicates that the effect of CA is insensitive to mean 
yield at low level of TE. However, maximum yield is obtained when temperature is 
kept at a high level. Maximum yield is obtained when temperature is set at a high 
level and CA at a low level. The interaction effect can be computed in the following 
manner.

Table 3.9 Experimental Layout for the Yield Experiment

Trial TE CA pH Chemical Yield 
(%)

1 −1 −1 −1 60.4, 62.1, 63.4
2 +1 −1 −1 64.1, 79.4, 74.0
3 −1 +1 −1 59.6, 61.2, 57.5
4 +1 +1 −1 66.7, 67.3, 68.9
5 −1 −1 +1 63.3, 66.0, 65.3
6 +1 −1 +1 91.2, 77.4, 84.9
7 −1 +1 +1 68.1, 71.3, 68.6
8 +1 +1 +1 75.3, 77.1, 76.1

Table 3.10 TE × CA Interaction Table

TE CA Mean Chemical Yield

−1 −1 63.42
+1 −1 78.50
−1 +1 64.38
+1 +1 71.90
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Effect of CA at high level of

Effect of CA at low level of

3.6 Scenario 3

In this scenario, we share the results of an experiment carried out in a certain grind-
ing process to reduce common-cause variation (random in nature and expensive to 
control in many cases). The primary purpose of the experiment in this case was to 
reduce variation in the outer diameter produced by a grinding operation. The follow-
ing factors and their effects were of interest to the experimenter.

1. Feed Rate – Factor A – labelled as FR
2. Wheel Speed – Factor B – labelled as WHS
3. Work Speed – Factor C – labelled as WOS
4. Wheel Grade – Factor D – labelled as WG
5. Interaction between WHS and WOS
6. Interaction between WHS and WG

The results of the experiment are given in Table 3.11. The response of interest 
for this experiment was Signal-to-Noise ratio (SNR). SNR is a performance statistic 
recommended by Dr Taguchi in order to make the process insensitive to undesirable 
disturbances called noise factors (Gijo, 2005; Lochner and Matar, 1990). The pur-
pose of the SNR is to maximise the signal while minimising the impact of noise. The 
whole idea is to achieve robustness, and the higher the SNR, the greater the robust-
ness will be.
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Figure 3.5 Interaction plot between CA and TE. 
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The mean SNR at high level (+1) of WHS × WOS = 51.11
The mean SNR at low level (−1) of WHS × WOS = 48.054
Therefore, interaction effect = 3.056
Similarly, the mean SNR at high level of WHS × WG = 49.409
The mean SNR at low level of WHS × WG = 49.754
Therefore, interaction effect= −0.345
Figure 3.6 illustrates the interaction plot between the WHS and WOS. As the lines 

are non-parallel, there is a strong interaction between those two factors.
Figure 3.6 shows that the effect of WOS on SNR at different levels of WHS is 

not the same. As SNR needs to be maximised, the optimum combination is when 
WOS and WHS are kept at a low level. Figure 3.7 illustrates the interaction plot 
between the WHS and WG. As the lines exhibit near parallelism, there is no interac-
tion between those two factors.

Table 3.11 SNR Values and Interactions

Trial WHS × WOS WHS × WG Response (SNR)

1 +1 +1 53.469
2 −1 −1 50.970
3 −1 +1 49.030
4 +1 −1 56.991
5 +1 +1 49.030
6 −1 −1 46.108
7 −1 +1 46.108
8 +1 −1 44.948
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Exercises

1. In a certain casting process for manufacturing jet engine turbine blades, the objective of 
the experiment is to determine the most important interaction effects (if there are any) that 
affect part shrinkage. The experimenter has selected three process parameters: pour speed 
(A), metal temperature (B) and mould temperature(C), each factor being kept at two lev-
els for the study. The response table, together with the response values, is shown below. 
Calculate and analyse the two-factor interactions among the three process variables. Each 
run was replicated three times to have adequate degrees of freedom for error.

Run A B C Shrinkage

1 −1 −1 −1 2.22, 2.11, 2.14
2 +1 −1 −1 1.42, 1.54, 1.05
3 −1 +1 −1 2.25, 2.31, 2.21
4 +1 +1 −1 1.00, 1.38, 1.19
5 −1 −1 +1 1.73, 1.86, 1.79
6 +1 −1 +1 2.71, 2.45, 2.46
7 −1 +1 +1 1.84, 1.76, 1.70
8 +1 +1 +1 2.27, 2.69, 2.71

2. A company that manufactures can-forming equipment wants to set up an experiment to 
help understand the factors influencing surface finish on a particular steel subassembly. 
The company decides to perform an eight-trial experiment with three factors at 2-levels. A 
brainstorming session conducted with people within the organisation ‒ operator, supervisor 
and engineer ‒ resulted in the finished part being measured at four places. The list of fac-
tors (A: tool radius, B: feed rate and C: Revolutions per Minute (RPM)) and the response 
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(surface finish) is shown in the following experimental layout. Generate an interaction plot 
for any two-way interactions with large effects.

Run A B C Surface Finish

1 −1 −1 −1 50, 50, 55, 50
2 +1 −1 −1 145, 150, 100, 110
3 −1 +1 −1 160, 165, 155, 160
4 +1 +1 −1 180, 200, 190, 195
5 −1 −1 +1 60, 65, 55, 60
6 +1 −1 +1 25, 35, 35, 30
7 −1 +1 +1 160, 160, 150, 165
8 +1 +1 +1 80, 70, 75, 80

3. Assume you are planning to carry out an experiment to investigate the sensitivity of an 
amplifier to process variation. The response of interest for the experiment is the gain of the 
amplifier measured in decibels (dB). You would like to evaluate the effects of three factors: 
resistor (R), width of the microstrip lines (W) and a capacitor (C). Each factor was studied 
at 2-levels and a simulation was conducted for studying all the combinations of factors at 
their respective levels. The coded matrix is shown below.

Run W R C Gain 
(dB)

1 −1 −1 −1 12.85
2 +1 −1 −1 13.01
3 −1 +1 −1 14.52
4 +1 +1 −1 14.71
5 −1 −1 +1 12.93
6 +1 −1 +1 13.09
7 −1 +1 +1 14.61
8 +1 +1 +1 14.81

Calculate and analyse all the two-factor interactions W × R, R × C and W × C. 
Also construct an interaction graph between W and R. How would you interpret this 
graph?
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A Systematic Methodology for 
Design of Experiments

4

4.1 Introduction

It is widely considered that DOE (or experimental design) forms an essential part of 
the quest for effective improvement in process performance or product/service qual-
ity. This chapter discusses the barriers and cognitive gaps in the statistical knowledge 
required by industrial engineers for tackling process and quality-related problems 
using DOE technique. This chapter also presents a systematic methodology to guide 
people in organisations with limited statistical ability for solving manufacturing pro-
cess-related problems in real-life situations.

4.2 Barriers in the Successful Application of DOE

Although DOE has been around for nearly 100 years, research has clearly demon-
strated that less than 30% of people are knowledgeable about DOE. Despite every 
effort by specialists and practitioners in quality and statistics, DOE has yet to 
be applied as widely as it could and should be. A study carried out in Sweden has 
shown that only 18% of Swedish companies are using the Robust Parameter Design 
(RPD) methodology advocated by Dr Taguchi. These results were part of a large 
study carried out as part of a European project which looked into the use of RPD 
methodology across five countries (Germany, Ireland, The Netherlands, Spain and 
Sweden). It was also found that the application of Six Sigma methodology has a pos-
itive influence on the application of DOE. A recent study has shown that over 60% 
of companies that apply DOE frequently are knowledgeable about Six Sigma as a 
problem-solving methodology. It has been observed over the years that companies 
utilising Six Sigma and Design for Six Sigma (DFSS) methodologies are using DOE 
more frequently than those companies which are not. The ‘effective’ application of 
DOE by industrial engineers is limited in many manufacturing organisations (Antony 
and Kaye, 1995). Some noticeable barriers are as folows:

● Educational barriers
The word ‘statistics’ invokes fear in many industrial engineers. The fundamental problem 
begins with the current statistical education for the engineering community in their aca-
demic curriculum. The courses currently available in ‘engineering statistics’ often tend to 
concentrate on the theory of probability, probability distributions and more mathemati-
cal aspects of the subject, rather than practically useful techniques such as DOE, Taguchi 

http://dx.doi.org/10.1016/B978-0-08-099417-8.00004-3
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method, robust design, gauge capability studies, Statistical Process Control (SPC), etc. 
It was found from various sources of literature that DOE is rarely taught at universities or 
at company-provided training sessions. The best way to tackle this issue is through inces-
sant cooperation between industry and academia. In the context of small and medium 
enterprises (SMEs), engineers typically do not have access to books and case studies 
which demonstrate the power of DOE. In addition, most of the DOE material is availa-
ble in English but many engineers and scientists in the developing world lack adequate 
English reading skills and therefore cannot use such materials. Another study has shown 
that the only experiments students participate in, if any, are based on demonstration and are 
often of limited educational value. Although DOE is a very powerful technique for prob-
lem solving in manufacturing companies, it was observed that both engineers and scientists 
receive little or no training in DOE at the university level. The most common criticisms 
of the teaching of DOE in many schools are that it is too academic in focus and that most 
examples taught to engineers are far too theoretical and do not represent real-world prob-
lems. There is a clear consensus that academics needs to change the way it teaches busi-
ness statistics (Bisgaard, 1991). Engineers must be taught these powerful techniques in the 
academic world with a number of supporting case studies. This will ensure a better under-
standing of the application of statistical techniques before they enter the job market.

● Management barriers
Managers often don’t understand the importance of DOE in problem solving or don’t 
appreciate the competitive value it brings into the organisation. In many organisations, 
managers encourage their engineers to use the so-called ‘home-grown’ solutions for pro-
cess- and quality-related problems. These ‘home-grown’ solutions are consistent with 
the OVAT approach to experimentation, as managers are always after quick-fix solutions 
which yield short-term benefits to their organisations. Responses from managers with high 
resistance to change may include the following:
● DOE tells me what I already know.
● It sounds good, but it is not applicable to my job.
● I need to make additional effort to prove what I already know.

Many managers do not instinctively think statistically, mainly because they are not 
convinced that statistical thinking adds any value to management and decision-making. 
Managers in organisations believe that DOE is very demanding of resources.

● Cultural barriers
Cultural barriers are one of the principal reasons why DOE is not commonly used in many 
organisations. The management should be prepared to address all cultural barrier issues 
that might be present within the organisation, plus any fear of training or reluctance to 
embrace the application of DOE. Many organisations are not culturally ready for the intro-
duction and implementation of advanced quality improvement techniques such as DOE 
and Taguchi. The best way to overcome this barrier is through intensive training programs 
and by demonstrating the successful application of such techniques by other organisations 
during the training. The culture of the company is very much reliant on the style of lead-
ership. If the leaders are not committed to the idea of performing industrially designed 
experiments for improving quality and process efficiency, then the concept of DOE 
becomes just ‘lip service’ on the part of the senior management team and will never be a 
reality (Tanco et al., 2009).

● Communication barriers
Research has indicated that there is very little communication between the academic and 
industrial worlds. Moreover, the communication among industrial engineers, managers 
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and statisticians in many organisations is limited. For the successful initiative of any 
quality improvement programme, these communities should work together and make 
this barrier less formidable. For example, lack of statistical knowledge for engineers 
could lead to problems such as misinterpretation of historical data or misunderstanding 
of the nature of interactions among factors under consideration for a given experiment. 
Similarly, academic statisticians’ lack of engineering knowledge could lead to problems 
such as undesirable selection of process variables and quality characteristics for the experi-
ment, lack of measurement system precision and accuracy, etc. Managers’ lack of basic 
knowledge in engineering and statistics could lead to problems such as high quality costs, 
poor quality and therefore lost competitiveness in the world marketplace and so on and 
so forth.

● Other barriers
Negative experiences with DOE may make companies reluctant to use DOE again. The 
majority of negative DOE experiences can be classified into two groups. The first relates to 
technical issues and the second to non-technical issues. Technical issues include
● choosing unreasonably large or small designs;
● inadequate or even poor measurement of quality characteristics;
● not choosing the appropriate levels for the process variables, etc. Non-linearity or cur-

vature effects of process variables should be explored to determine the best operating 
process conditions;

● assessing the impact of ‘uncontrolled variables’ which can influence the output of the 
process. Experimenters should try to understand how the ‘uncontrolled variables’ influ-
ence the process behaviour and devise strategies to minimise their impact as much as 
possible; and

● lacking awareness of assumptions: data analysis, awareness of different alternatives 
whey they are needed, etc.

Some of the non-technical issues include
● lack of experimental planning;
● executing one-shot experimentation instead of adopting sequential, adaptive and itera-

tive nature of experimentation and
● not choosing the right process variables or design variables for the experiment in the 

first round of experimentation, etc.

Commercial software systems and expert systems in DOE provide no guidance 
whatsoever in classifying and analysing manufacturing process quality-related 
problems from which a suitable approach (Taguchi, Classical or Shainin’s approach) 
can be selected. Very little research has been done on this particular aspect and 
from the author’s standpoint, this is probably the most important part of DOE. The 
selection of a particular approach to experimentation (i.e. Taguchi, Classical or 
Shainin) is dependent upon a number of criteria: the complexity involved, the degree 
of optimisation required by the experimenter, the time required for completion of the 
experiment, cost issues associated with the experiment, the allowed response time 
to report back to management, etc. Moreover, many software systems in DOE stress 
data analysis and do not properly address data interpretation. Thus, many engineers, 
having performed the statistical analysis using such software systems, would not 
know how to effectively utilise the results of the analysis without assistance from 
statisticians.
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4.3 A Practical Methodology for DOE

The methodology of DOE is fundamentally divided into four phases. These are:

1. planning phase
2. designing phase
3. conducting phase
4. analysing phase.

4.3.1 Planning Phase

The planning phase is made up of the following steps. Many engineers pay special 
attention on the statistical details of DOE and very little attention to the non-statis-
tical details. According to Peace (1993), experimental studies may fail not only as 
a result of lack of technical knowledge of the process under study or wrong use of 
statistical techniques but also due to lack of planning. It is the responsibility of the 
senior management team in the organisation to create an environment that stimulates 
a culture of using experimental design techniques for process optimisation problems, 
product and process development projects, improving process capability through 
systematically reducing excessive variation in processes, etc.

Problem Recognition and Formulation

A clear and succinct statement of the problem can create a better understanding of 
what needs to be done. The statement should contain an objective that is specific, 
measurable and which can yield practical value to the company (Kumar and Tobin, 
1990). The creation of a multidisciplinary team in order to have a shared under-
standing of the problem is critical in the planning phase. The multidisciplinary team 
should be led by someone with good knowledge of the process (a DOE specialist), 
good communication skills, good interpersonal skills and awareness of team dynam-
ics. Other team members may include process engineers, a quality engineer/manager, 
a machine operator, a management representative and manufacturing/production 
engineers/managers. Sharing experiences and individual knowledge is critical to 
assure a deeper understanding of the process providing more efficient ways to design 
experiments (Romeu, 2006). Some manufacturing problems that can be addressed 
using an experimental approach include

● development of new products; improvement of existing processes or products;
● improvement of the process/product performance relative to the needs and demands of 

customers;
● reduction of existing process spread, which leads to poor capability.

The objective of the experiment must be clearly specified and has to be measur-
able. Objectives can be either short term or long term. A short-term objective could 
be to fix a problem related to a high scrap rate. However, this objective is not at all 
specific and not measured in a true sense. What is ‘high’, for instance? What particu-
lar process causes a high scrap rate? Some aspects of Six Sigma thinking would be 
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very beneficial to help the team convert this engineering or manufacturing problem 
into a statistical problem.

Selection of Response or Quality Characteristic

The selection of a suitable response for the experiment is critical to the success of 
any industrially designed experiment. Time spent in establishing a meaningful 
response variable before a well-planned experiment is rarely wasted. The response 
can be variable or attribute in nature. Variable responses such as length, thickness, 
diameter, viscosity, strength, etc. generally provide more information than attribute 
responses such as good/bad, pass/fail or yes/no. Moreover, variable characteristics or 
responses require fewer samples than attributes to achieve the same level of statisti-
cal significance. It is also not unusual to have several responses requiring simultane-
ous optimisation, which can be quite challenging at times.

Experimenters should define the measurement system prior to performing the 
experiment in order to understand what to measure, where to measure and who is 
doing the measurements, etc. so that various components of variation (measure-
ment system variability, operator variability, part variability, etc.) can be evaluated. 
Defining a measurement system, including human resources, equipments and meas-
urement methods, is a fundamental aspect in planning experimental studies. It is 
important to ensure that equipment exists and is suitable, accessible and calibrated. 
The quality of a measurement system is usually determined by the statistical prop-
erties of the data it generates over a period of time which captures both long- and 
short-term variation. Experimenters should be aware of the repeatability, reproduci-
bility and uncertainty of the measurements prior to the execution of industrial experi-
ments (Launsby and Weese, 1995). It is advisable to make sure that the measurement 
system is capable, stable, robust and insensitive to environmental changes.

Selection of Process Variables or Design Parameters

Some possible ways to identify potential process variables are the use of engineering 
knowledge of the process, historical data, cause-and-effect analysis and brainstorm-
ing. This is a very important step of the experimental design procedure. If important 
factors are left out of the experiment, then the results of the experiment are not accu-
rate or useful for any improvement actions. It is a good practice to conduct a screen-
ing experiment in the first phase of any experimental investigation to identify the 
most important design parameters or process variables. More information on screen-
ing experiments/designs can be obtained from Chapter 5.

Classification of Process Variables

Having identified the process variables, the next step is to classify them into con-
trollable and uncontrollable variables. Control variables are those which can be 
controlled by a process engineer/production engineer in a production environ-
ment. Uncontrollable variables (or noise variables) are those which are difficult or 
expensive to control in actual production environments. Variables such as ambient 
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temperature fluctuations, humidity fluctuations, raw material variations, etc. are 
examples of noise variables. These variables may have an immense impact on the 
process variability and therefore must be dealt with for enhanced understanding of 
our process. The effect of such nuisance variables can be minimised by the effective 
application of DOE principles such as blocking, randomisation and replication. (For 
more information on these three principles, refer to Chapter 8.)

Determining the Levels of Process Variables

A level is the value that a process variable holds in an experiment. For example, a 
car’s gas mileage is influenced by such levels as tyre pressure, speed, etc. The num-
ber of levels depends on the nature of the process variable to be studied for the 
experiment and whether or not the chosen process variable is qualitative (type of cat-
alyst, type of material, etc.) or quantitative (temperature, speed, pressure, etc.). For 
quantitative process variables, two levels are generally required in the early stages 
of experimentation. However, for qualitative variables, more than two levels may be 
required. If a non-linear function is expected by the experimenter, then it is advisable 
to study variables at three or more levels. This would assist in quantifying the non-
linear (or curvature) effect of the process variable on the response function.

List All the Interactions of Interest

Interaction among variables is quite common in industrial experiments. In order 
to effectively interpret the results of the experiment, it is highly desirable to have 
a good understanding of the interaction between two process variables (Marilyn, 
1993). The best way to relate to interaction is to view it as an effect, just like a factor 
or process variable effect. Since it is not an input you can control, unlike factors or 
process variables, interactions do not enter into descriptions of trial conditions. In the 
context of DOE, we generally study two-order interactions. The number of two-order 
interactions within an experiment can be easily obtained by using a simple equation:

N
n n( )1

2

where n is the number of factors.
For example, if you consider four factors in an experiment, the number of two-

order interactions can be equal to six.
The questions to ask include ‘Do we need to study the interactions in the initial 

phase of experimentation?’ and ‘How many two-order interactions are of interest to 
the experimenter?’ The size of the experiment is dependent on the number of fac-
tors to be studied and the number of interactions, which are of great concern to the 
experimenter.

4.3.2 Designing Phase

In this phase, one may select the most appropriate design for the experiment. Some 
DOE practitioners would argue that proper experimental design is often more 

(4.1)
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important than sophisticated statistical analysis. The author would agree with this 
point as the damage caused by poor experimental design is irreparable. The choice 
of design depends upon a number of factors such as the number of factors to be stud-
ied, the number of levels at which the factors are to be explored, the resources and 
budget allocated for the experiment, the nature of the problem and objectives to be 
achieved, etc. Experiments can be statistically designed using the classical approach 
advocated by Sir Ronald Fisher, the orthogonal array approach advocated by Dr 
Genichi Taguchi or the variables search approach promoted by Dr Dorian Shainin. 
This book is focused on the classical DOE approach advocated by Sir Ronald Fisher. 
Within this approach, one can choose full factorial, fractional factorial or screening 
designs (such as Plackett–Burmann designs). These designs are introduced to the 
reader in the subsequent chapters.

During the design stage, it is quite important to consider the confounding struc-
ture and resolution of the design (Minitab, 2000). It is good practice to have the 
design matrix ready for the team prior to executing the experiment. The design 
matrix generally reveals all the settings of factors at different levels and the order 
of running a particular experiment. Experimenters are advised to carefully consider 
the three principles of experimental design prior to conducting the real experiment. 
The principles of randomisation, replication and blocking should be carefully taken 
into account but depending upon the nature of the problem and the objectives set for 
the experiment (Montgomery, 2001). These principles will be explained in detail at a 
later stage of the book.

4.3.3 Conducting Phase

This is the phase in which the planned experiment is carried out and the results are 
evaluated. Several considerations are recognised as being recommended prior to exe-
cuting an experiment, such as

● selection of a suitable location for carrying out the experiment. It is important to ensure 
that the location is not affected by any external sources of noise (vibration, humidity, etc.);

● availability of materials/parts, operators, machines, etc. required for carrying out the 
experiment;

● assessment of the viability of an action in monetary terms by utilising cost–benefit analy-
sis. A simple evaluation must also be carried out in order to verify that the experiment is 
the only possible solution for the problem at hand and justify that the benefits to be gained 
from the experiment will exceed the cost of the experiment.

The following steps may be useful while performing the experiment in order to 
ensure that it is performed according to the prepared experimental design matrix (or 
layout).

● The person responsible for the experiment should be present throughout the experiment. In 
order to reduce the operator-to-operator variability, it is best to use the same operator for 
the entire experiment.

● Monitor the experimental trials. This is to find any discrepancies while running the experi-
ment. It is advisable to stop running the experiment if any discrepancies are found.

● Record the observed response values on the prepared data sheet or directly into the computer.
● Any experiment deviations and unusual occurrences must be recorded and analysed.
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4.3.4 Analysing Phase

It has been quite interesting to observe over the years that many engineers rush into 
the conducting and analysing phases of DOE and pay little attention to the planning 
and designing phases. My personal message, as a mechanical engineer, to the engi-
neering fraternity is that it is the planning and designing phases that are crucial to the 
success of the experiment and not the executing and analysing phases. I am not sug-
gesting that conducting and analysing the phases of DOE are unimportant but if we 
do not plan and design an experiment correctly the first time, there is no way to save 
the experiment with a sophisticated statistical analysis.

Having performed the experiment, the next phase is to analyse and interpret the 
results so that valid and sound conclusions can be derived. In DOE, the following are 
the possible objectives to be achieved from this phase:

● Determine the design parameters or process variables that affect the mean process 
performance.

● Determine the design parameters or process variables that influence performance variability.
● Determine the design parameter levels that yield the optimum performance.
● Determine whether further improvement is possible.

The following tools can be used for the analysis of experimental results. As the 
focus of this book is to ‘Keep It Statistically Simple’ for the readers, the author will 
be introducing only simple but powerful tools for the analysis and interpretation of 
results. There are a number of DOE books available on the market that cover more 
sophisticated statistical methods for the analysis. The author encourages readers to 
use Minitab software for the analysis of experimental results.

4.4 Analytical Tools of DOE

4.4.1 Main Effects Plot

A main effects plot is a plot of the mean response values at each level of a design 
parameter or process variable. One can use this plot to compare the relative strength 
of the effects of various factors. The sign and magnitude of a main effect would tell 
us the following:

● The sign of a main effect tells us of the direction of the effect, that is, whether the average 
response value increases or decreases.

● The magnitude tells us of the strength of the effect.

If the effect of a design or process parameter is positive, it implies that the aver-
age response is higher at a high level rather than a low level of the parameter setting. 
In contrast, if the effect is negative, it means that the average response at the low-
level setting of the parameter is more than at the high level. Figure 4.1 illustrates the 
main effect of temperature on the tensile strength of a steel specimen. As you can see 
from the figure, tensile strength increases when the temperature setting varies from 
low to high (i.e. −1 to 1).
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The effect of a process or design parameter (or factor) can be mathematically cal-
culated using the following simple equation:

E F Ff ( ) ( )1 1

where F( )�1  = average response at high-level setting of a factor, and F( )�1  = average 
response at low-level setting of a factor.

4.4.2 Interactions Plots

An interactions plot is a powerful graphical tool which plots the mean response of 
two factors at all possible combinations of their settings. If the lines are parallel, this 
indicates that there is an interaction between the factors. Non-parallel lines are an 
indication of the presence of interaction between the factors. More information on 
interactions and how to interpret them can be seen in Chapter 3.

4.4.3 Cube Plots

Cube plots display the average response values at all combinations of process or 
design parameter settings. One can easily determine the best and worst combina-
tions of factor levels for achieving the desired optimum response. A cube plot is use-
ful to determine the path of steepest ascent or descent for optimisation problems. 
Figure 4.2 illustrates an example of a cube plot for a cutting tool life optimisation 
study with three tool parameters: cutting speed, tool geometry and cutting angle. The 
graph indicates that tool life increases when cutting speed is set at low level and cut-
ting angle and tool geometry are set at high levels. The worst condition occurs when 
all factors are set at low levels.

4.4.4 Pareto Plot of Factor Effects

The Pareto plot allows one to detect the factor and interaction effects that are most 
important to the process or design optimisation study one has to deal with. It displays 
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Figure 4.1 Main effect plot of temperature on tensile strength. 
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the absolute values of the effects, and draws a reference line on the chart. Any effect 
that extends past this reference line is potentially important. For example, for the 
above tool life experiment, a Pareto plot is constructed (Figure 4.3). The graph shows 
that factors B and C and interaction AC are most important. Minitab displays the abso-
lute value of the standardised effects of factors when there is an error term. It is always 
a good practice to check the findings from a Pareto chart with Normal Probability Plot 
(NPP) of the estimates of the effects (refer to NPP in the following section).

4.4.5 NPP of Factor Effects

For NPPs, the main and interaction effects of factors or process (or design) parameters 
should be plotted against cumulative probability (%). Inactive main and interaction 
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Figure 4.2 Example of a cube plot for cutting tool optimisation study. 
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effects tend to fall roughly along a straight line, whereas active effects tend to appear 
as extreme points falling off each end of the straight line (Benski, 1989). These active 
effects are judged to be statistically significant. Figure 4.4 shows an NPP of effects 
of factors for the above cutting tool optimisation example at a 5% significance level. 
Here the significance level is the risk of saying that a factor is significant when in fact 
it is not. In other words, it is the probability of the observed significant effect being 
due to pure chance. The results are absolutely identical to that of a Pareto plot of fac-
tor/interaction effects.

4.4.6 NPP of Residuals

One of the key assumptions for the statistical analysis of data from industrial experi-
ments is that the data come from a normal distribution. The appearance of a moderate 
departure from normality does not necessarily imply a serious violation of the assump-
tions. Gross deviations from normality are potentially serious and require further 
analysis. In order to check the data for normality, it is best to construct an NPP of the 
residuals. NPPs are useful for evaluating the normality of a data set, even when there is 
a fairly small number of observations. Here residual is the mean difference between the 
observed value (obtained from the experiment) and the predicted or fitted value. If the 
residuals fall approximately along a straight line, they are then normally distributed. In 
contrast, if the residuals do not fall fairly close to a straight line, they are then not nor-
mally distributed and hence the data do not come from a normal population.

The general approach to dealing with non-normality situations is to apply vari-
ance-stabilising transformation on the data. An explanation on data transforma-
tion is beyond the scope of this book and therefore readers are advised to refer to 
Montgomery (2001), which covers the use of data transformation and how to per-
form data transformation in a detailed manner. Figure 4.5 illustrates the NPP of 
residuals for the cutting tool optimisation example. The graph shows that the points 
fall fairly close to a straight line, indicating that the data are approximately normal.
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Figure 4.4 NPP of effects for cutting tool optimisation example. 
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4.4.7 Response Surface Plots and Regression Models

Response surface plots such as contour and surface plots are useful for establishing 
desirable response values and operating conditions. In a contour plot, the response 
surface is viewed as a two-dimensional plane where all points that have the same 
response are connected to produce contour lines of constant responses. A surface 
plot generally displays a three-dimensional view that may provide a clearer pic-
ture of the response. If the regression model (i.e. first-order model) contains only 
the main effects and no interaction effect, the fitted response surface will be a plane 
(i.e. contour lines will be straight). If the model contains interaction effects, the con-
tour lines will be curved and not straight. The contours produced by a second-order 
model will be elliptical in nature. Figures 4.6 and 4.7 illustrate the contour and sur-
face plots of cutting tool life (hours).
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Both contour and surface plots help experimenters to understand the nature of 
the relationship between the two factors (cutting speed and cutting angle) and the 
response (life in hours). As can be seen in Figures 4.6 and 4.7, the tool life increases 
with an increase in cutting angle and a decrease in cutting speed. Moreover, we have 
used a fitted surface (Figure 4.7) to find a direction of potential improvement for a 
process. A formal way to seek the direction of improvement in process optimisation 
problems is called the method of steepest ascent or descent (depending on the nature 
of the problem at hand, i.e. whether one needs to maximise or minimise the response 
of interest).

4.5 Model Building for Predicting Response Function

This section is focused on the model building and prediction of response function at 
various operating conditions of the process. Here the author uses a regression model 
approach to illustrate the relationship between a response and a set of process param-
eters (or design parameters) which affect the response. The use of this regression 
model is to predict the response for different combinations of process parameters 
(or design parameters) at their best levels. In order to develop a regression model 
based on the significant effects (either main or interaction), the first step is to deter-
mine the regression coefficients. For factors at 2-levels, the regression coefficients 
are obtained by dividing the estimates of effects by 2. The reason is that a two-unit 
change (i.e. low-level setting (−1) to a high-level setting (+1)) in a process param-
eter (or factor) produces a change in the response function. A regression model for 
factors at 2-levels is usually of the form

ŷ x x x x x xβ β β β β ε0 1 1 2 2 12 1 2 13 1 3� � (4.3)
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Figure 4.7 Surface plot of cutting tool life. 
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where β1, β2 are the regression coefficients and β0 is the average response in a facto-
rial experiment. The term ‘ε’ is the random error component which is approximately 
normal and independently distributed with mean zero and constant variance σ2. The 
regression coefficient β12 corresponds to the interaction between the process param-
eters x1 and x2. For example, the regression model for the cutting tool life optimisa-
tion study is given by

ˆ . . ( ) . ( ) . ( )y B C AC40 833 5 667 3 417 4 417

The response values obtained from Eq. (4.4) are called predicted values and the 
actual response values obtained from the experiment are called observed values. 
Residuals can be obtained by taking the difference of observed and predicted (or 
fitted) values. Equation (4.4) provides us with a tool that can be used to study the 
response as a function of three tool life parameters: cutting speed, tool geometry and 
cutting angle. We can predict the cutting tool life for various combinations of these 
tool parameters. For instance, if all the cutting tool life parameters are kept at low-
level settings, the predicted tool life then would be

ˆ . . ( ) . ( ) . ( )
. . ( ) .

y B C AC40 833 5 667 3 417 4 417
40 833 5 667 1 3 4117 1 4 417 1 1
27 332

( ) . ( ) ( )
.

The observed value of tool life (refer to cube plot) is 26 h. The difference between 
the observed value and predicted value (i.e. residual) is − 1.332. Similarly, if all the 
cutting tool life parameters are kept at the optimal condition (i.e. cutting speed = 
low, tool geometry = high and cutting angle = high), the predicted tool life would 
then be

ˆ . . . { . }
.

y 4 883 5 667( 1) 3 417( 1) 4 417( 1) ( 1)
54 384

0

Once the statistical analysis is performed on the experimental data, it is important 
to verify the results by means of confirmatory experiments or trials. The number of 
confirmatory runs at the optimal settings can vary from 4 to 20 (4 runs if expensive, 
20 runs if cheap).

4.6 Confidence Interval for the Mean Response

The statistical confidence interval (CI) (at 99% confidence limit) for the mean 
response can be computed using the equation

CI
SD

y
n

3










(4.4)

(4.5)
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where
y = mean response obtained from confirmation trials or runs
SD = standard deviation of response obtained from confirmation trials
n = number of samples (or confirmation runs).

For the cutting tool life example, five samples were collected from the process 
at the optimal condition (i.e. cutting speed = low, tool geometry = high and cutting 
angle = high). The results of the confirmation trials are illustrated in Table 4.1.

y � �53 71 0 654. .h and SD h

Ninety-nine per cent CI for the mean response is given by:

CI 53 71 3
0 654

5
53 71 0 877 54 55 52 83

.
.

. . ( . , . )











As the predicted value based on the regression model falls within the statistical 
CI, we will consider our model good.

If the results from the confirmation trials or runs fall outside the statistical CI, 
possible causes must be identified. Some of the possible causes may be

● incorrect choice of experimental design for the problem at hand
● improper choice of response(s) for the experiment
● inadequate control of noise factors, which cause excessive variation
● omission of some important process or design parameters in the first rounds of experi-

mentation
● measurement error
● wrong assumptions regarding interactions
● errors in conducting the experiment, etc.

If the results from the confirmatory trials or runs are within the CI, then improve-
ment action on the process is recommended. The new process or design parameters 
should be implemented with the involvement of top management. After the solution 
has been implemented, control charts on the response(s) or key process parameters 
should be constructed for constantly monitoring, analysing, managing and improving 
the process performance.

