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Preface

This series of reference books describes sciences of different fields in and around
geodesy with independent chapters. Each chapter covers an individual field and
describes the history, theory, objective, technology, development, highlights of
research and applications. In addition, problems as well as future directions are
discussed. The subjects of this reference book include Absolute and Relative
Gravimetry, Adaptively Robust Kalman Filters with Applications in Navigation,
Airborne Gravity Field Determination, Analytic Orbit Theory, Deformation and
Tectonics, Earth Rotation, Equivalence of GPS Algorithms and its Inference, Marine
Geodesy, Satellite Laser Ranging, Superconducting Gravimetry and Synthetic
Aperture Radar Interferometry. These are individual subjects in and around geodesy
and are for the first time combined in a unique book which may be used for teaching
or for learning basic principles of many subjects related to geodesy. The material is
suitable to provide a general overview of geodetic sciences for high-level geodetic
researchers, educators as well as engineers and students. Some of the chapters are
written to fill literature blanks of the related areas. Most chapters are written by
well-known scientists throughout the world in the related areas.

The chapters are ordered by their titles. Summaries of the individual chapters and
introductions of their authors and co-authors are as follows.

Chapter 1 “Absolute and Relative Gravimetry” provides an overview of the
gravimetric methods to determine most accurately the gravity acceleration at given
locations. The combination of relative and absolute gravimeters allows the survey-
ing of local, regional and global networks which can be used to monitor short-term
and long-term gravity variations. As an example of the present state-of-the-art abso-
lute and relative gravimeters, the main characteristics and accuracy estimates for the
Hannover instruments are presented. The observational g-values are reduced for the
time-dependent and position-dependent gravity variations due to Earth’s body and
ocean tides, atmospheric mass redistributions and polar motion. Usually hydrologi-
cal effects are not reduced but they may become a target signal to monitor changes in
aquifers and deep water reservoirs. The gravimetric surveying of the crustal defor-
mation in northern Europe is still a main focus of the ongoing absolute gravimetry
activities. It serves to study the postglacial isostatic adjustment of Fennoscandia.
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The author of Chap. 1 is Dr. Ludger Timmen. Ludger Timmen works at
the Leibniz Universitdt Hannover (LUH), Germany, where he has lectured in
gravimetry since 2005 (since 1996 as a guest lecturer). He holds a Dipl.-Ing. degree
in surveying engineering and obtained a Ph.D. from the University of Hannover
(now LUH) in 1994. As a research assistant at the Institut fiir Erdmessung (IfE)
of LUH, he specialised in precise gravimetry and its application to geodynamic
research (tectonics, Earth tides). From 1995 to 1999, he held a scientist position at
GFZ Potsdam, the German geoscience research center, focussing on airborne gravi-
metric techniques and coordinating the international airborne gravimetry projects
of GFZ. Back at IfE since 2002, his main research interest is the improvement and
application of relative and absolute gravimetry to measure small temporal gravity
variations on the timescale from some days to a few decades. He organized and per-
formed various gravimetry campaigns in China, South America and northern Europe
and participated in two German Antarctic expeditions.

In Chap. 2 “Adaptively Robust Kalman Filters with Applications in Navigation”,
the main achievements of the adaptively robust filter are summarized from the pub-
lished papers in recent years. In Sect. 2.1, the background and developments of
adaptive filters are summarized. The principle of the adaptively robust filter is pre-
sented and the estimators are derived in Sect. 2.2. The special cases of the new
adaptively filter are also given. In Sect. 2.3, the properties of the adaptive Kalman
filter are analysed. After that the establishment of four kinds of learning statistics for
judging the kinematic model errors, which include state discrepancy statistic, pre-
dicted residual statistic, variance component ratio statistic and velocity discrepancy
statistic are given in Sect. 2.4. And in Sect. 2.5, four adaptive factors for balancing
the contribution of kinematic model information and measurements are presented,
which include three-segment function, two-segment function, exponential function
and zero and one function for state component adaptation. In Sect. 2.6, two fad-
ing filters and adaptively robust filter are compared and computation examples are
included. In Sect. 2.7, the Sage adaptive filter and an adaptively robust filter are also
compared; the problems of the Sage adaptive filter are analysed. The last section
presents some application examples of the adaptively robust filter.

The author of Chap. 2 is Prof. Yuanxi Yang. Yuanxi Yang, Academician of
Chinese Academy of Science, is a professor. He graduated in Geodesy in 1980 and
1987 from the Zhengzhou Institute of Surveying and Mapping (ZISM) with BSc and
MSc degrees. He obtained his doctorate from Institute of Geodesy and Geophysics,
the Chinese Academy of Science, in 1991. He worked as associate professor and
professor in ZISM from 1990 to 1992 and from 1992 to 1998, respectively. He has
been a deputy director and chief engineer of Xi’an RISM since 1998. He was a vis-
iting scholar of Center for Space Research of University of Texas, USA in 1995.
From 1996 to 1997 he was a scientist in Institute of Theoretical Geodesy of Bonn
University in Germany under a Humboldt fellowship. He is a member of Chinese
Union of Geodesy and Geophysics since 1997, second secretary of Section IV, IAG
from 1999 to 2003, and member of ICCT, IAG since 1999. His main research field
includes geodetic data processing, navigation and geodetic coordinate system, etc.
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He has published more than 100 papers on robust estimation and adaptive Kalman
filtering.

Chapter 3 “Airborne Gravity Field Determination” outlines some of the basic
principles of airborne gravimetry, with special focus on geodetic applications, and
gives some examples from recent large-scale surveys. For geodesy, the main focus
is more on absolute accuracy and long-wavelength stability, since long-wavelength
errors in gravity transforms to large geoid errors; for geophysical exploration focus
is mainly on the short-wavelength performance and ultimately making reliable
detection and mapping of small, elusive gravity signatures. The chapter starts with
an introduction and describes principles of airborne gravimetry and filtering tech-
nique of airborne gravity. Some results of large-scale government airborne surveys
are given in Sect. 3.4 and downward continuation of airborne gravimetry are dis-
cussed in Sect. 3.5. Geoid determination and conclusions are given in the sixth
section and the last, respectively.

The author and co-author of Chap. 3 are state scientist Rene Forsberg and
Dr. Arne V. Olesen.

Rene Forsberg is the state geodesist and head of the Department of Geodynamics
of the National Space Institute of Denmark, formerly known as the Danish National
Space Center. He obtained MSc degrees in both geophysics and geodesy from
University of Copenhagen during 1980s before joining the Danish Geodetic Institute
as research geodesist with working fields as gravimetry, satellite geodesy and
Greenland survey projects. From 1983 to 1984 he was a visiting scientist of Ohio
State University and University of Calgary (1984—1985). Rene Forsberg has been
an external lecturer at University Copenhagen since 1989. He is a project coordina-
tor or participant in numerous ESA, EU and research council projects, focusing on
gravity field determination or cryosphere measurement. In addition, he is a mem-
ber of the scientific advisory board for the ESA Cryosat mission, chairman of the
IAG International Gravity Field Service, the vice president of the International
Gravity and Geoid Commission and a member of the International Association
of Geodesy Restructuring Committee since 1999. He was elected as the chair-
man of IAG Special Working Group “Local Gravity Field Modelling” (1987-1995)
and appointed as section president (Gravity field Determination) of IAG (1995-
1999). Rene Forsberg is a world-renowned scientist in the field of aerogravimetry.
Several PhD studies were completed under his supervision and he is the author and
co-author of more than 250 scientific papers in journals, proceedings and reports.

Arne V. Olesen is a senior scientist in National Space Institute of Denmark.
He obtained his doctorate 2001 in University of Copenhagen and worked as sci-
entist in National Survey and Cadastre, Denmark, since 1997. He has been working
very intensively on aerogravimetry research and field campaigns as well as GPS
investigation since many years and authored and co-authored many scientific papers.

The Chap. 4 “Analytic Orbit Theory” describes the satellite orbit theory in a con-
densed way. The perturbed equations of satellite motion are discussed first. Then
singularity-free and simplified equations are given. The solutions of extraterrestrial
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disturbances such as solar radiation pressure, atmospheric drag and the disturbance
of the sun, the moon and planets are then outlined. Solutions of geopotential dis-
turbances are given with examples. Numerical and analytical orbit determination is
dealt with before the summary and discussions.

I (Guochang Xu) am the author of Chap. 4. After graduating in mathemat-
ics and geodesy from Wuhan University and the Chinese Academy of Sciences
(CAS) in 1982 and 1984, respectively, I obtained Dr.-Ing. degree from the Technical
University (TU) Berlin in 1992. Having worked as a research associate at the TU
Berlin from 1986 to 1993, as a scientist at the GeoForschungsZentrum (GFZ)
Potsdam from 1993 to 1998 and as a senior scientist at the National Survey and
Cadastre, Denmark, from 1998 to 1999, I returned to the GFZ as a senior scientist
in 1999. I have been involved in geodetic research since 1983 and have authored and
co-authored several scientific books and software. From 2003 to 2008 I was an over-
seas assessor, adjunct professor and winner of overseas outstanding scholar fund of
CAS. I am an adjunct professor of ChangAn University since 2003, overseas com-
munication assessor of Education Ministry China since 2005, an adjunct professor
of National Time Service Center, CAS, since 2009 and national distinguished expert
of China Academy of Space Technology since 2010.

The Chap. 5 “Deformation and Tectonics” addresses some aspects of the use
of the GPS system in the study of plate tectonics. After a short summary on the
evolution of models of the angular velocities of plate tectonics using geophys-
ical, geological and geodetic data, the best methodologies to define a reference
frame using GPS base stations are explained and the problem of mapping the
GPS solutions to accurately obtain the position of a station with respect to the
most recent International Terrestrial Reference Frame solution (ITRFxxxx) is dis-
cussed in Sect. 5.3. In the next section, the geophysical signals that need to be
subtracted from the GPS observations to clearly distinguish the secular tectonic
plate motion are referred. In Sect. 5.5 the problem of estimating the plate motion
using those preprocessed GPS time-series is described. The contribution of the
GPS technique to unravel the geodynamics features of a plate boundary zone is
exemplified using research carried out in the Azores Triple Junction region. The
importance of a full integration of all available GPS data, both continuous and
episodic, possible evolutions in the exploitation of the GNSS technology, including
the benefits of a multi-technique approach, as well as the need for a proper inte-
gration of geodetic, geophysical and geological information are stressed in the last
section.

The author and co-authors of Chap. 5 are Dr. Luisa Bastos, Dr. Machiel Bos and
Dr. Rui Manuel Fernandes.

Luisa Bastos is a senior researcher at the University of Porto and since 1997
director of the Astronomical Observatory of the Faculty of Sciences. Since 2002
she is a member of CIIMAR (Centre of Marine and Environmental Research of the
University of Porto). She graduated as surveying engineer in 1976 at the University
of Porto where she received a Ph.D. degree in 1991 with a work focused on GPS
application to geodynamics. Her main interest is on precise GNSS applications and
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in the last 20 years she has been involved not only in projects related with geody-
namics studies, but also in the development of applications based in the integration
of GNSS with other sensors and its exploitation for airborne, terrestrial and marine
applications, namely airborne gravimetry and mobile mapping. She has been super-
vising or co-supervising M.Sc. and Ph.D. thesis on these topics. From 1999 to 2004
she acted as president of the WEGENER project and is presently a member of the
WEGENER inter-commission. She is currently working on research projects that
involve the exploitation of satellite-based systems and multi-sensor integration for
geodynamics studies, environmental monitoring and coastal dynamics.

Machiel Bos studied aerospace engineering at Delft University of Technology,
The Netherlands. After his graduation in 1996 he performed his Ph.D. research
at Proudman Oceanographic Laboratory, Liverpool, United Kingdom. In 2001 he
spent 7 months as post-doc at Onsala Space Observatory, Sweden. From 2001 to
2003 he worked as a post-doc at the Faculty of Geodesy of Delft University of
Technology. From 2003 to 2008 he held a post-doc position at the Astronomical
Observatory of Porto, Portugal, and he is working at CIIMAR since 2008 (Centre of
Marine and Environmental Research of the University of Porto). His main scientific
interests are ocean tide loading, GPS time-series analysis and the geoid.

Rui Manuel Fernandes has a doctoral degree in earth and space sciences from
Technical University of Delft (The Netherlands). He is assistant professor in the
University of Beira Interior (UBI), Covilha, Portugal, and associated researcher
of Institute Geophysical Infante D. Luiz (IDL), Lisbon, Portugal. He is the head
of SEGAL (Space & Earth Geodetic Analysis Laboratory), a collaborative project
between UBI and IDL. He has been an active researcher in the use of GNSS for mon-
itoring geophysical signals and for the definition of reference frames. In this respect,
he has published several papers at peer-reviewed international journals and he is
member of technical and scientific committees of EUREF and AFREF (European
and African Reference Frames).

Chapter 6 “Earth Rotation” provides an overview of the state-of-the-art theoret-
ical and observational aspects on Earth rotation. It is organised in five parts. The
first section describes theoretical foundations of space-fixed and Earth-fixed refer-
ence systems, their mutual relation and the consequences of the implementation of
the new IAU2000 resolutions. The second and third sections describe the results of
astrometric and space geodetic observations of polar motion and length-of-day vari-
ations, respectively. The presented time-series are analysed in time and space with
regard to signatures of gravitational and other geophysical processes in the Earth
system. The fourth section deals with the physical foundations of Earth rotation
models that are based on the balance of angular momentum in the Earth system.
After theoretical considerations, various approaches for numerical Earth rotation
models are presented. In Sect. 6.5, the chapter concludes with a discussion of the
relation between modelled and observed variations of Earth rotation.

The author and co-author of Chap. 6 are Prof. Florian Seitz and Prof. Harald
Schuh.
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Florian Seitz studied geodesy at the Technische Universitdt Miinchen (TUM),
Germany. After his graduation in the year 2000 he joined the Deutsches
Geoditisches Forschungsinstitut (DGFI) in Munich, where he collaborated in var-
ious projects in the fields of Earth rotation, gravity field and surface geometry. In
addition to theoretical studies, his main focus during his time at DGFI was the devel-
opment of a numerical Earth system model for the simulation of atmospheric and
hydrospheric effects on Earth rotation and gravity field, for which he obtained his
doctorate from the TUM with distinction in 2004. During 2006 he joined NASA’s
Jet Propulsion Laboratory, Pasadena, USA, for a research visit for several months.
He returned to the TUM as a professor for Earth Oriented Space Science and
Technology in 2007. His main scientific interest is the integrated analysis of data
of Earth observation satellites and space geodetic techniques and their application
for numerical studies and models of the Earth system. At present he is chair of the
study group SG-3 “Configuration Analysis of Earth Oriented Space Techniques” of
IAG’s Inter-commission Committee on Theory (2007-2011) and secretary of IAU
Commission 19 ‘Rotation of the Earth’ (2009-2012).

Harald Schuh is a full professor and Director of the Institute of Geodesy and
Geophysics, Vienna University of Technology, Austria. Major areas of scientific
interest are very long baseline interferometry (VLBI), Earth rotation, investigations
of the troposphere and ionosphere. He graduated in 1979 from Bonn University,
Germany and received his PhD in 1986. He occupied the following positions:
Scientific assistant and associate professor at Bonn University (1980-1988); pro-
gram scientist at the German Air and Space Agency (1989-1995); senior scientist
and head of the Earth Rotation Division at DGFI, Munich (1995-2000); chair of
the IVS Directing Board since 2007; president of JAU Commission 19 “Rotation
of the Earth” (2009-2012); president of the Austrian Geodetic Commission since
2008 and president of the Austrian National Committee of the IUGG since 2009;
member of the IAG executive committee and of various directing and governing
boards; editorial board of the Journal of Geodesy (2003—2007); served as president,
chair, member or consultant of various commissions, sub-commissions and working
groups in geodesy (IAG) and astronomy (IAU); coordinator of the German Research
Group on Earth Rotation (1999-2003); supervisor, co-supervisor, or examinator of
more than 20 dissertations.

Chapter 7 is entitled “Equivalence of GPS Algorithms and its Inference”. The
equivalence principle of differential and un-differential GPS algorithms, combined
and un-combined GPS algorithms as well as their mixtures are discussed. The prin-
ciple can be alternatively argued as follows. As soon as the GPS data are measured,
the information contents of the data are definitive ones. If the model used is the same
and the principle of the adjustment and filtering is also the same, the obtained results
should be equivalent. Advantages and disadvantages of different algorithms are rel-
ative and balanced. Based on the equivalence principle, the topic of independent
parameterisation of the GPS observation model is discussed which points out where
the singularity problem comes from. The consequences of the equivalence principle
are important beyond the principle itself. The diagonalisation algorithm could be
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extremely useful even for classic adjustment for reducing parameters. Separability
of any observation equation and its normal equation may lead to an apparently
unsolvable problem to be solvable or an accumulated one and later solvable one.
Optimal criterion for ambiguity search may clear a decade-long confusion of the
ambiguity searching criterion caused by the so-called LSSA method.

The author and co-authors of Chap. 7 are Dr. Guochang Xu (see Chap. 4), Prof.
Yunzhong Shen, Prof. Yuanxi Yang (see Chap. 2), Prof. Heping Sun, Prof. Qin
Zhang, Dr. Jianfeng Guo and Prof. Ta-Kang Yeh.

Yunzhong Shen is a professor in Department of Surveying and Geo-informatics
Engineering of Tongji University. He received his Ph.D. from the Institute of
Geodesy and Geophysics, Chinese Academy of Sciences in 2001. He is now an
editor of “Acta Geodetica et Cartographica Sinica”. His main research interests are
theory of geodetic data processing, satellite positioning and satellite gravimetry.

Heping Sun graduated in geophysics from University of Science and Technology
of China in 1980. He obtained his doctorate from Catholique University of Louvain
in Belgium in 1995. Having worked as a research assistant at the Institute of
Seismology of the China Earthquake Prediction Administration in Wuhan from
1980 to 1991, Royal Observatory of Belgium from 1991 to 1996, he is a research
professor in Institute of Geodesy and Geophysics, Chinese Academy of Sciences
since 1997, and is director of the Institute since February 2005. He has been involved
in gravity research, including theoretical study, data process and its application in
Geodynamics; he has authored and co-authored more than 30 research papers.

Qin Zhang graduated in geodesy and survey engineering from Wuhan University
in 1982 and 1994, respectively. She obtained her doctorate from Wuhan University
in 2002. Having worked as a lecturer at the Wuhan University from 1982 to 1984
and as an associate professor at the Chang’an University, Xian, from 1984 to 2000,
she works as a professor and vice dean at the Chang’an University since 2000.
Prof. Zhang has been involved in GPS research since 1991 and has authored and
co-authored several books. She is also an adjunct professor at Tianjin Institute of
Urban Construction and an editor of some Chinese core journals. Several part-time
positions are held by her, for example, as commissioner for Chinese Society for
Geodesy, Photogrammetry and Cartography, executive commissioner and director
for Society for Geodesy Photogrammetry and Cartography of Shaanxi province.

Jianfeng Guo is an associate professor at Information Engineering University
(IEU), China. He obtained a B.Sc. in Mathematics from Xi’an Jiaotong University
(XJTU) and an M.Sc. in Geodesy from IEU and a Ph.D. in Geodesy from Institute
of Geodesy & Geophysics, Chinese Academy of Sciences (CAS). His research
interests include geodesy and GNSS positioning and navigation.

Ta-Kang Yeh graduated in civil engineering and surveying engineering from
National Chiao Tung University at Taiwan in 1997 and 1999, respectively. He
also obtained his doctorate in geomatics from National Chiao Tung University at
Taiwan in 2005. Having worked as an associate engineer at Industrial Technology
Research Institute from 2000 to 2005, he has been an assistant professor at Ching
Yun University since 2005. After working for 4 years he passed the promotion appli-
cation and has been an associate professor since 2009. Moreover, he is the CEO of
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e-GPS research center of Ching Yun University from 2008. He has been involved
in GPS research since 1997 and has authored and co-authored several books and
papers. He is also a member of International GNSS Service (IGS), International
Association of Geodesy (IAG) and American Geophysical Union (AGU).

Chapter 8 “Marine Geodesy” presents an overview of geodetic contributions to
the scope of the marine environment. After a brief introduction to the acquisition
and use of hydrographic data the basic principles of hydroacoustics are presented.
The importance of precise navigation is discussed and some examples are explained.
The focus is put on the estimation of ship dynamic parameters and the contribution
of geodesy to ship dynamics. A newly developed method for ship squat observa-
tion is described in detail which provides high precise data that allow discussing
the correlation of trim and squat and furthermore the optimisation of ship under-
keel clearance by considering the static trim and the squat-related dynamic trim
change.

The author of Chap. 8 is Prof. Joerg Reinking. Joerg Reinking studied geode-
tic engineering at the Technical University (TU) Berlin, Germany, and received his
diploma in 1988. Since 1988 he has worked as a research associate at TU Berlin and
Technical University (TU) Braunschweig, Germany. He obtained his doctorate from
TU Braunschweig in 1993 and worked as a scientist at the GeoForschungsZentrum
(GFZ) Potsdam from 1993 to 1997. Since 1997 he has been a professor of geodesy,
adjustment techniques and hydrographic surveying at the Jade University of Applied
Sciences in Oldenburg, Germany. During the last decade he was engaged in the
development of geodetic observation and analysis strategies for ship dynamic anal-
ysis (squat, trim and roll) and founded the Institute of Metrology and Adjustment
Techniques and is a member of the Institute of Martime Studies in Elsfleth,
Germany’s largest nautical school.

Chapter 9 “Satellite Laser Ranging” introduces the reader to this space geodetic
technique and covers the basics of instrumentation, error sources both in the mea-
sured and in calculated range, leading up to determination of observed-computed
residuals, which provides an indication of “best-fit” orbit to the observations.
Initially a range model is developed, which includes additional signal delays expe-
rienced by the transmitted laser pulse due to the atmosphere and general relativity.
A description of centre-of-mass correction is given using LAGEOS as an example.
Station range and time bias are discussed, highlighting the reasons for range bias
variability while cautioning its application or interpretation as a station error with-
out consideration of its diverse constituents. Following the measured range model,
a simple orbit and force model are described, which includes the effects of gravity
and its temporal changes, n-body perturbations, general relativity, atmospheric drag,
solar and Earth radiation pressure as well as empirical forces. A calculated range
model is then described, which makes allowance for station position variations due
to solid Earth processes as well as other necessary adjustments. A brief overview
of a typical SLR station is given, using MOBLAS-6 as an example. Operational
aspects are covered with reference to the important role of the International
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Laser Ranging Service (ILRS) and the global network of participating SLR
stations.

The author of Chap. 9 is Dr. Ludwig Combrinck. Ludwig Combrinck is emp-
loyed at the Hartebeesthoek Radio Astronomy Observatory (HartRAO) located
near Krugersdorp, South Africa. HartRAO is a facility of the National Research
Foundation (NRF). Ludwig was awarded a PhD by the University of Cape Town
in 2000, his thesis focussed on GNSS applications for precise positioning. He
is responsible for the Space Geodesy Programme at HartRAO, which includes
the NASA satellite laser ranging station, MOBLAS-6. In 2009 he was appointed
professor-extraordinaire at the University of Pretoria and research associate at the
University of South Africa where he lectures part-time. His main research inter-
ests currently include applications of space geodetic techniques, reference frame
development for Africa and the development of a new high-accuracy satellite and
lunar laser ranger for South Africa. His diverse interests in the applications of space
geodesy have resulted in the establishment of geodetic stations throughout Africa,
Marion Island and Antarctica, in collaboration with international partners.

Chapter 10 “Superconducting Gravimetry” is related to measuring, evaluation
and interpretation of superconducting gravimeter data. It gives an overview of
the instrument, the data processing techniques including pre-processing and Earth
tide analysis and its application in geodynamics, combined with the correction of
environmental influences (atmosphere, hydrosphere and ocean). The corresponding
sections of this chapter include the description of the instrument, site selection and
observatory design, calibration of the gravity sensor, noise characteristics, descrip-
tion and modelling of the principal constituents of the gravity signal, analysis of
different surface gravity effects, combination of ground-and satellite-derived gravity
variations, co-seismic gravity changes, up to future applications.

The author of Chap. 10 is Dr. Jiirgen Neumeyer. Jiirgen Neumeyer graduated
in electrical engineering at Technical University Ilmenau in 1965. He obtained
his first Ph.D. in electrical engineering at University of Ilmenau in 1971 and his
second Ph.D. in geophysical measurement technique at Academy of Sciences of
GDR in 1989. Since 1978 he has been dealing with geo-sciences. He worked from
1978 to 1991 at “Central Institute Physics of the Earth” Potsdam in the fields of
gravimetry, seismology and remote sensing. From 1992 to 2007 he was working
at “GeoForschungZentrum Potsdam” in the field of superconducting- and airborne-
gravimetry and GPS. During this time he published his scientific results in several
papers.

Chapter 11 “Synthetic Aperture Radar Interferometry” introduces the principles
and data processing of the SAR interferometry including differential SAR interfer-
ometry, corner reflector SAR interferometry (CR-INSAR) and some of the practical
applications. In Sect. 11.2 the basics of the SAR imaging are briefly reviewed
to understand the SAR imaging process and SAR image feature, which also is
the background of the SAR interferometry. Section 11.3 describes the principle
and data processing of the SAR interferometry for digital elevation model (DEM)
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generation. Section 11.4 deals with the differential SAR interferometry. In
Sect. 11.5 the differential interferometry of the persistent coherent is discussed.

The author of Chapter 11 is Dr. Ye Xia. Ye Xia received the Dr.-Ing. degree
in navigation from the University of Stuttgart, Germany, in 1995, the M.S. degree
in electrical engineering from Hunan University, China, in 1982, and the B.A.
degree in electrical engineering from Shanghai Jiao Tong University, China, in 1968.
He is currently a senior scientist at the Geo-Research Center Potsdam, Germany.
His research interests include electrocircuit theory, active filter design, imaging
and interferometry of the synthetic aperture radar and the INSAR applications in
geography survey and geological disasters monitoring.

The book has been subjected to an individual review of chapters. I am grate-
ful to reviewers Prof. Aleksander Brzezinski of the Space Research Centre of the
Polish Academy of Sciences, Prof. Wu Chen of HongKong Polytech University,
Prof. Alexander Hirting of the University of Applied Sciences Oldenburg,
Prof. Urs Hugentobler of Technical University Munich, Dr. Corinna Kroner,
Dr. Svetozar Petrovic and Dr. Ludwig Grunwaldt of GFZ, Prof. Xiaohui Li
of National Time Service Center in Xi’an, Prof. Zhiping Lii and Dr. Jianfeng
Guo of Information Engineering University (IEU) in Zhengzhou, Prof. Yunzhong
Shen of Tonji University in Shanghai, Prof. Heping Sun and Prof. Jikun Ou of the
Institute of Geodesy and Geophysics (IGG) in Wuhan, Dr. Tianhe Xu of GFZ and
the Institute of Surveying and Mapping (ISM) in Xi’an, Prof. Ta-Kang Yeh of Ching
Yun University of Taiwan, Dr. Walter Ziirn of University Karlsruhe. As editor of this
book I made a general review of the whole book. A grammatical check of technical
English writing has been performed by Springer Heidelberg.

I wish to thank sincerely the key authors of the individual chapters: Dr. Ludger
Timmen of University Hannover, Prof. Yuanxi Yang of ISM in Xi’an, state scien-
tist Rene Forsberg and Dr. Arne V. Olesen of Danish Space Center in Copenhagen
University, Dr. Luisa Bastos and Dr. Machiel Bos of University of Porto, Dr.
Rui Manuel Fernandes of University of Beira Interior (UBI), Prof. Florian Seitz
of Technische Universitdt Miinchen, Prof. Harald Schuh of Vienna University of
Technology, Prof. Yunzhong Shen of Tonji University in Shanghai, Prof. Heping
Sun of IGG in Wuhan, Prof. Qin Zhang of ChangAn University in Xi’an, Dr.
Jianfeng Guo of IEU in Zhengzhou, Prof. Ta-Kang Yeh of Ching Yun University of
Taiwan, Prof. Joerg Reinking of University of Applied Sciences in Oldenburg, Dr.
Ludwig Combrinck of Hartebeesthoek Radio Astronomy Observatory, Dr. Jiirgen
Neumeyer of Potsdam, Dr. Ye Xia of GFZ. Without their consistent efforts such
a book will be never available. I also wish to thank sincerely scientists who made
great efforts for enriching this book. They are Prof. Jiirgen Kusche of University
Bonn, Dr. Oscar Colombo of NASA and Prof. Tianyuan Shih of Central University
of Taiwan.

I wish to thank sincerely the former directors Prof. Dr. Ch. Reigber and Prof.
Dr. Markus Rothacher of GFZ for their support and trust during my research activ-
ities at the GFZ and for granting me special freedom of research. I also wish to
thank sincerely Prof. Yuanxi Yang of ISM in Xi’an, Prof. Qin Zhang of ChangAn
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University in Xi’an, Prof. Heping Sun, Prof. Jikun Ou and Prof. Yunbin Yuan of
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2 L. Timmen
1.1 Introduction

Absolute and relative gravimetry allow the determination of gravity acceleration,
usually just called gravity, for specific positions as well as the detection of gravity
changes with time at a given location. For high-accuracy demands, the geometrical
position of a gravity point has to be defined very accurately, e.g. in geodynamic
research projects, at a height along the vertical above a ground mark. Geodetic net-
works with local, regional or global extent can be surveyed to monitor short-term
and long-term gravity variations.

This chapter refers particularly to experience gained at the Institut fiir
Erdmessung (IfE), Leibniz Universitit Hannover (LUH). In the following, an
overview of relative and absolute gravimetry (instrumental techniques, observation
equations, accuracies, etc.) is given. Exemplarily for present state-of-the-art abso-
lute and relative gravimeters, the main characteristics and accuracy estimates for the
Hannover instruments are presented.

Because of the dynamics within the Earth’s system (tectonics, climate change,
sea-level rise), the national and international base networks are not stable with
time. With the high accuracies of modern geodetic techniques, combined with the
high quality of the base net stations (stable environment, customised facilities), the
networks serve more and more as control systems for environmental changes and
surface deformations.

The recommended unit of acceleration in the Systeme International d’Unités
(SI) is the unit m/s> (BIPM 2006). In geodesy and geophysics, the non-SI unit Gal
(1 Gal = 1 cm/s? = 0.01 m/s?) is also used to express acceleration due to gravity. In
order to provide gravity differences and to describe small deviations or uncertainties
of the measurements, the following units are helpful:

1 mGal =10m/s*> = 10°% and 1 uGal = 10 %m/s> = 10™% . (1)

1.2 Characteristics of Absolute Gravimetry

1.2.1 General Aspects

To realise the advantages of absolute gravimetric measurements, some particular
features of the gravity acceleration g, usually just called gravity g, for a defined
geometrical point should be explained first. The gravity acceleration at a surface
point depends on the following:

1. The position relative to the Earth’s masses and their density distribution (integral
effect caused by the gravitational force of the Earth’s masses)

2. The position relative to the Earth’s rotation axis (effect caused by the centrifugal
force due to the Earth’s rotation)
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The g-value of a point at the Earth’s surface (e.g. bench mark attached to a pier)
changes with the following:

e Varying distance to the centre of masses of the Earth (geocentre) caused by ver-
tical movements of the measuring point, e.g. due to crustal deformations, and
by secular variations of the position of the geocentre (subtle effect, requires
long-time measuring series)

e Mass shifts and redistributions within the system Earth (including atmosphere
and hydrosphere) and especially with near-surface variations within the crust (e.g.
groundwater changes, sediment compaction)

e Changing distance to the Earth’s rotation pole due to lateral movements (subtle
effect, e.g. due to plate tectonics)

Absolute gravity measurements are most sensitive to height changes and provide
an obvious way to define and control the vertical height datum. No additional refer-
ence points (connection points) at the Earth’s surface and no observations of celes-
tial bodies (quasars, stars, planets, moon) or satellites are needed. Shortcomings of
relative gravimetry, like calibration problems and deficiencies in the datum level
definition, can be overcome. The accuracy of an absolute gravity net is independent
of geographical extension which allows applications on local, regional and global
scales with consistent measurement quality. An independent verification of dis-
placements measured geometrically with GPS (Global Positioning System), VLBI
(Very Long Baseline Interferometry) and SLR (Satellite Laser Ranging) is possible.
A combination of gravimetric and geometric measurements may enable discrim-
ination among subsurface mass movements associated with or without a surface
deformation.

1.2.2 Objectives of Geo-scientific and State-geodetic Surveys

The benefit of absolute gravimetry has already been exploited in different scientific
projects. The International Absolute Gravity Basestation Network (IAGBN) serves,
among other purposes, for the determination of large-scale tectonic plate movements
(Boedecker and Fritzer 1986; Boedecker and Flury 1995). The recommendations of
the Interunion Commission on the Lithosphere on mean sea level and tides pro-
pose the regular implementation of absolute gravity measurements at coastal points,
1-10 km away from tide gauges (Carter et al. 1989). The height differences between
gravity points and tide gauges have to be controlled by levelling or GPS. In Great
Britain, the main tide gauges are controlled by repeated absolute gravity determi-
nations in combination with episodic or continuous GPS measurements (Williams
et al. 2001). Torge (1998a, b) describes the changing role of gravity reference net-
works due to the modern approach to realising the network standards by absolute
observations.

Overall, absolute gravimetry can be an important research tool for studying
geodynamic processes, especially land uplift effects due to postglacial rebound
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(PGR). Lambert et al. (1996) give an overview of the capability of absolute gravity
measurements in determining the temporal variations in the Earth’s gravity field. In
Lambert et al. (2001), the gravimetric results for the research of the Laurentide post-
glacial rebound in Canada are described. Mékinen et al. (2007) compare observed
gravity changes in Antarctica with modelled predictions of the glacial isostatic
adjustment as well as of the glacier mass balance.

Since 1986, several gravimetric projects were performed by IfE with the abso-
lute gravimeters JILAg-3 (e.g. Torge 1990, 1993; Timmen 1996) and FG5-220
(Gitlein et al. 2008; Timmen et al. 2006a). These activities served the following
main objectives:

e Establishing and improving international and national gravity reference net-
works to realise a homogeneous gravity standard (datum definition in level and
scale) of regional to global extent; calibration systems for relative gravimetry are
needed

e Installing and strengthening regional and local networks in tectonically active
areas with absolute gravimetric measurements and following re-observations;
such monitoring systems may serve for geophysical research on the mechanism
of crust formation and on the rheology of Earth’s mantle and crust

e Monitoring the vertical stability of tide gauge stations to separate sea-level
changes from land surface shifts; this serves to constrain parameters related to
global climatic change

With the initiation of the GRACE satellite experiment (Gravity Recovery and
Climate Experiment, e.g. Wahr and Velicogna 2003; Tapley et al. 2004), a new
requirement has arisen for absolute gravimetry:

e To provide the most accurate “ground truth” for GRACE

The results from both data sets describe changes of the gravity field at the Earth’s
surface or at the geoid. The terrestrial data can not only be used to validate the
GRACE products (Miiller et al. 2006) but may also serve as a completion of the
satellite results.

In the future, two additional tasks may become important applications:

e Monitoring of human-caused changes in aquifers and deep water reservoirs by
water extraction

e Contributing to the definition of ground-based geodetic reference networks
within the activities for the Global Geodetic Observing Systems (GGOS) of the
International Association of Geodesy (IAG)

GGOS will provide the observational basis to integrate the different geodetic
techniques. The purpose of the globally collected geodetic data is to collate and
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analyse information about global processes and changes which are important for
world societies. An overview and further details about GGOS can be obtained from
Pearlman et al. (2006). In Ilk et al. (2005), detailed information about mass transport
processes in the Earth system is given.

1.3 Measurements with Free-Fall Absolute Gravimeters

In January 1986, the Institut fiir Erdmessung (IfE), Leibniz Universitit Hannover
(LUH), received the absolute gravimeter JILAg-3 which was the first transportable
system located in Germany (Torge et al. 1987). The free-fall system was devel-
oped at the Joint Institute of Laboratory Astrophysics (JILA, Faller et al. 1983)
of the University of Colorado. The so-called JILAg-3 was the third gravimeter
of a series of six JILA instruments and was successfully employed by IfE in
more than 130 absolute gravity determinations at about 80 different stations (South
America, China, Greenland, Iceland, central and northern Europe). In December
2002, IfE had received a new FG5 absolute gravity meter (FG5-220) from Micro-g
Solutions, Inc. (now Micro-g LaCoste, Inc., Erie, Colorado), which was a state-of-
the-art instrument (Niebauer et al. 1995) and replaced the older JILAg-3. Based
on the JILA design, the FG5 generation has overcome several constructively pre-
defined shortcomings and represents an essential improvement in operation and
accuracy. The first fully operational FGS5 instrument (FG5-101) was already avail-
able in 1993, manufactured by AXIS Instruments Company in Boulder, CO (Carter
et al. 1994). The achievement of AXIS became possible after the National Institute
of Standards and Technology (NIST, Boulder, USA) and the former Institute of
Applied Geodesy (IfAG, now Federal Agency for Cartography and Geodesy, BKG,
Frankfurt, Germany) joined forces in 1990 to produce an advanced instrument
capable of providing more stringent data constraints on geophysical investigations.

The FGS series represents the currently most advanced instruments and has to be
assumed as the best instrumental realisation to measure the absolute gravity accel-
eration. Besides the FG5 meter for most accurate applications, a portable absolute
gravimeter for harsh field environments has been developed by Micro-g LaCoste,
Inc., called A10 (Niebauer et al. 1999, see also the Micro-g LaCoste internet pages).
This unique instrument allows a data sampling rate of 1 Hz and provides a precision
of 10 nGal after 10 min of measurements at a quiet outdoor field site. An absolute
accuracy of 10 pGal can be achieved for a station determination. Liard and Gagnon
(2002) tested their new A10 in 2001 at the International Comparison of Absolute
Gravimeters in Sevres, France. The investigations of Schmerge and Francis (2006)
confirm the accuracy specifications of the manufacturer.

Figure 1.1 shows the two types of the Hannover absolute gravimeters, the instru-
ments JILAg-3 and FG5-220. During the period from 1986 to 2000, the JILAg-3
gravimeter was used by IfE for absolute gravity determinations on more than 80
different sites worldwide. The measurements with the presently employed FG5-220
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Fig. 1.1 The two absolute gravimeters of the Leibniz Universitit Hannover: lefr JILAg-3
employed from 1986 to 2000 (here reference measurements in Hannover), right FG5-220 operated
since 2003 (tent measurements in Denmark)

started in 2003, and more than 40 different sites in central and northern Europe have
already been visited.

1.3.1 Principles of FG5 Gravimeters

Modern absolute gravity measurements are based on time and distance measure-
ments along the vertical to derive the gravity acceleration at a specific position on
the Earth, cf. Torge (1989). The expression “absolute” is based on the fact that the
time and length standards (rubidium clock, helium—neon laser) are incorporated
as components of the gravimeter system. No external reference like a connecting
point is required. The FGS series is presently the most common gravimeter model,
which may be considered as the successor system of the JILA generation (Carter
et al. 1994; Niebauer et al. 1995). The influence of floor vibration and tilt on the
optical path could largely be removed by the improved interferometer design. The
iodine-stabilised laser, serving as the primary length standard, is separated from the
instrumental vibrations, caused by the free-fall experiments (drops), by routing the
laser light through a fibre optic cable to the interferometer base; see Fig. 1.2.

During a drop, the trajectory of a test mass (optical retro-reflector) is traced by
laser interferometry over the falling distance of about 20 cm within an evacuated
chamber. The “co-falling” drag-free cart provides a molecular shield for the dropped
object. The multiple time—distance data pairs collected during the drop (FG5: 700
pairs at equally spaced measuring positions, JILAg: 200) are adjusted to a fitting
curve (almost parabolic) as shown in Fig. 1.3, giving the gravity acceleration g for
the reference height above floor level (FG5: ~1.2m, JILAg: ~0.8 m).
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1.3.2 Observation Equation

In a uniform gravity field, the motion of a freely falling mass m can be expressed
with the following equation of motion:

d’z

mﬁ:m'z’:mg. )

Figure 1.3 shows the time—distance diagram with the axis ¢ and z where the z-axis
coincides with the direction of gravity. Eliminating m in (2), the integration yields
an equation for the velocity
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z=z0+gt, withzy =, 3)

and thereafter for the position
2=20+v01+ 372 @)

of a body during a free fall. The initial parameters, displacement zp and velocity
vo, are adjustment unknowns valid at the time t = 0. For most accurate gravity
determination, the non-uniformity of the Earth’s gravitational field has to be taken
into account. Along the plumb line, the gravity acceleration g varies with height.
This can be considered as a linear gravity change along the free-fall trajectory during
an experiment with an absolute gravimeter. Hence formula (2) is extended with a
constant vertical gravity gradient y:

. dg
mZ = m(go + d—Zz) = m(go + y2). ®)
The acceleration gg is defined for the position z = 0 which is, in common practice
with FG5 and JILA meters, the resting position of the gravity centre of the test mass

at the start of the free-fall experiment (“top-of-the-drop”). Neglecting the initial
parameters and double integration of (5) gives (Cook 1965)

z=@(coshy1/2t—l), with z9 =vp =0. (6)
14

Because the initial parameters zo and vy have to be included, the variable z is
expanded to the power series

2=f(t) = co+ c1(t — t0) + c2(t — 10)* + 3t —10)> + -+ . (7

With ¢y = 0 the following equations are deduced:

z=cotecit+ ff + P+, Wt=0=cy = co=2, 8
z= c1 +2cat +3C3t2+ e, zZ=0)=c1 = c1=vy, (9
7= 2¢c0 +6¢3t + - (10)

Inserting these series in (5) yields

207 4 6¢31 + 12¢41> +20¢58> + -+ = go + y(co + 1t + et + 3 + ---). (11)

Comparing the coefficients on the left side of the equation with the right side, the
constants are obtained as
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1 1 1 1 1

2
=3 A< ) = - ) = ~ 0 > e 12
&) 280+2ZO)/ G3=gVrv, ¢ 243/80—1-24)/ 20 (12)

Considering the terms up to the order *, (8) can be re-written as

2t) = 20 (1 + L t2+iyt4) +vo <t+ 1 t3> + e (r2 + 1, t“) . (13)
2 24 6 2 12

Equation (13) is the observation equation which is used in absolute gravime-

try to derive a g-value from the multiple time—distance measurement pairs in a

least-squares adjustment. Because of its subtle contribution, the * term in the zo-

dependent expression can be neglected. The finite velocity of light ¢ must be taken

into account by adding the term z/c to the observed (raw) time values ¢’ before the
least-squares adjustment is carried out:

r=1+ . (14)
C

The reference height (position z = 0) of the derived free-fall acceleration gy depends
on the setup of the instrument and should be defined by the operators with an accu-
racy of =1 mm to preserve the accuracy of the measurement system. For further
theoretical considerations about the equation of motion in absolute gravimetry, it is
recommended to study, e.g. Cook (1965) and Nagornyi (1995).

In Torge (1993), a simple formula is given to assess the required accuracy for the
time and distance measurements:

d d dt
@8 _ L4 (15)
g z t

Equation (15) is obtained by the differentiation of (4) and setting zp and vo to
zero. Asking for a relative accuracy dg/g = 107 (=dg = 1pGal) and consid-
ering a falling path of 0.2m with a falling time of about 0.2s, the accuracy
requirement for the time and distance measurements is 0.2nm and 0.1 ns, respec-
tively. For state-of-the-art absolute gravimeters, this accuracy level is provided
by the simultaneously performed atomic time and laser interferometric distance
measurements.

1.3.3 Operational Procedures with FG5-220

Within the operational procedures with FG5-220, as employed at IfE, the time inter-
val between two drops is 10s which includes the reset of the falling corner cube
and the online adjustment. For the reduction of local noise and other disturbances,
1,500-3,000 computer-controlled drops are performed per station determination.
Generally, the measurements are subdivided into sets of 50 drops each and dis-
tributed over 1-3 days. The result of a station determination is the average of all
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drops, reduced for gravity changes due to Earth’s body and ocean tides, polar motion
and atmospheric mass movements, as explained in Sect. 1.5.

Relative gravimetric measurements are still highly important to transfer the abso-
lute gravimetry results to network points at floor level or to another height level
along the vertical that has been agreed on, e.g. for comparisons of different absolute
gravity determinations. However, to preserve the accuracy of the absolute measure-
ments for present and future investigations and applications, the absolute gravity
result should not be affected by uncertainties in the vertical gradient due to mea-
surement errors from relative gravimetry or deteriorated by unknown non-linearities
in the gradient (Timmen 2003). These demands are fulfilled by defining the refer-
ence height close to a position where the influence of an uncertainty in the vertical
gravity gradient becomes almost zero (“dead-gradient-point™); see Fig. 1.4. The cor-
responding position is approximately one-third of the falling distance below the first
measured position of the free-fall trajectory as used in the adjustment computation
(FG5-220: ~1.21 m above floor level). Therefore, all gravity determinations with
the current Hannover FG5 instrument are referred not only to the ground floor mark
but also to the reference height of 1.200 m above floor level or above the ground
mark.

For the reduction of the absolute gravity value to the floor mark, the observed
gravity difference (hereafter called gradient) is needed. Following the IfE stan-
dard procedure, the vertical gravity gradient is determined with two LaCoste
and Romberg gravimeters with integrated feedback systems (Schniill et al. 1984)
or with a Scintrex Autograv CG3M (since 2002) using a tripod of about Im
height. By observing the difference 10 times with each relative meter, the gravity

1 Z,(t=0) Zﬁ Resting Position
T z=0  gg Ly h(instr.)=1.29 m

= h(g,,y=const.)

—+ z(ty) I
{7ty I h(refé)zz.gz’;: n
- Z3(t5) :,:',;—_h%?
- Z4(ty) _

Fig. 1.4 Depending on the
setup, the instrumental height
of FG5-220 is around 1.29 m + zlts)
(top-of-the-drop). For
geodynamic research, the
g-value is referred to the fixed A4 Zzgo(trg0) ———
height 1.200 m above

. . z Free Fall
measuring mark to avoid
uncertainties from the h(ground mark)=0.000 m
//Y I/77777

gradient assumption
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difference is normally obtained with a standard deviation of about 1 Gal. Referring
the gravity difference to a height difference of 1.000 m, the vertical gravity gradi-
ent y is obtained. Here, a linear gravity change with height is assumed (constant
gradient). For geodynamic research, often a more accurate knowledge about the
vertical gravity change is required by considering a second-degree polynomial
for the height dependency. In those cases, gravity differences Ag are measured
between variable height levels & above the ground mark (cf. Fig. 1.5). A least-
squares adjustment of observation equations provides an overconstrained solution
for the coefficients y; and y, describing the linear and quadratic part of the
polynomial:

Ag(hi.hy) = yi(hj — hy) + ya(hF — h}). (16)

With (16), an observed absolute gravity value with its defined reference height
can be referred to any position within the perpendicular above the ground mark up
to about 1.5 m (highest relative gravity measurement position).

For the site selection, preferences are given to buildings with a stable envi-
ronment inside the observation room (stable temperature, no direct sun, relative
humidity below 70%) and a solid foundation like a concrete pier, a reinforced
concrete base slab or a concrete slab attached to bedrock.

Fig. 1.5 Measurement of the
non-linear vertical gravity
change along the
perpendicular with a Scintrex
relative gravimeter. Tripods
are used for variable setup
heights
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1.3.4 Accuracy and Instrumental Offset

The manufacturers of the JILAg and of the FG5 systems performed an error
budget analysis to determine the single instrumental uncertainty contributions
through calculations and measurements of known physical effects. Niebauer (1987)
derived a total error of 3 wGal for JILAg instruments. In Niebauer et al. (1995) a
total uncertainty of 1.1 pGal is obtained from the FGS5 instrumental error budget
(Table 1.1).

