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v

Whether in traditional or e-learning, it is important to consider what to learn, 
how to learn, and how well students have learned. Since there are various types 
of  students with different learning preferences, learning styles, and learning 
 abilities, it is not easy to provide the best learning approach for a specific student. 
Designing learning contents for different students is very time-consuming and 
tedious for teachers. No matter how the learning process is carried out, both teach-
ers and students must be satisfied with students’ learning performance.

Therefore, it is important to provide helpful teaching and learning guidance 
for teachers and students. In order to achieve this, we proposed a fine-grained 
outcome-based learning path model, which allows teachers to explicitly formu-
late learning activities as the learning units of a learning path. This allows teachers 
to formulate the assessment criteria related to the subject-specific knowledge and 
skills as well as generic skills, so that the pedagogy could be defined and prop-
erly incorporated. Apart from defining the pedagogical approaches, we also need to 
provide tailored learning contents of the courses, so that different types of students 
can better learn the knowledge according to their own learning abilities, knowledge 
backgrounds, etc. On the other hand, those learning contents should be well struc-
tured, so that students can understand them. To achieve this, we have proposed a 
learning path generation method based on Association Link Network to automati-
cally identify the relationships among different Web resources. This method makes 
use of the Web resources that can be freely obtained from the Web to form well-
structured learning resources with proper sequences for delivery. Although the 
learning path defines what to learn and how to learn, we still needed to monitor 
student learning progress in order to determine proper learning contents and learn-
ing activities in an e-learning system. To address the problem, we proposed the 
use of student progress indicators based on Fuzzy Cognitive Map to analyze both 
performance and non-performance attributes and their causal relationships. The 
aim is to help teachers to improve their teaching approaches and help students to 
reflect their strengths and weaknesses in learning. This monograph focuses on the 
intelligent tutoring e-learning system, which provides an  intelligent approach to 
design and delivery learning activities in a learning path. Many experiments and 
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comparative studies on both teachers and students have been carried out in order 
to evaluate the research of this monograph. The results show that our research can 
effectively help teachers to generate high-quality learning paths, help students to 
improve their learning performance, and offer both teachers and students a better 
understanding on student learning progress.

Beijing, China Fan Yang
Zhenghong Dong
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1.1  Overview

E-Learning can provide various technological support to assist teaching and learn-
ing. This technological support mainly includes developing learning contents to 
instruct learning, setting up learning environments to engage learning, designing 
platforms and tools to enhance learning, organizing and standardizing learning 
resources to make the learning contents reusable and more formal. Constructing 
learning path is to organize a set of Units of Learning (UoL, which is the smallest 
unit providing learning events for learners, satisfying one or more learning objec-
tives [Gome09]) in sequence and to plan how student learning will happen, which 
is actually a critical topic in designing platforms and tools. Because a learning 
path contains the information about what to learn and how to learn, it can help 
teachers to manage student learning and help students to improve their learning 
efficiency. There are different types of E-Learning systems, including the tradi-
tional e-learning system, adaptive E-Learning system, instructional design sys-
tem, intelligent tutoring system, and service-oriented e-learning system. They are 
used to focus on long-distance E-Learning system, but now they focus on differ-
ent aspects of the E-Learning systems by providing adaptive teaching approaches 
and feedbacks, consistent and reliable learning materials, curriculum sequencing 
mechanisms, and Web services, respectively. More details about these E-Learning 
systems are given in Sect. 2.2.2. Our monograph provides an intelligent service 
to design the learning activities and to arrange the learning path, so that it can be 
applied to intelligent tutoring system. Learning path construction (or curriculum 
sequencing) organizes a series of learning activities that are disseminated with 
proper teaching approaches to build up student knowledge. As defined in the 
work of [Brus92], Intelligent Tutoring System relies on curriculum sequencing 
mechanisms to provide students with a learning path through learning materials. 
This research on learning path construction is one of the major work in Intelligent 

Chapter 1
Introduction

© Springer Science+Business Media Singapore 2017 
F. Yang and Z. Dong, Learning Path Construction in e-Learning,  
Lecture Notes in Educational Technology, DOI 10.1007/978-981-10-1944-9_1

http://dx.doi.org/10.1007/978-981-10-1944-9_2


2 1 Introduction

Tutoring System. Existing methods [Chen08, Farr04, Limo09, Yang05] formulate 
learning paths based on knowledge elements. While this allows the E-Learning 
systems to work out and organize suitable instructional contents based on the 
knowledge elements, such as the difficulty levels and the topic categories of the 
knowledge elements. However, such a formulation is not comprehensive enough.

The main concerns of various studies on learning path construction include 
how to generate the learning contents for each UoL, how to design the UoL to 
support different forms of learning activities, and how to identify the relationships 
among UoLs and delivery them in sequence. Our monograph focuses on provid-
ing an intelligent tutoring system to construct learning path which can pedagogi-
cally design teaching strategies based on learning outcomes, generates learning 
resources adaptive to different students, and analyses student learning progress in 
terms of their performance related attributes as well as non-performance related 
attributes. During the learning process of each UoL, we need to monitor student 
learning progress and evaluate student learning performance, so that we will be 
able to construct the best learning paths for different types of students according to 
their learning abilities and preferences, etc.

1.2  Motivation

This section discusses about why the work on learning path construction is valu-
able. The advance in the Internet and mobile technologies significantly improves 
the accessibility of the Web to nearly anytime and anywhere. Together with 
the emerging Web standards, such as HTML5, CSS3 and WebGL, the Web has 
become a popular platform for developing applications. Particularly, E-Learning is 
considered as one of the potentiality killer-applications, and comprehensive learn-
ing platforms can be easily developed by exploiting learning resources available 
on the Web.

The Web provides a shared workspace for students to interact and learn through 
cooperation, while different forms of Web-based communication technologies 
allow individual students to learn at their own pace [Li08]. Normally, it is not easy 
for a student to manage the student’s study on the student’s own because of lack-
ing self-control, limited individual learning experience, especially when the stu-
dents know nothing about the course. Even if students would like to learn, they are 
still confused with what to learn at first and then next and not sure what they can 
achieve. We need a method to make students know clearly not only what to learn, 
but also how to learn and how to improve.

Internet also provides a lot of useful Web resources that can be freely obtained 
from authenticated Websites, such as Wikipedia, BBC, Reuters, etc., where the 
contents, quality and presentation styles can be guaranteed and suitable for learn-
ing. If these Web resources can be converted to well-structured learning resources 
which have relationships in between and contain attributes as the criteria to select 
suitable learning resources, then we can automatically generate the knowledge 
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structure on the basis of the learning resources. The knowledge structure builds up 
the relationships of the knowledge concepts as well as the relationships of learning 
resources.

During the learning process guided by the learning path, students are making 
progress to obtain more knowledge as well as improving their learning abilities. 
It is necessary to monitor what they have achieved and analyze which factors 
would affect their learning progress, so that they can provide the information to 
further manage their learning. However, it is not easy for a teacher to design learn-
ing activities for different students, especially there are too many factors that may 
affect their learning qualities. Monitoring student learning progress help us to ana-
lyze how an attribute affects a student’s learning performance on another attrib-
ute. Students can understand their own learning performance and how to improve. 
On the other hand, teachers can adjust their teaching approaches. Both parties can 
identify main parameters that affect student learning progress and their develop-
ments in different attributes.

1.3  Related Work

A learning path is the implementation of a curriculum design. It comprises ele-
ments forming steps for students to go through for acquiring knowledge and skills. 
In existing work, learning outcome assessment is generally tied up with these 
steps. The discussion includes conventional classroom teaching, learning path gen-
eration systems and de facto standards that define learning paths.

Analyzing student learning progress is not trivial. Different subjects (or learn-
ing activities (LAs) [Yang10]) have different assessment criteria, where some are 
subject specific but some are shared among subjects. On the other hand, student 
learning styles and learning modes also play significant roles on how a student 
perform and make development in different assessment criteria. We have devel-
oped the student attribute descriptors to provide a more complete picture on stu-
dent learning progress and development.

1.3.1  Student Attributes

To model student learning state, subject specific and general attributes can be 
considered. By considering subject specific attributes [Chen05], evaluates how 
students make progress on their understanding of certain learning materials. 
The method runs maximum likelihood estimation on the level of understanding 
claimed by students against the difficulty of learning materials. Mitrovic [Mitr01] 
investigates self-assessment skills of students by identifying the reasons for a stu-
dent to give up solving a problem and the ability of the student to identify the 
types of problems to work on. The method collects student learning progress based 
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on mainly two attributes: the difficulty level and the type of problem. Guzman 
et al. [Guzm07] studies the use of self-assessment tests to improve student’s exam-
ination performance; the tests generate questions adaptively based on student’s 
answers to each previous question. The method applies item response theory 
(IRT) to predict student’s probability of correctly answering questions based on 
a student’s knowledge level. A student is assessed based on the correctness of the 
answers and the probability distribution of these corrected answers on each knowl-
edge level, i.e., the probability of the corresponding knowledge level, associated 
with each concept.

Besides subject specific attributes, there are also non-subject related attributes 
governing student learning progress, which are referred to general attributes. Yang 
and Tsai [Yang10B] studies how students learn through peer assessment. Students 
are asked to qualitatively assess peers based on feasibility, creativity and knowl-
edge, where the first two are general attributes, which respectively represent the 
ability to identify appropriate learning materials and to come up with original 
ideas. Gresham et al. [Gres10] investigates the minimal set of social behavior to 
be included in the brief behavior rating scale (BBRS), forming a compact progress 
monitoring tool for efficiently identifying the change in student’s social behavior. 
Limongelli et al. [Limo09] shows that learning styles are critical to student learn-
ing and can help to identify adaptive learning materials for students. In addition, 
learning styles can be evolved over time. As shown above, existing works model 
student learning state using a few specific types and numbers of attributes. They 
give students feedback on certain aspects but can hardly provide students a global 
picture showing how improvement can be made across different subjects or learn-
ing activities, as they do not consider that student learning progress can be gov-
erned by student learning performance and development in both subject specific 
and general attributes as well as the causal relationships among such attributes.

1.3.2  Student Assessment

To evaluate student learning progress, existing work has developed ways to col-
lectively model knowledge and skill sets of students. For instance [Chen01], uses 
attributed concept maps to represent both knowledge gained by a student after a 
learning activity and the teacher’s prototypical knowledge. A fuzzy map match-
ing process is then used to compare both maps to determine how well the student 
has progressed in the learning. Feng et al. [Feng09] proposes to use a fine-grained 
skill model to represent a set of skills hierarchically. A generalized linear mixed 
effects model is then applied to generate statistic information to describe the stu-
dent progress on different skills. Stecker et al. [Stec05] proposes curriculum-based 
measurements to intuitively monitor student progress. It monitors student knowl-
edge and skills frequently and depicts the results graphically in order to show what 
progress a student has made globally over a period of time and locally among 
each piece of knowledge/skill, and whether such progress meets the teacher 
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expectation. Reference [Bake10] predicts student performance use the contextual 
estimation of student guessing correctly and making errors despite knowing the 
skill to construct the Bayesian Knowledge Tracing to model student knowledge.

Existing work mainly identifies student progress as a set of state changes made 
by a student regarding certain learning attributes and whether they match with the 
teacher expectations. However, such progress information is quite primitive. It is 
not sufficient to form indicators helping students and teachers to make improve-
ment on learning and teaching, unless they pay extra cognitive efforts to manually 
extract more comprehensive progress information from the feedback. It is because 
learning attributes are not independent but may have certain causal relationships 
among each others, which can also be dynamically changed over time. In addition, 
at different learning stages, student progress may be governed by a different set 
of learning attributes. For example, a student may be expected to mainly train up 
with concept memorization at an early stage rather than focusing on the learning 
outcome of applying knowledge. However the situation will become in the oppo-
site when a student is going through a mature learning stage. On the other hand, a 
teacher may need a higher level of student progress information, such as the per-
formance distribution within a cohort, the portion of students meeting the teacher 
expectations, or whether a student or a group of students is/are developing certain 
learning skills, to support teaching approaches adjustment. Our work is developed 
to provide a comprehensive solution to address such complicated needs.

1.3.3  Student Grouping

The information about the progress of a group of students also contributes to 
analyze the learning characters or behavior of one type of students. Teachers can 
know the major character of a group of students and make teaching approaches 
accordingly. On the other hand, teachers compare progress individually and in a 
group, so that they can provide students accurate and detailed feedbacks, effective 
instructions. And it is also convenient for an individual student to know the stu-
dent’s own progress and what is the student’s difference from the others.

There are many criteria for grouping students. Some works simply group stu-
dents by their attribute levels. Martineau et al. [Mart07] groups students by their 
knowledge levels, and then recommends different learning tasks to different lev-
els of students. Reference [McMa07] groups elementary student with differ-
ent levels of writing skill and uses writing assessments to examine the criterion 
validity and the sensitivity of growth. So that to make sure that students are pro-
gressing towards writing standards, to identify those who struggle, and to inform 
instruction aimed at improving students’ writing proficiency. Reference [Bisw10] 
analyzes the student distributions of their misconceptions. A student may have a 
misconception when the student builds up the relationship of two knowledge con-
cepts incorrectly. Students have the same misconception are grouped together to 
analyze how they understand knowledge. However, it is not enough to analyze 
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the performance of a group of students who have only one common attribute. 
Sometimes, students’ progress is affected only when combined attributes act 
together. Brusilovsky [Brus04] groups students with similar knowledge back-
grounds and also with the same knowledge level that they want to achieve, and 
then they could be provided with the same navigation support of learning materi-
als. However, students with different learning abilities would still being grouped 
together, so the learning materials may not appropriate to everyone.

We find out that existing works just group students whose attributes are either 
all good or all bad, while miss the effect of the other situations. However, they 
do not consider about the other patterns of attribute distribution. It is more intel-
ligent to synthetically consider several aspects of student attributes, no matter if 
students are good at all of them or bad at all of them, as long as they keep the 
similar performance. It is not necessary to group all good students together and all 
bad students together. For example, according to students’ performance, students 
with good communication skill, good listening skill and bad writing skill maybe 
grouped together for activity like ‘debating’, but students with bad communication 
skill, good listening skill and good writing skill would be considered as another 
group for activity like ‘summary report’. In fact, some attributes are related to 
each other, and only the same attributes cannot represent student behavior patterns. 
Students with similar ability distribution should be the better way that is used to 
group the same type of students.

1.3.4  Learning Resources Construction

To support students learning effectively, relevant LRs should be identified and 
delivered in a proper sequence based on student needs and knowledge back-
grounds. Farrell et al. [Farr04] proposes using Web resources as LRs without 
requiring teachers to create LRs. Suitable Web resources are selected based on 
certain student specific criteria, including topics to study, learning preferences and 
learning constraints, e.g. available study time. Dolog et al. [Dolo08] also allows 
students to search LRs for learning. However, the method in addition performs a 
query rewriting based on student profiles, which describes student learning prefer-
ences and learning performance (which indicates student knowledge level), so that 
students only need to focus on what they want to learn and the system will take 
care of the suitability of every LR, which matches the student searching criteria. 
Melia and Pahl [Meli09] proposes a more comprehensive modeling of LRs, where 
each of them is designed to associate with a concept, a knowledge type (verbal 
information or intellectual skills), and a knowledge level. LRs are connected based 
on concept relationships, where teachers manually define prerequisite among con-
cepts. However, such relationships are not fine enough to support the arrangement 
of individual LRs in a proper sequence for delivery. Reference [Acam11] charac-
terizes LRs based on subjects and organizes LRs by ontology-based subject rela-
tions, including part of, prerequisite, and weaker prerequisite relations. They form 
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the basis for both determining the delivery sequence of LRs and selecting suitable 
LRs according to the student preferred subjects. However, subject information is 
too coarse that each subject is associated with many LRs, making precise learning 
path hard to be generated.

1.3.5  Learning Path Generation Algorithm

Given that LRs are properly modeled, a learning path generation algorithm can 
be used to deliver LRs for students to learn. Farrell et al. [Farr04] allows students 
to submit queries selecting suitable LRs. The selected LRs will then be ordered 
by the topics and the instructional methods that they belong to, respectively. As 
structures of LRs and relationships among LRs, which are critical to the control 
of student cognitive workload in learning, are not considered, learning effective-
ness cannot be guaranteed. Karampiperis and Sampson [Kara05] models the struc-
ture among LRs based on a hierarchy of topics, which are defined by the ACM 
Computing Curricula 2001 for Computer Science. The method initially generates 
all possible learning paths that match the student goal. It then selects the most suit-
able one for a student to follow by considering the student cognitive characteristics 
and learning preferences. Although the relationships among LRs are essentially 
constructed manually, learning effectiveness is better addressed. Chen [Chen08] 
models the relationships among LRs based on an ontology-based concept map, 
which is generated by running a genetic algorithm on a set of student pre-test 
results. The method successfully works out the prior and posterior knowledge rela-
tionships of LRs, so that LRs can be delivered based on their difficulty levels and 
concept relations to reduce student cognitive workloads during the learning pro-
cess. However, the relations of LRs are provided by the concept relations. In this 
way, they can only make sure the concepts in the learning path are continual, but 
the LRs may be not continual. It is necessary to provide students continual LRs 
through the learning path.

1.3.6  Test Generation

Student assessment is embedded into the learning process of each piece of LR, 
allows us to determine whether a student has completed learning a certain piece 
of knowledge with a proper level of understanding. The assessment result pro-
vides a means for updating student profiles regarding students’ knowledge levels 
and completed knowledge concepts. In order to guide students to approach the 
most appropriate learning activities, help them to improve their performance, and 
then reach the learning goals, we need to know how well students perform during 
the learning process, so it is necessary to track their learning progress, evaluate 
their performance. Learning outcomes are given by ranks [Cood09, Ma00], scores 
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[Yang05 and Kwas08], or both ranks and scores [Liu05], feedback [Guzm07], or 
abilities of learner [Chen05, Dolo08] according to the level of acquired knowledge 
[Cood09], the spending time and effort [Cood09], or the number of correct ques-
tions [Chen08A] with tests or questionnaires.

To evaluate students’ learning performance, existing work has developed ways 
to collectively model the students’ understanding on knowledge. Huang et al. 
[Huan07] requires teachers to manually plan two formative assessments for each 
unit of learning, and a summative assessment in the end of learning path. The two 
formative assessments cover the same knowledge using different questions. The 
first formative assessment calculates students’ scores and analyzes their learning 
situations. And the second formative assessment ensures students understand the 
concepts rather than memorizing the answers. In [Chen08A], the testing questions 
are also manually designed by teachers based on course materials and stored in 
testing question database. Questions are randomly selected from the testing ques-
tion database to generate a pre-test. And the incorrect test results are used to select 
suitable courseware to plan the learning path. But these methods requires teachers 
to manually design the test, so [Cola10] provides an automatic method to measure 
student performance with a Bayesian approach which selects a set of questions 
associated with every network node to identify if a student can correctly form the 
knowledge concepts. However, these questions focus on single node, which cannot 
reflect if students can build up the relations in between and understand different 
aspects that relate to a knowledge concept. Building up the whole knowledge net-
work can help students to understand knowledge concepts from the Marco view, 
and make them to relate other knowledge concepts more easily. But current works 
fail to achieve this advantage.

1.4  Challenges

The discussion in the last section motivated us to work on the construction of 
learning path, but there are some challenges need to be solved. This section dis-
cusses about the technical problems that we need to address. Though a lot of novel 
ideas in this area have been proposed in recent years, learning path construction 
and student progress measurement are still having some problems.

(1) How to construct appropriate learning resources? In order to help students 
to achieve their learning outcomes, they are required to study correspond-
ing learning resources. Although it will be straightaway to acquire suitable 
learning resources from authentic institute, or to create them by designers, 
it is either expensive or very time consuming. These ways can only acquire 
limited resources, and sometimes, the learning resources are out of date. In 
order to save teachers’ efforts, it is necessary to automatically generate learn-
ing resources. There are plenty of Web resources that can be obtained from 
authenticated Web sites and also can help students to achieve their learning 
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outcomes. We can directly use them rather than manually create learning con-
tents. However, these Web resources are lack of correlations in between. In 
order to find out their relationships and to generate a well-structured knowl-
edge model with these Web resources, we still need to identify the attributes 
of each piece of learning resource including its knowledge domain, impor-
tance degree, correlation with a topic, and complexity.

(2) How to construct appropriate learning approaches? The way to deliver 
knowledge elements indicates the way of how to learn by organizing learn-
ing activities into a learning path. Existing learning path generation methods 
[Chen06, Farr04, Kara05, Liu05, Limo09] mainly focus on the mechanism 
to produce the entire structure of a learning path. They use students’ mastery 
of the prior knowledge and certain UoL selection constraints, such as man-
datory UoLs, duration of study, or student learning preference, as the crite-
ria to select suitable UoLs. Pedagogically, existing learning path generation 
methods only cope with part of learning needs. They do not properly consider 
teaching approaches, which are related to the way that a UoL is delivered and 
the type of activity that may help a student to learn a UoL effectively, and 
types of assessments, which are related to the skills that the student needs to 
acquire. These deficiencies affect the quality of the constructed learning paths 
in terms of the effectiveness of knowledge dissemination and the precision in 
assessing the student’s learning performance.

 Because students are assessed depending on different learning outcomes 
required by courses, the designing, managing, delivering, and organizing 
learning activities should be carried out based on the learning outcomes. 
Constructing learning path involves three issues: (1) setting up the learn-
ing outcomes of the learning activities in the learning path; (2) designing 
and managing learning activities; and (3) how to deliver or organize learn-
ing activities. In order to design and manage learning activities, existing 
works, such as, SCORM [Stec05], IMS Learning Design (IMS-LD) [Hern06, 
Amor06], and Learning Object Meta-data (LOM) [Chan04, Neve02], gener-
ate the whole structure of learning activities which are designed in terms of 
specific different learning contents or teaching approaches, rather than being 
designed in terms of the learning outcomes that are independent of subjects. 
And also, these specifications fail to involve a feasible assessment that can 
apply to different subjects and different forms of learning activities. In order 
to deliver learning activities, technologies like [Kazi04, Stec05] come with a 
hierarchical structure, and require teachers to pre-define rules to control the 
sequence, selection, or prerequisite of learning activities. Technologies acting 
like containers to define how different types of information, such as learning 
outcome, activities, resources, can be put together and control the workflow 
of their delivery. However, they do not provide facilities helping teachers to 
work out how the students can be assessed in terms of learning outcomes, and 
how a teacher delivers a course in terms of teaching approaches.

1.4 Challenges
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(3) How to improve learning quality? In order to measure student learning pro-
gress, other existing work usually identifies student learning progress by scor-
ing subject specific attributes or by determining status about task completion, 
which are too simple to suggest how teaching and learning approaches can be 
adjusted for improving student learning performance. As there are too many 
student attributes, it is impossible to consider all of them, and it is not practi-
cal to integrate all attributes to fit any kind of progress analysis. Designers can 
set some learning outcomes in each learning activity for students to achieve 
and gain knowledge and skills. However, it is not easy to automatically gen-
erate the test to evaluate students’ understanding according to their tailored 
learning resources, which can make sure students master the knowledge or 
skills during the process.

1.5  Research Objectives

In order to address the challenges discussed above, we need to achieve the fol-
lowing research objectives. In this monograph, we focus on constructing the rep-
resentation of learning path as well as its generation to assess, guide, and analyze 
students learning progress, which shows them what to learn and how to learn. We 
show our research objectives as follows.

• To design the learning activities based on learning outcomes as the UoLs of a 
learning path, to evaluate student learning performance by both subject-specific 
and generic skills, in this way we can provide more comprehensive guidance 
of student progress. Also, to explicitly formulate the setting of pedagogy and 
learning outcomes, so that the learning activities are adjustable, fine-grained, 
and can adapt to different teaching approaches, and also offer a formal defini-
tion of the way to deliver learning activities.

• To select the most appropriate learning resources for personalized learning path, 
and show the way of how to learn these learning resources in a proper sequence, 
so that we can meet the needs of different types of students according to their 
learning preferences, learning abilities, and knowledge backgrounds, etc. 
Especially, to adaptively update the learning path, we also need a test genera-
tion scheme to automatically generate tests according to the contents of learning 
resources, so that we can evaluate students’ learning performance and deliver 
them with the best learning resources that fit their learning abilities.

• To monitor student learning progress on various aspects including performance 
and non-performance related aspects, analyze the causal relationships of these 
aspects and how these attributes affect student learning performance, so that 
we can easily manage student learning progress, help teachers to modify teach-
ing approaches, and help students to improve their learning qualities. And also, 
we need to evaluate students’ achievements to see if they can have a balanced 
development on all required student attributes.
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1.6  Contributions

In brief, there are three major contributions in this monograph in order to achieve 
these research objectives.

• In order to find out the learning approaches and answer the research question 
of how to learn, we have developed a fine-grained outcome-based learning path 
model that allows learning activities and the assessment criteria of their learn-
ing outcomes to be explicitly formulated by the Bloom’s Taxonomy [Bloom, 
Bloo56]. Hence, provided with different forms of learning activities, pedagogy 
can be explicitly defined and reused. Our model can also support the assessment 
of learning outcomes related to both subject-specific and generic skills, provid-
ing more comprehensive student learning progress guidance and evaluation.

• In order to find out the appropriate learning resources to construct the learn-
ing path, loosely connected Web resources obtained from the Web have been 
formed to well-structured learning resources based on Association Links 
Network (ALN) to construct a teacher knowledge model (TKM) [Mish06] for 
a course and generate the personalized learning path to help students to achieve 
higher master level of knowledge. Our model automatically constructs the 
learning path in three different abstraction levels of ALNs, i.e. topic, keyword, 
and learning resource ALNs, which allows students to understand the rela-
tionships between learning resources through the three abstraction levels, and 
helps students to minimize their cognitive workloads. On the basis of a learning 
resource retrieved from the TKM, we automatically construct a test to assess 
students’ understanding based on a test generation scheme which saves teachers 
a lot of efforts.

• In order to answer the research question of how well students have learned, we 
propose a set of Fuzzy Cognitive Map-based student progress indicators. We 
can monitor student learning performance and analyze the factors that affect 
student learning performance and comprehensively describe student learning 
progress on various aspects together with their causal relationship. Our model 
is based on student learning performance related attributes (PAs) as well as non-
performance related attributes (NPAs) to model student learning performance 
and their potentialities to make progress.
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Learning theory is used to support the construction of learning path in e-learning 
for different types of students using different types of teaching approaches and 
also the generation of the learning resources as the learning contents. We assess 
student learning progress to determine their learning qualities. The following theo-
ries involve the introduction of learning theory to support our research, e-learning 
to introduce the research application in this area, learning taxonomy as the crite-
ria of learning outcomes, learning styles for different types of students, learning 
modes for different types of learning approaches, student assessments for different 
approaches to evaluate student learning performance, Association Link Network 
to introduce how learning resources relate to each other, and system development 
tools of the research to introduce the used programming techniques. Given this 
information, readers can have a better knowledge background before starting to 
understand the main research of learning path construction in e-learning and the 
analysis of student learning progress.

2.1  Learning Theory

Learning theory [Band77] is the foundation of this monograph, which supports 
all the learning processes and is used to guide the design of learning systems. 
Learning theory describes how information is absorbed, processed, and retained 
during the learning process. There are three main categories of learning theory 
including behaviorism, cognitivism, and constructivism. Behaviorism focuses on 
achieving the objectively observable behavior by repetition of desired actions. 
Cognitivism looks beyond behavior to explain how the learning happened in our 
brain. Constructivism views learning as a process in which a student actively 
constructs or builds new ideas or concepts. Our monograph is developed based 
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on the constructivism learning theory. Constructivism learning theory [Coop04, 
Fran06] requires students to construct knowledge in their own meaning, to build 
up knowledge concepts based on prior knowledge and their experience, to enhance 
their learning through social interaction, and to develop learning through authen-
tic tasks. During constructivism learning, students achieve learning outcomes by 
attempting to address problems when they find their expectations are not met, so 
they need to resolve the discrepancy between what they expected and what they 
encountered [Lefo98].

In the learning theory of constructivism, each student is considered as a 
unique individual with personalized needs, learning styles, learning preferences, 
knowledge levels, and knowledge backgrounds, which is complexity and multi-
dimensional. During a typical constructivist session [Coop04], students work on 
problems and teachers only intervene them to guide them in the right direction. 
Students could provide different responses to learning, e.g., they are involved in 
an active learning process, and they are using critical thinking to challenge, judge 
knowledge, and learn from it. Under the learning theory, teaching approaches 
are designed according to these learning outcomes. With the help of techniques 
in e-learning, the learning process, which emphasizes that knowledge is shared 
between teachers and students, does not focus on the teacher-centered learning 
environment, but put more emphasizes on self-paced learning by providing access 
to education at any time, any place, and taking into account students’ differences.