Table 4.1 Confirmation Trials

Results from Confirmation Trials

53.48
52.69
53.88
54.12
54.36
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4.7  Statistical, Technical and Sociological Dimensions 
of DOE

4.7.1 Statistical Dimension of DOE

This dimension refers to all statistical assumptions and mathematical methods that 
validate the application of DOE. Some of the key aspects one may consider include 
(Tanco et al., 2008) the following:

● Low precision of the experiment due to inadequate samples collected per experimental 
run – Quite often engineers in organisations rush into experiments without having a good 
understanding of the number of replicates they need to have per trial condition. The levels 
of α and β risks should be understood in the planning phase. Here α is the risk of wrongly 
deciding that a process variable is a signal in our process when in reality it is not. On the 
other hand, β represents the risk of missing a signal and considering it as underlying noise. 
The levels of both risks should be chosen in a way that is both technically acceptable and 
economically feasible. The number of replicates is related to its power or capability to 
detect signals; as each experimental run requires resources, there is a trade-off between 
precision and the allocated budget for the experiment.

● Randomisation is difficult as some of the factors were hard to change – When some of the fac-
tors are hard to change, it is good practice to look into ‘split-plot’ design. It is common to forget 
the split-plot structure of the design and analyse the data as a full factorial design, but this can 
lead to erroneous conclusions on the determination of significant factors and their interactions.

● Lack of proper analysis of residuals – Some assumptions before we carry out proper statisti-
cal analysis must be verified to validate the results of the analysis. Emphasis must be given 
to independence of the residuals, the variance stability and normality assumption of data.

● Data transformation before the identification of factor effects on the response variable – In 
DOE, we transform the response variable to stabilise the variance of the residuals and Box–
Cox transformation is very useful when little is known about the behaviour of the process.

● Proper analysis of interactions and the confounding pattern – Many engineers in organisa-
tions do not have a good understanding of how to analyse interactions and how to interpret 
the confounding structure provided by statistical software systems. This scenario is very 
much applicable when engineers are trying to characterise a process using low-resolution 
design where main effects are confounded with two interaction effects.

4.7.2 Technical Dimension of DOE

Technical dimension refers to the way experiments are executed as well as all activi-
ties involved in experimental planning until some realistic conclusions are derived. 
Technical dimensions include

● Process stability before conducting DOE – A number of scholars debate the point as 
though experimenters need to achieve process stability prior to performing a designed 
experiment (Costa et al., 2006). Although randomisation and blocking are principles used 
to reduce suspected noises in the process, it is advisable to achieve process stability (as 
much as possible) so that noise factors will not prevent the identification of important fac-
tor and interaction effects.



A Systematic Methodology for Design of Experiments 49

● Involvement of key players for identification of factors – It is absolutely critical to involve 
all the stakeholders at the planning phase in order to reach a consensus on which factors 
should be included in the experiment. Experiments are always very expensive and time 
consuming and therefore it is advisable to clearly define the team formation and the roles 
and responsibilities of all team members.

● Selection of wrong levels and not taking time to explore curvature effects – Selecting the 
right process variables and choosing the appropriate levels for the process variables is not 
a straightforward process in industrially designed experiments. Experimenters should be 
able to explore the curvature effects of process variables to determine if non-linear effects 
are present. This can be achieved by adding centre points. It is often a good practice to start 
with 2k factorial or 2(k − p) fractional factorial experiments and then add centre points to 
determine the presence of curvature effects of process variables on the response or quality 
characteristic of interest (Anderson and Kraber, 1999).

4.7.3 Sociological and Managerial Dimensions of DOE
● DOE in an industrial context is always an iterative process; each experiment answers some 

questions and triggers new ones, and so on until the team concludes that the full knowl-
edge required is sufficient to reach the expected degree of excellence of the process. Some 
of the sociological and managerial dimensions include

● Communicating the need for DOE at the Senior Management level – Clear and open com-
munication to the senior management team about the need for DOE is a critical factor. It is 
absolutely essential to share world-class examples to gain the attention of the senior man-
agement team.

● Communicating the need for DOE at the shop floor level – Process improvement tech-
niques such as DOE are not meant just for senior- and middle-level managers. For DOE 
to be successful, it is absolutely critical to involve people on the shop floor to identify the 
potential process variables or factors which are believed to have an impact on the response 
or quality characteristic. Operators and supervisors on the shop floor can also give good 
input into the selection of levels for each process variable.

● Using the DOE project charter as a tool to develop a good business case for the prob-
lem – Many Six Sigma-related projects in organisations begin with a project charter which 
encompasses the cost-benefits, the nature of the problem, what to measure in order to 
describe the problem, how to measure, etc. I do think it might be a good practice for engi-
neers and experimenters to develop a DOE project charter at the planning phase and pre-
sent it to the senior management team for approval.

Exercises

1. What are the common barriers to the successful application of DOE?
2. Discuss the four phases in the methodology of DOE.
3. What are the criteria for the selection of an experimental design?
4. Explain the key considerations which need to be taken into account prior to executing an 

experiment.
5. What is the purpose of NPP of residuals?
6. Explain the role of Response Surface Plots in industrial experiments.
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 7. Why do we need to develop regression models?
 8. What are the possible causes of experiments being unsuccessful?
 9. What are the statistical dimensions of the execution of an industrially designed experiment?
10. What are the technical dimensions of the execution of an industrially designed experiment?
11. What are the managerial and sociological dimensions of the execution of an industrially 

designed experiment?
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Screening Designs5

5.1 Introduction

In many process development and manufacturing applications, the number of poten-
tial process or design variables or parameters (or factors) is large. Screening is used 
to reduce the number of process or design parameters (or factors) by identifying 
the key ones that affect the product quality or process performance. This reduction 
allows one to focus process improvement efforts on the few really important factors, 
or the ‘vital few’.

Screening designs provide an effective way to consider a large number of process 
or design parameters (or factors) in a minimum number of experimental runs or tri-
als (i.e. with minimum resources and budget). The purpose of screening designs is to 
identify and separate out those factors that demand further investigation. This chap-
ter is focused on the Screening Designs expounded by R.L. Plackett and J.P. Burman 
in 1946 ‒ hence the name Plackett–Burman designs (P–B designs). P–B designs are 
based on Hadamard matrices in which the number of experimental runs or trials is a 
multiple of four, i.e. N = 4, 8, 12, 16 and so on, where N is the number of trials/runs 
(Plackett and Burmann, 1946).

P–B designs are suitable for studying up to k = (N−1)/(L−1) factors, where L 
is the number of levels and k is the number of factors. For instance, using a 12-run 
experiment, it is possible to study up to 11 process or design parameters at 2-levels. 
One of the interesting properties of P–B designs is that all main effects are estimated 
with the same precision. This implies that one does not have to anticipate which fac-
tors are most likely to be important when setting up the study. For screening designs, 
experimenters are generally not interested in investigating the nature of interactions 
among the factors (Antony, 2002). The aim is to study as many factors as possible in 
a minimum number of trials and to identify those that need to be studied in further 
rounds of experimentation in which interactions can be more thoroughly assessed.

5.2 Geometric and Non-geometric P–B Designs

Geometric P–B designs are those in which N is a power of two. The number of runs 
can be 4, 8, 16, 32, etc. Geometric designs are identical to fractional factorial designs 
(refer to Chapter 7) in which one may be able to study the interactions between fac-
tors. For example, an eight-run geometric P–B design is presented in Table 5.1. This 
allows one to study up to seven factors at 2-levels.

http://dx.doi.org/10.1016/B978-0-08-099417-8.00005-5
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Each P–B design can be constructed easily using a ‘generating vector’ which, for 
example, in the case of N = 4 has the form (−1 +1 +1). The design matrix or experi-
mental layout is obtained by arranging the vector as the first column and off-setting 
by one vector element for each new column. In other words, a new column is gener-
ated from the previous one by moving the elements of the previous column down 
once and placing the last element in the first position. The matrix is completed by 
a row of ones. Table 5.2 illustrates the competed design matrix for a four-run P–B 
design (N = 4) using the above generating vector.

Non-geometric P–B designs are designs which are multiples of four but are not 
powers of two. Such designs have runs of 12, 20, 24, 28, etc. These designs do not 
have complete confounding of effects. For non-geometric P–B designs, each main 
effect is partially confounded with all interactions that do not contain the main effect 
(Wheeler, 1988). If the interaction effect is suspected to be large, then the interac-
tion may distort the estimated effects of several process or design parameters, since 
each interaction is partially confounded with all main effects except the two interact-
ing factors. Table 5.3 illustrates the design matrix for a 12-run non-geometric P–B 
design with generating vector (+1 +1 −1 +1 +1 +1 −1 −1 −1 +1 −1). This design 
should not be used to analyse interactions. A 12-run P–B design is generally used for 
studying 11 main effects. There is nothing wrong with having fewer than 11 factors. 
If the process is suspected to be highly interactive, it would be better to use a geo-
metric design as opposed to a non-geometric design. In contrast, if interactions are of 
no concern to the experimenter, it is advisable to use a non-geometric design.

Table 5.1 An Eight-Run Geometric P–B Design

A B C D E F G

+1 −1 −1 +1 −1 +1 +1
+1 +1 −1 −1 +1 −1 +1
+1 +1 +1 −1 −1 +1 −1
−1 +1 +1 +1 −1 −1 +1
+1 −1 +1 +1 +1 −1 −1
−1 +1 −1 +1 +1 +1 −1
−1 −1 +1 −1 +1 +1 +1
−1 −1 −1 −1 −1 −1 −1

Table 5.2 Design Matrix for a 
Four-Run Geometric P–B Design

A B C

−1 +1 +1
+1 −1 +1
+1 +1 −1
−1 −1 −1
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The generating vectors for P–B designs are as follows:

N = 4 (−1 +1 +1)
N = 8 (+1 +1 +1 −1 +1 −1 −1)
N = 12 (+1 +1 −1 +1 +1 +1 −1 −1 −1 +1 −1)
N = 16 (+1 +1 +1 +1 −1 +1 −1 +1 +1 −1 −1 +1 −1 −1 −1)
N = 20 (+1 +1 −1 −1 +1 +1 +1 +1 −1 +1 −1 +1 −1 −1 −1 −1 +1 +1 −1)

The obvious advantage of P–B designs is the limited number of runs to evalu-
ate large number of factors. Since interactions are not of interest to the experimenter 
for P–B designs, the important main effects can be selected for more in-depth study. 
The obvious disadvantage of P–B designs is tied to the assumption required to evaluate 
up to k = (N − 1) factors in N runs. It is important to note that one can study fewer than 
(N − 1) factors in N runs. The unused columns can be used to estimate experimental 
error (Barrentine, 1999). Geometric P–B designs are resolution III designs and there-
fore these designs can be folded over to achieve a design resolution IV.

Table 5.3 A 12-Run Non-geometric P–B Design

A B C D E F G H I J K

+1 −1 +1 −1 −1 −1 +1 +1 +1 −1 +1
+1 +1 −1 +1 −1 −1 −1 +1 +1 +1 −1
−1 +1 +1 −1 +1 −1 −1 −1 +1 +1 +1
+1 −1 +1 +1 −1 +1 −1 −1 −1 +1 +1
+1 +1 −1 +1 +1 −1 +1 −1 −1 −1 +1
+1 +1 +1 −1 +1 +1 −1 +1 −1 −1 −1
−1 +1 +1 +1 −1 +1 +1 −1 +1 −1 −1
−1 −1 +1 +1 +1 −1 +1 +1 −1 +1 −1
−1 −1 −1 +1 +1 +1 −1 +1 +1 −1 +1
+1 −1 −1 −1 +1 +1 +1 −1 +1 +1 −1
−1 +1 −1 −1 −1 +1 +1 +1 −1 +1 +1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

Example 5.1

In this section, the author would like to illustrate a simple example with an 
eight-run P–B design which has been used for studying seven factors. The data 
for this example is taken from Barrentine’s book An introduction to Design of 
Experiments: A Simplified Approach. This example is based on the manufac-
turing process of a paperboard product. The objective of the experiment was 
to increase the puncture resistance of this paperboard product. The response 
or quality characteristic of interest to the team conducting the experiment was 
the force required to penetrate the material. The objective was to maximise the 
mean force required to penetrate the material. Seven factors at 2-levels were 
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The data was analysed using Minitab software and the results are illustrated 
below. The first task was to identify the key main effects that were most influential 
on the response (i.e. force). Figure 5.1 presents a standardised normal plot of effects 
for the above experiment. Effects C, E and B fall away from the straight line, which 
implies that they are statistically significant at 5% significance level. Effects A, D, F 
and G fall along the straight line and therefore can be treated as inactive effects. It is 
important to note that one can consider even a 10% significance level for screening 
designs in order to ensure that no important factor effects or parameters are omitted 
in the first round of experimentation.

In order to substantiate the findings of normal plot, the author have used the 
Pareto plot of effects. The Pareto plot (Figure 5.2) shows that effects C (press roll 

studied using an eight-run geometric P–B design. Table 5.4 presents the factors 
selected from the brainstorming session and their levels.

Table 5.5 presents the results of an eight-run geometric P–B design experi-
ment with two replicates per experimental trial condition.

Table 5.4 List of Factors and Their Levels for the Experiment

Factors Labels Low-Level 
Setting

High-Level 
Setting

Paste temperature A 130°F 160°F
Amount of additive B 0.2% 0.5%
Press roll pressure C 40 psi 80 psi
Paper moisture D Low High
Paste type E No clay With clay
Cure time F 10 days 5 days
Machine speed G 120 fpm 200 fpm

Table 5.5 Design Matrix of an Eight-Run Geometric P–B Design for the Experiment

A B C D E F G R1 R2

+1 −1 −1 +1 −1 +1 +1 12.5 16.84
+1 +1 −1 −1 +1 −1 +1 42.44 39.29
+1 +1 +1 −1 −1 +1 −1 55.08 47.57
−1 +1 +1 +1 −1 −1 +1 49.37 47.69
+1 −1 +1 +1 +1 −1 −1 55.43 52.80
−1 +1 −1 +1 +1 +1 −1 42.51 35.02
−1 −1 +1 −1 +1 +1 +1 51.13 57.92
−1 −1 −1 −1 −1 −1 −1 15.61 13.65
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pressure), E (paste type) and B (amount of additive) are most important to the pro-
cess and therefore should be studied in greater depth. The effect plot of the signifi-
cant effects is shown in Figure 5.3.

From the above results, one may conclude that main effects C (press roll pres-
sure), E (paste type) and B (amount of additive) are found to have significant impact 
on the mean puncture resistance (i.e. the force required to penetrate the paper board).

In order to analyse the factors affecting variability in force, we need to calculate 
the SD of observations at each experimental design point. The results are given in 
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Table 5.6. As we have seen before in the cake baking example (refer to Chapter 3), 
the SD of observations do not follow a normal distribution. Therefore we transform 
the sample SD by taking their logarithms, as the logarithms of the SD will be much 
closer to being normally distributed (refer to Chapter 3). It is important to note that 
SD can be computed using any scientific calculator.

Figure 5.4 shows a standardised normal plot of effects affecting ln(SD). The nor-
mal plot indicates that only factor F (cure time) influenced the variation in the punc-
ture resistance (i.e. force). Further analysis of factor F has revealed that variability 
is maximum when cure time is set at high level (i.e. 5 days). This can be seen in 
Figure 5.5.

The conclusions are that factors C, B and E have a significant impact on process 
average, whereas factor F has a significant impact on process variability. The other 
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Figure 5.3 Main effects plot of the significant effects. 

Table 5.6 Design Matrix of an Eight-Run Geometric P-B Design with Standard  
Deviation Values

A B C D E F G s ln(SD)

+1 −1 −1 +1 −1 +1 +1 3.07 1.122
+1 +1 −1 −1 +1 −1 +1 2.23 0.802
+1 +1 +1 −1 −1 +1 −1 5.31 1.670
−1 +1 +1 +1 −1 −1 +1 1.18 0.166
+1 −1 +1 +1 +1 −1 −1 1.86 0.621
−1 +1 −1 +1 +1 +1 −1 5.30 1.668
−1 −1 +1 −1 +1 +1 +1 4.80 1.569
−1 −1 −1 −1 −1 −1 −1 1.39 0.329
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factors such as A, D and G can be set at their economic levels since they do not 
appear to influence either the process average or the process variability. The next 
stage of the experimentation would be to consider the interaction among the factors 
and select the optimal settings from the experiment that yields maximum force with 
minimum variability. This can be accomplished by utilising more powerful designs 
such as full factorials or fractional factorial designs with resolution IV (i.e. main 
effects are free of third-order interactions or two-factor interactions are confounded 
with other two-factor interactions).
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Figure 5.4 Normal plot of effects affecting variability in puncture resistance. 
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Example 5.2

In this example, we consider a plastic foam extrusion process. A process 
improvement team was formed to investigate what affects the porosity of plastic 
parts. After a thorough brainstorming session with quality engineers, the process 
manager and the operators, it was identified that eight process parameters might 
have some impact on porosity. Table 5.7 presents the list of parameters and their 
levels for the experiment. Each factor was studied at 2-levels. As the total degrees 
of freedom for studying eight factors at 2-levels is equal to 8, it was decided to 
choose a non-geometric 12-run P–B design with 11 degrees of freedom. The 
extra 3 degrees of freedom can be used to estimate experimental error. Table 5.8 
presents the experimental layout with response values in both standard and ran-
dom order.

Table 5.8 Experimental Layout for 12-Run P–B Design with Response Values

Run A B C D E F G H Porosity (%)

 1 (6) +1 +1 −1 +1 +1 +1 −1 −1 44.8
 2 (11) +1 −1 +1 +1 +1 −1 −1 −1 37.2
 3 (9) −1 +1 +1 +1 −1 −1 −1 +1 36.0
 4 (7) +1 +1 +1 −1 −1 −1 +1 −1 34.8
 5 (2) +1 +1 −1 −1 −1 +1 −1 +1 46.4
 6 (1) +1 −1 −1 −1 +1 −1 +1 +1 24.8
 7 (5) −1 −1 −1 +1 −1 +1 +1 −1 43.6
 8 (12) −1 −1 +1 −1 +1 +1 −1 +1 44.8
 9 (3) −1 +1 −1 +1 +1 −1 +1 +1 24.0
10 (8) +1 −1 +1 +1 −1 +1 +1 +1 34.4
11 (4) −1 +1 +1 −1 +1 +1 +1 −1 27.2
12 (10) −1 −1 −1 −1 −1 −1 −1 −1 49.6

Note: Numbers in parentheses represent the random order of experimental runs or trials.

Table 5.7 List of Process Parameters and Their Levels for the Experiment

Process Parameters Labels Low Level (−1) High Level (+1)

Temperature profile A 1 2
Temperature after heating B 210°C 170°C
Temperature after expansion C 170°C 150°C
Temperature before coating die D 130°C 115°C
Extrusion speed E 6 m/min 4.5 m/min
Adhesive coating thickness F 0.7 mm 0.4 mm
Adhesive coating temperature G 115°C 100°C
Expansion angle H Max Min
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Figure 5.6 shows that process parameters such as G (adhesive coating tempera-
ture), E (extrusion speed) and F (adhesive coating thickness) have significant impact 
on porosity. These parameters should be further explored using full fractional 
designs and more advanced methods such as response surface methods, if necessary. 
In the next stage of experimentation, one should analyse the interactions among the 
parameters E, F and G. In order to identify which levels of these parameters yield 
minimum porosity, we may consider an effects plot (Figure 5.7). Figure 5.7 shows 
that E at high level, F at low level and G at high level yields minimum porosity.

The objective of the experiment was to determine the key parameters that affect 
percentage porosity. The Minitab software system was used for analysis purposes. 
Figure 5.6 illustrates a standardised Pareto plot of effects for the experiment.
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Example 5.3

In this section, the author would like to illustrate an example with a 12-run 
Taguchi Orthogonal Array which has been used for studying seven factors. The 
data for this example is taken from Kiemele et al. (2000). In this example, we 
consider a process of producing the small cylindrical protective mechanism that 
houses the solid explosive material used to inflate the air bag in an automobile. 
Each trial condition was replicated four times to observe variation within the 
trials. The response of interest for the experiment was the diameter of cylinder 
and the target value for diameter was 800. Table 5.9 presents the experimental 
layout with the factors and the results. The last two columns represent the mean 
(y-bar) and SD of diameter of the cylinder.

Table 5.9 Experimental Layout for Screening Seven Factors at 2-Levels

Run A B C D E F G Y1 Y2 Y3 Y4 y-bar SD

1 −1 −1 −1 −1 −1 −1 −1 803.00 800.77 804.64 799.34 801.94 2.35
2 −1 −1 −1 −1 −1 +1 +1 806.31 804.80 807.19 803.80 805.53 1.52
3 −1 −1 +1 +1 +1 −1 −1 806.89 795.18 797.31 809.94 802.33 7.19
4 −1 +1 −1 +1 +1 −1 +1 805.49 795.47 794.50 804.59 800.01 5.83
5 −1 +1 +1 −1 +1 +1 −1 802.29 801.69 799.96 802.94 801.72 1.28
6 −1 +1 +1 +1 −1 +1 +1 811.38 798.87 811.01 800.78 805.51 6.61
7 +1 −1 +1 +1 −1 −1 +1 795.73 794.57 801.15 794.03 796.37 3.26
8 +1 −1 +1 −1 +1 +1 +1 801.36 802.22 798.58 800.09 800.56 1.59
9 +1 −1 −1 +1 +1 +1 −1 792.32 799.13 803.69 804.33 799.87 5.54

10 +1 +1 +1 −1 −1 −1 −1 803.23 802.30 798.00 800.21 800.94 2.33
11 +1 +1 −1 +1 −1 +1 −1 806.09 801.04 806.97 805.88 804.99 2.68
12 +1 +1 −1 −1 +1 −1 +1 799.02 796.58 796.61 800.55 798.19 1.95

Figure 5.7 shows that porosity will decrease when temperature is kept at high 
level (100°C). Similarly, porosity decreases as extrusion speed is kept at high level 
(4.5 m/min) and coating thickness at low level (0.7 mm).

The first part of the analysis is to determine the most important factors that influ-
ence the mean diameter of the cylinder. Obviously, not all seven factors would have 
an equal impact on the diameter. So we may use a simple main effects plot to screen 
the most important ones from the unimportant ones. Figure 5.8 shows the main 
effects plot. Figure 5.8 shows that factors A, E and F are the most important ones 
that can be used to adjust the diameter to the target value of 800. The most inter-
esting feature of DOE is that it can not only identify the most important factors but 
also understand the unimportant factors. The levels of unimportant factors can be set 
at their most economical levels. This would save significant cash in certain cases of 
industrial experiments.
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The next part of the analysis is to understand the factors which influence vari-
ability in diameter. In this instance, it is not only important to achieve a mean diam-
eter closer to the target of 800 but also to achieve consistent diameter values closer 
to 800. In order to analyse variability, we compute SD at each experimental design 
point and use logarithmic transformation for validating normal distribution assump-
tions. This point is very well covered in Lochner and Matar (1990). It was a surprise 
to observe from Figure 5.9 that factor D is the only factor which causes variation 
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in the diameter of the cylinder. Moreover, it points out that minimum variation is 
obtained when we keep this factor at its low-level setting. This is a very useful piece 
of information for any designed experiment.

Exercises

1. What are screening designs?
2. Compare geometric and non-geometric P–B designs.
3. What are the strengths and limitations of P–B designs?
4. When would you utilise screening designs in real-life situations?
5. Explain how to overcome the problem of low resolution in a screening design.
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Full Factorial Designs6

6.1 Introduction

It is widely accepted that the most commonly used experimental designs in manu-
facturing companies are full and fractional factorial designs at 2-levels and 3-levels. 
Factorial designs would enable an experimenter to study the joint effect of the fac-
tors (or process/design parameters) on a response. A factorial design can be either 
full or fractional factorial. This chapter is primarily focused on full factorial designs 
at 2-levels only. Factors at 3-levels are beyond the scope of this book. However, if 
readers wish to learn about experimental design for factors at 3-levels, the author 
would suggest them to refer to Montgomery (2001).

A full factorial designed experiment consists of all possible combinations of lev-
els for all factors. The total number of experiments for studying k factors at 2-levels 
is 2k. The 2k full factorial design is particularly useful in the early stages of experi-
mental work, especially when the number of process parameters or design param-
eters (or factors) is less than or equal to 4. One of the assumptions we make for 
factors at 2-levels is that the response is approximately linear over the range of the 
factor settings chosen. The first design in the 2k series is one with only two factors, 
say, A and B, each factor to be studied at 2-levels. This is called a 22 full factorial 
design.

6.2 Example of a 22 Full Factorial Design

Here we consider a simple nickel plating process with two plating process param-
eters: plating time and plating solution temperature (Kiemele et al., 1997). Each pro-
cess parameter is studied at 2-levels. The response of interest to the experimenters 
was plating thickness. Table 6.1 illustrates the two process parameters and their cho-
sen levels for the experiment.

Table 6.1 Process Parameters and Their Levels for the Experiment

Process Parameters Labels Low Level High Level

Plating time A 4 s 12 s
Plating solution temperature B 16°C 32°C

http://dx.doi.org/10.1016/B978-0-08-099417-8.00006-7
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Table 6.2 shows the design layout of the experiment with response values. Each 
experimental condition was replicated five times so that a reasonable estimate of 
error variance (or experimental error) could be obtained.

The following are the four objectives set by the experimenter:

1. Which main effects or interactions might affect the mean plating thickness?
2. Which main effects or interactions might influence variability in plating thickness?
3. What is the best setting of factors to minimise variability in thickness?
4. How can a target plating thickness of 120 units be achieved?

6.2.1  Objective 1: Determination of Main/Interaction Effects That 
Influence Mean Plating Thickness

In order to determine the effect of process parameters A and B and its interaction 
AB, we need to construct a coded design matrix with mean plating thickness values 
as shown in Table 6.3.

The column AB is obtained by simply multiplying the coded values in columns A 
and B. Interaction AB yields a combined effect of two factors, A and B. The results 
from Minitab software are shown below. Figure 6.1 illustrates the normal plot of 
effects. The graph illustrates that process parameter ‘plating time’ and the interaction 
between ‘plating time and plating solution temperature’ are statistically significant 
at 5% significance level. In other words, these effects have a large impact on the 
mean plating thickness, though plating solution temperature has very little impact on 
the mean plating thickness. This finding can be further supported by considering the 
main effects plot and interaction plot (see Figures 6.2 and 6.3, respectively).

It can be seen from Figure 6.2 that plating time has a huge impact on plating 
thickness, whereas plating solution temperature has no impact on plating thickness 

Table 6.2 Design layout of the Experiment with Response Values

Trial Number A B Plating Thickness

1  4 16 116.1 116.9 112.6 118.7 114.9
2  4 32 106.7 107.5 105.9 107.1 106.5
3 12 16 116.5 115.5 119.2 114.7 118.3
4 12 32 123.2 125.1 124.5 124.0 124.7

Table 6.3 Coded Design Matrix with Mean 
Plating Thickness Values

A B AB Mean Plating Thickness

−1 −1 1 115.84
−1 1 −1 106.74

1 −1 −1 116.84
1 1 1 124.30
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Figure 6.1 NPP of effects for the plating experiment. 
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Figure 6.2 Main effects plot for the plating experiment. 
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Figure 6.3 Interaction plot – plating time × plating solution temperature. 
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whatsoever. However, it is interesting to note that plating solution temperature has 
a lower sensitivity to variability in plating thickness when compared to plating time. 
Figure 6.3 indicates that there is a strong interaction between plating time and plat-
ing thickness. Plating thickness is maximum when plating time is kept at high level 
(12 s) and plating solution temperature is kept at high level (32°C). Similarly, plating 
thickness is minimum when plating solution temperature is kept at high level (32°C) 
and plating time is kept at low level (4 s).

6.2.2  Objective 2: Determination of Main/Interaction Effects That 
Influence Variability in Plating Thickness

In order to determine the effect of A, B and interaction AB on process variability, we 
need to construct a coded design matrix with response as variability in plating thick-
ness (Table 6.4).

Minitab software is used to identify which effects are most important to process 
variability. Figure 6.4 shows a Pareto plot of the effects on variability [ln(SD)]. It is 
quite clear from the graph that process parameter plating solution temperature (B) 

Table 6.4 Coded Design Matrix with Variability as Response

A B AB Variability in Plating 
Thickness (SD)

ln(SD)

−1 −1 1 2.278 0.823
−1 1 −1 0.607 −0.499

1 −1 −1 1.884 0.633
1 1 1 0.731 −0.313

0.0 0.5 1.0

A

AB

B

A: Plating time
B: Plating temp.

Figure 6.4 Pareto plot of effects on plating thickness variability. 
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has a significant effect on plating thickness variability, whereas plating time (A) has 
no impact on plating thickness variability. Interaction AB has again very little impact 
on variability. Figure 6.5 shows that variability is minimum when the plating solu-
tion temperature is set at high level (32°C). This finding provides the answer to our 
objective 3, set out earlier in this chapter.

6.2.3  Objective 4: How to Achieve a Target Plating Thickness of 
120 Units?

In order to achieve a target plating thickness of 120 units, we need to initially 
develop a simple regression model (or mathematical model) which connects the 
response of interest (i.e., plating thickness) and the significant process parameters. 
In order to develop a regression model, we need to construct a table of effects and 
regression coefficients (Kiemele et al., 1997). It is important to recall that regression 
coefficients for factors at 2-levels are just half the estimate of effect. A sample cal-
culation of how to estimate the effect of paste time and the interaction between time 
and temperature is shown below (Table 6.3).

Effect of Plating Time on Plating Thickness
Mean plating thickness at high level of plating time = (116.84 + 124.30)/2

= 120.57
Mean plating thickness at low level of plating time = (115.84 + 106.74)/2

= 111.29
Effect of plating time on plating thickness = (120.57 – 111.29)

= 9.28
Regression coefficient of plating time (A) = 9.28/2

= 4.64

Plating time Plating solution temperature
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Figure 6.5 Main effects plot with variability as response. 
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Interaction Effect Between Plating Time and Plating Solution  
Temperature (AB)

Referring to Column 3 in Table 7.3, the mean plating  
                                        thickness at low level of AB = (106.74 + 116.84)/2

 = 111.79
Similarly, the mean plating thickness at high level of AB = (115.84 + 124.30)/2
 = 120.07

Therefore, interaction AB = 120.07 – 111.79
 = 8.28

Regression coefficient of the interaction term (AB) = 4.14

The regression model for the plating thickness can be therefore written as

ˆ ( ) ( )y A AB= + +β β β0 1 12

where

β0 = overall mean plating thickness = 115.93

β1
 = regression coefficient of factor A (plating time)

β12 =  regression coefficient of interaction AB (plating time × plating solution temperature)

The predicted model for plating thickness is therefore given by

ŷ = + +115.93 4.64 (A) 4.14 (AB)

Using the above predicted model, we need to determine the settings of parameters 
which give a target thickness of 120 units (i.e., ŷ = 120). Moreover, we know that 
a high level of plating solution temperature (factor B) yields minimum variability. 
Therefore, we can set B at a low level (i.e., 1).

Now, we can write, 120 = 115.93 + 4.64 (A) + 4.14 (A)
 = 115.93 + 4.64 A + 4.14 A
 = 115.93 + 8.78 A

4.07 = 8.78 A
A = 0.463 (in coded terms)

 = 8.28
 = 8.28
 = 8.28
 = 8.28
The following equation can be used to convert the coded values into actual 

parameter values (or vice versa).

Actual
High Low High Low

Coded=
+










+

−










•

2 2

For example, for factor A, high-level setting = 12 s, low-level setting = 4 s, coded 
value = 0.463:
Actual = {(12 + 4)/2} + {((12 – 4)/2)) . 0.463}

 = 8 + 4 (0.463)
 = 9.85 sec

(6.1)

(6.2)
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Therefore, to achieve a target plate thickness of 120 units, we need to set the plat-
ing time for 9.85 s at a temperature of 32°C. We need to perform confirmation exper-
iments or runs to verify the results of our analysis. If the results of the confirmation 
experiments or runs (i.e., each observation from the trials) fall within the interval of 
ŷ � 3 (s.e.), then the results are satisfactory. Here s.e. refers to standard error and is 

obtained by s n/ , where SD is the sample standard deviation and n is sample size.

The analysis of a 2k factorial design assumes that the observations are normally 
and independently distributed (Logothetis, 1992). The best way to check the normal-
ity assumption is by constructing an NPP of residuals (Box et al., 1978). Figure 6.6 
presents the normal probability of residuals for the plating experiment. As the residu-
als fall approximately along a straight line, we can conclude that the data come from 
a normal population.

6.3 Example of a 23 Full Factorial Design

Now we consider an experiment with three factors at 2-levels. The response of inter-
est for the experiment was yield of a chemical process. The list of process param-
eters and their levels are presented in Table 6.5.

It was important to analyse all the two-factor interactions and therefore a 23 full 
factorial design was chosen. Each trial condition was replicated three times in order 
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Figure 6.6 NPP of residuals for the plating experiment. 

Table 6.5 List of Process Parameters and Their Levels

Process Parameters Labels Low Level High Level

Temperature T 80°C 120°C
Pressure P 50 psi 70 psi
Reaction time R 5 min 15 min



Design of Experiments for Engineers and Scientists70

to obtain an accurate estimate of experimental error (or error variance). The follow-
ing objectives were set prior to performing the experiment.

1. Which main effects or interactions might affect the average process yield?
2. Which main effects or interactions might influence variability in process yield?
3. What is the optimal process condition?

6.3.1  Objective 1: To Identify the Significant Main/Interaction Effects 
That Affect the Process Yield

In order to identify the significant main/interaction effects, it was decided to con-
struct an experimental layout (Table 6.6), which shows all the combinations of 
process parameters at their respective levels. The table shows the actual settings of 
the process parameters with the response values (i.e., yield) recorded at each trial 
condition.

Figure 6.7 illustrates the Pareto plot of effects. The graph shows that main effects 
T (temperature) and R (reaction time), and interaction between pressure (P) and 
reaction time (R), are significant at 5% significance level. It is quite interesting to 
note that pressure (P) on its own has no significant impact on the process yield. It is 
important to analyse the interaction between P and R for determining the best set-
tings for optimising the chemical process yield.

