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Preface to Comprehensive
Treatise of Electrochemistry

Electrochemistry is one of the oldest defined areas in physical science, and
there was a time, less than 50 years ago, when one saw ‘“Institute of
Electrochemistry and Physical Chemistry” in the chemistry buildings of
European universities. But after early brilliant developments in electrode
processes at the beginning of the twentieth century and in solution chemistry
during the 1930s, electrochemistry fell into a period of decline which lasted
for several decades. Electrochemical systems were too complex for the theor-
etical concepts of the quantum theory. They were too- little understood at a
phenomenological level to allow the ubiquity in application in so many fields
to be comprehended.

However, a new growth began faintly in the late 1940s, and clearly in
the 1950s. This growth was exemplified by the formation in 1949 of what is
now called The International Society for Electrochemistry. The usefulness of
electrochemistry as a basis for understanding conservation was the focal point
in the founding of this Society. Another very important event was the choice
by NASA in 1958 of fuel cells to provide the auxiliary power for space vehicles.

With the new era of diminishing usefulness of the fossil fuels upon us,
the role of electrochemical technology is widened (energy storage, conversion,
enhanced attention to conservation, direct use of electricity from nuclear-solar
plants, finding materials which interface well with hydrogen). This strong new
interest is not only in the technological applications of electrochemistry.
Quantum chemists have taken an interest in redox processes. Organic chemists
are interested in situations where the energy of electrons is as easily controlled
as it is at electrodes. Some biological processes are now seen in electrodic
terms, with electron transfer to and from materials which would earlier have
been corisidered to be insulators.

x



X PREFACE

It is now time for a comprehensive treatise to look at the whole field of
electrochemistry.

The present treatise was conceived in 1974, and the earliest invitations
to authors for contributions were made in 1975. The completion of the early
volumes has been delayed by various factors.

There has been no attempt to make each article emphasize the most
recent situation at the expense of an overall statement of the modern view.
This treatise is not a collection of articles from Recent Advances in Electro-
chemistry or Modern Aspects of Electrochemistry. It is an attempt at making
a mature statement about the present position in the vast area of what is best
looked at as a new interdisciplinary field.

Texas A & M University John O’M. Bockris
University of Ottawa Brian E. Conway
Case Western Reserve University Ernest B. Yeager

Texas A & M University Ralph E. White



Preface to Volume 6

The past three decades have seen the rapid evolution of the transport aspects
of electrochemical engineering into a formal part of electrochemistry as well
as chemical engineering. With minor exceptions, however, this subject has
not been systematically covered in any treatise or recent electrochemical
text. The editors believe that the treatment in this volume will serve the
function.

Chapter 1 presents a formal general framework for the overall principles
of mass and charge in electrochemical systems. Chapters 2, 3, and 4 are
concerned with more specific aspects of mass and charge transfer at electrodes,
while Chapters 5, 6, and 7 are directed to the special topics of porous
electrodes, flow-through electrodes, fluidized bed electrodes, and gas
evolution in electrode systems.

The nomenclature and symbols in this volume conform with the recom-
mendations of the IUPAC in the Manual of Symbols and Terminology for
Physicochemical Quantities and Units, 1979 edition, published by Pergamon
Press Ltd., Oxford, England, as prepared by the IUPAC Commission I-1. In
a few instances there may be deviations from the symbols used in other
volumes of the Treatise because of the overlapping use of symbols in different
disciplines. A list of generally used symbols is given in the beginning of this
volume. For chapters in which deviations have occurred or further symbols
been introduced, an auxiliary notation list is also included with the chapter.

The editors owe special thanks to Professor N. Ibl, of Eidgenossische
Technische Hochschule Zurich for his major contributions in both helping
with the organizational aspects of this volume as well as contributing several
chapters. All of the chapters in this volume have also been reviewed by
external reviewers to whom the editors express their appreciation. Finally,
the editors acknowledge the help of James O’Connor of Kennametal, Inc.

Xi



xii PREFACE TO VOLUME 6

(Latrobe, Pennsylvania) in the preparation of the subject and author indices
for this volume.

Case Western Reserve University Ernest B. Yeager
Texas A & M University John O’M. Bockris
University of Ottawa Brian E. Conway

Union Carbide Corporation S. Sarangapani
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Notation

a thermal diffusivity Jo exchange current
(m*s™) density (A m~?)

a activity (molkg™") Jx local current density

b electrode breadth (m) (Am™)

CB concentration of Jiim average limiting-current
substance B (mol m™>) density (A m™?)

¢’ wave velocity (ms™") Joo current density at

cn coordination number infinite distance from

C» specific heat edge of electrode (A m™?)
kg™ 'K j* transfer current in

d bubble departure three-dimensional
diameter (m); specific electrode
gravity (dimensionless) & thermal conductivity

dn hydraulic diameter (m) (kgms 2K™); rate

e charge of an electron constant (cms™")
(As) kq mass transfer coefficient

f dimensionless velocity (ms™)
profile at plate ) electrode length or
electrode; roughness height (m);
factor characteristic length

g gravitational constant m mass; number of a
(9.81 m s7%); porosity layer of sites; number

h heat transfer coefficient of components
(Wm™2K™); distance 7 charge number of the
between electrodes (m) cell reaction

i current density in (dimensionless,
solution (A m™?) positive); number of

J average current density independent species
flowing through (dimensionless); cell
electrode (A m_2) number

xix



xXx

QT

ro

g
tw

*

total number of species

pressure (Pa)

heat flux density
(W m™?); volume flow
rate (cm’s ')

disk radius (m)

radius (m); radial
distance on disk
electrode (m); pore
radius; grain radius;
ratio of supporting
electrolyte
concentration to total
concentration
(normalities)

electrode spacing (m);
cross-sectional area of
a pore (m?); number
of supercritical pores

time (s); transport
number
(dimensionless)

residence time (s)

waiting time (s)

temperature (K)

mechanical mobility
(molms™ ' N7

electric mobility
(m*s7'VY

velocity (ms™');
potential sweep rate
(Vs™); molecular
volume

rate of production of
species B by
homogeneous reaction
r (molm™3s7")

width of the electrode
(m)

direction parallel to
electrode and to flow;
number of moles of a
species per mole of
solution.

y

<

Za

ZB

r4e

Q>

Cu

D*

o]

Eo

NOTATION

direction perpendicular
to electrode

dimensionless distance

direction parallel to
electrode and
perpendicular to flow

number of active
nucleation sites

charge number of an
ion B (dimensionless,
positive for cations,
negative for anions);
number of adhering
bubbles

number of bubbles
formed by coalescence

area (m?)

dimensionless
concentration

double-layer
capacitance

diffusion coefficient
based on
thermodynamic driving
force (m*s™")

effective diffusion
coefficient of nonideal
concentrated solution
based on concentration
gradient (m*s™h)

integral (average)
diffusion coeflicient
based on concentration
gradients (m>s™")

diffusion coefficient of
ideal dilute solution
(m®s™")

strength of the electric
field (Vm™)

electrode potential
relative to solution (V)

standard potential (V)

Faraday constant
(96,500 A s mol ™ );



NOTATION

adhesion force
(kg m )

driving force (affinity)
(I mol™)

H Henry’s law constant
(kgm™'s7?)

current (A)

total current density in
three-dimensional
electrode (A m™?)

permeability (cm®S™")

i interaction coefficient

between species i and
j Am™%)

L characteristic length,
electrode length (m);
hydrodynamic and
mass transfer entrance
lengths (m);
phenomenological
coefficient
(mol*J 'mts7Y);
length of diffusion
path (m)

hydrodynamic and mass
transfer entrance
lengths (m)

M molar mass (kg mol ™)

N flux density

(mol m™2 sh
N mass flux density
_ (mol m™2 )

Ng,., N, local and average
interfacial flux density
of species B
(perpendicular to
interface)
molm™*s™")

limiting average
interfacial flux density
of species B excluding
migration
(molm 257

P pressure (kgm™'s )

AG

o~

ol

Ly, Ly

NB,lim

R, R*

R

R R

8, 61, ov

€, EM

€9

xxi

ideal gas constant
(mol 'K

number of
homogeneous
reactions; polarization
resistance () m?)

activation resistance
(Qm?

departure bubble radius
(m)

electrolyte resistance
(Qm?)

specific inner surface
(m™")

temperature (K)

volume (m?)

gas volume flow rate
(m*s™)

drag coefficient
(dimensionless)

faradaic impedence ()

transfer coefficient;
7/ jum; densification
coefficient (m® mol™?)

constant in Tafel
equation (V)

thermal expansion
coeflicient

dimensionless
parameter; interfacial
tension (Nm™);
activity coefficient,
molality basis

diffusion, thermal and
hydrodynamic
boundary layer
thickness (m)

turbulent transport
coefficients (m”s™")

relative dielectric
constant

permittivity of vacuum
(AsV'im™

contact angle



xXxii

T

Vi, Vo

Vi

overpotential (V);
similarity variable;
rotational elliptic
coordinate

current efficiency
(dimensionless);
fractional surface
coverage
(dimensionless)

specific conductivity
@ 'm™)

effective specific
conductivity Q@ 'm™

wavelength (m); mean
free path (m)

ionic conductivity of
species B
(ohm™ m* mol™)

dynamic viscosity
(kgm's™"); chemical
potential (J mol™)

electrochemical
potential (J mol™?)

kinematic viscosity
(m®s™)

v, + v_ (dimensionless)

number of moles of
cations and anions,
respectively, generated
in the dissociation of
one mole of neutral
electrolyte
(dimensionless)

stoichiometric
coeflicients of
electrode reaction or
of homogeneous
reaction in solution
(positive for products,
negative for reactants
(dimensionless)

rotational elliptic
coordinate; normalized
concentration

m
&
A¢

NOTATION

rate of homogeneous
reaction (mols™")

space charge (A sm™°)

density (kgm™)

shear stress, momentum
flux density (N m™2);
wave period; transition
time

electrical potential (V)

electric potential of
metallic phase (V)

electric potential of
solution (V)

potential difference
across the interface
(V)

constant in Tafel
equation (V); volume
fraction
(dimensionless)

mass fraction
(dimensionless);
frequency of the ac
signal (HZ)

friction factor

Dimensionless Groups

f
Sh

Re,

friction factor;
f=21/pvb

Sherwood number;

Sh = NB,ex/DB(CB,e -
cB,O)

Sherwood number
(gverage);
Nz,l/Ds(Cs,. — Cg,0)

Nusselt number;

Nu = g.l/apc,(To — T,)

Schmidt number;

Sc= V/ DB
Reynolds number;
Re = vl/v

vx/v, Reynolds number
(local)



NOTATION

Gr

ip

Ju

Grashof number; Gr =
g(po— pc)L?/pov*

Chilton—-Colburn factor
for mass transfer

jo = Sh/Re Sc¢'’?
Chilton—Colburn factor

for heat transfer

jer = Nu/Re Pr'/?
Knudsen number A/!
Prandtl number;

Pr=v/a
Le Goff number;

Lt = 2jp/f = 2ju/f
Wagner number
Wagner number with

two conductivities

Subscripts

A,B

TyzygEATT

~ 0

species A, B
(A = solvent)

mass average

electrode—solution
interface

ith species

jth species

kth electrode reaction

reaction k

limiting

migration

molar average

direction perpendicular
to electrode

bulk solution

reaction r

rth homogeneous
chemical reaction in
solution

xxiii

neutral electrolyte (e.g.,

CUSO4)
t, T total
, = cations and anions,
respectively
Superscripts
In general, denotes frame of
reference:
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Fundamentals of Transport
Phenomena in Electrolytic
Systems

N. IBL

1. Introduction

In any electrolysis the species consumed (or generated) at the electrode
must be transported toward it (or carried away). Let us consider as an example
the electrodeposition of copper from a CuSO, solution. The copper ions
migrate toward the cathode under the influence of the electric field. However,
the sulfate ions migrate also (in the opposite direction) and carry part of the
current. Meanwhile, at the cathode—solution interface, in the absence of
secondary reactions, the whole of the electric current going through the
electrode is due to the discharge of the copper ions:

Cu’*+2e->Cu

Thus, there is a deficit in the transport balance. From, say, 10 Cu atoms
deposited only 4 are transported by electric migration toward the cathode
because the transport number of Cu”" in the solution considered is about 0.4.
The remaining 6 must reach the cathode by another transport mechanism,
namely diffusion. This is a molecular mode of transport which tends to equalize

N. IBL « Laboratory of Industrial and Engineering Chemistry, Swiss Federal Institute of
Technology, Universititstrasse 6, 8092 Ziirich, Switzerland, deceased.
1
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concentrations and which is set up only if concentration differences exist.
Therefore, a depleted layer of Cu®* ions must build up near the cathode. It
is called the diffusion layer. The above result may be generalized: In the
vicinity of an electrode through which an electric current flows, there is a
diffusion layer in which the concentration of the solution is different from its
value in the bulk. It is smaller or larger depending upon whether the species
considered is consumed or generated at the electrode.

After the electrolysis current is switched on, the diffusion layer is set up
and extends progressively toward the interior of the solution; i.e., its thickness
grows with time. If there is convection (i.e., if there is a hydrodynamic flow),
the stirring equalizes the concentrations at some distance from the electrode
and the diffusion layer stops growing when it reaches the stirred region. A
steady state is then established in which the concentration curve (Figure 1)
and the thickness of the diffusion layer remain constant (independent of time).
This thickness depends on the hydrodynamic conditions.

In general, ionic mass transport takes place by diffusion, migration, and
convection. Diffusion is effective in the immediate vicinity of the electrode
where there is no convection because of the friction forces at the interface.
At increasing distance from the electrode, mass transport by convection
becomes more and more important compared to diffusion. Beyond the
diffusion layer, there are no concentration gradients and therefore no transport
by diffusion. Finally, mass transport by electric migration takes place, in
principle, both inside and outside of the diffusion layer.

Let us now consider again our example of copper deposition and let us
increase, under otherwise identical conditions, the current density by increas-
ing the voltage applied to the electrolysis cell. The rate of removal of the
metal from the solution becomes larger, but the fraction of the current carried
by the Cu®* ions due to the electric field remains constant; i.e., the contribution
of the migration to the transport does not change. Therefore, in the vicinity

diffusion layer

Figure 1. Concentration field near the
cathode in the deposition of Cu from a
0 electrode distance y CuS0O, solution.
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of the electrode the diffusion must be accelerated, and the result is that the
concentration difference between the bulk and the interface must become
larger; i.e., the concentration c, at the interface of the cathode drops. Upon
further increase of the current density, c. finally becomes zero and the current
which is then flowing is the limiting current of copper deposition. Any further
increase in the applied voltage can lead to a current increase through a new
reaction only—i.e., in the present case hydrogen evolution. The limiting
current corresponds to the maximum rate at which an electrode reaction can
be carried out under given hydrodynamic conditions.

At the limiting current the rate of the electrode reaction no longer de-
pends on the kinetic parameter of that reaction (charge-transfer coefficient,
exchange-current density). It is controlled by the mass transport. The transport
phenomena thus play an important role in electrochemical kinetics. On the
other hand, the limiting current is usually proportional to the bulk concentra-
tion of the species reacting at the interface, and its measurement can thus be
used for the determination of this concentration. A number of analytical
applications of electrochemistry are based on this fact. Let us further mention
that in industrial electrolysis the limiting current determines the maximum
utilization of the electrolytic cells and thus the minimum investment cost.
These three aspects illustrate the role of the transport phenomena in the fields
of electrochemical kinetics, electroanalytical chemistry, and electrochemical
engineering. Their generally great importance in electrochemistry will become
more apparent later in the respective chapters.

In the above introduction we have emphasized the link between mass
transport and electrolysis (taken in the conventional sense). However, elec-
trolytic mass transport also plays an essential role in the theory of subjects
where such a link is unimportant or nonexistent (semiconductors, transport
through membranes and ion exchangers, bioelectrochemistry).

In this volume, mass transport in electrolytic systems is reviewed. The
subject is divided into a number of chapters corresponding to various subfields.
However, there are some general concepts and basic equations common to
these subfields and they constitute the stepping stone for the treatment given
in Chapters 2 to 7. These common fundamentals will be presented in the
following sections. We will start by writing the general equations and then
show the validity conditions of the relationships more commonly used in
practice. We will restrict ourselves to volume mass transport; surface diffusion
will not be considered. Attention will be focused on fluid electrolytic systems
and our concrete examples will refer to such systems, but, in principle, the
equations presented are valid also for solid ionic conductors and semiconduc-
tors. In particular, Section 2 is fundamental for transport through membranes
and ion exchangers. However, Section 2 may be skipped by readers who are
interested only in an approximate treatment as commonly used in the case
of aqueous electrolytic solutions.
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cross section
of unit area

L —J Figure 2. Derivation of relationship
v between flux density and velocity.

m

2. Fundamental Equations of Mass Transport:
General Form

2.1. Flux and Velocity of a Species

We consider a multicomponent phase with species A, B, C, . ... The flux
density, or simply flux, Ny of species B (at a given point of the fluid) is a
vector that indicates the direction in which B moves, and its intensity is equal
to the number of moles of species B which pass per unit time through a
surface of unit area perpendicular to Ng. The number of moles which pass
per unit time through any infinitesimal surface of area dA is given by the
scalar product of Ng and of the vector dA representing the surface.

vg, the velocity of species B (m sV is an average, macroscopic velocity,
to be distinguished from the velocity of the individual molecules. vg is related
in a simple manner to the flux density. Let us consider the surface CDEF of
unit area perpendicular to v (Figure 2). An amount of substance B found
within the distance v crosses the surface per unit time. This amount is given
by the concentration times the velocity. We thus have

NB = CBVB (1)

In general, N is a function of location (x, y, z) and time.

2.2. Driving Forces

The species in an electrolytic solution move under the influence of the
driving forces acting upon them. At constant temperature and pressure these
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forces are the gradientst of the electrochemical potentials Vi, Indeed, the
electrochemical potential

i = w; + z:Fo ()

has the dimension of energy per mole, whereas the energy is a force times a
length. Therefore, V; has the dimension of a force per mole. The situation
is analogous to the one encountered in an electrical system, where the electric
potential ¢ is an energy per unit charge and the field V¢ is the electric force
per unit charge. V4, is a generalized force in the sense of irreversible thermody-
namics.®™ We may note that it includes the electric force acting on an ionic
species. This is readily seen by deriving Eq. (2) with respect to location (x, y, z):

V;Zi = V[.L, + Z,'F V¢ (2,)

where z; is the elemental charge of species i, F is the Faraday constant, and
z;F is the electric charge carried by a mole of i. z;FF V¢ is then the electric
force acting on 1 mole of i.