2.2  e-Learning

E-learning aims to support learning and teaching, transfer knowledge and skills 
through the Web and electronic machines. E-learning techniques provide various 
forms of electronic tools and platforms, teaching and learning approaches, learn-
ing environments, etc. Current research in e-learning mainly focuses on several 
broad aspects, such as technology-enhanced learning, learning resource organi-
zation and standardization, and e-learning platforms and tools. Technology-
enhanced learning [Wang05] is technology-based learning and instructional 
systems, where students acquire skills or knowledge with the help of teachers, 
learning support tools, and technological resources. Technology-enhanced learn-
ing investigates the use of information and communication technologies to help 
students to learn effectively through a course of study by pedagogically making 
learning contents more accessible and providing students with better learning envi-
ronments. Learning resource organization and standardization [Totk04] design 
models for organizing learning contents, so that the contents can be easily adopted 
by different e-learning systems and reused in various instructional contexts. On 
the other hand, e-learning platforms and tools [Dagg07], also known as virtual 
learning environments (VLE), use a mix of communication technologies and 
focus on the design and development of the hardware and software components of 
e-learning systems over the Web 2.0 for two-way interaction. Adaptive e-learning 
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methods [Jere10] tend to find out an effective way to guide students to learn 
according to students’ interests, so that the learning process could be adjusted for 
different students.

This monograph of learning path construction and the analysis of student learn-
ing progress are concerned with learning using electronic devices and the Web. We 
discuss different types of learning and different types of e-learning systems in this 
section to help reader to better understand how the learning is carrying out, and 
more specifically, how the e-learning is carrying out.

2.2.1  Types of Learning

Learning has gone through several stages where learning is traditionally supported 
by face-to-face teaching, and now with the help of communication and informa-
tion technologies, new forms of learning, such as web-based learning, have been 
developed. However, traditional learning does not allow students to learn at any 
time and at any place, and web-based learning lacks of interaction between teach-
ers and students. Blended learning is developed by combining the traditional 
learning and web-based learning to provide a better learning approach. Our mono-
graph can be applied to both web-based learning and blended learning by provid-
ing a user-friendly intelligent tutoring system to construct learning path as well as 
to analyze student learning progress.

2.2.1.1  Traditional Learning

Traditional learning is teacher-centered learning, where teachers interact with 
students face-to-face in classroom. Traditional learning focuses on teaching, not 
learning. The knowledge taught in traditional education can be used in instruc-
tional design, but cannot be used in complex problem solving practices. It simply 
assumes that what a student has learned is what a teacher has taught, which is not 
correct in most cases.

2.2.1.2  Web-Based Learning

Web-based learning is self-paced learning, which requires students to access 
Internet via devices like computers. The learning is beyond traditional learn-
ing methodology. Instead of asking students to attend courses and read printed 
learning materials, students can acquire knowledge and skills through an envi-
ronment which makes learning more convenient without spatial and temporal 
requirements. Web-based learning applications consider the integration of user 
interface design with instructional design and also the development of the evalua-
tion to improve the overall quality of web-based learning environment [Chan07]. 

2.2 e-Learning
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Web-based learning is different from the term of computer-based learning, which 
also uses devices like computers, but does not have to require students to access 
to Internet during the learning process.

2.2.1.3  Blended Learning

Blended learning combines traditional learning with computer-based learning, 
which creates a more integrated e-learning approach for both teachers and stu-
dents. The aim of blending learning is to provide practical opportunities for stu-
dents and teachers to make learning independent as well as sustainable. There are 
3 parameters that should be considered in a blended learning course, which are 
the analysis of the competencies, the nature and location of the students, and the 
learning resources. Also, blended learning can be applied to the integration of 
e-learning with a learning management system using computers in a traditional 
classroom with face-to-face instruction.

2.2.2  Types of e-Learning

With the help of technologies and electronic media, e-learning makes the teach-
ing and learning more effectively. Teaching and learning could be approached at 
any time and any place. E-learning systems have actually been well developed 
and have different types including traditional e-learning system, adaptive e-learn-
ing system, intelligent tutoring system, and service-oriented e-learning system. 
Traditional e-learning [Dagg07] has simplex design which fails to provide more 
flexible ways of learning, such as personalized learning, active learning, and 
online interactions between teachers and students. Adaptive e-learning [Shut03] 
focuses on student characteristics, such as learning styles, knowledge background, 
and learning preferences, which makes the learning to be applied to different 
teaching approaches for different types of students. Instructional design system 
[Gust02] contains 5 phases of analyze, design, develop, implement, and evalu-
ate, which aims to determine student learning states, define learning outcomes, 
and provide teaching strategies. Intelligent tutoring system [Murr03] does not 
only focus on the sequencing mechanisms of curriculum delivery, so that students 
know how to learn rather than just what to learn, but also applies AI to customize 
teaching approaches according to student’s needs in order to optimize learning of 
domain concepts and problem solving skills. Service-oriented e-learning [Jamu09, 
Su07] provides with different Web services, so that both teachers and students can 
access the e-learning system and use different functionalities. We briefly introduce 
them as follows:
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2.2.2.1  Traditional e-Learning System

Traditional e-learning separates teachers from students and also separates students 
from students; the teaching and learning carry out over the Internet or through 
computer-based technologies [Stiu10]. Traditional e-learning cannot provide adap-
tive learning technologies, which needs a team that has advanced skills, such as 
programming, graphic design, or instructional design to improve the learning sys-
tem and requires course creator to create graphics, simulations, and animations. 
Teacher also needs to design learning contents for constructing courses. Learning 
management system (LMS) [Brus04] is an integrated traditional e-learning system 
that supports a number of learning activities performed by teachers and students 
during the e-learning process. LMS aims to deliver online courses to students and 
try to keep students’ learning progress on the right track, but LMS is not used to 
create learning contents. Students can use it for learning, communication, and 
collaboration.

2.2.2.2  Adaptive e-Learning System

Students have different knowledge background, knowledge levels, learning styles, 
learning preferences, and also different misunderstandings and learning outcomes, 
etc. It will become a very huge work for teachers to design the learning contents 
and the learning activities, and to provide with different teaching approaches 
and different feedbacks. The e-learning system is considered adaptive [Jere10] if 
it follows student behaviors as well as interprets them, makes conclusions about 
students’ requirements and their similarities, adequately represents them, and 
finally impacts students with the available knowledge and dynamically man-
age the learning process. Adaptive e-learning system has the adaptability toward 
students’ needs, the reusability of learning activities, and the effective design of 
learning contents. Our monograph can be applied to adaptive e-learning system as 
our research also constructs learning resources for different types of students and 
designs learning paths to support different teaching approaches.

2.2.2.3  Instructional Design System

Instructional design system is a system of determining student learning state, 
defining the learning outcomes, and also providing teaching strategies for 
knowledge transition, which aims to improve learning performance [Reis01]. 
Instructional design is learner-centered which focuses on current learning states, 
needs, and learning outcomes of students. The learning outcomes of instructional 
design reflect students’ expectations for the learning, which expect students having 
the ability of applying knowledge or skill in some learning environments.

2.2 e-Learning
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The procedure of developing instructional materials provides us the guidance 
and requirements of designing a qualified e-learning system. The typical instruc-
tional design system [Gust02] includes five phases including analyze, design, 
develop, implement, and evaluate. Analyze phase requires teachers to collect 
information about students, learning tasks and learning outcomes, and then clas-
sify the information to make learning contents more applicable. Design phase 
composes the expected learning outcomes and corresponding tests through learn-
ing tasks. Develop phase generates learning contents based on the learning out-
comes. Implement phase refers to how to deliver the instructions for students to 
learn. Evaluate phase ensures that the learning contents can achieve the learning 
outcomes through both summative and formative assessments.

2.2.2.4  Intelligent Tutoring System

Intelligent e-learning system brings the artificial intelligence (AI) technology to 
the current e-learning system together and products a personalized, adaptive, and 
intelligent service to both teachers and students. Intelligent tutoring systems (ITS) 
use AI to customize teaching approaches according to student’s needs, which is 
trying to optimize learning of domain concepts and problem solving skills. Our 
monograph can also be applied to ITS, because the proposed work provides adap-
tive teaching approaches, personalized learning resources, and intelligent student 
progress indicators. ITS [Murr03] are computer-based instructional systems, with 
instructional contents organized in the form of learning activities that specify what 
to teach and teaching approaches that specify how to teach. They make infer-
ences on student learning progress and offer instructional contents and styles of 
instruction adaptively. Instructional contents can be broadly categorized into two 
main types [Bigg07]: declarative knowledge, i.e., facts or concepts, and func-
tioning (procedural) knowledge, i.e., how something works. Early ITSs, such as 
SCHOLAR [Carb70a], focus only on the modeling of declarative knowledge and 
cannot properly support the training of procedural and problem solving skills. 
Newer ITSs, such as DNA [Shut98], incorporate the modeling of functioning 
knowledge to address this issue.

To identify a suitable teaching approach, an ITS should understand the learning 
progress of a student and, more ideally, consider student learning styles [Feld88, 
Li10] as well. In existing ITSs, such student information is commonly maintained 
as a student model [Brus07, Elso93] and updated by some inference algorithms 
[Chen06, Cona02]. Traditionally, the student model is typically formulated in 
the form of a knowledge model [Brow78, Carb70b] to maintain the set of learn-
ing activities that a student studies. Student learning progress is then evaluated by 
checking the portion of expert knowledge that a student has acquired. However, 
this model fails to formulate errors or misunderstandings made by the student. To 
address this problem, the bug-based model [Brow78] is proposed, which applies 
rules to determine the difference between the expected and the actual ways to be 
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used for problem solving when studying a piece of knowledge. This model essen-
tially evaluates the problems in understanding made by a student. On top of the 
student model, inference algorithms are applied to determine or predict the student 
learning performance over a course of study based on some probability informa-
tion. Popular choices of inference algorithms are the Bayesian networks [Cona02], 
which perform inferences based on some precondition information, particularly 
the previous learning performance of students, and the item response theory 
[Chen06], which performs inferences based on the probability information of the 
responses made by students when conducting certain assessments.

2.2.2.5  Service-Oriented e-Learning System

Service-oriented system for e-learning describes a concept of e-learning frame-
work which supports e-learning applications, platforms, or other service-oriented 
architectures. Service-oriented e-learning system [Jamu09, Su07] provides Web 
services, such as assessment, grading, marking, course management, metadata, 
registration, and reporting, in order to produce more functionalities for the e-learn-
ing system. It aims to produce reliable Web services that can be applied to differ-
ent operation systems. Users can access these services through the Web. While our 
research supports such an e-learning platform where teachers can design and man-
age adaptive learning paths, personalized learning resources can be generated for 
each student and also student progress can be graphically presented.

2.3  Learning Taxonomy

Learning taxonomy provides the criteria of assessing student learning performance 
to see if students can achieve their learning outcomes. Learning outcomes are 
learning objectives that students are expected to achieve at the end of learning, 
which could be cognitive, skill-based, and affective learning outcomes. Learning 
taxonomy [Full07] includes three domains, cognitive, affective, and psychomotor, 
where each domain evaluates learning outcomes in several levels. Learning taxon-
omy guides teachers to design courses on the basis of achieving these learning out-
comes as well. The most common learning taxonomy is Bloom’s taxonomy which 
we have applied in this monograph. Because it can assess knowledge, attitude, and 
skills, it can be applied to all disciplines. There are also some other learning tax-
onomies slightly different from it, such as Gagne’s taxonomy, SOLO taxonomy, 
and Finks taxonomy. Gagne’s taxonomy does not only cover the 3 categories of 
Bloom’s taxonomy, but also involve another 2 categories of verbal information, 
intellectual skills. SOLO taxonomy divides learning outcomes by 5 learning stages 
rather than independent categories. And Finks taxonomy considers learning as a 
cycle consisted of 6 aspects. We introduce each of them as follows:

2.2 e-Learning
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2.3.1  Bloom’s Taxonomy

Bloom’s taxonomy [Bloo56] provides the criteria for assessments of learning out-
comes which could be classified into three domains of knowledge, attitude, and 
skills, in this way it could be applied to all kinds of subjects. A learning activity 
should have its own learning outcomes, such as the knowledge level. Students can 
develop their knowledge and intellect in cognitive domain, attitudes and beliefs in 
affective domain, and the abilities to put physical and bodily skills to act in psy-
chomotor domain.

The cognitive domain refers to intellectual capability, such as knowledge, or 
think, which has 6 levels from easy to difficulty including recall data, understand, 
apply, analyze, synthesize, and evaluation. The affective domain refers to students’ 
feelings, emotions, and behavior, such as attitude or feel, which has 5 levels from 
easy to difficulty including receive, responding, value, organization, and internal-
ize. The psychomotor domain also has 5 levels from easy to difficulty including 
imitation, manipulation, develop precision, articulation, and naturalization. The 
psychomotor domain refers to manual and physical skills, such as skills or do, 
which was ostensibly established to address skills development relating to manual 
tasks and physical movement. However, it also concerns and covers business and 
social skills such as communications and operation IT equipment, for example, 
public speaking. Thus, psychomotor extends beyond the originally traditionally 
imagined manual and physical skills.

2.3.2  Gagne’s Taxonomy

The learning outcomes of Gagne’s taxonomy [Gagn72] is similar to Bloom’s 
taxonomy. However, Gagne’s taxonomy divides learning outcomes into five cat-
egories, which are verbal information, intellectual skills, cognitive strategies, atti-
tudes, and motor skills. Verbal information is the organized knowledge including 
labels and facts and bodies of knowledge. Intellectual skills refer to knowing how 
to do something including discrimination, concrete concept, rule using, and prob-
lem solving. Cognitive strategy is the approach where students control their own 
ways of thinking and learning. Attitude is an internal state which affects an indi-
vidual’s choice of action in terms of a certain object, person, or event. Motor skills 
refer to bodily movements involving muscular activity, including the learning 
outcome to make precise, smooth, and accurate performances with muscle move-
ments. The learning outcomes are normally dependent on each other. There are 
always combined learning outcomes selected for completing a task.
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2.3.3  SOLO Taxonomy

The SOLO taxonomy [Bigg07] stands for structure of observed learning out-
comes, which describes the level of a student’s understanding of a subject through 
five stages, and it is able to be used to any subject area. The first stage is pre-
structure where students just acquire no structured information. The second stage 
is uni-structural where students capture simple and obvious aspects of the subject, 
but they still have not understood significant aspects. The third stage is multistruc-
tural where students make a number of relevant independent aspects but cannot 
connect them. The fourth stage is relational where students are able to identify the 
most important parts of the whole structure. The fifth stage is extended abstract 
where students can generalize another new application based on the structure con-
structed in the relational stage. The SOLO taxonomy is similar to the cognitive 
domain in the Bloom’s taxonomy, which can be used not only in the assessment, 
but also in designing the curriculum in terms of the learning outcomes.

2.3.4  Finks Taxonomy

Finks taxonomy [Fink03, Fink09] is different from Bloom’s taxonomy and SOLO 
taxonomy, which taxonomy is not hierarchical. It covers broader cross domains, 
which emphasizes on learning how to learn and includes more affective aspects. 
The learning process has 6 aspects in a cycle including foundation knowledge, 
application, integration, human dimensions, caring, and learning how to learn. In 
the aspect of foundational knowledge, students understand and remember knowl-
edge. In the aspect of application, students train up skills of critical thinking, 
creative and practical thinking, and problem solving skills. In the aspect of integra-
tion, students make connections among ideas, subjects, and facts. In the aspect of 
human dimensions, students learn and change themselves, understand and interact 
with others. In the aspect of caring, students identify and change their feelings, 
interests, and values. In the aspect of learning to learn, students learn how to ask 
and answer questions, and become self-directed students.

2.3.5  Subsection Summary

We apply Bloom’s taxonomy as the learning outcomes in our monograph. There 
are also a lot of works on Bloom’s taxonomy. Reference [Naps02] applies 
Bloom’s taxonomy [Bloo56] as well as other factors as follows: student learning 
progress, dropout rate, learning time, and student satisfaction. Limongelli et al. 
[Limo09] only chooses three out of the six levels: knowledge, application, and 
evaluation as the evaluation criteria. However, these evaluation methods still could 

2.3 Learning Taxonomy
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not instantly tell students how to improve. Also, some work [Chen05, Dolo08, 
Cono05] considered student’s ability as performance evaluation. Chen et al. 
[Chen05] evaluates student abilities based on the student’s response to the recom-
mended learning activity and modifies the difficulty levels of all learning activities 
which are considered as index to rank learning activities in order to update learn-
ing paths. However, a student’s ability is just given by a single value. In [Dolo08], 
a student’s abilities just limits to programming in Java or .NET, which cannot be 
applied to all situations. According to the research on learning abilities for evalu-
ating student learning performance, it classifies these learning abilities into eight 
aspects: leadership, critical thinking, value-based decision making, logical reason-
ing, problem solving, oral communication skills, written communication skills, 
and lifelong learning. Each aspect contains several subaspects and making 74 
subaspects in total. However, according to the research of psychology [Bart32], 
human abilities are divided into three groups: language, action, and thought with 
22 subattributes in total. We found that there are some attributes that does not 
consider about, such as imagination, while there are some attributes in psychol-
ogy that are not suitable to apply to general e-learning, such as speed, strength 
of power in the action group. Besides [Cono05], also distributes different ability 
requirements to learning tasks including too many skills (38 skills) without clas-
sification, and some of them are overlapped.

2.4  Learning Styles

Our work has developed learning progress indicators which addressed the needs of 
students with different learning styles. When we assess student learning progress, 
we expect students to handle different learning environments. If students can well 
perform different learning activities, they have the ability to handle different learn-
ing environments and have a balanced development. A learning style model clas-
sifies students according to their behavior patterns of receiving and processing 
information. Teaching style model classifies instructional methods according to 
how well they address the proposed learning style components.

According to the research of [Feld88], learning style contains five aspects. 
From the viewpoint of which type of information students prefer to perceive, 
there are sensors who prefer to solve problems using standard methods rather 
than unconventional methods, and intuitors who prefer to use innovated methods 
rather than repetition. From the viewpoint through which sensory channel external 
information most effectively perceived is, there are visual students who are sensi-
tive to diagrams and graphs, and auditory students who are sensitive to words and 
sounds. From the viewpoint of which information organization students are most 
comfortable with, there are inductive students who are sensitive when given facts 
and observations, and underlying principles are inferred. Deductive students are 
sensitive when given principles and consequences and applications are deduced. 
From the point of view that how students prefer to process information, there are 
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active students who prefer engagement in physical activity or discussion, or reflec-
tive students who prefer introspection. From the point of view that how students 
progress toward understanding, there are sequential students who learn in con-
tinual steps, and global students who learn gradually from the whole knowledge 
structure to more detailed concepts.

2.5  Learning Modes

In this monograph, we use different learning modes to design teaching approaches 
for different aims of training students. The learning has various forms, which 
does not only support individual learning but also support collaborative learning. 
In our monograph, we also need to use different forms of learning to construct 
different teaching approaches. Individual learning helps students to train them to 
solve problems on their own, and collaborative learning helps students to train 
them teamwork spirit. The most common way of learning is to work individu-
ally. Students have to work on their own to solve problems and reach the learn-
ing outcomes. Collaborative learning is a type of learning in which two or more 
people learn something together, where students can make use of peer’s learning 
resources and skills. Collaborative learning includes collaborative writing, group 
projects, joint problem solving, debates, study teams, and other learning activities. 
Collaborative learning uses technology to define rules and roles, construct learning 
tasks, control and monitor the learning process, and support group interactions in a 
collaborative learning environment.

2.6  Student Assessment

As the aim of learning is to achieve learning outcomes, the learning path is con-
structed based on learning outcomes. In order to determine if students have 
achieved their learning outcomes, we need to assess their learning performance. 
Student assessment measures the level of student achievement on knowledge and 
abilities. The form of student assessment can be summative or formative [Osca11]. 
Information about student learning progress needs to be collected before, during, 
and after learning some learning activities [Feng09, Osca11]. Student learning 
progress can be expressed as growth rate [Bete09, Stec08] and overall improve-
ment [Pets11]. In addition, prediction on student’s future learning performance 
[Hanu05, Wiel10] can also be done. A teacher may review and enhance teaching 
approaches based on student learning progress [Stec05, Stec08].

By tracking student learning progress and evaluating student learning perfor-
mance, we can guide students to approach the most appropriate learning activities 
as well as to help them to improve their learning performance and reach the learn-
ing outcomes in the end. Based on previous work, learning outcomes are given 
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by ranks [Good09, Ma00], scores [Kwas08, Liu05, Yang05], or feedback [Leun07, 
Guzm07], according to different criteria, such as the levels of acquired knowledge 
[Good09, Leun07], the spending time and efforts [Good09], the number of correct 
questions [Chen08] with tests or questionnaires, or learning abilities of students 
[Dolo08, Leun07, Chen05].

Although [Leun07] can provide an instant feedback on student learning per-
formance, the feedback can only tell if we should provide students the optional 
materials. In [Huan07], a student knows his/her misconceptions in solving a prob-
lem and the student’s weak learning activities from a global test. However, this 
information is not enough to know the student’s learning progress and cannot help 
the student to improve his/her learning performance. In [Ma00], the evaluation 
results would always be divided to several fuzzy grades from the “best” grade to 
the “worst” grade, and examples of fuzzy grades include “good,” “pass,” “fail,” 
etc. Even if a student performs better than the course expectation, the student 
would still fail as long as the student is worse than the majority of students. In 
[Chen05], the evaluation tests student’s satisfaction on the learning path. However, 
this work cannot promise the student to reach the learning outcome. Guzman et al. 
[Guzm07] provide a self-assessment test which can rectify misconceptions and 
enhance acquired knowledge. With a student’s knowledge distribution model, the 
selected evaluation criteria determines questions and computes the expected vari-
ance of the student’s posterior knowledge distribution. The test results provide an 
estimation of the student’s knowledge level which is the minimum expected pos-
terior variance. As they need to calculate the correct possibility and the incorrect 
possibility of a question, the answer has to be either true or false, but these results 
are too limited for the most types of questions. In short, these methods only con-
sider if students can correctly understand knowledge in one way or another, but 
they ignore the assessment of balanced developments of students’ knowledge and 
learning abilities.

Existing works [Chen08, Cola10, Huan07] have developed ways to collectively 
model the students’ understanding on knowledge. Huang et al. [Huan07] requires 
teachers to manually plan two formative assessments for each UoL, and a summa-
tive assessment in the end of a learning path. The two formative assessments cover 
the same knowledge using different questions. The 1st formative assessment cal-
culates students’ scores and analyzes their learning situations. The 2nd formative 
assessment ensures students understanding the concepts rather than memorizing 
the answers. In [Chen08], questions are manually designed by teachers based on 
the course materials and stored in the question database. Questions are randomly 
selected from the database to generate a pretest. The incorrect test results are used 
to select suitable courseware to plan the learning path. However, these methods 
require teachers to manually design the test, then [Cola10] provides an automatic 
method to measure student learning performance by the Bayesian approach, which 
selects a set of questions associated with every network node to identify if a stu-
dent can correctly form the knowledge concepts. However, these questions just 
focus on each single node, which cannot reflect if students can correctly build up 
the relationships between them.
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3.1  Terminologies Definition in the Proposed Research

I would like to introduce some terminologies, which are all very important con-
cepts of this monograph. This research improves the E-Learning systems and 
aims to help students to achieve their learning outcomes. We generate learning 
resources and construct learning paths based on learning activities to provide 
them what to learn and how to learn. We also measure their learning progress to 
provide more details about student learning to improve their learning qualities.

3.1.1  Learning Outcomes

Learning outcomes explain what students are expected to achieve at the end of a 
period of learning, which are expressed by the level of competence to be obtained 
by the students [Wage08]. Learning outcomes are measurable, so that they could 
be used to measure student learning performance, which could be cognitive, skill-
based, and affective learning outcomes. Learning outcomes are always being 
defined by descriptive verbs [Nash]. For example, to define the terms, to compare 
the two ideas, to compute the possibility, etc. Learning outcomes are set to be the 
criteria of assessing student learning performance. Subject-specific knowledge and 
skills, and generic skills could be used to measure learning outcomes by assess-
ing formative or summative assignments or examinations. For example, students 
are expected to describe/explain knowledge concepts and reach some knowledge 
levels [Chen06, Guzm07], to apply research skills [Feng09, Mitr01], or to develop 
some learning behaviors [Gres10]. However, learning outcomes in this work can 
only apply to limited aspects of learning, which cannot support different designs 
of learning activities and cannot be applied to different knowledge disciplines.

Chapter 3
Technical Definition and Concepts
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3.1.2  Learning Resources

Learning resources [Kara05, Meli09] refer to the structured learning materials or 
learning contents that can help students to understand some knowledge concepts 
and achieve their learning outcomes. Learning resources could be represented by 
different types of media [Leac07], such as text, audio, or video, and are associ-
ated with attributes including knowledge domains, complexities, importance 
degrees, as well as the relationships among each other. These attributes of learning 
resources can facilitate course design that is adaptive to students [Kara05] who 
have different knowledge backgrounds, knowledge levels, etc. In fact, it is not 
easy to automatically obtain these attributes from complex and loosely connected 
learning contents and to use them to form well-structured learning resources. It 
is not enough to only identify suitable learning resources for a student. It is also 
necessary to provide students with the relationships among learning resources, 
because these relationships explain how knowledge concepts are related to each 
other, helping students to gain a better understanding and improve their learning 
performance.

3.1.3  Unit of Learning

Unit of learning (UoL) is a term very known in E-learning and is used to refer 
any delimited educative or training piece like a course, a module, a lesson, etc. 
[Gome09]. UoL represents the minimum significant educational piece, which con-
tains learning content, learning objectives, learning method, and other resources 
[Ivan09]. The instructional design is the key element in a UoL and is basically 
what it is tried to be modeled, and the other elements are necessary and comple-
mentary parts [Gome09]. In order to build a UoL, IMS learning design [Hern06, 
Amor06] describes and implements learning activities based on different peda-
gogical methodologies, including group work and collaborative learning. In our 
research, a UoL is also the basic element to construct a learning path.

3.1.4  Learning Activity

A learning activity (LA) is a UoL guided by certain teaching approaches based 
on some learning outcomes, which is used to construct teaching and learning 
approaches. It can be formulated in different forms to facilitate different learning 
environments in which different kinds of learning activities require different learn-
ing styles and different learning outcomes. During a LA, a student will follow a 
particular teaching approach that applies to the student’s own characteristics, and 
achieve some learning outcomes in the learning process. A LA is independent of 
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learning contents, which makes the pedagogies being reused in different knowl-
edge disciplines. The way to deliver the learning activities indicates a sequence of 
learning.

Existing works [Chen06, Farr04, Hern06, Limo09, Liu05] generally adopt lec-
turing and Q&A as learning activities. However, the situation can be complicated 
in practice. First, each LA may be very different in nature from the others, so it 
requires to be delivered through a different form, such as lecture, presentation, 
practical, etc. Also, each LA can be carried out through different learning modes, 
such as individual learning, and collaborative learning. A specific or even multi-
ple assessment methods may be required to determine the student’s learning per-
formance. Second, in different subject disciplines, even the same type of LA may 
need a very different kind of assessment method. For example, a “practical” activ-
ity for a programming course may focus on training up the students’ problem-solv-
ing and application skills, while the same activity for a piano course may focus 
on fingering and sight-reading. Such practical requirements are so complex that 
it becomes difficult to implement a learning path construction system that generi-
cally addresses all of them. This explains why most existing methods allow only 
lecturing and Q&A as learning activities, even though this significantly restricts 
their usefulness.

During a LA, a student can achieve some learning outcomes by learning the 
content of it. SCORM [Su06] and IMS Learning Design (IMS-LD) [Hern06, 
Amor06] are the major existing standards for designing learning path on the basis 
of UoL. The sequencing of SCORM controls the order, selection and delivery of a 
course, and organizes the UoLs into a hierarchical structure. The UoLs are actu-
ally designed based on given learning materials and only model a single student’s 
need. However, SCORM only concerns learning contents and the sequence of UoL 
delivery, but not considers teaching approaches and different types of learning out-
comes evolved in a UoL. IMS-LD is a data structure holding information about the 
UoLs and their learning outcomes. It comprises UoLs modeling what to learn, and 
supports UoLs modeling how to learn, based on the learning outcomes of UoLs. 
A UoL and its contents are separated, so that the designed UoL can be reused. 
However, IMS-LD needs teachers to define the pedagogical structure without 
given clear guidance.

3.1.5  Learning Path

Learning path (or curriculum sequencing) construction [Brus92] is fundamental 
to the education process, which comprises a series of learning activities for the 
student to build up certain knowledge and skills. It refers to the organization of 
learning activities in a proper sequence, so that students can effectively study a 
subject area. Different forms of learning activities can support the implemen-
tation of different teaching approaches in a learning path. Obviously, if we can 
adaptively produce a learning path according to a student’s learning performance 
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and preferences, it will help the student to master knowledge and skills more 
efficiently.

There are different methods proposed for designing learning paths. Melia and 
Pahl [Meli09] directly generate the best learning path for different students within 
their Courseware Model (CM). However, the CM only allows UoLs to be organ-
ized one after another according to the student model, such that students cannot 
follow UoLs in parallel for learning. In practice, some UoLs are complementary 
to each other, where students can learn more efficiently if students can study 
those UoLs in parallel. In addition, the student model only considers students’ ini-
tial knowledge and learning outcome. Many other critical factors, e.g., learning 
style, that affect students’ learning preferences are not considered. Liu and Yang 
[Liu05] adopt an incremental approach. They first identify the key elements of a 
learning path (the initial, the target and the essential UoLs) and then incremen-
tally work out the successive UoLs connecting these key elements. This method 
also considers asking a student to retake a UoL or to follow a re-designed learn-
ing path if necessary. Hernandez-Leo et al. [Hern06] propose a semi-automatic 
method that allows teachers to design the learning path based on pre-defined 
Collaborative Learning Flow Patterns (CLFPs), where a CLFP involves a flow of 
tasks. However, CLFPs do not support flexible combination of these tasks. So, if a 
teacher chooses a template pattern, a student has to use all the tasks included in the 
pattern.