To assess the accuracy of the transportable absolute gravimeters from the user
point of view, the experiences with the Hannover instruments JILAg-3 and FG5-
220 are used to derive an empirical accuracy estimate. For both instruments, the
accuracy and stability have been continuously controlled by comparisons with other
absolute gravity meters and with repeated measurements in several stations after
time intervals of some months to a few years. A rigorous control of the absolute
accuracy with respect to a “true” gravity value at the moment of an absolute grav-
ity measurement is not possible. The real g-value with a superior accuracy is not
known, and a ““standard” absolute gravimeter which is superior to the state-of-the-
art FG5 meters does not exist. Therefore, the empirical accuracy estimates have to

Table 1.1 Instrumental error budget of FG5 gravimeter and gravitational “noise” due to incom-
plete modelling and reduction of gravity variations with time, after Niebauer et al. (1995)

FGS5 error source Uncertainty [pGal]
Residual air pressure 0.1
Different temperature 0.1
Magnetic field gradient 0.1
Electrostatics 0.1
Attraction of apparatus 0.1
Verticality 0.1
Air-gap modulation 0.6
Laser wavelength 0.1
Corner-cube rotation 0.3
Coriolis effect 0.4
Floor recoil and tilt 0.1
Electronic phase shift 0.6
Frequency standard 0.2
Glass wedges 0.3
Diftraction limit 0.2
Total uncertainty (r.m.s.) 1.1

Gravitational “noise”

Solid Earth tides 0.2-0.5
Equilibrium ocean load 0.2

Tidal swell and surge 5

Atmospheric attraction and loading 1-5
Groundwater table variations Site-dependent
Polar motion 0.01

Microseisms (<100 Hz) 0
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be understood as describing the agreement of the instruments’ measuring level and
their time stability with regard to the international absolute gravity datum defini-
tion. Here, the international datum is defined by the physical standards (time and
length) and, in addition, as the average result obtained from all operational absolute
gravimeters participating in the international comparison campaigns.

For JILAg-3, Torge (1991) estimated the short-term and long-term accuracy
of a station determination between 5 and 10 wGal. On average, an accuracy esti-
mate of 7 wGal was obtained. The instrumental precision by itself is assumed to be
4-5 nGal, which does not consider errors introduced by real gravity changes, e.g.
due to subsurface water variation. For FG5-220, a realistic mean accuracy esti-
mate seems to be about 3 pGal (cf. Timmen et al. 2006b; Francis and van Dam
2006; Francis et al. 2010; Bilker-Koivula et al. 2008). These empirical estimates
incorporate

e Instrumental errors, e.g. due to instrumental vibrations or laser instabilities
e Gravitational “noise” due to incomplete modelling and reduction of gravity
variations with time

Because most of the IfE measurements serve for local and regional gravimetric
control, especially for geodynamic investigations in tectonically active areas, the
long-term measuring stability of the two gravimeters is a major concern. To com-
pare the results of JILAg-3 with recent observations of FG5-220, no systematic
difference due to the gravimeters themselves should exist, or the instrumental offset
should be well known. Within this context the instrumental offset should be under-
stood as a mean measuring offset (bias) valid for a long time period, e.g. some years
or even the gravimeters’ lifetime. One possibility for detecting such an offset is
to compare observation series of both instruments performed at a reference station
where long-term stable gravity acceleration can be assumed (no significant secu-
lar change). The JILAg-3 reference station Clausthal in the Harz Mountains (stable
bedrock) was occupied by FG5-220 at four different epochs in 2003 (January, May,
June and October) to derive a reliable mean g-value for 2003 which is only slightly
affected by seasonal hydrological changes. In Table 1.2, the mean result is com-
pared with the mean from 29 gravity determinations with JILAg-3 performed in the

Table 1.2 Mean gravity values for station Clausthal (Germany) derived with JILAg-3 (n = 29
occupations, 1986-2000) and FG5-220 (n = 4 in 2003). The given s; are standard deviations for a
single gravity determination

JILAg-3/FG5-220 Mean g-result
comparison Remarks Gravimeter Period [LGal]
Clausthal (Harz IfE reference JILAg-3 1986-2000 981,115,734.5
mountains) station for si=4.9,n=29
JILAg-3, FG5-220 January—October  981,115,725.1
reference height 2003 si=23,n=4

0.000 m Ag=+9.4
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Table 1.3 Gravity differences (JILAg-3 minus FG5-101) obtained from the International
Comparisons of Absolute Gravimeters (ICAG) in Sevres 1994 and 1997 and during the surveying
of the national German base network DSGN94 (five identical stations) and from three comparisons
at the Clausthal reference station, after Torge et al. (1999)

Comparisons of JILAg-3 (IfE) and

FG5-101 (BKG) Discrepancy [pnGal]
ICAGY4, BIPM, pier A0 +9.0
ICAGY97, BIPM, pier A +8.1
DSGN9%4 +8.2
Clausthal reference station +9.4

period 1986-2000. The standard deviation of the mean values is in both cases about
1 wGal. An obtained discrepancy of +9.4 Gal indicates a significant offset between
the measuring levels of these two absolute gravimeters. Similar discrepancies have
also been reported by Torge et al. (1999) when comparing measurements from FG5-
101 (BKG) and JILAg-3 performed in the years 1994—1997. These comparisons
showed a discrepancy varying between +8.1 and +9.4 wGal (Table 1.3). Figure 1.6
shows the time series of absolute gravity determinations at station Clausthal (point
522) observed with the two Hannover instruments (offset correction applied). The
decline in the four observed g-values at the Clausthal station in 2003 should be con-
nected to the very dry season in northern Germany. A similar but much stronger
gravity change was measured in Hannover when the groundwater table fell 70 cm
accompanied by a gravity decrease of about 13 pGal, see also Sect. 1.6.1.

By taking the offset correction of —9 pwGal into account for all JILAg-3 obser-
vations, a stable measurement level for a time span of more than 20 years is
assumed to be available with the two Hannover instruments. This is in accordance
with the present knowledge that the FG5 series is presently the best instrumental
realisation of absolute gravimeters. Nevertheless, to meet the accuracy require-
ments for long-term research over many decades and for comparability with
other instruments, the observation level of the JILAg-3-FG5-220 couple has to
be verified by comparisons with other absolute gravimeters. Since the 1980s,

40
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Fig. 1.6 Absolute gravity determinations with JILAg-3 and FG5-220 at station Clausthal
(CLAS522, trend —0.1 £ 0.2 pGal/year). An instrumental offset of —9 pGal (1 pGal) was applied
to the JILAg-3 results
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International Comparisons of Absolute Gravimeters (ICAG) are performed at the
Bureau International des Poids et Mésures (BIPM) in Sévres and since 2003, with a
4-year time interval, also at the European Centre of Geodynamics and Seismology
(ECGS) in Walferdange, Luxembourg. Such extensive comparison campaigns with
a large number of absolute gravimeters may reveal biases not only between single
instruments but also between different instrumental developments and technolog-
ical realisations. Table 1.4 summarises the results from the comparisons ICAG89
(Boulanger et al. 1991), ICAG94 (Marson et al. 1995) and ICAG97 (Robertsson
et al. 2001). In 1989, five JILA-type instruments and five individual developments
participated. The JILAg-3 result differed from the mean of the JILA group by
+1.8 pGal, from the mean of the group with individual developments by +3.3 puGal
and in the average by +2.4 pGal from the mean of all 19 stations’ determinations
performed by the 10 instruments. In 1994, for the first time FG5 instruments con-
tributed to the comparison, and the discrepancy of JILAg-3 to the mean result of
all 11 meters was +2.8 pGal. These two comparisons may indicate a small offset
of about +2 or 3 pGal for JILAg-3. In 1997, the situations changed somewhat. The
sites A and A2 were observed, and for both points the JILAg-3 result was +5.5 pGal
above the average of all instruments. In addition to these external comparisons
with other gravimeters, the lower part of Table 1.4 shows an internal comparison
for JILAg-3. Looking at the Clausthal series with respect to the whole time span
(1986-2000), and the two periods 1986—1996 and 1997-2000, a systematic change
in the measuring level cannot be detected. The Clausthal series neither confirms
nor contradicts the ICAG97 experience. Both results are consistent considering the
precision estimate of 4-5 puGal for a single station determination with JILAg-3.

From Table 1.4, it may be concluded that JILAg-3 was well embedded in the
international absolute gravity definition. Overall, a larger discrepancy with other
instrument groups did not really become obvious during the international compar-
isons. But a bias to the international standard, here defined as the average of all
participating gravimeters at BIPM, of up to +5 pGal cannot be excluded. From the
ICAG9Y94 and ICAG97 comparisons, a measurement offset of +9 pGal becomes vis-
ible when just comparing JILAg-3 with FG5-101 as already mentioned. Thus, from
the Hannover point of view, the offset correction for JILAg-3 has mainly to be con-
sidered as a bias with respect to the gravimeters FG5-220 and FG5-101 and not to
the international standard. Interpreting the results of the international comparisons
in Sevres with respect to the instrument groups, a systematic error, inherent in the
instrumental design of the JILAg or FGS5 gravimeters, does not exist or is within the
1-2 pGal accuracy level. Nevertheless, temporary biases for single instruments are
possible, e.g. due to undetected changes within the instrumental adjustments.

To investigate the stability of the presently employed gravimeter FG5-220 of
IfE, Table 1.5 gives the results from the international comparisons in Walferdange
(Luxembourg) 2003 and 2007 (external comparisons, Francis and van Dam 2006;
Francis et al. 2010) and FG5-220 reference measurements in Bad Homburg (sta-
tion of BKG, Wilmes and Falk 2006) from 2003 to 2008. Within 2 Gal, the
Hannover FGS5 instrument agrees with the internationally realised measuring level.
With respect to the FG5-220 observations in Bad Homburg, it has to be mentioned
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Table 1.5 FGS5-220 absolute gravimeter controlled by external (international) and internal
(repetition) comparisons to ensure consistent long-term measurement accuracy

FG5-220 external Ag [nGal] (FG5-220
comparison Remarks Epoch —mean g)
ICAG2003, ECGS 13 absolute meters, November 2003 —1.9 standard
(Francis and van 14 points, deviation (single
Dam 2006, Table 16) 52 determinations instrument) 1.8
ICAG2007, ECGS 19 absolute meters, November 2007 +2.4 standard
(Francis et al. 2010, 16 points, 73 deviation (single
Table 3) determinations instrument) 2.0
FG5-220 internal Ag (FG5-220) [pnGal]
comparison Remarks Epoch (Single — mean g)
Bad Homburg Reference station February 2003 +0.9
(gravimetry lab of for FG5-220 since November 2003 —-0.8
BKG, Wilmes and Falk 2003, point BA April 2005 +1.2
2006) April 2006 +0.7
November 2007 +0.2
September 2008 —2.1

that the differences between the single epochs also contain real gravity changes
due to time-varying environmental effects like seasonal hydrological variations. As
shown in Table 1.5, the six stations’ determinations agree very well, better than
expected from empirical estimates, with a mean scatter of 1.1 wGal only (root-
mean-square difference, r.m.s.). An instrumental instability cannot be identified.
A similar experience is also gained from the yearly repetition surveys and from
the comparisons with the other FGS5 absolute gravimeters involved in the Nordic
absolute gravity project, to determine the Fennoscandian land uplift, cf. Timmen
et al. (2006b) and Bilker-Koivula et al. (2008).

1.4 Relative Gravimetry

The determination of gravity differences and variations requires a composite
employment of absolute and relative instrumental techniques and observation meth-
ods. The optimal choice of the different types of available sensors allows one to
organise the work in a most efficient way with respect to accuracy and economy.
Relative gravimetry contributes among others to the following geodetic tasks:

e Support of absolute gravimetry (centring to safety points, national net points or
to adjacent absolute points; measurement of vertical and horizontal gradients)

e Monitoring of temporal gravity changes in investigation areas with short trans-
portation time spans between the measuring points

e Densification of national gravity reference networks

e Providing dense point data to improve regional geoids
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Fig. 1.7 Scintrex Autograv
CG-3 (right) and CG-5 (left)
and a LaCoste—-Romberg
model G with carrying case
(in front)

The accuracies one strives for are in the order of one to a few tens of microgals.
For high-precision relative gravimetry, LaCoste—Romberg (LCR) spring gravime-
ters have been employed nearly exclusively over decades. For about 20 years,
Scintrex has offered a different type of spring gravimeter, the Autograv CG-3, e.g.
see Hugill (1988), and since 2003 the new CG-5. Figure 1.7 shows a LCR and two
Scintrex meters. Based on the inventions of L. LaCoste and A. Romberg, the com-
pany ZLS Corporation, Austin, TX, USA, designed the automated Burris Gravity
Meter (ZLS 2007). The instrumental investigations described in Jentzsch (2008)
showed excellent results for the ZLS meter which may also be considered as a
state-of-the-art instrument.

1.4.1 Principles of Spring Gravimeters

The principle of a vertical spring balance explains the general operation of a relative
gravimeter. An elastic spring is used to generate a counterforce which keeps the
sensor’s test mass in equilibrium with the gravitational force, see left part in Fig. 1.8.

Fig. 1.8 The principle of a

vertical spring balance (left) l
and of a lever spring balance
(right)
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For a translational system, which is in accordance with Hooke’s law, the condition
of equilibrium is given by

mg = k(I — lo). (17)

The spring constant k is the proportion of the stretching force, with mass m and
gravity g, to the elongation (/-Iy) of the spring (/: spring length under load, /y: length
without load). To determine a gravity difference Ag, the small change in the spring
length Al has to be measured:

Ag = L Al . (18)
m
For that, a reading system with an extremely high resolution is required. To achieve
a measuring precision of better than 10 wGal, the mechanical sensitivity of about
0.1 nm is needed with a corresponding time stability of the spring force. A precise
knowledge of the calibration factor k/m can nowadays be obtained by measurements
between well-known absolute gravity points.
The right part of Fig. 1.8 shows the general lever spring balance. The equilibrium
condition for the torques generated by gravitational force mg and spring force k(I-lp)
can be expressed with

d
mgasin(a 4 §) = k(I — lp)h = k(I — lo)b7 sina. (19)

The equation shows a non-linear relation between gravity g and angle «. With the
conditions

lo =0 (“zero-length spring”) and « + 38 =90°, (20)
(19) simplifies to
mga = kbd sin «. 2D
Choosing the angles

a—90° and §— 0° (22)

increases the mechanical sensitivity considerably (“astatisation’).

The requirements in (20) and (22) are implemented in the design of LaCoste—
Romberg gravimeters with a counterspring made of metal (Krieg 1981). To achieve
a measuring precision of better than 10 pGal, a pick-off system with a resolution of
a few hundred nanometers is needed only. Measurements with LCR meters require
a very accurate alignment of the mass-beam part to the horizontal orientation. Due
to a gravity change, the test mass diverges from the horizontal position which can be
restored by turning a dial which moves the suspension point of the spring up or down
(zero-method, “nulling” the beam). The whole transmission system consists of the
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dial, a set of gear wheels, the measuring screw and a lever system. The difference
between two readings of the dial, which is combined with a counter, corresponds
to a gravity difference. In addition to this mechanical compensation for restoring
the zero position, an electronic feedback system is used nowadays. The moveable
middle part of a three-plate capacitor is attached to the test mass, which allows an
electrical pick-off of the sensor position and a restoring to the zero position. The
electronic feedback systems help to avoid periodical errors due to imperfections in
the gear-screw construction (Schniill et al. 1984; Roder et al. 1988).

With the technical advances in the 1980s, the company Scintrex, Concord,
Ontario, Canada, was able to design a new relative gravimeter using the principle
of the vertical spring balance. The Scintrex CG-3 and CG-5 gravimeters are non-
astatised systems with a quartz spring which covers the worldwide gravity range and
operates without any micrometer screw or gearbox. The capacitive transducer and
electronic feedback system allows a pick-off resolution of 0.2 nm (Scintrex 1998).
Besides the non-existence of periodic errors, an additional advantage of the linear
spring system is that the sensitivity is independent of the inclination. The new Burris
Gravity Meter from ZLS Corporation, which is based on the LCR astatisation prin-
ciples with a lever spring balance, is equipped with a digital feedback system of
about 50 mGal range to null the beam. The zero-length spring is made by a metal
alloy and is characterised by its low drift (Jentzsch 2008).

For more details and a more extensive overview about the principles of relative
gravimeters, refer to other available literature, e.g. Torge (1989).

1.4.2 Observation Equation

To transfer a raw gravimeter reading, here given in counter units, to a gravity value,
the calibration has to be known. In addition, a time-dependent instability of the
counterforce (fading of the spring tension) should be considered in the observa-
tion equation. Environmental disturbances, e.g. small temperature changes within
the sensor case or mechanical impulses caused by transportation, may change the
gravimeter’s reading considerably. This instrumental drift can be modelled by a low-
order polynomial and requires repeated measurements, temporally well distributed
over the measuring period, of at least some of the network points. The following
equation gives the connection between the raw reading and the resulting g-value for
a LCR gravimeter:

P m n
g=No+ Y di(t— 1)+ i+ Ascos (wiz — ¢, (23)
j=1 k=1 =1

with Ny = instrument level, d; = drift parameter of degree j, 7y =starting time
(e.g. first daily measurement), Y; = calibration coefficient of degree k, z = read-
ing in counter units, A; = amplitude, w; = frequency, ¢; = phase of the periodic
term of degree /. Often the so-called Ag adjustment of a gravity network is applied,
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Table 1.6 Maximum and mean amplitude of the periodic calibration terms as derived for 21
LaCoste—Romberg model G gravimeters in the gravimeter calibration system Hannover

Periods Up to LCR-G457 1.00 7.88 3547 70.94
[CU] From LCR-G458 1.00 7.33 36.67 70.33
Maximum amplitude 8.1 15.2 21.5 18.0
Mean amplitude in [pnGal] 2.5 52 59 8.0

which introduces gravity differences between two successive point measurements.
The advantage is the elimination of the unknown Np-parameter in the observation
equation. For Scintrex CG meters, the periodic terms in (23) do not exist.

Table 1.6 summarises the magnitude of periodic errors for 21 LCR gravimeters as
determined in the gravimeter calibration system Hannover. Neglecting these errors,
an additional uncertainty (systematic error) of a few tens of microgals can be pos-
sible for gravity differences. Comparisons of the results for three LCR instruments
from IfE, all three employed in the calibration systems Hannover and Wuhan/China
(different gravity ranges), showed significant discrepancies for the polynomial and
periodical calibration parameters (Xu et al. 1988). Therefore, for highly accurate
measurements it is advised to examine the meter’s calibration when transferring
the parameters to different gravity ranges (recommendation from the author: for
distances of more than 0.5 Gal away from the calibration system).

1.4.3 Regional and Local Surveys with Scintrex SC-4492

In 2001, IfE obtained the new Scintrex CG3 gravimeter no. 4492. The following
investigations of this state-of-the-art relative gravimeter were focussed on the cali-
bration (time stability and gravity range dependency). The study was performed over
a time period of about 4 years and covered a gravity range of almost 1.5 Gal. In addi-
tion, other publications can be recommended to achieve a more general overview
about the quality of the Scintrex Autograv CG-3 system, e.g. Hugill (1988), Jousset
etal. (1995), Falk (1995), Rehren (1997) and Everaerts et al. (2002). With respect to
instrumental precision, accuracy and drift, the IfE investigations confirm the results
of the references given above.

Most of the surveys with the SG-4492 were carried out in the gravimeter calibra-
tion system Hannover; see Fig. 1.9. This was established between 1976 and 1982 for
the determination of calibration functions for LCR gravimeters with 1 wGal accu-
racy (Kanngieser et al. 1983). The system serves for the analysis of polynomial and
periodic calibration terms, with the intent of improving the manufacturer’s calibra-
tion tables which usually provided accuracies of 1073 to 10~* only. Over 13,000
gravity differences measured with 47 LCR instruments and 12 absolute gravity
determinations were included in the adjustment of the calibration system. The esti-
mated mean standard deviations for the adjusted gravity differences are 2 pGal for
the Cuxhaven—Harz line (~9 mGal intervals) and 1 wGal for the vertical calibration
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Fig. 1.9 The station distribution of the gravimeter calibration system Hannover (Cuxhaven—Harz
Mountains, 300 mGal, and vertical calibration line Hannover, 20 mGal), cf. Torge (1989)

line Hannover (staircase of a 20-storied building, point intervals of 0.02, 0.2 and
1 mGal).

From November 2001 to September 2005, the SC-4492 has been employed
in different projects in northern Germany and in Scandinavia; see Fig. 1.10. In
most cases the instrument has been transported not only by hand but also by car.
In general, the measurements were done using the step method to allow an opti-
mal drift control, e.g. with a point sequence A-B-A-B-C-B-C-D-C-D. Each tie
between neighbouring points was measured three times or more with a time span of
5-60 min between the two successive point occupations. Only during the absolute
gravimetry campaigns in Fennoscandia in 2004 and 2005, the relative measurements
between the absolute stations were observed once with a long time span of up to 10 h
between the two successive readings. For each occupation three registrations with a
read time (RT) of 60 s and a cycle time (CT) of 80 s were carried out. The seismic
filter option of the online software was selected. The average of the second and third
cycle was used for the post-processing with the program system GRAV from Wenzel
(1993). The least-squares adjustment provides accuracy estimates for the single
gravity difference observations in the order of 4—10 nGal when excluding the two
long-distance campaigns in Fennoscandia. Measuring gravity ties with short trans-
portation ways, points can be connected within an accuracy level of about 1 pGal.
The points in the Harz Mountains (461-571) show small discrepancies between the
calibration line reference values and the recent results from SC-4492. The differ-
ences vary between —3.8 and +3.1 puGal with an r.m.s. discrepancy of 2.4 pGal.
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Fig. 1.10 Absolute gravity stations in the Fennoscandian land uplift area occupied by FG5-220
in 2004 (red dots). Lines show the ties used to control the calibration of the relative gravimeter
SC-4492

For the northern part of the calibration line, the differences are much larger (maxi-
mum +6.5 L Gal and minimum —11.4 pGal, r.m.s. 6.8 LGal). Besides measurement
errors, the large discrepancies can also be caused by groundwater and soil moisture
effects and/or secular gravity changes during the last 20 years.

Table 1.7 summarises the calibration results obtained for SC-4492, standing as
an example for a present-day advanced relative gravimeter. Polynomial calibration
terms of higher degree were not found. The calibration factors E (improvement
of the manufacturer calibration) were obtained with a precision between 2 and
8 x 107> and are varying within a range of 3 x 10™*. Calculating a mean fac-
tor and expressing the single deviations from the mean in gravity discrepancies (last
column), disagreements up to almost 20 nGal were found. But these values cannot
be assigned to instabilities or gravity range dependencies of the calibration fac-
tor. The uncertainties in the reference gravity values and, moreover, the subsurface
water mass changes (groundwater, soil moisture, crevasses and clefts in rock filled
with water) can introduce errors of more than 10 pGal. Therefore, a time-dependent
instability of the calibration in the order of 1 x 10~* cannot be excluded but is also
not proven. In addition, the calibration results show no correlation with the different



Absolute and Relative Gravimetry 25

1

(xew) 8y X Fy = 89 {7 UBSW WOIJ UONRIAID 7V JUSWINSLIUI
§v o[Surs ® jo uoneraop prepuels :(8y) s 10J0eJ JJUP Ieaul] paIsnipe :Jup :10j0eJ UONLIQI[Ed Ieaul] paIsnipe :7 ‘SjuswaInsedw Sy Jo Ioquinu Sy u

(Aep/epow 6200000
Sr0=) L'LT F616000°1 UBIIAL
00000 S00T°60°ST §00¢
€8I+ 8% 9'¢CF Lt F8L8000°1 Cl Sty —S00T'80°0¢ vase Yiydn pue[ UBIPUBOSOUUD]
LT0000°0
L'L+ €8 V'LF 86 F9€8000°1 I €6 S00T+0° ¢l surejunoul ZIey Ul uoneiqien
9L0000°0 00C"L0C0 00T
91— 9C— L'YCF o¢l FSr6000°1 91 €29 10079020 vare Yiydn pue[ UBIPUBISOUUD]
9200000
7'+ Ly I'8F L'TE FTL8000°T 4! €6 ¥00C+0°1¢C surejunour ZIey aulf uoneiqijen
020000°0 SINqUIBH—IoAOUURE SUOTIBIS
i+ eel L'eF 961 F98L000°T el 801 €00CC0’LT AN[0sqe 0M) JO UOIUUOT)
09000070 €00TC0°ST UQARYXN)—IJAOUUBH
L9l— eri— 6'6F L'T1 F290100°T LT1 LIT  —€00T'10°¢C aulf uoneIqie)
sjurod 9yerpouLIdIul
1£0000°0 2002 11°8¢C UM ZIEH—IOAOUURH SUOIIE)S
S9l— Cll— ¥'SF 691 FI€0100°T (44 LYT  —200C1T'vI 2In[osqe 0M} JO UORIUUOD)
§20000°0 €00C°'10°CC
SLT— w6— SOOI+ 081 FI10100°T 701 061  —200CT'11°SO ZIeH—IoAOUUEBH 9ul] suoneiqife?
+€0000°0 ZIeH—IOAOUUBH SUOIIL)S
01+ L oI+ 81T FC16000°T 14 Lv1 00T LO¥0 2In[osqe 0M} JO UORIUUOD)
9700000 UDARYXND)—IdAOUURH
L'L+ <9 Sel+ L'81 FE8000° [ 14 8I1 100C°1T°¢€C aulf uoneIqiren
[reo"] [g-01X%] [1eor] [u/reoM] yuq q 3y u [reow] red 109(01d
39 <4V av @v)s (xeur)
3y

[eOw 89t :9Suel

K)1AeI3 [210) ‘(JYLIP ‘AoBINOOE 10JOB] UONEIGI[Ed (S)[NSal juounsnipe) sIedk 4 19A0 soSuel AJIARIS JUAIJJIP Ul 7G4 "OU ¢-DD) XANUIOS Jo uoneiqie) L' dqeL



26 L. Timmen

gravity ranges which lead to the conclusion that no gravity range dependence exists
over the total investigation range of 1,470 mGal.

1.4.4 Microgravimetric Measurements

Highest accuracy can be expected for measurements in a small network with
points distributed in one room or in a single building (short time spans between
measurements, meter transportation manually (shock prevention), no wind, stable
temperature). In an extensive survey, the vertical calibration line in Hannover has
been measured with SC-4492 (31 points, 328 gravity difference observations), cf.
Table 1.8. The standard deviation for a single gravity difference measurement is
just 3.7 wGal. Figure 1.11 reveals a systematic discrepancy between the calibration
line reference values and the new determined figures. The differences for the points
above ground floor show a height and gravity dependence which can be interpreted
as a linear scale error of about 3 x 10~* (=6.0 pGal). After these investigations with
SC-4492, it cannot be excluded that the vertical calibration line is deteriorated by a
small-scale error. Additional investigations with another CG-3 or CG-5 are needed
to clarify this issue. One reason for the discrepancies of points below ground floor
may be due to the different gravimeter setups. The LCR meter has normally an aver-
age sensor height of about 6 cm above floor level. The CG-3 system with its tripod
measures the gravity at a height of about 27 cm. The points are all in corners very
close to the walls, only 20 cm away. The not well-known gravity gradients along the
vertical, with their non-constant behaviour, disturb the comparison of the different
gravimeter systems. The r.m.s. discrepancy between the recent SC-4492 results and
the reference values is 2.3 pGal.

The determination of vertical gravity gradients is important, because the combi-
nation of instruments with different reference heights strongly needs a highly precise
centring of the measured gravity values to a common reference. Vertical gradients
were observed at the two absolute gravity stations of IfE, Hannover and Clausthal,
and at stations of the Fennoscandian uplift area, cf. Tables 1.8 and 1.9. With the
help of a tripod of 1 m height, the gravity difference is measured to determine the
gradient, cf. Fig. 1.5. Because of the sensor height difference between the LCR and
the CG-3 systems (about 21 cm), the results from the two kinds of meters can differ
by some 1 pGal. The LCR meters of IfE are equipped with the SRW-feedback sys-
tems, which eliminates the problems with periodic errors and gravity dependencies
for small gravity differences (Roder et al. 1985). Figure 1.12 shows the absolute
gravity meter setup on the pier in the basement of station Clausthal. A mesh of nine
points with a spacing of 40 cm has been surveyed with SC-4492 to determine the
horizontal gravity field above the pier surface. The result (Fig. 1.12, right) seems
to be reasonable. With distance to the wall (cf. Fig. 1.12, left), gravity increases by
about 2.5 pGal per 10 cm.

The obtained accuracies for all microgravimetric surveys are in the order of
1-2 pGal. In Table 1.9, three vertical gradients are compared with LCR results. In
all cases the obtained results from SC-4492 are smaller than the LCR results which
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Fig. 1.11 Differences
between the reference values
of the vertical calibration line
and the new determined
gravity values with SC-4492

L. Timmen
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Table 1.9 Comparison of the SC-4492 results with reference results (all determined with LCR

gravimeters)

Project

Comparative figures

Difference to SC-4492

Vertical gravity calibration
line Hannover

Vertical gravity gradient at
absolute station Hannover

Vertical gravity gradient at
absolute station
Clausthal/Harz

Vertical gravity gradient at
absolute station Vaasa
(AB)

Calibration line reference values

+2.3 uwGal (r.m.s.)

Five LCR SRW-feedback meters in  +1.8 nwGal/m
1993/1994, mean: 303.1 pGal/m

Four LCR SRW-feedback
gravimeters in 1987, mean:
266.0 nGal/m

Simultaneous observation with
LCR-G709 SRW-feedback
gravimeter in 2003:

330.7 nGal/m

+3.0 pGal/m

+2.8 wGal/m

are reasonable for these stations considering the different sensor heights above the

massive concrete piers.

1.4.5 Instrumental Drift

The gravimeter drift can be differentiated into two parts: stationary drift mainly
due to spring aging and the transportation drift which may be caused by small
shocks, vibrations, temperature effects or hysteresis effects after sudden changes of
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Fig. 1.12 The FG5-220 occupying the absolute gravity point at station Clausthal; contour plot of
the horizontal gradient field above the pier with 1 pGal intervals
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Fig. 1.13 Long-term drift (composition of stationary and transport drift) of SC-4492

the spring load (e.g. mechanical unclamping of the lever). A long-term drift (com-
position of stationary and transportation drift) of the meter is shown in Fig. 1.13. On
8 different days within a time span of 100 days, the first reading in the morning on a
common starting point has been used to derive this long-term behaviour. The figure
depicts a nearly linear behaviour.

Table 1.10 summarises the adjusted linear drift factors from daily field surveys
obtained on 14 different days. It becomes clear that the drift behaviour of SC-4492
during the field surveys is significantly not linear. The drift can vary enormously.
Therefore, for precise geodetic measurements a drift behaviour has to be taken into
account as a non-linear temporal change of the zero level of the gravimeter’s read-
ings. The drift is determined by repeated point occupations during a day which
allows a modelling by a low-order polynomial with time; see (23). Depending on
the network structure, the instrumental behaviour and the required accuracy, dif-
ferent measurement methods can be applied to control and determine the drift of
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Table 1.10 Adjusted linear daily drift factors from daily field surveys with SC-4492

Number of Number of Ag Measuring
Date points observations time [h] Drift [wGal/d]
05.11.02 11 14 8 436
14.11.02 5 12 9 361
15.11.02 7 19 6 532
20.11.02 2 10 2 433
28.11.02 3 10 6 383
05.12.02 2 20 2 177
04.01.03 2 9 5 309
21.01.03 4 6 4 378
22.01.03 2 4 2 592
23.01.03 4 5 6 69
05.02.03 3 6 6.5 78
12.02.03 4 9 6.5 —49
15.02.03 2 10 3 412
27.02.03 2 3 6.5 469
Mean 327+189
A B C D E
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Fig. 1.14 Measuring procedures for drift control: (a) profile method with weak drift control,
(b) step method with strong drift control (three times each tie and overlaps)

an instrument which is shown in Fig. 1.14. In general, the step method is used for
most precise surveys. For example, the Hannover gravimetry group applies the five
times step method to calibrate gravimeters with electronic feedback systems using
the vertical calibration line in the 20-storied university building.

1.5 Reduction of Non-tectonic Gravity Variations

The Earth’s gravity field varies continuously with time which is explained in detail,
e.g. by Torge (1989). For geodynamics research, the establishment of regional grav-
ity control networks and the establishment of globally distribute absolute gravity
stations serve to reveal gravity changes of long-term or secular character. Such
changes may occur together with tectonic plate movements, with postglacial iso-
static compensation processes, with tectonic processes like mountain building or
with compactions in sediment basins. Local gravity changes of short-term or even



1 Absolute and Relative Gravimetry 31

abrupt character may become detected by gravity monitoring nets covering areas
with volcanism or earthquakes. In addition, human activities can cause significant
variations in the Earth’s gravity field (large constructions, withdrawal of water,
oil, gas, etc.). All gravimetric measurements are subject to irregular and periodic
changes caused by tides, groundwater and other hydrological processes (e.g. soil
moisture variations), atmospheric mass movements and polar motion. These effects
of non-tectonic causes are superimposed on the target signal and have to be removed
as well as possible. Generally, gravimetric measurements are freed from effects
of the tides, the atmospheric mass redistributions and the small movements of the
Earth’s rotation axis within the Earth. The transfer function between changes in the
groundwater table and the related gravity effect at the measurement point is often
not well known, and therefore the latter is not a standard reduction in gravimetry.
Torge et al. (1987) describe the reductions for absolute gravity measurements with
the Hannover JILA absolute meter.

1.5.1 Earth’s Body and Ocean Tides

The tidal deformation of the Earth is an elastic response of its body to the gravi-
tational accelerations produced by the Moon, the Sun and, to a slight extent, also
by the planets (Wang 1997; Wenzel 1997). At mid-latitudes periodical deformations
over a day occur with an amplitude range of up to 40 cm. The maximal gravity
variation remains below 300 wGal. The solar tides amount to 46% of the lunar
tides.

In the Earth’s centre of mass, the gravitation of the other celestial bodies is com-
pletely compensated by the centrifugal accelerations due to the orbital motion of
the Earth. Figure 1.15 shows a simplified version of the Earth—-Moon system with a
non-rotating Earth and the Moon as a point mass. The motion of the Earth around
the barycentre of the two-body system generates the orbital acceleration —bg which
is a constant for all points within the body and on the surface of the Earth. Because
of the spatial extension of the Earth, the gravitation vector b differs from position to
position. The tidal acceleration by for point P on the Earth’s surface is the sum of the
gravitation b and the orbit acceleration —bgy. Applying Newton’s gravitational law,
the tidal acceleration vector for the Moon is given by

Fig. 1.15 Tidal acceleration
as the sum of the Earth’s
orbital acceleration and lunar
gravitation
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(24)

where My, is the mass of the Moon, G the gravitational constant, [y, and ry, the
distances between point P and the Moon and between the Earth’s centre of gravity
0 and the Moon, respectively.

Because of the Earth’s rotation and the continuously varying distances of the Sun
and the Moon from the Earth, a large number of waves (partial tides) have to be con-
sidered to model the theoretical tides for a rigid (not deformable) Earth’s body. The
ephemerides of the celestial bodies are well known from astronomy which allows
the precise calculation of the rigid Earth tides. The tidal spectrum comprises a long-
periodic part with half-monthly, monthly, semi-annual, annual and longer periods
and short-periodic waves with the main power in the daily and half-daily periods.
The longest wave with 20,942 years is the period of the mean ecliptic longitude of
the sun’s perigee. The widely available harmonic developments of the tidal poten-
tial follow the spectral representation as chosen by Doodson (1921). In the more
recent literature, a detailed mathematical description can be found, among others,
in Wenzel (1997). Tidal potential catalogues with different accuracies contain up to
more than 1,000 waves. The most common catalogues are from Cartwright, Taylor
and Edden (Cartwright and Taylor 1971; Cartwright and Edden 1973) with 505 par-
tial tides (accuracy better than 0.1 pGal) and from Tamura (1987) with 1,200 waves
(0.01 pGal). The model from Hartmann and Wenzel (1995) with 12,935 waves also
includes coefficients due to the nearby planets and to the flattening of the Earth. An
extensive description of the principal waves of the theoretical tides (rigid Earth) is
given in Ziirn and Wilhelm (1984).

Gravimetric Earth tide measurements show large differences with respect to the
theoretical tides which can be explained by the non-rigid behaviour of the Earth’s
body and by effects from the ocean tides. The astronomical tide generating forces
cause an elastic deformation of the solid Earth. Compared to the model of the rigid
Earth, the amplitudes of the partial tides of the solid Earth are amplified and a phase
shift takes place. In addition, the ocean tides affect the gravity measurements by the
direct attraction of the moving water masses and indirectly by the resulting defor-
mation of the crust due to the water load (ocean load tides). In general, close to the
ocean the tidal loading effect is much smaller than the body tides but still affects
gravity to very large distances from the coast (Jentzsch 1997). The ocean loading
signal is not in phase with the body tides.

To reduce gravimetric measurements for Earth’s body and ocean tides, the gravi-
metric tidal reduction as a compound tidal signal can be described as a sum of
periodic terms:

n
Agiid = — Z(SiAi(theor) cos (wit + ®;(theor) + AD;) (25)

i=1

with amplitude factor §; = A; + A;(theor) (26)
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Table 1.11 Principal gravimetric partial tides and the measured amplitude factors and phase leads
(station Hannover: ¢ = 52.389°, A = 9.714°). The Earth tide registrations with spring gravimeters
in Hannover did not allow the evaluation of long-periodic tidal waves due to the instrumental drift
behaviour. The partial tide with 18.6 years (6,798.4 days) has no special symbol

Period [solar Amplitude Amplitude factor  Phase lead A®
Tide symbol days/h] (theor) [nGal] §[1] [°]
Constant lunar and solar tides
MySo o] 26.7 - -
Long-period tides
- 6,798.4 days 24 - -
Sa 365.26 days 0.4 - -
Ssa 182.62 days 2.6 - -
Mm 27.55 days 2.9 - -
Mf 13.66 days 5.6 - -
Diurnal tides
Q 26.87 h 5.8 1.151 0.05
0, 25.82h 30.0 1.150 0.15
P 24.07 h 14.0 1.149 0.11
K 2393 h 42.3 1.140 0.13
Semidiurnal tides
N; 12.66 h 54 1.176 2.34
M, 1242 h 28.0 1.186 1.68
S» 12.00 h 13.0 1.189 0.41
K> 11.97 h 35 1.191 1.07
Terdiurnal tides
M3 8.28 h 0.3 1.068 0.47

and phase lead A®; = &; — P;(theor). 27

The frequencies of the partial tides w; = 27/T; (T: period), the amplitudes A;(theor)
and the phases ®;(theor) are already derived from the models for the theoretical
tides. The amplitude factor § is also called gravimetric factor and can be deter-
mined together with the phase lead A® by comparing the results of a continuously
recording relative gravimeter with the rigid (theoretical) Earth tides. Table 1.11 sum-
marises the results of Earth tide registrations in Hannover with five LCR gravimeters
equipped with SRW-feedback systems (Timmen and Wenzel 1994). In the past, the
global factor § = 1.16 was often used for all tidal waves in case of not existing
observed parameters.

In contrast to tidal observations, the gravimetric tides can be computed on the
basis of a model of the Earth’s body determined from seismology, e.g. Preliminary
Reference Earth Model (PREM) from Dziewonski and Anderson (1981), and using
a global ocean model derived from satellite altimetry or from tide gauge obser-
vations as done by Schwiderski (1980). The latter used tidal observations of tide
gauges along the continental coasts and on islands and developed a hydrographical
interpolation model. For the first time, a global model was available describing the
tidal response of the ocean’s water masses. With the successful satellite altimetry
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missions like Geosat (1985-1990), TOPEX/Poseidon (1992-2006) and some oth-
ers, direct measurements of the ocean’s surface height were evaluated to provide
accurate ocean tide models. Because Schwiderski’s model is still accurate enough,
it is widely used for the tidal reduction in absolute and relative gravimetry.

At IfE in Hannover, the series development from Tamura (1987) delivers the
tidal effects for the solid Earth, with synthetic tidal parameters (amplitude factors
and phase shifts) interpolated from a worldwide 1° x 1° grid (Timmen and Wenzel
1995) to take the Earth’s elastic behaviour into account. This grid was computed
from

e Body tide amplitude factors using the Wahr—Dehant model (Wahr 1981; Dehant
1987) of an ocean-free, uniformly rotating and ellipsoidal Earth with inelastic
mantle, liquid outer core and elastic inner core

e Ocean tide gravitation and load (Agnew 1997) derived from a 1° x 1° ocean tide
model (Schwiderski 1980)

For the time-constant MySy tides, the amplitude factor 1.000 and a zero phase
shift are used according to the IAG standards (Rapp 1983, “zero-tidal gravity”).
For absolute gravity measurements the uncertainties in the geographical coordinates
should be less than 10" with a height accuracy of better than 100 m. The time of a
gravity observation can easily be recorded with better than 10s UTC. Because the
measurements of a station determination are distributed over 1-3 days, the average
result can only be affected by residual errors of some 0.1 pGal (Timmen 1994).
Near the coasts, larger uncertainties are possible.

1.5.2 Polar Motion

The Earth’s rotation vector varies its orientation with respect to the Earth’s crust. The
penetration points of the rotation vector through the Earth’s surface, the poles, are
subject to motions of several metres per year. Figure 1.16 depicts the winding curve
of the instantaneous North Pole relative to the reference pole of the International
Earth Rotation and Reference Systems Service (IERS). The plotted x, and y, pole
coordinates are provided by IERS on their internet pages. They are defined in a
plane tangential to the pole with the x-axis in the direction of the Greenwich mean
meridian and the y-axis points to the 90°W meridian. The polar motion consists
mainly of two periodic components and a long-term irregular drift (cf. Figs. 1.16
and 1.17):

e The Chandler period (wobble) of 435 days has an amplitude of about 0.1" to 0.2"
(3—6 m). This free oscillation is due to the dynamical flattening of the Earth and is
excited when the instantaneous rotations axis deviates from the principal axis of
inertia (figure axis). The mass displacements in the atmosphere and in the oceans
exert torques on the solid Earth and excite the Chandler wobble continuously. An



1 Absolute and Relative Gravimetry 35

2010 —

2005 -

2000

1995 J . ...

1990

1985

1980

1975

1970

1965

-0.2

02 - - - - - - 0
x [acrsec] 0.5 0.4 0.3 0.2 0.1

y [acrsec]

Fig. 1.16 Polar motion plotted with the IERS pole coordinates from 1962 to 2008 as published by
the International Earth Rotation and Reference Systems Service on the internet

effect of earthquakes on the Chandler wobble is discussed in literature but is not
proven up to now.

e An annual period is superimposed on the Chandler wobble with amplitudes of
0.05" to 0.1" and is caused by seasonal variations in the atmosphere and in the
oceans.

e A secular motion of the North Pole is directed to the 70°W meridian with a mag-
nitude of about 0.003" (0.1 m) per year (Fig. 1.17). The postglacial land uplifts
in northern Canada and Europe are assumed to be the main causes for the pole
drift presently. In addition, the lithosphere plates move horizontally against each
other on the less viscous asthenosphere (plate tectonics) which appears as a pole
drift (polar wander).

The interaction between Earth rotation and global geodynamical processes is
comprehensively explained in Schuh et al. (2003). The superposition of Chandler
and annual period induces a modulation (beating) period of 6 years which is clearly
seen in Fig. 1.16.
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Fig.1.17 Polar motion 2003-2007 and mean yearly motion calculated for the time points 1,900.0—
2,000.0 as viewed from the North Pole (pole coordinates provided by IERS)

The variations of the Earth’s rotation vector change the centrifugal acceleration
at any measuring point on the Earth’s surface. For station Hannover (¢ = 52.44°N,
A = 9.71°E) the gravity effects are normally within &5 pnGal, but attained a maxi-
mum of +7.3 and a minimum of —8.6 wGal around 1950. From Fig. 1.17 it becomes
obvious that nowadays and in the future the polar motion effect for stations located
along the positive direction of the y-axis (North and South America) would be
obtained with a positive sign.

The polar motion reduction (Wahr 1985) for absolute gravimetry measurements
are given as

Agpol = —8pol @°T sin2¢ (xp cOS A — yp sin ), (28)

with the Earth’s angular velocity @ and radius 7, and the geographical latitude ¢
and longitude A of the measuring position. The amplitude factor 6,0 considers the
elastic response of the solid Earth as compared to a rigid Earth’s body. As for the
Earth tide amplitudes in the past, the factor 1.16 is applied here for the lack of
better knowledge. The daily pole coordinates x, and y, of IERS (Bulletin A) are
provided as predicted values, which can be used during the online data evaluation
of absolute gravity measurements, and as finals which improve the gravity results
by post-processing. The high accuracy of the IERS coordinates (+0.0003", Reigber
and Feissel 1997) keeps the residual error of this reduction below 0.1 pGal (Timmen
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1994). The position coordinates are required with an accuracy of a few kilometres
only.

1.5.3 Atmospheric Mass Movements

Gravity variations due to atmospheric mass variations may be subdivided into a
direct effect of air mass attraction and an indirect (loading) effect due to the defor-
mation of the Earth’s crust and the sea surface. The surface deformation at the
gravimeter site can be more than 1cm. The variations in the local gravity accel-
eration and atmospheric pressure are known to be correlated with an admittance
of —0.3 to —0.4 nGal/hPa depending on the local, regional and global weather
situation (air mass distribution) and on the location of the gravimetry station,
e.g. vicinity of the sea. During relative and absolute gravity measurements, the
local air pressure is observed to reduce the atmospheric effect from the gravity
results. In accordance with the TAG resolution No. 9, 1983 (IGC 1988), the factor
a = —0.3 pGal/hPa should be applied as a global mean if no better information is
available. The reduction formula

Agair = —a (p — pa)[hPa] (29)

refers the actual atmospheric pressure p to the normal atmospheric pressure p,
which is defined by

(30)

~0.0065 Hipp |2 (hPal
288.15 '

pn = 1013.25 <1

The reduction applies the US Standard Atmosphere, 1976, as a reference atmo-
spheric model. The station height H (above sea level) should be introduced with an
accuracy of better than 10 m for precise absolute gravity determinations.

Absolute gravimetry is more sensitive to atmospheric variations than relative
gravimetry because of the short time intervals between two successive relative read-
ings of a gravity difference. Assuming an air pressure variation of more than 30 hPa,
the actual coefficient o should be known with an accuracy of better than 5% to
ensure a reduction uncertainty of less than 0.5 pwGal. But that requirement can often
not be fulfilled especially when just using the general factor —0.3 wGal/hPa.

At IfE, a more accurate reduction is applied for all FG5 measurements performed
in the Fennoscandian land uplift project since 2003. The attraction and deforma-
tion effects for a local (spherical distance < 0.5°), regional (0.5-10°) and global
(10-180°) zone with corresponding resolutions of 0.005°, 0.1° and 1.125° are cal-
culated. The global data are available from the European Centre for Medium-Range
Weather Forecasts (ECMWF) and are provided to IfE by the University of Cologne
in cooperation with the German Computing Centre for Climate and Earth System
Research. The calculation procedure is explained in Gitlein and Timmen (2006).
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This improved reduction for absolute gravity measurements with global atmo-
spheric weather data is very costly in terms of labour and needs the development
of gravimetric software which is not available in the open market. An improvement
of 0.5-1 nGal can be expected (Gitlein 2009) but a residual error in the order of
0.5 pGal can still not be excluded for all gravimetric station determination.

1.5.4 Groundwater Variations

Gravity changes caused by groundwater variations are predominantly a direct grav-
itational effect of the water masses. Smaller indirect effects are accompanied with a
vertical displacement of the measuring position: elastic deformation of the crust due
to the water load and sediment consolidation due to a decrease in the water table
level and a consequent decline of the pore volume (Romagnoli et al. 2003). Such
effects can partly be avoided by selecting stations in mountain areas and bedrock.
Temporary water storage is still possible in clefts, crevasses and pockets but the void
volume should be much less than 5%, whereas in glacial sediment layers the free
volume might be more than 30%. In general, a seasonal behaviour of the groundwa-
ter table becomes visible in continuous registrations of water depth gauges. Hence
it might be helpful to perform absolute gravity measurements always in the same
season of a year to determine secular gravity changes.

