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SYMBOLS USED 

a acceleration of vibration; relative coefficient of compres-
sibility 

A foundation surface 
Af, Ar work necessary for the mobilization of xfy xr 

Ä coefficient of springing 
b distance of foundation from edge of slope 
Β width of foundation; mean width of two foundations 
B\9Bu width of foundation I and II 
c cohesion 
c' effective cohesion 
cf peak cohesion 
cr residual cohesion 
cu total cohesion 
c„ coefficient of consolidation 
cx, c2 cohesion of upper level of soil 1 and lower level of soil 2 
c cohesion between soil and structure 
C, (C 0) coefficient of compressibility (absolute) 
C j , C2 components of total cohesion for a length li, l2 

d height of slope 
di, d2 coefficients of the soil friction influence on the sides of a 

foundation 
dy, dq9 dc coefficients of the soil influence above the foundation level 
dp height of plastic range 
dx height of influence of horizontal force on column 
D depth of foundation 
D' effective depth of foundation 
D,, Dn depth of foundation of foundation I and II 
e eccentricity; void ratio 
£ m ax largest permissible eccentricity 
Ε elastic modulus 
Et elastic modulus of upper layer of soil or cushion 
E2 elastic modulus of lower layer of soil 
Ea active earth pressure 
E0 modulus of deformation; earth pressure at rest 
Ep passive resistance of soil 
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/ coefficient of friction; frequency in Hz 
F safety factor 
g acceleration due to gravity (g = 9,80665 m s" 2) 
h height of soil layer 
h depth of groundwater elevation below surface 
Κ height of capillary rise of water 
H horizontal force acting in foundation line; thickness of upper 

layer of soil under foundation line; height of foundation 
equivalent height of soil 

H' vertical distance of the edge of the foundation from the 
sliding surface 

i, i number of layers, points, elements 
coefficients of the influence of the load resultant inclined 
at an angle to the vertical 
hydraulic slope 

k coefficient of permeability; uniformity coefficient 
coefficient of active earth pressure 
coefficient of earth pressure at rest 

κ, coefficient of passive earth pressure 
coefficient of foundation rigidity 

l axial distance of adjacent foundations 
L length of foundation 
Lk distance over which a sliding slope comes to rest 
m coefficient of the reliability of a calculation; number of 

sectors of a circle 
m' degree of mobilization of the shearing strength of soil 
m number of pulses 
ml9m2 correction coefficients 
M bending moment, tilting moment 
M weight of released part of slope 
M' coefficient of moment caused by horizontal load 
M0 oedometric modulus of deformation 
Mm ultimate moment 
Mx moment related to point X 
η porosity of soil; number of annuli, layers 
η coefficient of load 
Ν Ν Ν Ν 

coefficients of bearing value 
N, factor of slope stability 
Ν normal force 
Ο circumference of foundation 
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ρ pressure on soil surface 
pk internal stress 
Ρ horizontal force 
Pm ultimate horizontal force 
q load on foundation soil 
Aq load increment 
q load in the vicinity of a foundation at the foundation line 
qb bulking pressure 
qd permissible load 
qf calculation stress of foundation soil 
qm bearing capacity in foundation line 
qmi bearing capacity of upper soil layer 
qm2 bearing capacity of lower soil layer 
qms bearing capacity of soil layer on bedrock 
q0 derived normative stress of soil ; estimated mean load at 

foundation line 
qp permissible load of foundation soil 
Q force acting in foundation line 
Q weight of released part of slope 
Qm ultimate vertical load acting in foundation line 
Qx, Q2 components of the weight of the soil 
r, R radius of circular foundation; directrix of logarithmic spiral 
r 0 initial directrix of logarithmic spiral 
Rt, R2 components of friction on yield surface in the subgrade of 

a foundation 
s settlement of a foundation 
sy9 sq9 sc coefficients of the influence of the shape of the foundation 
S separation of foundations 
t time 
i depth of capillary water menisci beneath the ground surface 
Τ distance of the lowest point of the yield surface from the 

plane of the foundation line; time factor 
Τ displacement force 
ua pore air pressure 
u9 uw pore water pressure 
ν velocity of movement 
w water content of soil ; wind pressure 
ws shrinkage limit 
w's water content of soil after a period of drying out 
W cross-section modulus 

JC length 



amplitude of vibration 
depth beneath ground level 
equivalent depth beneath ground level 
depth of point X 
separation of ground levels in the vicinity of foundations 
components of resultant forces on sliding surfaces 
the foundation for which the bearing capacity or permissible 
load is determined 
the foundation adjacent to foundation I 
factors of interaction of adjacent foundations 
angle 
coefficient of the shape and rigidity of a foundation 
gradient; inclination of the resultant load to the vertical 
angle 
unit weight of soil with natural-water content 
unit weight of dry soil 
unit weight of water-saturated soil 
specific weight of soil particles 
specific weight of water 
unit weight of soil beneath groundwater level 
unit weight of soil beneath foundation 
unit weight of soil above foundation line 
angle of wall friction 
compression of soil in oedometer 
difference in settlement 
displacement during shearing test 
displacement during shearing test where a peak value of 
strength xf was reached 
displacement during shearing test where a residual strength 
τΓ was reached 
permanent compression 
elastic compression 
change in the water content of soil 

difference in the depth of foundation of adjacent foundations 
vertical stress increment 
relative deformation 
lengths 
factor of bedrock influence; angle 
angle 
reduction coefficient 
degree of consolidation 
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ν Poisson's ratio ( < 1) 
σί9 σ2, ο stress 

normal stress on a yield surface 

<*ζ vertical stress 
G' effective stress 

static stress 
ÜJ dynamic stress 
G static stress during failure 

°k consolidation stress 
σο normal stress on a general plane 
τ shearing stress; shearing strength 
το shearing stress on a general plane; initial shearing strength 

peak shearing strength 
residual shearing strength 

Φ angle 
Φ' effective angle of internal shearing resistance of the soil 

*/ peak angle of internal shearing resistance of the soil 

Φ, residual angle of internal shearing resistance of the soil 
<*>« total (acting) angle of internal shearing resistance of the soil 
Ψ angular acceleration 
ω circular frequency 
Ω/9Ω, modulus of mobilization of xf9 τΓ Ω/9Ω, 

Β; Ε, ; / ( Α - Du);fayi;fw;_G\Κ; lc; lq; Sc; Sq; U; ν; V; Y; 
ßil ßi\ ßd ßql Γ; η; ψ; λ; κ main auxiliary functions. 



INTRODUCTION 

In foundation engineering, the main factor to be determined is the permis-
sible soil pressure. This used to be done on the basis of experience with existing 
buildings. The permissible load was given for each type of soil but at that time 
no allowance was made for the width and depth of the foundation. Also, the 
definition of soil was inaccurate. For cohesive soils the permissible soil pressure 
values were given according to their consistency, this being classified as soft, 
firm, solid, hard, etc., but there were no rules for distinguishing between these 
types of soils. The composition of cohesionless soils was classified as sand, 
gravel or gravel-sand. Even today, permissible load values are given in tables 
and building codes and are still used in simple cases if the soil is homogeneous 
and the building has a maximum of three floors. These values also serve for 
orientation in the designing of large buildings and buildings in complicated 
geological conditions. With growing knowledge about the behaviour of soil 
during loading, the building-code permissible pressure values have been 
complemented with the influence of the depth of foundation, foundation 
breadth and the groundwater level. 

A further step towards the determination of the permissible soil pressure 
has been provided by loading tests made in a trench at the level of the proposed 
foundation line. It was assumed that when the ultimate bearing capacity qm 

is reached, the soil would be displaced from beneath the loaded surface to 
the sides causing the foundation to sink—this would appear as a break on the 
compression curve. Soil deformation caused by the load was not considered. 
When the load tests were made on compact sand, it was found that the rela-
tionship between the load and the impression was at first linear with increased 
load, the compression increment of the soil increased and the relationship 
had the form of a curve, and when the ultimate bearing capacity was reached 
the loaded surface sank to a depth where the resistance against displacing the 
subsoil was equal to the acting stress (Fig. 1). When the load qma was 
increased, after a larger settlement, the foundation again sank slightly. A loading 
test made in this way showed the influence caused by the depth of the loaded 
surface below ground level. 

When the loading tests were made on clays, a continuous curve was obtained 
(Fig. 2). With increased load, the loading disc sank gradually and increasingly 
into the soil, while at the same time the resistance against the displacement 
increased with increasing depth. It is difficult to determine the ultimate bearing 
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capacity on such a continuous curve. The construction for its determination 
is given in Fig. 1. Sometimes a load which caused a previously defined settle-
ment —for example 3 mm — was taken as the ultimate bearing capacity. Loading 
tests showed that the magnitude of the ultimate bearing capacity is influenced 
by the size of the loaded surface. When the relationship between the load and 
settlement for loading discs of various sizes was determined, it was found that 

a circular loading disc with a size of approximately 1000 cm 2 has the minimum 
settlement. When the disc was larger the settlement increased since the stress 
caused by the load penetrated to a greater depth and therefore a greater layer 
of soil was compressed. With a small loading surface the soil was displaced-
outwards. For a larger loading surface, the previously determined soil compres-
sion was considered for a smaller loading surface. A loading disc with a very 

» load q 
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[mm]J Fig. 1 Loading test: 1. on sand; 2. on clay 
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^ ^ ^ l ^ ^ ^ ^ ^ ^ Fig. 2 Collapse mechanism according 
I r m TQ to Prandtl 
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small surface sank under a very small load and therefore the permissible 
settlement was obtained for a very small load. 

To determine the influence of the foundation depth, a loading test used to 
be made in some countries in such a way that the loading disc was placed inside 
a tube, which was surrounded with earth to a height where the ratio of the 
foundation depth D to the foundation width Β was the same as for the proposed 
building. The ultimate bearing capacity determined by the loading test was 
divided by a safety factor F = 2 giving a permissible load qd = qJF. 

The loading test has many disadvantages if it is used to determine the ultim-
ate bearing capacity. Nowadays, field loading tests are made, which allow the 
determination of in situ soil parameters, i.e. the deformation modulus, the 
angle of internal shearing resistance Φ and the cohesion c. For this test, two 
discs of different size are used. 

The third way of determining the ultimate bearing capacity was theoretical. 
Here it was assumed that when the ultimate bearing capacity was reached 
sliding surfaces would be created under the foundation, along which the soil 
would be displaced towards the surface causing the foundation to sink. The 
first authors started from very simplified assumptions, for example that the 
bearing value of a foundation is a vertical load giving the result that under the 
foundation a horizontal stress, equal to the passive resistance of the soil, is 
created. By this reasoning, the bearing value of cohesionless soil on the surface 
would be equal to zero since there the passive pressure is equal to zero — 
a conclusion obviously in disagreement with reality. Later a more realistic as-
sumption was made, that after reaching the bearing value of a foundation, 
collapse mechanisms would be created on one or both sides, by which the 
earth would be displaced outwards. Some authors assumed complex-plane 
collapse surfaces, which are kinematically impossible. Prandtl (1920) derived 
theoretically the shape of the collapse surfaces on the assumption that the unit 
weight of matter under the foundation is equal to zero. For the solution he 
used Kötters equation, which gives the relationship between the shape of the 
collapse surface and the distribution of the stresses along it. He was in fact 
solving the case of a bolt pressed into metal. The unit weight of the displaced 
metal is small compared with the resistances, so that this simplifying assumption 
was justifiable. According to Prandtl, a solid wedge is formed under the founda-
tion. The angle between the side of the wedge and the foundation surface is 
45° + Φj2. Further on, the collapse surfaces take the shape of a logarithmic 
spiral which changes into a plane inclined at an angle of 45° — Φ/2 to the 
horizontal surface (Fig. 2). The angle formed by the walls of the solid wedge 
and a horizontal plane, when the unit weight of the soil y > 0, was actually 
smaller than 45° + Φ/2 and therefore many authors (Berezancev, Rossinski 
and others) assume an angle of 45°—Terzaghi uses the angle Φ. Buismann 
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added to Prandtl's equation the weight of the displaced soil, this enabling the 
bearing capacity of a foundation on homogeneous soil to be determined theore-
tically. The Prague-born K. Terzaghi made a large number of tests and derived 
an equation for the calculation of the bearing value of a strip foundation on 
homogeneous soil. He made the tests on the surface and replaced the influence 
of the earth above the foundation level by a uniform vertical load q = yD9 

where y is the unit weight of soil and D the foundation depth. He expressed 
the influence of friction in the foundation level by a solid wedge of soil. The 
sides of the wedge, which originate at the edges of the foundation, form an angle 
of friction of the soil Φ with the foundation surface (Fig. 3). He therefore 

assumed that the soil above the foundation level manifests itself only by its 
weight and has no shearing strength. For this reason, his equation is valid 
only to approximately a foundation depth D equal to the foundation width B. 
For larger depths D, where the shearing strength of soil above the foundation 
level is already important, Terzaghi's equation gives smaller values. Terzaghi 
found it difficult to determine the ultimate bearing capacity of a foundation 
on clay since the compression curve is continuous. He therefore recommends 
that the values (2/3) tan Φ and 2/3 of cohesion c should be used in this equation. 

Terzaghi's equation was adapted by Meyerhof (1951), who assumed yield 
surfaces which extend right to the surface, and resistances which act along the 
whole yield surface. In the case of deep foundations, according to Meyerhof, 
the yield surfaces envelop the foundation and do not reach the surface (Fig. 4). 
Brinch Hansen (1955) considered the influence of the foundation depth, the 
groundwater level and the inclination of the load acting on the foundation. 
Terzaghi's equation has been simplified by some authors for foundations on 
clay which has a small angle of internal shearing resistance, in such a way 
that the logarithmic spiral was replaced by a circle. Przedecki-Rossinski (1961) 
solved the ultimate bearing capacity of a foundation on a cohesionless soil 
graphically, replacing the logarithmic spiral by a non-continuous curve formed 
by straight lines. The ultimate bearing capacity of a foundation determined 
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graphically in this way usually gives values slightly larger than those determined 
according to other authors. 

In practice, cases more complicated than that of a homogeneous subgrade 
and a separately standing foundation arise. Usually there is an adjacent founda-
tion at a greater or smaller distance from the foundation considered. Therefore 

in this book we also study these special cases. The influence of the adjacent 
foundation can be positive, i.e. the bearing value of the foundation considered 
can be increased, or negative, if the value is decreased by the adjacent founda-
tion. This depends on the separations of the foundations. 

In old foundations we often find that the excavation gets narrower with 
depth and in section has the shape of an obtuse wedge; the width Β at the 
bottom is smaller than at the top. The authors also describe this case. 

Bridge pillars are often founded near the edge of a slope or on a slope and 
so the authors also study the influence of the angle of a slope on the ultimate 
bearing capacity of a foundation. A foundation is often loaded by an inclined 
resultant force, which can be resolved into vertical and horizontal components. 
For this reason the authors consider the effect of a horizontal force acting 

Ε 

Fig. 4 Collapse mechanism according 
to Meyerhof 
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on a foundation. The foundation soil is often stratified. We consider a situation 
where, beneath the foundation level in the zone of influence of the foundation 
there are two layers of soil, including the case where the second, lower layer 
is formed by incompressible rock. The case where the subgrade consists 
of a number of heterogeneous strata of soil is also considered. 

In former times, buildings were built on marshy soils with a low bearing 
value, by covering these with a sufficiently thick layer of gravel or sand. As 
the load creates the greatest stress directly beneath the foundation and therefore 
the greatest resistance against displacement, the authors replace the low 
bearing-value soil by a gravel-sand bed just beneath the foundation and 
describe a graphical method for the determination of the ultimate bearing 
capacity of a foundation on such a bed. 

For completeness, we consider the determination of the permissible load 
of a foundation and the safety factor, and also the contact stress in the founda-
tion line, as this has a great influence on the dimensioning of foundation slabs. 

The authors have not covered all the complicated cases found in building 
practice, but they feel that the most common have been included in such a 
form that the reader may make use of them in calculations. 



1 . SETTLEMENT OF FOUNDATIONS 

1.1 VERTICAL STRESS IN SOIL DUE TO ITS WEIGHT 

For the calculation of settlement or of the bearing value of foundations, 
it is necessary to know the effective vertical stress σ', which acts between the 
grains of the foundation soil at a given depth. The total vertical stress σ is 
made up of the effective stress σ', which acts between the grains of the soil, 
the neutral stress of water uw in the pores of the soil, which may be either 
compressive or tensile, and finally of the neutral air pressure ua. The total 
stress is 

σ = σ' ± uw + ua 

I ± 0 - groundwater level 

Fig. 1.1 Total and effective vertical stress in soil, if the water level is on the surface of the soil 

The stresses carried by water or air are called neutral as neither water or 
air bear shearing stresses. 

Let us consider a case where the water level is on the surface. The total 
vertical stress at a depth ζ is σ = yn . ζ (Fig. 1.1) The neutral stress at a depth 
ζ is uw = yw . z. 

The effective stress 

ζ 

σ' = σ - uw = z(yn - yw) = zy' 

with yn the density of waterlogged soil, 

(1.1) 

yw the unit weight of water and 
y' the weight of submerged soil. 
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Let us determine the vertical stress at a depth z, if the groundwater level 
is at a depth ft ^ hk9 where hk is the capillary rise of water (Fig. 1.2). On the 
surface, the water menisci cause a capillary tension uw = — yw. A. The soil 
below the capillary level is waterlogged and therefore ua = 0. The neutral 
stress at a depth ζ is 

«w = 7 w O - £ ) . 

The effective stress 

<*' = (r„ - y w) * + 7wÄ = + ywÄ (1.2) 

If one considers, for example, the effective stress at the groundwater level, i.e. 
for ζ = Ä, then the neutral stress uw = yw(Â — h) = 0. On the surface the 
water pressure is equal to zero. The effective stress at the groundwater level is 

σ' = yji. 

The capillary rises hk for various types of soil are given in Table 1.1. 
Data concerning capillary rises greater than 10 m are interpreted differently 

by a number of authors. Many see a given capillary height as a water head 
with which the capillary water acts upon the grains. For example, clay is left 
to shrink and the porosity at the shrinkable limit, i.e. after shrinkage, is meas-
ured. Then the soil is left to consolidate in an oedometer under a variable 
load and the porosity of the consolidated soil is determined. Under these 
conditions the equivalent load with which the soil would have to be compressed 
to attain a porosity equal to the porosity at the shrinkage limit, is for a sandy 
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loam 250 kN/m 2, for loam 3.0 MN/m 2 and for clay 9.0 MN/m 2. These values 
correspond to capillary heights of 25 m, 300 m and 900 m. The present authors 
see this height as a water head which would cause the same decrease in porosity 
as the evaporation of water. 

TABLE 1.1 

Capillary height hk of water 

Type of soil Capillary height [m] 

sand 0.03—0.1 
fine sand 0.1—0.5 
loamy sand 0.5—2.0 
loess loam 2.0—5.0 
loam 5.0—15.0 
clayey loam 15.0—50.0 
clay over 50.0 

Let us consider a case when the surface is at a height h above the ground-
water level, when h > hk. In such a case the pores of the soil are not fully 
waterlogged, as the capillary surface does not reach the ground surface (Fig. 1.3 
and II. 1). Let us determine the stress at a depth z. We designate t — h — hk. 
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\h*hk 

Fig. 1.4 Effective vertical stress in soil, if water evaporates intensely from the soil. Curve 1 
corresponds to a more permeable soil than curve 2 

In nature, we frequently encounter a situation where the capillary rise of 
water is above the surface of the area and the soil is therefore waterlogged. 
As a result of evaporation during sunny weather, the menisci bend and the soil 
particles are subjected to the full capillary pressure (Fig. 1.4). The neutral 
stress in a depth ζ under the surface of the area is 

«w = - yΆ = -yw(hk - ζ) 

The effective stress at a depth ζ is σ' = ynz + yw(hk — z). 
The effective stress is larger by yw(hk — z), being a maximum on the surface 

where ζ equals zero. This must be taken into account when calculating the 
settlement. The consolidation pressure measured for an agrillaceous sandy 
soil by the Tower of Pisa is given in Fig. 1.5. The acting consolidation stress 
was at least three times greater than σζ = yz (the groundwater level is at a 

The neutral stress at a depth ζ is 

"w = yw(z - t - hk) = yjz - h) 

The effective stress at a depth ζ is 

σ' = σ - uw = yt + yn(z - t) - yw(z - t - hk) = y . t + 

+ y\z - t) + y A (1.3) 

where y is the density of unsaturated soil. 
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small depth below the surface of the area) and reached to a depth of about 
17 m. 

The consolidation pressure is usually determined according to Casagrade 
by a compressibility test in an oedometer. Fig. 1.6. The compressibility curve 
for an overconsolidated soil is almost linear at first, then it curves, and then 
becomes a straight line having a steeper gradient than the low-load straight 
line. The tangent of the angle to the vertical is the coefficient C of oedometric 
compressibility. We make a circle at the point of the greatest curvature of the 

compression curve. At the point of contact with the compression curve, a 
tangent and a straight line are drawn. These form an angle /?'. This angle is 
then bisected and the intersection point of the disector with the extrapolation 
of the compression line gives us the magnitude of the consolidation pressure 
**· 

Stress in soil is also caused by the load on a foundation and depends on its 
rigidity and shape. These problems and some methods for calculating the 
stress in the soil are described in Chapter 4. 

stress 6z and 6k Fig. 1.5 Vertical and consolidation stress 

0 100 200 300 [kN/m
2
] of the Tower of Pisa 

r 1 1 1 1 
Y J P L ^ 

5 - \ I + 

2 5
L
 vertical stress 6Z Fig. 1.6 Determination of the consolidation 

• consolidation stress 5^ pressure σΑ as determined by Casagrande 
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1.2 COMPRESSIBILITY OF SOIL 

When subjected to a load, the soil is compressed and settles, the relationship 
is at first linear. As the load increases the settlement increment grows. Let 
us consider a sand which is not waterlogged. The load is transferred to particles 
on the contact surfaces, the grain surfaces are crushed and the grains are forced 
into the gaps between them, i.e. the pores. When the resistance against fur her 
compaction of the grains into the pores is equal to the acting stress, settlement 
ceases. As a result of an outer load in soil, there is not only a vertical stress σχ9 

which compresses the soil, but also a horizontal stress σχ, which forces the 
soil to the sides. 

vertical stress 6z 
6\ç 61 $2 

Fig. 1.7 The relationship between load 
and compression in the oedometer used 
for the determination 
of the deformation modulus M0 

vertical stress 6z 

tnfy lnSz ln(& + A%r) 

Fig. 1.8 The relationship between load 
and relative compression in the oedometer 
used for the determination 
of coefficient C 

Compressibility is measured in an oedometer. This is a cylinder with a piston, 
which creates a vertical load. So that water can be drained from the tested 
sample there are porous drainage plates above and below the sample. The test 
is made in such a way that an undisturbed sample is taken from the soil and 
placed in the apparatus. When the sample is taken out of the extracting ap-
paratus the horizontal stress, which was acting in the soil and could exceed 
the vertical stress relaxes. When talking of an undisturbed sample we bear in 
mind that the structure should be undisturbed, whereas the stress ratios in 
the oedometer may be very different from natural conditions. For this reason 
the measured values of compression and thence the calculated settlement do 
not always correspond to the true values. Therefore current compressibility 
tests are being made in a triaxial apparatus, which maintains a stress σ2 = ff3 

having the same value as the stress in the soil. 
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If we plot the relationship of the vertical stress σζ and the compression on 
a normal scale, we obtain a curve, and for an overconsolidated soil two curves. 
This curve is replaced in the section which corresponds to a stress increment 
Δσζ by a secant. The tangent of the angle of the secant and the vertical is 
called the modulus of oedometric deformation M 0 , Fig. 1.7. With a growing 
stress σζ, the deformation modulus M0 = tan α increases. The compression 
of a soil layer with thickness h caused by a stress Δσζ is 

Ah = hAaJMo (1.4) 

On the compression curve there is usually a discontinuity at a point which 
corresponds to the stress ak which caused the soil to consolidate. 

If we plot this relationship on a semilogarithmic scale we usually obtain 
two straight lines, where one line suddenly changes into the other straight 
line (Fig. 1.8). The coefficient of oedometric compressibility C = tan 5. When 
the load is less than the consolidation load, the soil is compressed elastically. 
For a load σ > ak it is compressed both non-elastically and elastically, the 
non-elastic compression being the larger 

tan <*! = A > tan a 2 = C 

The compression of a layer with thickness h is then 

Ah = A l n ^ j t i ^ „ * 2.3logfl + (1.5) 
C σζ C \ σζ J 

where the mean vertical stress σζ acts and the mean load increment Δσζ is 
created in this thickness h. The values of the coefficient of compressibility 
are given in Table 1.2. 

Compared to the coefficient of compressibility, the oedometric deformation 
modulus M0 is variable, depending on the size of the vertical stress σζ. With 
a growing stress σ ζ, M0 increases. It is therefore necessary to state the vertical 
stress for which the oedometric deformation modulus was determined. 

The coefficient of compressibility C and the oedometric deformation modulus 
M0 characterize the compressibility of a soil without taking into account its 

TABLE 1.2 

Values of coefficients of compressibility C for various soil types 

Soil Peat Loam Clay Sand Gravel-sand 

coefficient of 3—7 15—25 30—120 150—250 250 and 
compressibility C more 
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lateral deformation. The settlement of a soil beneath a foundation with possible 
lateral deformation is characterized by the deformation modulus E0, which 
like M0 is not constant. The moduli M0 and E0 are related by 

where ν is Poisson's ratio; for cohesionless soils ν = 0.3, for silty soils ν = 
= 0.35 and for clayey soils ν = 0.4. 

Using the preceding equation it is possible to convert the coefficient of 
compressibility to the secant modulus M09 or rather, to the deformation 
modulus EQ, and vice versa. If we know the deformation modulus M0, the 
stream σζ and the load increment Ασζ, then the coefficient of compressibility 
is 

C = M0 2.3 log (1 + Ασζ\σζ)\Ασζ (1.6a) 

Similarly the deformation modulus knowing the coefficient of compressibility C, 
is 

M 0 = CAcJ23 log (1 + Aoz\cz). (1.6b) 

The exact determination of the true values of Poisson's ratio ν is difficult 
and therefore calculated values based on estimated values of Poisson's ratio 
are approximate. To investigate the variation of the oedometric modulus of 
compressibility M0 with loads 100 — 500 kN/m 2, its mean values were calculat-
ed for various soil types. These values are given in Table 1.3, which shows the 
magnitude of the influence of the acting load on the value of the deformation 
modulus of the same soil. 

TABLE 1.3 

Values of the moduli of deformation M 0 of various soils for a different load increment caused 
by the building az and an initial stress Δσζ in the soil 

Initial stress oz kN/m
2 

Type _ 2 0 60 100 

of soil L o a ci increment Δσζ kN/m
2 

100 300 500 100 300 500 · 100 300 300 

Peat 280 540 760 510 
Loam 1 120 2 160 3 060 2 040 
Clay 4 200 8 100 11 500 7 700 
Sand 11200 21 600 30 600 20 400 
Gravel- 28 000 54 000 76 000 51 000 
sand 

840 1 120 730 1 080 1 390 
3 360 4 480 2 900 4 320 5 560 

12 600 16 800 10 900 16 200 20 900 
33 600 44 800 29 000 43 200 55 800 
84 000 112 000 72 500 108 000 139 000 
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As can be seen, the deformation moduli change with the acting stress σζ 

and the load increment Δσζ. To make a comparison of soils in terms of their 
compressibility, a modulus of compressibility E050 is used. This value expresses 
the tan à of a secant passing through the beginning and the point, which 
corresponds to the maximum (at — σ 3), on the compression-stress curve for 
a sample tested in a triaxial apparatus (see Fig. 1.9). 

(&i-6~3) kN/m
2 

Fig. 1.9 Determination of deformation 
modulus E050 during a shearing test 
in a triaxial apparatus 

In some countries the relationship between the stress σ and the void ratio e 
is derived from the oedometric test. A load decreases the original void ratio e0 

to a value of 

e = e 0 - C 0 \ n ^ ± ^ - (1.7) 

σζ is the initial mean stress in the layer, which has a porosity n0 — e0j{\ + e0) 

e0 = " o / O - « o ) 

Δσζ is the mean load increment in the layer due to loading. If we know 
from the oedometric test the relationship between e and σ, then the absolute 
coefficient of oedometric compressibility 

Co = = (1 + e0)IC (1.8) 
la °* + Α σ* 

σ 2 
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As mentioned, the lateral deformation of the soil to the sides is not taken 
into account. If the theory of an elastic half-space is used, then the settlement 
of a rigid circular surface with a radius r, caused by a uniform load q is 

1 - v 2 nrq _ 1 - v 2 Q 

where Q is the total load. 

Ε 
Let us designate the term —-- = E* and call it the reduced deformation 

1 — ν 
modulus. Then the settlement s = Q/2rE*. Since Poisson's ratio 0 < v < 0 . 5 , 
E* can have a maximum value of 1.332s0, so the settlement calculated from E* 
can only reach 0.75 of the value calculated from E0. As it is difficult to deter-
mine Poisson's ratio for a soil, we may calculate the deformation modulus 
from the following equation 

F * _ β _ nrq 

The value Eq is easily determined by a loading test. 
As a result of drying out, the soil nearer to the surface is usually compressed 

by a stress greater than y. ζ, at a depth ζ beneath the surface, for wide founda-
tions or slab foundations, the soil is compressed at a depth where it has not 
overconsolidated. Finally we must note that for clays the loading test speed 
is critical, i.e. the soil may or may not have time to consolidate during the test. 
The depth of the oversoil is also important and loading tests made to determine 
the deformation modulus should be made in such a way that this influence 
is taken into account. We therefore consider that the calculations of settlement 
give us assumed or expected settlement values and not exact values. 

As regards the settlement of the soil with respect to time, the calculation 
is based on the final settlement s9 multiplied by the degree of consolidation μ, 
giving the settlement over a period t as a percentage of the final settlement. 
The degree of consolidation is a function of the time factor T. For 90 % 
consolidation, Τ = 1. The time factor 

T ^ 1 - η Δσζ kt = cvt = M0kt 

n0-n yw h2 h2 yji2 

depends on the distribution of stress in depth and on the possibility of water 
percolation from the soil, upwards alone or both upwards and downwards 
into a permeable layer. In equation (1.11) 

n0 is the initial porosity, 
η is the porosity after consolidation as a result of a stress increment Ασζ, 
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k is the coefficient of permeability, 
/ is time 
h is the depth of the layer and 
c0 is the coefficient of consolidation—see Sec. 1.6. 

The calculation of consolidation does not assume a change in the coefficient 
of permeability k during consolidation; it assumes that the soil is isotropic, 
and therefore produces only an expected time settlement. For k < 1 0 " 1 0 m/s 
the calculated time settlement corresponds to real values. 

For each building where the foundation soil is to be fully used, the following 
three conditions must be fulfilled: 

(a) there must be a high enough safety factor—see Sec. 2 and 3, 
(b) the settlement of a building must not exceed a particular value which 

would make proper use of the building impossible (see Table 3.1, Sec. 3.1), 
(c) differences in the settlement of various parts of the building must not 

exceed a particular value since this would result in the creation of fissures. 
It is therefore very important to predict the magnitude of the settlement of 

a building, as it enables us to propose foundations, which often have various 
sizes and shapes such that the building will, as far as possible, settle uniformly. 

The total settlement is calculated using the coefficient of compressibility 
C, or from the deformation moduli M0 and E0. 

1.3 CALCULATION OF TOTAL SETTLEMENT 
USING COMPRESSIBILITY COEFFICIENT C 

When the total settlement is calculated using coefficients of compressibility 
C, the grade is divided into layers such that each layer contains soil of the same 
kind and the value of the coefficient of compressibility C for the different layers 
are determined from undistturbed samples in a laboratory. The settlement s 
for both a uniform and stratified subgrade of the foundations (with the exception 
of unstable volume soils, which bulk or subside) is, according to Terzaghi-
Buismann 

In this equation, / is the number of layers with depth h into which the subgrade 
was divided. The initial mean vertical consolidation stress acting at the centre 
of each layer before the building process is σζ. For overconsolidated soils 
ak > y . ζ and therefore, in the calculation of the total settlement, it is assumed 
that σζ — ak. The vertical stress increment Ασ2, created at the centre of each 
layer when it assumes the load of the building, surface works, adjacent objects, 
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the load due to the lowering of the groundwater level, etc., is usually determined 
on the basis of elastic half-space theory. A uniform subgrade of a foundation, 
reaching to a depth at least equal to two and a half times the foundation width, 
can be taken as such a half-space (See Sec. 4 and appendixes). As the maximum 
vertical-stress increment is directly beneath the foundation, this is where 
the maximum settlement occurs. The settlement of a strip foundation to a depth 
ζ — Β amounts to more than 60 % of the total settlement. For this reason, this 
depth is described as the effective depth and its determinatien is described in 
appendix II. When calculating the total settlement, it is sufficient to take into 
account the settlement of the soil to a depth of 2.0 Β beneath the foundation 
level. If the subgrade of the foundation is uniform or consists of several layers 
of different types of soil with varying compressibility, then in calculating the 
settlement these are usually divided into at least six layers, so that, for the 
purposes of calculation we obtain a sufficiently accurate value of the vertical 
stress increment Δσζ which decreases unevenly with increasing depth. The 
vertical stress σζ and its increment Δσζ are determined below the characteristic 
point of the foundation. For a circular foundation, this point lies at a distance 
of 0.845r from the centre of the foundation, and for a rectangular foundation 
(B x L), it lies at the intersection of straight lines lying 0.37 Β and 0.37 L 
from the centre of the foundation. The stress in the soil due to a loaded founda-
tion is divided unevenly. The maximum stress is in the axis of the foundation 
and it decreases with distance from the axis of the foundation in the form of a 
bell-shaped curve. The mean stress in the space within the sides of the founda-
tion is in the so-called characteristic points, and therefore the settlement is 
calculated for the stress on a vertical line passing through the characteristic 
points. Only the settlement caused by the vertical-stress increment Δσζ is 
taken into account during calculation. The influence of the horizontal-stress 
increment Δσχ is neglected. This stress forces the soil to the sides and is very 
pronounced for larger values of Δσχ, for example in the case of stock-yard 
crane tracks. 

When the load on the foundations is larger and approaches the ultimate 
bearing capacity, the settlement of the foundations is caused not only by the 
compression of the soil, but also by the creation of plastic ranges and by forcing 
out the soil from beneath the foundation to the sides. The permissible load for 
foundations is usually less than a half or a third of their ultimate bearing 
capacity. 

The rigidity of the foundation results in the redistribution of the stress, 
which is larger at the edges and smaller in between. The exact calculation of the 
contact stress is only possible in idealized cases. These problems were studied 
theoretically by Boussinesq (1888), Sadowski (1928), Gastev (1937), Jegorov 
(1938) and others. It can be stated that the more flexible the foundation, the 
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smaller the difference between the distribution of the stress in the foundation 
line and that of the acting load. Small foundations are usually rigid (for 
example footings, strip foundations under walls, etc.). Questions dealing with 
stress in the foundation line and in the subgrade are discussed briefly 
in Chapter 4. 

Real values of settlement are usually smaller than calculated values. When 
the soil above the foundation level, which is subjected during settlement to 
tension and other influences, contributes, the real settlement value amounts 
to about 1/2 to 3/4 of the calculated value. For a more exact determination of 
the settlement, it is wise to begin with the distribution of the stress in the 
foundation line, which is not really uniform and depends especially on the 
rigidity of the foundation and of the upper part of the building. 

1.4 CALCULATION OF TOTAL SETTLEMENT 
USING DEFORMATION MODULI E0 AND M 0 

As mentioned previously, the lateral movement of the soil to the sides, 
caused by the horizontal-stress increments Δσχ, Aay9 is neglected in the calcula-
tion of the settlement of a building according to Terzaghi. On the basis of the 
theory of stress and strain in an elastic half-space, we get the following relative 
deformations along the axes 

εχ = γ Ο* - ν(σγ + σ2)] (1.13) 

ε? = ^ - [ > > - ν (σ ,+ σ,)] (1.14) 

8ζ = Έ £σ* ~ ν^σ* + σ^ (1,15) 

If the stress condition is uniaxial σχ = ay = 0, then εζ = ôJE, which is Hook's 
law. 

According to the law of supervision, if we divide any loaded surface into 
smaller surfaces, then at the centre of gravity of each of these surfaces a vertical 
force, proportional to the size of the surface, is applied. The settlement of the 
foundation is the sum of the settlements due to the forces acting on each surface. 
The settlement to a depth z, caused by a single load is 

ο L R R -2πΕ0 

R2 = r2 + z2 (1.17) 
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where r is the horizontal distance of the considered point from the loading 
point of force Q. The settlement caused by a uniform load q, for a rigid circular 
foundation with radius r is 

s = _LçzL™L ( U 8 ) 

If we apply the reduced deformation modulus E% = Ε0/(1 — ν 2), then the 
settlement of a circular surface is 

s = nrq\2Et (1.19) 

In the building code CSN 73 1001 Foundation Soil beneath Shallow Founda-
tions, the settlement for a uniform soil is calculated according to the following 
equation 

s = - J - Bi l.lSm^i - V2) (1.20) 

where q is the load increment in the foundation line in kN/m 2, 
Β is the width of the foundation in cm, 
ÖL is the coefficient of the shape and rigidity of the foundation according 

to Table 1.4, 
E0 is the deformation modulus in kN/m 2 

mx = 0.7 for cohesionless soils and mt = 0.5 for cohesive soils with the 
exception of volume-unstable soils, which either bulk with water 
or subside, i.e. loess, 

ν is Poisson's ratio. 

TABLE 1.4 

Coefficient ôc of the shape and rigidity of a foundation (According to 

CSN 73 1001) 

Shape of foundation Perfectly Centre of Edge of 
rigid non-rigid non-rigid 
foundation foundation foundation 

C i r
d e 0.79 1.00 0.64 

S (
3

u a
r e 0.88 1.12 0.56 

Rectangle L/B = 1.5 1.08 1.36 0.68 
2 1.22 1.53 0.77 
3 1.44 1.78 0.89 
5 1.72 2.10 1.05 

10 2.12 2.53 1.27 
50 2.12 3.54 1.77 
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If the soil under the foundation is stratified, the total settlement of the foun-
dation is 

s = j . ΔσΧ I25m2 ^ 

i = i M0 

where Δσζ is the load increment caused by the building in the centre of the soil 
layers indexed /, and m2 is the corrective coefficient used for the simplification 
of the calculation. For a greatly overconsolidated soil, if the consolidation 
stress ak is at least twice as large as the acting vertical stress σζ9 then m2 = 0.5. 
In other cases m2 =0 .8 . During the calculation of the total settlement, soils 
to a depth of up to 2B below the foundation level are taken into account. The 
thickness of either of the first two layers below the foundation should not 
exceed B\2. 

The disadvantage of the previously mentioned equations is that they do not 
take into account more accurately the initial stress condition in the soil. The 
influence of the foundation depth is incorporated in the value of the deforma-
tion moduli. The equation for the calculation of settlement includes Poisson's 
ratio, which is difficult to determine and thus its value is estimated. Therefore 
it is advantageous to determine the deformation modulus E0 by a loading test 

of the foundation soil using the same ratio as for the building. 
Β 

During the loading of the foundation soil, the soil settles not only directly 
under the foundation but also in its vicinity. Zemockin and Sinicyn (1947) 
mathematically solved the settlement Sj of a point / , which is at a distance χ 
from the centre of the foundation on its axis of symmetry. They formulated 
the solution for a rectangle and a circle, when the whole foundation, based 
on the ground surface, was loaded by a unit load Q = 1. The settlement of 
a real foundation exceeds that calculated according to the derived equations 
greatly, since the real acting load is greater than Q = 1. The subgrade is 
assumed to be uniform and elastic. For a rectangular foundation (Fig. 1.10), 
the load on the foundation line is q = Q\BL = l/BL, where Β is the width 
of the foundation and L its length. The settlement Sj is calculated from the 
differential equation 

ä
' " - "

(
T j

v 2 )
 <··

22
> 

BLnM0r 
and its size is 
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Through integration we obtain 

s j = 
1 -

πΜ0Β 
(1.24a) 

where ZF is an auxiliary function. The numerical values of this function for 
various distances of the point J from the foundation axis and for various 
ratios Β IL of the sides of the rectangular foundation are given in Table 1.5. 

Fig. 1.10 Diagram for the calculation 
of settlement according to 2emoékin and Sin icy η 

TABLE 1.5 

Values of function
 Z

F 

2
F for a ratio B/L 

x/b 
0.1 0.2 0.5 1.0 2.0 3.0 

0 0.799 1.322 2.406 3.525 4.812 5.603 
1 0.472 0.678 0.929 1.038 1.080 1.091 
2 0.332 0.424 0.490 0.505 0.508 0.510 
4 0.211 0.237 0.249 0.250 0.251 0.251 
6 0.152 0.163 0.166 0.167 0.167 0.167 

10 0.096 0.099 0.100 0.100 0.100 0.100 
20 0.050 0.050 0.050 0.050 0.050 0.050 
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For a uniform load q, the settlement Sj is 

The settlement of soil caused by a uniform load q on a strip foundation at 
a depth Z> below the ground surface was solved by Simek (1962). He derived 
theoretically an equation for the settlement Sj of a point / , at a distance χ 
from the axis of the strip foundation at a depth of 0.9Z>. The settlement is 

where SF is auxiliary function, whose values are given in Table 1.6 for various 
ratios D\B and x\B when Poisson's ratio ν = 0 . 3 ; 0.35 and 0.40. 

TABLE 1.6 

Values of function
 S
F (according to Simek) 

s
Ffor a ratio D/B 

χ/Β ν 

0.0 0.3 8.964 4.288 3.495 3.159 2.924 2.694 
0.35 8.671 4.206 3.440 3.117 2.891 2.669 
0.4 7.749 4.024 3.319 3.022 2.815 2.622 

1.0 0.3 5.025 3.379 3.339 3.097 2.843 2.502 
0.35 4.675 3.068 3.063 2.836 2.703 2.492 
0.4 4.017 2.868 2.726 2.527 2.477 2.325 

2.0 0.3 2.427 2.415 2.169 1.946 1.726 1.578 
0.35 2.243 2.253 2.029 1.807 1.698 1.504 
0.4 1.917 1.993 1.801 1.612 1.517 1.412 

4.0 0.3 0.997 1.127 1.180 1.134 1.032 0.925 
0.35 0.891 1.048 1.157 1.107 1.019 0.902 
0.4 0.731 0.884 0.915 0.910 0.864 0.726 

7.0 0.3 0.549 0.525 0.494 0.474 0.454 0.435 
0.35 0.504 0.472 0.452 0.432 0.414 0.396 
0.4 0.403 0.372 0.364 0.347 0.337 0.323 

10.0 0.3 0.373 0.373 0.373 0.373 0.373 0.373 
0.35 0.342 0.342 0.342 0.342 0.342 0.342 
0.4 0.274 0.274 0.274 0.274 0.274 0.274 
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H. Siemer (1973) describes the influence of depth by a reduction coef-
ficient κ. The settlement of a foundation at a depth DissD = κς9 if the settle-
ment is calculated according to equations (1.16), (1.18), (1.20) to (1.25) 
(see Table 1.7). 

TABLE 1.7 

Reduction coefficient κ as a function of the depth of foundation D 
(According to Siemer) 

D 
Depth of foundation — 0.0 0.5 1.0 1.5 2.0 

Β 

Coefficient κ for a strip 

foundation*) 1.0 0.78 0.64 0.55 0.50 

Coefficient κ for a circular 
footing 1.0 0.60 0.42 0.33 0.29 

*) It is also possible to take κ^ε
 D

t
3 B

 for D ^ 5B 

1.5 INFLUENCE OF A VERTICAL MOMENT IN THE FOUNDATION LINE 
ON THE INCLINATION OF THE FOUNDATION 

The determination of the deformation modulus has the advantage that 
it permits the solution of problems whose solution was derived for an elastic 
half-space defined by the elastic modulus and Poisson's ratio, for example the 
inclination of a circular foundation caused by an acting moment. In the equa-
tions we assume that the elastic modulus Ε is the deformation modulus E0. 
If we know the oedometric modulus of deformation M0t then E0 = 

= ^1 - M0. If ν = 1/3, then E0 = 0.667 M 0 , for ν = 0.4 we get 

E0 = 0.5 M0. Let us assume that we have a circular foundation with a radius R 
on the surface of an elastic half-space, which is characterized by deformation 
characteristics (E, v). At its centre it is loaded by a moment in a vertical plane. 
According to Fröhlich, the distribution of stress in the foundation line is 

a 2 = j - M _J_== (1.26) 
2π * 3 V R2 _ R2 

where r is the distance of the surface dA from the centre of the foundation and χ 
is the perpendicular projection of the distance r onto the axis X (Fig. 1.11a). 
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Let us substitute this distribution of the stress by a system of elementary loads 
dP — σ àA = or àr άφ, according to Fischer. Since χ = r cos ψ, we get 

3 Mr
2
 c o s i ö ) , , 

dP = , ^ drag) 
2π ä V ä

2
- t

2 

(1.27) 

The acting load dP, which acts on the surface d^4, causes the settlement of the 
centre of the foundation 

Jdsl ι - ν 2 Γ ι 
| _ d r j « £ 0 L r
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dP 

(1.28) 

0 
r 

0 

γ 
Fig. 1.11 Diagram for the calculation of stress beneath a circular slab, loaded by a moment M 
acting in a vertical plane 

The expression 
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we designate as ΛΓ, so that 

. 2 

X d P (1.29) d [ dr ] πΕ0 

s is the difference between the settlement of the centre of the foundation s0 

and the settlement sA of the point A at a, depth z, Fig. 1.11b. 
This term serves to determine the difference in settlement 
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J r ^ d r 

ο V ' ( z 2 + r 2 ) 3 ( R 2 - r 2 ) ~ 

* z V d r = J 

ο V(z2 + r 2 ) 3 ( Ä 2 - r 2 ) 

Since r — ζ tan d; = ζ tan α (Fig. 1.11. c), then 

Jy sin3ôaô 
J2 = cot α J 

*=° cos 2 δ Vi - cot 2 α tan 2 £ 
- V sin3<5d<5 

J 3 = cot α J 
* = ° V l - cot 2 α tan 2 δ 

The solution of these integrals gives us 

J2 = R — sin α cos à 

2 . 2 - -J 3 = — sin a cos a 

and the total integral is 

. . . - . . - - , 4 sin 2 α 
J = —— α + sin α cos α 1 — - ( Η 1 - ν 

so that the inclination 

[dsl fi 2, 3 Μ Γ / π - \ . - - Λ 
-τ— = (1 — ν ) — — — α + sin α cos a l l -

By summing all the elementary loads we get 

1 _ v2 , - 2 , * 3(1 - v 2 ) M 
— f f dPK cos φ = — ^ r — - — x 

π £ 0 φί 0 rLo Ψ 2πΕ0 R* 

x ff 1 r 3 ΖΓ 1 
XJolr2 V(z2

 + r
2
)

3
 2(!-ν) V(z2

 + r
2
)

3
~ J 

The partial integrals in parentheses are 

ί • / . . . . =
 π

/
2 
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The boundary values are : 

(a) ζ = 0; α = π/2; ds/dx = 0 

(b) ζ = oo; 5 = 0; dJ/dx = (1 - v2)^- M 

4 K 3 £ 0 

as derived by Fröhlich. 

Equation (1.40) which gives the inclination can be rearranged into the following 
expression 

where function 

F(v;â) = (1 - ν 2 ) - L ^ L - ή + s i n S c o s ^ l - - ^ ) ] (1.42) 

The situations arising in the case of soils are : 

(a) ν = 1/2 

F -̂i- ; = — + s m % c o s «(1 — 2 sin 2 ä)J 

(b) ν = 1/3 

F(y :
 ή

 = ^r[(f - ή +
 s i n 5 c o s 5 ( 1 - γ™2*)] 

(c) ν = 1/4 

f ( t : 5) = tsf[(t - ή + s i n 5 c o s 5 ( 1 - Ts in25)] 

The calculated values of the function F(v; a) for various ratios are given 

in Table 1.8 and in Fig. 1.12. The given equations are valid for the cases where 
e = Rß. If e > i?/3 the foundation will lift on one side. 

For a uniform subgrade reaching to a depth ζ > 8 R, we assume that 
z/R = oo. K. Fischer suggests a procedure for a case where the soil is stratified. 
The inclination is determined for each layer, taking into account the deforma-
tion modulus, and the sum of these is the total inclination. 
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M 

R3E0l 

[^(Ν;Α) - F 2 ( V ; A ) ] 

^F(V;A) 

! ( d x ) 

M 

M 

R E02 R E02 

[F 2(V;Ï) - F 3 ( V ; 5 ) ] 

(1.43) 

(1.44) 

TABLE 1.8 

Values of function F(v; ά) 

Ratio Function F(v; oc) 
z 

^ ν = 1/2 ν = 1/3 ν - 1/4 

0.5 0.080 
1.0 0.282 
1.5 0.416 
2.0 0.482 

2.5 0.516 
3.0 0.533 
3.5 0.543 
4.0 0.549 

4.5 0.553 
5.0 0.555 
5.5 0.557 
6.0 0.558 

oo 0.563 

0.163 0.196 
0.387 0.427 
0.523 0.562 
0.589 0.627 

0.621 0.659 
0.638 0.676 
0.648 0.685 
0.654 0.691 

0.657 0.694 
0.660 0.696 
0.661 0.698 
0.663 0.699 

0.667 0.703 

The total inclination is then 

The equation was derived for a circular foundation and it can be used with 
sufficient accuracy for foundations of a different shape (square, rectangular) 
if the surface of the foundation is converted to a circular surface. 

Example 1.1 

The Tower of Pisa, which is 58 m high, produces a tilting moment resulting from inclination 
Qe = 318 000 kNm. The deformation modulus E0 of clay is 2 400 kN/m

2
 to a depth of 42 m. 

Below this there is sand, found even at a depth of 60 m, which was the depth of the bore-



41 

holes. The weight of the tower Q = 144 540 kN. Poisson's ratio ν — 1/3. The radius of the 
ζ 42 

foundation of the tower R = 9.8 m. For a depth ζ = 42 m we have 

the value of function F 

The inclination tan β' = 

r ^ y ; a j - 0.655. 
R 9.8 

4.29 and 

M 
- F(v\ a) 

318 000 

R
3
E0 ' 9.8

3
 . 2 400 

0.655 = 0.091. The deflection of 

the 58 m high tower is 58.0 .0.091 = 5.3 m. The actual deflection is 5.7 m so that we get 
sufficient correspondence between the calculated and measured deflection. The calculated 
angle of inclination β' = 5°12'. The real angle of inclination β' = 5°36'. 

Example 1.2 

The following is an example of the inclination of a foundation, when the soil beneath the 
foundation is stratified. In the subgrade we have a 6.60 m deep layer of sand ZT01 == 
= 20 000 kN/m

2
, under which lies a 13.20 m deep layer of clay E02 = 1 000 kN/m

2
, which 

rests on gravel. The compressibility of the gravel can be neglected. The foundation is square 
with sides Β = L = 10.7 m. The moment Qe = 28 000 . 1.5 - 42 000 kNm, for Q = 
= 28 000kN. The foundation surface A = Β

2
 = 10.7

2
 = 114 m

2
. We replace the square 

surface with a circular surface of radius R = 6 m. 