3.1.6  Learning Progress

Learning progress reflects the changes of student learning performance in different 
aspects over time, which is the process of determining the learning performance of 
the student according to learning outcomes [Good09]. Student learning progress 
not only shows how much knowledge and how well a student has learned, but 
also provides with the changes of the student’s learning performance, which has 
become a popular topic over time [Mart07]. During the learning process, student 
learning performance is changing after a period of learning. Their learning abili-
ties and knowledge levels may be improved or may stay as the same. It would take 
different efforts for different students to make the same learning progress. We need 
to monitor student learning progress and analyze the contributions of different fac-
tors on their learning performance.

With the help of student learning progress, teachers can design learning path 
[Kwas08], adjust course settings (e.g. difficulty level, updating learning contents), 
update student profiles, group students who have the same learning style, (e.g. it 
may deduce that if there are a group of students who perform better on ‘Analyze’ 
knowledge level, they are more likely to be reflective students who prefer to pro-
cess information through introspection.), and also provide better instructions to 
students. Teaching and learning can be improved according to student learning 
progress which is reflected from student or course attributes.
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3.2  Concepts Proposed in the Monograph

We have evolved some variables for the building up of math models in the pro-
posed methods. These variables are used to control our experiments, and see if 
they would cause changes to the experiment results. We also applied some vari-
ables, which can be obtained from our experiments, as the criteria to evaluate our 
work. We explain them as follows.

3.2.1  Teachers’ Teaching Experience

In this monograph, teaching experience refers to how long a teacher has been a 
teacher. We consider it as a variable because teachers have different teaching expe-
rience may have different evaluation results about our prototype according to their 
teaching experience.

3.2.2  Teachers’ Knowledge Discipline

Teachers’ knowledge discipline refers to teachers’ knowledge backgrounds, i.e. 
which subjects they teach. Also, teachers from different knowledge disciplines 
may use different teaching approaches. We consider it as a variable that may cause 
changes to their evaluation results.

3.2.3  Teachers’ Satisfaction Score

In order to evaluate teachers’ feedbacks from the questionnaire (Appendix A), we 
use teachers’ satisfaction score to indicate their overall satisfaction on our out-
come-based learning path model. Questions include if they are satisfied with the 
functionalities of the model, if the model can be easily understood, if it is easy 
to manage the model, etc. The answers of these questions are quantified by the 
5-point likert scale, then we can calculate the overall teacher’s satisfaction score 
by the sum of all these questions.

3.2.4  Importance of a Learning Path

The learning path construction method based on Association Link Network can 
automatically construct personalized learning path. However, in order to evaluate 
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if the system recommended learning path is good enough, we consider the impor-
tance of the learning path as a variable, which is calculated by the sum of impor-
tance of each topic in the learning path. We can compare the importance of system 
recommend learning path and that of manually selected learning paths to see 
which one is better.

3.2.5  Learning Performance on a Learning Path

Learning performance indicates students learning quality, which we can use to 
determine if the system recommended learning path could contribute to student 
learning, and if the system recommended learning path is superior to manually 
selected learning path. We ask students, who use our system and who do not use 
our system, to do the same test. The learning performance is the overall score in 
the test.

3.2.6  Stability of Learning Performance

Considering that these participated students have different learning abilities, and 
also the learning resources have different complexities, the students may have sim-
ilar performance on simple learning resources, because in which case, all students 
can provide correct answers. Or they may have similar performance on very com-
plex learning resources, because none of them can provide correct answers. On the 
other hand, they may have quite different performance on the medium difficulty 
level of learning resource, because only students with higher learning abilities may 
provide correct answers. We use stability of learning performance to indicate if 
different students can have stable performance on the same learning resource. If 
we can improve the stability of learning performance, then it means that we can 
better help low learning ability students to improve their learning performance, so 
that they can have the similar learning ability with high learning ability students. 
The variable is collected from all students’ learning performance on each piece of 
learning resource, more details about the formulation of this variable can be found 
in Sect. 5.6.2.

3.2.7  Student Learning Performance

Student learning performance refers to the performance on performance related 
attributes. We use it to monitor student learning performance changing over differ-
ent attributes in the same stage of learning. Given the learning performance on dif-
ferent performance related attributes and which attribute will cause the changes of 
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the student learning performance, both teachers and students can know students’ 
strength as well as weakness and help them to improve correspondingly.

3.2.8  Student Development Balance Degree

We would like to find out if students have the potential to make further improve-
ments. Teacher can decide to go on providing them corresponding learning 
resources if they have the potential. During the development of student learning 
ability, there are many non-performance related attribute. Student development 
balance degree indicates how well a student can handle different learning envi-
ronments which require the student to have different non-performance related 
attributes. If a student has a balanced development on all non-performance related 
attributes, for example, the student is good at learning both concrete examples and 
abstract concepts, or the student has no difficulty in learning knowledge presented 
in the form of either verbal, visual information or context, then the student can 
perform better under different learning environments. We consider the develop-
ment balance degree as a variable to indicate student progress potential to achieve 
more in the future.

3.2.9  State Value of a Student Attribute

We have applied two types of attributes to describe the characteristics of student 
learning, which include performance related attributes and non-performance 
related attributes. However, the performance of an attribute may cause effect on 
the performance of the other attributes. For example, if a student has good perfor-
mance on the ‘Responding’ attribute, then the student probably prefers the learn-
ing style of ‘Active’ (Ref. Sect. 2.4) when the student processes information. In 
order to calculate the overall strength of impact of an attribute on all the others, we 
use the ‘state value’ of the attribute to measure the impact. Each state is actually 
the value of a node in the Fuzzy Cognitive Map, which represents the causal rela-
tionships between these nodes and how they affect each other.
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4.1  General Research Methodology

The general research methodology we have applied includes both qualitative 
method and quantitative method, which is used to verify if teachers and students 
are satisfied with our research work as well as to verify if our research work can 
provide with better teaching approaches. Research methodology also explains the 
methods that we use to collect quantitative data and/or qualitative data.

4.1.1  Qualitative Research Method [Wiki4, Schu03, Shie03]

Qualitative research is carried out to find out subjective assessment of attitudes, 
opinions, and behaviors, such as to understand meanings, experiences, ideas, and 
values. Normally, interviews are applied to describe and understand subjectively 
certain approaches.

Qualitative research involves collecting, analyzing, and interpreting data by 
observing what people do and say. Qualitative research aims to gain a qualitative 
understanding of the underlying reasons and motivations. Its sample only requires 
a small number of nonrepresentative cases, while the collected data are unstruc-
tured. In order to analysis data, qualitative research uses nonstatistical method. 
And the analysis results develop an initial understanding.

To conduct a qualitative research, there are mainly 4 steps:

STEP 1: Determine the qualitative research approach if necessary;
STEP 2: Determine the qualitative data collection method;
STEP 3: Qualitative data analysis; and
STEP 4: Report writing.

Chapter 4
Fundamental Theories and Development 
Tools
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Qualitative research method mainly includes narrative research, phenomenology, 
case study, ethnography, and grounded theory. We applied case study in this mono-
graph to verify the proposed methods.

Case study research involved the study of an issue explored through one or 
more cases within a bounded system. It is a preferred method when

(a) how or why questions are being posed,
(b) the investigator has little control over events, and
(c) the focus is on a contemporary phenomenon with a real-life context.

Case study tries to illuminate a decision or set of decisions: why they were taken, 
how they were implemented, and with what result. It involves multiple sources of 
information and reports a case description and case based themes.

4.1.2  Quantitative Research Method [Wiki5, Schu03, 
Shie03]

The quantitative data are collected to measure variables and verify existing theo-
ries or hypotheses. The collected data are used to generate new hypotheses based 
on the results of different variables. Normally, questionnaires are applied to gather 
these statistic data.

Quantitative research involves the use of structured questions in which response 
options have been predetermined and a large number of respondents involved. 
Quantitative research aims to quantify the data and generalize the results from the 
sample to the population of interest. The sample should involve a large number of 
representative cases, while the collected data are structured. When to analysis data, 
quantitative research uses statistical method. And the analysis results would rec-
ommend a final course of action.

The nature of quantitative research is the use of statistic model to test the rela-
tivity between the independent variable and the dependent variable, and in turn 
to test the hypothesis and to deduce the cause and effect relationship between the 
variables. Quantitative research often contains the following steps:

STEP 1:  to establish hypothesis and to determine the variables in the cause and 
effect relationship;

STEP 2: to use the reliable tools to measure and analyze the variables;
STEP 3: to test the hypothesis; and
STEP 4: to draw a conclusion.

Quantitative research emphasizes on the quantitative analysis and statistical calcu-
lation, including experimental method, quasi-experimental method, and question-
naire method. We applied experiment method and questionnaire to quantitatively 
verify the proposed research model.
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4.2  Math Modeling Method for Learning  
Contents—Association Link Network

In our monograph, we need to find out the relationships of learning resources 
to form the knowledge structure model which is used to support the construc-
tion of learning path. However, the relationships of learning resources depend 
on the semantic features of learning resources. Our work is based on Association 
Link Network to identify these relationships. Association Link Network (ALN) 
[Luo08A] is a kind of semantic link network, which is designed to establish asso-
ciated relations among various resources (e.g., Web pages or documents in digital 
library) aiming at extending the loosely connected network (e.g., the Web) to an 
association-rich network, which can support huge number of LRs to be built up 
automatically. Since the theory of cognitive science considers that the associated 
relations can make one resource more comprehensive to users, the motivation of 
ALN is to organize the associated resources that are loosely distributed in the Web 
for effectively supporting the Web intelligent activities such as browsing, knowl-
edge discovery, and publishing.

ALN using association rules between concepts to organize the resource since 
the term association is used in a very particular sense in the psycholinguistic liter-
ature. However, most subjects cannot distinguish the exact semantic relations. The 
associated relations between resources in ALN are implicit rather than explicit, 
which make ALN more appropriate for incrementally building up. The challenge 
of building up ALN is about how to efficiently and exactly perform the association 
weights of the new coming Web resources.

ALN is composed of associated links between nodes. It can be denoted by 
ALN = 〈N , L〉 where N is a set of Web resources (e.g., keywords, Web pages, and 
Web topics). L is a set of weighted semantic links. As a data model, ALN has the 
following characteristics:

(1) Associated relation-based link. Association relation-based link is used in a 
very particular sense in the psycholinguistic literature. For example, the sub-
jects respond more quickly than usual to the word nurse if it follows a highly 
associated word such as doctor. WWW uses hyperlink to interconnect Web 
resources for users freely browsing rather than for effective associated link. 
How to organize Web resources with associated relations to effectively sup-
port the Web intelligence activities becomes a challenge. ALN uses associated 
relations between Web resources to solve this problem.

(2) Automatic construction. Given a huge number of resources in the Web, it is 
unrealistic to manually build a network. Actually, ALN is automatically built 
up, which makes it suitable to represent the huge number of resources.

(3) Virtualness. ALN can be regarded as a virtual layer of Web resources, which 
is invisible to users. The operation of Web intelligence activities is imple-
mented on this layer. Virtualness ensures the cross-media implementation of 
intelligent browsing, which clears the difficulty brought by different physical 
types of resources.

4.2 Math Modeling Method for Learning …
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(4) Rich Semantics. Each piece of Web resource is represented by E-FCM with 
rich semantics. The links with weights between nodes represent the associated 
relations between Web resources.

(5) Structuring. By semantic computing, the disordered resources on physical 
Web layer are mapped to the well-structured ALN.

4.3  Math Modeling Method for Improving Learning 
Quality—Performance Inference Algorithm

As we need to analyze student learning progress by inferring how the learning pro-
gress is changing over particular aspect(s) of student attributes, we can find out 
the reason how to help students to improve efficiently. Previous works [Chen05, 
Feng09, Gres10, Lynn09] have qualified student learning performance with dif-
ferent inference algorithms. Normally, people assess students with a set of ques-
tions, then the performance is the evaluation results on these questions. But the 
difference is that they focus on different aspects to evaluate student learning per-
formance. Item Response Theory (IRT) [Chen05] is the function of student abil-
ity based on major fields and subjects, which gives the probability that a student 
would have correct answers with a given ability level. Goal Attainment Scale 
(GAS) [Lynn09] is the function of a combination of attained goals and involves 
the expected correlation of the goal scales to make it adjustable. Change-Sensitive 
Rating Scale (CSRS) [Lynn09] evaluates student learning progress with a rat-
ing scale on a set of social behaviors including social skills (e.g., cooperate with 
peers) and competing problem behaviors (e.g., disruptive classroom behaviors). 
It focuses on computing the mean changes of student behaviors from the initial 
learning performance to posttreatment. An item is change-sensitive when the mag-
nitude of change is larger than the threshold. Feng et al. [Gres10] presents that an 
individual student learning progress on subject-related skills changes over time 
with a linear mixed-effect logistic regression model. This model is to compute the 
probability that an individual student gives a correct answer at an opportunity of 
answering a question. It is the linear function of the effects caused by two learning 
parameters: one is how good the student’s initial knowledge is and the other is the 
student’s change rate of his/her learning progress.

Because the performance on some concepts/attributes may depends on the 
performance of some other concepts/attributes, more intelligent algorithms are 
required to represent the causal relationships among those concepts/attributes and 
to find out the main attributes that affect the learning progress. Which concepts 
or attributes are chosen for evaluation depends on the types of learning outcomes 
defined in the work. If the learning outcomes are just to achieve more knowledge, 
they may need to infer the causal relationships of concepts. If the learning out-
comes are to achieve some student attributes, such as some kinds of learning abil-
ities, then they need to infer the causal relationships of attributes. There are six 
popular algorithms that can structure the concepts/attributes in a graph:
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– The expert system [Hatz10, Stud98] represents relationships between concepts 
in a tree structure where the top node of the tree indicates the goal knowledge, 
and the nodes on leaves indicate the rules. Goal knowledge is then inferred after 
several rule decisions.

– The Bayesian Network model [Cola10, Garc07, Dieg00] organizes the knowl-
edge representations in a directed acyclic graphical, and the nodes in the model 
are conditional dependencies. They normally consider knowledge nodes or 
questions as the network nodes and then infer the causal relationship among 
them. Colace and De Santo [Cola10] applies Bayesian network to infer stu-
dent learning performance, where questions are treated as the network nodes. 
Bayesian analysis measures the percentage of correct answers as well as incor-
rect answers in a subject, which supports for the measurement of cross-entropy 
to quantify the dependency weight between the questions. Although Bayesian 
network can infer the casual relationship among knowledge nodes, the inferred 
knowledge node cannot reflect back to previous knowledge nodes. They cannot 
be formed in a cyclic structure.

– The Markov random field [Zhu02] represents the structure of knowledge nodes 
within an undirected graph which supports both cyclic and acyclic graphs but 
does not support induced dependencies. And also, Nonadjacent nodes and 
neighbor nodes need to be conditionally independent.

– Neural network [Hatz10, Hayk99] infers causal relationships within a mul-
tilayer structure but does not support induced independence among concept 
nodes.

– The Concept Maps [Chen01, Zapa02] are connected with labeled arrows in a 
downward-branching hierarchical structure, which is an acyclic structure. The 
relationships between concepts show relationship such as “results in,” “contrib-
utes to,” or “is required by.”

– Fuzzy Cognitive Map (FCM): As the structure is expected to reflect the causal 
relationships among knowledge nodes, the structure should be directed because 
one node is likely to affect other nodes or being affected by other nodes. On the 
other hand, the structure should be cyclic because some nodes may form a cycle. 
However, the above structures do not meet these requirements, but FCM [Liu99, 
Luo10] can represent such causal connections among knowledge nodes in a 
directed cyclic structure. FCM is a tool to represent social scientific knowledge. 
It computes the impact of the nodes and describes the nodes and the relations 
between these nodes, in order to analyze the mutual dependencies between nodes.

FCM method has been well developed and widely used in different areas including 
social science, economics, robotics, and computer assistant learning. Some works 
[Tzen10, Cai06, Geor04, Geor08] applied FCM to e-learning in order to infer the 
casual relationship among a set of factors. One example is to use the criteria for 
decision making as the concept nodes in FCM, such as [Tzen10]. It can be used 
as the reasoning tool to select the goal of what to achieve and the actions of how 
to achieve [Cai06]. Also, some works [Geor04, Geor08] infer student learning 
styles through FCM, where the learning styles reflect how students conceive infor-
mation and also conceive which kind of information. To connect one attribute to 

4.3 Math Modeling Method for Improving Learning Quality …
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another, FCM needs to compute the impact between two related attributes, which 
can be considered as the weights of the FCM. Basically, FCM methods have gone 
through three stages:

(1) The basic FCM [Tabe91, Geor08, Tzen10] predefines the weights with con-
sistent values before applying FCM matrix to analyze the relationships among 
these knowledge nodes. Reference [Geor08] asks experts to describe the 
causal weights among the attributes every time. Also [Tzen10] always uses a 
predefined weight matrix, while the attribute values update according to their 
last statuses during iteration.

(2) Also, the weights could change under different concept models, as the 
dependences among concepts are different. A better method that is pro-
posed to constrain the weights is the rule based FCM [Peña07]. It uses fuzzy 
“If-then” rule to increase or decrease the causal weights by a fuzzy interval.

(3) Later, an automatic scheme [Luo10] has been proposed to calculate the cas-
ual weights. Luo et al. [Luo10] applies FCM to build up a learning guidance 
model for students. It combines unsupervised learning and supervised learn-
ing to iteratively acquire new knowledge from data, but it still needs initial 
human intervention.

Although these current works monitor student learning progress and provide 
assessment results, they just focus on setting the evaluation criteria and more accu-
rate grading scheme. There is still no such a tool could analyze student learning 
progress, find out the relations between different attributes, and see how these 
attributes affect the learning progress. Actually, FCM supports such an inference 
scheme that can infer student learning progress about how an attribute affects the 
others. All possible attributes could be considered as the nodes, and the effect of 
one attribute on one another would be the inferred causal relationships. So that 
both the teachers and the students would not only know whether the student makes 
progress but also know what can force the student to make progress. However, 
student attributes appear to have various changes for different students, different 
learning activities, or different subjects. In order to come out the inner relation-
ships among these student attributes, it is not enough to infer them by only using 
FCM. It is necessary to integrate some similarity and different measurements to 
measure the related comparison targets.

4.4  Data Analysis Related Method for Experimental 
Verification

4.4.1  One-Way ANOVA [Chan14, Wiki1]

In statistics, one-way analysis of variance (one-way ANOVA) is a technique used 
to compare the means of three or more samples, which technique can only be used 
for numerical data.
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The ANOVA tests the null hypothesis that samples in two or more groups are 
drawn from populations with the same mean values. Two estimates are made of the 
population variance σ 2. These estimates rely on various assumptions. The ANOVA 
produces an F-statistic, the variance between the group means should be lower 
than the variance of the samples, following the central limit theorem. A higher ratio 
implies that the samples were drawn from populations with different mean values.

One-way ANOVA is used to test for the differences among at least three 
groups. If there are only two groups of data to be compared, then the t-test and 
F-test are equivalent.

The results of a one-way ANOVA can be considered reliable as long as the fol-
lowing assumptions are met:

• Response variable residuals are normally distributed;
• Variances of populations are equal; and
• Responses for a given group are independent and identically distributed normal 

random variables.

The test performed by calculating two estimates of the variance, σ 2, of popula-
tion distributions: the variance between the samples and the variance within the 
samples. The variance between samples is also known as the mean square between 
samples (MSB) and the variance within samples is also known as the mean square 
within samples (MSW). Both MSB and MSW estimate the variance of popula-
tions, σ 2. MSB is based on the values of the means of the samples taken from 
populations, and MSW is based on the individual values in the samples. If the 
means of the populations under consideration are not equal, the variation among 
the means of respective samples is expected to be large, and therefore, the value of 
MSB is expected to be large.

The value of the test statistic, F, for the ANOVA test is calculated as

This test statistic has the F distribution with degrees of freedom k − 1 and n − k, 
respectively, where k is the number of populations under consideration and n is the 
number of data values in all samples. The formulas for calculating MSB and MSW 
can be found in any introductory statistics text. The one-way ANOVA test is always 
right-tailed and the p-value is computed using the right tail of the F distribution curve.

4.4.2  Two Sample T-Test [Wiki2, Zhan14]

A t-test is any statistical hypothesis test in which the test statistic follows a 
Student’s t-distribution under the null hypothesis. It can be used to determine if 
two sets of data are significantly different from each other and is most commonly 
applied when the test statistic would follow a normal distribution if the value of a 
scaling term in the test statistic were known.

(4.1)F =
Variance between samples

Variance within samples
=

MSB

MSW

4.4 Data Analysis Related Method for Experimental Verification
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A hypothesis testing as follows can be applied to determine whether µ1 - µ2 
equals zero.

where the hypothesis H0 is referred to as the null hypothesis, while H1 is referred 
to as the alternative hypothesis.

A two-sample location test of the null hypothesis such that the means of two 
populations are equal. Let X1, X2 be independently distributed as the normal dis-
tribution with sizes n1 and n2, means µ1 and µ2, and variances σ 2

1  and σ 2
2 , respec-

tively, where ni (i = 1, 2) are known and µi, σi are unknown.
The statistics used in the two-sample t-test is given by the following equation. 

The statistics have the t-distribution in the case of null hypothesis.

where X̄1, X̄2 are the means of X1, X2. s21, s
2
2 are the sample variances correspond-

ing to X1, X2. v is the degree of freedom of the t-distribution.
The test is defined by its critical region which is determined by the signifi-

cance level α (0 < α < 1). The significance level α is found under the constraint 
of the degree of confidence, which is used to estimate the reliability of an esti-
mator. Given a significance level α, H0 will be rejected if t0 > tα,v, where tα,v is 
the upper α critical point of the t-distribution with v degrees of freedom, i.e., 
α = P(t0 > tα,v).

4.4.3  Likert Scale [Wiki3]

Likert Scale is one of the most often used scale for rating sum formula. Items that 
belong to same concepts or structure apply the way of sum formula for rating. 
Likert scale is normally used for questionnaires, which is the most widely used 
scale in current survey research. When participates answer the questionnaires, they 
express their degree of agreement.

The format of a typical five-level Likert item, for example, could be as follows:

(a) Strongly disagree;
(b) Disagree;
(c) Neither agree nor disagree;
(d) Agree; and
(e) Strongly agree.

(4.2)H0 : µ1 = µ2;H1 : µ1 �=µ2

(4.3)t0 =
X̄1 − X̄2

√

s
2
1/n1 + s

2
2/n2

(4.4)v =

(

s
2
1/n1 + s

2
2/n2

)2

(s21)
2/(n1 − 1)+

(

s
2
2

)2
/(n2 − 1)
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After the questionnaire is completed, each item may be analyzed separately, or in 
some cases, item responses may be summed to create a score for a group of items. 
Then to calculate the overall scores according to the participates’ selection.

4.5  System Development Tools

We implement the learning path system, automatic learning resource generation 
system, and student performance evaluation system to demonstrate the validity of 
our work. To implement them, we have applied a lot of tools of programming lan-
guages, Web service, and database. For the learning path system, we use Jgraph, 
Ext Js, PHP, MySQL, and Apache to implement the prototype. For the automatic 
learning resources generation system, we use Tomcat, Web Services, and JSP to 
implement the prototype. And for the student performance evaluation system, we 
use Excel to analyze data and generate graphs. We briefly introduce how we apply 
each of them as follows.

4.5.1  Development Tools for Learning Path System

Jgraph
We use Jgraph to design the learning path graphs of the learning path system 
including its learning activities and the links between the learning activities. 
Jgraph (www.jgraph.com) is an open resource, Swing compatible graphics compo-
nent based on MVC architecture and written in the Java programming language. It 
is the component designed for graphs, which is mainly applied to applications that 
need to express the graphs structure, such as flow chart, network, and traffic path.

Ext JS
We use Ext JS (http://www.sencha.com/) to design the interface of the learning 
path system. Ext JS is an AJAX application written in Javascript, which is used 
to create interactive Web applications rather than the AJAX framework. It can be 
applied to any application written by Java, .Net, or PHP.

PHP
In this monograph, the editing functions of each learning activity are written 
by PHP in the learning path system. PHP is a widely used server-side scripting 
language that is normally used to Web development and can be embedded into 
HTML. Generally, PHP run on the Web server and generate user-browsed Web 
pages through running the PHP program. PHP can be deployed on many differ-
ent servers (Apache, IIS, etc.), operation systems, and platforms (Window, Linux, 
Unix, etc.) and also can support many database systems, such as MySQL and 
Oracle.

4.4 Data Analysis Related Method for Experimental Verification

http://www.jgraph.com
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48 4 Fundamental Theories and Development Tools

MySQL
We use MySQL to keep data of learning tasks, learning activities, learning stages, 
and learning path, and their relationships in the database, so that we can call them 
when we create/change/delete them. MySQL is a database server, which supports 
standard SQL and can compile on a number of platforms. It is especially popu-
larly used in Web applications. Especially, phpMyAdmin is the MySQL database 
system management program written by PHP, which allows administrator manage 
MySQL database through Web port.

Apache
We use Apache as the local server to run the PHP programs in the learning path 
system. Apache is a C implementation of HTTP Web server. Apache is the most 
widely used Web server software, which is an open-source application and can 
run on all kinds of computer platforms, because of its security and cross-platform. 
Apache also supports a lot of features, such as server-side programming language 
support (such as Perl, PHP, and Python) and authentication schemes.

4.5.2  Development Tools for Learning Resources Generation

JSP
We program the learning resource generation system by JSP (Java Server Pages) 
which is a kind of dynamic Web page technique standard. The aim of JSP is to 
separate presentation logic from Servlet. JSP embeds Java servlets and JSP tag in 
the traditional Web page of HTML files and forms the JSP files. The Web applica-
tion developed by JSP is cross-platform, which can run on different operation sys-
tems. JSP is normally executed on the server-side and returns a HTML file to the 
client-side, so that client-side can browse the file with only a browser.

Tomcat
We use Tomcat to run the JSP program as the Web server for the learning resource 
generation system. Tomcat is a free open-source Web application server, which 
provides software applications with services, such as security, data services, trans-
action support, and load balancing. It is widely used in small system where users 
are not too many, which is also the best selection for developing and compiling 
JSP program.

Different from Apache, Tomcat is an extension of Apache, which is a Java 
implementation of HTTP Web server, and it is actually run JSP pages and Servlet. 
Tomcat is popularly used because it takes a little system resource when running, 
has good augmentability, and supports the very common development and applica-
tion system functions, such as the load balancing and email service.

Web Services
We use Web services to connect our application program and the Web applica-
tion, so that we can create a Web service from the application. Web services are 
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application components, which communicate using open protocols. The basic Web 
service platform is XML plus HTTP. Web service use XML to code and decode 
data and use open protocols such as SOAP (Service Object Access Protocol) to 
transport data. Web services can convert applications to Web applications, so that 
we can publish, find, and use services or provide some functions all over the world 
through the Web.

4.5.3  Tool for Experimental Results Presentation

Excel We use Microsoft Excel to generate all of these learning progress graphs to 
evaluate student learning performance. Excel is a spreadsheet application devel-
oped by Microsoft. There are plenty of functions can be used to execute computa-
tion, analyze information, and manage electronic grid or the data information in 
the Web pages. It also has very powerful graphic feature. It can display data as line 
graphs, histograms, charts, and also 3D graphs. Given the statistic data, it can ana-
lyze them and dynamically generate intuitive graphs.
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Recently, methods have been developed to design learning paths based on attrib-
utes that describe learning contents and student characteristics, helping students 
to learn effectively. A learning path (or curriculum sequence) comprises steps for 
guiding a student to effectively build up knowledge and skills. Assessment is usu-
ally incorporated at each step for evaluating student learning progress. Although 
existing standards, such as SCORM and IMS-LD, provide data structures to sup-
port systematic learning path construction and IMS-LD even includes the concept 
of learning activity, they do not provide any facilities to help defining the seman-
tics in order for pedagogy to be formulated properly. On the other hand, most 
existing work on learning path generation is content-based. They only focus on 
what learning content is to be delivered at each learning path step, and pedagogy 
is not incorporated. Such a modeling approach limits student learning outcome to 
be assessed only by the mastery level of learning content, without supporting other 
forms of assessments, such as generic skills. In this chapter, we propose a fine-
grained outcome-based learning path model to allow learning activities and their 
assessment criteria to be formulated by the Bloom’s taxonomy. Therefore, peda-
gogy can be explicitly defined and reused. Our model also supports the assessment 
of both subject content and generic skills-related learning outcomes, providing 
more comprehensive student progress guidance and evaluation.

5.1  Introduction

Learning path defines how a course of study is proceeded. It comprises steps for 
a student to go through in order to conduct learning. At each step, the student 
studies certain learning content (i.e., what to learn), which should be dissemi-
nated through suitable pedagogy (i.e., learning and teaching approaches). Student 
assessment should also be included for evaluating student learning progress. 
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Practically, a student is expected to achieve various learning outcomes, which are 
broadly categorized into subject-specific knowledge and skills, and generic skills. 
Specifically, subject-specific knowledge refers to facts and concepts within a sub-
ject domain. Subject-specific skill refers to the learning outcome of formulating, 
evaluating, and synthesizing matters within a subject. Such skill may share among 
subjects of similar nature. Generic skill refers to the learning outcome that can be 
applied to various subject domains and student's future development.