Figure 6.8 indicates that there exists a strong interaction between pressure and 
reaction time. It is clear that the effects of reaction time at different levels of pressure 
are different. Yield is minimum when the pressure is kept at a low level (50 psi) and 
reaction time at high level (15 min). Maximum yield is obtained when the pressure 
and reaction time are kept at low levels.

6.3.2  Objective 2: To Identify the Significant Main/Interaction Effects 
That Affect the Variability in Process Yield

In order to identify the significant main/interaction effects that affect process vari-
ability, we need to construct a coded design matrix with ln(SD) as the response  
of interest. Table 6.7 illustrates the design matrix with variability as the response. 

Table 6.6 Experimental Layout with Response Values

Run/trial T P R Yield 1 (%) Yield 2 (%) Yield 3 (%)

1 80 50 5 61.43 58.58 57.07
2 120 50 5 75.62 77.57 75.75
3 80 70 5 27.51 34.03 25.07
4 120 70 5 51.37 48.49 54.37
5 80 50 15 24.80 20.69 15.41
6 120 50 15 43.58 44.31 36.99
7 80 70 15 45.20 49.53 50.29
8 120 70 15 70.51 74.00 74.68
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Figure 6.7 Pareto plot of effects for the yield example. 
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Figure 6.8 Interaction plot – pressure × reaction time. 

Table 6.7 Design Matrix with Variability as Response of Interest

Run T P R SD ln(SD)

1 −1 −1 −1 2.214 0.795
2 1 −1 −1 1.090 0.086
3 −1 1 −1 4.632 1.533
4 1 1 −1 2.940 1.078
5 −1 −1 1 4.707 1.549
6 1 −1 1 4.032 1.394
7 −1 1 1 2.746 1.010
8 1 1 1 2.237 0.805
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Due to zero degrees of freedom for the error term, we need to rely on a procedure 
called ‘pooling’ of insignificant effects (Taguchi, 1987). Pooling is a process of 
obtaining a more accurate estimate of error variance. Taguchi advocates pooling 
effects until the degrees of freedom for the error term is approximately equal to half 
the total degrees of freedom for the experiment.

For the present example, the author has pooled interactions TR, TP and TPR so 
that three degrees of freedom have been created for the error term. A Pareto plot of 
the effects is shown in Figure 6.9. The figure shows that none of the main effects 
have any impact on variability. Interaction between pressure (P) and reaction time 
(R) seems to have some impact on variability (Figure 6.10). It can be seen that vari-
ability is minimum when pressure is kept at low level and reaction time at low level.
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Figure 6.9 Pareto plot of effects with ln(SD) as response of interest. 
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Figure 6.10 Interaction plot of ln(SD) – pressure × reaction time. 
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6.3.3 Objective 3: What Is the Optimal Process Condition?

In order to determine the optimal condition for the process, it is important that we 
need to analyse both response mean and variability. The best settings for maximising 
the process yield are as follows:

Temperature (T) – High level (120°C)
Pressure (P) – Low level (50 psi)
Reaction time (R) – Low level (5 min)

Similarly, the best settings for minimising response variability are:

Temperature (T) – High level (120°C)
Pressure (P) – Low level (50 psi)
Reaction time (R) – Low level (5 min)

The above settings can be easily obtained by analysing the mean process yield 
and mean ln(SD) values at both low- and high-level settings of T, P and R.

For normality assumption of data, it is best to construct an NPP of residuals 
(Figure 6.11). The graph indicates that the data come from a normal population.

6.4 Example of a 24 Full Factorial Design

In the last example, the author will consider an example with four factors. This 
example shows the results of an experiment to study the effect of four factors on 
a cracking problem. A nickel–titanium alloy is used to make components for jet 
turbine aircraft engines. Cracking is a potentially serious problem in the final part, 
because it can lead to non-recoverable failure and subsequent rejection of the part, 
thereby causing waste. The objective of the experiment was therefore to identify 
the key factors and their interactions (if existing) which have effect on cracks. Four 
factors were considered: (pouring temperature (A), titanium content (B), heat treat-
ment method (C) and the amount of grain refiner used (D). Each factor was studied 
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Figure 6.11 NPP of residuals for the yield experiment. 
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at 2-levels and a 24 full factorial design was selected. Table 6.8 presents the experi-
mental layout used for this experiment to minimise cracks. The response of interest 
to the experimenter was the length of crack (in mm × 10−2). Each trial condition was 
replicated twice to estimate error variance.

The following are the objectives of the experiment:

1. Which of the main/interaction effects affect mean crack length?
2. Which main effects or interactions might influence variability in crack length?
3. What is the optimal process condition to minimise mean crack length?

6.4.1  Objective 1: Which of the Main/Interaction Effects Affect Mean 
Crack Length?

In order to identify the key main and interaction effects that affect crack length, a 
Pareto plot of effects (Figure 6.12) was constructed. The Pareto plot clearly indicates 
that all the main effects (A, B, C and D) and two two-factor interactions (AB and 
AC) are statistically significant at 5% significance level. In order to understand the 
nature of interactions among the factors, the author would suggest that readers refer 
to Figure 6.13.

Figure 6.13 indicates that there is a strong interaction between A and B; and A 
and C (due to non-parallel lines). We don’t generally study three-factor (or three-
way) interactions as they are not important in real-life settings.

Table 6.8 Experimental Layout with Response Values

Run A B C D Crack Length

1 −1 −1 −1 −1 7.037 6.376
2 1 −1 −1 −1 14.707 15.219
3 −1 1 −1 −1 11.635 12.089
4 1 1 −1 −1 17.273 17.815
5 −1 −1 1 −1 10.403 10.151
6 1 −1 1 −1 4.368 4.098
7 −1 1 1 −1 9.360 9.253
8 1 1 1 −1 13.440 12.923
9 −1 −1 −1 1 8.561 8.951

10 1 −1 −1 1 16.867 17.052
11 −1 1 −1 1 13.876 13.658
12 1 1 −1 1 19.824 19.639
13 −1 −1 1 1 11.846 12.337
14 1 −1 1 1 6.125 5.904
15 −1 1 1 1 11.190 10.935
16 1 1 1 1 15.653 15.053
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6.4.2  Objective 2: Which of the Main/Interaction Effects Affect 
Variability in Crack Length?

For many industrial experiments, it is important to understand which factors affect 
mean response and which ones affect response variability. For optimisation prob-
lems, we need to minimise response variability around the target performance 
(Dean and Voss, 1999). This is one of the fundamental objectives of robust design 
methodology.
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Figure 6.12 Pareto plot of effects for the above example. 
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In order to analyse which factors affect variability in crack length, we need to 
construct a design matrix with ln(SD) as the response. Table 6.9 presents the design 
matrix with ln(SD) as the response of interest.

In order to identify the factors/interactions that affect variability in crack length,  
a Pareto plot of effects was constructed (Figure 6.14). The Pareto plot has shown  
that none of the main effects has a significant effect on variability in crack length. 

Table 6.9 Experimental Layout with Response Values

Run A B C D SD ln(SD)

1 −1 −1 −1 −1 0.467 −0.761
2 1 −1 −1 −1 0.362 −1.016
3 −1 1 −1 −1 0.321 −1.136
4 1 1 −1 −1 0.383 −0.960
5 −1 −1 1 −1 0.178 −1.726
6 1 −1 1 −1 0.191 −1.655
7 −1 1 1 −1 0.076 −2.577
8 1 1 1 −1 0.366 −1.005
9 −1 −1 −1 1 0.276 −1.287

10 1 −1 −1 1 0.131 −2.033
11 −1 1 −1 1 0.154 −1.871
12 1 1 −1 1 0.131 −2.033
13 −1 −1 1 1 0.347 −1.058
14 1 −1 1 1 0.156 −1.858
15 −1 1 1 1 0.180 −1.715
16 1 1 1 1 0.424 −0.858

0 1 2 3 4

BD

A

B

BC

C

D

AD

AC

AB

CD

A: A
B: B
C: C
D: D

Figure 6.14 Pareto plot for ln(SD). 
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Two interactions (AB and CD) are believed to have significant impact on the vari-
ability. Figure 6.15 illustrates the interaction plot between factors A and B. It is quite 
clear from the graph that there exists a strong interaction between factors A and B. 
The variability in crack length is minimum when A is kept at low level and B at high 
level. Similarly, C at low level and D at high level yield minimum variability in crack 
length. However, it is interesting to observe that factor D is less sensitive to variabil-
ity when C is kept at high level.

6.4.3  Objective 3: What Is the Optimal Process Condition to Minimise 
Mean Crack Length?

In this section, the author will demonstrate how to determine the settings of A, B, 
C and D to minimise mean crack length. As interactions AB and AC have a signifi-
cant impact on mean crack length, we need to analyse the mean crack length for 
all the four combinations between these two factors. Tables 6.10 and 6.11 present 
the mean crack length at all combinations of factor levels of A and B and A and C, 
respectively.
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Figure 6.15 Interaction between A and B (response: ln(SD)). 

Table 6.10 Mean Crack Length for All 
Combinations of A and B

A B Mean Crack 
Length

−1 −1 9.458
1 −1 10.542

−1 1 11.5
1 1 16.453
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It is also observed that factor D at low level yields minimum crack length. 
Therefore, the optimal condition of the process to minimise crack length is as follows:

Factor A – Low level (−1)
Factor B – Low level (−1)
Factor C – High level (1)
Factor D – Low level (−1)

The NPP of residuals (Figure 6.16) shows that the data comes from a normal 
population.

6.4.4 More Examples of FFEs

In this section, we consider a couple of examples to help you understand the use of 
FFEs in two different contexts. The first example is about obtaining more uniform 
fill heights in soft drink bottles. The filling machine theoretically fills each bottle to 
the correct target height. However, the bottle manufacturer was experiencing vari-
ation in fill heights and it was quite important for the company to reduce variation 
around the target height. The engineering team of the company identified three pro-
cess variables that could influence the fill heights during the filling process. It was 

Table 6.11 Mean Crack Length for All 
Combinations of A and C

A C Mean Crack 
Length

−1 −1 10.273
1 −1 17.300

−1 1 10.684
1 1  9.696
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Figure 6.16 NPP of residuals for the above data. 
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decided to keep each process variable at 2-levels. This would lead to eight experi-
mental trials or runs. Table 6.12 presents the list of process variables (or factors) and 
their respective levels for the experiment.

Table 6.13 shows the experimental layout with the list of process variables and 
the possible combinations.

The response or quality characteristic of interest for the experiment was deviation 
from the target fill height. Table 6.14 presents the coded layout with the response 
values.

Table 6.12 List of Process Variables and Their Levels for the Experiment

Process Variables Labels Low Level High Level

Carbonation A 10% 12%
Operating pressure B 25 psi 30 psi
Line speed C 200 bottles per minute (bpm) 250 bottles per minute (bpm)

Table 6.13 Experimental Layout with 
All the Process Variables

Experimental 
Run

A (%) B C

1 10 25 200
2 12 25 200
3 10 30 200
4 12 30 200
5 10 25 250
6 12 25 250
7 10 30 250
8 12 30 250

Table 6.14 Coded Experimental Layout with Response Values

Experimental 
Run

A B C Deviation from the 
Target Fill Height (y)

1 −1 −1 −1 −4
2 +1 −1 −1 1
3 −1 +1 −1 −1
4 +1 +1 −1 5
5 −1 −1 +1 −1
6 +1 −1 +1 3
7 −1 +1 +1 2
8 +1 +1 +1 11
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Figure 6.17 shows a main effects plot for the process variables. The main effects 
plot shows that carbonation is the most important factor, followed by operating pres-
sure and finally line speed. We also look at the interaction graph to determine if any 
interaction exists among these process variables. Figure 6.18 shows the interac-
tion graph for all three process variables. It was found that there is no interaction 
between carbonation and line speed. However, there was some interaction between 
the operating pressure and carbonation as well as operating pressure and line speed 
(Oehlert, 2000).

The second example describes a designed experiment executed to study the 
influence of four factors on the filtration rate of a high-pressure chemical reactor. 
Table 6.15 presents the list of factors and levels for the chemical reactor experiment.

The response of interest in this experiment was filtration rate measured in gallons 
per hour. The objective of the experiment was to understand which factors and their 
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Figure 6.17 Main effects for the process variables. 
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interactions (if any) are influencing the response. We also needed to maximise the 
filtration rate. In other words, we needed to determine the levels of factors that max-
imise the filtration rate.

It was decided to perform a 24 FFE with no replicates. Table 6.16 illustrates the 
results of the 16-run experiment. The table is a coded design matrix showing all the 
possible combinations of factors at their respective levels. Table 6.16 shows that trial 
number or run number 12 has provided the experimenters with the highest filtration 
rate. The lowest filtration is obtained for trial number 9. Having collected the data, 
the next step was to understand which factors and their interactions have an impact 
on the filtration rate.

Figure 6.19 shows the main effects plot for the reactor experiment. The main 
effects plot indicates that temperature and stir rate are the most influential factors, 

Table 6.15 Factors and Their Levels for the Reactor Experiment

Factors Labels Units Low Level (−1) High Level (+)

Temperature A °C 24 35
Pressure B psig 10 15
Concentration C %  2  4
Stir rate D rpm 15 30

Table 6.16 Experimental Design Layout with the Results for  
Reactor Study

Trials A B C D Filtration Rate 
(Gallons per Hour)

1 −1 −1 −1 −1 45.0
2 +1 −1 −1 −1 71.0
3 −1 +1 −1 −1 48.0
4 +1 +1 −1 −1 65.0
5 −1 −1 +1 −1 68.0
6 +1 −1 +1 −1 60.0
7 −1 +1 +1 −1 80.0
8 +1 +1 +1 −1 65.0
9 −1 −1 −1 +1 43.0

10 +1 −1 −1 +1 100.0
11 −1 +1 −1 +1 45.0
12 +1 +1 −1 +1 104.0
13 −1 −1 +1 +1 75.0
14 +1 −1 +1 +1 86.0
15 −1 +1 +1 +1 70.0
16 +1 +1 +1 +1 96.0

Source: Data from Montgomery (2001).
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followed by concentration of formaldehyde and pressure. It was interesting to note 
that pressure has very little influence on the filtration rate and the level of pressure 
can be kept at either 10 or 15 psig. The experimenters also wanted to minimise the 
concentration of formaldehyde and hence we needed to determine the best level of 
this factor to give the maximum infiltration rate. As this factor did not appear to be 
the most important factor, and moreover since trials 10 and 12 gave the highest filtra-
tion rates at low levels of concentration, we could safely keep this factor at a low-
level setting (that is, 2% concentration of formaldehyde). The best possible settings 
for maximising the filtration rate, therefore, are as follows (based on main effects 
plot):

Temperature – High level – 35°C
Pressure – High level – 15 psig
Concentration of formaldehyde – Low level – 2%
Stir rate – High level – 30 rpm

We also explored the nature of interactions among the factors to make sure that 
levels were chosen correctly for maximising the filtration rate. Figure 6.20 depicts 
the interaction plot among all the factors. It is clear from the interaction graph that 
there are some strong interactions between temperature and concentration of for-
maldehyde as well as temperature and stir rate. However, there was no interaction 
between temperature and pressure, pressure and stir rate or stir rate and concentra-
tion of formaldehyde. Further analysis of the interaction graph between temperature 
and concentration reveals that the filtration rate is highest when temperature is kept 
at high level and concentration at low level. Also, the interaction graph between tem-
perature and stir rate clearly indicates that the filtration rate is maximum when tem-
perature and stir rate are kept at high levels.
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Figure 6.19 Main effects plot for the reactor experiment. 
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Exercises

1. An engineer is interested in the effects of cutting speed (CS), tool geometry (TG), and cut-
ting angle (CA) on the life (in hours) of a machine tool. A 23 full factorial design was cho-
sen and the results are shown below. Each trial condition was replicated twice.

Run CS TG CA Life

1 −1 −1 −1 22 31
2 1 −1 −1 32 43
3 −1 1 −1 35 34
4 1 1 −1 55 47
5 −1 −1 1 44 45
6 1 −1 1 40 37
7 −1 1 1 60 50
8 1 1 1 39 41

(a) Which effects appear to have a significant effect on the tool life?
(b) What is the optimal condition if the objective of the experiment is to maximise tool life?
(c) How do you validate the assumption of normality?

2. In a certain casting process for manufacturing jet engine turbine blades, the objective of the 
experiment is to determine the most significant main and interaction effects that affect part 
shrinkage. Three factors (mould temperature (A), metal temperature (B) and pour speed 
(C) were studied at 2-levels using a 23 FFE. The following table presents the results of the 
experiment. Each trial condition was replicated three times to obtain sufficient degrees of 
freedom for the error term.
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Figure 6.20 Interaction plot for the reactor experiment. 
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Run C B A Shrinkage Values (%)

1 −1 −1 −1 2.22 2.11 2.14
2 1 −1 −1 1.42 1.54 1.05
3 −1 1 −1 2.25 2.31 2.21
4 1 1 −1 1.00 1.38 1.19
5 −1 −1 1 1.73 1.86 1.79
6 1 −1 1 2.71 2.45 2.46
7 −1 1 1 1.84 1.76 1.70
8 1 1 1 2.27 2.69 2.71

(a) Which effects appear to have a significant effect on the percentage of shrinkage?
(b) Which effects appear to have a significant effect on variability in shrinkage?

3. A 23 FFE was conducted to study the influence of temperature (A), pressure (B) and cycle 
time (C) on the occurrence of splay in an injection moulding process. For each of the eight 
unique trials, 50 parts were made and the response of interest to the experimenter was the 
number of incidences of the occurrence of splay on the surface of the part across all 50 
parts. The following table shows the experimental layout with the data.

Run A B C Response

1 −1 −1 −1 12
2 1 −1 −1 15
3 −1 1 −1 24
4 1 1 −1 17
5 −1 −1 1 24
6 1 −1 1 16
7 −1 1 1 24
8 1 1 1 28

(a) Compute all the main and interaction effects.
(b) Construct a Pareto plot of the effect estimates. Which of the effects appear to be statisti-

cally significant?

4. A 23 FFE was performed in a packaging industry offering food service products, consumer 
packaging and packaging machinery. The following table shows the results of the experi-
ment with dry crush being the response of the experiment. It was decided to keep the belt 
tension constant throughout the experiment. Moreover, each trial or run was replicated to 
capture variability due to process, machine set-up, operator, etc.

(a) Which effects appear to have a significant influence on dry crush?
(b) Construct an interaction graph and identify which of the effects interact.
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Run Score Depth Speed Temperature Dry Crush

1 High 18 75 311.5
2 Low 18 75 315.1
3 High 22 75 261.6
4 Low 22 75 353.8
5 High 18 145 280.6
6 Low 18 145 335.2
7 High 22 145 353.2
8 Low 22 145 352.4
9 High 18 75 299.5

10 Low 18 75 295.1
11 High 22 75 286.4
12 Low 22 75 319.0
13 High 18 145 271.2
14 Low 18 145 329.4
15 High 22 145 312.4
16 Low 22 145 365.6
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Fractional Factorial Designs7

7.1 Introduction

Very often experimenters do not have adequate time, resources or budget to carry out 
FFEs. If the experimenters can reasonably assume that certain higher-order interac-
tions (third order and higher) are not important, then information on the main effects 
and two-order interactions can be obtained by running only a fraction of the FFE. 
A type of orthogonal array design which allows experimenters to study main effects 
and desired interaction effects in a minimum number of trials or experimental runs 
is called a fractional factorial design. These fractional factorial designs are the most 
widely and commonly used types of design in industry. These designs are generally 
represented in the form 2(k−p), where k is the number of factors and 1/2p represents 
the fraction of the full factorial 2k (Box et al., 1978). For example, 2(5−2) is a 1/4th 
fraction of a 25 FFE. This means that one may be able to study 5 factors at 2-levels in 
just 8 experimental trials instead of 32 trials.

7.2 Construction of Half-Fractional Factorial Designs

The construction of half-fractions of a FFE is simple and straightforward. Consider 
a simple experiment with three factors. Table 7.1 presents the design matrix with all 
the main and interaction effects assigned to various columns of the matrix. Based 
on our assumption about three-factor (or third-order) and higher-order interactions 
being negligible, one could use the ABC interaction column in Table 7.1 to generate 
settings for the fourth factor D. In other words, we would be able to study four fac-
tors using eight runs by deliberately aliasing factor D with ABC interaction. This is 
referred to as a 2(4−1) factorial design (Table 7.2).

In Table 7.2, D = ABC implies that main effect D is confounded (or aliased) with 
a third-order interaction ABC. However, a third-order interaction is of no interest 
to experimenters. The “design generator” of this design is given by D = ABC. We 
refer to design generator as a word. The defining relation of this design is given by D. 
D = D2 = ABCD = I, where ‘I’ is the identity element. Once we know the defining 
relation of a design, we can then generate the alias structure for that particular design.

In the above experiment, I = ABCD (defining relation)
In order to determine the alias of A, we multiply both sides of the defining rela-

tion by ‘A’. This yields the following:

 A I A A ABCD A BCD BCD as A22 1, .

http://dx.doi.org/10.1016/B978-0-08-099417-8.00007-9
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We can now generate aliases of B and C as follows:

 
B I B ACD

C I C ABD

Because we are generally interested in two-factor interactions, we can also gener-
ate aliases for all two-factor interactions as follows:

 

I AB A B CD CD

I AC A C BD BD

I BC B C AD AD

I AD A D CB BC

I

2 2

2 2

2 2

2 2

BBD B D CA AC

I CD C D AB AB

2 2

2 2

Table 7.1 Design Matrix of an Eight-Run Experiment with Three Factors

Run A B AB C AC BC ABC

1 −1 −1 1 −1 1 1 −1
2 1 −1 −1 −1 −1 1 1
3 −1 1 −1 −1 1 −1 1
4 1 1 1 −1 −1 −1 −1
5 −1 −1 1 1 −1 −1 1
6 1 −1 −1 1 1 −1 −1
7 −1 1 −1 1 −1 1 −1
8 1 1 1 1 1 1 1

Table 7.2 Design Matrix of a 2(4−1) Factorial Design

Run A B AB C AC BC D = ABC

1 −1 −1 1 −1 1 1 −1
2 1 −1 −1 −1 −1 1 1
3 −1 1 −1 −1 1 −1 1
4 1 1 1 −1 −1 −1 −1
5 −1 −1 1 1 −1 −1 1
6 1 −1 −1 1 1 −1 −1
7 −1 1 −1 1 −1 1 −1
8 1 1 1 1 1 1 1
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Similarly, we can generate aliases for three-factor interactions as follows:

 

I ABC A B C D D

I ABD A B D C C

I ACD A C D B B

I BCD B C D A

2

2 2 2

2 2

2 2 2

2 2 2 A

Table 7.3 presents the complete aliasing pattern (or confounding pattern) for four 
factors in eight runs. Minitab software generates the confounding pattern for various 
types of designs involving up to 15 factors at 2-levels.

For the above design, the resolution is IV (as main effects are confounded with 
three-factor interactions and two-factor interactions are confounded with other two-
factor interactions). In real-life situations, certain two-factor interactions may be con-
founded with other two-factor interactions, and hence we cannot determine which of 
the two-factor interactions are important to that process. Under such circumstances we 
may use ‘fold-over designs’. Fold-over designs are used to reduce confounding when 
one or more effects cannot be estimated independently or separately. In other words, 
the effects are said to be aliased. However, fold-over designs are used in resolution III 
designs to break the links between main effects and two-factor interaction effects. For 
example, if you fold on one factor, say A, then A and all its two-factor interactions will 
be free from other main effects and two-factor interactions. If you fold on all factors, 
then all main effects will be free from each other and from all two-factor interactions.

In a fold-over design, one may perform a second experiment where the factor levels 
are all the opposite of what they were in the first experiment. That is, interchange the 
−1s and +1s before carrying out the second experiment. However, such designs are not 
recommended when limited time and resources are available for industrial designed 

Table 7.3 Aliasing Pattern for 2(4 − 1) 
Factorial Experiment

Effect Alias

A BCD
B ACD
C ABD
D ABC
AB CD
AC BD
BC CD
AD BC
BD AC
CD AB
ABC D
ABD C
ACD B
BCD A
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experiments. Under such circumstances, sound engineering judgements coupled with 
knowledge in the subject matter would be of great help to experimenters in separating 
out the main effects from confounded interaction effects.

7.3 Example of a 2(7−4) Factorial Design

The following section describes an example of a fractional factorial design with res-
olution III. The example is adapted from Box et al. (1978). This example involves 
an experiment to study the effect of seven factors at 2-levels using eight trials. The 
response of interest for the experiment was the time (seconds) taken to climb a hill 
for a particular person on a bicycle. Table 7.4 illustrates the list of factors and their 
levels used for the experiment.

Table 7.5 presents the experimental layout with the response values. The runs were 
performed in random order on eight successive days. This is a 2(7 − 4) factorial design with 
a design resolution III (i.e. main effects are confounded with two-factor interactions).

Minitab software is used for the statistical analysis of data. The first step in the analy-
sis is to identify the most important factors which influence the time to cycle up the 
hill (seconds). A Pareto plot is constructed to identify the key factors (Figure 7.1). The 
graph shows that the positions of the gear (D) and the dynamo (B) have a significant 
effect on the time.

Table 7.4 List of Factors and Their Levels for the Experiment

Factors Labels Low Level High Level

Seat A Up Down
Dynamo B Off On
Handlebars C Up Down
Gear D Low Medium
Raincoat E On Off
Breakfast F Yes No
Tyres G Hard Soft

Table 7.5 Experimental Design Layout of the Experiment

Run A B C D = AB E = AC F = BC G = ABC Time to 
Climb Hill (s)

1 −1 −1 −1 1 1 1 −1 69
2 1 −1 −1 −1 −1 1 1 52
3 −1 1 −1 −1 1 −1 1 60
4 1 1 −1 1 −1 −1 −1 83
5 −1 −1 1 1 −1 −1 1 71
6 1 −1 1 −1 1 −1 −1 50
7 −1 1 1 −1 −1 1 −1 59
8 1 1 1 1 1 1 1 88
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The design generators of the above design are as follows:

 D AB, E AC, F BC and G ABC� � � �

Therefore defining relation can be obtained as follows:

 I ABD ACE BCF ABCG BCDE ACDF ABEF
CDG BEG AFG DEF ADEG BDF

� � � � � � �
� � � � � � GG ABCDEFG�

As we are interested in only main effects and two-factor interactions, the seven 
main effects and their aliases can be generated in the following manner. As all fac-
tors were studied at 2-levels, we estimate only the linear effects of the factors which 
are confounded with two-factor interactions. For instance, the linear effect of A (ℓA) 
is estimated to be 3.5. However, factor A is confounded with three two-factor inter-
actions such as BD, CE and FG.
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As only B and D are two significant effects, we need to analyse them further as D is 
confounded with B and A, and B is confounded with A and D. Here the largest effect 
is due to factor D and it is not easy to conclude that the effect of D is large just because 
of factor D or the confounded two-factor interactions. This problem can be tackled by 
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Figure 7.1 Pareto plot of effects for the bicycle data. 
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folding on factor D and by reversing the signs of column containing factor D. This fold-
over design is given in Table 7.6 along with the observed responses. It is quite interest-
ing to observe that both factors B and D turn out to be significant again (Figure 7.2).

The effects estimated by the second fraction are as follows:
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Table 7.6 Fold-Over Design by Folding on Just One Factor

Run A B C D = −AB E = AC F = BC G = ABC Time to 
Climb Hill (s)

1 −1 −1 −1 −1 1 1 −1 47
2 1 −1 −1 1 −1 1 1 74
3 −1 1 −1 1 1 −1 1 84
4 1 1 −1 −1 −1 −1 −1 62
5 −1 −1 1 −1 −1 −1 1 53
6 1 −1 1 1 1 −1 −1 78
7 −1 1 1 1 −1 1 −1 87
8 1 1 1 −1 1 1 1 60
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Figure 7.2 Pareto plot of effects for the fold-over design data. 
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By combining the effect estimates from this second fraction with the effect esti-
mates from the original eight runs, we obtain the following estimates of the effects:

 � � � �A A A* A*A CE FG or A CE FG2
1

2
( ) ( )

 
i.e. (3.5 0.750) 2.125 A CE FG

1

2

Similarly,

 

1

2
10 25 12 0 11 125

1

2
2 75 1 0 1 875

1

2

( . . ) .

( . . ) .

(

B CF EG

C AE BF

225 25 22 5 23 875

1

2
1 75 0 5 0 625

1

2
2 25

. . ) .

( . . ) .

( .

D

E AC BG

11 0 0 625

1

2
0 75 2 5 0 75

. ) .

( . . ) .

F AG BC

G AF BE

We may also write

 ( )**� � � �A A A ABD or BD2
1

2

 i.e. BD or BD
1

2
3 5 0 750 1 38( . . ) .

Similarly,
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1

2
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It can be concluded from the above results that the large main effect due to the 
‘gear’ (factor D) is now estimated to be free of bias from two-factor interactions. 
The joint effect of three second-order interactions (i.e. AB + EF + CG) appears to be 
small. Moreover, all the two-factor interactions involving the factor D are now free 
of aliases. Similarly, we can conclude that the effect of 2 two-factor interactions (CF 
and EG), which are aliased with main effect B, is shown to be small. Therefore it is 
safe to say that it is the effect of B which is important in this experiment and has sig-
nificant impact on the response (i.e. time to climb up the hill).

7.4 An Application of 2-Level Fractional Factorial Design

In this section, the author will now demonstrate another application of a 2-level frac-
tional factorial design in the development of a soybean whipped topping. This exam-
ple is adapted from Chow et  al. (1983) published in the Journal of Food Science. 
Non-dairy whipped topping is a fabricated food product that serves as a substitute 
for whipped cream dessert topping. It is generally formulated with sodium caseinate, 
vegetable fat, carbohydrates and emulsifiers. The response of interest for this experi-
ment was percentage overrun (or whipability). Seven process variables (or factors) 
at 2-levels were studied using eight runs. The idea was to separate out the key pro-
cess variables from the unimportant ones. The experimental layout with responses is 
given in Table 7.7. Each trial condition was randomised to minimise the effect of any 
noise (or hidden variables) induced into the experiment.

Figure 7.3 presents the main effects plot for the experiment. Main effects A, B, F 
and G appear to be important, whereas main effects due to C, D and E do not appear 
to be important to the process. These effects have been pooled to generate adequate 
degrees of freedom for the error term. Figure 7.4 illustrates the Pareto plot of effects 
which implies that factors A (soybean emulsion), B (vegetable fat) and F (carbohy-
drates) are statistically significant and therefore should be studied in detail. The next 
section will look into the design generators, defining relation and confounding or 
aliasing pattern for the experiment.

Table 7.7 Experimental Layout for the Soybean Whipped Topping Experiment

Run A B C D = AB E = AC F = BC G = ABC Overrun (%)

1 −1 −1 −1 1 1 1 −1 115
2 1 −1 −1 −1 −1 1 1 81
3 −1 1 −1 −1 1 −1 1 110
4 1 1 −1 1 −1 −1 −1 69
5 −1 −1 1 1 −1 −1 1 174
6 1 −1 1 −1 1 −1 −1 99
7 −1 1 1 −1 −1 1 −1 80
8 1 1 1 1 1 1 1 63
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The design generators of the design are as follows:

 D AB, E AC, F BCand G ABC� � � �

The defining relationship for this design is therefore obtained by adding to the 
generators all of their products taken two, three and four at a time. The complete 
defining relation is therefore generated as

 I ABD ACE BCF ABCG BCDE ACDF CDG ABEF
AFG BEG DEF CEFG ADE

� � � � � � � �
� � � � � GG BDFG ABCDEFG� �
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Figure 7.3 Main effects plot for the soybean whipped topping experiment. 
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Figure 7.4 Pareto plot of effects for the experiment. 
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Based on the above defining relations, one can generate the following linear  
combinations of confounded effects.
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From the Pareto plot, we might conclude that the three main effects (A, B and F) 
are the important variables which affect whipability. But we cannot make any valid 
conclusions at this point as the main effects due to A, B and F are confounded with a 
number of two-factor interactions. For example, we cannot conclude that factor A is 
significant due to its true effect on whipability; rather, it is significant due to interac-
tions BD/CE or FG. In order to remove the ambiguity surrounding the results of this 
experiment, one could perform a fold-over (or mirror image) design. In this case, we 
have folded on all factors in order to make the main effects free from each other and 
from two-factor interactions. Therefore a second 2(7−4) fractional factorial design is 
performed by switching the signs from − 1 to 1 and vice versa for all of the columns 
in the original experimental layout given in Table 7.7 (Drain, 1997). The results of 
the fold-over experiment are given in Table 7.8.

The design generators of the second fraction are as follows:

 D AB, E AC, F BC and G ABC

In other words, column for process variable D is obtained by multiplying col-
umns with process variables A and B and the resultant by (−1). Similarly, column 
E is obtained by multiplying A and C first and then the resultant by (−1). The same  
process is repeated for process variable F.

Table 7.8 Experimental Layout for the Soybean Whipped Topping Experiment

Run A B C D= −AB E= −AC F= −BC G = ABC Overrun (%)

1 1 1 1 −1 −1 −1 1 84
2 −1 1 1 1 1 −1 −1 69
3 1 −1 1 1 −1 1 −1 56
4 −1 −1 1 −1 1 1 1 161
5 1 1 −1 −1 1 1 −1 56
6 −1 1 −1 1 −1 1 1 40
7 1 −1 −1 1 1 −1 1 92
8 −1 −1 −1 −1 −1 −1 −1 208
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The defining relationship for the folded design is therefore obtained by adding to 
the generators all of their products taken two, three and four at a time. The complete 
defining relation for the folded (or mirror image) design is therefore generated as

 
I ABD ACE BCF ABCG BCDE ACDF CDG ABEF

AFG  BEG DEF CCEFG ADEG BDFG ABCDEFG

Based on the above defining relations, one can generate the following linear com-
binations of confounded effects (assuming that third- and higher-order interactions 
can be neglected).
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By combining the effect estimates from this second fraction with the effect 
estimates from the original eight runs, we obtain the following estimates of the 
effects:
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Similarly,
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The estimates of the main effects and sets of three two-factor interactions are 
summarised in Table 7.9.