The ratio 
M 42 000 

- 194.5 kN/m
2 

R
3
 216 

The inclination in the upper layer of sand 
\ R 6.0 / 

Δ 

Fj(l /3;a) = 0.414; F 0( l /3 ; a) = 0; Δ^(1/3; a) 

M 194.5 
—5 ^ ^ ( 1 / 3 ; α ) = 
R E0l

 1
 20 000 

F (1,0c) 

0 0.1 0.2 0.3 OA 0.5' 0.6 

6.0 

0.414 

0.414 = 0.0040 

0.7 0.8 

y= 
1 
If 

y= 
1 
If 

Fig. 1.12 Function F(v; a) in relation to z/R 
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/ z 2 19.8 \ 
The inclination caused by the layer of clay ( = = 3.3 I 

\ R 6.0 / 

F 2( l /3 ; a) = 0.644; F^ l /3 ; a) = 0.414; A2F(l/3; ä) = 0.644 — 0.414 = 0.230 

Λ {dS\ Μ , 194.5 
A
> ( - ) * ΊΡΕΓ2

Δ
**

ιΙ3
'·

a) - Tôœ 0 - 2 3 0 - 0 0 0 6 4 

tan β' = 0.0040 + 0.0064 = 0.0104 

The settlement of one edge of the foundation compared to the other is 

Β tan β' = 10.7 . 0.0104 = 0.111 m = 11 cm 

If the settlement of a circular foundation were considered, we would get 2R tan β' — 2 . 600 χ 
χ 0.0104 = 12.4 cm. The difference in the settlement of the edges of the square foundation 
compared to that of the circular foundation is negligible. 

1.6 TIME—SETTLEMENT CURVE 

Particles are pressed into the pores as a result of loading. Friction and 
resistance of water or air against expulsion from the pores act against their 
movement. In permeable soils—for example sand—the resistance against 
this expansion is small and acts only for a short while so that the whole stress, 
which is created in the soil, is borne only by the particles. Soil, which is not 
very permeable and especially soils such as clay which are virtually watertight, 
behave quite differently. At first, all the stress created in the soil is borne by the 
water alone as the particles cannot be forced into the pores while the water 
remains there at least partially. The water is under pressure. A hydraulic 
gradient / = A//, i.e. the ratio of the pressure head h to the path / of the water 
particle, is created and causes the water to start escaping from the pores; 
the soil begins to be compressed and the foundation subsides. The size of the 
settlement s at any given moment is equal to the height of the water expelled 
from the soil if it is completely waterlogged — nearly always the case with clay. 
When some of the water has left the pores, the grains partially fill the pores 
of the soil. The friction between the particles increases, they then take up some 
of the stress, the remaining part of the stress being carried by the water. Gradu-
ally with time more and more water is expelled from the pores of the soil, 
the stress borne by the water decreases and that by the particles increases. 
When the friction between the particles takes the whole load from the founda-
tion and the water is only under hydrostatic pressure or capillary tension, the 
soil is consolidated. During a test in the oedometer, the magnitude of the 
settlement s is plotted on a normal scale and time is plotted on a logarithmic 
scale (Fig. 1.13). As a result of loading, a soil with height h in the oedometer 
is immediately compressed by a value Ast. This is caused by the unevenness 
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of the soil surface, the compression of the soil into the pores of the porous 
plate and by the partial expulsion of the water from the pores, since on both 
the soil surfaces which are in contact with the permeable porous plates, the 

path of the water particle / = 0 and the hydraulic gradient 00 · The 

expulsion of the water takes a certain time longer if the soil is less permeable 
and if the height of the compressed soil is greater. 

The time of settlement of a soil during an oedometer test is divided into 
primary and secondary settlement, see Fig. 1.13, which shows the primary 
settlement. Settlement takes an infinite time. The secondary settlement is 
greater than calculated, because the grains of the soil are compressed as a result 

100000 [s] 

0.197h
2
 r ?/ 1 

C v = 1 [m
 2

/sJ 

secondary settlement 

Fig. 1.13 Consolidation curve 

of the crushing of extremities on the surface. The contact stress on these projec-
tions is usually large and as a result they are crushed. This transfers the stress 
to other particles. Between particles of the soil, zones with an increased concen-
tration of stress are formed, beneath which the grains are only subjected to 
a small stress. When the particles which form the void are disturbed, the void 
collapses and a new void is formed which lasts for a certain time. The span 
and shape of the void, as well as the stress acting on the particles, change in 
time and the soil continues to settle. The total settlement is caused by the 
expulsion of the water from the pores and the deformation of the particles. 
In Fig. 1.14 the magnitudes of the stress resulting from loading, which acts 
between the particles, is marked by lines. The actual magnitude of the stress 
is given by the density of the line. These lines were obtained by the photo-
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elasticimetric method. The particles were modelled by circular discs and were 
in a frame with variable vertical and horizontal load. It can easily be shown 
that zones with a concentration of stress are formed in the soil, if we model 
the soil with the help of balls between two parallel glasses. 

The consolidation caused by the deformation of particles was studied. 
The resulting compression was found to be ss — has log t for a load between 
50 and 300 kN/m 2. The value of the consolidation coefficient for dry gravel 
( 0 3 cm) and for organic clay or peat (y = 11 kN/m 3) was ccs = 0.03, for 

vertical load 

Fig. 1.14 Stress between grains, expressed as the weight of the lines 
(G. de Josselin de Jong) 

fine dry gravel a s = 0.007, for water — saturated greywacke fill a s = 0.0002, 
for dry greywacke fill = 0.0001, for dry clay particles a s = 0.001, for dry 
particles of loess loam as = 0.0005 and for fine silicate sands EJF and Ν 
II a s = 0.00004. The formula is also valid for permanent and repeated loads 
with a very low frequency, where t (sec) is the total time of application of 
the load. If for example we know, in the case of a wheel passing over a 
point on a road, the time t during which the load has been applied, we can esti-
mate the settlement of the surface of the road after m loadings, i.e. for a total 
time t — m . t. The effective depth h is considered (see appendix II). For roads 
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this is up to 0.7 m. At the same time a very simplifying assumption is made, 
i.e. that for a low frequency of the repeated load the coefficient of conso-
lidation a s is not dependent on acceleration, the elastic deformation of the 
surface or the frequency of the load. 

The consolidation of relatively impermeable soils was first studied by K. Ter-
zaghi, who assumed that the seepage of water from the soil is linear and came 
to the following differential equation 

k(l+e0) δ
2
σ' _ da' ( 1 4 6) 

7wû dz
2
 St 

if the effective stress 

σ = σ - uw9 

e0 is the void ratio before a load increment is effected 
Ae 

a — —— gives the ratio of the void ratio decrement Ae to the load increment 
Ασ2 

Ασζ. 

The term ^ + = cv is the coefficient of consolidation, and for cohesive 

soils (v = 0.4) the following is valid 

c. Λ IM. = M<L (1.47) 

E0 is the deformation modulus, k is the coefficient of permeability. Similarly 

st dz
2 

K. Terzaghi solved this function using a dimensionless quantity Τ = cOt/h
2, 

which is called the time factor. For a certain value of the time factor, the degree 
of consolidation μ is determined; the settlement after a time t is st = $μ, 
where s is the final settlement and μ is the degree of consolidation. The rela-
tionship between the degree of consolidation and the time factor is described 
in Fig. 1.15. (Some authors do not base their solution on a unidirectional, 
but on a spatial, flow of water.) For a 90 % consolidation μ = 0.9 and 

h2 

Terzaghi's equation was formulated for cases where the load increment 
created in the soil is constant and has a rectangular shape, curve 1. This is the 
case if the soil is loaded over a large area with an embankment of an equal 
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height. Then a solution was sought for case 2, where the stress increment 
has a triangular shape. The real stress surface under the foundation can be 
transposed to such a shape if the soil is uniform to a great depth. In the next 
case 3, the increment takes the form of a triangle with a base at the bottom. 
We find this situation where a soil has been alluviated and left to consolidate. 

Fig. 1.15 The degree of consolidation μ as a function of the time factor Τ 

Next, a case 4 was solved in which the load increment in a consolidating 
layer of clay has a trapezium form; then the stress at the top is azh and the 
stress at the bottom azd. Curve 4 is applicable to a case where σζΗ\σζά = 2, 
and finally curve 5 is for a case where this ratio is equal to 4. If the water can 
escape in one direction, then A is the height of the impermeable layer which is 
consolidating. If the water can escape in two directions (up and down) into a 
permeable layer, its height is 2A. Height A is substituted in the equation. 

The coefficient of consolidation can also be determined according to Taylor 
from the consolidation curve located by a oedometer test (Fig. 1.13). The 
soil is loaded and the settlement is measured after 4, 10, 20, 40, 80, 200, 400, 
800, 2 000, 4 000, 20000 and 86 400 (one day) seconds. A time t2 < t50 and a 
time t1 = i 2/4 are chosen. The settlement As in the period t2 — tt is plotted 
against the settlement for a period tx, and thus the initial height of the sample, 
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from which the settlement (compression) is being measured, is determined. 
At the inflection point I of the settlement curve, a tangent is drawn and the 
lower part of the compression curve is extrapolated. The intersection point 
of the two curves divides the period of consolidation into a primary and second-
ary consolidation and at the same time gives a 100 % value of the settlement s. 

5 

We locate a half of the settlement — and the time corresponding to this 50 % 

0.197ft2 

settlement is f50. The coefficient of consolidation cv = — m 2/s. The 

inflection point on the compression curve is usually located for a 68 % consolida-
tion (Naylon—Daran 1948). 

The coefficient of consolidation cv is usually calculated from equation 
(1.47), if we know the coefficient of permeability k and the oedometric modulus 
of deformation M0. Usually the coefficient of permeability is given in m/s 
or m/min, the deformation modulus is given in kN/m 2 and therefore the unit 
weight yw must be given in kN/m 3. To enable the calculation of the coefficient 
of consolidation, the values of the coefficientes of permeability are given in 
Table 1.9. 

TABLE 1.9 

Coefficients of soil permeability 

Coefficient of permeability 
Type of soil * [ m / m i n] 

Fine sand 10" - 1 _ -10" - 3 

Clayey sand 10" - 4 _ -10" -5 

Loess loam 10" -5_ -10" -7 

Loam 10" -7_ -10" -8 

Clayey loam 10" -8 -10" - 9 

Clay 10* 9 -10" 1 0 

The modulus of deformation M0 is determined for a given load in the oedom-
eter, which makes it easy to calculate the coefficient of consolidation cv. 

For normal foundations on clayey loam with a width from 1 to 2 m, the 
effective layer of soil is, in terms of settlement, about 2 m and a 90 % consolida-
tion takes a little over a year if the water seeps only upwards (Table 1.10). 
Only for wider foundations is the time-settlement relationship more pro-
nounced. 
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TABLE 1.10 

The period required for a 90 % 
consolidation of a layer of clayey loam 
(k - 6 . 10~

9
m/min, M 0 = 10 000kN/m

2
) 

Period t (years) of 
Height of consolidation if water seeps 
clayey loam 

layer upwards upwards 
[m] and downwards 

1 0.08 0 32 
2 0 32 1.28 
3 0.72 2.88 
4 1 28 5.12 
5 2.88 11.50 
6 6.45 25.80 

Example 1.3 

The magnitude of the settlement of the soil under an embankment after 3 months is to be 
determined. A layer of loam, with a height of h = 6 m is uniformly loaded by an embankment 
with of height of 10 m, which produces a uniform load q = 200 kN/m

2
. The coefficient of 

permeability k = 1.10"
 8
 m/s and the oedometric modulus of deformation M0 = 6000kN/m

2
. 

q.h 6 . 200 
The total settlement of the layer s = = = 0.2 m. The coefficient of consoli-

M 0 6000 
kM0 1 0 ~

8
. 6 . 1 0

3
 , - fi A 

dation c y = = 6 . 1 0 ~
6
 m

2
/ s = 6 . 1 0 "

6
 . 8 .64 .10

4
 - 0.518 m

2
/day. 

1 cvt 0.518 . 365 
For a period t = — of a year the time factor Τ = —— = = 1.31. 

4 Λ
2
 4 . 3 6 

According to curve 1 (see Fig. 1.15), the corresponding degree of consolidation for this 
time factor is μ = 0.95, so that after a quarter of a year the compression of the layer will be 
20.0 .95 - 19.0cm. 

Example 1.4 

Let us consider the Tower of Pisa, which has a circular plan with a diameter 2R = 2 . 9.8 = 
= 19.6 m. The stress almost disappears at a depth of 3 . 19.6 = 58.8 m. At a depth of 42 m 
there is sand, above which are strata of clay and nearer to the surface are thin layers of 
clays and sands. The coefficient of permeability of clay is usually given as 2 . 1 0 ~

1 0
m / s and 

for layers of sand and clay as 2 . 1 0 ~
6
 m/s. The deformation modulus E0 = 2 400 kN/m

2 

and the oedometric modulus of deformation M 0 = 3 600 kN/m
2
. The mean load is 

500 kN/m
2
. The total weight of the tower is 144 540 kN. The settlement 

nrq , (\—v
2
)Q (1 — 0.33

2
) . 144 540 

s = (1 — v
L
) = - - - = = 2.7 m 

2E0 E02R 2 400 . 2 . 9.8 
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The mean settlement estimated from the level of the sill at the entrance to the tower and at the 
entrance to the dome, is 2.4 m. The agreement between the calculated settlement and that 
estimated in this way is satisfactory. 

M0k 3 6 0 0 . 2 . 1 0
- 10

 _ 8 2 
The coefficient of consolidation c„ = = = 7.2 . 10 m / s = 

= 0.006 22 m
2
/day. 

As water can escape both upwards and downwards from a layer of clay then 42 m = 2H. 

cvt 0.006 22 . 365 
The time factor for one year Τ = —τ- = = 0.0051 and the corresponding 

h
2
 2 1

2 

degree of consolidation μ = 10 %. During one year, assuming that the tower was built 
completely at one time, the mean settlement would be 0.10 . 2.7 = 0.27 m. For 10 years the 
time factor Τ = 0.051 and the corresponding degree of consolidation μ = 26 %, the settle-
ment would be 0.26 . 2.7 = 0.7 m. The building was completed in A.D. 1 350 and it took 
176 years to build. Since then 1 973 — 1 350 = 623 years have passed. To this we add half the 

0.006 2 2 . 3 6 5 . 7 1 1 
building period and get 623 -h 88 = 711 years. For this period Τ = — = 
= 3.65 and the corresponding degree of consolidation μ = 99 -f- 100 %. In fact the Tower 
of Pisa is no longer setting but only toppling by 1 mm per year. 

If the building process is such that the soil is loaded uniformly during the building period ts, 
then the settlement after a period t (from the completion of the building) is equal to the settle-
ment after a period (/ -f t J2). 

1.7 SETTLEMENT CAUSED BY SOIL SHRINKAGE. 
BULKING AND SUBSIDENCE OF SOIL 

Buildings standing mainly on clay, peaty soils or other very shrinkable 
soils can settle during a prolonged drought as a result of shrinkage. In the case 
of brick buildings with shallow foundations, the corners of the building which 
face south and southwest tear away and cease to carry the load of the building 
as a result of soil shrinkage. In our conditions the influence of clay shrinkage 
reaches to a depth of approximately 1.5 m ; in special cases to a depth of 4 m. 
For buildings with a foundation depth larger than the shrinkage depth, the 
influence of shrinkage is not apparent. However, shrinkage can reach to a 
greater depth if the subgrade is being dried out by the building, for example 
in the case of brickworks, coking plants, furnaces, etc. Drying out of the soil 
can also be caused by trees in the vicinity of a building (expecially poplars) 
as they drain of water very quickly. 

The settlement of a building caused by soil shrinkage can be calculated 
from the decrease of the moisture content of the soil after shrinkage. Soil 
dries out and shrinks until its moisture content drops to the shrinkage limit w s . 
During further drying out, the soil no longer shrinks even if the moisture content 
of the soil drops below w s . After the drying out of the soil during a drought 
period, the lowest moisture content is on the surface and with increasing depth 
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it increases tangentially to the initial moisture content. For the calculation 
of the settlement s of a building, the subgrade is divided into layers of height h. 
For each layer we take the mean decrease of the moisture content 

Aw = w - w's (1.49) 

where w is the moisture content before shrinkage, 
w's is the moisture content after drying out. 

If w's < ws, the following decrease of the moisture content is considered 

Aw = w - ws (1.50) 

since for a decrease of the moisture content below ws there is no further shrink-
age. A uni-directional shrinkage Ah of a soil layer with thickness h is 

Ah = h J ^ L ^ h y s , A W (1.51) 

where ys is the density of the soil grains. On average ys = 27 kN/m 3. 
The settlement of a building caused by shrinkage is 

(1.52) 

This equation is valid provided no fissures are formed in the soil. Water would 
evaporate in the fissures and we would obtain a shrinkage in both a vertical 
direction and in directions perpendicular to the fissures. According to this 
equation, the settlement s of a soil layer with a thickness of 1 m with an initial 
moisture content w and a decrease of the moisture content caused by drying 
out Aw, was calculated. The calculated values are given in Table 1.11. 

So far, the settlement due to the decrease of the moisture content caused 

TABLE 1.11 

The settlement s in cm of a soil layer with a thickness of 1 m 
for a decrease of the moisture content caused by drying out 
from w [%] by a difference Aw [%] 

Initial Settlement of layer with thickness 1 m for 
moisture a decrease of the moisture content 
content 
w Aw = 2 % 4 % 6 % 8 % 10 % 12 % 

30 % 3.0 6.0 
40 % 2.6 5.2 
50 % 2.3 4.6 

9.0 12.0 15.0 18.0 
7.8 10.4 13.0 15.6 
6.9 9.2 11.5 13.8 
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by drying out has been studied. In our conditions, drying out reaches to a 
depth of 1.5 m. If the building is founded on clays shallower than 1.5 m, then 
it is assumed that the shrinkage up to the shrinkage limit reaches to a depth 
of 50 cm (measured from the surface). At a greater depth the moisture content 
increases linearly and reaches the initial moisture content at a depth of 1.3 m. 
From these data it is possible to calculate the settlement of soil under a founda-
tion, as we know the decrease of the moisture content. An example of the 
changes of the moisture content of a soil at various depths is shown in Fig. 1.16. 

We know from experience the depth reached by the decrease of humidity 
under ceramic and brick furnaces; this decrease of course, depends on the 
period of function. This depth is about 2 to 3 m beneath the foundation of the 
furnace. On the contact surface, the moisture content drops to the shrinkage 
limit or below at a depth of about 20 to 50 cm. At a greater depth we assume 
a linear increase of the moisture content from the initial state, which is reached 
at a depth of 2 to 4 m. Calculation gives the magnitude of the settlement, which 
is usually 10 to 20 cm. The shrinkage is not uniform and results in the formation 
of fissures caused by non-uniform settlement. (We must therefore take suitable 
precautions, for example by providing a ventilated or irrigated gravel-sand 
cushion, which enables the water to evaporate from the gravel and not from 
the clay (which therefore does not shrink), or the furnace may be founded 
on a hollow box, which is ventilated. 

soil moisture w 

o 10 ws 20 30 [Vj 
0.5 ^^^^L - ^ \ 

^ in a period of drought* 

1.0 

^ normal conditions \ 

1.5
 3

 — 

2.0 

Fig. 1.16 Course of soil moisture content 
2 5I I I I 1 during drying out 

h 
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The raising of building foundations 

The opposite of soil shrinkage is its expansion; we come across this pheno-
menon especially in solid tertiary overconsolidated clays. Soil, previously 
loaded with a greater vertical stress which even caused a part of the absorbed 
water to be expelled, increases its content of absorbed water during the access 
of humid air to its initial volume, soil grains move apart again, the moisture 
content increases and the shear strength decreases. The load qb which is in 
equilibrium with the internal forces of the bulking soil is called bulking pres-
sure. When measured in the oedometer it was found for some clays to be as 
much as qb = 40 kN/m 2. If water has the possibility of access to a soil which 
is liable to bulk, then for a load q < qb the soil bulks and the building lifts. 
Non-uniform lifting causes the formation of fissures on buildings. This is a long-
term process. In the case of tunnel engineering, layers of clay bulk and press 
on the timbering. If the load q > qb, the soil is compressed. 

We can also find that foundations are raised during the winter time, as a 
result of the fact that the soil beneath the foundation freezes. In a case where 
the soil is saturated with water, the freezing causes an immediate raising of the 
soil surface as a result of an inrease in water volume by 

Ah = 0.09wA (1.53) 

where h is the depth of the freezing zone and η is the porosity of the soil. If 
the level of the capillary water is higher than the lower limit of the freezing 
zone, more water is carried into the freezing zonr this water in turn freezes 
and the surface continues to rise. This process is made possible by the fact 
that in the capillaries, water freezes at temperatures lower than —5 to —6°C 
as a result of vapour tension and the tension of the large volume of adsorbed 
water (for example in a capillary with a diameter of 0,24 mm water freezes 
at —13.3 °C). The usual depths of the freezing zone for our conditions are 
given in Table 1.12 as a function of height above sea level. 

Soils which present the greatest danger as regards freezing consist of grains 
of varying diameter as shown by the dotted plan in Fig. 2.39. From a mineralog-
ical point of view these soils are kaolinitic. Montmorillonite clays are less 
critical as they are not very permeable. 

T A B L E 1 . 1 2 

Freezing zone in Czechoslovakia 

Height above sea level in m less than 250 250—400 400—700 700—900 

Depth of freezing zone in m 0.75—0.85 0.8—0.95 0.9—1.15 1.1—1.3 
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Freezing increases the bearing value of the soil. On the other hand, during 
spring with an increase of temperature, the soil may thaw faster than it can 
consolidate. The soil may have taken in so much water that after thawing it 
becomes slurry and the bearing value decreases. Therefore it is necessary to 
avoid freezing of the foundations, preferably by sufficiently deep loading. 

Another type of soil where settlement is not guided by the laws of consolida-
tion and creeping are subsiding soils, especially loess and some of the loess 
loams. These soils have macropores and are loose. Particles on contact surfaces 
are bound by lime. When these soils are waterlogged, usually when the ground-
water level rises, the structure of the soil is disturbed as the lime on the contacts 
is dissolved and the foundation suddenly subsides. 

The subsidence of loess resulting from waterlogging can be avoided if a layer 
of loess, for example with a thickness of 1 m, is removed and gradually compact-
ed. This was done during the building of the cellulose works in Braile in Ru-
mania. There were fears that if the water mains should fail, the loess in the 
subgrade might subside. 

To prevent subsidence, loess loams were sometimes subjected to a pressure 
exceeding 300 kN/m 2. Thus the loess was compacted and its structure was 
broken down in such a way that after waterlogging it subsided very little. 
However, the subsidence caused by a load q > 300 kN/m 2 was large and 
harmful. 

Finally some special situations are to be found in the case of chemical works 
when a pipe containing some solution bursts. The solution then saturates 
the soil and during drying out starts to crystalize. This has been found to cause 
the raising of foundations by 50 cm or more, the raising depending on the 
nature of the solution. Technological equipment, which acts on low-temperature 
subgrade (<^0°C), has a similar effect if the groundwater freezes near the 
surface. For these reasons it is necessary to consider such problems in the 
case of chemical works. 

Soils which bulk and subside are volume-unstable and it is not possible 
to build foundations on them without careful consideration. For volume 
unstable soils it is not sufficient to calculate the settlement according to Sec. 
1.3 - 1.6. 



2. BEARING CAPACITY OF FOUNDATIONS 

2.1 SHEARING RESISTANCE OF SOILS 

The law of shearing strength was discovered by Coulomb (1773) on the 
basis of tests he made. According to him the shearing strength of cohesionless 
soils is 

τ = σ tan Φ (2.1) 

and of cohesive soils 

τ = c + σ tan Φ = c -f of (2.2) 

where Φ is the angle of internal shearing resistance, 
tan Φ = / i s the coefficient of friction, 

c is the cohesion and gives the shearing strength value if σ — 0. 

The general expression of shearing strength is 

τ = ηιση; 

In Coulomb's equation m = tan Φ, η = 1 (for cohesionless soils). 
The shearing strength of a soil is determined in a box apparatus (of the 

Casagrande type) or in a rotation apparatus (of the Hvorslev type). A test 
made with this equipment determines the shearing strength τ for a normal 
stress ση for a sliding surface or in the rupture zone, whose thickness depends 
on the diameter of the grains. Another type of apparatus used for the determina-
tion of the shearing strength is the triaxial apparatus in which the soil sample 
is enveloped in a rubber container. At the bottom and sometimes at the top 
there are porous plates for drainage of the soil. The sample is contained in a 
chamber and is surrounded by water. This enables the measurement of the 
horizontal stress σ 2 = σ 3 , which is maintained during the test at a constant 
level. The sample is subjected to a vertical stress σϊ — σ3, which is increased 
up to the failure point. This is observed when on the sample one or two sliding 
surfaces, or an infinite number, all of which intersect, are created and the soil 
swells out into a barrel-like shape. Usually a noticeable drop is measured on 
the compression curve during failure. Tests are made with unconsolidated, 
undrained soil and the pore water pressure uw is measured (the shearing of an 
unconsolidated soil is rapid); or they are made with consolidated, undrained 
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soil (the soil is left to consolidate and the loading of the sample is made rapidly, 
allowing no time for consolidation during the test); or they are made with 
consolidated, drained soil (the test on the consolidated sample is made so 
slowly that the pore pressure uw = 0). Tests are made for different values 
of <r3. In the evaluation of the tests, circles are constructed over the compon-
ents of stress (σ χ — σ 3). The envelope of these (Fig. 2.1) intersects the vertical 
axis at the point which from the beginning gives the initial shearing strength 
(cohesiveness); the angle between the envelope and the horizontal is the angle 
of internal shearing resistance Φ. Therefore the shearing strength expressed 
by effective parameters is in general 

τ = τό + σ' tan φ' (2.3) 

A triaxial shearing apparatus is also used, where the value of the three main 
stresses σί Φ σ2 Φ σ 3 , can be independently changed, until a failure of the 
prism —shaped sample is obtained. The advantage of the triaxial apparatus 
is that the shearing surface (or the failure zone) is created at the places of least 
resistance and the soil need not shear on the shearing surface defined in advance 
by the construction of the apparatus. To determine the cohesion of soils, it is 
also possible to use an apparatus, simple pressure tests, etc. 

For soil failure there are several failure criteria. The most often used 
Mohr-Coulomb criterion (when expressed in the effective main stresses) is 
for cohesive soils 

a\ + σ 3 + 2c' cot Φ' 
- = sin Φ' (2.4a) 

For cohesionless soils 

σ[ + σ 3 

sin Φ' (2.4b) 

2 

Fig. 2.1 Coulomb—Mohr's criterion for the shearing failure of soil 
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Then there is the so-called extended criterion of Tresco 

+ * 3 
I o\ - σ'2 I = / Γ ι( Φ 

σ'ι + σ'2 + σ'3 

σ, + σ, + σ 3 
+ / τ - , ί Ο 

(2.5) 

(2.6) 

(2.7) 

where / Γ(Φ') is a function of the angle of internal shearing resistance of the 
soil Φ', fT(c') is a function of the cohesion of the soil c'. Next there is the so-
called extended criterion of Mises, which may be written in the following form 

[ ( * Ί - °Ί? + ( * i - σ'3)
2 + (σ'3 - σ[)ψ = 

= ΜΦ')(σ'1 + σ

3

2 + σ'3) + ίΜ(ο') (2.8) 

where /Μ(Φ') is a function of the angle of internal shearing resistance of the 
soil Φ', fM(c') is a function of the cohesion of the soil cf. Tests made on ap-
paratus, when σ[ Φ σ2 Φ σ'3, did not confirm the validity of the Tresco and 
Mises criteria as the calculated angle of friction was larger by approximately 
10° than found in reality. For that reason the criterion of Coulomb —Möhr 
remains valid for the determination of the failure of soil by shearing. 

[kN/m
2
] 

300 

^ 200 
m to 

"co 
700 

Γ i l 
2 3 4 
displacement Δί 

6 [mm] 

Fig. 2.2 Example of the dependence of stress τ on displacement AI 

If a compact sand shears in a box-shearing apparatus, the working diagram 
of the shearing stress τ against the displacement ΔΙ forms a curve (Fig. 2.2) 
where for a critical displacement AlCTit there is a peak value, which gives the 
peak shearing strength xf. For an acting shearing stress τ, the soil is deformed 
both in a horizontal and vertical sense until the peak shearing strengh xf is 
reached. During further shearing, when a shearing zone has been created in 
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cohesionless soils or a sliding surface in cohesive soils, the shearing strength 
decreases until it settles on a residual value xr. In German sources, the term 
peak value is translated as Scherfestigkeit (shearing strength), whereas the 
residual stress is translated as Gleitwiderstand (yield resistance). In physics the 
following two expressions are also used: friction at rest and friction during 
movement, where friction during movement is always the smaller. Residual 
yield resistance is smaller than peak-value shearing strength by 30 percent or 
more. The fall from peak-value shearing strength to residual resistance is very 
important for the calculation of the bearing value as we must use a greater 
safety factor F ^ 2, so that the shearing stress is much smaller than the peak-
value shearing strength. 

TABLE 2.1 

Residual angle of friction Φ'τ 

Residual 
Montmorillonite a n g, e Qf 

Λ, = h>. — u> content c . Author and location ρ
 1

 Ρ friction 

58 40 9.6° Taylor I 
(Lameport, Texas) 

38 0 9.3° Strawn 
(Proctor Dam Texas) 

91 45 5.5° Kincaid 
(Cooper Dam, Texas) 

132 15 6.3° Bearpaw 
(Fort Peck Dam, Montana) 

320 60 3.3° Pierre 
(Oake Dam, South Dakota) 

When the soil in the shearing apparatus is loaded, the stress is at first carried 
by the soil grains and water or air. But only the soil grains have a shearing 
strength. Therefore in the calculation of the angle of friction we take into 
account the effective stress σ' between the grains, as a result of which we obtain 
the effective angle of friction Φ' and the effective cohesion c'. The peak-value 
shearing strength expressed in the effective values is 

T / = c' + σ' tan <p'f (2.9) 

For a normally consolidated clay c' = 0. Borowicka explains the cohesion 
of clay by overconsolidation. 



58 

The residual resistance 

τΓ = σ' tan φ'τ (2.10) 

For a residual yield resistance the cohesion c' = 0. According to F. C. Towns-
end and P. A. Gilbert a residual angle of friction was measured in clay with 
a variable index of plasticity Ipi as given in Table 2.1. 

Tests were made in a box-and-annulus apparatus with the same results. 
A cohesive soil which has sheared never joins up on the shearing surface; it 
has a cohesion c' — 0 and the angle of friction is Φ .̂ An attempt was made 
to determine the relationship between the plasticity index Ip and the residual 
angle of friction Φ[. The measured results were very scattered and many 
authors (Kenney 1967) are of the opinion that the residual resistance cannot 
be expressed in this way and that the mineralogical composition must also be 
considered. 

If the surface of a sample during a shearing test in a box apparatus is 
observed, it is found that with compact sands the surface rises or falls a little 
at first and then rises. This phenomena is called dilatancy. If the surface rises 
it is a positive dilatancy and if it falls it is a negative dilatancy (contractancy). 
Dilatancy makes it possible for grains in the shearing zone of cohesionless 
soils to turn and roll over each other during shearing, thereby effecting rolling 
friction which is smaller then dragging friction. If the soil in the apparatus 
settles at first, it is caused by the fact that the total applied stress in the soil 
has increased. Later, when the shearing surface begins to form, the surface of 
the soil rises and the negative dilatancy becomes positive. The size of displace-
ment with which the fallen surface reaches the initial level is of no mechanial 
importance. For a large load, for example σζ > 20 000 kN/m 2, the resistance 
of grains against lifting would be greater than their resistance against crushing, 
and therefore shearing due to a large load causes the grains to be crushed and 
the surface does not rise. The measured peak angle Φ' is smaller than for a 
small load as the crushed grains have a smaller angle of friction. 

The shearing strength τ consists of resistances which act during a macro-
dilatancy xm, during which the grains in the shearing zone rise in such a way 
that the grains can roll over each other and a rolling friction is effected in the 
soil. Then there are the resistances during microdilatancy xmm where the grains, 
which slide over each other and are wedged together between protrusions, 
partially rise and then the protrusions are broken off. The resistance encoutered 
in the breaking away of the grains can be designated xt. Further, there are the 
resistances caused by the speed of the deformation of the soil during shearing 
τp. The slower the rate of performing the test, the smaller the angle of internal 
shearing resistance Φ'χ. Lastly there are the resistances due to the mutual 
attraction of the grains T c . This depends on the type of the minerals, the degree 
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of electrochemical saturation, the polarity of the adsorbed ions, the diagenetic 
strengthening, etc. Therefore, we can say that the shearing strength 

τ = rm + xmm + τ ζ + τρ + tc (2.11) 

Attempts have been made to express the individual resistances separately. 
When a shearing surface is created in clay, the grains are laid in the shape of 
small tablets or rods in the direction of the shearing surface. In their original 
position, the grains of the clay formed a house-of-cards structure, and after 
shearing they are laid over each other slab-wise. As the residual angle of friction 
Φ, has very small values, as shown in Table 2.1, the cohesion c is equal to zero. 
In further considerations only the residual angle of friction Φ'Τ is applied. 

The angle of friction Φ' in cohesionless soils depends on the shape of the 
grains, their size, compactness and non-uniformity. According to Chen, the 
angle of friction in cohesionless soils is 

φ' = 36° + Φ; + Φ 2 + Φ'3 + Φ 4 (2.12) 

Φ[ expresses the influence of the grain shape; for grit sands Φ[ = 1°, for not 
very angular sands Φ[ = 0, for rounded grains Φ[ = —3° and for round 
grains Φ[ = —5° 

Φ2 expresses the influence of the size of the grains; for a medium sand Φ'2 = 0, 
for a coarse sand Φ'2 = 1° and for gravel Φ'2 = 2° 

Φ 3 expresses the influence of uniformity; for a uniform sand Φ 3 = —3°, for 
a medium non-uniform sand Φ 3 = 0 and for a non-uniform sand Φ 3 = + 3° 

Φ 4 expresses the influence of compactness; for a loose sand Φ 4 = — 6°, for 
a medium compact sand Φ 4 = 0°, for a compact sand Φ 4 = +6°. 
Kérisel expressed the influence of the coefficient of friction tan Φ' on the 

void ratio e in the following way 

+ 0 . 5 - 0 . 6 0 . 5 * 0 . 6 , , , 
tan Φ = = (1 - η) (2.13) 

e η 

The smaller the porosity, the greater the angle of friction Φ'. This finding has 
been confirmed by tests made by Kamenov, Feda and others. During shearing, 
the porosity in the shearing zone changes. After reaching the peak angle Φ}, 
the porosity η continues to increase and settles on the critical porosity ncrit, 
which is independent of the initial porosity. If the initial porosity η < «crit, 
the soil in the shearing zone loosens, and dilatacy is observed if the vertical 
load is not too great and the resistance against lifting is smaller than the 
resistance against the crushing of the grains. If η > nCTit9 the soil is compacted 
during shearing, there is a negative dilatancy. The critical porosity has a differ-
ent value for a dynamic load than for a static load. 
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If a sand is compact and its porosity η < nCTit, the grains in the shearing 
zone must rise a little, so that the friction can be lowered partially, thus beco-
ming a rolling friction. With compact sands the initial shearing strength τ 0 is 
measured for σ = 0 . For example, a Zbraslav sand has an initial shearing 
strength τ 0 = 9 kN/m 2 with an initial porosity η = 35 %, for a Zatec sand 
τ 0 = 6 kN/m 2 with an initial porosity η = 39 %, for a Vltava sand τ 0 = 
= 12 kN/m 2 with an initial porosity η = 32 %. For a flat —grained gravel 
with a grain thickness of about 1 mm and a length of about 4 to 6 mm, whose 
grains were placed in the box apparatus at right angles to the shearing surface, 
an initial shearing strength τ 0 = 20 kN/m 2 was measured. Cohesionless soils 
have a shearing strength 

τ = τ 0 + σ tan φ (2.14) 

and for cohesive overconsolidated soils 

τ = c + σ tan φ (2.15) 

The equations have the same form. According to Coulomb the initial shearing 
strength is called cohesion and it must not be confused with the force of attrac-
tion, which acts mutually between the grains. 

In cohesionless soils subjected to a load, water and air can escape easily 
from the pores and therefore the neutral stress in permeable soils is not very 
noticeable. Between grains an effective stress is applied and for the calculation 
of the bearing value of foundations we use the effective values of the shearing 
parameters. However, in cohesive soils the water escapes from the pores 
slowly and sometimes it takes years after the completition of the building for 
the neutral stress in the pores to disappear. If the loading of the soil continues 
faster than its consolidation, which is usual in the case of clay and clayey 
soils, then we must take into account the total stress σ and the total values of 
the shearing parameters. 

The usual values of the density of soils and their shearing parameters are 
given in Table 2.2. 

Tests made by Anders Heiner (1975) have shown that low temperatures 
have a very great influence on the initial shearing strength τ 0 . For a loamy 
sand of the Swedish moraine, the grading curve is given in Fig. 2.39 at a 
temperature of—5 °C τ 0 = 300 kN/m 2 for a water content w = 5 % a n d t 0 = 
= 1 260 kN/m2for w = 10 %. For a temperature of - 1 0 °C τ 0 = 400 kN/m 2 

when w = 5% and τ 0 = 1 800 kN/m 2 for w = 10 %. For temperatures below 
freezing point, an unconfined compression strength of up to 10 500 kN/m 2 

for —10 °C and w = 10% was measured; under the same conditions a 
tensile strength of 2700 kN/m 2 was measured. 

Until now in tests of shearing strength we have been observing shearing 
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TABLE 2.2 

Usual values of density and the shearing parameters of some soils 

Soil 
Density 
kN/m

3 

y 

Peak 
cohesion 
kN/m

2 

Angle of internal 
shearing resistance 
of soil 

Density 
kN/m

3 

y 

Peak 
cohesion 
kN/m

2 

peak residual 

Dense cohesionless soils with 
Effective values 

natural moisture content 
Φ } φ ; 

Crushed gravel 
River gravel 
Grit 
Sand with rounded 
grains 

18—20 
18—21 
18—21 

18—21 
©

 
ο 

ο 
ο 

3 9 - 4 4 
36—41 
38—43 

31—35 

37—38 
34—35 
32—34 

30—33 

Damp cohesive soils 
Total values 

Damp cohesive soils 
C
uf Φ f Φ 

ur 

Loess loam 
Non-yielding clay 
Form clay 
Soft clay 

16—18 
20—22 
19—21 
18—20 

10—50 
50—100 
50 
25 

22—28 
10—18 
0 
0 

16—22 
10—18 
0 
0 

strength in relation to normal stress on a shearing surface or zone. We shall 
now observe the work necessary to achieve the failure of soils on a yield 
surface. Let us designate AlCTit the displacement of the soil along the rupture 
surface, during which the peak shearing strength xs is mobilized. Similarly let us 
designate Alr the displacement of the soil along the rupture surface, during which 
the residual shearing strength xr was reached. The work Af (Fig. 2.3) required 
if we are to achieve during a stable effective normal stress σ'η on a unit rupture 
surface (for example 1 m 2), the mobilization of the peak shearing stress xfi is 

Af= J τά(ΑΙ) (2 .16) 
ο 

This integral describes the size of the dotted surface in Fig. 2.3. The work Ar 

necessary for the mobilization of the residual shearing strength τΓ by a stress 
a'm on a unit surface is 

Α , = \τά(ΔΙ) (2.17) 
ο 
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Tests made in a box-shearing apparatus have shown that the work Af, At 

of the outer forces, which is necessary for the mobilization of the shearing 
strength xf or xr on a shearing surface, is proportional to the effective normal 
stress σ'η acting on the shearing surface. The work also depends on the type 
and porosity of the soil, and in some cases on the degree of consolidation. The 
work is determined from the diagram of the shearing test by the measurement 
of the appropriate surface, for example in Fig. 2.3 the work Af is equal to the 
dotted surface. Tests made with a stress σ'η of up to 360 kN/m 2 have shown 
that the following is valid 

Ar : σ'ηΩ, 

(2.18) 

(2.19) 

For a cohesionless soil of a given porosity or for a cohesive soil with a given 
degree of consolidation, the factors Ω/9 Qr are constants of proportionality 
between the work and the normal stress on a yield surface when the shearing 
strength has been reached. 

displacement 

work Af 

Δί Fig. 2.3 The expression of work Af from 
a diagram of a shearing test. Sand: a) loose, 
b) compact 

For this reason these factors have been called the mobilization moduli of 
peak (Qf) and residual (Qr) shearing strength. The dimension of the moduli 
£>y, Qr is length as is apparent from equations for the unit rupture surface 
(for example the dimension of work corresponding to a unit yield surface is 
[Α/\ = kNm/m 2 = k N m - 1 m the dimension of the normal stress is [σ^] = 
= kN/m 2 and therefore the dimension of the modulus = m, i.e. length). 

During shearing tests, the mobilization modulus of shearing strength 
achieved values from Qf = 0 , 5 mm for a peak shearing strength of very compact 
cohesionless soils, to Qr = 5 mm for a residual shearing strength of medium 
compact cohesionless soils. For loose cohesionless soils and for cohesive soils 
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the modulus Qf and also Qr reached values between these extreme values. 
Some of the measured values of the mobilization moduli of shearing strength 
are given in Table 2.3. 

TABLE 2.3 

QfyQr of the mobilization of shearing strength xf, τ Γ 

Soil Qf Qr 

[mm] [mm] 

Sand Nil; η = 40.7 % 1.2 4.6 
Sand Nil; η = 44.0 % — 1.6 
Sand EJP; η = 38.8 % 0.7 3.7 
Sand EJP; η = 46.0 % — 1.9 
MOST clay; normally consolidated — 1.5 
MOST clay: consolidated ak = 312 kN/m

2 
1.6 3.1 

The failure of a soil by shearing occurs if the acting stress τ reaches shea-
ring strength. To reach the shearing strength the outer forces must do work, 
i.e. must transfer a certain amount of energy to the soil. The amout of energy 
necessary for the mobilization of the peak or residual shearing strength of the 
soil on a unit rupture surface, if the effective normal stress c'n is stable, is equal 
to the work Af or Ar. The shearing strength of soils can change substantially 
as a result of dynamic loading as opposed to static loading. The problem has 
been researched for example by Barkan (1962), Finn (1967), Litvinovic (1970), 
Seed and Chan (1966). Published results of tests of total shearing parameters 
under the influence of shocks have shown that, as a result of vibrations, 
shearing parameters of a soil decrease in relation to amplitude, frequency and 
the function time of an exciter oscillating force. In cohesionless soils the decre-
ase of the shearing strength is faster than in cohesive soils. The results of tests 
made by Barkan, Goodman and Seed show that as a result of shocks (vibra-
tion) in the soil, a shearing strength lower than the static peak shearing 
strength ττ is applied. In a dry medium sand, as a result of shocks, the angle 
of internalshearing resistance comes nearer to the residual value ΦΓ in propor-
tion to the increment of the amplitude y of the oscillation and the increment of 
the circular frequency w (Fig. 2.4). The more intense the shocks, the faster the 
fall of the peak shearing strength rf to the residual value ΦΓ. If for example 
the ratio of the acceleration of the oscillating movement to the gravitational 
acceleration when the shocks started was ajg = 0.75, and after a short while it 
was ajg = 0.3, then the residual strength of the sand would be reached after 
just three oscillations. In moist and waterlogged soil the influence of dynamic 
forces is even greater and more complicated. 
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The interaction of static and dynamic loading of soils has been measured 
in several cases by Seed and Chan (1966). The results of tests with a silty-clayey 
loam are shown in Fig. 2.5, which points out what combination of static stress 
aSJ and dynamic stress ad for a variety of number of pulses m causes a failure 
in the soil. The static and dynamic stress is expressed as a percentage of the 
static stress σ, which alone causes a failure in the soil. 

Cohesionless loose soils and medium compact soils are compacted by 
vibrations with very small amplitudes and as a result their shearing strength 
increases. Amplitudes of the vibrations acting in soils are at a maximum on the 
level of earthquakes of the lowest degree. Piles are also driven into the soil by 
vibrations. 

Of the dynamic influences on the mechanical properties of soils, the results 
of tests on the effects of earthquakes having various degrees of intensity accord-
ing to the MCS (Mercalli-Cancani-Sieberg) scale have been proceeded. The 

Fig. 2.4 Shearing strength of dry sand during vibration after reaching a peak strength (a) 

and as a function of the number of pulses (b) 
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values of the deflection amplitudes and soil acceleration for various degrees 
of earthquake intensity are given in Table 2.4. 

The vibrations of the soil caused by earthquake have a very different chara-
cter. Near the epicentre, vertical vibrations predominate but further away the 
horizontal vibrations have a more critical influence. The effects of an earth-
quake are greatly influenced by the geological composition of the area through 

which the earthquake is spreading. For example the speed with which the 
longitudinal earthquake waves spread in different types of rocks varies by more 
than an order of magnitude (for example in sand it is 500 to 1000 m/s, in basalt 
5000 to 8000 m/s). 

An effect similar to that of an earthquake is observed in the case of shocks 
caused by traffic, with the difference that these have higher frequences and 
are very often repeated. The frequences of traffic shocks are usually 30 to 
150 Hz and their amplitudes are very small, reaching several thousandths 

Ο 1 — Ι — I T(TIME) 

(according to Seed and Chan) 

7. Ι 1 1 1 
sandy clay 

—— stlty clay loam 
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TABLE 2.4 

o » ^ o Α ~ ι ·* Λ~ Maximum MCS Amplitude y 
acceleration 

Degree of earthquake intensity [mm] _ 2 

a [ms ] 

0 calm 0 0 
1 unfelt earthquake 0.05—0.1 g/4000 
2 very weak earthquake 0.1—0.2 g/2000 
3 weak earthquake 0.2—0.5 g/1000 
4 mild earthquake; felt by almost 

everyone in enclosed spaces 0.5—1 g/400 
5 rather strong earthquake; 

felt even by people outdoors 1—2 g/200 
6 strong earthquake 2—4 g/100 
7 very strong earthquake 4—8 g/50 
8 stormy earthquake 8—16 g/25 
9 devastating earthquake 16—32 g/12 

10 destructive earthquake 
11 catastrophic earthquake 
12 absolutely catastrophic earthquake 

TABLE 2.5 

Values of shearing parameters ΦΜ and cu, which have to be considered 
in seismic regions, in the case of dry and naturally moist soils 
(According to Fift and Kysela, 1972) 

°MCS Total angle of internal ~ , , u . &
 Total cohesion 

Degree of earthquake shearing resistance 
intensity of soil 

1
 ®uf Cuf 

4 Φ, 0 .8c u/ 

5 Φ2 033cuf 

6 and more Φ„„ 0 

Φ, . . . tan 0! = tan Φ„Γ + 0.80(tan <Puf — tan Φ„Γ) 

Φ2 . • • tan Φ 2 = tan ΦΜΓ + 0.33(tan Φ Η/ — tan Φ„Γ) 

Amplitude y and the maximum acceleration a for various degrees of 
intensity of earthquakes in °MCS 
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of a millimetre. As a result, traffic shocks influence the mechanical properties 
of soils to a much smaller degree than earthquakes but their influence on the 
settlement of soil is not negligible. 

The values of shearing parameters, which must be introduced into the cal-
culation of the ultimate bearing capacity of foundations when considering 
earthquakes of various degrees of intensity MCS, are given in Table 2.5, 
which is valid for dry and naturally moist soils. 

The parameters of the shearing strength of a soil do not change if the degree 
of intensity of the earthquake does not exceed 3. For a greater intensity, the 
angle of friction Φ Μ / and the cohesion cuf decrease as the degree of intensity 
grows. For a degree of intensity 6 or more, the cohesion cuf = 0 and the angle 
of friction decreases to the residual angle of friction ΦΜ Γ. 

2.2 FRICTION BETWEEN SOIL AND STRUCTURE 

In building engineering it is sometimes necessary to know the angle δ of 
friction between the soil and the building structure or the bedrock, for example 
in the case of deep foundations, foundations for columns, in the case of a stra-
tified subgrade, etc. Tests were made to determine the amount of friction 
between a cohesionless soil and rigid bodies. During these tests the angle of 
friction δ of a Zbraslav sand moving on a solid base was measured. The tests 
were made in a box-shearing apparatus. The sand grains had a diameter of 
1 mm, 1 to 2 mm and 2 to 4 mm. Each test was made both with a soil which 
was compacted so that its angle of internal friction was close to Φχ = 42°, 
and with a loose soil with an angle of internal shearing resistance of approxim-
ately ΦΓ = 33°. The values of the angle of surface friction δ, which were 
measured for a sand with grains of a maximum diameter of 1 mm, are given 
in Table 2.6. During the tests no significant différence was observed between 
the angles determined for grains of sand with a diameter of up to 1 mm and 
up to 2 mm. During tests with a diameter of the grains from 2 mm to 4 mm 
the measured values were on average smaller by 3°. 

The values of the angle of surface friction for a compact and loose sand 
are not noticeably different, with the exception of the angle of friction of a soil 
with very rough concrete. 

The problem of friction between a cohesive soil and smooth concrete was 
studied with a view to the calculation of the bearing value of deep foundations 
by Caquot and Kérisel (1967). They made tests on the vertical boundary 
between the structure and clay (ΦΜ/ = 0, cuf Φ 0) to determine a coefficient /?*. 
With this coefficient the total peak cohesion cuf must be reduced to obtain 
the peak cohesion cf, which was measured during the critical displacement 
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AlCTii of the soil on the structure. The values of the reduction coefficient β* 
for various cohesion values cuf are given in Table 2.7. 

cf = ß*cuf (2.20) 

TABLE 2.6 

Angle of surface friction angle δ of Zbraslav sand 

Base Angle δ for Base 
dense sand loose sand 
0 f = 42° ΦΓ = 33° 

Smooth metal sheet, greasy O.360 r 0.36Φ / 

Smooth metal sheet, dry 0.50Φ;- 0.50Φ / — 1 ° 
Beech and pine wood 0.66Φ / 0.66Φ / — 2° 
Smooth concrete (from mould) 0.70Φ / 0.70Φ / — 2 ° 
Rough concrete = Φ 

Γ 

TABLE 2.7 

Reduction coefficient β* in relation to the cohesion cuj- of soil 

Cohesion of soil cuj 
[kN/m

2
] 

10 30 50 100 200 

Reduction coefficient β* 0.95 0.66 0.5 0.25 0.2 

If the concrete structure is very rough, a rupture surface, which envelops 
the projections of the uneven structure, is created and therefore, in the case 
of rough concrete on the boundary with a cohesive soil we must consider 
cohesion cf to equal cuf. This situation is encountered for example in the case 
of a foundation poured directly into an open trench in the soil. 

If a cohesive soil has an angle of internal shearing resistance Φ Μ / Φ 0, 
then the largest shearing stress τ / ? which can act on the vertical boundary 
between a vertically loaded structure and a cohesive soil, is according to Caquot 
and Kérisel determined from the equation 

T / = d2cf = d2ß*cuf (2.21) 

where the coefficient d2 depends on the angle of internal shearing resistance 
of the cohesive soil. The values of d2 are given in Table 2.8. 
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TABLE 2.8 

0° 10° 15° 20° 25° 30° 

d2 1.00 1.60 2.06 2.70 3.62 5.01 

This equation is valid provided that no changes in the mechanical properties 
of the soil, for example by shaking, etc., have occured during the building 
process. 