Pedagogy formulation and student assessment are main challenges for learning 
path construction. Considering the practical situations, we use the teaching unit 
COMP2161 Computer Systems II in our school as an example. We specify “To 
gain detailed understanding of the difficulties encountered with setting up large 
computer networks” as a subject-specific knowledge, “To be able to implement 
and work with different types of computer systems” as a subject-specific skill, 
and “To be able to communicate technical information in a scientific fashion” as 
a generic skill, to evaluate part of the student learning outcomes. Subject lecturers 
are required to design suitable learning activities (i.e., how to learn) helping stu-
dents to achieve these outcomes, and proper assessment methods to evaluate stu-
dent learning progress.

In terms of pedagogy, we offer two main types of learning activities: lecture 
and practical, where their pedagogies are “learn by perceiving oral presentation” 
and “learn by experimenting,” respectively. Although lecturers can implement 
more fine-grained pedagogies or even other types, such pedagogies are hard to 
be formally formulated and reused. In terms of student assessment, defining and 
assessing subject-specific knowledge is easy, as it is directly tied with the design 
of teaching subjects. However, subject-specific and generic skills are usually left 
as written documentation rather than really used for assessing student achieve-
ment, since they may require evaluating student learning outcomes achieved from 
a set of relevant or even all subjects, which is not trivial for implementation.

Existing work on learning path generation for e-learning [Chen08, Kara05, 
Limo09] is generally content-based without modeling pedagogy or learning activ-
ity. Students are usually only assessed by the mastery level of the learning content 
in each learning path step. As subject-specific and generic skills are dependent on 
learning activities, therefore, such skills cannot be properly assessed.

SCORM [SCORM] and IMS-LD [IMSLD] are popular standards defining data 
structures for learning paths. SCORM follows the content-based approach with-
out supporting the assessments of generic skills. Although IMS-LD includes learn-
ing activity in their data structure, it only provides a container to hold learning 
activities without offering any facility to help defining their semantics. As a result, 
teachers are responsible for manually specifying such definitions, which may be 
hard to reuse.

In this monograph, we propose a fine-grained outcome-based learning path 
model for teachers to formulate a course of study as a sequence of learning activi-
ties. This allows pedagogy to be explicitly formulated. We also introduce a two-
level learning path modeling to facilitate the assessments of different forms of 
student learning outcomes, including subject-specific knowledge and skills, and 
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generic skills. Our work does not deal with the problem of adaptive learning. Our 
contributions are as follows:

• Pedagogical support: We model a learning activity as a composition of learn-
ing tasks enabling teachers to construct the learning and teaching approaches 
in explicit forms. We also model learning tasks to tie with learning outcomes 
based upon the Bloom’s taxonomy [Bloo56, Krat73, Simp72], such that teach-
ers may be able to formulate comprehensive assessment criteria, as they do in a 
conventional classroom teaching environments.

• Student assessment: We introduce a two-level learning path modeling, allow-
ing teachers to assess collective student learning outcomes generated from 
individual learning activities or a specific type of learning outcome generated 
dispersedly from a set of relevant learning activities.

• Reusability: Our model allows teachers to reuse their teaching and assessment 
approaches. It is done by applying a designed learning activity structure to gov-
ern the dissemination of another set of learning contents. Given that we formu-
late pedagogy through a mathematical model, the weight associated with each 
learning task becomes an intuitive manipulator for teachers to adjust their teach-
ing and assessment approaches for the new learning activity.

We propose a fine-grained outcome-based learning path model. The model is 
defined mathematically such that the setting of pedagogy and student learning 
outcome assessment can be explicitly formulated and reused. Considering the 
fact that a learning path has two functionalities, specifying a student learning pro-
cess and connecting student learning outcomes for evaluating student progress, 
this chapter defines learning paths with two levels, namely learning activity (LA) 
and learning task (LT) levels (Sect. 4.3.2), such that student achievement in both 
LA-specific and different types of learning outcomes can be comprehensively 
revealed.

5.2  Overview of the Learning Path Model

Existing learning path generation methods are usually content-based. As illus-
trated in Fig. 5.1a, b, they construct learning paths based on knowledge elements 
(KEs), which are delivered through lecturing and assessed by question–answering 
(Q&A). However, pedagogy is generally not included in their methods. Assessment 
of different forms of learning outcomes, such as generic skills, is also not properly 
supported. Such deficiencies impose significant restrictions on these methods for 
modeling how students are being trained or assessed and rely on teachers to work 
out these by themselves. Such burden partly explains why learning path generation 
systems are not widely adopted for learning and teaching in practice.

To model the student learning process, we propose using learning activities 
(LAs) [Cono05] instead of KEs to form the building blocks of a learning path as 

5.1 Introduction
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shown in Fig. 5.1c and model each KE as a set of LAs. As shown in Fig. 5.1d, this 
formulation allows a teacher to govern KE delivery by setting up flow controls to 
LAs, including sequential, parallel, and conditional. The introduction of LAs facili-
tates teachers to define their teaching strategies, i.e., how they disseminate a KE. 
Learning contents associated with each LA can be obtained from the Web or cre-
ated by teachers.

To support modeling pedagogy of a LA, as illustrated in Fig. 5.1e, we define a 
LA to comprise a set of learning tasks (LTs), where a LT is designed to train and 
assess a specific type of learning outcome (LO). We associate a weight, wi (rang-
ing between [0, 1] and ∑wi = 1), to each LT indicating its importance in a LA, 
which implicitly defines the amount of time spending on the learning task and the 
weighting of its assessment. Pedagogy of a LA can be adjusted by changing LTs 
and their weights.

To model LO requirement of a LA, each LT in the LA is required to assign with 
a SA as the assessment criteria. Note that two different LTs are not restricted to 
be assessed by different types of LOs. The student learning outcome from a LA 
is then defined as a weighted composition of the SAs. With the two-level learning 
path modeling, student assessment can be conducted at each LA or by a specific 
learning outcome. The LA-level learning path helps assessing student learning pro-
gress made from a series of LAs, while a LT-level learning path connects corre-
sponding LTs from relevant LAs to help evaluating student learning outcomes or 
skill-specific learning progress.

To support time management in the learning process, we also divide the time 
span of a LA-level learning path into a finite sequence of time slots and refer 
to each time slot as a learning stage (LS), where a LA may be taken place in a 

(a)

(b)

(c)

(d)

(e)

Fig. 5.1  The learning path formulation in existing work and in our work. a KE in existing work. 
b Learning path in existing work. c Learning path in our work. d Example KEs in our work.  
e Learning activity in our work
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designed LS or span over a number of LSs. Based on this definition of LS, we 
define a student’s learning progress as the accumulated learning outcome over 
some consecutive LSs.

In contrast to [Cono05], our model explicitly defines the relationship among 
learning tasks, formulates their assessments by Bloom’s taxonomy, and defines 
how such assessments are combined to form the learning outcome of a learning 
activity. We also uniquely support student learning outcome-specific assessment 
across a series of learning activities. Table 5.1 summarizes the major elements 
of our learning path model. We will elaborate their details in the following 
subsections.

5.3  Formal Definitions

Student Learning Outcome: Student learning outcome refers to a set of attributes 
describing whether a student has acquired them after studying something. These 
attributes may indicate whether the student can only recall the subject content or 
may apply subject knowledge to solve problems in unseen situations, for instance. 
In practice, it is a popular approach to assess learning outcomes as a composition 
of different levels of learning outcomes. For example, a teacher may set different 
types of question in an examination paper to assess different learning outcomes. 
Research on learning outcomes was first conducted systemically by a group of 
educators led by Bloom [Bloo56]. They produced the Bloom’s taxonomy to clas-
sify thinking behaviors to six cognitive levels of complexity. This taxonomy has 
been extended to cover three domains: cognitive (knowledge based), affective 
(attitudinal based) [Krat73], and psychomotor (skills based) [Simp72]. It forms a 
comprehensive checklist guiding a teacher to ensure that a course design can help 
training up students with all necessary abilities. Table 5.2 summarizes the Bloom’s 
taxonomy by listing the main characteristics of different learning outcomes 

Table 5.1  Definition of major elements

Abbr. Key element Definition

SA Student ability Set of attributes indicates how a student makes progress 
in learning

LT Learning task A fine-grained type of training helps a student achieve a 
specific ability

LA Learning activity A training unit comprises a set of LTs to define its 
teaching and learning approach

LAC Collaborative learning 
activity

A specific type of LA designed for students to learn 
under a group setting

LP Learning path Sequence of steps for a student to go through and build 
up knowledge and skills

LS Learning stage Finite period of time defined within the time span of a 
learning path

5.2 Overview of the Learning Path Model
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according to the Bloom’s domains (columns) and their corresponding levels of 
complexity (rows).

To help formulating the assessment criteria of student learning, we propose 
using student outcomes from the Bloom’s taxonomy as the basis for assess-
ment since they can comprehensively quantify the levels and the types of student 
achievement. To define the criteria, a teacher needs to identify a set of student 
learning outcomes used for assessment and puts them into a Student Learning 
Outcomes Table (SLOT), which is defined as follows:

where Ai refers to a specific kind of student learning outcome and |SLOT| is the 
cardinality of SLOT. To facilitate the learning outcome assessment, for each learn-
ing outcome, two Bloom’s taxonomy-related functions Bc(Ai) and Bd(Ai) are set up 
for retrieving the level of complexity and the Bloom’s taxonomy domain, respec-
tively. For example, the learning outcome of “comprehension” has the complexity 
level of 2 in the “cognitive” domain, i.e., Bc(Ai) = 2 and Bd(Ai) = Cognitive. To 
gain a better idea on how a suitable set of learning outcomes can be defined in 
terms of Bc(Ai) and Bd(Ai), the reader may refer to the Bloom’s taxonomy [Bloo56, 
Krat73] or some quick references available on the Web, such as [Bloom].

Although Bloom’s taxonomy covers a comprehensive list of learning outcomes, 
which can maximize the benefits of our model, we expect that some teachers may 
prefer using a simpler learning outcome model or even define their own lists. This 
will not affect any functionality of our model. In this sense, new versions of the 
Bloom’s taxonomy are also applicable to our model.

Learning Task: To allow a fine-grained formulation of the learning process of 
KEs, we introduce the idea of learning task, which is designed for training up a 
student with an outcome-specific learning outcome. By putting together a set of 
learning tasks, a learning activity is formed. Similar to the selection of learning 
outcomes, a teacher also sets up a learning task table (LTT), which comprises a 
list of learning tasks for constructing learning activities as follows:

where Ti is a learning task and |LTT| is the cardinality of LTT. A function Sa(Ti) 
is associated with each learning task Ti to return a student’s level of achievement. 

(5.1)SLOT =
{

A1, . . . ,A2, . . . ,A|SLOT|

}

for 1 ≤ i ≤ |SLOT|

(5.2)LTT =
{

T1, . . . ,Ti, . . . ,T|LTT|
}

for 1 ≤ i ≤ |LTT|

Table 5.2  A summary of the Bloom’s taxonomy

Level of complexity Cognitive (knowledge) Affective (attitude) Psychomotor (skill)

1 Knowledge Receiving Imitation

2 Comprehension Responding Manipulation

3 Application Valuing Precision

4 Analysis Organizing Articulation

5 Synthesis Characterizing by value 
or value concept

Naturalization

6 Evaluation
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The mapping from LTT to SLOT is subjective; i.e., a teacher can design different 
types of learning tasks to train up students with the same type of learning outcome.

The design of learning tasks is typically course dependent. As we do not expect 
teachers having comprehensive knowledge in the Bloom’s taxonomy due to its 
complexity, to help teachers to proceed with the design systematically and in an 
easier way, we suggest that a teacher may optionally consider whether a learn-
ing task is set up for teaching declarative or functioning knowledge [Bigg07]. 
Declarative knowledge relates to the study of factual information, while func-
tioning knowledge relates to the study of how something works. For example, to 
design learning tasks for teaching declarative knowledge, reading can be included 
to help assessing learning outcome in memorization, while an in-class quiz can 
be set out to assess student understanding. Table 5.3 shows some sample learn-
ing tasks along with the corresponding types of knowledge, learning outcomes for 
assessment, and the Bloom’s domains and levels of complexity.

Learning Activity: When designing a course, a teacher typically establishes a 
set of learning activities, such as lecture, tutorial, or practical, for students to learn 
KEs through different ways. In our formulation, a learning activity (LA) is formed 
by a row vector of learning tasks, 

[

T1, . . . ,Ti, . . . ,T|LA|
]

, such that:

where [·]T is a transpose function, wi is a weight to indicate the importance of 
learning task Ti, ∑wi = 1, and |LA| is the cardinality of LA. The weights associ-
ated with these learning tasks will be added up to 1 or 100 %, meaning that if the 
weight of a learning outcome (which is associated with one of the learning tasks) 
has been increased, the rest of the learning outcomes will be decreased in its con-
tribution to this 100 %, and vice versa. Specifically, if the weight of a learning out-
come w has been adjusted to become w′, the contribution of the rest of the learning 
outcomes will become (1 – w′)/(1 – w). Therefore, the weight of any of the rest 
of the learning outcomes wr will be adjusted to become wr · (1 – w′)/(1 – w). The 
learning outcome (LO) of a learning activity (LA) can then be assessed by:

(5.3)LA =
[

w1, . . .wi, . . . ,w|LA|

] [

T1, . . . ,Ti, . . . ,T|LA|
]T

for 1 ≤ i ≤ |LA|

(5.4)
LO =

[

w1, . . . ,wi, . . . ,w|LA|

][

f1(Sa(T1)), . . . ,fi(Sa(Ti)), . . . ,f|LA|
(

Sa
(

T|LA|
))]T

Table 5.3  Examples of learning tasks

Type of knowledge Learning task Student learning out-
comes for assessment

Bloom’s taxonomy 
correspondence

Declarative Reading Memorization Cognitive, level 1

In-class quiz Understanding Cognitive, level 2

Peer-teaching Understanding Cognitive, level 2

Functioning Case presentation Understanding Cognitive, level 2

Performing a case Application Cognitive, level 3

Computer program design Synthesis Cognitive, level 5

5.3 Formal Definitions
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where fi() is a function to evaluate the student’s level of achievement in a given 
learning outcome. The weights used in both (5.3) and (5.4) are the same ones, as 
the weight associated with a learning task also defines the importance of the asso-
ciated learning outcome of the learning task. Note that we refer Ti as a symbol 
representing learning task rather than treating it as a mathematical scalar for com-
putation, although in implementation, Ti may be a scalar for storing the ID of a 
learning task.

Instead of asking teachers to create new evaluation functions, they may reuse 
existing ones, such as simple marking (quantitative assessment), grading (quali-
tative assessment), or performing evaluation through the item response theory 
[Chen06], if they are applicable to the types of learning outcome. As such, our 
learning path model can fit different types of assessment methods and inference 
algorithms, which could be subject-specific or a combination of methods for per-
formance evaluation. Note that within a learning activity, each learning task is typ-
ically designed for training students up with a different type of student learning 
outcome.

In fact, modeling a LA is not straightforward. Given that different teachers may 
adopt different teaching approaches, and different students may have different 
learning styles, the actual tasks used even in the same type of LA, e.g., a lecture, 
can be very different. Such a difference also appears in certain type of LA at dif-
ferent subject disciplines. This suggests that we need a more fine-grained model 
to formulate LAs to cope with practical needs. Therefore, we propose to formu-
late a LA as a set of learning tasks. It offers course designers or teachers a way to 
properly define teaching approaches for delivering KEs. While a LT is an imple-
mentation of a low-level teaching technique that focuses on training up and assess-
ing students with certain learning outcome, such as an informal in-class quiz and 
feedback, a LA is an implementation of a high-level teaching strategy that course 
designers or teachers use to approach a KE for training up students with a compo-
sition of knowledge and skills.

Our model offers a more accurate modeling of learning activities in terms of 
learning process and learning outcome requirements. Particularly, we formulate a 
learning activity as a container of a suitable set of learning tasks, such that it can 
be easily customized by altering its learning tasks to fit a certain subject discipline 
or the student’s learning characteristics. This feature helps accelerating the pro-
cess of producing new learning activities from existing ones. It is also critical to 
our previous work on adaptive course generation [Li10], which applies filtering 
technique to arrange tailor-made learning content for different students at differ-
ent learning stages, extending it to further support teaching and learning approach 
adaptation.

Collaborative Learning Activity: A collaborative learning activity (LAC) is a 
specific LA designed for students to learn together in a group setting. In a normal 
LA, its learning tasks and assessments are designed for an individual student. In 
contrast, a collaborative learning activity comprises two parts: one for an individ-
ual student in the group and the other one for the whole group. They apply to both 
learning tasks and their assessments. Specifically, this kind of learning activity 
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comprises two types of learning tasks, a single set of collaborative learning tasks 
ψC and multiple sets of individual learning tasks ψi for 1 ≤ i ≪ |S|, where |S| is 
the number of students participating in the group. Mathematically, ψC and ψi are 
one-dimensional vectors of learning tasks (as Eq. 5.5.1) designed to be performed 
by a group of students together and by an individual student Si within the group, 
respectively. To facilitate the assessment of learning outcomes, �C and �i are one-
dimensional vectors of weights (as Eq. 5.5.2) used to indicate the importance of 
learning tasks in ψC and ψi, respectively. Hence, a collaborative learning activity, 
LAC

i , designed for a student Si is defined as follows:

where all elements in both �C and �i sum up to 1. TC
1 , . . . ,T

C
|C| are the set of learn-

ing tasks needed to be completed collaboratively, and Ti
1, . . . ,T

i
|i| are the set of 

learning tasks needed to be completed individually. wC
1 , . . . ,w

C
|C| and wi

1, . . . ,w
i
|i| 

are the corresponding weights of importance for collaborative learning tasks and 
individual learning tasks, respectively. Mathematically, the definitions of both 
�C�

T
C and �i�

T
i  are equivalent to Eq. (5.3), and therefore, the student learning 

outcome can thus be evaluated by Eq. (5.4) when proper learning outcome evalu-
ation functions are in place. We refer collaborative learning tasks in Eq. (5.5) as 
symbols rather than treating them as mathematical scalars for computation. From 
the teacher’s perspective, the entire collaborative learning activity in a group set-
ting is represented as follows:

Note that the learning outcome of a student can be evaluated in the same way 
regardless of whether a collaborative learning activity exists; since collaborative 
learning activity only introduces certain learning tasks having their assessment 
results shared by some students, the assessment results collected from such learn-
ing tasks can still be processed in the same way as those collected from learning 
tasks conducted by individual students.

(5.5)LA
C

i
=

[

�C�
T

C

�i�
T

i

]

(5.5.1)�C =

[

TC
1 , . . . ,T

C
|C|

]

and �i =

[

Ti
1, . . . ,T

i
|i|

]

(5.5.2)�C =

[

wC
1 , . . . ,w

C
|C|

]

and �i =

[

wi
1, . . . ,w

i
|i|

]

(5.6)LA
C
=
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Learning Path: Learning path (LP) is for specifying a student learning steps 
and linking student learning outcomes for progress evaluation. We define a LA 
level and a LT level of learning paths. The LA level  of learning path (LP) is made 
up of an organized set of learning activities. It is modeled as a directed graph, 
LP = (V, E), defining the course of study for a student. It also links the learning 
outcomes of LAs to facilitate student learning progress evaluation. Specifically, E 
is the set of edges, while V is defined as follows:

where LAi is a learning activity and |V| is the cardinality of V. If two learn-
ing activities have a prerequisite relation, they will be connected by an edge in 
E. Our formulation is backward compatible with KE-based learning path mod-
els. Specifically, as illustrated in Fig. 5.1d, we can group relevant LAs together 
with their flow control structures to form a KE, turning our learning path model 
to become KE based. Therefore, it is possible to integrate existing learning path 
generation system [Chen08, Kara05, Limo09] with our learning path model. 
Particularly, as we offer a fine-grained modeling on student assessment, this makes 
more comprehensive student progress information available and that learning path 
generation results can be enhanced when student learning progress information 
is considered [Chen06, Limo09]. On the other hand, a LT-level learning path is 
designed to link certain learning tasks defined in relevant learning activities, where 
those learning tasks are designed to collectively train up and assess a specific type 
of learning outcome. In terms of the structure, similar to the LA level of learning 
path, a LT-level learning path is also a directed graph, but its elements are LTs 
rather than LAs. As an illustration, examples of a LA “Computer Organization 
(LT)” and its LTs are shown in Sect. 8.1 of  Fig. 8.3a, b, respectively. An example 
of a LA level of learning path is shown in Fig. 8.1. Based on this learning path, 
two sample LT-level learning paths, which assess communication skill and writing 
skill of a student, respectively, are shown in Figs. 8.5 and 8.6.

Learning Stage: To provide teachers a metric to control the number of learn-
ing activities taking place at any period of time and to schedule learning activities 
properly, we divide the time span of a learning path into a finite sequence of time 
slots and refer to each time slot as a learning stage (LS). A learning activity may 
take place in a designated learning stage or may span over a number of learning 
stages. The definition of learning stage well matches the timetabling concept well 
in practice, where a teacher may divide an entire course taking place with a finite 
sequence of time slots, such as teaching weeks or semesters, and assign a proper 
number of learning activities to each time slot. During each learning stage, a stu-
dent only needs to study a subset of KEs through designated learning activities. To 
indicate the starting learning stage (sLS) and ending learning stage (eLS) of a LA, 
we set up two functions, LSs() and LSe(), respectively, as follows:

(5.7)V =
{

LA1, . . . ,LAi, . . . ,LA|V |

}

for 1 ≤ i ≤ |V |

(5.8)sLS = LSs(LA)

(5.9)eLS = LSe(LA)

http://dx.doi.org/10.1007/978-981-10-1944-9_8
http://dx.doi.org/10.1007/978-981-10-1944-9_8
http://dx.doi.org/10.1007/978-981-10-1944-9_8
http://dx.doi.org/10.1007/978-981-10-1944-9_8
http://dx.doi.org/10.1007/978-981-10-1944-9_8
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To govern the student learning process, time constraints and dependencies are 
often set up among the learning activities. The time constraint is defined based on 
the concept of learning stages. If two learning activities, LAj and LAk, are speci-
fied to start at the same learning stage, then they are satisfied with the following 
constraint:

We may also set up some rules using LSs() and LSe() to verify whether LAj and 
LAk overlap each other at some learning stages. These time constraints are use-
ful for verifying the coexistence dependency of LAj and LAk. We need these rules 
particularly when we need to make sure that a set of chosen learning activities are 
conducted in parallel at some point. On the other hand, if LAj is designed to com-
plete before LAk starts, then we have:

This time constraint can be applied as a rule to ensure the prerequisite relation 
between LAj and LAk.

Student learning progress: Learning progress describes how much knowl-
edge or skill that a student has acquired from a course over certain learning stages. 
With Eq. (5.4), learning outcome can be evaluated as a weighted composition of 
learning outcomes achieved from a learning activity. Therefore, student learn-
ing progress can be computed as an accumulated learning outcome over certain 
consecutive learning stages, by following the LA-level learning path based on a 
selected group of learning activities for assessing subject-related outcomes. 
Alternatively, we may evaluate a student’s learning progress on a specific learn-
ing outcome based on a LT-level learning path. This allows assessing the generic 
outcomes or transferable skills [Dodr99], which are typically related to personal 
effectiveness, e.g., communication and teamwork skills. This feature generally 
cannot be achieved in existing methods as they use KEs to construct learning 
paths.
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In the last chapter, we mainly formulate learning activities to construct the learn-
ing path based on learning outcomes in terms of how to learn. We still need to 
design learning resources forming the learning contents that are used in a learn-
ing path to define what to learn. Manually designing the learning resources is a 
huge work to teachers and quite time consuming. To solve this problem, we can 
make use of the Web resources by turning them into well-structured learning 
resources for students with different knowledge backgrounds and knowledge lev-
els. So the key problem of constructing personalized learning path is to generate 
learning resources by identifying the knowledge structure and attributes of these 
Web resources, and to correctly deliver them to students. In this chapter, we show 
how we construct well-structured learning resources from loosely connected Web 
resources by constructing a set of three different networks to formulate topics, 
keywords, and the actual learning resources. Such formulation is used to generate 
learning paths with different abstractions of knowledge, helping students to better 
understand the knowledge covered by the learning resources.

Nowadays the Internet virtually serves as a library for people to quickly retrieve 
information (Web resources) on what they want to learn. Reusing Web resources 
to form learning resources offers a way for rapid construction of self-paced or 
even formal courses. This requires identifying suitable Web resources and organ-
izing such resources into proper sequence for delivery. However, getting these 
done is challenging, as they need to determine a set of Web resource properties, 
including the relevance, importance, and complexity of Web resources to stu-
dents as well as the relationships among Web resources, which are not trivial to 
be done automatically. Particularly each student has different needs. To address 
the above problems, we present a learning path generation method based on the 
Association Link Network (ALN), which works out Web resource properties by 
exploiting the associations among Web resources. Our experiments show that the 
proposed method can generate high-quality learning paths and help improving stu-
dent learning.

Chapter 6
What to Learn?

Learning Contents—Method for Learning Path 
Construction Based on Association Link Network

© Springer Science+Business Media Singapore 2017 
F. Yang and Z. Dong, Learning Path Construction in e-Learning,  
Lecture Notes in Educational Technology, DOI 10.1007/978-981-10-1944-9_6
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6.1  Introduction

Learning resources (LRs) refer to materials that help students to learn and under-
stand certain knowledge. Such LRs can be constructed by different types of media, 
including text, audio, and video. Typically, producing LRs is very time consum-
ing. With the availability of the Internet, such situation may be improved, as infor-
mation covering a huge variety of ready-made knowledge, namely Web resources, 
is made available. Examples of Web resources include materials from Wikipedia, 
BBC, and Reuters. Reusing such resources may help teachers to significantly 
reduce their time on producing LRs and may also facilitate the generation of self-
paced courses. However, Web resources may be loosely connected without any 
well-defined structure or relationship and may also be redundant. It is not trivial to 
transform Web resources into LRs, as relationships among LRs are required to be 
well defined and LRs should be arranged to deliver in a proper order for a particu-
lar student to study.

Identifying relevant LRs is essential to learning path generation. Existing works 
determine such a relevancy by matching student-specific requirements, including top-
ics to learn, learning preferences, or constraints [Farr04, Dolo08] against the charac-
teristics of LRs, which can be maintained by a list of attributes, such as related topic 
and difficulty level, or additionally by a structure that defines how LRs are related 
among each other [Meli09]. Learning path generation methods aim at arranging 
selected LRs into a proper sequence for delivering to students, so that they can learn 
effectively in terms of minimizing the cognitive workload. Basic work [Farr04] only 
considers attributes associated with each LR, such as its related topic. More advanced 
works [Kara05, Chen08] consider the structure among LRs which facilitates them 
to model the cognitive relationships among LRs. Such relationships are fundamen-
tal to learning effectiveness. However, structures among LRs are not trivial to build. 
Existing work considers using predefined structures [Kara05] or generating LR struc-
tures based on pretest results [Chen08], which involves significant human efforts.

In order to assess student learning performance and see whether they could 
achieve their learning outcomes, we need to evaluate them by tests. Normally, 
teachers need to manually create tests for students [Huan07]. However, it is quite 
time consuming and causes a huge work for teachers. And this issue makes it 
impossible to design personalized tests if teachers have to design questions on 
their own. [Chen08] prepared a database to store a lot of questions beforehand, 
so they can generate tests by randomly selecting a set of questions. But it is very 
expensive to collect a database of questions, and they cannot generate personalized 
tests for different students. It is necessary to automatically generate tests, in order 
to make the teaching and learning more intelligent.

We present a learning path (LP) generation method based on the Association Link 
Network (ALN) [Luo08A, Luo11], which discovers knowledge structure among 
Web resources based on association. This allows teachers to reuse Web resources 
forming LRs, where relationships among LRs are automatically constructed. We also 
proposed an automatic test generation scheme (ATGS), which is constructed based 
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on Association Link Network (ALN). It contains 3 abstraction levels of ALN, i.e., 
keyword, topic, and learning resource ALN, to show the relationships of learning 
resources. Our method applies the 3 abstraction levels of ALN to analyze the rela-
tions between concepts, and use the relations of learning resources to refine the rela-
tions of concepts and make them more precise and specific. Also, the number of 
keywords and the number of relations with other keywords decide the complexity of 
a learning resource, so that we can distribute appropriate learning resources to stu-
dents who have the corresponding knowledge levels. This scheme can provide auto-
matically generated tests for different types of students according to their different 
knowledge levels. Thus, students can build up their knowledge models through com-
pletely learning these knowledge concepts. In order to improve the learning quality, 
we consider the test as a part of cognitive learning process where learning is guided 
by the cognitive process.

The main contributions of our research study in this chapter include:

• We apply ALN to transform Web resources into well-structured LRs, where the 
pedagogical attributes of LRs, including their knowledge domain, importance, 
and complexity, can be automatically determined. This allows us to construct 
a teacher knowledge model (TKM) for a course and generate adaptive learning 
path to each student. We also maintain a student knowledge model (SKM) to 
monitor student learning progress.