2.3. Relationship Between Fluxes and Driving Forces

The flux of a species B depends on the Vi, of any species i present in
the solution. According to irreversible thermodynamics, not too far away
from equilibrium there is a linear relationship between the fluxes and the
driving forces.®™ For a system at constant temperature and pressure we can
write

N3 =Ng—cpvo=—Y L}; V4, withi=B,C,... 3)
i#A
where the superscript 0 denotes the reference system (see below). The propor-
tionality factors L3; are called phenomenological coefficients. They are
independent of the driving forces but functions of the composition of the
phase, the temperature, and the pressure.

Let us note that the numerical values of the velocities v depend on the
frame of reference. From Eq. (1) it follows that the values of the fluxes, and
therefore also those of the phenomenological coefficients, depend on the
frame of reference. In Eq. (3) NS represents a flux density relative to a frame
of reference which moves at velocity v, whereas Ny is a flux density taken
with respect to a fixed frame. More precisely, N3 and N are relative to two
frames of reference, the velocity of which differs by vo. The most commonly
used systems of reference are discussed in Section 2.4.

Note that the V4; of Eq. (3) are not independent. They are linked
through the Gibbs-Duhem equation which expresses the fact that the chemi-
cal and the electrochemical potentials are homogeneous functions of degree

 The reader not familiar with vector notation is referred to the Appendix in Newman’s book‘"
and to treatises on mathematics.® (See also the Notation list.)
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zero in the mole numbers n;:

Yndi; =0  atconstant T and P 4)

The i; are functions of state and the difference di; in the 4, values between
two points of the fluid at distance dr is

dug; = Vi« dr
and we have
Z,u'idﬂi =Zn,' 'V,lz,'dl'= dl‘-ZniV,tZ,- =0
or

ZniVﬂi=O

One can thus eliminate one driving force from Eq. (3). In Eq. (3) we have
produced unambiguous values of the phenomenological coefficients by omit-
ting V4 from the set of driving forces. This requires

Ly;=0 fori=A

i.e., i = A is omitted from the sum in Eq. (3). Vi is the force conjugate with
the flux of B, Ng. The conjugate forces and fluxes determine the rate of local

entropy production s:
IN? V= T$ (5)

§ is the local rate of increase of the entropy density due to irreversible
processes inside the volume element considered. If the composition of the
volume element is independent of time (steady-state mass transport), the
production of entropy corresponds to an increase in temperature of
the volume, provided there is no exchange of heat with the environment of
the volume.

In Eq. (3) Lag (i = B) is the coefficient conjugated with species B. The
LY; (i # B) are coupling coefficients. They express the influence of the driving
forces other than that of the conjugated one. According to Onsager’s reciprocal
law, the matrix of the coupling coefficients is symmetric: L3; = L{s. Note,
however, that there are many ways of defining the fluxes and driving forces.
Onsager’s law is valid only for adequately chosen systems. In particular, all
fluxes and driving forces must be independent.

Generalized forces other than those considered in Eq. (3) can influence
the flux of species B. In writing this equation we have assumed constant
temperature T and pressure P [which is implied in writing the Gibbs-Duhem
equation in the form (4)]. Therefore the Vi; appearing in our equations apply
to constant T and P and represent in fact a (V4;)7,p- The influence of pressure
can be taken into account by writing (V4;)r instead of (Vi;)r,p and remember-
ingthat (du;)r = (du:)r,p + v: dP, where v; is the partial molar volume of species
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i. Thus in a system with a pressure gradient we have a driving force v; VP in
addition to (V;)rpr and a corresponding additional term in Eq. (3). This may
play a role in the transport of electrolytes through membranes as encountered
in the desalination of water by hyperfiltration (reverse osmosis). However,
usually one can neglect the influence of VP on the fluxes present in electrolytic
systems. Likewise, a temperature gradient causes an additional driving force,
which is to be taken into account by an additional term in Eq. (3).

In the following, we will not consider the influence of VT or VP on
electrolytic mass transport and we will always write V4, instead of (V4i:)r,p
for the sake of simplicity. Furthermore, we will disregard the effects of external
forces such as gravity or centrifugal forces (or consider them as virtually
compensated by VP). Even in electrolytic systems, however, it may be
necessary to take the influence of such forces, as well as that of VP, into
account when applying the equation expressing the conservation of momentum
(see Section 2.6). Of course, another external force which is particularly
important in electrolytic systems is that exerted by the electric field V¢ on
charged species. However, this is included in Vyi; for the reasons already
mentioned.

2.4. Systems of Reference

As mentioned in Section 2.3, the numerical values of the phenomenologi-
cal coefficients depend on the frame of reference, with the various conventions
that are in use. One possibility is to select the velocity of one of the species as
reference, say that of species A. Then v = v and Eq. (3) takes the form

Ni=Np—cava=— Y La;V4;  withi=B,C,... 3)
i#A
where L5, is zero because of the Gibbs~Duhem equation (see Section 2.3).
With this velocity of reference the flux of species A, N4 = Na — cava is zero
by definition, and all the corresponding phenomenological coefficients are
also zero:

L2,=O

Another possibility is to use an average velocity as velocity of refer-
ence.™® The most commonly used ones are the mass average (or barycentrict)
velocity v, (which is the velocity at which the center of gravity moves):

Vp = p_1 Z cMv; i=AB,C,... 6)

t The usage in transport nomenclature is at present not uniform. Alternate names will be given
and semantic remarks made occasionally as we proceed in the development of our subject. A
more complete survey of the terminology of electrolytic mass transport is to be found in a
review paper by Roy.((’) The definitions and the nomenclature proposed by the International
Union of Pure and Applied Chemistry is given in Reference 19.
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and the molar average velocity v,,
Vm=cr Yevi=cr LN, i=A,B,C,... (7
with

cr = Z G
1
where M, is the molar mass, cr the total concentration (mol m>), and p the
average density (kg m™).
For instance, the flux of species B referred to the molar average
velocity is

Ni =Ng — CgVm (8a)
or
NB = CcgVm + Nan =CBVm — Z Lan' Vﬂ, i = B, C (8b)
i#*A

The fluxes referred to the barycentric velocity are best expressed as fluxes of
mass (e.g., the mass flux of B being obtained by simply multiplying the molar
flux by the molar mass). Mass fluxes are more convenient than molar ones
when used in conjunction with relationships such as Eq. (15). The numerical
values of the coefficients Lyg; are different in the two cases because they are
expressed in the units mol® (Jms)™! and kg2 (Y ms)™". The similarities and
differences between the mass and the molar systems are discussed in more
detail by Roy.‘é) Note that because of Egs. (8a) and (7) we have

IN"=0 9)

The sum of all fluxes referred to the average velocity is zero. This can be
interpreted as follows. In Eq. (8b) the term cgv,, represents a flux connected
with the bulk movement of the fluid (convective flux) whereas Np =
—Y, LE; Vi, is a flux relative to the average velocity and is due to the Vi,
i.e., to forces internal to the system. In summation, the effects of these forces
cancel. This does not mean, however, that the average velocity (e.g., taken
relative to the container of the fluid) is zero. The value of this velocity is
determined by the fact that it must fulfill the condition of conservation of
momentum (see Section 2.6).

Because of Eq. (9), one can express one of the fluxes, for instance, that
of A, in terms of the other fluxes. If we consider n species there are only
n — 1 independent equations such as (8b). Further, we may apply the Gibbs—
Duhem equation and eliminate one of the Vi, for instance, Viia, as was
done in Eq. (3). This requires Lg; = 0 for i = A; i.e., i = A is omitted in the
sum of Eq. (8b). Equation (8b) thus generates (n — 1)> phenomenological
coefficients such as Lg;. The number of independent coefficients is further
restricted by Onsager’s reciprocal law (see Section 2.5).
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Note that in the case when the flux is referred to the velocity of a species,
there are likewise n — 1 independent equations such as (3)t because this
equation need not be written for the species taken as the reference. Let us
consider a simple example—a binary mixture of water (A) and sucrose (B).
If the water is taken as reference we have

Laa=LAs=Lga=0
and the Eq. (3') reduces to
Ng = _‘LQB VIZB (3”)

In this case there is only one independent driving force and one independent
phenomenological coefficient.

2.5. Friction Coefficients

An alternative way of presenting the mass transport phenomena is to
consider the friction between two species, B and A, which is due to the
molecular motion of these two species. The driving force given by the gradient
Vg of the electrochemical potential of B must overcome the friction forces
between B and all the other species in the solution. Per unit volume this
driving force is cg V. On the other hand, the friction forces are proportional
to the velocity differences v; — vg. Thus we have

caVig = Y Kgi(v; — vg)

i#B

=RT ) chi(CT@Bi)—l(vi —Vs) (10a)
i#B
Kp; is the coefficient of friction between species B and i. Equation (10a)
further introduces the interaction diffusion coefficients %g; (between B and
i), which are more commonly used than the friction coefficients.
Because of Newton’s principle of action and reaction we have

Dpi =PDipg and Kpg; = Kip (10b)

From Eq. (10b) and notingi that Pgg = 0, it is seen that for a system with n
species the number of independent coefficients defined by the above equations
is in(n —1).

As mentioned earlier, we may note that the Gibbs—-Duhem equation
similarly restricts the number of independent transport coefficients defined

T The coupling in Eq. (3) arising in the case of chemical reactions between the species will be
briefly considered in Section 9.2.

}In addition, one has the Gibbs-Duhem equation but this is not an independent condition
because it is automatically fulfilled through Eq. (10b) as can be readily seen by making the
sum of Eq. (10a) for all species, which yields }; c;Vii; = 0. It follows from this, however, that
there are not n but only n — 1 independent equations in the form of (10a).
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by Eq. (3) (Section 2.3). It can be readily shown that the number of these
coefficients is again 3n(n —1). In fact, Eqgs. (3) and (10a) are alternative,
equivalent forms of the fundamental relationships between fluxes and driving
forces. The coefficients Pp; and Lp; of the two sets of equations are linked
by simple correlations.”'" Equation (10a) has the advantage of being more
illustrative because it shows the equality between the driving force and the
friction resistance. On the other hand, Eq. (3) is much more convenient to
use in the derivation of the relationships expressing the conservation of mass,
which will be discussed in the next section.

2.6. Conservation Equations

The equations of Sections 2.3 and 2.5 are usually not sufficient to calculate
the quantities of practical interest for given experimental conditions. One has
to consider, in addition, one or more of the equations expressing the conserva-
tion of mass, momentum, and energy.

Let us first deal with the basic equation derived from the principle of
conservation of mass. We make a mass balance of species B for an infinitesimal
volume (dx dydz) (Figure 3). The change of the amount of substance of
species B contained in the volume with time ¢, is given by the difference
between the fluxes of B entering and leaving the volume (see caption of Figure
3) and by the amount of B generated or consumed in the volume. We have

dcs
dt

v¥, is the number of moles of species B produced (or consumed) per unit
time and per unit volume through the homogeneous reaction r taking place
in the solution. The summation extends over all reactions in which B partici-
pates,T and dcg/dt is the change of concentration of species B with time at
the point of the solution considered. This point moves with the velocity of
the reference frame, vy, i.c., it is the overall time change in concentration
seen by an “observer”’ moving at velocity vo. Let us also calculate the change
in concentration dcg/dt at a fixed point (e.g., fixed with respect to the container
of an electrolytic solution). If v, is taken relative to the container we can write

N(r); = Ng — cBVo 3)

= -V-.Ng+Y 0§, (11a)

+ In irreversible thermodynamics the generation (or consumption) of a species by a homogeneous
reaction is regarded as a flux, the driving force being the affinity AG of the reaction. This force
has been omitted in writing Eq. (3) although homogeneous chemical reactions often occur as
part of the overall electrochemical processes. The reason is that Np is a vector whereas the
flux corresponding to a chemical reaction is a scalar (at least in an isotropic medium). According
to the Curie theorem there can be no coupling between quantities represented by vectors and
scalars. Homogeneous reactions therefore appear only as source terms in the relationships
expressing the conservation of mass.
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Figure 3. Volume element for derivation of conservation equation. The concentration change
due to the difference between the amount of species B entering and leaving the volume element
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so that
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—2=—"4V.cavo=-V:Np+3 v, (11b)
ot dt p

dcp/dt is the change in concentration with time seen by an observer looking
through a window into the container. Comparison of (11b) and (11a) shows
that the change of the reference frame involves an additional term V + cpv,.
This represents the change in concentration with time seen by an observer
moving at the velocity vo, because the observer is moving.

When Eq. (11a) is used in conjunction with Eq. (15), it is of advantage
to refer the fluxes to the barycentric velocity v, and to use the mass system

of units instead of the molar one. (*Ng is the flux density of B in kgm 25,
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ps the mass concentration of B in kg m™>, v}, the amount of B produced in
3

kgm™>s™".) Equation (11a) then takes the form
d
EPe _ _v.*NL+ Y 0%, (11c)
dt v
In addition, for ionic species one has the electroneutrality condition
Z ZiC; = 0 (12)

where z; is the ionic charge (positive for cations, negative for anions).

In principle, it is the integration of Eq. (11a), with the appropriate
boundary conditions, which yields the quantities of practical interest (see
Section 2.8). However, the fluxes of the species are expressed relative to a
reference velocity, which, for the purpose of the present discussion, is con-
veniently taken as the mass average velocity defined in Section 2.4. This
velocity must be known in order to perform mass transfer calculations. In
many systems, the velocity distribution is determined by momentum consider-
ations. Therefore, in addition to Eq. (11a) one must take into account the
mechanics of the fluid. They are governed by two basic relationships: the
equations of continuity and of Navier-Stokes.

An overall mass balance for an infinitesimal volume yields

— ==V (ovs) (13)

where p is the average density of the fluid. In Eqgs. (13) and (15) dp/d¢ and
d(pvs)/at refer to a fixed point if v, is the velocity referred to a coordinate
system linked with a container at rest. In electrolytic systems the fluid, to a
good approximation, can usually be considered as incompressible; i.e., the
density is independent of location and time. Equation (13) thus reduces to

Vevy =0 (14)

This is the continuity equation of hydrodynamics.

The Navier-Stokes equation is a consequence of Newton’s law, expressed
as the principle of conservation of momentum. We again take the balance for
an infinitesimal volume, dx dy dz. The change with time of the amount of
momentum contained in the volume [d(pv,)/dt] is given by the difference
between the momentum fluxes entering and leaving the volume and by the
external forces acting on the volume [which correspond to the source term
Y, v, in Eq. (11a)]. For a Newtonian incompressible fluidt with a dynamic
viscosity u we have

d(pvs)
at

+ A Newtonian fluid is one in which the viscosity is independent of the shear stress.®

= —v, - V(ovs) + uV?vs — Vp +pg (15a)

)
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Vp is the gradient of the hydrostatic pressure and pg the force of gravity per
unit volume. p,Vzv,, is the shear stress acting on the faces of the infinitesimal
volume. The shear stress can also be regarded as the divergence of the flux
of momentum entering and leaving the volume. This aspect, which points out
the analogy between mass and momentum transport, will be worked out more
fully in Chapter 3. For a more detailed discussion of the Navier-Stokes
equation the reader is referred to the literature."* ¥+

In some circumstances heat transport has to be considered in addition
to mass and momentum transport. A conservation equation analogous to Eq.
(11a) holds for heat transport. More attention will be given to this mode of
transport in Chapter 7 and Chapter 3 (Section 3.4), mainly from the viewpoint
of the analogy with mass transport. However, heat transport in electrolytic
systems will not be treated any further in this volume.

2.7. Recapitulation of Basic Equations and Comparison with
Number of Variables

It is of interest at this stage to recapitulate the general basic relationships
presented in the preceding sections and to compare their number to that of
the unknowns in the usual electrolytic mass transport problems. As we have
seen in Section 2.4, in the case of n species there are n — 1 independent
equations for the fluxes [Eq. (3)]. If homogeneous reactions between the
species take place, n is the number of “independent” species which, in a
solution at equilibrium, is equal to n' — R (where n' is the total number of
species and R the number of chemical equilibria in which they are involved).
We will return to this question in Section 9.2.

The number of independent coefficients Lg; or @p; is restricted by the
Gibbs-Duhem equation and by Onsager’s reciprocal law and is equal to
3n(n — 1) (Section 2.5).

The driving forces in Eq. (3) can be written [see Eq. (2)]

V/.Z,‘ =VM,+Z,FV¢ =RTV1na,'+Z,‘FV¢ (15b)

The independent equations (3) include as variables n — 1 flux densities N,
n — 1 activities a; of the species, the potential ¢, and the reference velocity
vo, which we will take as the mass average velocity vo = v, in what follows.
Thus, there are 2 n variables which are usually unknown. Indeed, they are
local values at a given instant (i.e., dependent on x, y, z, t) and are determined
only in a general way by the external conditions imposed on the system. They
represent fields which, in a general approach, have to be calculated by

T Applying the principle of conservation of momentum to the average velocity and coupling the
resulting equation with the relationships expressing the conservation of mass is the classical
procedure. An alternate approach involving equations expressing the conservation of momen-
tum for the individual species has been discussed in the literature in recent years. It is reviewed
in the book by Slattery.”
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integrating differential equations with appropriate boundary conditions. The
latter will be discussed in Section 8.2. For the moment, let us ascertain whether
we have enough equations to solve the problem. In addition to the n — 1
equations for the fluxes we need n + 1 further relationships. One is provided
by the electroneutrality condition (12) which is usually exploited to eliminate
the electric potential (see Sections 5.1 and 5.2). Furthermore, the relationship
expressing the conservation of momentum, Eq. (15a), offers itself for the
calculation of the mass average velocity v, (velocity of the center of gravity).
Finally, we have the conservation of mass equations [(11a) Section 2.6] which
can be written for each species. We need n — 1 such equations and this number
is certainly available since there are n — 1 independent flux densities in these
equations.

However, the situation is simple only if no homogeneous chemical reac-
tions take place within the diffusion field, since then all v3, in Eq. (11a) are
nil. For each species taking part in a homogeneous reaction additional variables
v, are introduced in Eq. (11a). Let us examine how to deal with these
additional unknowns, remembering that in the case of R homogeneous reac-
tions the total number of species is n' = n + R. The source terms v, in Eq.
(11a) are linked by the stoichiometry of the reactions involved. For each
reaction r we can write, for a species B taking part in that reaction,

Uﬁr = VBrér‘/_1 (150)

where vg, is the stoichiometric number of species B in reaction r, V the
volume, and f', the rate of reaction . We have thus reduced the source terms
v¥, to R variables é,. Furthermore, we can apply the conservation of mass
principle to each reaction r:

Y ve Mgé V™' =0 (15d)

where the summation extends over all species engaged in reaction r and the
My terms are the molar masses. There are R equations for (15d).

Now, before proceeding further, we have to distinguish two cases: (a)
the phase is at equilibrium with respect to homogeneous reactions (i.e., these
reactions are very fast compared to the rate of mass transport so that they
are virtually at equilibrium); (b) the phase is not at equilibrium, i.e., some or
all of the homogeneous reactions are irreversible.