2.3 BEARING CAPACITY OF FOUNDATIONS — 
HOMOGENEOUS FOUNDATION SOIL 

During the loading of soil by a foundation, a vertical stress σ 2, horizontal 
stresses σχ, ay and shearing stresses rxy, τχζ, xyz are created at a given point. 
As a result of stress σζ the soil is compressed in a vertical direction, as a result 
of stresses σΧ9 ay it is forced to the side and the shearing stresses are taken up 
by the shearing strength of the soil. At the edges of the foundation, where the 
shearing stress τ reaches the shearing strength, plastic ranges begin to form. 
When the load increases, the plastic ranges spread increasingly beneath the 
foundation. When they spread over the whole area beneath the foundation, 
a system of sliding surfaces, along which the soil is forced out from beneath 
the foundation to the surface, is created and the foundation sinks. The load 
which is in equilibrium with the resistance of the foundation soil against 
displacement is called the ultimate bearing capacity of a foundation. 

The ultimate bearing capacity of a foundation was determined by Rankine 
(1857). He assumed that the horizontal stress in a vertical plane passing 
through the edge of a foundation is equal to the passive pressure of the soil 
at the foundation depth D. According to this assumption, the ultimate bearing 
capacity is 

qm = yD tan 4 (π/4 + Φ/2) 4- c . cot Φ (tan 4 (π/4 + Φ/2) - 1) (2.22) 

where qm is the ultimate bearing capacity, 
y is the density of the soil, 

D is the depth of foundation 
Φ is the angle of internal shearing resistance of the soil, 
c is the cohesion of the soil. 

Coefficient d2 in relation to the angle of internal shearing 
resistance ΦΜ̂  of a cohesive soil 
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This equation does not include the influence of the width of the foundation 
and for cohesionless soils with c = 0, we get for foundations on the surface 
qm = 0, which is in contradiction with true values. 

Therefore we base the calculation of the ultimate bearing capacity of the 
foundation soil on the rupture surfaces, derived theoretically by Prandtl 
(1920). These are the end yield surfaces. From these towards the foundation 
there is a system of further yield surfaces. Beneath the end yield surface the 
soil does not move. The rupture surface caused by a vertical load is created 
either on one side of the foundation or on both sides. The settlement of a founda-
tion when the ultimate bearing capacity is reached manifests itself as the sinking 
of the foundation to a depth in which the settlement stops (as the depth D 
has increased). Photographs of the rupture surfaces by various authors (Muhs 
1965, Caquot and Kérisel 1967, Kysela 1971 and others) show that at one 
particular moment the rupture surface is usually created only on one side of 
the foundation. The formation of yield surfaces on both sides of the foundation 
occurs only after a greater settlement of the building, as the mobilization of the 
shearing strength on two rupture surfaces needs more energy. This energy is 
released into the soil by the sinking of the building, i.e. by the decrease of the 
potential energy of the building. 

According to Prandtl (see Fig. 2), a wedge forming an angle (45° + Φ/2) 
with the foundation is created under the foundation. The wedge follows up 
with a transient range in the form of a logarithmic spiral, whose shape is given 
by the equation 

r = r0 exp (S tan Φ) (2.23) 

where r is the directrix, 
r 0 is the initial directrix, 
# is the angle between r and r 0 . 

The rupture surface intersects the horizontal surface at an angle (45° — Φ/2). 
Prandtl did not take into account the weight of the displaced material below 
the loaded surface and the weight of the mass above the foundation surface. 
Caquot and Buismann incorporated both these influences for an infinitely 
long strip foundation, leaving the shape of the rupture surfaces in the form 
derived by Prandtl. According to them, the ultimate bearing capacity is 

qm = yDE1 + 0.5 yB tan (45° + Φ/2) (El - 1) + c . cot Φ (Ei - 1) (2.24) 

where Ε, = entan* tan2 (45° + Φ/2). 

These equations for the determination of the ultimate bearing capacity of 
foundations are no longer used as they were not derived specifically for soils. 
Terzaghi, Meyerhof, Brinch Hansen, Caquot and Kérisel and others based 
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their work on the conditions created in the soil when the ultimate bearing 
capacity is reached, and all consider the mechanical properties of the foundation 
soil during the calculation of the ultimate bearing capacity. In its determination, 
Terzaghi assumed a state where the soil above the foundation level has no 
friction or cohesion and acts only by its weight. Therefore his equation is valid 
only to a foundation depth equal to the width of the foundation. The Meyerhof 
method incorporates the influence of the shearing strength of the soil above the 
level of the foundation line into the calculation of the ultimate bearing capacity, 
which is very important in the case of deep foundations. The most generally 
valid is the method of Brinch Hansen who also started from the Terzaghi 
method, adding his own new findings and those of other authors. In comparison 
with Terzaghi's method in its basic form, it also incorporates the influence 
of various shape of the foundation surface, the inclination of the acting load, 
the eccentricity of the load and the foundation depth. For deep foundations the 
Caquot and Kérisel method is especially suitable as it takes into account the 
friction between the soil and the sides of the foundation. All these methods 
consider the influence of groundwater as well as shown in Sec. 2.3.3. 

2.3.1 The method of Terzaghi 

Terzaghi (1943) assumed rupture surfaces (see Fig. 3 in the introduction) 
and expressed the friction in the foundation line with the help of a soil wedge 
beneath the foundation. The angle formed by the walls of the wedge and the 
foundation plane is the angle of internal shearing resistance of the soil. The 
ultimate bearing capacity of a strip foundation is 

where Qm is the ultimate load (the bearing value of the foundation), 
Β is the width of the foundation, 
L is the length of the foundation, 
y1 is the unit weight of the soil beneath the foundation plane level 
y2 is the unit weight of the soil above the foundation plane level 

q = y2D -{-pis the vertical stress in the vicinity of the foundation at the foun-
dation plane level 

ρ is the load on the ground surface 
Ny, Nq, Nc are the bearing-value coefficients 

4m = (2.25) 
B.L 

Nq = enian0 tan 2 (45° 4- Φ/2) 

Nc = (Nq - 1) cot Φ 

(2.26) 

(2.27) 
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0 0.000 

5 0.089 

10 0.467 

15 1.419 

20 3.54 
25 8.11 
27.5 12.12 
30 18.08 
32.5 27.04 

35 40.7 
37.5 61.9 
40 95.4 
42.5 149.9 
45 241.0 

1.000 5.14 
1.568 6.49 
2.471 8.34 
3.940 10.98 
6.40 14.83 

10.66 20.72 
13.94 24.85 
18.40 30.10 
24.58 37.00 
33.3 46.1 
45.8 58.4 
64.2 75.3 
91.9 99.2 

134.9 133.9 

The influence of the soil above the foundation line is replaced by a uniform 
load q = y2D acting at the foundation line level, if ρ = 0. 

The coefficient of the ultimate bearing capacity Ny for a given foundation 
was calculated by Houska (1959) from a balance of forces on a vertical passing 
through the edge of the foundation to the yield surface (marked by dash line in 
Fig. 3). He left the shape of the rupture surfaces according to Terzaghi without 
modification. For the calculation of the other bearing-value coefficients Nq 

and Nc J. Houska proceeded from the general expressions as derived by Janbu: 

Nq =KpIKa (2.29) 

In the calculation according to Rankin, Kp = 1/Ka, which gives Nq = = 
= l / # 2 , i.e. Kp = N°q'

5 and Ka = A T
0
'

5
. The values of Kp calculated in this way 

have been found to be in good agreement which the values of Kp given for 
δ = 2Φ/3 by Shields and Tolunay (1973). For δ = Φ they give higher values 
(Kp = 18 for Φ = 45°; Kp = 2.7 for Φ = 20°) and for δ = 0 lower values 

The magnitudes of coefficient Νγ were derived semi-empirically 

Νγ = 1.87Vctan2 Φ (2.28) 

The numerical values of the bearing-value coefficients according to Terzaghi 
are given in Table 2.9. 

TABLE 2.9 

Bearing-value coefficients Ny, Nq9 Nc for a vertical load 

According to Terzaghi 

Φ [»] 
Ny Nq Nc 
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0 0.000 1.000 5.712 
5 0.367 1.641 7.337 

10 1.100 2.694 9.605 
15 2.533 4.446 12.861 
20 5.344 7.439 17.690 
25 10.974 12.720 25.134 
30 22.676 22.456 37.163 
35 48.342 41.440 57.754 
40 108.970 81.270 95.662 
45 267.130 173.240 172.240 

(2.32) 

(2.33) 

(Kp = 5.8 for Φ = 45°; Κρ = 2 for Φ = 20°).). On a vertical side at a depth ζ 
below the horizontal surface, a horizontal stress is applied during a passive 
resistance σχρ = yzA^ + 2cKp'

5 and during active pressure σχα = y z ^ — 2cK%'5. 
In cohesive soils with a horizontal surface, a vertical wall of an excavation is 
retained to a depth d = 2cKp'

5/y for a certain time (until the soil becomes soaked 
or its strength is lowered as a results of vibrations caused by traffic, etc.). 

Ny = (Nq - 1) HjB = 0.5{Nq - 1) sec Φ ̂ η ί 1 ~ φ ^ φ (2.30) 

Nc = (Nq - l)/tan<ï> (2.31) 

where Kp is the coefficient of passive soil pressure and Ka the coefficient of 
active soil pressure acting on the vertical H, which passes through the edge of 
the foundation to the yield surface 

Ka = cos 2 φ β - ι * - 1 φ ^ η φ 

Kp = 2 sin2 (π/4 + Φ/2) β

( η , 2 + φ ) ί Λ ηφ 

By substituting into equations 2.29 and 2.30 we get 

Λ; = 0.5 sec2 (π/4 + Φ/2) ^ 3 π / 2" φ ) ί 3 ηφ (2.34) 
Ny = 0.5 {0.5 sec2 (π/4 + Φ/2) * ( 3 « / 2 - · > ι . η Φ _ j j ^ s e c φ ^ ( π / 2 - Φ ) ι 3η Φ (2 3 5) 

The calculated values of the bearing-value coefficients are given in Table 2.10. 
The value of the bearing-value coefficients according to Houska are larger 
than those of Terzaghi. 

TABLE 2.10 

Bearing-value coefficient Nyy Nqi Nc for a vertical load, 
according to Houska 

Φ [°] Ny Nq Nc 
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The influence of the inclination of the load resultant from the vertical was 
studied by Lebegue (1972); he considers both a horizontal foundation surface 
and a foundation surface at right angles to the resultant of the acting inclined 
load on the foundation. 

If the foundation surface is horizontal and β is the inclination of the load 
resultant from the vertical (Fig. 2.6a) the ultimate bearing capacity of a strip 
foundation can be determined from Terzaghi's equation. The bearing-value 
coefficients have a varying magnitude, which depends on the size of the angle 
β and the angle of internal shearing resistance of the soil Φ. These values, for 
cohesionless soils, are given in Table 2.11. 

D 

o) I b) 

Fig. 2.6 Two types of foundations loaded by an inclined force 

When considering cohesive soils, the cohesive soil is replaced by a cohesion-
less soil, which is under a vertical stress pk — c cot Φ. The load increment pk 

acts in the foundation-line surface together with the load q = y2D + p. 
However, as the load increment pk acts both around the foundation and in the 
foundation line, the vertical load increment pk must be added to the inclined 
load on the foundation. The resultant of these forces is inclined to the vertical 
by an angle ßc which we must take into account when determining the bearing-
value coefficients Νγ, Nq from Table 2.11. The following relationship is valid 

cot ßc = cot β + pk/(q . sin β) (2.36) 

where q is the mean inclined load in the foundation line. The inclination of 
the load direction from the vertical decreases the values of the bearing-value 
coefficient and therefore also the ultimate bearing capacity in direct proportion 
to the increment of the inclination β. 

The bearing value of a foundation may be increased if the foundation line 
is set at right angles to the resultant of the load. The ultimate bearing capacity 
of such a strip foundation is also calculated from Terzaghi's equation in which Β 
is the width of the foundation measured in the plane of the inclined foundation 
surface (Fig. 2.6b). The depth of the foundation D is the smaller of the distances 
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TABLE 2.11 

10° 1.0 0.0 — — — — 
15° 2.3 0.2 0.0 — — — 
20° 5.0 1.3 0.0 — — — 

N7 25° 10.4 3.8 0.4 0.0 — — 
30° 21.8 9.2 2.3 0.0 — — 
35° 48.0 21.1 7.3 0.7 0.0 — 
40° 113.0 51.0 18.6 4.1 0.0 — 
45° 297.0 131.0 50.0 14.0 1.5 0.0 

10° 2.5 1.5 0.0 — — — 
15° 3.9 2.8 0.0 — — — 
20° 6.4 4.7 2.2 0.0 — — 

Ν 25° 10.7 7.8 4.9 0.0 — — 
30° 18.4 13.1 8.5 3.2 0.0 — 
35° 33.3 23.1 14.8 . 8.0 0.0 — 
40° 64.0 44.0 27.2 15.1 4.5 0.0 
45° 135.0 87.0 52.0 29.2 13.3 6.3 

of the foundation from the ground surface. Lebegue made and evaluated many 
model loading tests of foundations with a inclined foundation surface positioned 
at right angles to the resultant of the acting forces and determined the values of 
the coefficients Ny, Nq9 Nc (Table 2.12). 

2.3.2 The method of Heyerhof 

Meyerhof starts from Terzaghi's basic equation for the determination of 
the ultimate bearing capacity of the soil beneath the foundation, but he takes 
into account the shear strength of the soil above the foundation line along the 
whole length of the yield surface. According to Meyerhof the rupture surface 
has a shape as shown in Fig. 4 (see Introduction). The size of angle β depends 
on the angle Φ of internal shearing resistance of the soil, the ratio of the founda-
tion depth to the width of the strip foundation and the degree m' of mobilization 
of shear strength on the surface AE, as this surface is not the same as the rupture 
surface. He replaces the effect of the soil in the wedge AEF by a normal stress 
σ 0 and a shearing stress τ 0 uniformly distributed along the whole length AE. 

Bearing-value coefficient Ny, Nq for inclined loading of a foundation if the foundation surface 
is horizontal (cohesionless soil). 

Angle of Inclination β of the load from the vertical 
Bearing- internal shearing 
coefficient resistance of soil 

φ 0° 10° 20° 30° 40° 50° 
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TABLE 2.12 

Bearing-value coefficients Ny, Nqt Nc for inclined loading of a foundation with a foundation 
surface positioned at right angles to the resultant of the acting forces 

Coefficient 
of bearing 
value 

Angle of 
internal shearing 

Inclination ι β of the load from the vertical Coefficient 
of bearing 
value 

resistance of soil 
Φ 0° 10° 20° 30° 40° 50° 

10° 1.0 1.0 1.0 1.0 1.0 1.0 

15° 2.3 2.2 2.1 1.9 1.8 1.6 

20° 5.5 4.4 3.9 3.4 2.9 2.5 
Νγ 25° 10.4 8.7 7.2 5.9 4.8 3.9 

30° 21.8 17.2 13.3 10.4 8.0 6.0 

35° 48.0 35.2 25.8 18.9 13.4 9.6 
40° 113.0 76.8 52.5 35.6 24.2 16.0 

45° 297.0 181.0 115.0 72.6 45.0 27.4 

10° 2.5 2.3 2.2 2.1 1.9 1.8 
15° 3.9 3.6 3.3 3.0 2.7 2.5 
20° 6.4 5.6 5.0 4.4 3.8 3.4 
25° 10.7 9.2 7.7 6.5 5.6 4.7 
30° 18.4 15.0 12.3 10.0 8.2 6.7 
35° 33.3 25.9 20.4 15.9 12.5 9.8 
40° 64.0 47.7 35.7 26.5 19.8 14.8 
45° 135.0 95.1 67.1 47.4 33.4 23.5 

10° 8.4 7.5 6.7 6.0 5.3 4.6 
15° 11.0 9.7 8.5 7.4 6.4 5.5 
20° 14.8 12.7 10.9 9.3 7.8 6.6 

Κ 25° 20.7 17.7 14.4 11.9 9.8 8.0 
30° 30.1 24.3 19.6 15.5 12.5 9.9 
35° 46.1 35.6 27.7 21.3 16.4 12.6 
40° 75.3 55.7 41.4 30.4 22.4 16.5 
45° 134.0 94.1 66.1 46.4 32.4 22.6 

In reality, this assumption is not completely fulfilled. Table 2.13 is used for the 
determination of the angle β. 

The value m' = 0 is valid for a shallow foundation on a horizontal base. 
The value m' = 1 is valid for very deep foundations. The value of coefficient m' 
is determined in the following way. To start with a certain value rri is shown and 
the appropriate angle β is located in Table 2.13. Next the weight Q of the soil 
wedge AEF is calculated (see Fig. 4) in the following way. 

Q = 0.5y2D
2 cot β (2.37) 
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An active pressure of a cohesive soil is assumed on the side surface of the 
foundation (Ea ^ 0 always) 

Ea = 0.5y2Z)2 tan 2 (45° - Φ/2) - 2 c D tan (45° - Φ/2) (2.38) 

as during the displacement of the soil from beneath the foundation, the soil in 
the area ADEF is drawn away from the side wall of the foundation by forces 
acting on surface AD. On the foundation wall AF9 friction and cohesion are 
taken into account, i.e. the adhesion of the soil to the foundation 

Ea tan δ + cfD = Ea tan δ + ß*cufD (2.39) 

Friction and cohesion apply during the sinking of the foundation into the soil; 
δ is the angle of friction of the soil on the walls of the foundation (see Par. 2.2, 
Table 2.7). 

The resultant R of these forces is determined graphically and distributed 
into the component normal force N, which is at right angles to the surface AF, 
and the component tangential force T. The mean stresses σ0 and τ 0 acting on 
surface AE (see Fig. 4 in the Introduction) are 

σ0 = Ν sin ß\D (2.40) 

τ 0 = Τ sin ß/D (2.41) 

TABLE 2.13 

Angle β in degrees 

m' — 0 m 1 

DJB Angle of internal shearing resistance of the soil Φ 

0 10 20 30 40 0 10 20 30 40 

0.0 0 0 0 0 0 0 0 0 0 0 
0.2 11 7 4.5 2.5 1.5 17 10 6 3.5 1.4 
0.4 23 15 9 5 3 35 19 11 6.5 3.5 
0.6 36 22 13 8 4 55 30 17 9.5 5 
0.8 52 28 16 9.5 5.5 90 40 22 13 7 
1.0 85 35 21 12 7 90 50 27 15 8 
2.0 90 85 40 23 14 90 90 50 28 16 
4.0 90 90 75 40 22 90 90 90 46 27 
6.0 90 90 90 55 30 90 90 90 67 35 
8.0 90 90 90 68 37 90 90 90 90 44 

10.0 90 90 90 90 45 90 90 90 90 53 
20.0 90 90 90 90 70 90 90 90 90 87 
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The degree of mobilization of shearing is, according to Meyerhof, 

m' = \ (2.42) 
σ0 tan Φ + c 

If the calculated value in' is substantially different from the value chosen at 
the beginning of the calculation, then the calculation is repeated. An agreement 
between the chosen and calculated m' is found for a certain angle β9 used as 
a basis for the calculation of the ultimate bearing capacity of the foundation. 
The ultimate bearing capacity of a strip foundation is, according to Meyerhof, 

qm = 0.5yiWy + y2DNq + cNc (2.43) 
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The bearing-value coefficients Ny, Nq9 Nc depend on the size of the angle β 
and on the value of the degree of mobilization of the shearing stress m\ Their 
values are determined from the diagrams in Fig. 2.7, 2.8 and 2.9, and they 
can be also used for the determination of the ultimate bearing capacity of 
a foundation on a slope or embankment, which has a cross-sectional shape as 
shown in Fig. 2.10. In such a case the angle β has a negative value and the 
bearing-value coefficients, determined for a negative angle β, are used for a 
calculation of the ultimate bearing capacity of a foundation on a slope crest 
with the help of equation (2.43). Foundations on a slope must be on the safe 
side against sinking and also the whole slope, which is loaded by the building* 
must have a sufficient safety factor against sliding. (See also Sec. 2.6.) 
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+30" 
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Fig. 2.8 Coefficient 
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to Meyerhof 
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2.3.3 The method of Brinch Hansen 

Brinch Hansen (1961) also started from the basic equation of Terzaghi to 
which he added the influence of the foundation depth, the shape of the horizon-
tal foundation surface and the deflection of the resultant of the load from the 
normal to the base. The ultimate bearing capacity of the foundation is 

= ~yiBNysydyiy + y2DNqsqdqiq + Ncscdcic (2.44) 
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The coefficients sy, sq, sc express the influence of the shape of the foundation, 
coefficients dy, dq, dc express the influence of the foundation depth and coef-
ficients i7, iq, ic express the influence of the inclination β of the load resultant 
from the vertical. The bearing-value coefficients Ny, Nq, Nc have the same 
magnitude as in Terzaghi's case (Table 2.9 or 2.10). Recently Brinch Hansen 
mentions (1968) an approximate relationship Ny = l.5Nc tan 2 Φ. The coef-
ficient of form 

sy = 1 - 0.5 (0.2 + tan 6 Φ) B\L 

or approximately 

s y ^ \ - QÂBIL 

(2.45) 

(2.46) 

yield or sliding surface 

j8-0 ' 

Fig. 2.10 Diagram of the loading 
of a slope using nomograms from Figs. 2.7 
to 2.9 to determine g m 
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The coefficient of form sy is determined from the diagram in Fig. 2.11 

, i S , e - i ! l Z ! ; 5 , = 1 f o r # = 0°; sq = sc for Φ Ξ> 25° (2.47) 

sc = 1 + (0.2+ tan 6 Φ) j?/L (2.48) 

Coefficient .sc is determined from the diagram in Fig. 2.12 or calculated from 
the following equation 

s, = sc « 1 + 0.2B/L (2.49) 

dc 
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The depth coefficient 

dc= 1 + 

1 5 

0.35 

2 0 
D Fig. 2.13 Values of the depth factor dc 

B/D + 0.6/(1 + 7 tan 4 Φ) 

The depth factor dc can be determined from the nomogram in Fig. 2.13 

iL - 1 
d„ = dr — 

<L = 1 

d, = dc for Φ £ 25° 

(2.50) 

(2.51) 

(2.52) 

The influence of the depth can also be approximately calculated from equation 

dq = dc χ 1 + 035DJB (2.53) 
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The coefficient of inclination 

. _ 1 + sin Φ sin (2α - Φ) „ - ( π / 2 +φ - 2 5 ) 1. η Φ 
q l + s i n t f e 

The factor i q can be determined from the nomogram in Fig. 2.14 

1 - i . 
h = l

< - N 4 - l 

h = ',2 

i c = 1 for Φ = 0° 

(2.54) 

(2.55) 

(2.56) 

Fig. 2.14 Values of the 
inclination factor i„ 

or calculated from equation 

• · Λ H y 

l y
 \ V + Ac cot Φ J 

Recently Brinch Hansen (1968) mentioned an approximate relationship 

3.7H Xî 

(2.57) 

l y \ V + Ac cot Φ J 
^ . and Ny = 1.5 N„ tan 2 Φ 

Ac cot Φ ' " 
(2.58) 

The inclined resultant Q is distributed into a horizontal component Η and a 
vertical component V. A condition to be fulfilled is that the horizontal forces 
Η < (Acf + V tan <5), where A is the area of the foundation and cf the cohe-
sion of the soil with the foundation (see Sec. 2.2). The angle of friction of the 
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soil against the foundation is <5. The auxiliary angle α in equation (2.54) is 
calculated using the expression 

_ _ V l - (tan/Î cot Φ?-»*1 (2 5 9 ) 
v 1 J 1 + tan β/sin Φ v 

if the angle β is the inclination of the resultant of the load on the foundation 
from the vertical. If Η is the horizontal and V the vertical component of the 

resultant Q of the forces acting in thé foundation line, then tan β = — - . For a 

vertical load we get iy = iq = ic. For deeper foundations, the horizontal 
forces Η would be also absorbed by the passive pressure of the soil on the 
sides of the foundation, if the foundation were displaced by about 0.02 D. 

point of application of the resultant 
ι of the forces-

central symmetry^ J 

Fig. 2.15 Effective and equivalent parts 

effective part of the pundation surface of the foundation surface 

For a smaller displacement there is a pressure close to the active pressure. 
In view of the displacement necessary to mobilize the pressure of the soil, 
it is not taken into account. 

If the resultant of the load acts on the foundation eccentrically, an effective 
part of the foundation area is taken into account (Fig. 2.15). For its determi-
nation the following is valid: 

1. The resultant of the forces acting on the foundation passes through the 
centre of gravity of the effective part of the foundation surface. 

2. The inner outline of the effective part of the foundation surface is radi-
ally symmetrical ; the centre of symmetry is at the point of application of the 
resultant of the forces acting on the foundation surface. 

If the shape of the foundation surface (or the shape of the effective founda-
tion surface) is complicated, the ultimate capacity is determined for an equival-
ent rectangular (square) surface (Fig. 2.15). The equivalent surface and the 
original surface have : 
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1. the same centre of gravity, 
2. the same main orthogonal axes, 
3. the same size of the surface and 
4. the ratio of the main dimensions (length and width) is maintained as 

far as possible. 

Usually it is stated that the greatest permissible eccentricity for the least 
favourable combination of the effects of the load is a third of the dimension 
of the foundation for cohesionless soils, and a sixth of the dimension of the 
foundation for cohesive soils. These conditions should provide a safety factor 
of at least one and a half against tipping over. This does not take into account the 
influence of the compressibility of the subgrade. If the foundation tilts, the 
stress on the edge increases and as a result we get a compression increment 
and a further inclination and a further increase of the eccentricity. This can 
cause failure by tipping over. 

As far as the influence of the level of the groundwater beneath the foundation 
is concerned, its influence is taken care of by the introduction of a substitute 
density of soil 

Η = Vi + ^-^-(YI - 70 - for 0 g (H - D) S Β (2.60) 

where h is the depth of the groundwater level beneath the surface and y\ is the 
density of the submerged soil. If (Λ — D) = Β then yl = yt. If (h — D) > Β 
the groundwater exerts no influence. 

If the groundwater level is above the level of the foundation line, i.e. 
(h — D) < 0, the substitute densities are γ1 = y\ and y2 = \y'2(P — h) + 
+ y 2Ä]/A if y[ and yr

2 are the densities of the submerged soil below and above 
the foundation line. 

2.3.4 The method of Caquot and Kernel 

The advantage of the method worked out by Caquot and Kérisel (1967) 
for the calculation of the ultimate bearing capacity of foundations is that it 
can be used also for deep foundations, for example wells, piles, etc. Basically 
it is derived from Terzaghi's method to which it gives more precision and adds 
the influence of friction and cohesion of the soil on the sides of the foundation. 
In the description of the Caquot and Kérisel method, the designations used here 
are similar to those used in the other methods for the calculation of the ultimate 
bearing capacity of the foundation soil and therefore differ from the designa-
tions used by the authors of the method. 



86 

The ultimate bearing capacity of a foundation loaded vertically is 

4m = -yyiBNySy + y2DNqsq + cNcsc + 

1 D,20 . D'O . „ 
— y3 — — d t + cf d2 (2.61) 

The first term of the equation expresses the influence of the resistance of the 
soil beneath the foundation, the second term takes into account the cohesion 
of the soil, the fourth term expresses the influence of the friction of the soil 
on the sides of the foundation and the last term gives the influence of the cohes-
ion acting on the sides of the foundation. 

The width of the foundation or its diameter is B, the depth of the foundation 
is Z>, the length of the foundation is L, the circumference of the foundation 
is Ο and the area of the foundation is A. In the calculation of the friction of the 
soil against the sides of the foundation we consider the effective depth of the 
foundation D\ which is 

D' = D — d — dp (2.62) 

if for a strip foundation with a width Β 

dP = JV^»B/2 (2.63) 

and for a circular foundation with a diameter Β 

dp = (2.64) 

The values of the expression N^^Jl are given in Table 2.15 for various values 
of Φ . If D' g 0, the friction of soil or its cohesion on the sides of the foundation 
are not taken into account, 

the depth of the surface layer which is not effective as far as 
lateral pressure is concerned (top soil, soil with fissures, etc.), 
the maximum value of coefficient Nq — see Table 2 .14, 
the density of the soil beneath the level of the foundation line 
the density of the soil above the level of the foundation line to a 
height dp, 
the density of the soil in a depth from D = 0 to (D — dp), 
the cohesion (adhesion) between the soil and the foundation —see 
Sec. 2 .2 , equation (2.20), 

the angle of friction of the soil between the soil and the founda-
tion—see Sec. 2 .2 , 
the coefficients expressing the influence of the friction of the soil 
on the sides of the foundation, 

d is 

Ν 
*

1
 q max 

is 

7i is 
is 

is 
c
f is 

δ is 

dl9 d2 are 
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sy, sq9 sc are the coefficients expressing the influence of the shape of the 
foundation. For a strip foundation sy = 1 ; for a square sy = 0,8; 
for a circle sy = 0.6; for a rectangle sq = sc = I + 0,25/L and 
for a circle sq = 1, s c = 1,3. 

It is assumed, that when the ultimate bearing capacity is reached, plastic 
ranges are created along the foundation surface. These reach to a height dp 

above the foundation line. In this part of the foundation the friction against 
the sides of the foundation is not considered. 

The bearing-value coefficient Ny depends on the angle of internal shearing 
resistance of the soil and on the size of the angle α', formed by the sides of the 
triangular soil wedge below the foundation with the foundation surface. For 
rigid foundations and a very compact cohesionless soil it is usually assumed 
that a' = 45° + Φ/2; for imperfectly rigid foundations in usual geological 
conditions Caquot and Kérisel suggest the use of a coefficient Ny given for 
α' = Φ; for very yielding foundations on the ground surface (for example 
loaded sheet metal reservoirs, the pressure of water acting on soil through 
isolating dividing membranes, etc.) one counts with a' = 0°. 

TABLE 2.14 

Coefficients Ny, Nq, dlt d2 according to Caquot and Kérisel 

Coefficient Φ Angle of internal shearing resistance of the soil 

for 10° 15° 20° 25° 30° 35° 40° 45° 

Ny «' = 0° 
α' = Φ 
a' = 45°+Φ/2 

0.34 
0.88 
1.60 

0.78 
1.78 
3.00 

1.66 
3.51 
5.69 

3.48 
7.24 

11.4 

7.38 
14.8 
22.7 

16.4 
33.4 
49.8 

39.3 
78.1 

114.0 

104.8 
172.5 
307.5 

N
« 

D = 0 
D = dpll 

2.50 
3.20 
3.44 

4.03 
5.68 
6.23 

6.67 
11.3 
12.8 

11.4 
21.7 
26.2 

20.4 
47.8 
56.9 

38.5 
110.5 
134.5 

78.6 
286.1 
355.5 

178.0 
866.0 

1 096.0 

d
\ 

δ = Φ 
δ = 2Φ/3 

0.29 
0.19 

0.57 
0.36 

1.03 
0.64 

1.81 
1.10 

3.21 
1.88 

5.85 
3.27 

11.3 
5.90 

23.7 
11.4 

d2 
1.60 2.06 2.70 3.62 5.01 7.27 — — 

For D' ^0,dl=d2 = 0 

N
lh 

Jy
q max 

;/2 1.14 1.69 2.73 4.40 7.40 13.1 25.0 53.0 
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The coefficient NQ depends on the angle of internal shearing resitance Φ 
of the soil and on the ratio of the foundation depth D to the height dp of the 
plastic ranges in the vicinity of the foundation. The smallest value of is 
obtained for foundations founded on the surface. The largest value of NQ is 
obtained for a foundation depth D = dp ; when the foundation depth increases 
the value of NQ does not change any more. 

Coefficients dx and d2 also depend on the angle Φ. The size of the coef-
ficient dl also depends on the size of the angle of friction δ of the soil on the 
structure. 

The values of coefficients NY, NQ, dl9 d2 are given in Table 2.14. 
The bearing value coefficient NC is calculated from the equation 

NC = (NQ - 1) cot Φ (2.27) 

When calculating deep foundations according to this method, it is possible 
to consider as many as three types of soil if one layer of soil reaches to a depth 
(Z> — dp), the second is from (D — dp) to D and the third is still deeper. In 
equation (2.61), we then in the first term of the equation consider the shear 
parameters and the density of the lowest layer of soil. In the second and third 
term we take the properties of the central layer of soil. In the last two terms, 
which deal with the effect of the friction of the soil on the sides of the founda-
tion, we take the properties of the uppermost soil layer. 

2.3.5 Graphical determination of the ultimate bearing capacity of foundations 

The ultimate bearing capacity of a strip foundation in cohesionless and 
cohesive soils can also be determined graphically. The geographical method 
is very concise and it is also suitable for the determination of the ultimate 
bearing capacity in special cases such as when the ground surface is sloping 
or when the footing is founded on a gravel-sand cushion. When the ultimate 
load is reached a collapse mechanism, which is always the route of least resist-
ance, is created under the foundation. The graphical method enables the selec-
tion of several collapse mechanisms, of which one is chosen that leads to the 
determination of the minimum bearing capacity. 

The best correlation with model test results for a foundation depth D = 
= 0 2.5B is obtained with the collapse mechanism used by Przedecki and 
Rossinski for vertical loads (Fig. 2.16). In this mechanism a solid wedge / 
of soil is assumed beneath the foundation. The sloping side of the wedge, which 
forms a part of the main sliding surface, is inclined at an angle (β° + Φ/2) 
while the other face is at an angle π/2 — β° to the horizontal during vertical 
loading. 
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If the resultant of the applied force is inclined to the vertical by an angle β, 
then the value of the angle ß° depends on the angle of internal shearing resist-
ance of the soil and the angle β. The values of the angle β° expressed as a func-
tion of the above two parameters, are given in Table 2.15. 

Fig. 2.16 The collapse mechanism assumed during the graphical determination of the bearing 
value of a foundation 

TABLE 2.15 

Values of angle ß° in relation to the inclination β of the resultant of the load from the vertical 
for various angles Φ of internal shearing resistance of the soil 

ß 

Φ 
0° 10° 20° 30° 40° 

0° β° = 45° 
10° β° = 45° β° = - 5 ° — — — 

20° β° = 45° β° = 22° β° = _ΐο° — — 
30° β° = 45° β° = 27° β° - 8° β° = —\5° — 

40° β° = 45° ' β° = 31° β° = 15° β° = 0° β° = —20° 

The following condition F tan β g tan Φ must be fulfilled for cohesionless 
soils, where F i s the safety factor against the sliding of the foundation. 

Beyond the solid wedge /, the main sliding surface assumes the form of a 
logarithmic spiral 

r = r0 exp (S . tan (Φ/2)) (2.65) 
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Beyond this zone, another wedge III completes the collapse mechanism. 
One side of the wedge IIIforms the continuation of the main sliding plane and 
is tangential to the range bounded by the logarithmic spiral. The angle between 
the sliding plane and the horizontal is (45° — Φ/2). The soil in / / and / / / 
bounded by the logarithmic spiral and the sliding plane is in a plastic state. 

The graphical solution of the ultimate loading of a strip foundation is known 
for cohesionless soils (Przedecki-Rossinski et al. 1961). This method can be 
extended to apply to cohesive soils. In the graphical solution, the area above 
the main sliding surface is divided into smaller triangular areas in such a way 
that the length of their bases approximates to the length of the actual curved 
sliding surface. To clarify this method an example is given where the ultimate 
loading of a strip foundation with a width of 1 m and a foundation depth of 1 m 
is determined. The foundation soil is a cohesive soil and its <Puf = 20°, cuf = 
= 10 kN/m 2 and y = 20 kN/m 3. 

When the ultimate state of equilibrium is reached the weight of the soil Q1 

acts in area 77/ (Fig. 2.17) and the reactions on the walls are R1 and Zx. These 
forces are inclined at an angle of internal shearing resistance Φ to the normals of 
the sliding surfaces. Cohesive forces Cx = c. / x and C2 = c. l2 act on the 
walls in a direction opposing the soil movement. The length of segment ab 
is lx, and of segment bd l2. If we sum forces QliCi and C 2 we obtain a resultant 
force, which can be resolved in the direction of reactions Rt and Zl9 thus 
defining their size. During the solution of the next triangular zone, we assume 
at the boundary with area II forces Zx and Ct. Again, we add the weight Q2 

of the soil wedge bde, the cohesive force C 3 on the sliding surface and the 
cohesive force C 4 with the next soil wedge to force C 2 . The resultant force 
is again resolved in the known directions R2 and Z 2 and their size is obtained at 
the point of intersection. We proceed thus until, for the last wedge directly 
beneath the foundation, the resultant of known forces ß 4 , Z 3 , C 6 , C 7 is 
resolved to find the size "of reaction R4 and the vertical ultimate load Qm of 
the foundation. In this example the value of the ultimate load Qm = 492 kN. 
The ultimate bearing capacity of the foundation soil is qm — QJA = 492 kN/m 2, 
if A — 1 m 2 is the area of the examined element of the foundation. 

Similarly, a graphical solution for the same foundation with a width of 1 m 
and a foundation depth D = 4 m yielded an ultimate bearing capacity qm = 
= 1500 kN/m 2. The ultimate bearing capacities for depths D = 1 m and 4 m 
obtained using the various methods mentioned in Sec. 2.3 are given in Table 
2.16. 

In Fig. 2.17 the area bounded by the logarithmic spiral was divided in two 
triangles for the sake of clarity. For practical purposes it is suggested that this 
area be divided into at least 4 — 6 triangular parts. 

The listed values show good correspondence of the ultimate bearing capaci-



Fig. 2.17 The graphical determination of the ultimate bearing capacity of a strip foundation 
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ties of foundations determined according to the methods of Meyerhof and 
Caquot and Kérisel, and the graphical method. These methods are suitable 
for shallow- and medium-depth foundations. The methods of Meyerhof, Caquot 
and Kérisel also give good results for deep foundations, i.e. for D ^ 20i?. 
Furthermore, the second of these two methods is suitable for the determination 
of the bearing value of individual piles. The Brinch-Hansen method gives very 
low ultimate load values, thus not sufficiently utilizing the bearing capacity 
of the foundation. The advantage of the method is that the calculation can deal 
with a combination of horizontal and verticals loads on a foundation. The 
method of Terzaghi gives the lowest bearing capacity values for a foundation, 
as it does not take into account the influence of the shear strength of the soil 
above the foundation level. Therefore this method is suitable only for founda-
tions where the foundation depth D < B. 

TABLE 2.16 

The ultimate bearing capacity qm in kN/m
2
 of a strip foundation with a width Β = 1 m, 

Φ Μ/ = 20°, cuf = 10 kN/m
2
, γ = 20 kN/m

3 

Depth of 
The ultimate bearing capacity qm [kN/m

2
] according to 

foundation 
D 

Terzaghi Meyerhof Brinch 
Hansen 

Caquot and 
Kérisel 

the graphical 
method 

1 m 
4 m 

320 
690 

510 
1 580 

340 
990 

420 
1 180 

490 
1 500 

It should be noted that some authors assume a shape of the collapse mechan-
ism which differs from that given in Fig. 2.16 and Table 2.15 (for example, 
Lebegue 1972). In the soil, various systems of sliding surfaces, partly linear 
in vertical section and partly in the shape of a logarithmic spiral, are assumed. 
In reality, all the sliding surfaces have a complex curvature. As the shape of the 
sliding surface, for a case where the dead weight of the soil is taken into ac-
count, has not been theoretically determined, the authors chose an experiment-
ally determined shape for the collapse mechanism (Fig. 2.16 and Table 2.15). 

A sliding surface of almost the same shape was obtained from tests made by 
Reimberts (1974), who measured the angles of the sliding curves. Range / 
(below the foundation) is symmetrical, compared to the axis of the strip found-
ation, if the load is central and vertical. The angles of the foundation line are 
45° + Φ/3. The logarithmical spiral in range II continues according to equation 
r = Γ^

ΐ 3 η( 2 φ/ 3 ) a n d th e linear continuation of the sliding surface is at an angle 
of 45° — Φ/3 to the surface. 
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Each method used for the determination of the ultimate bearing capacity 
of a foundation is based on specific assumptions, and therefore the design 
engineer is left to chose the method of calculation which will best suit the 
specific conditions. For this reason, different methods of calculation are de-
scribed in Chapter 2.3. 

Calculation of the ultimate bearing capacity qm, using the methods of the 
various authors, gives values of different magnitude. This also applies to 
tests where a large experimental scatter is obtained. An example of such known 
loading tests are those made in the DEGEBO (Deutsche Gesellschaft für 
Bodenmechanik). The scatter of the results was considerable, even although the 
sand was carefully compacted and the angle of friction Φ was controlled. 
Consequently, we try to use a large number of loading tests and the measured 
bearing values are processed statistically. During calculations we then use the 
safest of the limits of the confidence interval1) (usually 95 %) of the sought 
value qm. 

2.4 INFLUENCE OF ADJACENT FOUNDATIONS 

- The problem of the interaction of adjacent foundations was studied by the 
following authors: Stuart (1962), Biarrez (1963), Mandel (1963), West and 
Stuart (1965), Kos (1967), Myslivec and Kysela (1968, 1969 and 1971), Dem-
bicky et al. (1971) and others. Usually they studied a case where the foundations 
were of the same width and their foundation depth was the same. Until now 
the situation where the foundations have a different width, a different founda-
tion depth and their distance from one another varies while their length remains 
the same, has not been considered. The solution of such a case for two adjacent 
foundations with a rectangular section is presented on the following pages. 

Bearing capacity tests were made on a model with a homogeneous grain 
sand EJF with a grain diameter of 0.05 to 0.2 mm. For a qualitative assessment 
of the shape of the failure ranges in the subgrade a sand Nil (grains from 0.2 to 
2.0 mm) was used. The sand was compacted to a volume weight of 16.2 kN/m 3, 

!) For a confidence of 95 % and Students distribution in 5 measurements of qmi, the con-
fidence interval is 

qm — K<:qm^qm + Κ 

where 
5 

</m = 0 2 Σ CImi 
i = l 
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for which the measured angle of internal shearing resistance was <P'F = 32°12'± 
± 1°03' with a probability of 90 %. The models of the foundations were made 
of metal and their dimensions were 1 χ 10, 1.5 χ 10, 2 χ 10, and 4x10 cm. The 
surface friction angle of the soil against the sides of the foundations was, for 
individual series of tests, 0.36 Φ}, 0.5 Φ}, 0.66 Φ}, 1.00 Φ}. The influence of 
the ratio of the grain size to the foundation width on the measured bearing 
value was also observed during the tests. Deviations in the measured values 
of the bearing value were not statistically important when different types of sand 

»1 

according to tests 
theoretical curve for 
a separate foundation 

—- movement of sand grains 

Fig. 2.18 Yield surfaces of interacting foundations 

were used if the sand grains did not exceed 1/25 th of the width Β of the founda-
tion. Both foundations were pressed into the sand simultaneously with a velo-
city of 0.066 mm/s and for each foundation the acting load and the vertical settle-
ment were measured. The ultimate bearing capacity was reached when there 
was a load decrement in connection with a large increment of the settlement 
of the foundation. The ultimate bearing capacity was usually reached when the 
foundation was depressed by 0.5 to 1.5 mm. The same results have also been 
measured by L'Hermier et al. (1965) and Dembicky et al. (1971). During the 
evaluation of the model test results, consideration was given to the increment 
of the foundation depth caused by the depression of the foundation up to 
the point where the ultimate bearing capacity was reached. 

During the tests, the shape of the sliding surfaces was photographed. 
354 further bearing capacity tests on pairs of foundations having various sizes 
and arrangements were statistically processed. The widths of the foundations 
are designated Bx and Bn, the mean width Β = (Bx + Bn)l29 the foundation 
depths are Dl and Dn, the difference of foundation depth AD = (Dl —Dn) 
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the clear distance between the foundations is S the axial distance of adjacent 
foundations is / = S + Β and the length of the foundations is L. The index I 
relates to the foundation whose ultimate bearing capacity is being determinated 
and index II designates values corresponding to the adjacent foundation. 

For a distance S > 8 -f- 10 B, a failure range developed under each of the 
foundations, as though they were standing separately. When the distance 
S = 6-7- SB, the sliding surfaces created under the foundations intersected, 
and the soil between the foundations was forced upwards by both foundations 
(Fig. 2.18a). The upward movement of the soil is the route of least resistance 
and therefore no sliding surfaces are created on the outer side of either founda-
tion. Adjacent to the wall of the foundation, the soil moved downwards as a 
result of friction. The smoother the walls of the foundation, the more intense 
was the forcing upwards of the soil between the foundations. The bearing value 
of each foundation was slightly smaller than the value of the foundation 
standing separately. For the above separation of the foundations S = 6 + 8 Br 

the bearing value of the foundations did not decrease if their surface was 
rough. For a distance S < 5 B, sliding surfaces were formed only on the outer 
side of the foundations (Fig. 2.18b). The friction on the walls caused the sand 
to move downwards at a slightly slower rate than both the foundations. At the 
foundation level not only did the weight of the sand press on the subgrade but 
it also produced a force resulting from the friction on the walls of the founda-
tions. The resulting failure ranges under the foundations were larger than for 
separately standing foundations. We conclude that in this case the ultimate 
bearing capacity of both foundations is larger than the sum of the ultimate 
bearing capacities of two separately standing foundations. 

Tests were also made with foundations having different widths and founda-
tion depths. When the difference of the foundation depth AD = 2Bl, a sliding 
surface was formed under the higher-placed foundation and this surface spread 
beneath the second, lower foundation. This resulted from the soil between 
the foundations being pulled downwards by the friction on the lower founda-
tion and the loading of the higher foundation (Fig. 2.18c). As a result, the bearing 
value of the higher foundation was smaller than had it been standing separately. 
Horizontal forces in the soil resulting from the shallower foundation increase 
friction on the surface of the deeper foundation and the failure range of the 
deeper foundation is larger than for a separately standing foundation. Therefore 
the measured bearing value of the deeper foundation was greater than for a 
separately standing foundation. 

From the bearing value Qm of the foundation, the ultimate bearing capacity 
qm = QJA was calculated, where A is the surface of the foundation. The measured 
ultimate bearing capacities of foundations having the same width and found-
ation depth D are depicted in Fig. 2.19. The greatest increment of the ultimate 
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bearing capacity of a pair of foundations was obtained for a distance S = 0.62?; 
it amounted to 160 % of the value for a separately standing foundation. The 
increment was smaller as the foundation depth increased, and for a depth 
Dx = 6B{ it fell to 50 % (Fig. 2.20). In comparison, for a separation of the 
foundations S = 6.2B the greatest decrement of the ultimate bearing capacity 
was measured and it amounted to — 7% of that of a separate foundation, when 
the angle δ of the surface friction of the soil on the sides of the foundation 
was 2/3 <Pf. This decrement of the ultimate bearing capacity caused by an 
adjacent foundation is almost negligible, whereas the increment is important 
and can be made use of in foundation engineering. 

0 2 4 6 8 [1] 
S 
Β 

Fig. 2.19 The ultimate bearing capacity qm of each of two foundations having the same 
depth. Here Dlf Dn are the depths of the models of foundations at the beginning of the test 
but not when qm was reached 

The results of one series of tests with foundations, where the width BY ~ 
= 0 .5B n , the distance of the foundations S = 0.5B and where the foundation 
depth D and the difference in the depths of foundation AD vary, are given in 
Fig. 2.21. The established coefficient α expresses how the ultimate bearing 
capacity of the examined foundation exceeds that of a separately standing 
foundation. 

When the examined foundation was placed higher than the second founda-
tion, its bearing value was smaller than when standing separately if the dif-
ference in depth AD < — Bx. The decrement of the ultimate bearing capacity 
was as much as 40 %. This was the case when AD = — 7>B{. When the founda-
tion was placed deeper than the adjacent foundation its ultimate bearing 
capacity was greater than when standing separately in inverse proportion to 
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the decrease of the difference in the depth of foundation AD and the shallowness 
of the placing of the examined foundation. For example, for D{ = 4BX and 
AD = 1.52?!, the ultimate bearing capacity increment was 35 %. The decrement 
and increment in these cases is significant and should be considered in founda-
tion engineering. 

Fig. 2.20 The change in the bearing value of a foundation as a function of the relative depth 
of foundation Dl/Bl. Here D{i Dn are the depths of the models of foundations at the beginning 
of the test but not when qm was reached 

For a small separation of the foundations and a small difference in their 
depth of foundation, the bearing value of each is greater than the bearing 
value of separately standing foundations. For foundations of the same width, 
the bearing value of the deeper foundation is somewhat larger than that of the 
shallower foundation. 

Qualitative and quantitative evaluation was made for all tests where the 
sand had an acceptable mean porosity. Multiplication by the coefficient a, 
which tells us by how much the bearing value of the examined foundation 
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exceeds the ultimate bearing capacity q„t of the same foundation when standing 
separately, quantitatively describes the influence of the adjacent foundation 
on the ultimate bearing capacity qmi of the examined foundation. The influence 
of scale (model : reality) on the absolute size of the measured ultimate bearing 
capacity appears in α equally in both numerator and denominator and thus 
the value of α is independent of the scale of the model. The coefficient α obtain-
ed in tests for different foundation depths and different widths of foundation 
is expressed by three partial coefficients a y, a €, a c. These allow the calculation 

tests : 
Bl:Bl~1:2\ 

' 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 A — 

Fig. 2.21 The ultimate bearing capacity qm of foundations with various depths of foundation, 
if the foundations have varying widths. Here Dl9 Du are the depths of foundations of the 
models of foundations at the beginning of the test, but not when qm was reached 

of the ultimate bearing capacity of interacting foundations using equations 
for the calculation for individual foundations (for example the equations given 
in Chapter 2.3). The individual terms of the basic equations are multiplied 
by the coefficients a y, ccq, a c. For example, according to the equation of Brinch 
Hansen, the ultimate bearing capacity of a foundation influenced by another 
foundation is 

<?m~i = Wmi = 0.5y ̂ NySydyiyOCy + y 2 DΝqsqdqiqocq + cN^d^oc, (2.66) 

For foundations of the same length L > 3.5B, with a foundation depth 
D < IB, for a ratio Βγ\Β2 of the widths of the adjacent foundations from 
1 :4 to 4 : 1 and the angle of contact friction of the soil on the walls of the 
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_ Nqaq - I 
c
 N T - 1 

Similarly, if we start from equation (2.44), then 

(2.74)1) 

In these equations, the terms have the following meanings 

B = (BI + Βώβ (2.76) 

The exponent Ψ = l.5~s/B (2.77) 

The auxiliary function 

F(DL - DN) = AD\DX for DJBL > 1, if simultaneously AD > 0 (2.78) 

in the other cases F(DL - DN) = AD\BX (2.79) 

*) For Φ < 10° we assume a c = 1. For Φ ^ 25° it is sufficiently accurate to take AIc*4 0iq. 

foundations δ = 2 Φ/3, the factors a y, α β, a c, which describe the influence 
of the adjacent foundation are 

The coefficient a, is derived from equations: 

a) if F(DI - DU) g - 1 then a, = 1 + Β2 (2.68) 

b) i(f(Dl - Z)„) > - 1 then 

a 4 = 0.54 Κ for Κ ^ 1/0.54 ( 2.69) 

a, = 1.00 for Κ < 1/0.54 (2.70) 

The auxiliary function Κ is given by the expression 

s J n ( 0 . 6 S / B - 0 . 2 ) ^ 1 - 1 , ) 
K 1+

 E( 0 . 6 S / J + 1 . 3 - « ) V
JL
> 

The factor a c was derived from the relationship (2.27) 

Nc = (Nq - 1) cot Φ 

Nc<xc = ac(JV4 - 1) cot Φ (2.72) 

Nc«e = (JV^a, - 1) cot Φ (2.73) 

After subtraction and rearrangement we get 
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The auxiliary function ß2 has the following values: 

ß2=0 if /(£>! — £>n) > - 1 (2.80) 

_ 6

( Ο
·

5
^

/ Β ι + ο
·

5 + π )
8 Ϊ η ( 0 . 5 ^ Ρ / Β , + 0.5)q ( 2 8 1) 

10 + 0.08(S/B)3 

fo r / (A - Z>„) ^ - 1 

For the solution of the equations, auxiliary functions η and βν are also used. 
These depend on the mutual separation S of the foundations. If the distance 
S = 0, then 

η = 0.834 (2.82) 

/?! = 1.00 (2.83) 

If the separation of the foundations S > 0.6 Β, then η = tan Φ; but at most η = 
= tan 35° for B,/5„ = 1 : 2 to 2 : 1 

and at most η = tan 37.5° for the other values of BtIBn (2.84) 

ßi = 1 for /(/>, - Ai) g - 1 (2.85) 

ßi = ( \ADt - Αι) Γ2) for / (D, - Ζ),.) > - 1 (2-86) 

In a general case, the factors <xy Φ cnq Φ occ Φ 1; only when the foundations 
do not influence each other a y = ccq = a c = 1. 