For regions with homogeneous sediment layers, a Bouguer-plate model often
gives a first approximation for the dependency between changes in gravity and water
table readings (Torge 1993):

Agey = 21 GpwPSH = 42 PSHpym  [nGall, (€29

where G is the gravitational constant and p,, is the water density which is
1,000 kg/m3. Assuming a pore volume of 30% in the sediment layer (P = 0.30)
and a water table shift 6H of 1 m, a gravity effect of 12.6 Gal is obtained.

For the absolute reference station Hannover, a vertical sediment profile was deter-
mined from the drilling of the water gauge close to the gravimetry laboratory. It
revealed an average pore volume of 38%. Modelling the change of the groundwater
table with a tilted plane (0.4% to the receiving river) and a mean water level depth
of 3.7m, an admittance factor of 15 wGal/m was derived (Timmen 1994). A sim-
ilar relation is obtained from the statistical correlation of the water table readings
with the absolute gravity measurements performed with the Hannover FG5 meter
since 2003 (Sect. 1.6.1). The resulting regression factor with 17 pGal/m considers
not only the primarily affecting Newtonian attraction but also the indirect effects
accompanied with a vertical position shift (load and sediment consolidation).

Successful experiments and modelling of gravity effects due to soil moisture and
groundwater changes were already described in Mikinen and Tattari (1988). But, in
general, a reduction for hydrological variations is still not applied in absolute and
relative gravimetry.
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1.6 Gravity Changes: Examples

Some examples for gravimetric applications of IfE are given in Torge (1993)
describing projects in tectonically active areas in northern Iceland, the Venezuelan
Andes and in the Yunnan (China) earthquake study area. Gitlein et al. (2008)
describe the gravimetric survey of the Fennoscandian postglacial rebound which
is an isostatic uplift of the Earth’s crust due to the melting of the ice sheet after the
glacial maximum of the last ice age. The IfE gravimetry projects in the Nordic coun-
tries are all part of a long-term survey task. In close cooperation with the national
Nordic surveying agencies and research institutions, IfE has performed gravity
observations in Scandinavia since 1986. The monitoring of crustal deformations
in northern Europe is still the main focus of the ongoing cooperations.

As already mentioned in Sect. 1.2.2, an important future application may be the
monitoring of changes in the hydrosphere, especially if such variations mean some
serious consequences for the water supply. To demonstrate the potential of gravime-
try as a tool for groundwater monitoring, the situation in Hannover is presented as
an example.

1.6.1 Hydrology: Groundwater Variations in Hannover

Figure 1.18 shows the time series of absolute gravity determinations in Hannover
(point 103) observed with the two Hannover instruments. The station is located on
glacial sediments with a thickness of about 500 m (sand, clay and marl of low con-
solidation). The free-fall experiments are severely affected by natural (wind forces
on the adjacent buildings) and man-made (machines, traffic) seismic noise. The
history of the Hannover measurements reveals a linear gravity decrease of about
25 wGal over a period of 21 years, whereas in Clausthal (Fig. 1.6) no significant sec-
ular gravity variation can be found. An explanation for the phenomenon in Hannover
is not yet available and requires discussions with other experts, e.g. from hydro-
sphere research. Figure 1.19 illustrates the scatter in the time histories which is not
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Fig. 1.18 Absolute gravity determinations with JILAg-3 (offset corrected) and FG5-220 at
stations Hannover (HAN103, trend —1.2 &+ 0.1 pGal/year)



40 L. Timmen

0.5

[uGal]

-0.5

-10

2003 2004 2005 2006 2007 2008

Fig. 1.19 Groundwater table at the gravimetry laboratory in Hannover and absolute gravity deter-
minations with FG5-220 since 2003. The transfer function from gravity to groundwater change,
with the linear coefficient 17 juGal/m (correlation 80%), has been applied to the absolute gravity
determinations to convert the g-values to groundwater readings

only caused by measurement uncertainties but also by real gravity variations. For
example, from February to December 2003 the groundwater table at the gravime-
try laboratory in Hannover fell about 70 cm due to the very dry season in northern
Germany. This was accompanied by a gravity decrease of 13 pGal. Checking the
groundwater readings for the period 1986 to the present, a declining trend over the
years is not visible. But these readings from the groundwater gauge consider only
the upper aquifer of the subsurface hydrology around the gravimetry laboratory and
not the deeper aquifers. Thus, it cannot be excluded that the long-term trend in the
gravity series might be caused by a change in the subsurface water content.

1.6.2 Tectonics: Isostatic Land Uplift in Fennoscandia

In the Fennoscandian land uplift area, the Earth’s crust has been rising continu-
ously since the last glacial maximum in response to the deloading of the ice. This
process is an isostatic adjustment of the Earth’s elastic lithosphere and underlying
viscous mantle. For a general overview Wolf (1993) gives a historical review about
the changing role of the lithosphere in models of glacial isostasy.

The Fennoscandian rebound area is dominated by the Precambrian basement
rocks of the Baltic Shield, which is part of the ancient East European Craton
and comprises south Norway, Sweden, Finland, the Kola Peninsula and Russian
Karelia. The region is surrounded by a flexural bulge, covering northern Germany
and northern Poland, the Netherlands and some other surrounding regions. The
bulge area was once rising due to the Fennoscandian ice load and, after the melt-
ing, sinking with a much smaller absolute value than the uplift rate in the centre of
Fennoscandia. Denmark is part of the transition zone from the uplift to the subsi-
dence area. The maximum spatial extension of the uplift area is about 2,000 km in
northeast—southwest direction; see Fig. 1.20 for the approximate shape (after Agren
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Fig. 1.20 Map of the postglacial uplift of Fennoscandia in mm/year after Agren and Svensson
(2007) derived from model NKG2005LU, courtesy of Agren. The dots indicate the positions of
gravity stations of the Nordic Absolute Gravity Project

and Svensson 2007). Presently, the central area around the northern part of the Gulf
of Bothnia is undergoing an uplift at a rate of about 1 cm/year.

The Trans-European Suture Zone (TESZ) is a main tectonic boundary in Europe,
separating the East European Craton from the Phanerozoic terrains in the west
and southwest (Palacozoic western Europe and Meso-Europe). The Sorgenfrei-
Tornquist Zone is part of the TESZ and crosses Denmark north of Copenhagen
in the immediate vicinity of the absolute gravity station Helsinggr; see Fig. 1.10
for the station names and locations. Among other stations, the absolute gravity sta-
tions Copenhagen/Vestvolden, Helsinggr, Onsala and Borés belong to the Nordic
Geodetic Observing System (NGOS) and constitute the central part of a north—south
profile crossing perpendicularly the graben system of the suture zone between the
Baltic Shield and the younger Palaeo-Europe.

Four east—west profiles across the Fennoscandian postglacial rebound area have
been utilised by relative gravimetry and levelling. They follow approximately the
latitudes 65°N (observed 1975-2000), 63°N (1966-2003), 61°N (1976-1983) and
56°N (1977-2003); see Ekman and Mikinen (1996) or Mékinen et al. (2004). The
east—west directions were chosen to ensure only small gravity differences between
the relative gravimetry points (less than 1 mGal). This requirement avoids errors
from uncertainties of the gravimeter calibrations. With the availability of trans-
portable absolute gravimetry in Central Europe, the 56° profile (Denmark—Sweden)
was supported with JILAg-3 (in 1986) and FG5-220 (2003, 2005) measurements.
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Fig. 1.21 Linear gravity changes for three stations in Fennoscandia derived from absolute grav-
ity measurements of IfE and compared with the trends from the NKG2005LU model (Fig. 1.20,
conversion factor —1.7 wGal/cm applied) and from the model predictions provided by Klemann
(2004). The grey lines beside the IfE trends indicate the standard deviation of the corresponding
trend line



1 Absolute and Relative Gravimetry 43

Repeated observations with the FG5-220 from IfE were performed at 11 stations
in Fennoscandia nearly every year from 2003 to 2008 (Gitlein et al. 2008). From
these results, linear gravity changes were calculated for each station (Gitlein 2009).
The trends for three stations are presented exemplarily in Fig. 1.21. A decrease
in gravity due to land uplift is evident at almost all stations. The largest gravity
changes were found around the uplift centre (e.g. Kramfors). In Copenhagen, close
to the zero uplift line in Fig. 1.20, the obtained gravity rate is nearly zero. Overall,
the regional rebound signal is clearly visible, but still seems to be disturbed by envi-
ronmental mass variations, e.g. at station VaasaAB. From the experiences over the
last 5 years, the hydrological changes are considered as a main contributor, which
is also indicated by the water level observations of the reservoirs and wells close to
some of the absolute stations.

In Fig. 1.21 the observational trends are compared with the results derived from
the NKG2005LU model (Agren and Svensson 2007), which is mainly based on
levelling and GPS results, and with predicted rates of a glacial rebound model pro-
vided by Klemann (2004). The computations were based on solution algorithms
developed by Martinec (2000) and Hagedoorn et al. (2007) and use a global ice
model with SCAN-II (Lambeck et al. 1998) for Fennoscandia. Overall, the trends
observed by absolute gravimetry since 2003 or 2004 are in good agreement with
the other results. The obtained standard deviations seem to be realistic estimates for
the accuracy of the deduced secular gravity changes. The disturbances caused by
unaccounted hydrological effects are cancelled out in the trends to some extent due
to the annual gravity measurements. Thus, absolute gravimetry has shown its capa-
bility to observe the Fennoscandian land uplift within the rather short time span of
4-5 years.
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A new adaptively robust Kalman filtering was developed in 2001. The main achieve-
ments of the adaptively robust filter are summarized from the published papers
in recent years. These include the establishment of the principle of the adaptively
robust filter, the derivation of the corresponding state parameter estimator, the devel-
opments of four adaptive factors for balancing the contribution of kinematic model
information and measurements, which include three-segment function, two-segment
function, exponential function and zero and one function for state component adap-
tation, and the establishment of four kinds of learning statistics for judging the
kinematic model errors, which include state discrepancy statistic, predicted resid-
ual statistic, variance component ratio statistic and velocity discrepancy statistic.
The relations of the adaptively robust filter with standard Kalman filter, robust filter
and some other adaptive Kalman filters as well as some related adjustment methods
are depicted by a figure. Other developments of the adaptively robust filter are also
presented.

2.1 Introduction

Applications of the Kalman filter in dynamic or kinematic positioning have some-
times encountered difficulties which have been referred to as divergences. These
divergences can often be traced to three factors: (1) insufficient accuracy in mod-
elling the dynamics or kinematics (functional model errors of the state equations);
(2) insufficient accuracy in modelling the observations (functional model errors of
observation equations); and (3) insufficient accuracy in modelling the distributions
or the priori covariance matrices of the measurements and the updated parameters
(stochastic model errors) (Yang et al. 2001a).
The current basic procedure for the quality control of Kalman filter consists of

e Functional model compensation for model errors by introducing uncertain
parameters into the state and/or the observation equations. Any model error term
can be introduced into the models arbitrarily. One could then augment the state
(Jazwinski 1970, p. 308). A similar approach is developed by Schaffrin (1991, pp.
32-34). He partitions the state vector into i groups, each being affected by a com-
mon scale error. Then an &2 x 1 vector of scale parameters is introduced into the
models. This kind of approach may, of course, lead to a high-dimensional state
vector which, in turn, greatly increases the filter computational load (Jazwinski
1970, p. 305).

e Stochastic model compensation by introducing a variance—covariance matrix
of the model errors. In taking this approach to prevent divergence, one has to
determine what covariance matrix to add. A reasonable covariance matrix may
compensate for the model errors. An ineffective covariance matrix, however, adds
the model divergence. For instance, when the model is accurate in some dynamic
or kinematic periods, an unsuitable increasing of the covariance matrix of model
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error will degrade the state estimators. An effective covariance matrix for model
errors can only be determined by trial and error.

e DIA procedure — detection, identification and adaptation (Teunissen 1990). It
uses a recursive testing procedure to eliminate outliers. In the detection step one
looks for unspecified model errors. In the identification step one tries to find the
cause of the model error and its most likely starting time. After a model error has
been detected and identified, the bias in the state estimate caused by the model
error has to be eliminated as well. This model recovery from errors is called
adaptation (Salzmanm 1995). The identification of the model, however, is quite
difficult, especially when the measurements are not accurate enough to detect the
unspecified model errors.

e Sequential least squares procedure. A quite different procedure that has been
frequently used for kinematic positioning does not use the dynamic model
information at all but determines discrete positions at the measurement epochs
(Cannon et al. 1986). In this case, no assumption on dynamic model is made;
only the measurements at discrete epoch are employed to estimate the state
parameters. The model error, therefore, does not affect the estimates of new
state parameters. Usually, this method is presented as a sequential least squares
algorithm (Schwarz et al. 1989). The current limitation of this approach is that
it wastes the good information of the state model when the model accurately
describes the dynamic process in cases.

e Sage adaptive Kalman filtering. This kind of adaptive filter evaluates the
variance—covariance matrices of the kinematic model error vector and the mea-
surement error vector by windowing method (Sage and Husa 1969). In the
applications, an innovation-based adaptive Kalman filtering for an integrated
INS/GPS is developed by Mohamed and Schwarz (Mohamed and Schwarz 1999;
Wang et al. 2000). The problem is that the algorithm needs to collect the residuals
of the measurements or the update series to calculate the underlined variance—
covariance matrices; thus it requires that the measurement dimensions and types
at all epochs be the same.

e Fading Kalman filtering. In order to control the influences of prior state errors
or kinematic model errors on the present estimated state parameters, the fading
filters, using the fading factors to restrict the memory length of Kalman filter
and to make the most use of present measurements, were developed in the field
of statistics as early as the 1960s and 1970s (Fagin 1964; Sorenson and Sacks
1971). We have analysed the basic properties of the fading filter, the abilities in
controlling the influences of the kinematic model errors on the state parameter
estimates and the problems possibly existing in the practical applications (Yang
and Gao 2006c¢).

e Robust filter based on min—max robust theory. The deviation of observation error
distribution from the Gaussian one may also seriously degrade the performance
of the Kalman filtering. Thus, there appears to be considerable motivation for
considering filters which are robustised to perform fairly well in non-Gaussian
environments. Facing this problem, Masreliez and Martin (1977) applied the
influence function of min-max robust theory to replace the score function
of the standard Kalman filter. The basic disadvantages associated with this
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kind of robust filter are that the estimator requires the unknown contaminating
distribution to be symmetric and it cannot work as well as the standard Kalman
filter in Gaussian noise.

e Robust filter based on M estimation theory (Huber 1964) and Bayesian statis-
tics. To resist the bad influences of both state model errors and measurement
outliers, a robust M—M filter is developed (Yang 1991, 1993, 1997, 1999; Zhou
et al. 1997, p. 299) by which the measurement outliers are controlled by robust
equivalent weights of the measurements, and the model errors are resisted by
the equivalent weights of the update parameters according to the divergence of
the predicted parameters and the estimated ones. Furthermore, a robust filter for
rank-deficient observation models was developed by Koch and Yang (1998) by
Bayesian statistics and by applying the robust M-estimate.

Different from Sage—Husa adaptive filtering (see Deng 2003, pp. 162-173;
Mohamed and Schwarz 1999; Wang and Kubik 1993; Wang et al. 2000) and lim-
ited memory filter (Panozzo et al. 2004) as well as the mentioned adaptive filters,
a new adaptively robust filter was developed by combining the adaptive Kalman
filter and robust estimation (Yang et al. 2001a), which applies a robust estimation
principle for measurement vector to resist its outlier effects and introduces an adap-
tive factor for the model predicted state vector to control its outlying disturbance
influences.

After adaptively robust filtering was developed, four learning statistics and four
adaptive factors have been set up based on experiences and have been proved effec-
tive in practical applications. An accompanying adaptive factor with a three-segment
descending function and a learning statistic constructed by using the discrepancy
between the predicted state from the kinematic model and the state estimated from
the measurements have been established. Three other kinds of adaptive factors have
been developed, which are a two-segment descending function (Yang et al. 2001b),
an exponential function (Yang and Gao 2005) and a zero and one function for state
component adaptation (Ou et al. 2004; Ren et al. 2005). Three additional learning
statistics have also been set up, which include a predicted residual statistic (Xu and
Yang 2000; Yang and Gao 2006a), a variance component ratio statistic from both
the measurements and the predicted states (Yang and Xu 2003) and a velocity dis-
crepancy between the predicted velocity from the kinematic model and the velocity
evaluated from the measurements (Cui and Yang 2006).

Two optimal adaptive factors are established, which satisfy the conditions that
the theoretical uncertainty of the predicted state outputted from the adaptive filter-
ing equals or nearly equals its actual estimated uncertainty, and/or the theoretical
uncertainty of the predicted residual vector equals or nearly equals its actual esti-
mated uncertainty (Yang and Gao 2006b). Furthermore, an adaptively robust filter
with classified adaptive factors is developed (Cui and Yang 2006) which is more
effective in tracking the disturbances of the vehicle movements. And an adaptively
robust filter with multi-adaptive factors is also set up (Yang et al. 2006), which is
more general in theory and contains the adaptively robust filters with single adaptive
factor and classified adaptive factors.
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The new adaptively robust filter is more or less based on the assumption that the
measurements at each epoch should be reliable. If it is not true, then the detection
and identification and adaptation procedure can be employed (Teunissen 1990) or
a robust Kalman filter can be applied (Koch and Yang 1998; Schaffrin 1991, pp.
32-34; Yang 1991, 1997; Zhou et al. 1997).

2.2 The Principle of Adaptively Robust Kalman Filtering

Let the linear dynamic system be given by
Xk = Pri—1Xk—1 + Wy, ()

where X denotes m x 1 state vector at epoch #, @ x—1 the u x u transition matrix
and W, the state noise vector. The observational model at epoch #; reads

Li = Ai X + ey, (2)

where L represents ny x 1 observation vector, Ay the n; x m design matrix and ey
the observational noise vector. Let the covariance matrices of Wj and e; be taken
as Xw, and X, respectively, and Wy, W;, e, and e; be mutually uncorrelated and
meet:

E(ex) = 0, E(Wy) = 0, A3)
E(eel ) = Zp, EW W) = 3y, )

Assume that the residual vector is denoted by Vj and the predicted state vector is
Xx; then the error equation and the predicted state vector are

Vk = Lkﬁk - Lk, (5)
X = @51 Xk 1, (6)

with
Tx, = P12y, @+ Zw ©)

where )A(k and )A(k,l are the estimated state vectors at epochs tx and ti_1.
By using the least squares principle,

VPV + (X — X0 Pg, (X — X)) = min, ®)

where P, = Zk_l and Pik = Z%l are the weight matrices of Ly and Xs, respec-
¢ k

tively; we obtain the estimator of the standard Kalman filter (Koch and Yang
1998):
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Xi = (A[PeAy + Pg )" (P Xi + A[PLLy). ©)
Or equivalently
Xt = Xk + Ki(Li — AcXp), (10)
with
—_y_ AT _ AT -1
K = 55 Al (A Zg AT + 207, (11)
T, = 1- KiAdlZg, . (12)

Changing a little bit of the score function of (8), like
N
> pip(vi) + (X — Xo)" Pg (X — X)) = min, (13)
i=1

where p is a convex and continuous function, o is an adaptive factor with values in
0 < ax < 1, we get the estimator of the adaptive filter (Yang et al. 2001a):

Xi = (AfPrAx + axPg )~ (axPg X + A{PiLy), (14)
or equivalently (Yang et al. 2001b; Xu 2007)
Xi = Xk + Ki(Li — AcXp), (15)
where K is an adaptive gain matrix:

K = iz— AT(iAkz— AT+ 371 (16)
o Xk o Xk

The posterior covariance matrix of the estimated state vector is

Zxk =1- KkAk)Z)‘(k/Otk. a7
With the variations of adaptive factor o and the equivalent weight matrix, the
adaptively robust filter will change into various estimators.

Case 1:if oy = 0 and X} = X or Py = Py, then
X = (ATP A 'ATPLL (18)
kU kAk kT kLiks

which is an LS estimator by using only the new measurements at epoch #. This
estimator is suitable to the case that the measurements are not contaminated by out-

liers and the updated parameters are biased so much that the information of updated
parameters should be forgotten completely.
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Case 2: if ax = 1 and T; = X4, then the standard Kalman filter estimators (8),
(9) and (10) are obtained. B
Case 3: if o changes between 0 and 1, and Py = Py, then

X; = (ATPA; + arPg )" (APl + axPg Xp), (19)

which is an adaptive LS estimator of Kalman filter. It balances the contribution of
the updated parameters and the measurements. The only difference between (17)
and (8) is the weight matrix of L. The former uses the equivalent weight matrix
and the latter uses the original weight matrix of L.

Case 4: if a; = 0, then we obtain

X; = (AIP A 'ATRL,, (20)

which is a robust estimator by using only the new measurements at epoch #.
Case 5: if ap = 1, then

Xi = (A[PeA; + Pg ) (A{PLLy + Pg Xp), @1)

which is an M-LS filter estimator (Yang 1997).

The relations of the adaptively robust filter with other estimators are shown in
Fig. 2.1, in which ARF denotes the adaptively robust filter.

If the covariance matrices of the measurement vector Ly and the predicted state
vector X are evaluated by Sage windowing method (see Deng 2003), denoted as
b r and 2§k’ respectively, that is,

P

k
0, =0 r—» LS Adjustment

Py
Robust Adjustment

Py

\4

—»| Kalman Filter
oy =1
ARF -
System i _
y P,

Robust Filter
Py
—» Adaptive Filter
O(k =0~1

Py
—>| Adaptively Robust Filter|

A\ 4

Fig. 2.1 Adaptively robust filter
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m

. 1 B
Ti==Y ViVi— AiZg Al (22)
mj=0

) Ly X, AXT 2

ax =) AXe AX, (23)
j=0
where

Vi = AiXy — Ly, (24)
AX; = X; — X;, (25)

then the adaptively robust filter can include the adaptive Sage filter.

2.3 Properties of the Adaptive Kalman Filter

2.3.1 Difference of State Estimate

Rewriting (9) and (14) as normal equations, and only considering the least squares
situation, that is, P = Py, we have

(A{PeAL + Pg )X = Pg Xy + A[PiLy, (26)
(AUPrAL + axPyg )Xaa = axPg Xi + A{PLy, 27)

where f(k and f(ad denote the state estimates by using standard Kalman filter and
adaptive filter, respectively. Let

X; — Xaa = 8%, (28)
then (27) is changed into
(A{PrAr + aPg )Xp — (A{PrAr + auPg )8Xk = auPg X + A{PiLy.  (29)
Subtracting (29) from (26), we have
(1 — a)Pg X + (A{PeLy + ouPg )8X; = (1 — )P X (30)
or
(A{PLAL + Pg )8X; = (1 — a)Pg (X — Xp). 31)
Denote

X; — Xaa = 8X¢. (32)
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Factually, 6)_(k can be looked as the bias of the predicted state, and (31) is changed
into

(A{PLAL + 0Py )8Xk = (1 — ax)Px, (6X; + Xaa — X). (33)

Finally we have
(A{PAL + Pg )8X = (1 — )P, X4, (34)
5X) = (A{PiAy + Pg )7 (1 — ap)Pg X (35)
It is easy to see that if oy = 1, then 35(1( = 0, that is, Xad = Xk; in this case the state
estimate of the adaptive filter is equivalent to that of the standard Kalman filter; if

o = 0, then

Xad = (A{PLA) AT PLL. (36)
In this case, )A(ad is equivalent to the estimate of the least squares estimation not

considering the information of the state equation, and the error of the predicted state
Xy will not affect the updated estimate of the state.

2.3.2 The Expectation of the State Estimate of the Adaptive Filter

Considering that the observational vector is unbiased, that is EL; = A X}, then the
expectation of Xaq from (27) is

EXqu = (ATPLA; + P )~ (o Pg EX; + A]PLiXp). (37)

If the predicted state vector X is also unbiased, that is EX; = X}, then
EXaa = (ATPiAL + ockPik)_l(A,{PkAk + o Pg )Xy = Xy (38)
It is obvious that if the observational vector L and the predicted state vector X, are
not affected by abnormal biases, then the estimate of the adaptive filter is unbiased.
If the predicted state vector Xy is biased, and the biased vector is denoted by bg o

that is,

EX; = Xi + bg # Xk, (39)

then

EXaa = (A{PiA; + Py ) (o Pg Xi + Py by + ATPAX)),  (40)
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then we have
EXaa = Xi + (A{ PrAs + axPg ) axPg by 1)
or

bXa

= EXaa — Xi = (ATPL AL + aPg ) axPg by, . (42)
Equation (42) gives the influence of the bias bx, of X on the bias bk . of the esti-
mate expectation of the adaptive filter. Equation (42) also tells us that bf(m changes
with the variations of oy and bx, - especially when bx, is beyond a particular region;
ok tends to zero and, in this case, bf( also tends to zero. In other words, the bias
of the state estimate of the adaptive filter is controlled by the adaptive factor oy.
Usually the larger the bias bik of the predicted state, the smaller the adaptive factor
Ol .

Similarly, when EX; # X, the expectation of the state estimate of the standard
Kalman filter is

EX¢ = (A{PrAr + P (P Xi + P by, +A{PAXY  (43)
or
EX; = X; + (A[PeA; + Pg )~ 'Pg by . (44)
Let
by, = EX; — X, (bias of Xy ) (45)
Then
T —1
bg, = (A{PeAx + Pg)”'Pg by . (46)

2.3.3 Posterior Precision Evaluation

By applying the variance propagation law we obtain the covariance matrices of
the estimated state vectors of the adaptive filter and the standard Kalman filter,
respectively, as

S%, = (ATP AL + ockPik)’l(oz,%Pik + ATPA)ATPAL + Py, 7162, (47)

Tg, = (A{PrAc + Py )67, (48)
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in which

AT N
4x8X,qPx, 8Xad + VigPiVad

~2
Oad = rk ’
AT ~ T
o X Py 8Xi+ VPV
Tk
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(49)

(50)

where r; is redundant number of the observations, V,q and V. are residual vectors

of the observations with respect to Xaq and Xy, respectively.

In practice, the posterior precision is evaluated by the mean-square error (Xu and

Rummel 1994), that is,

MSE(Xad) = EXaa — X0)” (Xaa — X),

where Xj denotes the true value of the state vector. Changing (51) as

D

MSE(Xad) = E(Xad — EXaa + EXag — X3)' (Xag — EXad + EXaa — Xp),  (52)

letting

Xad — EXyq = €L (true error vector of Xad)
a

and considering
EX; = Xy, E(Xad - EXad) =0,

we get

R 2
MSE(Xad) = tI‘E(ef(ad ’ e)TA(ﬂd) + Hbﬁad

On the other hand, we have

Xad

E(e,}ad el ) = ZX ; (covariance matrix of ﬁad),
A

which then yields

A _ 2
MSE(Xua) = Zg  + o H (ATPiAL + axPs,) " Py, (EX) — Xp) H .

It is seen from (57) that

(53)

(54)

(55)

(56)

(57)

1. If the predicted state vector ik is unbiased, thatis bx, = 0, then Xad is unbiased,
or bf( = 0; in this case, the MSE of X,q is the trace of its covariance matrix,
-au

MSE(Xaq) = tr(Zg ).

(58)



60 Y. Yang

2. If ik is biased, but o = 0, (57) is still valid, that is the adaptive factor oy controls
the bias of the outputs of the adaptive filter.

Therefore, when the predicted state ik has any abnormal bias due to some sudden
disturbance of the vehicle, the adaptive factor o will be decreased, which leads to
the bias bf(ad of the state estimate of the adaptive filter to decrease, and the mean-

square error of Xad tends to the trace of the covariance matrix of Xad.

In conclusion, the differences between the adaptive filter and the standard
Kalman filter depend on the adaptive factor ap. When the predicted states are accu-
rate, then oy tends to 1, and the state differences estimated from the adaptive filter
and the standard Kalman filter are small.

The unbiasedness of the estimated state vector outputted by adaptively filter is
controlled by the adaptive factor ay; if o tends to zero, Xaq is unbiased.

The MSE of the estimated state vector outputted by the adaptive filter is also
controlled by the adaptive factor oy; if oy tends to zero, the MSE of )A(ad tends to the
trace of its covariance matrix.

The robustness of the adaptive filter outputs has been described in Yang et al.
(20014, b) and Yang and Xu (2003). It has been demonstrated by theory and practical
experiments that the adaptive factor plays significant roles in controlling the influ-
ences of the outlying disturbances of the dynamical information on the estimated
state vector and its MSE.

2.4 Three Kinds of Learning Statistics

2.4.1 Learning Statistic Constructed by State Discrepancy

In the beginning of the development of the adaptively robust Kalman filter, a learn-
ing statistic of the kinematic model errors was constructed by using the difference
between the state estimated from measurements and that predicted from the kine-
matic model at epoch #; (Yang et al. 2001a, b). If the number of measurements at
epoch # is larger than that of the state components, then the estimated state vector is
obtained by using measurement vector Ly, based on the robust estimation principle,
that is,

Xy = (ATP A AT P, (59)

where P; denotes the equivalent weight matrix of Ly, which can be obtained by
the Huber function (Huber 1981), three-segment functions (Yang 1994, 1999; Yang
et al. 2002a, b; Zhou 1989),etc.

The discrepancy between f(k from (59) and X}, from (6) can be measured by
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1

~ — ~2 ~2 ~2 \2
ka - XkH - (Axk1 +AX 4+ Aka)z . (60)

Then the learning statistic expressed by the state discrepancy is set up:
A%, = H— (61)

where “tr”” denotes trace.
It is noted that (1) the number of measurements at computation epoch should be

larger than the number of state components, otherwise the statistic ’Af(k‘ cannot

be constructed; (2) the estimated state vector f(k should be accurate, otherwise the
statistic ‘Af(k‘ cannot reflect the kinematic model errors; and (3) the learning statis-

tic ‘Af(k‘ can only reflect the integrated error of the kinematic model; any disturbing
of the components of the predicted state vector is treated as the whole state outlier.

2.4.2 Learning Statistic Constructed by Predicted Residual Vector

If the measurement vector Ly is reliable, ihen the predicted residual vector \_/k will
reflect the error of predicted state vector Xi. A learning statistic constructed by the
predicted residual vector is (Xu and Yang 2000; Yang and Gao 2006a)

T \2
AV; = Vi Vi ) (62)
r(Ty,)

If there are n; measurements at epoch 7, then AV can be expressed as

mo_o \2

i 2 Vi

AVy = % . (63)
2

> G‘_’k,-

i=1

It is noted that (1) using the learning statistic constructed by predicted residual A‘_fk,
we do not need to evaluate the state vector before filtering; (2) it is not necessary
that the number of measurements be larger than that of state components; and (3)
AV contains more measurement error influence than the state discrepancy statistic

‘Aik‘.
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2.4.3 Learning Statistic Constructed by the Ratio of Variance
Components

If Ly and X are treated as two groups of observations at epoch 7, their variance
components should reflect their accuracies. Thus we can construct a new learning
statistic by the ratio of the variance components to judge the kinematic model relia-
bility. The Helmert variance component for Ly and X} is respectively expressed as
(Koch 2000; Koch and Kusche 2002)

vipv
6%k k—k{‘, (64)
rr — tr(N""Ny)
T P Vo
2. = V XkVXk 65)

OXk my — tI‘(N 1P§k) ’

where GOk and 62 oK, denote the estimates of variance components of L; and X;.,

respectively, ny is the number of measurements at epoch #, my is the number of
predicted parameters of the state vector, Vy is the residual vector of L; expressed
by (5) and Vik is the residual vector of Xp, that is,

Vik = Xk — Xk = Xk — q’k,k—lﬁk—l (66)
and
Ni = A{PiA, N = Ni + Pg = A{PiA; + Pg . (67)

The approximate estimates of the Helmert variance components 00 cand & a X, Are

VPV
og, ~ K= (68)
Njc
and
T p_v_
6.~ M (69)
0Xx my, !

The ratio of &OZY and 6% « 18 defined as the learning statistic
k

0Xy

2 2
S0k mk%k

2 T p— Vo
fopan N V XkVXk

Sk = (70)

It is noted that (1) the computation of the learning statistic Sy should have redun-
dant observations, otherwise the learning statistic will not reliably reflect the model
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errors; (2) Vi and Vik should correspond to the same estimated state vector Xk; and

(3) the computation burden is heavier than the other two learning statistics, A)N(k‘

and AV, if the iterative computation procedures are applied.

2.4.4 Learning Statistic Constructed by Velocity
Based on the robust estimate X, of the position parameter vector from the measure-

ments, the estimate )A(kq of the state estimate at epoch #;_; and the sample interval
tr — tk—1, we obtain the predicted velocity vector (Cui and Yang 2006)

= Xp— Xp
X = $. (71)
Tk — tk—1

Then the learning statistic for judging the kinematic model disturbing corresponding
to the predicted velocity information is constructed as

)}k — )_(kH/ /tr(Zik), (72)

where X denotes the predicted velocity vector from the kinematic model and Ei
k

A;(k =

is its covariance matrix.

It is noted that (1) if AX is significant outlying, then it indicates that the pre-
dicted velocity is outlying or that the kinematic model has large errors and (2) the
computation of the learning statistic AXj should also have redundant observations,
otherwise X cannot be obtained.

2.5 Four Kinds of Adaptive Factors

2.5.1 Adaptive Factor by Three-Segment Function

An adaptive factor o of a three-segment function is combined by three parts, that
is, if a learning statistic is smaller than a particular criterion, then the adaptive factor
oy is equal to 1, if the learning statistic is significantly outlying, then the adaptive
factor oy is equal to O, otherwise oy decreases with the statistic growing. We employ

the learning statistic ’Af(k‘ as an example to express the adaptive factor (Yang et al.
2001a):
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Fig. 2.2 Adaptive factor of A
three-segment function Oy
1

0 c < ‘AYI(‘

1, |A)~(k| = ¢y,

c1— Af(k ~
c

= cll_q. 7, e < A% e, (73)

0, ‘Aik’ > Cq,

where cg and ¢ are two criterion constants, with practical values of co = 1.0 — 1.5
and c; = 3.0 — 4.5.

Obviously, if the value of ‘Af{k’ increases, o decreases. o changes between
[0, 1] (see Fig. 2.2). This kind of adaptive factor is a redescending function, because

o descends to zero when the statistic ‘Af(k) is larger than the rejection boundary
Cl.

2.5.2 Adaptive Factor by Two-Segment Function

We still employ the learning statistic ‘Af(k‘ as an example to express the two-
segment adaptive factor (Yang et al. 2001b):

1, Aik =gc

——, |AX| > ¢,
AXy

o = (74)

where c is a constant, the optimal value being 1.0 (Yang and Gao 2006a). It is a
descending function; see Fig. 2.3.

2.5.3 Adaptive Factor by Exponential Function

An adaptive factor of exponential function is (Yang and Gao 2005)



2 Adaptively Robust Kalman Filters with Applications in Navigation 65

Fig. 2.3 Adaptive factor of 4
two-segment function -
k
1
0 c ‘Axk‘
Fig. 2.4 Adaptive factor of 4
exponential function Oy
1
0 c [ ‘AYI(‘
1, AXy| < ¢,
o = % 2 - 75
S PEUSARCE N A (75)

where c is the same as in (74). It is also a descending function; see Fig. 2.4.

2.5.4 Adaptive Factor by Zero and One

If a state parameter is normal then the adaptive factor equals 1, otherwise it equals
0 (Ou et al. 2004; Ren et al. 2005):

1, [AXy| <c,

. (76)
0, |AXyi| > c,

o =

where AX,; is the ith component of the discrepancy state vector.

We can use another two learning statistics, AVk from the predicted residual
vector and S; from the ratio of variance components of the predicted state and
measurements, to construct the same kinds of adaptive factors.
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Fig. 2.5 Position relative to
fixed receiver

North (Km)
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2.5.5 Actual Computation and Analysis

The computation example is the same as that in Yang et al. (2001a). A data set
was collected by using a Trimble 4000SSE receiver mounted on an aircraft with the
reference receiver fixed at a site about 1 km from the initial aircraft location. After
about 10 min of static tracking, the aircraft took off for a flight time of about 90 min;
see Fig. 2.5.

In order to analyse the roles of the adaptive factors in adaptive filtering, the
highly precise results from double-differenced carrier measurements were used as
“true values” for comparing with the results from the code measurements. The
constant-velocity model of the Kalman filtering was employed. The initial vari-
ances for positions, velocities and P2-code measurements were selected separately
as 0.2m?,9 x 10~>m?/s%and 1.0 m”. The spectral density for velocities was chosen
to be 0.01 m?/s%. The selected dynamic model covariance matrix was the same as
that used in Schwarz et al. (1989), Yang et al. (2001a), Yang and Xu (2003) and
Yang and Wen (2003).

The following four schemes were carried out:

e Scheme 1: Classical Kalman filtering (KF)

e Scheme 2: Adaptive Kalman filtering based on the three-segment function of the
state discrepancy (AKF1)

e Scheme 3: Adaptive Kalman filtering based on the two-segment function of the
state discrepancy (AKF2)

e Scheme 4: Adaptive Kalman filtering based on the exponential function of the
state discrepancy (AKF3)

The computation results are shown in Figs. 2.6, 2.7, 2.8 and 2.9 and Table 2.1.

From the calculation results above, we find that
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Fig. 2.7 (a) Errors of AKFI. (b) Actual oy determined by three-segment function, where
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Table 2.1 Comparison of RMS (unit: m)

KF AKF1 AKF2 AKF3
X 1.1630 0.5648 0.5948 0.5839
Y 1.5070 0.4438 0.5119 0.4766
z 1.5455 0.7804 0.8201 0.8028
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The influences of the disturbances of the fly around the epoch 1,000 and during
the epoch 3,000 through 4,000 on the Kalman filtering are very significant;
see Fig. 2.6. The RMS of the position are 1.1630, 1.5070 and 1.5455 m,
respectively.

The adaptive filtering based on the three kinds of adaptive factors gives reason-
able results, and the influences of the disturbances of the fly are controlled.

It is shown, by the theoretical and practical charting curves of the adaptive
factors, that the result corresponding to the three-segment function is superior
to those corresponding to the two-segment function and the exponential func-
tion. The reason is that the three-segment function decreases the adaptive factor
quickly when the errors of the predicted state increase and gives the signifi-
cant outlying predicted state zero factor; this kind of outlying predicted state
from the kinematic model does not have any effect on the filtering results; see
the second, third and fourth columns of Table 2.1 (AKF1, AKF2 and AKF3),
respectively.

2.6 Comparison of Two Fading Filters and Adaptively Robust

Filter

In order to control the influences of prior state errors or kinematic model errors on
the present estimated state parameters, the fading filters, using the fading factors to
restrict the memory length of Kalman filter and to make the most use of present mea-
surements, were developed in the field of statistics as early as the 1960s and 1970s
(Fagin 1964; Sorenson and Sacks 1971). The basic properties of the fading filter
have been analysed, and the abilities in controlling the influences of the kinematic
model errors on the state parameter estimates and the possibly existing problems in
the practical applications have been discussed, respectively (Yang and Gao 2006c).
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2.6.1 Principles of Two Kinds of Fading Filters

Assume that the estimated state vector and the residual vector are, respectively,
Xx—1 and VXH at epoch #;_1; the corresponding re-estimated state vector of Xy_1

by using new measurement vector Ly at epoch #; is denoted by X_1; then the
corresponding error equations are, respectively,

Ve =X —Xpo1s a7

Xi—1
Wit = Xp — i1 X1 (78)

The fading filtering result is the same as (10).

If the covariance matrix of the estimated state vector Xk_l at epoch t;x_p is
inflated, and the Xk_l is treated as a stochastic vector which is like the observa-
tional vector, then the corresponding risk function is like (Yang and Gao 2006c)

1
—vyliy-1 T -1 . AT—ln
Q) =V X, Vi + )\kV)A(k_I ZXHVXH + Wy Xy, Wi = min, (79)
where Ay is the fading factor which satisfies Ay > 1. The corresponding covariance
matrix Efim follows:

T
g, = MPu-1Zg  Piii + Zw,. (80)

where E)A(k—l is the covariance matrix of the state estimated at epoch #;_1, which
results in fading filtering.

The obvious difference between the fading filter and the standard Kalman filter
is that the prior state covariance matrix in the fading filter is inflated by A times in
order to reduce the contribution of the prior state and strengthen the contribution of
the present measurements on the last state estimate.

Another fading filter is based on the following risk function:

_ _ I o114 .
Q(k) = V,{Zk le + V)Z;k—l Zf(klilekil + }\—kw,{Zwklwk = min. (81)

Then
Tx, = 1Ty Pl + MEwW, (82)

The two fading filters above are very similar, and both of them are different from
the standard Kalman filter with the risk function (8) or

QM) = ViE Vet Vi B Vi A WEWe=min. 83)
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The key problem of fading filter is to construct a reasonable fading factor. Two
kinds of fading factors, based on the optimization theory, are established (Fagin
1964; Fang 1998), one of which is expressed as

1
e = max{1, —tr(NeM D}, (84)
n
where tr[-] denotes the trace of matrix. My, and N; are defined as
_ T T
M; = Aka,k_l):Xk_l D 1A% (85)
Ni = Z¢, — AiZw AL — X, (86)

where X5, is the covariance matrix of the predicted residual vector Vi (Yang et al.
2001; Yang and Xu 2003):

Ty, = BV, V). (87)

Usually Xy, is calculated by windowing estimation method (Xia et al. 1990), similar
to the Sage filtering (Yang and Xu 2003), that is,

k
. 1 - T
Too= 1 Zlvivi : (88)
i=
One simpler expression of (84) is defined as follows (Sorensen and Sacks 1971):

M = max{l, r(Ng/Mp)}. (89)

Theoretically, the fading factor \; above is optimal. Increasing the predicted
residual vector ka will increase the covariance matrix Xy, based on (88) and results
in an optimal fading factor Ay.

Formula (88) can be improved as (Fang 1998)

Me—1 ViV
T+hge—1 k> L,

ka = (90)
TVovh, k=1,

where vy is the predicted residual vector when k = 0.

The improved Xy, expressed by (90) is more sensitive than (88) in reflecting the
kinematic model errors at present epoch, since Xy, in (90) does not average the
historical information, which uses the present information directly.
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2.6.2 Comparison of Fading Filter and Adaptive Filter

The adaptively robust filter mentioned above is intermediate between fading filter
and standard Kalman filter. It does not distinguish the errors of X;_j from the kine-
matic model errors. It treats the predicted state vector X; as a whole and adopts the
principle that angk Z%:Vik is a minimum, in which the adaptive factor oy changes
between [0, 1]. When the kinematic model error increases or the vehicle movement
is in an unstable state (Fig. 2.10), ay is smaller than 1 or even equals 0. When
the kinematic model error is small enough, oy equals 1, and the adaptive filtering
changes into the standard Kalman filtering.

Analysing the adaptively robust filtering and fading filtering, we find that the
primary differences are as follows:

1. The adaptively robust filtering adopts the principle of robust estimation, and it
can control the influences of the measurement outliers on the estimated state
vector.

2. The adaptive factor ay acts on the covariance matrix of the predicted state vec-
tor X, while the fading factor acts on the covariance matrix of the previous
estimated state vector Xk_l.

3. In the fading factor, the matrix N; expressed by (86) may be indefinite, which
usually leads to the failure of the filter. If the adaptive filter is expressed by (14),
the adaptive factor can be changed in [0, 1]. If the adaptive filter is expressed
by (15) and (16), then the adaptive factor can be changed in [0, 1]. The adaptive
factor is determined by observational information and state predicted informa-
tion, which is capable of adapting in real time. Because the adaptive factor is
constructed by the discrepancy between the predicted state vector and the esti-
mated state vector by measurements, it has strong adaptation ability and real time
flexibility.
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2.6.3 Actual Computation and Analysis

The actual data was collected by using two Trimble 4000SSI receivers mounted
on an aircraft. To analyse the roles of the adaptive factors in the adaptive filter-
ing, the highly precise results from double-differenced carrier measurements were
used as “true values” to compare with the results from the code measurements. The
constant-velocity model of the Kalman filtering was employed. The initial variances
for positions, velocities and C/A-code were selected separately as 0.2 m2, 9 x 107>
m?/s> and 1.0 m?, respectively. The spectral density for velocities was chosen to be
0.01 m?/s%. The selected kinematic model covariance matrix was the same as that
used in Jazwinski (1970) and the following three schemes were carried out:

e Scheme 1: Standard Kalman filtering (SKF)
e Scheme 2: Fading Kalman filtering (FKF)
e Scheme 3: Adaptively robust Kalman filtering (ARKF)

The errors of the X axis of the three schemes relative to the “true values” are
plotted in Figs. 2.11, 2.12 and 2.13. Because the errors in the X, Y and Z axes are
similar, only the errors of the X axis are given. The comparison of RMS is shown in
Table 2.2.

From the calculation results above, we find that

1. The influences of the disturbances during the flight on the standard Kalman
filtering are very significant; see Fig. 2.11 and Table 2.2.

2. From Figs. 2.11 and 2.12 and Table 2.2, we find that the fading filtering can
control the influences of the kinematic model disturbances on the navigation
results to a certain extent, and the results are obviously superior to the standard
Kalman filtering.

3. The results of adaptively robust Kalman filtering are slightly superior to the fad-
ing filtering. The adaptively robust Kalman filtering can not only control the
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Fig. 2.11 Errors of scheme 1
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Fig. 2.12 Errors of scheme 2 10 -
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Table 2.2 Comparison of RMS (unit: m)

CKF FKF ARKF
X 2.006 1.415 1.331
RMS Y 1.338 0.759 0.675
zZ 1.936 1.539 1.452

influences of the kinematic model disturbances but also control the influences of
the measurement outliers on the navigation results; see Fig. 2.13 and Table 2.2.
The results of the adaptively robust filtering are very stable and robust, and the
calculation is very flexible.

In conclusion, the fading filtering can control the influences of the kinematic
model disturbances on the navigation results to some extent, and its results are obvi-
ously superior to standard Kalman filtering. The fading filtering uses the fading
factor to inflate the covariance matrix of the estimated state vector at the former



74 Y. Yang

epoch in order to reduce the influences of the state model errors on the new esti-
mated results, but it is difficult to distinguish the model errors from the errors of
the former estimated state vector. When the disturbances of the kinematic model are
large enough, it is difficult to control their influences by the fading factor \y.

2.7 Comparison of Sage Adaptive Filter and Adaptively Robust
Filter

In the adaptive Kalman filtering algorithms, use of the Sage—Husa filter (Sage and
Husa 1969) is very popular for approaching the variance—covariance matrices by the
windowing method (see Jazwinski 1970) and keeping a good consistency between
the predicted residuals and the corresponding statistics. A windowing approach of
innovation-based adaptive estimation has been studied by Mehra (1970). It makes
the covariance matrices of the observation equation and the state errors adapt to the
observation information (Mohamed and Schwarz 1999).
The principle of the Sage adaptive filter is

Q) = VIE, 'V + V§kﬁ§:V§k = min, ©1)

where 3  and flgk are estimated by window method.

If the covariance matrix of the current observational errors is computed by the
innovation vectors from the previous m epochs, then the adaptive filter is called IAE
(innovation-based adaptive estimation) filter. If the covariance matrix is computed
by the residual vectors, then the adaptive filter is called RAE (residual-based adap-
tive estimation) filter. These two adaptively windowing estimations have appeared
many times in the literature (Mohamed and Schwarz 1999; Wang et al. 1999; Hu
and Ou 1999).