An examination of Table 7.9 shows that main effects A, B, D and F and the lin-
ear combination of three two-factor interactions (AB, CG and EF) appear to be 
important. However, we cannot tell which of the above three-factor interactions is 
responsible. It is clear from Table 7.9 that factors C, E and G have no impact on 
the percentage overrun. Hence it can be concluded that it is AB interaction which 
is important with respect to the overrun, as both factors A and B have a significant 
influence on the overrun. Figure 7.5 illustrates the interaction graph between A and 
B. The graph shows that there exists a strong interaction between A and B.

Table 7.9 Estimates of Effects from Combined Designs

Estimate of effect A = − 44.625
Estimate of effect B = − 51.875
Estimate of effect C = 1.875
Estimate of effect D = − 25.125
Estimate of effect E = − 3.375
Estimate of effect F = − 31.625
Estimate of effect G = 6.625
Estimate of AB + CG + EF = 37.875
Estimate of AC + BG + DF = − 0.875
Estimate of BC + AG + DE = 3.375
Estimate of BD + CE + FG = 2.875
Estimate of AD + CF + EG = 15.125
Estimate of AE + BF + DG = 8.375
Estimate of AF + BE + CD = 9.625
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7.4.1 Example of a 2(5 − 1) Factorial Design

The next example is about the investigation of the effect of five factors on the free 
height of leaf springs used in an automotive application (for more information on 
the case study, the readers may refer to the Journal of Quality Technology, Vol. 17, 
pp. 198–206, 1985). Table 7.10 presents the experimental layout and the recorded 
values of free height. Each trial condition was replicated three times to determine the 
variability within the trial conditions. The five factors used for the experiment are  
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Figure 7.5 Interaction between A and B. 

Table 7.10 Experimental Layout with Response Values

Run A B C D E Free Height Values

1 −1 −1 −1 −1 −1 7.78 7.81 7.78
2 1 −1 −1 1 −1 8.15 7.88 8.18
3 −1 1 −1 1 −1 7.50 7.56 7.50
4 1 1 −1 −1 −1 7.59 7.75 7.56
5 −1 −1 1 1 −1 7.54 8.00 7.88
6 1 −1 1 −1 −1 7.69 8.06 8.09
7 −1 1 1 −1 −1 7.44 7.52 7.56
8 1 1 1 1 −1 7.56 7.69 7.81
9 −1 −1 −1 −1 1 7.50 7.25 7.12

10 1 −1 −1 1 1 7.44 7.88 7.88
11 −1 1 −1 1 1 7.50 7.56 7.50
12 1 1 −1 −1 1 7.56 7.63 7.75
13 −1 −1 1 1 1 7.32 7.44 7.44
14 1 −1 1 −1 1 7.69 7.56 7.62
15 −1 1 1 −1 1 7.18 7.25 7.18
16 1 1 1 1 1 7.50 7.81 7.59
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A = furnace temperature, B = heating time, C = transfer time, D = hold down time 
and E = quench oil temperature. This is a 2(5 − 1) fractional factorial design with 
design generator D = ABC. In other words, the design resolution of the experiment 
is IV. This implies that main effects are confounded with three-factor interactions or 
that two-factor interactions are confounded with other two-factor interactions.

The defining relation is given by I = ABCD. The aliasing or confounding struc-
ture is shown below.

 

A BCD,B ACD,C ABD,D ABC

AB CD,AC BD,AD BC

ABC D,ABD C,ACD B,

� � � �

� � �

� � � BBCD A�

The following are the objectives of this experiment.

1. What factors influence the mean free height?
2. What factors affect variability in the free height of springs?

7.4.2  Objective 1: To Identify the Factors Which Influence the Mean 
Free Height

Minitab software is used to identify the factors which influence the mean free height 
of leaf springs. Figure 7.6 illustrates a Pareto plot of effects which indicate that 
main effects A, B, D and E and a two-factor interaction BE are considered to have 
significant impact on mean height at 5% significance level. In order to validate the 
assumption of normality, the author has constructed a normal probability of resid-
uals (Figure 7.7). The normal plot has shown that the residuals fall approximately 
along a straight line and hence we may conclude that the data come from a normal 
population.
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Figure 7.6 Pareto plot of effects for the leaf spring experiment. 
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7.4.3  Objective 2: To Identify the Factors Which Affect Variability 
in the Free Height of Leaf Springs

In order to determine which of the factors or interaction effects have a significant 
influence on the variability, it was decided to construct a Pareto plot of effects 
(Figure 7.8). Due to insufficient degrees of freedom for the error term, it was decided 
to pool the effects with low magnitude.

The Pareto plot has indicated that main effect A and interaction effect CE appear 
to have a significant impact on variability at 10% significance level. The interac-
tion plot (Figure 7.9) implies that there is a strong interaction between the factors 
C (transfer time) and E (quench oil temperature). It can be observed from the plot 
that variability in the free height of leaf springs is minimum when both C and E are 
kept at low levels. Moreover, it can be seen that variability is high when E is kept 
at low level and C at high level. As main effect C is confounded with a third-order 
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Figure 7.7 NPP of residuals for the leaf spring example. 
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interaction, it is fair to conclude that it is the interaction CE which causes variability 
in the free height of leaf springs.

7.4.4  How Do We Select the Optimal Factor Settings to Minimise 
Variability in Free Height?

For any process optimisation problems, it is important to determine the optimal factor set-
tings which meet the experimental objectives. Here we need to determine the best factor 
settings which yield minimum variability in the free height of leaf springs. A cube plot 
was constructed with factors A, C and E (Figure 7.10). The cube plot clearly shows that 
minimum variability is obtained when all the factors are kept at low levels. It can be con-
cluded that the optimal settings for minimising variability are as follows (Figure 7.11):

Factor A – Low level (−1), Factor B – High level (1), Factor C – Low level (−1), 
Factor D – Low level (−1), Factor E – Low level (−1)
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Figure 7.9 Interaction plot between quench oil temperature and transfer time. 
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7.4.5 Another Example of a 2(5 − 1) Factorial Design

The next example is about the investigation of the effect of five factors on the pro-
cess yield of an IC manufacturing process (for more information on the case study, 
the readers may refer to Montgomery, D.C., Design and Analysis of Experiments, 
5th Edition, John Wiley and Sons, 2001). As it was too expensive to run an FFE, the 
engineers decided to run a half-fractional factorial design. Each factor was studied 
at 2-levels. The trial conditions were not replicated as the engineers were keen to 
increase the yield of the process only in the initial phase of this experimentation. 
Table 7.11 shows the experimental layout and the recorded yield values. The five 
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Figure 7.11 Main effects plot for ln(SD). 

Table 7.11 Experimental Layout with Yield Values for the IC Manufacturing Process

Run Order A B (min) C (s) D E (min) Yield (%)

1 Small 20 30 Small 15.5 8
2 Large 20 30 Small 14.5 9
3 Small 40 30 Small 14.5 34
4 Large 40 30 Small 15.5 52
5 Small 20 45 Small 14.5 16
6 Large 20 45 Small 15.5 22
7 Small 40 45 Small 15.5 45
8 Large 40 45 Small 14.5 60
9 Small 20 30 Large 14.5 6

10 Large 20 30 Large 15.5 10
11 Small 40 30 Large 15.5 30
12 Large 40 30 Large 14.5 50
13 Small 20 45 Large 15.5 15
14 Large 20 45 Large 14.5 21
15 Small 40 45 Large 14.5 44
16 Large 40 45 Large 15.5 63
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factors used for the experiment were A = aperture setting, B = exposure time, C = 
develop time, D = mask dimension and E = etch time. This is a 2(5 − 1) fractional fac-
torial design with design generator E = ABCD. In other words, the design resolution 
of the experiment is V. This implies that main effects are confounded with a fourth-
order or four-factor interaction or that two-factor interactions are confounded with 
three-factor interactions.

The defining relation is given by I = ABCDE. The aliasing or confounding struc-
ture is shown below.

 A BCDE,B ACDE,C ABDE,D=ABCE,E ABCD� � � �

Also,

 

AB CDE AC BDE AD BCE AE BCD

BC ADE BD ACE  BE ACD

CD ABE CE

� � � �

� � �

� �

, , ,

, ,

, AABD and DE ABC, �

The objective of the experiment was to determine which factors influence the 
yield (%) and which settings would provide us with the highest yield. In order to 
determine the most significant effects (main or interaction effects), it was decided to 
use a Pareto plot (Figure 7.12). Figure 7.12 reveals that main effects B = exposure 
time, A = aperture setting and C = develop time appeared to be statistically signifi-
cant at 5% significance level. Moreover, it was found that there is a strong interac-
tion between aperture setting and exposure time. Figure 7.13 shows that the effect of 
exposure time at different levels of aperture setting is not the same. In addition, the 
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Figure 7.12 Pareto plot of effects for the yield from IC manufacturing process. 
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interaction graph clearly indicates that yield is maximum when exposure time is kept 
at a high level (40 min) and aperture setting was also kept at a high level (high).

It was quite interesting to observe that factor D (mask dimension) and factor E 
(etch time) had no effect on yield. The levels of these factors can be set at their most 
economical levels. In order to improve the yield, the high-level setting of factors A, 
B and C should be applied.

7.4.6 Example of a 2(7−4) Factorial Design

In this example, we look at a case study from Box et  al. (1978, p. 424). In a new 
chemical plant, the filtration step takes nearly twice as long as it did at the older 
plant, resulting in serious process delays. A brainstorming session produces seven 
factors thought to affect filtration time. Table 7.12 presents the list of factors and 
their respective levels which are thought to influence filtration time.

The confounding structure or aliasing pattern for the experiment is as follows. We 
have not taken third-order and higher-order interactions into account here as they 

Table 7.12 List of Factors and Their Respective Levels Used for the Experiment

Factors Labels Low-Level Setting High-Level Setting

Water supply A Town Well
Raw material B On site Other
Temperature C Low High
Recycle D Yes No
Caustic soda E Fast Slow
Filter cloth F New Old
Holdup time G Low High
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Figure 7.13 Interaction plot between aperture setting and exposure time. 
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are usually negligible compared to the main and second-order interaction effects 
(Bisgaard, 1988).

 

A BD CE FG; B AD CF EG

C AE BF DG; D AB CG EF

E AC BG DF; F AG BBC DE

G AF BE CD

Each factor was studied at 2-levels. Due to time and cost constraints, it was 
decided to perform a 2(7−4) factorial design which is 1/16th fractional of a full facto-
rial design. This clearly implies that we are studying 7 factors in 8 trials instead of 
128 trials. Table 7.13 presents the experimental layout for the experiment.

Figure 7.14 shows a normal plot of all main effects (Daniel, 1976) which indi-
cated that factors E and C appeared to have a significant effect on filtration time. 

Effect

P
er

 c
en

t

1050–5–10–15–20–25

99

95

90

80

70
60
50
40
30

20

10

5

1

Caustic soda

Temperature

NPP of the effects
(response is filtration time, alpha = 0.10)

Effect type
Not significant
Significant

Figure 7.14 NPP of effects. 

Table 7.13 Experimental Layout for the Filtration Time Experiment

Trial No. A B C D E F G Filtration Time

1 Town On site Low No Slow Old Low 68.4
2 Well On site Low Yes Fast Old High 77.7
3 Town Other Low Yes Slow New High 66.4
4 Well Other Low No Fast New Low 81.0
5 Town On site High No Fast New High 78.6
6 Well On site High Yes Slow New Low 41.2
7 Town Other High Yes Fast Old Low 68.7
8 Well Other High No Slow Old High 38.7
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However, factor E is confounded with two-order or second-order interactions such 
as AC, BG and DF. Similarly, factor C is confounded with AE, BF and DG. In such 
circumstances, we need to perform a fold-over design to separate out the main 
effects from interaction effects; this way we would know if it is the main effects or 
the interaction effects which influence the filtration time. The results of the fold-
over design are given in Table 7.14. By using a fold-over design, we can de-alias 
the main effects. After the fold-over design was created and executed based on Table 
7.14, the main effects were no longer confounded with second-order or two-factor 
interactions. However, two-factor interactions were still confounded with each other. 
Further analysis has showed that two effects appeared to be significant: the main 
effect due to factor E and the two-factor interaction AE. It was quite interesting to 
observe that temperature (factor C) was not a significant factor after all. One of the 
key findings of the experiment was that temperature had no significant effect on fil-
tration time.

7.4.7 Another Example of a 2(7 − 4) Factorial Design

The determination of the moulding condition in an injection moulding process 
is very complicated. Typical injection moulding machines have many adjustable 
parameters which could potentially influence the quality of finished plastic parts. 
Quality can be determined in terms of dimensional conformity, appearance of the 
finished product or even mechanical characteristics. The traditional approach to 
determine the best moulding condition has been through trial and error which is 
time consuming and not cost effective. One of the most efficient methods of pro-
cess optimisation and systematic investigation of the process is through the utilisa-
tion of DOE. The plastic part for this example is the closure for infusion bottles. For 
more information about the case study, please refer to Azeredo et al. (2003), Improve 
moulded part quality, Quality Progress, July, pp. 72–76. The closure is moulded in 
high-density polyethylene and has complex geometry plus many functional prop-
erties. For this experiment, the mould engineers were interested to understand the 
influence of moulding process parameters on the force needed to open the closure. 
Extremely high forces make it difficult to open the closure and low forces can result 
in damage during shipping or handling.

Table 7.14 Results of Fold-Over Design

Trial No. A B C D E F G Filtration Time

1 Well Other High Yes Fast New High 66.7
2 Town Other High No Slow New Low 65.0
3 Well On site High No Fast Old Low 86.4
4 Town On site High Yes Slow Old High 61.9
5 Well Other Low Yes Slow Old Low 47.8
6 Town Other Low No Fast Old High 59.0
7 Well On site Low No Slow New High 42.6
8 Town On site Low Yes Fast New Low 67.6
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A brainstorming session was conducted to list the potential process parameters 
which could influence the force needed to open the closure. The team had to study 
the impact of seven process parameters at 2-levels and a 2(7 − 4) factorial design 
was selected in order to minimise the cost and time factors. Each trial condition 
was replicated three times to understand the variation within the experimental runs 
and between the experimental trials. The engineering team used a tensile device to 
measure the force needed to open the closure. Table 7.15 presents the list of process 
parameters and their respective levels used for the experiment. Table 7.16 presents 
the experimental layout with uncoded process parameters along with the response 
values.

Figure 7.15 shows a Pareto plot of the effects. It is clear from the plot that pro-
cess parameters A (injection speed), B (mould temperature), C (melt temperature), 
G (ejection speed) and F (cooling time) appeared to be statistically significant at 5% 
significance level. Holding pressure and holding time had no impact on the force 
needed to open the closure.

Table 7.15 List of Process Parameters and Their Levels Used for the Experiment

Process Parameters Labels Low Level High Level

Injection speed (percentage setting) A 40 75
Mould temperature (Celsius) B 25 45
Melt temperature (Celsius) C 205 235
Holding pressure (bar) D 25 45
Holding time E 2 3
Cooling time F 10 25
Ejection speed (percentage setting) G 5 25

Table 7.16 Results of the Injection Moulding Experiment

Run A B C D E F G Y1 Y2 Y3

1 40 25 205 45 3 25 5 41.04 44.02 41.89
2 75 25 205 25 2 25 25 68.59 70.89 71.53
3 40 45 205 25 3 10 25 44.12 46.46 32.33
4 75 45 205 45 2 10 5 63.02 64.12 62.67
5 40 25 235 45 2 10 25 65.51 62.48 59.05
6 75 25 235 25 3 10 5 71.62 78.44 73.96
7 40 45 235 25 2 25 5 42.77 41.55 39.49
8 75 45 235 45 3 25 25 64.33 73.43 70.95

Y1, Y2 and Y3 = force needed to open the closure
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Exercises

1. A 2(7 − 4) fractional factorial design was conducted on a chemical process to evaluate the 
effect of seven process variables which might influence the yield (%) of the process. The 
list of variables and their levels used for the experiment are shown below.

Variable Low Level High Level

Temperature (A) 150 200
Pressure (B) Low High
Concentration of chemical A (C) 3% 5%
Concentration of chemical B (D) 2% 8%
Type of catalyst (E) A B
Reaction time (F) Low High
Flow rate (G) Low High

Source: DeVor, R.E., Chang, T-H and Sutherland, J.W. (1992), Statistical Quality Design and 
Control. Macmillan Publishing Company, New York, NY.

The results of the experiment are shown below. The response for the experiment is per 
cent yield. Note that the tests are displayed in the order in which they were carried out.

Run A B C D E F G Yield (%)

1 −1 1 1 −1 −1 1 −1 66.1
2 −1 1 −1 1 −1 −1 1 59.6
3 1 −1 1 1 −1 −1 −1 62.3
4 1 1 −1 −1 1 −1 −1 67.1
5 −1 −1 1 −1 1 −1 1 21.1
6 1 1 1 1 1 1 1 57.8
7 −1 −1 −1 1 1 1 −1 59.7
8 1 −1 −1 −1 −1 1 1 22.5
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Figure 7.15 Pareto plot of effects for the injection moulding experiment. 
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(a) What are the generators and defining relation for this experiment?
(b) Illustrate the complete confounding structure for the design, assuming third-order and 

higher-order interactions are negligible.
(c) Which factor or interaction effects appear to have a significant impact on percentage 

yield?
(d) Construct a Pareto plot of effects and determine the optimal settings of the variables 

which give maximum yield.
(e) How do you validate the assumption of normality?

2. An experimenter decided to study the effect of four process parameters for an injection 
moulding process. The experimenter was interested in both main and two-factor interac-
tions. The response of interest was the width of the injected part (accuracy is up to four 
decimal places), which is critical to customers. The results of the experiment are given in 
the following table. The experiment was repeated twice to create sufficient degrees of free-
dom for the error term. The four process variables are D = mould temperature, A = injec-
tion speed, E = hold pressure and B = cooling time.

Trial No. D A E B = DAE Width

1 −1 −1 −1 −1 9.3415 9.3416
2 −1 −1 1 1 9.3691 9.3692
3 −1 1 −1 −1 9.3467 9.3466
4 −1 1 1 −1 9.3680 9.3681
5 1 −1 −1 1 9.3679 9.3680
6 1 −1 1 −1 9.3493 9.3494
7 1 1 −1 1 9.3668 9.3669
8 1 1 1 1 9.3544 9.3545

Source: Schmidt, S.R. and Launsby, R.G. (1992), Understanding Industrial Designed 
Experiments. Air Academy Press, Colorado Springs, CO.

(a) What is the resolution of this design?
(b) Display the complete confounding structure.
(c) Which effects appear to have a significant effect on the width?
(d) What are the best settings of the parameters to achieve a target width of 9.380?

3. An experimenter is interested in studying the effect of five welding process parameters. 
The results of the experiment are illustrated below. The response of interest to the experi-
menter is heat input (measured in watts) for welding. The welding parameters considered 
for the experiment are A = open-circuit voltage, B = slope, C = electrode melt-off rate, 
D = electrode diameter and E = electrode extension.

The design matrix of the experiment with response is given in the following table.

Trial No. A B C D E Heat Input (W)

1 (12) −1 −1 −1 −1 1 3318
2 (1) 1 −1 −1 −1 −1 4141
3 (2) −1 1 −1 −1 −1 3790
4 (6) 1 1 −1 −1 1 4061
5 (15) −1 −1 1 −1 −1 3431
6 (8) 1 −1 1 −1 1 3425
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Trial No. A B C D E Heat Input (W)

7 (7) −1 1 1 −1 1 3507
8 (4) 1 1 1 −1 −1 3765
9 (11) −1 −1 −1 1 −1 2580
10 (14) 1 −1 −1 1 1 2450
11 (3) −1 1 −1 1 1 2319
12 (16) 1 1 −1 1 −1 3067
13 (13) −1 −1 1 1 1 1925
14 (10) 1 −1 1 1 −1 2466
15 (5) −1 1 1 1 −1 2485
16 (9) 1 1 1 1 1 2450

Source: Stegner, D.A.J. et al., Prediction of heat input for welding, Welding J. Res. (Suppl. 1), March 
1967.
Note: ( ) implies the order in which the experimental trials were carried out.

(a) What is the defining relation of this design?
(b) Display the complete confounding structure and determine the design resolution.
(c) Which effects appear to have a significant effect on heat input?
(d) Construct an NPP of residuals for validating normality assumptions.

4. As a reliability engineer, you have been asked to weed out infancy failures in component-
populated printed circuit boards. The four factors of interest are as follows:

Label Process Variable Low Level High Level

A Stress temperature 80°C 125°C
B Thermo cycle rate 5°C/min 20°C/min
C Humidity 15% 95%
D g level for a 10 min sinusoid 

random variation
3 6

The response is the number of electrical defects per board, each of which contains 1000 
bonds. Given the following design matrix and response data, determine the optimal screen-
ing method. The more failures found, the better.

Trial A B AB C AC BC D Response

Y1 Y2 Y3

1 −1 −1 1 −1 1 1 −1 9 17 12
2 −1 −1 1 1 −1 −1 1 21 37 42
3 −1 1 −1 −1 1 −1 1 29 35 48
4 −1 1 −1 1 −1 1 −1 17 10 15
5 1 −1 −1 −1 −1 1 1 32 41 33
6 1 −1 −1 1 1 −1 −1 21 17 19
7 1 1 1 −1 −1 −1 −1 12 14 18
8 1 1 1 1 1 1 1 33 27 47

(Continued)
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Some Useful and Practical Tips for 
Making Your Industrial Experiments 
Successful

8

8.1 Introduction

Experimental Design (ED), or DOE, is a powerful approach to achieve increased 
understanding of your process, leading to significant improvements in product qual-
ity, decreased manufacturing costs and potentially thousands of dollars of savings for 
organisations. So why don’t more manufacturers use ED? Why do some manufactur-
ing companies try ED, and then abandon it, saying ‘It won’t work for us’? Inadequate 
training, demanding production schedules or time pressures, cost and resources required 
for the execution of an experiment or a series of experiments are often cited as the prin-
cipal reasons. Moreover, fear of statistics is widespread, even among many educated 
scientists and managers in organisations. This chapter provides some useful and practi-
cal tips for industrial engineers and managers with limited knowledge of ED or DOE 
for making industrial experiments successful in their own organisations. The purpose of 
this chapter is to stimulate the engineering community to start applying ED for tackling 
quality control problems in key processes they deal with everyday.

Industrial experiments are fundamental to and crucial for increasing the understanding 
of a process and of product behaviour. The success of any industrial experiment depends 
on a number of key factors such as statistical skills, engineering skills, planning skills, 
communication skills, teamwork skills and so on. Many scientists and engineers perform 
industrial experiments based on full and fractional factorial designs (Montgomery, 1991) 
or Orthogonal Array (OA) designs (Taguchi, 1986) for improving product quality and 
process efficiency. In other words, engineers and managers of today’s modern industrial 
world have placed an increased emphasis on achieving breakthrough improvements in 
product and process quality using DOE/ED. DOE/ED is essentially a strategy of industrial 
experimentation whereby one may vary a number of factors in a process/system simul-
taneously to study their effect on the process/system output (Antony, 1996). DOE/ED is 
a direct replacement of traditional One-Factor-At-A-Time (OFAT) or the ‘Hit or Miss’ 
approach to experimentation (Antony, 1998). It is important to note that these tips were 
developed strictly on the basis of author’s experience and expertise in the field of study 
and also by reviewing many industrial case studies and literature in the subject matter.

8.1.1 Get a Clear Understanding of the Problem

One of the key reasons for an industrial experiment to be unsuccessful is due to lack 
of understanding of the problem itself. The nature of the experiment to be conducted 

http://dx.doi.org/10.1016/B978-0-08-099417-8.00008-0
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is heavily dependent on the nature of the problem and the objective of the experiment. 
Therefore, it is absolutely essential to have a clear definition of both before one embarks 
on to any kind of experimentation. A well-defined objective leads the experimenter to the 
correct choice of ED. If you incorrectly state the objective(s) of an experiment, you may 
have to face the consequences – trying to study too many or too few factors for the experi-
ment, not measuring the right quality characteristics or responses, or arriving at conclu-
sions which are already known to the team conducting the experiment. In other words, 
unclear objectives can lead to lost time and money, as well as lack of appreciation and 
feelings of frustration for all involved in the study (Antony, 1997). Industrial experiments 
are generally a team effort; a typical team includes people from design and from the qual-
ity and production department as well as an operator. It is quite important that everyone 
on the team have a clear understanding of the objective of the experiment and also of their 
role in experimentation. If there is more than one objective, it is then important to assign a 
relative weight to the objectives and establish ways in which each will be evaluated.

8.1.2 Project Selection

Selection of the right project will either assure you of success or guarantee an opportu-
nity to try it again a second time. Many companies are continuously engaged in a num-
ber of ED projects and it is important to identify the projects that can return the most 
savings. In situations where you have a number of experiments to be performed for a 
variety of problems, it is worthwhile to keep the following factors in mind.

Management Involvement and Commitment

Management must be involved in the project right from the beginning. You need their 
support and commitment when you need to take actions to improve a process or system. 
There is no point in pursuing a DOE/ED project if you do not have 100% backup from 
senior management team. Moreover, the purpose of the DOE/ED project must be clearly 
communicated to the senior management team and expectations regarding their involve-
ment and commitment should be explicitly stated up front (Anderson and Kraber, 1999).

Return on Investment

Experimentation in general is not a priority for many senior managers in organisations. 
In fact, it is not an easy task for engineers to suggest DOE/ED to senior management 
as the solution to a particular problem. When you have a number of experiments to be 
carried out, consider the return on investment. Savings from reduced warranty costs, 
reduced customer complaints and increased customer satisfaction may produce a higher 
return in the long term. It is strongly advisable to present successful case studies of 
DOE from other businesses similar to yours.

Project Scope

If the system or process you deal with for experimentation purposes is too intricate in 
nature, it is best to break it down into sub-systems or sub-processes. For example, in 
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the case of automobiles, rather than optimising the entire vehicle, it is better to start 
optimising the braking or suspension system. If it is feasible and practical, you may 
break the braking system into many sub-systems and seek to optimise the surface fin-
ish of the rotor disk. Moreover, it is quite important to understand the boundaries of the 
project before it turns into a ‘boiling-the-ocean’ project.

Time Required to Complete the Project

An unfinished experiment is a waste of time and resources, and this can be quite det-
rimental to all future initiatives. Therefore, it is important to start off with projects that 
bring quick wins to the organisation in a short time. This helps to boost the morale of 
the team and helps them to become more confident in undertaking more and more pro-
jects across the organisation.

Value to Your Organisation

You should select a project that adds long-term value to the future of your organisation. 
Carry out DOE/ED projects (in the form of experiments) to achieve greater product 
performance that your customers may not be asking for now but may ask for soon. It 
is also highly desirable to select a project that is aligned with the strategic objectives 
of the business; this gives you a competitive advantage. For instance, select DOE/ED 
projects so that products can be introduced to market faster than those of your competi-
tors. Understanding what makes the customer tick, anticipating his needs and behav-
iours and then optimising products and service levels to meet all of these is the way 
ahead in business.

8.1.3 Conduct Exhaustive and Detailed Brainstorming Sessions

Many DOE/ED training courses and textbooks spend as much as 70–80% of their time 
in the analysis of experimental data gathered by the experimenter (i.e. statistical skills). 
The successful application of DOE/ED in today’s industrial environment requires a 
mixture of statistical, planning, engineering, communication and teamwork skills. 
Brainstorming must be treated as an integral part of the planning and design of effec-
tive experiments (Bhote, 1988). There is no standard procedure on how to perform a 
typical brainstorming session that is applicable to all industrial situations. The nature 
and content of each brainstorming session will rely heavily on the nature of the prob-
lem under investigation. In the context of DOE/ED, brainstorming is performed with 
the following purposes and questions in mind:

● Identification of the factors, the number of levels and other relevant information about the 
experiment.

● Development of team spirit and positive attitude in order to assure greater participation of 
the team members.

● How well does the experiment simulate the customers or users conditions?
● Who will do what and how? For example, who will be responsible for data analysis?
● How quickly does the experimenter need to provide the results to the management?
● Is experimentation the only way to tackle the problem at hand?
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8.1.4 Teamwork and Selection of a Team for Experimentation

For ED projects, it is good practice to have a project owner who is responsible for team 
formation. In selecting team members, the following criteria may be considered:

● Project beneficiaries – These are people who must accept your recommendation for 
improvement further to key findings from the experiment. They may not be directly 
involved in the project, but it is important to bring them in the loop somehow.

● Parts/materials supplier – If the parts/materials supplier is a factor in the experiment, it is 
best to consult with them and include them on the experimentation team.

● Direct involvement – When planning and conducting an experiment, it is important to 
include people who can provide input into the identification of factors for the experiment. 
For a typical industrial designed experiment, personnel involved in design, validation, 
quality and production, as well as operators, are likely candidates (Anderson, 2000).

8.1.5  Select the Continuous Measurable Quality Characteristics 
or Responses for the Experiment

A quality characteristic or response is the performance characteristic of a product that 
is most critical to customers and often reflects the product quality. Selecting the right 
quality characteristic (or response) is critical to the success of any industrial designed 
experiment (Antony, 1998). Many DOE programs fail because their responses can-
not be measured quantitatively. A classic example can be found with the traditional 
approach to evaluating quality, where an inspector uses a subjective judgement based 
on his experience to determine whether a product or unit passes or fails the test. Pass/
fail data can be used in DOE, but it is very crude and inefficient. For example, if your 
process typically produces a 0.5% defect rate, you would expect to find 5 out of 1000 
parts defective. If you perform a 16-trial experiment, you would then require a mini-
mum of 16,000 parts (16 × 1000). This poses the question, ‘Can we afford the cost 
associated with the parts?’

The following guidelines may be useful to engineers in selecting the quality char-
acteristics or responses for industrial experiments:

● Use quality characteristics (or responses) that can be measured accurately and with 
stability.

● Use quality characteristics that can be measured quantitatively.
● Use quality characteristics which are directly related to the energy transfer associated with 

the fundamental mechanism of the product or the process.
● Use quality characteristics which are complete, i.e. they should cover the input–output 

relationship for the product or the process.
● For complex systems or processes, select quality characteristics at the sub-system level and 

perform experiments at this level before trying to optimise the overall system.

Consider a coating process which results in various problems such as poor 
appearance, low yield, orange peel and voids. Too often, experimenters measure 
these characteristics as data and try to optimise the response. This is not sound engi-
neering, because these are the symptoms of poor function. It is not the function of 
the coating process to produce an orange peel. Problems such as orange peel are due 
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to excessive variability of the coating process caused by noise factors such as vari-
ability in viscosity, ambient temperature, etc. We should measure data that relate to 
the function itself, not the symptom of variability. One fairly good characteristic to 
measure for the coating process is the coating thickness. The aim of the coating pro-
cess is to form the coating layer; effects such as orange peel result from excessive 
variability of coating thickness from its target. A sound engineering approach is to 
measure the coating thickness and determine the best settings of the coating process 
that will minimise the coating thickness variability around its target value. Table 8.1 
provides a framework covering a variety of manufacturing process problems and the 
suitable response of interest to experimenters for each associated process.

In essence, the selection of attribute quality characteristics (e.g. good/bad, 
defective/non-defective, etc.) for industrial experiments is not a good practice. This 
does not mean that experimenters should measure only continuous measurable qual-
ity characteristics. The author nevertheless recommends choosing continuous char-
acteristics over attributes. One of the limitations with the attribute characteristic is its 
poor additivity. It means that many main effects will be confounded with two-factor 
interactions or that two-factor interactions will be confounded with other two-fac-
tor interactions. Attribute characteristics also require a large number of samples and 
therefore experiments involving such characteristics are costly and time consuming.

8.1.6 Choice of an Appropriate ED

The choice of ED is very important for the success of any industrial experiment as it 
depends on various factors which include the nature of the problem at hand, the num-
ber of factors to be studied, resources available for the experiment, time needed to 
complete the experiment and the resolution of the design. We can use either Classical 

Table 8.1 Examples of Quality Characteristics for Various Manufacturing Processes

Type of Process Objective of the Experiment Appropriate Response

Extrusion To reduce the post extrusion shrinkage 
of a speedometer cable casing

Shrinkage

Coil spring manufacturing To reduce variability in the tension of 
coil springs

Spring tension

TV picture tube 
manufacturing

To reduce performance variation of TV 
electron guns

Cut-off voltage

Surface mounting To improve field reliability Shear strength
Gold plating To reduce variation in gold plating 

thickness
Plating thickness

Die-casting process To increase the hardness of a die-cast 
engine component

Rockwell hardness

MIG welding To reduce the high scrap rate due to 
poor welded joints

Weld strength

Wire bonding To reduce the defect rate from broken 
wires

Wire pull strength
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ED (full and fractional factorial designs), advocated by Sir Ronald Fisher, or OA 
designs, recommended by Dr Taguchi (Antony, 1999). In Classical ED, the focus is on 
the study of product and process behaviour, followed by the development of a math-
ematical model which explicitly illustrates the relationship between a dependent vari-
able and a set of independent variables. Experiments based on OA designs, promoted 
by Taguchi, are focused on product and process robustness. Here robustness refers to 
reducing the process/product performance to noise sensitivity. Taguchi recommends 
the use of the SNR to estimate the performance sensitivity of a product to noise. The 
choice of any of these designs will be dependent upon the following factors:

● degree of optimisation required for the chosen quality characteristic
● number of factors and interactions (if any) to be studied
● complexity of using each design
● statistical validity and effectiveness of each design
● degree of product/process functional performance robustness to be attained from the 

experiment
● ease of understanding and implementation
● nature of the problem (or objective of the experiment)
● cost and time constraints.