• We model the TKM as well as the LP by 3 ALNs, namely LR, topic, and key-
word-based ALNs. This modeling allows students to perceive the relationships 
among LRs through different abstraction levels, which can help students to min-
imize their cognitive workload during the learning process.

• We construct an automatic test generation scheme to automatically assess stu-
dent understanding against a LR within a UoL. We use the associations between 
topics or keywords as the rules to test whether students can build up correct 
associations between major concepts, and we distribute LRs with different com-
plexities to students with different knowledge levels. This automatic scheme 
saves a lot of efforts to manually design tests.

• We use cognitive theory of learning, which contains three phases, to control stu-
dent learning process, where the test is considered as one of the phases. In the 
process of learning, students are required to complete the learning of a knowl-
edge element through repeating the three phases. So learning quality is con-
trolled by the cognitive learning process.

6.2  The Teacher Knowledge Model

The Association Link Network (ALN) [Luo08A, Luo11] is designed to automati-
cally establish relations among Web resources, which may be loosely connected 
without well-defined relations. ALN defines relations among Web resources by 
analyzing the keywords contained in Web resources. Such relations are referred 
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as associations, which link up Web resources and ALN to describe the semantic 
relationships of Web resources, and turn Web resources into LRs. In our work, we 
further exploit such associations to automatically formulate some key attributes of 
LRs, including their importance and complexity, which are the fundamentals to 
LP generation. The LPs comprise a set of sub-ALNs, which are parts of the whole 
set of ALNs, respectively, namely LR, topic, and keyword, to help students to per-
ceive LRs together with their multiple levels of relationships. By following such 
learning paths, the cognitive workload of the student on learning can be greatly 
reduced. To set up a measure for evaluating student learning progress, we define 
the set of ALNs that link up all available LRs of a course as the teacher knowl-
edge model (TKM). We also maintain a student knowledge model (SKM) (Ref. 
Sect. 6.3) to describe student learning progress. SKM comprises the system rec-
ommended LP and the part of the LP that a student has finished studying, together 
with all relevant LRs. SKM also comprises a student profile, indicating the stu-
dent’s knowledge levels and preferred topics.

Technically, the foundation of ALN is the association of keywords, where 
there exists an association link between two keywords appear in the same para-
graph. To facilitate the formulation of LRs and the learning paths, we extract the 
most important keywords identified from a set of LRs as topics, where the asso-
ciation link between two topics is inherited from that between the correspond-
ing keywords. The topics are used as a means to determine whether any two 
knowledge concepts are related. In contrast to a topic, a keyword only indicates 
a certain aspect of a piece of knowledge concept. On the other hand, there exists 
an association link between two LRs if some keywords contained in the two 
LRs are associated with each other. As an ALN represents the network of a set 
of nodes {c1, c2, · · · , cn} by their association, where n is the number of nodes. 
Mathematically, an ALN is represented by a matrix of association weights awmn

, where each formulates the association relation between a cause node cm and an 
effect node cn. It is defined as in Eq. 6.1:

Particularly, LRs, topics, and keywords are all modeled by ALNs. An ALN can be 
automatically and incrementally constructed by adding or removing nodes. When 
a new node is added to an ALN, we need to check such a node against all exist-
ing nodes in the ALN, identifying whether the nodes are relevant and computing 
the association weights between the newly added node and each of the relevant 
existing nodes in the ALN. When removing a node, all association links induced 
by the node will be removed. This incremental property makes adding new Web 
resources to form new LRs or removing LRs to form a course easily. We now 
depict the details of the construction of the three different ALNs in our system.

To turn a set of Web resources into learning resources, we initially extract their 
keywords and construct the association links among the keywords by Eq. 6.2.

(6.1)ALN =







aw11 . . . aw1n

...
. . .

...

awm1 . . . awmn
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where awij is the association weight from cause keyword ki to effect keyword kj, ki 
is associated with kj when they exist in the same paragraph pm [Luo08A]. An asso-
ciation weight, which is also the P

(

kj|ki
)

, indicates the probability that the occur-
rence of cause keyword ki leads to effect keyword kj in the same paragraph at the 
same time. bir is the probability that the occurrence of cause keyword ki in the rth 
sentence leads to the occurrence of effect keyword kj in the same sentence. n is 
the number of sentences in the paragraph pm. We apply TFIDF Direct Document 
Frequency of Domain (TDDF) [Luo08B] to extract domain keywords from a set 
of Web resources, where keywords are texts that appear in a good number of Web 
resources; i.e., the document frequency is higher than a threshold. The associated 
relation is determined by A−→α B, meaning that if node A is chosen from an ALN, 
node B will also be chosen with the probability α.

We then extract and link up topics from the LRs. Topics refer to the most 
important keywords, which have the highest numbers of association links than the 
other keywords, meaning that they can represent the most important information 
of a set of LRs. In our experiments, we select the top 20 % of keywords form-
ing the topics. Pedagogically, topics model the knowledge concepts covered by 
the LRs, while keywords are associated with a topic as the topic’s key attributes, 
which help explaining why certain knowledge concepts are related to some others. 
This modeling is much comprehensive than existing work, as they only associate 
LRs based on topics.

To construct LRs for a course, we follow the knowledge domain (i.e., a set of 
topics) of the course and select relevant Web resources that match the knowledge 
domain, turning such resources into LRs. We have conducted experiments on 
our method using 1085 Web resources about health information from www.reu-
ters.com/news/health. We do not create LRs for similar Web resources in order to 
avoid students' spending time on learning similar contents repeatedly. We check 
Web resource similarity based on their keywords and association links. In the 
implementation, we pick the first selected item of such Web resources to create 
a LR and stop creating further LRs for any Web resource that has a high similar-
ity. Figure 6.1 shows part of the keyword ALN that we have created, where each 
node represents a keyword, and each edge, namely an association link, represents 
the existence of an association between two nodes. Actually, in Fig. 6.1, each edge 
has its value of association weight in the matrix of ALN, indicating the association 
degree between the two keywords that are connected by the edge. The importance 
of a node is directly proportional to the number of association links connecting to 
it. Note that the edges showing in the figure do not imply any association weight.

TKM formulates the overall knowledge structure of a course based on topic, 
keyword, and LR ALNs. Research [Shaw10] shows that formulating concepts into 
a knowledge map, which is a graph having concepts as nodes and they are con-
nected by links that model the relationships between two concepts, can signifi-
cantly improve student understanding, particularly when comparing with studying 

(6.2)awij = P
(

kj|ki
)

=

n
∑

k=1

bir/n
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http://www.reuters.com/news/health
http://www.reuters.com/news/health
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through LRs collated by a simple Webpage browse-based structure. Our ALN-
based knowledge structure is similar to a knowledge map. Instead of having free-
style labeling to formulate the relationship (i.e., the link) between two concepts, 
we use association weight to model quantifiable relationships among concepts. In 
addition, we have three different types of ALNs representing different abstraction 
levels of a set of concepts, i.e., topic, keyword, and LR ALNs, where the relation-
ships among such ALNs are also explicitly defined, i.e., given a node in an ALN, 
the corresponding nodes in the other two ALNs are well defined. This implies that 
it is easy to retrieve LRs based on student-preferred topics and the knowledge 
structure for a set of LRs.

The ALN structure also allows us to automatically compute the complexity and 
the importance of each LR, avoiding instructors or course designers to manually 
define such attributes, which is extremely time consuming when there are a mas-
sive number of LRs to deal with. More specifically:

• We compute the complexity of a LR, which can be used to match student 
knowledge level, based on the algebraic complexity of human cognition that 
associates with the complexity of both keywords and association links of the LR 
X as in Eq. 6.3.

(6.3)�
T
X =

D−1
∑

K=0

Wk · �
k
X

Fig. 6.1  An illustration of a keyword-based ALN
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where �TX is the text complexity of LR X in terms of keywords, D is the number of 
keywords in LR X. �kX  is the number of degree-k association, i.e., the number of 
keywords having k association links connected to LR X, which indicates the com-
plexity of association link. Wk is the number of keywords having degree-k associa-
tion, which indicates the complexity of keywords. A LR is low in complexity if it 
has low number of association links while such links are of low degrees.

• The number of association links indicates the number of relationships existing 
between a node and its connected nodes. The association weight indicates how 
strong a node is related to another one. We therefore use the association weight 
and the number of association links to indicate the importance of a node.

6.3  Student Knowledge Model and Personalized  
Learning Path

Student knowledge model (SKM) formulates student learning progress. It com-
prises a dynamically generated personalized LP and a set of student characteris-
tics. A personalized LP is technically a subset of the TKM. Student characteristics 
that we have considered include knowledge background, knowledge level, and 
preferred knowledge concepts, which are learned topics, learning performance on 
such learned topics, and topics that a student is interested or can effectively learn, 
respectively. The algorithm for personalized LP generation is as follows:

(1) Initialization: Based on the topic ALN of TKM, we determine the starting 
point of a personalized LP according to the initial knowledge of a student, i.e., 
the topics learned. If such information does not exist, we consider the topics, 
where their complexity matches the student’s knowledge level, and select the 
most important one as the starting point. This ensures the most suitable and 
fundamental knowledge is selected for a student to start learning. We compute 
the complexity of a topic by considering the average complexity of all LRs 
associated with the topic as follows:

 where DT (x) represents the complexity of topic x, and �T
(

LRp

)

 
(

LRp

)

 is the 
complexity of LR p (ref. Eq. 6.3).

(2) Incremental LP Generation: Based on the current node of a LP, we incre-
mentally generate the next node of the LP by identifying a suitable one from 
the set of direct connected nodes according to the topic ALN of TKM. The 
selection is based on two criteria: the complexity and the importance of the 
topic. The complexity of the topic should match the student’s knowledge 

(6.4)DT (x) =
1

N

N
∑

p=1

�
T
(

LRp

)

6.2 The Teacher Knowledge Model
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level. If there are more than one node meeting the complexity criteria, we then 
select the node with the highest importance ISi(x), which is formulated by the 
summation of association weights where student preference on a topic is con-
sidered as in Eq. 6.5:

 where ISi represents the importance of topic x for student i, awxj(x) represents 
the association weight between topic x and topic j, and PSi(x) represents stu-
dent i’s degree of preference on topic x, which could be any value from 0 to 1, 
and “0” indicates no preference and “1” indicates full preference.

(3) LR Selection: Based on the LR ALN of TKM, we select a set of LRs, where 
their associated topics match with the selected topic by step 2. As shown in 
Eqs. 6.6 and 6.7, a student-specific LR p will be identified by matching the 
complexity �T

(

LRp

)

 of the LR with the knowledge level KLSi of the student. 
We use the coefficient 0.1 to constrain the error between the complexity of 
LRs and the student’s knowledge level, where the error should be smaller than 
a tenth of the students’ knowledge level. We can recommend LRs that best fit 
the student’s knowledge level.

 LP Progression and Alternative LP: After a student successfully studying 
a LR, we update the SKM by indicating the student has finished such a LR 
and the associated keywords. Our system will then go back to step 2 again 
for incremental LP generation. If a student fails the corresponding assess-
ment, it is likely that the student lacks the knowledge of some aspects of the 
topic about the LR. To deal with such a learning problem, we adjust the LP by 
redirecting the student to learn an alternative LR, which is the most important 
unlearned prerequisite node of the failed LR as defined in the LR ALN of the 
TKM, before coming back to learn the failed LR. Such an alternation may be 
carried out repeatedly on the rest of the unlearned prerequisite node of the 
failed LR if necessary. Figure 6.2 gives an example of a recommended learn-
ing resources by the system.

(4) Learning Performance: A student i has finished learning a course when there 
is no more LR to follow. Student learning performance Di can be computed 
by the difference between the real performance SKMi (i.e., the finished LP) 
and the expected performance LPi defined by the recommended LP as stored 
in the TKM:

(6.5)ISi(x) =

n
∑

j=1

awxj(x).PSi(x)

(6.6)LRs =
{

p|

∥

∥

∥
�
T
(

LRp

)

− KLSi

∥

∥

∥
< 0.1KLSi

}

(6.7)DSi(x) = �
T
(

LRp

)

/PSi(x)

(6.8)Di = �SKMi − LPi�
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 where Di evaluates whether the student has a good learning performance at 
the end of the student’s learning. The student has a better learning perfor-
mance if SKMi is closer to LPi. Figure 6.3 shows an example of a system rec-
ommended LP formed by a set of the three abstraction levels of ALNs for a 
student. Figure 6.3a depicts the topic ALN that comprises 5 topics, forming 
the topic level of the LP (i.e., project → president → lead → plastic → phar-
macy), where the edge thickness indicates the association weight. The path 

Fig. 6.2  Example of a recommended learning resource

6.3 Student Knowledge Model and Personalized Learning Path



72 6 What to Learn?

Fig. 6.3  System recommended learning path in 3-ALN. a The path automatically selected by 
system. b The correspondence keyword ALN. c The correspondence learning resource ALN and 
selected learning path of learning resources for students
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starts from the most important topic “project,” and then the second impor-
tant one which has to connect with the first one is “president,” and end with 
the least important one “pharmacy.” All keywords that have association with 
the five topics are extracted from the teacher knowledge model of keyword 
abstraction level, together with their association links in between to form 
the learning path in keyword abstraction level, as shown in Fig. 6.3b. And 
all LRs that contain the five topics are extracted from the teacher knowledge 
model of LR abstraction level as well, together with the association links in 
between to form the learning path in the LR abstraction level, as shown in 
Fig. 6.3c. However, students may not have enough time to learn all these LRs, 
so we just recommend them the LRs that match with the student’s knowledge 
level. The highlighted LRs as shown in Fig. 6.3c are the recommended LRs 
that match the student’s knowledge level. Since there are associations among 
LRs through sharing keywords, a student showing interest in a LR may also 
interest in its associated LR. A student can also gain understanding in a LR 
through its associated LRs. Our three different ALNs provide such associa-
tions and therefore help improving student learning.

6.4  Student Assessment Against Learning Resources

In our method, student assessment is embedded into the learning process of each 
learning resource, allowing us to determine whether a student has completed 
learning a certain piece of knowledge with a proper level of understanding. The 
assessment result provides a means for updating student profiles regarding stu-
dents’ knowledge levels and completed knowledge concepts.

Cognitive Process
In fact, learning process is a cognitive process of knowledge and behavior acquisi-
tion, which is commonly perceived as a process of association of a certain form 
of new concepts with existing knowledge in the memory of the brain. So in our 
monograph, as a part of the learning process, the assessment is also designed to 
follow the cognitive process. In cognitive science, learning is deemed as a rela-
tively permanent change in the behavior, thought, and feelings as a consequence of 
prior learning experience. So we need to assess students’ prior learning experience 
to see whether they have made a relatively permanent change. In our monograph, 
both learning process and assessment construct the whole cognitive process. 
According to Learning Intelligent Distributed Agent (LIDA) cognitive cycle 
[Fran06] which is designed based on the theory of human cognitive cycle, students 
should go through the cognitive cycle to complete the cognitive process of learn-
ing knowledge. In the cognitive cycle, students carry out their learning in 3 states, 
namely understanding state, attention (consciousness) state, and action selection 
and learning state. We use a set of three different ALNs to help students to com-
plete the cognitive process.

6.3 Student Knowledge Model and Personalized Learning Path
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Automatic Test Generation Scheme and Implementations
The keyword ALN presents the associations among domain keywords from a set 
of Web resources, where keywords are texts that appear in a good number of Web 
resources, i.e., the document frequency is higher than a threshold. The topic ALN 
are extracted from the keyword ALN, which presents the associations among the 
most important keywords, which have the highest numbers of association links 
than the other keywords, meaning that they can represent the most important infor-
mation of a set of LRs. To construct LRs ALN, we follow the knowledge domain 
(i.e., a set of topics) of the course and select relevant Web resources that match the 
knowledge domain, turning such resources into LRs.

By considering the example of a learning resource as shown in Fig. 6.2, we 
explain how the three states control the studying of a learning resource within 
the cognitive cycle by Figs. 6.4 and 6.5. In the understanding state, we highlight 
the major attributes (keyword ALN, Fig. 6.4a) and knowledge concepts (topic 
ALN, Fig. 6.4b) of the learning resource to help students to focus on the impor-
tant aspects of the learning resource. In the attention state, we present the associa-
tions among different topics and keywords by the links of keyword ALN and topic 
ALN. We are not requiring students to memorize the networks, but helping them 
understand the knowledge structure and the related aspects of a knowledge con-
cept. The nodes in Fig. 6.4 represent the major attributes and knowledge concepts, 
the links between nodes represent the associations among them, and the colors 
are just randomly assigned to the nodes to distinguish overlapped nodes in case 
the nodes are too many. “Pharmacy” is related to “plastic,” while “statin” is not 
related to “cholesterol.” It means when “pharmacy” appears in a sentence, it often 
comes with “plastic.” Although “statin” may be related to “cholesterol,” but in 
this LR, when “statin” appears in a sentence, it does not come with “cholesterol.” 
In the action state, we assess students if they can build up correct associations of 
the major attributes or the knowledge concepts using the automatically generated 
test as shown in Fig. 6.5 where we ask students to choose the correct associations 
between keywords or topics from the choice questions. Because the tests are gen-
erated by determining whether two major attributes or knowledge concepts are 
related to each other, we are able to determine whether students can understand 
the LR. However, there is no need to straightly carry out the three states one after 
another. Students can jump to any state during the process. If they got failed in the 
test, they can jump to the other state to learn again and then go back to a new test 
until they understand the knowledge. To evaluate student learning performance, 
we automatically generate tests using a test generation schema by the following 
steps:

• Step 1: Select an association link from the topic ALN (for example, Fig. 6.4a or 
the keyword ALN (for example, Fig. 6.4b);

• Step 2: Determine the complexity of the selected association link �kX which has 
been introduced in Sect. 6.2 as the difficulty of level of the question;

The ALN structure allows us to automatically compute the complexity of each 
piece of LR, avoiding instructors or course designers to manually define such 
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attributes, which is extremely time consuming when there are a massive number 
of LRs to deal with. We compute the complexity of a LR, which can be used to 
match student knowledge level, based on the algebraic complexity of human cog-
nition that associates with the complexity of both keywords and association links 
of the LR X as Eq. 6.9.

Fig. 6.4  State understanding and attention: highlight the major attributes; build up associations 
among topics and keywords. a Topic layer of ALN that exists in the learning resource. b Key-
word layer of ALN that exists in the learning resource

6.4 Student Assessment Against Learning Resources
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where �kX is the text complexity of LR X in terms of keywords, D is the number 
of keywords in LR X.�kX is the number of degree-k association, i.e., the number of 
keywords having k association links connected to LR X, which indicates the com-
plexity of association link. Wk is the number of keywords having degree-k associa-
tion, which indicates the complexity of keywords. A LR is low in complexity if it 
has low number of association links while such links are of low degrees.

• Step 3: Add natural languages in between to bridge the associated two keywords 
into a new sentence as the corrected option of the question;

(6.9)�
k
X =

D−1
∑

K=0

Wk .�
k
X

Fig. 6.5  An example of automatic generated test
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• Step 4: Randomly select any two keywords which have no association in 
between, and also add natural languages in between to bridge the associated two 
keywords into a new sentence as the distracted options.

In this way, tests (for example, Fig. 6.5) can be automatically generated without 
any manual effort. We can save a lot of time for teachers. In the test, all questions 
are presented in the way of choice-question with four options, and each option 
describes whether two keywords have associations in between. A student selects 
the correct option from them. This test generation schema can be applied to any 
learning resource, which can automatically generate different levels of questions 
and help students to strengthen their understanding. So it is easy to control the 
difficulty levels of the tests for assessing different students. In the end, each stu-
dent’s errors have different distribution over the TKM. If the errors concentrate on 
a small area, then the student has problems on related topics, so the student just 
needs to pay a few efforts to get improved. However, if the errors distribute over 
the network, then the student has problems on many different topics, so the student 
needs to pay huge efforts to get improved.
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Learning path shows students what to learn and how to learn, but we still need to 
evaluate student learning performance and check their learning quality. This learn-
ing progress information can help teachers to improve their teaching approaches 
and let students know whether they are on the right track of progress. As there 
are a lot of attributes that can affect student learning quality, we have developed a 
method to identify the attributes that may affect a certain type of students a lot or a 
little and present students how their learning progress changes with these attributes.

Student learning progress is critical for determining proper learning materials 
and their dissemination schedules in an e-learning system. However, the existing 
work usually identifies student learning progress by scoring subject-specific attrib-
utes or by determining status about task completion, which is too simple to sug-
gest how teaching and learning approaches can be adjusted for improving student 
learning performance. To address this, we propose a set of student learning progress 
indicators based on the Fuzzy Cognitive Map to comprehensively describe stu-
dent learning progress on various aspects together with their causal relationships. 
These indicators are built on top of a student attribute matrix that models both per-
formance and non-performance-based student attributes, and a progress potential-
ity function that evaluates student achievement and development of such attributes. 
We have illustrated our method by using real academic performance data collected 
from 60 high-school students. Experimental results show that our work can offer 
both teachers and students a better understanding on student learning progress.

7.1  Introduction

Both teaching and learning become flexible and adaptive. Teachers often need to 
provide students various feedbacks, including scores and breakdowns, descrip-
tion on what went good/wrong, and suggestions for further improvement. Most 
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of this information can be expressed numerically and consolidated to form inputs 
to the e-learning systems [Li08] for generating adaptive courses. They may also 
form meaningful feedbacks to help teachers and students to make various enhance-
ments. However, the existing work has not been exploited such information well. 
This chapter addresses this issue. We present a student progress-monitoring model 
which forms a core component of e-learning systems. Our model aims to gener-
ate comprehensive feedback indicators which allow students to understand their 
learning performance and how they can be improved, allow teachers to adjust their 
teaching approaches based on student learning performance, and allow both parties 
to identify the main parameters to affect student learning progress and their devel-
opments in different attributes. Our model was based on the students’ performance-
related attributes (PAs) as well as non-performance-related attributes (NPAs) to 
model student learning performance and their potentialities to make progress. We 
also infer the causal relationships among these attributes to reflect how they affect 
the changes of one another. They are useful to making teaching approaches to dif-
ferent groups of students. Hence, our work contributes to the development of adap-
tive e-learning technologies. The main contributions are as follows:

• Proposing student attribute descriptors to mathematically model the casual rela-
tionship and the changes of both performance- and non-performance-based 
attributes of students. This sets the foundation to support student learning pro-
gress analysis.

• Proposing student learning progress indicators to pedagogically depict student 
learning progress and development in terms of individual student and various 
groupings, and against teacher’s expectations.

7.2  Mathematical Model

Analyzing student learning progress is not trivial. Different subjects (or learning 
activities (LAs) [Yang10]) have different assessment criteria, where some are sub-
ject-specific, but some are shared among subjects. On the other hand, student learn-
ing styles and learning modes also play significant roles on how a student perform 
and make development in different assessment criteria. We have developed the stu-
dent attribute descriptors to provide a more complete picture on student learning 
progress and development.

7.2.1  Modeling of Student Attribute Descriptors

Student Attribute Matrix
We propose a student attribute model (SAM) (Eqs. 7.1 and 7.2) to incorporate 
both performance (PA)- and non-performance (NPA)-based learning attributes, 
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forming an unified representation to support student learning progress and devel-
opment analysis. SAM is the foundation of student attribute descriptors. It com-
prises subject-related and generic outcome attributes from Bloom’s taxonomy 
[Bloo56] (Table 7.1), learning style attributes from Felder-Silverman’s model 
[Feld88], and learning mode attributes describing whether a learning activity 
is an individual or a collaborative one [Gokh95] (Table 7.2). We apply a differ-
ent version of Bloom’s taxonomy from the version we applied in Chap. 4, which 
categorizes the Psychomotor domains into 7 levels rather than 5 levels. Because 
we found that this way to divide Psychomotor domains is much more easier to be 
understood by teachers and students in the user study. We have adopted these well-
established models to describe student attributes as they have been widely used 
and verified. In practice, teachers can use only a subset of attributes to model their 
teaching subjects (or LAs), forming a local measurement, and optionally annotate 
attributes with subject-specific names if needed. Teachers can also put together 
local measurements to reveal a bigger picture on the all-round performance and 
development of a student, forming a global measurement.

SAM is modeled as a dot product of the attribute criteria matrix C, which com-
prises criteria for PAs (CPA) and NPAs (CNPA), and the score matrix, which com-
prises scores αij. As shown in Eq. (6.1), each criterion is modeled as a row vector 
Ai, which comprises a set of aij to model the different aspects of an attribute. For 
attributes from Bloom’s taxonomy, each aspect corresponds to a level of complex-
ity, while for attributes regarding learning styles and learning modes, each aspect 
corresponds to a characteristic of each learning style or learning mode. An aspect 
is modeled by a real number between 0 and 1 to represent its importance in a sub-
ject (or LA), where an aspect is set to be 0 if it is not being assessed. To model 
student learning state and teacher’s expectation of a subject (or LA), as shown in 

Table 7.1  Attributes from Bloom’s taxonomy

Level of complexity Cognitive (knowledge) Affective (attitude) Psychomotor (skill)

1 Knowledge Receiving Perception

2 Comprehension Responding Mind set

3 Application Valuing Guided response

4 Analysis Organizing Mechanism

5 Synthesis Characterizing by 
value or value concept

Complex overt 
response

6 Evaluation / Adaptation

7 / / Origination

Table 7.2  Attributes regarding learning styles and learning modes

Learning mode Perception Input Organization Processing Understanding

Collaborative Concrete Visual Inductive Active Sequential

Individual Abstract Verbal Deductive Reflective Global

7.2 Mathematical Model
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http://dx.doi.org/10.1007/978-981-10-1944-9_6
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Eq. (7.2), we define a score matrix to comprise scores αij, where each score repre-
sents the level of achievement (or required efforts) of an aspect of a PA (or NPA). 
In an e-learning system, each subject (or LA) will associate with a SAM to define 
the teacher’s expectation, while each student studying the subject (or LA) will be 
assigned with a SAM that is constructed by the same C to maintain the student’s 
learning state.

Because a student will perform independently among different aspects of the 
attributes, each aspect could then be considered as a random variable, which 
 follows the normal distribution saij ∼ N

(

θ , σ 2
)

 as shown in Eq. (7.3).

where p(·) is the probability distribution function of saij; θ is the estimation value 
of saij; σ 2 measures the width of the distribution. We use maximum-likelihood 
estimation [Kay93] to estimate θ, where the largest probability happens when saij 
equals to θ, which is proved as a correct expectation of the observed data of saij.  
So SAM could be dynamically updated by the mean value of all previous SAMs 
(Eq. 7.4).

where SAMi only expresses the learning state for the ith LA. SAM(t) records 
the overall learning state of a student after learning t LAs. Because the change 
between SAM(t) and SAM(t − 1) may be perturbed by some uncertain factors and 
may not reflect the real learning performance, we consider averaging all previous 
learning performances to be the latest learning state of a student to reduce such an 
error.
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Progress Potentiality Function (PPF)
To analyze the potentiality of a student for making progress in learning perfor-
mance and for developing skills in non-performance-based attributes, we have 
developed a PPF to form a student achievement descriptor (Eq. 7.5).

where f(·) is the PPF, P is the student learning progress, LPAs and LNPAs, as shown 
in Eqs. (7.6) and (7.7), are the student learning performance in PAs and the degree 
of balance of a student’s development in NPAs, respectively. A student has a 
higher potentiality to achieve more if the student can perform better in PAs and/or 
has a more balanced development in NPAs.

where mi is the number of nonzero aspects for each attribute, nPA is the number 
of PAs, nNPA is the number of NPAs, and n is the number of attributes. 1/mi is 
the perfect probability if NPAs can be developed evenly. Equation (7.6) reflects 
that for students who have higher value of learning outcome, their overall student 
learning performance could be higher as well. And Eq. (7.7) reflects that if the dif-
ferent aspects of non-performance-related attributes tend to be developed evenly, 
then the student can have a more balanced development in NPAs. We normalize 
the values of all LPAs and LNPAs

−1 to be within [0, 1] to allow them to be processed 
in a unified way. In the end, f (·) is given by P = LPAs + LNPAs.

Fuzzy Cognitive Map (FCM)
Existing work evaluates student learning progress mainly by their subject perfor-
mance (PAs). However, student learning is a complicated process. Student learn-
ing performance can also be affected by NPAs, e.g., an active student tends to 
have better communication skills than a passive student. In addition, both PAs 
and NPAs may affect among each other. To model such complicated relationships 
and infer changes among the attributes, we apply Fuzzy Cognitive Map (FCM), 
which is formulated by Eqs. (7.8)–(7.10), to analyze changes of SAMs and infer 
the causal relationship among the attributes in a SAM.