In case (a) we have R equilibrium equations (AG = 0), in addition to
the R equations for (15d). Therefore, we can both eliminate the R unknowns
£ and reduce the number of equations for (11a) by R. We have thus eliminated
all the source terms in Eq. (11a) and we stillhave n — 1 = n' — R — 1 indepen-
dent equations for (11a).
+In the rare case where the electroneutrality of the solution is not a sufficient approximation,

Poisson’s equation (71) has to be used instead. The validity of the electroneutrality condition
is discussed in Section 6.1.
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In case (b), when none of the reactions is at equilibrium, we are missing
the R equilibrium conditions. We must replace them by R kinetic laws which
allow us to express the R reaction rates £ in terms of the activities of the
species. If these laws are available we can eliminate all the £ and use the R
equations for (15d) to reduce the number of equations for (11a) by R. Again,
we still have n — 1 independent equations for (11a).

Therefore, independently of whether homogeneous reactions between
the species are present or not, we have n — 1 equations for (11a), n — 1
equations for (3), the electroneutrality condition (12), and the equation
expressing the conservation of momentum (15a). This is enough to determine
the 2 n unknowns of the game. We may conclude that the fundamental
equations presented in the previous sections are sufficient, in principle, to
solve the problem of electrolytic mass transport. We do not need the equation
expressing the conservation of energy, provided the system is at constant
temperature. If temperature gradients are present an additional equation is
necessary, which is provided by the conservation of energy principle.

2.8. Scope of Applications of Generalized Equations

The general form of the fundamental equations presented in the preceding
sections is very complicated and difficult to apply. In practice, more or less
drastic simplifications of various kinds are made. The most commonly used
approximation is that of the ideal and dilute solution, which will be discussed
in more detail in the next section. In particular, the coupling terms in Eq. (3)
are usually neglected in electrolytic mass transport. However, there are
important cases where such simplifications are too far from reality.

This often applies, for instance, to fused salts®> where the mole fraction
of the component in which one is interested may not be sufficiently small
compared to 1. An extreme situation is that of the melt of a single salt such
as fused NaCl. As an example we will briefly discuss in Section 4.6 the
consequence of this peculiar state of affairs for a specific transport quantity—
the transport number.

Another category of systems where dilute solution theory often can not
be applied are membranes. An example is the transport of water and of NaCl
through the membranes used in hyperfiltration for the desalination of water.
In this case the coupling coefficients Lp; (i # B) and the corresponding coupling
fluxes cannot be ignored. A review of this problem has been given by Bennion
and Rhee."" Another example where the coupling coefficients may be of
importance are the membranes encountered in bioelectrochemistry and, more
generally, in biology. It can be that the species flows in the direction opposite
to that of the conjugated force; i.e., that, B flows contrary to the gradient of
fis (active transport).>*® This is due to a special coupling mechanism involv-
ing a reaction with a carrier which transports the species across the membrane.
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3. Fundamental Equations of Mass Transport:
Approximation of Ideal and Dilute Solutions

3.1. Dilute Solutions

If a species B (and all other species except the solvent) are present at
low concentration in a solvent A the friction between B and all other species,
except the solvent, can be ignored. Therefore, in Eq. (10a) all Kg; (i # A)
and all @g; (i # A) are negligible. This equation thus reduces to

cs Vi = RTCBCA(CT@BA)_l(VA — Vg)
or
NQ = Ng — cpvVa = Cg(V — Va) = _(RTCA)—ICT@BCB Vis (16a)

Equation (16a) can also be obtained from Eq. (3') (Section 2.4) taking into
account that in a dilute solution the coupling coefficients Lg; (i # B) are
negligible and thatt Py is given by

Dha = D = LesRTcalcser)” (16b)

The use of & instead of L in Eq. (16a) has the advantage that the first
of these two coefficients is much less concentration dependent than the
second one.

In electrolytic systems, the flux density is usually separated into a chemical
and an electric term by taking into account Eq. (2), which relates the elec-
trochemical to the chemical and to the electric potential. If we also remember
that u can be expressed in terms of activities a (Vug = RT Vnag), Eq.
(16a) takes the form

NQ = NB — CBVA = —CTCBC;l@B Vin ag — ZBF‘(IQ’T)_ICT(,'B@L)‘C,:_;1 V¢ (173)

where V¢ is the gradient of the electric potential, i.e., the electric field. The
first term on the right-hand side is a diffusion flux.f It is the movement of
species B, relative to the solvent, due to the action of the gradient of the
chemical potential. The second term is a migration flux, due to the action of
the gradient of the electric potential.

In the case of ionic species a complication arises because the individual
jonic activities are not known. The result is that the electric potential is not
unambiguously given and a convention has to be used. In his book, which
presents an excellent review on transport phenomena in electrolytic systems

+ @y is the interaction diffusion coefficient between B and the solvent A. According to Eq. (10a)
it should be written as @Q‘A. However, since there are no other interactions to be considered
than that with the solvent, the second subscript A may be dropped without ambiguity for the
sake of simplicity. We also drop the superscript A because in dilute solutions the solvent is
usually taken as the reference for the definition of the diffusion coefficients.

+In some books this term is called chemical diffusion and the migration term electric diffusion.
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Newman'” has shown that an expedient solution is to arbitrarily refer the
potential to one of the ionic species in the solution.

If the solution is very dilute, cr = ca and va coincides with the average
velocities defined in Section 2.4. The velocity of the solvent can thus be
regarded as the velocity of the medium as a whole. We denote it by v and
take it relative to a frame of reference that is fixed with respect to the container
of the solution.

N& = —cPsVinag — F(RT) 'zpcs@s Vo (17b)
and
NB = —CB@B Vin ag — F(RT)—IZBCB@B V¢ + cgv (18)

In these equations N2 is the flux density referred to the fluid and Ny that
referred to a frame of reference fixed with respect to the container. The term
cgv, usually referred to as a convective flux density, is often introduced through
the argument that the dissolved species is dragged along by the hydrodynamic
stream of the system. In reality, it comes from the definition of the diffusion
coefficients (which are commonly referred to the solvent in the case of dilute
solutions) as well as from the fact that the fluxes are usually referred to a
fixed frame. It is this change in the considered frame of reference which
introduces the term cgv.

Note that for a very dilute solution (cr = ca) the relationship between
95 and Lg [Eq. (16a)] simplifies to

Dg = LgRT/cs (16¢)

3.2. Ideal Dilute Solution

If the solution is ideal in addition to being dilute, the activities can be
replaced by the concentrations and V In ag can be written ¢5' Vcg. Equation
(18) thus takes the form

NB = ’—DB VCB - F(RT)—lchBDB V¢ + cgv (19)

where Dy is the diffusion coefficient of species B in the ideal dilute solution
of species B in solvent A.
For the x component (in a rectangular coordinate system) we have

d _ d
(Ng)x = —Dg Xa_ zgF (RT) 1CBDB_¢’ + CpUy (20)
ox ax

The first, second, and third terms on the right-hand side of Egs. (19) and (20)
represent, respectively, the fluxes by diffusion, by migration, and by convec-
tion. Furthermore, in the case of an ideal dilute solution, the conservation
equation (11b) (also called the equation of change) can be combined with
Eq. (19). We also take into account that in electrolytic systems the fluid is



18 N. IBL

usually incompressible and that Eq. (14) therefore applies; from this it follows
that

Ve(egy)=cgV 'v+v:-Veg=v-V¢p
Equation (11b) can therefore be written in the form

=B = DV +F(RT) 'zgDgV + (cg Vé)v- Ve + Y 0¥, (21)

In Eq. (21) dcg/dt denotes the change in concentration at a point fixed with
respect to the container, if v is the velocity with respect to the container.
Equations (19) and (21) are the most important fundamental equations for
mass transport in electrolytic systems.

4. Charge Transport

4.1. Electric Current in Solution

In the preceding sections we have been dealing with the transport of
mass. Of even greater direct interest to the electrochemist is the electric
current, i.e., the transport of charges. In fact, the flux of an ionic species B
represents at the same time a flux of charges. The current flowing through
the solution is linked by simple relationships of proportionality with the fluxes
of the ionic species in the mixture. If the fluxes are expressed in moles, the
proportionality factor is the charge of a mole, zzF. From Eq. (3) we obtain

i% = ZBFN% = js — zsFcavo (22)

j9 is the partial current density associated with species B. It is a vector that
indicates the direction in which the charges transported by the species B flow
and that gives the number of these charges going through a plane oriented
perpendicular to the vector, divided by time and area.

In general, the current density of a species depends on the reference
frame, which is indicated by a superscript (see Section 2.4): jg is the current
density of B referred to the frame of velocity v, and jg is the current density
referred to another frame, the velocity of which differs from the first one by
vo. For example, the second one may be a frame fixed with respect to the
recipient and the first one may be the solvent of velocity va relative to
the recipient.

The total current density at a point in the solution is the sum of the
current densities of all the species at that point:

i=2j?=;ji-Fvozzi‘:i=Zji (23)

i is a function of location and time.
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Figure 4. Illustration of role of reference frame on the separation of ionic species by counter
current ionophoresis.

In contrast to the jj, the total current density is independent of the reference
velocity selected [because of the electroneutrality condition Y; zic; = 0, the
term Fvo Y, z;,c; in Eq. (23) is nil]. Let us clarify the physical meaning of this
somewhat puzzling theoretical conclusion by a concrete example. We consider
countercurrent ionophoresis, a method in which ionic species are separated
by applying an electric field.®**> The principle is shown in Figure 4, where
the system is a dilute solution of NaCl and KCI. There are no concentration
gradients but there is a uniform hydrodynamic flow of velocity v, in the y
direction relative to the cell walls. The solution flows from the cathode toward
the anode, thus counteracting the migration of the cations. We now consider
two systems of reference: (a) the flowing solution (reference velocity v4) and
(b) the cell (reference velocity v = 0).

In case (a) we have for the Na* ions (z = 1)

9¢

Nl‘:}a* = NNa* — CNa*tlA = _F(RT)_lcNa*'DNa*E (24)
j§a+ = FNNa+ — FenatVa = Jnat — FenatUa
_ 0
= —F*(RT) 1cNa+DNa+aiyﬁ (25)

In the absence of a concentration gradient the electric field determines the
flux density of Na" relative to the moving solution. The partial current density
of Na*, jRa*, represents the number of charges transported by the ions of
Na" and crossing a plane perpendicular to y, moving at the velocity of the
solution v, (divided by time and area).

In case (b) the frame of reference is stationary (the velocity of the cell
walls having been taken as equal to zero). Therefore,

i;la* = jNa* = jga“' + FCNaﬂ)A (26)

Jna+ represents the number of charges transported by the Na* ions and crossing
a stationary plane perpendicular to y (divided by time and area). It differs
from the number of charges crossing the moving plane in case (a) by the
amount Fen,+va.
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However, the total current density (j = jn.+ + jx* + jor-) is the same for
the two frames of reference; i.e. the fotal number of charges crossing the
stationary plane is the same as for the plane moving at the velocity of the
solution. The reason is that the difference in the cationic currents for the two
frames of reference is compensated by the difference in the anionic current.

Thus the total current density does not depend on the value of the flow
velocity of the solution. The ionic current density j§a+ is also independent of
va but not jN,+. For a certain value of v,, jua= is zero. Under these conditions
the Na™ ions cannot leave the cathode compartment, in contrast to K* ions,
and a separation of the two cationic species results. The method is quite
sensitive and has been even used for the separation of isotopes. The value of
va at which jX.+ is zero depends on the electric field /0y but not on cna+
as can be seen by comparing Egs. (25) and (26).

4.2. Electrode Current

One of the most commonly measured quantities in electrochemistry is
the electric current flowing from the electrode to the external circuit. The
total electrode current I is given by the number of electric charges crossing
the electrode—solution interface divided by time. We have

1= J.A dI 27)

where dI is an elementary current flowing through an elementary area dA
of the electrode-solution interface. The integration extends over the whole
electrode surface A. The electrode current density at a given point of the

interface is
j=dI/dA (28)

Both the total electrode current and the electrode current density are scalar
quantities, in contrast to the current flowing within the solution. They are
linked by the relationship

J=(ey (29)

where (j.), is the component perpendicular to the interface of the total current
density in the solution immediately adjacent to the interface, which is denoted
by the subscript e.

The electrode current density can also be expressed in terms of the flux
density of any one of the species taking part in the electrode reaction. We
can write this in a general way as

vgB' +vcC' + - > vgB+vcC+:: ne (30)

where the v; are the stoichiometric coefficients (positive for products, negative
for reactants), and n is the charge number of the electrode reaction which is
taken as a positive number."® If there is only one electrochemical reaction



FUNDAMENTALS OF TRANSPORT PHENOMENA 21

c
so;”
Fe
Fe*
Figure 5. Concentration profiles
in the reduction of Fe** ions from
a solution of Fe,(SO,); + FeSO,.  cathode electrode distance vy

taking place at the interface we have
j = nvs'F(Ng),. (31)

where (N),.. is the component normal to the interface of the interfacial flux
density of species B.T

According to the recommendations of the International Union of Pure
and Applied Chemistry (IUPAC)," an anodic current is positive, a cathodic
current negative. With the convention that the normal distance vector points
into the electrolytic solution, the electrode reaction must then be written in
such a way that the ratio n/vg is positive if species B is consumed in a cathodic
reaction or produced in an anodic reaction. Otherwise, the reaction has to
be written so that n/vg is negative.

Let us illustrate the important equation (31) by an example. We consider
the reduction of Fe** ions at a Pt electrode in a sulfate solution

Fe’* > Fe’ + ¢ (32)
We have

n = 1, VEe3+ = +1; VFe2+ = —1; Vsoi~ = 0

If the reaction runs from right to left, i.e., if the electrode acts as cathode,
Eq. (31) yields
]/F = (NFe3+)y,e = _(NFez*')y,e (338)

(Nsoz )y = (Fn) 'vsozj =0 (33b)

The interfacial flux densities of the Fe’* and of the Fe** ions must be equal
and of opposite sign. The concentration profiles in the solution close to the
electrode are shown schematically in Figure 5 and will be discussed in Section
4.7.

+See Section 6.2 for a more precise discussion of the concept of interfacial flux density and
concentration.
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4.3. Local and Average Electrode Current Density

Equation (31) applies to a given spot of the electrode surface. Depending
on the circumstances, the electrode current density may, or may not, vary
along the electrode surface. In the first case, we have to distinguish between
the local value and the average current density, which is equal to I/A. The
area A used in the calculation of the average value from the measured total
electrode current needs to be specified—geometric projected area (without
taking into account roughness) or more or less true area (taking into account
roughness by means of an adequate factor).

The current distribution over the electrode is closely linked with the
distribution of the current density and of the potential within the solution. It
will be treated more thoroughly in Chapter 4.

4.4. Current Efficiency

In Section 4.2 we have assumed that a single reaction takes place at the
electrode. In practice, especially in technical applications, there are often
several simultaneous electrode reactions. We can then assign to each reaction
k a partial current density ji. It is given by the stoichiometry of that reaction
and by the amount of substance generated or consumed per unit time by this
reaction. For a species B which takes part in only one of the simultaneous
reactions, the interfacial flux density of B can be linked with the partial current
density of the corresponding reaction by Eq. (31).

The total current is the sum of the partial currents: j =Y, j.. The
instantaneous current efficiency for reaction k, 6, is then defined as

Ok = i/ X Ji (34a)

The overall or average current efficiency for a reaction k over a given
electrolysis period is the ratio of the number of coulombs required for reaction
k, Qy, to the total coulombs passed

O = Q/Y. Ok (34b)

Since anodic currents are positive and cathodic currents negative, the current
efficiency may be larger than 1 if cathodic and anodic reactions take place
simultaneously. A particular case is that of corrosion where no current flows
through the external circuit. The cathodic and anodic currents then exactly
compensate each other. The electrochemical aspects of corrosion are treated
in Volume 4.

In industrial applications an important quantity is the material yield of
a species B. It is the amount of substance of B produced, divided by the
quantity of charges that has flowed through the electrodes. For reaction k it
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is given by 6,vp i/ niF (provided there is no chemical reaction that is consecu-
tive to the electrode reaction and that consumes or produces species B).

Note that the distribution of the partial current densities over the elec-
trode surface may be different from that of the total current density.

4.5. Electric Mobility; Conductivity

Let us now return to the electric current within the solution and write
Eq. (22) in a more specific form. We consider the case where there are no
gradients of the chemical potential in the solution. From Egs. (2), (3), and
(22) we obtain

j(l)B = _ZBF2 Vo ¥ ZiLgi (35)
i%A

j% is the current density of species B due to migration under the influence of
an electric field, relative to the reference velocity vo. Traditionally, it is
customary in electrochemistry to link the migration current to the electric
field through the electric mobility ug, defined as the velocity of an ionic species
when the electric field V¢ is equal to unity.

We have

ve—Vo=—up V¢ and j3 = zgFcg(Vs — Vo) (36)
Comparison of Eq. (35) with (36) yieldst
ugp = F(cp)' ¥ zly; (37)
i#A

In the general case of Section 2 the mobility depends on the phenomenological
coefficients of all species. Because of relationship (16b) between Lg; and P,
Eq. (37) could also be expressed in terms of the interaction diffusion
coefficients. Furthermore, it is seen that the value of the mobility depends on
the reference velocity. This remark is of importance for the definition of the
mobility in molten salts (see also Section 4.6).

In the case of an ideal dilute solution, the mobility depends only on the
interaction coefficient between the species B considered and the solution. In
principle, it still depends on the reference velocity. However, in the case: of
ideal dilute solutions this is usually taken to be the velocity of the solvent
and the superscript 0 can be dropped without ambiguity. Thus, we can write
Eq. (37) as

up = zpF(cs) 'Ly = zzgFDg/RT (38)

where we have taken into account Eq. (16c). Note that because of our

T Species A is omitted from the summation for a number of equations in Sections 4.5 and 4.6
because of the Gibbs-Duhem equation which allows the elimination of one of the fluxes (see
Section 2.3).



24 N. IBL

convention for the sign of z the mobility as defined above has a positive sign
for cations and a negative sign for anions. Again for the case of an ideal dilute
solution the relationship giving the current density of species B [Eq. (37)]
reduces to

js=—2BF’Ly V¢ = —z3F*(RT) ‘¢z Vo 39)

Let us now consider the total current density j. From Egs. (2), (3), (19),
(22), and (23) we obtain a relationship that expresses j in terms of the electric
field V¢ and of the chemical potentials or concentration gradients. If we put

k=FY% Y zzL) (40)
i j#A
we can write
i=Xi{=-FY Y zLjVu,—« V¢ (41a)
i j#A

or for an ideal dilute solution
i =-F z ZiDi VC,‘ — K Vd) (41b)

In the absence of concentration gradients this reduces to
j=-kV¢=-F'V¢ ¥ ¥ zzlj (41c)
i j#A
The proportionality factor « which relates the current to V¢ is usually called
the conductivity. Equation (40) shows that it is linked in a simple manner to
the transport properties of the solution. We may note that, in contrast to the
mobility, the conductivity does not depend on the choice of the reference

frame.
In the case of an ideal dilute solution, Eq. (40) reduces to

k =F*Y ziL = FART)"' Y zic:D;
=F Z ZiCild; (40')

This equation expresses the conductivity in terms of the three coefficients
most commonly used to describe ionic transport properties in electrolytic
systems (i.e., u, L, D).