2.7.1 IAE Windowing Method
Suppose that the observational errors are normally distributed. If the width of mov-

ing windows is chosen as m, the estimators ka of the covariance matrix EVk can
be given by

92)

Considering (24) we have the relation of the covariance matrices of the measurement
vector, predicted residual vector and predicted state vector as

=Xy, — AkszA,{. (93)
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Substituting (92) into (93), we obtain the covariance matrix fk of observation
information at epoch #; as

3 =32y — AZg AL (94)

2.7.2 RAE Windowing Method

Similar to (92), the covariance matrix of the observational residual vector V; can be
expressed as

Tvo=—> Vi Vi, (95)
From (95), we can estimate the covariance matrix X, of the observational vector at
epoch #; as

=3y, +AZg AL (96)

In order to estimate adaptively )A:k from (96), if(k and residual vector Vi at epoch

tx are required, while to estimate flgk we must first have . Therefore, the covari-
ance matrix of the observational vector at epoch f; can only be computed using the
measurement residuals from the previous m epochs before #;_1:

1 m+1
Ty = > Vi Vi (97)
j=1
Then (96) can be changed into
=2y + ATy AL (98)

After having ) k> the weight matrix, Py, of the observational vector at epoch ty is
computed.

Comparing the IAE estimators (92) and (93) with the RAE estimators (97) and
(98), we can make following inferences:

1. The covariance matrix X estimated by IAE includes the errors of predicted state
vector X. The larger the error of Xy, the larger the error of Vy, which leads to a
poor reliability of the covariance matrices E‘-,k and Xg.

2. The covariance matrix % estimated by RAE is indeed the covariance matrix
Y -1 at epoch #;_1. In order to compute ka and X by using the residual vec-

tor Vy, we have to compute Xk at first, while to compute Xk we must have 3 k-
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Thus we have to use the residuals before the epoch #;_;. The reliability of this
prediction depends on the consistency between the measurement accuracy of
the current epoch and those of the previous epochs. Otherwise, the representa-
tion and reliability of the covariance matrix from this prediction can hardly be
ensured.

3. The covariance matrix % k estimated by IAE is likely to be negatlve -definite, that
is, the covariance matrix EV is possibly smaller than A; X Ak

4. In general, the covariance matrix Evk computed from (92) is far smaller than
f‘-,k computed from (90).

5. The computation of 3« based on IAE or RAE needs the measurement residuals
or the innovation vectors from the previous m epochs, which increases the stor-
age load of previous information. In addition, the width of moving window m is
difficult to determine.

6. The covariance matrix ﬁk computed from (93) or (96) is an average of previous
accuracy information, which is almost impossible to use to describe the undula-
tions of the observations at the present epoch. So this kind of adaptive estimation
is difficult to use for realizing a real self-adaptation.

7. To estimate the covariance matrix % whether using IAE or RAE requires that
observational vectors not only have the same dimension at all epochs but also be
the same observation type. Otherwise it is impossible to compute the covariance
matrix x using (93) or (96). It is a fatal weakness of IAE or RAE to estimate
3. In turn, it makes IAE or RAE hard to apply in kinematic positioning or
navigation.

2.7.3 The Problems of the Windowing Estimation for Covariance
Matrix of Kinematic Model

Let the correction vector of the predicted state vector be given by AXy; then
AXy = X — X;. (99)
It is easy to deduce that
Zw, = Bax, + Zg, — P 1Zg Py (100)

It should be noted that E(AX}) = 0; then the covariance matrix of AXjy can be
expressed as

1 T
TaAx = — Z AX i AX . (101)

The estimate fwk of Xw, can be obtained as
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A

Sw, = Zax, + g, — Per1Zg, O, (102)

The estimation of f)wk with (102) encounters the following problems: (1) the
expression of Xy, includes the covariance matrix ZX of the state parameter esti-
k

mates at epoch #; however, the computation of 25( needs flwk; (2) the expression
k

of flwk includes % AX» Which is computed by using the AX; = Xj — ij from m
epochs and involves Xk — ik at epoch #; which also needs fwk; (3) even if we can
estimate AX,_, and flwk_l using the previous AX; of m epochs from epoch #;_;
and take the latter as an approximation of fwk, it is hard to make ﬁwk adapt to
the real kinematic noise level of the motion of the vehicle because the state distur-
bance at epoch 7 cannot be reliably reflected by the disturbances from the previous
m epochs. It is the same case that b AX,_, estimated with the average of AX; AXT
of m epochs cannot reflect the state noise level at epoch #;, especially when there 1s
a notable sudden change in state.

In order to avoid the problems mentioned above, we directly estimate flwk.
Considering (4), (8) and (20), we express AXy as

AX; = —Ki Vi (103)
Then
Tax, = KiZy Kf. (104)
Once the estimate of fl\-,k is obtained with (92), we can estimate X Ax, as
Tax, = KiZy K. (105)

In the stable state, iwk can be approximately substituted by b3 AX,» that is,

A

Tw, = Kkika,{. (106)

It should be mentioned that there exists another pair of contradictions in the above
adaptive filtering process. Increasing the covariance matrix of state noise using the
adaptive estimation is equal to decreasing the covariance matrix of observation
noise, and vice versa. So if Xw, and X are increased or decreased at the same
time, a contradiction arises, which sometimes makes an infinite loop and leads to
divergence.

2.8 Some Application Examples

Example 1. A flight experiment is chosen as an example. The data sets were col-
lected by using Trimble 4000SSE on a flight (Yang et al. 2001a, b). The available
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measurements are C/A-code, P2-code pseudoranges, L1 and L2 carrier phases and
Doppler measurements with 1s data rate. The rover receiver was mounted on an
aircraft, and the reference receiver was fixed at a site about 1 km from the initial
aircraft location. After about 10 min static tracking, the aircraft took off, and the
flight time was about 90 min. The flight states have two notable sudden changes,
one is close to epoch 1,000 since the plane takes off and the other is between epoch
3,000 and 4,000 since the flight turns round.

The double-differenced C/A-code and P2-code measurements are employed in
the test performance. The constant-velocity model of Kalman filter is employed. An
initial variance of 0.2 m? for positions, of 9 x 10~%m?2s~2 for velocities, of 1 m?
for code measurements, and with spectral density of 0.2 m?s~3 for velocities are
selected. The dynamic model covariance matrix is chosen as (Schwarz et al. 1989)

. QAR QAL
FI‘EWTFI‘ = | 5
5QAZ% QAL

where Q; denotes the spectral density for velocities and Af denotes a sampling time
interval.

The highly precise results from double-differenced carrier measurements are
used only as “true values” for comparing with the results from the code measure-
ments, in which the ambiguities are resolved on the fly using LAMBDA method
(Teunissen et al. 1997). The following two schemes are performed:

e Scheme 1: Standard Kalman filtering, i.e. ay= 1 and P; = Py; see Fig. 2.14
e Scheme 2: Adaptive Kalman filtering, in which the adaptive factor oy is deter-
mined by (73) and Py, = Py; see Fig. 2.15

Figures 2.14 and 2.15 show that the two unstable states of the flight are obviously
reflected in the results of the standard Kalman filtering (Fig. 2.14) and the adaptively
robust filter does resist the influences of the dynamic model errors (Fig. 2.15).
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Fig. 2.15 Adaptively robust 10 -
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Fig. 2.16 Trajectories by differential positioning (right), adaptively robust filtering (middle) and
receiver navigation (left)

Example 2. Road information updating by GPS: A GPS receiver is mounted on
a vehicle, and a referenced GPS is fixed on a known station (Yang et al. 2004). The
pseudorange measurements are employed in the test. Two schemes are performed:

e Scheme 1: Differential GPS positioning
e Scheme 2: Adaptively robust filtering

The two kinds of results and the navigation trajectory results are shown in an
image map with the scale 1/50,000; see Fig. 2.16.

Figure 2.16a, b explicitly shows that the receiver navigation results and the dif-
ferential positioning results have significant systematic errors. If the differential
measurements number is less than the number of states, the differential positioning
method will not give any position result or give an outlying result. The adaptively
robust filtering usually gives reasonable results.

Theoretical analyses and many applications have illustrated that the adaptively
robust filter with the corresponding adaptive factors and learning statistics can not
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only resist the influences of the measurement outliers but also have a strong ability to
control the influences of the state disturbances. It is flexible in computation because
the adaptively robust filter is very similar to the standard Kalman filter.

The adaptively robust filter can be applied in some other fields, for example, in
crustal deformation, in which the adaptive factor can be used with the geophysical
deformation model information, and the robust equivalent weights can be employed
with the repeated measurements (e.g. GPS).
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3.1 Introduction

Airborne measurement of gravity has long been a goal for geodesy and geophysics,
both to serve geodetic needs (such as geoid determination) and in order to provide
efficient and economic mapping of gravity anomalies for geophysical exploration.
Although airborne gravimetry has been attempted since the 1960s (LaCoste 1967), it
is only in the 1990s, with the development of carrier-phase kinematic GPS methods,
that the accuracy has reached a useful level. In later years new gravity acceleration
sensors and improved GPS processing methods have resulted in airborne survey
accuracies of 1 mGal (107 m/s?) or less at a resolution of a few kilometers for
several commercial operators (Williams and MacQueen 2001), typically operating
in relatively small regions for geophysical exploration and flying during optimal
conditions (e.g., at night when turbulence is minimal). For geodesy, however, the
need for airborne gravity is more large scale, with airborne gravity providing not
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only an obvious means of gravity field data over large, inaccessible regions, such as
polar and mountainous areas, but also an opportunity for seamless surveys across
land and marine areas, giving the possibility of accurate geoid models across the
coastal zones, useful for both geodetic surveying and oceanographic determination
of mean dynamic topography.

The first long-range airborne gravity survey of a continental-scale region was the
airborne survey of Greenland in 1991-1992 by the group of the US Naval Research
Laboratory, in cooperation with NOAA, NIMA, and the Danish National Survey
(Brozena 1992). The survey reached an estimated accuracy level of 4-5 mGal at
12-15 km resolution and was flown at high altitude (4,100 m) and relatively high
speed with a large, long-range P3 aircraft. The NRL airborne gravity activities have
since been continued and improved in accuracy, with major surveys in 1992-1999
covering large parts of the Arctic Ocean, with an accuracy level of around 2 mGal
for the later years (Brozena et al. 1996). Also Russian operators have been per-
forming routine airborne gravity observations, especially over Antarctica and the
Arctic, but early surveys such as the work of the Russian Antarctic Expeditions
in the 1980s and 1990s (Aleshkova et al. 2000) and the Polar Marine Geological
Research Expeditions (PMGRE, Lomonosov) in the Arctic did not apply kinematic
GPS methods (positioning was instead based on barometric heights and radion-
avigation systems), and accuracies were often quite low (5-10 mGal or more).
Figure 3.1 shows some of the typical aircrafts used in the 1980-1990s large-aircraft
geophysical surveys in the Arctic and Antarctica. Operation of aircraft of this size
obviously limited early applications of airborne gravimetry to large countries and
organizations.

Implementation of airborne gravity survey systems in smaller aircrafts was done
by several research groups in the 1990s, as well as by several commercial com-
panies. Some first applications with modern kinematic GPS positioning were the
CASERTZ Antarctic Program (Bell et al. 1992) and the airborne gravity survey
of Switzerland (Klingele et al. 1995). In parallel with this several commercial
companies such as Carson Geophysics and LCT developed airborne gravity surveys
based on smaller aircrafts such as the DHC-6 Twin-Otter or the Cessna Caravan
(Fig. 3.2).

Airborne gravity at 1-2 mGal r.m.s. accuracy level in small aircrafts is now fully
operational and allows the collection of high-quality airborne gravity data at a typ-
ical resolution around 4-6 km. Some private companies, using specially developed

Fig. 3.1 Left: Orion P-3 aircraft used in the US NRL airborne gravity program; right: IL-76 geo-
physical laboratory used in the PMGRE Russian polar airborne gravity program. Photos courtesy
J. Brozena (NRL) and M. Sorokin (PMGRE)
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Fig. 3.2 Twin-Otter (leff) and Cessna Caravan (center) are the most popular aircrafts used for
airborne gravity today, due to their excellent performance at low air speeds. Right picture shows
a typical cabin layout with power conditioner, GPS units, navigation display, and gravimeter in
protection box. DTU-Space photos (Jan Mayen Island and Mongolia)

gravity sensors (either modified airborne gravimeter systems, or custom-made, or
Russian INS-based systems) now routinely may obtain sub-mGal accuracies for
geophysical exploration purposes (Elieff and Ferguson 2008). For high-resolution
gravity field mapping, development and application of airborne gravity gradiome-
ters is currently a very active commercial development area for a couple of large
companies, as only the use of gravity gradients will allow the very high resolution
required for mining applications.

In this chapter we will outline some of the basic principles of airborne gravime-
try, with special focus on geodetic applications, and give some examples from recent
large-scale surveys. For geodesy, the main focus is more on absolute accuracy
and long-wavelength stability, since long-wavelength errors in gravity transform
to large geoid errors. For geophysical exploration, focus is mainly on the short-
wavelength performance, and ultimately making reliable detection and mapping of
small, elusive gravity signatures.

With the advent of geodetic satellites such as GRACE and GOCE, the geodetic
role of airborne gravity is very much to fill-in the intermediate wavelength bands
between satellite gravity (with resolution of hundreds of kilometers) and the resolu-
tion of a long-range airborne gravity survey, which could typically be in the 5-10 km
range depending on aircraft speed and the needed along-track filtering. For a rough
estimate of the variability of the geoid in this wavelength band, the Kaula rule can
be used to give an estimate of the omission errors. Based on the Kaula rule, the
r.m.s. geoid variation above harmonic degree npy,x will be

64

[m]. ey
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This corresponds for spherical harmonic degree 200 (the expected resolution of
GOCE) to around 32 cm r.m.s. and with an airborne survey of 10 km resolution
(harmonic degree 2,000) to 3 cm r.m.s. It should be pointed out, however, that the
Kaula rule is for the global average behavior of the gravity field and that typical
regions for an airborne survey could have a much higher local variability.
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3.2 Principles of Airborne Gravimetry

The basic principle of airborne gravimetry is relatively simple. Acceleration mea-
surements in an aircraft will be due to both gravitational attraction g and the
ficticious forces f due to vehicle movement, so an accelerometer triad will measure
an apparent force

f=g-1 ()
If the position vector r of the aircraft is known at all times, e.g., from kinematic GPS,
the gravitational acceleration g can be found. Equation (2) only holds in an inertial
system of reference; in a rotating system, such as the conventional east, north, up
(E,N,U) local level system, the equation will be of the form

[=8-F—Q@xQXxr+22xi+Qxr ?3)
Here the first correction term is the centrifugal force, and the last two terms are
the Coriolis and Euler terms. €2 is the rotation vector. Equations (2) and (3) are
also the basic equations for inertial navigation, where g is assumed known, and
the position and velocity instead found from measurements of f and Q measured
(by ring laser gyros) or mechanically controlled and computed from position (by a
gyrostablilized platform). Alternatively both » and g can be determined by systems
aided by independent position measurements (e.g., by GPS), giving rise to inertial
vector gravimetry. We will not treat these issues here, as all systems applied for
gravimetry in practice until now only are concerned with the vertical component
(“scalar gravimetry”). A recent review of the principles of inertial navigation and
gravimetry can be found in Jekeli (2000).

For the vertical component, with a conventional change of the gravity and accel-
eration measurement coordinate axis to be positive down, Eq. (3) becomes of the
form

& =4ap — Vi, — (i + 2wie)COsQ -V — @ - Wy, )

where ¢ and A are latitude and longitude, respectively, and w the sideral earth
rate. The Euler term has here been neglected (rotation rate assumed constant); the
centrifugal force due to earth’s movement is included in normal gravity.

In the commonly used gravimeter systems, the vertical acceleration measurement
is done on a gyrostabilized platform. Such a platform would never be perfectly
horizontal and have small tilts, which means that the measurement of a, will be
biased. Expressing the gravity g, as the sum of normal gravity y and the free-air
anomaly Ag,

9
gy =y +Ag=1y,— B—ZH + Ag =y — 0.3086 [mGal/mlH + Ag,  (5)
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and noting that gravity is always measured as a relative measurement, the funda-
mental formula for airborne gravity measurement becomes

Ag=a—N'"—8geor — 8giit — Yo +8 — v, +0.3086(h — N), (6)

with the notation

a: the measured acceleration along the vertical

h'" vertical acceleration derived from GPS

ao: airport base reading (zero level of the gravimeter)
g0: airport reference gravity value

h: GPS ellipsoidal height

H: orthometric height

dgh:  gravimeter platform tilt correction (due to the non-verticality of the
acceleration sensor)

8geor:  Eotvos correction (due to the movement of the platform over a curved,
rotating earth)

Y0: normal gravity at sea level

N: geoid height

The advantage of formulating Eq. (6) by free-air anomalies is that Ag opposed
to g itself only varies relatively weakly with height. It is a common misconception,
especially in geophysics, that the free-air anomaly refers to gravity at sea level;
free-air anomalies are in the modern view a full three-dimensional quantity, and
the variation of the free-air anomaly with altitude is to first order equivalent to the
vertical gravity gradient, which can vary strongly in mountainous topography. Since
heights in airborne gravimetry can be many kilometers, it is usually not sufficient
to use a constant free-air gradient (—0.3086 mGal/m), and the more exact height
dependence for normal gravity must be used:

dy 9%y 2
y =yt g (H=N)+ o (H =N, (7
with the gradient terms slightly depending on latitude, with the first term —0.30877
(1 — 0.00242 sin’¢p) and the second for the GRS80 reference field —0.75x 10~ h?
[mGal/m?] for the GRS80 ellipsoid. The difference between the formulas at & =
4 km is more than 1 mGal and therefore significant. When gravity anomalies are
to be used for geoid determination, an atmospheric correction must also be applied.
This amounts to +0.87 mGal at sea level, but changes with height and is only +0.53
mGal at 7 = 4 km.

The Eotvos correction of the fundamental equation (6) contains a large heading-
dependent term and a smaller centrifugal force term and may on a sphere be
expressed as

88eot = —2wcos gy, — (O + )/R, ®)
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where w is the earth rotation rate, R the earth radius, ¢ the geographic latitude, and
w, and v, north and east velocity components. For a typical small-aircraft survey
speed of 140 knots (e.g., a Twin-Otter), this gives a correction of 1,127 mGal for an
E-W flight on the equator. Although large, the correction only changes slowly and
may be determined with kinematic GPS with high accuracy.

The off-level correction § gy, is closely related to the mechanics of the gyrostabi-
lized platform with the gravimeter sensor. Figure 3.3 illustrates the basic principle.
Two horizontal accelerometers provide a measurement of apparent horizontal accel-
eration in two orthogonal directions x and y, but if the platform has tilt angles ¢, and
€y, the tilt error due to non-vertical measurement of gravity may be shown to be

a2 2

Sgiit = —, 9
&iilt 2g ( )

witha = /a2 + a§ being the measured acceleration and ¢ = ,/q% + qzzv the true

horizontal acceleration. The latter can be measured with GPS, and in principle §gii
can thereby be determined directly; however, the term is non-linear and therefore
subject to a serious bias in connection with the necessary filtering. An alternative
formulation of the tilt correction problem may be found in Olesen (2002), where
a careful modeling of the platform attitude errors gives more linear tilt correction
errors.

The careful modeling of the tilt correction is the key for bias-free airborne grav-
ity; in principle most gravimeter sensors, especially of the LCR type, show very low
drift (Fig. 3.4). With proper modeling of the correction terms there is therefore in
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Fig. 3.3 Principle of gyrostabilized platform for the LCR gravimeter. From Valliant (1991)
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Gravimeter bias drift, S-99 Mongolia 2004 and 2005
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Fig. 3.4 Example of gravimeter drift of an LCR gravimeter (S-99) during 2 month-long airborne
gravity campaigns in Mongolia (DTU-Space)

principle no specific need for the widespread use of crossover adjustment of sur-
vey results; the sensor by itself is inherently stable at the 1-mGal level. In practice,
however, crossover adjustment may eliminate residual, unmodeled errors and often
provide the only realistic estimate of survey accuracy since comparisons to ground
data are complicated by upward continuation errors.

Other errors include internal measurement and calibration errors, especially the
cross-coupling error of lever-beam-type gravimeters such as the LCR S-type marine
gravimeter. These corrections are specific to the individual instruments and usually
computed in real time, based on in situ calibrations; for details see Valliant (1991).
Other sources of errors are in the measurement of acceleration itself; LCR uses a
combination of beam drift and spring tension for an overdamped beam, both subject
to calibration and unmodeled nonlinearities.

Modern INS-grade accelerometers, such as the ones that were used in the Russian
GT-1A gravimeter system (marketed in the west by Canadian MicroGravity) and
the Canadian AirGrav system (Sander Geophysics), do not show cross-coupling
and related errors. With enhanced INS-style processing and enhanced linearity and
sensor performance, such instruments currently provide some of the best results
for airborne gravity and may even be used for non-level “draped” survey flights
(Studinger et al. 2008). Long-term sensor drift stability can, however, be a major
issue for INS-based instruments, with drifts up to many mGal for a flight, as seen
in early experiments with strapdown inertial measurement units for gravimetry
(Glennie and Schwarz 1999; Glennie et al. 2000).

3.3 Filtering of Airborne Gravity

Inherent to all types of airborne gravity is the need for filtering. GPS can just not
measure the double derivative of GPS height 4" in Eq. (6) with sufficient accuracy.
The terms a and h" are typically two orders of magnitude larger than the wanted
quantity Ag; for an example see Fig. 3.5. The magnitude of the ambient vertical
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Unfiltered accelerations Filtered accelerations {tc = 5 sec)
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Fig. 3.5 Example of vertical accelerations with and without weak filtering for a smooth flight
(Twin-Otter over Disko Bay, Greenland). x-axis is time in seconds, y-axis acceleration in mGal

accelerations, and inherently the accuracy of airborne gravity, is highly dependent
on aircraft type, autopilot performance, and especially the degree of turbulence.
Commercial airborne surveys for geophysical exploration are thus often flown at
night, where many regions experience more stable air; obviously low-level night
flying can be quite dangerous and for large-scale surveys often impossible due to
airport restrictions and logistics.

The filtering of airborne gravity is basically a trade-off between resolution and
accuracy and must be applied consistently on all terms in Eq. (6). A zero-phase filter
is required to avoid shifting of anomalies, and popular types include combinations
of forward—backward RC or Butterworth filters or more advanced frequency domain
filters. The advantage of the RC and Butterworth filters is that they are very simple
sequential filters, readily implemented in just a few lines of code. An example of a
typical filter response is shown in Fig. 3.6. For more smooth flight conditions LCR
meters are typically processed with filter resolutions around 150-160 sec, corre-
sponding to a 4-5 km resolution (half-wavelength). For comparison, the INS-based
gravimeters are typically processed with filters at resolution around 100 sec. This
resolution level tends to be the shortest level of filtering used in practice; for shorter
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Fig. 3.6 Example of a triple forward/backward Butterworth typical filter for turbulent conditions
(200 sec)
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filters GPS vertical acceleration errors often rapidly increase beyond 1 mGal.

3.4 Some Results of Large-Scale Government Airborne Surveys

This section outlines results of some selected large-scale airborne surveys covering
very different regions of the earth. We use the internal crossover statistics as the
indicator for internal accuracy. For the DTU-Space (formerly DNSC) surveys, this
crossover analysis is used only for error studies; we find that the airborne gravity
performance is sufficiently stable so that no crossover adjustment is necessary in
the final results (Olesen et al. 2000). This has large practical advantages, limiting
the need for “cross-tie” flights and minimizing the inherent aliasing of errors in the
crossover adjustment, an error source of special worry in geoid determination.

The first example is the major airborne surveys of Arctic Ocean regions, carried
out in the years 1992-2003 by the NRL, USA, using a large P-3 Orion aircraft
(Brozena et al. 1996), and DTU-Space (in cooperation with Canada and Norway),
using a Twin-Otter (Forsberg et al. 2001). Figure 3.7 shows the airborne tracks, with
all marine flights done at low elevation. Both groups used a LCR model S marine
gravimeter, modified by Ultrasys.

Tables 3.1 and 3.2 show the results, based on the statistics that are for the
crossovers; therefore the estimate of track noise, assuming uncorrelated errors, will
be the r.m.s. divided by /2. An accuracy of just below 2 mGal is demonstrated.
The increasing accuracy of the NRL results from the large-aircraft surveys in the
central Arctic Ocean illustrates the improved performance due to the development
of GPS and processing. The error results for both data sets have been confirmed by
extensive comparisons to ground data.

Table 3.3 shows some results from surveys which DTU-Space has carried out
over other regions of the world (Olesen and Forsberg 2007). The error estimates are
based on internal crossover errors and by comparison to GRACE data (GGMO03S,
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Fig. 3.7 Flight tracks of DTU-Space (right) and NRL (/eft) Arctic Ocean and Greenland marine
airborne surveys
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Table 3.1 Crossover errors for the NRL Arctic surveys (J. Brozena, personal communication)

Number of
Data set X-0overs r.m.s. misfit r.m.s. error
1998 86 1.8 1.3
1999 74 2.5 1.8
2000 96 2.8 2.0
2001 66 2.6 1.8
2002 101 2.6 1.8
2003 46 2.1 1.5
All years 670 2.5 1.8
Table 3.2 Crossover errors ]
for the DTU-Space Arctic Data set r.m.s. misfit r.M.S. error
Sutveys 1992 45 32
1994 3.0 2.1
1995 4.1 2.9
1996 2.0 1.4
1997 1.9 1.3
1998 2.6 1.8
1999 2.2 1.6
Table 3.3 Crossover error statistics (mGal) for different large surveys
No. of Line spacing r.m.s. Inferred r.m.s. Bias to Bias to
Data set crossovers (km) Crossover  error GRACE EGMO08
Malaysia 1965 5 2.6 1.8 -0.8 0.1
2002-2003
Mongolia 504 18 3.1 22 0.5 0.2
2004-2005
Ethiopia 386 18 3.7 2.6 0.6 0.4
20062007
Korea 449 10 2.3 1.6 2.4 0.8
2008-2009

Tapley et al. 2007) and combination models (EGMOS, Pavlis et al. 2008). The
surveys include Malaysia (in cooperation with JUPEM, Malaysia), Mongolia (in
cooperation with Mongolian Geodetic Survey, MonMap, and NGA, USA), Ethiopia
(in cooperation with Ethiopian Mapping Agency and NGA), and South Korea (in
cooperation with University of Seoul). All surveys were challenging large-scale
operations over mountainous areas with highly changing weather and turbulence
conditions and were flown by either Twin-Otter or Cessna Caravan aircraft. The
results show that airborne gravity routinely gives results at 2 mGal accuracy and,
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especially, that data are essentially bias-free, making them suitable for geoid deter-
mination (some areas like Korea are too small for GRACE to give a reliable bias). It
should be noted that the airborne survey results rely solely on gravity ties to the ref-
erence airports; no crossover adjustment or other fitting procedures have been used,
and no continuation to a common height level has been done (only Korea was flown
at near-constant altitude).

3.5 Downward Continuation of Airborne Gravimetry

With airborne gravity data available as along-track filtered gravity values at altitude,
most geodetic applications such as geoid determination would require the gravity
data to be downward continued, either to the surface of the terrain or the geoid.
This is especially important if some surface data already exist; then many geodetic
applications would in practice require a joint grid of gravity values to be made. This
can be quite a challenge, since the resolution and accuracy of the surface data might
be superior to the airborne data; on the other hand, over large regions, surface data
might be of varying quality and age and may often be biased. Airborne gravity is
well suited to detect such biases and — especially in the marine domain — make older,
doubtful gravity data useful again through an adjustment process, where bias-free
airborne data can be used to fix bias problems in marine surveys. An example of
such application of airborne gravity can be found in Forsberg et al. (2004).

When a dense and quality-controlled distribution of surface data exist, then sur-
face data may alternatively be upward continued. The use for this process would
typically be to provide independent gravity values at altitude, mainly for qual-
ity control of the airborne data, but could also be used directly for (quasi) geoid
computations at altitude, with a subsequent downward continuation to zero level.
This quasigeoid downward continuation is more stable than downward continuation
of gravity.

Upward or downward harmonic continuations of gravity data are applications of
classical geodetic boundary value problems and may be evaluated by many different
techniques (e.g., pointmass modeling, Fourier methods, or optimal estimation). For
an overview see the classical textbooks of Heiskanen and Moritz (1967) or Moritz
(1980).

The downward continuation of airborne gravimetry is especially required for the
typical large-scale airborne surveys, where flight line elevations may be changing
over a wide range dependent on the underlying topography and where already some
surface gravity data exist; in this case the method of choice would be least-squares
collocation, which is able to use all available data in a consistent way. After doing a
downward continuation, either to the geoid level or to the surface of the topography,
the airborne data may be handled by standard methods of physical geodesy, for e.g.,
geoid determination.

For the basic principle of airborne gravimetry downward continuation, let Ag and
Ag* be the gravity anomalies at altitude /& and the geoid level (7 = 0), respectively.
By taking the two-dimensional Fourier transform of Ag,
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F(Ag) =//Ag(x,y)efi(kxﬁk)’y)dxdy, (10)

the gravity anomalies at the geoid are obtained by

F(Ag") = e"F(Ag), k= [k} +K2. (11)

It is clear that noise in Ag at larger wavenumbers k, and k, is strongly amplified
by this operation, and direct use of Fourier domain methods is thus mainly done for
upward continuation, not downward continuation. For a review of the use of Fourier
transformation methods in geodesy, see Schwarz et al. (1990).

To stabilize the downward continuation process by Fourier methods, it may be
utilized that the earth’s gravity field in general follows the Kaula rule. This empir-
ical spherical harmonic decay law implies for the power spectral density of Ag to
proportionality with k. Assuming data noise to be white, the optimal Wiener filter
downward continuation operator (Nash and Jordan 1978) becomes of the form

ki
1+ ck*

Here c is a resolution parameter, depending on the ratio of noise to gravity sig-
nal covariance (Forsberg and Solheim 1988). In practice the ¢ parameter is chosen
on an empirical basis to obtain a suitable smooth downward continued field; some
stabilization is implicitly originating gridding of the airborne gravity data onto a reg-
ular grid by collocation, since the collocation (grid) estimate by default generates a
smooth function, depending on assumed standard deviations of data.

The drawback of the FFT methods (and equivalent integral methods) is that vary-
ing altitudes of the airborne data are not easily taken into account, and existing
surface data cannot be readily utilized. Therefore least-squares collocation with full
spatial covariance models is the method of choice for downward continuation in
practice.

In least-squares collocation the gravity anomaly signal s at a ground grid point is
estimated from a vector x containing all available surface and airborne data by

F(Ag#) = F(Ag)

12)

§ = Cx[Crx + D17 (13)

Covariances Cy, and Cg, are taken from a full, self-consistent spatial covariance
model, and D is the (diagonal) noise matrix. Because the gravity field of the earth is
known to follow Kaula rule, it is important to select covariance models which have
an implied PSD decay in accordance with this. An example of such a self-consistent
covariance model on a spherical earth is the Tscherning—Rapp model (Tscherning
and Rapp 1974) and for a flat earth the simpler planar logarithmic covariance
model (Forsberg 1987). In the latter model, the gravity covariance between gravity
anomalies at two altitudes is of the form

C(Ag", Ag"™) = = > " aplog(Dy +v/s2 + D+l + h)»), (14)
k
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where «y are weight factors combining terms relating to depth values (Dx = D +
kT), with the “free parameters” D and T taking the role analogous to the Bjerhammar
sphere depth of spherical collocation and a “compensating depth” attenuation fac-
tor. The attenuation of long wavelengths in the model is necessary when a spherical
harmonic reference model (EGM) is used. Figure 3.8 shows a typical example of an
empirical covariance function and the associated fit by planar logarithmic model. In
practice there is a rather large range of D and T parameters which could give a rea-
sonable fit to the data, and thus give more or less the same results of the downward
continuation.

For stabilizing the downward continuation, it is essential to use remove-restore
methods. This means that the gravity field is split into three terms

Ag = Ag, + Ag, + Ag,, (15)

where the first term is due to a spherical harmonic reference field (e.g., EGMO0S8
to a suitable degree), the second term due to the terrain, and the third term due to
the residual field. Only the residual terrain-corrected term Ags is then processed
in the collocation downward continuation process, with the EGM and terrain terms
rigorously computed either at the airborne point locations (for the “remove” step)
or on ground (for the “restore”).

A suitable terrain correction type to be used is the RTM (residual terrain model)
effects. In this method the terrain is removed relative to a reference surface corre-
sponding to the average terrain surface already implicitly present in the EGM term
Agi, cf. Fig. 3.9. The terrain effects of gravity both aloft and on the ground may
be readily computed by either prism integration techniques or Fourier methods, for
details see Forsberg (1984) or Schwarz et al. (1990). When applying a terrain reduc-
tion to the airborne gravity data, it is important to realize that the terrain effects must
be filtered with an equivalent filter to the one used for the airborne gravity process-
ing, e.g., with a filter as shown in Fig. 3.6. This means in practice that the results
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Fig. 3.8 Example of empirical covariance functions for gravity data in Mongolia and the fitted
covariance function to airborne data (D = 10 km, 7 = 49 km). The longer correlation length of
the airborne data is mostly due to the inherent filtering of the airborne data and the attenuation of
short-wavelength signals at flight altitude, but also contains signatures of “new” information at the
medium wavelengths. Terrain effects and EGM96 removed
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Fig. 3.9 Principle of the RTM terrain reduction. Topography above a smooth reference surface is
computationally removed and valleys filled at a reference density of 2.67 g/cm? to smooth the data.
Integration by rectangular prism elements (right) is usually the method of choice

of a prism integration of dense measurement points along a flight track must be fol-
lowed by an along-track filtering process, where the speed of the aircraft must be
taken into account. It can therefore be quite a complicated setup to do the complete
downward continuation process.

In the downward continuation process by least-squares collocation, the airborne
gravity data represent along-track weighted averages, and the covariance functions
used in the least-squares collocation setup must in principle, therefore, also be sim-
ilarly filtered. A final major constraint in applying least-squares collocation for a
large region is that the number of equations to be solved in Eq. (13) may be exces-
sive. A practical solution to this can be to subdivide the area in question into blocks
(e.g., 1° x 1° blocks with a 0.5° overlap to neighboring blocks), then do collocation
on a blockwise basis, and finally stitch together the computed blocks. This works
usually well, in practice, for the downward continuation (but not for direct colloca-
tion geoid estimation), as the downward continuation process is essentially a (slight)
high-pass filtering operation, whereas the direct geoid computation by collocation
is a low-pass filtering operation, much more sensitive to the individual block biases.

3.6 Use of Airborne Gravimetry for Geoid Determination

With a successful downward continuation of airborne gravity data, and possible
merging with available surface gravimetry data, the computation of a geoid from the
airborne data is equivalent to a conventional geoid computation. Standard methods
of physical geodesy can therefore be applied, such as Stokes or Molodensky inte-
gration or Fourier methods. These methods all represent variants of the fundamental
Stokes integral for obtaining the geoid or quasigeoid, classically for the geoid

N = L//AgS(I//)da. (16)
4y

In practice when removing a spherical harmonic reference gravity field, the used
integral should use modified Stokes kernels, e.g., as the modified Wong—Gore kernel
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o 2n+1
Smod () =S (¥) — Zot (n) ﬁPn cos (¥), (I7)

n=2
where

1 for 2<n<N;
o (n) = 1\],\;2:1\’,‘1f0rN1§n§N2,n=2,...,N. (18)

0 for MNry<n

The coefficients « prevent the local gravity data to “override” the information inher-
ent in the longer wavelengths in the reference field, which is nowadays determined
with very high accuracy from GRACE.

The basic Stokes integral is readily implemented by fast Fourier transforms, e.g.,
in the “multiband spherical FFT” method, where formula (16) may be virtually
exactly evaluated on a sphere, assuming a regular grid in latitude and longitude
is available, e.g., from the downward continuation collocation. The basic equation
for the geoid determination is of the form

N3 = Smodef(V (9, AN)) % [Ag3(p, M) sing] = F~ [F(Sen)F(Agsing)l,  (19)

where * is a space-domain convolution and F the two-dimensional Fourier trans-
form, for details see Forsberg and Sideris (1993).

3.6.1 Case Story of Mongolian Geoid

In the sequel we will use the Mongolian airborne survey 2004-2005 to illustrate a
practical geoid computation. The Danish National Space Center (now DTU-Space)
carried out the geoid project in cooperation with the Mongolian Administration
of Land Affairs, Geodesy and Carthography (A. Munkhtsetseg), MonMap (M.
Saandar), and the University of Bergen, Norway, with support from NGA, USA.
The primary purpose of the airborne survey was to provide data for global earth
gravity models (EGMOS) as well as to provide data for a new geoid of Mongolia, as
part of the ongoing GPS modernization of the geodetic infrastructure.

The airborne gravity surveys (Fig. 3.10) were carried out using an Air Greenland
Twin-Otter in 2004 and a Cessna Caravan aircraft in 2005. A total of 420 flight hours
were flown at a track spacing of 10 nautical miles, with an estimated error of the
processed gravity anomaly at the flight level of 2.2 mGal (Table 3.3). Because of the
rough topography of Mongolia (Fig. 3.11), flight elevations of individual flight lines
varied between 2,100 and 4,800 m, necessitating a formal downward continuation.
This was done by least-squares collocation using the planar logarithmic covariance
function, as outlined in Section 3.5.

Figure 3.12 shows the processed airborne gravity anomalies at altitude. The
correlation of free-air anomalies to topography is evident
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Fig. 3.10 Airborne gravity survey tracks for Mongolia, showing the 2004 (western area) and 2005
(eastern) flights. Flight heights on individual lines range from 2,135 to 4,780 m

In Mongolia older surface data sets were also available, based on earlier Russian
and Mongolian gravimetry measurements (Fig. 3.13). The surface data had prob-
lems with biases, but were especially useful in supplementing the airborne data
along the borders where flights were not possible.

All gravity data were reduced by subtracting a spherical harmonic field to degree
360 (EGM96 blended with GRACE-derived field GGMO2S), rigorously computed
as a function of latitude, longitude, and height and terrain effects removed by prism
integration using the RTM method. The results of this reduction process are shown
in Table 3.4. It can be seen that the terrain and EGM96-GRACE reductions very
nicely reduce both the data bias and the standard deviations. It is also evident
that the surface data are strongly biased, likely due to lack of information on the

Fig. 3.11 Topography of Mongolia from SRTM data. The elevations range from 4,500 m in
western Mongolia to 600 m in the easternmost plains
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Fig. 3.12 Free-air anomalies at flight altitude from the airborne gravity survey. Color scale is from
=75 to 75 mGal
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Fig. 3.13 Location of surface gravimetry data in Mongolia. Thick dots mark the national refer-
ence points and small dots data from a GETECH compilation, available only as a 5 Bouguer
gravity grid, and original data locations, from which free-air anomalies were back-interpolated
using SRTM data

gravity reference system; the surface data were therefore fitted to the airborne data
by subtracting the 12.9 mGal mean offset.

For the downward continuation by collocation, the planar logarithmic model is
used, and collocation solutions run blockwise in 1° x 1° blocks expanded with
a 0.6° x 0.8° border around the block. Standard errors were assigned to data as
follows: airborne gravity 2 mGal, GETECH surface data 3 mGal, and 1 mGal for the
national reference station data. Two basic collocation 3'-reduced free-air anomaly
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Table 3.4 Statistics of the gravity data reductions (mGal)

Data Mean Standard deviation
Airborne gravity data at altitude 17.1 259
Airborne minus EGM96/GRACE field 0.2 19.5
Airborne minus EGM96/GRACE and RTM 0.1 11.9
Effect of downward continuation to geoid 0.0 2.5
GETECH interpolated surface gravity data 9.0 19.0
Surface gravity minus EGM96 and RTM 12.9 11.4

grids at the topographic surface were produced: one using all data and one using
airborne data only, to study the effect of adding the surface data to the geoid. In
addition, the airborne gravity data alone were continued to a common height level
grid (3 km), in order to allow a consistent crossover error analysis. The computation
was done so that both airborne and surface were downward continued to sea-level
anomalies Ag*, i.e., the downward continued harmonic values, shown in Fig. 3.14.
Table 3.4 shows that the effect of continuation was relatively minor on average.

Using the reduced gravity data, gravimetric geoid models were subsequently
computed by the multiband spherical FFT method. A modified Wong—Gore Stokes
kernel (17) was used, so that only spherical harmonics above degree 40-50 were
allowed to modify the underlying GRACE reference field. This process results then
in the computation of the reduced quasigeoid at sea level &', to which EGM96 (¢ 1)
and RTM terrain effects (¢, Fig. 3.15) are added to give the final gravimetric quasi-
geoid (Fig. 3.16), after a correction for the difference of quasigeoid between zero
height and the terrain level (¢ — ¢* ~ —§g/y.H). The statistics of the geoid “restore
steps” are shown in Table 3.5.

As two geoid solutions were done (one based on airborne gravity data only and
one based on both surface and airborne gravity data), the difference of these two

3a3bbigzg°c888883

Fig. 3.14 Downward continued airborne gravity data and surface data (mGal)
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Fig. 3.16 Computed gravimetric quasigeoid of Mongolia from airborne and surface data

solutions will show the changes of adding the (bias fitted) surface data. This is
shown in Fig. 3.17. It is seen that the differences are restricted to the border zones,
where airborne data were not available, and that the surface and airborne data are
otherwise consistent.

For an independent check of the geoid quality, GPS-leveling data points may be
used. In Mongolia a set of 58 GPS points on first-order leveling benchmarks were
available, giving independent quasigeoid values ¢ = hSPS — Hyoimar. The compari-
son statistics showed mean = 1.14 m and standard deviation = 0.20 m. These values
mainly reflect the datum offset of the Kronstadt (Baltic) leveling datum of Mongolia,
as well as known loop closing errors in the Mongolian first-order leveling network.
The GPS-leveling data are therefore not useful for airborne geoid validation.
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Table 3.5 Statistics of the geoid restore effects (m)

Standard
Geoid grid Mean deviation
Fourier transformation of 0.00 0.27
reduced data
Terrain effects on geoid 0.01 0.28
Final quasigeoid -35.94 16.98

Fig. 3.17 Difference between geoid from all data and geoid from airborne data alone (m)

3.7 Conclusions and Outlook

Airborne gravity is a useful geodetic tool and is a cost-effective way to cover large
areas with medium-wavelength gravity data, especially for the purpose of geoid
determination, and to map major data gaps in the global terrestrial gravity database,
notably in tropical and mountainous regions, the coastal zone, and the polar regions
(especially Antarctica). With airborne gravity resolution typically in the range of
3-5 km and upward, the data provide a very useful augmentation of satellite grav-
ity data (GRACE and GOCE) in the spherical harmonic mid-wavelength bands
(degrees 90-2,160 and higher) and is a requirement for getting anywhere close to
the centimeter-geoid, unless dense surface gravity data are available.

The operational procedures and processing of the airborne gravity data are still
a major factor in determining gravity accuracy, and great care must be taken in,
e.g., modeling of platform tilt errors to obtain the near-bias-free results indicated
in some of the results shown in the present chapter. Some of these processing and
operational aspects are closely related to the commonly used LCR platform sys-
tem. For other systems with more advanced inertial-grade airborne gravity sensors
and more rigorous state-space error modeling, e.g., by Kalman filtering and optimal
smoothing, more robust and accurate results could be obtained. Such systems could
hopefully with time become more widespread and available and within economic
bounds of geodetic use.
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Ongoing developments of vector gravimetry, taking place in both the commer-
cial and science domains (e.g., Jekeli and Kwon 1999), could potentially make
geoid determination more accurate. This is especially true in border regions, where
flights close to or beyond a national border are frequently impossible. Unpublished
best commercial data on test measurements of horizontal gravity anomalies (i.e.,
deflections of the vertical) indicate potential accuracies at the 1-2 mGal level (cor-
responding to 0.2"-0.4" for the deflections). Such accuracies would be most useful
for border and line geoid determination, as geoid heights determined from deflec-
tions only require simple along-track line integrals of deflections and do not need
area integrals like Stokes integral.
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4.1 Introduction

The desire to understand the orbits of the planets has a history as long as that
of mankind. How and why the planets orbit around the Sun are questions in
two categories. One focuses on geometry and the other on physics. Johannes
Kepler (1571-1630) answered first the how with his laws of planetary motion in
Astronomia nova (1609). Isaac Newton (1643—-1727) answered both the how and
why with his universal gravitation and laws of motion in Principia Mathematica
(1687).

Johannes Kepler found that, first, the orbits of the planets in our solar system are
elliptical, second, the area velocity (area swept by radius vector within unit time) of a
planet is a constant, and third, the ratio of the squares of the period with respect to the
cube of the radius is a constant. All three Kepler’s laws may be derived theoretically
with Newton’s laws of planetary motion.

The Keplerian orbit describes the satellite (or planet) motion under the attraction
of the central force of the Earth (or the Sun). It is obvious that for satellite orbit of the
Earth, the Keplerian orbit is the first approximation. Because of the complication of
the Earth’s gravitational field and the extraterrestrial disturbances, precise analytic
orbit theory is very difficult to derive. The first satellite was launched in 1957. The
first-order solution of the equation of satellite motion disturbed by geopotential per-
turbations was given by William Kaula (1926-2000) in Theory of Satellite Geodesy
(1966).

Recall Kaula’s solution to satellite motion under the influence of the geopotential
field. The equations of satellite motion are represented in an inertial coordinate sys-
tem according to Newton’s law. However, the geopotential function is represented in
the Earth-fixed system. To transform the geopotential function from the Earth-fixed
system to the inertial one, a so-called Kaula’s function is created, which is extremely
complicated and leads to an extremely complicated solution. Some expressions of
the solution are implicit. It is very difficult even to try to get the explicit expressions
of the Cy solutions from Kaula’s solution.

After Kaula’s theory, studies on orbit theory are mostly based on alternative vari-
ables and transformations partly due to the singularity problem in the solution. Many
scientists devoted themselves to the second-order orbit solution of geopotential dis-
turbances. The complexity of the theory is such that only a few people understand
the theory, and the theory, in turn, is rarely applied in practice. Apparently most stud-
ies of the orbit theory are focused on the solution of the geopotential disturbances.
Therefore, there exists a blank in the literature on the solution of extraterrestrial
disturbances.

Numerical orbit determination is developed directly to meet the needs of the
satellite missions and to overcome the problem caused by the missing of analysis
solutions of the equations of satellite motion. It appears that the numerical algo-
rithms are very robust and are not affected much by the obvious unphysical models
and by the singularity caused by the parameterisation of the problem.

The traditional adjustment model of the solar radiation used in numerical orbit
determination is investigated and considered not reasonable physically, and a new
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adjustment model is proposed in Xu (2004, 2007). Indeed, one of the ways to obtain
the solutions of the extraterrestrial disturbances of the satellite motion is found dur-
ing that investigation. However, it was not realised until 2007. After the solutions
of the extraterrestrial disturbances of the equation of satellite motion were found,
great efforts were then made to derive the related solutions of geopotential dis-
turbances. Thereafter, alternative solutions of the extraterrestrial disturbances were
found by using different means (also approximated potential function and Gaussian
disturbed equations in addition to discretisation). To simplify the solutions, the sim-
plified disturbed equations were proposed. To solve the problem of singularity, the
singularity-free theory was also developed. Thanks to the great research freedom
granted by GFZ, the complete solution of the orbit equation of motion was found.
Based on such a theory, the algorithms of orbit determination can be renewed; a
deeper insight into the physics of disturbances becomes possible and the way to a
variety of new applications and refinements is opened.

To describe a complete theory of the satellite orbit in a condensed way, perturbed
equations of satellite motion are discussed first (Sect.4.2) after an introduction
(Sect. 4.1). Then singularity-free and simplified equations are given (Sect. 4.3). The
solutions of extraterrestrial disturbances, such as solar radiation pressure, atmo-
spheric drag and the disturbance of the Sun, the Moon and planets, are then given
(Sect. 4.4). Solutions of geopotential disturbances are given in Sect. 4.5. Numerical
and analytical orbit determinations are dealt with (Sects. 4.6 and 4.7) before
summary and discussions (Sect. 4.8).