(7.5)P = f (LPAs, LNPAs)

(7.6)LPAs =

nPA
∑

i=1

mi
∑

j=1

saij

(7.7)L−1
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(

1/nNPA×

n
∑

i=1+nPA
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n
∑

i=1+nPA

mi
∑

j=1

(

saij − 1/mi

)2

(7.8)Fj = f















n
�

i = 1

i �= j

Fifij















7.2 Mathematical Model
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where Fj and Fi are the state values of a pair of a starting attribute Aj and an end-
ing attribute Ai, respectively. There are n attributes in total. The value of state Fj 
indicates the existent degree of a FCM node (i.e., an attribute). In our model, Fj 
reflects the overall strength of impact of an attribute on all the others, which can 
be formulated by the following:

where Fj(t) is the state value of attribute Aj after finishing the tth LA. It is updated 
by the current causal weights fij from all the other attributes to attribute Aj together 
with the previous status values of all the other attributes. We assume all attributes 
having the same impact on each other at the beginning and set their initial state 
values to "1." Note that fij is represented by a real number within [−1, 1] as it 
reflects the fuzzy meaning showing the impact degree from a starting attribute to 
an ending attribute, where fij > 0 (or fij < 0) implies increasing (decreasing) in the 
state value of a starting attribute, it will lead to an increase (decrease) in the state 
value of ending attribute. Otherwise, fij = 0 implies no causal relation existing 
between a starting and an ending attribute. The matrix of the causal weights form-
ing the FCM is shown as follows:

After a student finished the current LA, the causal relationships among attrib-
utes are re-evaluated by taking mean of the Mahalanobis distances between the 
current and each of all previous SAMs, which essentially captures the changes of 
attributes of the SAMs. Because Mahalanobis distance can measure the similarity 
of an unknown multivariate vector to a known one (e.g., a group of mean values) 
and also measure the dissimilarity between two random vectors. The larger is d, 
the more dissimilar of the two vectors. d is 0 when the two vectors are exactly the 
same. The Mahalanobis distance is defined as Eq. (7.11):

where S is the Covariance matrix of SAMx and SAMy, which measures the dis-
similarity of two matrixes, and is defined by Eq. (7.12)

where E(SAMx) is the expectation value of SAMx. If we only measure the similarity 
of a specific attribute Ai, then the Mahalanobis distance turns to the following form:

(7.9)
Fj(t) =

n
∑

i = 1

i �= j

Fi(t − 1) · fij(t)

(7.10)FCM =











0 f12
f21 0

. . . f1n

. . . f2n
...

...

fn1 fn2

. . .
...

. . . 0











(7.11)d
(

SAMx, SAMy

)

=

√

(

SAMx − SAMy

)

S−1
(

SAMx − SAMy

)T

(7.12)S = cov
(

SAMx , SAMy

)

= E
[

(

SAMy − E
[

SAMy

])T
(SAMx − E[SAMx])

]



85

where S turns to

Hence, the causal weights fij of FCM can then be dynamically updated. Such 
calculations are shown by Eqs. (7.15)–(7.17).

where fij(t) expresses a causal weight after a student finished the tth LA, and 
k ∈ [1, t − 1] is the index of previous t − 1 activities. Since the changes of attrib-
utes are measured between the current SAM and each of the previous SAMs, after 
a student finished studying a new LA (i.e., a new SAM is generated), there will be 
(t − 1)t/2 times comparisons in total. yij(k, t) models how much Aj will change 
relative to the change of Ai between SAMs obtained at the tth and the kth LAs, 
where di(SAMk , SAMt) is the Mahalanobis distance of these SAMs. Signi equals 
to 1 if the student makes progress, otherwise it equals to −1.

7.2.2  Student Progress Indicators

Learning Attribute and Student Groups
To analyze the student learning progress and development, we need different kinds 
of groupings, namely learning attribute groups (LAGs) and student groups (SGs). 
LAGs are formed to support local measurement. They comprise groups to main-
tain subsets of learning attributes. These groups are as follows:

• Subject Group: to assess subject (or LA)-specific knowledge or skills. In our 
experiments, we maintain groups for Arts, Science, and all subjects.
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• Learning Stage Group: to assess students at appropriate cognitive levels dur-
ing different stages. Learning stages contain three stages to imitate students’ 
early, interim, and mature stages, respectively. The early stage assesses students’ 
basic knowledge in cognitive levels. The interim stage assesses student learning 
progress potentiality in non-performance-related attributes as well as attributes 
in Affective and Psychomotor domains to monitor whether they have balance 
development. And the mature stage assesses students’ advanced knowledge in 
cognitive levels.

SGs are formed to support a more holistic analysis. They can be constructed 
manually or automatically, which include the following:

• Study Group: to divide students based on subject of study, e.g., Arts and 
Sciences. We also consider individual or all students as general groups. All 
these groups’ types are manually predefined.

• Performance Group: to divide students based on their learning performance 
associated with skills. Teachers are expected to apply their experience to define 
groups of best, good, satisfactory, below average, and disqualified students, 
which form performance metrics describing teacher’s expectation on students 
with different learning performances.

Such metrics may also be automatically generated by applying performance 
information from the former cohorts. Because we also define students’ attribute 
values in a fuzzy meaning which indicates the degree of requirements for each 
aspect, we can apply these fuzzy values to measure the degrees of belonging to 
clusters. And in Fuzzy C-mean clustering method, each point has a degree of 
belonging to clusters, rather than belonging completely to just one cluster. Points 
on the edge of a cluster may have a less degree than points in the center of clus-
ter. When analyzing students’ actual performance, we apply the Fuzzy C-mean 
clustering method [Bezd81] to divide students into groups based on their SAMs, 
where the student learning performance metrics defined by teachers forming the 
representatives of the clusters.

Formulation of Student Progress Indicators
Student learning progress indicators are functions developed to produce informa-
tion for pedagogically depicting student learning progress and development. There 
are three indicators:

• Knowledge Construction Indicator (KCI): Inputs of KCI are PAs, NPAs 
based on selected LAGs. It produces the learning status of a student with 
respect to certain learning stage by evaluating the updated SAM and FCM, fol-
lowed by classifying the student into a proper performance group. KCI offers 
comprehensive information describing how a student performs.

• Teacher’s Expectation Indicator (TEI): Inputs of TEI are a set of KCI based 
on selected LAGs and SGs, i.e., collective information indicates the learning 
progress and development from a group of students. Based on the performance 
metrics, TEI produces a picture on how a selected group of students make 
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progress against the teacher’s expectation, for instance, showing whether there 
are too many students perform significantly better than what a teacher expected. 
In such a case, the teacher may conclude the course is too easy.

• Student Growth Indicator (SGI): Inputs of SGI are a number of sets of PAs 
and NPAs of a student or a group of students from certain series of learning 
stages, i.e., the learning progress and development made by certain student(s) 
over a period of time. SGI evaluates PPF based on the inputs to indicate whether 
certain student(s) make progress or regress over time.

According to the above description, we can provide with Eq. (7.18) to present 
the whole idea of student(s) learning progress.

where f(*) presents the function of type of student(s) (s1), selected subjects (s2),  
learning stage (LS) or the general growth (g)over time, and attributes’ perfor-
mance (a). The type of student(s) could be a type of student group, an individual 
student, or all students. And attributes’ performance could be learning perfor-
mance on PAs or balance degree of NPAs. We can get the student(s)’ learning pro-
gress (SP) and teacher’s expectation (t) with f(*) for the type of students (s1) in the 
corresponding subjects (s2) and attributes, and corresponding learning stage (LS) 
or the general growth over time (g).
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8.1  Implementation for Method for Constructing  
a Fine-Grained Outcome-Based Learning Path Model

To answer the first research question of how to learn, which requires finding out 
the teaching approaches and the sequence of learning, we have proposed a fine-
grained outcome-based learning path (LP) model. In order to verify this method, 
we have implemented a prototype of this model. Next, we conduct a user study, 
in which we have invited teachers to try out our prototype and evaluate it as well 
as give us feedbacks in terms of their user experiences. This user study is mainly 
carried out through 3 parts including an introduction on the system, user interac-
tion with the prototype, and evaluation questionnaires. We then collected teachers’ 
feedback on the questionnaires, and use one-way ANOVA to analyze the collected 
data. During the one-way ANOVA analysis, we group teachers according to their 
teaching experiences and knowledge backgrounds, respectively, so that we can 
determine if teachers with different teaching experiences or different knowledge 
backgrounds would have different evaluation results on our system.

8.1.1  Instrument

In order to verify our work, this monograph has implemented the prototype of the 
fine-grained outcome-based LP model, so that we can ask teachers to evaluate our 
method through a user study.

Chapter 8
Implementation and Results
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8.1.1.1  Implementation

This prototype provides teachers the basic functionality of designing LP, where 
teachers can create or delete learning activities, learning tasks, as well as adjust 
their settings and teacher can create and manipulate LP components graphically. 
And also, this prototype provides the corresponding LP of student learning per-
formance. The prototype implementation help teachers to better understand how 
they can manage and design the LP for different types of students. I have applied 
Jgraph, Ext JS, PHP, MySQL, and Apache, etc. to implement the prototype. The 
implementation details are explained in Sect. 4.5.

8.1.1.2  User Study

We also conducted a user study for teachers to evaluate our work, which includes 
three parts, an introduction on the system, user interaction with the prototype, and 
evaluation questionnaires. Teachers are firstly invited to experience this proto-
type. They can ask questions about it to help them to understand how to manage 
it. Afterwards, they are given a questionnaire to collect their evaluations of this LP 
model. The whole questionnaire (Appendix A) contains 19 questions, where the 
first 6 questions collect information about teachers’ personal teaching information, 
and the rest questions can be divided into three major questions: (1) Can the new 
model provide a more systematic and intuitive way for teachers to construct LPs? 
(2) Does it produce LPs that address the diverse needs of different courses? (3) Do 
teachers think that it is easier to set out criteria to assess student learning outcomes 
through the new model? Teachers are expected to scale each of these questions 
using 5-point likert scale to indicate their satisfaction on our work. With these sta-
tistic data, we can analyze if teachers satisfy with our work.

8.1.2  Participation

We evaluate the fine-grained outcome-based LP model by testing if teachers with 
different teaching experience or knowledge backgrounds would have different eval-
uation results on our model. We invited 15 teachers who all have different teaching 
experience and from different subject disciplines. These teachers are from Durham 
University and some local high schools. And they all have experience of using 
E-Learning systems, so that they can provide more professional feedbacks.

8.1.3  Data Analysis

As we use questionnaires as the research instrument to collect teachers’ evalua-
tion results on our work, where we have scaled these questions with 5-point likert 
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scale, so that we can quantify teachers’ evaluation results and provide numerical 
analysis using statistic method like one-way ANOVA.

Likert Scale: In the questionnaire, each question for evaluating our model has 
5 options (Totally Agree = 5, Agree = 4, Neutral = 3, Not Quite Agree = 2 and 
Disagree = 1), teachers can select the options that best fits their decisions. The 
quantified answers help us to measure teachers’ overall satisfaction on our model.

One-way ANOVA: In the study, we analyze if teachers’ teaching experience 
and knowledge backgrounds will affect their evaluation results. We divide teachers 
into several groups according to their teaching experience and knowledge back-
grounds to compare if their evaluation results are similar or not. Because one-way 
ANOVA is used to compare the similarity between data in two or more groups, but 
the size of these groups does not need to have exactly the same number, we can 
apply one-way ANOVA to compare the results. After we obtain teachers’ evalu-
ation results by the likert scale measurement, we can use the ‘one-way ANOVA’ 
functionality of ‘Data analysis’ provided by Microsoft Excel software to automati-
cally calculate if the evaluation results among different groups are similar or not.

8.1.4  Implementation

To evaluate our work, we have implemented a prototype system based on our 
fine-grained outcome-based LP model. We use PHP and Javascript as the server-
side scripting language, Apache as the Web server, MySQL as the database, and 
Windows as the operation system to implement this prototype, and use the graph 
visualization library JGraph to generate diagrams. The prototype comes with a 
drag-and-drop graphical user interface assisting teachers to create and manipulate 
LP components graphically. The prototype is not currently a functioning learning 
management system, where content management was not implemented. Figure 8.1 
shows a screen shot of our prototype where a teacher is working on a LA level LP 
that comprises learning activities for all students in a computer science program. 
As shown at the upper part of Fig. 8.1, there is a menu providing some predefined 
learning activities for the teacher to construct LPs. Under the menu, there is an 
area for LP construction. Each of the test users was invited to attend a personal 
introductory session, which lasted for about an hour. Each session started with a 
briefing on the proposed LP construction model. They can ask questions during 
the briefing if they have anything confused. The test user then had a chance to 
use the prototype to construct LPs and was required to answer a questionnaire to 
comment on the prototype. The questionnaire contains questions to collect teach-
ers’ background information as well as to collect teachers’ evaluation results on 
our prototype from both choice questions and written form. More details about the 
whole questionnaire are listed in Appendix A.

Figure 8.1 shows a sample LP constructed by a teacher. As an example, a 
“Lecture” type of learning activity—“Computer Networks (LT)” is constructed in 
Semester 2, which can be further customized by modifying its learning tasks and 
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their associated weights. For instance, LA “Final Year Project” is selected to reveal 
its learning tasks, which are shown in the yellow box located at its right hand side. 
Teacher can overview the learning tasks contained in the learning activity before 
he/she decides to change the task arrangement of the learning activity by open-
ing another window. In addition to “Computer Networks (LT)”, a “Practical” type 
of learning activity—“Computer Networks (PC)” is constructed. These two learn-
ing activities come together forming a KE, which is indicated by a dashed-line 

Fig. 8.1  A screen shot of our prototype
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connection. This KE formulation allows students to follow multiple approaches 
when learning a subject and achieve more learning outcomes.

A student may conduct a learning activity if he/she has passed all pre-
requisite(s). Note that arrows indicate pre-requisites, while rhombuses indicate 
multiple learning activities sharing the same pre-requisites or learning activities 
having multiple pre-requisites, e.g., “Distributed Systems” has both “Computer 
Networks (LT)” and “Computer Networks (PC)” as pre-requisites. Optionally, a 
LP can be turned into an adaptive one if suitable types of learning activities can be 
set up for each student. Despite this feature surpasses existing KE-based methods 
where they do not support the modeling of pedagogy and certain forms of learn-
ing outcomes. However, further techniques should be developed to avoid teachers 
manually producing all settings.

Teachers then proceed with more fine-grained settings. Our prototype pro-
vides interfaces for teachers to define and review learning outcome settings 
at both learning stage and learning activity levels. Figure 8.2a shows a learning 
stage—“Semester 1” is selected. Its learning outcome settings shown in Fig. 8.2b, 
indicating Semester 1 assesses student learning outcomes based on knowledge, 
comprehension and application levels under the cognitive domain of Bloom’s 
Taxonomy. The chart also shows the total percentage of each learning outcome 
collected from all learning activities within the learning stage to indicate its impor-
tance. Such weights cannot be adjusted.

We also ask teachers to work on individual learning activity. Figure 8.1 shows 
that learning activity “Computer Organization (LT)” in Semester 1 is selected for 
editing. The lower part of Fig. 8.2b shows its settings with editable learning tasks, 
i.e., Reading, Discussion and Question. The prototype can automatically normal-
ize the weights of all learning tasks based on the weight adjustment mechanism 
described in the sub-section of “Learning Activity” under Sect. 5.3. This feature 
is handy, allowing a teacher to focus on the relative importance of learning tasks 
rather than the actual values of the weights. In addition, a teacher can change the 
learning outcome setting of a learning task by dragging-and-dropping learning 
outcomes from the learning outcome requirement menu, as shown in the upper 
part of Fig. 8.2b.

For demonstration purpose, our prototype also supports basic learning pro-
gress evaluation. We classify a student’s learning outcome of a learning activity 
with a few grade levels, ranging from “Fail” to “Excellent”. As shown at the top 
of Fig. 8.3, they are represented by different colors. Figure 8.3 shows that a stu-
dent has just completed Semester 1, and has received a “Good” learning grade in 
“Computer Organization (LT)” but failed in both the “LT” and “Tu” learning activ-
ities of “Introduction to Computer Science”(in pink color). Based on the setting 
of our prototype, this student needs to retake these failed learning activities before 
starting Semester 2 (Fig. 8.4).

Our prototype also supports the construction of the LT level LPs to indicate 
how a student is being trained in terms of a specific type of student learning out-
come. This function can be activated by pressing the “Show Outcome Path” button 
at the top-left side of the user interface shown Fig. 8.3a. Figure 8.5 shows the LT 
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level LP for communication skill while Fig. 8.6 shows the path for writing skill. 
To illustrate the assessment of learning outcome, we use a percentage value to 
show the difficulty level of certain learning outcome required at a LA. If the stu-
dent can pass the assessment associated with the corresponding LT, it means that 
the student has made the prescribed level of achievement in that particular learning 

Fig. 8.2  Viewing the learning outcome setting at the learning stage level
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outcome. Using Fig. 8.5 as an example, at the beginning, two LAs are involved 
in Semester 1 to train up a student’s communication skill. The difficulty levels of 
both are set to 20 %. As a student proceeds with the course of study, the student 
may gain a higher level of achievement in communication skills. This is shown 
by the increase in the difficulty level associated with the communication skill 
along the LP. Finally, after the student has gone through the entire course of study, 
the student is expected to have gained very mature communication skill with the 

Fig. 8.3  Manipulating the learning outcome setting at the learning activity level
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100 % of difficulty level, if the student can pass the assessment of the correspond-
ing LT set in the “Final Year Project” learning activity in Semester 5. In general, 
the LT level LPs help students to learn more effectively by letting them understand 
how well they have achieved in certain learning outcome. In case if a student fails 
in certain learning outcome, the student can be supported by re-doing only the 
relevant learning tasks in order to fix such a learning problem. This fine-grained 
arrangement can enhance the learning effectiveness as it avoids the students re-
doing the entire learning activities or KEs.

8.1.5  Experiment Results

Following the case study as depicted in Sect. 8.1.4, we have delivered a ques-
tionnaire to collect teachers’ feedback on the proposed LP model. The evaluation 
model and the results are shown as follows:

Research question: We tested whether teachers of different (1) knowledge 
background or (2) teaching experience will find our model providing a good way 
for constructing LPs and assessing student learning outcome. Our prototype is 
designed to let teachers visualize and try out our model. We do not evaluate the 
user interface design of the prototype, as it is out of the scope of this research. We 
invited teachers from Durham University and some local high schools to try out 
our prototype and give us feedback of their satisfaction on our LP model by using 
13 questions to access the following research questions:

Fig. 8.4  A screen shot showing the progress of a student



97

• RQ1: Can the new model provide a more systematic and intuitive way for 
teachers to construct LPs?

• RQ2: Does it produce LPs that address the diverse needs of different courses?
• RQ3: Do teachers think that it is easier to set out criteria to assess student learn-

ing outcomes through the new model?

The questions provide proper coverage for evaluating both the LA and LT levels 
of LP construction. Teachers were required to provide feedback on the 13 ques-
tions based on a 5-point likert scale (Totally Agree = 5, Agree = 4, Neutral = 3, 
Not Quite Agree = 2 and Disagree = 1). As we use continuous and ordered rating 
scales, where they are assumed to have equal intervals and implicitly approximate 
interval data, they are quantitative and allow us to use ANOVA [Kirk95] for analy-
sis. We also have another 5 questions collecting personal information of a teacher, 

Fig. 8.5  Learning path for communication skill
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including teaching experience, teaching discipline, e-learning tools experience, 
and teaching approaches and styles.

Sample building: 15 teachers were involved in the experiment. The inde-
pendent variables are (1) knowledge background (KB) and (2) teaching experi-
ence (TE), where each of them is classified into groups of samples as follows for 
analysis.

• Groups under KB: Science (7 teachers), Engineering (6 teachers) and Arts (7 
teachers).

• Groups under TE: 0–1 year (6 teachers), 1–4 years (4 teachers), 5–9 years (5 
teachers), and 10 years or above (5 teachers).

Note that we did not use a control group as all the teachers in our experiment have 
experience in using e-learning tools, such as Wimba Create, Blackboard, Learning 

Fig. 8.6  Learning path for writing skill
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Object (LO) Creator and Web tools. Some of them have even involved in design-
ing or modifying teaching activities. This indicates most of our test users have a 
good understanding in difficulties and important factors of LP design. Therefore, 
besides the ANOVA analysis, we also collect opinions from the teachers regarding 
their experience with our model.

Statistical model: We employ one-way ANOVA to analyze each of the  
independent variables because both variables comprise more than two groups. 
Methods that can analyze only two groups, such as Wilcoxon test, are not 
applicable.

Statistical results and conclusions: As shown in Fig. 8.7, the teachers have 
rated an overall average score of 3.95 out of 5 with the 13 questions, meaning 
that they have a very good satisfaction of using our model across different aspects 
of LP construction. More specifically, the average scores of individual group of 
questions are 3.81 (RQ1), 3.92 (RQ2) and 4.22 (RQ3). While teachers have a 
very good satisfaction on our model regarding intuitiveness and meeting diverse 
needs, they rate much higher on our model in terms of assessing student learn-
ing outcomes. Note that the scores of Q12 and Q17 are rated lower than the other 
questions. They asked feedback on whether the prototype can clearly show the 
relationship among LAs and the design of a LP, respectively. The lower scores are 
related to the user interface design of the prototype. Although this issue is out of 
the scope of this research, we believe this is an important issue to work on for our 
future work, particularly it relates to how we can avoid putting burden on teachers 
to work out mathematics for setting up LPs and learning activities.

In general, the teachers agree that incorporating learning outcomes from the 
Bloom’s Taxonomy is useful, and they feel that the introduction of learning task is 
good as it allows a teacher to focus on designing simple tasks to train up students 
with a specific learning outcome. They are in favor of the idea of learning activ-
ity, which comprises learning tasks, as it is more intuitive for teachers to create 
and organize learning activities. According to the results of one-way ANOVA, no 

Fig. 8.7  Summary of scores from the questionnaire
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statistically significant differences in teacher evaluations were found due to knowl-
edge background or teaching experience.

We set p-value to 0.05, meaning that our test is based on the assumption that 
the probability of getting statistically significant results simply by chance is less 
than 5 %. As shown in Table 8.1, when performing AVONA test on teacher’s 
knowledge background, F-value is 0.8999 and p-value is 0.4163 when df1 between 
the 3 groups is 2 and df2 within the groups is 33. As F-value is close to 1 and 
p-value is much greater than 0.05, there is not a statistically significant difference 
between the means of all groups, and the difference in teaching experience is not 
statistically significant to the teachers’ evaluation. Similarly, the same conclusion 
can be drawn when we perform AVONA test on teacher’s teaching experience, as 
F-value is 1.1627 and p-value is 0.3347 when df1 between the 4 groups is 3 and 
df2 within the groups is 44.

Analytical Comparison: To depict the differences between our model and 
existing methods [Chen08, Cono05, Dalz03, Kara05, Limo09]. We examine the 
nature of the constructed LP and the nature, the number and the sequence of the 
LOs used to build a LP from different methods. Table 8.2 summarizes the com-
parison. The most significant difference of our model is that it offers multiple LPs 
to support various forms of student learning outcomes assessment on top of the 
traditional functionality of a LP, which models the steps of a course of study. In 
contrast, existing methods only support the traditional functionality and offer a 
single LP. As a result, student learning outcome assessment is only a consequence 
of such a modeling, and that various types of student learning outcomes assess-
ment are hard to be supported. Regarding LOs, existing work use a KE or a LA 
to form a LO, and that they determine the number and the sequence of LOs. In 
contrast, we model a LO with two levels: LA or LT based, which leads to two dif-
ferent types of LO sequences.

Table 8.1  Results of one-way ANOVA analysis

ANOVA single factor: knowledge background

Source of variation SS df MS F P-value F critical

Between groups 0.670139 2 0.335069 0.899926 0.416344 3.284918

Within groups 12.28688 33 0.37233

Total 12.95702 35

ANOVA single factor: teaching experience

Source of variation SS df MS F P-value F critical

Between groups 1.353611 3 0.451204 1.162679 0.334742 2.816466

Within groups 17.07519 44 0.388072

Total 18.4288 47
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8.1.6  Summary

In this section, we have presented a novel LP model based on learning activities, 
which supports the assessment of various types of knowledge and skills to describe the 
student learning progress. We have mathematically defined the model, its components, 
and the relations and constraints among the components, allowing course designers or 
teachers to explicitly formulate and reuse the learning and teaching approaches. Our 
work may also open up new research and development on more advanced adaptive 
E-Learning systems that can incorporate precise teaching approaches to match with 
different student learning styles. We have implemented a prototype and conducted a 
user study to verify if the proposed model can match with the teachers’ needs well. 
Results show that our model is favorable and most of the teachers participated in the 
user study indicated that they would like to use it in their course design.

Our work may open up new research and development on more advanced adap-
tive E-Learning systems that incorporate precise teaching approaches to match 
with different student learning styles. We believe that while an automatic LP gen-
eration method is desired, teachers may still want to have the flexibility for manu-
ally customizing a LP. In our opinion, a sensible solution should aim at avoiding 
teachers to spend time explicitly setting up a lot of mathematical parameters for 
students with different learning styles. In this sense, we determine user interface 
design and setting up templates for LPs and their components could be two pos-
sible directions for future work. For user interface design, similar to our prototype, 
we should work out visual aids and manipulators for teachers to adjust and visual-
ize the importance of each LP component. As a complement, techniques should 
be developed for producing templates for LPs and their components. We may also 
extend existing work on adaptive LP generation, such as [Li10, Ullr09], to work 
with the template based idea to produce adaptive fine-grained LPs.

Table 8.2  Comparison between our model and existing methods

Comparison criteria Methods

Our model Chen et al. [Chen08], 
Karampiperis et al. 
[Kara05], LS-Plan 
[Limo09]

LAMS [Cono05, 
Dalz03]

Constructed LP(s) Multiple LPs with 2 
levels: LA and LT based 
(support fine-grained 
pedagogy)

Single LP: KE based 
(pedagogy is not 
supported)

Single LP: LA based 
(support coarse-grained 
pedagogy)

Nature of LOs Formed by LAs or by 
LTs (relevant LAs can 
form a KE)

Formed by KE Formed by LA (no 
explicit LA and KE 
mapping)

Number of LOs Determined by number 
of LAs or by number 
of LTs

Determined by number 
of KEs

Determined by number 
of LAs

Sequence of LOs Ordered by LAs or by 
LTs

Ordered by KEs Ordered by LAs

8.1 Implementation for Method for Constructing …
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8.2  Implementation for Learning Path Construction Based 
on Association Link Network

To answer the second research question of what to learn, which requires find-
ing out the learning outcomes that students are going to achieve and the learning 
resources that help students to achieve the learning outcomes, we have proposed 
a LP construction method based on Association Link Network. This method can 
construct personalized LP from well-structured learning resources. In order to ver-
ify this method, we have implemented a prototype system of this model as well. 
Next, we have conducted two experiments to show the advantages of the system 
recommended ones. One is to compare the quality of manually selected LPs with 
system recommended LP, and the other is to compare student learning perfor-
mance after using manually selected LP and system recommended LP. In the sec-
ond experiment, as we have two groups of data, so we applied two sample T-tests 
to analyze the differences between the learning performance of the two groups of 
students.

8.2.1  Instrument

In order to verify this work, we implemented a prototype of LP construction sys-
tem, with which we can ask both teachers and students to evaluate the system 
through a comparison study.

8.2.1.1  Implementation

To evaluate the performance of the LP that is constructed based on Association 
Link Network, the implemented prototype of the LP construction system graphi-
cally shows how learning resources are related to each other as well as support the 
editing of teacher knowledge model. Teachers can adjust the structure of teacher 
knowledge model. And students can learn tailored learning resources through 
associations of these learning resources in the keyword, concept, and learning 
resource ALNs, respectively. I have applied Tomcat, Web Services, and JSP, etc. 
to implement the prototype. More details about these implementation tools are 
explained in Sect. 4.5.

8.2.1.2  Comparison Study

We then conduct a comparison study to evaluate the method in two aspects. One is 
to compare the importance of system recommended LP with the manually selected 
LPs, the other is to compare student performance between students who use this 
system and the students who do not use the system.

http://dx.doi.org/10.1007/978-981-10-1944-9_4
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In the first experiment, importance of LP is evaluated by summing up the 
importance of the nodes that constitute a LP. Teachers are asked to manu-
ally construct LPs according to the topic ALN. Such a construction should ful-
fill two requirements: (1) the selected topics should connect with each other; (2) 
the selected topics should be important to students. Such requirements also gov-
ern how the recommended LP generated by our system. To determine whether the 
comprehensiveness of the ALN structures will affect the quality of LP generation, 
we conduct experiments using three different abstraction levels of TKM by chang-
ing the number of association links constituted the topic ALN. Particularly, we use 
topic ALNs that have 196 links, 271 links and 360 links, corresponding to 20, 50, 
and 80 % of the total association links, to form the low, middle and high resolu-
tions of TKM, respectively.

In the second experiment, we randomly divide students into two even groups. 
The 1st group of students perform learning based on the teacher constructed LPs, 
while the 2nd group of students learn by the system recommended LP. All students 
are given 50 min for studying the learning resources in the LPs, and take the same 
examination with 25 questions to assess their understanding. Given their answers 
of these questions, we can compare their performance, and also compare if their 
performance is stable.

8.2.2  Participation

To complete the evaluation of the LP construction based on Association Link 
Network, we have invited both teachers and students to help us to complete 
the comparison study. The 10 teachers are invited from Computer Sciences 
Department to manually select LPs which are used to make comparison with sys-
tem recommended LP. We also invited 10 postgraduate students from Computer 
Science Department, but they have different learning abilities, i.e. they perform 
differently when studying the same LR. We randomly divide them into two even 
groups. The 1st group of students learn by the manually selected LP, while the 2nd 
group of students learn by the system recommended LP.