We may note a fourth equivalent transport quantity often employed in
electrochemistry—the ionic conductivity A

AB = zBFuB (42)

Finally, a fifth quantity encountered in papers on mass transport is the
mechanical mobility uf: It is the velocity taken by the ionic species when the
force acting on 1 mole is equal to 1 (in contrast to the electric mobility which
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is the velocity for a unit field). The following equation can easily be derived
from this definition:

u¥ = ug(zeF)™" (43)

In fact, all of the five above-mentioned quantities (4, L, D, A, u*) represent
one and the same transport property of the ionic species. In the case of an
ideal dilute solution they are linked together by simple relationships:

Dg = ugRT(zgF) " = AgRT(z8F) > = uRT = RTcs'Ly (44)

4.6. Transport Number

In the absence of concentration gradients, the vectors of the current
densities of all species have the same direction as the electric field. We can
then define a scalar quantity, the transport (or transference) numbert of
species B, as the ratio of the current transported by that species and the total
current:

0

h=2=z5 ¥ zL%/Y ¥ zzlL} (45)

] i%A i jEA

The value of the transport number depends on the reference velocity: ¢ is
the transport number relative to velocity vo.

In solid ionic conductors it is convenient to take the fixed ions of the
lattice as the reference frame. In a fused salt AB, such as NaCl, we may take
either the cation A or the anion B as reference. In the first case, the transport
number of A is zero and that of B is one; in the second case, the transport
number of A is one and that of B is zero. Similarly, in the first case the
mobility of A is zero; in the second case the mobility of B is zero. In both
cases the mobility of the counter ions is equal to «/zFc. [It may be easily
shown that Eq. (40b) holds even though the system is not ideal.] It has been
shown by Sinistri"® that the choice of reference systems other than the
above-mentioned ones also leads to trivial values of ¢ and « in the case of a
single salt melt.

With melts having three ionic species (such as NaCl, KCl) the choice of
any one of them is a priori equally convenient.

T Both terms—transport and transference number—are encountered in the literature. IUPAC
recommends the name transport number. A similar situation prevails more generally with
respect to the terms mass transport and mass transfer. They are often used indifferently in the
literature. From the viewpoint of economy of language it would be preferable to exploit the
availability of two expressions to distinguish between different processes. It has been sug-
gested"® that the term mass transport be used when one is dealing with phenomena taking
place within the solution, including the diffusion layer whereas mass transfer would be used
more specifically to designate the phenomena taking place at the interface proper, which in
most cases involved an exchange of mass between the adjacent phases.
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In the case of ideal dilute solutions it is customary to take the velocity
of the solvent as reference and the superscript and second subscripts can be
dropped without ambiguity, as pointed out earlier. Equation (45) reduces to

g = ZéLB/Z ZlL; = chBuB/Z ZiCilU; (46)
This is the classical equation for the transport number. The number referred
to the solvent or to another species is often called Hittorf’s transport number
(see Section 10), whereas those referred to an average velocity and to the
container are sometimes called true (or absolute) and external transport
number, respectively.

Note that according to Eq. (46) tg is a positive number between 0 and
1. This is due to the fact that in the absence of concentration gradients jOB
and j [see Eq. (45)] have the same direction, and in the approximation of the
ideal dilute solution they also have the same sign so that 0 < j%/ i<l

Even in the approximation of an ideal dilute solution a complication
sometimes arises because of the problem of the species (see Section 9.2). The
definition given by Eq. (45) or (46) involves no difficulty if one is dealing with
a species that has a uniform charge number and the concentration of which
can be determined analytically. However, this is not always the case. Let us
consider a system of complex and simple jons linked through equilibria which
establish themselves very fast (as in the case of Cd in a iodide solution
containing Cd**, CdI;, I, etc.). In this example it is possible to determine
analytically only the overall concentration of either cadmium or iodine, which
we call a constituent C of the solution:

€ca = Cca®++ Ccai; +° or cr=cr +3ccar; + ¢

(More generally cc = Y, vic;, where v; is the number of moles of the considered
constituent contained in 1 mole of i.) It is convenient to regard the ensemble
of all particles of a constituent C (in our example Cd or I) as a single species
(see Section 9.2) and to define a transport number fc of the constituent. In
a Hittorf-type experiment (see Volume 5, Chapter 3) one can indeed measure
the total flux density Nc of C. (In our example, Nc = Ncq = Nea2+ + Ncar; +
.-+ or N = Ni- + 3N¢g; + * - ; more generally Nc = Y. v:N;) However, in
applying the definition of the transport number given by Eq. (45) (tc = i/,
with jg = zoF N), one faces the problem of the value to be assigned to the
charge number z¢ because some of the particles of the constituent are part
of a complex ion having a charge number different from that of the uncom-
plexed constituent. By definition, one multiplies each N; with zcwiF, taking
for zc the charge number of the uncomplexed constituent (in our example
zc = 42 or zc = —1), independently of whether it is present in the uncom-
plexed or complex state. In our example, jOCd =2 F(N¢gz+ + Neai; + -+ +) and
j0 = —F(N;- + 3Ncar; + + - - ). Since the N; may have different signs (as is the
case in our example for Ncqa2+ and Ncar3), the result of the above definition



FUNDAMENTALS OF TRANSPORT PHENOMENA 27

is that jo and j do not necessarily have the same sign (in contrast to the usual
case, where zg is equal to the charge number of the migrating ion considered).
It can then be easily shown that if one applies the above definition to all
constituents of the mixture (say Cd>" and I”) the sum ¥ tc for all constituents
is still equal to 1, but the transport numbers themselves can be negative or
larger than 1 [whereas for a simple ion according to Eq. (46) t3 is necessarily
a positive number between 0 and 1]. We shall refrain from a further discussion
of this problem and refer the reader to the literature.*> The transport numbers
are also discussed more fully in Volume 5, Chapter 3. Furthermore, we will
return more generally to the problem of the species in Section 9.2.

4.7. Transport of Charges through the Diffusion Layer

The transport number describes the fraction of the current transported
by a species in the absence of a concentration gradient. We now consider the
case where such a gradient is present; i.e., we deal with the transport of
charges through the diffusion layer. A quantitative understanding of the
peculiar situation that may be encountered there is important for many
applications of electrochemistry.

For the sake of simplicity we restrict ourselves to ideal dilute solutions.
The cell has plane parallel electrodes and the current flows from the anode
to the cathode, perpendicularly to the electrodes. First we consider the same
example as in Section 1 (deposition of Cu from a CuSO, solution, without
concomitant hydrogen evolution) (Figure 1). In the interior of the solution,
outside of the diffusion layer, the fraction of the electric current associated
with the Cu®" ions is given by their transport number.

In contrast to a metallic conductor, in an electrolytic solution the current
divides itself among the carriers present (in our example between the Cu**
and the SO3 ions). However, in the solution in the immediate vicinity of
the interface, the whole current is carried by the Cu** ions, because this
is the only species which reacts at the electrode. This is possible because
in the diffusion layer mass transport by diffusion occurs in addition to transport
by migration and acts in the same direction. Part of the current is due to
diffusion and part to ionic migration, but it is carried by a single species.
Across the diffusion layer, we have a continuous transition from a conductor
with several carriers of electricity to one of the first kind in which there is
only one carrier of electricity. Furthermore, when one approaches the elec-
trode, the mass transport by convection decays because of the friction at the
wall and is progressively replaced by diffusion. This affects the Cu®** and SO3~
ions in the same way: Because of the electroneutrality of convective mass
transport (see Section 4.1) the latter does not modify the distribution of the
current between the cations and anions.

Let us now examine more closely the situation with respect to the anions.
They do not react at the electrode whose surface is “adiabatic” with respect
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to the SO3 ions (i.e., the mass associated with them does not cross the
interface). The flux density of SO32™ at the interface must therefore be zero.
This comes about because the electric force and the “diffusion” force now
act in opposite directions. At the interface the first two terms on the right-hand
side of Eq. (20) cancel and v is zero, so that Ngo2- = 0. Therefore, at the
interface, the SOf— ions do not contribute to the transport of the current.

An extreme case is that shown in Figure 6. The CuSO, solution is
electrolyzed with two copper electrodes. Copper is deposited on one side and
dissolved at the other. The whole solution is at rest with respect to the
electrodes and a steady state is established. Then, in Eq. (55) to be derived
later (see Section 5), dcg/ot = 0, v}, =0, and v = 0; V¢ reduces to <92c/<9y2
(linear diffusion) and the integration is very simple, yielding a straight line
for the concentration profile over the whole interelectrode distance. This
demonstrates that once the steady state has established itself, the cathodic
and anodic diffusion layers have merged. In this case, throughout the whole
solution the charges are transported from the anode to the cathode solely by
the Cu®* ions: Only the cations move ; the anions are standing still everywhere,
as if they were fixed ions of the lattice in the ionic conduction through solids.

Let us note that the concentrations of the Cu®* and of the SO~ ions
must be equal in any point of the solution because of the electroneutrality
condition. We have thus drawn only one line for the concentration profile.

A more complicated situation arises if two cationic species are present
in the solution, as is the case in the cathodic reduction of Fe** ions to Fe**
ions in a sulfate solution, which was considered in Section 4.2 [Eq. (32)]. The
Fe®* ions are consumed, while the Fe** ions are generated at the interface.
Therefore the diffusion layer is depleted with respect to Fe®* and enriched
with respect to Fe?*. We now have three different concentration profiles
(Figure 5), one of which is not independent of the other two because of the
electroneutrality condition.

We consider first the flux densities through a plane in the solution located
in the immediate vicinity of the cathode. Within a plane there can be no

Cu Cu

Figure 6. Concentration profile in the steady-state

y electrolysis of a CuSO, solution with Cu electrodes
without convection.




FUNDAMENTALS OF TRANSPORT PHENOMENA 29

accumulation of matter. Therefore, the interfacial flux densities of Fe** and
Fe®* must be equal and of opposite sign [Eq. (33a)]. This does not mean,
however, that the concentration gradients are equal. Indeed, examination of
Eq. (20) (with v = 0 at the interface) shows that the concentration gradients
are different for a given N if the diffusion coefficients are different. However,
the difference between the D values for Fe** and Fe*" is such that the effect
is a secondary one. But there is another effect which is much more important
in the present example. The electric field drags both Fe** and Fe** ions toward
the cathode. However, in the first case this helps to supply Fe*" ions to the
electrode, whereas in the second case it hinders the transport of Fe®* ions
away from the cathode.t The absolute value of the concentration gradient of
Fe®* must therefore be largeri than for Fe’* if the fluxes of the two species
are to be equal (and if Dg.2+ = Dg.3+). As in our first example the interfacial
electric current in the solution is carried by the cations only (to the exclusion
of the anions) but it is associated with both cationic species. It is equal to the
difference between the currents associated with the fluxes of the Fe*" and
Fe®* ions, which are in opposite directions. This difference is equal to the
current flowing through the electrode.

As a third example we will discuss the case of a concentrated supporting
excess electrolyte which is of considerable practical importance. Let us con-
sider again, as in our first example, the deposition of copper from a CuSO,
solution without concomitant hydrogen evolution. However, the solution now
contains Na,SO,, the concentration of which is very much larger than that
of CuSO,. The Na" ions are not discharged at the cathode. For this reason
one sometimes encounters the term indifferent electrolyte (in German,
Leitelektrolyt) instead of supporting electrolyte. Figure 7 shows schematically
the concentration profiles. We have

j = ]'Cu2+ +jNa+ + jSO4_ (47)

Outside of the diffusion layer because of ccy2+ € ¢s03, cna*s and the fact that

the mobilities and diffusion coefficients of the three ionic species are similar,§
it follows from Egs. (45) and (46) that

]'Cuz* = thuz* = O qu2¢ « j (48)

t A similar situation is encountered in the cathodic reduction of an anionic metallic complex
such as Ag(CN);. At first sight it may seem surprising that it is possible to deposit the metal
from such a solution because the metal migrates away from the cathode under the influence
of the electric field. In reality, a concentration gradient is set up which overcomes the influence
of migration.

1 At the interface v = 0 because of the friction at the electrode. For equal N the concentration
gradients therefore depend (in addition to the small influence of the diffusion coefficients) on
the ratio of the concentrations, cg.3+/cg.2+. But in any case the electric migration tends to
make the concentration profile of Fe?* steeper than that for Fe>*.

§ The diffusion coefficients of most ionic species in aqueous solutions are of the same order of
magnitude.
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2
S0’

Cu2+

—

cathode electrode distance y

Figure 7. Concentration profile in the reduction of Cu®>* from a solution with excess of indifferent
electrolyte (Na,SO,; concentration of Na,SO,4 not drawn to scale).

The current is virtually carried entirely by the Na* and SO~ ions. In the
diffusion layer, the concentration gradients are such that they counteract the
electric migration of the SO and Na" ions, and Jna+ and jso2- progressively
decay when one approaches the interface where jna+ = jsoz- = 0. At the same
time the current carried by the Cu®" ions increases progressively because of
the diffusion, and finally it is equal to the whole current at the interface, as
in the first example of this section.

However, now the current of the Cu”" ions due to migration is negligible.
This can be shown as follows. The second term on the right-hand side of Eq.
(20) is approximately of the same magnitude in the diffusion layer and in the
bulk (or smaller). This is due to the fact that the concentration of Cu**
smaller in the diffusion layer and the electric field d¢/dy is about the same
due to the high conduct1v1ty of the solution and to the small relative changes
in the concentratlons of Na* and SO3™ (see also Section 6.1). Therefore, the
current of Cu®" due to migration is about the same in the diffusion layer as
in the bulk (or smaller). According to Eq. (48) the migration current of Cu**
in the bulk is much smaller than the whole current which remains the same
throughout the diffusion layer. Threfore, at the interface, the contribution of
the migration to the total current is negligible: The latter is a pure diffusion
current of the Cu®* ions. This is an important conclusion. Systems with excess
indifferent electrolyte are commonly used in electroanalytical chemistry,
especially in polarography, and in many studies of electrode kinetics.

To conclude this section let us note that arguments similar to those
developed above can be used to discuss the transport of charges in solid ionic
conductors and in semiconductors (among others, to discuss the situation in
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the diffusion layer near the interface between a pn semiconductor). In the
latter case the electrons of the conduction band play the role of the anions,
the positive holes the role of the cations.

5. Elimination of Electric Potential from the
Basic Equations

5.1. Ideal Dilute Solution

Let us now return to the fundamental mass transport equations. In Section
3.2 we have presented a simplified version by restricting ourselves to ideal
dilute solutions. A further simplification of these equations is achieved if we
consider two extreme cases: (a) that of an excess of indifferent electrolyte
and (b) that of the solution of a single binary electrolyte (such as a CuSO,
solution without other salts present). :

In case (a) the second term on the right-hand side of Eq. (19) is negligible
for the species present in minor concentration (see end of Section 4.7). The
conservation equation (21) thus takes the form

9;—?=DBV2CB—V°VCB—ZU§, (49)

In case (b) one can eliminate the potential from the fundamental equations
with the help of the electroneutrality condition, Y, z,c; = 0. Penoting with
subscripts + and — the cation and anion, respectively, Egs. (23), (22), and
(19) [see also Eq. (4)] yield for a binary electrolyte (where z,Fc, = —z_Fc_)

j. = 2,FD, Ve, — FX(RT) '23iD.c. V¢ + z,Fc,v (50)
i=i++j-=—2,FD, V¢, —2_FD_Vc_
—F*RT) " (z’D.c. + 22D_c )V + Fv(zscs + z_c_)
=—z2,F(D, —-D_)Vc,—k Vo (51)
where « is the conductivity or
V¢ = —j/k — 2. F(D,—D_)x ' Ve, (52)

Introducing this value of V¢ into Eq. (50) and remembering the elec-
troneutrality condition as well as the definition of the transport number [Eq.
(46)] we get

j+ =2, FDVc, +jt, +z,Fvc, = z,FN, (53)
where (z. —z)D.D-
D=—7———

z.D.—z_D_ (54)

is the diffusion coefficient of the neutral electrolyte.
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In the case of a single binary electrolyte, the migration term can be simply
expressed in terms of the transport number even in the presence of a concentra-
tion gradient. It remains constant across the diffusion layer even if the electric
field V¢ strongly varies. This is not the case for an excess of indifferent
electrolyte, but it may be so for a single binary electrolyte, especially at or
near the limiting current (see Section 1).

We now consider the conservation equation. We make a mass balance
for the cations or anions (see Figure 3) Vj is zero because of the conservation
of charges (there is no time change of a space charge). Taking into account
that the concentration ¢ of the neutral electrolyte is simply proportional to
the ionic concentration ¢, and c_, we obtain (for an incompressible fluid)+

ac 2 %

—=DVc—v-Vc+3Y0v; (55)

ot r
The equations for an excess of indifferent electrolyte [Eq. (49)] and for a
single electrolyte [Eq. (55)] differ only in the diffusion coefficients which
appear in these relationships. In the first case it is the diffusion coefficient of
the ionic species. In the second case it is the diffusion coefficient of the neutral
electrolyte (e.g., of CuSQ,). This is a kind of average between the individual
diffusion coefficients of the two ionic species, taking into account the fact that
the concentration gradients of the two species are not independent because
of the electroneutrality condition (for z, = —z_ they must be equal). A
remarkable feature of Egs. (49) and (55) is that the term with the electric
field which is characteristic of electrolytic mass transport does not appear in
them. This not only constitutes a decisive simplification of the fundamental
differential equations of mass transport in electrolysis, but it also means that
the conservation equation [Eq. (49) or (55)]is now the same as for nonelectrolytic
systems. This result is of great practical consequence. One can directly trans-
pose to electrolytic systems the numerous solutions of the conservation
equation which have been obtained in physical chemistry at large or in
connection with chemical engineering. One can also make use of the analogy
with heat and momentum transport. This analogy will be discussed in more
detail in Chapter 3.