The interesting thing is that many companies the author has visited rely on just 
one approach of DOE. So whenever the author approaches the Engineering Director, 
Operations Director or Manufacturing Director in local companies, the author often 
gets the response, “Our employees have been trained on Taguchi or Classical DOE.” 
As mentioned above, you cannot use the same approach for all problems in the busi-
ness. The solution to a problem depends upon the nature of the problem. For instance, 
if a company wants to achieve robust performance due to inconsistency issues from the 
presence of noise factors in the process, it is best to look into an RPD, as expounded by 
Dr Taguchi. On the other hand, if your objective is to predict performance based on a 
regression model with quadratic effects (non-linear effects), it is probably best to look 
into Classical DOE followed by the use of Response Surface Methodology (RSM) 
(Box et al., 1978).

8.1.7 Iterative Experimentation

Experiments should be conducted in an iterative manner so that information gained 
from one experiment can be applied to the next. It is best to run a number of smaller 
and sequential experiments rather than running a large experiment with several factors 
and using up the majority of resources assigned to the experimentation process. If none 
of the factors or process variables is significant, the experiment would then be a waste 
of time and money. The first step in any experimentation process is to ‘separate out 
the vital few from the trivial many’. Screening experiments are generally performed 
to reduce the number of factors or key process variables to a manageable number in a 
limited number of experimental trials (Hansen, 1996).

It is advisable not to invest more than 25% of the experimental budget in the first 
phase of any experimentation, such as screening (Montgomery, 1991). Once the key 
factors have been identified, the interactions among them can be studied using full or 
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fractional factorial experiments. Once you identify the key variables and interactions 
for a process, you may then want to perform an RSM, which allows you to model the 
process behaviour over its entire operating region. Using RSM, one may be able to 
develop a second-order mathematical model that depicts the relationship between the 
key process variables and the process response. This model can then be used to predict 
the values of the responses at different variable settings.

8.1.8 Randomise the Experimental Trial Order

In the context of ED, randomisation is a process of performing experimental trials in 
a random order in which they are logically listed. This is a very important concept in 
any ED because an experimenter cannot always be certain that all important factors 
affecting a response have been included and considered in the experiment. The purpose 
of randomisation is to reduce the systematic bias that is induced into the experiment 
(Kraber, 1998). The bias may be due to the effect of uncontrolled factors or noise, such 
as machine ageing, changes in raw material, tool wear, change of relative humidity, 
power surges, change of ambient temperature and so on. These changes, which often 
are time related, can significantly influence the response. For example, assume that an 
experiment is performed so that all the low levels of factor A are run first, followed by 
the high levels of factor A. During the course of the experiment, the humidity in the 
workplace changes by 50%, creating a significant effect on the response. The analy-
sis may reveal that factor A is statistically significant. In reality factor A is not sig-
nificant; it is the change in humidity level that caused the factor effect to be significant. 
Randomisation would have prevented this confusion.

Whilst conducting an experiment, do not underestimate the background noise inher-
ent in the experiment. Characterisation of the noise variables allows an engineer to 
understand their effect and minimise their influence on the process performance. A fac-
tor may turn out to be significant due to the influence of the lurking variables (or noise 
variables), which often are uncontrollable. Randomisation will minimise the effect of a 
factor which has been confounded with the effect of noise. The author therefore recom-
mends that the experimenters randomise (if possible) the trials.

8.1.9 Replicate to Dampen the Effect of Noise or Uncontrolled Variation

Replication improves the chance of detecting a statistically significant effect (i.e. 
signal) in the midst of natural process variation. In some processes, the amount of 
natural process variation is very large. This can mitigate your chances of detecting a 
significant factor or interaction effect. One of the common queries before conducting 
experiments in organisations is ‘How many experimental runs are required to identify 
significant effect(s), given the current process variation?’ SNRs help to determine the 
minimum number of experimental runs needed to achieve a given power for your ED 
(Taguchi and Yokoyama, 1993). The signal is the change in response that you want to 
detect. You need to determine the smallest change you want to detect. Once the signal 
is detected, you may then estimate the noise. Here noise is the random variation that 
occurs in the response during standard operating conditions. The noise (i.e. measure 
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of variation) can be estimated from either control charts (using the equation σ = d2/R) 
or the Analysis of Variance (ANOVA) table from a designed experiment (refer to the 
value of Root Mean Square Error (RMSE)).

The number of replications is a direct function of the size of the experiment. 
Table 8.1 provides some guidance on to determine how many experimental runs are 
required to be conducted for the desired detectable signal. If you cannot afford to per-
form the necessary runs, then you must find some way to minimise the noise or ran-
dom variation. The number of runs is given by the following formula:

N
r

�
( )

( )

4 2

2∆/σ

where N = total number of experiments, r is the number of levels of the factors, Δ is 
the size of the effect to detect and σ is the noise level. The derivation of the above 
equation is based on providing approximately a 90% confidence of finding an active 
effect of size Δ. For example, for an injection moulding process, the management 
would like to reduce the shrinkage by 0.85% (i.e. Δ = 0.85). The SD of the pro-
cess is known to be about 0.60% (i.e. σ = 0.60). Assume that each factor is stud-
ied at 2-levels. The total number of experiments in this case can be computed (using 
Eq. (8.1)) as 32.

Consider another example where the objective of the experiment is to improve the 
yield of a chemical process by 1%. The SD of the process is estimated to be 0.5%. 
The minimum number of experiments to detect an effect of 1% is 16 (Table 8.2).

Many process engineers engaged in industrial experiments are not sure of the dif-
ference between repetition and replication. Replication is a process of running the 
experimental trials in a random fashion. In contrast, repetition is a process of run-
ning the experimental trials under the same set-up of machine parameters (Verseput, 
1998). In other words, the variation due to machine set-up cannot be captured using 
repetition. Replication requires resetting of each trial condition and therefore the 
cost of the experiment and also the time taken to complete the experiment may be 
increased to some extent. Replication increases the precision of an experiment by 
reducing the SDs used to estimate factor effects. Increasing the number of replicates 
will decrease the error variance or mean square due to error (Schmidt and Launsby, 
1992). Replication will yield better results in the long run. Therefore, it is always 
best to remember the following maxim: ‘Do it right the first time or you’ll just have 
to do it later!’

(8.1)

Table 8.2 Number of Experiments as a Function of SNR

SNR (Δ/σ) Minimum Number of Experiments

1.0 64
1.4 32
2.0 16
2.8 8
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8.1.10  Improve the Efficiency of Experimentation Using a Blocking 
Strategy

Blocking can be used to minimise the chances of experimental results being influenced 
by variations from shift to shift, day to day or machine to machine. By dividing your 
experimental runs into homogeneous blocks and then arithmetically removing the dif-
ference, you increase the sensitivity of your experiment. Do not block on anything that 
you want to study. For example, if you want to measure the difference in the quality of 
materials provided by three suppliers, then you have to include ‘supplier’ as a factor in 
your experiment. When blocking occurs, one or more of the interactions is likely to be 
confounded with the block effects; however, a good choice of blocking should ensure 
that it is a higher-order interaction (one that would be challenging to interpret or is not 
be expected to be important) that is confounded.

The blocks can be batches of different shifts, different machines, raw materials 
and so on. Shainin’s Multi-variate charts can be a useful tool for identifying those 
variables that cause unwanted sources of variability. For example, a metallurgist 
wishes to improve the strength of a certain steel component. Four factors at 2-levels  
each were considered for the experiment. An eight-trial experiment was chosen, but 
it was possible to run only four experimental trials per day. Hence each day was 
treated was treated as a separate block, with the purpose of reducing day-to-day vari-
ation. It is important that the experimental trials within the block be as homogeneous 
as possible.

In the context of ED, one usually has to obtain blocking generator(s) prior to apply-
ing a blocking strategy. In order to obtain the blocking generators, it is advised to 
decide on the number of blocks needed for the experiment as well as the block size. 
It is important to ensure that the block generators are not confounded with the main 
effects or with two-factor interaction effects. Box et al. (1978) provide a useful table 
which illustrates the number of blocks, block size, recommended block generators, the 
number of experimental trials and the resolutions of the blocked design.

8.1.11 Understanding the Confounding Pattern of Factor Effects

The confounding pattern is often overlooked by many experimenters who use Taguchi 
OA designs, Plackett–Burmann designs or highly fractionated factorial designs. If we 
study three factors at 2-levels using four runs, the main effects will be confounded with 
two-factor interactions. In other words, the estimates of main effects cannot be sep-
arated out from the interactions. It is always dangerous to run such a low-resolution 
fractional factorial design. In the above case, we generally assign factor A to column 1, 
factor B to column 2 and factor C to column 3. In fact, column 3 can also be obtained 
due to the interaction between factors A and B. In other words, main effect C is con-
founded with interaction AB. If column 3 is significant from the statistical analysis, 
then we don’t know whether the effect is the result of C, AB or both.

Confounding can be avoided by carefully choosing high-resolution fractional 
designs, but the cost factor will go up due to the large size of the experiment. The 
challenge here is to find the balance between the size of the experiment and the 
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information gained from the experiment. An understanding of confounding struc-
tures (also called alias structures) can be a tremendous asset to the experimenter.

8.1.12 Perform Confirmatory Runs/Experiments

There is a tendency to eagerly grab the results, rush out to production and say, ‘We 
have the answer! This will solve the problem!’ Before doing that, it is important to 
take the time to verify the outcome of your experiment using confirmatory runs. A con-
firmatory run or experiment is necessary in order to verify the results of the experiment 
from the statistical analysis. If conclusive results have been obtained, it is then recom-
mended to take improvement actions on the process under investigation. In contrast, 
if the results do not turn out as expected, further investigation would then be required 
(Taguchi, 1986). Some of the possible causes for not achieving the objective of the 
experiment include the following:

● wrong choice of ED for the experiment
● incorrect choice of quality characteristic (or response) for the experiment
● important factors that influence the response of interest are not as yet identified
● presence of non-linear or curvature effect of factors on the response of interest
● inadequate control of noise factors, causing unpleasant variation in the process under 

investigation
● measurement system error is very high
● rushing into data analysis without understanding the details of assumptions behind the data 

analysis
● problem scope was not clearly understood by the team
● lack of expertise on the part of the user in the statistical analysis.

Exercises

1. Explain why unclear experimental objectives can lead to lost time and money.
2. What factors should be considered for the selection of an ED project?
3. Why is brainstorming important in the context of ED?
4. What are the advantages of choosing measurable quality characteristics over attribute 

characteristics?
5. Why must experiments be conducted in an iterative manner?
6. Why is blocking important in industrial designed experiments?
7. Why do we need to perform confirmatory runs/experiments?
8. How do you differentiate between replication and repetition?
9. What are the pros and cons of randomisation as a principle of ED?
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Case Studies9

9.1 Introduction

This chapter presents a collection of real industrial case studies. The case studies illus-
trated in this chapter are well-planned experiments and not simply a few experimental 
trials to explore the effects of varying one or more factors at a time. The case studies 
will provide a good foundation for students, researchers and practitioners on how to go 
about carrying out an experiment in real industrial settings. The case studies will cover 
the nature of the problem or objective of the experiment, list of factors, their levels, 
response of interest, choice of a particular design (i.e. number of trials used), analysis 
using Minitab software, interpretation of results and benefits gained from the experiment. 
These case studies will increase the awareness of the application of ED techniques in 
industries and its potential in tackling process optimisation and variability problems.

9.2 Case Studies

9.2.1 Optimisation of a Radiographic Quality Welding of Cast Iron

Objective of the Experiment

The objective of the experiment was to identify the significant welding parameters 
and to determine the optimal parameter settings which gave minimum crack length.

Selection of the Response Function

The response of interest for the experiment was crack length measured in centimetres.

List of Factors and Interactions of Interest for the Experiment

Five main effects and 2 two-order interactions were identified from a thorough brain-
storming session. The list of main and interaction effects is shown below.

Main effects: Current (A), Bead length (B), Electrode make (C), V-groove angle 
(D) and Welding method (E)

Interaction effects: A × B and B × C

Levels of Parameters and Their Ranges

Each parameter was studied at 2-levels. The ranges of welding parameters are given 
in Table 9.1.

http://dx.doi.org/10.1016/B978-0-08-099417-8.00009-2
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Choice of Design and Number of Experimental Trials

As the number of factors is more than four, it was decided to select a fractional factorial 
design rather than a full factorial design. The number of degrees of freedom for studying 
both main effects and interactions is equal to seven. The closest number of experimental 
trials that can be employed for this study is eight. This means it is a 2(5−2) fractional fac-
torial design in which main effects are confounded with two-factor interactions. In other 
words, the design resolution of this design is III.

Design Generators and the Confounding Structure of the Design

 Design generators: D AC and E ABC� �

 De�ning relationship: I ACD I ABCE and I BDE� � �,

 

A CD BCE

B ACE DE

C AD ABE

Confounding pattern: D AC BE

E ABC BD

� �

� �

� �

� �

� �

AAB CE ADE BCD

AC BE, BC AE ABD CDE

� � �

� � � �

Uncoded Design Matrix with Response Values

The uncoded design matrix showing all the real factor settings, along with the 
respective response values, is given in Table 9.2. Each trial condition was replicated 
twice to create adequate degrees of freedom for the error term. Randomisation strat-
egy was employed to minimise the effect of lurking variables and undesirable exter-
nal influences induced into the experiment. As we can see from Table 9.2, welding 
parameter C (electrode make) was assigned to column 1 as it was not practical to 
change the levels of this factor frequently.

Table 9.1 List of Factors and Their Ranges for the Experiment

Welding Parameters Labels Low Level High Level

Current A 110 135
Bead length B 20 30
Electrode make C X Y
V-groove angle D 45 60
Welding method E 1 2



Case Studies 127

Analysis and Interpretation of Results

The first step was to check the data for normality assumptions. This was achieved 
by constructing NPP of residuals (Figure 9.1). The plot suggests that the data fol-
low a normal distribution. The analysis part involves the determination of significant 
main and interaction effects, followed by the selection of optimal welding parameter 
settings which yield minimum crack length. In order to identify the most important 
main and interaction effects, it was decided to use a Pareto plot of effects (Figure 9.2). 
Figure 9.2 indicates that main effects A and E and interaction effect BC were con-
sidered to be real (or active). In order to analyse interaction between B and C, it was 
decided to use an interaction plot, shown in Figure 9.3.

Figure 9.3 indicates that there is a strong interaction between B and C. Moreover, 
it can be observed from Figure 9.3 that crack length is minimum when B is kept 
at a high-level setting and C at a low-level setting. In order to determine the opti-
mal welding parameter settings that yield minimum crack length, a main effects plot 
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Figure 9.1 NPP of residuals. 

Table 9.2 Uncoded Design Matrix with Response Values

Standard Order C B A D = AC E = ABC Crack Length (cm)

1 (5) X 20 110 60 1 9, 12
2 (3) Y 20 110 45 2 7, 8
3 (8) X 30 110 60 2 7, 5
4 (2) Y 30 110 45 1 13.5, 12.0
5 (6) X 20 135 45 2 10, 9
6 (1) Y 20 135 60 1 6.5, 8
7 (7) X 20 135 45 1 7, 6
8 (4) Y 20 135 60 2 7.5, 8

Note: ( ) represents the order in which the experimental runs were carried out.
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is constructed (Figure 9.4). The optimal settings for minimising crack length are as 
follows:

A: +1 (high level)
B: +1 (high level)
C: −1 (low level)
D: +1 (high level)
E: +1 (high level)

Confirmatory Trials

Three confirmatory trials based on the optimal settings were performed and crack 
lengths of 0.31, 0.46 and 0.32 mm were observed. The results of the study have 
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Figure 9.2 Pareto plot of effects from the experiment. 
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demonstrated a significant improvement to the process and a significant reduction in 
scrap and rework was achieved.

9.2.2 Reducing Process Variability Using ED Technique

Objective of the Experiment

The objective of the experiment was to identify the most important process param-
eters that affect variability in response.

Selection of the Response

The response of interest for the experiment was expulsion force measured in kilo-
grams (kg). Here expulsion force is the force required to expel the device or compo-
nent from a certain tube.

List of Process Parameters and Their Levels

Seven process parameters were identified from a brainstorming session with people 
from production, maintenance, quality, design and the shop floor. As part of the ini-
tial investigation of the study, it was decided to study the main effects on variability 
in expulsion force. The parameters used for the experiment and their levels are illus-
trated in Table 9.3.

Choice of Design and Number of Experimental Trials Required for the 
Experiment

For this study, seven factors were thought to have some impact on variability in 
expulsion force. An FFE would require a total of 128 experimental trials. Owing 
to limited budget and the top management needing a speedy response to this 
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Figure 9.4 Main effects plot for crack length. 
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investigation, it was decided to use a highly fractionated factorial design. Here the 
objective was to identify the key process parameters so that further smaller experi-
ments could be carried out to study the interactions among the key parameters. The 
number of degrees of freedom associated with seven factors at 2-levels is equal to 7. 
Hence the number of degrees of freedom required for the experiment must be greater 
than 7. The closest number of experimental trials that can be employed for this study 
is 8, that is, a 2(7−4) fractional factorial design was selected.

Design Generators and Resolution

C = −AB
E = −AD
F = −BD
G = ABC

As the main effects are confounded with two-factor interactions, the resolution of 
this design is III.

Coded and Uncoded Design Matrix with Response Values

The uncoded and coded design matrices with response values are given in Tables 9.4 
and 9.5. Each trial condition was repeated five times to analyse variability.

Table 9.3 List of Process Parameters and Their Levels

Process Parameters Labels Low Level High Level

Position of the cam A Forward (F) Backward (B)
Drum temperature B 84 104
Time C 68 72
Type of material D 1 2
Clearance E 0.006 0.012
Machine alignment F 134 130
Header temperature G 190 210

Table 9.4 Uncoded Design Matrix with Response Values

Run A B C D E F G Expulsion Force (kg)

1 F 84 68 1 0.006 134 190 0.990, 1.037, 0.965, 0.860, 1.086
2 B 84 72 1 0.012 134 210 0.875, 0.748, 0.959, 0.600, 0.807
3 F 104 72 1 0.006 130 210 0.924, 0.881, 0.733, 0.767, 0.873
4 B 104 68 1 0.012 130 190 0.760, 0.620, 0.669, 0.632, 0.605
5 F 84 68 2 0.012 130 210 0.741, 0.455, 0.549, 0.468, 0.646
6 B 84 72 2 0.006 130 190 0.787, 1.061, 0.607, 1.168, 0.878
7 F 104 72 2 0.012 134 190 0.508, 0.446, 0.351, 0.419, 0.421
8 B 104 68 2 0.006 134 210 0.691, 0.771, 0.940, 0.743, 0.675
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Analysis and Interpretation of Results

As the objective of the experiment is to reduce variability in expulsion force, the first 
step is to identify which of the seven factors have an impact on variability. In order 
to analyse variability, both SD and ln(SD) (natural logarithms of SD) were computed 
at each ED point. The results are given in Table 9.6.

An NPP of residuals was constructed for the validity of normality assumptions 
(Figure 9.5). Figure 9.5 shows that the data come from a normal population. Having 
checked the data for normality, the next step was to identify the factors which influ-
ence variability in expulsion force. Both a main effects plot and a Pareto plot are 
used to identify the key process parameters or factors which have an impact on varia-
bility. The graphs (Figures 9.6 and 9.7) indicate that factor B has a significant impact 
on variation. In order to obtain adequate degrees of freedom for the error variance 
term, a pooling strategy was utilised. The rule of thumb is to pool the effects with 
low magnitude till the error degrees of freedom is nearly half the total degrees of 
freedom. It was interesting to note that variability is minimum when factor B is kept 
at high level (Figure 9.7).

Table 9.5 Coded Design Matrix with Response Values

Run A B C D E F G Expulsion Force (kg)

1 −1 −1 −1 −1 −1 −1 −1 0.990, 1.037, 0.965, 0.860, 1.086
2 1 −1 1 −1 1 −1 1 0.875, 0.748, 0.959, 0.600, 0.807
3 −1 1 1 −1 −1 1 1 0.924, 0.881, 0.733, 0.767, 0.873
4 1 1 −1 −1 1 1 −1 0.760, 0.620, 0.669, 0.632, 0.605
5 −1 −1 −1 1 1 1 1 0.741, 0.455, 0.549, 0.468, 0.646
6 1 −1 1 1 −1 1 −1 0.787, 1.061, 0.607, 1.168, 0.878
7 −1 1 1 1 1 −1 −1 0.508, 0.446, 0.351, 0.419, 0.421
8 1 1 −1 1 −1 −1 1 0.691, 0.771, 0.940, 0.743, 0.675

Table 9.6 SD and ln(SD) Values

Run A B C D E F G S ln(SD)

1 −1 −1 −1 −1 −1 −1 −1 0.085 −2.465
2 1 −1 1 −1 1 −1 1 0.136 −1.995
3 −1 1 1 −1 −1 1 1 0.081 −2.513
4 1 1 −1 −1 1 1 −1 0.0621 −2.779
5 −1 −1 −1 1 1 1 1 0.122 −2.104
6 1 −1 1 1 −1 1 −1 0.222 −1.505
7 −1 1 1 1 1 −1 −1 0.057 −2.865
8 1 1 −1 1 −1 −1 1 0.106 −2.244



Design of Experiments for Engineers and Scientists132

210

B

A

D

E

Figure 9.6 Pareto plot of effects for ln(SD). 

–0.3 –0.2 –0.1 0.0 0.1 0.2 0.3

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

N
or

m
al

 s
co

re

Residual

Figure 9.5 NPP of residuals for ln(SD). 
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Determination of Optimal Settings to Minimise Variability

In order to determine the optimal settings to minimise variability, the first step was 
to rank the factors (in descending order of importance) that influence variability in 
expulsion force.

Factor B – Rank 1
Factor A – Rank 2
Factor D – Rank 3
Factor E – Rank 4
Factor G – Rank 5
Factor C – Rank 6
Factor F – Rank 7

The optimal condition based on the main effects plot was obtained as follows:

 B A D E G C F( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1� � � � �

Confirmation Trials

Fifteen samples were produced under the optimal conditions and compared against the 
samples produced under standard production conditions. The sample SD at the optimal 
settings was reduced to 0.042 kg as opposed to 0.125 kg under normal production con-
ditions. The reduction in SD was therefore estimated to be approximately 66%.

Significance of the Work

Due to the significant reduction in process variability, the actual capability of the 
process has increased from 0.86 to over 1.78. This clearly demonstrates a dramatic 
improvement in the process performance and thereby more reliable and consistent 
products can be produced by determining the optimal condition of the process under 
study. The benefits from this study include increased customer satisfaction, reduced 
warranty costs, reduced customer complaints, reduced scrap and rework, improved 
market share, improved process control and so forth. The engineering team, includ-
ing production personnel, quality engineers and managers of the company, are now 
well aware of the benefits that can be gained from the application of ED methods. 
Moreover, the awareness that has been established within the organisation has built 
confidence among the engineers, managers and front-line workers in other areas fac-
ing similar difficulties.

9.2.3 Slashing Scrap Rate Using Fractional Factorial Experiments

Nature of the Problem

This case study describes the application of a highly fractionated factorial design to a 
manufacturing process that makes electromagnetic clutch coils. The coils were made 
of about 0.75 mm diameter copper wire. When the coil is wound to form into a sole-
noid, the wire is heated to around 180°C, which turns the insulation into an adhesive 
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that bonds the wires together. However, the company that produces these coils was 
facing a quality problem in the form of high scrap rate, rework, etc. which resulted in 
huge failure costs for the company. Hence it was important for the company to find 
out what was causing this.

Objective of the Experiment

The objective of the experiment was to identify the most important machine param-
eters that gave the minimum scrap rate (%).

Selection of the Response

The response of interest for the experiment was the percentage of rejects.

List of Process Parameters and Their Levels

With limited budget and resources, it was important to study the effect of seven 
parameters on the percentage of rejects. To minimise the number of experimental 
trials, each factor was studied at 2-levels: low and high. The process (or machine) 
parameters and their levels are given in Table 9.7.

Coded Design Matrix with Response Values for the Experiment

The coded design matrix describes all the process parameter combinations at their 
respective levels and the order in which the runs or experimental trials were performed. 
A total of 2500 samples were used for each trial condition, and the percentage of rejects 
recorded for the analysis. In order to minimise the effect of lurking variables, randomi-
sation strategy was employed. The results of the experiment are given in Table 9.8.

Analysis and Interpretation of Results

The analysis part involves the identification of the most important machine (or pro-
cess) parameters that likely cause the problem. In order to identify the key param-
eters, a Pareto plot was used (Figure 9.8).

Table 9.7 List of Parameters and Their Levels Used for the 
Experiment

Process Parameters Labels Low Level High Level

Felt lubrication A Dry Soaked
Wire diameter B 0.75 mm 0.76 mm
Friction on pulley C Low High
Brake tension D 1.5 kg 2 kg
Winding width E High Low
Dirt buildup F Unclean Clean
Axial start position G A B
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Figure 9.8 shows that machine parameters B, D and G are statistically significant 
at the 10% significance level. Machine parameters A, C, E and F have a relatively 
trivial effect. Having identified the key parameters, the next step was to determine 
the settings that yield the best performance. For the present study, a main effects plot 
was constructed (Figure 9.9). The graph clearly shows that the optimal level of all 
the parameters except B (the most important) is −1 (low-level setting). The optimal 
settings for the parameters were obtained as

 A B C D E F G( ) ( ) ( ) ( ) ( ) ( ) ( )� � � � � �1 1 1 1 1 1 1

Confirmation Runs

For confirmation runs, five batches of 500 samples were used. The results of the con-
firmation runs were remarkable due to a very significant reduction in the scrap rate 

Table 9.8 Experimental Layout with Response Values

Standard 
Order

A B C D E F G Rejects (%)

1 −1 −1 −1 −1 −1 −1 −1 1.08
2 1 −1 1 −1 1 −1 1 2.52
3 −1 1 1 −1 −1 1 1 1.12
4 1 1 −1 −1 1 1 −1 1.20
5 −1 −1 −1 1 1 1 1 3.04
6 1 −1 1 1 −1 1 −1 2.76
7 −1 1 1 1 1 −1 −1 1.00
8 1 1 −1 1 −1 −1 1 1.92
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Figure 9.8 Pareto plot of effects for the experiment. 
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of only 0.37%. As a result of this significant reduction in scrap, the company expects 
to save more than $120,000 per annum. Moreover, the quality and production per-
sonnel of the organisation have been persuaded to extend the application of simple 
ED methods to other core processes.

9.2.4 Optimising the Time of Flight of a Paper Helicopter

Objective of the Experiment

The objective of the experiment was to determine the optimal settings of the design 
parameters which would maximise the time of flight of a paper helicopter.

Description of the Experiment

The experiment was carried out by the author in a classroom for a postgraduate 
course in quality management with the aim of demonstrating how the DOE can be 
employed for optimising the design parameters of a simple paper helicopter. The 
experiment requires paper, scissors, a ruler, paper clips, measuring tape and a stop-
watch. It would take approximately 5–6 h to design, conduct and analyse the results 
of the experiment. The model of a paper helicopter design is shown in Figure 9.10.

Selection of the Response

The response of interest to the experimenter in this case was the time of flight meas-
ured in seconds.

List of Design Parameters and Their Levels

Six design parameters were chosen for this experiment. In order to make the experi-
ment simple, it was decided to study each design parameter at 2-levels. Design 
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Figure 9.9 Main effects plot for the experiment. 
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parameters at 3-levels are more complicated to teach in the first place and moreover 
the author strongly believes that it might discourage engineers from further learning 
DOE. The logic behind a simple but practical experiment of this nature is to dem-
onstrate the importance of ED and to illustrate how it works in real-life situations. 
Table 9.9 presents the design parameters and their levels selected for the experiment.

Apart from the main effects, three interaction effects were also of interest to ana-
lyse for the experiment. These are as follows:

1. B × C
2. B × D
3. A × E

In order to minimise the effect of noise parameters such as draft and operator on 
the time of flight, extra caution was taken during the experiment. The experiment 

80 mm

Cut here 80 mm (wing length)

10 mm

80 mm (body length)

20 mm

Figure 9.10 Model of a paper helicopter design. 

Table 9.9 List of Design Parameters and Their Levels

Design Parameters Labels Low Level (−1) High Level (+1)

Paper type A Normal Bond
Body length B 80 mm 130 mm
Wing length C 80 mm 130 mm
Body width D 20 mm 35 mm
Number of clips E 1 2
Wing shape F Flat Angled 45° up
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was conducted in a closed room to dampen the effect of draft. The same operator 
was responsible in all instances for minimising the reaction time of hitting the stop-
watch when the helicopter was released and when it hit the floor.

Choice of Design and Design Matrix for the Experiment

As we are interested in studying six main effects and three interaction effects, the 
total degrees of freedom are equal to nine. The closest number of experimental tri-
als that can be employed for the experiment is 16 (i.e. 2(6−2) fractional factorial 
design). This means that only a quarter replicate of an FFE is needed for the study. 
The uncoded design matrix for the experiment, along with recorded response values 
corresponding to each trial condition, is presented in Table 9.10.

Statistical Analysis and Interpretation of Results

Prior to carrying out any statistical analysis, the first step was to check the data for 
normality assumptions. An NPP of residuals was constructed (Figure 9.11) which 
indicates that the data come from a normal population (William, 1990). The next 
stage of the analysis was to identify which of the main or/and interaction effects have 
significant impact on the time of flight. It was decided to use a Pareto plot using 
Minitab software. Minitab plots the effects in decreasing order of the absolute value 
of the standardised effects and draws a reference line on the chart. Any effect that 
extends the reference line appears to be statistically significant. The Pareto plot of 
the effects (Figure 9.12) shows that the main effects (A, C, F and E) are statistically 
significant (assume 5% significance level).

Table 9.10 Uncoded Design Matrix with Response Values

Run A B C D E F Time of Flight (s)

1 (6) Normal 80 80 20 1 Flat 2.49
2 (9) Bond 80 80 20 2 Flat 1.80
3 (11) Normal 130 80 20 2 Angled 1.82
4 (15) Bond 130 80 20 1 Angled 1.99
5 (12) Normal 80 130 20 2 Angled 2.11
6 (2) Bond 80 130 20 1 Angled 1.96
7 (16) Normal 130 130 20 1 Flat 3.19
8 (14) Bond 130 130 20 2 Flat 2.27
9 (10) Normal 80 80 35 1 Angled 2.12
10 (1) Bond 80 80 35 2 Angled 1.58
11 (7) Normal 130 80 35 2 Flat 2.15
12 (3) Bond 130 80 35 1 Flat 2.05
13 (8) Normal 80 130 35 2 Flat 2.60
14 (4) Bond 80 130 35 1 Flat 2.09
15 (5) Normal 130 130 35 1 Angled 2.63
16 (13) Bond 130 130 35 2 Angled 2.18
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None of the interactions appears to be statistically significant. The interaction 
between B and C was not statistically significant at 5% significance level, though it 
appeared to be important in the interaction graph (Figure 9.13). It was rather interest-
ing to observe that body width has no influence on the time of flight.

Determination of Optimal Design Parameters

Having identified the significant design parameters that influence the time of flight, 
the next step is to determine the optimal settings that will maximise the time of 
flight. As none of the interaction effects were statistically significant, the best levels 
of each parameter can readily be obtained from a main effects plot (Figure 9.14). 
The final optimal settings of the design parameters are as follows:

Design parameter A – low level (normal paper)
Design parameter B – high level (130 mm)
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Figure 9.11 NPP of residuals. 
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Design parameter C – high level (130 mm)
Design parameter D – low level (20 mm)
Design parameter E – low level (No. of clips = 1)
Design parameter F – low level (flat)

It was quite interesting to note that the time of flight was maximum when wing 
length and body length were kept at high levels.

Predicted Model for Time of Flight

A simple regression model is developed based on the significant effects. It is impor-
tant to note that the regression coefficients in the model are half the estimates of the 
effects. The regression model for the time of flight can be therefore written as

 ˆ ( ) ( ) ( ) ( )y β β β β β0 1 2 3 4A C F E (9.1)
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where

β0 = overall mean time of flight = 2.19
β1 = regression coefficient of factor A (paper type)
β2 = regression coefficient of factor C (wing length)
β3 = regression coefficient of factor F (wing shape)
β4  = regression coefficient of factor E (no. of clips)

The predicted model for time of flight is therefore given by

 ˆ . ( . ) ( . ) ( . ) ( . ) ˆ .yy 2 19 0 20 1 0 19 1 0 14 1 0 13 1 2 85secc

Confirmatory Runs

A confirmatory experiment was carried out to verify the results from the analysis. 
Ten helicopters were made based on the optimal settings of the design parameters. 
The average flight time was estimated to be 3.09 s with an SD of 0.35 s.

CI (based on 95% confidence level) = y
SD

n
3 , where ‘SD’ is the sample

 standard deviation, y is the sample mean and n is the sample size.
Therefore,

 

con�dence interval 3 09 3 0 11

3 09 0 33

2 76 3 42

. .

. .

( . , . )

As the predicted value (2.85 s) for the optimal settings falls within the above CI, 
we can conclude that the predicted model is sound.

Significance of the Work

The purpose of this case study is to demonstrate the importance of teaching ED 
methods to people with limited skills in statistics for tackling variability and poor 
process performance problems. This experiment is quite old in its nature and 
has been widely used for some time by many statisticians for teaching purposes. 
Nevertheless the focus here was to minimise the statistical jargon associated with 
the technique and bring modern graphical tools for better and rapid understanding of 
the results to non-statisticians. The students of the class found this experiment very 
interesting specifically in terms of selecting the design, conducting the experiment 
and interpreting the results. Many students were quite astounded by the use of simple 
but powerful graphical tools and their reduced involvement of number crunching.

9.2.5 Optimising a Wire Bonding Process Using DOE

Objective of the Experiment

The following are the objectives of the experiment:

● to determine the optimal process parameter settings for enhanced strength
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● to develop a mathematical model which relates the wire pull strength and the key process 
parameters which influence the strength.

Description of the Experiment

This case study illustrates a wire bonding process making a physical connection 
between the die and the lead. The purpose of this study was to increase the wire pull 
strength due to an increased number of customer complaints on broken wires (Green 
and Launsby, 1995).

Selection of the Response

The response of interest to the experimenter was wire pull strength expressed in 
grams.