8.2.3  Data Analysis

We conducted two comparison studies to evaluate the work of LP construct. 
Firstly, we applied the ratio of system recommended LP and manually selected 
LPs, in order to verify that our work can provide a LP with higher importance 
degree in terms of covered knowledge concepts. Secondly, we used independent 
two-sample T-tests to compare the learning performance of two groups students 
who used our method and who did not use our method.

8.2 Implementation for Learning Path Construction Based …
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Ratio: Ratio is a type of measurement of scale. In the first comparison study, 
the ratio is made of the importance degree between system recommended LP 
and manually selected LPs. It measures the differences between the two paths 
and shows how their differences change over when the size of teacher knowledge 
model is different.

Independent Two-sample T-tests: When the number of groups for comparison 
is two and the size of each group is the same, then ANOVA turns to be the inde-
pendent two-sample T-tests. In order to verify that students using system recom-
mended LP have better learning performance, we use the independent two-sample 
T-tests to compare the differences of student learning performance variances 
between the group of students who use our Association Link Network based LP 
construction model and the group of students who do not use our model.

8.2.4  Evaluation Results and Analysis

In order to show the advantage of the system recommended LP, we have con-
ducted a quantitative analysis showing the importance of LP for both system rec-
ommended one and manually selected ones to make comparison of the two LPs. 
We also conduct a qualitative analysis explaining the comparison results. And 
also, in order to compare student learning performance based on the teacher gen-
erated LPs and the system recommended one, we show the performance for the 
two groups of students by graphs, quantitatively analysis the improvement of their 
performance and their stability of their performance, and qualitatively explain the 
results.

8.2.4.1  Compare the Importance of Manually Selected and System 
Recommended Learning Paths

In this experiment, importance of LP is evaluated by summing up the importance of 
the nodes that constitute a LP. Ten teachers from the School of Computer Science, 
Shanghai University, are asked to manually construct LPs that comprise 5 nodes 
(i.e. topics) from the topic ALN of teacher knowledge model. They are asked to 
construct a LP that should fulfill two requirements: (1) the selected topics should 
connect with each other, and (2) should be important to students. Such requirements 
also govern how the recommended LP generated by our system. We can compare 
the LPs selected by teachers and the LP recommended by our system. Because we 
want to test if the complexity of TKM will cause any effect on teachers’ decision 
as well as on our system recommendation results, we choose 3 topic ALNs which 
have different number of links. Particularly, we use topic ALNs having 196 links, 
271 links and 360 links, which correspond to 20, 50, and 80 % of the total associa-
tion links, forming the low, middle and high resolutions of TKM, respectively. So 
teachers actually need to select 3 LPs from each of these TKMs. Correspondingly, 
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system recommends 3 LPs according to the 3 resolutions of TKM. Results show 
that the importance of system recommended LP is higher than that of the manually 
selected LPs. To determine whether the comprehensiveness of the ALN structures 
will affect the quality of LP generation, we conduct experiments using three dif-
ferent resolutions of the TKM by changing the number of association links consti-
tuted the topic ALN. Table 8.3 depicts the details of the LPs constructed by both the 
teachers and our system based on the middle resolution of TKM. The bolded line is 
the system selected learning path in middle resolution. While the rest 10 lines are 
teacher selected learning path. As shown in the table, although some of the teacher 
selected topics are the same as the ones recommended by our system, indicating 
that teachers are able to pick some important topics, the LP importance of their con-
structed LPs are lower than the system recommended one.

Figure 8.8 compares the LP importance of the LPs generated by the teachers and 
our system when different resolutions of the TKM are made available. In the figure, 
the left y-axis shows the LP importance and is referred by the histogram, while the 
right y-axis shows the LP importance ratio of the manually selected LPs w.r.t. the 
system recommended one and is referred by the polylines. We group the results by 
the resolutions of the TKM. It is found that no matter which resolution of the TKM 
is made available, our system still produces LPs with a higher LP importance than 
the teacher generated ones. The upper and the lower polylines respectively show the 
maximum and the averages of LP importance ratios of the teacher generated LPs. 
They indicate the quality of the LPs generated by the teachers w.r.t. to the system 
recommended ones. On the other hand, when the resolution of the TKM increases, 
the generated LPs both by the teachers and our system also increase in the LP impor-
tance. It is because when richer course domain information is made available, i.e. 
more association links forming the TKM, a better decision can be made on the LP 
construction. However, as teachers are generally overwhelmed by the massive num-
ber of LRs and association links, they tend to construct LPs based on partial infor-
mation from the TKM. As a result, their produced LPs are of lower LP importance.

8.2.4.2  Comparison of Performance on Two Groups of Students

We conducted experiments on comparing student learning performance based on 
the teacher generated LPs and the system recommended one. We have invited 10 
postgraduate students from School of Computer Science, Shanghai University, to 
participate the experiments. It is easier to invite students from School of Computer 
Science rather than students from other departments as we are in the same School, 
but this does not affect the experiment results, as long as these students have dif-
ferent learning abilities, who perform differently when studying the same LR. 
We randomly divide the students into two even groups. The 1st group of students 
perform learning based on the teacher constructed LPs, while the 2nd group of 
students learn by the system recommended LP. All students are given 50 min for 
studying the contents (contains 5 LRs) provided the LPs and take the same exami-
nation with 25 questions, which assess their understanding. Results show that 

8.2 Implementation for Learning Path Construction Based …



106 8 Implementation and Results

Ta
bl

e 
8.

3 
 T

op
ic

s 
in

 th
e 

se
le

ct
ed

 le
ar

ni
ng

 p
at

h 
in

 m
id

dl
e 

re
so

lu
tio

n

To
pi

c 
1

To
pi

c 
2

To
pi

c 
3

To
pi

c 
4

To
pi

c 
5

Im
po

rt
an

ce
 d

eg
re

e

Te
ac

he
r 

1
FD

A
R

oc
he

A
va

st
in

St
en

t
Pa

tie
nt

9.
6

Te
ac

he
r 

2
A

nt
id

ep
re

ss
an

t
V

ac
ci

ne
FD

A
A

va
st

in
D

ru
g

15
.2

Te
ac

he
r 

3
C

an
ce

r
R

is
k

A
na

ly
st

C
om

pa
ny

C
hi

ld
ho

od
12

.8

Te
ac

he
r 

4
Pa

tie
nt

St
af

f
Pn

eu
m

on
ia

D
ru

g
A

na
ly

st
17

.0

Te
ac

he
r 

5
R

es
ea

rc
he

r
Im

pl
an

t
C

om
pa

ny
C

al
ci

um
C

an
ce

r
9.

2

Te
ac

he
r 

6
C

om
pa

ny
C

al
ci

um
H

PY
Su

pp
le

m
en

t
Fr

an
ce

11
.2

Te
ac

he
r 

7
FD

A
Pn

eu
m

on
ia

D
ia

ly
si

s
A

nt
id

ep
re

ss
an

t
tr

ea
tm

en
t

12
.2

Te
ac

he
r 

8
C

an
ce

r
Im

pl
an

t
Te

st
Sc

re
en

in
g

Pr
os

ta
te

7.
2

Te
ac

he
r 

9
A

na
ly

st
Ph

ar
m

ac
eu

tic
al

M
ed

ic
in

e
C

om
pa

ny
Pr

em
iu

m
11

.2

Te
ac

he
r 

10
A

nt
id

ep
re

ss
an

t
P

at
en

t
P

ne
um

on
ia

A
na

ly
st

St
af

f
15

.8

Sy
st

em
D

ru
g

C
om

pa
ny

A
va

st
in

Ph
ar

m
ac

eu
tic

al
Sh

or
ta

ge
27

.2



107

students using the system recommended LP perform better and have more stable 
learning performance.

Better Learning Performance
We compare the learning performance of two groups of students on the LRs using 
two-sample T-tests on the differences of their learning performance as in Eq. (8.1).

where x1 and x2 are the means of their performance within the first group and 
the second group respectively on n LRs, and sx1x2 is the standard deviation of 
the two samples. x1 − x2 is the standard error of the difference between the two 
means. Assuming the null hypothesis is that the two groups of students have the 
same learning performance on the same LRs. The two-sample T-tests are used to 
determine if the two groups of data are significantly different from each other. In 
practice, we can directly use the function of “T-test” in Microsoft Excel software 
to automatically calculate the t value. Its value is 2.50411, so the corresponding 
p-value is 0.0367 which is smaller than the threshold of Statistical significance 
(0.05). It means the null hypothesis is rejected, i.e. the learning performance of 
the two student groups is significantly different. We then compare the detailed 
learning performance of the two student groups based on each LR. As shown in 
Fig. 8.9, students studying using the system recommended LP generally perform 
better. In average, they got 60.8 % in the examination, while the students study-
ing through manually selected LPs got 51.2 % only. Note that y-axis shows the 
scales of the learning performance, while x-axis shows the indices of individual 

(8.1)t = (x1 − x2)/
(

sx1x2 ·
√

2/n
)

Fig. 8.8  Comparison of manually selection and system recommendation results of learning path 
in learning resources ALN in terms of importance degree

8.2 Implementation for Learning Path Construction Based …
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LRs. Although students using the system recommended LP perform less well in 
LRs P462 and P193, learning performance of both student groups in such LRs are 
still quite similar.

Stable Learning Performance
We test if the students in each group can have similar learning performance σ 2

i  on 
the same LR i by analyzing their performance variances (ref. Eq. 8.2). The results 
are shown in Fig. 8.10, where the y-axis indicates the performance variances.

where σ 2

i  is the performance variances of LR i, x̄i is the average performance on 
LR i, xij is the learning performance on LR j of student xj, and m is the number of 
students If different students show similar learning performance on the same LR, 
their learning performance variances will be low. We refer this as stable learning 
performance. For instance, if all students have the same learning performance on 
the same LR, the performance variance will be equal to 0, and their learning per-
formance is the most stable. In contrast, if half of the students got very high marks 
and the other half got very low marks, their learning performance is described as 
unstable, where the performance variance can approach to 6 according to Eq. 8.2.

As shown in Fig. 8.10, although students studying through manually selected 
LPs (Group 1) perform slightly better on LRs P462 and P193 than those studying 
by the system recommended LP (Group 2), the learning performance of group 1 
students is quite unstable, i.e. students perform quite differently in the same LR. 
Overall, group 2 students generally have more stable learning performance than 

(8.2)σ 2

i = 1/m ·

m
∑

j=1

(

xij − x̄i
)2

Fig. 8.9  Comparison results of two types of learning
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group 1 students. However, for LR P437, group 1 student has more stable learning 
performance as they have consistently low performance in such a LR. Our experi-
ments indicate that by using the system recommended LP, even student coming 
with different learning abilities can be trained to perform better in learning. In 
addition, the entire cohort will have a more stable learning performance.

8.2.5  Summary

In this section, we have presented an ALN-based LP construction method. We 
construct multi-level of abstractions of LRs through association, allowing a knowl-
edge map like LP to be derived. Such a LP structure can help students to learn 
more effectively. The ALN-based association structure also allows important 
parameters of LRs, such as their complexity and importance, to be derived. This 
offers sufficient information for automatic construction of pedagogically mean-
ingful LPs. This feature is particularly critical when a massive amount of Web 
resources are considered to be transformed as LRs for students to learn.

We have implemented all the above features of the ALN-based LP construction 
method in an application program programmed by Java. We kept all the data of 
LRs in text files which are downloaded from www.reuters.com by a Web crawler. 
We use JSP (JavaServer Pages) to compile the web pages. The interaction between 
the application program and the user interface is connected through the Web 
Service. We use Tomcat as the web server to run the JSP Pages. Our experiments 
show that our method offers better and much stable student learning performance. 

Fig. 8.10  Comparison of students’ stability of learning performance

8.2 Implementation for Learning Path Construction Based …

http://www.reuters.com
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In practice, as Web resources obtained from different providers may have very dif-
ferent presentations and inconsistent contents.

8.3  Implementation for Fuzzy Cognitive Map Based 
Student Progress Indicators

To answer the third research question of how well students have learned, which 
requires finding out student learning progress, learning qualities, and student 
potential to maker further improvements, we have proposed Fuzzy Cognitive Map 
based student progress indicators. In order to verify this method, we have collected 
academic data of high school students and applied our student progress indicators 
to the analysis of their learning progress. And also, we designed questionnaires for 
both teachers and students by providing them the learning progress analysis results 
and ask if they understand and agree with the learning progress results.

8.3.1  Instrument (Questionnaires)

To verify this research work, we evaluate if the proposed Fuzzy Cognitive Map 
based student progress indicators can help both teachers and students to better 
understand student progress and provide them more information to manage the 
teaching and learning process. This research work collects feedbacks from teach-
ers and students using questionnaires and generates graphs to visually describe 
student progress.

These graphs present student progress in different learning stages, show how 
the performance on an attribute affects the performance of the other attributes, 
compare the performance among different groups of students, and also indicate the 
potential of students making progress in the future.

We designed two kinds of questionnaires for teachers (Appendix B) and stu-
dents (Appendix C), respectively. Both of them contain six questions which evalu-
ate the visualized learning progress in six aspects that covers different stages of 
learning from Early stage, Interim stage, to Mature stage. These questions aim to 
collect if teachers and students can better understand student progress and make 
the learning process more efficient.

8.3.2  Participation

In order to analyze student learning progress with our Fuzzy Cognitive Map based 
student progress indicator, we need teachers’ help to set the learning outcomes for 
each subject, and also we need to collect student learning performance according 
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to their learning outcomes. We ask 6 teachers in 6 subjects to set learning out-
comes in terms of the performance related attributes and non-performance related 
attributes. And also, we have collected academic data of 60 students from No. 83 
High school of Xi’an, China. The same teachers and students are required to eval-
uate our work by determine if the student progress analysis results can help them 
to better understand student learning progress and make further improvements.

8.3.3  Data Analysis

When teachers and students try to understand student progress, it is greatly 
straightforward to let them visualize the learning progress. If analysis results can 
be presented in the form of graphs, we can design a visual questionnaire and use 
quantitative answers to respectively collect evaluation results from teachers and 
students.

Graph Comparison: We have collected a great number of data about stu-
dent learning progress, including the values of performance-related attributes and 
non-performance related attributes at different learning stages, the performance 
and development balance degree on a variety of subjects for different groups of 
students, students’ potential for making progress, the changes of students’ per-
formance over different tests, and the impacts of attributes on the performance 
of other attributes. It is not sufficient to use only numeric analysis to present the 
comparison of learning progress that changes with different attributes, different 
learning stages, different groups of students, and different tests. We used graphs to 
present the comparisons of all of them in order to help both teachers and students 
to better understand students’ learning progress.

Likert Scale: we also collected both teachers’ and students’ evaluation results 
regarding the analyzed student progress via questionnaires. To quantify their 
evaluation results, we applied 5-point likert scale to collect data. Similarly, each 
question has 5 options (Totally Agree = 5, Agree = 4, Neutral = 3, Not Quite 
Agree = 2 and Disagree = 1).

8.3.4  Evaluation

Besides involved in our experiments, the teachers and students also helped eval-
uating our method by answering questionnaires. These questionnaires show the 
results of student learning progress generated from our method. Teacher’s ques-
tionnaire shows the overall learning progress and the progress of different groups 
of students. And students’ questionnaire shows individual student’s learning pro-
gress and the group progress of the student belongs to. Because these students and 
teachers are Chinese, so the questionnaires are conducted in Chinese as shown in 
Appendix B (Analysis results for teachers) and Appendix C (Analysis results for 

8.3 Implementation for Fuzzy Cognitive Map Based Student Progress Indicators
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teachers). Both teachers and students evaluate our results mainly from the aspects 
of if the results coincide with their cognition and can help them to better under-
stand the learning progress. We have asked them opinions on our 6 parts of experi-
ments (P1–P6). P1, P2 and P3 concerns results describing the early, interim and 
mature stages of study. P4 concerns student progress over time. P5 concerns stu-
dent grouping. Finally, P6 concerns the strength of impact of each attribute for 
different groups of students. We respectively asked opinions from teachers and 
students about how accurate our experiment results explain student learning per-
formance and how good our results in helping students to understand their learn-
ing performance and make improvement. We used a Likert-type scale with scores 
from 1 to 5 in each of the questions P1–P6. Scores 1–5 means totally disagree, 
agree with a small part, agree with half of the experiment results, mostly agree, 
and totally agree, respectively. Based on the scores obtained, we normalized them 
within the range of [0, 1] as shown in Fig. 8.11 to intuitively illustrate the level 
of agreement by teachers and students. As shown in Fig. 8.11, the average score 
0.74 shows teachers mostly agree our results explain student learning performance 
accurately. Specifically, as shown in Fig. 8.11b, such level of agreement applied to 
both teachers of the Science and Arts subjects as they got almost the same scores. 
Figure 8.11c shows opinion from students. Results show that students had a very 
high level of agreement (scored 0.86 in average and scores of P2 and P6 ≥ 0.9) 
that our results well depicted their learning performance and could help them to 
make improvement.

8.3.5  Summary

We have developed student descriptors, which are formed by SAM, PPF and FCM 
to mathematically model both students’ PAs and NPAs, the changes of these attrib-
utes over time and their causal relationship. This supports comprehensive student 
progress analysis. We have also developed student progress indicators to peda-
gogically depict student progress and development in both individual and group of 
students setting, and also show such information against the teacher’s expectation. 
We have conducted experiments with 60 students and have disseminated informa-
tion on student progress and development based on our method. Our evaluations 
show that both the teachers and the students mostly agree that our method can well 
explain student progress and development, and the information that we depicted 
can clearly illustrate how a student can make improvement. As a future work, we 
are now working on visualization methods to help disseminating student progress 
and development in a more intuitive way.
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9.1  Introduction

This monograph focuses on developing methods for constructing learning paths 
in terms of “learning resources,” “learning approaches,” and “learning quality” to 
support student learning. To find out a model that helps teachers to design teach-
ing approaches, we define different teaching approaches for learning activities and 
organize them into a learning path which indicates the learning sequence of dif-
ferent learning activities. And to find out the appropriate learning resources, we 
automatically generate well-structured learning resources from loosely connected 
Web resources. These learning resources are delivered to students, who have dif-
ferent knowledge backgrounds, learning interests, and knowledge levels, to study 
knowledge. In the end, to provide methods to help teachers and students to deter-
mine student learning quality in a more intuitive way, we evaluate student learning 
performance to analyze their learning progress using the proposed student attribute 
descriptors and student progress indicators.

9.2  Research Contribution

9.2.1  A Fine-Grained Outcome-Based Learning Path Model

Existing methods generate learning paths based on attributes that describe learning 
contents and student learning performance. However, these content-based works 
do not properly incorporate the teaching and learning approaches. As a result, 
the learning outcomes are assessed by the mastery levels of learning contents. 
However, it is hard to assess other forms of learning outcomes, such as generic 
skills. In addition, the learning activities only provide simple forms of teaching 
methods that make them hard to be defined and reused for another courses.

Chapter 9
Conclusion and Prospect
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We have proposed a fined-grained outcome-based learning path model, which 
provides a learning path construction method to design the components of the 
learning path and to change the setting of these components based on learning out-
comes. The proposed model allows the assessment methods open to different types 
of learning outcomes, supports different teaching approaches to different types of 
courses, and also students can obtain more comprehensive guidance.

Our outcome-based learning path model incorporates the Bloom’s Taxonomy 
[Bloo56] for learning path construction to support more precise learning outcome 
assessment. In fact, the proposed model is also open to different types of learn-
ing outcome assessment methods and inference algorithms [Cona02, Chen06]. 
This feature allows an ITS that is built on top of our learning path model to eas-
ily incorporate specific subjects and even a combination of methods for evaluating 
student learning performance more accurately and comprehensively.

The proposed model offers an adjustable fine-grained learning activity formula-
tion to support the implementation of different teaching approaches in a learning 
path. This also enhances the modeling of KEs to allow a KE to be delivered and 
assessed in different ways.

In the proposed model, the components of a learning path have relationships 
and constraints among each other. This simplifies the implementations of learning 
path construction systems. We also implement a prototype to display our system, 
and ask experienced teachers to use it and evaluate our model. In the user study, 
our model displays excellent functionalities that teachers with different knowledge 
backgrounds and different teaching experiences have shown their great interests, 
saying our model is useful and helpful to design learning path and to guide student 
learning.

According to the discussion above, the fine-grained outcome-based learning 
path model fulfills the research objective of finding out the teaching approaches 
and answers the question of how to learn, so that teachers can provide different 
teaching approaches for different courses, which can evaluate different types of 
learning outcomes including both subject-specific knowledge and skills as well as 
generic skills.

9.2.2  Learning Path Construction Based on Association 
Link Network

The learning resources are not easy to manually create, especially when design-
ing for different students. Reusing Web resources to form learning resources offers 
a way for rapid course construction. However, the challenges are how to identity 
the properties of the Web resources, including the relevance, importance, and com-
plexity, etc., and how to find out the relationships among them, especially, how to 
find out tailored learning resources for different students with different learning 
abilities and knowledge backgrounds, etc.
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To address these problems, we proposed an Association Link Network-based 
learning path construction method to automatically find out the personalized learn-
ing resources according to students’ knowledge backgrounds, learning preferences, 
learning abilities, etc. This method can automatically construct well-structured 
learning resources from loosely connected Web resources as teacher knowledge 
model. The learning path is extracted from teacher knowledge model, which con-
tains three abstraction levels, i.e., keyword, topic, and learning resources ALNs. 
The learning path with three abstraction levels provides more information about the 
relationships among knowledge, which can help students to better understand the 
knowledge. Also, the method comes with a test generation scheme which can auto-
matically generate tests and assess student understanding against learning resources.

In the ALN-based learning path construction method, we apply Association 
Links Network to form teacher knowledge model which identifies the associa-
tions among unorganized Web resources. Given the mass Web resources, even if 
we have no idea about their knowledge domains, concept structures, or learning 
outcomes, we still can structure the knowledge via the model. It can provide a very 
efficient way to organize Web resources rather than ask teachers to manually cre-
ate learning resources.

Our system incrementally extracts adaptive learning path from the teacher 
knowledge model, which automatically converts the LRs into associated UoLs as 
the learning path with a set of three different ALNs. The learning path also has 
three abstraction levels. Any node in an ALN also can be respectively mapped to 
some other nodes in the other two ALNs, so that students can have more informa-
tion to understand knowledge concepts with the help of the associated nodes of 
knowledge concepts.

We construct a test generation scheme to automatically assess student under-
standing against a LR within a UoL. We use the associations between topics or key-
words as the rules to test if students can build up the correct association between 
major concepts. This automatic scheme saves a lot of efforts than manually 
designed tests. In the end, two comparison studies are designed to demonstrate that 
students using a system-recommended learning path can have better and more sta-
ble learning performance than using manually selected learning path by a teacher.

As the discussed above, the proposed ALN-based learning path construction 
method fulfills the research objective of automatically finding out the appropriate 
learning resources to construct personalized learning path which helps students to 
better understand the knowledge and achieves their learning outcomes.

9.2.3  Fuzzy Cognitive Map-Based Student Learning 
Progress Indicators

Existing works on student learning progress mainly identify student learning pro-
gress as a set of state changes made by a student regarding certain learning attrib-
utes and whether the student meets with the teachers’ expectations. However, such 

9.2 Research Contribution
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progress information is quite primitive. It is not sufficient to form indicators to 
help students and teachers to make improvements on learning and teaching, unless 
they pay extra cognitive efforts to manually extract more comprehensive learning 
progress information from the feedbacks. It is because learning attributes are not 
independent but may have certain causal relationships among each other, which 
can also be dynamically changing over time. In addition, at different learning 
stages, student learning progress may be governed by a different set of learning 
attributes. For example, a student may be expected to mainly train up with con-
cept memorization at an initial stage rather than focusing on the ability of applying 
knowledge. However, the situation becomes the opposite when a student is going 
through a mature learning stage. On the other hand, a teacher may need a higher 
level of student learning progress information, such as the performance distribu-
tion within a cohort, the portion of students meeting the teachers’ expectations, or 
whether a student or a group of students is/are developing certain learning skills, 
to support teaching approaches adjustment.

Our work is developed to provide a comprehensive solution to address such 
complicated needs. We proposed Fuzzy Cognitive Map (FCM)-based student 
learning progress indicators, which collect student performance on student perfor-
mance-related attributes and nonperformance-related attributes, analyze how their 
performance is changing and what factor can cause the changes of performance 
on certain attribute, categorize students into different types according to their dif-
ferent learning progress, and also propose a progress potential function to predict 
student learning performance in the future.

We propose a student attribute matrix to formulate all levels of both perfor-
mance-related attributes and all aspects of nonperformance-related attributes. In 
the student attribute matrix, the row vector represents one kind of student attribute 
and the components in the vector represent quantified values of attribute levels. It 
is easy to measure student progress from different perspectives of student attrib-
utes. On the other hand, it supports the fuzzy property that a student may stay in 
two or more levels according to different cases. It is better to formulate a nonlinear 
function to calculate the effect of one attribute on one another. With the student 
attribute matrix, we also can group students together by one of these attributes or 
by a selection of attributes.

FCM is used to infer the causal relationships among student attributes which 
behave as the concept nodes in the map. With the FCM, we can analyze the learn-
ing behaviors of a single student, or a group of students with similar attributes. 
More importantly, it can analyze the factors that affect student learning progress, 
and describe the causal relationships among these factors, i.e., how a factor affects 
each other in terms of student learning progress.

According to the discussion above, the proposed student learning progress indi-
cators fulfill the research objective of improving the learning quality and answer-
ing the question of how well students have learned. Teachers can adjust teaching 
approaches and try to help students to have a balanced development to handle dif-
ferent learning environments.
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9.3  Limitations and Prospect

The outcome-based learning path model currently formulates a representation of 
a learning path. Basically, we can prepare learning path templates to best fit with 
each type of students, so teachers do not need to manually create the learning path. 
However, it still cannot automatically construct a learning path. Because it has to 
depend on teachers to manually adjust the requirements and learning outcomes of 
each learning activity as well as the sequences among them. These adjustments 
will cause a lot of extra work for teachers. And on the other hand, teachers cannot 
clearly know every student’s learning status, so the adjustment may contain some 
errors. As a future work, we will work on some automatic algorithms for man-
aging and adjusting the learning outcomes and the delivery of learning activities, 
based on which we plan to develop an adaptive E-Learning system.

In order to find out appropriate learning resources, we construct learning 
resources directly from the Web resources and identify the attributes of these 
learning resources to suit different types of students, and also we can make sure 
there is no similar learning resource exists in the teacher knowledge model. 
However, the selected learning resources in a learning path are obtained from dif-
ferent websites and created by different authors, their formats/styles of describing 
knowledge and skills are not consistent enough for students to smoothly obtain 
knowledge. Students may get confused if the contexts between learning resources 
are not well connected, or if the learning resources use different symbols to 
express the same terminology, etc. All of these deficiencies will affect students’ 
understanding. It is necessary to find out a way to improve the consistency of the 
learning resources. As a future work, we will investigate methods to address such 
presentation and consistency problems, in order to allow students to learn more 
smoothly with the Web resources constructed learning materials.

Student learning progress can provide dynamic information about how stu-
dents’ performance on some attributes is changing, such as how student learning 
performance is changing over a particular attribute, predicting a student’s learn-
ing performance according to the student’s previous performance as well as peers 
learning performance, etc. However, our work only shows limited perspectives of 
student learning progress. On the other hand, teachers from different knowledge 
disciplines may be interested in different perspectives of student learning pro-
gress. They may feel some of the progress we have provided is not very useful for 
their teaching. If we can provide them a progress customization tool where they 
can customize their interested learning progress, then it will improve their teach-
ing quality a lot. Also, if the dynamical learning process and various perspectives 
of student learning progress could be visual to teachers and students, they would 
better understand student learning progress, so that students can enhance their 
learning, and teachers can adjust their teaching approaches accordingly. As a refer-
ence, we could use the visualization tool [Gource] not only to present the progress 
across different stages, to show student learning performance in multi-resolution, 
but also to present the relationship among different types of attributes.

9.3 Limitations and Prospect
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9.4  Conclusion

This chapter summarizes our works presented in the monograph, highlights the 
contributions including the proposed methods, the advantages, and how they 
achieve the research objectives, discusses the limitations of the works and the 
future works to overcome the limitations. This monograph has proposed a fine-
grained outcome-based learning path model, which teachers can use to design 
learning tasks, learning activities, and learning path for different types of students. 
This monograph also proposed a learning path construction method which can 
automatically generate learning resources from loosely connected Web resources. 
This monograph proposed a FCM-based student progress indicator to analyze and 
present student progress and to find out the factors that may affect student learning 
performance. The future work depicts possible directions of this monograph. The 
future improvements of the work include automatically adjusting the components 
and their settings of the outcome-based learning path, presenting the learning 
resources in a consistent format, and designing a more effective way to visually 
present student learning progress. If such research work can be successfully done, 
more contributions on constructing learning path will be achieved.
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Questionnaire on Learning Progress Scheme

Covering Letter

This study is organized by Miss Fan Yang, a PhD student in the School of 
Engineering and Computing Sciences, Durham University, who is working on a 
research project in e-learning.