Equations (49) and (55) are the forms of the conservation equation which
have been by far most commonly used in electrolytic mass transport problems.
It must be recalled, however, that they are strictly valid only in the limiting
cases of a single binary electrolyte solution on the one hand, and of a minor
species in a solution with excess indifferent electrolyte on the other hand. In
practice, they are often used as a first approximation in the intermediate cases
where the concentration of the ionic species considered is of the same order

t For a 1-1 electrolyte ¢ = ¢, = c_. For a 2-1 electrolyte, such as CuCl,, ¢ = ¢, = ¢_/2. In Eq.
(55) v* is the number of moles of neutral electrolyte produced or consumed per unit time and
per unit volume by reaction r.
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of magnitude as that of other species present in the solution. The tricky
problem of the integration of the more complete Eq. (21) (which includes
the term with the electric potential) has been treated only recently for a few
cases mainly by Newman. An example of this much more sophisticated
calculation will be discussed in Chapter 3.

5.2. Nonideal, Concentrated Solutions of a Single Electrolyte

The discussion in the preceding section was restricted to ideal dilute
solutions. However, in the last decade the theory of mass transport in electroly-
sis with concentrated solutions has made considerable progress, thanks mainly
to the work of Newman, Tobias, Bennion,(l’so) and others.®*?* We shall deal
with the solution of a single electrolyte which is amenable to a relatively
simple treatment. As in the case of the ideal solution, one can eliminate the
potential by means of the electroneutrality condition [Eq. (12)]. From Egs.
(3", (10), (22), and (23) and remembering the relationship between x and
the activity a (see Section 3.1) one obtains, upon some rearrangement,m

i+ = 2,FN, = 2. Fv.@cr(frca) ' Vef oo +it?
+2,. Fr.cva (56)

with a similar equation for the anion.

In this equation c, and v are the concentration and velocity of the
solvent, respectively; cr is the total concentration and ¢ the concentration of
the neutral electrolyte, which is linked with ¢, and ¢c_ by ¢ = ¢./vs =c_/v_
(i.e., v+ and v_ are the number of cations and anions formed when 1 molecule
of neutral electrolyte dissociates). f,_ is the mean molar activity coefficient
and cf._ thus represents the activity of the neutral electrolyte.

9 is the diffusion coefficient of the neutral electrolyte,

Da+Da-(z+ —2)
Z+@A+ - Z_@A‘

9 = (57)
It is defined in a way quite similar to that for the diffusion coefficient of the
neutral electrolyte in an ideal dilute solution [Eq. (54)]. It represents a kind
of average between the individual ionic diffusion coefficients @5+ and P -
(which are the interaction diffusion coefficients between the solvent A and
the cations and anions, respectively.t % is the transport number (referred to
the solvent). According to Eqgs. (45) and (16b) applied to the solution of a
single electrolyte, 17 is given by
A zZ .;.@A+

ty =

B Z+@A*"Z—@A‘ (58)

1 In addition, we have an interaction diffusion coefficient &, _ between cations and anions but
this does not enter into Eq. (57) (see Section 5.3).
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In contrast to the case of the ideal dilute solution, ¢4 is not necessarily
constant across the diffusion layer. Therefore, it does not drop out when the
conservation equation is derived from Eq. (56).

ac

i V- Per(fo-ca) ' Vefoo =V ecva

_j . Vtﬁ(Z+FV+)_1 + v:!< (59)

Equations (59) and (56) are the analogs of Egs. (53) and (55), which are valid
for an ideal dilute solution only. They are somewhat more complicatedt than
the latter ones but the main result is preserved. Namely, the electric potential
no longer appears in the equations so they can be written in terms of the
concentration of the neutral electrolyte, and the tricky problem of the
individual ionic activities (see Section 3.1) is avoided. The main difference
compared to ideal dilute solutions is that diffusion coefficients based on
thermodynamic driving forces enter into Egs. (56)-(59).

An alternative possibility is to use, even in the case of concentrated
solutions, an effective diffusion coefficient D* based on concentration
gradients. It is the quantity most directly accessible to experiment. In the
classical methods (involving porous cups or optical systems), the diffusion
coefficient is measured in the interior of a solution that is at rest with respect
to the container; i.e., the whole volume of the solution is fixed and the mass
average velocity, taken with respect to the container, is zero. This suggests
that D* be defined by the relationship

N,=-D*V¢ (60)

where c is the concentration of the neutral electrolyte and N; its flux density.
D* is linked with @ by the relationship"*”

_ dl _

N () (61)
dinm

where y._ is the mean activity coefficient on the molal scale and m is the

molality (moles of electrolyte per kg of solvent). The gradient of the chemical

potential of the neutral electrolyte Vu can be expressed as™®

Derc(vRTen) " Vi = D*(1- dInca) g, 62)
dlinc

where v = v, +v_.

+ The complication does not only come from the term (z,Fv,) " 'j+ Vt2 (which is not zero in the
case of a concentrated solution). In addition, one has to write V- cva(=v:Vc +cV-v,)
instead of v, * V¢ because in a concentrated solution V - v, is not necessarily zero even for an
incompressible fluid. In contrast to this, V - v, is zero even in a concentrated solution (Section
2.6) and thus need not be considered in Eq. (60).
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We now express the flux in terms of D* and of the mass fraction of the
salt, w; = (p+ + p-)/p, as the driving force. We further use the mass average
velocity as reference. We thus obtain an equation that is expedient for the
use in conjunction with the conservation of momentum equation [Eq. (15a)]
in an ab ovo calculation of the quantities of practical interest (see Section
8.2). One can write for the cations

-1 its
N, = —v,oDM " Vo, + ——+c.v, (63)
z,.F
where t5 is the transport number referred to the mass average velocity and
M the molar mass of the neutral electrolyte. A similar relationship holds for
the anion.

The above equations pave the way for a quantitative treatment of mass
transport in concentrated single electrolyte solutions, which are unfortunately
the ones most commonly encountered in practice, especially in industrial
systems. With modern computers it is possible to perform a complete calcula-
tion starting from the basic equations, at least for relatively simple hydrody-
namic conditions, in spite of the great complication of the variation of D*
across the diffusion layer, i.e., over the integration path. An example of such
a computation is to be found in a paper by Newman and Hsueh.®” However,
by and large, very few calculations of this kind have been done so far.

5.3. Remarks about the Diffusion Coefficients

In the case of a solution with a single electrolyte, there are three species:
the cations, the anions, and the solvent. According to Section 2.5 the number
of independent diffusion coefficients is thus sn(n —1) = 3. We have two
diffusion coefficients, D5+ and P 4-, which describe the interaction between
the solvent and the cations and anions, respectively. The third coefficient,
9._, is characteristic for the interaction between cations and anions. It is
interesting to note that &, _ does not appear in the equations for the transport
number [Eq. (58)] nor in that for the diffusion coefficient of the neutral
electrolyte [Eq. (57)]. These two transport properties depend only on the
friction between the solvent and the ions. However, 9,_ influences the
conductivity « of the solution, as can be readily seen from Eqgs. (40) and (16b)
applied to a single electrolyte solution.

In the case of a concentrated electrolyte &, ¢, (or £_), and k represent
three different transport properties, which are accessible to experimental
determination. From the measured values of &, t., and « one can calculate
Da+, Da-, and P, by means of Egs. (57), (58), and (40). Experimental
results are available for a number of systems over a wide range of concentra-
tion, for instance, for aqueous KCl between 10~* and about 5 moles/ liter."
In this range D+ and Pa- are both about 2 x 107> cm*s™" and vary little
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with concentration, whereas @, strongly increases from 1.5 x 1072 to 5 x
10~ ®cm®s ™" and thus becomes of the same order of magnitude as P+ or
P a- in concentrated solutions.

In addition to the diffusion coefficients 2 based on thermodynamic driving
forces we have used in the preceding section a kind of effective diffusion
coefficient D* based on concentration gradients [Eq. (60)] and which is
formally analogous to the diffusion coefficient D for dilute solutions, but
should not be confused with the latter. The differences in properties should
be noted. &, Da+, Da-, and PD._ are functions of state and depend on
concentrations, temperature, and (in principle) pressure, but are independent
of concentration gradients. The D, are also functions of state but are
independent of concentration. However, as can be easily seen from Eq. (61),
D* is not a function of state and depends on both concentrations and con-
centration gradients, as well as on temperature. This complicates the integra-
tion of differential equations based on D*, such as Eq. (60).

It is useful at this stage to recapitulate quite generally the various diffusion
coefficients and transport coefficients which we have encountered so far. They
are summarized in Table 1. Additional variants can be generated by changing
the reference velocity. Table 1 also includes the integral diffusion coefficient
which we will discuss later in Section 9.1. Further diffusion and transport
coefficients have been defined in the literature. In all, there is a bewildering

Table 1
Transport Coefficients

Lgi Phenomenological coefficients, based on thermodynamic driving force, referred to
velocity vo(J™ mol> m™* s™%), [Eq. 3)]

Kg; Friction coefficient between species B and i (kg's m?), [Eq. (10)]

DY Interaction diffusion coefficient between species B and i, based on thermodynamic
driving force, referred to velocity vo(m2 s7h [Eq. (10)]

Dy Diffusion coefficient of species B in dilute solution, based on thermodynamic driving
force, referred to solvent (m”s™") [Eq. (16)]

D* Effective diffusion coefficient of nonideal concentrated solution based on concentration

gradient (m”s™") [Eq. (61)]

D Integral (average) diffusion coefficient, based on concentration gradients (m? s7h
(Section 9.1)

Dy Diffusion coefficient of species B in ideal dilute solution, based on concentration
gradients, referred to solvent (m”s™*) [Eq. (19)]

D D.D_(z4 - z_)/(z+D, — z_D_) diffusion coefficient of neutral electrolyte, based on
concentration gradient, referred to solvent (m?s™) [Eq. (54)]

UB Electric mobility of species B, based on electric driving force, usually referred to
velocity of solvent (m®s™' V') [Eq. (37)]

wE Mechanical mobility of species B, based on mechanical, driving force, usually referred
to velocity of solvent (kg™' s mol) [Eq. (43)]

Ap Ionic conductivity of species B, usually referred to velocity of solvent (ohm™! m? mol™?)

[Eq. (42)]
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number of them. They are all essentially equivalent but, depending on the
circumstances, one or the other may be more convenient to use. It is important
to remember that their numerical values are usually different. When making
numerical calculations with the help of coefficients found in the literature one
should take care to ascertain which kind of coefficient has been tabulated.

5.4. Interfacial Flux Densities; Interfacial Velocities

As we have seen in Section 4.2 the interfacial flux densities are linked
in a simple manner with the electrode current density, which is, beside the
potential, the most commonly measured quantity in electrochemistry. In the
case of an ideal dilute solution one obtains from Eq. (31) combined with Eq.
(19) or (53)

_ d
j= —nVBIDBF(EC)-}E)e (64)
. -1 dcg
f=—(1—tg) zBFD(———) 65)
dy/.

where (dcg/dy). is the interfacial concentration gradient of B perpendicular
to the interface.

The first relationship pertains to a minor reacting species B in an excess
of supporting electrolyte. The second equation applies to a solution with a
binary electrolyte.t Here, D denotes the diffusion coefficient of the neutral
electrolyte and B denotes the cation or the anion, depending upon whether
the first or the second one is the species which reacts at the electrode.

The transport number fg is necessarily smaller than 1 and the factor
(1-1g) 'in Eq. (65) is thus larger than 1. Therefore, under otherwise identical
conditions, the current is larger than in the presence of a supporting electrolyte.
The reason is that in the case of a binary electrolyte, electric migration
contributes to the transport of the reacting ionic species toward (or away
from) the electrode.

In Egs. (64) and (65) no convection term appears. Indeed, in a dilute
solution the average velocities are virtually equal to the velocity of the solvent

+In deriving Eq. (65) it has been taken into account that in the case of a binary single electrolyte,
only electrode reactions such as Cu- Cu®>* +2¢ or 2CI” > Cl, + 2¢ are possible. [Redox
reactions such as Fe>* + ¢ > Fe* or the reduction of a complex ion such as Cu(CN)3™ are
excluded, because a third ionic species would be generated at the electrode and the diffusion
layer would no longer consist of a binary single electrolyte.] Under these conditions nvg' is
equal to zg and the relationship for the electrode current is simplified accordingly.

1 Note that the reverse is also possible: In the cathodic reduction of Cu(CN)f_, for example, the
migration slows down the transport of the reacting species toward the cathode and thus decreases
the current. However, we have excluded this case in deriving Eq. (65) because then a third
ionic species would be generated at the cathode (CN™) (see preceding footnote).
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va (Section 3.1), and the latter is zero at the interface because of the friction
forces (see Chapter 3) and because no solvent flows through the interface.

In contrast to this, in the case of a concentrated solution, a nonnegligible
convection term may exist even at the interface. In the case of a binary
electrolyte solution, we now have to apply Eq. (63) where v, is given by

v = p_l(p+v+ + p_V_+ pava) (66)

Let us consider for the sake of concreteness a cathodic metal deposition.
At the cathode solution, interface pava and p_v_ in Eq. (66) is zero but the
mass flux density of the cations, p.v., is not since the mass associated with
the cations crosses the interface. Equation (66) reduces to

vy = "*T”* = w0, 67)

In a concentrated solution the mass fraction of the cations is not negligibly
small; i.e., we may have to take into account thatf vy is not zero at the
interface. This means that the mass flux of the reacting species itself (which
crosses the interface) constitutes a nonnegligible convective term, which
modifies the value of N at the interface and therefore increases the current
flowing through the interface.

From Egs. (63) and (67) it follows upon rearrangement that (remembering
that N, = c,vy = Myp.vy)

N.=(1-wy) (~v:pDM " Yy, +jt%/z.F) (68)
or if we take into account that jt2/z,F = N,
N.=-(1-w:—1t2) " 'v.pDM " Vy, (69)

From Eq. (68) it is seen that the interfacial velocity increases the interfacial
flux density of the reacting cations (and thus their limiting current density)
by the factor (1 — w.)". For a 1M CuSO, solution w, is 0.05 and N is
increased by about 6%. The above effect may be of importance especially in
the electrolysis of fused salts, in particular, for the case of single salt melts
such as NaCl.

In addition to the above effect, the interfacial velocity also affects the
boundary condition to be applied in the integration of the equation expressing
the conservation of momentum [Eq. (15a)] (see Section 8.2). The complica-
tions caused by the interfacial velocity have been treated by Acrivos® (see
also Reference 31).

+ In Eq. (67) the velocity has not been taken as a vector because at the interface only the velocity
component perpendicular to the interface is of importance.
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6. Topics Related to the Electroneutrality Condition

6.1. Validity of the Electroneutrality Condition and
Application of Poisson’s Law

In the preceding sections we have repeatedly made use of the electro-
neutrality equation (12). It is about time to digress on the validity conditions
of this relationship. The departure from electroneutrality corresponds to the
space charge p* (amount of free, or excess, charges divided by volume):

FY zic; = p* (70)

On the other hand, the space charge is related to the electric potential by
Poisson’s law:

V¢ = p*/eeo (71)

¢ is the dielectric constant of the medium relative to vacuum and is a
dimensionless number. If SI units are used, the value of the permittivity for
a vacuum, o, is 8.86 X 107> As V"' m™. If one uses the electrostatic system
of units, g, has to be replaced by (4m)~ .

From Eq. (71) it is seen that the electroneutrality equation is strictly
valid only if there is no gradient of the electric field V¢. Let us examine how
far this is indeed the case. The principle of conservation of electric charges
and Eq. (41D) yield for an ideal dilute solution

——=-Vj=FV:LzDVc;+k V¢ +V¢ -V« (72)

If there is no capacitive current (i.e., no charging of the liquid volume element
considered and therefore no change of p* with time), we can write

V2 =~ 'V V¢~ 'F V-3 2D, Ve, (73a)

or
V¢ =—«'Vk Vo (73b)

in the absence of concentration gradients.

If the concentrations and thus « are constant, it follows from Eq. (73a)
that V°¢ and therefore, because of Eq. (71), also p* are zero: In the absence
of concentration gradients the electroneutrality condition is strictly fulfilled.

If concentration gradients are present, we have to consider the term
FV -}.z:D; Ve, It is zero if the diffusion coefficients of all species are equal
and if we accept at least as a first approximation, the principle of electro-
neutrality. For the sake of simplicity let us first restrict ourselves to that case.
Equation (73b) then remains valid even if concentration gradients are present.
However, across the diffusion layer there is a change of concentrations and
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thus of « ; therefore V¢ is not zero. In the presence of concentration gradients
there is a space charge. We will now evaluate the magnitude of this effect. It
is particularly small in the case of an excess of indifferent electrolyte (such
as the example of a CuSO, + Na,SO, solution considered toward the end of
Section 4.7). Indeed, under these conditions the relative change of the overall
concentration across the diffusion layer is small (Figure 7), and the same is
true of the relative change in conductivity. Therefore, according to Eq. (73b)
V?¢ is small.t The fact that the field strength is nearly constant across the
diffusion layer has been utilized already in our discussion of the influence of
an indifferent electrolyte on the charge transport in Section 4.7. The constancy
of the field strength is also important in connection with the measurement of
electrode potentials (see Section 7.2).

On the other hand, in the case of a solution of a single binary electrolyte
(such as CuSO, without additions), the relative concentration change, and
therefore the relative change of x across the diffusion layer, may be quite
large, particularly at or near a cathodic limiting current. These are the cases
where the values of V¢ are expected to be largest.

We have developed our argument for the case of equal diffusion
coefficients. However, even if this is not true the main conclusion that we
have reached so far remains essentially correct: The variation of the electric
field across the diffusion layer and the departure from electroneutrality
strongly decreases if an excess of indifferent electrolyte is added to a single
salt solution. Indeed, the diffusion coefficients of most ionic species in aqueous
solutions do not differ very much (except for H* and OH™ ions), and the
additional term FV - Y, z;D; V¢; [which appears in Eq. (73a) when the D; are
not equal] is usually relatively small.

Let us now evaluate numerically the departure from electroneutrality in
an unfavorable case—that of a single binary electrolyte. For the sake of
simplicity, we consider the example of Figure 6 with a 1:1 electrolyte (such
as AgNQO3;) and assume ideal dilute solution behavior. For convection-free,
steady-state linear mass transport, without homogeneous reaction in the
solution (3c/dt =v =Y, v¥ =0), Eq. (55) reduces to

2

ey (74)

dy
Integration between the limits

c=c, aty=0, c=ca aty=L/2
where L is the distance between the electrodes, yields
(cav — Co)y
L/2

t One may argue that the value of V24 also depends on V¢. However, if we add a supporting
electrolyte to, say, a CuSO, solution, V¢ is decreased for a given current, so that the conclusion
given in the main text remains valid.

c=cC.+ (75)
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On the other hand, the potential can be calculated by applying Eq. (19) to
the anions, for which j_ = 0:

Fe dy RTdy (76)
Integration shows that ¢ is proportional to In c. Whereas the concentration
profile is linear, the potential is not a linear function of y.