The purpose of this chapter is to outline the solutions of the equation of satellite
motion. For further details, Kaula (1966/2001) and Xu (2008) are recommended.

4.2 Perturbed Equation of Satellite Motion

Satellites are attracted not only by the central force of the Earth, but also by the non-
central force of the Earth, the attracting forces of the Sun and the Moon and the drag
force of the atmosphere. They are also affected by solar radiation pressure, Earth
and ocean tides, general relativity effects and coordinate perturbations. Equations
of satellite motion have to be represented by perturbed equations. In this section,
after discussions of the perturbed equations of motion, emphasis is given to the
attracting forces and the order estimation of the disturbances.

The perturbed equation of satellite motion is described by Newton’s second law
in an inertial Cartesian coordinate system as

mi=f, (1)

wheref‘ is the summated force vector acting on the satellite and 7 is the radius vector
of the satellite with massm. 7 is the acceleration. Equation (1) is a second-order
differential equation. For convenience, it can be written as two first-order differential
equations as follows:
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dl"_ 1}:

dt — m’’

% (”) 3)
r

X=F, 4

()

Equation (4) is called the state equation of the satellite motion. Integrating (4) from
to to t, one has

(2) can be written as

where

t

X(t) = X(tp) + / Fdt, (6)

fo

where X (1) is the 1nstantaneous state vector of the satelhte X (fp) is the initial state
vector at time #q and F is a function of the state vector X (#) at time ¢. Denoting the ini-
tial state vector as X, the perturbed satellite orbit problem turns out to be a problem
of solving the differential state equation under the initial condition as

X =F . %)
X(10) = Xo

4.2.1 Lagrangian Perturbed Equation of Satellite Motion

If the force j‘ includes only the conservative forces, then there is a potential
function V so that

-

aVvV 9V oV aVvV oV oV
L:gradV: _— — - (8)
m dx dy 0z ar d¢ O0A

where (x,y,z) and (7,p,1) are Cartesian coordinates and spherical coordinates,
respectively. Denoting R as the disturbance potential and V{ as the potential of the
centred force fo,
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- -

R=V -V, f=h _ grad R, ©)
m

the perturbed equation of satellite motion (2) in Cartesian coordinates is then

dx |

— =X

dt

dy .

a

dz_.

-
dx w AR (10)
— = —Z x4 —
dr r3 dx

dy n oR

=Dy =
dr 37 Ay
dz uw oR

— =Ly
dt N 0z

where pis the gravitational constant of the Earth. The state vector (7, ?) of the
satellite corresponds to an instantaneous Keplerian ellipse (a,e,w,i,2,M) (i.e. semi-
major axis a, eccentricity of the ellipse e, argument of perigee w, inclination angle i,
right ascension of ascending node €2, mean anomaly M). Using the relationships
between the two sets of parameters (for detail see Chap. 3 of Xu 2008), the perturbed
equation of motion (10) can be transformed into a so-called Lagrangian perturbed
equation system (see, e.g., Kaula 1966/2001):

da 2 9R

dt ~ na oM
de  1-¢* 3R 1—¢2 R
At~ na?e M nde Ao

do  +1—¢20R cosi oR
dr nale Qe na*v'1 — e2sini 0i

. . (11)
di 1 0R oR
—=—F——"—(cosi— — —
dt na’v/1 — e2sini Jow 0Q

aQ 1 IR
dr na?v/1 — e2sini 0i
dm 2 0R 1—¢€%0R

— =n
dr na da na

On the basis of this equation system, Kaula derived the first-order perturbed anal-
ysis solution (see Kaula 1966/2001). In the case of a small e (e<<1), the orbit is
nearly circular, so that the perigee and the related Keplerian elements fand w are not
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defined (this is not to be confused with the force Vectorf‘ and true anomaly f). To
overcome this problem, let u =f+ w, and a parameter set of (a, i, <2,&,n, 1) can be
used to describe the motion of the satellite, where

E=ecosw
n=—esinw. (12)
Ar=M+ow

The related disturbed equations of motion can be derived (see Sect. 4.4.1.1 of Xu
2008); however, the new variables of (12) do not have clear geometric meanings.
Another alternative is to use the Hill variables (see, e.g., Cui 1990).

4.2.2 Gaussian Perturbed Equation of Satellite Motion

Considering the non-conservative disturbance forces such as solar radiation and
air drag, no potential functions exist for use; therefore, the Lagrangian perturbed
equation of motion cannot be directly used in such a case. The equation of motion
perturbed by non-conservative disturbance force has to be derived.

Considering any force vector f=(fy, f}, )T in ECSF (Earth-Centred Space-
Fixed) coordinate system, one has

fr fr
5| =R3(—=QR(=DR3(—w) | fo | . (13)
Sz Jh

where (f;, fy, fiu)! is a force vector with three orthogonal components in an orbital
plane coordinate system, the first two components are in the orbital plane, f; is the
radial force component, fy is the force component perpendicular to f; and pointed in
the direction of satellite motion and f;, completes a right-handed system. Ry is the
rotational matrix around the axis k (see Sect. 4.2.2 of Xu 2008). For convenience,
the force vector may also be represented by tangential, central components in the
orbital plane (f;, f;) as well as f;, (see Fig. 4.1). It is obvious that

fe f
fa | =R3(=B)| fe |- (14)
Jn Jh
where
2
tan f = rj_fr - 1aj-le C(e)s)f 1 zdf - : —Z:’i;(}sf (15)
=€), Gnrar

(1 + e cos f)?
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Fig. 4.1 Relation of radial
and tangential forces

or

. 14 ecosf
sin B =
V1 +2e cos f + €2
. . (16)
e sin f
cos B =

V14 2e cos f + €2

To replace the partial derivatives dR/do by force components, the relationships
between them can be derived (see Sect. 4.4.1.2 of Xu 2008), where o is a symbol for
all Keplerian elements. Putting the relations into Lagrangian perturbed equations of
motion (11), the so-called Gaussian perturbed equations of motion are then

dw

dr

dM_
a "

da 2 .
&= s lesinf ik (e cos ) fi]
/T—e2
%:IT‘e[sinf~ﬁ+(cosE+cosf)~fa]
Ny 2+ecosf . .dQ
o |:—cosf~fr+msmf~fa:| —cos i~ -

di B (1 —ecos E)cos u

— = “fh
dr nav'l — e2
dQ . (1 —ecosE)sin u

- = “Jn
dr nav'l — €2 sin i
1—e

2 2e 24ecosf .
nae [_ <cosf— l+e COSf) et l+e cosfsmf'fa:|
7)
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The force components of (f;, fy, fn) are used. Using (14), the Gaussian perturbed
equations of motion can be represented by a disturbed force vector of (fi, fc, f).

4.2.3 Keplerian Motion

The simplified satellite orbiting is called Keplerian motion, and the problem is called
the two-bodies problem. The satellite is supposed to move in a central force field (i.e.
the disturbance potential in (11) or the disturbance force in (17) are zero).

In this case the satellite will orbit in an orbital plane of the mass centre of
the Earth. In addition, the moving equation of satellite in the orbital plane is an
ellipse, i.e.

a(l —é?)

= - 18
" 1+4ecosf (18)

The Keplerian motion can be described by six Keplerian elements: inclination
angle i, right ascension of ascending node €2, semi-major axis a, eccentricity of the
ellipse e, argument of perigee @ and mean anomaly M. Parametersi and 2 decide
the place of the orbital plane, a and e decide the size and shape of the ellipse and
w decides the direction of the ellipse (see Fig. 4.2). Mean anomaly M describes
the satellite motion along the ellipse. Three anomalies (eccentric, true and mean
anomaly) are equivalent (see Fig. 4.3 and so-called Keplerian equation, Xu 2007).

perigee

Fig. 4.2 Orbital geometry
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Fig. 4.3 Eccentric and true
anomalies of satellite

4.3 Singularity-Free and Simplified Equations

Section 4.2 covered the equations of satellite motion in different forms and the
Keplerian orbit. The solutions of equations of motion are given and the singularity-
free theory is proposed in Xu (2008). Here the singularity-free theory and simplified
equations will be given.

The singularity problem of the solutions of the geopotential disturbances is dis-
cussed first. Then the singularity-free disturbed Lagrangian equations of motion are
given for three cases, i.e. for the circular orbit, equatorial orbit, circular and equa-
torial orbit, respectively. If the singularity-free disturbed equations of motion are
used, then the derived orbit solutions are singularity-free. Similar discussions are
given for the Gaussian equations.

4.3.1 Problem of Singularity of the Solutions

The solutions of Lagrangian and Gaussian equations of (11) and (17) are singular in
the cases of e = 0 and/or sin i = 0. In other words, the solutions are not valid for the
satellite with a circular or an equatorial orbit. An alternative method to overcome
the problem of circular orbit has already been discussed in Sect. 4.2.1 by introducing
new variables — see (12). The new variables do not have clear geometric meanings
and were used to replace the variables (w, f), which could not be defined in a circular
orbit. In the alternative equation of disturbance (cf. Xu 2008), the e factor in the
dividend is then eliminated, i.e. the singularity of e = 0 disappears. Using another
set of variables (a, h = sin i cos 2, k = —sin i sin €2, £ = e cos(w + 2), n = —e sin
(w+ Q), L =M + w + ), both the singularities caused by e = 0 and sin i = 0 may
disappear. This means that the singularity is not a real problem of the orbits, but
a consequence of poor parameterisation of the orbits. Another method to overcome
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the singularity problem is the canonical transformation. All these methods overcome
the singularity problem on the one hand and pay the price of losing the geometric
meanings of the orbital variables on the other.

In the cases of e = 0 and/or sin i = 0, the orbits become simpler in practice.
However, the equations used to describe a simpler problem become more com-
plicated. This is in conflict with basic scientific philosophy and common sense.
A simpler problem should be able to be described in simpler terms.

Looking into the solutions given in Chaps. 5 and 6 of Xu (2008) carefully, it
is obvious that the singular problem is not created by the partial derivations of the
potential function with respect to the Keplerian variable. In other words, the singu-
larity problem exists from the beginning in the Lagrangian- and Gaussian perturbed
equation systems (11) and (17). This may be verified by derivations of (11) (see
Kaula 1966/2001).

4.3.2 Disturbed Equations in the Case of Circular Orbit

In the case of a circular orbit, the eccentricity of the ellipse e is a constant of zero; the
eccentric anomaly E, true anomaly f and mean anomaly M are identical. Note that in
such a case the perigee of the orbit is arbitrary. Then the argument of the perigee w
and the true anomaly f (i.e. mean anomaly M) cannot be separated from each other.
However, o + f, i.e. ® + M are defined and have the meaning of argument of the
perigee plus true anomaly (or mean anomaly) counted from the ascending node of
the orbit. For convenience, we write w and M further separated; in practice, they
should be added together. In this special case the orbit is simpler than the general
one. The disturbed equations of motion — similar to (11) — can be similarly derived
and have accordingly the following simpler forms:

da 2 OR

dr ~ na oM
— = (19)
dw cosi OR

dt =~ na?sin i 9i

di 1 0R oR
—=—— (cosi— ——.
dt na? sin i dw IR

dQ 1 oR

Aot na?sini di
M 2 0R

— =n
dr na da
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4.3.3 Disturbed Equations in the Case of Equatorial Orbit

In the case of an equatorial orbit, sin i, the sine function of inclination angle i, is a
constant of zero. Note that in such a case the ascending node is arbitrary. Then the
right ascension of the ascending node €2 and the argument of the perigee @ cannot
be separated from each other. However, Q2 + w are defined and have the mean-
ing of right ascension of the ascending node plus argument of the perigee counted
from the vernal equinox. For convenience, we write 2 and w further separated,
in practice, they should be added together. In this special case the orbit is simpler
than the general one. Especially, the transformed geopotential function with orbital
variable is greatly simplified in such a case. The disturbed equations of motion —
similar to (11) — can be similarly derived and have accordingly the following simpler
forms:

da 2 OR

it~ naaM
de 1—¢2dR ~1—€>0R
At~ na?e M  nde Ao
do  V1—¢e20R
5_ naze % . (20)
di
-
ae
e
dm 29R 1—¢€*0R

4.3.4 Disturbed Equations in the Case of Circular and Equatorial
Orbit

In the case of a circular and an equatorial orbit, the eccentricity of the ellipse e is
a constant of zero; the eccentric anomaly E, true anomaly f and mean anomaly M
are identical; sin i, the sine function of inclination angle i, is a constant of zero.
Note that in such a case both the perigee and the ascending node are arbitrary. Then
the right ascension of the ascending node 2 and the argument of the perigee w as
well as the true anomaly f (i.e. mean anomaly M) cannot be separated from each
other. However, Q2 + w + f, i.e. Q + w + M are defined and have the meaning of
right ascension of the ascending node plus argument of the perigee plus the true
anomaly (or mean anomaly) counted from the vernal equinox. For convenience, we
write 2 and w as well as M further separated; in practice, they should be added
together. In this special case, the orbit is the simplest one compared with the others.
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The disturbed equations of motion — similar to (11) — in this case can be similarly
derived and have accordingly the following simpler forms:

da 2 OR
dr d_e ria oM
dr
dw _
e~
di @)
~ 0
dr
dQ B
dr
dm _ 2 OR
dr na da

4.3.5 Singularity-Free Disturbed Equations of Motion

Define two delta functions as

[ ife#0 [ 1 ifsini#0
‘Se_{f,ﬂ ife=o 5’_{sin2i if sini=0" @2)

Then one has the singularity-free disturbed equations of motion

da 2 9R
dr = na dM
de 1—¢2dR_~ ~1—¢€20R
dt ~ nae oM ¢ nale dw ©
do 1 —¢20R cos i BR(S'
dt = na’e de © 21— e2sini 0i
. . (23)
di 1 0R oR
—=——— (cosi— — — ) §;
dt na®V1—e2sini dw 082
dQ2 _ 1 8R5
At pa2V1—esini di
dm 29R 1—¢€>0R

n o
dr na da nae de ©

Equations (23) are the singularity-free disturbed equations of motion. The solu-
tions derived from these equations are singularity-free. For some reasons, the
solutions given in Xu (2008) are mostly derived from (11). To obtain the singularity-
free solutions one has to add the two factors of the delta functions (22) to the given
solutions and the interested readers may easily attempt these themselves.
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4.3.6 Simplified Singularity-Free Disturbed Equations of Motion

The simplified singularity-free disturbed Lagrange equations of motion can be
derived and written as

da 2 dR
dt — na oM

de_l—ezda V1 —=¢2dR

At~ 2ae dt ¢ nate dw ¢

do V1—¢€20R dQ

& T nate oe” Uar
di 1 nacos i (1 —é*da de ar\ - @Y
a:na2 l—ezsini(m< 2 E_aea)_8_9>8i

aQ 1 OR

Bk §
At pa2V1—e2 sini di

It is obvious that such equations will lead to a simplified process of solving the
problems.

4.3.7 Singularity-Free Gaussian Equations of Motion

Similarly, singularity-free Gaussian perturbed equations of motion are then (cf. (17),
(22) and (23)):

da 2

=~ _Jesinf- 1 .

" nm[esmf fr + (1 + e cosf) fa]

d A1 —e?

d_jz me [sin f - fy + (cos E +cos f) - fu] (25)
do 1 —¢é2 24+ecosf dQ
" o |: cos f fr+1+ecosfsmf fa] e COSldt

di (1 —ecos E)cosu

dr nas/1 — e? i
dQ2 . (1 —ecos E)sin u
dr nav'l — e2sin i

dM 1—¢é2 ¥ 2e f+2+ecosf_ 7opls
—=n- —(cosf— ——— - ———sin f-
dr nae 14+ecosf " l4ecosf 1

8 1y
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The solutions derived from (25) are singularity-free. For some reasons, the solu-
tions given in Xu (2008) are partly derived from (17). To obtain the singularity-free
solutions one has to add the two factors of the delta functions (22) into the
given solutions and interested readers may easily attempt these themselves. Similar
simplified equations can be derived if one wishes.

4.4 Solutions of Extraterrestrial Disturbances

Solutions of the extraterrestrial disturbances of the attracting forces of the Sun, the
Moon and planets, the drag force of the atmosphere and solar radiation pressure are
given in this section.

4.4.1 Key Notes to the Problems

It is well known that the Keplerian motions of the satellite under the influence of the
centre force of the Earth are perfectly and exactly described with mathematical for-
mulas. As soon as it is found by derivation that the satellite is moving in an orbital
plane, the equations of motion are re-represented in the plane and the Keplerian
motion is then derived. Note that even in the centre force field, it would be nearly
impossible to derive the solution without the step of coordinate transformation. This
indicates the importance of the selection of the coordinate system. The transforma-
tion of the coordinate system is allowed because the frame remained an inertial one
after a series of constant rotations.

The use of an alternative coordinate system is the first key to the solution of the
equation of motion influenced by extraterrestrial disturbances. Xu (2004) introduced
the so-called disturbance coordinate system by proposing an adjustment model of
solar radiation (see Sect. 4.4.2.4 of Xu 2008). However, the coordinate system is not
an orthogonal Cartesian one and its axis changes direction with time and therefore
the coordinate system is not an inertial one. An approximation of the expression of
the solar radiation model is the second key to the solution. The approximation allows
the position of the satellite with respect to the Earth to be neglected in the case of
solar radiation under special conditions. For a properly selected time interval, the
disturbance coordinate system may be considered a frame that has constant rota-
tional relations with respect to the inertial one. In such a case, the coordinate system
can be considered approximately “inertial”’. Then Newton’s second law can be used
and the orbital disturbance of the solar radiation can be solved. The approximation
can be made as precise as required.

The orbits of the satellite can be considered a central motion (Keplerian motion)
plus a series of disturbances. According to the order estimation discussed in
Sect. 4.4.2.7 of Xu (2008), extraterrestrial perturbations are of second order. These
are important for the approximation measure taken during the derivation.

For convenience during later discussions, the definition of the so-called distur-
bance coordinate system is given again (see Sect. 4.4.2.4 of Xu 2008). The origin is
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the geocentre and the three axes are defined by 7 (radial vector of the satellite), 71 (the
Sun-satellite unit vector) and p (the atmospheric drag unit vector). These three axes
are always in the main disturbance directions of the indirect solar radiation (reflected
from the Earth’s surface), direct solar radiation and atmospheric drag, respectively.

4.4.2 Solutions of Disturbance of Solar Radiation Pressure

Solar radiation pressure is a force caused by sunlight acting on the satellite’s surface.
The radiation force can be represented as (see (4.70) of Xu 2008)

2

- S T -
Jsolar = mVPsCr_+un2nsun, (26)
M |r — Fsunl
where
> 7' - Ez X ;lsun > - - - ; - 7'sun
€; = —7=7 6y = 5——= €x =€y X €z and Ngun = 55
7| le; X nsun| |7 — Fsunl
(27)

where y is the shadow factor, Py is the luminosity of the Sun, C; is the surface reflec-
tivity, rgun 1S the geocentric distance of the Sun, S/m is the surface to mass ratio of
the satellite and 7 and 7y, are the geocentric vectors of the satellite and the Sun.
Usually, P has the value of 4.5605 x 107° N/m, C; has values from 1to 2, 1 is for the
complete absorption of the sunlight, and for aluminium, C; = 1.95.

Three Approximations

The solar radiation force vector is pointed from the Sun to the satellite. If the shadow
factor is known exactly, and the luminosity of the Sun and the surface reflectivity of
the satellite are considered constants, then the length of the solar force vector can
be considered a constant because (see (4.73) of Xu 2008)

2 2 r2

sun . <— rs_lfn - < sun - (28)
(run + 1) |F — Fsunl (rsun — 1)

I%

For GPS and GEO satellites there are

2
T szun _ Tsun
(”sunil:”)2 Fsun £ 7
and

2 2 2 2
Tsun 2=< Tsun ) %<1:F r :i:> %1:': r %l:F5.6X1074,

(rsun £7) Fsun £ 7 T'sun Fsun
(29)

%

r 2 2r 4
1F ) =1F ~1F35x10
T'sun T'sun

respectively. That is, the solar radiation force vector can be considered approxi-
mately a vector, with constant length and changing direction. The approximation
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has a precision of better than third order and is precise enough for our purposes. For
convenience, this approximation is called the first approximation later on.
The unit solar vector of the satellite 7ig,, can be approximated by

N

> I'se

Nge = =5—»
[Fsel

(30)

where index se denotes that the vector is pointing from the Sun to the centre of
the Earth. For GPS and GEO satellites the maximal angles between the above two
unit vectors are 1.77 x 10~ and 2.8 x 107 rad, respectively. Therefore, such an
approximation (called the second approximation) is allowed and is precise enough.

The third approximation is made for suitable time duration of At =1 —1,_, by

ﬁse(t) ~ ;lse(tk)’ Iy = (12 + t;<_1)/2, re [t]/{_ls t]/{] (3D

The discrete vector in this equation may be called an average vector of the time
duration Az. For At = 5min, the third approximation has a precision of 3 x 107 rad.

Note that the order of the solar radiation disturbance on a GPS satellite is about
50m. For GPS satellite, all the three approximations will lead to a precision of
millimetre level. For the other satellite, the precision of the approximations should
be individually estimated.

Discretisation and Solution

Denote the satellite period as 7 and shadow access and exit points as f, and
te, respectively. The local noon is selected as the starting point of counting (see
Fig. 4.4). A so-called sign function can be defined as

0<t<T/2

&Oz{jl T/2<t<T" (32)

The sign function shows that the solar radiation accelerates the satellite during the
first half period and decelerates it during the second half period with respect to

L4 ~
. .
. .
. )
' )
! shadow
() )
noon
' Earth '
Y ’
. .
. .
i lati ~ L 4
Fig. 4.4 Solar radiation orbit * ~ .

pressure ® m=
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the nominal motion of the satellite. Then the duration of one period of 0-T can
be equally divided by Az, i.e. by ,#],...,1,...,T. The acceleration of the solar
radiation of (26) is then discretised as

- S
Asolar(f) = VPsCrn_1”se(tk)- (33)
The disturbed velocity caused by the solar radiation is then

k
. S
Voolar (1) = Yy PoCe—ise(1)3 (1) At. (34)

i=1

It is obvious that the disturbed velocity of the satellite is not zero during the
passing of the shadow. The disturbed position caused by the solar radiation is then

k
,5s01ar(t) = Z T/solar(tj)At' (35)
J=1

Equation (35) is the solution of the solar radiation disturbance on the orbit of the
satellite.

Properties of the Solution

The integration (or summation) of the acceleration of the solar radiation within a
period 7 is nearly zero. However, the position disturbed by the solar radiation during
a period T 'is not zero. In other words, the disturbance of the solar radiation has non-
conservative behaviour. The disturbance may not be a periodic function of the orbit.
The parameters of the force model, if they are not well known, can be determined
using the expressions of the solution.

4.4.2.1 Solutions via Gaussian Perturbed Equations
Gaussian Perturbed Equations

Equation (33) is the approximated solar radiation force (acceleration) vector with
constant length, which can be written as

> S .
Ssolar(t) = mVPsCrn_1nse(t) (36)
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or
R S nx
Ssolar(?) = fv =§ ny |, 37
1z n;

where solar-Earth unit vector (30) in ECSF frame can be computed by the the-
ory given in Sect.4.7.8 of Xu (2008); & represents the constant length of the solar
radiation force vector.

The force vector in the ECSF frame can be transformed to the orbital coordinate
system (see (13)) using

Jr S
Jo | = RB3(NR3(@)RI(DR3(2) | fy | > (38)
Ja N

where

R3(w)R1(DR3(£2) =

CcoS w cos 2 — sin w cos i sin 2 coswsin 2 + sinw cosicos 2 sinwsini
—sinwcos 2 —coswcosisin — sinwsin 2 + cosw cosicos 2 cosw sin i
sinisin — sinicos 2 cos i

Denote these elements of the matrix with R;; and

n Riiny + Riony + Ry3n;
ny | =& | Rainy + Rypny + Rozng |, (39
n3 R31ny + R3ony + Rasn,
then one has
i ny ny cos f 4+ ny sin f
Jo |l =R()| m | =| —nmisinf+nycosf |. (40)
Jh n3 n3

There are relations (see (4.23) of Xu 2008)

ﬂ =1 E) 41
1+ ecosf = mecos
and
cosE = (e + cos f) (42)
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Putting all these formulas into (17), the Gaussian disturbed equations are

da 2 e sinf(ny cos f + ny sin f)
+(1 + e cos f)(—n; sin f + ny cos f)

At p/T— e
de JI—e& sin f(n1 cos f + ny sin f)

dt~  na ﬂ + cos f ) (—ny sin f + ny cos f)
1+ ecos f

= [ —cos f(ny cos f + ny sin f)
do = o 2recosf sin f(—ny sin f +np cos f) | — COSi@
dr nae 1+ ecosf 1 2 t @)

di  1—e€2cosu

dr na(l +e cosf)n3
dQ A1 —e%sinu
_ = n
dr ~ na sini(l +ecosf) °

2

SN el (“’Sf‘ 1+—f) (1 cos f+ ny sin f)
2

dt nae +ecos f Sin f(—ny sin £+ n cos f)
l1+ecosf

Characters of Gaussian Perturbed Equations

1. There exist long and short periodic perturbations.

Note that

(44)

1+ecosf ecosf+ 45)

and
COS U = CcOS w cos f — sin w sin f

sin u = cos w sin f + cos f sin w (46)

Obviously, all six Gaussian perturbed equations include the long periodic term
perturbations, which are formed by terms without f (in other words, constant terms
are created by terms of sin’f and cos?f), and the remaining terms are short periodic
terms. Remember that by integration variable transformation from ¢ to f or M for
solving the short periodic Cy perturbations, long periodic terms will also be created
(see Sect.4.5.2 of Xu 2008). Therefore, no effort will be made to separate the long
and short periodic terms.
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2. Concerning time variable (n,, ny and n;) in (43) the variables ny, ny and n3 are
functions of (w, €2, i) and (ny, ny, n;). (w, 2, i) are long periodic variables and they
are considered constants in short periodic integrations. However, the unit vector (ny,
ny, n;) of solar-Earth is also time variable. In the discussion in Sect. 4.4.3 the (n,,
ny, n;) can be considered constants within 5 min. The maximum change of the unit
vector around its average is ca. 0.5°/day, that is, the maximum of change rate is
about 0.0086 rad/day. In other words, the unit vector (ny, ny, n;) can be represented
by an average plus a drift term, and the drift term compared with the average term
is about one order smaller and in some cases is allowed to be neglected. As soon as
the vector (ny, ny, n;) is considered constant, (43) can be solved by integration as
shown in Chaps. 5 and 6 of Xu (2008).

In cases where change of the unit vector is not allowed to be neglected, the inte-
gration interval has to be made shorter so that the assumption will be valid and then
the integrated solution should be summated to obtain the complete solutions.

Solutions of Gaussian Perturbed Equations

For simplifying the disturbed equations, denote

nze ) ns 2 V1 —e?
ng=-—, ns=n4cCost, ne=-—, Q1= ——F—=>, 2= —" >
sin i nq nv1 — e2 na
V1—eé? 1—¢?
83 = &2, 84 = ———, 85 = &4, 86 = — .
nae nae

47)
Omitting the factors g; (j = 1, .. .,6) in the disturbing equations (of course, after the
equations are solved, the factors shall be multiplied back), one has

d_a | e sinf(ny cos f + ny sin f)
dr — | +(1 + e cos f)(—ny sin f + ny cos f)

de sin f(n1 cos f + ny sin f)

da |+ (M +c0sf> (—ny sin f + ny cos f)

l1+ecosf
do —cos f(ny cos f + ny sin f) 4o
= 24+ecosf . . — —ng
dr +————=sin f(—ny sin f + ny cos f) dt
1+€ COSf . (48)
di CcoS u
— = m
dt  14ecosf
dQ sin u

—_— = N4
dr l+ecosf

2
d_M - (cosf — m) (n1 cos f + ny sin f)
2
dt w sin f(—ny sinf + ny cos f)
l+ecosf
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Let

1
w=w+nR, M =-M+w, —~1—ecosf, 49)
1+ecosf

and (48) can be further simplified as

d_a __ | esin f(ny cos f + ny sin f)
dt | +(1 + e cos f)(—ny sin f + ny cos f)
de | sin f(n1 cos f + ny sin f)
dr ~ | +e+ @2 —ée*)cos f — e cos? f)(—ny sin f + ny cos f)
@ | —cos f(ny cos f + ny sin f)
dt | +@2+ecos )1 — e cos f)sin f(—n; sin f + ny cos f) (50)

di
P = cos u(l — e cos f)nz

®_ ( )

— =sin u(l — e cos f)n

dr S
dM, .
T [—2e(1 — e cos f)(n1 cos f + ny sin f)].

Simplified Gaussian perturbed equations (50) may be solved using symbolic com-
putational software. The infinite integrations of the differential equations can be
represented by

16 16
(Aci(M))y = b (dj(a), QM + ) A cos kM + Y By sin kM) , (5D
k=1 k=1

where j is the index of Keplerian elements, b; includes the omitted factors g; and the
factor caused by the variable transformation from 7 to M (see (5.24) of Xu 2008) as
well as the factors /; given below:

hi = (1,152 x 21007, hy = (55,296 x 2,310)~', h3 =h; 52)
hy =hy, hs = (2654,208 x 60,060)~", he = (576 x 210)"!,
where h; factors are introduced to simplify the derivations of (51). The first term on
the right-hand side of (51) is symbolic and represents the long periodic perturbation

of

/ di(w, Q) dM. (53)

dM can be transformed to d(nw+mS2) depending on the form of d; according to (53).
Formulas of dj, Aj; and Bj; are given in detail in Xu (2008).
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Properties of the Solution

Disturbances of the solar radiation consist of both the long periodic and short peri-
odic terms. The orientation of the orbital ellipse is subjected to higher frequency
disturbance than that of the other Keplerian elements.

4.4.3 Solutions of Disturbance of Atmospheric Drag

Atmospheric drag, caused by the air, is the disturbance force acting on the satellite’s
surface. Air drag force can be represented as (see (4.75) of Xu 2008)

- 1 /C4S
fdrag:_m_ —J0

2\ m

EOREY o - r — Fair
I — Fair| Ma, Na = — 7

, (54)

3 3
I — Tair

where S is the cross section (og effec@ive area) of the satellite, Cq is the drag factor,
mis the mass of the satellite, 7 and 7 ,; are the geocentric velocity vectors of the
satellite and the atmosphere, respectively, and o is the density of the atmosphere.
Usually, Shas a value of 1/4 of the outer surface area of the satellite, and Cy4 has
labour values of 2.24-0.2. The unit vector 7, is the direction of the air drag force.
For CHAMP satellite, with an orbit height of 400 km, the air drag force unit vector

.. 2
i1, changes its direction about 1.2 x 107> rad/s. The amount of ‘7 — Fair

changes
slower than the direction. In such a case the acceleration of the air drag can be

discretised by
N 1 /C4S
dane = =3 (%, )@

The disturbed velocity caused by the atmospheric drag is then

. . 2
1) = Fas(n)| Rt (55)

k
- CaS
Vair drag(?) = } “om o

i=

(1) — Tair(t) ’ Ra(ti) At (56)

The disturbed position caused by the solar radiation is then

k
Pair() = Y Vairdrag(1) AL (57)
j=1

Equation (57) is the solution of the solar radiation disturbance on the orbit of the
satellite.

For all satellites, with an orbit height higher than 1,000 km, the atmospheric drag
is nearly zero; therefore this effect does not need to be taken into account.
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4.4.3.1 Solutions via Gaussian Perturbed Equations
Air Drag Force Vector for Gaussian Perturbed Equations

Air drag force is given in (54) (using & to represent the coefficient part of the air
drag force vector)

(F — Fair)- (58)

fdrag =§ ‘; - ;air

Using (38) the air drag force vector can be rotated from the ECSF to the orbital
coordinate frame by

fr fr
Jo | = R3(R3()RIDR3() | fy |- (59)
o Sz

Satellite position and velocity vectors in orbital frame are (see (3.41) and (3.42) of
Xu 2008)

a(cos E — e) rcos f
g=|avl—e2sinE | =|rsinf |, (60)
0 0
) —sin E na —sin f na
o 1—¢2 E| — = cos —_ 61
q v/ eocos o cos B e+0 f N (61)

They can be rotated from the orbital frame to the ECSF frame (see (3.43) of Xu
2008):

7 . q
(?) = R3(=S)R1(—DR3(—w) (g)- (62)
Air velocity in the ECSF frame is given in (4.76) of Xu (2008):

. =y 0-1
Fair = ke X F=kwe | x | =kwe| 1 0
0 00

0
0 — kweR4T, (63)
0

N =

where w. is the angle velocity of the Earth’s rotation. Thus in the ECSF frame
there is

F = Tair = R3(—)R1 (—)R3(—w)] — kw,RaR3(—Q)R1 (—DR3(—w)g.  (64)

Denote the following matrix as R:
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R3(@)R1(DR3(D)R4R3(— Q)R (—DR3(—w) = R3(w)R1(HR4R1 (—DR3(—w)
0 —cosi sini 0 —cos i sin i cos w
=R3(w)| cosi 0 0 |R3(—w)= cos i 0 —sin i sin w
—sin i 0 0 —sin i cos w sin i sin w 0

(65)
and note that the length of a vector is invariable under rotational transformations;
one has

e ..
Ja :g"'_rair

/n

The force vector (66) is represented completely in Keplerian elements.

R3y(F)(q — kweRG) = & |§ — kweRG| R3(F)(§ — kweRG). (66)

Gaussian Perturbed Equations and the Solutions

The air drag force vector (66) has to be further simplified. Denote the elements of
the matrix R with R;;; then one has approximately

. na —sin f cos f
g —kweRGg = ——— | e+cosf | —kwR(1 —e?) | sinf | (1 —e cosf)
¢ vl—ez 0 0

b1y sin f + b1z sin f cos f
= by cos f+ boa cos? [+ bas
b3y sin f + b3y cos f + b3z sin f cos [+ b3g coszf
(67)
where coefficients b;; can be obtained by comparison.
For convenience, the simplified Gaussian disturbed equations of motion can be
written as shown below (see (50), (49) and (47)):

%:[e sin f - fe + (1 + e cos f) - fu]
%:@mﬁﬁ+@m%+a—¥nmﬁfd
dd% =[—cosffi + (24 e cos f)(1 — e cos f)sin f - fu]
d—izcos u(l — e cos f) - fi o

— =sinu(l —e cosf),L. -/
dr sin i

dm
el R [—2e(1 — e cos f) - f;]

dr
Putting the air drag force vector and other mathematical relations into the simpli-
fied Gaussian disturbed equations (68), the equations could be solved (see Xu et al.

2010b).
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4.4.4 Solutions of Disturbance of the Sun

The solutions of the disturbance of the Sun may be similarly derived by the dis-
cretisation demonstrated in Sect. 4.4.2. However, analytic solutions are preferred in
theoretical and practical aspects.

Potential Function of the Sun

The disturbance forces of multiple point masses acting on the satellite are (see (4.50)
of Xu 2008)

S T — T T
Fot = —m Y Gm(j) | ——L 4 ZO (69)
- T ro ..
j |r 7, m(/)| m(j)
where Gm(j) are the gravitational constants of the Sun and the Moon as well as the
planets. The disturbance acceleration of the Sun is then

=R

= —Ms | ——>=r - - - S = 0|, M=
> -3 ) > -3
[r — 7l Ts [r — 7l

The unit vectors 7igs, 715 and 7, represent the vector from the Sun to the satellite,
the geocentric vectors of the Sun and satellite, respectively. The force vector of the
Sun is a vector summated from two vectors in directions of 7, and 1 (see Fig. 4.5).
According to the geometric relations of the vectors one has (cf. Fig. 4.6)

- 1 . ~ . F—Ts R Ts
fo=—mps | ——=>nss + TFnS s Ngg = =——=—, Ng= lT
(70)

~ s

-

I’:;s"‘(;:_?s)
P =T =12+ 12 = 2rrg cos o, (71)
COS o = Ny - T

Fig. 4.5 Disturbance force
vector and its two
components (two B with
indices are lengths)

v

=~

Fig. 4.6 Triangle
relationship between the
geocentric vectors of the
satellite and the Sun
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where « is the angle between the geocentric vectors of the satellite and the Sun and
cos « is the inner product of the two unit vectors. Using the mathematic formula

\q/(l—i—x)l’:l—i—lc—;x—i—l%xz—i—--- x| <1,p>0 or g=>0, (72

the lengths of the two vectors in (70) can be approximated by

r r r
ﬁ%? 1+3—COSOl
[r — sl Ts Ts

1 rs r r 2
—2—_.—_.3%—3 —3cosa—15—0Gcos“a—1)
rg [r — 75l rs Ts

(73)

The geocentric distance rates of GPS and GEO satellites to the Sun are about 1.77
x 10* and 2.8 x 1074, respectively. Therefore, for all satellites which are lower
than the GEO satellite, above two approximations in (73) are precise enough to take
only the first term into account and then one has

- r. 3rcos o
fo = —mys (—3nr - —3n) (74)
rS rS
The potential function of the disturbing force of the Sun (74) is then
r 3 . o
Vs = —mpus— + mps 5 s - 7. (75)
T3 2r;

The correctness of the potential function can be verified directly by making gra-
dient operation on (75) and comparing the results with the force vector (74). The
computation shows that for GPS satellite within 3 days the force vector (70) and its
approximation (74) have differences of 3 x 10719 (that is one order smaller than that
of the computed by using (70)).

Disturbed Equation of Motion and the Solutions

Denote the first term of the potential function (75) as Vs and note that Vj; is the
function of the three Keplerian elements (a,M,e). The derivatives of the potential
function with respect to Keplerian elements are then

Vg1 - dVs1 or _ 1 Vi1 _ Vi1 _ aVs1 —0
da  or da _a " aQ T 8 e
oVs1 Vs1 or —acos f
— =——=—Vy
de r de r

and
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M oM o2 "

Substituting the above derivatives and Vy; into the equation of motion (11), one has

aVs1 _ Vs1 or ae sin f (76)

da  —2mus esinf
dt nrd J1-e2
de  —musv/1—e*sinf

de na r3’
do  mpsv'1 —e? cos f
e nae r
di dQ2
Z =0, =0 (a7
dr dr
dM_ 2 mg (1=¢€3 l—ezm,u,S cos f
dt  na r3 l+ecosf  nae r3
(1 —e? 1
_ s 3e)<26 —cosf).
naers; I+ecosf

1— 2
= M(Ze — (1 +2¢%)cos f)
naer;
Geocentric distance of the Sun can be considered a daily constant. There are (see

Liu and Zhao 1979 and (5.22) of Xu 2008)

. 72 . 72 . 92. 43.
sin f = l—ge sin M + e 1—66 sm2M—i—§e s1n3M—|—§e sin 4 M,

9 » 45 9> 43
cos f+e=|1— ge cos M+e|l— ge cos 2M+§e cos 3M+§e cos 4 M.
(78)

Denote
-1

dm\ ! M
0 0

7 7 3 1
—1==¢% cosM—f 1 ——e2)cos 2M — Ze%cos 3M — —e3cos 4 M
8 2 6 8 3

-1 am\ !
8C=f(cosf+e)dt=f(cosf+e)<a . =<E>0 .

9 4 3 1
((1 _ §e2> sin M + % (1 - §e2> sin 2 M + gez sin 3M + §e3 sin 4M> .
(79)
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Then the solutions are

—2mig e
Aa = ——————=48,
nrf V1 —e?
— A1 — e2
Ae= VT %y,
narg
/1 — 2
Ao ="E_ ey s0),
naer;
Ai = const., A = const., (80)
mps(1 — 32) 2 2
AM = ‘—3(6(3 + 2e“)t — (1 +2e)8C).
naer:

S
The orbital parameters w and M are partly linearly perturbed by the Sun.
Denote the second term of the potential function (75) as Vs and note (cf. (62))

cos f cos f
7= R3(—=DR|(—)R3(—w)r | sinf | =rR| sinf
0 0

cos 2 cos i cos w —sin 2 sin w  —cos 2 cos i sin w — sin L sin @ cos 2 sin i cos f
= sin €2 sin i cos w + cos Q2 sin @  —sin Q2 sin i sin @ + cos 2 cos @  sin  sin i sin f
—sin i cos sin i sin w cos i 0
Ry1 cos f+ Ry sinf
=r| Ry cosf+ Ry sinf
R31 cos f+ R3p sin f
(81)
ng1
ng =1\ ns2 |,
ns3
rcos a=rng-7=r(A cos f+ B sin f), (82)
where coefficients are
A = ngR11 + nsaRo1 + ns3R3) (83)

B = ng1R12 + nsaRy» +ngR3p’

where R with a single index k is rotational matrix around the axis k; R with two
indices are elements of the total rotational matrix R and they are triangle functions of
(2, i, w); solar-related elements are denoted with index s; ng is the k-th component
of the geocentric unit vector of the Sun; A and B are functions of sinus and cosines
of (€2, i, ) as well as components of the geocentric solar unit vector. Then one has
derivatives of the second-term potential function with respect to Keplerian elements
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aV, 3 a
_82 =m/~’LS_3r CcoS aﬂ, (84)
I,

doj 3 doj

where o with index j denotes the j-th Keplerian element. Explicitly the partial
derivatives are (cf. (4.24) in Xu 2008)

Wo 317

2
ryale musgz cos” o, (85)
aV, 3
a2 _ mps—r> cos a(Ag cos f + Bg sin f), (86)
02 rg’
8V52 3 2 .
T = musr—3r cos a(A; cos f + B; sin f), (87)
S
aV, 3
2 _ m,us—3r2 cos (A, cos f + By, sin f), (88)
ow T3
aVs 3 2
2 _ MiLs—T COS oc(cos a(—a cos f) + r(—A sin f+B cos f)+e—0025f sinf),
de T I—e
(39)
and
aVsZ

3
o mMSE cos o (\/f—i_ezr cos « sin f + (—A sin f + B cos f)a’y/1 — e2)
(90)

where A and B with indices of (€2, i, ®) are partial derivatives of A and B with
respect to the related indices. Putting (85), (86), (87), (88), (89) and (90) into (11)
and taking the following approximation (terms with order ¢ are neglected) into
account (cf. (72))

a(l — e

"= l1+ecosf

) 612(1 _ 62)2
" T T ecos

1 1 ~1 I 5. 3 4. 5 6.
sini mw +§cos z—i—gcos z—i—Rcos I+
the Lagrangian equations of satellite motion can be transformed
in terms of cos”™fsin‘f and then in terms of multiplications of
{cos mM, cos kM, sin mM, sin kM}; and at the end they can be reduced to
functional series of {cos mM, sin kM }; which can be integrated with respect to M
to obtain the short periodic terms solutions. The terms nothing to do with M are long
periodic terms which can be reduced to triangle functions of (k2+mi+Ilw) and long
(non-periodic) terms. Where k, m and /, that are integers. The transformation can be
carried out by using mathematic symbol operation software such as Mathematica
or Maple and the solutions have the form of

~a(l —ecosf+---), on

~a*(1—2ecosf+---),
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Aoj = dj + Z bji cos kM + cjy sin kM,
k=1,...

di=Li+ ) gjtmi cos(kQ + mi + lw) + hjggn sin(kQ + mi + lw),  (92)
k,m,l

where d, b, c are functions of (€2, i, w, a, ¢) and g, h, L are functions of (a, ¢). All
terms of b and ¢ are short periodic terms; all terms of g and & are long periodic
terms; and L terms are the long-term effects. Due to the length of the formulas, b
and c, g and & will not be given here (for detail see Xu et al. 2010a). Selecting the
integration interval as k27 (k is any integer), integrations of short periodic terms
are zero. Selecting the minimum common periods of the long-term effects, integra-
tions of long periodic terms are zero. Then there exists a minimum common interval
over that the integration of all periodic terms are zero. The d for the first Keplerian
element (a) is zero; i.e. the semi-major axis is not perturbed by the solar attracting
force long periodically. The most important terms are the long-term effects which
are represented in L and which are zero except the following two terms:

Ly =

V1 —e?3mus (—1,823 L2 9 2+ 9 +3 ;
nn —nNn n
16.384 " T 16" T 162 T g

V1= 3mp, <—1,823 9 3 2)t '

3
n ry

niny + —

n 2 \ 16,384 6 167

-3 21 21 7 -3 21 7
L¢ = 2 s ( n? + n% + n§>t s (— - —n2> . (93)

n 3 \16" 8 n o \16 16

The results of the long-term perturbations are coincidently similar with that of the
solutions of the part one given in (80); however, with different signs. Comparing
(80) with (93) it is notable that the linear terms in (80) are generally (with a factor of
1/a) smaller than that of (93). That is the linear effects are dominated by (93) under
the solar attracting force perturbation. The orientation of the ellipse will rotate with
a constant velocity in direction of increasing w; whereas the mean anomaly (M)
decreasing constantly.

Because the Gaussian equations are derived from the Lagrangian equations and
there exist potential functions of the approximated disturbing force of the Sun, solu-
tions via Gaussian equations must be the same and do not need to be discussed for
multi-body disturbances.

4.4.5 Solutions of Disturbance of the Moon

The disturbance acceleration of the Moon is (see (69))

- | B, 1 . . 7 —Tm . 7
Jm = —mpm < S5 a/tksm + — 2”m> sy Nsm = 5——=—, Nm = 94)
[F — ¥m] [Fm| r'—"Tm |rm|
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The unit vectors gy and 7y, represent the vectors from the Moon to the satellite
and the geocentric vector of the Moon, respectively. The only difference between
(75) and (94) is the index; instead of ““s” for the Sun, “m” is used for the Moon.
However, the maximum geocentric distance rate of GPS satellite to the Moon is
about 6 x 1072. This fact has to be taken into account and the discussions can be
made similarly as did in Sect. 4.4.4. The force vector can be approximated by

- r r - r 3r 2 -
fm = —mum = 1+3—cosa n— — 3cosa + —(Scos“a—1)ny ).
" "m o 2rm
95)
The potential function of the disturbing force of the Sun is then

_ r i = =0 L 3.3 3
Vs = —mum 5 +mpms— (nm - 1) mm (—=5r’ cos” a + 3r” cos a). (96)
r 2r3, 2rd

The solutions of Lagrangian equations related to the first two terms of potential
function (96) are already derived in Sect. 4.4.4 and can be used directly. The solu-
tions related to the last term can be derived similarly in principle and the discussions
are omitted here (see Xu et al. 2010a).

Discretisation and Solution

Denote the satellite period as 7. The local noon of the Moon is selected as the
starting point of counting. A so-called sign function can be defined as

-1 0<t<T)2
8(1):{1 T2<t<T" O7)
The sign function shows that the attracting force of the Moon decelerates the satellite
during the first half period and accelerates during the second half period with respect
to the nominal motion of the satellite. Then the duration of one period of 0 ~ T
can be equally divided by At, ie. by #),],...,1,...,T. The acceleration of the
disturbance of the Moon (94) is then discretised as

1 o
——nsm(f) +
[F(tx) — Fn(ti)|?

The disturbed velocity caused by the Moon is then

Z)lm(l) = —HMm ( ﬁm(ﬁc)) .

1
[P (1)1

k
1
T’m(t) = - Zﬂm ( zﬁsm(ti) + —;Lm(li)> At.

pr [F(t;) — Fn(17)] ()]

The disturbed position caused by the Moon is then
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k
Pm(®) =) Im()AL. (98)

J=1

Equation (98) is the discrete solution of the disturbance of the Moon on the orbit of
the satellite.

4.4.6 Solutions of Disturbance of Planets

The disturbance acceleration of a planet is (see (69))

S | 1 . - F—Tp . Tp
Jo=—mip | ———3np+ —5Mp |, Ap = o= (99)
|7 =7 7| 7ol

The unit vectors 7, and 7, represent the vectors from the planet to the satellite
and the geocentric vector of the planet, respectively. The geocentric distance of the
planet is far greater than that of the Moon. The discussions in Sect. 4.4.5 can be
directly used here. Because the disturbances of the planets are of the third order; the
influences are need to be considered only in case of third-order solutions.