For parallel strip foundations of the same width and same foundation 
depth, it is possible to assume that they do not influence their respective bearing 
value and settlement if their axial distance / ^ 6 Β and 10° ^ Φ ^ 40°. The 
corresponding radius of the zone of influence, which is used sometimes, is 
then: xmax = 3B. In more accurate calculations of the bearing value, it is 
necessary to consider values of factors a y, aq, a c and in the calculation of the 
settlement it is necessary to consider the influence of the foundation and the 
influence of the adjacent foundation at the same time (see appendices). 

The equations were derived for a situation where the surface levels outside 
and between both foundations are the same. If the difference between the 
surface levels outside both the foundations is smaller than their mean width, 
and if the surface between the foundations is not higher than the surface 
outside the foundations, we can, with sufficient accuracy, use the calculated 
factors a y , a e , a c . To determine their values, we consider the depths of founda-
tion Dx and Dn relative to the level of the surface between the foundations 
(Fig. 2.22). For the calculation of the ultimate bering capacity, the smaller 
of the foundation depths, measured on both sides of the foundation, is substitu-
ted for D. More complicated cases mut be solved experimentally as the mathe-
matical solution is not known. 
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To simplify calculations, values of factors a y and otq were calculated and 
tabulated. In Table I two directly adjacent foundations are considered, 5 = 0. 
In this case the factors a y, ccq are not influenced by the angle of internal shearing 
resistance of the soil Φ. The values of factor a y for different width ratios BxjBu 

and the values of factor ccq are arranged in the columns of the table. The values 
of both factors for one ratio of the function f(Dx — Dn) are given in the rows 
of the table. 

Tables II to VI give the values of factors a y, ccq for cases where the separation 
of the foundations S > 0.6 Β. The tables are arranged in five groups for foun-
dation-width ratios BJBn = 4 : 1, 2 : 1, 1 : 1, 1 : 2, 1 : 4. Each of these 
groups includes tables for angles of internal shearing resistance of the soil 
equal to 10°, 20 p, (25°), 30°, 35°, and in some cases 37,5°. Each column 

Bi 

1ml 

HIHIHI 

οι 

Bl 

AD-DJ-DJ[ 

Fig. 2.22 Notation for interacting foundations in a group 

relates to a different ratio S/B and each double row gives values for different 
sizes off(Dl — /),,). The upper line gives the value of factor a y and the value 
of factor otq is given on the lower line. 

The equations described and the tables in the supplement can be used 
directly if the ultimate bearing capacity of both foundations is used in the same 
way, i.e. if the ratio of the actual load acting on foundation I to the load ac-
ting on foundation II is the same as the ratio of their ultimate bearing capacities 
q~{ : q~~^. In such a case the mutual influence exerted by the adjacent founda-
tions is the most intense. The other extreme is the theoretical case, where 
foundation II, adjacent to foundation I, does not produce any load on the 
soil. In such a case the ultimate bearing capacity of foundation I is not influen-
ced by the adjacent foundation and its value is the same as if the foundation 
was standing separately. 

Let us establish the following designations : 

I the foundation for which the ultimate bearing capacity is being calculated, 
II the adjacent foundation, 
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Q~I the ultimate bearing capacity of foundation I, when the adjacent founda-
tion II is acting with its ultimate capacity Q~^L9 

Q^X the ultimate bearing capacity of foundation II, when the foundation I is 
acting with its ultimate bearing capacity Q^X, 

QX

MX the ultimate bearing capacity of foundation I, when standing separately, 
QM] the ultimate capacity of foundation I, when the foundation II is acting 

with a load QU, 
QX the maximum true load on foundation I 
QXX the minimum true load on foundation II 

For possible extreme cases, the following relations are valid: 

In general, if two adjacent strip foundations of the same length L > 3.5 Β 
are loaded, the real size of the ultimate bearing capacity of foundation I can 
be determined by a linear interpolation between extremes (2.87) and (2.88) 
according to equation 

For low-rise non-rigid buildings the critical state is that of an idealized least 
favourable state, when the load acting on the examined foundation is the 
maximum QX (for example permanent and live load) and the load on the adjacent 
foundation is the minimum QU (permanent load only). For higher buildings 
its is possible to assume for the adjacent foundation a load larger than QU, 
but not the full load for this foundation, as in higher buildings it is probable 
that at least on some of the floors above the adjacent foundation there will be 
some live load. Apart from that, in higher buildings the load is also transferred 
by the structure to those foundations which do not carry the full load directly. 
The static engineer decides in what proportion and for which of the foundations 
the live load must be taken into account, depending on the character of the 
load, the type of the structure and on the way in which it interacts with the 
subgrade. For very rigid and very tall buildings it can be assumed that all 
foundations carry the same portion of the permanent and live load. In such 
a case, for the determination of the ultimate bearing capacity, the reduction 
according to equation (2.89) need not be made and therefore QMX = Q^{. 

A more general case than that of two interacting adjacent foundations is 
where we have three interacting foundations. In order to determine the relation-
ships, loading tests were made in the same way and with the same equipment 
as was developed for the testing of the bearing value of foundations in a pair. 

QM\ = ώ · · ·
 if

 <1\\ = o 
A
M\ = Q„I . . . i f ? n . Q~X = QX. Q^I 

(2.87) 

(2.88) 

1ML = (<7ml - QML) — - + QM 
(2.89) 

<MmII 
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This equipment on the one hand enabled the measurement of the sum of the 
bearing values of foundations I + II and their settlement, and on the other 
hand the bearing value of foundation III and its settlement. 

Tests were made first of all with three foundations of the same width and an 
equal foundation depth. The arrangement of the tests is apparent from Fig. 2.23. 
When the separation of foundations was the same S = 2 Β, bearing values 
(Qm] + ö m i i ) = 2 Q m m were measured. The bearing value of all three founda-
tions was almost the same as that of each of the foundations in a pair with 
equal separation S/B. When the separations of the foundations were unequal, 

(Qml+Qmr) 

β Β 

1 I 
S2=2B\ ' :
 *- 1 

S2-4B\ ι Β 

I I j ι 
I I I 

L _ J 
I 

D-2B Fig. 2.23 A tested group of three 
foundations for Z) , = D U = D M 

Sx = 2B and S2 = 42?, then, for the central foundation, the interaction with 
foundation I, which was nearer, was critical. The bearing value of the considered 
foundations was the same as for a group of two foundations with a clearance 
between the foundations of S x , The more distant foundation III had almost the 
same bearing value as if it had been paired with foundation II with a clearance 
of S2, but the settlement of foundation III, when the ultimate bearing capacity 
was reached, was noticeably greater. 

As the next step, tests were made with foundations of the same width and 
having a separation of St = S2 = 2B. The foundation depth of the first two 
foundations was D{ = Dn = 2 Β (Fig. 2.24). When foundation III was located 
on the surface, the bearing value of foundations I + II was approximately 
8 % lower than their value uninfluenced by foundation III. This would seem 
to suggest an influence of foundation III, although it is not very conclusive 
owing to the dispersion of the model test results. The bearing value of founda-
tion III was the same as if it had been interacting with foundation II alone. 
When the foundation depth of foundation III was 4B, its bearing value was 
also the same as when interacting with foundation II, but the cumulative bearing 
value of foundations I + II was again significantly smaller. Calculations establi-
shed that the measured bearing value of the pair of foundations I + II corres-
ponds to the calculated bearing value if the bearing value of foundation I is 
assumed to be interacting with foundation II alone. The bearing value of 
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f 
foundation II is taken as the mean value of the bearing values determined for 
ts interaction with foundation I and with foundation III. 

Finally, similar tests were made, but with the difference that the separation 
of foundations II and III was only S2 = B. When foundation III was on the 
surface it had almost the same bearing value as when interacting with foundation 
II alone, i.e. it was smaller than for the test described above. The bearing value 
of the pair of foundations I + II was not decreased in this case. However, 
we should note that the values of factors ay and aq for foundation II are almost 
the same both for its interaction with foundation I alone, as with foundation III 
alone. Therefore it can be assumed that the bearing value of foundation I can 
be calculated from a consideration of the interaction with foundation II alone, 

OL'DI 

(QMI + QMI) 

Si=2B S2--2B 

DX
m
2B J 

QML 

Fig. 2.24 A tested group of three 
foundations for Dx = Du Φ Dm 

and the bearing value of foundation II can be then determined either from 
the influence of foundation III alone or it can be taken as the mean value of the 
bearing values determined for the interaction with foundations I and III. When 
foundation III had a foundation depth Dm = 45, its bearing calue was the same 
as when it interacted with foundation II alone. The bearing value of the pair 
of foundations I + II was smaller than in the case described earlier (for 
S2 = 2Ε). The measured bearing value was determined mathematically when 
the interaction of foundation II with foundation III was taken into account, 
and when the ultimate bearing capacity of foundation I was determined for 
an interaction with foundation II, which had a smaller load as a result of 
the influence of foundation III (reduction according to equation (2.89)). 

These tests showed that foundations in a group interact with that foundation 
which has a stronger influence, usually a foundation which is nearer (SjB is 
smaller), if the difference between the depths of foundation is not too great. 
When the reduced separation SjB of the foundations is the same, the inner 
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foundation is influenced by both adjacent foundations, and its bearing value 
can be determined as the mean of the bearing values calculated for successive 
interacting pairs of foundations. In a group of foundations we can find that one 
foundation decreases the ultimate bearing capacity of the second foundation, 
which then has a smaller bearing value than it would have if it were interacting 
with another, third foundation alone. The bearing value of the third foundation 
must be reduced as a result of the smaller bearing value of the second founda-
tion, which is caused by the first foundation. Thus the first foudation can 
influence not only the adjacent foundation but also the next one. 

longitudinal axis 

of bridge 
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30' 

60 

340 

270 

JÊÎ 
0 

60 

groundwater 
level 

210 

-400 

240 

filling 
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dense, fine -grained 

sand containing 8% 

of silt grains 

Fig. 2.25 

The foundation 

in Example 2.1 
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The results of the model tests were mathematically formulated and verified 
by several field loading tests. The bearing values of foundations, determined 
mathematically, were in good agreement with the test results; 

Example 2.1 

For the transportation of ore, conveyor belts in steel bridge structures are used. The 
longitudinal forces in the bridge elements are taken over by four towers: 1 driving, 2 tension-
ing and 1 reversible. Between these the bridge structure is carried by swinging supports, 
which have a foundation as shown in Fig. 2.25. The steel supports act on the foundation with 
a maximum vertical force of 1 540 kN (the permanent load is 1 220 kN). Wind produces 
a horizontal force of ± 9 7 kN and a moment of ± 1 060 kNm in a direction at right angles 
to the axis of the bridge. All the forces act on the upper surface of the reinforced concrete 
slab having dimensions of 2.7 X 5.7 m and a thickness of 0.9 m, which transfers them to four 
underground walls with a profile of 0.6 X 2.4 m. The foundation depth is 4 m. On the site 
there is a filling to a depth of 0.6 m. To a depth of 2.1 m there is a soft, non-bearing clay and 
lower down there is a compact, very fine grain sand with a 8% proportion of silt grains. 
The groundwater level is 0.9 m below the surface. The sand has an angle of internal shearing 
resistance O'j. — 26° an a density γ = 20 kN/m

3
. 

As a result of its ability to yield, the bridge structure is not sensitive to differences in 
settlement. As a result it is sufficient to judge the foundation only from the point of view of 
safety against sinking. To do this we only consider the bearing value of the underground 
walls at their foundation lines at a level of — 4 m. The skin friction in soft clay is negligible 
and if we omit its effect the calculation is simplified and we get a slightly safer result. We cannot 
reckon with the interaction of the upper, load distributing slab, because of the great com-
pressibility of the soft clay. 

The actual weight of the foundation: 

slab 2 . 7 X 5 . 7 X 0 . 9 X 2 5 350 kN 

piles 2 .4x0 .6x3 .4x2 .5x 4 490 kΝ 
— lifting (hydrostatic) 
force 2 . 4 x 0 . 6 x 3 . 1 x 1 0 x 4 - 1 8 0 kN 

660 kN 

The original weight of the soil in the space of the foundation: 

slab 2 . 7 x 5 . 7 x 0 . 6 x 2 0 185 kN 
piles 2 . 4 x 0 . 6 x 3 . 4 x 2 0 x 4 395 kN 
— lifting (hydrostatic) 
force 2 . 4 x 0 . 6 x 3 . 1 x 1 0 x 4 —180kN 

400 kN 

Load increment in foundation line at a level of — 4.0 m: 
actual weight of foundation (660 — 400) 260 kN 
vertical load from upper part of building 1 540 kN 

1 800 kN 

The horizontal force Η — 97 kN is reliably taken up by the pressure and friction of the soil 
on the narrow front face and sides of the underground walls. The following is valid: H/Q = 
= 97/1800 = 0.054. The bending moment M = ± 1060 kNm corresponds to an ecentricity 
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e = M IQ = 1 060/1 800 = 0.59 m. For a coincident action of moment M and load β , the 
effective length of the foundation is 5.7 — 2e ~ 4.5 m. This means that the whole load is 
taken up by just the three outer piles, and we make a simplifying assumption that the piles 
are loaded almost in the same way. Therefore it is not necessary to take into account the 
reduction of the ultimate bearing capacity caused by the unequal utilization of adjacent 
foundations. The ultimate bearing capacity of each of the three active piles, according to 
equation (2.66), is 

= 0.5γ ^NyS^ifa + V2DNqsqdqiqccq 

V\ = 10 kN/m
3 

= (4 . 10 -f- 0.9 . 10)/4 

Β = Bl = 0.6 m D = Z>! = 4.0 m 

Ny = 10.0 (Table 2.9) L = 2.4 m 
N
< = 12.4 (Table 2.9) B/L = 0.6/2.4 = 0.25 

s
v - 0.97 (Fig. 2.11) D/B - 4.0/0.6 6.7 

V = 1.06 (Fig. 2.12) HIQ = 97/1800 0.054 

d
< 

= dc=\.64 (Fig. 2.13) = 1 :1 

dy = 1 (equation (2.52)) S = 1.0 m 

'< = 0.92 (Fig. 2.14) SIB = 1/0.6 = 1.66 

'V = / 2 = 0.84 (equation (2.56)) 

The foundations have the same depth of foundation, therefore f(D{ — Du) = 0. From the 
tables in the supplement in group BxlBn = 1 :1 (for Φ = 25

e
; Φ = 30° and S/B = 1.5; 

S/B = 2.0) we obtain, using linear interpolation factors 

a y = 2.09 a fl = 1.11 

The ultimate bearing capacity of the foundation 

qm = 0.5 . 10 . 0.6 . 10.0 . 0.97 . 1. 0.84 . 2.09 + 12.2 . 4.0 . 12.4 . 1.06 . 1.64 . 0.92 . 1.11 

= 50 + 1070 = 1 120 kN/m
2 

The real load at the foundation line is 

q == 1 800(3 . 2.4 . 0.6) = 420 kN/m
2 

The safety factor is 

F = <ljq = 1 120/420 = 2.66 

This value is quite sufficient and consistant with the geological composition of the foundation 
soil. 

The calculation, which took into account the influence of the adjacent foundations, showed 
a possible load qk = qj2.5 = 450 kN/m

2
. 

Example 2.2 

Consider a project for a four-floor warehouse and a five-floor office block. The structure 
consists of reinforced concrete frames. The columns have a modular grid of 6 Χ 6 m and they 
rest on 9 lateral footings forming a strip foundation each with a length of 14.2 m. The facade 
of the whole object, which has a flat roof, is arranged uniformly using glass and steel profiles. 
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The longitudinal section of the whole structure is described by the diagram in Fig. 2.26. On 
the site there is a filling 80 cm high and below that there is a solid silty loam. The ground-
water level is at a depth of 9.5 m. The silty loam has an angle of internal shearing resistance 
Φ = 27.5°, a cohesion c = 5 kN/m

2
 and a density γ ^ 21 kN/m

3
. The continuous footings 

bear different loads and therefore have been designed to have different widths. Data concern-
ing the loading of the footings, their widths and calculated settlement are given in Table 
2.17. The proposed foundations must be considered from the point of view of their settle-
ment and their safety against sinking. 

The calculated values of settlement are permissible. The difference in the settlement of 
footings 1 to VI and VII to IX are also within the permissible limits. The large difference 
between the settlement of footing VI and VII does not matter, as the relative displacement 
of both parts of the building can be allowed for in the dividing joint. As we can assume that 
when settlement ceases, footing VII will settle by about 0.3 cm more than footing IX, which 
is 12 m distant, the office block will lean over a little towards the warehouse and the dividing 
joint at roof level will close by about 0.5 cm. Therefore the dividing joint must te at least 
0.5 cm wider than if it were to act only as a dilatation joint. If, when settlement ceases, the 
floors on the first floor and the roofs of both parts of the building are to be on the same level, 
then the whole warehouse part which is heavier and has a greater settlement must be built 
on a level which is 2 cm higher. To start with the roof of the warehouse part will be higher by 
2 cm than the roof over the office block, but as the subgrade consolidates, the difference will 
disappear. As far as settlement is concerned the proposed foundations are satisfactory. 

TABLE 2.17 

The load, width and settlement of the continuous footings in example 2.2 

The load increment in the foundation line 

for a Width of Settlement 
Continuous continuous of continuous 
footing permanent load permanent and live load footing footing 

- [m] [cm] 
[kN/m] [kN/m

2
] [kN/m] [kN/m

2
] 

Warehouse 

I 340 226 550 366 1.5 4.0 
II 360 225 600 375 1.6 4.3 
III 360 225 600 375 1.6 4.3 
IV 360 225 600 375 1.6 4.3 
V 360 225 600 375 1.6 4.3 
VI 310 221 520 372 1.4 3.9 

Office block 

VII 230 230 280 288 1.0 2.1 
VIII 230 192 290 241 1.2 1.9 
IX 210 210 260 260 1.0 1.7 
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As the next step we consider the safety against sinking of the continuous footings. Since 
during usage, there is a live load of variable size in different parts of the low warehouse, we 
look at an idealized, least favourable state, during which the studied foundation is loaded with 
the maximum load qx (both permanent and live load) and the adjacent foundations are loaded 
with the minimum load qu (permanent load). We assume that the load on all foundations is 
central and vertical so that in equation (2.66) the factors iy = iq = ic = 1. First of all, the 
ultimate bearing capacity q^x of the continuous footings is determined on the assumption that 
the adjacent footings are also subjected to their ultimate bearing capacity. The ultimate 
bearing capacity qml of the footing is also determined as if it were standing separately. 

The calculation of q^x is made using equation (2.66) and the calculation of qmX using 
equation (2.44), which is obtained from equation (2.66) for <xy = ocq = a c = 1. 
Continuous footing I: 
The interaction of continuous footing I with continuous footing II is considered. 

7i = γ2=2\ kN/m
3 

Bx = 1.5 m 

D = Z), = 1.4 m c = 5 kN/m
2 

N
y 

= 12.12 (Table 2.9) Bx/L - 1.5/15 - 0.1 

% = 13.94 (Table 2.9) Dx/Bx - 1.4/1.5 = 0.93 

= 24.85 (Table 2.9) dy 
= 1 (from equation (2.52)) 

s
y 

= 0.99 (Fig. 2.11) d
* = 1.21 (Fig. 2.13) 

s
* = 1.02 (Fig. 2.12) dc 

= 1.21 (Fig. 2.13) 
S
c - 1.02 (Fig. 2.12) 

Determination of coefficients of cooperation a y, ocq: 

Dx = Dxx = 1.4 m AD = 0 

f(Dx — Dxx) = 0, as AD = 0 Bx/Bxx = 1.5/1.6 = 0.94 

S = 4.45 m S/B = 2.87 

By linear interpolation according to the tables in the supplement for Φ = 27.5° we find that 
coefficient <χγ = 1.55. That means that the term expressing the influence of the width of the 
foundation is increased by 55 % as a result of interaction, which cannot be neglected. 
By substitution into equation (2.66) we get: 

l
q~i = 0.5 . 21 . 1.5 . 12 . 0.99 . 1 . 1 . 1.55 + 21 . 1.4 . 13.94 . 1.02 . 1.21 . 1 . 1 + 

+ 5 . 24.85 . 1.02 . 1.21 . 1 . 1 = 293 + 507 + 154 = 954 kN/m
2 

l
<?mi = 188 + 507 + 154 = 849 kN/m

2 

Continuous footing II: 

The axial separations of continuous footings I, II and III are the same. Continuous footing I 
is narrower than continuous footing III and therefore causes a smaller increase of the ultimate 
bearing capacity of continuous footing II than continuous footing III. The ultimate bearing 
capacity of continuous footing II is determined while considering the influence of continuous 
footing I. The results were: 

»<7mI = 978 kN/m
2 

"fi, = 857 kN/m
2 
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Continuous footings III and IV: 

The mutual interaction of the two continuous footings is considered. As they are the same, 
their ultimate bearing capacities are also the same: 

" '^ϊ =
 , V

^ i = 978 kN/m
2 

mUi = lVUi = 857 kN/m
2 

Continuous footing V: 

The axial distances of continuous footings IV, V and VI are the same. Continuous footing VI 
is narrower than continuous footing IV and therefore causes a smaller increase of the ultimate 
bearing capacity of continuous footing V. The ultimate bearing capacity of continuous footing 
V is determined while considering the influence of continuous footing VI. 

yÖmX = 958 kN/m
2 

\ ΐ , = 857 kN/m
2 

Continuous footing VI: 

Continuous footing VII is much nearer to continuous footing VI than continuous footing V. 
Therefore during the determination of the ultimate capacity of continuous footing VI we 
consider the influence of continuous footing VII. 

V I
^ J = 1 002 kN/m

2 

V I
^ , = 844 kN/m

2 

Continuous footing VII: 

Continuous footing VI is much nearer to continuous footing VII than continuous footing 
VIII. Therefore the interaction of continuous footing VI is critical and the ultimate bearing 
capacity of continuous footing VII is calculated while considering the influence of continuous 
footing VI. 

V I I
^ Î - 780 kN/m

2 

V 1 ,
^ , = 575 kN/m

2 

Continuous footing VIII: 

The axial separations of continuous footings VII, VIII and IX are the same and continuous 
footings VII and IX also have the same width. As the permanent load of continuous footing 
IX is smaller than the load of continuous footing VII, the influence of continuous footing IX 
is considered when determining the ultimate bearing capacity of continuous footing VIII. 
This procedure is on the safe side when compared with a more accurate calculation, where the 
mean values determined for the interaction with both foundations would be considered. The 
result of the more accurate calculation is similar but the calculation is more time-consuming. 

Y I I I
^ i

 :
 592 kN/m

2 

ym
qix = 583 kN/m

2 

Continuous footing IX: 

The ultimate bearing capacity of continuous footing IX is determined, while considering the 
influence of foundation VIII. 

I X
^ Ï = 585 kN/m

2 

I X
^ , = 572 kN/m

2 
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The ultimate bearing capacity qml of each continuous footing, while influenced by the 
critical adjacent continuous footing, which exerts a load qu, is calculated according to equation 
(2.89). The values necessary for the calculation of qml, established by the previous calculations 
and the definition of the task, are arranged in Table 2.18. 

TABLE 2.18 

The values substituted in equation (2.89) for the calculation of qml of the individual continuous 
footings 

Foundation I kN/m
2 

kN/m
2 

kN/m
2 

Foundation II 
whose inter-
action is 
considered when 
determining 

kN/m
2 

kN/m
2 

I 954 849 366 11 978 225 
II 978 857 375 I 952 226 
II 978 857 375 IV 978 226 
IV 978 857 375 III 978 225 
V 958 857 375 VI 1 002 221 
VI 1 002 844 372 VII 780 230 
VII 780 572 280 VI 1 002 221 
VIII 592 583 241 IX 585 210 
IX 585 572 260 VIII 592 192 

If we substitute the values from Table 2.19 into equation (2.89), we get the following: 

225 . 954 2 
!
*mi = <

9 54
 -

 8 4 9
) 3 66 9 78 +

 8
49 = 942 kN/

2
. 

and similarly 

"<7mI - 932 kN/m
2 y[

qml = 969 kN/m
2 

m
qml = 930 kN/m

2 V I !
<7mI - 668 kN/m

2 

lv
qml = 930 kN/m

2 V I I I
</ mI = 591 kN/m

2 

W
qm{ = 914 kN/m

2 lX
qml = 581 kN/m

2 

As the last step, the safety factor F of the individual continuous footings against sinking 
is determined according to the relationship 

F = <lm\l<l\ 

The calculated values are given in Table 2.19. The safety factor of all the foundations is 
satisfactory. 
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Tabic 2.19 

The safety factors of the individual continuous footings against sinking 

? m I[ k N / m
2
] , -

Îtimate F [ l ] 
Foundation I bearing Maximum Safety 

capacity
 t r ue l o ad f a c t or 

I 942 
11 932 
HI 930 
IV 930 
V 914 
VI 969 
VII 668 
VIII 591 
IX 581 

366 2.57 
375 2.43 
375 2.52 
375 2.52 
375 2.44 
372 2.60 
280 2.39 
241 2.45 
260 2.24 

Example 2.3 

A reinforced concrete chimney stack with a height of 74 m and an inner lining reaching 
to a height of 30 m has a weight of 10 800 kN. The horizontal force caused by the loading of 
the chimney stack by wind H = 430 kN acts at a height of 31 m above the ground. The base 
of the stack with ash filters is circular with a diameter of 8.8 m. It rests on a foundation which 

Fig. 2.27 Plan of foundation for chimney stack 

consists of twelve radially arranged underground walls (Fig. 2.27). These have a profile 
of 2.4 χ 0.6 m and reach to a depth of 5 m below the ground surface. On the site the soil is 
sand combined with loess to a depth of 4 m. Below to a depth of 4 m are fine-grained sands 
with a 5 % addition of silt reaching to a depth of 18 m. Under these is marl. The ground-
water level is 1 m below the surface. The effective angle of internal shearing resistance of the 
sand is Φ} = 32.5°, its density γ = 20 kN/m

3
, Ε = 38000 kN/m

2
 for a load of 1 000 k N / m

2
, 

ν = 0.33. 
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The inherent weight of the underground walls 
Upward hydrostatic pressure 

The original weight of the soil in the space 
of the underground walls 
Upward hydrostatic pressure 

1 2 . 2 . 4 . 0 . 6 . 5 . 2 5 2 160kN 
— 1 2 . 2 . 4 . 0 . 6 . 4 . 10 —690 kN 

1 470 kN 

1 2 . 2 . 4 . 0 . 6 . 5 . 2 0 1 730 kN 
—690 kN 

1 040 kN 

The load increment at the foundation surface at a level — 5.0 m : 

From the inherent weight of the foundation 1 470 kN 
From the vertical load of the upper part 
of the building 10 800kN 

Q = 12 270kN 

The horizontal force H = 430 kN produces, at the level of the foundation line, a moment 
M = 430(31 + 5) = 1 550 kNm. The horizontal shear force is transferred into the soil by all 
twelve underground walls: the part carried by each is very small, approximately 36 kN, which 
is safely taken by the friction of the soil on the sides of the underground walls. The bending 
moment M = 15 500 kNm, corresponds to an eccentricity e - M/Q = 15 500/12 270 = 
= 1.26 m. For the effective diameter of the foundation of 8.5 m, the largest permissible 
eccentricity emsiX = 8.5 : 3 = 2.84 m. 

The effect of the moment on the load on the foundation surfaces of the underground walls 
can be approximately determined by replacing them with an annular-form foundation sur-
face with diameters 8.5 and 3.7 m. The area of the annulus is 

A = π(4.25
2
 — 1.85

2
) = 46 m

2 

π(8.5
4
 — 3.7

4
) , 

The section modulus W = = 58 m 
32 . 8.5 

The load increment on the edges σ = M/W = 15 500/58 = 271 kN/m
2
. 

The mean vertical stress on the annulus σ = Q/A = 12 270/46 = 267 kN/m
2 

The maximum stress on the lee side will have a value 

a = a + a = 538 kN/m
2 

The load concentrated on the most-loaded foundation surface of a pile will be approxim-
ately Α. σ/12 = 2060 kN. In the foundation line of the underground wall, there is a mean 
stress q{ determined by an approximate calculation 

QX = 2 060/(2.4 . 0.6) = 1 435 kN/m
2 

As the underground walls are near to each other, the load on two adjacent walls will be only 
a little different and therefore it is not necessary to consider the reduction of the ultimate 
bearing capacity with a view to the unequal utilization of the bearing value of adjacent 
foundations. The ultimate bearing capacity is calculated from equation (2.66) 

γχ = 10 kN/m
3
 (groundwater influence) 

γ2 = (5.0. 10 + 1 . 10)/5 - 12 kN/m
3 

Β = 0.6 m D = 5.0 m 

Ny = 27.04 (Table 2.9) L = 2.4 m 
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= 24.58 (Table 2.9) B/L = 0.6/2.4 = = 0.25 

- 0.97 (Fig. 2.11) D/B = 5/0.6 8.3 

= 1.06 (Fig. 2.12) HIQ - 43/1123 = 0.038 

dy 
= 1.00 (Equation (2.52)) = i / i 
= 1.90 (Fig. 2.13) S = 1.0 m 

- 0.95 (Fig. 2.14) SjB = 1/0.6 = 1.66 

= i\ = 0.9 (Equation 2.56)) 

The foundations have the same foundation depth, therefore f(Dx — D„) = 0. By linear inter-
polation from the tables in the supplement, we get factors 

a y - 2.35 <xq = 1.25 

This means that the influence of the width of the foundation, if we consider interaction, is 
larger by 135 % and the influence of the depth of foundation is larger by 135 % and the 
influence of the depth of foundation is larger by 25 %. By substitution into equation (2.66) 
we get: 

Ä~ = qml = 0.5. 10 .0 .6 .27 .04 .0 .97 . 1 . 0.9 . 2.35 + 12 . 5 . 24.58 .1.06 . 1.9 . 0.95 . 1.29 = 

= 167 + 3 520 = 3 687 kN/m
2 

The safety factor 

F = qmXlq{ = 3 687/1 435 = 2.57 

which is a satisfactory value. In the foundation line of the underground walls it is permissible 
to have a load 

qp = 3 687/2.5 = 1 450 kN/m
2 

We shall calculate the settlement of the chimney stack as the compression of sand below 
the level of the piles and we shall consider the foundation, which consists of piles with a rect-
angular section, as if it were a full foundation in annular form. 

According to Boussinesq, the settlement caused by the loading of a non-rigid circular 
surface is (for Q' = Q - 1040 = 11 230 kN) 

, 2 ( 2 ' 2 2 . 11 230 
j 0 = (1 — ν

2
) = (1 — 0.33

2
) = 0.039 m i.e. 3.9 cm 0 nRE n. 4.25. 38 000 

The settlement of the outer rim of the annular surface is, according to K. Fischer, s = s0 . /(ρ); 
the inner diameter of the annulus 

8.5 — 4.8 3.7 m 2r 3.7 

m, so that ρ = = = 0.43. 2 2 2R 8.5 

The function 

2
 1 A 1 7 3 A 25 , 1 

/ ( Ρ ) = 7 Γ _ Τ Ρ Ι/ +Ύρ +
~64

θ +
 T Ö 6 4

 Ρ +
 " J ~

 0 54 

The settlement of the outer rim of the annular-shaped foundation will be 3.9 . 0.54 = 2.1 cm. 
The annular pile foundation was considered as a full foundation and therefore the anticipated 
settlement will be a little larger. 
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2.5 INFLUENCE OF FOUNDATION CROSS-SECTION 

The cross-sections of foundations have various forms; usually the vertical 
cross-section of a foundation is rectangular. When an open trench is made, 
the walls are not made perpendicular, therefore the foundation has a conical 
shape in cross-section —at the bottom and the contact surface, it is narrower 
than at the top. Foundations of this kind are often found in mediaeval buildings 
as the pit was made without sheeting and with manual excavation. Nowadays 
foundations are formed by reinforced concrete slabs with foundation masonry 
above. We shall see if the transverse shape of the foundation influences the 
ultimate bearing capacity. 

/ / 

/ / 

- ν 

Fig. 2.28 Rupture ranges for a foundation in the shape of an inverted Τ 

The influence of the transverse shape of the foundation on the magnitude 
of the ultimate bearing capacity of the soil was studied experimentally by 
Myslivec and Yanicek (1970). They compared the ultimate bearing capacity 
of a strip foundation with a rectangular section and a height-to-width ratio 
D :B = 1.5 with the ultimate bearing capacity of foudations with various 
sectional shapes. During all the tests, the same depth of foundation D and the 
same width of the foundation line Β was maintained. The angle of internal 
shearing resistance of the sand during the tests was <P'f = 37°. 

When the foundation rested on a strip and therefore had a shape of an 
inverted Τ (Fig. 2.28), a decrement of the ultimate bearing capacity of about 
5 %, compared to the ultimate bearing capacity of about 5 %, compared to the 
ultimate bearing capacity of a foundation with a total height D and a width Β 
was measured. The decrement of the ultimate bearing capacity resulted from 
the displacement of the soil from the space beneath the foundation, along the 
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-)f Jf- 4 5 Jf. 

Fig. 2.29 Cross-section of a conical foundation 

surface. The inclined sides of foundations with a contact width B, which widen 
upwards, were found to be without influence on the ultimate bearing capacity 
if their gradient was greater than 4 :1 (Fig. 2.29a). This means that when concret-
ing foundations in open trenches it is imperative to maintain not only the depth 
of foundation D but also the contact width of the foundation at the bottom of 
the trench which is nost important in the calculation of the ultimate bearing 
capacity. 

The result described is also important from the point of view of judging 
the interaction of adjacent foundations. It has been established by measurement 
that a separately standing foundation with a rectangular cross-section DxB, 
as shown in Fig. 2.29a by a dash line, has an ultimate load Qm during loading. 
A foundation which widens upwards, also has an ultimate load Qm of the same 
size, also shown in the illustration. Let us now assume that the foundation is 
composed, according to Fig. 2.29b, of three parts and for each of these the 
force necessary to sink it in is measured. It follows that 

2 ß i + 0 2 = QM 
(2.90) 

shorter sliding surfaces, to above the foundation, where a space was created as 
the foundation was forced in. Only part of the soil was displaced to the surface. 
The trajectories of the movement of the grains are marked by a dash line in 
Fig. 2.28. This small decrement of the bearing value is almost insignificant. 
If one considers that the density of the soil is smaller than the density of concrete 
then it becomes obvious that especially for deeper foundations the insignificant 
decrement of the ultimate bearing capacity in the foundation line is equalled 
by the smaller load increment of the lighter foundation with the inverted Τ 
shape. 

Next, the influence of the conical shape of foundations, tappering upwards 
or downwards was determined. It was found that the ultimate bearing capacity 
of those foundations depends only on the contact width of the foundation 
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Since forces Q{ and Q2 are real pressures, the following must be true 

Q\ < Qm a n d simultaneously Q2 < Qm 

As part II of the foundation has the same shape and size as the separately 
standing comparative foundation with a section D χ Β and an ultimate load 
Qm9 it is obvious that when three foundations interact as shown in Fig. 2.29b, 
we observe a lowering of the ultimate load of foudation II from the value Qm 

to the value Q2. 
Similar results were also obtained for foundations arranged as in Fig. 2.30. 

In this case sand was also used, but its angle of internal shearing resistance 
was <P'f = 33°. In this case it was also found that, for the simultaneous sinking 

BF Bj Br 
— ι > 

ΒI = 0.531 
D '2Βι 

Fig. 2.30 Closely adjacent foundations having 
different depths of foundation 

of all three foundations, a force of almost the same size is necessary as for 
sinking a separately standing foundation I with a width Βλ, which has a 
foundation depth D = 2BX. We can assume, that in the case of the three 
interacting foundations, "wedges" of sand vere created beneath foundation II 
near the walls of foundation I, and these were forced down together with the 
foundations. In this arrangement, foundation II caused a decrease in the ulti-
mate bearing capacity of foundation I compared with the value when standing 
separately. 

From tests made it follows that when designing foundations with varying 
levels of the foundation line, it is necessary to make transitions from one founda-
tion level to another at a minimum angle. If it is necessary to have a sudden 
change, in the foundation level of adjacent parts of the foundations, for exam-
ple where the part with a basement and the part without a basement meet, 
then it si necessary to consider the situation as two foundations which are 
adjacent and influence each other (Sec. 2.1). 
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2.6 INFLUENCE OF SURFACE SLOPE ADJOINING FOUNDATION 

Foundations are often made on a slope, for example in the case of end 
pillars of a bridge over a cutting, of houses near deep open cuts or former 
brickworks. The ultimate bearing capacity of a foundation in such a case is 
not only influenced if the foundation is at the edge or near the slope. To be on 
the safe side we must secure the stability of the foundation but also the stability 
of the slope, which is loaded by the building. The stability of the slope is 
judged by one of the known methods. The ultimate bearing capacity of a 
foundation influenced by a slope gradient can be determined mathematically 
or by the graphical method. 

b
) 

b Β 

iiiriiiiiiiiii 
D 

iiiriiiiiiiiii 

the critical yield surface Fig. 2.31 
A foundation 
influenced by a slope 
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2.6.1 Mathematical methods 

During the calculation of the ultimate bearing capacity of a foundation 
influenced by a slope, it is necessary to distinguish the following situations: 

— the foundation is on a slope (Fig. 2.31a), 
— the foundation is near the upper rim of the slope (Fig. 2.31b), 
— the foundation is near the lower rim of the slope (Fig. 2.31c). 

bUU 
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25 
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• — f . , 

-

^ \ N 

\ 
f-30*\ 

\ \ 

\ 

» '45' 

0* 10* 20* 30* 40* 
angle of slope β 

Fig. 2.32 Factor Nyq for a foundation 
on a slope 

50' 0* 20* 40* 60* 80° 

ongle of slope β 

Fig. 2.33 Factor Ncq for a foundation 
on a slope 

The calculation of the ultimate bearing capacity of a foundation on a slope 
was worked out by Meyerhof (1957). For shallow foundations, which have a 
depth of foundation D < B, the ultimate bearing capacity 

qm = 0.5yNyq + cNC( 
(2.91) 

where Nyq and Ncq are resultant bearing-value factors. Their values depend 
on the angle Φ of internal shearing resistance of the soil, on the slope gradient /?, 
on the ratio DjE of the depth of foundation to the width of the foundation 
and also, for cohesive soils, on the factor Ns = yd\c of the stability of the slope, 
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where y is the density of the soil, dis the height of the slope and c is the cohesion 
of the soil. The value of the bearing value factor Nyq is located in the nomogram 
in Fig. 2.32 and the factor Ncq is located in the nomogram in Fig. 2.33. 

When the foundation is nearer to the upper rim of the slope in a cohesionless 
soil (c = 0), we also use Meyerhof's equation (2.91) for the calculation of the 
ultimate bearing capacity of the foundation. However, in comparison with 
the previous case, the size of the bearing-value factor also depends on the 
distance b of the foundation from the upper rim of the slope (Fig. 2.31b). 

The bearing-value factor Nyq is determined from the nomogram in Fig. 2.34. 
The intermediate values are determined by linear interpolation. 

If the foundation is adjacent to the upper rim of the slope, so that b = 0, 
it is possible to determine the ultimate bearing capacity of the foundation 
on the surface (D = 0) using the basic Meyerhof method, described in Sec. 
2.3.2. The angle β, which characterizes the rupture surface (see Fig. 4), is in this 
case β = —β and for the determination of the ultimate bearing capacity we 
use equation (2.43). The bearing-value factors Ny and Nc are determined from 
the nomograms in Fig. 2.7 and 2.9. 

If the foundation is nearer to the lower rim of the slope, its ultimate bearing 
capacity is calculated as though in the vicinity of the foundation, the ground 

ß-0# 

100 - JB-O* - ^ < ι — { = 4 0 * -

50 ^ - ^ 

J 25 ̂  A \ 

70 - / — 

2.5 L Ίτ=7 

Fig. 2.34 Factor Nyq 

1 }• 4 τ r , r i for a foundation on a flat surface 
0 1 2 , 3 4 5 6 · R Ι 

o_ near the upper rim of a slope 

ß 
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surface was only horizontal. We can then use, for example, one of the equations 
given in Sec. 2.3, 2.4, But even in this case it is necessary to evaluate the stability 
of the slope above the foundation, to avoid the possibility of the slope sliding 
down and endangering the building. Some slopes are potentially dangerous 
due to the fact that they are in a state of equilibrium, but as a result of various 
mechanical and natural processes their safety factor decreases. In a slope, the 
resulting stress acts upon the horizontal plane at an angle, and can be divided 
into a vertical stress σζ and a horizontal stress σχ. There is also a shearing 
stress τ, which acts in this plane. When an open trench is made, a deformation 
of the slope is caused by the action of σχ and τ. After a displacement of a certain 
magnitude Alcrit, the peak shearing strength is reached; if the displacement 

Fig. 2.35 The ultimate bearing capacity of ä foundation in various positions on and near 
a slope 

Al > Alcrit, the shearing strength decreases to a residual value. In a slope, a 
range is formed where ΦΓ is applied on a yield surface, the fissure broadens 
and in time the slope slides down. As a result of seismic shocks we also find, 
apart from fprce effects, changes in the mechanical properties of the soils so that 
the slope may become unstable. 

To clarify the extent and distance to which the slope influences the ultimate 
bearing capacity of a foundation we present a, mathematical solution of a case, 
where a slope with a gradient β = 30° in a sandy soil (Φ = 40°, y = 20 kN/m 3) 
influences a foundation with a width Β = 1 m and a foundation depth D = 1 m. 
Various positions of the foundation on the slope, on the surfaces above and 
below the slope were chosen. The ultimate bearing capacity of the foundation 
was calculated for each of the chosen positions and these were plotted on a ver-

y -20kN/m
3
\ 
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t i c a l o v e r t h e s l o p e i n F i g . 2 . 3 5 . T h e e x a m i n e d f o u n d a t i o n , w h e n i t i s o n t h e 

s l o p e , h a s o n l y 1 / 3 o f t h e b e a r i n g v a l u e i t h a s w h e n i t i s o n a h o r i z o n t a l s u r f a c e . 

A f t e r s l o p e f a i l u r e t h e s o i l a s s u m e s a n e w s t a b l e p o s i t i o n . D u r i n g t h i s p r o c e s s 

t h e s o i l i s t r a n s f e r r e d f r o m t h e o r i g i n a l t o e o f t h e s l o p e b y a d i s t a n c e Z , k ( F i g . 

2 . 3 1 c ) . T o p r e v e n t t h e i n s t a b l e s l o p e f r o m e n d a n g e r i n g t h e b u i l d i n g e v e n a f t e r 

s l o p e f a i l u r e , t h e d i s t a n c e b o f t h e b u i l d i n g f r o m t h e t o e o f t h e s l o p e m u s t b e 

b ^ FLk ( 2 . 9 2 ) 

T h e m a g n i t u d e o f L k f o r a c y l i n d r i c a l f a i l u r e s u r f a c e i n a c o h e s i v e s o i l w a s 

d e t e r m i n e d b y K y s e l a a n d F i r t ( 1 9 7 2 ) , F i g . 2 . 3 1 c . I f t h e s t a b i l i t y o f a s l o p e i s 

d i s t u r b e d ( f o r e x a m p l e a s a r e s u l t o f o v e r - l o a d i n g , i n t e r f e r e n c e i n t h e s l o p e , 

a s a r e s u l t o f e a r t h q u a k e s o r o t h e r n a t u r a l c a u s e s o r m e c h a n i c a l i n f l u e n c e s ) , 

a s l o p e f a i l u r e r e s u l t s . I n c o h e s i v e s o i l s t h e l o o s e n e d p a r t o f t h e s l o p e m o v e s 

a l o n g a y i e l d s u r f a c e . I f i t i s a s s u m e d t h a t t h e l o o s e n e d s o i l m o v e s a l o n g a r o t a r y 

s u r f a c e w i t h a d i a m e t e r r f o r a c e r t a i n d i s t a n c e b e y o n d t h e t o e o f t h e s l o p e , 

t h e n d u r i n g t h e m o v e m e n t a r e s u l t a n t Ν o f c e n t r i f u g a l f o r c e s a c t s a t t h e c e n t r e 

o f g r a v i t y Öm. T h e v a l u e o f Ν is 

Ν = Mv*\rM ( 2 . 9 3 ) 

w h e r e M i s t h e t o t a l m a s s o f t h e l o o s e n e d p a r t o f t h e s l o p e , 

rM i s t h e d i s t a n c e o f t h e c e n t r e o f g r a v i t y Om f r o m t h e c e n t r e Ö o f t h e 

y i e l d s u r f a c e . 

ν i s t h e v e l o c i t y o f t h e m o v e m e n t o f t h e c e n t r e o f g r a v i t y . 

A l o n g t h e y i e l d s u r f a c e t h e l o o s e n e d s o i l i s s u b j e c t e d t o t h e a c t i o n o f t a n g e n t i a l 

f o r c e s Σ Tai a n d n o r m a l f o r c e s Σ Ni, w h i c h r e p l a c e i n ι s t r i p s t h e e f f e c t o f 

t h e w e i g h t Q o f t h e l o s e n e d p a r t o f t h e s l o p e . ( F i g . 2 . 3 1 c ) . O n t h e y i e l d s u r f a c e , 

m o v e m e n t i s o p p o s e d b y t a n g e n t i a l f o r c e s 

Σ TPi = Σ Ni t a n Φ Γ a n d a r e a c t i o n 

Τ = Ν t a n Φ Γ = MrM ( t a n Φ Γ ( 2 . 9 4 ) 

A p a r t f r o m t h e s e f o r c e s , t h e l o o s e n e d s o i l i s s u b j e c t e d t o a r e s u l t a n t o f i n e r t i a l 

f o r c e s M d
2
s / d f

2
,
 1

) w h o s e m o m e n t r e l a t e d t o t h e c e n t r e Ö o f t h e r o t a r y 

m o v e m e n t o f t h e s o i l i s 

y / o = ( / M + ^ ) - ^ f - (2.95) 
at 

1
) The expression d

2
s / d /

2
 is the acceleration of mass A/, which is moving along a trajectory 5, 

shown in Fig. 2.3lç. 
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if Ψ is the rotary acceleration, 
Λ > JM are the polar moments of inertia related to point Ö and the centre 

of gravity Ö M of the loosened soil, 
Θ is the angle which determines the momentary position of the centre 

of gravity Om. Prior to the slope movement, Θ = 0. 

The moment condition for point Ö has the following form 

r Σ Tai - r Σ Tpi - Ψ J0 - rT = 0 (2.96) 

We designate 

Ζ(Θ) = Σ fai - Σ Tpi (2.97) 

and for the examined slope we express the given function (2.97) by Lagrange's 
polynomial of an w-th degree 

Z(ß) =p0 + ΡιΘ + ... +ΡηΘ
η (2.98) 

The coefficients of the polynomial are determined in such a way that the values 
of function (2.98) are equal to the values obtained from equation (2.97) for 
various positions of the slope, which are given by the selected values of Θ. 
In the majority of cases it is sufficient to consider two or three terms of the 
equation (2.98). 

The velocity ν of the movement of the loosened part of the slope was 
expressed by a linear differential equation for v2. The solution of the equation, 
when assuming the initial conditions of the movement (v = 0, if Θ = 0) has 
the following form 

Μΐ&ηΦ,Ι
 y

 ' k k
2
 k

in) 

where 

k= 2 Μ Π5 , tan<Pr (2.100) 
JM + Mr2

M 

The velocity vp of the loosened soil on the yield surface is vp = vrjrM. The 
angle & k, which defines the final position of the centre of gravity of the slipped 
soil is calculated from equation (2.99) if we take ν = 0. The slope stops at a 
distance Lk = rOk measured from the toe of the slope. The slope must therefore 
move so far that the created resistances are equal to the active forces which put 
the soil in motion, and that the kinetic energy of the moving soil mass is 
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Fig. 2.36 The determination of the ultimate bearing capacity of a foundation influenced 
by a slope 
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absorbed. Therefore after slope failure (when the kinetic energy is equal to 
zero), the safety factor is greater than one; usually F = 1.1 to 1.2. During 
the process of sliding the soil loosens and its shearing stress decreases. 

2.6.2 Graphical method 

The ultimate bearing capacity of a foundation influenced by a slope in a 
cohesionless or cohesive soil can be determined graphically. The procedure is 
described in Sec. 2.3.5. It is only necessary to locate the position of the planar, 
outlet part of the yield surface, which is the route of least resistance. Therefore 
several yield surfaces, which intersect the slope and are joined to the logarithmic 
spiral tangentially, are selected and for each of them the bearing capacity of the 
foundation is determined graphically (Fig. 2.36). We assume that the yield 
surface, which is directly beneath the foundation, is the same as if the surface 
in the vicinity of the foundation was horizontal. 

For each of the outlets of the selected yield surfaces we plot the values of the 
graphically determined ultimate bearing capacities at right angles to the surface 
and thus obtain a curve, whose minimum value gives us the size of the ultimate 
bearing capacity of the foundation and locates the position of the yield surface 
of least resistance. Along this surface the soil shears when the ultimate bearing 
capacity is reached. In such a way the rupture surface can be found even if 
a foundation is lying directly on a slope. 