Identification of Process Variables for Experimentation

The following process variables were identified from a thorough brainstorming ses-
sion. People from the quality department and the production department as well as 
operators were involved in the session. Each process variable was studied at 2-levels 
as part of the initial investigation. Table 9.11 presents the list of parameters used for 
the experiment.

The following interactions were of interest to the experimenter:

1. B × C
2. A × C
3. A × D
4. A × B

All three-order and higher-order interactions are neglected.

Choice of Design and Experimental Layout

The choice of design is dependent on the number of main and interaction effects to 
be studied, cost and time constraints, required design resolution, etc. As the total 
degrees of freedom required for studying the four main effects and four interac-
tion effects is equal to 8, the most suitable design for this experiment was a 24 FFE 

Table 9.11 List of Process Parameters Used for the 
Experiment

Process 
Variables

Labels Low 
Level

High 
Level

Unit

Power A 100 150 mW
Temperature B 140 200 °C
Bonding time C 15 25 ms
Bonding force D 3 9 g
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(Antony, 1999). This allows one to estimate all the main effects and interactions 
independently. Each trial condition was randomised to minimise the effect of lurk-
ing variables. The uncoded design matrix along with response values is shown in 
Table 9.12. The next step illustrates how the results of the experiment have been 
analysed.

Statistical Analysis and Interpretation

In order to identify the significant main effects and interaction effects, it was decided 
to use an NPP of effects. Those effects that fall off the straight line are deemed to 
be statistically significant and those that fall along the straight line are deemed to be 
statistically insignificant. The NPP of effects is shown in Figure 9.15. Figure 9.15 
shows that main effects A, B, D and interaction effect AD are statistically significant 
at 5% significance level. In order to determine the best levels for A and D, it was 
important to analyse the interaction effect (A × D). Figure 9.16 illustrates the inter-
action plot between A and D.

The non-parallel lines indicate that there is a strong interaction between the pro-
cess variables A and D. As we can observe from the plot, the effect of bonding force 
on the pull strength is different at low and high levels of power. Minimum variabil-
ity in pull strength is observed at a high level of power. On the other hand, mean 
strength is higher at a high level of bonding force (9 g) and a low level of power 
(100 mW).

In order to identify the optimal settings of process parameters which give maxi-
mum pull strength, a main effects plot was constructed (Figure 9.17).

Table 9.12 Uncoded Design Matrix for the Experiment

Trial No. A B C D Pull 
Strength

1 (7) −1 −1 −1 −1 7.4
2 (11) 1 −1 −1 −1 6.5
3 (5) −1 1 −1 −1 8.2
4 (15) 1 1 −1 −1 8.8
5 (2) −1 −1 1 −1 7.6
6 (9) 1 −1 1 −1 6.8
7 (10) −1 1 1 −1 8.4
8 (16) 1 1 1 −1 8.6
9 (3) −1 −1 −1 1 9.4
10 (13) 1 −1 −1 1 8.0
11 (4) −1 1 −1 1 9.8
12 (1) 1 1 −1 1 8.9
13 (6) −1 −1 1 1 9.0
14 (12) −1 −1 1 1 7.9
15 (8) 1 1 1 1 10.1
16 (14) −1 1 1 1 9.1
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Table 9.13 presents the optimal settings of bonding process parameters that 
would yield maximum strength. It is important to note that bonding time has no 
influence whatsoever on the pull strength. Hence it was decided to select 15 ms 
as the optimal value rather than 25 ms. Here bonding time can be treated as a cost 
adjustment factor.

Model Development Based on the Significant Factor/Interaction Effects

Having identified the significant main and interaction effects which influence the 
pull strength, it was considered important to develop a simple regression model 
which provides the relationship between the pull strength and the critical effects 
(Hamada, 1995). The use of this model is to predict the pull strength for different 
combinations of wire bonding process parameters at their best levels. It is important 
to note that for process parameters at 2-levels, the regression coefficients are half the 
estimates of the effects. Table 9.14 presents the estimates of significant effects and 
regression coefficients. The regression model for the wire bonding process as a func-
tion of significant main and interaction effects is given by

 ˆ ( ) ( ) ( ) ( )

ˆ . . . .

y

y

β β β β β0 1 2 4 14

8 41 0 33 0 58 0 62

A B D A D

A B D

+
00 22. AD

where ŷ is the predicted pull strength.
The predicted pull strength based on the significant factor and interaction effects 

(based on the optimal condition) is hence given by

 ˆ . . ( ) . ( ) . ( ) . ( )( ) ˆ .yy 8 41 0 33 1 0 58 1 0 62 1 0 22 1 1 10 16−

Table 9.13 Optimal Condition of the Wire Bonding Process

Process Parameters Uncoded Level Coded Level

Power 100 mW −1
Temperature 200°C 1
Bonding time 15 ms −1
Bonding force 9 g 1

Table 9.14 Estimates of Effects and Regression Coefficients

Process Parameters/
Interactions

Estimate of 
Effects

Regression 
Coefficients

A −0.663 −0.33
B 1.162 0.58
D 1.237 0.62
AD −0.438 −0.22
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Confirmation trials at the optimal condition have yielded a mean pull strength of 
10.25 g. A 95% CI of the mean pull strength is given by

 

95 3

10 25 3 0 19

% ( ),

. ( . )

CI s.e. wheres.e. is thestandard errory

(( . , . )9 68 10 82

As the predicted value falls within this interval, it is fair to conclude that the pre-
dicted model for pull strength is sound and practical.

Conclusion

This case study presents a study performed on a certain wire bonding process using DOE 
with two objectives in mind. The first objective of the experiment is to understand the 
process by identifying the key wire bonding process parameters and the interactions of 
interest. The second objective was to develop a regression model for predicting the pull 
strength at the optimal condition of the process. The results of the study have shown an 
improvement in pull strength by more than 20% over the existing production conditions.

9.2.6 Training for DOE Using a Catapult

The purpose of this case study was to provide an insight into the process of under-
standing the role of DOE as part of a training program to a group of engineers and 
managers in a world-class company. The results of the experiment have been extracted 
from a simple FFE performed using a catapult. The results of the experiment were ana-
lysed using Minitab software for rapid and easier understanding of the results.

Objective of the Experiment

The objective of the experiment was to maximise the in-flight distance.

Selection of Response

The response of interest to the team was in-flight distance measured in metres.

List of Factors and Their Levels Used for the Experiment

Four factors (stop position, peg height, release angle and hook position) were studied 
at 2-levels. These factors were identified from a brainstorming session facilitated by 
the author. The levels for factors such as type of ball, type of rubber band and cup 
position were kept constant. This implies that a pink ball, the sixth cup position and 
a brown rubber band were used throughout the experiment. Table 9.15 presents the 
list of factors and their levels used for the experiment.

Choice of Design and Experimental Layout for the Experiment

It was decided to perform an FFE to allow us to study all the main and interac-
tion effects. The experiment was replicated twice to capture the variation due to 



Case Studies 147

experimental set-up and air flow in the room. Each trial condition was randomised to 
minimise the bias induced into the experiment. The results of the experiment along 
with response values are given in Table 9.16.

After the experiment was performed, the next step was to analyse and interpret 
the results so that necessary actions could be taken accordingly. The analysis of the 
experiment is often dependent on its objective. In this case, the objective was to 
identify the factors which affect the in-flight distance. The team used Minitab to ana-
lyse the data from the experiment. This is the focus of the next section.

Statistical Analysis and Interpretation of Results

Prior to carrying out the statistical analysis, the first step was to check the data for 
normality assumptions. An NPP of residuals (Figure 9.18) was constructed using 
Minitab software (Minitab, 2000). It can be seen in Figure 9.18 that all the points on 

Table 9.15 List of Factors and Their Levels for Catapult 
Experiment

Factors Labels Low Level High Level

Release angle RA 180 Full
Peg height PH 3 4
Stop position SP 3 5
Hook position HP 3 5

Table 9.16 Results of the FFE

Trial No. RA PH SP HP Distance (m)

1 (4) −1 −1 −1 −1 3.62, 3.64
2 (8) 1 −1 −1 −1 4.01, 4.06
3 (11) −1 1 −1 −1 4.16, 4.60
4 (7) 1 1 −1 −1 4.70, 4.90
5 (1) −1 −1 1 −1 3.80, 3.83
6 (10) 1 −1 1 −1 4.37, 4.40
7 (3) −1 1 1 −1 4.74, 4.77
8 (15) 1 1 1 −1 5.32, 5.58
9 (2) −1 −1 −1 1 4.26, 4.13
10 (14) 1 −1 −1 1 4.74, 4.94
11 (6) −1 1 −1 1 4.80, 5.02
12 (13) 1 1 −1 1 5.20, 5.55
13 (16) −1 −1 1 1 4.46, 4.67
14 (5) 1 −1 1 1 5.12, 5.50
15 (12) −1 1 1 1 4.80, 4.85
16 (9) 1 1 1 1 5.80, 5.91

Note: ( ) represents the experimental trials/runs in random order.
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the normal plot come close to forming a straight line. This implies that the data are 
fairly normal. The next step was to identify the most significant main and interaction 
effects which influence the distance.

In order to identify the most important effects, it was decided to use a Pareto plot. The 
Pareto plot (Figure 9.19) shows that all the main effects (RA, PH, HP and SP) and one 
interaction effect (PH × HP) are deemed to be active. In order to interpret the interaction 
between PH and HP effectively, an interaction plot was constructed (Figure 9.20).

The interaction plot indicates that the effect of hook position (HP) at different lev-
els of peg height (PH) is not the same. This implies that there is a strong interac-
tion between these two factors. The graph also shows that maximum distance was 
achieved when HP was kept at position 5 and PH at position 4.
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Determination of Optimal Factor Settings

In order to arrive at the optimal condition, the mean distance at each level of the 
control factor was analysed. A main effects plot was constructed to identify the best 
levels of the factors (Figure 9.21). The best settings of the factors for maximising the 
in-flight distance are (Figure 9.21):

Release angle – Full
Peg height – Position 4
Stop position – Position 5
Hook position – Position 5

It is worthwhile noting that the optimal condition is one which corresponds to 
trial condition 16 (Table 9.16). This is due to the fact that it is an FFE, which shows 
all the possible combinations. This is not necessarily the case in many industrial 
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Figure 9.21 Main effects plot for the catapult experiment. 
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experiments due to various constraints (time, cost, objective of the experiment, 
degree of resolution required, etc.).

Confirmatory Experiment

A confirmatory experiment was carried out to verify the results from the analysis. 
Five observations were made at the optimal condition. The average in-flight distance 
was estimated to be 5.84 m. It was also observed that a change of stop position from 
5 to 4 yielded even better average results in distance (i.e. 5.96 m).

Significance of the Work

The purpose of this case study was to bring the importance of teaching DOE to a 
group of engineers and managers in a world-class organisation using simple but 
powerful graphical tools. The focus of this study was to minimise the statistical jar-
gon associated with DOE and to use modern graphical tools for a rapid decision-
making process. The results of this experiment have provided a greater stimulus for 
the wider application of DOE by engineers within this organisation in other core pro-
cesses for tackling variability-related and process optimisation problems.

9.2.7 Optimisation of Core Tube Life Using Designed Experiments

This case study presents two different experiments: the first was performed by the 
engineering team within the company and the second was performed by the author 
with the help of operations personnel within the company. The product of concern 
in this case study was a core tube used within a solenoid-operated directional control 
valve. The problem with this product was that its life was short when subjected to 
hydraulic fatigue test. The core tube assembly is welded and then machined prior 
to final assembly of the system. The company uses laser welding for core tube 
assembly and therefore most of the factors affecting the life of these core tubes were 
related to the laser welding process. Laser welding was chosen for the core tube 
assembly because the technique affords a high degree of repeatability and predict-
ability and good control of penetration depth (Crafer and Oakley, 1981).

Company’s First Attempt to Experimental Approach

The first experiment was performed by the engineering team, which consisted of a qual-
ity engineer, a design engineer, a production engineer and an operator. In order to keep 
the experimental budget to a minimum, it was decided to study all factors (or process 
parameters) at 2-levels. Three process parameters, which were believed to have some 
impact on the life of the core tube, were chosen by the team. The response of interest to 
the team was the fatigue life of the core tube, expressed in number of cycles (in millions).

The team decided to study only the effects of three laser welding process param-
eters. Interactions among the parameters were of interest to the team. A 2(3−1) frac-
tional factorial design was chosen for the experiment. Table 9.17 illustrates the list of 
welding process parameters used for the experiment.
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Table 9.18 presents the experimental layout for the optimisation of core tube life. 
The experimental layout displays the number of experimental trials, the process 
parameters and the response values corresponding to each ED point.

The desired number of cycles on average is about 8.5. This is to conform to the 
requirements of the National Fluid Power Association Standards. None of the above 
trial conditions yielded a value of more than 7 million cycles. The analysis of results 
indicates that weld speed has the highest impact on core tube life and ramp in has the 
least influence. Table 9.19 presents the effects of the laser welding process parameters.

The objective of the experiment was to maximise the life of the core tube and 
hence it was important to determine the settings of the parameters which yield the 
maximum life of core tubes. The optimal settings were determined as follows:

Weld speed – high level (2 rev./s)
Ramp out – high level (2 s)
Ramp in – high level (1.5 s)

The engineering team concluded that trial condition 4 (Table 9.18) gives the maxi-
mum core tube life. However, the desired value of the core tube was at least 8.5 mil-
lion cycles. The above study conducted by the engineering team did not reveal any 

Table 9.17 Process Parameters for the Experiment

Process 
Parameter

Label Low 
Level

High 
Level

Units

Weld speed A 1.5 2.0 Rev./seconds
Ramp out B 1 2 Seconds
Ramp in C 0.5 1.5 Seconds

Table 9.18 Experimental Layout for the Experiment

Run A B C No. of Cycles 
(in Millions)

1 1.5 1 1.5 1.92
2 2.0 1 0.5 4.80
3 1.5 2 0.5 2.24
4 2.0 2 1.5 6.93

Table 9.19 Effects of Process Parameters on Core Tube Life

Process 
Parameter

Average Response  
at Level 1

Average Response  
at Level 2

Effect

Weld speed 2.08 5.865 3.785
Ramp out 3.36 4.585 1.225
Ramp in 3.52 4.425 0.905
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significant improvement to the process under investigation. Therefore a second case 
study was proposed with the aim of achieving better and more satisfactory results.

Company’s Second Attempt to Use Designed Experiments

The second attempt was made with the assistance of the author’s skills and expertise 
in the area of study. A fishbone diagram (Figure 9.22) was constructed to identify the 
process parameters which influence the life of the core tubes. Twelve process param-
eters were initially thought to have some impact on the life. Further to a number of 
iterations, it was decided to select 5 out of 12 process parameters. Table 9.20 lists the 
process parameters along with their ranges of settings. The ranges of these parameter 
settings were determined after a thorough brainstorming session with people from 
design, manufacturing, quality and the shop floor.

The following objectives were set by the company for the second round of experi-
mentation. The objectives were determined by the team members and were as follows:

● to identify the laser welding process parameters which affect the mean fatigue life of core tubes
● to identify the process parameters which influence variability in life
● to determine the optimal settings of the process parameters which give maximum life with 

minimum variability.
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Laser mirror
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Short life of the
core tubes

Figure 9.22 Fishbone analysis of the problem. 

Table 9.20 List of Process Parameters and Their Ranges Used for the Second 
Experiment

Process 
Parameters

Label Units Low Level High Level

Weld speed A Rev./seconds 1.5 2.2
Ramp in B Seconds 1.0 2.0
Ramp out C Seconds 2.0 3.0
Laser power D Watts 950 1100
Lens focus E – Position 1 Position 2
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For the second round of experimentation, the team decided to study the following 
interactions:

1. C × D
2. A × C
3. A × D

Choice of Experimental Layout for the Experiment

For the second experiment, five main effects and three interactions were of interest 
to the team. The number of degrees of freedom for studying five main effects and 
three interactions (each parameter at 2-levels) is equal to 8. The best possible design 
matrix or experimental layout for this experiment was a 2(5−1) fractional factorial 
experiment. This means that both main and interactions could be studied indepen-
dently. The resolution of this design is V (i.e. main effects are clear of confoundings 
with two-way interactions and two-way interactions are free of confoundings with 
other two-way interactions). The following section explains the design generator and 
the confounding pattern of the design.

Design generator: E = ABCD
Defining relationship = ABCDE
Confounding pattern: A = BCDE, B = ACDE, C = ABDE, D = ABCE, E = ABCD, AB =  
CDE, AC = BDE, AD = BCE, AE = BCD, BC = ADE, BD = ACE, BE = ACD, CD = 
ABC, CE = ABD, DE = ABC

Table 9.21 displays the results of the second experiment with response values. 
Each ED point was replicated twice to increase the precision of the experiment. 

Table 9.21 Experimental Layout and the Response Values for the Experiment

Standard 
Order

Weld 
Speed

Ramp  
In

Ramp 
Out

Laser 
Power

Lens 
Focus

Fatigue Life 
(Million Cycles)

1 (7) 1.50 1.0 2.0 950 2.0 4.8, 1.3
2 (3) 2.20 1.0 2.0 950 1.0 6.3, 5.5
3 (10) 1.50 2.0 2.0 950 1.0 5.6, 4.8
4 (2) 2.20 2.0 2.0 950 2.0 9.0, 5.6
5 (15) 1.50 1.0 3.0 950 1.0 1.6, 2.9
6 (1) 2.20 1.0 3.0 950 2.0 8.4, 11.5
7 (9) 1.50 2.0 3.0 950 2.0 0.8, 4.1
8 (4) 2.20 2.0 3.0 950 1.0 8.3, 8.1
9 (14) 1.50 1.0 2.0 1100 1.0 2.0, 2.8
10 (5) 2.20 1.0 2.0 1100 2.0 4.8, 5.1
11 (12) 1.50 2.0 2.0 1100 2.0 4.7, 1.0
12 (8) 2.20 2.0 2.0 1100 1.0 5.0, 3.7
13 (16) 1.50 1.0 3.0 1100 2.0 4.6, 4.4
14 (6) 2.20 1.0 3.0 1100 1.0 8.0, 8.4
15 (11) 1.50 2.0 3.0 1100 1.0 5.0, 5.2
16 (13) 2.20 2.0 3.0 1100 2.0 10.8, 8.2
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Moreover, the trial condition was also randomised to minimise the effect of bias 
induced into the experiment.

Statistical Analysis and Interpretation

In order to meet the objectives set at the outset of the project, it was important to per-
form statistical analysis of the data generated from the experiment. If the experiment 
was planned, designed, conducted and analysed correctly, then statistical analysis 
would provide sound and valid conclusions. The first step was to estimate the main 
and interaction effects of interest. Table 9.22 presents the table of effects and regres-
sion coefficients.

The identification of active and real effects is obtained with the help of Pareto and 
main effect plots. Figures 9.23 and 9.24 present these. Figures 9.23 and 9.24 indi-
cate that two main effects (WS and RO) and two interaction effects (WS × RO) and 
(RO × LP) are found to be statistically significant at 5% significance level. Here sig-
nificance level is the risk of saying that a factor effect or an interaction is significant 

Table 9.22 Table of Effects and Regression 
Coefficients

Term Effect Coefficient

A (WS) 3.819 1.595
B (RI) 0.469 0.235
C (RO) 1.769 0.885
D (LP) −0.306 −0.153
E (LF) 0.369 0.185
A × C (WS × RO) 1.569 0.785
A × D (WS × LP) −0.781 −0.391
C × D (RO × LP) 1.419 0.709
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Figure 9.23 Main effects plot for the experiment. 
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when in fact it is not. The main effect and Pareto plots indicate that weld speed is 
the most active factor effect, followed by ramp out. The interaction between ramp 
out and laser power is shown in Figure 9.25. The interaction plot shows that life 
increases when both laser power and ramp out are at high level.

It is quite interesting to note that although laser power on its own has very little 
impact on the life of core tubes, its effect on life is dependent on ramp out (Figure 
9.25). In order to observe the effect of three factors on the mean life of core tubes, 
a cube plot is constructed (Figure 9.26). It is quite apparent in the cube plot that a 
high level of weld speed will yield a higher life. Similarly, it is fair to say that life 
increases with increase in ramp out.

The next step in the analysis was to identify the factors which influence fatigue 
life variability (Sirvanci and Durmaz, 1993). To analyse variability, SD was 
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calculated at each ED point. As log(SD) values will tend to be normally distributed, 
a log transformation on SD values was essential. Table 9.23 displays the log(SD) val-
ues corresponding to each experimental trial condition. Due to insufficient degrees of 
freedom for the error term, it was decided to pool those effects with low magnitude. 
The Pareto chart (Figure 9.27) shows that the main effects lens position and laser 
power are significant at 5% significance level. Similarly, it was also found that the 
interactions between lens focus and ramp in and laser power and ramp in were sig-
nificant. Similar results can be obtained using analytical tools such as ANOVA. For 
more information on the ANOVA, readers are encouraged to refer to Montgomery’s 
book, Design and Analysis of Experiments. Having identified the process parameters 
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Figure 9.26 Cube plot of factors with mean life of core tubes. 

Table 9.23 Table of log(SD) Values

Trial No. log(SD)

1 0.394
2 −0.247
3 −0.247
4 0.381
5 −0.037
6 0.341
7 0.368
8 −0.851
9 −0.247

10 −0.674
11 0.418
12 −0.037
13 −0.851
14 −0.548
15 −0.851
16 0.264
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which influence the mean and variability, the next stage was to determine the opti-
mal process parameter settings that would maximise the core tube life with minimum 
variability.

Determination of the Optimal Process Parameter Settings

The selection of optimal settings of the process parameters depends a great deal on 
the objectives to be achieved from the experiment and the nature of the problem to 
be tackled. For the present study, the engineering team within the company want to 
discover the settings of the key process parameters that will not only maximise the 
core tube mean life but also reduce variability in core tube life so that more consist-
ent and reliable products can be produced by the manufacturer (Montgomery, 1992).

To identify the process parameter settings which maximise the life, it was impor-
tant to select the best levels of those parameters which yield maximum core tube life. 
This information can be easily generated from the main effects plot (Figure 9.23). 
The interaction plot between ramp out (C) and laser power (D) suggests that (Figure 
9.25) the core tube life is maximum when the laser power is set at its high level. 
Therefore, the optimal settings for maximising the core tube life are as follows:

Weld speed (A) – level 2 (2.2 rev./s)
Ramp out (C) – level 2 (3.0 s)
Laser power (D) – level 2 (1100 W)

In essence, the maximum core tube life was achieved only when all of the above 
process parameters were kept at high levels.

In order to determine the best levels of process parameters which yield mini-
mum variability, it was decided to construct a main effects plot on variability (using 
log(SD) as the response of interest). Figure 9.28 presents the main effects plot of 
process parameters for variability (log(SD) as the response).
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Figure 9.27 Pareto plot of effects influencing variability. 
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The optimal settings for the significant process parameters which influence vari-
ability in core tube life are as follows:

Ramp in (B) – Level 1 (1 sec.)
Laser power (D) – Level 2 (1100 W)
Lens focus (E) – Level 1 (Position 1)

As there was no trade-off in the levels of the process parameters, the final settings 
were determined by combining the above two. The final optimal condition is there-
fore given by

Weld speed (A) – Level 2 (2.2 rev./s)
Ramp in (B) – Level 1 (1 sec.)
Ramp out (C) – Level 2 (3.0 s)
Laser power (D) – Level 2 (1100 W)
Lens focus (E) – Level 1 (Position 1)

Confirmation Trials

Confirmation trials were performed in order to verify the results of the analysis. Five 
samples were produced at the optimal condition of the process. The mean life of the 
core tubes and tube life variance were 10.25 and 0.551, as opposed to 6.75 and 1.6 at 
the normal production settings in the company. This showed an improvement of over 
50% in the life of the core tubes and a 65% reduction in core tube life variability.

Significance of the Study

Due to the significant reduction in process variability, the costs due to poor quality 
such as scrap, rework, replacement, re-test, etc. were reduced by over 20%. This 
shows a dramatic improvement in the performance of the process and thereby 
more consistent and higher-quality core tubes could be produced using the opti-
mised process. The engineering team within the company are now well aware of 
the do’s and don’ts of ED. Moreover, the awareness of DOE that has been estab-
lished within the organisation has built confidence among the engineers and among 
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Figure 9.28 Main effects plot on variability (log(SD)). 



Case Studies 159

front-line workers in other areas facing similar difficulties. The author believes that 
it is important to teach a case study of this nature in order to learn the common 
pitfalls when applying DOE to a specific problem. The experiment also helped the 
engineering team within the company to understand not only the fundamental mis-
takes they were making but also the key features of making an industrial experiment 
a successful event.

9.2.8 Optimisation of a Spot Welding Process Using DOE

This case study presents the application of DOE to a spot welding process in order to 
discover the key process parameters which influence the tensile strength of welded 
joints. Spot welding is the most commonly used form of resistance welding. The 
metal to be joined is placed between two electrodes, pressure applied and a current 
turned on. The electrodes pass an electric current through the work pieces. As the 
welding current is passed through the material via the electrodes, heat is generated, 
mainly in the material at the interface between the sheets. As time progresses, the 
heating effect creates a molten pool at the joint interface which is contained by the 
pressure at the electrode tip. Once the welding current is switched off, the molten 
pool cools under the continued pressure of the electrodes to produce a weld nugget.

The heat generated depends on the electrical resistance and thermal conductivity 
of the metal, and the time at which the current is applied. The electrodes are held 
under a controlled pressure or force during the welding process. The amount of pres-
sure affects the resistance across the interfaces between the work pieces and the 
electrodes. If the applied pressure is too low, weld splash (a common defect in spot 
resistance welding) may occur.

There are three stages to the welding cycle: squeeze time, weld time and hold 
time. The squeeze time is the period from when the pressure is applied until the cur-
rent is turned on. The weld time is the duration of the current flow. If the weld cur-
rent is high, this may again lead to weld splash. The hold time is the time for which 
the metal is held together after the current is stopped.

As part of initial investigation and because no experiments have been performed 
on the spot welding machine before, the engineers within the company were more 
interested in understanding the process itself, including the key welding process 
parameters, which affect the mean strength of the weld, and the process parameters, 
which affect the variability in weld strength.

The following objectives therefore were set by a team of people within the com-
pany consisting of quality improvement engineers, a process manager, two operators, 
a production engineer and a DOE facilitator who is an expert in the subject matter. 
The objectives of the experiment were as follows:

1. to identify the key welding process parameters which influence the strength of the weld
2. to identify the key welding process parameters which influence variability in weld strength.

Table 9.24 presents the list of process parameters along with their levels used 
for the experiment. As part of the initial investigation, it was decided to study the 
process parameters at 2-levels. Owing to the non-disclosure agreement between 
the company and the author, certain information relating to the case study (process 
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parameters, levels and original data) cannot be revealed. However, the data have not 
been manipulated or modified as a consequence of this agreement.

Interactions of Interest

Further to a thorough brainstorming session, the team has identified the following 
interactions of interest:

a. A × B
b. B × D
c. C × D
d. D × E

The quality characteristic of interest for this study was weld strength measured in 
kilograms. Having identified the quality characteristic and the list of process param-
eters, the next step was to select an appropriate design matrix for the experiment. 
The design matrix shows all the possible combinations of process parameters at their 
respective levels. The choice of design matrix or experimental layout is based on the 
degrees of freedom required for studying the main and interaction effects (Bullington 
et  al., 1993). The total degrees of freedom required for studying five main effects 
and four interaction effects is equal to nine. A 2(5−1) fractional factorial design was 
selected to study all the main and interaction effects stated above. The degrees of 
freedom associated with this design is 15 (i.e. 16−1).

In order to minimise the effect of noise factors induced into the experiment, each trial 
condition was randomised. Randomisation is a process of performing experimental tri-
als in a random order in which they are logically listed. The idea is to evenly distribute 
the effect of noise (factors which are difficult or expensive to control under standard 
production conditions) across the total number of experimental trials. Moreover, each 
design point was replicated five times to improve the efficiency of experimentation. The 
purpose of replication is to capture variation due to machine set-up, operator error, etc. 
Moreover, replications generally provide estimates of error variability for the factors (or 
process parameters). Table 9.25 illustrates the results of the experiment.

Statistical Analysis of Experimental Results

Statistical analysis and interpretation of results are imperative steps for DOE to meet 
the objectives of the experiment. A well-planned and well-designed experiment 

Table 9.24 List of Process Parameters Used for the Experiment

Process Parameter Label Low-Level 
Setting

High-Level 
Setting

Stroke distance A −1 1
Weld time B −1 1
Electrode diameter C −1 1
Welding current D −1 1
Electrode pressure E −1 1
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will provide effective and statistically valid conclusions. The first step in this par-
ticular analysis was to identify the factors and interactions which influence the mean 
weld strength. The results of the analysis are shown in Figure 9.29. The Pareto plot 
(Figure 9.29) shows that main effects D (welding current) and E (electrode pressure) 
have a significant influence on mean weld strength. Moreover, two interactions A × 
B (stroke distance × weld time) and B × D (weld time × welding current) are also 

Table 9.25 Results of the Experiment

Run A B C D E Mean Weld 
Strength

1 −1 −1 −1 −1 −1 5.4
2 1 −1 −1 −1 1 20.4
3 −1 1 −1 −1 1 243.0
4 1 1 −1 −1 −1 109.0
5 −1 −1 1 −1 −1 48
6 1 −1 1 −1 1 104
7 −1 1 1 −1 1 23.6
8 1 1 1 −1 −1 3.40
9 −1 −1 −1 1 −1 763

10 1 −1 −1 1 1 750
11 −1 1 −1 1 1 553
12 1 1 −1 1 −1 279
13 −1 −1 1 1 −1 462
14 1 −1 1 1 1 610
15 −1 1 1 1 1 747
16 1 1 1 1 −1 576
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Figure 9.29 Pareto plot of main and interaction effects from the experiment. 
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found to be statistically significant. Main effects A, C and B did not have any influ-
ence on the mean weld strength.

In order to analyse the strength of the interaction among the process parameters 
stroke distance, weld time and welding current, it was decided to construct interac-
tion graphs (Figures 9.30 and 9.31).

Figure 9.30 shows that high weld time and low stroke distance yield the high-
est weld strength, whereas high weld time and high stroke distance yield the low-
est weld strength. Similarly, Figure 9.31 indicates that high welding current and low 
weld time yield the highest weld strength. Here there is a trade-off in the selection of 
factor levels for weld time. However, further studies showed that the combination of 
high weld time and high welding current produces the highest weld strength.
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Case Studies 163

One of the assumptions experimenters generally make in the analysis part is that 
the data come from a normal population. In order to verify that the data follow a 
normal distribution in this instance, it was decided to construct an NPP of residu-
als (residual = observed value − predicted value). Figure 9.32 presents an NPP of 
residuals which clearly indicates that all the points on the plot come close to forming 
a straight line. This implies that the data are fairly normal.

The next step in the analysis was to identify the key process parameters which 
affect variability in weld strength. To analyse variability, SD was calculated at each 
experimental trial condition (Logothetis and Wynn, 1989). As ln(SD) values will 
tend to be normally distributed, a log transformation was carried out on the data. The 
results are given in Table 9.26.
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Figure 9.32 NPP of residuals. 

Table 9.26 ln(SD) Values from the Experiment

Trial No. ln(SD)

1 1.086
2 2.961
3 3.642
4 3.713
5 4.008
6 3.481
7 3.379
8 1.329
9 4.011

10 3.379
11 3.931
12 4.937
13 3.646
14 3.560
15 4.000
16 4.070
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In order to identify which of the factors or interactions have a significant impact 
on variability in weld strength, it was decided to construct a Pareto plot (Figure 
9.33). The graph shows that only welding current has a significant impact on vari-
ability in the strength of the weld. In order to generate adequate degrees of freedom 
for analysing variability, pooling was performed (by combining the degrees of free-
dom associated with those effects which are comparatively low in magnitude). In 
order to support the procedure of pooling, an NPP of effects was also constructed. 
It was interesting to note that variability in the strength was minimum when the 
welding current was set at a low level. As there was a trade-off in one of the factor 
levels (factor D), it was decided to perform the loss-function analysis promoted by 
Dr Taguchi.

Loss-Function Analysis for Larger-the-Better (LTB) Characteristics

This analysis is used when there is a trade-off in the selection of process parame-
ter levels. As the performance characteristic of interest in this case is the strength of 
the weld, it was decided to perform the loss-function analysis for LTB performance 
characteristics. The average loss function for LTB quality characteristic is given by

 L k
y
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where

k = cost constant or quality loss coefficient
y = mean performance characteristic (i.e. mean strength)
SD = standard deviation in the strength of the weld corresponding to each trial condition
L = average loss associated with the performance characteristic per trial condition.

(9.2)
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Figure 9.33 Pareto plot of effects on variability in weld strength. 
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Equation (9.2) is applied to all 16 trial conditions. It was found that trial condi-
tion 10 yields minimum loss. For trial condition 10, factor D was set at high level 
and therefore the high-level setting for D was chosen for the model development and 
prediction of weld strength.

Significance of the Study

The purpose of this paper is to illustrate an application of DOE to a spot welding 
process. The objectives of the experiment in this study were twofold. The first objec-
tive was to identify the critical welding process parameters which influence the 
strength of the weld. The second objective was to identify the process parameters 
which affect variability in the weld strength. A trade-off in one of the factor levels 
(factor D) was observed. This problem was rectified with the use of Taguchi’s loss-
function analysis. The strength of the weld was increased by around 25%. The next 
phase of the research is to perform more advanced methods such as RSM by adding 
centre points and axial points to the current design. The results of the experiment 
have stimulated the engineering team within the company to extend the applications 
of DOE in other core processes for performance improvement and variability reduc-
tion activities.

9.2.9 DOE Applied to a Fizz-Flop Experiment

The purpose of this experiment was to determine which factors influence the mean 
response and variation of response of an effervescent pain relief tablet (hereafter 
referred to as a tablet) being dissolved in a liquid. The time taken to completely dis-
solve one tablet will be measured and recorded in seconds. This experiment was 
given out to a group of students pursuing a Masters Programme on Lean Six Sigma 
at the University of Strathclyde, Scotland.