4.4.7 Summary

Solutions of the extraterrestrial disturbances of the attracting forces of the Sun and
the Moon, as well as the planets, the drag force of the atmosphere and solar radiation
pressure are derived in this section.

The solar radiation is a non-conservative disturbing force; of course, the distur-
bances of the orbit are also non-conservative ones. They are generally non-periodic
effects.

The disturbance of the Sun has long-term effects on the orientation of the ellipse
and the position of the satellite as well as short periodic effects on the semi-axis of
the satellite and the shape of the ellipse. The effects of the Moon and planets are
similar to that of the Sun.

4.5 Solutions of Geopotential Perturbations

The principle of the derivation of geopotential perturbations will be discussed first.
The general solution of the perturbations of Cjn and Sy, is derived. Because of the
length of the formulas, examples will be not given here. Interested reader may find
them in Xu (2008) and on going publications.
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Principle of the Derivations

From the solution process of the equation of satellite motion perturbed by the geopo-
tential term Cag given in Chap. 5 of Xu (2008), one notices that the derivation is very
complicated, even if the potential function of the perturbation is relatively simple.
An alternative method is to use symbolic mathematical operation software such as
Mathematica, Maple. However, the principle and strategy of the derivation have still
to be carefully created.
For simplification, geopotential disturbance function of / order and m degree can
be written as (see (4.35) of Xu 2008)
Mofae\ . — - .
Ry = - (7) Pin(sin go)[ Cp cos mA + Sy, sin mk]. (100)
Let

E’lm = Dy, COS mAp,
Sim = Dy sin mijy,, (101)
A=A—Ajm

—2 )
Diy = V Cim + Sim
Im

COS m)\.[m = D . (102)

Im

where

sinmhy, = —2

D

Im

then (100) is

b _
Ry = %le(sin @) cos(mh), (103)
r

where by, = /wéDlm.
To transform the geographic coordinates into the Keplerian variables, the
following relations are needed (see (5.2) of Xu 2008):

sin ¢ = sin i sin u,

A= =0 — Ay =(2—0 =) + (@ - Q)
COoS u

cos(ax — ) = s (104)
cos ¢
. sin u cos i
sinlg — Q) = ——.
cos ¢

Further more there are (see Wang et al. 1979)
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[m/2]
cos(my) = ) (~ 1>f< )(cos W' H(sin )Y,
Jj=0
[m—1)/2] ' _ .
sin(my) = Z (—1)f<2j’i1>(cos W' H " (sin y)F !, (105)
i=0

where [z] is the integer part of z and the binomial form has the well-known
expression of

m m!
<k> T Km—k) (106)

Let
(107)

then

cos mA = cos(m + my) = cos mQ cos my — sin mQ sin my
[m/2]

: Z( 1Y cos mQ (2 ) (cos u)" ¥ (sin u cos i)¥—

cosm

(2 i ' _
Z (—1)] sin mS2 (2] + 1) (cos u)m*ZJ*l(Sin I Cos l')2]+l.
Jj=0

1
cos™ ¢

Note that there is a factor of cos™¢ in the expression of Pjy(sin ¢); therefore, let

[m/2]
q(Q,u,i) = Z (—1Y cos mQ (2 >(cos u)"%(sin u cos i)¥—

j= ]
[(m—1)/2] . B m - - (108)

1V si m—2j—1qi )27
g(:) (—1Y sin m& (2]. ¥ 1) (cos u) (sin u cos i)
Oim(x) = Pp(x)/(1 — x*y"/?
(109)

K
=N Y. Tpyex! =72k,
k=0

where K is the integer part of (/-m)/2 and the factors are

\/(1 — )21+ 1)(2 — Som)
N =
I+ m)!
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(=DFQ21=2k)

Timie = . 110
lmk 2N — )W —m — 2k)! (110)
One has
blm .
Rim = lem(x)Q(Q’u’ i), (111)
and then
8le o 8le ﬂ o _(l + I)R
da ~ Or da a fm:>
3le blm aq(2,u, i)
R bim 3Q1m(x) 0x 9q($2, u, i)
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ba(m.j) = (zj’i 1>,
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[(m—1)/2]
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sin u = sin(f + @) = sin f cos w + cos f sin @

cos u = cos(f + w) = cos f cos w — sin f sin w. (120)
Further more, there is
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These derivations lead to simplified formulas for the perturbation function and are
necessary and enough to transform the differential equations of motion into func-
tions of Keplerian variables. They are used to derive the solutions of perturbations
of geopotential function in order and degrees of 2 x 0,2 x 1,2 x 2,3 x 0 and
are the basis for deriving the general solution of the perturbation of / order and m
degree.

4.6 Principle of Numerical Orbit Determination

Recalling the discussions made in Sect. 4.2, the perturbed orbit of the satellite is the
solution (or integration)

t
X(1) = X(to) + / Fdt, (124)

fo

which can be obtained by integrating the differential state equation under the initial
condition

X0 =F , (125)
X(1) =

where X (1) is the 1nstantaneous state vector of the satellite, X(to) is the initial state
vector at time o (denoted by Xo) F is a function of the state vector X(t) and time ¢

and
- (7 S 7
X=1=x d F=1{- s
(5) e 7= (70,)

wherej? is the summated force vector of all possible force vectors acting on the
satellite, mis the mass of satellite, and 7, 7 are the position and velocity vectors of
the satellite.

If the initial state vector and the force vectors are precisely known, then the
precise orbits can be computed through the integration in (124). Expanding the
integration time ¢ into the future, the so-called forecasted orbits can be obtained.
Therefore, suitable numerical integration algorithms are needed (see Sect. 4.8.2 in
Xu 2008).

In practice, the precise initiate state vector and force models, which are related
to the approximate initial state vector and force models, have to be determined.
These can be realised through suitable parameterisation of the models in the GPS
observation equations and then the parameters can be solved by adjustment or
filtering.

We generally denote both the range and range rate together by p; their partial
derivatives with respect to the orbit state vector (see Xu 2007) have the forms
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ap dp ap

-, —= or .

or  ar X
Therefore, the orbit parameter-related parts in the linearised GPS observation
equation are

o 9 dp 0X .
p_3G7) AT or B AT, (126)
AT 0y 9X 9y

where v=Xo.Y), A =(aXo,AY), X __oX
y =40, 1), 0> s s T
dy  3(Xo,Y)
where X, Y are the state vector of satellite and the parameter vector of the force
models, and index 0 denotes the related initial vectors of timezy. y is the total
unknown vector of the orbit determination problem, the related correction vector
is Ay = ¥ — ¥ and AXO is the correction vector of the initial state vector. The
partial derivative of X with respect to y is called transition matrix which has the
dimension of 6 x (6 + n), where n is the dimension of vector Y. The partial deriva-
tives of the equation of motion of the satellite (see (126)) with respect to the vector
¥y are
o0X(t) oF aFox [(oF\
—= —=—=1|== (127)
9y 0y  9x oy ay

where the superscript * denotes the partial derivatives of F with respect to the
explicit parameter vector y in F and

> 03x3 E3x3
_(oF) _ 2 21 _ [ 03x3 E3x3
D(t)_(aS()_ v i | = (%)

mor m 97
=\ * 03x6 03xn
F 03><(6+n)>
CtHy=|— = 10 = s 128
® (3)’) 036 E% ( G() (128)

where Eis an identity matrix; the partial derivatives can be found in Xu (2008).
Notable that the force parameters are not functions of ¢. Therefore the order of the
differentiations can be exchanged. Denoting the transition matrix by @(z,ty), then
(128) turns out to be

do(t, 1)

TR D)@ (t, 1) + C(@). (129)

Equation (129) is called a differential equation of the transition matrix or
variation equation (see, e.g., Montenbruck and Gill 2000). Denoting
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¢@my=<§82D, (130)

an alternate expression of (129) can be obtained by substituting (130) and (128) into
(129):

(1) dw (. 10)
—an —A¥ 1) + BlO— — + G (131)

The initial value matrix is (initial state vector does not depend on force parameters):

P(10,10) = (Eox6  Oxn)- (132

That is, in the GPS observation equation, the transition matrix has to be obtained
by solving the initial value problem of the variation equation (129) or (131). The
problem is traditionally solved by integration. An algebraic solution is derived by
Xu (2003).

Limitations of the Numerical Orbit Determination

Real-time ability of the numerical orbit determination is limited first by the
adjustment or filtering algorithms used.

If the classic least squares adjustment algorithm is used to solve the parameters
of the orbit determination problem, it is not possible to obtain the solution in real
time because of the size and dimension of the equations. The equations of IGS orbit
determination are formed and solved daily. It takes from less than 1h to several
hours to compute the results depending, of course, on the computer used. The so-
called rapid IGS orbits are partly computed using 23 h past data and 1 h updated
data. In general, the classic least squares adjustment algorithm is not suitable for
real-time purpose.

Sequential least squares algorithm and Kalman filtering technique are partly
developed for real-time applications. The sequential least squares algorithm is a
special case of the Kalman filtering, therefore, the discussions will be focused on
the filtering method. Kalman filtering solves the equations of every epoch or every
epoch-block by taking into account the information from the past to obtain the
results. In this way the problem can be solved epoch-wise or epoch-block-wise
depending on the property of the problem. For equations of orbit determination the
problem is not solvable (or singular) for a few epochs because of the dimension of
the unknowns. The equations of orbit determination are generally solvable in half
an hour (see Xu 2004) or longer. That is, the filtering technique and the property of
the equations of orbit determination make the real-time application of the numerical
orbit determination very difficult.
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Furthermore, in numerical orbit determination, the numerical integration algo-
rithms have to be used to integrate the orbits and to solve the variation equations.
The numerical integrator usually has a so-called integrator length. The selection of
the integrator length depends on the accuracy requirement and the physical proper-
ties of functions that will be integrated and therefore is not free of choice. Usually in
IGS orbit determination, the integrator length is selected as 5 min. This also restricts
the real-time application of the numerical orbit determination.

Because of the adjustment and filtering techniques and the use of the numer-
ical integrator as well as the properties of the physical problem, numerical orbit
determination is difficult to be in real time.

4.7 Principle of Analytic Orbit Determination

Orbit determination aims to determine the initial orbital elements (i.e. the initial
state vector of the satellite) and the unknown model parameters. The technique of
numerical orbit determination is developed in a situation that, on one hand, one
needs the technique; however on the other hand, one does not have analytic solu-
tions of the disturbed equations of satellite motion. The key difference between the
numerical and the analytic orbit determination is that the orbits are represented in
the former algorithm by differential equations and in the latter algorithm by analytic
formulas.

The perturbed orbit of the satellite is the solution (or integration) (see discussions
in Chaps. 5, 6 and 7 of Xu 2008)

t

oj(t) = aj(t0) + (Gj(1) — Gi(tp)) where Gj(t) — Gj(to) = / Fjdr,  (133)

fo

where Gj(?) are the infinite integrations of the right functions of the equations of
motion and are given explicitly by analytic formulas. Equations (133) have been
obtained by integrating the disturbed equations of motion

é’j(l‘) = FJ
{Uj(fo) =0j, (139

where o;(7) is the j-th Keplerian element, 0;(#o) is the related initial value at time 7,
Fj is the related right function of the differential equation and is a function of
disturbing forces.

If the initial Keplerian elements and the force functions are precisely known,
then the precise orbits can be computed by using (134). Computing for time 7 in the
future, the so-called forecasted orbits can be obtained. That is, for orbit determina-
tion using analytic solutions, the traditional numerical integration algorithms are not
necessary any more (because the differential equations are theoretically integrated
by deriving the solutions).
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In practice, the precise initial Keplerian elements are not known exactly and the
parameters of the force models have to be co-determined. These can be realised
through suitable parameterisation of the models in the GPS observation equations
and then solved by adjustment or filtering.

We generally denote both the range and range rate together by p; their partial
derivatives with respect to the orbit state vector (see Xu 2003, 2007) have the form

aip 9
°. %, (135)
or  ar

Therefore, the orbit parameter-related parts in the linearised GPS observation
equation are then

0 a*’:— 0 ’:1’6 R
p_ .(r r) (0j,] i ) AT 136
o(r,r) 9(0j,j = 1,..6) 3y
where
5 =G0, V), AT = (AGy, AT (137)

G, Y are the Keplerian element vector and the parameter vector of the force models
and index 0 denotes the related initial vectors of time #y. y is the total unknown vec-
tor of the orbit determination problem, the related correction vector is Ay = y — ¥
and Aay is the correction vector of the initial Keplerian element vector. The partial
derivatives of the satellite state vector with respect to the Keplerian element vector
are known and can be found in Sect. 4.5.4 of Xu (2008). The partial derivative of
the Keplerian element vector with respect to y is called the transition matrix which
has the dimension of 6 x (6 + n), where n is the dimension of vector Y. Because of
the analytic solutions of the disturbed equations of motion, the partial derivatives of
the Keplerian elements with respect to the vector y are almost given by the solutions
explicitly. That is to say, by analytic orbit determination, the transition matrix is
represented by analytic formulas instead of the so-called variation equations in the
numerical algorithm. The variation equation has disappeared from the orbit deter-
mination process, so the numerical integration algorithms traditionally used to solve
the variation equation are not necessary any more.

Note that the orbit disturbances are mostly linear functions of the parameters of
the force models. Therefore, the partial derivatives of Keplerian element vector with
respect to parameter vector y of the force models are directly the coefficients of the
related force parameters. No special derivations of the partial derivatives are needed.

Compared to numerical orbit determination (Chap.8 of Xu 2008), in analytic
orbit determination, no variation equations need to be solved; no numerical integra-
tion algorithms are necessary; no special orbit-related partial derivatives have to be
derived. These significant advantages should lead to more efficient algorithms and
more accurate orbit determination.
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Real-Time Ability of Analytic Orbit Determination

Using the analytic orbit theory the observation equation of the orbit determina-
tion problem can be formed easily epoch-wise. The equations are solvable for an
epoch-block. Taking past information into account, the solvable equations of an
epoch-block can be formed and solved in real time. Taking the information before
the solved epoch-block into account, Kalman filtering technique can be used to
determine the orbit in real time. This is very significant for applications of satellite
technology nowadays and should be further studied intensively.

Properties of Analytic Orbit Determination

Initial Time Selection

In numerical orbit determination, the initial time is a matter of free choice. For
numerical integration, it really does not matter from which time point one starts to
integrate. However, in analytic orbit solution, nearly half of the formulas are func-
tions of initial time point (another half of the formulas are infinite integrations and
functions of instantaneous time). In turn, the functions of the initial time point are
in terms of sines and cosines. Of course, theoretically the initial time point of orbit
determination can be freely selected. However, if the initial time point is selected at
that point such that the sines or cosines of mean anomaly are zero, the intensity of
the computations can be reduced by 25%. That is, a suitable initial time selection is
very important for analytic orbit determination.

Using General Models for Second-Order Geopotential Disturbances

As shown in Chap. 6 of Xu (2008), the solutions of the second-order geopotential
disturbances are very long. Theoretically, any order and any degree of the distur-
bances can be derived; however, to program all the formulas into software will
definitely be a problem. For orbit determination the second-order geopotential dis-
turbances are small terms and they can be dealt with like corrections to the initial
and nominal orbit. For short periodic terms, the solutions are formed by a set of
functions of

{sin nM, cosnM, n=1,...,N}, (138)
where M is the mean anomaly of the orbit; # is an integer index and has a truncation
number N.

Similarly, for the long periodic terms of the second-order geopotential distur-
bances, the solutions can be formed by the following sets of functions:

{sin nw, cos nw, n=1,...,1},
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{sin nQ2, cos nQ2, n=1,...,J},

{sin(nw + m), cos(nw +m), n,m=1,...,K}, (139)

where m is an integer index; /, J and K are truncation numbers.
The general models of the solutions of the second-order geopotential distur-
bances are then

N I
> (An cos nM + By, sin nM) + Y (C,, cos nw + D, sin nw)

n=1 n=1

J K
+ Y (E, cos nQ+Fy sin nQ2)+ > (G cos(nw + m2) + Hyy, sin(nw + m<2),
n=1 nm=1

(140)
where coefficients (A, B, Cp, Dy, Ey, Fp, Gum, Hypy) can be considered as unknown
and should be co-determined by orbit determination. The truncation numbers of
(1, J, K) are generally much smaller than N because of the long periodic properties
and shall be suitably selected through practical experiments.

4.8 Summary and Discussions

Summary

Complete theory of the satellite orbit is described in a condensed way in this chapter.
Perturbed equations of satellite motion are discussed first; then singularity-free and
simplified equations are given. The solutions of extraterrestrial disturbances, such as
solar radiation pressure, atmospheric drag and the disturbance of the Sun, the Moon
and planets, are derived; then solutions of geopotential disturbances are discussed.
Numerical and analytical orbit determinations are dealt with before the summary
and discussions.

Discussions

Simplified Singularity-Free Equations of Motion

As seen above (Sect.4.3), the singularity problem has been solved by using sim-
plified and singularity-free equations. The simplified orbit problem is described
using simplified coordinates. The geometric meanings of the variables remain the
same. The use of the traditional and partly non-geometric sensed variable set of
(a, h = sin i cos @, k = —sin i sin Q, £ = e cos(w+R), n = —e sin(w+2), A =
M+w+Q) is obviously not an ideal choice. One of the important reasons for using
the canonical transformation to represent the orbit equations is that the canonical
equations are also singularity-free. After the disturbed equations of motion (24) or
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(25) are singularity-free, the advantages of the use of canonical equations have to be
carefully re-evaluated.

Analytic Solution vs. Numeric Solution

Solutions of the extraterrestrial disturbances are sometimes given both in analytic
and numerical form (see, e.g., Sects. 4.4.2 and 4.4.6). The formulas of the discrete
solutions are very easy to use for computation; however, they do not have clear
geometric explanations for the effects of the disturbances.

Potential Functions of the Sun, Moon and Planets

An approximation has been used in the derivation of the potential function of the
disturbing force of the Sun. Similar means have been used for the Moon and can
also be used for the planets. Therefore, the related solutions are derived under a
precondition that the approximation is allowed.

Confusion of Non-conservative Force with Conservative Effect

Solar radiation is a non-conservative disturbing force. It is said that such a non-
conservative force has a conservative effect. This is confusing and is shown in
Fig. 4.7 with an example of solar disturbance on a GEO satellite. One of the pos-
sible reasons for such confusion may come from the adjustment model of the solar
radiation used in the numerical orbit determination. The models used in traditional
orbit determination (see (4.72) of Xu 2008) are periodic functions of the orbit. No
matter what results are obtained from the adjustment, the results are periodic (or
conservative). If the determined models are used to interpret the effects of the solar
radiation, confusion is then the consequence. This shows that the parameterisation
is very important and the parameterisation should be physically reasonable.

Solar radiation disturbance (m)

=80 T 1

05T
Time (in period T)

Fig. 4.7 Solar radiation disturbance on a GEO satellite
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Long-Term Effects in Extraterrestrial Disturbances

There exist long-term effects in extraterrestrial disturbances (see (51)). The long-
term perturbations have to be taken into account in the transformation of integral
variables. This shall be particularly noticed in practical applications.

Long-Term and Long Periodic Effects in Short Periodic Disturbances

There exist long-term and long periodic effects in the short periodic geopotential dis-
turbances (see (5.34) of Xu 2008). The long-term and long periodic effects derived
in Sect. 4.5.2 of Xu (2008) are not unique and not the complete effects. Note that all
the long-term and long periodic effects have to be accumulated if the relations are
to be used.

Further Studies

Further studies have to be carried out on the analytic solutions of the Gaussian equa-
tions disturbed by the air drag, on the use of the simplified equations of motion, on
the applications of the analytic theory (especially on the analytic orbit determina-
tion), on the study of the correlation of the geopotential disturbances on the orbits,
and on the third-order solutions disturbed by the Earth and ocean tides as well as
relativity disturbance.

Acknowledgements This study is under the frame of the internal GPS/Galileo study program of
GFZ Potsdam and is partly supported by the Overseas Outstanding Chinese Scholar Fund of the
Chinese Academy of Sciences hosted by the Institute of Geodesy and Geophysics in Wuhan.

References

Balmino, G., Schrama, E. and Sneeuw, N. (1996) Compatibility of first-order circular orbit per-
turbations theories: consequences for cross-track inclination functions. J. Geodesy, 70(9),
554-561

Bastos, L., Osorio, J. and Hein, G. (1995) GPS derived displacements in the Azores Triple Junction
Region. In: GPS Trends in Precise Terrestrial Airborne, and Spaceborne Applications: 21st
IUGG General Assembly, IAG Symposium No. 115, Boulder, July 3—4, 1995. Springer, Berlin,
pp- 99-104

Bate, R.R., Mueller, D.D. and White, J.E. (1971) Fundamentals of Astrodynamics. Dover
Publications, New York

Battin, R.H. (1999) An Introduction to the Mathematics and Methods of Astrodynamics, revised
version, AIAA Education Series. Massachusetts Institute of Technology, Cambridge

Beutler, G. (1994) GPS Trends in Precise Terrestrial, Airborne, and Space Borne Applications.
Springer, Heidelberg

Beutler, G (1996) GPS satellite orbits. In: Kleusberg, A. and Teunissen, PJ.G. (eds) GPS for
Geodesy. Springer, Berlin

Beutler, G., Brockmann, E., Gurtner, W., Hugentobler, U., Mervart, L., Rothacher, M. and Verdun,
A. (1994) Extended orbit modelling techniques at the CODE Processing Center of the IGS:
Theory and initial results. Manuscr Geodaet, 19, 367-386



150 G. Xu

Beutler, G., Brockmann, E. and Hugentobler, U. (1996) Combining consecutive short arcs
into long arcs for precise and efficient GPS orbit determination. J. Geodesy, 70(5),
287-299

Beutler, G., Schildknecht, T., Hugentobler, U. and Gurtner, W. (2003) Orbit determination in
satellite geodesy. Adv. Space Res., 31(8), 1853-1868

Boomkamp, H. and Dow, J. (2005) Use of double difference observations in combined orbit
solutions for LEO and GPS satellites. Adv. Space Res. 36(3), 382-391

Borre, K. (2003) The GPS Easy Suit-Matlab code for the GPS newcomer. GPS Solutions, 7(1),
47-51

Bronstein, I.N. and Semendjajew, K.A. (1987) Taschenbuch der Mathematik. B.G. Teubner
Verlagsgesellschaft, Leipzig, Germany. ISBN 3-322-00259-4

Brouwer, D. and Clemence, G.M. (1961) Methods of Celestial Mechanics. Academic Press, New
York

Casotto, S. and Zin, A. (2000) An assessment of the benefits of including GLONASS data in
GPS-based precise orbit determination — I: S/A analysis. Adv. Astronaut. Sci., 105(1), 237-256

Chobotov, V.A. (ed) (1991) Orbital Mechanics. AIAA, Washington

Colombo, O.L. (1984a) Altimetry, orbits and tides. NASA Technical Memorandum 86180

Colombo, O.L. (1984b) The global mapping of gravity with two satellites. Netherlands Geodetic
Commission, Delft, The Netherlands Publications on Geodesy, 7(3), 253 pp

Cui, C. (1990) Die Bewegung kiinstlicher Satelliten im anisotropen Gravitationsfeld einer gle-
ichmadssig rotierenden starren Modellerde. Deutsche Geoditische Kommission, Reihe C:
Dissertationen, Heft Nr. 357

Cui, C. (1997) Satellite orbit integration based on canonical transformations with special regard
to the resonance and coupling effects. Dtsch Geod Komm bayer Akad Wiss, Reihe A, Nr. 112,
128 pp

Cui, C. and Lelgemann, D. (1995) Analytical dynamic orbit improvement for the evaluation of
geodetic-geodynamic satellite data. J. Geodesy, 70, 83-97

Davis, P. and Rabinowitz, P. (1984) Methods of Numerical Integration, 2nd Ed. Academic Press,
New York

Desai, S.D. and Haines, B.J. (2003) Near-real-time GPS-based orbit determination and sea surface
height observations from the Jason-1 mission. Mar. Geod. 26(3/4), 383-397

Dick, G. (1997) Nutzung von GPS zur Bahnbestimmung niedrigfliegender Satelliten. GPS-
Anwendungen und Ergebnisse *96: Beitrige zum 41. DVW-Fortbildungsseminar vom 7. bis
8. November 1996 am Geo-Forschungszentrum Potsdam, pp. 241-249

Dousa, J. (2004) Precise orbits for ground-based GPS meteorology: processing strategy and qual-
ity assessment of the orbits determined at geodetic observatory. Pecny. J. Meteor. Soc. Jpn.,
82(1B), 371-380

Dow, J.M. (1988) Ocean tides and tectonic plate motions from Lageos. Deutsche Geoditische
Kommission, Rheihe C, Dissertation, Heft Nr. 344

Dow, J.M., Romay-Merino, M.M., Piriz, R., Boomkamp, H. and Zandbergen, R. (1993) High
precision orbits for ERS-1: 3-day and 35-day repeat cycles. Proceedings of the 2nd ERS-1
Symposium — Space at the Service of our Environment, Hamburg, 11-14 October 1993, pp.
1349-1354

Exertier, P. and Bonnefond, P. (1997) Analytical solution of perturbed circular motion: Application
to satellite geodesy. J. Geodesy, 71(3), 149-159

Feltens, J. (1991) Nicht gravitative Storeinfliisse bei der Modellierungen von GPS-
Erdumlaufbahnen. Verlag der Bayerischen Akademie der Wissenschaften, Munich, Deutsche
Geoditische Kommision, Reihe C, Heft Nr. 371

Gabor, M.J. and Nerem, R.S. (2004) Characteristics of satellite-satellite single difference widelane
fractional carrier-phase biases. Navigation, 51(1), 77-92

Goad, C., Dorota, A., Brzezinska, G. and Yang, M. (1996) Determination of high-precision GPS
orbits using triple differencing technique. J. Geodesy, 70, 655-662

Guinn, J., Muellerschoen, R. and Cangahuala, L. (1995) TOPEX/Poseidon precision orbit deter-
mination using combined GPS, SLR and DORIS. In: GPS Trends in Precise Terrestrial,



4 Analytic Orbit Theory 151

Airborne, and Spaceborne Applications: 21st [IUGG General Assembly, IAG Symposium No.
115, Boulder, July 3—4, 1995, Springer, Berlin, pp. 128-132

Haines, B.J., Christensen, E.J. and Guinn, J.R. (1995) Observations of TOPEX/Poseidon orbit
errors due to gravitational and tidal modeling errors using the Global Positioning System.
In: GPS Trends in Precise Terrestrial, Airborne, and Spaceborne Applications: 21st IUGG
General Assembly, IAG Symposium No. 115, Boulder, July 3—4, 1995. Springer, Berlin,
pp- 133-138

Haines, B., Bar-Server, Y., Bertiger, W., Desai, S. and Willis, P. (2004) One-centimeter orbit
determination for Jason-1: New GPS-based strategies. Mar. Geod., 27(1-2), 299-318

Hatch, R.R. (2004) Those scandalous clocks. GPS Solutions, 8(2), 67-73

Herrick, S. (1972) Astrodynamics, Vol. II. Van Nostrand Reinhold, London

Herring, T. (2003) MATLAB Tools for viewing GPS velocities and time series. GPS Solutions,
7(3), 194-199

Hess, D. and Keller, W. (1999a) Gradiometrie mit GRACE, Teil I: Fehleranalyse kiinstlicher
Gradiometerdaten. ZfV, 5, 137-144

Hess, D. and Keller, W. (1999b) Gradiometrie mit GRACE, Teil II: Simulationsstudie. ZfV, 7,
205-211

Hofmann-Wellenhof, B., Lichtenegger, H. and Collins, J. (1997, 2001) GPS Theory and Practice.
Springer-Press, Wien, Austria

Hugentobler, U., Schaer, S. and Fridez, P. (2001) Bernese GPS Software (Version 4.2).
Astronomical Institute of University, Berne

Hugentobler, U., Ineichen, D. and Beutler, G. (2003) GPS satellites: Radiation pressure, attitude
and resonance. Adv. Space Res., 31(8), 1917-1926

Jaggi, A., Beutler, G. and Hugentobler, U. (2005) Reduced-dynamic orbit determination and the
use of accelerometer data. Adv. Space Res., 36(3), 438444

Kang, Z. (1998) Prizise Bahnbestimmung niedrigfliegender Satelliten mittels GPS und die
Nutzung fiir die globale Schwerefeldmodellierung. Scientific Technical Report STR 98/25,
GeoForschungsZentrum (GFZ) Potsdam

Kang, Z., Nagel, P. and Pastor, R. (2003) Precise orbit determination for GRACE. Adv. Space Res.,
31(8), 1875-1881

Karslioglu, M.O. (2005) An interactive program for GPS-based dynamic orbit determination of
small satellites. Comput. Geosci., 31(3), 309-317

Kaula, W.M. (1966/2001) Theory of Satellite Geodesy. Blaisdell Publishing Company, Dover
Publications, New York

Kleusberg, A. (1995) Mathematics of attitude determination with GPS. GPS World, 6(9), 72-78

Konig, R., Reigber, C. and Zhu, S.Y. (2005) Dynamic model orbits and earth system parameters
from combined GPS and LEO data. Adv. Space Res., 36(3), 431437

Kroes, R. and Montenbruck, O. (2004) Spacecraft formation flying: Relative positioning using
dual-frequency carrier phase. GPS World, 15(7), 37-42

Kroes, R., Montenbruck, O., Bertiger, W. and Visser, P. (2005) Precise GRACE baseline determi-
nation using GPS. GPS Solutions, 9(1), 21-31

Kuang, D., Rim, H.J., Schutz, B.E. and Abusali, P.A.M. (1996) Modeling GPS satellite attitude
variation for precise orbit determination. J. Geodesy, 70, 572-580

Kwon, J.H., Grejner-Brzezinska, D., Bae, T.S. and Hong, C.K. (2003) A triple difference approach
to Low Earth Orbiter precision orbit determination. J. Navig., 56(3), 457-473

Lelgemann, D. (1983) A linear solution of equation of motion of an Earth-orbiting satellite based
on a Lie-series. Celestial Mech., 30, 309

Lelgemann, D. (1996) Geodaesie im Weltraumzeitalter. Dtsch Geod Komm, 25, 59-77

Lelgemann, D. (2002) Lecture Notes of Geodesy. Technical University, Berlin

Lemmens R (2004) Book review: GPS — theory, algorithms and applications, Xu G 2003. Int.
J. Appl. Earth Obs. Geoinf., 5, 165-166

Liu, D.J., Shi, YM. and Guo, J.J. (1996) Principle of GPS and its Data Processing. Tongli
University Press, Shanghai (in Chinese)



152 G. Xu

Liu, L. and Zhao, D. (1979) Orbit Theory of the Earth Satellite. Nanjing University Press, Nanjing
(in Chinese)

Mackenzie, R. and Moore, P. (1997) A geopotential error analysis for a non planar satellite to
satellite tracking mission. J Geodesy, 71(5), 262-272

Mackie, J.B. (1985) The Elements of Astronomy for Surveyors. Charles Griffin & Company Ltd.,
London

Mansfeld, W. (2004) Satellitenortung und Navigation, 2nd Ed. Vieweg Verlag, Wiesbanden,
352 pp.

McCarthy, D.D. (1996) International earth rotation service. In: IERS conventions, Paris, 95 pp.
IERS Technical Note No. 21

McCarthy, D.D. and Capitaine, N. (2002) Practical Consequences of Resolution B1.6 “TAU2000
Precession-Nutation Model”, Resolution B1.7 “Definition of Celestial Intermediate Pole”, and
Resolution B1.8 “Definition and Use of Celestrial and Terrestrial Ephemeris Origin”. In:
Capitaine, N., et al. (eds) Proceedings of the IERS Workshop on the Implementation of the
New IAU Resolutions, Paris, April 18-19, 2002. IERS Technical Note No. 29

McCarthy, D.D. and Luzum, B.J. (1995) Using GPS to determine Earth orientation. In:
GPS Trends in Precise Terrestrial, Airborne, and Spaceborne Applications: 21st ITUGG
General Assembly, IAG Symposium No. 115, Boulder, July 3—4, 1999. Springer, Berlin,
pp- 52-58

McCarthy, D.D. and Petit, G. (eds) (2003) International earth rotation service. IERS conventions
(2003), IERS Technical Note No. 32

Meeus, J. (1992) Astronomische Algorithmen. Johann Ambrosius Barth, Verlag

Melchior, P. (1978) The Tides of the Planet Earth. Pergamon Press, Brussels

Mireault, Y., Kouba, J. and Lahaye, F. (1995) IGS combination of precise GPS satellite
ephemerides and clock. In: GPS Trends in Precise Terrestrial, Airborne, and Spaceborne
Applications: 21st IUGG General Assembly, IAG Symposium No. 115, Boulder, July 3-4,
1995. Springer, Berlin, pp. 14-23

Mitchell, S., Jackson, B. and Cubbedge, S. (1996) Navigation solution accuracy from a spaceborne
GPS receiver. GPS World, 7(6), 42, 44, 4648, 50

Montenbruck, O. (1989) Practical Ephemeris Calculations. Springer, Heidelberg

Montenbruck, O. (2003) Kinematic GPS positioning of LEO satellites using ionospheric-free
single frequency measurements. Aerosp. Sci. Technol., 7(5), 396405

Montenbruck, O. and Gill, E. (2000) Satellite Orbits: Models, Methods and Applications. Springer,
Heidelberg

Montenbruck, O. and Kroes, R. (2003) In flight performance analysis of the CHAMP BlackJack
GPS receiver. GPS Solutions, 7(2), 74-86

Montenbruck, O., Gill, E. and Kroes, R. (2005) Rapid orbit determination of LEO satellites using
IGS clock and ephemeris products. GPS Solutions, 9(3), 226235

Montenbruck, O., van Helleputte, T., Kroes, R. and Gill, E. (2005) Reduced dynamic orbit
determination using GPS code and carrier measurements. Aerosp. Sci. Technol., 9(3), 261-271

Moritz, H. (1980) Advanced Physical Geodesy. Herbert Wichmann Verlag, Karlsruhe

Mueller, LI. (1964) Introduction to Satellite Geodesy. Frederick Ungar Publishing, New York

Murakami, M. (1996) Precise determination of the GPS satellite orbits and its new applications:
GPS orbit determination at the Geographical Survey Institute. J. Geod. Soc. Jpn., 42(1), 1-14

Parkinson, B.W. and Spilker, J.J. (eds) (1996) Global Positioning System: Theory and
Applications. 2 Vols, Progress in Astronautics and Aeronautics, Vol. 163, Washington

Petit, G. (2002) Comparison of “Old” and “New” Concepts: Coordinate Times and Time
Transformations. In: Capitaine, N., et al. (eds) Proceedings of the IERS Workshop on the
Implementation of the New IAU Resolutions, Paris, April 18—19, 2002. IERS Technical Note
No. 29

Rapp, R.H. (1986) Global geopotential solutions. In: Sunkel, H. (ed) Mathematical and Numerical
Techniques in Physical Geodesy. Lecture Notes in Earth Sciences, Vol. 7. Springer, Heidelberg.



4 Analytic Orbit Theory 153

Reigber, C. (1997) Geowissenschaftlicher Kleinsatellit CHAMP. GPS-Anwendungen und
Ergebnisse "96: Beitrige zum 41. DVW-Fortbildungsseminar vom 7. bis 8. November 1996
am Geo-Forschungs-zentrum Potsdam, pp. 266273

Remondi, B. (1984) Using the Global Positioning System (GPS) phase observable for relative
geodesy: Modelling, processing, and results. PhD Dissertation, Center for Space Research,
University of Texas at Austin, Austin

RoBbach, U. (2006) Positioning and Navigation Using the Russian Satellite System GLONASS,
Universitit der Bundeswehr Miinchen, URN: de:bvb, pp. 707-648

Rothacher, M. and Mervart, L. (1996) Bernese GPS Software (Version 4.0). Astronomical Institute
of University of Bern, Bern

Rothacher, M. and Schaer, S. (1995) GPS-Auswertetechniken. Schriftenreihe des Deutschen
Vereins fiir Vermessungswesen, Bd. 18, Stittgart, pp. 107-121

Rummel, R. and Van Gelderen, M. (1995) Meissl scheme: Spectral characteristics of physical
geodesy. Manuscr Geodaet, 20(5), 379-385

Rush, J. (2000) Current issues in the use of the global positioning system aboard satellites. Acta
Astronaut., 47(2-9), 377-387

Scheinert, M. (1996) Zur Bahndynamik niedrigfliegender Satelliten. Verlag der Bayerischen
Akademie der Wissenschaften, DGK, Reihe C, Heft 435 .

Schneider, M. (1988) Satellitengeodaesie. Wissenschaftsverlag, Mannheim

Schneider, M. and Cui, C.F. (2005) Theoreme iiber Bewegungsintegrale und ihre Anwendung in
Bahntheorien, Bayerischen Akad Wiss, Reihe A, Heft Nr. 121, Miinchen, 132 pp

Schutz, B.E. (2000) Numerical studies in the vicinity of GPS deep resonance. Adv. Astronaut. Sci.
105(1), 287-302

Schwintzer, P, Kang, Z. and Reigber, C. (1995) GPS satellite-to-satellite tracking for
TOPEX/Poseidon precise orbit determination and gravity field model improvement. J. Geodyn.,
20(2), 155-166

Seeber, G. (1989, 1993) Satelliten-Geodaesie. Walter de Gruyter, Berlin, New York

Seeber, G. (1996) Grundprinzipien zur Vermessung mit GPS. Vermessungsingenieur, 47(2), 53-64

Seeber, G. (2003) Satellite Geodesy: Foundations, Methods, and Applications. Walter de Gruyter,
Berlin, 589 pp

Sigl, R. (1978) Geoditische Astronomie. Wichmann Verlag, Karlsruhe

Sigl, R. (1989) Einfiihrung in die Potentialtheorie. Wichmann Verlag, Karlsruhe

Smith, A.J.E., Hesper, E.T., Kuijper, D.C., Mets, G.J., Visser, P.N., Ambrosius, B.A.C. and Wakker,
K.F. (1996) TOPEX/ Poseidon orbit error assessment. J. Geodesy, 70, 546-553

Springer, T.A., Beutler, G. and Rothacher, M. (1999) Improving the orbit estimates of GPS
satellites. J. Geodesy, 73, 147-157

Strang, G. and Borre, K. (1997) Linear Algebra, Geodesy, and GPS. Wellesley-Cambridge Press,
Wellesley

Torge, W. (1991) Geodesy. Walter de Gruyter, Berlin

Van Kamp, P.D. (1967) Principles of Astronomy. W.H. Freemann and Company, San Francisco,
CA/London

Visser, PN.A.M. and Van den Ijssel, J. (2000) GPS-based precise orbit determination of the very
low Earth-orbiting gravity mission GOCE. J. Geodesy, 74(7/8), 590-602

Wang, L.X., Fang, Z.D., Zhang, M.Y., Lin, G.B., Gu, L.K., Zhong, T.D., Yang, X.A., She,
D.P, Luo, Z.H., Xiao, B.Q., Chai, H. and Lin, D.X. (1979) Mathematic Handbook. Educational
Press, Peking, ISBN 13012-0165

Weber, R. (1996) Monitoring Earth orientation variations at the Center for Orbit Determination in
Europe (CODE). Oesterr Z Vermess Geoinf, 84(3), 269-275

Wenzel, H.-G. (1985) Hochauflosende Kugelfunktionsmodelle fiir das Gravitationspotential der
Erde. Wissenschaftliche Arbeiten der TU Hannover, Nr. 137, Hannover

Xu, G. (2003) GPS - Theory, Algorithms and Applications. Springer, Heidelberg, 315 pp



154 G. Xu

Xu, G. (2004) MFGsoft — Multi-Functional GPS/(Galileo) Software: Software User Manual,
(Version of 2004), Scientific Technical Report STR04/17 of GeoForschungsZentrum (GFZ)
Potsdam, ISSN 1610-0956, 70 pp. www.gfz-potsdam.de/bib/pub/str0417/0417.pdf

Xu, G. (2007) GPS — Theory, Algorithms and Applications, 2nd Ed. Springer, Heidelberg, 350 pp

Xu, G. (2008) Orbits. Springer, Heidelberg, 230 pp

Xu, G., Schwintzer, P. and Reigber, Ch. (1998) KSGSoft (Kinematic/Static GPS Software):
Software User Manual (Version of 1998). Scientific Technical Report STR98/19 of
GeoForschungsZentrum (GFZ) Potsdam

Xu, G., Xu, T., Chen, W., and Yeh, T-K. (2010a) Analytic Solution of Satellite Orbit Disturbed by
Lunar and Solar Gravitation, MNRAS (accepted for publication)

Xu, G., Xu, T., Yeh, T-K. and Chen W. (2010b) Analytic Solution of Satellite Orbit Disturbed by
atmospheric Drag, MNRAS (accepted for publication)

Xu, Q.F. (1994) GPS Navigation and Precise Positioning. Army Press, Peking, ISBN 7-5065-0855-
9/P.4 (in Chinese)

Yang, Y. (1997) Robust Kalman filter for dynamic systems. J. Zhengzhou. Inst. Surv. Mapp., 14,
79-84

Yang, Y. and Cui, X. (2008) Adaptively Robust Filter with Multi Adaptive Factors. Survey Review,
40(309), 260-270

Yang, Y., He, H. and Xu, G. (2001) Adaptively robust filtering for kinematic geodetic positioning.
J. Geodesy, 75, 109-116

Yeh, T.K. and Chen, C.S. (2006) Claritying the relationship between the clock errors and posi-
tioning precision of GPS receiver. In: VI Hotline-Marussi Symposium of Theoretical and
Computational Geodesy Wuhan, Wuhan.

Yoon, J.C., Lee, B.S. and Choi, K.H. (2000) Spacecraft orbit determination using GPS navigation
solutions. Aerosp. Sci. Technol., 4(3), 215-221

Yuan, Y.B. and Ou, J.K. (1999) The effects of instrumental bias in GPS observations on deter-
mining ionospheric delays and the methods of its calibration. Acta Geod Cartogr Sinica
28(2)

Yunck, T.P. and Melbourne, W.G. (1995) Spaceborne GPS for earth science. In: GPS Trends in
Precise Terrestrial, Airborne, and Spaceborne Applications: 21st IUGG General Assembly, IAG
Symposium No. 115, Boulder, July 3—4, 1995. Springer, Berlin, pp. 113-122

Zhang, Q., Moore, P., Hanley, J. and Martin, S. (2006) Auto-BAHN: software for near real-time
GPS orbit and clock computation. Adv. Space Res., 39(10), 1531-1538

Zhou, J., Huang, Y., Yang, Y. and Ou, J. (1997) Robust least squares method. Publishing House of
Huazhong University of Science and Technology, Wuhan

Zhu, S. (1997) GPS-Bahnfehler und ihre Auswirkung auf die Positionierung. GPS-Anwendungen
und Ergebnisse *96: Beitrige zum 41. DVW-Fortbildungsseminar vom 7. bis 8. November 1996
am GeoForschungszentrum Potsdam, pp. 219-226



Chapter 5

Deformation and Tectonics: Contribution
of GPS Measurements to Plate Tectonics —
Overview and Recent Developments

Luisa Bastos, Machiel Bos and Rui Manuel Fernandes

Contents

5.1 Introduction . . . . . . . . . ... oL e e e e e e e e e e 155
5.2 Plate Tectonic Models . . . . . . . . . . .. L oo 158
5.3 MappingIssues . . . . . ... oL oL 162
5.4 Geophysical Corrections for the GPS-Derived Station Positions . . . . . . . . . 167
5.5 Time-Series Analysis . . . . . . . . ..o 169
5.6 GPS and Geodynamics —AnExample . . . . . . . . .. ... 0.0 174
5.7 Further Developments . . . . . . . . . . . . .. ..o 179
References . . . . . . . . . . L e 180

5.1 Introduction

The use of space-geodetic techniques to study geodynamic processes began with
Very Long Baseline Interferometry (VLBI) in the early 1970s. By measuring the
delay in arrival time of the signal from distant celestial objects, the distances
between stations that are hundreds of kilometres apart can be derived with mil-
limetre accuracy. A review of the first 20 years of this technique is given by Ryan
and Ma (1998). Around the world there are nowadays more than 100 VLBI stations.
Another technique that has been available since the early 1970s is Satellite Laser
Ranging (SLR). As the name implies, this technique determines the distance to a
satellite by measuring the round trip time of a light pulse that is sent to the satel-
lite (Degnan 1993). Today, there are about 60 SLR stations operational around the
world.

SLR and VLBI provided a fundamental contribution to clarify the kinematics
of the tectonic plates on a global scale. During the 1980s, a quite extensive use of
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mobile VLBI and SLR systems was made in dedicated campaigns to monitor some
specific regions of the world with more significant tectonic activity (Vermaat et al.
1998). In addition VLBI technique was, and still is, an important tool to support the
realisation of an accurate and stable celestial reference system. SLR has an impor-
tant role in the determination of the Earth’s geocentre and in calibrating geodetic
microwave techniques. The limitations for a wider use of VLBI and SLR for geo-
dynamic purposes are their relative lack of portability, high cost and operational
complexity.

The quick development of satellite technology has led to the rise, in the early
1980s, of Global Navigation Satellite Systems (GNSS), such as GPS (Global
Positioning System) and GLONASS (GLObal NAvigation Satellite System). GPS
rapidly started to be applied for geodynamic applications, whereas GLONASS, due
to difficulties in achieving its full operational implementation, has not yet been used
in many geodynamic studies.

In the 1990s, radio satellite systems like DORIS (Doppler Orbitography and
Radiopositioning Integrated by Satellite) started to give useful information for the
study of regional and global geodynamics issues. Soudarin and Grétaux (2006)
present a recent geodynamic study using 57 DORIS stations.

Actually, the most commonly used space-geodetic technique for geodynamic
studies is still GPS. A thorough description of the GPS technique can be found
in Hoffman-Wellenhof et al. (1997) and Parkinson et al. (1996).

To achieve the very high accuracy needed for deformation studies, one needs to
look at a wide range of aspects related to GPS processing. Examples are satellite
dynamics, reference frame definition, Earth orientation, ionospheric and tropo-
spheric delay corrections, ambiguity resolution on a global scale, tidal and other
loading effects, multipath and antenna phase centre variation. A review of the use
of GPS for geodetic applications was written 10 years ago by Herring (1999). Other
review works related to geodynamic applications can be found in Blewitt (1993) and
Segall and Davis (1997). Here we extend such reviews to the current day, putting
the emphasis on the use of GPS to observe plate tectonic motions.

Until the early 1990s basically only campaign data were used to monitor the
Earth’s surface deformation and centimetre accuracy was foreseen. It was already
then demonstrated that the goal of measuring horizontal deformations with an accu-
racy of 5 mm/year should be soon achieved. Repeatability of the observed position
was a measure of accuracy of the GPS technique.

The continuous developments in GPS receiver technology, and a drop in equip-
ment cost, have led to a rapid change in the observation methodology. In the early
1990s the campaign type approach started to be replaced by the permanent network
approach with great impact on the study of the dynamics of the Earth. Examples of
permanent networks that started to be deployed in the early 1990s are the Permanent
GPS Geodetic Array (PGGA) in California (Bock et al. 1993) and a nationwide
network established in Japan with hundreds of GPS stations (Tsuji et al. 1995;
Miyazaki et al. 1996). Shimada and Bock (1992) reported some of the earliest results
from a permanent GPS network.

The most well-known permanent network of GPS stations is operated by the
IGS (International GPS Service, today called International GNSS Service) (Beutler
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1996), with a worldwide coverage, which has a major role in defining the reference
frame for all different applications of GNSS. The 1992 IGS Test Campaign served
as the proof of concept for IGS. Two main goals led to the establishment of IGS: the
need from the geodetic community for precise orbit determination and the need for
other products such as Earth orientation parameters and a reference frame.