The steepness of the concentration and potential profile depends on the
magnitude of the electrolysis current j. We will express our results in terms
of the fraction a of the limiting current jy,, flowing through the cell. Since
for j = jim c. = 0, it follows from Eq. (65)1 that

w1 _, (77)

Cav jlim
Combining Egs. (75), (76), (77), (70), and (71) we obtain, upon differentiation,
2 2 *
¢ 4R T 2 (e 'FYzei  (78)

dy2 B —F[L(l —a)+2ayT - £€o :

This equation gives the departure from electroneutrality as a function of a
and y. At 25°C and for an aqueous solution ¢ is 78.3 and RT/F is equal to
0.0257V. For L =0.1mm and (a) a = 0.05, y = 0.05 mm, (b) a« = 0.99,
y = 0, we obtain for d>¢/dy” 2.57 and 1.0 x 10’ V cm 2, respectively. There
is thus quite a strong gradient of the electric field d¢/dy. Nevertheless, because
of the very large value of the Faraday constant, the departure from the
electroneutrality condition is quite small. According to Eq. (78), for the above
examples, the difference between the amount of cations and anions is 1.85 X
107" and 7.2 x 1077 eq/liter. This is negligible compared to the concentra-
tions commonly encountered in electrolysis. We may thus conclude that in
most cases one can safely use the electroneutrality condition in electrolytic
mass transport problems. Exceptions are systems with very thin diffusion
layers or solutions of a very dilute binary electrolyte (see Section 6.3).

Let us note that in contrast to the diffusion layer the electroneutrality
condition does not hold in the electric double layer. The distinction between
double layer and diffusion layer will be discussed in Sections 6.2 and 6.3.

6.2. Concept of Interfacial Quantities

In electrolytic mass transport one often refers to interfacial values (i.e.,
at the interface of the electrode and solution)—interfacial concentration or
interfacial flux density. They play a role in the concentration overpotential

1 In Egs. (74)-(77) c represents the concentration of the neutral 1 — 1 electrolyte (¢ = ¢, = c_).
This assumes that the electroneutrality condition is valid at least as a first approximation. This
assumption is also implied in the use of Eq. (73a). The continuation of our argument will show
a posteriori that this premise is indeed fulfilled.
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(see Section 7.2) and appear as boundary conditions (see Section 8) in
the integration of the differential equations of mass transport, with the
qualification “at y = 0" (when the origin of the coordinate axis is on the
interface). What exactly is meant by that? Obviously, one wants to designate
by y = 0 a point of the solution as close to the interface as possible. However,
one also usually wishes to apply the electroneutrality equation. Therefore,
y = 0 means more precisely a point near the interface, just outside of the
electric double layer, at a distance / such that the electroneutrality condition
is fulfilled. In moderately concentrated aqueous solutions, the double layer
thickness is of the order of nanometers, whereas the thickness of the diffusion
layer ranges from 1 to 1000 um. Therefore, in the mathematical treatment
of mass transport the above-mentioned distance / is negligible compared to
the length of the diffusion path over which the integration of the differential
equations is performed. _

Therefore, in general, the distinction between double layer and diffusion
layer is no problem. However, under some circumstances the overlap of the
two layers has to be considered.

6.3. Overlap of the Diffusion Layer and the Double Layer

The thickness of the electric double layer increases with decreasing ionic
concentration in the solution (see Chapter 3 of Vol. 1). On the other hand,
the departure from electroneutrality, which is given by (3, zic;)/ (¥, z+jc+;) also
increases with decreasing ionic concentration for a given d’¢/dy”. The prob-
lem of the overlap of the diffusion layer and the double layer is therefore
most likely to come up in the case of very dilute systems, when the bulk ionic
concentration is very small, or at or near the electrode, at current densities
close to the limiting value where the interfacial concentration of the reacting
species is low.

Indeed, Eq. (78) shows that d’¢/dy* and therefore Y.; zic; increases (a)
with decreasing y (i.e., close to a cathode), (b) when the thickness of the
diffusion layer L decreases, (c) when « increases, i.e., when one approaches
the limiting current (where for y -» 0 the value of d?‘tb/dy2 tends toward
infinity), and (d) when ¢ is smaller (as it may be the case in nonaqueous
solvents). For the purpose of illustration let us consider the following numerical
example: L = 1 um (which is the thickness of the diffusion layer that may be
attained in a strongly agitated aqueous solution), y = 0. 1 um (which corre-
sponds to an electrode distance equal to 1/10 the thickness of the diffusion
layer), and a = 0.95. According to Eq. (78) ¥, z«c; is then 1.1 X 107> eq/liter.
With a bulk concentration of 10 *eq/liter, ¢ at y = L/10 is 1.5x 107>
eq/liter. Y zic; and ¢ are now of the same order. This result applies to a
solution of binary electrolyte. In the case of excess indifferent electrolyte (as
commonly used in electroanalysis), the above effect does not occur (or to a
small extent only), even if the reacting species is present in small concentration.
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Nevertheless we may conclude that under exceptional circumstances the
distinction between diffusion layer and double layer becomes hazy and the
departure from electroneutrality then has to be considered in mass transport
calculations. The problem of the structure of the outer parts of the double
layer in such cases has been treated by Newman."”'®

7. Some General Concepts Related to Mass and Charge
Transport

7.1. Diffusion Potential

Diffusion layers in electrolytes can also occur elsewhere than near an
electrode. This is the case when two different solutions are brought into
contact, for example, a KCl and NaCl solution or two solutions of NaCl of
different concentrations. The NaCl diffuses into the less-concentrated solution.
An electric field can be set up in such a diffusion layer even if no net electric
current is flowing through the solution. This is readily seen by writing the
equation for the total current [Eq. (41a)] for j = 0.

Vo = — % (F LDz vc,.) (79)

The field V¢ is zero only when all diffusion coefficients are equal. The integral
of V¢ over the diffusion layer is called the diffusion (or junction) potential.
Its occurrence can be qualitatively explained as follows. In the above
example of two NaCl solutions of different concentrations the Na* ions have
a higher mobility than the ClI™ ions. Under the influence of the same driving
concentration difference they tend to diffuse faster and to overpass the Cl~
ions. This results in a separation of charges and thus an electric field is set
up. This field slows down the faster species and accelerates the slower one,
so that both species diffuse at the same rate. The diffusion process is
electroneutral since no net current is flowing through the system.

An argument similar to that developed in Section 6.1 shows that, although
the diffusion potential can be regarded as being due to the formation of a
space charge, the departure from electroneutrality is negligible: The sum
Y.: zic; is virtually zero, as compared to the concentrations of the species.

The magnitude of the diffusion potential is relatively small in most cases.
Nevertheless, it plays an important role in potentiometry (pH determinations,
etc.) and more generally in emf measurements.

It is seen from Eq. (79) that, in general, V¢ decreases if the conductivity
becomes larger. Let us consider a 0.01 M NaCl solution which diffuses into
a 0.0001 M solution of the same salt, and let us add to the first solution a
large amount of KCI so that it has a concentration of KCl of 1 mole/liter.
The mobilities of K™ and Cl~ are about the same. Therefore, the strong
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concentration gradient of K™ and CI™ ions which is set up hardly increases
the term Y, D;z; V¢; (because Dx+ Vcg+ = Do~ Vo). The numerator in Eq.
(79) remains essentially the same but the total concentration and therefore
the conductivity « strongly increases, resulting in a large decrease of the
diffusion potential. Addition of a supporting electrolyte with equal cationic
and anionic mobilities is a popular and practical way of minimizing the diffusion
potential.

7.2. Concentration Overpotential

Let us now return to the situation where a diffusion layer develops near
an electrode. As a consequence of the difference between the interfacial and
bulk concentrations, the equilibrium potential of an electrode under current
flow (E;) is not the same as for zero current (E,). This shift in potential is
given by Nernst’s law [Eq. (83), Section 8.2]. For a generalized electrode
reaction of the form

vgB' +vcC'+: - 2vgB+vcCH+ - + ne (30)

we have

E, ~ Ey =~ in (11 @)/ (@] (80

In the simple example of copper deposition from an ideal dilute CuSO,
solution, this relationship reduces to
RT (CCuz*)e

E-Eo=—-=1
ITEOTF M ea o

(81)
The subscript e denotes the interfacial value under current flow, and O the
values of the concentrations or activities before the current is switched on.
In many instances the initial concentrations ¢, are those that prevail later in
the bulk solution.

E,; — E, is a contribution to the total overpotential, due to the difference
between the concentrations at the interface and those in the bulk solution.
In turn, this concentration difference is caused by the slowness of the mass
transport and by the resulting buildup of a diffusion layer. Another effect
linked with the mass transport is the potential difference that develops over
the diffusion layer due to the differences in the diffusion coefficients of the
species involved (diffusion potential) (see Section 7.1). If (as is usually the
case) the electrode potential under current flow is measured with respect to
a reference electrode located outside the diffusion layer, then the potential
difference linked with the diffusion potential is included in the measurement.
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Thus it appears adequate to lump this effect together with the shift in equili-
brium potential E; — E, given by Eq. (80) and to call the sum of the two
concentration overpotential.t

IUPAC recommends the following definition of the concentration over-
potential(lg): “The concentration overpotential of an electrode reaction at
current density j is basically the difference in electrode potentials across the
diffusion layer. More precisely, it is the potential of a reference electrode (of
the same electrode reaction as the working electrode) with the concentrations
which establish themselves at the interface at current density j, relative to the
potential of a similar reference electrode with the concentrations of the bulk
solution. From such a measured potential difference, with current flowing,
one needs to subtract the ohmic potential drop prevailing between two
electrodes.” This definition corresponds to that given in the preceding para-
graph. However, it is an operational definition which, in general, is to be
preferred to a theoretical one. But in the present case it is difficult to live up
to it experimentally. In practice, one may proceed as follows: One calculates
the concentration overpotential as the open circuit potential of a concentration
cell where the electrodes are both equilibrated with respect to the given
electrode reaction. One compartment of the concentration cell has the bulk
solution concentrations and the other compartment has the concentrations
that would have been established at the interface of the working electrode
and that can be deduced from mass transport theory. The junction assumed
in the calculation should approximate the concentration profiles existing in
the diffusion layer under current flow.

The above procedure yields the concentration overpotential as defined
by IUPAC. In principle, it is also possible to determine it by a direct experi-
ment, by measuring under current flow the potential difference between the
working electrode and a reference electrode located outside the diffusion
layer. However, concentration overpotential should be the only one present;
i.e., all other types of overpotential, in particular activation overpotential
should be negligible. In practice, this condition is seldom fulfilled to a good
approximation. In addition, in a concrete situation one does not know whether
or not it is fulfilled. Furthermore, if the measurement is made under current
flow, it contains an ohmic potential drop which, according to the IUPAC
definition, should not be included in the concentration overpotential.

The separation of the ohmic drop is a tricky problem. One problem is
that the ohmic potential drop is ill-defined. If the working electrode is
connected to the reference electrode through a Luggin capillary, the ohmic
drop included in the measurement depends on the location of the tip of the

T In the literature there is no agreement on the definition of the concentration overpotential. In
most textbooks, 2®2? it is regarded as being the value of E; — E, given by Eq. (80); in Newman’s
book” the diffusion potential is included.
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capillary. If it is situated outside the diffusion layer, the measurement includes

some of the ohmic drop in the bulk solution. If, in contrast to this, the capillary

is located very close to the electrode there is a shielding effect and a

modification of the local electrode potential near the tip of the capillary (see

Chapter 4 on current and potential distribution) so that a value different from

the average one is measured.

Let us mention two possibilities to correct for the ohmic drop:

(a) One measures the electrode potential for various electrode—capillary tip
distances and extrapolates to zero distance. We will return to this at the
end of Section 7.2.

(b) One interrupts the current and measures immediately after cutoff. The
ohmic potential drop is thus eliminated. However, the activation over-
potential does not drop instantaneously to zero. Another effect is the
relaxation of the interfacial concentrations during the off-time. The
method works only if a compromise between these two effects can be
found.

The ohmic drop over the diffusion layer can be regarded as the potential
drop that would prevail in the diffusion layer (for the same current) if all
diffusion coefficients were equal. In fact, this part of the overall potential
difference across the diffusion layer is very difficult to distinguish from the
contribution due to an inequality of the diffusion coefficients. In practice,
however, there is often no need for this distinction.

In kinetic studies especially, one is interested mainly in separating from
the total overpotential the contributions that are not related to the reactions
taking place at the electrode-solution interface. This includes both the con-
centration overpotential and the ohmic drop. Thus it is sufficient to determine
the overall potential difference across the diffusion layer (including the ohmic
drop and the diffusion potential) and the value of E; — E, as given by Eq.
(80), the interfacial concentrations being obtained from mass transport theory.
In this connection an interesting conclusion may be drawn from the basic
equations developed in this chapter. It is of advantage to add an excess of
supporting electrolyte because then the potential drop across the diffusion
layer decreases substantially and the field becomes more uniform (see Section
6.1). Under these conditions it becomes easier to determine this potential
drop by varying the distance of the tip of the capillary and extrapolating to
zero distance, if, as is often the case, the overpotential is measured by
connecting the working electrode with the reference electrode by means of
a Luggin capillary. The experimental methods for its measurement are treated
in more detail in Chapters 1 and 2, Volume 6, and will not be discussed here.

Let us conclude this section with a semantic remark. Instead of concentra-
tion overpotential the expressions transport overpotential or diffusion over-
potential are often found in the literature. According to the IUPAC nomen-
clature recommendations,’® these terms should not be used indifferently.
The name transport overpotential should be restricted to cases where no
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homogeneous reaction takes place in the diffusion layer. If, in addition, the
magnitude of the interfacial concentrations is not influenced by any migration
terms, the concentration overpotential may (but need not) be called diffusion
overpotential.

7.3. Mass Transport Control

The concept of mass transport control plays an important role in elec-
trochemical kinetics and electroanalysis. It is used to indicate that the rate-
controlling step of an electrochemical process is the mass transport to or from
the interface and not a reaction taking place at the interface or in the volume
of the solution. One often reads the statement that there is mass transport
control if the transport is slow compared to the rate of a consecutive electrode
reaction. In reality, such a statement is ambiguous, if not misleading. Indeed,
the number of moles of a species reacting at the electrode per unit time must
be necessarily equal to the number of moles transported to (or from) the
electrode per unit time, because in the interfacial planet at y = 0 (as defined
in Section 6.2) there can be no accumulation of substance (even under
unsteady-state conditions): The electrode current (or the amount of substance
consumed or produced in the charge-transfer reaction) is necessarily linked
with the interfacial flux densities by the simple relationships given in
Section 4.2.

A more precise characterization is as follows. The term transport control
refers to conditions where, in a controlled-potential experiment, the current,
and in a controlled-current experiment the electrode potential, are solely
determined by the rate of mass transfer to (or away from) the electrode. For
instance, the current measured in a controlled potential experiment is then
called a transport-controlled current. Under conditions of transport control
there is no influence of the kinetics of a reaction taking place at the electrode
or in the volume of the solution. Except at the limiting current, this implies
that the electrode reaction and homogeneous reactions, if present, are virtually
at equilibrium (in spite of the current flow). This means that the reaction rate
allowed by the slow mass transport is so small that the equilibrium of the
chemical or electrochemical reactions is not disturbed.

An important consequence is that, in a transport-controlled experiment,
below the limiting current the electrode potential can be calculated from the
Nernst equation. However, although the electrode reaction is virtually at
equilibrium its rate is not zero; but the reaction proceeds reversibly. This

+ This interfacial plane is to be distinguished from the interface proper, which includes the
electrode surface and the double layer in which there can be, under unsteady-state conditions,
an accumulation of matter with time, due to adsorption. However, in calculations dealing with
the mass transport in the volume of the solution, the interfacial plane to be considered is the
boundary of the region to which the continuum equations and the electroneutrality condition
can be applied.
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should not be misunderstood as the whole process being reversible. This is
not the case. But the irreversibility does not lie at the electrode; it is within
the diffusion layer.

An interesting aspect is the connection of the concept of the mass
transport control with the driving force of the process.®> In the case of a
chemical reaction, the driving force (or affinity) is given by Y v;u; and the
equilibrium condition is Y, »;u; = 0. In the case of an electrochemical reaction,
the u; terms are replaced by the electrochemical potentials (; which are
linked with the chemical potential . and the electric potential ¢ through Eq.
(2"). For a reaction such as Eq. (30), the driving force ist

AG~ = Z Vilzi = (z Vilzi)react + (Z Vi“i)prod (82)

At equilibrium AG = 0, from which one can easily derive the Nernst equation,
(83), if one remembers Eq. (2'), the relationship between p and the activity
(= o+ IST In a), and the fact that ) z;»; = n. If the electrochemical reaction
is to run, AG must be negative; i.e., (¥, |¥i|i)react > (X; il i )proa- This situation
is shown schematically in Figure 8. The overall electrochemical reaction can
be split into two parts: (i) the electrode reaction proper (involving the charge
exchange at the interface) and (ii) the mass transport through the diffusion
layer.
Correspondingly, we can split up the overall driving force:

AG = AG, + AG,

AG, represents the driving force for the electrode reaction proper and AG,
that for the mass transport across the diffusion layer. If the electrode reaction
is reversible, the ‘“force” AG, needed to drive it is negligible and we have
AG = AG,. Therefore, when the process is mass transport controlled, virtually
the whole driving force is used to overcome the resistance due to the slowness
of the mass transport and which lies in the diffusion layer (Figure 8a).
Conversely, if the electrode reaction is strongly irreversible, we have the
reverse situation: The major part of the total AG lies at the interface to
overcome the resistance due to the slowness of the electrode reaction (Figure
8b). The situation is analogous to that of two electric resistors of very different
resistances in series. The same electric current flows through both but there
is a very small potential drop over the resistor with the small resistance and
a very large potential drop over the resistor with the large resistance. The
latter corresponds in the chemical or electrochemical analogy to the rate-
determining step.

Let us return to the important exception of the limiting current which is
reached in a certain potential range in a controlled-potential experiment (see
Section 1). As already mentioned, in that case there is always mass transport

t Note that according to our sign convention the stoichiometric coefficients »; are positive for
products and negative for reactants so that in Eq. (82) (¥ »ifii)react is negative. Note also that
the u of the metal electrons is to be included in the summation.
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Figure 8. Distribution of total driving force AG between reaction at interface and transport
rocess below limiting current: (a) transport control (reversible electrode reaction); (b) irreversible
electrode reaction (kinetic control).

control of the current, even if the electrode reaction is not at equilibrium.
Indeed, at the limiting current one is in a potential range where the interfacial
concentration of the reacting species is zerot independent of the degree of
irreversibility of the electrode reaction and of the applied electrode potential
(within a certain range). Therefore, the concentration difference between bulk
solution and interface, which determines the driving force for the diffusion
toward the electrode, is also independent of those quantities. The rate of
mass transport thus depends solely on the transport properties of the system
(diffusion coefficients, hydrodynamic conditions). As we have seen at the
beginning of this section, the rate of mass transport necessarily corresponds
to the electrode current (and to the rate of the charge-transfer reaction at
the electrode). Therefore, the limiting current is governed solely by the mass
transport and is independent of the irreversibility of the electrode reaction
or of the potential (within a certain range).