By means of a brainstorming session the team (consists of five students) consid-
ered potential factors and how they might affect the time needed to dissolve a sin-
gle tablet. As this is a commercially available product which is taken orally, process 
parameters were limited to those which would not affect consumer safety. As the 
team members had no previous experience of the process under investigation, we 
used six tablets to help with the brainstorming. Figure 9.34 illustrates the Cause and 
Effect diagram produced during the brainstorming. Team discussions led to further 
consideration of the factors which were considered to affect the response. Table 9.27 
gives the final output which was to be used in the ED. This included the following 
information:

● Factor: process parameters selected to be considered during the experiment
● Possible levels: levels selected to give as wide a scope as reasonably possible
● Group thinking: the thoughts of the team with regards to factors and why specific levels 

were chosen
● Considered for experiment: the 2-levels chosen for each factor
● Considered as key factor: the thoughts of the team prior to carrying out the experiments as 

to whether a particular factor would influence the response.
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Table 9.27 Final Output from Brainstorming

Factor Possible 
Levels

Group Thinking Chosen for 
Experiment

Considered 
as Key Factor 
in Response

Type of cup Paper No chemical reaction with cup 
material is expected in either 
case. Possible difference in  
heat loss characteristics, 
particularly with hot water. 
Plastic and Glass were chosen 
as these allowed good visibility 
of the table during dissolving 
process

✗ No
Plastic ✓

Polystyrene ✗

Glass ✓

Size of cup ½ pint The size of cup is not expected 
to affect the response but must 
be able to hold the specified 
volume and temperature of 
liquid

✓ No
pint ✓

Volume of 
liquid

4 fl. oz. 4 fl. oz. is the supplier 
recommended volume. 
Additional volume may allow a 
greater chemical reaction in the 
creation of carbon dioxide and 
therefore speed up the dissolving 
process

✓ Possible
8 fl. oz. ✓

Liquid 
temperature

Cold (40°F) The dissolving process is likely 
to be affected by significant 
change in water temperature, 
with higher temperatures 
speeding up the time to dissolve 
a tablet

✓ Yes
Hot (175°F) ✓

Type of 
liquid

Water The supplier recommends using 
water as the solvent. Using 
a carbonated soft drink as an 
additive could have two effects: 
(1) lower pH value which may 
speed up response time of 
the chemical reaction and (2) 
increase carbon dioxide content 
which may increase time to 
dissolve a tablet Diet Lemonade 
was chosen as it was found to be 
easier to view the tablet during 
the experiments

✓ Yes
Diet Lemonade ✓

Diet Irn Bru ✗

Diet Coke ✗

(Continued)
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Hypotheses

Prior to the experiment, hypotheses were considered by every team member regard-
ing which factors would make the tablet dissolve the fastest, as this would provide 
evidence as to what potential outcomes were perceived to happen. The hypotheses 
perceived prior to experimentation were the following:

Mr A – hot water and stirring whilst dissolving
Mr B – hot water and the tablet being crushed prior to being put in water
Ms C – cold water and a wide-rimmed cup
Ms D – hot water and a glass
Mr E – cold sparkling water with salt added to the solution.

The team consisted of four people who performed all aspects of the experiment 
without additional resources. Table 9.28 lists materials and resources that were used 
during the experiment.

Experimental Plan

The output of the brainstorming session suggested eight possible factors which could 
affect the response (i.e. time to dissolve tablet). It was decided to study each factor at 
2-levels in the initial part of the investigation. For an FFE, this would require 256 experi-
ments or trials (e.g. 28 = 256). As the first objective of the experiment was to determine 

Table 9.27 Final Output from Brainstorming

Factor Possible 
Levels

Group Thinking Chosen for 
Experiment

Considered 
as Key Factor 
in Response

Tablet size Full The size will affect the surface 
area of the tablet exposed to 
the solvent. The greater the 
initial surface area, the faster 
the response is likely to be. 
Crushed was ruled out as it was 
extremely difficult to record 
when the dissolving process 
had finished. Full tablets and 
Quarters were chosen to provide 
a suitable scope

✓ Yes
Halves ✗

Quarters ✓

Crushed ✗

Operational 
sequence

Liquid then 
tablet

The dissolving process may 
be affected by the impact of 
pouring liquid over a tablet or 
dropping a tablet into the liquid

✓ No

Tablet then 
liquid

✓

Stirring No Once the chemical reaction 
starts, the act of stirring is likely 
to speed up the time for a tablet 
to dissolve

✓ Yes
Yes ✓

Table 9.27 (Continued)
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the main factors which affected the mean response, the team decided to carry out a 
screening experiment. Furthermore, as the second objective was to determine which fac-
tors affected the variability of response, it was decided to replicate each trial condition. 
Based on the these objectives, the limited availability of tablets, the relatively low cost 
of the materials and the time required to carry out the experiments, the team decided to 
carry out a PB-12 trial experiment with two replicates. It was also decided that the exper-
iments would be randomised in order to distribute the random effects of noise (if any).

A PB-12 experiment allows for up to 11 factors at 2-levels to be considered 
and offers 11 degrees of freedom. As we were only considering eight factors, this 
allowed us to create 3 degrees of freedom for the error term.

The measurement system to be used by the team was agreed and consisted mainly 
of the following:

● liquid volume measured using a measuring jug
● liquid temperature measured by an analogue thermometer
● time to dissolve (response) measured by a stopwatch.

As these were all manual and open to judgement and error, the capability and sta-
bility of the measurement system could not be guaranteed. Table 9.29 gives the final 
list of factors, with their low and high levels, to be used during the experimentation.

The following information was entered into Minitab along with the following:

● number of experiments = 12
● experimental method = Plackett–Burman
● replicates = 2
● randomisation = Yes

Table 9.30 presents the P–B experimental layout used for the experiment.

Table 9.28 List of Available Materials

Description Quantity Purpose/Comment

Measuring jug 
(0–16 fl. oz.)

1 To calibrate the amount of liquid used in each experiment

Thermometer (manual) 1 To measure the liquid temperature
Stopwatch 1 To measure the time to dissolve the tablet during each 

experiment
Effervescent pain 
relief tablets

30 6× tablets were used for pre-experiment investigation
24× tablets were used during the experiments

Plastic cup (½ pint) 6 To hold hot and cold liquids and have the capacity to hold 
the desired volume levelsPlastic cup (pint) 6

Glass cup (½ pint) 6
Glass cup (pint) 6
Diet Lemonade 6 L Liquids to be chilled to 40°F and heated to 175°F based on ED
Water 6 L
Pan 1 To heat liquid for high-level temperature experiments
Measuring spoon  
(1 tsp.)

1 To stir solution for appropriate experiments
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Table 9.29 List of Factors and Their Respective Levels

Factor ID Description Low Level (−) High Level (+)

A Type of cup Plastic Glass
B Cup size ½ pint Pint
C Volume of liquid 4 fl. oz. 8 fl. oz.
D Liquid temperature 40°F 175°F
E Type of liquid Water Diet Lemonade
F Tablet size Quarters Full
G Operational sequence Tablet then liquid Liquid then tablet
H Stirring No Yes

Table 9.30 Experimental Layout for the Fizz-Flop Experiment

Exp. No. Factor

A B C D E F G H

1 − + + − + − − −
2 − + + + − + + −
3 + − + + − + − −
4 + − − − + + + −
5 − + + + − + + −
6 − − − + + + − +
7 − − − + + + − +
8 + + + − + + − +
9 + + − + − − − +

10 + + − + − − − +
11 − − + + + − + +
12 − + + − + − − −
13 + + − + + − + −
14 − + − − − + + +
15 + + + − + + − +
16 + − + + − + − −
17 + − − − + + + −
18 − − − − − − − −
19 + + − + + − + −
20 + − + − − − + +
21 + − + − − − + +
22 − + − − − + + +
23 − − + + + − + +
24 − − − − − − − −
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Execution of Experiment

To minimise the effect of manual error during the experiments, the following 
approach was taken:

● Person 1:prepared the cup and liquid for each experiment; added tablet to experiments with 
in the order of Liquid then Tablet

● Person 2:stirred the solution for appropriate experiments; measured time to dissolve each 
tablet (response) with stopwatch.

This ensured that Person 1 would be responsible for the measurement of the two 
quantitative characteristics (liquid volume and temperature) and Person 2 would 
be responsible for the measurement of the response time. This was expected to 
reduce the level of operator error, as this was not considered a key factor in our 
experiments.

The experiments were set up, executed and recorded on an individual basis, based 
on the randomised design stated by Minitab.

The 40°F liquids were refrigerated and the 175°F liquids were heated in a pan in 
advance of the experiments.

Data Collection, Analysis and Interpretation

Data Collection
The 24 experiments were conducted and the responses (time to dissolve each tablet) 
were recorded as given in Table 9.31.

Analysis of Data
The first part of the analysis was to determine which of the factors in the experi-
ment had the highest impact on the response. For simplicity reasons, it was 
decided to construct a main effects plot (Figure 9.35). Figure 9.35 clearly shows 
that all factors apart from liquid temperature do not greatly affect the response. 
Obviously, the graph shows that when liquid temperature increased from 40°F to 
175°F, the time taken for the tablet to dissolve is reduced significantly. In order to 
determine the statistical significance, it was decided to use both a normal plot and 
a Pareto plot so that valid and robust conclusions could be drawn from the experi-
ment. Both plots (Figure 9.36 and Figure 9.37) suggested that liquid temperature 
is the only factor which appeared to be statistically significant at the 5% signifi-
cance level.

The second phase of the analysis was focused on the factors which influence the 
response variability, that is, variability in the time taken for the tablets to dissolve. In 
order to analyse variability, we have computed the SD at each ED point (Table 9.31). 
An NPP of effects for variability, In(SD), was constructed. The graph (Figure 9.38) 
has shown that both liquid temperature and liquid type have an impact on the response 
variability. It was also observed from further analysis that higher liquid temperature 
gave less variability in response and Diet Lemonade provided the team with minimal 
variability in response compared to water.
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Experimental Conclusions
From the experiments carried out and analysis of the results, the following conclu-
sions were drawn by the team:

● Only factor D (liquid temperature) has a significant effect on the mean time to dissolve a 
tablet.

● Factor D (liquid temperature) and factor E (liquid type) have a significant effect on the 
variability of time needed to dissolve a tablet.
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Figure 9.35 Main effects plot for the Fizz-Flop experiment. 
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Figure 9.36 Pareto plot of the effects for the Fizz-Flop experiment. 
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● All other factors can be set at economical or customer-defined levels as they do not influ-
ence either the mean time or variability of time needed to dissolve a tablet.

● Interactions between factors were not considered and could be included in further rounds 
of experimentation.

Key Lessons Learned

Mr A: This exercise confirmed my view that DOE is an extremely powerful tool 
within Six Sigma. We carried out only a basic screening exercise but I will pursue 
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further opportunities to learn and practice further DOE with a view to expanding my 
knowledge and understanding and introducing it within my workplace.

Mr B: DOE was an eye-opener for me. It encouraged me to approach the experi-
ments in a more scientific manner. As an engineer, it has also motivated me to 
avoid making judgments based on the OFAT approach to experimentation. I feel 
my hypothesis was really out of place; the lesson here was to study more about the 
actual process that you are going to experiment on. The beauty of this technique was 
its foundations and solutions based on data and facts. Moreover, this assignment has 
been a really interesting team bonding experience, full of enthusiasm and shared 
knowledge.

Ms C: The use of brainstorming was very important. I believe that had this been 
an individual exercise a lot of factors would never have come to light.

Understanding and interpreting data and statistics have proved to be a very impor-
tant aspect in the use of DOE. I would have expected stirring to have a greater effect 
on the experiment and the result achieved was surprising which suggests that gut 
instinct is not always correct. This experiment also highlighted how time-consum-
ing and complex experimentation can be, even in a very simple experiment, which 
explains why companies are so hesitant to conduct designed experiments and also 
exemplifies how beneficial DOE can be in reducing the size of the experiment but 
still allowing us to understand the process more efficiently and effectively.

Ms D: ED appears complicated and requires a good grasp of basic statistics in 
order to successfully apply this technique in real-world scenarios. It is easy to see 
why it is used so little in industry. Partial knowledge could lead to misinterpreta-
tion of results or incorrectly applying the method, leading to frustration and even 
avoidance of the technique. In my opinion a good coach is vital in order to steer you 
through the potential pitfalls.

I believe once you have completed three to four experiments and have gained 
experience and confidence this would be a powerful tool. At this particular time I 
believe I require further coaching, and would benefit from being involved in a 
complete experiment (screening, characterisation and optimisation) with a good 
practitioner.

Using a good screening experimentation such as Plackett–Burman, one could 
save hundreds of pounds and time associated with experimentation. I was unaware of 
this technique before and the knowledge gained from this experiment will benefit me 
greatly in the future.

Mr E – This was an extremely interesting experiment to me as the outcome was 
different to the original thinking of many in the group. This showed how assump-
tions can be incorrect from the outset. Team working is the key to achieve great 
results. When everybody has clear roles and responsibilities the team functions more 
effectively and achieves the goal in less time than expected.

Significance of the Study

Team work was found to be vital. This exercise has confirmed the importance of 
having the right people in attendance at the initial brainstorming. Even carrying out 
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a basic screening experiment highlighted the benefits a knowledgeable team would 
bring. We had no prior knowledge of the product or process under investigation 
and may have missed some important factors, or deemed them to be unimportant. 
Our chosen DOE approach did not consider factor interaction and we did not have 
enough tablets to carry out further testing. We would welcome the opportunity to 
be involved in further experimentation, particularly for process characterisation and 
optimisation.

9.2.10 DOE Applied to a Higher Education Context

This case study was executed to remove the myth that DOE is purely confined to 
manufacturing processes. This case study basically encompasses delivery of a course 
to both undergraduate and postgraduate students in the Faculty of Engineering at a 
UK-based university. One of the key outputs of teaching is how well the students 
have learned the topic and how useful and relevant the topics and contents of the 
course are to them. In the initial phase of the case study, we asked a number of stu-
dents to identify the potential factors which could influence the teaching perfor-
mance of the course leader. So the objective of the experiment was to have a bigger 
picture of the potential factors which influence the teaching performance. It was 
observed that the teaching performance is dependent on the content style, the pres-
entation style and the way things were delivered during the course leader’s allocated 
time. A thorough brainstorming was performed with students (approximately 10 stu-
dents representing different cultural backgrounds) and identified the following fac-
tors of interest which could influence the content style, the presentation style and the 
way things were delivered. We have included both undergraduate and postgraduate 
students for this experiment.

1. Type of presentation – overhead, data projector, board style, etc.
2. Class timing – morning session, afternoon session and evening session
3. People involved in the delivery of the module (number of speakers) – class registrar, 

involvement of PhD students, people from external organisations, etc.
4. Content of presentation – just a general overview of each topic with no specific case stud-

ies, specific case studies related to each topic throughout the module
5. Time for each session allocated – presenter can deliver a lecture with no exercises and dis-

cussion or deliver a lecture with some exercises followed by a discussion session.
6. Type of exercise in the class – individual, group, etc.
7. Presentation style of the class registrar or module tutor – loud, clear speech; pace of the 

presentation; tone and pitch; passion/enthusiasm of the speaker, etc.
8. Duration of the class – 1, 2, 4 h, etc.

Note: The factors do not include the method of assessment of the module. This 
case study is primarily focused on the delivery of the class.

One of the challenges in a service context is the identification of what to measure 
in order to describe the problem and how to measure the characteristic (Ledolter and 
Swersey, 2007). Moreover, the performance measurement can be heavily dependent 
on the person who provides the service. Moreover, variation due to human nature 
cannot be easily controlled as service processes always have human interventions in 
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the delivery of the service. Each factor was studied at 2-levels in order to minimise 
the size of the experiment. A total of 25 students (14 postgraduate and 11 under-
graduate) participated in the initial investigation. Students were asked to complete 
a design layout with different combinations of factors provided. The objective here 
was to rate, on a scale of 1 to 10, each combination of factor settings in the design 
layout, with 1 being the least preferred combination in their eyes and 10 being the 
most preferred combination.

In order to make things simpler, the author will be presenting the results of the 
experiment on content style and the way things were delivered during the tutor’s 
allocated time (we shall call this time distribution from now onwards). It was found 
from brainstorming that the content style can be influenced by three factors: class 
timing, content of presentation and number of speakers. Table 9.32 presents the fac-
tors and levels used for the experiment.

It was decided to carry out a 23 FFE to study all the possible combinations and 
their respective interactions. For a 23 FFE, we have three main effects to be evaluated 
(P, S and T – see Table 9.32) and their two-way or second-order interactions such as 
P × S, P × T and S × T. Third-order interactions are generally ignored in industrial 
designed experiments. Table 9.33 presents the experimental layout in coded form for 
this experiment. All the factor combinations are presented in coded format and this 
means low levels of all factors are represented by ‘−1’ and all the high levels of 

Table 9.32 Factors and Levels Used for the Experiment

Factors Labels Low Level – 
Represented by −1

High Level – 
Represented by +1

Presentation content P General overview of the 
topic only

Overview plus specific 
case studies

Number of speakers S One speaker Multiple speakers
Time of delivering the class T Morning Afternoon

Table 9.33 Experimental Layout with the Results

Runs P S T US  
(Average 
Score)

PS 
(Average 
Score)

1 −1 −1 −1 3.2 6.3
2 +1 −1 −1 5.2 7.8
3 −1 +1 −1 4.3 6.6
4 +1 +1 −1 6.6 8.4
5 −1 −1 +1 6.3 4.8
6 +1 −1 +1 7.0 5.6
7 −1 +1 +1 6.4 6.5
8 +1 +1 +1 8.5 7.2
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factors are represented by ‘+1’. The last two columns represent the average scores 
provided by undergraduate (coded by US) and postgraduate (coded by PS) students. 
The average scores are based on the number of participants for the experiment (i.e. 
11 undergraduate and 14 postgraduate students).

The next part of the case study involves the basic analysis using Minitab software 
to evaluate the influence of main effects and interaction effects (if any). The effect 
of a factor is the difference between the average scores at high and low levels. For 
example, the average score at a high level of presentation content for US (undergrad-
uate students) is calculated as

 P( ) ( . . . . ) .
1

4
5 2 6 6 7 0 8 5 6 83=

Similarly, the average score at a low level of presentation content for PS (post-
graduate students) is calculated as

 P( )
1

4
3 2 4 3 6 3 6 4 5 05( . . . . ) .

Effect of presentation content = 6.83 − 5.05 = 1.78
In a similar manner, we can work out the effects of other factors such as number 

of speakers and time of delivering the class for both undergraduate and postgradu-
ate students. Figure 9.39 illustrates the main effects plot for the undergraduate stu-
dents (US).
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We found that the time of delivery and presentation contents are the two most 
important factors. The best combinations of factors for the content style in the case 
of US were as follows:

Presentation content – general overview + specific case studies
Number of speakers – multiple speakers
Time of delivering the class – afternoon

Now we analyse the influence of these factors for the postgraduate students (PS). 
Figure 9.40 shows the main effects plot for the PS.

The best combinations of factors for the content style in the case of PS were as 
follows:

Presentation content – general overview + specific case studies
Number of speakers – multiple speakers
Time of delivering the class – morning

It was quite interesting to note that the postgraduate students prefer their classes 
in the morning whereas undergraduate students prefer their classes in the afternoon.

Figures 9.41 and 9.42 show the interaction plots for content style in the case of 
PS. Figure 9.41 shows the interaction between presentation content and the number 
of speakers. The effect of the number of speakers at different levels of presentation 
content is the same in this case and this is represented by the parallel lines. In other 
words, parallel lines are an indication of non-interaction between two factors. Now 
we analyse the interaction between the number of speakers and the time of deliver-
ing the class in the case of PS. Figure 9.42 shows the interaction plot. The graph 
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Figure 9.40 Main effects plot for content style (postgraduate students). 
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shows that the effect of time of delivering the class at different levels of the number 
of speakers is not the same. Non-parallel lines are an indication of interaction.

The next part of the case study will be looking into the experimental layout for 
time distribution (how time has been allocated within the delivery of a class). For 
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Figure 9.42 Interaction plot for number of speakers and time of delivery. 
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convenience purposes, we are going to focus on PS. The time distribution is depend-
ent upon the length of the lecture, time allocated for exercises (or case studies) and 
time allocated for discussion after the exercise or case study. This clearly tells us that 
three independent factors may influence the time distribution. The factors and their 
levels are given in Table 9.34. Please note that low levels add up to a 1-h lecture ses-
sion and high levels add up to a 2-h lecture session.

Once the levels and factors were determined, it was decided to design the experi-
mental layout. This is again a 23 full factorial design where one can study all the 
main and interaction effects. The average scores along with the layout of the experi-
ment for PS are given in Table 9.35.

Figure 9.43 shows the main effects plot. The main effects plot indicates that dura-
tion of the talk is the most dominant factor as far as postgraduate students are con-
cerned. Further analysis shows that the students prefer a 30-min introduction to the 
topic in a 1-h lecture. Moreover, the students prefer more time to be spent on the 
exercises and less time on the discussion. This clearly tells us that the postgraduate 
students would like to have a good exercise session in the form of a case study fol-
lowed by a quick discussion after the delivery of a particular topic or subject.

Figure 9.44 shows the interaction among all the three factors studied. As we can 
see from Figure 9.44, there is very little interaction among all the factors due to par-
allelism properties.

Table 9.34 Factors and Levels for the First Experiment

Factors Labels Low Level – 
Represented by −1

High Level – 
Represented by +1

Duration of the talk prior to exercise T 30 min 75 min
Duration of the exercise E 20 min 30 min
Duration of the discussion D 10 min 15 min

Table 9.35 Experimental Layout with the Results  
(Coded Form)

Runs T E D Average 
Score (PS)

1 −1 −1 −1 8.2
2 +1 −1 −1 6.4
3 −1 +1 −1 8.6
4 +1 +1 −1 7.0
5 −1 −1 +1 7.6
6 +1 −1 +1 6.9
7 −1 +1 +1 8.5
8 +1 +1 +1 6.6
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Significance of the Study

This case study clearly shows the power of DOE and what it can reveal in terms of the 
students’ needs and their choices for a particular course taught at both undergraduate 
and postgraduate levels. There has been a clear misconception that DOE is primar-
ily confined to manufacturing processes and that it is not applicable to service and 
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higher education processes. The author is making an attempt to remove this myth and 
illustrate how DOE can be applied through a simple case study. This case study shows 
how DOE as a pure manufacturing technique can be extended to a Higher Education 
setting. The results of this study were quite an eye-opener for the author in terms of 
understanding the key factors which influence any process irrespective of the sector. 
One of the limitations of this study is that the experiment was confined to one course 
and the number of students that participated in the study was relatively small. The 
author is planning to extend this study to a number of courses across the university.

9.2.11 DOE Applied to a Transactional Process

A large company was having a problem with receivables. The average age of receiv-
ables due was 200 days after delivery of the material. The company had $130 mil-
lion that was 30 days or older after receipt by the customer. The cost of this delay 
was significant. Moreover, the delay was causing a cash flow problem. The several 
options available that might have further reduced billing time were as follows:

● bill directly on the invoice
● automate the billing and invoicing systems
● provide follow-up to the customers by management at 30–45 days by telephone or in writing
● contract out the billing department to a professional billing agency.

These options lend themselves to evaluation using a designed experiment. The 
factors and their levels for the designed experiment are shown below.

Factor A – Billing
● bill directly on the invoice with the shipment (low level – represented by −1)
●  mail bill from the billing department separately from the shipment (high level –  

represented by +1).
Factor B – Automation

●  automate the complete billing process with all billing generated automatically on 
shipment (low level – represented by −1)

●  maintain the current system in which the generation of billing is automated but the bills 
and invoices are transmitted and routed in hard copy (high level – represented by +1).

Factor C – Follow up
● follow up by letter at 45 and 60 days (low level – represented by −1)
● follow up by telephone at 45 and 60 days (high level – represented by +1).

Factor D – Contract
● contract out the billing and follow-up (low level – represented by −1)
● keep the billing and follow-up in house (high level – represented by + 1).

In order to minimise the size of the experiment, a half fractional factorial experi-
ment was selected. The trials took place over a 6-month period. Table 9.36 presents 
the uncoded design matrix with average age of receivables in the last column. Each 
design point was replicated six times to understand the variation in the process. The 
following objectives were set for this experiment:

● to identify the factors which influence the average age of receivables
● to determine the optimal settings of factors which yields minimum age of receivables
● to detect if any interactions exist among the factors under study.
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Data Analysis

The Minitab software system was used to analyse the data. The first objective was 
to understand what factors affect the average age of receivables. A main effects plot 
was constructed (Figure 9.45). The main effects plot clearly indicated that factors 
A, C and B, in that order, are the most important ones. Factor D has no impact on 
the age of receivables. This factor can be set at its most economical level. The main 
effects plot also tells us that factor A must be kept at its low level (directly on the 
invoice with the shipment), factor B must be kept at its low level (automate the com-
plete billing process) and factor C must be kept at its high level (use telephone as a 
follow-up).

Table 9.36 Coded Design Matrix with Results

Trial No. A B C D Average Age 
of Receivables

1 Invoice Complete Letter Contract 50
2 Separate Complete Letter In house 84
3 Invoice Partial Letter In house 58
4 Separate Partial Letter Contract 86
5 Invoice Complete Telephone In house 46
6 Separate Complete Telephone Contract 62
7 Invoice Partial Telephone Contract 51
8 Separate Partial Telephone In house 64
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Figure 9.45 Main effects plot for average age of receivables. 
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In order to detect any interaction between the factors, an interaction plot was 
constructed (Figure 9.46). It is clear from the graph that there is a strong interac-
tion between billing and follow-up as well as between automation and contract. For 
instance, when we analyse the interaction between billing and follow-up, it was evi-
dent that billing directly on the invoice with the shipment and telephone follow-up 
yields the minimum age of receivables. Similarly, when we analyse the interaction 
between automation and contract, it was evident that automating the complete billing 
process with all billing generated automatically on shipment and contracting out the 
billing and follow-up yield the minimum age of receivables. There were a couple of 
marginal interactions between factors and there was no interaction between billing 
and automation or between billing and contract.

9.2.12 DOE Applied to a Banking Operation

This case study is an application of DOE within a banking industry showing how 
DOE has been useful in improving its application process. The bank was experi-
encing a 60% reprocessing rate on applications due to incomplete information pro-
vided by the customer. A project team was formed to tackle this problem and it was 
observed that three potential factors might affect a completed application:

1. the type of application
2. how much detail was provided in the instructions
3. whether additional examples were provided.

It was decided to perform an experiment in two locations to understand the appli-
cation process. The team identified five factors and in order to minimise the size of 
the experiment, it was decided to study each factor at 2-levels. A fractional factorial 
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experiment (2(5−1)) was also executed. The list of factors and their levels are given in 
Table 9.37.

The response of interest in the case study was the percentage completeness of 
each application. Table 9.38 gives the results of the experiment. Without performing 
a scientific approach to experiment, it is difficult to say which factors from the above 
five are critical to the application process, or which factors are unimportant. Where 
do we set the factors so that we can achieve the minimum number of errors? A sys-
tematic and disciplined approach such as DOE is an extremely powerful tool under 
these circumstances, as it can help him to understand the process better and in the 
most efficient manner.

Figure 9.47 shows the main effects plot. It was quite interesting to note that only 
two factors appeared to be very important (factor D – whether an example was pro-
vided and factor C – how much description was provided). The region, application 
type and negative example did not appear to be important at all. We also found that 

Table 9.37 Factors and Their Respective Levels for the Experiment

Factors Labels Low Level High Level

Application type A Loan Lease
Region B Midwest Northeast
Description C Current Enhanced (additional explanation provided)
Example D Current Enhanced (additional examples provided)
Negative example E None Yes

Table 9.38 Results of the Experiment from a Banking Process

Run 
Order

A B C D E Average % 
Complete

1 Loan Midwest Current Current Yes 46.5
2 Lease Midwest Current Current None 47.2
3 Loan Northeast Current Current None 40.5
4 Lease Northeast Current Current Yes 49.8
5 Loan Midwest Enhanced Current None 60.2
6 Lease Midwest Enhanced Current Yes 65.8
7 Loan Northeast Enhanced Current Yes 58.5
8 Lease Northeast Enhanced Current None 57.2
9 Loan Midwest Current Enhanced None 88.7

10 Lease Midwest Current Enhanced Yes 81.4
11 Loan Northeast Current Enhanced Yes 83.9
12 Lease Northeast Current Enhanced None 79.3
13 Loan Midwest Enhanced Enhanced Yes 91.6
14 Lease Midwest Enhanced Enhanced None 99.3
15 Loan Northeast Enhanced Enhanced None 96.3
16 Lease Northeast Enhanced Enhanced Yes 94.2
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an enhanced example as well as an enhanced description would provide the pro-
cess with a higher completion rate. The next stage of the analysis was to explore the 
interactions among the factors. Figure 9.48 shows an interaction graph among all the 
studied variables.
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From the results of the analysis, the team concluded that

● the same forms and processes should be used in both regions, since the results were the 
same

● it would help to provide enhanced descriptions and examples for certain fields.

By analysing the interactions among the factors, the team determined that 
negative examples did not help significantly when there were positive exam-
ples. Moreover, as the team decided to use the positive examples, it would not be 
worthwhile to also develop negative examples. The new forms increased the applica-
tion completion rate from 60% to over 95%.
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10.1 Introduction to the Service Industry

In many countries, service industries dominate the economy. In the context of the 
service industry, we have to make sure that the product or service not only meets the 
functional requirements of the customer but also – equally important – meets the intan-
gible characteristics associated with the delivery of service, such as friendliness, cour-
tesy, willingness to help, etc. In other words, the total service concept is a combination 
of both tangibles and intangibles and the latter are more difficult to quantify, measure 
and control. When something goes wrong in the eyes of the customer, it is very dif-
ficult to identify the failure points in this context due to the human behavioural aspects 
associated with the service. The service industry today is beginning to recognise the 
importance of quality as studies show that companies can boost their profits by almost 
100% by retaining just 5% more of their customers than their competitors retain. The 
definition of quality that applies to manufactured products can be equally applied to 
service products. The very nature of service implies that it must respond to the needs 
of the customer. This means that service must meet or exceed customer expectations.

Although DOE has been around for decades, few business leaders in service 
organisations have a good grasp of its power in tackling problems associated with ser-
vice process efficiency and effectiveness (Johnson and Bell, 2009). This field remains 
fertile ground for greater education, experience and application. Service-oriented 
industries such as financial services, transportation services, hotel and restaurant 
services, the health care industry, utility services, IT services, the airline industry, 
etc. are the fastest growing sectors around the world (Kapadia and Krishnamoorthy, 
1999). Customers are becoming more critical of the service they receive today and 
therefore most modern organisations are paying more attention to their transactional 
service processes.

10.2  Fundamental Differences Between the Manufacturing 
and Service Organisations

Services are characterised as being different from products along a number of 
dimensions that have implications for the quality of service provided to customers. 
Manufacturing companies make products that are tangible, whereas services have 

http://dx.doi.org/10.1016/B978-0-08-099417-8.00010-9
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an associated intangible component. There is little or intangible evidence to show 
once a service has been performed (e.g., consultation with a doctor). If a service is 
not provided within a given time frame, it cannot be used at a later time. Services 
are produced and consumed simultaneously, whereas manufactured goods are pro-
duced prior to consumption. Services cannot be stored, inventoried or inspected prior 
to delivery as manufactured goods are. Therefore, greater attention must be paid to 
building quality into the service process in order to ensure that customers receive 
a world-class experience from that service. In a manufacturing set-up, customers 
have a direct impact on creating formal product specifications; however, in a service 
context, the customer does not provide direct input on the quality characteristics. 
Variability often exists in services as a function of labour inputs and non-standardisa-
tion of delivery. In such cases, the use of quality standards in the conventional sense 
becomes more difficult. The production of services requires a higher degree of cus-
tomisation than does manufacturing. For instance, doctors, lawyers, insurance sales-
people etc. must tailor their services to individual customers. Customers often are 
involved in the service process and are present while it is being performed, whereas 
in manufacturing settings, customers are not normally present when the product is 
produced. The quality of human interaction is a more crucial factor in the service 
settings than in manufacturing. For example, in a hospital setting, a patient has a 
number of interactions with the nurses, doctors and other medical staff. In manu-
facturing companies, the degree to which a product is accepted can be easily quanti-
fied whereas in a service context, the degree of customer satisfaction is not as easily 
quantified because of the human factors involved with delivery of a service.

10.3 DOE in the Service Industry: Fundamental Challenges

A product realisation process initiated by the manufacturer usually begins with prod-
uct design and development, a set of product specifications and process development, 
followed by production and testing, and concludes with delivery to the customer. If 
at any point in the process products do not meet specifications, they can either be 
scrapped or reworked. Service processes, on the other hand, generate value as the 
customer interacts with the process and ultimately, it is the customer’s experience 
with the process that is most important. The distinction among the process, the deliv-
ery of the process and the customer’s responses is often difficult to define. The exact 
sequence of activities in a service process is often difficult to predict in advance.

There are a number of reasons why DOE has not been commonly employed in 
service settings. Following are some of the most fundamental barriers and challenges 
in applying DOE in a service environment. For more discussion, see Roes and Dorr 
(1997) Raajpoot et  al. (2008), Holcomb (1994), Kumar et  al. (1996), Johnson and 
Bell (2009) and Blosch and Antony (1999).

● Lack of awareness and knowledge and misconceptions discourage experimentation in 
many service organisations.

● The performance of a service process is very difficult to measure accurately.
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● Service process performance depends a great deal on the behaviour of the human beings 
involved in delivering it.

● Service processes have more ‘noise’ factors associated with them (queuing, friendliness, 
location, politeness, etc.)

● As service is often simultaneously created and consumed and intangible dimensions are 
important indicators of quality in the service context, experimental control of inputs and 
measurement of output require careful consideration.

● In any service process, a clear description and distinction of service processes is needed 
for quality control and improvement. A good understanding of front office, back office and 
customer processes is required for quality and process improvements.