There are now 336 active permanent (GPS and GPS+GLONASS) stations con-
tributing to the IGS. In Europe the EUREF permanent network (EPN) consists
of around 190 continuously operating GPS reference stations (EPNCB 2008).
Figure 5.1 shows the present-day distribution of permanent GPS, SLR, VLBI and
DORIS stations that contribute to the realisation of the International Terrestrial
Reference Frame.

Permanent networks reveal their usefulness to detect deformations between
plates (inter-plate) and deformations inside the tectonic plate (intra-plate) as well.
With continuous GPS data it is possible to study a wide range of transient deforma-
tion processes associated with seismotectonic activity and other geophysical signals
that were not possible with episodic GPS field campaigns. Daily solutions from
permanent stations yield more accurate estimates of average deformation rates than
those derived from periodic campaign measurements. In Sect. 5.2 we discuss how
GPS is contributing to clarify these aspects.

Absolute plate model velocities are given with respect to a global reference
frame. The realisation of such a frame is not trivial. The current method is to use
a global set of geodetic stations that are on stable plates, far away from the bound-
aries, as the realisation of the reference frame. Each station of this set has been
given a position and velocity. In Sect. 5.3 we explain how a new geodetic station
with unknown position and velocity can be mapped into this reference frame.

O VLBl 4 DORIS
[0 SLR = GPS

Fig. 5.1 Present-day distribution of VLBI, SLR, DORIS and GPS stations that contribute to the
realisation of the international reference frame
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An assumption that is always implicitly made is that geodetic stations repre-
sent the velocity of the tectonic plate on which they are located. Now that the
accuracy has reached the millimetre level, one has to correct for many geophysical
phenomena, which are mainly periodic, before this is true. In addition to periodic
motions that may affect a station position, there are deformations due to the elastic
response of the Earth to changes of atmospheric pressure, the nearly secular motions
associated with post-glacial rebound and the occasional episodic motions associated
with earthquakes. The degree of accuracy achieved in the determination of a site
motion demands careful analysis of all different aspects involved in the GPS pro-
cess, including a deep understanding of all the underlying geophysical phenomena.
The geophysical corrections involved in the interpretation of a GPS time-series are
described in detail in Sect. 5.4.

As mentioned before, the GPS observing strategy has evolved from the so-called
campaign mode to the permanent network approach. In spite of the good accuracy
achieved on the basis of epoch-type campaigns, this approach does not allow the
discrimination between continuous deformations and instantaneous displacements
associated with seismic or volcanic activity. Local or regional networks of per-
manently operating systems are more effective. This has also allowed for better
investigation of the noise properties within the GPS time-series. As a result, also
the way of estimating the tectonic motion from the GPS position time-series has
evolved during the last decade. A summary of this history is given in Sect. 5.5.

A few examples of the impact of GPS-derived information in the study of the
kinematics of the Azores region are presented in Sect. 5.6. Finally, future prospects
in the exploitation of space-geodetic techniques to study the Earth’s deformation are
referred to.

5.2 Plate Tectonic Models

Alfred Wegener suggested at the beginning of the last century that the continents
were once one large land mass that has undergone processes that gave rise to several
tectonic plates, which drifted to their current locations. This theory could only be
confirmed by the mid-1950s, when paleomagnetic data became available.

By the 1970s, several plate motion models, based on geophysical and geologi-
cal data, were presented (Chase 1978; Minster and Jordan 1978) and these started
to be adopted by the scientific community in general. These early models and,
more recently, NUVEL-1 (DeMets et al. 1990) and its updated version, NUVEL-1A
(DeMets et al. 1994), were computed using geological and geophysical data, such
as ocean floor magnetic anomalies, transform faults and earthquake slip vectors,
averaging over a period of 3-5 million years.

When published, NUVEL-1A was considered to provide the best estimate of
the angular velocity for major plates and it is still used intensively these days.
However, this model shows some deficiencies, in particular by lacking values for
some tectonic blocks, which have been clearly identified in recent years as separate
units. In addition, it only provides estimates of the angular velocities for 14 large
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plates when more recent research shows a significant larger number of independent
tectonic units. This is the case of PB2002 (Bird 2003), which is a compilation of a
total of 52 tectonic plates.

However, even this figure is not final. With the densification of observation sys-
tems, more plates have been identified. A good example is the African continent,
which was considered to be a single unit in NUVEL-1A and in PB2002 was divided
into two blocks (Nubia and Somalia) as depicted in Fig. 5.2. In a more recent pub-
lication, Stamps et al. (2008) have identified (and quantified) another separate unit,
namely the Victoria Block. The availability of space techniques allowed an assess-
ment of the actual plate movements and brought in new information that was highly
relevant for the clarification of some of these aspects.

The global models of plate motions, based on geophysical and geological data
averaged over the past few million years, are a useful reference for comparison with
motions estimated from space-geodetic measurements, averaged over the past few
decades (not more than one decade for many plates). However, a timescale issue
has to be considered when comparing current day plate boundary configuration
from GPS measurements with that deduced from plate tectonic models that integrate
the past few million years. For many plates it has been observed that a significant
distinctive motion between geological/geophysical and geodetic predicted angular
velocities exists (Norabuena et al. 1998; Sella et al. 2002). This probably reflects a

Fig. 5.2 The boundaries of the tectonic plates of the NUVEL-1A model (DeMets et al. 1994)
are shown by the thick gray lines. The plate boundaries of the PB2002 model (Bird 2003) are
represented by the thin black lines. Wide deformation areas (orogens) are shown with the squared
pattern
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change in the angular velocities due to processes not clearly understood at present.
Plate tectonic models can also be biased by local effects (inter- and intra-plate
movements), and reveal inconsistencies, especially in boundary zones. GPS obser-
vations give motions over a short time interval, a few years, showing aspects of
present-day plate tectonics with consequences in the definition of boundaries and
present-day behaviour. In other words, if the secular motions of tectonic plates can
change over time, then the geophysical/geological models will provide the average
motion over a few million years, and consequently they will not depict exactly the
present-day velocities, whereas geodetic-based models provide estimations of the
secular motions based on only a few years. Nevertheless, geophysical/geological
models like NUVEL-1, and successors, still provide useful information to study
present-day kinematics in areas, such as oceans, where geodetic measurements are
not available. On the other hand, GPS solutions in deformation zones within the
continents are providing more reliable information about the kinematic constraints
than that provided by geological/geophysical plate motion models. This information
is also contributing to revealing to what extent inter- and intra-plate deformations
occur in a continuous or episodic manner.

The coverage provided by space geodesy, with networks implemented world-
wide, gave a global perspective that allowed the establishment of new geodetic-
based plate models such as Larson et al. (1997), REVEL (Sella et al. 2002),
DEOSVEL (Fernandes et al. 2003) and ITRF2005 (Altamimi et al. 2007). Since
the mid-1990s these models are being continuously improved, both in the number
of described plates and in the number and length of the time-series used. Table 5.1
illustrates the previous discussion by showing the differences in the estimated
angular velocities and position of the rotation vector on the Earth’s surface (also
known as the Euler pole) provided by the different models.

The values for three major plates, North America, Eurasia and Nubia (western
part of Africa), are presented in Table 5.1. The boundaries of the North American
plate are well identified, whereas the limits of the Eurasian and Nubian plates
changed significantly in the last years with the identification of other blocks.

The comparison of the solutions clearly shows that the estimated angular veloc-
ities for most plates are currently reaching robust values. With the exception of
AM1-2, the predictions provided by all models for these plates are similar. Notice
that no uncertainties are provided with the values displayed in Table 5.1. The reason
is that the associated uncertainties provided by most models do not reflect the real
uncertainty in the computed values. The published values are usually too optimistic
since they were computed using the formal errors that are directly obtained from
the least-squares approach used to compute the time-series. When least-squares are
used, it is normally assumed that only white noise processes affect the coordinate
positions, which is not true since they are also affected by a multitude of system-
atic errors (monument, orbits, etc.). This is discussed in more depth in Sect. 5.5. As
a consequence, the formal uncertainty only depends on the number of used posi-
tion solutions and their associated formal error. It does not transmit how good the
data fit the model (in this case, how close the daily solutions are to the estimated
secular trend).
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Table 5.1 Solutions provided by different models: AM1-2 (Minster and Jordan 1978), NUVEL-
1A (DeMets et al. 1994), Larson et al. (1997), REVEL (Sella et al. 2002), DEOSVEL (Fernandes
et al. 2003), ITRF2005 (Altamimi et al. 2007) for three major plates North America, Eurasia and
Nubia (Africa = Nubia + Somalia in AM1-2 and NUVELI1-A). Latitude is denoted by ¢, longitude
by X and the angular velocity by @

Solution North America Eurasia Nubia (W. Africa)
AMI1-2 ¢ = —58.31° ¢ =0.70° ¢ =18.76°

A = —40.67° A= -—23.19° A= —-21.76°

w = 0.247°/Myr o = 0.038°/Myr w = 0.139°/Myr
NUVEL-1A ¢ = —2.429° ¢ = 50.655° ¢ = 50.656°

A = —86.035° A =112.562° A= —74.081°

w = 0.2064°/Myr o = 0.2336°/Myr o = 0.2906°/Myr
LARSON ¢=-04° ¢ =56.3° ¢ =50.0°

A= —84.5° A =102.8° L= —86.8°

w = 0.22°/Myr o = 0.26°/Myr w = 0.26°/Myr
REVEL ¢ =—2.39° ¢ =5827° ¢ =52.25°

A= —79.08° A =102.21° A= —80.18°

o = 0.199°/Myr o = 0.257°/Myr o = 0.253°/Myr
DEOSVEL ¢ = —4.574° ¢ =54.614° ¢ =50.861°

A = —83.150° A = —103.876° A= —81.475°

w = 0.1945°/Myr ® = 0.2485°/Myr ® = 0.2610°/Myr
ITRF2005 ¢ =—4.291° ¢ =56.330° ¢ = 49.955°

A= —87.385° A= —95.979° A= —82.501°

o = 0.192°/Myr o = 0.261°/Myr o = 0.269°/Myr

Bastos et al. (2005) showed that, when enough GPS solutions exist (as is the case
for the plates shown in Table 5.1), the implication of choosing different error mod-
els in the computation of the velocity solutions used to derive the angular velocity
model is not significant. In particular they analysed the implications of the chosen
noise model on the estimation of the angular velocities for the Nubia and Somalia
tectonic plates using a network of continuously operating GPS stations.

They used three different error models: the usual formal uncertainties (directly
obtained from the least-squares adjustment); the WRMS of the residuals divided
by the observation span in years (Fernandes et al. 2004), which is an empirical
formulation; and a power law + white noise model (Williams et al. 2004), which
takes into account the existing noise signals in the trend.

The differences between the estimated angular velocities for Nubia (14 sites)
using the three approaches were smaller than 0.7° and 0.003°/Myr. These differences
were significantly larger for the Somalian plate, where only four sites were available,
reaching 3.8° and 0.010°/Myr. However, the implications on the predictions given by
the tectonic models are not very significant, as can be observed in Fig. 5.3 which
shows the relative motion of the stable part of the Somalian plate with respect to
Nubia (Bastos et al. 2005).

It is worth mentioning that including a seasonal signal during the estimation of
the GPS velocity vectors can change the Euler pole by up to 0.5° and 0.002°/Myr.
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Horizontal Velocities
Somalia w.r.t. Nubia

Fig. 5.3 Comparison between the relative angular velocity of Somalia with respect to Nubia by
using different noise models for the used horizontal velocities (Bastos et al. 2005)

The definition of a plate model is also relevant for the realisation of a Reference
Frame as it is used as its kinematic reference. The model should fulfil the condi-
tion of no-net-rotation which states that the integral over the Earth’s surface of all
plate motions should be zero. To perform this integral it is necessary to know the
plate boundaries which are inferred from geological/geophysical information. The
current practice is to align the geodetic plate models to a geological/geophysical
plate model to ensure that the no-net-rotation condition is satisfied (Kreemer et al.
2006).

5.3 Mapping Issues

To align daily (or combined) GPS solutions with any realisation of the International
Referential Reference System (currently, ITRF2005 — Altamimi et al. 2007), the
usual first requirement is to process the network of interest together with a sub-set
of stations with well-known position and velocity estimates in the desired refer-
ence frame. These reference stations are then used to compute the transformation
parameters to project the daily (or combined) “unknown” reference frame onto our
reference frame.



5 Deformation and Tectonics 163

The selection of the reference stations is a fundamental step of the mapping pro-
cess. Although ITRF2005 represents a large improvement in comparison with the
previous ITRF versions, the amount and distribution of GPS stations (typically IGS
stations) with well-determined ITRF2005 position/velocity representation is still not
optimal. The problem is noteworthy for many regions since, although the existence
of a significant improvement was seen in recent years, more than half of the reliable
IGS stations are still located in Europe and North America.

We demonstrate here the implications of using different sets of reference sta-
tions to align the daily solutions into the reference frame of interest. Different
sub-sets of regional stations have been used in Europe to compute the daily trans-
formation parameters since January 1996. Figure 5.4 shows the distribution of the
selected stations. First, a global distribution of stations was considered with a spa-
tial distribution as uniform as possible. Second, for the regional reference network,
the same sub-set of 13 stations chosen by EUREF (EPNCB 2008) to map the
EPN weekly solutions into ITRF2005 has been selected. EPN is a dedicated net-
work created to define a unified European reference frame (ETRS89) (Bruyninx
2000). It currently counts approximately 200 stations concentrated in Europe and

Fig. 5.4 Four different configurations of reference networks (RN) used for these tests: global RN
(a); RN used to compute the EPN weekly solutions (b); RN used by the EUREF Special Project
“Time-Series” (c); a sub-regional network located in the Central Europe (d)
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surrounding regions. Third, since 1996, different sets of reference stations have
been used to tie the EPN combined solution to the successive ITRS realisations.
The last set was selected since it is assumed that this set has been fully tested
and provides the most accurate link of the EPN stations into ITRF2005 on a
European scale. We will call this the “Regional Time-Series” set since they were
used by EPN in a special project to compute time-series. Fourth, a sub-set of five
reference stations localised on Central Europe was selected to compute another
set of transformation parameters, considered here as a sub-regional reference
network.

These different reference networks were used to compute time-series for KOSG
(Kootwijk, the Netherlands). This station has been selected since an unexpected
event occurred at this station in 2003 (the mast was hit by a car causing a jump
on the time-series). In fact, the analysis of the derived time-series (see Fig. 5.5)
illustrates some important issues:

e The jump due to the event is clearly visible in the Global/EPN weekly/Regional
Time-Series.

e However in the sub-regional network, that jump is masked by the few number of
stations used in the mapping. Furthermore, the time-series for KOSG, particularly
for the sub-regional, are dictated by the fact that this station is a reference station
among five (also more visible in the EPN and Regional Time-series than in the
global mapping).

e Periodical signals in the time-series are better visible (and cleaner) on the global
solution than in the other solutions.

The consequences of using different types of reference networks are also evi-
dent in Fig. 5.6. It depicts the solutions for Maspalomas (MAS1), located on
Canary Islands, i.e. outside of the limits defined by the EPN Weekly, Time-Series
project, and sub-regional reference network stations. Consequently, the computed
transformation parameters were extrapolated for this station when these networks
were used. The degradation in the estimated signal is clearly observed. In fact,
the amplitude of the noise prevents to compute any reliable solution for the three
components of the position when the sub-regional network is used. The EPN
Weekly and Time-Series project solutions are also clearly noisier than the global
solution.

The antenna accident at KOSG also reveals the consequences of the use of a small
number of reference stations. No correction has been added intentionally. Two facts
are evident from the comparison of the time-series between the global and the sub-
regional solutions: as already mentioned, the signal is well identified on the global
solution but it is almost not detected on the sub-regional solution, independently of
the fact that KOSG is used in both solutions as reference station.

Inversely, no consequences are observed in the global time-series of MASI,
whereas all weekly sub-regional solutions for MAST1 are considered outliers after
that date.
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Fig. 5.5 Time-series of KOSG using different mapping reference networks

The conclusion is that the number of stations influences significantly the estima-
tion of the transformation parameters; when a small number of stations are used,
an error on one station position affects the entire solution, whereas those effects are
mitigated when a large number of stations are used (more than 60 stations were used

on the global solution).
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5.4 Geophysical Corrections for the GPS-Derived
Station Positions

In the previous section we described how to map GPS solutions for the position of a
station over time within the International Terrestrial Reference Frame (ITRF). Each
particular realisation of the ITRF, such as ITRF2000 (Altamimi et al. 2002) or more
recently ITRF2005 (Altamimi et al. 2007), consists of a global set of geodetic sta-
tions for which one defines a position X at time fp and a velocity V. These values
represent our best fit of the tectonic plate motions to our observations. Consider now
the following equation:

N
X =Xo+Vo-(t—1t0)+ Y AXi(0). (1)

i=1

Here X(¢) is the instantaneous position of the geodetic reference station that is
observed with GPS, given in ITRF coordinates, at time ¢. The last summation con-
tains all the geophysical corrections that should be added to the plate motion to
obtain the real instantaneous position and these are the subjects of this section.
The conventions of the International Earth Rotation Service (IERS) prescribe which
geophysical corrections should be applied during the GPS analysis to ensure homo-
geneity between all published GPS results (McCarthy and Petit 2004). If these
geophysical corrections are subtracted from the estimated instantaneous position,
one obtains a mean station position that should correspond better to the tectonic
plate motion one wants to investigate. The current custom is to analyse batches
of 1 day of GPS data which means that one obtains a time-series of mean daily
positions.

The largest geophysical correction is the tidal deformation of the solid Earth, also
called the body tide, caused by the gravitational attraction of the Moon and Sun. It
produces periodic variations of tens of centimetres in the position in a time span of
several hours. The current model of the body tide assumes that the deformation of
the Earth is linear with the tidal forces and that it is for around 99% instantaneous.
For the most dominant period of 12.42 h, called harmonic M3, the body tide lags
with 0.204°+ 0.047° (Ray et al. 2001) behind the tidal forcing. The elasticity of
the Earth is also dependent on the period of the tidal forcing, especially near the
resonance period of the free core nutation, which is close to one sidereal day. Despite
these complexities, the body tide can be modelled to better than 1 mm accuracy
(McCarthy and Petit 2004; Watson et al. 2006).

The second largest geophysical correction is due to the loading of the ocean
tides on the ocean floor. This deformation continues land inwards and can reach
centimetre level. For the dominant tidal harmonic M, the accuracy of this correction
is mostly smaller than 0.4 mm for inland sites but can reach up to 3 mm at some
coastal sites.

The Earth not only deforms due to the tidal forces of the Sun and Moon, but
also changes its orientation in space. This is called nutation, and IERS prescribes a
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very accurate model to correct for this (McCarthy and Petit 2004). The ocean tides
also change the orientation of the solid Earth because the total angular moment of
the whole Earth system must remain constant over time. Therefore, a change in the
angular momentum of the oceans, due to tidal currents and change in tidal elevation,
must be compensated by a change in the rotation of the solid Earth. The effect can
be as large as 10 mm and the model uncertainty is about 0.2 mm, mostly in the
horizontal position.

Since tides have their largest influence at the semi-diurnal and diurnal periods,
their influence on the secular motion of the station is small because most of this sig-
nal averages out over a period of 1 day. However, studies by Stewart et al. (2005) and
Penna et al. (2007) show that one still needs to be cautious and that one must apply
accurate tidal corrections since any error in these corrections can cause significant
spurious periodic signals at longer, such as annual, timescales.

The orientation of the Earth in space is also affected by changes in angular
momentum in the atmosphere and due to non-tidal currents (Gross et al. 2003). This
is called polar motion and at the moment no model exists to predict it; only observed
values are available that must be inserted into the GPS analysis. Polar motion has
its largest effect at the yearly period and the Chandler period which is around 14
months. The maximum radial displacement due to polar motion is approximately
25 mm, and the maximum horizontal displacement is about 7 mm.

The atmospheric pressure also loads and deforms the Earth surface in the same
way as ocean tide loading and causes deformations that can reach several millime-
tres. Atmospheric loading has its largest effect at the annual period which means
that this effect does not average out as quickly as the tidal corrections. The atmo-
spheric loading values are provided by the Special Bureau for Loading (http://www.
sbl.statkart.no/). The uncertainty of the atmospheric corrections is mostly due to the
errors in the surface pressure data and is estimated to have an RMS of 0.75 mm
and a maximum value of 3 mm. An extra complication is the dynamic response of
the oceans due to variations in the atmospheric pressure. One mostly assumes that
the response is instantaneous and that the sea level is inversely proportional to the
pressure changes above it. This is called the inverted barometer assumption but it is
only valid for periods longer than 10-30 days.

In addition, ground water level and thermal expansion can also induce varia-
tions in the stations position, mostly with a period of 1 year (Zerbini et al. 2001).
However, no conventions exist to deal with these phenomena. Residual annual sig-
nals are mostly estimated when analysing the GPS position time-series as explained
in Sect. 5.5.

Since the last ice age, some 20,000 years ago, the Earth’s crust is still slowly
recovering in some places from the deformation caused by the kilometres thick ice
layers that were covering areas such as Scandinavia and Canada. The vertical uplift
of this post-glacial rebound can be as large as 1 cm/year (Scherneck et al. 2003).
There are also horizontal deformations of several millimetres per year associated
with this phenomenon because the uplift causes a horizontal flow of mass. There
exist models for this post-glacial rebound effect but these are not part of the standard
corrections that are advised by IERS.
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Finally, corrections are available for the effect caused by the movement of the
centre of mass of the solid Earth with respect to inertial space. According to IERS,
the ITRF is defined to have its origin in the centre of mass of the solid Earth. Due
to the mass distribution in the ocean due to tides, and to the non-tidal currents and
mass distributions in the atmosphere due to weather, the solid Earth moves several
millimetres with respect to an inertial reference frame to keep the centre of mass
of the whole system constant. The satellites that support space-geodetic techniques,
such as SLR, DORIS and GPS, orbit around the centre of mass of the whole Earth
which includes the atmosphere and the oceans. For this reason, IERS prescribes to
use atmospheric and ocean tide loading corrections that have the associated geocen-
tre motion added to them. Although the geocentre motion of several millimetres,
mostly at the yearly period, has been clearly observed with SLR, DORIS and GPS
(Chavet et al. 2003; Feissel-Vernier et al. 2006), the differences between the space-
geodetic techniques are significant and further research is needed to resolve these
discrepancies.

5.5 Time-Series Analysis

After obtaining a time-series of mean daily positions derived from GPS observa-
tions, one can estimate the station motion from these data. This motion is thus
assumed to be equal to the plate motion on which the station is located. An example
of such a time-series is given in the top panel of Fig. 5.7 which contains the varia-
tion in the position towards the north at KOSG given in IRTF2000. In the top figure
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Fig. 5.7 The variation of the GPS positions over time at KOSG, north component. The fop panel
shows the original time-series while the bottom panel shows the time-series after subtracting a
linear trend and a correction for the jump in the data
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one can see clearly a linear motion over the years. In addition, in 2003 there was, as
mentioned before, an accident which caused the antenna to be displaced by several
millimetres.

The KOSG station is a core station of ITRF2000. Therefore, by definition the
north velocity of this station should be exactly equal to 15.3 mm/year. As was
described in Sect. 5.3, due to measurement errors and errors between the real and
defined ITRF velocities, this fit is not perfect and one obtains time-series like that
presented in Fig. 5.7 with a trend value of 15.76 £ 0.14 mm/year.

The standard method for estimating this linear motion from these data is ordi-
nary least-squares. However, ordinary least-squares only gives optimal results when
all observations are independent and normally distributed. One of the first papers
that emphasised that the assumption of independent GPS observations is invalid
was by Johnson and Agnew (1995). To be precise, after subtracting the esti-
mated linear motion from the estimated GPS positions, one obtains a time-series
of residuals that is assumed to represent the noise in the observations. If the obser-
vations were independent, the correlations between the residuals should be zero
which is not the case. The work of Johnson and Agnew was the result of ear-
lier studies by Agnew (1992) who showed earlier that temporal correlations also
exist in tide gauge and laser strain data. Recently, temporal correlations have also
been identified/demonstrated in time-series of absolute gravity measurements (van
Camp et al. 2005). Therefore, it is more unusual to find a geodetic time-series
that does not show temporal correlations than to find one which does. In addi-
tion, the temporal correlations have been shown in all cases to decrease only
very slowly with increasing time span between each pair of observations and are
for that reason called long-range correlations (Beran 1994). Since it is assumed
that the noise at time ¢ depends on a weighted sum of all previous noise values,
these long-range correlations can produce a noise that is not stationary; actually
it gets larger over time. The most famous example is random walk behaviour
which has actually been observed in two colour electronic distance measurements
(Langbein 2004). In GPS observations, the long-range correlations are less strong
but still cause the noise to grow on average over time instead of being a stationary
signal.

The non-stationary noise can easily be confused with the tectonic motion that
one wants to investigate. This is the reason why the real uncertainty in the estimated
tectonic motion can be much larger than that predicted by using ordinary least-
squares which ignores this effect. For many years, most researchers using ordinary
least-squares were well aware that their error bars were too small. To overcome the
associated consequences they applied a scaling factor that used the variance of the
GPS residuals as observation error instead of those provided by the GPS analysis
software. However, Mao et al. (1999) showed that this can still cause an underesti-
mation of the real error in the trend by a factor of 5—11 because one still assumes
that the observations are independent. Bos et al. (2007) showed that the underes-
timation is even slightly larger, 6-13 times. A realistic error bar on the estimated
trend value is extremely important when one tries to determine whether two sets of
estimated plate motions are significantly different.
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One method to investigate the temporal correlations is by looking at the power
spectrum of the residuals. Figure 5.8 shows the power spectrum computed using the
GPS residuals of the north component at the KOSG station.

A time-series of independent random variables has the same power at all fre-
quencies. This is also called white noise. One can see that the high frequencies in
Fig. 5.8 are well described by a constant power. On the other hand, the power of
the lower frequencies in Fig. 5.8 seems to increase exponentially with decreasing
frequency. This is called power-law behaviour and is the result of the long-range
correlations in the GPS observations. In mathematical notation this behaviour of the
power spectrum can be expressed as

1 o
P(f) = Po (—) , (2)
f
where Py is a constant, fis the frequency and « is called the spectral index (Kasdin

1995).

The first authors to present this type of evaluation of the power spectra for GPS
observations were Zhang et al. (1997) and Mao et al. (1999). Mao et al. also showed
that maximum likelihood estimation (MLE) provides the most accurate estimate of
the trend and the values of the noise parameters. In their case these noise parameters
were the variance of the white noise and the variance of the power-law noise. The
value of their spectral index of the power-law noise was fixed to one which is also
called flicker noise. Williams (2003a) generalised the noise model by also estimating
the spectral index o value in the MLE process. However, experience has shown
that the spectral index of the power-law noise component in all GPS time-series is
always close to one and that therefore fixing it a priori to this value is generally
an acceptable practice (Williams et al. 2004). No explanation for the fact that the
spectral index is always around one has yet been given.

The MLE provides the values of the trend motion and the noise parameters that
are the most likely to have occurred for the given data set. Since the problem is
not linear, due to the noise parameters, one must use a numerical maximisation
algorithm to determine the best likelihood value (Williams 2003a; Williams et al.
2004; Langbein 2004; Bos et al. 2007).
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The MLE described above is implemented in the CATS software (Williams 2008)
that is becoming a popular choice for analysing GPS time-series, being used for
example by EUREF in the analysis of their permanent network.

Besides temporal correlations, there exist correlations between the time-series of
the North, East and up component. However, these correlations are mostly neglected
because the effect of the temporal correlations on the accuracy of the estimated trend
values is much larger.

In addition, there exist spatial correlations between the time-series of stations
that are closely located to one another (Wdowinski et al. 1997). As an example we
present in Fig. 5.9 the spatial correlation between the residual time-series, north
component, of 24 permanent GPS stations located on the Iberian Peninsula.

One can see that the correlation is significantly different from zero and that the
correlation decreases with increasing distance between the stations. The exact cause
of this correlation is still unknown but it could be due to errors in the orbit which
propagate into similar station position errors.

Figure 5.10 shows that taking those correlations into account has an impact on
the computation of the velocity field for the region.

It has already been mentioned that the spectral index of the power-law noise has
always been observed to be close to one. Williams et al. (2004) investigated whether
the variances of the power law and white noise depend on the type of geodetic mon-
uments. This is an important topic since reducing noise levels in geodetic data is crit-
ical for the interpretation and modelling of geophysical interesting signals. As was
to be expected, the highest variance was observed for GPS antenna’s installed on
oil platforms. The second worst type of monument was the common concrete pillar.
However, this last result has been contradicted by Beavan (2005). He concluded that
differences between the monument types are not a dominant influence on the noise,
implying that the relatively cheap concrete pillar monuments are still a valid choice.

Unfortunately, most GPS time-series contain outliers which, by using common
sense, should be removed from the data set in order to avoid getting nonsense results.
A simple but robust method for outlier removal is to compute the median and the
25 and 75% interquartile. Anything that is smaller than three times the value of the
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Fig. 5.10 Velocity field (w.r.t. Nubia) before (grey) and after filter (white) (Bastos et al. 2006)

median minus the 25% interquartile and anything that is larger than three times the
75% interquartile minus the median is considered to be an outlier.

In addition, one has to look for offsets in the data and tell the analysis software
that, on that particular epoch, it must also estimate an offset. Currently, the time at
which offsets occur is mostly determined by visual inspection of the time-series.
Williams (2003b) has shown that it is virtually impossible to detect all offsets in the
time-series because some could be smaller than the noise. A result could be that over
very long time spans the noise in the GPS time-series will be dominated by random
walk noise, caused by the accumulation of offsets, instead of flicker noise. However,
even at stations with more than 10 years of GPS data, no random walk noise has yet
been observed which assures us that the stability of most GPS monuments is quite
robust over the years.

At the plate boundaries one has to check whether the tectonic motion is the same
before and after an offset. When the source of the accident is known to be a dis-
placement of the GPS antenna, as was the case at KOSG, the tectonic motion will
clearly be unaffected. However, in other cases, such as station LDES in California,
USA, which is located at a plate boundary, one has observed a quite distinct change
in the velocity after an earthquake. Figure 5.11 shows the time-series of the north
component for the continuous GPS station LDES. The Hector Mine earthquake in
1999 caused an 18-cm offset in the north component which has already been cor-
rected for. Next, one can see some period after the earthquake where the position
seems to experience an exponential relaxation before assuming a new linear tectonic
motion (Pollitz 2003).
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Fig. 5.11 The GPS position, north component at the LDES station (SOPAC Refined Model GPS
site Position Time Series, http://sopac.ucsd.edu)

So far we have only discussed continuous GPS observations. However, in some
areas only GPS campaign data are available with intervals of around 1 year or more.
Time-series of several years of GPS campaign data can clearly show the tectonic
motion as was described in Sect. 5.1. On the other hand, the large gaps in time
between each campaign severely limit the application of the MLE method described
in this section to determine the noise properties because there is mostly too little data
available. This is still an area of current research but one could probably assume
a conservative a priori power law plus white model which is observed at a nearby
permanent station and use this model in the trend estimation from the GPS campaign
data.

5.6 GPS and Geodynamics — An Example

We present in this section an example of the use of GPS for studying the Earth’s
deformation due to geodynamic processes in the Azores Triple Junction Region.
Such an example does not intend to give an exhaustive representation of all the
research done in this field since it is already more than 20 years that GPS has become
the main tool to directly observe present-day tectonic motions.

Most of the initial GPS-based geodynamic projects were developed at a regional
level. Among others, we can refer the works from Dong and Bock (1989) and Larsen
and Reilinger (1992) in the California region; Straub and Kahle (1995), Noomen
et al. (1996), Reilinger et al. (1997) and Kahle et al. (1995) in the Mediterranean
area; and Feigl et al. (1993), Tsuji et al. (1995) and Miyazaki et al. (1996) in
Japan. In parallel, projects with a broader geographical (intercontinental) scope
also started to be developed. Examples are the CASA UNO (Kellogg and Dixon
1990) in Central and South America and the TANGO (Bastos et al. 1991) in the
Azores-Gibraltar region, which were among the first GPS networks established to
support geodynamic studies.

The TANGO project, established in 1988 with GPS stations in the European and
North American continent, included a network on the Azores Archipelago, shown
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in Fig. 5.12, located near the mid-Atlantic ridge in the area of the so-called Azores
Triple Junction (ATJ). The object of this project was to contribute to the description
of the complex tectonic features of this region where three large tectonic plates meet:
the North American, Eurasian and Nubian plates. Several authors have tentatively
drawn a geodynamical model for the ATJ aiming to resolve the configuration of the
boundary between the Eurasian and Nubian plates.

The spatial distribution of the deformation associated with the Eurasia—Nubia
plate boundary is as yet poorly understood. The fine scale geometry of this active
plate boundary area is still unclear, and the information derived from the GPS
observations is giving a unique and decisive contribution to understand its broad
structure.

Presently, a record of 20 years of periodic GPS campaign data in the Azores
area exists. Complementary projects have meanwhile been developed (Navarro et al.
2003; Fernandes et al. 2004) providing a much better spatial coverage, in particular
in the Central Group, with the installation of dense campaign networks per island
between 1999 and 2001. The TANGO network is now quickly evolving towards a
permanent approach.

Results from the initial TANGO network for the period 1988-1997 were pre-
sented by Bastos et al. (1998), showing accuracy at the few centimetre level.
Consequently, a period of about 10 years with periodic campaigns was thought to
be sufficient to draw definitive conclusions about the intensity and direction of the
plate motion in the different islands.

This is clearly depicted in Fig. 5.13 extracted from Fernandes et al. (2006), which
shows the horizontal velocities at the Terceira, Pico and S. Jorge islands. It is pos-
sible to observe large differences between the velocities of the stations located on
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the same island. The distribution of these differences is random, without a correla-
tion between observed motions and known tectonic features. However, the averaged
absolute velocity of all these velocities on each island is close to the solution given
for the TANGO site at each island, respectively.

The conclusion is that the TANGO sites already provide enough accurate solu-
tions to support tectonic motion modelling of the Azores region on a large scale,
but that the recent stations still do not provide enough information to allow us to
distinguish intra-island deformations due to their small relative magnitude.

In fact, Fig. 5.13 also shows that, independently of the tectonic model used,
DEOSVel or NUVELI1-A, the relative deformations in the entire area of the plate
boundary cannot be larger than 4-5 mm/year (at the islands it is expected to be at
the millmetre/year level at the most).

Figure 5.14 shows an example of a model obtained from this kind of data
(motions derived from geodetic observations). This model used a segment pattern
deduced from magnetic data on the one hand and bathymetric and topographic fea-
tures on the other in a multidisciplinary approach. The best configuration for the
segment pattern was chosen by evaluating an elastic model which used the veloci-
ties provided by DEOSVEL as boundary conditions. One can see that Corvo on the
North American plate is moving away from Graciosa and Santa Maria at a rate of
23.1 and 18.7 mm/year, respectively, which is due to the spreading of the plates at
the mid-Atlantic ridge. In addition, one can also see that Graciosa and Santa Maria
are separating from each other at a rate of 2.1 mm/year.

Permanent GPS data have been available in some of the Azores stations since
1999, allowing a more robust estimation of the secular motion at their locations.
In order to complete the information from the limited number of available perma-
nent stations, in our results we have incorporated solutions derived from periodic

W 30W 28'W 28W 24"W

Fig. 5.14 Schematic model of the present-day kinematics of the Azores Triple Junction
(Fernandes 2004)
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Fig. 5.15 Detrended time-series for TERC (permanent station since October 2001). Solutions
considered outliers are crossed (Fernandes 2004)

observations that have been being carried out in the region since 1988 (Fernandes
2004).

After estimating the secular motion, one can subtract this motion from the obser-
vations and these detrended time-series for one of the TANGO stations (TERC)
are given in Fig. 5.15. White stars show the residuals with respect to the estimated
motion only with the TANGO campaign epochs. Dashed lines show the variation
on the best-fit trend-line considering only the permanent data. Since the dashed
lines differ from the horizontal, one can see that the derived velocity changed when
changing to the permanent observation approach. This also allowed a significant
improvement in the error assessment.

The campaign data provided reliable information to determine the tectonic
motions due to the long time span of observations. The permanent GPS observations
give more information about the seasonal variations in the position. To minimise
these effects in data from episodic campaign the observations should be repeated at
the same time of the year. In permanent data, such seasonal effects can be mitigated
using estimated annual periodical signals. According to Blewitt and Lavallée (2002),
the use of a minimum of 2.5 years of continuous observations is recommended in
order to filter out the seasonal effects. We got an improvement in the confidence of
the estimated motion using this approach.

The space-geodetic measurements can also be used to derive the geometry of an
earthquake rupture. As an example, we show in Fig. 5.16 the displacement model
computed for the Faial 1998 earthquake using the inverted coseismic displacements
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obtained from GPS. Two basic solutions were studied using the GPS solutions of
30 stations (Fernandes et al. 2002). Due to the location of the stations (all situated
west of the epicentre), no absolute conclusion was drawn about the orientation of the
rupture fault (left-lateral or right-lateral strike-slip). Nevertheless, the work showed
the viability of such modelling, confirming that geodetic information can give a
unique contribution to unravel the geometry of a fault rupture.

GPS has proven to be a valuable tool to study the present-day kinematics of plate
boundaries, being particularly relevant in regions, such as the Azores, where geo-
graphical constraints (relative small percentage of emerged land) limit the design of
an optimal spatial coverage demanding, and even more, the use of multidisciplinary
approaches.

5.7 Further Developments

The development of the GNSS technology in the last two decades pulled up a most
significant change in our way of studying the dynamics of the Earth’s surface, with
new and important findings leading to innovative aspects on the methodologies used
and to a better comprehension of the phenomena involved.

The increased density of some existing GPS networks (e.g. in the USA, Europe
and Asia) is providing unprecedented spatial and temporal sampling of crustal defor-
mation. In spite of the evolution towards the permanent network approach, there
are still a great number of GPS observations available, acquired in campaign mode
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with episodic occupations of sites, which are of scientific interest. Furthermore, in
several regions, the desired densification is only feasible with this type of obser-
vation methodology. Strategies for optimal combination of permanent and episodic
data providing high temporal resolutions with spatially dense campaign should be
developed.

While the accuracy of the GPS results is improving, new features which are not
completely understood start to emerge. A good way to try to explain these features
is through an intercomparison with other geodetic techniques. This can be either
other space-geodetic techniques such as InSAR, SLR or VLBI or ground-based
techniques such as levelling and absolute gravity measurements.

Terrestrial gravity observations differ from the other techniques since they pro-
vide information about the mass variations underneath the surface and not only
the displacement of the Earth’s surface. These observations are complemented by
new space missions such as GRACE and GOCE that are bringing new insights
concerning the Earth’s gravity field, with impact on the geodetic and geodynamic
applications.

Actual and new GNSS will provide data at sampling rates of 1 Hz and higher.
This will especially make a major contribution to real-time geodynamic appli-
cations. However, in order to improve the accuracy of the measured high-rate
displacements for applications such as seismology, it is important to reduce sys-
tematic errors at seismic frequencies. Developments are being made towards the
use of high-rate GNSS to recover coseismic displacements. This will have a major
impact on earthquake/volcano monitoring and tsunami early warning systems.

The use of GLONASS and of the future Galileo system for this type of applica-
tions will demand further developments in modelling the periodic signals. Special
attention must be given to sub-daily effects present in the observations.

The spatial coverage of space-geodetic measurements is currently adding to the
density needed to map the strain-rate distribution and to associate features in the
deformation field with specific tectonic structures. These new data will allow very
significant improvements in our understanding of coseismic, postseismic and inter-
seismic deformation as well as substantial insights into the rheology of the crust and
mantle.

GNSS will make a decisive contribution to the unravelling of earthquake
generation processes and will undoubtedly be a strong basis for hazard risk
assessments.
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The rotation of the Earth varies continuously. Its rotation axis changes its orien-
tation with respect to both a space-fixed and an Earth-fixed reference system, and
the angular velocity of the rotation fluctuates with time. The knowledge and there-
with the continuous observation of Earth rotation variations is important for various
reasons. It is fundamental for the realisation of time systems, the accurate deter-
mination of reference frames and precise navigation by providing the link between
an Earth-fixed and a space-fixed coordinate system. Moreover, time series of Earth
rotation parameters are of great interest for various disciplines of geosciences and
astronomy since their changes are related to gravitational and geodynamic pro-
cesses in the Earth system. In this way, Earth rotation monitoring contributes
significantly to the understanding of the dynamics of the Earth system and the inter-
actions between its individual components, e.g. the exchange of angular momentum
between atmosphere, ocean and solid Earth, or the coupling mechanism between
the Earth’s core and mantle. Today the metrological basis for this highly interdisci-
plinary research is provided by precise space geodetic techniques such as Very Long
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Baseline Interferometry (VLBI), Satellite/Lunar Laser Ranging (SLR/LLR), Global
Navigation Satellite Systems (GNSS) and ring laser gyroscopes.

6.1 Reference Systems

Generally speaking the rotation of the Earth can be interpreted as a change of the
orientation of an Earth-fixed reference system H relative to a space-fixed reference
system 7.

The rotation vector of the Earth w changes its orientation and its absolute value
with respect to either system. Independent of the coordinate system, the rotation
vector is the vector that provides the direction of the instantaneous rotation axis.
Its absolute value equals the instantaneous angular velocity of Earth rotation. The
temporal variations of the Earth rotation vector in the space-fixed reference system
are known as precession and nutation. Both are caused by lunisolar gravitational
torques which can be described as functions of time by series expansions with high
accuracy. The effects of precession and nutation have been known for centuries from
astronomical observations. The change of the direction of the Earth rotation vector
with respect to an Earth-fixed reference system is referred to as polar motion and
was not observed before the end of the nineteenth century. Different to precession
and nutation, polar motion and the variation of the Earth’s angular velocity are not
easily predictable since they are affected by a multitude of irregular geodynamic
processes.

According to a fundamental theorem of rotational dynamics, the temporal deriva-
tive of the rotation vector of a rotating body is equal with regard to a body-fixed and

a space-fixed reference system. The temporal derivative g—f of an arbitrary vector x
with respect to a body-fixed system and its temporal derivative %

space-fixed system are related by

with respect to a

Dr_dv )
_—= X .
Dt dt @xx

If the Earth rotation vector w is introduced instead of x, the equation turns into

Do d d
C 2 oxw= 2 )

The equality of the derivatives means that the derivative of both the orientation of the
rotation vector and its absolute value is identical in the two systems. Consequently
the variations of the orientation of the Earth rotation axis in the space-fixed and
in the Earth-fixed reference system are not independent of each other. The relation
between the coordinates of the Earth rotation vector with regard to a space-fixed or
Earth-fixed system and the temporal derivatives of the orientation parameters are
expressed by Euler’s kinematical equations (Moritz and Mueller 1987).
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Let elH and eiI (i = 1,2,3) be the orthonormal base vectors of the two above-
mentioned reference systems. The orientation of the Earth-fixed system with respect
to the space-fixed system can then be written as

e,?'[zl_?eiz, (3)

where R means a time-dependent rotation matrix which is customarily composed of
four parts (Richter 1995, McCarthy and Capitaine 2002):

R=WSNP. “

The matrices P and N stand for precession and nutation, respectively. The matrix
S = R3(0) is a spin at the so-called Earth rotation angle 6 around the axis of the
Celestial Intermediate Pole. W accounts for the components x and y of polar motion.

The transition from the space-fixed system Z to the Earth-fixed system H is
depicted as follows:

P N S w
T zZ & F H
mean true
space-fixed celestial celestial terrestrial Earth-fixed
system equator system equator system equator system system

Today’s fundamental astronomical space-fixed reference system is the
International Celestial Reference System (ICRS) which was established by the
International Astronomical Union (IAU) in 1997 (Feissel and Mignard 1998). The
ICRS is a kinematically non-rotating coordinate system of high precision. Its origin
is defined to be at the barycentre of the solar system. The ICRS which replaced the
previous Fundamental Catalogue FKS5 (Fricke et al. 1988) is realised in the radio fre-
quency domain by the International Celestial Reference Frame (ICRF). The ICRF
is described by equatorial coordinates of extragalactic and compact radio sources
which are estimated from VLBI observations (Ma et al. 1998). At optical wave-
lengths the ICRS is realised by the Hipparcos catalogue. In 1998 the ICRF contained
coordinates of 608 radio sources, and up to now 109 additional sources have been
added by two extensions ICRF-Ext.1 and ICRF-Ext.2 (Fey et al. 2004; Gontier et al.
2006). A total of 212 very compact sources are used in order to define the axes of
the reference frame (so-called defining sources). Presently the ICRF sources are
observed with an accuracy of about 0.1 mas. VLBI is not capable of realising a geo-
centric ICRS, since it is a purely geometrical observation technique which does not
provide any relation to the Earth’s centre of mass. A Geocentric Celestial Reference
Frame (GCRF) can be computed by combining VLBI and satellite observations or
by referencing VLBI stations in a satellite-based geocentric reference frame (Seitz
2009). If the origin of the ICRS is shifted from the barycentre of the solar sys-
tem into the Earth’s centre of mass (under consideration of relativistic effects), the
system experiences slight accelerations due to the motion of the Earth around the
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Sun. Strictly speaking, such a Geocentric Celestial Reference System (GCRS) is no
longer an inertial system. Commonly it is referred to as a quasi-inertial system.

As a consequence of its rotation the Earth is flattened at the poles. Since the
Sun and Moon are generally located above or underneath the equatorial plane, a
gravitational torque forces the equatorial plane towards the ecliptic (Torge 2001).
Due to Earth rotation, this external force results in the precession of the Earth axis
around the pole of the ecliptic, around which the rotation axis revolves on a cone
with an apex angle of 23.5°. The vernal equinox that marks the intersection point of
equatorial plane, ecliptic plane and the celestial sphere performs a clockwise motion
at a rate of approximately 50.3” per year along the ecliptic. In about 25,800 years,
one so-called Platonic year, the vernal equinox performs one complete revolution
around the celestial sphere. The precession matrix P describes the transition from
the quasi-inertial GCRS into the mean celestial equator system Z (Capitaine et al.
2002; Rothacher 2002).

Precession is superposed by the lunisolar nutation, which causes variations of the
Earth rotation axis in the mean celestial equator system. Lunisolar nutation is a con-
sequence of the periodically changing positions of the Moon and Sun relative to the
Earth. It is composed of various oscillations with different amplitudes and periods
between few days and 18.6 years with respect to the space-fixed system (Mathews
et al. 2002). The most prominent fraction of nutation is caused by the inclination
of the lunar orbit by about 5° with respect to the ecliptic (Torge 2001). The orbital
node, i.e. the intersection line of the lunar orbital plane and the ecliptic, moves with
a period of 18.6 years along the ecliptic. As a consequence, the normal vector of
the lunar orbital plane revolves along a cone around the ecliptic normal vector. The
torque exerted by the Moon on the flattened Earth varies with the same period: it
is maximum when the node of the lunar orbit coincides with the intersection line
of equatorial plane and ecliptic and the Moon reaches its maximum declination of
+28.5° or —28.5°. Further nutation terms are caused by the motion of the Moon
and Sun between the northern and southern hemispheres. They feature periods of
half a month and half a year, respectively (Torge 2001). With an apex angle of less
than 10”, nutation is significantly smaller than precession. The nutation matrix N
describes the transformation between the mean celestial equator system and the true
celestial equator system E.