Fig. 2.36 describes the solution of the ultimate capacity of a foundation 
with a width Β = 1 and a foundation depth of 1 m, if at a distance B\2 = 0.5 m 
from the face of the foundation there is a ridge from which the ground slopes 
at an angle of 15°. The subgrade is homogeneous and is formed by a cohesive 
soil with an angle of internal shearing resitance Φ Μ / = 20°, a cohesion cuf = 
= 10 kN/m 2 and a density γ = 20 kN/m 3. Three positions of the outlet part 
of the rupture surface were examined. For these yield surfaces the ultimate 
bearing capacities are q'm = 395 kN/m 2, q„ = 460 kN/m 2 and q™ = 462 kN/m 2. 
These values were connected up by a curve at the outlets of the yield surfaces. 
The minimum of the curve gave the true value of the ultimate bearing capacity 
qm = 380 kN/m 2 of a foundation lying near a slope. If the surface is horizontal 
the ultimate bearing value of the foundation qm = 490 kN/m 2. The decrease 
of the ultimate bearing capacity of the foundation on a slope was in this case 
22,5 %. 
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2.7 FOUNDATION LOADED BY HORIZONTAL FORCE 

A rigid foundation is often subjected to a load acting at an angle and in such 
cases there is a danger that the foundation will be uprooted. This is often the 
case of foundations for columns carrying electricity and lighting, of anchoring 
blocks which take over horizontal forces at ground level, of columns carrying 
crane tracts, etc. In all of these cases the weight of the foundation itself is small 
in comparison with the bending moment of the horizontal force produced by 
the outer load. It was found that when a horizontal force reaches the ultimate 
bearing capacity, the initially vertical axis of the foundation is inclined by 3° 
to 5° in compact, firm soils; in loose, soft soils the inclination is as much as 11°. 
When the ultimate horizontal force is reached, the soil on that side of the 
foundation which faces the direction of the acting force, is forced out to the 
surface, on the opposite side the surface of the soil subsides and at the sides 
of the foundation we observe a movement of soil along yield surfaces of a rotary 
type. The stability of foundations for columns loaded by a horizontal force and 
their moment belongs to those tasks in the field of soil mechanics, which must 
be solved as spatial problems. The problem has been studied by many authors, 
for example Sulzberger (1945), Jaropolski (1954), Berio (1944), Brinch Hansen 
(1961), Boucraut (1964), Dietrich (1964), Narbut (1965), Dembicky et al 
(1971, 1976). 

(a) The method of Brinch Hansen and Dietrich 

Brinch Hansen derived a theory based on model tests, which solves the 
stability of rigid foundations for columns as a spatial task. He looks upon the 
foundation for a column as a short pile, which is subjected only to a horizontal 
force Ρ at a height dl above a reference plane, which lies at a depth d2 below 
ground level; d2 is the surface soil layer, which does not exert lateral pressure. 
This method allows the calculation of the ultimate horizontal load Pm for 
rectangular foundations for columns in a homogeneous soil. In the equation Φ 
is the angle of internal shearing resistance of the soil, c is the cohesion, y is the 
density, Β is the width of the foundation measured at right angles to the 
direction of the acting force, L is the length of the foundation, D' is the effect-
ive foundation depth (Fig. 2.37). 

D' = D — d2 (2.101) 

if D is the depth of foundation measured from the surface of the area. The 
ultimate horizontal force is 

Pm = BD'2KqlqSq + cBD'KJcSs (2.102) 
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where Kq, lq, Sq, Kc, lc, Sc are dimensionless coefficients, whose magnitude 
depends on the angle of internal friction of the soil Φ and on the geometry of 
the foundation. The following functional relationships are valid: 

Kq =ΜΦ;ϋ'ΙΒ); Kc = Λ(Φ; D'IB) the values are given in Table 2.20. 

kc = ftidJD') the values are given in Table 2.21 

03 
L 

"T—r~~ 

Fig. 2.37 A column loaded 
by a horizontal force Ρ 

The coefficients Sq and Sc depend on Φ and dl/B and are calculated from the 
following equations 

Sq = 1 + ßqL/B (2.103) 

Sc = 1 + ßcL/B (2.104) 

where ßq and ßc are auxiliary functions 

ßq =fs&;D'IB);ßc =/β(Φ\ϋ'ΙΒ) the values are given in Table 2.22. 

The permissible horizontal load on a foundation is Pp = PJF, if the factor 
of safety is F = 2 for cohesionless soils and F = 3 to 4 for cohesive soils. 



TABLE 2.20 

Coefficients Kq and Kc 

Ratio D'/B 
Φ Coefficient 

1 2 3 4 6 8 10 

0° 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

* c 3.4 3.9 4.3 4.7 5.2 5.6 6.0 

10° K
1 

0.9 1.0 1.1 1.15 1.2 1.25 1.3 
4.8 5.7 6.4 6.9 7.9 8.4 9.0 

20° K
« 

2.4 2.6 2.8 3.0 3.3 3.5 3.7 
7.0 8.7 10.0 11.0 12.5 13.8 14.8 

30° 5.3 5.8 6.2 6.8 7.6 8.2 8.8 
11.4 15.0 18.0 20.0 24.0 27.0 29.0 

40° K
< 

12.0 14.0 15.5 17.0 19.5 22.0 23.0 

«c 19.5 28.0 35.0 41.0 52.0 62.0 70.0 

TABLE 2.21 

Coefficients lq and lc 

dxjD' 0 1 2 4 10 20 

0.130 0.058 0.037 0.021 0.011 0.005 
0.420 0.160 0.097 0.054 0.025 0.012 

TABLE 2.22 

Coefficients ß q and ß c 

Φ 
D'/B Coefficient 

0° 10
e
 20° 30° 40° 

1
 ßq 

ßc 

10 ßq 

ßc 

0.41 0.30 0.21 0.12 0.053 
0.70 0.57 0.38 0.27 0.160 

0.36 0.28 0.18 0.10 0.045 
0.46 0.34 0.25 0.18 0.120 
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(b) The method of Dembicky 

Dembicky et al (1971, 1976) made an analysis of older methods for the 
determination of the ultimate bearing capacity of foundations for columns 
loaded by a moment from a horizontal force P. For better correspondence 
between calculations and reality, wide-scale research was made with models 
of a rectangular plan in scales ranging from 1 : 2 to 1 : 20, mainly in cohesionless 
soils. One part of the tests was made on an analogue model of the Taylor-
Schneebeli type, which enabled the shape of the rupture range in the vicinity 
of the foundation when the state of failure was reached, to be studied. The 
results obtained were analysed on the assumption that 

— the foundations are perfectly rigid, 
— the vertical load on the function surface may be neglected, 
— the soil in the vicinity of the foundation is in an ultimate state of equil-

ibrium 

— the angle of friction of the soil on the sides of the foundation σ = 2Φ/3. 

The method derived allows the determination of the ultimate moment Mm 

which will cause the foundation to be uprooted. The ultimate moment 

Mm = M'yD'4 (2.105) 

if D' = D — d2 is the effective depth of foundations (see Fig. 2.37). The values 
of coefficients M' are given in Table 2.23 for various angles Φ of internal 
shearing resistance of the soil and for various ratios L\D\ B\D' and cjyD'. 
The width Β of the foundation is measured at right angles to the direction of 
the horizontal force P, or to the plane in which the moment of the horizontal 
force is acting. 

When reviewing the safety of a foundation against uprooting, we start with 
the ultimate moment Mm and the real acting moment Mx related to the centre X 
of rotation of the foundation. The point X lies at a depth ζ below the reference 
plane, from which the effective depth of foundation D' is measured (Fig. 2.37). 
The reference plane is at a depth d2 below the ground surface where the soil 
is no longer loose, for example as a result of ploughing, so that the lateral 
pressure of the soil can be applied. The ratio z\D' depends on the angle of 
internal shearing resistance Φ of the soil and on the ratios LjD\ BID' and 
cjyD'. For their various values the ratios zjD' are given in Table 2.23. 

The ultimate moment Mm also depends on the height (dl + D') of the point 
of action of the horizontal force Ρ above the foundation line. If dx\D' = 1.6, 
the more accurate values of z/D' and M' are only slightly different ( < ± 6 %) 
from the values in Table 2.23. 

In view of the introduced simplifying assumptions, the safety factor of the 
foundation against uprooting is F = MJMX ^ 2.5. (The values F are given 
in Table 3.3.) 



T
A

B
L

E
 2

.2
3 

T
h

e 
va

lu
es

 o
f 

z\
D

' 
an

d 
Μ

' 
ac

co
rd

in
g 

to
 D

em
b

ic
k

i 

B
 =

 L
; 

cï
O

 
c

 
=

 
o 

c 
B

 
Φ

 =
 

10
° 

Φ
 =

 
15

° 
Φ

 =
 

20
° 

Φ
 =

 
25

° 
L

 
Β

 
Φ

=
= 

3
0 ° 

Φ
 =

 
35

° 
Φ

 =
 

40
° 

z\
D

' 
Μ

' 
z/

D
' 

Μ
' 

Μ
' 

m 
M

' 
D

' 
D

r 

m 
M

' 
m 

M
' 

z\
D

' 
M

' 

0.
1 

0.
68

2 
0.

07
4 

0.
68

7 
0.

09
8 

0.
69

1 
0.

13
3 

0.
69

5 
0.

18
5 

0.
1 

0.
1 

0.
66

8 
0.

14
6 

0.
66

7 
0.

22
6 

0.
66

4 
0.

36
6 

0.
2 

0.
66

1 
0.

09
8 

0.
66

7 
0.

12
7 

0.
67

3 
0.

17
0 

0.
67

9 
0.

23
2 

0.
2 

0.
68

8 
0.

24
5 

0.
68

9 
0.

38
5 

0.
68

7 
0.

63
5 

0.
5 

0.
62

6 
0.

16
6 

0.
63

3 
0.

21
2 

0.
64

0 
0.

27
7 

0.
64

7 
0.

37
0 

0.
5 

0.
71

2 
0.

51
5 

0.
71

6 
0.

81
2 

0.
71

4 
1.

34
8 

1.
0 

0.
72

6 
0.

93
9 

0.
73

1 
1.

47
6 

0.
73

1 
2.

44
4 

0.
1 

0.
63

5 
0.

14
2 

0.
64

2 
0.

18
2 

0.
64

9 
0.

23
7 

0.
65

6 
0.

31
7 

0.
2 

0.
60

6 
0.

19
0 

0.
61

5 
0.

24
0 

0.
62

4 
0.

30
8 

0.
63

3 
0.

40
5 

0.
2 

0.
1 

0.
66

9 
0.

14
5 

0.
66

8 
0.

22
3 

0.
66

4 
0.

36
1 

0.
5 

0.
55

7 
0.

32
9 

0.
56

8 
0.

40
7 

0.
57

9 
0.

51
2 

0.
59

0 
0.

66
1 

0.
2 

0.
68

9 
0.

24
2 

0.
69

0 
0.

38
0 

0.
68

7 
0.

62
5 

0.
5 

0.
71

4 
0.

50
7 

0.
71

7 
0.

80
0 

0.
71

6 
1.

32
5 

0.
1 

0.
60

8 
0.

23
0 

0.
61

5 
0.

29
0 

0.
62

3 
0.

37
2 

0.
63

0 
0.

48
9 

1.
0 

0.
72

8 
0.

92
3 

0.
73

2 
1.

45
2 

0.
73

2 
2.

40
2 

0.
2 

0.
57

4 
0.

31
0 

0.
58

4 
0.

38
4 

0.
59

3 
0.

48
6 

0.
60

3 
0.

62
9 

0.
5 

0.
51

9 
0.

53
7 

0.
53

0 
0.

65
5 

0.
54

1 
0.

81
3 

0.
55

3 
1.

03
3 

0.
5 

0.
1 

0.
67

0 
0.

14
1 

0.
66

8 
0.

21
5 

0.
66

5 
0.

34
4 

0.
2 

0.
69

2 
0.

23
4 

0.
69

2 
0.

36
4 

0.
68

9 
0.

59
5 

0.
1 

0.
59

5 
0.

31
8 

0.
60

2 
0.

39
7 

0.
60

9 
0.

50
5 

0.
61

6 
0.

65
8 

0.
5 

0.
71

9 
0.

48
6 

0.
72

1 
0.

76
5 

0.
71

9 
1.

26
0 

0.
2 

0.
55

9 
0.

42
8 

0.
56

8 
0.

52
7 

0.
57

7 
0.

66
2 

0.
58

6 
0.

85
0 

1.
0 

0.
73

5 
0.

88
2 

0.
73

9 
1.

38
5 

0.
73

7 
2.

28
4 

0.
5 

0.
50

0 
0.

74
2 

0.
51

1 
0.

89
9 

0.
52

1 
1.

10
9 

0.
53

2 
1.

39
8 



132 

Example 2.4 

The safety factor of a column against uprooting is to be determined. The dimensions of 
the foundation are 1 χ 1 m, the foundation depth D = 2.3 m below the surface. The foundation 
is loaded at surface level by a horizontal force Ρ = 12 kN and a moment M = 100 kNm. 
The angle of internal shearing resistance of the soil Φ'^ = 40°; the cohesion c = 0 kN/m

2
, 

the density of the soil γ = 17.5 kN/m
3
. The foundation is on a site which is ploughed to 

a depth of as much as 0.3 m. 
The elective depth of foundation D' = D — d2 = 2.3 — 0.3 = 2.0 m. 
The ratios: 

LID' = 1/2 = 0.5; B\D' = 1/2 = 0.5 

For these ratios and Φ — 40° we locate the values in Table 2.23, 

z/ZT = 0.719; M' = 1.260 

The ultimate moment, see equation (2.105), 

Mm = 1.260 . 17.5 . 2
4
 = 353 kNm 

The depth of the centre of rotation below the reference plane ζ = D'. 0.719 = 1.44 m. At 
the centre of rotation X there is a moment 

Mk = P. (z + d2) + M = 12 . (1.44 + 0.3) + 1 0 0 = 121.0 kNm 

The safety factor of the foundation against uprooting F = MjMk = 352/121 = 2.92, which 
is satisfactory. 

(c) Interaction of adjacent foundations loaded by horizontal force 

When a foundation is loaded by a horizontal force, the resistance of the 
soil acts upon those sides of the foundation which are at right angles to the 
direction of the applied force, and friction acts on the two sides of the founda-
tion which are parallel to the direction of the applied force. 

If we have two adjacent foundations and the applied force acts at right 
angles to the line connecting the centres of the foundations, then both foundations 
produce a frontal resistance but the side friction is only applied on one side 
for each of the two foundations. Each of the two foundations will therefore 
carry a smaller load then when standing separately. 

If there is a small gap between foundations with a rough surface then the 
gap interacts with the foundations. In this case the pair of foundations carries 
a greater horizontal load than two widely separated foundations. 

Model tests with short piles in sand loaded horizontally, carried out by 
Kratëna and Kysela and Bartos (1975), proved th? above mentioned interaction 
of foundations. The models of the piles were squure in section (BxB) and 
the angle of surface friction of the soil on the piles δ ^ 0,5Φ. When the axial 
separation of the piles was I > 5B, the ultimate horizontal load on each was 
the same as if they were standing separately. (This ultimate horizontal load 
was about 2.5 times greater than the ultimate horizontal force for an element 
with a length Β of an underground wall with a thickness Β and the same depth as 
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that of the piles.) For an axial separation of the piles I = 3B, the ultimate 
horizontal load on the outer piles was greater by 10% and on the central piles 
by 20 % than when standing separately. When several piles stood close to each 
other, the ultimate horizontal force of the outer piles was 20 % smaller than 
when standing separately. The decrement for the central piles was 30 % when 
there were three piles and 40% when there were five piles. 

Tests made with models of piles with a circular diameter differed from the 
previous tests in that the soil barely interacted with the piles; it "flowed" 
around the piles as they were pressed horizontally into the soil. Circular piles 
(with a diameter B) did not influence each other when their axial separation 
I > 4B. (The ultimate horizontal load on a separately standing circular pile 
was approximately twice as large as the ultimate horizontal force on an element 
of an underground wall with a length B, a thickness Β and having the same 
depth as that of the pile.) With a decrease of the axial separation of the circular 
piles their ultimate horizontal load decreased. When the piles were immediately 
next to each other, the ultimate horizontal load of the outer piles was smaller 
by approximately 35 % than when standing separately. In the case of the central 
piles, the decrement was 40 — 50 % so that their ultimate horizontal load was 
the same or slightly larger than the ultimate horizontal force calculated for a 
comparable element of an underground wall. 

The method of execution of the model tests corresponded to drilled piles, 
pier footings, etc. but not to driven piles. 

A different case was studied by Simek (1975). Using an extensive model-
research following predominantly the Beggs-Blazek method, he studied the 
behaviour of a short row of piles loaded horizontally along the axis of the row. 
The piles were connected at the top by a relatively rigid slab. He found that in a 
group with all the piles vertical, the piles nearer to the point of application 
of the horizontal force are subjected to tension and those at the other end to 
compression. For a group having the outer piles at an angle, it was apparent 
that the vertical piles took over a relatively smaller vertical load, and that as a 
result of the inclination of the piles, the vertical piles nearer the point of aplica-
tion of the horizontal load were compressed and those at the other end in 
tension. The inclined piles not only decreased the axial forces of the vertical 
piles to about a third, but also decreased the bending moment at the butt-ends 
of the piles by as much as 50 %. The horizontal displacement of the butt-ends 
of all the piles was the same, as a result of the rigidity of the overhead slab. 
When all the piles were vertical, the horizontal force was distributed evenly 
between all the piles. When the outer piles were at an angle, these carried a 
greater part of the horizontal load—the pile nearer to the point of application 
of the horizontal force (i.e. pointing towards the foundation) was in tension 
and the inclined pile at the other end was in compression. 
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2.8 BEARING CAPACITY OF A FOUNDATION ON A LAYERED SUBGRADE 

In nature we often find that the foundation bed is composed of several 
layers of different soils. Such situations can be divided into the following 
groups : 

A. Double-layer subgrade beneath the foundation 
a) the angles of internal shearing resistance of the cohesive soils of both 

layers Φ = 0, cx Φ 0, c2 Φ 0, 
b) the upper layer is soft, Φ = 0, the angle of internal shearing resistance 

of the lower layer Φ > 0, 
c) the angles of internal shearing resistance of the soils in both layers 

Φ Φ 0. 
Β. The ultimate bearing capacity of a foundation if the soil is on bedrock. 
C. The ultimate bearing capacity of a foundation subgrade with a gravel-

sand cushion. 
D. The ultimate bearing capacity of a multilayered subgrade formed by two 

alternating soils. 

2.8.1 Double-layer subgrade beneath foundation 

a) The angles of internal shearing resistance of the cohesive soils of both 
layers equal zero, c1 φ 0, c2 Φ 0. 

This situation was studied by Button (1953) for surface-based strip founda-
tions, and he assumed that the cohesive soils of both layers are consolidated to 
approximately the same degree. For the determination of the ultimate bearing 
capacity qm, he assumed a cylindrical yield surface. The ultimate bearing 
capacity 

qm = cx.Nc (2.106) 

where the bearing-value coefficient Nc depends on the thickness Η of the upper 
soil layer and on the ratio of cohesion c2 of the lower soil layer to cohesion cx 

of the upper layer. The value of coefficient Nc is determined from Fig. 2.38. 

b) The upper layer is soft, Φ = 0, c Φ 0, the angle of internal shearing 
resistance of the lower soil layer Φ > 0. 

In this case of a stratified subgrade there is, directly beneath the foundation, 
a layer of soft soil (for example Holocene alluvium) and beneath that there 
is a layer with a much greater bearing value. If the load on the foundation 
surface is the same or greater than the ultimate bearing capacity qm of the 
soil in the upper layer, then the soft soil beneath the foundation is forced to the 
sides as if it were a plastic material. 
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The soil in the lower layer, in comparison with the upper layer is almost 
in-compressible and therefore for the calculation of ultimate bearing capacity 
of the foundation we use the method derived for a soil on bedrock (Sec. 2.8.2). 

c) The angles of internal shearing resistance of both layers Φ Φ 0. 

The ultimate load on a strip foundation on a subgrade composed of two 
layers of various types of soil was experimentally determined by laboratory 
tests. The soil layers were formed of cohesionless and cohesive soils. The 
grading curves of the soil are given in Fig. 2.39. During the tests some soils 

Fig. 2.38 The coefficient Nc 

of the bearing value of two layers 
0 OA OB 1.2 1.6 2Ό 2A of cohesive soils if Φι ---- Φ2 = 0 

ci 

grain size 

Fig. 2.39 Grading curves of soils 
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were compacted and others consolidated. Tests showed that the lower layer 
provides an almost linear influence on the ultimate bearing capacity of a founda-
tion on the upper layer. The depth of the lower layer below the foundation 
level is H. The influence was continuous and it was possible to replace it, with 
sufficient accuracy, by one or two straight lines (Fig. 2.40). 

Of critical importance in the estimation of the influence of the bottom 
layer, is the depth Τ below the foundation level to which the yield surface 
would reach if the subgrade was only composed of the soil of the upper level. 
The ratio of the depth Τ to the width Β of the strip foundation depends on the 
angle Φ of internal shearing resistance of the soil and on the inclination β of 
the resultant of the applied load from the vertical. The measured values are 
given in Table 2.24 for a case when the foundation level is horizontal and the 
load is applied along the axis of the foundation. 

TABLE 2.24 

Values of ratio T/B as a function of the angle of internal shearing 
resistance Φ of the soil of the upper layer and the inclination β 
of the resultant of the load from the vertical (our measurements) 

Φ 

ß 

0° 10° 20° 30° 40° 

0° 0.70 0.80 0.95 1.10 1.25 
10° — — 0.60 0.80 1.00 
20° — — — 0.40 0.70 
30° — — — — 0.35 

From Fig. 2.40b it is apparent that a thin upper layer of soil with a greater 
bearing value over a soil with a smaller bearing value does not increase the 
ultimate bearing capacity of the strata group if the layer with the greater 
bearing value has a height of no more than 0.2i?. The layer with the greater 
bearing value helps to increase the ultimate bearing capacity of the strata 
group only when the thickness of the upper layer beneath the foundation 
Η > 0.2 Γ. The reason for this is that in the thin soil layer with a greater 
bearing value beneath the foundation, a yield surface with a large gradient is 
created when the ultimate bearing capacity is reached and the normal stress 
acting on this yield surface is very small. The friction in this part of the failure 
surface is therefore small and the thin layer contributes only a little to the 
increase of the ultimate bearing capacity of the strata group. If the soil layer 
with a greater bearing value has a thickness which is at least equal to the width 



137 

of the foundation, then the failure surface is created when the ultimate bearing 
capacity is reached, mainly in the soil of the upper layer. The soil of the lower 
layer then barely influences the ultimate bearing capacity of the foundation, 
and we may therefore assume it to be the same as if the foundation were 
standing on a homogeneous subgrade formed by the soil of the upper layer. 

9/m > 9 m 2 

Ιτπππτ̂  

T/B 

°>rf)i ,Xi ,§1 ,ci I 

9 m ? , #2 ,$2, c2 

[1] 

H/B 

Fig. 2.40 The ultimate bearing 
capacity of two layers 
of soil with various values of Φ 

When there was beneath the foundation a layer with a small bearing value 
and below this a layer with a greater bearing value, then the bearing value 
of the strata group decreased linearly as the depth beneath the foundation 
increased, up to a depth of H = T. When the depth of the upper layer with 
the smaller bearing value was greater, the influence was no longer apparent. 

The established relationships are described in Fig. 2.40. The ratio H/B 
of the height H of the upper layer of the soil beneath the foundation to the 
width Β is plotted on the horizontal axis and the values of the ultimate bearing 
capacities qm are on the vertical axis. 

In the calculation of the bearing value of a foundation on a double-layer 
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subgrade, we first calculate the ultimate bearing capacity qml of the foundation 
on a subgrade formed by the soil of the upper layer only, and then we calculate 
the ultimate bearing capacity qml of the same foundation on the soil of the 
lower layer (see example 2.5). For the ultimate bearing capacity qm of the 
strata group the following relationships are valid: 

then for H g 0.2 Τ the ultimate bearing capacity qm = qm2 ; for 0.2 Τ < Η ^ Τ 
the ultimate bearing capacity 

qm = qmz + ^~^[HfT - 0.2); 

for Τ < Η the ultimate bearing capacity qm = qml. 

If beneath the foundation the upper layer has a smaller bearing value than the 
lower layer, i.e. when qmi < qm2, then up to a depth beneath the foundation 

Η ^ Τ the ultimate bearing capacity qm = qm2 - — 2 ~ qm—. //, for Τ < Η 

the ultimate bearing capacity qm=qmX. The ultimate bearing capacities 
<7mi » <7m2 °f e a c n soil layer are calculated according to Sec. 2 .3 . 

In the same way the influence of groundwater is introduced into the calcula-
tion of the ultimate bearing capacity if the groundwater elevation is below the 
level of the foundation line. On the one hand the soil load beneath the ground-

Fig. 2.41 The diagram for the determination of the ultimate bearing capacity of a strata 
group as determined by Kézdi 
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water elevation is reduced by 10 kN/m 3, and on the other hand the water 
causes a decrement of the friction between the grains of the soil and thus 
a decrement of the angle of internal shearing resistance of the soil (in loose 
soils by about 1 °). It is therefore more accurate to consider a homogeneous 
subgrade of a foundation with groundwater as a double-layer subgrade where 
the upper layer has different mechanical properties from the lower layer, which 
is below the groundwater elevation. Alternatively we can just consider a 
substitute density 

where A* is the depth of the water level beneath the foundation. 
In the Polish standard PN —59/B—03020, two approximate mathematical 

procedures are mentioned. If the soil layer with the smallest bearing value is 
directly beneath the foundation, the ultimate bearing capacity for this layer 
is determined as if the subgrade was homogeneous. In the other cases, the 
ultimate bearing capacity qmi of the foundation is determined for each type 
of soil, the resultant ultimate bearing capacity being obtained from the expres-
sion 

where Af is the depth of each layer beneath the foundation and Σ Af = B. 
Another method for the determination of the ultimate bearing capacity of a 

double-layer subgrade loaded by a strip foundation is mentioned by Kézdi 
(1964). In this case a uniform stress on the boundary of the layers at a depth H 
beneath the foundation level, where H is the thickness of the upper layer of the 
soil beneath the foundation, is determined. The distribution of the stress is 
assumed according to Fig. 2.41 on a width Β'. According to the author, this 
method is applicable in cases where the shearing strength of the upper layer 
is at least 50 % greater than the shearing strength of the lower layer. The second 
condition is that the rupture surface, which would be created under the founda-
tion reaching the ultimate bearing capacity should encroach upon the lower 
layer. Whether or not the shearing surface in the upper layer of the soil reaches 
the lower layer can be judged from Table 2.24 in which the ratio of the distance 
Τ of the lowest point of the failure surface from the plane of the foundation 
level to the width Β of the strip foundation in relation to the angle Φ of the 
internal shearing resistance of the soil of the upper layer is given. If the shearing 
strength of the upper layer is greater than that of the lower layer by less than 
50 %, Kézdi suggests using the mean values of Φ and c and determining the 
ultimate bearing capacity according to one of the methods which are valid for 
a homogeneous subgrade. 

for h* < Β (2.107) 

= Σ qM* Af (2.108) 
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The ultimate bearing capacity of a stratified subgrade determined according 
to the latter two procedures, is rather different from the values obtained in 
laboratory tests. 

Example 2.5 

The permissible vertical load on a foundation slab for a silo,whose dimensions are 12x 24m 
with a foundation depth of 5 m below ground level, is to be determined. From the ground 
level to a depth of 11 m there is a compact fine sand, to a depth of 35 m there is a firm, sandy 
clay, deeper still is shale. The groundwater elevation is 2.5 m below ground level. The angle 
of internal shearing resistance of the sand = 32.5° and its density is 20 kN/m

3
. The 

sandy clay has a negligible angle of internal shearing resistance (ΦΜ = 0), a cohesion cu = 
= 50 kN/m

2
 and a density of 21 kN/m

3
. The resultant of the load is inclined at an angle 

of 5° to the vertical. 
As a first step we calculate the ultimate bearing capacity qml for a case where the subgrade 

of the foundation is formed only by the compact, fine-grained sand. According to equation 
(2.44), and with the use of Table 2.9, we get an ultimate bearing capacity 

gml = 3 880 kN/m
2 

Then we calculate the ultimate bearing capacity qm2 for a case when the subgrade of the 
foundation is formed only by the sandy clay. It is found to be qm2 = 410 kN/m

2
. Interpolation 

using Tabic 2.24, determines the corresponding ratio T/B = 1. The thickness of the upper 
layer (sand) beneath the foundation is 

H = 11 — 5 = 6 m 

As qml > qm2, and at the same time 0.2Γ < Η < Γ, the ultimate bearing capacity of the 
strata group is determined with the help of Fig. 2.40. 

3 880 — 410 -
qm = 410 + (6/12 — 0.2) = 1 710 kN/m

2 

0.8 

As the load is transferred by both a cohesionless and cohesive soil, a higher safety factor 
F = 3 is chosen and the permissible load of the foundation slab consistent with safety against 
sinking qk = qj3 ---- 1710/3 = 570 kN/m

2
. 

2.8.2 Soil on bedrock 

Let us consider a case where the soil is on solid bedrock, which is located 
below the foundation at a depth H . When the ultimate bearing capacity is 
reached, the soil is forced to the sides. The rupture surfaces differ from the 
rupture surfaces in a homogeneous subgrade in proportion to the decrease of the 
thickness of the soil layer over the bedrock compared to the width of the founda-
tion. 

To determine how the ultimate bearing capacity of the strip foundation 
changes with various thickness of the soil layer on the bedrock, model tests 
were made, from which coefficient values expressing the influence of the depth 
of the (incompressible) bedrock, were derived. The influence of the bedrock 
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was expressed by dimensionless factors S y, 9q, 5 C . by which the individual 
terms of equations (2.25), (2.43), (2.44) for the calculation of the ultimate 
bearing capacity of a homogeneous subgrade, are multiplied. For example 
equation (2.43) has the following form after completion 

qms = 0.5γ χΒΝΎ9γ + y2DNq9q + cNßc (2.109) 

If the bedrock and foundation are rough, then the factors θ > 1 always. 
A foundation concreted in situ can be considered as a rough foundation.Bedrock 
is also rough in most cases and therefore the yield surface is created in the 
upper soil near the bedrock. A smooth surface is rarely found, for example in 
the case of some types of claystone below the groundwater elevation. 

Model tests were made with cohesionless soils. The results of one series 
of tests for the determination of the factor 9γ for sand with an angle of internal 
shearing resistance are shown in Fig. 2.42. The value of factors Sy and 9q 

obtained from the tests, are given in Table 2.25. The values of factor 3 C are 
calculated using equation 

9' = ^Ν*ΖΤ- ( 2· Π 0 ) 

which is derived according to Caquot in a similar way to equation (2.74). 

0.0 0.5 1.0 1.5 

Fig. 2.42 Tests of the bearing value of sand on an incompressible subgrade 
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TABLE 2.25 

The values of coefficients ûy and dq for a rough foundation with a width Β and a rough 
bedrock at a depth Η beneath the foundation level 

HjB 

φ ϋ 
0.125 0.250 0.375 0.500 0.750 1.00 1.50 

0° 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
1.15 1.10 1.05 1.00 1.00 1.00 1.00 

10° 1.25 1.05 1.00 1.00 1.00 1.00 1.00 
1.60 1.10 1.05 1.00 1.00 1.00 1.00 

20° 2.00 1.25 1.05 1.00 1.00 1.00 1.00 
5.00 1.60 1.10 1.00 1.00 1.00 1.00 

30° 

Κ 
6.00 2.00 1.25 1.10 1.05 1.00 1.00 

Κ 20.00 5.00 1.60 1.20 1.10 1.00 1.00 

37° 14.00 3.50 1.60 1.25 1.10 1.05 1.00 
50.00 12.00 3.00 1.60 1.20 1.10 1.00 

Tests made by Obin, Mandel and Salencon (1969, 1972) show that it is possible, 
with sufficient accuracy, for a rough foundation and a rough bedrock to consider 
$ C Ä Sq. Also for Φ 0 (in practice Φ < 10°) we assume S c = 8q9 since in 
these cases equation (2.110) is not valid. 

The mentioned values show that, for example, for sand with an angle of 
shearing resistance Φ < 37°, the influence of the bedrock is not apparent if the 
sand layer is as deep as the width of the foundation B. For other soils, with an 
angle of shearing resistance Φ < 37°, the influence of the solid subgrade disap-
pears at a depth H > B. Stone paving on a concrete base is laid in sand, usually 
with a depth of about H = 3 cm. If the sand layer is deeper because of the 
unevennesses of the concrete or to obtain the necessary lateral gradient on the 
road surface, then the influence of the concrete base does not show at all and 
the paving behaves as if there were sand alone in the subgrade. As a result of 
loading by moving vehicles, the paving undulates noticeably because, beneath 
the paving brick the ultimate bearing capacity has been exceeded. 

In the preceding paragraphs of Sec. 2.8.2, a very solid and almost incompres-
sible bedrock with a bearing value substantially greater than the load incre-
ment, with which the stress from the foundation acts on the bedrock, has been 
considered. Should the bedrock not satisfy these conditions (for example as 
a result of pronounced decomposition, numerous faults, etc.) it would be 
necessary to determine the ultimate bearing capacity as for a strata group 
formed by two soils with different properties (Sec. 2.8.1). 
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2.8.3 Gravel-sand cushion 

An ideal foundation soil should be composed in such a way that the 
upper layer, directly beneath the foundations where the greatest load is applied, 
would have the greatest strength. Deeper down, where the stress is smaller, the 
soil could have a smaller bearing value. 

The greatest vertical stress in the soil is always directly beneath the founda-
tion and with increasing depth and to the sides it decreases rapidly. If we need 
to make foundations for a building on a soil with a small bearing value, we 
make a gravel-sand cushion below the foundation. In the case of foundations 
on a gravel-sand cushion the original, low bearing-value soil is replaced to a 
depth equal to at least the width of the foundation by compacted gravel-sand 
as follows from tests of the ultimate bearing capacity of a double-layer subgrade 
where, beneath the foundation, there is a high bearing-value layer of soil and 
below that a low bearing-value soil. The influence of the lower layer with a 
smaller bearing value was hardly noticeable if the height of the upper layer 
with a higher bearing value was equal to the width of the foundation. The 
determination of the ultimate bearing capacity of a foundation on a gravel-sand 
cushion is a special case of the determination for a double-layer subgrade. 

The ultimate bearing capacity of a foundation, beneath which there is 
a gravel-sand cushion is best solved by the graphical method, the principles of 
which were given in Sec. 2.3.5. 

Let us replace the calculated ultimate bearing capacity qm above the founda-
tion level by an earth column with a height h2 = qjy, where y is the density 
of the soil. The soil on the yield surface exerts a normal stress 

ση = y(hx + h2) cos 2 a°, 

where (hx + h2) is the total height of the soil above the position being consider-
ated on the yield surface, and a° is the angle between the tangent to the yield 
surface and the horizontal (Fig. 2.43). If we plot the normal components ση 

on the rupture surface we can see that the maxima are directly beneath the 
foundation, outside the foundation the values drop quickly and towards the 
surface they continue to decrease. During the calculation of the normal compo-
nents, the distribution of the stress beneath the foundation was not taken into 
consideration and therefore the full curve in Fig. 2.43 is only approximate. 
On the yield surface there is no break in the distribution of the normal stress 
but a gradual transition as shown by the dash line. The normal stress ση pro-
duced by the foundation in the individual places of the rupture surface can 
be calculated with sufficient accuracy according to elastic-halfspace theory. 

The resistance against displacement of the soil from beneath the foundation 
increases in proportion to the increase of the normal stress, the increase of the 
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angle of internal shearing resistance Φ and the increase of cohesion c. If 
beneath the foundation, in the places where on the rupture surface the max-
imum normal stress σ„ is acting, a gravel-sand cushion is created, then the 
bearing value of the soil is substantially increased. The cushion must reach to a 
depth beneath the foundation surface at least equal to the depth Τ (see ratios 
T\B in Table 2.24 in 2.8.1) as proved experimentally. For the preliminary 
proposal it is usef ul to consider a thickness of the cushion equal to the width 
of the foundation. Let us determine the ultimate bearing capacity of the founda-
tion described in Sec. 2.3.5 if beneath it there is a gravel-sand cushion, which 
is compacted to such a degree that it has an angle of internal shearing resistance 
4>'f = 40° and a density y = 20 kN/m 3. 

As the rupture surface beneath the foundation on the bed passes through two 
types of soil, it is necessary to solve several shapes of the rupture surfaces for 
various Φ and find that one, which is the route of least resistance. The longer 
part of the rupture surface is in the cohesive soil outside the cushion and thus 
the rupture surface outside the cushion in the cohesive soil forms an angle of 
45° — Φ/2 with the surface, as in a cohesive soil without a gravel-sand cushion. 
Several shapes of the rupture surfaces for various Φ* and ratios of the width 
of the cushion to the width of the foundation were examined. At the same time 
the shape of the yield surface in the cushion was determined for an angle of 

]V 1 

\ ^ \ Γη - ï(hi+h2) cos
2
oc* 

Fig. 2.43 Normal stress on a yield surface; Λ / 
full line — when not considering the distribution \x 
of the stress; dash line — when considering 
the distribution of the stress — 
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internal shearing resistance with a minimum of 20° (the cohesive soil alone) 
and a maximum of 40° (the gravel-sand cushion alone). The established values 
are given in Fig. 2.44. The spread of the cushion to each side of the foundation 
is given as a function of the width of the foundation Β on the horizontal axis; 
the values of the substitute angle of internal shearing resistance Φ*, for which 
the shape of the yield surfaces in the gravel-sand cushion was determined, is 
given on the other axis ; the established ultimate bearing capacity qm is on the 
vertical axis. For a cushion of the same width as the foundation, the route of 

least resistance is a yield surface which, in the gravel-sand cusîon, has a shape 
determined for the mean angle of internal shearing resistance of the cushion 
and the soil Φ* = (20° + 40°)/2 = 30°. In such a case, the ultimate bearing 
capacity qm = 1 840 kN/m 2. The graphical solution of the bearing value is 
shown in Fig. 2.45. The procedure is the same as for the case in Fig. 2.17 with 
the difference that the true acting forces R and cohesions c, which vary for each 
soil, are taken into account. (In a gravel-sand cushion c = 0.) 

On the vertical boundary of the gravel-sand cushion and the surrounding 
soil one does not at first know how the angle of internal shearing resistance and 
the cohesion will be applied. We therefore examine several cases with different 

Im I [kN/m*] ^ 

J
cohesive soil 

f - 20' 

c = 10 kN/m
2 

Ζ -20 kN/m
3 

sand cushion 

φ = 40* 

widening of the cushion beneath 

pundaiion on all sides 

OB 10 1.2 Β 

/ / 

/ / 

the minimum values of qm 

Fig. 2.44 The ultimate bearing capacity of a foundation on a gravel — sand cushion as a 

function of the angle and of the widening of the cushion 
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values of Φ and c. The ultimate bearing capacity is then determined for those 
values which give the minimum bearing value. If on the boundary an angle of 
internal shearing resistance, smaller than Φ for the cushion, is considered, then 
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it is assumed that the rupture surface passes partially or completely through the 
surrounding soil. For such a foundation the minimum values are obtained 
when we consider the mean angle Φ = 30° and the half value C 4/2 of the total 

Q, - 180 +210 --390kN C, - 55 kN C2 = 77 kN 
Qz-.ekN C3 = SkN Ct.-IOkN 
Q3-6kN C5 = 7/CN C 6- 5 M 
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Fig. 2.46 The determination of the bearing value below the gravel — sand cushion 
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cohesion on the contact surface of the soil and the cushion. The ultimate 
bearing capacity is then qm = 1 840 kN/m 2. In Fig. 2.45 the procedure for 
Φ = 30° is drawn by a full line and the procedure for Φ = 40° by a dash line. 

The ultimate bearing capacity of the examined strip foundation without 
the cushion is 490 kN/m 2, with the cushion qm = 1 840 kN/m 2. The bearing 
value of the foundation with the bed is greater by 275 %. This is a very signifi-
cant increase of the bearing value, and the cushion produces an effect almost as 
if the foundation soil was formed by gravel-sand only. 

A calculation was made to find out whether or not a rupture surface will 
be created beneath the gravel-sand cushion (Fig. 2.46). Friction on the sides 
of the cushion was not taken into account. This simplification is within the 
safety limit as the friction on the sides of the cushion increases the safety. For 
a safety factor F = 2.5, the permissible load on the cushion qp = 1 840/2.5 = 
= 750 kN/m 2. At a depth of 1.25 5 beneath the foundation level, i.e., on the 
lowest level of the cushion, there is a vertical stress σζ = 0.45#p when a homo-
geneous subgrade is assumed. Away from the axis of the foundation the stress σ2 

at this depth decreases. If the curve for σζ is replaced outside the foundation 
by a straight line, then on a vertical beneath the edge of the foundation we get 
a vertical stress σζ = 0.30qp. Should the ultimate bearing capacity at the level 
of the lower surface of the cushion be determined as if the foundation were 
to reach to this depth, we would get qm = 1 760 kN/m 2, i.e. a value five times 
larger then the stress σζ = 0Â5qp = 340 kN/m 2 with which a foundation on a 
cushion can act at this level. For that reason the cushion cannot sink. 

For a more accurate determination of the stress on the boundary of the 
cushion and the subgrade, it is possible to proceed by replacing the height H 
of the cushion by an equivalent layer of the soil of the subgrade according to 
equation 

where EoX is the elastic modulus of the cushion and Eo2 is the elastic modulus 
of the subgrade. 
The stress on the boundary between the layers is then calculated as for a homog-
eneous subgrade at a depth Heq. In our case Eel > Ee2 and therefore Heq > H, 
so that the true stress from the load on the foundation surface is, on the boun-
dary between the cushion and the subgrade, even slightly smaller than σζ — 
= 0.45<7p = 340 kN/m 2, which we used in calculations (see also appendix I.) 

The gravel-sand cushion therefore creates a great increase of the bearing 
value of the foundation soil and a significant decrease of the settlement of the 
building. Near the foundations the calculated settlement of the soil, to a depth 
equal to the width of the foundation, amounts to about 60% of the total 

(2.111) 
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settlement. The compressibility of compacted sand is about 10 times smaller 
than that of loams and at the same time there is a smaller stress in the subgrade 
beneath the cushion than in the case where there is no cushion. For that reason 
the total settlement of a foundation on a gravel-sand cushion is substantially 
smaller than without the cushion. 

Let us also examine the influence of the width of the cushion on the increment 
of the bearing value of the foundation. We shall assume that the width of the 
cushion is larger than the width of the foundation by 0.2 J , 0.45, 0.6 Β and 
1.05. The graphically determined ultimate bearing capacities qm are given in 
Fig. 2.44. We can see that the widening of the cushion by 10 to 15 % does not 
bring a substantial increment of the bearing value of the soil. Nevertheless, it 
is recommended that the width of the cushion be wider by about 10 % Β 
because of the inaccurate cutting of the trench and especially because of the 
large shearing stresses under the edges of the foundation. 

When we design a foundation we start from an estimated permissible load qp 

of the soil, as if the subgrade was formed by gravel-sand alone and for this 
load we calculate the dimensions of the foundation surface A. Then we determine 
the ultimate bearing capacity qm of the proposed foundation graphically. The 
ratio qjq is the safety factor, which we judge from the point of view of its size 
(q is the true load of the foundation). If it is smaller than F = 2.5 then we 
widen the foundation and determine qm again graphically. 

The permissible vertical load of a strip foundation on a gravel sand cushion 
is usually 2.5 to 3.5 times larger than the permissible load of a cohesive soil 
without a cushion, if the angles of internal shearing resistance of the two soils 
differ by at least 20° to 25°. For a difference of the angles of internal shearing 
resistance of approximately 10°, the use of a gravel-sand cushion increases 
the permissible load of a cohesive soil by a factor of about 1.5 — 2.0. The 
permissible load of the foundation on a cushion usually does not reach the 
values of the permissible load of the gravel-sand from which the cushion 
has been made. 

The solution for an inclined load is similar to the vertical-load case but the 
changed shape of the rupture surface, as described in Sec. 2.3.5, is taken into 
account. 

For a permanent inclined load, it is sufficient to consider a smaller height Τ 
of the cushion than for a vertical load. 

A quick approximate determination of the loads and dimensions of gravel-
sand cushions with a view to their reaching the ultimate bearing value is describ-
ed by Haedicke (1968). He allows a load qpl on the cushion as if there were 
in the subgrade only gravel-sand, if the cusion has a height 

H = B.f(LlB;qp2lqpl) (2.112) 
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while the width of the cushion at the level of the foundation line is at least 
1,65 and at a depth H is at least B. The auxiliary function/ depends on the 
ratio LjB of the length of the foundation to its width, and on the ratio qp2lqpi 
of the permissible load of the subgrade to the permissible load of the gravel-sand 
of the cushion. The values of function / a r e given in Table 2.26. 

At the contact of the cushion with the original soil there is a danger that 
the finer particles of the surrounding soil will be pressed into the gravel-sand, 
which would lead to increased settlement of the foundation. This process is 
accelerated by flowing groundwater. To avoid the penetration of the soil, 
we must fulfil the same conditions as for a filter 

rffs/rffs g 20 to 25 and df5ldis < 5 (2.113) 

Other criteria demand that df0ld
s

50 = 5 to 10 or alternatively that d^5ld\5 = 4 
to 5. These criteria are based on the grading curves of the soil of the gravel-
-sand cushion and of the subgrade. The term dx5 designates the diameter of 
the gravel-sand cushion grains, when a 15 % volume content of the grains is 
smaller than this diameter. The other terms have a similar meaning and the 
index S indicates that the diameter of the grains relates to the soil which is in 
contact with the cushion. This condition is fulfilled if at the place of contact 
of the soil and the cushion, a thin filtration layer is made, which fulfils the 
above requirements concerning the grain-size distribution. 

The cushions must be made in drained trenches and at temperatures ex-
ceeding 0 °C so that the gravel-sand can be well compacted. 

TABLE 2.26 

Values of function f(L\B\ qpllQp\) 

Ratio
 F u n c t i on

 ( / )
 f or

 Qpilqpi 

L
/

B
 0.2 0.4 0.6 0.8 0.9 

1.00 1.40 
1.5 1.75 
2.0 1.95 
4.0 2.50 
oo 3.30 

0.90 0.63 
1.05 0.73 
1.15 0.80 
1.35 0.88 
1.50 0.90 

0.40 0.29 
0.47 0.34 
0.50 0.38 
0.58 0.38 
0.58 0.38 

2.8.4 Multilayered subgrade — two alternate soils 

Often two soils alternate in the subgrade of a foundation. One soil forms 
pronounced layers which are divided by very thin layers of the other soil. The 
second soil has a lower shearing strength then the soil of the thicker layers 



151 

(for example in the case of thicker layers of clayey sand and clay.) Let us 
designate Φ ΐ 5 c1 the angle of internal shearing resistance and the cohesion 
of the thicker layers and Φ 2 , c2 the angle of internal shearing resistance and 
the cohesion of the thinner layers. The solution of the ultimate bearing capacity 
of such a strata group was made by Giroud (1971) for cases where Φ2 ^ Φχ, 

c 2 < c, , —- = C Q t *f2 and when the surfaces of the layers are parallel. He 

found that the resultant ultimate bearing capacity qm of such a strata group 

TABLE 2.27 

Reduction coefficient λ 

φ χ — Φ 2 0° 5° 10° 15° 20° 25° 30° 35° 40° 

λ 1.00 0.89 0.79 0.69 0.60 0.52 0.44 0.37 0.31 

TABLE 2.28 

The largest permissible values of angle κ 

<Z>2 

Φ, 

0° 10° 20° 30° 40° 

10° 0° 40° — — — 
20° 0° 10° 35° — — 
30° 0° 5° 11.5° 30° — 
40° 0° 2.5° 6° 10° 25° 

depends almost entirely on the angles of internal shearing resistance of the 
two soils Φί and Φ 2 and he derived a simple equation 

qm = qm^ (2.114) 

where qml is the ultimate bearing capacity of a homogeneous subgrade composed 
of the soil of the thicker layers, λ is the reduction coefficient whose values 
depend on the difference between the angles of internal shearing resistance 
(Φ1 — Φ 2). The values of λ are given in Table 2.27. The equation (2.114) 
is valid for horizontal layers and for those which form an angle κ with the 
horizontal, if the size of κ does not exceed the values given in Table 2.28 in 
relation to angles Φί and Φ 2 . 



3. PERMISSIBLE LOADS ON FOUNDATIONS 

The designer tries to make proper use of the building material throughout 
his design. Nowadays the foundation soil which carries the building is consid-
ered to be one of the building materials. The permissible load of the building is a 
load for which there is a sufficient safety factor against sinking (against reach-
ing the ultimate bearing capacity), raising, pulling out, uprooting, turning over 
and displacement and the total settlement and the differences in the settlement 
of the building and the deflections of the vibrating foundation are smaller than 
the permissible values. It is therefore necessary to determine for each foundation 
both the ultimate bearing capacity qm and the final settlement of the building, 
as larger differences in the settlement of the building result in the creation of 
fissures. The permissible load of the foundation1) must not be reached in 
either of the mentioned ultimate states. In the case of buildings in the vicinity 
of those already standing, it is also necessary to judge the influence on the 
adjacent buildings, so that no fissures, etc. are created in them. The reason for 
this is that the stress caused by the new building also spreads beneath the old 
building. Sand, if it is not loose, is only slightly compressible and the foundation 
settles very little. Therefore in the case of buildings based on cohesionless soils, 
it is sufficient just to calculate the ultimate bearing capacity qm. 

3.1 PERMISSIBLE VALUES OF SETTLEMENT 
AND SETTLEMENT DIFFERENCES 

The permissible values of settlement depend on the type and rigidity of the 
building. The building can be designed to be very yielding, thus enabling it to 
bear a large non-uniform settlement. Such an approach is necessary for example 
in the case of buildings on embankments, in undermined areas, in regions 
with intense seismic activity, in the case of warehouses where the stored 
materials produced a large and non-uniform settlement of the building, etc. 
But for the majority of buildings no special arrangements for unusual settle-
ment need be made. The permissible values of differences in settlement As and 

1
) The permissible loading of foundations is a broader term than the calculated strain on 

the foundation soil in the sense of CSN 73 1001 Foundation Soil under Shallow Foundations. 
This also includes the important influence of adjacent foundations, contact stresses, building 
structures, etc. 
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of the mean settlement .S, which should not be exceeded, are given in Table 3.1 
and in Fig. 3.1 (diagram of measuring). 

The dimensions of the foundation are made for a permissible load which 
allows the building to settle uniformly. This load is not usually reached simul-
taneously on all foundations, for example in the case of warehouses or in factory 
halls with a travelling overhead bridge-crane. The load of the crane is carried 
mainly by the nearest columns and the more distant columns may not be loaded 
by the crane at all. Thus we get a non-uniform settlement and we assume that 
it amounts to about 50 % of the total settlement of the building. Closer data 
based on measurements are given by Siemer (1973). According to him, the 
differences in settlement in a building on separate foundations amounts to 
60 — 70 % of the total settlements. For strip foundations this value is 50 — 
60 %, for a reinforced grid it is 40 - 50 %, for a foundation slab it is 30 - 40 % 
and for a box foundation it is about 30 % of the total settlement. The permissible 
difference of settlement of brickwork walls, for a ratio of the height of the 
wall to its length H\L < 0.5, is according to Siemer L/200 and Ζ,/300 and for 
a ratio H\L > 1, he permits from L/400 to L/600. The lower values of the 
ratios relate to cohesionless soils and the higher values relate to foundations on 
cohesive soils. For reinforced skeleton structures a difference in settlement of 
//500 on cohesionless soils and //300 on cohesive soils is permitted, where / 
is the separation of adjacent columns of the frame. 