In contrast to the above situation, below the limiting current in a
controlled-potential experiment, under conditions of transport control, the
current not only depends on the transport properties but also on the value
of the applied potential. Indeed, the latter determines through the Nernst

T Let us note that the interfacial concentration is not necessarily zero at the limiting current. It
depends on the definition. If one considers as limiting current that which flows when a plateau
on the steady-state current voltage curve is reached it may happen that this does not correspond
to zero interfacial concentration. In this volume we will restrict the term limiting current to
the cases where the interfacial concentration is zero.
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equation the interfacial concentration and thus the driving force for the mass
transport. The rate of mass transport, and thus also the current, are finally
governed by both the transport properties and the applied potential. The
situation is similar to that which one has in nonelectrolytic mass transport
control, such as in the disolution of NaCl in water. Under conditions of
transport control, the equilibrium at the surface of the dissolving crystals is
established; i.e., the solution is saturated at the interface crystal-solution.
This determines the interfacial concentration and thus the driving force for
the mass transport. The dissolution rate depends both on the equilibrium
constant (which in our example is the solubility) and on the transport proper-
ties. The peculiarity of electrochemistry resides in the fact that the equilibrium
can be easily modified by varying the applied potential and that one can
reach a range in which the equilibrium concentration is negligible compared
to the bulk value (limiting current), so that the driving force for the mass
transport no longer depends on the actual equilibrium value.

Let us again conclude this section with a semantic remark. If, under
conditions of transport control, the migration term in Eq. (19) is negligible,
the term transport control may (but need not) be replaced by diffusion
control.™” The expression diffusion control (diffusion current, etc.) is often
used in polarography and related methods. Finally, the term mixed control is
used instead of transport control if the measured quantity is determined both
by the mass transport and by the kinetics of a reaction.

8. Determination of Quantities of Practical Interest:
Theoretical and Semiempirical Methods

8.1. Quantities of Practical Interest

In electrochemical experiments one usually controls either (a) the elec-
trode current or (b) the potential (of an electrode or of a cell). The controlled
quantity may be constant or any function of time. One wishes then to calculate
in case (a) the potential for a given current, and in case (b) the current for a
given potential.

In principle, this calculation always involves mass transport considera-
tions. However, their role may be negligible in the case of a strongly irrevers-
ible electrode reaction, when the concentrations in the diffusion layer differ
little from those in the bulk. Conversely, when the heterogeneous and
homogeneous reactions involved are at equilibrium, the quantities of practical
interest can be calculated from the laws of mass transport alone, without
kinetic considerations. The same is true of the limiting current, irrespective
of whether the electrode reaction is reversible or not. These are the cases of
transport control discussed in Section 7.3.
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8.2. Outline of Theoretical Method

A complete ab ovo calculation has to start from the conservation equation,
either in its general form (11a) or in a simplified version such as Eq. (21),
(49), or (55). In order to avoid a complicated discussion that may obscure
the main issues, we will assume that the differential equations (49) or (55)
(ideal dilute solutions, excess of supporting electrolyte, or solution with a
binary electrolyte) can be applied.

Their integration requires a specification of the boundary conditions
(which play the same role as the integration constants in simpler differential
equations). One of these conditions usually describes the situation in the bulk
of the solution and indicates that the concentrations at a large distance from
the electrode are known and constant (see Figure 1).f The boundary condi-
tions that pertain to the situation at the electrode—solution interface depend
upon whether the current or the potential of the electrode is controlled.

In case (a), controlled current, one can make a statement regarding the
concentration gradients at the interface. Indeed, when there is only one elec-
trode reaction,f the electrode current density is linked with the interfacial
fluxes of the species taking part in that reaction by Eq. (31). We have already
derived earlier (Section 5.4) the equations

d
j= nuglFDB(ﬂ) (64)
dy /.
for an excess of supporting electrolyte and
j(1—tg) = —zBFD(@) (65)
dy /.

for a solution with a binary electrolyte.

In these equations, (dcg/dy). is the interfacial concentration gradient of
a species taking part in the electrode reaction. Thus, we have a boundary
condition expressed in terms of interfacial concentration gradients, which are
determined by the current applied to the electrode.§ However, it must be

+ It may be noted that, in some instances, there is no bulk electrolyte (with zero concentration
gradients) in the above sense, because the region to which Eq. (49) or (55) is to be applied is
not restricted to a simple diffusion layer of the kind shown in Figure 1. This is the case for the
mass transport situation illustrated by Figure 6, or for the diffusion in the voids of a porous
electrode. The boundary of the region to which Eq. (49) or (55) is to be applied then has to
be shifted further away from the considered electrode, and the corresponding boundary
conditions modified accordingly.

i In the case of several simultaneous electrode reactions, the current etficiency must be known
and the j terms appearing in Eq. (31) are then the current densities corresponding to the
individual electrode reactions.

§ When the solution is concentrated (instead of dilute as assumed here) and the interfacial flux
densities are high, the interfacial velocities discussed in Section 5.4 may play a role, and Eq.
(66) or (61) may have to be used instead of (65).
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noted that the current density appearing in Egs. (64) and (65) is, in principle,
a local value whereas the controlled quantity is the overall electrode current.
One often avoids this difficulty by assuming a uniform current distribution
over the interface. It must be emphasized that the accuracy of this approxima-
tion depends on the geometry of the system, the steepness of the current
voltage curve, and the conductivity of the solution; i.e., on the factors that
govern the current and potential distribution in the solution (see Chapter 4):
A more precise statement regarding the boundary condition at the interface
requires a knowledge of this distribution, and therefore implies the solution
of the problem, which is complicated because it has to be achieved by some
iterative procedure.

In case (b), controlled potential, one can make a statement regarding the
interfacial concentrations. For a reversible electrode reaction they are given
by the Nernst equation:

E = Eo+ X n Il (c1).] (83)
nF

which has been written here in a general way, corresponding to reaction (30).

In a simple case such as the deposition of copper from a CuSO, solution,
the potential unambiguously determines the interfacial concentration of the
reacting species, and one may formulate the boundary condition at the
interface by stating that the concentration has a known value given by the
electrode potential through Eq. (83). However, for a redox reaction such as
Fe’* > Fe*" + ¢, or for a metal deposition with amalgam formation, the
potential determines through the Nernst equation only the ratio (or the
product) of the interfacial concentrations. One then needs to write down an
additional condition, which is given by the fact that the interfacial flux of any
species involved in the electrode reaction is linked with the electrode current
by means of Eq. (31). For example, for the reduction of Fe** to Fe** ions in
an excess supporting electrolyte, remembering Eqgs. (33a) and (80), we can
write the boundary condition at the interface as follows

(Cpe3+/CRe?*)e = ¢ E~EQF/RT (E — E, given)

(84)
(NFe3+)e = —(NFe2+)e
or
che3+) (che2+)
e3+ e e2+ 5
DF(dyeDF ). (85)

Note that the same complication as for the case of controlled current
arises here because of the problem of nonuniform distribution. The potential
is controlled by means of the Luggin capillary only for a spot of the working
electrode, and the potential jump across the electric double layer may vary
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along the interface, depending on the factors governing the potential and
current distribution (see Chapter 4). Again, this difficulty is overcome by
assuming that E — E,, and thus the concentrations, are constant along the
interface. Depending upon the circumstances, however, this approximation
may be a poor one and it is important to check whether the assumption made
is acceptable or not.

Let us restrict ourselves to the case of a single electrode reaction and to
a situation that can be approximated by a uniform current or potential
distribution. It can then be easily seen that there is an important difference
between the case of controlled current and that of controlled potential. In
the first case the electrode current determines in a simple manner the inter-
facial concentration gradients in independently of whether the electrode
reaction is reversible or not. In a controlled-potential experiment, however,
one can deduce the boundary condition from Eq. (83) in a simple way only
if the electrode reaction is virtually at equilibrium. If this is not the case, one
has to combine Eq. (83) with a relationship describing the electrode kinetics,
and the formulation of the boundary condition becomes more complicated.
An important exception is the case where the whole electrode works under
limiting-current conditions. The boundary condition is then simply that the
interfacial concentration of the consumed species is zero (or more precisely
negligible as compared to the bulk concentration) everywhere along the
interface and no complication arises from the fact that the electrode reaction
may be irreversible.

Once the boundary conditions have been decided, one can proceed with
the integration of Eq. (49) or (55). In a system with convection (v # 0), the
calculation requires knowledge of the velocity field, v = f(x, y, z, ¢). In an ab
ovo computation it is obtained by integrating the Navier-Stokes equation
(15). For a dilute solution with forced convection this can be done indepen-
dently of the mass transport problem. In natural convection, due to the
concentration differences present in the solution, the integration of the Navier—
Stokes equation is coupled with that of Eq. (49) or (55). Such a coupling may
also have to be considered in the case of concentrated solutions and high flux
densities of the species reacting at the electrode. Indeed, with a dilute solution
one has the boundary condition that the average flow velocity v, (taken relative
to the electrode) is zero at the electrode-solution interface because of the
friction forces (see Chapter 3). However, for a concentrated solution, v at
the interface may have a significant component perpendicular to the interface
due to the flux of the reacting species (see Section 5.4). The integration of
the Navier-Stokes equation is then linked with that of the mass conservation
equation.

The integration of Eq. (49) or (55) finally yields the concentration field,
¢ = f(x, y, z, t). In some cases it might be desirable to calculate the concentra-
tion field for the various species present, but often it suffices to do so only
for one of the reacting species.
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The concentration field may be of interest by itself, but usually one is
interested in the practically important quantities mentioned in Section 8.1.
Once the concentration field is known, it is easy to calculate from it, for a
controlled-potential experiment, the interfacial concentration gradient and
thus the current, and for a controlled-current experiment, the interfacial
concentrations. Knowledge of the latter is important for the evaluation of the
concentration overpotential. In the case of a single reversible electrode reac-
tion this determines the electrode potential. Otherwise, kinetic parameters
have to be considered in addition.

In the case of a boundary condition of zero interfacial concentration, the
concentration field can be used to calculate the interfacial concentration
gradient and thus the limiting current. This is the most common application
of mass transport theory.

In Chapters 2 and 3, examples will be given of a complete calculation
of the quantities of practical interest through the integration of the funda-
mental differential equations (which is usually carried out by some approxi-
mate method). A review of the general methods employed has been given by
Newman.?”

8.3. Semiempirical Procedures

In many cases (especially in the presence of a hydrodynamic flow under
turbulent conditions), the integration of the fundamental differential equations
is much too complicated and one has to resort to experiment. The most
common technique is the determination of the limiting current by recording
the current —voltage curve. In general, the limiting current density is a function
of concentration, of the diffusion coefficient, and, in a system with convective
mass transport, of the variables that govern the hydrodynamic flow. The
determination of the complete relationship between the limiting current and
all variables involved is very time consuming. The experimental investigation
and the presentation of the results can be simplified by using dimensional
analysis. It is useful for the extrapolation of the measurements to a broader
range and to establish generalized correlations. Since this method is mainly
of importance in convective mass transport, it will be outlined in Chapter 3.

9. Simplified Approach to Mass Transport in Electrolytic
Systems

9.1. Approximation of the Ideal Dilute Solution and the
Problem of the Diffusion Coefficient

The calculation of the numerical value of the quantities of practical
interest mentioned in the preceding section requires knowledge of the diffusion
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coefficient. In the case of an ideal dilute solution, it is independent of con-
centration. This applies to the individual ionic diffusion coefficient as well as
to the diffusion coefficient of an electrolyte (see Section 5.1, cases a and b).
Both can be calculated [through Egs. (44) and (54)] from the conductivities,
for which many good values are available. A satisfactory agreement is often
observed in the case of species of low concentrations in an excess of indifferent
electrolyte, as encountered in polarography and related methods.“” In gen-
eral, the systems encountered in practice can very seldom be regarded as
ideal dilute with a clean conscience. Considerable progress has been achieved
in recent years in dealing with the problem of nonideal solutions (see Sections
3.1 and 5.2) and numerical applications are increasing in number, but they
are still very scarce. In present practice, one usually accepts (more or less
tacitly) the myth of the ideal dilute solution, because it is so difficult to do
better. In reality this is not as bad as it may seem at first sight. First, the
departures from ideality are often moderate in the most common electrolytic
systems. Second, the use of the equations for ideal dilute solutions has the
advantage of avoiding the difficulty of the single-ion activities and the resulting
problem of the definition of the electric potential mentioned in Section 3.1.
They show clearly the major effects whereas the relationships involving the
thermodynamic driving forces and the coupling terms (see Sections 2, 3.1,
and 5.2) often tend to obscure the main issues. Third, the accuracy can be
substantially improved by using adequate diffusion coefficients.

The actual values of the quantities of practical interest can differ from
those calculated from relationships similar to Egs. (49) and (55) for several
possible reasons. Reasons such as the contribution of migration different from
that implied in these equations; a nonnegligible interfacial velocity (Sections
5.2 and 5.4); and variation of transport properties over the diffusion path due
to the dependence on concentration. However, it has been shown that one
can express as a correction factor to the mass transport rate the influence of
nonzero interfacial velocity and migration in the diffusion layer in the cases
intermediate between a great excess of indifferent electrolyte and a binary
electrolyte.(22’31’35’39) This factor is the same for channel, or pipe flow and
rotating disk, when the Schmidt number u/pD (see Chapter 3) tends to
infinity. This is usually the case for aqueous solutions. Similarly, for such
systems a single effective diffusion coefficient should apply to mass transfer
at the limiting rate for high Schmidt numbers, even though the physical
properties vary with composition in the diffusion layer.™*’

In view of this state of affairs Newman'" has suggested that a fair
approximation can be achieved in computations based on Eq. (49) or (55)
(or equivalent relationships) by using effective (or integral) diffusion
coefficients calculated from measured limiting currents by means of relation-
ships derived from precisely these equations. These measurements should
have been made with concentrations and hydrodynamic systems as close as
possible to those at hand. For example, diffusion coefficients determined with
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the rotating disk electrode are appropriate in calculations concerning pipe or
channel flows. In polarography and related techniques, one may use diffusion
coefficients measured by the Cottrell method involving electrolysis with
unsteady-state mass transport in a stagnant solution contained in a capillary
(see Chapter 2, Sections 8a and 8b). However, diffusion coefficients obtained
by the porous cup method or by optical techniques are much less suited
because the mass transport situation is rather different from that prevailing
in electrolytic systems. Such data should be used only if more appropriate
ones are not available.

The diffusion coefficients obtained with the porous cup or optical method
can be differential or integral values, depending upon whether the concentra-
tion difference over the diffusion path is small or large compared to the
concentration level.t In the first case, the most valid approximation is to use
data applying to an average concentration of the diffusion layer (i.e., to a
value corresponding to the mean of the concentration at both ends of the
diffusion layer).

Many measurements of diffusion coefficients and transport numbers have
been made over the years. Nevertheless, the desired values are often lacking
or difficult to find. Useful sources of information are References 36-38.
However, no comprehensive, critical compilation of transport data for elec-
trolytes is available. It would be beneficial if such work were done and the
results stored in a modern data bank to make them readily accessible.

9.2. Problem of the Species

Many multicomponent solutions include a number of species that are not
independent of each other. Let us consider as an example cadmium deposition
from an aqueous cadmium iodide solution with some free iodine. We may
consider the following species: Cd**, CdI*, Cdl,, CdI5, CdI;, I,, I3, H,O.
Reactions of the following kind occur between them:

C&*+L=2Cdl +1, (86)

At equilibrium, the concentrations are linked by the corresponding relation-
ships expressing the law of mass action, and the chemical potentials fulfill the
condition AG = 0. This means that in a system with n' species only the
concentrations of n species must be given in order to completely define the
composition, n’' — n being equal to the number R of independent equations
(86) which can be written. The figure n corresponds to the number of
independent components in the classical phase rule. In our case it determines
in part the number of independent equations (3) or (19) which can be written
since the concentrations of R species can be expressed in terms of concentra-
tions of other species. Furthermore, one of the equations drops out because
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the fluxes are referred to a reference velocity (see Section 2.4): For a phase
at equilibrium the number of independent Equations (3) or (19) is therefore
n — R — 1. The number of independent equations expressing the conservation
of mass [Eq. (49) or (21)] is likewise restricted by the above considerations
(see Section 2.7).

What is the consequence of this state of affairs from the viewpoint of
practical calculations? We first consider the case of a phase at equilibrium
[i.e., the rates of the reactions described by equations such as (86) are very
fast and the equilibrium is virtually undisturbed].

(a) One possibility is to write the Eq. (49) for all species considered,
reducing the number of these equations by means of the restricting conditions
indicated above (see also Section 2.7). Often one is interested only in some
of the species—usually those that react at the electrode. The concentration
profiles of the other species need to be considered only inasmuch as they
influence the former ones. In the example mentioned at the beginning of this
section (cadmium deposition from a iodide bath), one has to write Eq. (49)
at least for all species containing Cd, but the problem can be simplified by
using the law of mass action to eliminate a number of concentrations.
Nevertheless, the procedure is extremely tedious and requires a detailed
knowledge of the equilibrium constants and of the individual diffusion
coeflicients involved. These data are frequently not available. Often one does
not even know which species are present. Are the hydrated ions to be
considered as a species distinct from the naked ions? Should one distinguish
between ions of different degrees of hydration? In fact, it is to a large extent
arbitrary which assemblages of particles are regarded as a separate entity. In
a sense, a species is whatever we define it to be. In reality, it matters little
what one does, provided the diffusion coefficients of the species envisaged
are about the same. Fortunately, the diffusion coefficients in aqueous solutions
(which are the most commonly encountered ones in electrochemistry) are, in
general, of the same order of magnitude and are often not very different.
This suggests the following procedure.

(b) Instead of making efforts to consider all species separately, one lumps
together a number of species of interest. For instance, in the aforementioned
example of cadmium deposition, one is interested in the transport of the
cadmium toward the cathode. All species containing Cd are lumped together
and this ensemble is considered as a single component. Equations such as
(49) are then written in terms of this single component, the concentration
being taken as the total number of moles of cadmium per unit volume.
Obviously the diffusion coefficient to be used now has the character of an
effective or integral value. It is a kind of average between the individual
diffusion coefficients. Furthermore, it depends on the relative amounts of the
individual species present, which may vary across the diffusion layer because
the equilibria in this layer can be more or less shifted due to the generation
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or consumption of certain species at the electrode. The error involved in
practical computations based on this approach will be smaller the less different
the individual diffusion coefficients are and the less the chemical equilibria in
the diffusion layer are shifted compared to the bulk solution. Furthermore,
the best approximation will be achieved if one uses diffusion coefficients
determined as indicated in Section 9.1, i.e., measured for bulk concentration
and hydrodynamic conditions as close as possible to those at hand.