● DOE is a ‘techy’ tool; managers in the service sector may be less likely to have a math-
ematical background and be perhaps more likely (than in engineering, say) to be driven by 
‘experience’ and gut feel – wanting to be seen to be incisive and intuitive.

● The biggest challenge in services is in determining what to measure and in finding opera-
tional control factors to conduct the DOE. It is also effective if a service process can be 
computer simulated so that the DOE may be done as a simulation.

● The fundamental challenges are, first, that it is not easy to obtain necessary observed data 
in the service sector, and second, that it is not easy to provide the same experimental condi-
tions for repeated measurement in the service sector.

● The lack of standardised work processes in a service sector makes the application of DOE 
a very challenging task.

● Lack of an improvement mindset.
● Careful selection of factor levels is required due to the involvement of people and the inter-

action between customer and service provider.
● Persuade people to follow a systematic methodology for process improvement and to con-

vince them to rely on the power of data to drive the decision-making process.

10.4  Benefits of DOE in Service/Non-Manufacturing 
Industry

The purpose of this section is to illustrate the benefits of DOE in various service 
or non-manufacturing settings. Holland and Cravens (1973) presented the essen-
tial features of fractional factorial design and illustrated a very interesting example 
looking into the effect of advertising and other critical factors on the sales of candy 
bars. A large US-based company reduced their accounts receivable from 200 days to 
only 44 days, generating a significant cash flow in the process (Frigon, 1997). They 
studied four factors at 2-levels and a half-fractional factorial design was utilised. A 
US-based hospital performed a DOE with seven factors to better educate patients on 
how to safely use an anti-blood-clotting drug that can be fatal if used improperly. 
They achieved a 68% improvement in patient understanding by using a standardised 
instruction sheet and having a pharmacist discuss the drug. Curhan (1974) used a 
2-level fractional factorial design to test the effects of price, newspaper advertising, 
display space and display location on sales of fresh fruits and vegetables in super-
markets. In particular, he found that, for the four items tested, doubling display space 
increased sales from 28% to 49%. In a closely related study, Wilkinson et al. (1982) 
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described a factorial experiment for assessing the impact of price, newspaper adver-
tising, and display on the sales of four products (bar soap, pie shells, apple juice 
and rice) at a Piggly Wiggly grocery store. Their experiment considered three dis-
play levels (normal shelf space, expanded shelf space and special display), and three 
price points (regular price, price cut and deeper cut). Overall, the authors found large 
effects for expanded shelf space, very large effects for special display at the reduced 
price levels and a large effect for special display even at the regular price (a sales 
increase of about 70%).

Ledolter and Swersey (2006) described the power of a fractional factorial experi-
ment to increase the subscription response rate of Mother Jones magazine. It was 
shown that direct mail response at Mother Jones has been improved by using a 
16-run 2-level fractional factorial design that tests seven factors simultaneously. 
Kumar et  al. (1996) used a Taguchi RPD methodology in order to improve the 
response-time performance of an information group operation which was respon-
sible for addressing customer complaints concerning a small software export com-
pany. The limitation of this approach relates to process data availability and quality. 
Current databases were not designed for process improvement, resulting in potential 
difficulties for the Taguchi experimentation, where available data does not explain all 
the variability in process outcomes. Holcomb (1994) illustrated the use of Taguchi 
parameter design methodology to determine the optimal settings of customer service 
delivery attributes that reduce cost without affecting quality.

The Royal Navy’s manpower planning system represents a highly complex queue 
which aims to provide sufficient manpower to meet both operational and structural 
commitments. This queue is affected by many variables and therefore it is essential to 
understand the influence of these variables and also the interactions (if any) among the 
variables. As real experimentation was impractical and infeasible, a computer-based 
simulation was developed to model the system to be studied. This paper illustrates 
how computer simulation and ED was applied to identify the key risk variables within 
the manpower planning system for the UK’s Royal Navy (Blosch and Antony, 1999).

Starkey (1997) used a Plackett–Burman design in designing an effective direct 
response TV advertisement. Raajpoot et al. (2008) presented the application of the 
Taguchi approach of DOE to retail service. The study was performed by undergradu-
ate students at a mid-size university in the US to determine the key attributes of a 
shopping experience in a superstore setting such as Walmart or Target. The potential 
applications of DOE in the service environment include the following:

● identifying the key service process or system variables which influence the process or sys-
tem performance

● identifying the service design parameters which influence the service quality characteris-
tics or CTQs in the eyes of customers

● minimising the time to respond to customer complaints
● minimising errors on service orders
● reducing the service delivery time to customers (e.g., banks, restaurants, etc.)
● providing a better understanding of cause–effect relationships between what we do and 

what we want to achieve, so that we can more efficiently optimise performance of the sys-
tem we are working in
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● reducing cost of quality due to rework and misinformation that lead to bad decision-making
● creating a clear competitive advantage over our competitors as very few are aware of this 

powerful technique
● reducing the turn-around time in producing reports and so on.

10.5 DOE: Case Examples from the Service Industry

10.5.1 Data Entry Errors

The Prescription Pricing Authority (PPA) is responsible for processing all prescrip-
tions issued by medical doctors and dispensed by pharmacies throughout England. 
About 500 million prescriptions per annum are processed by nearly 1000 staff. With 
a general rise in competition to supply such a service, there is a constant need to 
update and improve efficiency (Antony et al., 2011). There are two main aims of the 
working process: to input data accurately and to input it quickly. It has long been 
thought that asking staff to work as quickly as possible compromises accuracy levels, 
i.e. that as input speeds become more rapid less care is taken and fewer self-checks 
are performed.

It was decided to run an experiment with two 3-level factors:

1. Staff factor: experienced, semi-experienced and novice
2. Instructions factor: ‘go as fast as you can,’ ‘be as accurate as possible’ and ‘go as fast as 

you can and be as accurate as possible’.

Thus, it would be discovered if particular instructions produced different effects 
in relation to different experience levels (Stewardson et al., 2002). The trials proved 
to be a resounding success, with good cooperation from all staff. The experiment 
established that the speed of input was the critical item that needed to be included 
in working instructions. Accuracy is affected by the experience level. If a person is 
asked to ‘go fast’, it will not tend to affect their accuracy level; however, if they are 
asked to be accurate, speed will be reduced without any noticeable effect on accu-
racy. It is thus favourable to insist on faster speeds: accuracy levels will, apparently, 
hold their ‘natural’ level. This is just one example of the use of a designed experi-
ment involving human performance.

The key benefits of this designed experiment were that it showed the effect of issu-
ing different types of commands on the speed and accuracy of data entry as well as 
evaluating the differences in performance between different types of staff. It also led 
to the establishment of a minimum expected performance standard for novices which 
helped determine recruitment and training needs. The experiment also allowed an 
assessment of the level of variation in data entry speed and accuracy among individuals.

Managerial implications were that a scientific approach could be applied to the assess-
ment of performance. SPC using CUSUM (Cumulative Sum Control Charts) charts was 
also implemented for the data entry process and proved to be a workable methodology 
for deciding when bonuses should be given and when retraining was needed.

Lessons learnt included that a range of statistical techniques could be used in the 
context of the PPA, which is effectively an enormous data processing plant. Many 



Design of Experiments for Engineers and Scientists194

quality improvement initiatives were also carried out and random sampling and sta-
tistical modelling were widely employed in a cross-departmental acceptance of the 
importance of the quantitative approach. More recently, extensive data mining has 
been undertaken to examine changes in the pattern of prescriptions over time as 
regards their value, content, source and mix with the aim of providing a foundation 
for process improvement.

10.5.2 Debt Collection

Slow payment of invoices is a big problem and is particularly difficult for smaller 
companies. A continuous improvement project at a local SME looked at the perfor-
mance of the whole flow of the company from receipt of orders to receipt of pay-
ment (Coleman et al., 2001).

In common with many companies, the manufacturing plant had been intensely 
modernised and was working very efficiently. Payment of invoices, however, was 
very slow and variable between customers. To help improve this situation, data were 
collected and analysed. It was found that the Pareto principle applied with most cus-
tomers paying within reasonable time and some delaying unacceptably.

The ideas of ED were discussed at a problem-solving team meeting. It was 
decided to see which factors would help speed up the payment of bills. It was noted 
from experience that it was better to phone after 2 p.m. and to avoid phoning on 
Fridays. The aim was to try to find the optimum strategy and improve the time to 
payment of bills.

Three 2-level factors were chosen for the designed experiment:

1. Written contact: send or do not send a letter
2. Phone contact: phone or do not phone
3. Timing of contact: 10 days after sending invoice or 30 days.

Eight trials were planned. The debtor companies were randomly assigned to one 
of the eight trials. They were dealt with according to the ED and the time before pay-
ment was recorded. The outcome variable was the time to payment. It was found that 
sending a letter and telephoning 10 days after sending the invoice was by far the best 
strategy. Applying this new strategy over the next few months, the time to wait for 
payment of bills was significantly reduced. Overall, the time from enquiry to pay-
ment was reduced from a mean of 110 days to a mean of 85 days. This reduction of 
25 days is a significant improvement and could make the difference between staying 
in business and going out of business.

The key benefits of this exercise were introducing staff to the concept of logical 
problem solving. There were also major benefits from the team activity of setting 
up the experiment which involved identifying late payment as a problem, gather-
ing information to quantify the problem, encouraging input from all the staff team, 
taking some action and showing a useful result. Even if the results are not particu-
larly surprising, the designed experiment has the advantage of making it possible to 
quantify the effect of the new strategy so that the cost of writing and phoning can be 
justified. There are several shortcomings in this ED, such as the skewed distribution 
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of the measurable outcome, but, nevertheless it shows that experiments can be use-
ful in a service context. In this case study, designed experiments were used in the 
manufacturing plant and it was good for staff from all departments to share the 
methodology.

Managerial implications are that all staff can contribute to process improvement 
through quantitative analysis. The designed experiment provided more than just the 
measured outcome; an added bonus was that information was obtained as a result of 
the intervention and managers found out that many invoices were paid late because 
they were incorrect or had been lost in the post or had not been received for other 
reasons. The early intervention identified these problems so that they could be rec-
tified. Lessons learned are that it is possible to improve the payment of invoices. 
Recent contact with the company revealed that currently less than 1% of invoices are 
being paid late, which is a marked improvement.

10.5.3 Emergency Department Performance

Kolker (2008) describes a discrete-event simulation model of the patient flow in a hos-
pital Emergency Department. Three metrics – per cent ambulance diversion, number 
of patients in the waiting room and upper limit length of stay (LOS) – were used to 
characterise the performance of the studied Emergency Department. A baseline simu-
lation model, which represented the historical performance of the ED, was validated 
through the three performance metrics.

This case study had two main phases. The goal in the first phase was to utilise 
simulation and ED to create a response model that could be used to predict the met-
rics, such as percentage of ambulance diversion, as a function of the LOS for patients 
admitted as inpatients and LOS for patients admitted as outpatients (home patients). 
The goal in the second phase of the study was to determine an optimal ED closure 
criterion. ED closure would allow the ED to temporarily divert ED ambulance driv-
ers to other hospitals in order to reduce the size of the queue in the waiting room. 
A factorial design was used to carry out the study in phase one.

Results of the experimentation performed on the simulation provided quantitative 
measures of the performance characteristics of the ED. Response Surface (RS) mod-
elling illustrated that the per cent of ambulance diversions was negligible when LOS 
was less than 6 and 5 h for inpatient and home patient visits respectively. The ED 
closure criterion was when the number of patients in the queue was 11. Through the 
modelling of the ED department and use of historical data to drive the inputs, Kolker 
demonstrated how ED was beneficial in the context of analysis of the current system 
and how to use findings of the study to influence management decisions.

10.6 Role of Computer Simulation Models Within DOE

One of the difficulties in applying DOE in service and transactional businesses is 
that it is often difficult or impossible to physically experiment with the system under 
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study. For example, suppose that we want to improve service operations in a hospi-
tal emergency department, the response variable may be patient waiting time, and 
there may be several factors that could be considered as factors in a designed experi-
ment, including the number of personnel on duty, the mix of skills in the on-duty 
personnel, the number of treatment rooms, the types of treatment and diagnostic 
equipment available, the physical layout of the ED and the sequencing procedure 
that determines the order in which arriving patients are processed. Clearly some 
of these factors should have an effect on patient throughput and hence on waiting 
times. However, varying these factors in a designed experiment would be impractical 
and, in most instances, impossible. This situation is encountered in many improve-
ment projects involving service and transactional operations. The Winter Simulation 
Conference held in December each year has a health care track that includes many 
simulation models of hospitals and health care systems. For examples of ED simula-
tions that involve ED, see Garcia et al. (1995), Miller et al. (2003) and Simon and 
Armel (2003). Later in the paper, a case study is presented. The remainder of this 
section details the approach of experiments on computer simulation and some unique 
ED challenges.

The usual approach in these situations is to build a computer model of the 
process and then apply designed experiments to the model. If the model is built 
properly and validated, then results from the experiment conducted on the model 
can be transferred to the actual process. Broadly speaking, there are two types of 
computer models used in improvement activities: discrete-event simulation models 
and deterministic models. Discrete-event simulation models are usually transaction-
based and driven by random components that are modelled by probability distribu-
tions. For example, in the hospital emergency department application, the number 
of patients (or transactions) that arrive per hour may be modelled by a Poisson dis-
tribution whose mean is time dependent; the type of complaint that the patient pre-
sents may be selected at random from a distribution that reflects the actual historical 
experience with patients; and the service time for each procedure that the patient 
undergoes could be modelled by an exponential or a gamma distribution (for exam-
ple). Random numbers generated from these distributions move transactions through 
the system until they are either discharged or admitted to the hospital’s general 
population. For an introduction to discrete-event simulation methods, see Banks 
et al. (2005).

Because discrete-event simulations are driven internally by random forces, they 
produce an output response that is a random variable. Consequently, the full range 
of standard ED methods, including factorial and fractional factorial designs and RS 
designs, can be applied to these models. Hunter and Naylor (1970) illustrate the uses 
of factorial, fractional factorial and RS designs in the context of two computer simu-
lation models and provide a brief discussion about the pitfalls associated with com-
puter simulation experiments.

Some practical problems that arise when experimenting on computer simulations 
include sample size determination, the issue of multiple responses and the problem 
of nonlinearity. Additional issues that are unique to computer simulation models 
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include how to choose the simulation run length and the duration of the warm-up 
period (if any is required). See Law (2007) for a discussion of these and other related 
issues. Also, if replication is used, it is usually a standard practice to use a different 
stream of random numbers (or a different random number generator speed) for each 
replicate, so that replicates can be taken as blocks to reduce some of the variability in 
the model output.

Many discrete-event simulations have a large number of input variables. 
Depending on the simulation run length in real time, there can be situations where 
the number of factors renders the use of conventional fractional factorial designs 
problematic. Supersaturated designs, which have fewer runs than the number of 
factors, can prove useful in these situations. Lin (2000) is a useful reference on 
construction of supersaturated designs. Forward stepwise regression can be used 
to analyse the data from a supersaturated design. See Holcomb et  al. (2003) for a 
discussion of other design construction and analysis methods. In some simulations 
there can be input variables that can be treated as noise variables. For example, in 
the hospital emergency department, the analyst may want to treat the patient arrival 
rate as a noise factor because it cannot be controlled in practice by the management 
of the emergency department, and it may be desirable to try to find settings of the 
factors that can be controlled that work well across a wide range of arrival patterns. 
Designs that incorporate noise factors and methods for analysing these designs to 
minimise the variability transmitted from the noise factors are discussed in Myers 
et  al. (2010). Simulation models can present other challenges for the experimental 
designer. Often the output response cannot be summarised by a single summary sta-
tistic or group of summary statistics. Common situations are time series output or 
functional output in which one response is related to one or more other responses 
through a functional relationship. In many cases, the output response may be poorly 
modelled by a normal distribution. For example, in the hospital emergency room 
simulation, the patient waiting times may follow a gamma distribution. Since the 
gamma distribution is a member of the exponential family, generalised linear mod-
els may be useful in the analysis of these types of responses. For examples of using 
generalised linear models to analyse data from designed experiments, see Lewis 
et  al. (2001) and Myers et  al. (2010). If the experimenter knows or suspects in 
advance that the response is an exponential family member, it is possible to design 
an experiment based on the D-optimality criterion that is more appropriate than 
classical designs. This is discussed in Johnson and Montgomery (2009) and Myers 
et al. (2010).

Exercises

1. What are the fundamental differences between manufacturing and service industries?
2. What are the challenges in the use of DOE in a service environment?
3. What are the benefits of DOE in a service sector?
4. What is the role of computer simulation models in the use of DOE within a service context?
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Role Within Six Sigma

11

11.1 What is Six Sigma?

Sigma (σ) is a letter of the Greek alphabet that has become the metric of process 
variation. The sigma scale of measure is correlated to other metrics of Six Sigma 
such as defects per million opportunities (DPMO), throughput yield, process capa-
bility indices (Cp and Cpk), etc. Six is the number of sigma measured in a process, 
when the variation around the target is such that less than four outputs out of one 
million are defects under the assumption that the process average may drift over the 
long term by as much as 1.5 SDs.

Six Sigma was launched in the mid- to late 1980s by Motorola. It was the result 
of a series of changes in the quality area starting in the late 1970s, with ambitious 
tenfold improvement drives. The senior management along with CEO Robert Galvin 
formulated the goal of achieving Six Sigma capability by 1992 in a memo to all 
Motorola employees. In the wake of successes at Motorola, other leading electronic 
manufacturing companies such as IBM, DEC, Texas Instruments, etc. launched Six 
Sigma initiatives in the early 1990s. However, it was not until 1995, when GE and 
Honeywell (previously Allied Signal) launched Six Sigma as strategic initiatives, 
that a rapid dissemination took place in non-electronic industries all over the world 
(Hendricks and Kelbaugh, 1998).

The term Six Sigma may be defined in several ways. Some of the most prominent 
definitions of Six Sigma include the following:

● Six Sigma is a highly disciplined and statistically based approach for reducing/eliminating 
defects from processes, products and transactions, involving everyone in the corporation 
(Hahn et al., 1999).

● Harry and Schroeder (2000) defined Six Sigma as a business strategy and philosophy built 
around the concept that companies can gain a competitive edge by reducing defects in their 
industrial and commercial processes.

● Pande et al. (2000) commented that Six Sigma is a comprehensive and flexible system for 
achieving, sustaining and maximising business success. It is driven by close understanding 
of customer needs and disciplined use of facts, data and statistical analysis.

● Pearson (2001) described Six Sigma as a programme that combines the most effective sta-
tistical and non-statistical methods to make overall business improvements.

● Treichler et al. (2002) commented that Six Sigma is a highly disciplined process that helps 
organisations to focus on developing and delivering near-perfect products and services.

● Six Sigma is a business strategy that employs statistical, non-statistical, change manage-
ment, project management and teamwork tools and skills to maximise an organisation’s 
ROI through the elimination of defects in processes (Antony et al., 2006).

http://dx.doi.org/10.1016/B978-0-08-099417-8.00011-0
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11.2  How Six Sigma is Different from Other Quality 
Improvement Initiatives of the Past

In the author’s opinion, the following aspects of the Six Sigma business strategy are 
not accentuated in other quality improvement or continuous improvement initiatives 
of the past.

● Six Sigma provides a scientific and statistical basis for quality assessment for all processes 
through measurement of quality levels.

● Six Sigma places an unprecedented importance on strong and visionary leadership and the 
support required for its successful deployment.

● Six Sigma strategy places a clear focus on achieving measurable and quantifiable financial 
savings to improve the bottom line of an organisation.

● Six Sigma methodology integrates the most powerful and well-established quality and 
problem-solving tools and techniques in a disciplined and systematic manner.

● Six Sigma provides an organisational infrastructure showing clear roles and responsibilities 
for the people who are executing projects and delivering quantifiable results to the bot-
tom line.

● In the author’s opinion, DOE is a topic that is not taught properly to engineering and busi-
ness school students across many universities. Six Sigma has been now proven to be a cata-
lyst for teaching DOE to both engineers and managers in organisations today.

● Six Sigma focuses on the application of DMAIC (Define–Measure–Analyse–Improve–
Control) (http://www.isixsigma.com/methodology/dmaic-methodology/what-dmaic/) meth-
odology in the form of continuous or even breakthrough improvement projects compared 
to many other initiatives we have witnessed in the past.

11.3 Who Makes Six Sigma Work?

In any Six Sigma programme, a comprehensive knowledge of process performance, 
improvement methodology, statistical tools, processes of project team activities, 
deployment of customer requirements, etc. is needed. This knowledge can be cas-
caded throughout the organisation and become the shared knowledge of all employ-
ees only through a proper training scheme. Many companies who have introduced 
Six Sigma have adopted the following belt rank system from martial arts. These are 
the people within the organisation who can make Six Sigma work.

Yellow Belts: This is the lowest level of the belt system and gives a basic introduction to 
Six Sigma. The 2-day training programme covers fundamentals of Six Sigma, Six Sigma 
metrics, DMAIC methodology, some of the basic tools, the project selection process and 
critical success factors for Six Sigma deployment and is usually offered to people on 
the shop floor or to front-line staff members in a service organisation. Yellow Belts are 
expected to complete a continuous improvement project and demonstrate savings of at 
least £2500 to the bottom line of the business. The project should involve the application of 
at least two basic tools of Six Sigma taught in the training course.

http://www.isixsigma.com/methodology/dmaic-methodology/what-dmaic/


Design of Experiments and its Role Within Six Sigma 203

Green Belts: Green Belts fulfil the roles of Process Improvement or Quality Improvement 
team members on full-time Black Belt projects. A Green Belt team member can come from 
any level within an organisation and provide subject matter expertise for a project. It is usu-
ally a 1- to 2-week course and is generally offered to middle management in an organisation. 
Six Sigma Green Belts are groomed in the Six Sigma DMAIC methodology which helps 
them to cascade Six Sigma tools and techniques throughout an organisation. Six Sigma Green 
Belts are required to complete a continuous improvement project based on Six Sigma tools 
and techniques demonstrating a benefit of approximately £30 k to the case study organisation.
Black Belts: Six Sigma Black Belts are team leaders responsible for implementing process 
improvement projects within an organisation to increase customer satisfaction levels and 
business productivity. Black Belts have typically completed 4 weeks of training and have 
demonstrated mastery of the subject matter through the completion of projects. They are 
required to complete one or two projects based on Six Sigma tools and techniques and 
should follow the DMAIC methodology, demonstrating a benefit of approximately £90 k to 
the bottom line of the business. The Black Belt course is advanced and comprehensive and 
aims to create full-time process improvement leaders in the business. A Black Belt should 
demonstrate team leadership, understand team dynamics and assign team member roles 
and responsibilities. Black Belt candidates are selected from the very best young leaders in 
any organisation.
Master Black Belts: Six Sigma Master Black Belts (MBBs) are change agents who lead 
Lean Six Sigma projects at an enterprise level. Their efforts include deployment, training, 
coaching, mentoring and providing technical support to Green Belts and Black Belts. An 
MBB has Black Belt qualifications and is selected from Black Belts who have a great deal 
of experience with project activities. Six Sigma MBBs should have good presentation and 
leadership skills. They constantly monitor the Six Sigma performance in their organisation 
and ensure that its practices are consistently followed by all the underlying departments in 
their true sense. In some organisations, MBBs also hold the role of champions. In others, 
they are more inclined towards coaching roles and assist champions in the company who 
represent its top-level hierarchy.

Six Sigma Deployment Champions

Six Sigma Deployment Champions focus on providing an organisation with the man-
agerial and technical knowledge to facilitate the leadership and deployment of the Six 
Sigma strategy. Champions are upper-level managers who lead the execution of the 
Six Sigma deployment plans for the company. Guided by the direction set forth by 
the executive team, champions select the projects, determine who is trained as a Black 
Belt or a Green Belt, review progress and mentor the Black Belts and Green Belts 
in order for the deployment to be effective. One of the Champion’s primary roles is 
to assure that operational-level projects are aligned with the strategic-level business 
objectives. Project reviews should be conducted by Six Sigma Champions not as a 
tool to manage Black Belts but to ensure that the project is progressing as planned and 
that the result will produce a result that resembles (and aligns with) the needs of the 
organisation. A Six Sigma Deployment Champion course is usually 2 or 3 days, and 
it concentrates on how to guide the overall Six Sigma programme, how to select good 
improvement projects and how to evaluate the results of improvement efforts.
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11.4 Six Sigma Methodology (DMAIC Methodology)

The DMAIC methodology is the driving force behind Six Sigma process improve-
ment projects. This methodology is used only for improving existing processes. If 
the existing processes cannot be improved further, then one has to think about rede-
signing them using the so-called DFSS methodology. The explanation of DFSS 
methodology is beyond the scope of this book. DMAIC methodology works equally 
well for tackling undesirable variation in processes, longer cycle times of pro-
cesses, poor throughput yields, high costs of poor quality, etc. The following section 
describes the five stages of the methodology in detail.

11.4.1 Define Phase

In the Define Phase, we need to identify the process where the problem lies; this is 
followed by a proper definition of the problem. In this phase, it is important to jus-
tify the use of Six Sigma methodology. If the solution to the problem is unknown to 
the team and its members, then it is a good candidate for Six Sigma. In the Define 
Phase, one may have to develop the project charter, which is a living document 
throughout the life of the project. The project charter may be revised from time to 
time, especially when the team collects data, in order to provide a good understand-
ing of the problem. The project charter should include the following elements:

● The Problem Statement – The purpose of the problem statement is to clearly describe 
the problem at hand and to provide important details of the problem’s impact on the 
organisation.

● The Goal Statement – This element defines the results expected from the project. This 
should include the targets to be achieved, savings expected from the project, how CTQs 
will be impacted, etc.

● Project Scope – Every project should have some boundaries and these must be clearly 
understood at the outset of the project.

● Cost of Poor Quality – This indicates how much the problem has cost the organisation over 
a period of 1 year and assists the team to understand the impact of the problem in financial 
terms.

● Risk Assessment – There is always a risk associated with the execution of any project and 
hence it is absolutely critical to evaluate the potential for these and to develop strategies to 
mitigate such risks.

11.4.2 Measure Phase

In this phase, it is important to baseline key performance measures associated with 
the problem. The objective of this phase is to garner as much information as pos-
sible from the current process. The improvement team needs to know exactly how 
the process operates and is not concerned with how to improve the process at this 
time. The important tasks in the Measure Phase are the creation of a detailed pro-
cess map, collection of baseline data and summarising the collected data. In most 
projects, the process map will be completed first. The process map provides a visual 
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representation of the process under investigation. It can also provide additional 
awareness of process inefficiencies such as cycle times and bottlenecks or identify 
non-value-added process requirements. The process map may also show where data 
can be collected.

One of the things which is not heavily emphasised in this phase is the quality of 
data one may collect to baseline the process performance. The author strongly rec-
ommends the use of Measurement System Analysis (MSA) to verify the measure-
ment system so that reliable data can be collected for analysis in the next phase.

11.4.3 Analyse Phase

In this phase, the team sets out to identify the root cause or causes of the problem 
being studied. But unlike other simpler problem-solving strategies, DMAIC requires 
that the root cause be validated by data. One can use tools such as Brainstorming, 5 
Whys, and the Fishbone Diagram, also known as a Cause and Effect Diagram or an 
Ishikawa Diagram, to understand the potential causes of the problem. In the Analyse 
Phase, one has to validate the root causes of the problem; here it is advised to use 
statistical tools such as hypothesis testing, correlation analysis, regression analysis, 
ANOVA, etc. The Analyse Phase of the Six Sigma methodology focuses on why 
errors, defects or excessive variation occur, which often result from one of more of 
the following:

● failure to understand the capability of a process to meet specifications
● poor instrument calibration and testing
● inadequate control on environmental factors such as temperature, noise, humidity, 

pressure, etc.
● lack of control of materials and equipment used in a process
● lack of training
● lack of knowledge about how a process works, etc.

11.4.4 Improve Phase

Once the root causes of a problem are understood, the team needs to generate ideas 
for removing or resolving the problem and improve the performance measures and 
CTQs. Brainstorming is commonly used to generate an abundance of potential solu-
tions. It is a great idea to include people who perform the process regularly. Their 
input to solution creation can be invaluable; they may also provide the best poten-
tial solution ideas because of their process knowledge. In fact, it is an excellent idea 
to communicate to those involved in the process on a regular basis throughout the 
improvement project.

At times, we come up with a number of ideas from brainstorming and we need to 
evaluate them and select the most promising. This process includes confirming that 
the proposed solution will positively impact the key process variables and the CTQs. 
In order to understand the relationship between the set of key process variables and 
the CTQs, one can utilise DOE: it is one of the most powerful techniques that can be 
employed in the Improve Phase of Six Sigma methodology.
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11.4.5 Control Phase

The purpose of the Control Phase is to sustain the gains that were achieved as a 
result of the Improve Phase. This phase is initiated by ensuring that the new pro-
cess conditions are documented and monitored via SPC methods. One may have to 
establish the new procedures, train the workforce on the new procedures or methods 
adopted, institute controls to make sure that improvements can be maintained over 
time, document the control plans etc. Moreover, one may have to develop new met-
rics to verify the effectiveness of new processes and determine if the lessons learned 
can be transferred to other processes in the business.

11.5 DOE and Its Role Within Six Sigma

We have already seen from the above section that DOE has a clear role in the 
Improve Phase of the Six Sigma methodology. However, the author of the book has 
observed that the applications of DOE have increased significantly since the ‘post-
Six Sigma’ years. Some pioneering work on this topic was carried out by Professor 
Goh (Goh, 2002) on this topic. Developments in the deployment of DOE for quality 
purposes may be viewed in terms of ‘labelled’ methodologies that quality practition-
ers and managers have faced over the last few decades. Table 11.1 gives an approxi-
mate timeline for the appearance of these methodologies where the year given refers 
to the time around which there was clear evidence of acceptance and popularity of 
the named methodology.

In a Six Sigma programme, DOE is very useful in terms of verifying the 
cause-and-effect relationships between the CTQ(s) and the critical few factors 
that drive the process under study. Multi-vari studies are also used in Six Sigma to 
identify sources of variation due to process variables whose effects are to be ver-
ified through the application of DOE. Six Sigma makes use of statistical thinking 
to integrate established management and statistical tools into the DMAIC approach 
to customer-oriented quality improvement. DOE is primarily used in the Improve 
Phase of DMAIC for evaluating the impact of key process parameters that influence 
the CTQs. DOE also plays a crucial role in the design of Six Sigma methodology. 
DFSS utilises a different methodology such as Define–Measure–Analyse–Design–
Optimise–Verify. DOE can be very useful in the Define and Optimise Phases of the 
above methodology in terms of understanding the critical design parameters which 
affect the design performance of products/services. Moreover, one has to reduce the 
number of design parameters to a manageable number and tolerances must be set 
on those ones which are verified to be critical to customers. Because of Six Sigma 
initiatives in many organisations, the author has observed that DOE is now enforced 
by top management and executed by engineers with Black Belt training. Moreover, 
recently DOE has gained the attention of many senior managers in service organisa-
tions in terms of better understanding of their core business processes and how to 
optimise them for fewer customer problems and improved customer experience.
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Although DOE was viewed by many practitioners as a stand-alone technique 
in the past, it will no longer be treated as one because of the Six Sigma and DFSS 
methodologies adopted by a large number of world-class companies today. The con-
trast between the way DOE was used in the past and the way it can be expected to 
be deployed in the future as part of the Six Sigma or DFSS initiative is outlined in 
Table 11.2. While the theoretical basis of DOE remains the same, the applications 
of DOE within the Six Sigma context will continue to grow exponentially and may 
even make use of Six Sigma methodologies even more widespread than before.

It is evident that the DOE technique demands generation of data for analysis 
and that data mining can play a major role in achieving this. Indeed, the data min-
ing approach is already apparent in multi-vari studies in the Analyse Phase of Six 
Sigma, where searches are conducted through available data for significant noise or 
uncontrolled variables. Table 11.2 clearly demonstrates that DOE will continue to 
be a primary driver for the success of many process optimisation and understanding 
problems in the twenty-first century. The author foresees its wider and broader appli-
cations in the context of Six Sigma for many more years to come.

Table 11.1 Approximate Chronology of Applied DOE

When 
(Circa)

How  
(Label)

Why  
(Focus)

Who  
(Users)

Where 
(Environment)

Traditional One Factor at a Time Study known 
factors

Scientists Laboratories

1975 Shainin 
methodology of 
experimental design

Search for 
unknown factors 
and classify them 
as Red X, Pink X 
and Pale Pink X

Technicians Shop floor

1980 BH2 methodology 
(Box, Hunter and 
Hunter)

Improve process 
performance 
through 
optimisation 
strategies

Statisticians Production

1985 Taguchi methods Reduce variation 
in the functional 
performance of 
products/processes

Engineers Operation

1990 Robust design Minimise cost Managers New product 
development 
process

1995 Six Sigma Maximise business 
profitability

CEOs and 
business leaders 
in organisations

Company-
wide

Source: Goh (2002).
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Exercises

1. What is your understanding of the term Six Sigma?
2. What makes Six Sigma different from other quality improvement initiatives?
3. What is the role of Six Sigma Deployment Champions in an organisation?
4. What is the role of the Measure Phase in Six Sigma methodology?
5. What are the five fundamental differences in the deployment of DOE for pre- and post-Six 

Sigma initiatives within an organisation?
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Table 11.2 Deployment of DOE (Pre- versus Post-Six Sigma)

Feature Past (Pre-Six Sigma) Future (Post-Six Sigma)

Source of impetus Operations level Senior management/executives
Training effort Stand-alone courses Structured programs
Motivation for study To improve process  

performance
To improve customer 
experience

Guiding principles Analytical requirements Statistical thinking
Application mode Localised Organisation-wide
Project selection Single function problems Cross-functional concerns
Areas of investigation Primarily manufacturing 

problems
Manufacturing/service/
transactional problems

Deployment leadership Led by industry statisticians Led by Black Belts or MBBs
Performance indicators Statistical parameters (SD, 

mean, capability, etc.)
Financial impact

Success criterion Engineering objectives Business bottom line

Source: Goh (2002).
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