In practice we often come across a situation where the permissible or required 
values of settlement of one structure are a function of the settlement of another 
structure. The same applies to differences of settlement and sometimes also to 
the toleration of certain deflections of dynamically loaded foundations. 

Until now we have considered only the settlement of building foundations 
and structures resulting from static loads or loads which change only as much 
as the change in the live load, which is larger or smaller than the permanent 

- l
- + 

•Zls 

Fig. 3.1 The diagram of the measurement of the differences in the settlement of buildings 
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TABLE 3.1 

Ultimate values of the settlement of foundations (according to ÖSN 73 1001) 

The foundation soil consolidates 

very quickly slowly 
Type of building ( f or example, sands) (for example, clays) 

difference total difference total 
of settlement settlement of settlement settlement 

As/L s [cm] As/L s [cm] 

1. Buildings: 
panels

1
) 0.0005 6 0.0007 8 

(0.002) (7) (0.002) (5) 
bricks and blocks 0.0007 6 0.001 8 
bricks, block reinforced 
with concrete strips 0.001 8 0.0013 10 
reinforced concrete 
skeleton 0.0007 6 0.001 8 

As 11 s [cm] Λ si l s [cm] 

2. Structures: 
statically determinate 0.003 10 0.003 10 
statically indeterminate 
steel 0.0015 6 0.002 8 
statically indeterminate 
reinforced concrete 0.001 4 0.0015 6 

As/B s [cm] As/B s [cm] 

rigid and massive 
massive foundation 
to a height of 20 m 0.005 20 0.005 20 
higher than 20 m 
(chimneys) 0.002 10 0.002 10 

As/1 s [cm] As/1 s [cm] 

3. Crane tracks with bridge 
crane longitudinally and 
laterally 0.0015 — 0.0015 

l
) Values in brackets are according to Professor Simek, mentioned in the Proposed Code for 

the Foundations of Panel Housing. Difference of settlement values are used when there is 
strong no connection between adjacent vertical structures. 
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load by the same order of magnitude. We get a more complicated situation 
when the load alternates, i.e. when the foundation is alternatively subjected 
to tension and compression of such a magnitude that there is an adequate safety 
factor against depression, uprooting, displacement, etc. As the soil in the founda-
tion line can only resist compression, the tension forces are borne by the soil 
though the friction on the sides of the foundation. To enable the foundation 
to transfer forces by friction on its sides, there must be a certain displacement 
during which particles of the soil come into contact with the irregularities of the 
surface of the foundation. This causes the mobilization of friction. After a 
change in the direction of application of the force, the soil comes into contact 
with the irregularities of the surface of the foundation from the other side, as 
the foundation is slightly displaced in the direction of the applied force. If 
the foundation is being pulled outwards from the soil in the previous phase, then 
a small gap is created at the foundation line. This gap closes after a change in 
the direction of the applied force. The smaller the cohesion between the soil 
and the foundation, and the smaller the lateral pressure, the greater the move-
ment of the foundation. During the loading cycles the foundation moves and 
this alone may be not tolerable. Apart from that, the cyclic movements can 
cause a change in the mechanical properties of the soil near the foundation, 
especially if the groundwater level is higher. Usually there is a tendency to 
eliminate the alternating loading of the soil, for example by increasing the 
dead weight of the foundation, but sometimes, in the case of dynamic loading, 
a certain amount of movement of the foundation is allowed. 

According to ON 73 1020 Foundations for Machinery with Rotating 
Parts, the following amplitudes y of forced oscillations of a foundation for 
various revolutions are permitted: 

a) 750 rev/min (12.5 Hz) y = 0.10 mm 
b) 1 500 rev/min (25 Hz) y = 0.06 mm 
c) 3 000 rev/min (50 Hz) y = 0.03 mm 

From the public health point of view vibrations with a frequency between 2 
and 6 Hz are not allowed and the maximum velocity of the movement (ampli-
tude of velocity) of the foundation should not exceed ν = 2 mm/s, at most 
ν = 10 mm/s. The following relationship between frequency / , amplitude of 
deflection y, amplitude of velocity ν and the amplitude of acceleration a for a 
harmonic motion is valid 

>- = α/(2π/) 2 = ι>/(2π/) (3.1) 
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3.2 SAFETY FACTOR AGAINST THE SINKING OF A FOUNDATION 

When designing foundations the determination of the permissible load from 
the ultimate bearing capacity of foundations can be made in one of two ways. 
The ultimate bearing capacity qm is in the first case divided by the safety 
factor F, so that the permissible load 

(3.2) 

and in the second case the shearing parameters of the soil and the density of 
the soil are decreased, and the load i s increased by dividing or multiplying 
these values by a partial safety factor. In the first case the safety factor includes 
smaller shearing parameters than those which were measured in the soil samples, 
and the compression curve is taken into account. At first, the curve forms 
a straight line, then with increase of load the settlement grows first of all very 
slowly, then more or very suddenly as in the case of loading on sand. An 
adequate safety factor for a foundation soil formed by sand is F = 2. In the 
case of clay, after a short, straight-line relationship between the load and the 
settlement, the dependence forms a curve for which it is very difficult to determ-
ine the ultimate bearing capacity. Because of this we choose for clays a factor 
of safety F = 3 — 4. These values also include the inaccuracies contained in the 
determination of the shearing parameters, the density of the soil, the acting 
load, especially the live load, the creation of plastic ranges, the simplification 
of the method of calculation, etc. 

In the second case, partial coefficients are used, by which the acting load, 
the strength of the material and the parameters of the strength of the soil are 
multiplied or divided. The load produced by the building can be determined 
with a large safety factor. The same applies for water pressure, if we know the 
water level, and therefore the partial safety factor in these cases fg = 1. The 
partial safety coefficients according to the Danish standard are given in 
Table 3.2. 

A normal load is the sum of permanent and long-term live loads and wind 
pressure. An unusual load is the sum of permanent and live loads including 
unusual loads. A transient load is an unusual load at various stages of the 
building process, and the load in the case of temporary buildings. 

The input value is multiplied or divided by these coefficients in order to 
obtain less favourable values which lead to a greater safety of the structure. 
For example in the calculation of the bearing value of a foundation we take 
tan Φ = tan Φ// φ, cohesion c = c// c, wind pressure w = negative 
friction for piles tan Φ = tan Φ . / φ , etc. The advantage of the partial coeffi-
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cients is that their values depend on the variable reliability with which the 
different values can be determined. 

The permissible loading of foundation soil depends on factors related not 
only to the subgrade of the foundations, the character and size of the load, 
but also to the size, shape, distribution and rigidity of the foundations them-
selves, as well as to the rigidity of the upper structure of the building. If during 
the determination of the ultimate bearing capacity of a foundation the influence 
of an adjacent foundation is considered, it is necessary to consider the true 
values of the angle of internal shearing resistance of the soil and its density. 
Only in this way can the static calculation be made to correspond with the real 
case. The interaction of adjacent foundations depends mainly on the relative 

TABLE 3.2 

Partial safety factors / 

The value of the factor 

Symbol The partial factor is valid for 
if the load is 

normal
1
) unusual

2
) transient 

fe dead load hydrostatic pressure 1.0 1.0 1.0 

content of silos, load on surface of area 1.3 1.3 1.15 

live load 1.5 1.5 1.25 

L wind effect 1.5 1.0 1.25 

/Φ coefficient of friction (tan0) for the calculation /Φ 
of slope stability and earth pressure 1.2 1.1 1.1 

coefficient of friction for the calculation of flat 
foundations and piles 1.25 1.15 1.15 

fc cohesion for the calculation of slope stability fc 
and earth pressure 1.5 1.4 1.4 

cohesion for the calculation of the bearing calue 
of flat foundations 1.75 1.6 1.6 

cohesion for the calculation of the bearing value 
of piles 2.0 1.8 1.8 

fa friction on the skin of piles 2.0 1.8 1.8 

h the bearing value of tested piles 1.4 1.25 1.25 

the bearing value of other piles 1,6 1,45 1,45 

*) i.e. approximately equal to the basic combination of loads according to CSN 7300 35 
2
) i.e. approximately equal to the extreme combination of loads according to CSN 7300 35 
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positions of the foundations and on the shape of the rupture surfaces which 
are created when the ultimate bearing capacity is reached. The shape of the 
rupture surfaces depends on the angle of internal shearing resistance, and the 
foundations influence each other more and to a greater distance, in proportion 

TABLE 3.3 

The minimum safety factor F 

Failure when 
Load on foundation; Subgrade of foundation F ultimate state 
stability 

Subgrade of foundation 
is reached 

Vertical pressure Loose or homogeneous or bedrock 2 Sinking 
Cohesive and homogeneous or bedrock 
c < 10 kN/m

2 
2.5 

10 < c < 30 kN/m
2 

3 
c > 50 kN/m

2 
4 

Double-layer: loose and cohesive 3 
Double-layer: both cohesive 4 
Cohesive layer to a depth between 3B 
and D if D > 5B, lower down loose soil 2.5 
Gravel-sand cushion in a cohesive soil 2.5 

Vertical tensile force Any kind, also below groundwater level 1.5 Drawing-out 
Raising 

Horizontal force Any kind, during earthquake 1.5 Displacement 
Shearing 

Any kind, in other cases 2 

Vertical force and Any kind 2 Turning over 
moment 

Moment; vertical and Homogeneous and loose (simplified 2 Uprooting 
horizontal force very calculation according to Dembicky) (2.5) 
small 

Cohesive and homogeneous 
c < 10 kN/m

2 
2.5 

10 < c < 30 kN/m 3 
c > 50 kN/m

2 
4 

Stability of slope Homogeneous soil Sliding 
0 ^ c < 30 kN/m

2 
1.2 

c > 50 kN/m 1.4 

Movement of toe Any kind, homogeneous 1.8 Displacement 
of slope 



159 

to the increase of the angle Φ. The influencing of adjacent foundations of various 
widths and arrangements can cause not only a large increase, but also a decrease, 
of the bearing value. In such a case, the introduction of the reduced angle of 
internal shearing resistance into the calculation would lead to a decrease of the 
safety of the structure, since it means that we take into account a smaller 
decrease of the bearing value as a result of the influence of the adjacent founda-
tion than we would get in reality. We avoid this risk if, in the calculation, we 
use the true values of the shearing parameters Φ and c and if, for the determina-
tion of the tolerable load of the foundation soil, we use one safety factor F. An 
acceptable foundation is one for which the ratio of the ultimate vertical force 
Qm on the foundation surface, to the vertical component of the resultant of 
the outer forces, obtained from the least favourable regulation loads, is equal 
at least to the safety factor F, whose smallest values are given in Table 3.3. 
Factors F for different types of loads and forjudging the stability of slopes and 
the foot of a slope are also given. 



4. STRESS IN SOIL BENEATH BUILDING FOUNDATIONS 

4.1 D I S T R I B U T I O N O F L O A D S I N T H E F O U N D A T I O N L I N E 

When designing foundations of buildings which behave as continuous 
beams or slabs, we must determine whether or not the permissible stress of the 
material of the foundation is exceeded for the given, least favourable load. The 
assessment is based on the bending moments and the shearing forces in the 
dangerous section of the foundation. To be able to determine these values, 
it is necessary to know the true distribution of the load in the foundation level. 
This also influences the size and distribution of the stress in the soil on which, 
again, the magnitude of the settlement of the building depends. The distribu-
tion of the load in the foundation line depends mainly on the rigidity of the 
foundation and the rigidity of the whole building. 

Whether or not it is possible to consider the foundation in the direction 
of its width Β or its length L as rigid, is determined by the rigidity coefficient 
of Schultze 

where H is the height of the foundation, 
Β is the width of the foundation when judging a foundation in a lateral 

sense; when judging the foundation in a longitudinal sense we 
substitute the length of the foundation L instead of B, 

Ez is the elastic modulus of the material of the foundation, 
EQ is the elastic modulus of the soil, 
Ν is the rigidity number. 

If the section of the foundation slab has cavities, the elastic modulus of the 
material is multiplied by the ratio JZ\J'Z, 

where Jz is the moment of inertia of the full profile (no cavities) of the founda-
tion and 

J'z is the moment of inertia of the foundation profile with cavities, so 
that the coefficient of rigidity 

(4.1a) 

(4.1b) 
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J. Simek (1971) made an analysis of contemporary knowledge about the distribu-
tion of the contact stresses in the foundation line. He mentions that for Kt > 
> 0.25, it is possible to consider the foundation as perfectly rigid. Grasshof 
starts by assuming that the foundation is rigid then determines the distribution 
of the loads in the foundation line for a rigid foundation and calculates the 
deflection of the foundation structure. If the deflection is smaller than 1/10 of 
the total mean settlement, the structure behaves as if it were rigid, if the soil 
beneath the foundation reaches to a depth which is 1.7 — 2.0 times greater 
than the width (diameter) of the foundation. 

The distribution of the load in the foundation line is solved on the assump-
tion that the outer load must be in equilibrium with the stress in the foundation 
line, and that as a result of the acting load the vertical displacement of each 
point of the foundation must be of the same magnitude as the settlement of 
the soil beneath this point. For a non-rigid foundation, it is also necessary to 
consider the rigidity of the upper part (German, Überbau) of the building. The 
distribution of the load in the foundation line is determined, for example, by 
the method of imaginary members, the method of Kany, or the method of 
Glick. These methods lead to the solution of rather extensive systems of equa-
tions, which today are solved by computer. If the foundation is not yielding, then 
the distribution of the load formed in the foundation line is different from the 
load due to the upper part of the building. The difference increases in proportion 
to the increase of the rigidity of the foundation. Thin foundation slabs and 
strip foundations are usually not perfectly rigid in a longitudinal sense, if the 
load acts only in some places (loading by individual columns, etc.). The rigidity 
of the foundation is judged according to equation (4.1), where we replace the 
width of the foundation Β by its length L. For the determination of the contact 
stress below a non-rigid foundation, a comprehensive method was derived by 
Grasshoff (1966). A strip foundation with a width Β is divided into / equal 
parts and the diagram of the distribution of the loads q(y) is replaced by 
triangular loads as in Fig. 4.1. The continuous curve of the contact stresses 
q{y) is thus replaced by a broken line given by the ordinates q{i). The greater 
the number of parts i chosen, the more accurate the determination of the 
contact stress, but the calculation is more lengthy. In normal cases it is suf-
ficient to divide the foundation into 5 to 10 parts. We start from the curve of 
the final subsidence sy, which is given for each point y by the expression 

For point j> = 2 and for a division of the strip foundation into 10 parts (/ = 10) 

(4.2) 

* 2 = / « 2 - h i + 0.8s0 + 0 . 2 5 , ο 



162 

The deflections fay,fby can be easily determined by the procedure described 
further on (according to Grasshoff), if the upper part of the building is static-
ally determinate or is substantially more yielding than the foundation. 

The deflections fay of a foundation (for example, a strip foundation) are 
determined according to building mechanics in the same way as for a simple 

contact stress q(y) 

curve of total settlement sy 

Fig. 4.1 Diagram for the calculation of the distribution of the load in the foundation line 

beam supported at the extremities y = 0 and y = i. The beam is loaded by a 
vertical force Q, which includes the weight of the foundation, by the moments 
Af, and if necessary also by other loads applied to the foundation from above. 

Deflections fby caused by values to be determined of the contact stress in the 
foundation line are determined according to the same principles as the deflec-
tions fay. The load is formed by triangular loading surfaces at the points /. In 
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Fig. 4.1 this surface is marked by a dotted line for point / = 2. The deflection 
fby at point y is the sum of the partial deflections fbyi. The following relationship 
is valid 

b-kfaJi**0 <4-3> 

where 9yi is the influence factor of the deflection of point y from contact 
forces to be determined, distributed triangularly in the vicinity of points i. 
The influence factors are determined from the partial deflections fbyi9 assuming 
unit ordinates, i.e. the heights of the triangular loads. If a number of parts 
ι ^ 8 is chosen, it is possible, during the calculation of & yh to replace the trian-
gular loads at points / by concentrated forces acting at points z. At point / = 0 
and / = ï we get Qz = L/2zT, at other points we get Qz = Ljî. For a constant 
rectangular section (EZJZ are constant; Β = 1), a formula for the calculation 
of Syi in the following form was derived 

»yi = 2Qzy(I - i) (2*7 - i2 - y2)/ï\ if y = i. 

At points y > i we proceed in a similar way from the other side of the beam. 
The calculated values l09yJQz are given in Table 4.1 for a foundation divided 
into 8 parts. 

TABLE 4.1 

Influence factors \0&yi/Q2 for a rectangular section; EZJZ = constant; Β = 1; J = 8 

part ι 

y 0 1 2 3 4 5 6 7 8 

0 0 0 0 0 0 0 0 0 0 
1 0 0.48 0.79 0.93 0.92 0.79 0.57 0.30 0 
2 0 0.79 1.41 1.71 1.72 1.49 1.10 0.57 0 
3 0 0.93 1.71 2.20 2.29 2.03 1.49 0.79 0 
4 0 0.92 1.72 2.29 2.50 2.29 1.72 0.92 0 
5 0 0.79 1.49 2.03 2.29 2.20 1.71 0.93 0 
6 0 0.57 1.10 1.49 1.72 1.71 1.41 0.79 0 
7 0 0.30 0.57 0.79 0.92 0.93 0.79 0.48 0 
8 0 0 0 0 0 0 0 0 0 

The subsidence sy of point y is calculated under the characteristic points 
of the foundation. Here the contact stress in the direction of the width Β is 
almost independent of the rigidity of the foundation. For strip foundations 
this condition is fulfilled approximately at a distance of 0,375 from the axis 
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of the foundation. The settlement beneath the characteristic point of the 
foundation 

1 1
0 i = 0 i = 0 

£ y i is the influence factor of settlement in point y, caused by a contact load 
q(i) to be determined, acting at point /. The influence factor is an EQ multiple 
of the settlement at point y caused by an unit load increment acting in the 
foundation line in the vicinity of point i to a distance of L/2i, i.e. if the load 
increment in the foundation line is (1 — y2D) in kN/m 2. [For greater depths 
of foundation it is better to use a load increment (10 — 7 2 ^ ) » etc.] The equation 
(1.12) has an universal application and the calculation is simplified, for example, 
by equation (1.24) or (1.25). 

Table 4.2 gives the influence factors £ y // ß z , determined from equation (1.24) 
for a rectangular foundation with a ratio of sides 1 : 8, based on the ground 
surface, if I = 8; ν = 0.35; 2? = 1. The table also gives the values of factor ξν 

according to equation (4.9). During the calculation of values ξγί and ξγ it is 
necessary to start with the ration of the sides of the foundation sections in the 
vicinity of point /. In our case, the central sections are square and the end 
sections are rectangular with a ratio of the sides 0.5. 

For the calculation of ordinates q(i) of the contact stress at the points 
located by coordinates / = 0; 1 ; ... i, we get by substitution from equation (4.2) 
a system of equations 

TABLE 4.2 

Influence factors £ y i/ (? z and factors £ y for a rectangular foundation (L/B = 8), if D = 0; 
ν = 0.35; B= 1; î = 8 

part 

y 

i = 0 1 2 3 4 5 6 7 8 
y 

for / = 0 to 8 

0 0.28 0.17 0.08 0.05 0.04 0.03 0.03 0.02 0.02 0.071L 
1 0.15 0.56 0.17 0.08 0.05 0.04 0.03 0.03 0.02 0.130L 
2 0.08 0.17 0.56 0.17 0.08 0.05 0.04 0.03 0.0J 0.145L 
3 0.05 0.08 0.17 0.56 0.17 0.08 0.05 0.04 0.03 0.149L 
4 0.04 0.05 0.08 0.17 0.56 0.17 0.08 0.05 0.04 0.150L 
5 0.03 0.04 0.05 0.08 0.17 0.56 0.17 0.08 0.05 0.149L 
6 0.03 0.03 0.04 0.05 0.08 0.17 0.56 0.17 0.08 0.145L 
7 0.02 0.03 0.03 0.04 0.05 0.08 0.17 0.56 0.15 0.130L 

CO 0.02 0.02 0.03 0.03 0.04 0.05 0.08 0.17 0.28 0.071L 
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(4.5) 
i = 0 

where the auxiliary functions 

(4.6) 

(4.8) 

(4.7) 

(4.9) 

(4.10) 

Apart from equations (4.5), a cumulative condition in a vertical sense is used 
for the calculation of the values of the distribution of the load q(i) 

and if necessary also a moment condition, for example, to the end-point of the 
beam. 

The distribution of the load, determined in this way, is non-uniform along 
the foundation. The calculated distribution of the load is a mean value for 
the width of the foundation. If it is also necessary to know the distribution of 
the stress accurately in a lateral direction, then this distribution must be determi-
ned separately with a view to the rigidity of the foundation in a lateral sense. 
The advantage of this method is that it takes into account the depth of founda-
tion, the changes in shape and section of the foundation and the true values of 
settlement in the given geological conditions (the influence of the stratification 
of the subgrade, etc.) and also the fact that the vicinity of the foundation 
settles, as a result of the load increment, far less than the foundation itself. 

With the exception of very thin foundation slabs beneath frame structures, 
foundations are usually almost rigid across their width. For rigid foundations, 
the determination of the stress distribution for a plastic-elastic state, introduced 
by Schultze (1961), is appropriate. It combines the solution for a plastic state 
according to Prandtl and Buisman with the solution according to Boussinesq 
(and if necessary as supplemented by Borowicka by the influence of the ec-
centricity of the load) for an elastic state of the subgrade. The procedure is 
as follows. Firstly, the stress for the plastic state of the soil in the subgrade, 
which is applied at the edges of the foundation, is determined in the foundation 

( 4(0) + q(î))LI2ï + Σ Lq(i)ll + Σ β = 0 (4.11) 
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line of a unit length footing. For a small eccentricity e < 0.255, the value of 
the stress q(x) in the examined point of the foundation line at a distance χ 
from the axis of the strip foundation is 

In this way the stress is limited at the edge of the foundation and it can reach 
only a certain maximum if the soil is in a plastic state. The nearer the mean load q 
of the foundation is to the ultimate bearing capacity qm, the larger the plastic 
ranges. If q < qm, then in the vicinity of the centre of the strip foundation the 
distribution of the stress is calculated for an elastic state. For e ^ 0.255, 
the value 

q(x) = ylNrB(l - 2x1 B) + y2DNq + cNc 
(4.12) 

q(x) = 
2q0(l + Sex/B2) 

(4.13) 
π V i - (2x/Β)2 

χ 

f 

f 

f 

B 

B*/2 

i - A — t — t 
B/2 

η(χ) according 

to equation (413) 

cj(x) according 

to equation M2) 

Fig. 4.2 Diagram of the distribution of the load in the foundation line of a rigid strip 
foundation, if the point of application of the resultant of the load Q has an eccentricity 
e > 0.25B 
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The diagram of the distribution of the load in the foundation line is bounded 
at each point by the smaller of the ordinates q(x), calculated according to 
equations (4.12) and (4.13). The surface of the load distribution in the founda-
tion line must be equal to the surface q. 5 . To fulfil this condition we must, 
during the calculation of equation (4.13), estimate the size of the load in the 
foundation line q0 to be able to determine the stress transferred in the central 
part of the foundation during an elastic state of stress. The distributtion of the 
load and the size of this surface is determined from the estimated q0. If this 
surface is not approximately equal to the surface q . Β then we must estimate 
another value of the load q0 and determine the distribution of the load again, 
until adequate agreement of the surface is obtained. If the eccentricity of the 
load on a rigid foundation is large, the foundation is uprooted from the soil 
on one side. This state is found, according to Borowicka, for an eccentricity 
e > 0.255, when the compressive stress is applied only in the effective width 
of the foundation line 5 * = 2(5 — 2e). The distribution of the load in the 
foundation line is determined as for a foundation with a width 5 * and an 
eccentricity of the acting load e* = 0.25 5 * (Fig. 4.2). Equations (4.12) and 
(4.13) are used in which we substitute e* for e; 5 * for 5 ; χ* = χ + 5/2 — le 
for x; q* = q0BIB* for q0. 

Equations for the determination of the distribution of the load for a circular 
foundation were derived according to the same principles as for the determina-
tion of the distribution of the load under a rigid strip foundation. For a rigid 
circular foundation loaded centrally or with a small eccentricity e :g r/3 the 
following is valid: 

q(x,r) = LSyiN/(\ - r/r) + y2DNq + l.3cNe (4.14) 

q(x, r) = — v (4.15) 
2 Vi - (r/r)2 

where r is the diameter of the foundation, 
r is the radial distance of the point where the contact stress is being 

determined from the centre of the foundation, 
χ is the distance from the centre of the foundation, measured in the 

direction of the axis χ of the point where the contact stress is being 
measured. 

the χ axis is oriented in such a way that the point of action of the resultant of 
the load lies upon it. 

Contact stresses in the foundation line form a body above the ground-plan 
of the foundation, which is bounded by the smaller of the values on the ordi-
nates, determined for individual points of the foundation surface, according to 
equations (4.14) and (4.15). The load q0, used for the determination of the 
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stress in the vicinity of the centre of the foundation during an elastic state of 
stress, is determined from the condition that the volume of the body of the 
contact stresses must be equal to the volume 

V = q0nr2 (4.16) 

if qQ is the mean stress on the foundation surface. The volume V of the body 
of the contact stresses is 

τ/= ' j q(x;r)axar (4.17) 
x- -r r= —r 

For an approximate calculation of the integrals, the ground-plan of the founda-
tion is divided by a grid and the mean value of the contact stress in the centre 
of each element of the grid is determined. The volume of the whole body of the 
contact stresses is equal to the sum of the volumes above the elements of the 
grid. To determine the vertical stresses in the subgrade, it is advantageous to use 
the method of Newmark (Sec. 4.2). 

Example 4.1 

The curves of the load distribution in the foundation line are illustrated in Fig. 4.3 which 
shows the load distribution for a strip foundation (Ez — 21 000 000 kN/m

2
) with a width 

Β = 1 m, a height H = 0.5 m and a length L = 10 m. The strip foundation is loaded by 
vertical-swing stanchions, which act with a force of 250 kN at the end points of the foundation 
and with a force of 500 kN at the centre. The depth of foundation D = 0. The foundation 
soil is formed by firm clay, whose Φ = 10°,c = 50 kN/m

2
, γ = 21 k N / m

3
, £ 0 - 2630kN/m

2
. 

In a longitudinal direction, the coefficient of rigidity 

21 000 000. 0.5
3 

χ = 0.083 < 0.25 (according to Eq. 4.1 ) 
' 1 2 . 2 630. 10

3 

so that the foundation is not rigid longitudinally. Therefore the longitudinal distribution of 
the load was determined according to GrasshofT (Fig. 4.3a). At the ends of the footing the 
soil is subjected to a load of 270 kN/m and in section A — / l 'a load of 80 kN/m

2
 is applied. 

These values are always average values for the whole width of the foundation in the examined 
point. 

In a lateral sense, the section A — Ä is examined. In this section a mean load a = 
80 kN/m

2
 is applied. The coefficient of rigidity, in the lateral sense 

21 000 000. 0.5
3 

Kt = == 83 > 0.25 (according to Eq. 4.1) 
' 1 2 . 2 630. I

3 

which means that in the lateral sense the foundation is rigid. The distribution of the stress 
was determined using equations (4.12) and (4.13) and a curve, according to Fig. 4.3b, was 
obtained. At the centre of section A — A ' there is a load on the soil of 40 kN/m

2
 and at the 

sides, where plastic ranges are already being created in the soil, the load is as much as 
490 kN/m

2
. Similarly it would also be possible to examine the distribution of the load in the 

ether sections of the strip foundation. 
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The example shows the importance of the rigidity of the foundation for the distribution 
of the load in the foundation line. Although the mean load in the given example is only 
100 kN/m

2
, in some places of the foundation surface there is a load as much as five times the 

size, and in other places it reaches less than half the value. 

a) 1-4M 

E 250kN 
3 L L/2-5r 

100 

200 

300
L 

kN/m
2 

500 kN 

L/2*5m 
250 kN 

0 = SO kN/m
2 

1 1 

\ \ 
H(y) \ 
/ \ f 

*- Kjr=0.C83 

Β » 1m 

[c-eokN/m
2 

Ε 0=2625 kN/m? 

[J calculated η(χ) 

<l(x) accord ι nq 

to equation (4.13) 

£j(x) according 

to equation (4.12) 

Fig. 4.3 The distribution of the load in the foundation line of a strip foundation (in Example 
4.1); a) mean stress in a longitudinal direction (1 : 4M), b) distribution of the stress in cross— 
section Λ — A' (1 : M) 

4.2 STRESS IN THE SUBGRADE OF FOUNDATIONS 

The permissible load qp in the foundation line is often two to three times 
smaller than the ultimate bearing capacity. For a load qp, determined in this 
way, the relationship between the stress and strain of the foundation soil is 
approximately linear and the elastic state of stress is located in the extensive 
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central part of the foundation line. If the distribution of the stress in the founda-
tion line is known, it is possible to determine the vertical, horizontal and shearing 
stress at an arbitrary point M below the level of the foundation line, according 
to elastic half-space theory. 

For a general load q(x) of a strip foundation with a width 5 , which is 
placed on the ground surface (Fig. 4.4a), there is at point M, which lies at a 
depth ζ and a distance χ from the axis of the foundation, a vertical stress 

dx 2 Z3 x + B/2 

π
 x-B/2 (Χ

2
 + Z

2
)

2 

(4.18)1) 

Fig. 4.4 Stress in soil for a load on the surface 

x2 âx 

a horizontal stress 

π χ - Β / 2 ( Χ
2
 + Ζ ) 

and a shearing stress, which is applied in a horizontal and vertical plane passing 
through point M 

2z 2 i +, " 2 _ xdx 
ί φ ) 

x-B/2 (*2 + ζ 2 ) 2 

(4.20)1) 

x
) The curve q(x) of the load can always be at least for certain sections of the interval 

(χ — Β/2, χ + B/2>, replaced with sufficient accuracy by q(x) = p0 + pxx + p2x
2
 + p 3 *

3
. 

During the calculation of the stresses σχ, oy, τζχ we then obtain integrals of rational functions: 
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If on the ground surface there is a horizontal line load q (Fig. 4.4b), then at 
point M there is a vertical stress 

2q z2x 

π (x2 + z2)2 

a horizontal stress 

2q_ 

* (x2 + z2)2 

and a shearing stress 

Ατ2Χ = ΑτΧ2 = 1 * - - / * * 7 , (4.23) 
π (χ 2 + ζ 2 ) 2 

The total vertical stress 

σ ζ = σ'ζ + uw + 2ΐσ ζ (4.24) 

and the total horizontal stress 

σχ = Κ0σ'ζ + ww + /Ισ χ (4.25) 

where σ ζ is the effective vertical stress at a depth z, 
uw is the neutral water stress at a depth z, 

K0 is the coefficient of earth pressure at rest. For cohesionless soils 
K0 = 0.4 to 0.5; for cohesive soils KQ = 0.66; or we take, accord-
ing to Jâky K0 = 1 — sin Φ. This is valid for normally consolidated 
soils which have not been artificially compacted. At a small depth, 

s 
ί 
ί 
ί 
ί 

χ άχ 1 

~χϊ~ ~ΐχ 

χ
2
 άχ Υ χ 

Χ
2
 2ζ 2Χ 

χ
3
 άχ 1 

— In I Χ Χ
2
 2 2Χ 

χ*άχ _ χ
3 

Χ
2
 ~ ~Υ

 +
 ~2Χ 

χ
5
 άχ χ

4
 ζ

4 

Χ
2
 ~ ~2Χ

 +
 ~Υ 

— ζ
2
 In I Χ\ 

where Χ = (χ
2
 + ζ

2
) 

Υ = arctan (x/z)y i.e. tan Y = χ/ζ 
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as a result of compacting, overconsolidation, etc., we may get as 
much as K0 = 1/(1 — sin Φ), as shown also by field tests (Mas-
sarsch 1975 and others).2) 

From the components of the stress ax, ay, τΣΧ at the point M, the normal stress 
σ„ and the tangential stress τ acting at point M o n a surface inclined to the 
horizontal by an angle a 0 (Fig. 4.4c), are determined using the following rela-
tionships : 

ση = σχ sin2 α 0 + σζ cos 2 α 0 -f τ2Χ sin 2α 0 (4.26) 

τ = (σχ — σζ) sin α 0 cos α 0 + τζχ cos 2α 0 (4.27) 

1 
Η 

2 

ζ 

r " i ? L 

> 

Fig. 4.5 Diagram for the determination of the vertical stresses Δ σ ζ under the edges of a strip 
foundation loaded by a horizontal force Η 

For the vertical stress under the edges of an infinitely long strip foundation 
with a width B, if at the foundation line a uniform horizontal load Η is applied, 
the following equation is derived 

±Δσζ = ±JL J—^ = ±JL i wr (4.28) 
B π(1 + cot 2 β) B 

The sense of the designations is apparent from Fig. 4.5. The stress Ασζ, which 
is caused by the horizontal load on the foundation, is on a vertical passing 
through the edge 1 of the foundation negative ( — Δσζ) and on a vertical passing 
through the edge 2 of the foundation positive ( + Ασζ), i.e. the soil is compressed. 

2
) PruSka (1971 — 1975) mentions for coefficient K0 an interval tan ^45°— ^ K0 

^ tan ^45° + 
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TABLE 4.3 

Coefficients iwr for various ratios zjB 

z/B 0.0 0.25 0.50 0.75 1.000 1.50 2.00 3.00 4.0 6.0 

'wr 0.318 0.300 0.255 0.204 0.159 0.098 0.064 0.032 0.019 0.009 

Loads are often inclined to the foundation. The load can be resolved into a 
vertical and horizontal component. The vertical load produces a vertical 
stress ΔζσζΑ at point MA, the horizontal component produces a vertical stress 
ΔχσζΑ, which has a negative value beneath the edge A of the foundation, so 
that below this edge the load causes a stress ΛσζΛ = ΔζσζΑ — ΔχσζΑ. Below 
the other edge Β a sum of both the stresses ΔσζΒ = ΔζσζΒ + ΔχσζΒ is applied. 
Further, below the edges A and Β there is the vertical stress due to the soil 
itself y . ζ (Fig. 4.6). 

Β-0Απ) 

Fig. 4.6 Vertical stress at a depth ζ caused by an inclined line load 

For a stress beneath both the edges determined in this way, the compression 
of the soil and the settlement of the building are calculated. Since on the vertical, 
beneath the edge A of the foundation, there is a smaller stress than beneath 
edge B, the foundation settles and tilts. 
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The case where the load in the foundation line acts at an angle in a plane 
at right angles to the longitudinal axis of the foundation, is often found in 
technical practice. The resulting tilt of the foundation can be avoided if the 
foundation is designed in such a way that the resultant of the inclined load 
acts eccentrically. According to Gamier (1973) the foundation will not tilt if the 
resultant of the inclined load intersects the axis of the foundation below the 
foundation line at a depth ζ = 0,0585 in the case of a strip foundation and 
ζ = 0,0355 in the case of a square foundation, if Poisson's ratio ν = 0,040. 
For ν = 0,2 we get z = 0,131 5 for a strip foundation and ζ = 0,080 5 for 
a square foundation. 

According to Boussinesq, Newmark (1935) determined the vertical-load 
increment Δσζ at point M(x, z) due to the load on the surface. The basic 
relationships are 

Ασζ = (1 — cos 3 a)/m; tan α = x\z (4.29) 

A circular diagram is constructed, which consists of η annuli and m sectors 
of a circle of the same size. The radii of the dividing circles, which are equal 
to the lengths x, are calculated in such a way that the expression (1 — cos 3 a) 
grows uniformly from 0 to 1, for example by 0.05 for a specific z, from circle to 
circle. The depths ζ acts as a scale of the diagram. When determining the vertical 
stress at point M, the diagram is placed on the plan of the building in such a 
way that the centre of the diagram lies on point M. The plan of the building 
must be drawn to the same scale as the diagram. For each depth ζ of the point 
M from the surface, it is necessary to draw the plan of the foundation on a 
different scale, so that the abscissa ζ (marked on the diagram) corresponds to 
another depth of the foundation considered. The number Ν of the elements 
on the diagram covered by the plan of the loaded surface is determined. In 
each element Nt of the influence grid, a mean acting load qt is assumed. In the 
adjacent elements a load of a different size may be applied and this enables 
the graded replacement of the non-uniform load on the foundation surface. 
The elements of the grid of the diagram are influence surfaces with values of 
\\m .n. The total load increment Δσζ due to the load on the surface 

Ασζ — —-—ΣΝ,-^ί (4.30) 
m.η 

In Fig. 4.7 there is a diagram, constructed for an influence value of an 
element of the grid \\m . η = 0.002. The number of sectors chosen is m = 25 
and the number of the annuli η = 20. The radii of the circles, shown in the 
illustration, correspond to the gradient of the expression (1 — cos 3 a) by a 
factor 0,05. The abscissa z, which acts as a scale for the diagram, is marked 
by a heavy line. 
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Example 4.2 

The vertical stress at point M, which lies on the axis of the longer side of the foundation 
at a distance of 1 m away from it and at a depth ζ = 2.5 m below the surface, is to be de-
termined for a yielding foundation, whose dimensions are 2 x 3 m and in whose foundation 
line there is an approximately uniform stress q = 350 kN/m

2
 (Fig. 4.7). The density of the 

soil is 20 kN/m
3
. The number of the covered elements TV, = 61.5. According to equation 

(4.30) the vertical-load increment Δσζ = 61.5 . 350/25 . 20 - 43 kN/m
2
. The vertical stress 

Fig. 4.7 Nomogram for the determination of the vertical stress in a homogeneous soil 
loaded on the surface 



176 

at point M from the dead weight ζ . γ = 2.5 . 20 = 50 kN/m
2
, so that after loading by the 

building we get a total vertical stress at the point considered az = 50 + 43 = 93 kN/m
2
. 

If we want to calculate the vertical stresses due to the load in a double-layer 
subgrade, whose upper layer has a deformation modulus E0i and lower layer 
has a deformation modulus E02, we replace the depth of the upper layer h by 

and for this new surface we try to find the stress at a depth ζ r, as though 
in the subgrade there was only soil of the lower layer. The stress at the top of 
the lower layer, whose E02 < E0l, is smaller then if the soil was homoge-
neous and had a constant deformation modulus E02. (See also Appendix I.) 

Up to now in the calculation of the stress in the subgrade of a building 
we have assumed a load acting on the surface of the area. The influence of 
the depth of foundation on the size of the vertical stress σζ was studied by 
Melan (1932), Mindlin (1936), Széchy (1963), Kézdi (1964) and others. From 
published works it follows that, for foundation based below the surface, there 
is a reduction of the vertical stresses in the soil beneath the foundations as 
a result of the interacting of the soil above and below the foundation line. 
This reduction in the axis of a strip foundation, has for cohesive soils a ma-
ximum value at a depth approximately equal to the width of the foundation. 
The vertical stress at a depth D = B\2 is approximately 75 %, and at a depth 
D = 2.5B about 50 % of the vertical stress which would be created in the 
soil by the same load, if it were applied on the surface (D = 0). At a greater 
depth the vertical stress gradually approaches the stress caused in the soil 
by a load on the surface irrespective of the depth of foundation. 

To the sides of the axis of the strip foundation for a separation 
χ = 0.8(z — D) of the examined point and the axis of the foundation, where 
ζ is the depth of this point below the surface and D is the depth of foundation, 
the depth of foundation has barely any influence on the size of the vertical 
stress in the soil. If the examined point is at a depth (z — D) below the founda-
tion, nearer to the axis of the foundation, the vertical stress caused by the 
surface load is greater than the stress caused by the load acting at a depth 
D > 0. For a separation χ > 0.8(z — D) of the examined point and the axis 
of the foundation, the vertical stress caused by the surface load is smaller 
than the stress caused by a load acting at a greater depth. In the case of cohe-
sionless soils, the influence of the depth of foundation on the size of the vertical 
stress is substantially smaller than in the case of cohesive soils. 

Tables for the calculation of the stress in the soil in some cases are given 
in Appendix I. 
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(SUPPLEMENT TO CHAPTER 2.4) 

Diagram of notations and legend to tables 177 

Tables of factors a y, otq of the interaction of adjacent foundations: 

I. For BJBn from 0.25 to 4.0 if SI Β = 0 179 
II. For SIB = 0.6; BJBn = 4 : 1 and various angles Φ 180 

III. For S/B = 0.6; BJBn = 2 : 1 and various angles Φ 188 
IV. For S/B =- 0.6; BxIBn = 1 : 1 and various angles Φ 196 
V. For SIB = 0.6; BxIBn = 1 :2 and various angles Φ 206 

VI. For SIB = 0.6; BJBn = 1 :4 and various angles Φ 214 

DIAGRAM OF NOTATIONS A N D LEGEND TO TABLES 

S = l~B 

'iimijiiiiii 

B-(B1 + B2)/2 Fig. T.l Notation for adjacent foundations 

The diagram showing the designations of the dimensions of two adjacent 
foundations is in Fig. T.l. Foundation I is the foundation for which the ultimate 
bearing capacity is being determined. The adjacent foundation is designated II. 
The following relationships are valid: 

Β = (Β, + Bn)/2 
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The auxiliary function f(Dx — Dxx) is: 

1. CD, - Dxx)/Dx for DXIBX > 1, if (Dx - DX]) > 0 
2. (Dx — Dxx)jBx in the other cases 

For intermediate values BXIBXX, Φ, SjB,f(Dx — Dxx) not given in the tables, the 
values of factors <xy and <xq are determined by linear interpolation. In Tables II 
to VI the factor a y is always given in the upper row and the factor otq in the 
bottom row. 

For example : For the proposed foundations in a soil with an angle of internal 
shearing resistance Φ = 30° the following dimensions were chosen : Bx = 0.8 m; 
Dx = 1.5 m; Bxx = 1.6 m; Dxx = 1.2 m ; S = 2.4 m. The factors of interaction 
of the two foundations a y, oiq are sought. 

We calculate : 

BXIBXX =0.8/1.6 = 1 :2 

Β = (0.8 + 1.6)12 = 1.2 m 

SIB = 2.4/1.2 = 2 

DJBi = 1.5/0.8 = 1.875 

Dx - Dxx = 1.5 - 1.2 = 0.3 m 

Because DXIBX > 1 and simultaneously (Dx — Dxx) > 0, the value of function 
f(Dx — Dxx) is determined from the relationship (Dx — Dxx)jDx = (1.5 — 
- 1.2)/1.5 = 0.2. 

From Tables V. (the group for BxIBlx = 1 : 2) we use the table for the angle 
of internal shearing resistance Φ = 30°. For SjB = 2 and f(Dx — Dxx) = 0.2 
we find in the table values a y = 2.339 and ccq = 1.071. For the simple determina-
tion of the factor ctc the following Table Τ 1 was drawn up, using equation 
(2.74) and Table 2.10. Values of factors ccc are a function of Φ and ccq. 

TABLE Tl 

Factor <xc as a function of Φ and ocq 

Φ 
0.40 0.60 0.80 1.00 1.20 1.40 1.60 

0° 1.00 1.00 1.00 
10° — — 0.68 
20° — 0.54 0.77 
^ 25° 0.40 0.60 0.80 

1.00 1.00 1.00 1.00 
1.00 1.32 — — 
1.00 1.23 1.46 — 
1.00 1.20 1.40 1.60 
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<Xy for various values of BijBu 

f{Di — Dn) OCq 

4 : 1 3 : 1 2 : 1 1 : 1 1 : 2 1 : 3 1 : 4 

1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.8 1.074 1.099 1.149 1.297 1.595 1,892 2.189 1.000 

0.6 1.140 1.186 1.280 1.559 2.119 2.678 3.238 1.000 

0.4 1.195 1.260 1.390 1.781 2.561 3.342 4.223 1.000 

0.2 1.238 1.317 1.476 1.952 2.903 3.855 4.807 1.000 

0.0 1.250 1.333 1.500 2.000 3.000 4 .000 5.000 1.000 

—0.2 1.238 1.317 1.476 1.952 2.903 3.855 4.807 1.000 

—0.4 1.195 1.260 1.390 1.781 2.561 3.342 4.223 1.000 

—0.6 1.140 1.186 1.280 1.559 2.119 2.678 3.238 1.000 

—0.8 1.074 1.099 1.149 1.297 1.595 1.892 2.189 1.000 

—1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

—1.5 0.766 0.742 0.705 0.628 0.531 0.464 0.410 0.628 

—2.0 0.646 0.611 0.554 0.439 0.293 0.190 0.109 0.439 

—2.5 0.608 0.569 0.507 0.378 0.217 0.104 0.013 0.378 

— 3 . 0 0.624 0.586 0.526 0.402 0.247 0.138 0.051 0.402 

—4.0 0.729 0.702 0.659 0.570 0.459 0.380 0.318 0.570 

—5.0 0.850 0.835 0.811 0.762 0.701 0.657 0.623 0.762 

—7.0 0.991 0.991 0.989 0.986 0.983 0.980 0.978 0.986 

—10.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

TABLE I 

For (BilBn) from 4.0 to 0.25 for S/B = 0 
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TABLE II 

Angle of internal friction of the soil Φ = 10.0° 
Group BilBu = 4 : 1 

S/B 
f{Di-Dn) 

0.6 0.9 1.2 1.5 2.0 2.5 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

—0.2 

—0.4 

—0.6 

—0.8 

—1.0 

—1.5 

—2.0 

—2.5 

—3.0 

- 4 . 0 

—5.0 

—7.0 

1.000 
1.000 

1.040 
1.000 

1.074 
1.000 

1.104 
1.000 

1.127 
1.000 

1.139 
1.000 

1.127 
1.000 

1.104 
1.000 

1.074 
1.000 

1.040 
1.000 

1.000 
1.000 

0.945 
0.922 

0.918 
0.882 

0.909 
0.869 

0.912 
0.874 

0.937 
0.909 

0.965 
0.950 

0.998 
0.997 

1.000 
1.000 

1.047 
1.000 

1.089 
1.000 

1.125 
1.000 

1.152 
1.000 

1.167 
1.000 

1.152 
1.000 

1.125 
1.000 

1.089 
1.000 

1.047 
1.000 

1.000 
1.000 

0.943 
0.922 

0.914 
0.882 

0.905 
0.869 

0.909 
0.874 

0.934 
0.910 

0.964 
0.950 

0.998 
0.997 

1.000 
1.000 

1.052 
1.000 

1.098 
1.000 

1.137 
1.000 

1.167 
1.000 

1.184 
1.000 

1.167 
1.000 

1.137 
1.000 

1.098 
1.000 

1.052 
1.000 

1.000 
1.000 

0.942 
0.922 

0.912 
0.883 

0.902 
0.870 

0.906 
0.875 

0.933 
0.910 

0.963 
0.950 

0.998 
0.997 

1.000 
1.000 

1.054 
1.000 

1.101 
1.000 

1.142 
1.000 

1.173 
1.000 

1.189 
1.000 

1.173 
1.000 

1.142 
1.000 

1.101 
1.000 

1.054 
1.000 

1.000 
1.000 

0.940 
0.923 

0.910 
0.884 

0.901 
0.872 

0.904 
0.877 

0.931 
0.912 

0.962 
0.951 

0.998 
0.997 

1.000 
1.000 

1.051 
1.000 

1.095 
1.000 

1.133 
1.000 

1.162 
1.000 

1.178 
1.000 

1.162 
1.000 

1.133 
1.000 

1.095 
1.000 

1.051 
1.000 

1.000 
1.000 

0.940 
0.926 

0.909 
0.888 

0.899 
0.877 

0.903 
0.881 

0.930 
0.915 

0.962 
0.953 

0.998 
0.997 

1.000 
1.000 

1.042 
1.000 

1.080 
1.000 

1.111 
1.000 

1.135 
1.000 

1.149 
1.000 

1.135 
1.000 

1.111 
1.000 

1.080 
1.000 

1.042 
1.000 

1.000 
1.000 

0.941 
0.930 

0.911 
0.895 

0.901 
0.883 

0.905 
0.888 

0.932 
0.919 

0.962 
0.955 

0.998 
0.997 
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3.0 3.5 4.0 5.0 6.5 10.0 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.032 1.021 1.011 0.999 0.995 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.059 1.039 1.021 0.999 0.991 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.083 1.054 1.030 0.998 0.988 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.101 1.066 1.036 0.998 0.985 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.111 1.073 1.040 0.997 0.983 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.101 1.066 1.036 0.998 0.985 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.083 1.054 1.030 0.998 0.988 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.059 1.039 1.021 0.999 0.991 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.032 1.021 1.011 0.999 0.995 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.944 0.948 0.953 0.963 0.976 0.991 
0.935 0.941 0.948 0.961 0.975 0.991 

0.915 0.921 0.928 0.944 0.964 0.987 
0.902 0.912 0.922 0.941 0.963 0.987 

0.906 0.913 0.921 0.938 0.960 0.986 
0.892 0.902 0.913 0.934 0.959 0.985 

0.909 0.916 0.924 0.941 0.962 0.986 
0.896 0.906 0.916 0.937 0.960 0.986 

0.935 0.940 0.945 0.957 0.973 0.990 
0.925 0.932 0.940 0.955 0.972 0.990 

0.964 0.967 0.970 0.976 0.985 0.994 
0.959 0.963 0.967 0.975 0.984 0.994 

0.998 0.998 0.998 0.999 0.999 1.000 
0.998 0.998 0.998 0.999 0.999 1.000 
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TABLE II (cont.) 