Project Introduction

Learning path construction is a complicated task, which involves formulating and 
organizing activities, defining ways to evaluate student learning progress and to 
match such progress with designated learning outcome requirements. Our project 
proposes a mathematical model to formulate learning paths and learning activities. 
This model can lead to the implementation of a generic system to support learning 
path design for teachers from any subject disciplines. We have developed a simple 
prototype based on this model and are now conducting this user study to evaluate 
our work.

Abstract of the Questionnaire

The results of this study will determine whether our system can provide a conve-
nient environment for you to design a course in terms of its learning path, track 
student learning progress, evaluate their performance, and provide feedback to 
help students enhance their learning quality.

Appendix A



Appendix A122

Note that at this stage, the design of our prototype e-learning tool focuses only 
on its functionalities, i.e., generating learning paths and evaluating student prog-
ress and learning outcomes, rather than focusing on the user interface design.

Other Information

If there are questions about particular items, simply respond: “Just answer the 
question as you interpret it.”

You will not be identified by name. All information provided by you will be 
treated as strictly confidential.

Your participation would help us confirm the importance and usefulness of our 
research on designing personalized learning path for different students.

If you have any problem, please feel free to contact me.
E-mail: fan.yang2@dur.ac.uk
Mobile: 07594324631
Department: School of Engineering and Computing Sciences, Durham 

University
Your participation is very much appreciated and will allow us to focus on 

critical issues related to control student learning progress and evaluate learning 
outcomes.

The questionnaire should only take less than 10 min. to complete. Could you 
please return it by 10 June 2010?

Questions: (19 questions)
It is recognized that teachers are likely to respond quite differently to the enclosed 
questions. Please answer all the questions in such a way as to reflect most clearly 
your viewpoints.

There is no right or wrong answer. Answer the questions in the order in which 
they appear on the paper. Most questions will require you to circle your selected 
response. Others will require you to write down a few words. Do not leave blanks.

We thank you for your contribution to this important research.

1. What’s your subject?

□ Science
□ Art
□ Engineering
□ Other, please specify
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2. Do you have any experience of using e-learning tools?

□ Yes.
□ No, but I know what it is.
□ No, I have no idea about it.

3. How many years of teaching experience do you have?

□ 0–1 year
□ 1–3 years
□ 3–5 years
□ More than 5 years

4. Do you have any experience of designing/modifying teaching materials?
If yes, how do you design/modify teaching materials?

□ No.
□ Yes, I design/modify my teaching materials by hand.
□  Yes, I design/modify my teaching materials with professional 

software. Please specify what kind of software are you using: 
____________________________.

□ Yes, I use others. Please specify: ____________________________.

5. When you design your teaching materials, you need to define student learning 
outcomes. How do you find the criteria to define student learning outcomes?

□ Subject area
□ Difficulty level
□ Skill set
□ Others:____________________________.

6. Student ability refers to a set of attributes describing how a student has 
been trained up while studying a subject area. These attributes may indicate 
whether a student can only recall the subject content or can apply subject 
knowledge to solve problems in unseen situations, for instance.
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  An example of a student ability table:
  Teacher can use these abilities for assessment and put them to a student ability 

table. How will you rank the usefulness of the student ability table?

□ Very useful
□ Useful
□ Not so useful
□ Not useful at all

7. To support a more fine-grained formulation for describing the learning pro-
cesses of knowledge elements, we propose the idea of learning task, which is 
simple in nature and is designed for training up a student with a certain abili-
ties in the way they prefer, including individual or collaborative and active or 
passive.

An example of a single learning task:
How do you find this idea will help you design what a student needs to learn?

□ Very useful
□ Useful
□ Not so useful
□ Not useful at all

8. We divide an activity into tasks help a teacher have a better understanding on 
how to create/organize the activity. As somehow, a task is more closely related 
to abilities, so it is a bridge between an activity and a set of abilities. For 
example, a “lecture” activity may include “delivering bookwork type of mate-
rials” task for training up the student comprehension skill, “question–answer-
ing” task for testing out the student understandings.
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  Divide an activity into several tasks:
  Do you think this will help you have a better picture on why the student needs 

to create an activity and how this activity can help a student to make progress/
to improve the student’s abilities?

□ Very useful
□ Useful
□ Not so useful
□ Not useful at all

9. When designing a course, it is typical for a teacher to establish a set of learn-
ing activities, such as lecture, tutorial, or practical, to support students learn-
ing different knowledge elements. Teacher is expected to put together a list of 
learning tasks to form the basis for constructing learning activities. By chang-
ing the ability requirements and task importance weights, the difficulty level 
of a learning activity would be changed as well.
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 An example of a learning activity:
 How do you find this idea will help you decide the learning process and learn-

ing outcome of a learning activity?

□ Very useful
□ Useful
□ Not so useful
□ Not useful at all

10. In particular, collaborative learning activity refers to the learning activity that 
students are learning collaboratively in a group setting. This type of learning 
activity is modeled to comprise two types of learning tasks: collaborative and 
individual, where they are designed to be performed by a group of students 
collaboratively and by each individual student within a group, respectively. 
For example, a “Sell your Product” collaborative learning activity assigns 
student A an individual task “design advertisement” and assigns student B 
an individual task “design PPT,” and each student has been assigned differ-
ent individual task, but all of them should do the collaborative task together: 
presentation. From the student’s perspective, each student typically requires 
to perform only collaborative learning task and the student’s own individual 
learning task.

  How do you find this idea will help you decide the idea on the group setting 
of a collaborative learning activity and also assess the learning outcome of a 
group students?

□ Very useful
□ Useful
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□ Not so useful
□ Not useful at all

11. To allow a student to build up the student’s knowledge progressively, it is a 
common practice for a teacher to divide the entire learning process of a course 
into a finite sequence of time slots, namely learning stages. During each learn-
ing stage, a student only needs to focus on studying a subset of knowledge 
elements through designated learning activities. For example, if the starting 
learning stage that “tutorial1” is taken place, then the student should start to 
learn it. And if the ending learning stage that “tutorial1” is taken place, then 
the student should finish learning.

An example of a single learning stage:
How do you find this idea will help you better manage the learning process?

□ Very useful
□ Useful
□ Not so useful
□ Not useful at all

12. A learning path comprises a set of learning activities. There exist time con-
straints and dependencies among the learning activities. The starting learning 
stage decides when to learn a learning activity, and the ending learning stage 
decides when to finish a learning activity. And the time constrains also use-
ful for verifying the coexistence dependency between two learning activities. 
They are useful especially when two or more learning activities are running 
together. For example, the ending stage of “lecture1” is the starting stage of 
“tutorial1,” which decide “lecture1” is the prerequisite of “tutorial1.” Also, 
“lecture1” and “practical1” share the same starting stage and ending stage, 
and then, both of them should be taken as the same time.
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  An example of a learning path:
  How do you find this idea will help you better design the learning path?

□ Very useful
□ Useful
□ Not so useful
□ Not useful at all

13. Learning process describes the current state of a student regarding how much 
knowledge that the student has been built up in a subject area. In our project, 
learning process can be obtained by evaluating the accumulated learning out-
comes of the student across a relevant number of learning stages.

  Would you find this idea helpful when you apply the results to set up rules for 
defining the prerequisite of a learning activity or to adjust the learning path 
for enhancing student learning?

□ Very helpful
□ Helpful
□ Not so helpful
□ Not helpful at all

14. We also allow different assessment methods to be incorporated for better cap-
turing student performance or learning outcomes. Based on a well-developed 
theory Bloom’s taxonomy, we can assess a student in three domains: cogni-
tive (knowledge based), affective (attitudinal based), and psychomotor (skill 
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based). For example, Bloom’s taxonomy classify the cognitive domain into 
six levels from easy to difficult: knowledge, comprehension, application, anal-
ysis, synthesis, and evaluation.

  How do you find this idea will help you better assess a student performance?

□ Very useful
□ Useful
□ Not so useful
□ Not useful at all

15. To assess student learning outcome, we propose to use student abilities as the 
basis due to its practicality and the availability of the Bloom’s taxonomy. A 
student ability-specific evaluation function can generate a score to describe 
the level of achievement of a student in a particular student ability. The evalu-
ation function could be simple marking, grading, or item response theory.

  How do you find this idea will be easier to assess a student performance?

□ Very easy
□ Easy
□ Not so easy
□ Not easy at all

16. Is that possible to apply our e-learning tool to in your teaching subject?

□ All of them could be applied to my teaching subject.
□ Most of them could be applied to my teaching subject.
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□ Part of them could be applied to my teaching subject.
□ None of them could be applied to my teaching subject.

17. What’s the biggest difference from the e-learning tools you had experienced 
before?
From the aspect of functionality____ ____ ____ ____ ____ ____
From the aspect of convenience____ ____ ____ ____ ____ ____
From the aspect of flexibility ____ ____ ____ ____ ____ ____ ____
From the aspect of accuracy____ ____ ____ ____ ____ ____ ____
From the aspect of understandability____ ____ ____ ____ ____ ____
Others__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____

18. When you design your teaching materials, which aspect do you focus most? 
Could you provide some details how you design your teaching materials?
__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 
____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 
____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 
____ ____ ____ ____ ____ ____ ____ ____ __

19. Please make any further comments on the design/usage/clarity/ or suggestions 
for improvement of this system below.

__ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 
____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 
____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 
____ ____ ____ ____ ____ ____ ____ ____ __
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Questionnaire: Analysis results for teachers
The analyzed subjects in this experiment include math, physics, chemistry, pol-

itic, history, and English, where the first 3 subjects are science subjects and the last 
3 subjects are art subjects. According to the data collected from different teach-
ers, those teachers provide their teacher requirements according to the 3 domains 
(cognitive, affective, and psychomotor) that are used to measure student learning 
performance. Based on those requirements, we evaluate students and divide their 
performance into 5 scales, which are disqualified, below average, satisfactory, 
good, and best.

B.1 Early Stage of Learning

This stage includes several lower levels in the 3 domains (cognitive, affective, and 
psychomotor) to evaluate student learning performance, which are used to evaluate 
student in normal situation.

Cognitive: cognitive and remember, understand, application;
Affective: accept knowledge and give response;
Psychomotor: the ability of using senses to guide behavior, the preparation 

work before learning, and practice according to guideline.

B.1.1 Classification Results

The overall distribution results of the 60 students are shown by the following fig-
ure: (Fig. B.1) whole subjects; (Fig. B.2) science subjects; and (Fig. B.3) art sub-
jects. The number of students in each class is represented in the brackets after the 
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classification. Those figures show that each class of students has stable perfor-
mance in different aspects of different domains for all subjects. The basic rule is 
that if a student has better performance in a domain, then the student would have 
better performance in other domains. The same rule can be applied to science sub-
jects (Fig. B.2) as well as to art subjects (Fig. B.3). However, (1) the 60 students 
has better performance in science subjects than that in art subjects and (2) the dif-
ferences in science subjects are much larger than that in art subjects.

According to your knowledge to the learning performance of the 60 students 
during the teaching and learning practice, whether the analysis results are the same 
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as your knowledge? (Please score from 1 to 5—1: totally different; 2: partly same; 
3: half is the same; 4: most are the same; and 5: basically the same).

B.1.2 The Relationship Between Different Attributes

We have collected the teaching requirements in the domain of cognitive, affec-
tive, and psychomotor, as well as the participation mode of students (collabora-
tive learning or individual learning). We also collected the teaching styles of each 
teacher in the aspects of learning content (specific or abstract), expression (virtual 
or oral), information organization (inductive or deductive), participation attitude 
(passive or active), and teaching sequence (sequential students who learn in con-
tinual steps and global students who learn gradually from the whole knowledge 
structure to more detailed concepts). Actually, the change (progress or regress) of 
an aspect will affect the change (progress or regress) of other aspects, so we have 
analyzed the casual relationships between the 9 aspects according to student learn-
ing performance.

Given all subjects, the causal relationships between the 9 aspects in the early 
stage for the 60 students are shown in Fig. B.4, where a node represents an aspect, an 
arrow represents that the starting node takes effect on the ending node, and the weight 
for each arrow represents the relative impact of one aspect on another (0 weight 
means no impact and 1 weight means the impact is the largest). The figure shows 
that the 3 domains such as cognitive, affective, and psychomotor are taking effect on 
each other; i.e., progress in any domain would cause the progress in the other two 
domains. The balance development of student learning styles would directly affect 
the performance of cognitive and psychomotor. And the impact of balance degree of 
learning style on cognitive is larger than that on psychomotor.
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Given all subjects, according to the learning performance of all students in 
the early learning stage, the overall impact of each aspect on the other aspects is 
shown in Fig. B.5. Because the early stage only measures student's basic abilities, 
the differences between good students and poor students in the 3 domains are quite 
small. In this stage, the balance degree of learning styles mainly effects the per-
formance in other aspects. Above all, no matter for different types of students, or 
for different subjects, the casual relationships between those aspects are quite the 
same, and only the impacts have small differences.
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Fig. B.4  The casual relationships between the 9 aspects in early learning stage for the 60 
students
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According to your knowledge to the learning performance of the 60 students 
during the teaching and learning practice, whether the analysis results are the same 
as your knowledge? (Please score from 1 to 5—1: totally different; 2: partly same; 
3: half is the same; 4: most are the same; and 5: basically the same).

B.2  Interim Stage—Potential of Making Progress

This part analyzes the potential of making further progress. If a student does not 
only has good performance in the 3 domains, but also can develop his learning 
styles balanced according to different teaching modes, then the student has the 
potential of making progress and has stronger ability of self-learning. For this type 
of students, no matter how difficult the learning activities are, or using which way 
of teaching, they all can have good performance. On the contrary, for the students 
having “low potential of making progress,” teachers should teach them in terms of 
their learning styles. The evaluation in interim stage also indicates whether the stu-
dent is making progress in the right direction.

The following 3 figures are the analysis results of learning performance in the 
9 aspects for all subjects, science subjects, and art subjects, respectively. For each 
figure, the horizontal axis represents student ID, the left vertical axis represents 
their relative performance (0: the worst and 1: the best), and the right vertical axis 
represents their classification level (1: the worst and 5: best). The 3 curves in the 
figure are the overall performance of student potential in the 3 domains and the 
balance degree of learning styles, respectively. Generally speaking, no matter for 
which type of subjects, if a student has better overall performance in the 3 domains, 
then he has better balance degree of learning styles, which means that he has larger 
potential to make progress. There are also exceptions; for example, student S15 
belongs to best students and student S2 is just a good student. However, the balance 
degree of S15 is lower than that of S2 (Fig. B.8). But for different types of subjects 
of a student, he has different performance in the 3 domains, his balance degrees 
of learning styles are different and the corresponding potentials also have differ-
ences. For example, for all subjects and science subjects, student S2 (marked by 
black in all figures) belongs to best according to his performance in the 3 domains  
(Figs. B.6 and B.7); however, his performance in art subjects is only good (Fig. B.8).
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According to your knowledge to the learning performance of the 60 students 
during the teaching and learning practice, whether the analysis results are the same 
as your knowledge? (Please score from 1 to 5—1: totally different; 2: partly same; 
3: half is the same; 4: most are the same; and 5: basically the same).

B.3 Mature Stage

This stage includes lower levels and higher levels of the 3 domains (cognitive, 
affective, and psychomotor) to evaluate student, which is especially used to tell the 
differences between best students and normal students.

Cognitive: cognitive and remember, understand, application, analysis, compre-
hensive, and creative ability;

Affective: accept knowledge, give response, evaluate, and organize, form sense 
of worth to affect behavior;

Psychomotor: the ability of using sense to guide activities, preparation work 
before learning, to practice according to guidance, freely apply knowledge, be 
good at gained skills, ability of adapting oneself quickly to changing conditions, to 
solve problems based on creative behavior.

B.3.1 Classification Results

The overall distribution results of the 60 students are shown by the following 
figures: (Fig. B.9) all subjects; (Fig. B.10) science subjects; and (Fig. B.11) art 
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subjects. The number of students in each group is indicated in the brackets after 
that type. We can give the same conclusion as “early stage.” Those figures show 
that for all subjects, each type of students has stable performance in different 
aspects of each domain. The same rule is that if a student has better performance 
in a domain, then the student would have better performance in other domains. 
The same conclusion can be applied to science subjects (Fig. B.10) and art sub-
jects (Fig. B.11). However, the 60 students (1) have better performance for science 
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subjects than that of art subjects in the 3 domains, (2) and the performance differ-
ences between science subjects are apparently larger than that of art subjects. The 
difference is that the distribution of each type of student is a little different from 
that of early stage.

According to your knowledge to the learning performance of the 60 students 
during the teaching and learning practice, whether the analysis results are the same 
as your knowledge? (Please score from 1 to 5—1: totally different; 2: partly same; 
3: half is the same; 4: most are the same; and 5: basically the same).

B.3.2 Mature Stage—Potential of Making Progress

Similar to the analysis for the interim stage, the following 3 figures are the analy-
sis results of learning performance in the 9 aspects for all subjects, science sub-
jects, and art subjects, respectively. For each figure, the horizontal axis represents 
student ID, the left vertical axis represents their relative performance (0: the 
worst and 1: the best), and the right vertical axis represents their classification 
level (1: the worst and 5: best). The 3 curves in the figure are the overall perfor-
mance of student potential in the 3 domains and the balance degree of learning 
styles, respectively. Similar to the analysis results of early stage, the difference is 
that the students classification results have a little difference, where the potential 
of 9 students has increased, while the potential of other 8 students has decreased. 
Generally speaking, for the 60 students, no matter for which type of subjects, if 
a student has better overall performance in the 3 domains, then he has better bal-
ance degree of learning styles, which means that he has larger potential to make 
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progress. There are also exceptions; for example, student S15 has better perfor-
mance than S2 in the 3 domains, but the balance degree of learning styles of S15 
is lower than S2 (Fig. B.8). But for different types of subjects of a student, he has 
different performance in the 3 domains, his balance degrees of learning styles are 
different, and the corresponding potentials also have differences. For example, 
for all subjects and science subjects, student S2 (marked by black in all figures) 
belongs to best according to his performance in the 3 domains (Figs. B.12 and 
B.13); however, his performance in art subjects is only good (Fig. B.14).

According to your knowledge to the learning performance of the 60 students 
during the teaching and learning practice, whether the analysis results are the same 
as your knowledge? (Please score from 1 to 5—1: totally different; 2: partly same; 
3: half is the same; 4: most are the same; and 5: basically the same).

B.3.3 The Causal Relationship Between Different Aspects

Similar to the experiment described in section Appendix A.1.2, the changes of an 
aspect (progress or regress) would affect the changes (progress or regress) of the 

Fig. B.12  All subjects

Fig. B.13  Science subjects

Fig. B.14  Art subjects
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other aspects, so we have analyzed the casual relationships between the 9 aspects 
according to student learning performance. Given all subjects, the causal rela-
tionships between the 9 aspects in the early stage for the 60 students are show 
as Fig. B.15. Psychomotor has become the core aspect, which affect affective and 
cognitive with each other. In the meantime, because of the learning styles reflect-
ing different characteristics of learning behavior, so the changes of any aspects of 
learning styles can affect the performance in psychomotor.

According to the performance of all students for all subjects at mature stage, 
Fig. B.16 gives the impact distribution of each aspect on the other aspects. 
Apparently, at mature stage, student behavior has become the aspect that has the 
largest impact on the other aspects. Above all, no matter for different types of 
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students, or for different subjects, the casual relationships between those aspects 
are quite the same, only the impacts have small differences.

According to your knowledge to the learning performance of the 60 students 
during the teaching and learning practice, whether the analysis results are the same 
as your knowledge? (Please score from 1 to 5—1: totally different; 2: partly same; 
3: half is the same; 4: most are the same; 5: basically the same).
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Questionnaire: Analysis results for student S2.
The analyzed subjects in this experiment include math, physics, chemistry, 

politic, history, and English, where the first 3 subjects are science subjects, and 
the last 3 subjects are art subjects. According to the data collected from differ-
ent teachers, those teachers provide their teacher requirements according to the 3 
domains (cognitive, affective, and psychomotor) that are used to measure student 
learning performance. Based on those requirements, we evaluate students, and 
divide their performance into 5 scales, which are disqualified, below average, sat-
isfactory, good, best.

C.1 Early Stage of Learning

This stage includes several lower levels in the 3 domains (cognitive, affective, and 
psychomotor) to evaluate student learning performance, which are used to evaluate 
student in normal situation.

Cognitive: cognitive and remember, understand, application;
Affective: accept knowledge, and give response;
Psychomotor: the ability of using senses to guide behavior, the preparation 

work before learning, and practice according to guideline.

C.1.1 Classification Results

Given all subjects (Fig. C.1), the performance of student S2 in the 3 domains is 
classified to “best,” and his performance in other aspects is higher than the other 
best students, and is much higher than teacher’s expectation.

Appendix C
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Given science subjects (Fig. C.2), the performance of student S2 in the 3 
domains is classified to “best,” and his performance in all aspects keeps the same 
with the other best students, and is much higher than teacher’s expectation.

Given art subjects (Fig. C.3), the performance of student S2 in the 3 domains is 
classified to “good,” and his performance in other aspects is higher than the other 
good students, and could be classified to “best” in some ways, at the same time, 
his performance is higher than teacher’s expectation.
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If you were student S2, will this analysis results help you better understand 
your learning situation? (please score from 1 to 5—1: totally do not know my 
learning situation; 2: not quite sure about my learning situation; 3: only know a lit-
tle about my learning situation; 4: know my learning situation; 5: know my learn-
ing situation quite well).

C.1.2 The Causal Relationship Between Different Aspects

We have collected the teaching requirements in the domain of cognitive, affec-
tive, and psychomotor, as well as the participation mode of students (collabora-
tive learning or individual learning). We also collected the teaching styles of each 
teacher in the aspects of learning content (specific or abstract), expression (virtual 
or oral), information organization (inductive or deductive), participation attitude 
(passive or active), teaching sequence (sequential students who learn in continual 
steps, and global students who learn gradually from the whole knowledge struc-
ture to more detailed concepts). Actually, the change (progress or regress) of an 
aspect will affect the change (progress or regress) of other aspects, so we have 
analyzed the casual relationships between the 9 aspects according to student learn-
ing performance.

Given all subjects, the causal relationships between the 9 aspects in the early 
stage for student S2 are show as Fig. C.4, where a node represents an aspect, an 
arrow represents that the starting node takes effect on the ending node, and the 
weight for each arrow represents the relative impact of one aspect on another (0 
weight means no impact, and 1 weight means the impact is the largest). The fig-
ure shows that the 3 domains of cognitive, affective, and psychomotor are taking 
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effect on each other, i.e., progress in any domain would cause the progress in the 
other two domains. The balance development of student learning styles would 
directly affect the performance of cognitive and psychomotor. And the impact of 
balance degree of learning style on cognitive is larger than that on psychomotor.

At early stage, given all subjects, the overall impact distribution of each aspect 
for student S2 is shown by Fig. C.5. Besides, the information of best students and 
all students is provided as references. Because the early stage only measures stu-
dent basic abilities, so the differences between good students and poor students in 
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the 3 domains are quite small. In this stage, the balance degree of learning styles 
mainly effects the performance in other aspects. Above all, no matter for different 
types of students, or for different subjects, the casual relationships between those 
aspects are quite the same, only the impacts have small differences.

If you were student S2, will this analysis results help you better understand 
your learning situation? (please score from 1 to 5—1: totally do not know my 
learning situation; 2: not quite sure about my learning situation; 3: only know a lit-
tle about my learning situation; 4: know my learning situation; 5: know my learn-
ing situation quite well).

C.2  Middle Stage—“Potential of Making Progress”

This part analyzes the potential of making further progress. If a student does not 
only has good performance in the 3 domains, but also can develop his learning 
styles balanced according to different teaching modes, then the student has the 
potential of making progress, and has stronger ability of self-learning. For this 
type of students, no matter how difficult the learning activities are, or using which 
way of teaching, they all can have good performance. On the contrary, for the stu-
dents having “low potential of making progress”, teachers should teach them in 
terms of their learning styles. The evaluation in middle stage also indicates that if 
the student is making progress in the right direction.

For student S2, the following 3 figures are the analysis results of learning per-
formance in the 9 aspects for all subjects, science subjects, art subjects, respec-
tively. For each figure, the horizontal axis represents different types of students, 
and student S2, the vertical axis represents their relative performance (0: the worst, 
1: the best). The first group of histogram represents student potential, and the sec-
ond group of histogram represents the balance degree of learning styles. Generally 
speaking, no matter for which type of subjects, if a student has better overall per-
formance in the 3 domains, then he has better balance degree of learning styles, 
which means that he has larger potential to make progress. But for different types 
of subjects of a student, he has different performance in the 3 domains, his balance 
degrees of learning styles are different, the corresponding potentials also have dif-
ferences. For example, for all subjects and science subjects, student S2 belongs to 
best according to his performance in the 3 domains (Figs. C.6 and C.7), however, 
his performance in art subjects is only good (Fig. C.8).

If you were student S2, will this analysis results help you better understand 
your learning situation? (please score from 1 to 5—1: totally do not know my 
learning situation; 2: not quite sure about my learning situation; 3: only know a lit-
tle about my learning situation; 4: know my learning situation; 5: know my learn-
ing situation quite well).
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C.3 Mature Stage

This stage includes lower levels and higher levels of the 3 domains (cognitive, 
affective, and psychomotor) to evaluate student, which is especially used to tell the 
differences between best students and normal students.

Cognitive: cognitive and remember, understand, application, analysis, compre-
hensive, and creative ability;

0

0.2

0.4

0.6

0.8

1

Disqualified Below 
Average

Satisfactory Good Best S2' (Best)

Potential Balance Degree

Fig. C.6  All subjects

0

0.2

0.4

0.6

0.8

1

Disqualified Below 
Average

Satisfactory Good Best S2' (Good)

Potential Balance Degree

Fig. C.7  Science subjects



Appendix C 149149

Affective: accept knowledge, give response, evaluate, organize, form sense of 
worth to affect behavior;

Psychomotor: the ability of using sense to guide activities, preparation work 
before learning, to practice according to guidance, to freely apply knowledge, be 
good at gained skills, ability of adapting oneself quickly to changing conditions, to 
solve problems based on creative behavior.

C.3.1 Classification Results

The overall distribution results at mature stage of student S2 are shown by the fol-
lowing figures: (Fig. C.9) all subjects; (Fig. C.10) science subjects; (Fig. C.11) art 
subjects. The number of students in each group is indicated in the brackets after 
that type. We can give the same conclusion as “early stage.” Those figures show that 
for all subjects, each type of students has stable performance in different aspects of 
each domain. The same rule is that if a student has better performance in a domain, 
then the student would have better performance in other domains. The same con-
clusion can be applied to science subjects (Fig. C.10) and art subjects (Fig. C.11). 
However, student S2 (1) has better performance for science subjects than that of 
art subjects in the 3 domains. For all subjects and science subjects, S2 is best stu-
dent, but for art subjects, although he can reach the level of best students in the 3 
domains, he has to stay at middle level in the highest degree in the domain of affec-
tive. So generally speaking, he only has good performance in the 3 domains.

If you were student S2, will this analysis results help you better understand 
your learning situation? (please score from 1 to 5—1: totally do not know my 
learning situation; 2: not quite sure about my learning situation; 3: only know 
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a little about my learning situation; 4: know my learning situation; 5: know my 
learning situation quite well).

C.3.2 Mature Stage—Potential of Making Progress

Similar to the analysis of middle stage, the analysis results are similar to that of 
early stage, we are not repeat it again here. Generally speaking, S2 still belongs to 
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best students. The performance of student S2 in all aspect of the 3 domains for all 
subjects and science subjects is best, only the performance for art subjects is good.

If you were student S2, will this analysis results help you better understand 
your learning situation? (please score from 1 to 5—1: totally do not know my 
learning situation; 2: not quite sure about my learning situation; 3: only know a lit-
tle about my learning situation; 4: know my learning situation; 5: know my learn-
ing situation quite well).

C.3.3 The Causal Relationship Between Different Aspects

Similar to the experiment described in section Appendix B.1.2, the changes of an 
aspect (progress or regress) would affect the changes (progress or regress) of the 
other aspects, so we have analyzed the casual relationships between the 9 aspects 
according to the learning performance of student S2. Given all subjects, the causal 
relationships between the 9 aspects in the early stage for student S2 are shown 
in Fig. C.12. Psychomotor has become the core aspect, which affect affective and 
cognitive with each other. In the meantime, because of the learning styles reflect-
ing different characteristics of learning behavior, the changes of any aspects of 
learning styles can affect the performance in psychomotor.

According to the performance of student S2 for all subjects at mature stage, 
Fig. C.13 shows the comparison of the overall impact distribution of each aspect 
on the other aspects for student S2, best student, and all students, respectively. 
Apparently, at mature stage, student behavior has become the aspect that has the 
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Fig. C.12  The casual relationship between all aspects according to the performance of student 
S2 for all subjects at mature stage
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performance of student S2 for all subjects at mature stage
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largest impact on the other aspects. Above all, no matter for different types of stu-
dents, or for different subjects, the casual relationships between those aspects are 
quite the same, and only the impacts have small differences.

If you were student S2, will this analysis results help you better understand 
your learning situation? (please score from 1 to 5—1: totally do not know my 
learning situation; 2: not quite sure about my learning situation; 3: only know a 
little about my learning situation; 4: know my learning situation; and 5: know my 
learning situation quite well).
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