The pole of the true celestial equator system is also known as the Celestial
Intermediate Pole (CIP). According to resolution B1.7 adopted by the IAU in the
year 2000 the CIP has superseded the previously used Celestial Ephemeris Pole
(CEP) since 1 January 2003 (Capitaine 2002; McCarthy and Petit 2004). In pur-
suance of this IAU resolution, the CIP is defined as the axis with respect to which
the Earth rotation angle is defined. The location of the CIP in the Earth-fixed refer-
ence system is provided by the International Earth Rotation and Reference Systems
Service (IERS) on the basis of space geodetic observations and underlying mod-
els. The CIP is defined in such a way that it performs motions with periods longer
than 2 days with respect to the space-fixed reference system. In the Earth-fixed sys-
tem, retrograde motions of the CIP with frequencies between 0.5 and 1.5 cycles per
sidereal day are allocated to nutation, whereas all other motions are interpreted as
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polar motion. The change of the concept from the CEP to the CIP required the intro-
duction of the revised model for precession and nutation IAU 2000A (Souchay et al.
1999; Mathews et al. 2002) according to resolution B1.6 of the IAU in the year 2000
(McCarthy and Petit 2004). A comprehensive overview of the IAU 2000 resolutions
and their implications is given by Kaplan (2005).

If the Earth were solid and external torques were neglected, its instantaneous
rotation axis would be directed towards the CIP. But in reality there is a small
deflection between the CIP and the instantaneous rotation axis which is known as
Oppolzer motion (Schodlbauer 2000; Capitaine 2004). As a consequence of preces-
sion and nutation, the Earth rotation axis changes its direction with respect to the
space-fixed reference system as a function of time. Associated variations of right
ascension and declination of fixed stars must be taken into account in astronomical
observations from the Earth surface. The (true) latitude of a station, i.e. the angle
between the true equatorial plane and the zenith of the station, is unaffected by pre-
cession and nutation. Matrices P and N can be modelled and predicted on the basis
of lunar and solar ephemerides with high accuracy (Lieske et al. 1977; Wahr 1981;
Seidelmann 1992). Small corrections to the current model (celestial pole offsets)
are routinely published by the IERS on its internet site (http://www.iers.org). They
account for model imperfections as well as for unpredictable geophysical signals
such as the free core nutation or the quasi-annual oscillation of the S1 thermal tide
(Dehant et al. 1999; Vondrak et al. 2005). Together with the precession—nutation
model TAU 2000A, the celestial pole offsets allow for a precise computation of the
location of the CIP in the space-fixed GCREF as illustrated in Fig. 6.1 (coordinates
XandY).

The transformation between £ and the Earth-fixed system 7 is carried out on the
basis of the so-called Earth rotation parameters. The rotation matrix S describes the
diurnal rotation around the z-axis of the true celestial equator system. It is applied
in order to transform between the true celestial equator system and the terrestrial
equator system F. Before 1 January 2003 the matrix S was related to the Greenwich
Apparent Sidereal Time (GAST), i.e. the apparent hour angle of Greenwich with
respect to the true vernal equinox. GAST is related to the Greenwich Mean Sidereal

P.GCRS/GCRF P]TRS/ITRF

Fig. 6.1 Poles of reference
with regard to the coordinate
systems ITRS and GCRS
(and their respective
realisations ITRF/GCRF), PN
and correspondence between X
model values m(f) and

published polar motion values

p(t) Mendes Cerveira et al.

2009)
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Time (GMST), i.e. the Greenwich hour angle of the mean vernal equinox, by the
equation of equinoxes. From GMST universal time UT1 can be accessed (Aoki
et al. 1982). According to the IAU resolution B1.8 (2000) and its supplement (AU
resolution B2, 2006), the vernal equinox as the direction of reference for the side-
real rotation of the Earth is now replaced by the so-called Celestial Intermediate
Origin (CIO) in the space-fixed reference system (Capitaine 2002, 2008; McCarthy
and Petit 2004). The CIO represents a non-rotating origin (Guinot 1979; Aoki and
Kinoshita 1983) and is defined in such a way that the rotation vector of the celestial
equator system with regard to a space-fixed reference system has no component in
the direction of the CIP. The motion of the CIO relative to the space-fixed reference
system has no component along the equator but a perpendicular one. Analogously a
Terrestrial Intermediate Origin (TIO) is defined: the rotation vector of the terrestrial
equator system with regard to an Earth-fixed reference system has no component in
the direction of the CIP, and the motion of the TIO relative to the Earth-fixed ref-
erence system has solely a component perpendicular to the equator (Guinot 2002).
In this concept GAST is replaced by the Earth rotation angle 0 that is defined as
the angle measured along the equator of the CIP between the unit vectors directed
towards CIO and TIO. Since the direction of reference for UT1 moves uniformly
along the equator, UT1 and 6 are linearly related. The implementation of the AU
resolution B1.8 (2000) allows for a rigorous definition of the sidereal rotation of
the Earth and for describing the rotation of the Earth independently from its orbital
motion (McCarthy and Petit 2004).

The last part of the rotation matrix R, the polar motion matrix W, describes the
transformation from the terrestrial equator system into the Earth-fixed system H.
The z-axis of the terrestrial equator system F is directed towards the CIP, while
the z-axis of the terrestrial system is directed towards the Conventional Terrestrial
Pole (CTP). Today the defined CTP is the /IERS Reference Pole, which replaced the
Conventional International Origin in the year 1967. The Conventional International
Origin is identical with the mean direction of the Earth rotation axis between 1900
and 1905. The IERS Reference Pole differs from the Conventional International
Origin by a maximum +0.03"” and is realised by coordinates of globally distributed
geodetic markers by means of space geodetic observations. Today’s conventional
Earth-fixed system H is the International Terrestrial Reference System (ITRS). Its
origin is defined to be in the centre of mass of the Earth including atmosphere
and ocean, and the z-axis of the right-hand system is directed towards the IERS
Reference Pole. The orientation of the x-axis of the ITRS was originally defined by
the Bureau International de I’Heure (BIH) for the epoch 1984.0. From this time, the
evolution of the orientation was ensured by a no-net-rotation condition with regard
to horizontal tectonic motions over the whole Earth (McCarthy and Petit 2004). The
ITRS is realised by the determination of three-dimensional positions and velocities
of geodetic observatories using space geodetic techniques. The most recent reali-
sation of the ITRS is the ITRF2008. For details regarding the ITRF computation
strategy see Altamimi et al. (2007).

Both the orientation of the rotation axis with respect to the CTP and the angu-
lar velocity of Earth rotation are influenced by transient, episodic and periodic
exogenous and endogenous processes in the Earth system. Therefore the rotation
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matrices S and W cannot be described or even predicted by models with satisfy-
ing accuracy. The IERS publishes different sets of Earth Orientation Parameters
(EOP) in its circulars as well as on its internet site. Among the available param-
eters are the previously mentioned celestial pole offsets, the pole coordinates x;,
and yp and AUT = UTI — UTC. The pole coordinates x, and y, represent the
misalignment between CIP and IERS Reference Pole, where the orientation of the
Xp-axis is consistent with the x-axis of the ITRS, and the y,-axis is directed towards
90° western longitude. The parameters x, and y, allow for the transformation
between the terrestrial equator system F and the Earth-fixed system H. Due to polar
motion, the (true) latitude and longitude of a station on the Earth’s surface vary with
time.

Except for a constant offset due to the consideration of leap seconds, the coordi-
nated universal time UTC corresponds to the uniform Temps Atomique International
TAI which is realised by a set of worldwide distributed atomic clocks (BIPM 2007).
Alternative to the parameter AUT, the expression excess length-of-day (ALOD) is
common. ALOD is related to the absolute value of the Earth rotation vector in the
terrestrial equator system and denotes the length of a solar day (length-of-day, LOD)
expressed in UTC or TAI reduced by 86,400 s (Moritz and Mueller 1987):

ALOD = LOD — 86,4005 . (5)

ALOD and AUT are related according to

d
ALOD = —— AUT - 86,4005 . (©6)

Figuratively speaking, the term ALOD expresses the variation of the Earth’s angular
velocity due to geophysical and gravitational influences as a variation of the effec-
tive time for one full revolution. In former times AUT was observed by astronomical
methods. Nowadays this parameter is unambiguously determined by VLBI due to
its connection to the quasi-inertial reference frame of extragalactic radio sources.
Global Navigation Satellite Systems (GNSS) allow for a precise observation of
ALOD on short time scales.

6.2 Polar Motion

Figure 6.2 shows the Earth’s polar motion between 1962 and 2009 as observed
by astrometric and space geodetic observation techniques. The displayed values
are taken from the well-known series EOP 05 C04 (Bizouard and Gambis 2009),
in which the IERS publishes Earth orientation parameters together with respective
formal errors at daily intervals since 1962. Values in this series are provided with
respect to the precession—nutation model IAU 2000A and are consistent with the
ITRF2005. Today polar motion can be determined with an accuracy of better than
0.1 mas (IERS 2008).
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Fig. 6.2 Observations of polar motion from the EOP 05 C04 series of the IERS between 1962 and
2009

A clear beat with a period of 6.3 years is obvious. It is caused by the superposition
of a signal component with annual period (approx mean amplitude 0.09”) and an
oscillation with a period of about 1.2 years (approx mean amplitude 0.17”). The
resulting beat amplitude is up to 0.25” which corresponds to approximately 9 m on
the Earth’s surface.

While the annual oscillation can be explained by gravitational and geophysical
effects within the Earth system, the oscillation with a period of 1.2 years is a free
rotational mode of the Earth. It was discovered by Chandler (1891, 1892) and is
therefore known as Chandler oscillation. The Chandler oscillation originates from
a misalignment of the polar principal axis of inertia (figure axis) and the rotation
axis of the Earth (Schodlbauer 2000). This causes a tumbling motion of the flattened
Earth gyro, in which the rotation vector revolves on a cone around the figure axis.
The Chandler oscillation is a prograde polar motion, i.e. counter-clockwise when
seen from the North Pole. The existence of such a free oscillation of the Earth had
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earlier been predicted by Euler (1765). From theoretical computations for a solid
body with the Earth’s dimension, he determined a period of 304 days (Euler period)
for one revolution. Since the Earth is deformable, the actual period is lengthened to
about 432 days (Chandler period) (see Sect. 6.4.2.1).

Signal decomposition of observed polar motion by means of wavelet filtering
(Seitz and Schmidt 2005) allows for splitting the entire signal into its two main
constituents, i.e. the Chandler oscillation and the annual oscillation. The resulting
time series (x-components) are shown in Fig. 6.3 for a period of 150 years between
1860 and 2009. Since both signal components are almost circular, the y-components
look very similar. Displayed values for polar motion are taken from the long-term
CO01 series, in which the IERS provides observations made since 1846 in a temporal
resolution of 0.1 years (1846-1889) and 0.05 years (1890-2009). During the first
decades the observations were based on optical astrometry and are comparatively
inaccurate (standard deviations up to o = 0.16”). The top panel of Fig. 6.3 shows
the x-component of the time series COl (after removal of a linear trend) together
with the 3o error margin. The Chandler oscillation (middle) features much stronger
amplitude variations than the annual signal (bottom) which has been rather uni-
form during the last century (the first and the last years in the plot should not be
interpreted due to boundary effects of the applied filter). Although the accuracy of
the older astrometrical data is rather poor, the displayed amplitude variations are
significant since the signal exceeds some 100 mas.

[as]
o

[as]
<)

[as]
=)

oSk SUTPIPII L L
1860 1900 1940 1980

Fig. 6.3 Long-term observations of polar motion (x-component, linear trend removed) between
1860 and 2009 together with the 30 error margin plotted in grey (top) and Chandler (middle) and
annual (bottom) signal component determined by wavelet filtering
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The origin of the strong amplitude variations and therewith the causative mech-
anism for the evocation of the Chandler oscillation have been under discussion
for many years. As a consequence of the anelasticity of the Earth mantle and the
associated dissipation due to friction, the Chandler oscillation is a damped oscil-
lation. But the observations indicate that the amplitude of the free polar motion is
excited by some mechanism which counteracts the damping. In numerous publica-
tions this matter has extensively been discussed. It has been investigated whether
atmospheric or hydrologic mass redistributions (Wahr 1983; Hameed and Currie
1989; Sidorenkov 1992; Furuya et al. 1996, 1997) or processes in the Earth’s interior
(Souriau and Cazenave 1985; Gross 1986; Hinderer et al. 1987) are the hurriers of
the oscillation. Since the Chandler oscillation is a resonance oscillation of the Earth,
potential excitation mechanisms require energy in a band close to the Chandler fre-
quency in order to excite the free polar motion and thus to counteract its damping.
In recent years a number of studies came to the conclusion that the Chandler oscil-
lation is excited by the combined effect of atmosphere and ocean (Gross 2000;
Brzezinski and Nastula 2000; Seitz and Schmidt 2005). However, the individual
contributions of these two subsystems could still not be fully assessed, since all
investigations are naturally dependent on imperfect model assumptions of atmo-
spheric and oceanic processes and their related mass transports. Furthermore, minor
effects from continental hydrosphere, cryosphere and other subsystems must also be
taken into account in order to close the budget of polar motion excitation.

The annual signal of polar motion originates similarly to a number of further
significant higher and lower frequencies from gravitational and internal geophysi-
cal excitations, causing mass redistributions and mass motions within and between
the Earth’s subsystems. An overview of important drivers and the corresponding
signatures in polar motion (amplitudes and periods) is given by Chao (1994) and
Gross (2007). As mentioned above, there are also singular and non-periodic contri-
butions from transient and episodic geophysical effects, such as earthquakes (Chao
and Gross 1987, 2005) or El Niflo situations (Kosek et al. 2001). Forced variations
of polar motion and the free Chandler oscillation are closely linked. Variations of
the Earth rotation vector induce a change of the Earth’s centrifugal potential which
leads to additional mass redistributions in the solid Earth and the ocean (so-called
rotational deformations). This back-coupling effect causes a motion of the principal
axis of inertia that affects the Chandler oscillation (see Sect. 6.4.2.1).

Figure 6.4 shows the polar motion curve in units of metres on the Earth surface in
more detail for a time interval of 6 months (Schreiber et al. 2004). The large circle
results from the superposition of signal components with comparatively long peri-
ods (especially the prograde Chandler and pro- and retrograde annual oscillations),
whereas the small circles with magnitudes of approximately 0.01” are nearly diurnal
retrograde polar motion components which are related to corresponding precession
and dominant nutation terms in the space-fixed reference system (Oppolzer terms).
The pronounced beat effect with a period of 13.7 days results from the superposition
of oscillations that correspond to precession (period 0.997 days in the Earth-fixed
reference system) and the largest nutation term (period 1.076 days in the Earth-fixed
reference system). Variations of the beat amplitude are caused by further signal com-
ponents that correspond to other nutation terms with approximately diurnal period
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in the Earth-fixed system (McClure 1973). In analogy to precession and nutation
in the space-fixed system, the retrograde nearly diurnal polar motion in the terres-
trial system originates from lunisolar gravitational torques on the equatorial bulge
of the Earth. Earth rotation causes a daily variation of the gravitational forces which
results in the almost circular motion of the rotation pole in the direction opposite
to the rotation. Nearly diurnal retrograde polar motion cannot be directly assessed
by observations of VLBI, SLR/LLR and GNSS since these techniques are sensitive
only to the complete rotation matrix from the Earth-fixed to the space-fixed refer-
ence frame from which no discrimination between celestial pole offsets and nearly
diurnal retrograde polar motion is possible. An inertial rotation sensor on the Earth’s
surface is sensitive to the diurnal retrograde polar motion since the angle between
the axis of the instrument and the rotation axis of the Earth changes with a period
of 1 day. In this way, ring laser gyroscopes allow for the direct observation of the
position of the instantaneous rotation axis and therewith for the assessment of the
diurnal polar motion (Schreiber et al. 2004).

Beside the periodic and irregular fluctuations, polar motion is characterised by a
secular trend at a present rate of 3.3 mas/a in the direction of 76°~78° western lon-
gitude (Vondrak et al. 1995; Schuh et al. 2001). Although the reason is not entirely
understood yet, there is evidence that this secular motion is caused by postglacial
rebound and sea-level variations (Milne and Mitrovica 1998).

6.3 Variations of Length-of-Day and AUT

The variation of the length of a solar day (ALOD) can be determined from the
observations of modern space geodetic techniques with an accuracy of 20us (IERS
2008). As shown in (6) ALOD is directly related to AUT. While accurate short-
term time series of ALOD, i.e. of the derivative of AUT, can be estimated with
high temporal resolution from GNSS observations, mid-term and long-term stability
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of ALOD as well as AUT series can only be guaranteed by VLBI, providing the
connection to the quasi-inertial reference frame. All satellite-based techniques, such
as GPS or Glonass, meet the problem that Earth rotation cannot be distinguished
from a uniform rotation of the satellite orbit nodes (Ray 1996).

Figure 6.5 (top panel) displays the observed variations of length-of-day from
the EOP 05 C04 of the IERS for the period between 1962 and 2009. The curve
is dominated by a secular signal of the order of milliseconds that is superposed
by significant variations with annual and semi-annual periods due to mainly atmo-
spheric effects and tidal signals with periods of several days. In contrast to polar
motion, there is no free variation of length-of-day due to rotational deformations
(Wahr 1985). The decadal variability of ALOD is ascribed to the exchange of angu-
lar momentum between the Earth’s core and mantle (Liao and Greiner-Mai 1999).
This assumption is supported by strong correlations between the decadal varia-
tions of ALOD with fluctuations of the Earth’s magnetic field (Schuh et al. 2003).
Four potential mechanisms of core—mantle coupling (CMC) are presently under
discussion: topographic, electromagnetic, viscoelastic and gravitational coupling.
Available models of topographic coupling are rather inaccurate since the knowl-
edge of the topography at the core—mantle boundary is insufficient. But presumably
this coupling mechanism does not provide enough energy in order to excite the
strong variations of ALOD (Ponsar et al. 2002). Holme (1998) showed that the
electromagnetic CMC seems to be the most important excitation mechanism. It is
based on variations of the geomagnetic field due to dynamo processes, which exert a
torque on conductive regions of the lower mantle via the Lorentz force (Schuh et al.
2003). Viscoelastic and gravitational coupling are inferior. In the frame of its Special
Bureau for the Core (SBC) of the Global Geophysical Fluids Center (GGFC), the
IERS provides model time series that describe the effects of CMC on ALOD. In
Fig. 6.5b the results of three different models are compared with a moving average
of the observations over 5 years. One of the model data sets (according to Jackson,
Bloxham and Gubbins, JBG) has a temporal resolution of 1 year (Jackson 1997);
the other two models (according to Petrov and Dehant, PD1 and PD2) are available
for intervals of 5 years. All data sets are based on the frozen flux hypothesis (Jault
et al. 1988). While JBG is a free model, PD1 and PD2 are based on observations
of the magnetic field. The comparison of the various models provided by the SBC
reveals significant differences. To a certain extent the data series correspond with
the moving average (especially in the case of PD2), but the temporal resolution is
much too coarse to explain the decadal variations of ALOD with sufficient accuracy
and thus to exclude other causative processes.

Variations of ALOD on annual, seasonal and shorter time scales are highly cor-
related with angular momentum fluctuations within the atmosphere (mainly due to
zonal winds) and, to a minor extent, due to ocean currents. The two strongest signal
components induced by those processes, i.e. the annual and semi-annual oscillation,
feature almost equal amplitudes of approximately 0.36 ms. In addition, there is a
weak quasi-biennial oscillation (QBO) due to irregular variations of zonal winds
and temperatures in the tropical troposphere and stratosphere (Trenberth 1980). Its
amplitude varies from cycle to cycle. In general it is smaller than 0.1 ms (Hopfner
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Fig. 6.5 Variations of length-of-day (ALOD) for the time frame between 1962 and 2009. (a)
Observation time series EOP 05 C04. (b) Moving average over 5 years in comparison with three
models for the influence of core-mantle interaction (dots: JBG; stars: PD1; diamonds: PD2; see
text). (¢) Effect of solid Earth tides. (d) Annual and semi-annual signal component. (e) Residual
time series (a-b-c-d)

2001). The most important periods induced by solid Earth tides are 9.13 days
(amplitude 0.07 ms), 13.63 days (0.15 ms), 13.66 days (0.35 ms) and 27.55 days
(0.19 ms) (Yoder et al. 1981; McCarthy and Petit 2004). In contrast to solid Earth
tides, the influence of ocean tides on ALOD is small (Lambeck 1980; Gross 1993),
but not negligible in high-precision space geodesy.

The residual signal of ALOD (Fig. 6.5e), i.e. after reduction of the decadal sig-
nal, the annual and semi-annual oscillations and the tidal effects feature transient
increases of the length-of-day during 1983 and (somewhat less pronounced) during
1997. These episodic signals can be explained by strong El Nifio events (Rosen et al.
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1984; Chao 1989). Like polar motion, ALOD is characterised by a secular change.
Especially as a consequence of tidal friction, the length of a solar day increases by
2.3 ms per century (Morrison and Stephenson 1998).

6.4 Physical Model of Earth Rotation

6.4.1 Balance of Angular Momentum in the Earth System

From a physical perspective, Earth rotation can be interpreted as the rotary motion
of a multitude of individual and interrelated mass elements about one common axis.
This rotary motion is comparable to that of a physical gyroscope. Therefore the-
oretical and numerical studies on temporal variations of Earth rotation are based
on equations of gyroscopic motion which follow from the balance of angular
momentum in the Earth system. With respect to an Earth-fixed, i.e. rotating, ref-
erence system, the balance between the Earth’s angular momentum H and external
torques L due to, e.g., lunisolar and planetary gravitational forces is described by
the dynamic Euler equation (Lambeck 1980):

d
GHtoxH=L. 7)

In this equation @ denotes the rotation vector of the Earth with respect to the rotating
reference system. The angular momentum of a rotating rigid body equals the product
of its tensor of inertia I and the rotation vector ®:

H=1w. 3)

The symmetric tensor of inertia describes the mass distribution in the system
(Lambeck 1980). In the case of a rigid body it is invariant with respect to body-fixed
axes:

yz—i-z2 —Xy —xz
I=///,0(x,y,z) 242 e | av, ©)
—Xz —yz x2+y2

where p(x,y,z) is the density at the three-dimensional position (x, y, z). In the
case of a rotating deformable body, the angular momentum H is split into two
parts: one fraction corresponds to the angular momentum of the rotating rigid body
(8), but with the difference that the tensor of inertia is now time variable due to
deformability. The second fraction can be viewed as angular momentum h relative
to the body rotation. It follows from the motion of mass elements with velocity v'!
relative to the rotating reference system, in which the rotation is described:

h:///p(x,y,z)-(rxvrel) av , (10)
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where r denotes a three-dimensional position vector. Consequently the angular
momentum of a rotating deformable body is (Schneider 1988)

H=1 w+h, (11)

where the first summand is also referred to as mass term, the second one as motion
term. Insertion of (11) into (7) yields

%(I~w+h)+wx(1-w+h)=L. (12)

In this form the equation is also known as Euler—Liouville or in short Liouville
equation (Munk and MacDonald 1960). In the context of Earth rotation studies, the
term deformability not only refers to deformations of the Earth’s body but also to
mass redistributions within and between the various components of the Earth sys-
tem. In particular, atmospheric and oceanic transport processes and related mass
changes are very important on time scales from hours and days to several years.
While the time-variable mass distribution in the system influences the tensor of iner-
tia I, motions of mass elements with respect to the reference system cause relative
angular momenta h. Consequently all elements of the Liouville equation are time
variable:

I=1(#), h=h(@), o =w(), L =L(). (13)

Angular momentum is exchanged among the individual components of the Earth
system via mass transfer processes and torques. The occurrence of relative angu-
lar momenta is not necessarily linked to the appearance of variations of the tensor
of inertia. Certainly most of the relevant processes influence both the mass and the
motion term simultaneously. For instance, the atmospheric flow is generally related
to variations of atmospheric pressure, and ocean circulation is usually accompa-
nied by variations of ocean bottom pressure. But on the other hand mass motions
are conceivable that do not influence the mass distribution in the Earth system and
consequently the tensor of inertia. This is the case if one mass element is instan-
taneously replaced by a subsequent one (e.g. in a ring-like ocean current) or if the
Earth’s core experiences an acceleration with respect to the Earth’s mantle. Vice
versa vertical deformations of the Earth as a consequence of loading or the time-
variable snow coverage could be mentioned as examples of mass redistributions
without a significant influence on the motion term.

In theoretical studies on Earth rotation, the quantities in the Liouville equation are
often related to a rotating reference system, according to which the mass elements
of a rotating rigid body are invariant with respect to their position at all times. For a
deformable Earth such a system can be defined by a minimum condition (Schneider
1988). An example is the Tisserand system (Tisserand 1891), for which the inte-
gral effect of the relative motions of mass elements with respect to the reference
system is minimised (h = 0). The application of the Tisserand system simplifies
the Liouville equation (12) considerably. But on the other hand the definition of the
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Tisserand system is hypothetical, since relative angular momenta (especially in the
Earth’s interior) are not accessible from observations on the Earth’s surface (Engels
and Grafarend 1999).

Numerical investigations are commonly performed in a geocentric terrestrial ref-
erence system. Its rotation axis is oriented towards the polar moment of inertia C
of the Earth, its x-axis is directed towards the Greenwich meridian and its y-axis
towards 90°E. The terrestrial system performs a uniform rotation about its z-axis
with angular velocity 2 = 27 /86, 164 s. Temporal variations of the instantaneous
Earth rotation vector w(¢) are viewed as small deviations of the uniform rotation. In
coordinates of the terrestrial system the Earth rotation vector is expressed as (Munk
and MacDonald 1960)

mi (1)
o= | m@® |, m <L 1. (14)
1 4+ m3(7)

The dimensionless quantities m;(f) (i = 1,2, 3) represent slight disturbances of the
uniform rotation (Munk and MacDonald 1960). The two components mj(f) and
my(t) describe the time-variable orientation of the rotation axis with respect to the
z-axis of the terrestrial system (polar motion). Deviations of the Earth’s angular
velocity with respect to €2 are associated with changes of the length-of-day. They
follow from the temporal variation of the absolute value of the Earth rotation vector
lw(2)| (Lambeck 1980; Schneider 1988):

lo(n)] = €2 \/m1(t)2 +mat? + (1L +m30)® ~ QU+m@). (15)

The error of ALOD due to this approximation is 10~'° s and therefore negligible.

The Earth’s tensor of inertia I(¢) can be interpreted as the sum of two components
I, and AI(#) (Lambeck 1980), where I is an approximate tensor. If the axes of the
reference system coincide with the principal axes of inertia, the approximate tensor
has a diagonal structure:

A00
L=|(0BoO]| . (16)
00C

where A and B are the equatorial principal moments of inertia and C is the axial
principal moment of inertia of the Earth (C > B > A). But the axes of the princi-
pal moments of inertia differ from the axes of the previously described terrestrial
reference system by approximately 15° in the equatorial plane (Marchenko and
Schwintzer 2003). This divergence has to be taken into account by means of a rota-
tion. Consequently I, does not have a diagonal structure with respect to the axes of
the applied terrestrial system.

Due to mass redistributions in the Earth system, small time-dependent devia-
tions AI(#) of the approximate tensor I arise (Moritz and Mueller 1987). With the
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tensor elements (so-called deviation moments) c;i(f) < A,B,C(I,j = 1,2,3) the
symmetric tensor AI(?) reads

cr1(t) cra(®) c13(0)
Al() = c2(t) () | . (17)
sym. c33(2)

If deviations of the tensor c;(t), relative angular momenta h(f) and external
torques L(7) are provided from models or observations, the solution of the Liouville
Equation for @(f) allows for the forward computation of Earth rotation variations.
The relation between modelled values m;(f) and geodetic observations will be
discussed in Sect. 6.5.

Two different approaches, the angular momentum approach and the torque
approach, are in principle applicable for the set-up and solution of the Liouville
equation. Theoretically both approaches are equivalent, but they differ conceptually
with respect to their view of the Earth system. Accordingly, the procedures of mod-
elling effects of the Earth’s fluid components (e.g. atmosphere, ocean, continental
hydrosphere) on Earth rotation are different (De Viron et al. 2005).

6.4.1.1 Angular Momentum Approach

The angular momentum approach is the classical approach for modelling Earth rota-
tion. It has been described in various publications (Munk and MacDonald 1960;
Lambeck 1980; Barnes et al. 1983; Moritz and Mueller 1987). The rotating body
for which the Liouville equation is set up comprehends the solid Earth, atmosphere,
hydrosphere and all other subsystems. In the absence of external lunisolar and (much
smaller) planetary torques, this system of mass elements is viewed to be isolated, i.e.
the right-hand side of (12) is zero, and the total angular momentum of the rotating
body is conserved. Fractions of angular momentum can be transferred between the
individual system components by redistributions and motions of masses. Changes
of the angular momentum due to atmospheric, oceanic and other dynamic processes
are associated with an opposite change of angular momentum of the solid Earth
which is accompanied by variations of the Earth rotation vector w(?).

In the angular momentum approach, solely gravitational torques from external
celestial bodies act on the rotating Earth. If the Sun, Moon and planets are viewed
as point masses, the gravitational torque L(#) on the right-hand side of the Liouville
equation (12) can be written as (Moritz and Mueller 1987; Beutler 2005)

3GM; )’j(t) Zj(t) (C—-B)
Lo =Y | 50z04-0] . (18)
7 T \xi(0) i) (B — A)

In this equation G is the gravitational constant, and index j stands for the respec-
tive celestial body with the (point-)mass M;; its geocentric distance is denoted
with rej(2); x;(2), y;(2), zj(¢) are its coordinates in the rotating reference system. In
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its conventions the IERS recommends the use of the solar, lunar and planetary JPL
Development Ephemeris DE405/LE405 (Standish 1998; McCarthy and Petit 2004).

Each relocation of mass elements within the system leads to an instantaneous
change of the tensor of inertia AI(#). Deviation moments c;;(¢) for the solid Earth
result from deformations of the Earth’s body as reaction to a tide generating poten-
tial, rotational variations and surface mass loads (Moritz and Mueller 1987; Seitz
et al. 2004) (see Sect. 6.4.2). Relative angular momenta h() are due to the motion
of individual mass elements relative to the terrestrial reference system.

The angular momentum approach corresponds to an abstract balance of angu-
lar momentum of all subsystems. Their individual contributions to the angular
momentum budget are linearly superposed:

I(n = 10 + Al solid Earth(t) + Al atmosphere(t) + Al ocean(t) +e

19)
h(7) = h olid Earth (1) + h atmosphere(t) +hocean(®) + -+ .

Variations of the tensor of inertia can be computed from modelled or observation-

based mass balances of the Earth’s subsystems. Relative angular momenta are

derived from fluxes from global atmosphere and ocean circulation models.

6.4.1.2 Torque Approach

In the torque approach the effects of the Earth’s fluid components, atmosphere
and ocean, on the balance of angular momentum are modelled as (quasi-)external
torques (Wahr 1982). That is, the integral effect of direct atmospheric and oceanic
forces on the solid Earth appears in the vector L(#) on the right-hand side of the
Liouville equation (12). Similar to the angular momentum approach, variations of
the tensor of inertia AlI(r) are due to deformations of the solid Earth caused by
tides, surface mass loads and rotational variations. Since atmosphere and ocean are
viewed as external systems, their mass redistributions do not affect the tensor of
inertia. Likewise there are no relative angular momenta h(r) due to atmospheric and
oceanic currents.

Torques between atmosphere/ocean and the solid Earth are assessed on the basis
of global atmosphere and ocean circulation models. The acting torque is composed
of three parts: pressure torque, gravitational torque and friction torque (De Viron
et al. 2001). The pressure torque acts on the Earth’s topography. It is derived from
fields of surface and ocean bottom pressure and the gradient of the topography.
The gravitational torque is a result of the interaction between the mass distributions
within atmosphere/ocean and the solid Earth. The friction torque results from the
relative motion of atmosphere and ocean currents with respect to the Earth surface.
Since the friction drag of the Earth’s surface is widely unknown it is particularly
difficult to model (De Viron and Dehant 2003a). In a study on the influence of the
atmospheric torque on polar motion De Viron et al. (1999) demonstrated that the
time derivatives of the equatorial atmospheric angular momentum and the sum of the
atmospheric equatorial torques agree well in the spectral range of longer than 1 day.
Furthermore this study revealed that the magnitude of the equatorial components of
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pressure and gravitational torque are almost equal (but with opposite signs) and that
both contribute significantly stronger to polar motion than the friction torque.

The effects of atmospheric and oceanic pressure torque, gravitational torque and
friction torque are superposed to the previously described external gravitational
torque exerted by Sun, Moon and planets (18). Therefore the total torque L(f) can
be written as

L) =L pressure([) +L gravitation(t) + L triction () + L external (?) - (20

Since lunisolar and planetary torques have a discrete spectrum in narrow vicinity
of the diurnal retrograde frequency, they can be modelled quite well via harmonic
expansion. Atmospheric and non-tidal oceanic torques, however, have a continu-
ous spectrum and are thus unpredictable. Consequently, the modelling has to be
performed in the time domain.

From the viewpoint of physical understanding, the torque approach is superior to
the angular momentum approach. By modelling explicit interactions between atmo-
sphere/ocean and the solid Earth via particular forces, it is possible to tell which
specific processes lead to a change of the angular momentum budget and thus cause
variations of Earth rotation. The torque approach is ideal for geographical studies
since it allows for a direct identification of regions in which the interaction between
atmosphere, ocean and the solid Earth is stronger than in others (De Viron and
Dehant 2003b). In this way, the approach provides valuable physical insights into
dynamic interactions in the Earth system.

The largest limitation for the torque approach is the lack of sufficiently accu-
rate numerical models for the computation of the torques due to atmospheric and
oceanic pressure, gravitation and friction. While model errors are not so crucial in
the case of the angular momentum approach (where the errors smooth out due to the
computation of one global value), the torque approach is highly sensitive to errors
(De Viron and Dehant 2003b). As stated above, many of the parameters which are
necessary for the computation of torques are not well known, e.g. the friction drag
between air and Earth surface or between water and ocean bottom. Furthermore,
the computation of the pressure torque is unsatisfactory due to the comparatively
coarse spatial resolution of available orography models (De Viron et al. 1999; Stuck
2002).

Due to these data problems, atmospheric and oceanic angular momentum values
presently appear to be more reliable for the interpretation of geodetic observations
of Earth rotation. Nevertheless the torque approach is promising in the light of future
model advancements.

6.4.2 Solid Earth Deformations

Mass redistributions and corresponding variations of the tensor of inertia are also
caused by deformations of the solid Earth as a consequence of its reaction to
the lunisolar and planetary tide generating potential, variations of the centrifugal
potential due to polar motion and mass loads on the Earth surface.
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Theoretical considerations on the effects of solid Earth and ocean tides on Earth
rotation are provided together with elaborate instructions for numerical computa-
tions in the conventions of the IERS (McCarthy and Petit 2004). For particulars
the reader is referred to this publication and the references therein. The following
section will focus on the deformations induced by rotational variations and surface
mass loads.

6.4.2.1 Rotational Deformations

Temporal variations of the rotation vector () lead to variations of the Earth’s
centrifugal potential. This causes deformations of the solid Earth and the ocean
which are also known as rotational deformations. While vertical deformations due
to variations of the angular velocity of the rotation are below 0.5 mm at the Earth
surface (Wahr 1985) and therefore negligible, the effects due to polar motion are
up to 25 mm (Gipson and Ma 1998). These changes of the Earth’s geometry are
accompanied by variations of the tensor of inertia that are superposed to other devi-
ations ¢;j(t) (i,j = 1,2,3) due to mass redistributions induced by gravity and other
geophysical effects. The back coupling from polar motion to the tensor of iner-
tia influences the Earth’s rotational dynamics significantly: it is well known that
rotational deformations are responsible for the prolongation of the Euler period
of 304 days (which is the period of the free oscillation of a rigid body with the
Earth’s dimensions) to the observed period of the free oscillation of about 432 days
(Chandler period) (Moritz and Mueller 1987).

The effect of polar motion on the Earth’s centrifugal potential is referred to as
pole tide. Parameters m (f) and my(¢) of the Earth rotation vector are related to tem-
poral variations of the coefficients AC>1(¢) and AS>1(f) of the spherical harmonic
expansion of the geopotential (McCarthy and Petit 2004):

9203
ACyH () = T3GM: (?ﬁ(kz) -my(t) + I(ka) - m(l)) ,
2 3 @1)
AS () = ~3GMp (sz) ~ma(t) — S(ky) - th(t)) ,

where a and Mg stand for mean equatorial radius and total mass of the Earth. The
effect of polar motion on rotational deformations and therewith on the variation of
the geopotential depends on the Earth’s rheological properties. In (21) the rheology
is described by the complex pole tide Love number k; = R(ky) + iJ(ky), where R
and 3 stand for real part and imaginary part, respectively.

The coefficients AC,1(f) and AS(¢) are directly linked to the elements of c3(¢
and c¢»3(¢) of the tensor of inertia (Lambeck 1980):

—c13()
ACH(H) = ,

_“EMZ) (22)
ASy (1) = —=

@AMy
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If the Earth was a rigid body, i.e. if the tensor of inertia was invariant with respect
to time and there were no relative angular momenta, the Earth would rotate freely
at the Euler period of 304 days as stated above. In an extensive study Smith and
Dahlen (1981) discussed the consequences of deformability for the period of the
free polar motion and derived an appropriate numerical value of the pole tide Love
number k> in the light of mantle anelasticity and the dynamics of core and ocean.
In a first step Smith and Dahlen (1981) approximated the Earth as a purely elastic
body and neglected the dynamic response of core and ocean. The pole tide Love
number was introduced with the (preliminary) numerical value of k&5 = 0.30088,
which was computed from the hydrostatic ellipsoidal Earth model 1066A (Gilbert
and Dziewonski 1975). It was shown that the period of the free rotation of a fully
elastic Earth would amount to 447 days, i.e. 143 days longer than that of a rigid
body.

In order to refine the Earth’s reaction on rotational variations, the effects of the
dynamic fluid core, the equilibrium ocean pole tides and the mantle anelasticity
must be taken into account for the computation of rotational deformations. In the
following a simple Earth model will be discussed which consists of an anelastic
mantle and a spherical liquid core. Both are assumed to be completely decoupled.
Basic considerations on the application of such a model body for studies on Earth
rotation can be found in, e.g. Moritz and Mueller (1987) and Brzezinski (2001). It
is similar to the models introduced by Molodensky (1961) and Sasao et al. (1980),
but in contrast to the latter studies, the approach does not account for the exchange
of angular momentum between core and mantle. While the effects of core-mantle
coupling on polar motion are significant mainly on subdaily time scales, there are
huge decadal variations of ALOD due to the interaction of core and mantle (see
Sect. 6.3). As a consequence of the decoupling, the principal moments of inertia A,
B and C which are the parameters of the approximate tensor of inertia I, (16) of
the entire Earth have to be replaced by Ay, B and Cy,, which are attributed to the
mantle alone. Since the core is assumed to be spherical, the principal moments of
inertia used for the computation are derived from Ay, = A — A¢, Bm = B — A, and
Cm = C — A., where A; denotes the principal moment of inertia of the spherical
core. Its value is derived from (Sasao et al. 1980)

A —AL (23)

14

where £ and y are constants accounting for the rheology of mantle and core.
The values provided by Sasao et al. (1980) are £ = 2.300 x 10~* and
y = 1970 x 1073, In a later study, Mathews et al. (1991) computed
£ =2222x%x10"*and y = 1.965 x 1073 from the Preliminary Reference Earth
Model PREM (Dziewonski and Anderson 1981). The non-participation of the core
in the rotation shortens the period of the free polar motion by approximately 50.5
days (Smith and Dahlen 1981). That is, the period of the free rotation of a fully
elastic Earth with liquid core would be around 396 days.

In order to account for the effects of ocean pole tides and mantle anelasticity,
surcharges to the above given value for the elastic pole tide Love number kj are
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added (Smith and Dahlen 1981). The effective pole tide Love number k, becomes
ky = k5 4+ AKS + AKD, (24)

where Akg and Ak? denote the incremental corrections of the elastic pole tide Love
number due to ocean pole tides and the anelastic response of the Earth’s mantle.
Following Smith and Dahlen (1981) and a more recent study by Mathews et al.
(2002) the appropriate addend for the contribution of equilibrium ocean pole tides
amounts to Ak(z) = 0.044. Thereby the period of the free oscillation is lengthened
by about 29.8 days (Smith and Dahlen 1981).

The reaction of the Earth’s mantle on variations of the centrifugal potential is not
ideally elastic. Due to friction, rotational deformations of the mantle are a dissipative
process which is equivalent to an attenuation of the free polar motion. That means, in
the absence of a counteracting excitation mechanism, the rotation axis of the Earth
would dislocate towards its figure axis within a few decades (Moritz and Mueller
1987). The effect of mantle anelasticity causes an extension of the period of the free
rotation by another 8.5 days (Wilson and Haubrich 1976). It is considered by the
complex surcharge Ak? = 0.0125+-0.0036i to the Love number k3 (Mathews et al.
2002; McCarthy and Petit 2004).

Summing up the effects of ocean, core and mantle, the value of the pole tide Love
number is ko = 0.35+0.0036i (McCarthy and Petit 2004). This value is appropriate
for a deformable Earth with a spherical liquid core, taking into account the effects
of ocean pole tides and mantle anelasticity. When k, was applied in a numerical
simulation with a dynamic Earth system model, the resulting Chandler period was
431.9 days (Seitz et al. 2004) which coincides with geodetic observations. The result
of the simulation for the x-component of polar motion over a period of 100 years is
displayed in Fig. 6.6 Since neither gravitational effects nor mass redistributions and
motions in the Earth’s fluid components have been considered in this experiment,
the curve reflects the free polar motion under the influence of mantle anelasticity
or — mathematically speaking — under the influence of the imaginary part of the pole
tide Love number J(kz). The curve is provided in normalised representation since
the choice of the initial values is arbitrary. The damping of the Chandler amplitude
is obvious, and after already 22 years the amplitude is reduced by half.

)
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Fig. 6.6 Damped Chandler oscillation (x-component) derived from a simulation study with a
dynamic Earth system model over 100 years regarding ocean pole tides and mantle anelasticity
(Seitz et al. 2004)
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The damping function c(¢) is the envelope of the oscillation
() = co - e 00 (25)

where ¢ is the initial amplitude of the oscillation and § is the damping coefficient.
The damping coefficient is derived from the proportion of two subsequent maxima
of the oscillation c;(#;) and cjy1(ti+1):

5= In (¢i/cit1) . (26)
(tiv1 — 1)
Usually the damping of the Chandler oscillation is expressed in terms of a quality
factor Q. The reciprocal value Q! represents the specific dissipation, i.e. the loss
of energy at the Chandler frequency (Munk and MacDonald 1960). The specific
dissipation is related to the damping coefficient:

8 (tig1 — 1)
—

o! 27)

The numerical value of the quality factor that corresponds to the curve displayed
in Fig. 6.6 (k, = 0.35 4 0.0036i) is Q = 82. In Table 6.1 values of period and
quality factor of the Chandler oscillation from various studies are provided. They
were computed from geodetic observations and models using different methods.
Especially the quality factor is characterised by a high level of uncertainty.

If effects of gravitational and other geophysical processes are superposed, i.e. if
torques, relative angular momenta and further deviations of the tensor of inertia are
regarded in the Liouville equation, an interaction between forced and free oscillation
occurs due to rotational deformations. While the impacts on the Chandler frequency
are negligible (Okubo 1982; Jochmann 2003), the Chandler amplitude is strongly
affected by the excitations (see Sect. 6.2).

Table 6.1 Periods and quality factors Q (with 90% confidence interval) of the Chandler oscillation
from different studies

Chandler period ] [Interval] Source

434.0 £ 2.5 days 100 [50, 400] Wilson and Haubrich (1976)
431.7 days 24 Lenhardt and Groten (1985)
433.3 £ 3.6 days 179 [47, >1,000] Wilson and Vicente (1990)
439.5 £ 1.2 days 72 [30, 500] Kuehne et al. (1996)

433.7 £ 1.8 days 49 [35, 100] Furuya and Chao (1996)
413 — 439 days Schuh et al. (2001)

434.1 days 69 Seitz and Kutterer (2005)
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6.4.2.2 Deformations Due to Surface Loads

Various processes in the subsystems of the Earth, such as the motion of atmospheric
high-pressure and low-pressure systems, ocean bottom pressure changes or hydro-
logic variations over the continents due to flooding and snow, exert time-variable
surface mass loads on the solid Earth. In this way they cause deformations of the
Earth’s body which are up to few centimetres in the vertical and several millime-
tres in the horizontal (Rabbel and Zschau 1985; Sun et al. 1995). The change of
the surface geometry entails the redistribution of mass elements within the solid
Earth which has a significant effect on both the Earth’s gravity potential and its
rotation. Consequently expedient information about atmosphere loading (van Dam
and Herring 1994), non-tidal ocean loading (van Dam et al. 1997) and continen-
tal water storage variations (van Dam et al. 2001; Schuh et al. 2004) is required
for an advanced interpretation and analysis of space geodetic observations (Rabbel
and Schuh 1986; Manabe et al. 1991; Haas et al. 1997; Boehm et al. 2009). The
surface forces exerted by time-variable mass distributions are in contrast to gravi-
tationally induced body forces. While the latter cause large-scale and very regular
deformations of the Earth that are well predictable, the effects of surface mass loads
are mostly restricted to a few 100 km. Since they are irregular, they are hardly
predictable (van Dam et al. 1997).

Vertical surface deformations of the solid Earth are usually computed following
the theory of Farrell (1972). Pressure variations p(X, ¢) (units of [Pa]) are related to
time-variable surface mass loads g(}, ¢) (units of [kg/mz]) by

p(A, @)

q\, @) = (28)

where g is the gravitational acceleration. The radial displacement d;(P) of the Earth
at a position P(¢p, Ap) caused by surface mass loads g¢ at locations Q(¢g, Ap) on
the Earth’s surface area oy is estimated by (Moritz and Mueller 1987)

613 s
d.(P) = W / / q0 Zoh’nPn(cos Ypo) dog . (29)
OQ n=

In this equation /', denotes the degree n load Love number. The spherical dis-
tance between P and the location Q(¢g,Ag) of an individual (point-)mass load
is given by v¥pp which is the argument of the degree n Legendre Polynomial
Py(cos ¥rpp). More compact (29) can be written as

di (P) = a’ f f 90G (Vo) dog, (30)
%0

where the abbreviation
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Fig. 6.7 Green’s function G (lpr) for the Earth model PREM. Dotted: truncation of the spherical
harmonic expansion at degree n = 350, solid: infinite expansion

G (¥po) = % 3" WPy (cos Yipo) 31)
n=0

is the Green’s function for the vertical displacement (Farrell 1972). Function
G(¥pg) acts as a weighting operator which relates an individual surface mass load
to the associated deformation of the solid Earth according to the spherical distance.
Figure 6.7 shows the Green’s function for continental crust computed from load
Love numbers based on the previously mentioned Earth model PREM (Dziewonski
and Anderson 1981; Scherneck 1990). The strong variability of the dotted curve
truncated at n = 350 reflects the truncation error.

Figure 6.8 shows the time-variable deformations of the solid Earth for a period
of two weeks in February 1994 as caused by atmosphere loading, non-tidal ocean
loading and water storage variations over the continents (Seitz 2004). For the atmo-
sphere and the ocean fields of surface mass loads go(¢g, Ao) were computed from a
consistent combination of atmosphere surface pressure variations from reanalysis at
the National Centers for Environmental Prediction/National Center for Atmospheric
Research (NCEP/NCAR) (Kalnay et al. 1996) and ocean bottom pressure variations
from the constrained version kf049f of the global ocean circulation model ECCO
(Fukumori 2002). Outputs of both models are provided in daily intervals; spatial
resolutions are 2.5° x 2.5° for NCEP/NCAR (globally) and 1° x 1° for ECCO
(between 70° N/S; densification of the grid around the equator). Since atmosphere
pressure forcing is not taken into account by ECCO, an inverse barometric cor-
rection is applied to the NCEP/NCAR fields, i.e. air pressure is set to zero over
the ocean. Variations of continental hydrology are taken from the land dynamics
model (LaD; version Euphrates) (Milly and Shmakin 2002). LaD data comprehends
monthly values of global water and groundwater storage as well as snow loads per
1° x 1° grid cell. While the deformations over the continents are up to 2 cm, the
influence of ocean bottom pressure variations on the surface geometry of the