Angle of internal friction of the soil Φ = 20.0° 
Group BilBn = 4 : 1 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

—0.2 

—0.4 

—0.6 

—0.8 

—1.0 

—1.5 

—2.0 

—2.5 

—3.0 

—4.0 

- 5 . 0 

—7.0 

1.000 
1.000 

1.082 
1.000 

1.154 
1.000 

1.214 
1.000 

1.261 
1.000 

1.287 
1.000 

1.261 
1.000 

1.214 
1.000 

1.154 
1.000 

1.082 
1.000 

1.000 
1.000 

0.887 
0.838 

0.830 
0.756 

0.812 
0.729 

0.819 
0.740 

0.870 
0.813 

0.928 
0.897 

0.996 
0.994 

1.000 
1.000 

1.098 
1.000 

1.184 
1.000 

1.257 
1.000 

1.314 
1.000 

1.345 
1.027 

1.314 
1.000 

1.257 
1.000 

1.184 
1.000 

1.098 
1.000 

1.000 
1.000 

0.883 
0.839 

0.823 
0.757 

0.804 
0.730 

0.812 
0.741 

0.865 
0.814 

0.925 
0.897 

0.996 
0.994 

1.000 
1.000 

1.108 
1.000 

1.203 
1.000 

1.283 
1.000 

1.345 
1.000 

1.379 
1.020 

1.345 
1.000 

1.283 
1.000 

1.203 
1.000 

1.108 
1.000 

1.000 
1.000 

0.880 
0.840 

0.818 
0.758 

0.799 
0.733 

0.806 
0.743 

0.861 
0.815 

0.923 
0.898 

0.996 
0.994 

1.000 
1.000 

1.111 
1.000 

1.209 
1.000 

1.292 
1.000 

1.356 
1.000 

1.391 
1.000 

1.356 
1.000 

1.292 
1.000 

1.209 
1.000 

1.111 
1.000 

1.000 
1.000 

0.877 
0.842 

0.815 
0.762 

0.795 
0.736 

0.803 
0.746 

0.858 
0.817 

0.922 
0.899 

0.996 
0.994 

1.000 
1.000 

1.105 
1.000 

1.197 
1.000 

1.275 
1.000 

1.335 
1.000 

1.368 
1.000 

1.335 
1.000 

1.275 
1.000 

1.197 
1.000 

1.105 
1.000 

1.000 
1.000 

0.876 
0.847 

0.813 
0.770 

0.792 
0.745 

0.800 
0.755 

0.857 
0.824 

0.921 
0.903 

0.995 
0.994 

1.000 
1.000 

1.087 
1.000 

1.164 
1.000 

1.229 
1.000 

1.280 
1.000 

1.307 
1.000 

1.280 
1.000 

1.229 
1.000 

1.164 
1.000 

1.087 
1.000 

1.000 
1.000 

0.878 
0.856 

0.816 
0.782 

0.796 
0.759 

0.804 
0.768 

0.859 
0.833 

0.922 
0.908 

0.996 
0.995 

SjB 
f(Di — Dn) 

0.6 0.9 1.2 1.5 2.0 2.5 



3.0 3.5 

1.000 1.000 
1.000 1.000 

1.065 1.043 
1.000 1.000 

1.122 1.080 
1.000 1.000 

1.171 1.112 
1.000 1.000 

1.208 1.136 
1.000 1.000 

1.229 1.150 
1.000 1.000 

1.208 1.136 
1.000 1.000 

1.171 1.112 
1.000 1.000 

1.122 1.080 
1.000 1.000 

1.065 1.043 
1.000 1.000 

1.000 1.000 
1.000 1.000 

0.884 0.892 
0.867 0.879 

0.824 0.837 
0.799 0.818 

0.806 0.819 
0.777 0.798 

0.813 0.826 
0.786 0.806 

0.866 0.875 
0.846 0.860 

0.926 0.931 
0.915 0.923 

0.996 0.996 
0.995 0.996 

4.0 5.0 

1.000 1.000 
1.000 1.000 

1.023 0.998 
1.000 1.000 

1.044 0.997 
1.000 1.000 

1.061 0.996 
1.000 1.000 

1.074 0.995 
1.000 1.000 

1.082 0.994 
1.000 1.000 

1.074 0.995 
1.000 1.000 

1.061 0.996 
1.000 1.000 

1.044 0.997 
1.000 1.000 

1.023 0.998 
1.000 1.000 

1.000 1.000 
1.000 1.000 

0.902 0.924 
0.893 0.919 

0.852 0.885 
0.838 0.878 

0.836 0.872 
0.821 0.864 

0.843 0.877 
0.828 0.870 

0.887 0.912 
0.876 0.906 

0.937 0.951 
0.931 0.948 

0.996 0.997 
0.996 0.997 

6.5 10.0 

1.000 1.000 
1.000 1.000 

0.990 1.000 
1.000 1.000 

0.982 1.000 
1.000 1.000 

0.974 1.000 
1.000 1.000 

0.969 1.000 
1.000 1.000 

0.966 1.000 
1.000 1.000 

0.969 1.000 
1.000 1.000 

0.974 1.000 
1.000 1.000 

0.982 1.000 
1.000 1.000 

0.990 1.000 
1.000 1.000 

1.000 1.000 
1.000 1.000 

0.951 0.982 
0.949 0.982 

0.926 0.973 
0.923 0.973 

0.918 0.970 
0.915 0.970 

0.921 0.971 
0.918 0.971 

0.943 0.979 
0.941 0.979 

0.969 0.989 
0.968 0.988 

0.998 0.999 
0.998 0.999 
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TABLE II (cont.) 

Angle of internal friction of the soil Φ = 30.0° 
Group BJIBU = 4 : 1 

SIB 
/ ( Z > i - A i ) - — 

U.o 

1.0 1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.8 1.129 1.155 1.171 1.176 1.166 1.139 
1.000 1.000 1.000 1.000 1.000 1.000 

0.6 1.244 1.293 1.322 1.332 1.312 1.261 
1.000 1.000 1.000 1.000 1.000 1.000 

0.4 1.340 1.408 1.449 1.463 1.436 1.364 
1.084 1.117 1.109 1.072 1.000 1.000 

0.2 1.414 1.498 1.548 1.565 1.531 1.444 
1.203 1.243 1.233 1.189 1.071 1.000 

0.0 1.455 1.546 1.601 1.620 1.584 1.487 
1.269 1.313 1.301 1.252 1.124 1.000 

—0.2 1.414 1.498 1.548 1.565 1.531 1.444 
1.203 1.243 1.233 1.189 1.071 1.000 

—0.4 1.340 1.408 1.449 1.463 1.436 1.364 
1.084 1.117 1.109 1.072 1.000 1.000 

—0.6 1.244 1.293 1.322 1.332 1.312 1.261 
1.000 1.000 1.000 1.000 1.000 1.000 

—0.8 1.129 1.155 1.171 1.176 1.166 1.139 
1.000 1.000 1.000 1.000 1.000 1.000 

—1.0 1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

—1.5 0.821 0.814 0.809 0.805 0.803 0.807 
0.743 0.744 0.746 0.749 0.758 0.771 

—2.0 0.730 0.720 0.712 0.706 0.703 0.708 
0.612 0.614 0.617 0.622 0.635 0.655 

—2.5 0.701 0.690 0.681 0.674 0.671 0.677 
0.571 0.572 0.576 0.581 0.596 0.618 

—3.0 0.713 0.702 0.693 0.687 0.683 0.689 
0.587 0.589 0.592 0.597 0.611 0.632 

—4.0 0.793 0.785 0.779 0.775 0.772 0.776 
0.703 0.704 0.707 0.710 0.721 0.736 

—5.0 0.886 0.881 0.878 0.876 0.874 0.876 
0.836 0.837 0.838 0.840 0.845 0.854 

—7.0 0.993 0.993 0.993 0.993 0.993 0.993 
0.991 0.991 0.991 0.991 0.991 0.992 



3.0 3.5 

1.000 1.000 
1.000 1.000 

1.103 1.068 
1.000 1.000 

1.194 1.127 
1.000 1.000 

1.271 1.178 
1.000 1.000 

1.330 1.216 
1.000 1.000 

1.363 1.238 
1.000 1.000 

1.330 1.216 
1.000 1.000 

1.271 1.178 
1.000 1.000 

1.194 1.127 
1.000 1.000 

1.103 1.068 
1.000 1.000 

1.000 1.000 
1.000 1.000 

0.815 0.829 
0.788 0.808 

0.721 0.741 
0.681 0.711 

0.692 0.714 
0.646 0.680 

0.703 0.725 
0.660 0.692 

0.787 0.802 
0.755 0.779 

0.882 0.891 
0.865 0.878 

0.993 0.994 
0.992 0.993 

4.0 5.0 

1.000 1.000 
1.000 1.000 

1.037 0.997 
1.000 1.000 

1.069 0.995 
1.000 1.000 

1.097 0.993 
1.000 1.000 

1.118 0.992 
1.000 1.000 

1.129 0.991 
1.000 1.000 

1.118 0.992 
1.000 1.000 

1.097 0.993 
1.000 1.000 

1.069 0.995 
1.000 1.000 

1.037 0.997 
1.000 1.000 

1.000 1.000 
1.000 1.000 

0.845 0.879 
0.830 0.871 

0.765 0.817 
0.743 0.806 

0.740 0.798 
0.715 0.785 

0.750 0.805 
0.726 0.793 

0.820 0.860 
0.803 0.851 

0.901 0.923 
0.891 0.918 

0.994 0.996 
0.994 0.995 

6.5 10.0 

1.000 1.000 
1.000 1.000 

0.984 1.000 
1.000 1.000 

0.971 1.000 
1.000 1.000 

0.959 0.999 
1.000 1.000 

0.950 0.999 
1.000 1.000 

0.945 0.999 
1.000 1.000 

0.950 0.999 
1.000 1.000 

0.959 0.999 
1.000 1.000 

0.971 1.000 
1.000 1.000 

0.984 1.000 
1.000 1.000 

1.000 1.000 
1.000 1.000 

0.922 0.972 
0.919 0.971 

0.882 0.957 
0.878 0.957 

0.870 0.953 
0.865 0.952 

0.875 0.954 
0.871 0.954 

0.910 0.967 
0.907 0.967 

0.950 0.982 
0.949 0.982 

0.997 0.999 
0.997 0.999 
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TABLE II (cont.) 

Angle of internal friction of the soil Φ ^ 37.5° 
Group BilBn = 4 : 1 

S/B 
f(Di — Dn) — — — — — — 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

—0.2 

—0.4 

—0.6 

—0.8 

—1.0 

—1.5 

—2.0 

—2.5 

—3.0 

- ^ . 0 

—5.0 

—7.0 

1.000 
1.000 

1.172 
1.000 

1.324 
1.058 

1.452 
1.263 

1.551 
1.422 

1.605 
1.508 

1.551 
1.422 

1.452 
1.263 

1.324 
1.058 

1.172 
1.000 

1.000 
1.000 

0.762 
0.658 

0.641 
0.485 

0.603 
0.429 

0.618 
0.451 

0.725 
0.605 

0.848 
0.782 

0.991 
0.988 

1.000 
1.000 

1.207 
1.000 

1.389 
1.090 

1.543 
1.307 

1.661 
1.475 

1.726 
1.567 

1.661 
1.475 

1.543 
1.307 

1.389 
1.090 

1.207 
1.000 

1.000 
1.000 

0.753 
0.660 

0.628 
0.487 

0.588 
0.432 

0.603 
0.454 

0.715 
0.607 

0.842 
0.783 

0.991 
0.988 

1.000 
1.000 

1.227 
1.000 

1.428 
1.082 

1.597 
1.296 

1.728 
1.461 

1.799 
1.552 

1.728 
1.461 

1.597 
1.296 

1.428 
1.082 

1.227 
1.000 

1.000 
1.000 

0.746 
0.663 

0.617 
0.491 

0.576 
0.436 

0.592 
0.458 

0.707 
0.610 

0.838 
0.784 

0.991 
0.988 

1.000 
1.000 

1.235 
1.000 

1.441 
1.047 

1.616 
1.247 

1.751 
1.402 

1.824 
1.487 

1.751 
1.402 

1.616 
1.247 

1.441 
1.047 

1.235 
1.000 

1.000 
1.000 

0.741 
0.667 

0.609 
0.497 

0.567 
0.443 

0.584 
0.465 

0.701 
0.615 

0.835 
0.787 

0.991 
0.988 

1.000 
1.000 

1.221 
1.000 

1.415 
1.000 

1.579 
1.119 

1.706 
1.246 

1.776 
1.316 

1.706 
1.246 

1.579 
1.119 

1.415 
1.000 

1.221 
1.000 

1.000 
1.000 

0.738 
0.678 

0.605 
0.515 

0.562 
0.463 

0.579 
0.483 

0.698 
0.629 

0.833 
0.795 

0.990 
0.988 

1.000 
1.000 

1.184 
1.000 

1.347 
1.000 

1.484 
1.000 

1.590 
1.066 

1.647 
1.118 

1.590 
1.066 

1.484 
1.000 

1.347 
1.000 

1.184 
1.000 

1.000 
1.000 

0.743 
0.696 

0.612 
0.541 

0.570 
0.492 

0.587 
0.511 

0.703 
0.649 

0.836 
0.806 

0.991 
0.989 



3.0 3.5 4.0 5.0 6.5 10.0 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.137 1.090 1.049 0,997 0.979 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.258 1.169 1.092 0.994 0.961 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.360 1.236 1.129 0.991 0.946 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.439 1.288 1.157 0.989 0.934 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.482 1.316 1.172 0.988 0.927 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.439 1.288 1.157 0.989 0.934 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.360 1.236 1.129 0.991 0.946 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.258 1.169 1.092 0.994 0.961 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.137 1.090 1.049 0.997 0.979 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.755 0.772 0.793 0.839 0.896 0.962 
0.719 0.745 0.774 0.829 0.893 0.962 

0.630 0.656 0.688 0.757 0.844 0.943 
0.575 0.616 0.659 0.742 0.838 0.943 

0.590 0.619 0.655 0.731 0.827 0.937 
0.530 0.574 0.622 0.714 0.821 0.936 

0.606 0.634 0.668 0.741 0.834 0.939 
0.548 0.591 0.636 0.725 0.828 0.939 

0.717 0.737 0.761 0.814 0.880 0.956 
0.675 0.706 0.739 0.802 0.876 0.956 

0.843 0.855 0.868 0.897 0.934 0.976 
0.820 0.837 0.855 0.891 0.932 0.976 

0.991 0.992 0.992 0.994 0.996 0.999 
0.990 0.991 0.992 0.994 0.996 0.999 
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TABLE III 

Angle of internal friction of the soil Φ = 10.0° 
Group BijBn = 2 : 1 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

—0.2 

—0.4 

—0.6 

—0.8 

—1.0 

—1.5 

—2.0 

—2.5 

—3.0 

- 4 . 0 

—5.0 

—7.0 

1.000 
1.000 

1.068 
1.000 

1.128 
1.000 

1.179 
1.000 

1.218 
1.000 

1.239 
1.000 

1.218 
1.000 

1.179 
1.000 

1.128 
1.000 

1.068 
1.000 

1.000 
1.000 

0.935 
0.922 

0.901 
0.882 

0.891 
0.869 

0.895 
0.874 

0.924 
0.909 

0.958 
0.950 

0.998 
0.997 

1.000 
1.000 

1.077 
1.000 

1.145 
1.000 

1.202 
1.000 

1.246 
1.000 

1.270 
1.000 

1.246 
1.000 

1.202 
1.000 

1.145 
1.000 

1.077 
1.000 

1.000 
1.000 

0.933 
0.922 

0.900 
0.882 

0.889 
0.869 

0.893 
0.874 

0.923 
0.910 

0.957 
0.950 

0.998 
0.997 

1.000 
1.000 

1.080 
1.000 

1.151 
1.000 

1.210 
1.000 

1.256 
1.000 

1.281 
1.000 

1.256 
1.000 

1.210 
1.000 

1.151 
1.000 

1.080 
1.000 

1.000 
1.000 

0.933 
0.922 

0.898 
0.883 

0.888 
0.870 

0.892 
0.875 

0.922 
0.910 

0.957 
0.950 

0.998 
0.997' 

1.000 
1.000 

1.079 
1.000 

1.148 
1.000 

1.206 
1.000 

1.252 
1.000 

1.276 
1.000 

1.252 
1.000 

1.206 
1.000 

1.148 
1.000 

1.079 
1.000 

1.000 
1.000 

0.932 
0.923 

0.898 
0.884 

0.887 
0.872 

0.892 
0.877 

0.922 
0.912 

0.957 
0.951 

0.998 
0.997 

1.000 
1.000 

1.069 
1.000 

1.130 
1.000 

1.181 
1.000 

1.221 
1.000 

1.243 
1.000 

1.221 
1.000 

1.181 
1.000 

1.130 
1.000 

1.069 
1.000 

1.000 
1.000 

0.933 
0.926 

0.899 
0.888 

0.889 
0.877 

0.893 
0.881 

0.923 
0.915 

0.957 
0.953 

0.998 
0.997 

1.000 
1.000 

1.054 
1.000 

1.102 
1.000 

1.143 
1.000 

1.174 
1.000 

1.191 
1.000 

1.174 
1.000 

1.143 
1.000 

1.102 
1.000 

1.054 
1.000 

1.000 
1.000 

0.936 
0.930 

0.903 
0.895 

0.893 
0.883 

0.897 
0.888 

0.926 
0.919 

0.959 
0.955 

0.998 
0.997 

SjB 
f(Di — Dn) 

0.6 0.9 1.2 1.5 2.0 2.5 



3.0 3.5 4.0 5.0 6.5 10.0 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.039 1.024 1.013 0.999 0.995 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.073 1.046 1.024 0.998 0.991 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.102 1.064 1.034 0.998 0.987 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.124 1.078 1.041 0.997 0.984 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.136 1.086 1.045 0.997 0.982 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.124 1.078 1.041 0.997 0.984 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.102 1.064 1.034 0.998 0.987 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.073 1.046 1.024 0.998 0.991 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.039 1.024 1.013 0.999 0.995 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.940 0.945 0.950 0.962 0.976 0.991 
0.935 0.941 0.948 0.961 0.975 0.991 

0.909 0.916 0.925 0.942 0.963 0.987 
0.902 0.912 0.922 0.941 0.963 0.987 

0.899 0.907 0.917 0.936 0.960 0.985 
0.892 0.902 0.913 0.934 0.959 0.985 

0.903 0.911 0.920 0.939 0.961 0.986 
0.896 0.906 0.916 0.937 0.960 0.986 

0.930 0.936 0.943 0.956 0.972 0.990 
0.925 0.932 0.940 0.955 0.972 0.990 

0.961 0.965 0.968 0.976 0.985 0.994 
0.959 0.963 0.967 0.975 0.984 0.994 

0.998 0.998 0.998 0.999 0.999 1.000 
0.998 0.998 0.998 0.999 0.999 1.000 
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TABLE III (cont.) 

Angle of internal friction of the soil Φ = 20.0° 
Group ΒιΙΒη = 2 : 1 

SIB 

Λ Λ - Λ ι ) ^ ^ U ^ ^ ^ 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

—0.2 

—0.4 

—0.6 

—0.8 

—1.0 

—1.5 

—2.0 

—2.5 

—3.0 

—4.0 

—5.0 

—7.0 

1.000 
1.000 

1.141 
1.000 

1.264 
1.000 

1.369 
1.000 

1.450 
1.000 

1.494 
1.000 

1.450 
1.000 

1.369 
1.000 

1.264 
1.000 

1.141 
1.000 

1.000 
1.000 

0.865 
0.838 

0.796 
0.756 

0.774 
0.729 

0.783 
0.740 

0.844 
0.813 

0.914 
0.897 

0.995 
0.994 

1.000 
1.000 

1.159 
1.000 

1.298 
1.000 

1.416 
1.000 

1.508 
1.000 

1.557 
1.027 

1.508 
1.000 

1.416 
1.000 

1.298 
1.000 

1.159 
1.000 

1.000 
1.000 

0.863 
0.839 

0.793 
0.757 

0.770 
0.730 

0.779 
0.741 

0.841 
0.814 

0.912 
0.897 

0.995 
0.994 

1.000 
1.000 

1.165 
1.000 

1.311 
1.000 

1.434 
1.000 

1.529 
1.000 

1.581 
1.020 

1.529 
1.000 

1.434 
1.000 

1.311 
1.000 

1.165 
1.000 

1.000 
1.000 

0.861 
0.840 

0.790 
0.758 

0.768 
0.733 

0.777 
0.743 

0.840 
0.815 

0.911 
0.898 

0.995 
0.994 

1.000 
1.000 

1.162 
1.000 

1.305 
1.000 

1.426 
1.000 

1.519 
1.000 

1.570 
1.000 

1.519 
1.000 

1.426 
1.000 

1.305 
1.000 

1.162 
1.000 

1.000 
1.000 

0.861 
0.842 

0.790 
0.762 

0.767 
0.736 

0.776 
0.746 

0.839 
0.817 

0.911 
0.899 

0.995 
0.994 

1.000 
1.000 

1.142 
1.000 

1.268 
1.000 

1.374 
1.000 

1.456 
1.000 

1.501 
1.000 

1.456 
1.000 

1.374 
1.000 

1.268 
1.000 

1.142 
1.000 

1.000 
1.000 

0.862 
0.847 

0.792 
0.770 

0.770 
0.745 

0.779 
0.755 

0.841 
0.824 

0.912 
0.903 

0.995 
0.994 

1.000 
1.000 

1.112 
1.000 

1.211 
1.000 

1.295 
1.000 

1.360 
1.000 

1.395 
1.000 

1.360 
1.000 

1.295 
1.000 

1.211 
1.000 

1.112 
1.000 

1.000 
1.000 

0.867 
0.856 

0.800 
0.782 

0.778 
0.759 

0.787 
0.768 

0.847 
0.833 

0.915 
0.908 

0.995 
0.995 



3.0 3.5 4.0 5.0 6.5 10.0 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.080 1.050 1.027 0.998 0.990 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.150 1.095 1.050 0.997 0.981 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.210 1.132 1.070 0.995 0.973 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.256 1.161 1.085 0.994 0.967 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.281 1.177 1.094 0.994 0.964 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.256 1.161 1.085 0.994 0.967 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.210 1.132 1.070 0.995 0.973 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.150 1.095 1.050 0.997 0.981 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.080 1.050 1.027 0.998 0.990 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.875 0.886 0.897 0.921 0.950 0.982 
0.867 0.879 0.893 0.919 0.949 0.982 

0.812 0.828 0.845 0.881 0.925 0.973 
0.799 0.818 0.838 0.878 0.923 0.973 

0.792 0.809 0.829 0.868 0.917 0.970 
0.777 0.798 0.821 0.864 0.915 0.970 

0.800 0.816 0.835 0.874 0.920 0.971 
0.786 0.806 0.828 0.870 0.918 0.971 

0.856 0.868 0.882 0.909 0.942 0.979 
0.846 0.860 0.876 0.906 0.941 0.979 

0.920 0.927 0.935 0.950 0.968 0.989 
0.915 0.923 0.931 0.948 0.968 0.988 

0.995 0.996 0.996 0.997 0.998 0.999 
0.995 0.996 0.996 0.997 0.998 0.999 
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TABLE III (cont.) 

Angle of internal friction of the soil Φ = 30.0° 
Group BilBn = 2 : 1 

SIB 
J\L>\ U l i ) 

0.6 0.9 1.2 1.5 2.0 2.5 

1.0 1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.8 1.223 1.252 1.262 1.257 1.226 1.178 
1.000 1.000 1.000 1.000 1.000 1.000 

0.6 1.419 1.473 1.493 1.484 1.425 1.335 
1.000 1.000 1.000 1.000 1.000 1.000 

0.4 1.585 1.661 1.688 1.676 1.593 1.468 
1.084 1.117 1.109 1.072 1.000 1.000 

0.2 1.714 1.805 1.838 1.824 1.723 1.570 
1.203 1.243 1.233 1.189 1.071 1.000 

0.0 1.784 1.884 1.921 1.905 1.794 1.626 
1.269 1.313 1.301 1.252 1.124 1.000 

—0.2 1.714 1.805 1.838 1.824 1.723 1.570 
1.203 1.243 1.233 1.189 1.071 1.000 

—0.4 1.585 1.661 1.688 1.676 1.593 1.468 
1.084 1.117 1.109 1.072 1.000 1.000 

—0.6 1.419 1.473 1.493 1.484 1.425 1.335 
1.000 1.000 1.000 1.000 1.000 1.000 

—0.8 1.223 1.252 1.262 1.257 1.226 1.178 
1.000 1.000 1.000 1.000 1.000 1.000 

—1.0 1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

—1.5 0.786 0.782 0.780 0.779 0.782 0.790 
0.743 0.744 0.746 0.749 0.758 0.771 

—2.0 0.676 0.671 0.668 0.666 0.671 0.682 
0.612 0.614 0.617 0.622 0.635 0.655 

—2.5 0.642 0.636 0.632 0.631 0.635 0.648 
0.571 0.572 0.576 0.581 0.596 0.618 

—3.0 0.656 0.650 0.646 0.645 0.649 0.662 
0.587 0.589 0.592 0.597 0.611 0.632 

- ^ . 0 0.752 0.748 0.746 0.745 0.748 0.757 
0.703 0.704 0.707 0.710 0.721 0.736 

—5.0 0.863 0.861 0.859 0.859 0.861 0.866 
0.836 0.837 0.838 0.840 0.845 0.854 

—7.0 0.992 0.992 0.992 0.992 0.992 0.992 
0.991 0.991 0.991 0.991 0.991 0.992 



1 9 3 

3.0 3.5 4.0 5.0 6.5 10.0 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.127 1.080 1.042 0.997 0.984 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.239 1.150 1.079 0.995 0.969 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.333 1 210 1.111 0.993 0.957 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.406 1.256 1.135 0.991 0.948 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.446 1.281 1.148 0.990 0.943 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.406 1.256 1.135 0.991 0.948 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.333 1.210 1.111 0.993 0.957 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.239 1.150 1.079 0.995 0.969 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.127 1.080 1.042 0.997 0.984 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.802 0.819 0.837 0.875 0.921 0.972 
0.788 0.808 0.830 0.871 0.919 0.971 

0.702 0.726 0.755 0.812 · 0.880 0.957 
0.681 0.711 0.743 0.806 0.878 0.957 

0.670 0.697 0.728 0.791 0.868 0.952 
0.646 0.680 0.715 0.785 0.865 0.952 

0.682 0.709 0.739 0.799 0.873 0.954 
0.660 0.692 0.726 0.793 0.871 0.954 

0.772 0.791 0.812 0.856 0.909 0.967 
0.755 0.779 0.803 0.851 0.907 0.967 

0.874 0.884 0.896 0.920 0.949 0.982 
0.865 0.878 0.891 0.918 0.949 0.982 

0.993 0.993 0.994 0.995 0.997 0.999 
0.992 0.993 0.994 0.995 0.997 0.999 
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TABLE III (cont.) 

Angle of internal friction of the soil Φ ^ 35.0° 
Group Bj/Bn = 2 : 1 

SjB 
f W D n)

 M 0 ^ 1.2 1.5 2 ^ 2 T 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

—0.2 

—0.4 

—0.6 

—0.8 

—1.0 

—1.5 

—2.0 

—2.5 

—3.0 

—4.0 

—5.0 

—7.0 

1.000 
1.000 

1.270 
1.000 

1.509 
1.013 

1.710 
1.200 

1.865 
1.345 

1.950 
1.424 

1.865 
1.345 

1.710 
1.200 

1.509 
1.013 

1.270 
1.000 

1.000 
1.000 

0.740 
0.688 

0.608 
0.530 

0.565 
0.479 

0.582 
0.499 

0.700 
0.640 

0.834 
0.801 

0.991 
0.989 

1.000 
1.000 

1.305 
1.000 

1.574 
1.042 

1.801 
1.240 

1.976 
1.393 

2.072 
1.477 

1.976 
1.393 

1.801 
1.240 

1.574 
1.042 

1.305 
1.000 

1.000 
1.000 

0.736 
0.690 

0.601 
0.532 

0.558 
0.481 

0.575 
0.501 

0.695 
0.641 

0.831 
0.802 

0.990 
0.989 

1.000 
1.000 

1.318 
1.000 

1.598 
1.034 

1.834 
1.230 

2.017 
1.381 

2.117 
1.463 

2.017 
1.381 

1.834 
1.230 

1.598 
1.034 

1.318 
1.000 

1.000 
1.000 

0.733 
0.692 

0.597 
0.535 

0.554 
0.485 

0.571 
0.505 

0.691 
0.644 

0.829 
0.803 

0.990 
0.989 

1.000 
1.000 

1.312 
1.000 

1.587 
1.002 

1.820 
1.185 

1.999 
1.327 

2.097 
1.404 

1.999 
1.327 

1.820 
1.185 

1.587 
1.002 

1.312 
1.000 

1.000 
1.000 

0.732 
0.696 

0.595 
0.541 

0.552 
0.492 

0.569 
0.512 

0.690 
0.649 

0.829 
0.806 

0.990 
0.989 

1.000 
1.000 

1.274 
1.000 

1.516 
1.000 

1.720 
1.069 

1.877 
1.184 

1.963 
1.248 

1.877 
1.184 

1.720 
1.069 

1.516 
1.000 

1.274 
1.000 

1.000 
1.000 

0.735 
0.707 

0.600 
0.557 

0.558 
0.510 

0.575 
0.529 

0.694 
0.661 

0.831 
0.813 

0.990 
0.989 

1.000 
1.000 

1.216 
1.000 

1.407 
1.000 

1.568 
1.000 

1.692 
1.020 

1.760 
1.068 

1.692 
1.020 

1.568 
1.000 

1.407 
1.000 

1.216 
1.000 

1.000 
1.000 

0.745 
0.722 

0.615 
0.581 

0.574 
0.536 

0.590 
0.554 

0.705 
0.679 

0.837 
0.823 

0.991 
0.990 



3.0 3.5 4.0 5.0 6.5 10.0 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.154 1.097 1.051 0.997 0.980 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.289 1.183 1.096 0.994 0.963 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.404 1.255 1.135 0.991 0.948 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.492 1.310 1.164 0.989 0.937 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.541 1.341 1.180 0.988 0.930 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.492 1.310 1.164 0.989 0.937 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.404 1.255 1.135 0.991 0.948 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.289 1.183 1.096 0.994 0.963 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.154 1.097 1.051 0.997 0.980 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.760 0.780 0.803 0.849 0.904 0.965 
0.743 0.768 0.794 0.844 0.902 0.965 

0.638 0.668 0.702 0.771 0.855 0.948 
0.613 0.649 0.688 0.764 0.853 0.948 

0.599 0.633 0.670 0.747 0.839 0.942 
0.571 0.612 0.655 0.739 0.837 0.942 

0.615 0.647 0.683 0.757 0.846 0.944 
0.588 0.627 0.668 0.749 0.843 0.944 

0.723 0.746 0.772 0.825 0.889 0.960 
0.703 0.731 0.761 0.820 0.887 0.960 

0.847 0.860 0.874 0.903 0.939 0.978 
0.836 0.852 0.868 0.900 0.938 0.978 

0.991 0.992 0.993 0.994 0.996 0.999 
0.991 0.992 0.992 0.994 0.996 0.999 
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TABLE IV 

Angle of internal friction of the soil Φ — 10.0° 
Group BilBn = 1 :1 

SIB 
/ ( / > ! — Z>I l ) 

0.6 0.9 1.2 1.5 2.0 2.5 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

—0.2 

—0.4 

—0.6 

—0.8 

—1.0 

—1.5 

—2.0 

—2.5 

—3.0 

--4.0 

—5.0 

—7.0 

1.000 
1.000 

1.117 
1.000 

1.221 
1.000 

1.308 
1.000 

1.375 
1.000 

1.412 
1.000 

1.375 
1.000 

1.308 
1.000 

1.221 
1.000 

1.117 
1.000 

1.000 
1.000 

0.922 
0.922 

0.882 
0.882 

0.869 
0.869 

0.874 
0.874 

0.909 
0.909 

0.950 
0.950 

0.997 
0.997 

1.000 
1.000 

1.124 
1.000 

1.234 
1.000 

1.326 
1.000 

1.398 
1.000 

1.437 
1.000 

1.398 
1.000 

1.326 
1.000 

1.234 
1.000 

1.124 
1.000 

1.000 
1.000 

0.922 
0.922 

0.882 
0.882 

0.869 
0.869 

0.874 
0.874 

0.910 
0.910 

0.950 
0.950 

0.997 
0.997 

1.000 
1.000 

1.122 
1.000 

1.230 
1.000 

1.322 
1.000 

1.392 
1.000 

1.431 
1.000 

1.392 
1.000 

1.322 
1.000 

1.230 
1.000 

1.122 
1.000 

1.000 
1.000 

0.922 
0.922 

0.883 
0.883 

0.870 
0.870 

0.875 
0.875 

0.910 
0.910 

0.950 
0.950 

0.997 
0.997 

1.000 
1.000 

1.115 
1.000 

1.216 
1.000 

1.301 
1.000 

1.367 
1.000 

1.403 
1.000 

1.367 
1.000 

1.301 
1.000 

1.216 
1.000 

1.115 
1.000 

1.000 
1.000 

0.923 
0.923 

0.884 
0.884 

0.872 
0.872 

0.877 
0.877 

0.912 
0.912 

0.951 
0.951 

0.997 
0.997 

1.000 
1.000 

1.094 
1.000 

1.177 
1.000 

1.247 
1.000 

1.301 
1.000 

1.330 
1.000 

1.301 
1.000 

1.247 
1.000 

1.177 
1.000 

1.094 
1.000 

1.000 
1.000 

0.926 
0.926 

0.888 
0.888 

0.877 
0.877 

0.881 
0.881 

0.915 
0.915 

0.953 
0.953 

0.997 
0.997 

1.000 
1.000 

1.070 
1.000 

1.132 
1.000 

1.184 
1.000 

1.224 
1.000 

1.246 
1.000 

1.224 
1.000 

1.184 
1.000 

1.132 
1.000 

1.070 
1.000 

1.000 
1.000 

0.930 
0.930 

0.895 
0.895 

0.883 
0.883 

0.888 
0.888 

0.919 
0.919 

0.955 
0.955 

0.997 
0.997 
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3.0 3.5 4.0 5.0 6.5 10.0 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.048 1.029 1.015 0.999 0.995 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.089 1.054 1.028 0.998 0.990 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.125 1.076 1.039 0.998 0.986 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.152 1.092 1.047 0.997 0.983 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.167 1.102 1.052 0.997 0.982 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.152 1.092 1.047 0.997 0.983 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.125 1.076 1.039 0.998 0.986 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.089 1.054 1.028 0.998 0.990 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.048 1.029 1.015 0.999 0.995 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.935 0.941 0.948 0.961 0.975 0.991 
0.935 0.941 0.948 0.961 0.975 0.991 

0.902 0.912 0.922 0.941 0.963 0.987 
0.902 0.912 0.922 0.941 0.963 0.987 

0.892 0.902 0.913 0.934 0.959 0.985 
0.892 0.902 0.913 0.934 0.959 0.985 

0.896 0.906 0.916 0.937 0.960 0.986 
0.986 0.906 0.916 0.937 0.960 0.986 

0.925 0.932 0.940 0.955 0.972 0.990 
0.925 0.932 0.940 0.955 0.972 0.990 

0.959 0.963 0.967 0.975 0.984 0.994 
0.959 0.963 0.967 0.975 0.984 0.994 

0.998 0.998 0.998 0.999 0.999 1.000 
0.998 0.998 0.998 0.999 0.999 1.000 
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TABLE IV (cont.) 

Angle of internal friction of the soil Φ — 20.0° 
Group BijBu = 1 :1 

SjB 

0.6 0.9 1.2 1.5 2.0 2.5 

1.0 1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.8 1.242 1.257 1.253 1.237 1.194 1.144 
1.000 1.000 1.000 1.000 1.000 1.000 

0.6 1.455 1.483 1.476 1.445 1.365 1.272 
1.000 1.000 1.000 1.000 1.000 1.000 

0.4 1.635 1.674 1.664 1.621 1.509 1.379 
1.000 1.000 1.000 1.000 1.000 1.000 

0.2 1.775 1.821 1.809 1.757 1.620 1.462 
1.000 1.000 1.000 1.000 1.000 1.000 

0.0 1.851 1.902 1.889 1.832 1.681 1.508 
1.000 1.027 1.020 1.000 1.000 1.000 

—0.2 1.775 1.821 1.809 1.757 1.620 1.462 
1.000 1.000 1.000 1.000 1.000 1.000 

—0.4 1.635 1.674 1.664 1.621 1.509 1.379 
1.000 1.000 1.000 1.000 1.000 1.000 

—0.6 1.455 1.483 1.476 1.445 1.365 1.272 
1.000 1.000 1.000 1.000 1.000 1.000 

—0.8 1.242 1.257 1.253 1.237 1.194 1.144 
1.000 1.000 1.000 1.000 1.000 1.000 

—1.0 1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

—1.5 0.838 0.839 0.840 0.842 0.847 0.856 
0.838 0.839 0.840 0.842 0.847 0.856 

—2.0 0.756 0.757 0.758 0.762 0.770 0.782 
0.756 0.757 0.758 0.762 0.770 0.782 

—2.5 0.729 0.730 0.733 0.736 0.745 0.759 
0.729 0.730 0.733 0.736 0.745 0.759 

—3.0 0.740 0.741 0.743 0.746 0.755 0.768 
0.740 0.741 0.743 0.746 0.755 0.768 

—4.0 0.813 0.814 0.815 0.817 0.824 0.833 
0.813 0.814 0.815 0.817 0.824 0.833 

—5.0 0.897 0.897 0.898 0.899 0.903 0.908 
0.897 0.897 0.898 0.899 0.903 0.908 

—7.0 0.994 0.994 0.994 0.994 0.994 0.995 
0.994 0.994 0.994 0.994 0.994 0.995 



3.0 3.5 4.0 5.0 6.5 10.0 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.098 1.060 1.031 0.998 0.989 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.185 1.112 1.057 0.996 0.980 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.258 1.157 1.080 0.995 0.972 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.314 1.191 1.098 0.994 0.965 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.345 1.210 1.107 0.993 0.962 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.314 1.191 1.098 0.994 0.965 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.258 1.157 1.080 0.995 0.972 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.185 1.112 1.057 0.996 0.980 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.098 1.060 1.031 0.998 0.989 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.867 0.879 0.893 0.919 0.949 0.982 
0.867 0.879 0.893 0.919 0.949 0.982 

0.799 0.818 0.838 0.878 0.923 0.973 
0.799 0.818 0.838 0.878 0.923 0.973 

0.777 0.798 0.821 0.864 0.915 0.970 
0.777 0.798 0.821 0.864 0.915 0.970 

0.786 0.806 0.828 0.870 0.918 0.971 
0.786 0.806 0.828 0.870 0.918 0.971 

0.846 0.860 0.876 0.906 0.941 0.979 
0.846 0.860 0.876 0.906 0.941 0.979 

0.915 0.923 0.931 0.948 0.968 0.988 
0.915 0.923 0.931 0.948 0.968 0.988 

0.995 0.996 0.996 0.997 0.998 0.999 
0.995 0.996 0.996 0.997 0.998 0.999 
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TABLE IV (cont.) 

Angle of internal friction of the soil Φ = 25.0° 
Group Βι/Βη = 1 :1 

1.0 1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.8 1.310 1.329 1.324 1.303 1.248 1.185 
1.000 1.000 1.000 1.000 1.000 1.000 

0.6 1.583 1.619 1.610 1.570 1.467 1.348 
1.000 1.000 1.000 1.000 1.000 1.000 

0.4 1.814 1.863 1.851 1.796 1.652 1.486 
1.000 1.006 1.000 1.000 1.000 1.000 

0.2 1.992 2.052 2.037 1.970 1.795 1.593 
1.076 1.108 1.100 1.064 1.000 1.000 

0.0 2.090 2.156 2.139 2.066 1.873 1.651 
1.129 1.164 1.155 1.115 1.011 1.000 

—0.2 1.992 2.052 2.037 1.970 1.795 1.593 
1.076 1.108 1.100 1.064 1.000 1.000 

—0.4 1.814 1.863 1.851 1.796 1.652 1.486 
1.000 1.006 1.000 1.000 1.000 1.000 

—0.6 1.583 1.619 1.610 1.570 1.467 1.348 
1.000 1.000 1.000 1.000 1.000 1.000 

—0.8 1.310 1.329 1.324 1.303 1.248 1.185 
1.000 1.000 1.000 1.000 1.000 1.000 

—1.0 1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

—1.5 0.792 0.793 0.795 0.798 0.805 0.815 
0.792 0.793 0.795 0.798 0.805 0.815 

—2.0 0.687 0.688 0.691 0.694 0.705 0.721 
0.687 0.688 0.691 0.694 0.705 0.721 

—2.5 0.653 0.655 0.657 0.662 0.673 0.691 
0.653 0.655 0.657 0.662 0.673 0.691 

—3.0 0.667 0.668 0.671 0.675 0.686 0.703 
0.667 0.668 0.671 0.675 0.686 0.703 

—4.0 0.760 0.761 0.763 0.766 0.774 0.787 
0.760 0.761 0.763 0.766 0.774 0.787 

—5.0 0.867 0.868 0.869 0.871 0.875 0.882 
0.867 0.868 0.869 0.871 0.875 0.882 

—7.0 0.992 0.992 0.993 0.993 0.993 0.993 
0.992 0.992 0.993 0.993 0.993 0.993 

SIB 
f(Di — Du) 

0.6 0.9 1.2 1.5 2.0 2.5 



3.0 3.5 4.0 5.0 6.5 10.0 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.126 1.076 1.039 0.998 0.986 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.237 1.144 1.074 0.995 0.974 1.000 
1.000 1.000 1.000 1.000 1.900 1.000 

1.330 1.201 1.103 0.994 0.964 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.402 1.245 1.125 0.992 0.956 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.442 1.269 1.138 0.991 0.951 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.402 1.245 1.125 0.992 0.956 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.330 1.201 1.103 0.994 0.964 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.237 1.144 1.074 0.995 0.974 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.126 1.076 1.039 0.998 0.986 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.829 0.845 0.862 0.896 0.935 0.977 
0.829 0.845 0.862 0.896 0.935 0.977 

0.742 0.766 0.792 0.843 0.902 0.965 
0.742 0.766 0.792 0.843 0.902 0.965 

0.714 0.741 0.770 0.826 0.891 0.961 
0.714 0.741 0.770 0.826 0.891 0.961 

0.725 0.751 0.779 0.833 0.896 0.963 
0.725 0.751 0.779 0.833 0.896 0.963 

0.802 0.821 0.841 0.880 0.925 0.973 
0.802 0.821 0.841 0.880 0.925 0.973 

0.891 0.901 0.912 0.934 0.958 0.985 
0.891 0.901 0.912 0.934 0.958 0.985 

0.994 0.994 0.995 0.996 0.998 0.999 
0.994 0.994 0.995 0.996 0.998 0.999 
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TABLE IV (cont.) 

Angle of internal friction of the soil Φ = 30.0° 
Group BilBu = 1 :1 

S/B 
f(Di — Dn) — — — — — 25 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

—0.2 

—0.4 

—0.6 

—0.8 

—1.0 

—1.5 

—2.0 

—2.5 

—3.0 

—4.0 

—5.0 

—7.0 

1.000 
1.000 

1.384 
1.000 

1.722 
1.000 

2.008 
1.084 

2.229 
1.203 

2.349 
1.269 

2.229 
1.203 

2.008 
1.084 

1.722 
1.000 

1.384 
1.000 

1.000 
1.000 

. 0.743 
0.743 

0.612 
0.612 

0.571 
0.571 

0.587 
0.587 

0.703 
0.703 

0.836 
0.836 

0.991 
0.991 

1.000 
1.000 

1.407 
1.000 

1.766 
1.000 

2.069 
1.117 

2.303 
1.243 

2.431 
1.313 

2.303 
1.243 

2.069 
1.117 

1.766 
1.000 

1.407 
1.000 

1.000 
1.000 

0.744 
0.744 

0.614 
0.614 

0.572 
0.572 

0.589 
0.589 

0.704 
0.704 

0.837 
0.837 

0.991 
0.991 

1.000 
1.000 

1.401 
1.000 

1.755 
1.000 

2.053 
1.109 

2.284 
1.233 

2.410 
1.301 

2.284 
1.233 

2.053 
1.109 

1.755 
1.000 

1.401 
1.000 

1.000 
1.000 

0.746 
0.746 

0.617 
0.617 

0.576 
0.576 

0.592 
0.592 

0.707 
0.707 

0.838 
0.838 

0.991 
0.991 

1.000 
1.000 

1.375 
1.000 

1.706 
1.000 

1.986 
1.072 

2.201 
1.189 

2.319 
1.252 

2.201 
1.189 

1.986 
1.072 

1.706 
1.000 

1.375 
1.000 

1.000 
1.000 

0.749 
0.749 

0.622 
0.622 

0.581 
0.581 

0.597 
0.597 

0.710 
0.710 

0.840 
0.840 

0.991 
0.991 

1.000 
1.000 

1.307 
1.000 

1.578 
1.000 

1.807 
1.000 

1.984 
1.071 

2.081 
1.124 

1.984 
1.071 

1.807 
1.000 

1.578 
1.000 

1.307 
1.000 

1.000 
1.000 

0.758 
0.758 

0.635 
0.635 

0.596 
0.596 

0.611 
0.611 

0.721 
0.721 

0.845 
0.845 

0.991 
0.991 

1.000 
1.000 

1.229 
1.000 

1.431 
1.000 

1.602 
1.000 

1.734 
1.000 

1.806 
1.000 

1.734 
1.000 

1.602 
1.000 

1.431 
1.000 

1.229 
1.000 

1.000 
1.000 

0.771 
0.771 

0.655 
0.655 

0.618 
0.618 

0.632 
0.632 

0.736 
0.736 

0.854 
0.854 

0.992 
0.992 



3.0 3.5 4.0 5.0 6.5 10.0 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.156 1.095 1.048 0.997 0.983 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.293 1.178 1.091 0.994 0.968 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.409 1.248 1.127 0.992 0.955 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.498 1.303 1.155 0.990 0.945 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.547 1.332 1.170 0.989 0.940 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.498 1.303 1.155 0.990 0.945 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.409 1.248 1.127 0.992 0.955 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.293 1.178 1.091 0.994 0.968 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.156 1.095 1.048 0.997 0.983 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.788 0.808 0.830 0.871 0.919 0.971 
0.788 0.808 0.830 0.871 0.919 0.971 

0.681 0.711 0.743 0.806 0.878 0.957 
0.681 0.711 0.743 0.806 0.878 0.957 

0.646 0.680 0.715 0.785 0.865 0.952 
0.646 0.680 0.715 0.785 0.865 0.952 

0.660 0.692 0.726 0.793 0.871 0.954 
0.660 0.692 0.726 0.793 0.871 0.954 

0.755 0.779 0.803 0.851 0.907 0.967 
0.755 0.779 0.803 0.851 0.907 0.967 

0.865 0.878 0.891 0.918 0.949 0.982 
0.865 0.878 0.891 0.918 0.949 0.982 

0.992 0.993 0.994 0.995 0.997 0.999 
0.992 0.993 0.994 0.995 0.997 0.999 
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TABLE IV (cont.) 

Angle of internal friction of the soil Φ ^ 35.0° 
Group BijBn = 1 :1 

SIB 
f(Dl-Dn) — - - - - — 

1.0 1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.8 1.466 1.494 1.486 1.455 1.373 1.278 
1.000 1.000 1.000 1.000 1.000 1.000 

0.6 1.876 1.929 1.915 1.856 1.702 1.523 
1.013 1.042 1.034 1.002 1.000 1.000 

0.4 2.223 2.296 2.277 2.195 1.979 1.730 
1.200 1.240 1.230 1.185 1.069 1.000 

0.2 2.490 2.580 2.557 2.457 2.193 1.890 
1.345 1.393 1.381 1.327 1.184 1.020 

0.0 2.637 2.735 2.710 2.600 2.311 1.977 
1.424 1.477 1.463 1.404 1.248 1.068 

—0.2 2.490 2.580 2.557 2.457 2.193 1.890 
1.345 1.393 1.381 1.327 1.184 1.020 

—0.4 2.223 2.296 2.277 2.195 1.979 1.730 
1.200 1.240 1.230 1.185 1.069 1.000 

—0.6 1.876 1.929 1.915 1.856 1.702 1.523 
1.013 1.042 1.034 1.002 1.000 1.000 

—0.8 1.466 1.494 1.486 1.455 1.373 1.278 
1.000 1.000 1.000 1.000 1.000 1.000 

—1.0 1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

—1.5 0.688 0.690 0.692 0.696 0.707 0.722 
0.688 0.690 0.692 0.696 0.707 0.722 

—2.0 0.530 0.532 0.535 0.541 0.557 0.581 
0.530 0.532 0.535 0.541 0.557 0.581 

—2.5 0.479 0.481 0.485 0.492 0.510 0.536 
0.479 0.481 0.485 0.492 0.510 0.536 

—3.0 0.499 0.501 0.505 0.512 0.529 0.554 
0.499 0.501 0.505 0.512 0.529 0.554 

—4.0 0.640 0.641 0.644 0.649 0.661 0.679 
0.640 0.641 0.644 0.649 0.661 0.679 

—5.0 0.801 0.802 0.803 0.806 0.813 0.823 
0.801 0.802 0.803 0.806 0.813 0.823 

—7.0 0.989 0.989 0.989 0.989 0.989 0.990 
0.989 0.989 0.989 0.989 0.989 0.990 



3.0 3.5 

1.000 1.000 
1.000 1.000 

1.189 1.115 
1.000 1.000 

1.355 1.216 
1.000 1.000 

1.496 1.301 
1.000 1.000 

1.604 1.367 
1.000 1.000 

1.664 1.403 
1.000 1.000 

1.604 1.367 
1.000 1.000 

1.496 1.301 
1.000 1.000 

1.355 1.216 
1.000 1.000 

1.189 1.115 
1.000 1.000 

1.000 1.000 
1.000 1.000 

0.743 0.768 
0.743 0.768 

0.613 0.649 
0.613 0.649 

0.571 0.612 
0.571 0.612 

0.588 0.627 
0.588 0.627 

0.703 0.731 
0.703 0.731 

0.836 0.852 
0.836 0.852 

0.991 0.992 
0.991 0.992 

4.0 5.0 

1.000 1.000 
1.000 1.000 

1.059 0.996 
1.000 1.000 

1.111 0.993 
1.000 1.000 

1.154 0.990 
1.000 1.000 

1.188 0.988 
1.000 1.000 

1.207 0.987 
1.000 1.000 

1.188 0.988 
1.000 1.000 

1.154 0.990 
1.000 1.000 

1.111 0.993 
1.000 1.000 

1.059 0.996 
1.000 1.000 

1.000 1.000 
1.000 1.000 

0.794 0.844 
0.794 0.844 

0.688 0.764 
0.688 0.764 

0.655 0.739 
0.655 0.739 

0.668 0.749 
0.668 0.749 

0.761 0.820 
0.761 0.820 

0.868 0.900 
0.868 0.900 

0.992 0.994 
0.992 0.994 

6.5 10.0 

1.000 1.000 
1.000 1.000 

0.979 1.000 
1.000 1.000 

0.961 1.000 
1.000 1.000 

0.945 0.999 
1.000 1.000 

0.933 0.999 
1.000 1.000 

0.927 0.999 
1.000 1.000 

0.933 0.999 
1.000 1.000 

0.945 0.999 
1.000 1.000 

0.961 1.000 
1.000 1.000 

0.979 1.000 
1.000 1.000 

1.000 1.000 
1.000 1.000 

0.902 0.965 
0.902 0.965 

0.853 0.948 
0.853 0.948 

0.837 0.942 
0.837 0.942 

0.843 0.944 
0.843 0.944 

0.887 0.960 
0.887 0.960 

0.938 0.978 
0.938 0.978 

0.996 0.999 
0.996 0.999 
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TABLE V 

Angle of internal friction of the soil Φ = 10.0° 
Group BilBn = 1 : 2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

—0.2 

—0.4 

—0.6 

—0.8 

—1.0 

—1.5 

—2.0 

—2.5 

—3.0 

—4.0 

—5.0 

—7.0 

1.000 
1.000 

1.202 
1.000 

1.380 
1.000 

1.530 
1.000 

1.646 
1.000 

1.710 
1.000 

1.646 
1.000 

1.530 
1.000 

1.380 
1.000 

1.202 
1.000 

1.000 
1.000 

0.906 
0.922 

0.858 
0.882 

0.843 
0.869 

0.849 
0.874 

0.891 
0.909 

0.940 
0.950 

0.997 
0.997 

1.000 
1.000 

1.201 
1.000 

1.378 
1.000 

1.528 
1.000 

1.644 
1.000 

1.707 
1.000 

1.644 
1.000 

1.528 
1.000 

1.378 
1.000 

1.201 
1.000 

1.000 
1.000 

0.908 
0.922 

0.862 
0.882 

0.847 
0.869 

0.853 
0.874 

0.894 
0.910 

0.941 
0.950 

0.997 
0.997 

1.000 
1.000 

1.188 
1.000 

1.353 
1.000 

1.493 
1.000 

1.600 
1.000 

1.659 
1.000 

1.600 
1.000 

1.493 
1.000 

1.353 
1.000 

1.188 
1.000 

1.000 
1.000 

0.911 
0.922 

0.865 
0.883 

0.851 
0.870 

0.856 
0.875 

0.897 
0.910 

0.943 
0.950 

0.997 
0.997 

1.000 
1.000 

1.167 
1.000 

1.315 
1.000 

1.439 
1.000 

1.535 
1.000 

1.588 
1.000 

1.535 
1.000 

1.439 
1.000 

1.315 
1.000 

1.167 
1.000 

1.000 
1.000 

0.913 
0.923 

0.869 
0.884 

0.855 
0.872 

0.861 
0.877 

0.900 
0.912 

0.945 
0.951 

0.997 
0.997 

1.000 
1.000 

1.128 
1.000 

1.240 
1.000 

1.336 
1.000 

1.409 
1.000 

1.449 
1.000 

1.409 
1.000 

1.336 
1.000 

1.240 
1.000 

1.128 
1.000 

1.000 
1.000 

0.918 
0.926 

0.876 
0.888 

0.863 
0.877 

0.868 
0.881 

0.905 
0.915 

0.948 
0.953 

0.997 
0.997 

1.000 
1.000 

1.090 
1.000 

1.169 
1.000 

1.236 
1.000 

1.288 
1.000 

1.316 
1.000 

1.288 
1.000 

1.236 
1.000 

1.169 
1.000 

1.090 
1.000 

1.000 
1.000 

0.924 
0.930 

0.885 
0.895 

0.873 
0.883 

0.878 
0.888 

0.912 
0.919 

0.951 
0.955 

0.997 
0.997 

SIB 
f(Di — Dn) 

0.6 0.9 1.2 1.5 2.0 2.5 



3.0 3.5 4.0 5.0 6.5 10.0 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.058 1.034 1.017 0.999 0.994 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.110 1.064 1.032 0.998 0.990 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.153 1.090 1.045 0.997 0.986 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.187 1.109 1.054 0.997 0.982 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.205 1.120 1.060 0.996 0.981 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.187 1.109 1.054 0.997 0.982 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.153 1.090 1.045 0.997 0.986 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.110 1.064 1.032 0.998 0.990 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.058 1.034 1.017 0.999 0.994 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.931 0.938 0.946 0.959 0.975 0.991 
0.935 0.941 0.948 0.961 0.975 0.991 

0.896 0.907 0.918 0.939 0.962 0.987 
0.902 0.912 0.922 0.941 0.963 0.987 

0.884 0.897 0.909 0.932 0.958 0.985 
0.892 0.902 0.913 0.934 0.959 0.985 

0.889 0.901 0.913 0.935 0.960 0.986 
0.896 0.906 0.916 0.937 0.960 0.986 

0.920 0.928 0.937 0.953 0.971 0.990 
0.925 0.932 0.940 0.955 0.972 0.990 

0.956 0.960 0.965 0.974 0.984 0.994 
0.959 0.963 0.967 0.975 0.984 0.994 

0.997 0.998 0.998 0.999 0.999 1.000 
0.998 0.998 0.998 0.999 0.999 1.000 
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TABLE V (cont.) 

Angle of internal friction of the soil Φ = 20.0° 
Group Bi/Bii = 1 : 2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

—0.2 

—0.4 

—0.6 

—0.8 

—1.0 

—1.5 

—2.0 

—2.5 

—3.0 

—4.0 

—5.0 

—7.0 

1.000 
1.000 

1.417 
1.000 

1.784 
1.000 

2.094 
1.000 

2.334 
1.000 

2.465 
1.000 

2.334 
1.000 

2.094 
1.000 

1.784 
1.000 

1 417 
1.000 

1.000 
1.000 

0.806 
0.838 

0.707 
0.756 

0.676 
0.729 

0.688 
0.740 

0.776 
0.813 

0.876 
0.897 

0.993 
0.994 

1.000 
1.000 

1.415 
1.000 

1.781 
1.000 

2.090 
1.000 

2.329 
1.000 

2.459 
1.027 

2.329 
1.000 

2.090 
1.000 

1.781 
1.000 

1.415 
1.000 

1.000 
1.000 

0.811 
0.839 

0.714 
0.757 

0.683 
0.730 

0696 
0.741 

0.781 
0.814 

0.879 
0.897 

0.993 
0.994 

1.000 
1.000 

1.387 
1.000 

1.729 
1.000 

2.017 
1.000 

2.239 
1.000 

2.361 
1.020 

2.239 
1.000 

2.017 
1.000 

1.729 
1.000 

1.387 
1.000 

1.000 
1.000 

0.815 
0.840 

0.722 
0.758 

0.692 
0.733 

0.704 
0.743 

0.787 
0.815 

0.882 
0.898 

0.993 
0.994 

1.000 
1.000 

1.345 
1.000 

1.649 
1.000 

1.906 
1.000 

2.104 
1.000 

2.213 
1.000 

2.104 
1.000 

1.906 
1.000 

1.649 
1.000 

1.345 
1.000 

1.000 
1.000 

0.821 
0.842 

0.730 
0.762 

0.701 
0.736 

0.712 
0.746 

0.793 
0.817 

0.886 
0.899 

0.993 
0.994 

1.000 
1.000 

1.264 
1.000 

1.496 
1.000 

1.693 
1.000 

1.844 
1.000 

1.927 
1.000 

1.844 
1.000 

1.693 
1.000 

1.496 
1.000 

1.264 
1.000 

1.000 
1.000 

0.831 
0.847 

0.745 
0.770 

0.718 
0.745 

0.728 
0.755 

0.805 
0.824 

0.892 
0.903 

0.994 
0.994 

1.000 
1.000 

1.186 
1.000 

1.350 
1.000 

1.488 
1.000 

1.595 
1.000 

1.653 
1.000 

1.595 
1.000 

1.488 
1.000 

1.350 
1.000 

1.186 
1.000 

1.000 
1.000 

0.843 
0.856 

0.763 
0.782 

0.738 
0.759 

0.748 
0.768 

0.819 
0.833 

0.900 
0.908 

0.994 
0.995 

SIB 
f(Di — Du) 

0.6 0.9 1.2 1.5 2.0 2.5 



3.0 3.5 

1.000 1.000 
1.000 1.000 

1.121 1.071 
1.000 1.000 

1.227 1.133 
1.000 1.000 

1.316 1.185 
1.000 1.000 

1.386 1.226 
1.000 1.000 

1.424 1.248 
1.000 1.000 

1.386 1.226 
1.000 1.000 

1.316 1.185 
1.000 1.000 

1.227 1.133 
1.000 1.000 

1.121 1.071 
1.000 1.000 

1.000 1.000 
1.000 1.000 

0.857 0.872 
0.867 0.879 

0.784 0.807 
0.799 0.818 

0.761 0.786 
0.777 0.798 

0.770 0.795 
0.786 0.806 

0.835 0.852 
0.846 0.860 

0.909 0.918 
0.915 0.923 

0.995 0.995 
0.995 0.996 

4.0 5.0 

1.000 1.000 
1.000 1.000 

1.035 0.998 
1.000 1.000 

1.066 0.996 
1.000 1.000 

1.092 0.995 
1.000 1.000 

1.112 0.993 
1.000 1.000 

1.123 0.993 
1.000 1.000 

1.112 0.993 
1.000 1.000 

1.092 0.995 
1.000 1.000 

1.066 0.996 
1.000 1.000 

1.035 0.998 
1.000 1.000 

1.000 1.000 
1.000 1.000 

0.888 0.916 
0.893 0.919 

0.830 0.874 
0.838 0.878 

0.812 0.860 
0.821 0.864 

0.820 0.866 
0.828 0.870 

0.870 0.903 
0.876 0.906 

0.928 0.947 
0.931 0.948 

0.996 0.997 
0.996 0.997 

6.5 10.0 

1.000 1.000 
1.000 1.000 

0.989 1.000 
1.000 1.000 

0.979 1.000 
1.000 1.000 

0.970 1.000 
1.000 1.000 

0.964 1.000 
1.000 1.000 

0.960 1.000 
1.000 1.000 

0.964 1.000 
1.000 1.000 

0.970 1.000 
1.000 1.000 

0.979 1.000 
1.000 1.000 

0.989 1.000 
1.000 1.000 

1.000 1.000 
1.000 1.000 

0.948 0.982 
0.949 0.982 

0.922 0.973 
0.923 0.973 

0.914 0.970 
0.915 0.970 

0.917 0.971 
0.918 0.971 

0.940 0.979 
0.941 0.979 

0.967 0.988 
0.968 0.988 

0.998 0.999 
0.998 0.999 
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TABLE V (cont.) 

Angle of internal friction of the soil Φ = 30.0° 
Group BijBn = 1 : 2 

SIB 
f(Di — Du) 

0.6 0.9 1.2 1.5 2.0 2.5 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

—0.2 

—0.4 

—0.6 

—0.8 

—1.0 

—1.5 

—2.0 

—2.5 

—3.0 

—4.0 

—5.0 

—7.0 

1.000 
1.000 

1.661 
1.000 

2.244 
1.000 

2.736 
1.084 

3.116 
1.203 

3.324 
1.269 

3.116 
1.203 

2.736 
1.084 

2.244 
1.000 

1.661 
1.000 

1.000 
1.000 

0.692 
0.743 

0.535 
0.612 

0.485 
0.571 

0.505 
0.587 

0.644 
0.703 

0.803 
0.836 

0.989 
0.991 

1.000 
1.000 

1.659 
1.000 

2.239 
1.000 

2.729 
1.117 

3.108 
1.243 

3.315 
1.313 

3.108 
1.243 

2.729 
1.117 

2.239 
1.000 

1.659 
1.000 

1.000 
1.000 

0.700 
0.744 

0.547 
0.614 

0.498 
0.572 

0.517 
0.589 

0.653 
0.704 

0.808 
0.837 

0.989 
0.991 

1.000 
1.000 

1.614 
1.000 

2.156 
1.000 

2.613 
1.109 

2.966 
1.233 

3.159 
1.301 

2.966 
1.233 

2.613 
1.109 

2.156 
1.000 

1.614 
1.000 

1.000 
1.000 

0.707 
0.746 

0.558 
0.617 

0.511 
0.576 

0.530 
0.592 

0.662 
0.707 

0.813 
0.838 

0.989 
0.991 

1.000 
1.000 

1.547 
1.000 

2.030 
1.000 

2.437 
1.072 

2.752 
1.189 

2.924 
1.252 

2.752 
1.189 

2.437 
1.072 

2.030 
1.000 

1.547 
1.000 

1.000 
1.000 

0.716 
0.749 

0.571 
0.622 

0.525 
0.581 

0.543 
0.597 

0.672 
0.710 

0.818 
0.840 

0.990 
0.991 

1.000 
1.000 

1.418 
1.000 

1.787 
1.000 

2.099 
1.000 

2.339 
1.071 

2.471 
1.124 

2.339 
1.071 

2.099 
1.000 

1.787 
1.000 

1.418 
1.000 

1.000 
1.000 

0.732 
0.758 

0.595 
0.635 

0.552 
0.596 

0.569 
0.611 

0.690 
0.721 

0.829 
0.845 

0.990 
0.991 

1.000 
1.000 

1.295 
1.000 

1.555 
1.000 

1.774 
1.000 

1.943 
1.000 

2.036 
1.000 

1.943 
1.000 

1.774 
1.000 

1.555 
1.000 

1.295 
1.000 

1.000 
1.000 

0.751 
0.771 

0.624 
0.655 

0.584 
0.618 

0.600 
0.632 

0.713 
0.736 

0.841 
0.854 

0.991 
0.992 
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3.0 3.5 4.0 5.0 6.5 10.0 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.191 1.112 1.056 0.997 0.982 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.360 1.210 1.105 0.994 0.966 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.502 1.294 1.146 0.991 0.953 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.612 1.358 1.178 0.989 0.942 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.672 1.393 1.195 0.988 0.937 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.612 1.358 1.178 0.989 0.942 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.502 1.294 1.146 0.991 0.953 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.360 1.210 1.105 0.994 0.966 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.191 1.112 1.056 0.997 0.982 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.900 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.773 0.797 0.822 0.867 0.918 0.971 
0.788 0.808 0.830 0.871 0.919 0.971 

0.658 0.694 0.731 0.800 0.876 0.957 
0.681 0.711 0.743 0.806 0.878 0.957 

0.621 0.661 0.702 0.778 0.863 0.952 
0.646 0.680 0.715 0.785 0.865 0.952 

0.636 0.674 0.714 0.787 0.868 0.954 
0.660 0.692 0.726 0.793 0.871 0.954 

0.738 0.766 0.794 0.847 0.905 0.967 
0.755 0.779 0.803 0.851 0.907 0.967 

0.855 0.871 0.886 0.915 0.948 0.982 
0.865 0.878 0.891 0.918 0.949 0.982 

0.992 0.993 0.994 0.995 0.997 0.999 
0.992 0.993 0.994 0.995 0.997 0.999 
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TABLE V (cont.) 

Angle of internal friction of the soil Φ ;> 35.0
e 

Group BijBii = 1 : 2 

S/B 

0.6 0.9 1.2 1.5 2.0 2.5 

1.0 1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.8 1.802 1.799 1.745 1.664 1.507 1.357 
1.000 1.000 1.000 1.000 1.000 1.000 

0.6 2.508 2.503 2.402 2.249 1.955 1.673 
1.013 1.042 1.034 1.002 1.000 1.000 

0.4 3.105 3.097 2.956 2.743 2.332 1.939 
1.200 1.240 1.230 1.185 1.069 1.000 

0.2 3.566 3.556 3.384 3.125 2.624 2.144 
1.345 1.393 1.381 1.327 1.184 1.020 

0.0 3.818 3.808 3.619 3.333 2.784 2.257 
1.424 1.477 1.463 1.404 1.248 1.068 

—0.2 3.566 3.556 3.384 3.125 2.624 2.144 
1.345 1.393 1.381 1.327 1.184 1.020 

—0.4 3.105 3.097 2.956 2.743 2.332 1.939 
1.200 1.240 1.230 1.185 1.069 1.000 

—0.6 2.508 2.503 2.402 2.249 1.955 1.673 
1.013 1.042 1.034 1.002 1.000 1.000 

—0.8 1.802 1.799 1.745 1.664 1.507 1.357 
1.000 1.000 1.000 1.000 1.000 1.000 

—1.0 1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

—1.5 0.626 0.636 0.645 0.655 0.675 0.698 
0.688 0.690 0.692 0.696 0.707 0.722 

—2.0 0.436 0.450 0.464 0.480 0.509 0.545 
0.530 0.532 0.535 0.541 0.557 0.581 

—2.5 0.376 0.391 0.407 0.424 0.457 0.496 
0.479 0.481 0.485 0.492 0.510 0.536 

—3.0 0.400 0.415 0.430 0.446 0.478 0.515 
0.499 0.501 0.505 0.512 0.529 0.554 

—4.0 0.568 0.579 0.590 0.602 0.624 0.651 
0.640 0.641 0.644 0.649 0.661 0.679 

—5.0 0.761 0.767 0.773 0.780 0.792 0.807 
0.801 0.802 0.803 0.806 0.813 0.823 

—7.0 0.986 0.987 0.987 0 . 987 0.988 0.989 
0.989 0 .989 0.989 0 .989 0.989 0.990 
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3.0 3.5 4.0 5.0 6.5 10.0 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.232 1.136 1.067 0.996 0.978 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.436 1.255 1.127 0.992 0.959 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.609 1.356 1.177 0.989 0.943 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.742 1.434 1.216 0.987 0.930 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.815 1.477 1.237 0.986 0.923 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.742 1.434 1.216 0.987 0.930 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.609 1.356 1.177 0.989 0.943 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.436 1.255 1.127 0.992 0.959 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.232 1.136 1.067 0.996 0.978 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.725 0.754 0.784 0.839 0.901 0.965 
0.743 0.768 0.794 0.844 0.902 0.965 

0.585 0.629 0.674 0.757 0.850 0.947 
0.613 0.649 0.688 0.764 0.853 0.948 

0.541 0.589 0.639 0.731 0.834 0.942 
0.571 0.612 0.655 0.739 0.837 0.942 

0.558 0.605 0.653 0.741 0.840 0.944 
0.588 0.627 0.668 0.749 0.843 0.944 

0.682 0.716 0.750 0.814 0.885 0.960 
0.703 0.731 0.761 0.820 0.887 0.960 

0.824 0.843 0.862 0.897 0.937 0.978 
0.836 0.852 0.868 0.900 0.938 0.978 

0.990 0.991 0.992 0.994 0.996 0.999 
0.991 0.992 0.992 0.994 0.996 0.999 
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TABLE VI 

Angle of internal friction of the soil Φ = 10.0° 
Group BilBn = 1 : 4 

SIB 
f(Di — Du) 

0.6 0.9 1.2 1.5 2.0 2.5 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

—0.2 

—0.4 

—0.6 

—0.8 

—1.0 

—1.5 

—2.0 

—2.5 

—3.0 

—4.0 

—5.0 

—7.0 

1.000 
1.000 

1.348 
1.000 

1.654 
1.000 

1.913 
1.000 

2.113 
1.000 

2.222 
1.000 

2.113 
1.000 

1.913 
1.000 

1.654 
1.000 

1.348 
1.000 

1.000 
1.000 

0.887 
0.922 

0.830 
0.882 

0.812 
0.869 

0.819 
0.874 

0.870 
0.909 

0.928 
0.950 

0.996 
0.997 

1.000 
1.000 

1.325 
1.000 

1.612 
1.000 

1.855 
1.000 

2.042 
1.000 

2.144 
1.000 

2.042 
1.000 

1.855 
1.000 

1.612 
1.000 

1.325 
1.000 

1.000 
1.000 

0.892 
0.922 

0.837 
0.882 

0.820 
0.869 

0.827 
0.874 

0.876 
0.910 

0.931 
0.950 

0.996 
0.997 

1.000 
1.000 

1.287 
1.000 

1.540 
1.000 

1.754 
1.000 

1.919 
1.000 

2.010 
1.000 

1.919 
1.000 

1.754 
1.000 

1.540 
1.000 

1.287 
1.000 

1.000 
1.000 

0.897 
0.922 

0.845 
0.883 

0.828 
0.870 

0.834 
0.875 

0.881 
0.910 

0.934 
0.950 

0.996 
0.997 

1.000 
1.000 

1.244 
1.000 

1.459 
1.000 

1.640 
1.000 

1.780 
1.000 

1.857 
1.000 

1.780 
1.000 

1.640 
1.000 

1.459 
1.000 

1.244 
1.000 

1.000 
1.000 

0.902 
0.923 

0.851 
0.884 

0.835 
0.872 

0.842 
0.877 

0.886 
0.912 

0.937 
0.951 

0.996 
0.997 

1.000 
1.000 

1.174 
1.000 

1.327 
1.000 

1.457 
1.000 

1.557 
1.000 

1.611 
1.000 

1.557 
1.000 

1.457 
1.000 

1.327 
1.000 

1.174 
1.000 

1.000 
1.000 

0.909 
0.926 

0.863 
0.888 

0.848 
0.877 

0.854 
0.881 

0.895 
0.915 

0.942 
0.953 

0.997 
0.997 

1.000 
1.000 

1.116 
1.000 

1.218 
1.000 

1.304 
1.000 

1.371 
1.000 

1.407 
1.000 

1.371 
1.000 

1.304 
1.000 

1.218 
1.000 

1.116 
1.000 

1.000 
1.000 

0.917 
0.930 

0.875 
0.895 

0.862 
0.883 

0.867 
0.888 

0.905 
0.919 

0.947 
0.955 

0.997 
0.997 



3.0 3.5 4.0 5.0 6.5 10.0 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.072 1.040 1.019 0.999 0.994 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.135 1.076 1.037 0.998 0.989 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.188 1.106 1.051 0.997 0.985 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.230 1.129 1.062 0.996 0.981 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.252 1.142 1.068 0.996 0.980 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.230 1.129 1.062 0.996 0.981 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.188 1.106 1.051 0.997 0.985 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.135 1.076 1.037 0.998 0.989 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.072 1.040 1.019 0.999 0.994 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.926 0.935 0.943 0.958 0.975 0.991 
0.935 0.941 0.948 0.961 0.975 0.991 

0.888 0.901 0.914 0.937 0.962 0.987 
0.902 0.912 0.922 0.941 0.963 0.987 

0.876 0.891 0.905 0.930 0.958 0.985 
0.892 0.902 0.913 0.934 0.959 0.985 

0.881 0.895 0.908 0.933 0.959 0.986 
0.896 0.906 0.916 0.937 0.960 0.986 

0.914 0.924 0.934 0.952 0.971 0.990 
0.925 0.932 0.940 0.955 0.972 0.990 

0.953 0.958 0.964 0.973 0.984 0.994 
0.959 0.963 0.967 0.975 0.984 0.994 

0.997 0.998 0.998 0.998 0.999 1.000 
0.998 0.998 0.998 0.999 0.999 1.000 
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TABLE VI (cont.) 

Angle of internal friction of the soil Φ = 20.0° 
Group BilBn = 1 : 4 

SIB 
J — VU) 0.6 0.9 1.2 1.5 2.0 2.5 

1.0 1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.8 1.718 1.672 1.593 1.503 1.359 1.239 
1.000 1.000 1.000 1.000 1.000 1.000 

0.6 2.350 2.264 2.116 1.947 1.675 1.450 
1.000 1.000 1.000 1.000 1.000 1.000 

0.4 2.884 2.764 2.557 2.321 1.942 1.627 
1.000 1.000 1.000 1.000 1.000 1.000 

0.2 3.297 3.150 2.898 2.611 2.149 1.765 
1.000 1.000 1.000 1.000 1.000 1.000 

0.0 3.522 3.361 3.084 2.769 2.262 1.840 
1.000 1.027 1.020 1.000 1.000 1.000 

—0.2 3.297 3.150 2.898 2.611 2.149 1.765 
1.000 1.000 1.000 1.000 1.000 1.000 

—0.4 2.884 2.764 2.557 2.321 1.942 1.627 
1.000 1.000 1.000 1.000 1.000 1.000 

—0.6 2.350 2.264 2.116 1.947 1.675 1.450 
1.000 1.000 1.000 1.000 1.000 1.000 

—0.8 1.718 1.672 1.593 1.503 1.359 1.239 
1.000 1.000 1.000 1.000 1.000 1.000 

—1.0 1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

—1.5 0.767 0.778 0.787 0.797 0.813 0.829 
0.838 0.839 0.840 0.842 0.847 0.856 

—2.0 0.649 0.664 0.679 0.693 0.717 0.743 
0.756 0.757 0.758 0.762 0.770 0.782 

—2.5 0.611 0.628 0.645 0.660 0.687 0.715 
0.729 0.730 0.733 0.736 0.745 0.759 

—3.0 0.626 0.643 0.658 0.674 0.699 0.726 
0.740 0.741 0.743 0.746 0.755 0.768 

—4.0 0.731 0.743 0.754 0.765 0.784 0.803 
0.813 0.814 0.815 0.817 0.824 0.833 

—5.0 0.851 0.858 0.864 0.870 0.880 0.891 
0.897 0.897 0.898 0.899 0.903 0.908 

—7.0 0.992 0.992 0.992 0.993 0.993 0.994 
0.994 0.994 0.994 0.994 0.994 0.995 



3.0 3.5 

1.000 1.000 
1.000 1.000 

1.148 1.083 
1.000 1.000 

1.278 1.157 
1.000 1.000 

1.389 1.219 
1.000 1.000 

1.474 1.267 
1.000 1.000 

1.520 1.293 
1.000 1.000 

1.474 1.267 
1.000 1.000 

1.389 1.219 
1.000 1.000 

1.278 1.157 
1.000 1.000 

1.148 1.083 
1.000 1.000 

1.000 1.000 
1.000 1.000 

0.847 0.865 
0.867 0.879 

0.769 0.796 
0.799 0.818 

0.744 0.774 
0.777 0.798 

0.754 0.783 
0.786 0.806 

0.823 0.844 
0.846 0.860 

0.902 0.914 
0.915 0.923 

0.994 0.995 
0.995 0.996 

4.0 5.0 

1.000 1.000 
1.000 1.000 

1.040 0.998 
1.000 1.000 

1.076 0.996 
1.000 1.000 

1.105 0.994 
1.000 1.000 

1.129 0.993 
1.000 1.000 

1.141 0.992 
1.000 1.000 

1.129 0.993 
1.000 1.000 

1.105 0.994 
1.000 1.000 

1.076 0.996 
1.000 1.000 

1.040 0.998 
1.000 1.000 

1.000 1.000 
1.000 1.000 

0.882 0.914 
0.893 0.919 

0.823 0.870 
0.838 0.878 

0.803 0.856 
0.821 0.864 

0.811 0.861 
0.828 0.870 

0.864 0.900 
0.876 0.906 

0.925 0.945 
0.931 0.948 

0.996 0.997 
0.996 0.997 

6.5 10.0 

1.000 1.000 
1.000 1.000 

0.988 1.000 
1.000 1.000 

0.978 1.000 
1.000 1.000 

0.969 1.000 
1.000 1.000 

0.962 1.000 
1.000 1.000 

0.958 1.000 
1.000 1.000 

0.962 1.000 
1.000 1.000 

0.969 1.000 
1.000 1.000 

0.978 1.000 
1.000 1.000 

0.988 1.000 
1.000 1.000 

1.000 1.000 
1.000 1.000 

0.948 0.982 
0.949 0.982 

0.921 0.973 
0.923 0.973 

0.912 0.970 
0.915 0.970 

0.916 0.971 
0.918 0.971 

0.939 0.979 
0.941 0.979 

0.966 0.988 
0.968 0.988 

0.998 0.999 
0.998 0.999 
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TABLE VI (cont.) 

Angle of internal friction of the soil Φ = 30.0° 
Group Bi/Bu = 1 : 4 

1.0 1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.8 2.138 2.066 1.941 1.798 1.569 1.379 
1.000 1.000 1.000 1.000 1.000 1.000 

0.6 3.142 3.005 2.770 2.502 2.071 1.713 
1.000 1.000 1.000 1.000 1.000 1.000 

0.4 3.989 3.798 3.470 3.096 2.495 1.995 
1.084 1.117 1.109 1.072 1.000 1.000 

0.2 4.643 4.411 4.011 3.555 2.822 2.213 
1.203 1.243 1.233 1.189 1.071 1.000 

0.0 5.001 4.746 4.306 3.806 3.001 2.332 
1.269 1.313 1.301 1.252 1.124 1.000 

—0.2 4.643 4.411 4.011 3.555 2.822 2.213 
1.203 1.243 1.233 1.189 1.071 1.000 

—0.4 3.989 3.798 3.470 3.096 2.495 1.995 
1.084 1.117 1.109 1.072 1.000 1.000 

—0.6 3.142 3.005 2.770 2.502 2.071 1.713 
1.000 1.000 1.000 1.000 1.000 1.000 

—0.8 2.138 2.066 1.941 1.798 1.569 1.379 
1.000 1.000 1.000 1.000 1.000 1.000 

—1.0 1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

—1.5 0.631 0.647 0.663 0.678 0.703 0.729 
0.743 0.744 0.746 0.749 0.758 0.771 

—2.0 0.443 0.468 0.491 0.514 0.552 0.592 
0.612 0.614 0.617 0.622 0.635 0.655 

—2.5 0.383 0.411 0.436 0.461 0.504 0.548 
0.571 0.572 0.576 0.581 0.596 0.618 

—3.0 0.407 0.433 0.458 0.482 0.523 0.565 
0.587 0.589 0.592 0.597 0.611 0.632 

—4.0 0.574 0.593 0.610 0.628 0.657 0.687 
0.703 0.704 0.707 0.710 0.721 0.736 

—5.0 0.764 0.775 0.785 0.794 0.810 0.827 
0.836 0.837 0.838 0.840 0.845 0.854 

—7.0 0.987 0.987 0.988 0.988 0.989 0.990 
0.991 0.991 0.991 0.991 0.991 0.992 

SjB 
f(Di — Dn) 
J y

 0.6 0.9 1.2 1.5 2.0 2.5 



3.0 3.5 4.0 5.0 6.5 10.0 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.235 1.132 1.064 0.996 0.981 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.442 1.249 1.120 0.993 0.964 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.616 1.347 1.167 0.991 0.950 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.751 1.423 1.204 0.988 0.939 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.825 1.465 1.224 0.987 0.933 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.751 1.423 1.204 0.988 0.939 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.616 1.347 1.167 0.991 0.950 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.442 1.249 1.120 0.993 0.964 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.235 1.132 1.064 0.996 0.981 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.757 0.786 0.813 0.863 0.917 0.971 
0.788 0.808 0.830 0.871 0.919 0.971 

0.634 0.677 0.718 0.794 0.874 0.956 
0.681 0.711 0.743 0.806 0.878 0.957 

0.594 0.642 0.688 0.771 0.861 0.952 
0.646 0.680 0.715 0.785 0.865 0.952 

0.610 0.656 0.700 0.780 0.866 0.954 
0.660 0.692 0.726 0.793 0.871 0.954 

0.720 0.752 0.785 0.842 0.904 0.967 
0.755 0.779 0.803 0.851 0.907 0.967 

0.845 0.863 0.881 0.913 0.947 0.982 
0.865 0.878 0.891 0.918 0.949 0.982 

0.991 0.992 0.993 0.995 0.997 0.999 
0.992 0.993 0.994 0.995 0.997 0.999 
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TABLE VI (cont.) 

Angle of internal friction of the soil Φ ^ 37.5° 
Group BilBn = 1 : 4 

SIB 
/ (Di - Dn) 

0.6 0.9 1.2 1.5 2.0 2.5 

1.0 1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.8 2.513 2.416 2.250 2.061 1.757 1.504 
1.000 1.000 1.000 1.000 1.000 1.000 

0.6 3.846 3.665 3.352 2.996 2.424 1.948 
1.058 1.090 1.082 1.047 1.000 1.000 

0.4 4.972 4.719 4.283 3.786 2.987 2.323 
1.263 1.307 1.296 1.247 1.119 1.000 

0.2 5.842 5.533 5.001 4.396 3.422 2.612 
1.422 1.475 1.461 1.402 1.246 1.066 

0.0 6.318 5.978 5.394 4.729 3.660 2.771 
1.508 1.567 1.552 1.487 1.316 1.118 

—0.2 5.842 5.533 5.001 4.396 3.422 2.612 
1.422 1.475 1.461 1.402 1.246 1.066 

—0.4 4.972 4.719 4.283 3.786 2.987 2.323 
1.263 1.307 1.296 1.247 1.119 1.000 

—0.6 3.846 3.665 3.352 2.996 2.424 1.948 
1.058 1.090 1.082 1.047 1.000 1.000 

—0.8 2.513 2.416 2.250 2.061 1.757 1.504 
1.000 1.000 1.000 1.000 1.000 1.000 

—1.0 1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

—1.5 0.509 0.531 0.552 0.572 0.605 0.640 
0.658 0.660 0.663 0.667 0.678 0.696 

—2.0 0.259 0.292 0.323 0.353 0.404 0.457 
0.485 0.487 0.491 0.497 0.515 0.541 

—2.5 0.180 0.217 0.251 0.284 0.340 0.399 
0.429 0.432 0.436 0.443 0.463 0.492 

—3.0 0.212 0.247 0.280 0.312 0.366 0.422 
0.451 0.454 0.458 0.465 0.483 0.511 

—4.0 0.433 0.458 0.482 0.505 0.544 0.585 
0.605 0.607 0.610 0.615 0.629 0.649 

—5.0 0.687 0.701 0.714 0.726 0.748 0.770 
0.782 0.783 0.784 0.787 0.795 0.806 

—7.0 0.982 0.983 0.984 0.984 0.986 0.987 
0.988 0.988 0.988 0.988 0.988 0.989 
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3.0 3.5 4.0 5.0 6.5 10.0 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.312 1.176 1.085 0.995 0.975 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.587 1.331 1.159 0.991 0.953 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.819 1.462 1.222 0.987 0.934 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.999 1.563 1.271 0.985 0.919 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

2.097 1.618 1.298 0.983 0.911 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.999 1.563 1.271 0.985 0.919 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.819 1.462 1.222 0.987 0.934 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.587 1.331 1.159 0.991 0.953 0.999 
1.000 1.000 1.000 1.000 1.000 1.000 

1.312 1.176 1.085 0.995 0.975 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000 1.000 1.000 
1.000 1.000 1.000 1.000 1.000 1.000 

0.677 0.715 0.752 0.818 0.889 0.962 
0.719 0.745 0.774 0.829 0.893 0.962 

0.513 0.570 0.626 0.726 0.833 0.942 
0.575 0.616 0.659 0.742 0.838 0.943 

0.461 0.524 0.586 0.696 0.815 0.936 
0.530 0.574 0.622 0.714 0.821 0.936 

0.482 0.542 0.602 0.708 0.822 0.938 
0.548 0.591 0.636 0.725 0.828 0.939 

0.627 0.671 0.714 0.790 0.872 0.956 
0.675 0.706 0.739 0.802 0.876 0.956 

0.794 0.818 0.842 0.884 0.929 0.976 
0.820 0.837 0.855 0.891 0.932 0.976 

0.988 0.990 0.991 0.993 0.996 0.999 
0.990 0.991 0.992 0.994 0.996 0.999 



APPENDIX I 

TABLES FOR THE DETERMINATION OF THE VERTICAL STRESS 

IN THE SOIL 

It is often necessary to determine the vertical stress in the soil, especially 
during the calculation of the settlement of buildings according to Sec. 1.3. If 
several foundations are near to each other, then the stresses in the soil they 
cause are added (Fig. 1.1). Tables have been prepared for the simpler calculation 
of the vertical stresses in the soil beneath a foundation caused not only by the 
load acting on the foundation but also by the loads acting on the adjacent 
foundations. Solutions are presented for a homogeneous subgrade (a homogen-
eous subgrade is one whose properties do not change in the active zone —see 
Appendix II), for a vertical load also the case of a double—layer subgrade and 
the case of an earth cushion beneath a foundation. 

a) Vertical load at various depths of a homogeneous soil 

In the foundation line there is an average load increment 

Aq = Q'IBL for a strip foundation (1.1) 
Aq = Q'jB1 for a square foundation (1.2) 
Aq = Q'/nR2 for a circular footing with a radius R (1.3) 

•r ! 1 

_ _ _ _ 0!/BL (kN/m
2
 ) D 

^ Λ^22 ^ j 
I I 

Fig. 1.1 Superposition of stresses under strip foundation 
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if β ' is a vertical central resultant of the forces acting on the foundation, reduced 
by the weight of the soil excavated to make room for the foundation. The 
diagram of the designations is in Fig. 1.2. The vertical stress at point M from 
the load increment in the foundation line is 

Δσζ = AqKx (1.4) 

The values of coefficient Kx are given in Table 1.1 for various depths (z — D) 
below the foundation and for various distances χ from the axis of the found-
ation, which is based at a depth D below the ground surface. 

I 
ο M 

0
2
0 

(z-D) 

horizontal load 

(point M and force H are 

in the plane XZY = 0) 
D-0 

x(>0) 
>M 

Fig. 1.2 Notation for the calculation of the vertical stresses in the soil caused by the load of 
a strip foundation (a, b) or a footing (a, b, c) 



TABLE 1.1 

Values of coefficient Kl for the calculation of the vertical stress in the soil if the foundation, 
which is loaded vertically, is based at various depths D and if there is a homogeneous soil 
in the subgrade 

(ζ — D)/B D/B 
or or 

x/B for a strip foundation 
x/B or x/2R for 
a footing 

(z-D)/2R D/2R 0 2 3 4 5 0 2 3 

0 ^ 0 1 0 0 0 0 1 0 0 
0.25 0 0.96 0 0 0 0 0.92 0 0 

0.5 0.86 0.02 0 0 0 0.75 0 0 
1 0.79 0.07 0 0 0 0.65 0.01 0 
2 0.68 0.19 0.11 0.03 0 0.54 0.01 0 
4 0.57 0.23 0.19 0.16 0.12 0.48 0 0 

0.50 0 0.82 0.01 0 0 0 0.67 0 0 
0.5 0.71 0.03 0 0 0 0.50 0.01 0 
1 0.61 0.08 0 0 0 0.42 0.01 0 
2 0.52 0.13 0.08 0.04 0 0.35 0.01 0 
4 0.43 0.14 0.12 0.09 0.07 0.34 0 0 

1.00 0 0.54 0.03 0.01 0 0 0.31 0.01 0 
0.5 0.44 0.06 0.02 0 0 0.22 0.01 0 
1 0.38 0.09 0.03 0 0 0.18 0.01 0 
2 0.31 0.11 0.07 0.04 0.02 0.16 0.01 0,01 
4 0.27 0.10 0.08 0.06 0.05 0.15 0.01 0 

1.50 0 0.40 0.06 0.02 0.01 0 0.16 0.01 0 
0.5 0.32 0.09 0.03 0.01 0 0.11 0.02 0 
1 0.28 0.10 0.05 0.02 0 0.09 0.02 0.01 
2 0.23 0.10 0.07 0.04 0.02 0.08 0.01 0.01 
4 0.20 0.09 0.07 0.06 0.04 0.08 0.01 0 

2.00 0 0.31 0.08 0.03 0.01 0.01 0.09 0.02 0.01 
0.5 0.25 0.10 0.04 0.02 0.01 0.06 0.02 0.01 
1 0.21 0.11 0.06 0.03 0.01 0.05 0.02 0.01 
2 0.18 0.10 0.07 0.04 0.03 0.05 0.01 0.01 
4 0.15 0.09 0.07 0.05 0.04 0.04 0.01 0 

3.00 0 0.21 0.10 0.05 0.03 0.02 0.04 0.02 0.01 

0.5 0.17 0.11 0.06 0.03 0.02 0.03 0.02 0.01 
1 0.14 0.11 0.07 0.04 0.02 0.02 0.01 0.01 
2 0.12 0.10 0.07 0.05 0.04 0.02 0.01 0.01 
4 0.10 0.09 0.07 0.05 0.04 0.02 0.01 0.01 

5.00 0 0.13 0.09 0.07 0.05 0.03 0.02 0.01 0.01 

0.5 0.10 0.09 0.07 0.05 0.04 0.01 0.01 0.01 

1 0.09 0.09 0.07 0.05 0.04 0.01 0.01 0.01 

2 0.07 0.07 0.07 0.05 0.04 0.01 0.01 0.01 

4 007 0.07 0.06 0.05 0.04 0.01 0.01 0 
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Coefficient Kt for a strip foundation from Table 1.1 can be used for practical 
calculations of strip foundations, whose length L ^ 32?. The values of Kt in 
the table are calculated for L = 4B. 

The coefficient Kx given in the table for a footing can be used both for a 
square and circular footing. The exact values differ from the values in Table 1.1 
at most by 10 % for xjB = 0, (z - D)/B = 1.5, D\B = 0. 

During the calculation of the vertical stresses in the soil the influence of the 
distribution of the stress in the foundation line is apparent only in the near 
vicinity of the foundation. For x\B > 1 or (z - D)jB > 1.5 the stress in the 
soil from the foundation footing can be calculated as though due to a point 
load and the stress from a strip foundation as though due to a line load. The 
error thus created does not exceed 2 %. 

b) The vertical load on the surface of a stratified subgrade (D = 0) 

During the calculation of vertical stresses in the soil beneath a foundation 
the influence of stratification is incorporated in the calculation approximately 
by replacing the upper layer of soil by an equivalent layer of the soil of the 
lower layer. The stress is then calculated as for a homogeneous subgrade for 
an equivalent depth 

= * A ( L S ) 

In this way a multilayered subgrade can be gradually transformed into a sub-
stitute homogeneous subgrade, which is formed only by the soil of the lowest 
layer. The coefficient for a double—layer subgrade 

λ = -Ve01IE02 (1.6) 

and for a soil cushion below the foundation 

λ = hl/E01IE02 (1.7) 

Equation (1.7) is valid in the case of a soil cushion which is only a little wider 
than the foundation (up to 1 AB) and reaches from the foundation line to a depth 

if 

^° = 4 5 ° ( 1 - i ) - T ( L 9) 

Usually we find h = 0.755 to h = 1.3B. 
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In the equations Φ2 is the angle of internal shearing resistance of the cushion 

E01 is the deformation modulus of the upper layer (cushion) 
E02 is the deformation modulus of the lower layer of soil 

β is the inclination of the resultant of the central load on the foundation 
from the vertical. 

Using equation (1.5) we can determine the vertical stress in the soil beneath 
the foundation to a maximum distance χ = B\2 from the axis of the foundation. 
Expressions (1.6) and (1.7) were derived for a load acting on the surface (D = 0), 
but they can be used with sufficient accuracy even for shallow foundations. 
The coefficient λ according to equation (1.6) and (1.7) is calculated for various 
ratios E01jE02 in Table 1.2. 

TABLE 1.2 

Value of coefficient λ for various ratios of the deformation moduli Eol/Eo2 

E
o\l

E
o2 0.02 0.10 0.25 0.50 1.00 2.00 4.00 6.00 10.00 

(CJC2) 

double layer 
, , 0.21 0.40 0.57 0.76 1.00 1.32 1.74 2.05 2.51 

subgrade 

soil cushion 0.33 0.52 0.67 0.82 1.00 1.22 1.49 1.67 1.93 

c) The horizontal load on the surface of a homogeneous soil (Z> = 0) 

If a horizontal force H, parallel with axis X, acts in the foundation line, 
then there is created at point M, which is at a distance x, a stress 

< u o ) 

for a strip foundation or a square footing 

" ' • - • m w
K

'
 ( U 1

> 

for a circular footing 

The axis X is at right angles to the length of the strip. The diagram of the 
designations is in Fig. 1.2. The values of coefficient K2 are given in Table 1.3 
for various depths ζ and various distances χ from the axis of the foundation if 
D = 0. The vertical stress in the soil caused by a square or circular footing 
loaded horizontally, can be determined even in the case where point M (χ, y, ζ) 
at which we are determining the vertical stress, is at a distance y from the 



2 2 8 

T A B L E 1.3 

, ; , . r _, . \ x \ jB ov \ x \/2R 
\ χ \ B for a strip foundation c c A. / r , for a footing 

Z / J B or z / 2 Ä 

0 2 3 4 5 0 

0 0 0 0 0 0 0 0 0 

0 . 2 5 0 0 .01 0 0 0 0 0 0 

0 . 5 0 0 0 . 0 2 0 .01 0 0 0 0 .01 0 

1.00 0 0 . 0 6 0 . 0 2 0 .01 0 0 0 .01 0 

1.50 0 0 .08 0 . 0 4 0 . 0 2 0 .01 0 0 . 0 2 0 .01 

2 . 0 0 0 0 . 0 8 0 . 0 5 0 . 0 3 0 . 0 2 0 0 . 0 2 0 .01 

3 . 0 0 0 0 . 0 7 0 . 0 5 0 . 0 4 0 . 0 3 0 0 .01 0 .01 

5 . 0 0 0 0 . 0 4 0 . 0 4 0 . 0 4 0 . 0 3 0 0 0 

T A B L E 1.4 

Values of coefficient K5(D = 0 ) 

U l / z 
x\\z 

0 0 . 2 0 0 . 4 0 0 . 6 0 0 . 8 0 1.0 2 . 0 0 3 . 0 0 5 .0 

0 0 0 . 0 2 0 . 0 5 0 . 0 8 0 . 0 9 0 . 0 8 0 . 0 3 0 .01 0 

0 .2 0 0 . 0 2 0 . 0 5 0 . 0 7 0 . 0 8 0 . 0 8 0 . 0 3 0 .01 0 

0 .4 0 0 .01 0 . 0 4 0 . 0 6 0 . 0 7 0 . 0 7 0 .03 0 .01 0 

0 .6 0 0 .01 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 6 0 .03 0 .01 0 

0 .8 0 0 .01 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 4 0 . 0 3 0 .01 0 

1.0 0 0 0 .01 0 . 0 2 0 . 0 3 0 . 0 3 0 . 0 2 0 .01 0 

1.5 0 0 0 0 .01 0 .01 0 .01 0 .01 0 .01 0 

2 . 0 0 0 0 0 0 0 0 0 0 

vertical plane XZ in which the horizontal force H lies (Fig. I.2c). At point M 
given by coordinates (x9 y, ζ) there is a vertical stress due to force Η 

Δ σ
' " - ^ \ - Ί Τ

κ
*

 ( U 2) 

The origin Ο of the rigid-angled coordinate system is at the centre of the 
horizontal foundation surface of the footing. The values of coefficient K3 are 
given in Table 1.4. The calculation according to equation (1.12) can be used if 
the point at which the vertical stress is being determined is at a distance of at 
least 2R or Β from the centre of the circular or square footing. 

Values of coefficient K2 {D = 0 ) 



APPENDIX LI 

THE DETERMINATION OF THE ACTIVE ZONE DURING 

THE CALCULATION OF THE SETTLEMENT OF BUILDINGS 

During the calculations of the settlement of foundations the compression 
of soil, resulting from the load increment of the building, is considered only 
in the active zone below the foundation. The active zone, also called the 

[ B resp. 2R [ 

fizo
m
X

n
o 

Fig. II. 1 The determination of the effective depth (active zone) during the calculation of the 
settlement of buildings 
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effective depth, depends mainly on the depth of foundation, the width of the 
foundation, the compressibility of the soil and the size of the load. When, 
during the calculation of the vertical stresses in the soil, we also consider the 
effect of the adjacent foundations1) and other similar influences, the active 
zone can be determined from the condition 

Ασζ^0.3σζ (II. 1) 

where σζ is the initial stress in the soil at a depth ζ 
Ασζ is the load increment in depth ζ caused above the point by the found-

ation, by adjacent foundations, by the lowering of the groundwater 
level, etc. 

The determination of the active zone is shown in Fig. II. 1. In equation (II. 1) 
a coefficient smaller than 0.3 was used previously, but recent measurements 
show that the value 0.3 is more realistic. 

!) Very approximately, it is also possible to determine the vertical stress in the soil under 
shallow foundations (0 < D ^ 4B) as for D = 0, but then it is not possible to add the 
effect of the adjacent foundations. 
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foundation rigid circular 32, 167 
foundation slab or strip 19, 71, 75, 80, 85, 

88, 93, 152, 160, 223, 229 
freezing 52, 60 
freezing zone 52 
frequency 64, 155 
friction angle 54, 67 
friction between soil and structure 67 
friction cohesion 68 
friction pile 80, 85, 127 
frost heave 52 
frost zone 52 

grading curves 135 
graphical method 88, 126, 146 
gravel-sand cushion 143 
groundwater elevation, -level, -surface, 

-table 20, 85, 229 

harmonic motion 155 
height of plastic range 86 
homogeneous foundation soil 29, 31, 69 
horizontal force, load 127, 227 

inclination factors 81 
inclined force 74, 81, 89 
inclined foundation 74 
incompressible subgrade 141 
independent footing 19, 71, 75, 80, 85, 88, 

93, 119, 134, 152, 160, 223, 229 
influence factors 163, 164 
influence of adjacent foundations 93 
influence of cross section 116 
influence of groundwater 19, 29, 85 
influence of slope 79 
influence of vertical moment 36 

initial shear strength 60 
intensity °MCS 66 
intrinsic curve 55 
isolated foundation 19, 71, 75, 80, 85, 88, 

93, 119, 134, 152, 160, 223, 229 

landslide 119, 123 
land upheaval 52 
line load 170, 172 
load carrying capacity 54 
loading disc 13,28 
loading of slope 79 
layered subgrade 134 
loading test 14, 28, 93, 132 

mat foundation 19, 71, 75, 80, 85, 88, 93, 
152, 160, 223, 229 

Mises criterion 56 
mobilisation moduli 62, 63 
model test 89, 93, 116, 130, 132, 134 
Möhr—Coulomb criterion 55, 56 
Mohr's circle 55 
Mohr's envelope 55 
mobilisation work 61, 62 
moisture content 49 
multilayered subgrade 150, 226 

natural frequency 64, 155 
neutral air pressure 19 
neutral stress of water 19 
non-elastic compression 24 
non-uniform lifting 52 
non-uniform soil 134 
normal stress 172 
number of rigidity 160 

oedometer modulus 24 
oscilations 155 
overcompaction 171 
overconsolidation 23, 24, 52, 57, 60 

passive earth pressure 72, 84 
period of drought 51 
permafrost 60 
permissible amplitudes 155 
permissible differences 152 
permissible eccentricity 85 
permissible load 152 
permissible settlement 152 
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pier footing 80, 85, 127 
pile 80, 85, 127 
pile group 132 
plate loading test 14, 28 
point load 225 
Poisson's ratio 26 
porosity 27, 52 
pressure at rest 171 
primary settlement 42 
protective filter 150 
pulses 64 

raft foundation 19, 71, 75, 80, 85, 88, 93, 
152,160,223,229 

rainforced concrete 160 
raising 52, 158 
raking pile 133 
real settlement 31 
redistribution of stress 30 
reference plane 128 
repeated load 44, 63, 155 
revolutions 155 
rigid foundation 28, 32, 160 
rigidity coefficient 160 
rigidity number 160 
rigidity of foundation 30, 160 
rotation of foundation 130 
rotation slip 119 
row of piles 132 

safety factor 128, 130, 156 
sand cushion 143 
secondary settlement 42, 44 
self frequency 64, 155 
settlement analysis 29, 31 

— of non-rigid circular foundation 115 
— of rigid circular foundation 32 
shallow foundations 29, 31, 36, 42, 49, 69, 

93, 116, 118, 134, 152, 160, 223, 229 
shear box 54 
shearing 158 
shearing resistance 54 
shear strength 54 
shrinkage limit 49 
sinking 158 
skin friction 67 
slab foundation 19, 71, 75, 80, 85, 88, 93, 

152, 160, 223, 229 
sliding 158 

slip surface 14, 16, 17, 88, 94, 116, 119, 
126, 143 

slope 79, 119 
slope factors 81, 87 
slope failure 119, 123 
soft soil 134 
soil pressure 72, 84, 171 
soil shrinkage 49 
spot loading 225 
stability number 158 
stratified soil 29, 33, 226 
stress in soil 18, 160 
strip foundation 19, 71, 75, 80, 85, 88, 93, 

116, 119, 134, 152, 160, 223, 229 
Student's distribution 93 
subsidence of soil 49 
surface level difference 100 
surface of sliding 14, 16, 17, 88, 94, 116, 

119, 126, 143 
swell, to 52 
swelling pressure 52 

time factor 28, 45, 46 
time-settlement curve 42 
total settlement 29 
traffic shock 65 
Tresco criterion 56 
triaxial shearing apparatus 55 
turning over 158 

ultimate bearing capacity 54 
ultimate load 71, 130 
ultimate settlement 154 
uprooting 158 

velocity 155 
vertical stress in soil 19, 148, 176, 223 
vibrations 64, 65 
void ratio 27, 59 
void water 20, 21, 22, 229 

wall friction 67, 77 
water content 50 
water menisci 20, 229 
weak soil 134 

yield surfaces 14, 16, 17, 88, 94, 116, 119, 
126, 143 

Young's modul 31 