In the previous discussion it was assumed that the diffusion layer is at
equilibrium with respect to homogeneous chemical reactions. When this is
not the case, the situation is a very different one. Equation (49) (or similar
relationships written for the various species involved) is now no longer linked
through the law of mass action. The source term v§, = vg,V '€ in these
equations [see also Eq. (15b)] is no longer determined by the equilibrium
constant; £ must be expressed by a kinetic law. Under these conditions the
approach suggested under (b) above is inadequate in problems where one
needs to know the concentration distribution of a species involved in an
irreversible homogeneous reaction.

Let us consider an electrolysis in which a reaction of the type C> A + B
takes place in the diffusion layer and only B reacts at the electrode in the
range of applied potentials. A well-defined limiting current plateau may be
observed in the current-voltage curve, even though the overall process is not
(or at least not purely) transport controlled. A well-known system of this sort
is aqueous formaldehyde, which is present predominantly as hydrate (methyl-
eneglycol), but only the free aldehyde is readily reducible cathodically. Let
us assume that we want to calculate the limiting current in channel flow at a
specified hydrodynamic velocity and we envisage doing this by applying the
mass transport correlations valid for this type of flow (see Chapter 3, Sections
7.4 and 9.2). The result may be quite wrong, even if one uses an effective
diffusion coefficient measured for similar bulk concentrations and hydrody-
namic conditions, for example, with a rotating disk. The reason is that if the
reaction C > A + B is irreversible, the limiting current depends in general on
the kinetics of that reaction. In a theoretical treatment starting from the
fundamental equations, one has to write the conservation equation separately
for that species, and introduce a value of v3, given by the kinetics of the
reaction. Examples of systems of this sort will be discussed at various places
throughout this volume (see, for instance, Section 8, Chapter 3).

10. Historical Note

Before we conclude this chapter, let us digress for a glimpse at the early
history of electrolytic mass transport and diffusion. The basic relationships
for diffusion (i.e., the flux equation and the conservation equation) are often
referred to as Fick’s first and second law. Indeed, the simplest version of these
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laws,
dCB
Ny =-D—
B dx
dCB _ d CB
ar - Dr g

was formulated by him in 1855.“" In his youth Fick was fascinated by
mathematics but later studied medicine under the influence of an elder
brother. In 1852 he followed his former teacher, Carl Ludwig, to Switzerland
where Ludwig had just been appointed professor of anatomy at the University
of Zurich.®® Three years later, at the age of 26, Fick published his well-known
paper. In fact, his main contribution was to point out clearly the analogy of
the diffusion law with Ohm’s law for the conduction of electricity and with
Fourier’s law for heat conduction, which had already been known for 30
years.“? The proportionality between flux and concentration gradient itself
had been already understood earlier by Graham, who wrote in 1850“®: ““the
quantities diffused appear to be closely in proportion. .. to the quantity of
salt in the solution.” An even earlier precursor of Fick was Berthollet“* who,
in 1803, described the phenomena of diffusion and recognized the analogy
with the propagation of heat, which he states as being proportional to the
temperature difference. He thus anticipated both Fick’s and Fourier’s law.t

At about the same time as Fick was dealing with the diffusion of uncharged
species, Hittorf studied intensively the migration of ions and developed his
classical method for the determination of transport numbers.”® His merit
was to show that by measuring the concentration changes taking place in the
cathodic and anodic compartments one could draw conclusions regarding the
ratios of the migration rates of the cations and anions. Hittorf’s main papers"*
appeared in the years 1853-1859. However, his ideas were to remain almost
unnoticed for quite a while to come. According to Ostwald“® they were
ignored on purpose, because the scientific establishment of the time was
jealous of the success of a very young unknown man in solving a problem
where his elder colleagues had failed. However, Hittorf’s theory received a
striking confirmation when, about 20 years later, Kohlrausch developed accur-
ate techniques for the measurement of the conductivity of electrolytic solutions
and established the principle of the independent migration of ionic species.

Transport equations showing both the diffusion and the migration term
appear in two remarkable papers by Nernst"® and Planck,"” published in
1888 and 1890, respectively. Nernst discussed the diffusion of the cations and
anions of an electrolyte, showing that in the absence of an electric current,
due to the electric forces, both these ions must move at one and the same

T According to Berthollet, Newton already regarded it as probable that the quantity of heat
given up by a body to its surroundings is proportional to their temperature difference.
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rate, intermediate between those corresponding to the mobilities of the two
ionic species. He derived the equation connecting the diffusion coefficient D
of an electrolyte [Eq. (54)] with the transport coefficients of the cation and
anion. He showed that all the experimental values of D available to him were
in very good agreement with those calculated from the ionic mobilities deduced
somewhat earlier by Kohlrausch from conductivity measurements. He rightly
regarded this as a further decisive confirmation of the views put forward by
the German school of electrochemists in the second half of the century. The
driving force for diffusion was called osmotic pressure rather than chemical
potential, but the essential features of the mechanism of electrolytic mass
transport were obviously well known around 1890. It is interesting that the
mechanism of the passage of current through an electrolytic solution was
correctly understood at a time when the ideas about the phenomena involved
in the electric conductivity of metals were still quite hazy.">

Apart from the convective and source terms (which were not considered),
the basic equations for electrolytic mass transport in dilute solutions [i.e., the
flux equation (19) and conservation equation (21)] were presented by Planck
in 1890 much in the same way as we do it today. He also examined the
validity of the electroneutrality condition and showed quantitatively, by apply-
ing Poisson’s law, that under usual circumstances the space charge due to
V¢ is completely negligible compared to the total ionic charge. That is, the
assumption of electroneutrality is a very good approximation. Furthermore,
Planck clearly recognized the important fact that, for a binary electrolyte (in
contrast to a multicomponent system), diffusion proceeds in the same way,
independent of whether an electric current flows through the solution or not
[which follows from the absence of the potential in Eq. (55)].

Soon after followed the first integrations of the differential mass transport
equations with the purpose of calculating the electrode current or the con-
centration overpotential. In 1897, Salomon“® calculated the transport-
controlled current for steady-state convection-free electrolysis with a support-
ing electrolyte. A decade later, Eucken“” treated the same problem for the
case of a binary electrolyte and included the influence of the electric potential
in his derivation. He showed theoretically that under these conditions, because
of the contribution of migration, the limiting current of cation discharge is
larger than in the presence of supporting electrolyte. The basic concept of
the limiting current and that of the equivalent diffusion layer in a stirred bath
had been introduced somewhat earlier by Brunner“® and Nernst.“” In 1903
Cottrell computed from the fundamental equations the limiting current for
convection-free unsteady-state conditions,”® and in 1901 Sand®? calculated,
for a constant applied current, the change in interfacial concentration with
time, and the time interval necessary for its decrease to zero. In 1910
Rosebrugh and Miller, in a comprehensive paper,(5 ? generalized Sand’s
results. They included in their consideration the case where the spreading of
the diffusion layer toward the interior of the bath is prevented by convection,



FUNDAMENTALS OF TRANSPORT PHENOMENA 61

as well as a variety of cases where the applied current is a periodic function
of time. The major basic concepts, and the main lines of approach to problems
of electrolytic mass transport, were therefore already well developed at the
dawn of this century. However, the treatments presented until 1910 did not
include any quantitative consideration based on hydrodynamic theory (which
will be discussed in Chapter 3). This came very much later.

11. Scope of Volume 6

In this chapter we have developed the fundamental equations of elec-
trolytic mass transport, starting from their general form (Sections 2.3 and
2.6), and showing later how they simplify for a moderately dilute solution
(Section 3.1), for an ideal and dilute solution (Section 3.2), and for a single
electrolyte or an excess of supporting electrolyte (Section 5). Equations (19)
and (21) of Section 3.2, as well as Egs. (53) and (55) [or (49)] of Section
5.1 (or some simplified version of them) are the relationships most commonly
used in the literature, explicitly or implicitly. The first two [(19) and (21)]
include three transport terms corresponding to diffusion, migration, and
convection. The integration of Eq. (21) (which yields the quantities of
practical interest as discussed in Section 8) depends on whether or not all
three terms are taken into account.

In Chapter 2 the case of transport without convection will be treated;
i.e., the terms cvandv - Vc can be neglected in Eqgs. (19) and (21), respectively.
This type of problem is particularly important in electroanalysis and in the
study of electrode kinetics.

Chapter 3 deals with convective mass transport; i.e., the terms cv and
v+ Vc have to be taken into account. This is the case most commonly encoun-
tered in industrial electrolysis. However, it also has important applications in
electroanalysis and in the study of electrode kinetics.

In both Chapters 2 and 3 the migration term with the electric potential,
zFD(RT) ‘¢ V¢ and zFD(RT)™'V - ¢ V¢ will be usually ignored; i.e., the
basic equations will be Egs. (55) and (49), which correspond to the limiting
cases of a single binary electrolyte and of an excess supporting electrolyte,
respectively. The intermediate solutions, where the term with ¢ cannot be
eliminated, will be briefly discussed in Section 6 of Chapter 3.

On the other hand, an opposite extreme case is that in which the con-
centration gradients are negligible and the migration term with V¢ is decisive.
This is the approach used in the classical theory of current distribution which
will be presented in Chapter 4.

Finally, Chapters 5, 6, and 7 deal with three particular systems that
are most relevant for industrial electrochemistry: porous electrodes, three
dimensional electrodes, and gas evolving cells.
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Diffusion in the Absence of
Convection : Steady State and
Nonsteady State

SUSANA L. MARCHIANO and ALEJANDRO J. ARVIA

1. Transport Phenomena in Electrochemical Systems

Electrochemical processes occurring at the electrode—electrolyte interface
involve either a solid-solid, liquid-liquid, solid-liquid, or gas-liquid-solid
interfaces. The rate at which reactants arrive at the reaction surface plays an
important role in the kinetics of heterogeneous reactions, including elec-
trochemical reactions. Therefore, transport phenomena (migration, diffusion,
and convection) are quite relevant in most cases as they contribute to the
kinetics of the overall processes occurring at each electrode of any elec-
trochemical cell. Transport phenomena become important in different fields
of applied electrochemistry, such as electrochemical cell design, current distri-
bution, and optimization problems, but they are also of fundamental import-
ance for the methodological approach of electrochemical kinetics when the
understanding of the electrochemical reactions at the molecular mechanistic
level is attempted.(H)
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From a detailed knowledge of the transport processes it is possible to
obtain the concentration profile at any instant of any of the species participat-
ing in the overall reaction. This certainly includes the instantaneous interfacial
concentration value of the reacting species.

The concentration of the reacting species at the electrode surface is
determined either by the flux (current density) or the potential across the
interface, or both, depending on the working conditions of the experiments.
These electrical parametersin the case of the stationary state adjust themselves
to particular sets of values which are bound to well-defined time-independent
concentration distributions.’ On the other hand, the relaxation techniques,
which are particularly useful in electrochemical kinetics, may be employed
either under potential-, current-, or charge-controlled.conditions.

The perturbation variable, in the case of current or the potential, may
correspond either to a constant value such as in the case of a constant current
step or a constant potential step function, or to a time-dependent function.
In the first case, for some kinetic studies the value of the relaxation variable
can usually be extrapolated to ¢ = 0, where the surface concentration of the
reacting species corresponds to that of the bulk of the solution. The perturba-
tion variable can also be programmed according to various time-dependent
functions, such as a linear potential sweep, a single potential pulse, and so
forth.?

When any of the electrochemical variables, namely, either the current
(flux) or the potential, are time-dependent, the concentration profile is also
time-dependent, and its own relaxation is determined either by the rate of
the proper electrochemical reaction, by the rate of mass transport, or both
simultaneously. The phenomenological relationships thus derived are par-
ticularly important in obtaining reliable kinetic parameters, such as the
exchange current density (jo), the transfer coefficient («), the reaction orders,
and others, which serve as the basis for a mechanistic interpretation of a
particular electrochemical reaction.

The present chapter is exclusively focused on diffusion as far as it is
related to the electrochemical processes. Transport processes such as migration
and convection, as well as convective diffusion, are dealt with in another
chapter of the present volume.

In what follows the diffusion processes occurring at the reaction interface
are analyzed, in most cases, on the basis of the simple electrochemical reaction

ox + ne = red (1)

where ox and red are, respectively, the oxidized and reduced states of the
soluble species participating in the electron-transfer step and the electrolyte
solution is assumed to behave as an incompressible fluid.*” The rate
equation of reaction (1) in terms of current density (j) is'”

—j = nF[k}caCox.c €Xp (—aFE/RT) — k3yCrea, €xp (a,FE/RT)] (2)

where kg.q and kO, are the rate constants for reaction (1) in both directions
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when E =0, coxe and creq. are the surface concentrations of ox and red,
respectively; a. and a, are the apparent cathodic and anodic transfer
coefficients, respectively, and E is the potential applied to the interface
measured against the reversible hydrogen electrode. The surface concentra-
tions, although not usually known, can be either calculated or, in some
particular cases, determined by optical techniques.(s'Q) The concentration to
be used in kinetic relationships such as Eag, (2) is different from the bulk
concentration because the Jatter still in the region where the mass transport,
is usually not the same as the interfacial concentration. Thus, one has to
distinguish, in principle, between the surface concentration and the interfacial
driving force for diffusion was called osmotic pressure rather than chemical
potential, but the essential features of the mechanism of electrolytic mass
transport were obviously well known around 1890. It is interesting that the
of the electrical double layer; i.e., still in the region where the electroneutrality
condition is virtually fulfilled and the mass transport equations can be applied
in the usual form The surface and interfacial concentration can be the same
but they may be different if complications, such as specific adsorption,
occur."%?

In the absence of specific adsorption, the concentration of reactants and
products at the surface is determined exclusively by the relative rates of the
forward and backward steps of reaction (1)—the transport rate of ox from
the solution side toward the electrode surface and the transport rate of red
in the reverse direction. When the resistance associated with the rate of
consumption of ox (or production of red) is sufficiently larger than the
resistance related to the transport of ox (or red), the concentration of both
species at the surface will be practically equal to their respective bulk con-
centrations at any instant from the initiation of the reaction. The reverse
situation implies that concentration gradients of ox and red start to build up
from ¢ = 0 at the reaction interface. The intermediate situation is the one
most usually found in electrochemistry. Therefore, the general scheme of
reaction can be put forward as follows:

(Ox)solution = (Ox)electrode
(ox)electrode + ne = (red)electrode (3)
(red)eiectrode = (red)solution

The total flux (Nt), defined as the number of moles of a particular species
which passes across a unit arbitrary area (interface) per unit of time, can be
expressed as the sum of three independent contributions due to migration
(N.), diffusion (Ng) and convection (N):*

Nr=N,+N;+N, 4)

Depending on the operation conditions, namely, the presence or absence of
a supporting electrolyte, the stirring of the system, the applied potential, the
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time scale of the perturbing and relaxation variables, etc., the contribution
of each term in Eq. (4) may be considerably different.

2. Migration Flux

The migration flux involves the transport of charged species through one
of the phases under the influence of the electrical field. The resultant z -charged
ion movement occurs in a direction parallel to the electric field at a rate (N,,)
that depends both on E, the strength of the field, and on ug, the ion mobility

of the species B“'*':
Ni.m = zpusEcs,0 (5)

The ion mobility is related to its diffusion coefficient (Dg) through the Einstein—
Stokes relationship®'”:

ug = DBF/RT (6)

where F is the Faraday constant, R the universal gas constant, and T the
absolute temperature. Therefore, N3 , is given by

NB,m = ZBDBFECB,O/RT (7
and in terms of the electrical potential:
Ng.m = —(z8F/RT)Dgcpo Vo (8)

where ¢ is the inner electric potential.

3. Diffusional Flux

The diffusional flux can be qualitatively defined as the transport of one
species within a phase from one region of high concentration to another region
of lower concentration. The transport process continues by the random walk
of the corresponding species until a homogeneous concentration is attained.

The diffusional transport of the species B perpendicular through a refer-
ence plane of an isotropic substance is proportional to its concentration
gradient,”'®!®

ac
Nga = —DB‘—E ©)
ax

where the negative sign indicates a diffusion toward the reference surface.
Equation (9) is Fick’s first law for unidirectional diffusion within an isotropic
medium. It can be generalized to a three-dimensional diffusional flux and
written in vectorial notation as follows:

Npq=—-DsVcp (10)
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Figure 1. Scheme for the unidirectional flux
balance.

The form of the operator V depends on the choice of a suitable coordinate
system for each particular case. Equation (10) is, however, strictly valid in a
few particular instances related to time-independent diffusional transport.

Most of the diffusional processes of electrochemical interest generally
involve time-dependent concentration characteristics. In order to deduce the
concentration/time relationship, let us consider a unit volume element
(dx dy dz) whose axes are parallel to the Cartesian axes (Figure 1). The sides
of the parallelepiped normally placed with respect to the x axes are of unit
area and they are separated by the distance dx. The diffusing flux which enters
the plane ABCD is N, and that which leaves the volume element through
the opposite face is N, + (IN,/dx) dx. The amount of species accumulated
within the volume element due to the x -directional flux is

N, .
Ny =N, - (Nx +N dx) (11)
ox ax

Taking into account that the accumulation of diffusing species in the reference
volume can be expressed in terms of the rate change of the concentration,
one obtains

ac d(Na)x

By =-— (_‘i dx (12)

at dax

Equation (12) is obviously valid for the other two directions. Therefore, after
considering Eq. (9), the overall rate process is given in Cartesian coordinates

by
803 d aCB) d aCB d aCB
at ax( Poax ] ay Ds ay /) oz by, (13)
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y Figure 2. Cylindrical coordinate system.
Equation (13) can be expressed in vectorial notation as follows:
dcg .
i div (D5 grad cg) (14)

Equation (14) is Fick’s second diffusion law and, as it is presented, is indepen-
dent of the chosen system of coordinates. The coordinates, however, must be
chosen according to the symmetry characteristics of the system. Thus, for a
cylindrical coordinate system (r, ¢, z) (Figure 2), Eq. (14) becomes

1 d
%_Bz_[i@s,ﬁﬁz) +i(2§i?£) + 2Dy %) (15)
ot rlor or o\ r oY/ oz 0z

Equation (15) is obtained from Eq. (13) with the following set of transform
equations:

X =rcosy
=rsin ¢ (16)
z=1z

Analogously, for a spherical symmetry (Figure 3), Eq. (13) can be written
as follows:

ocg 1 [ 8( zacB) 1 9 ( . acB) 1 9 ( acB>]
— =>|—|Dpr‘'—) +——|Dpsinf—) + ———|Dg— 17
ot 2lar\"® o) Tsingae\ P "7 30 ) TsinTg o\ ®ay (17
after taking into account the corresponding transform equations:

x =rsin 6 cos ¢

r sin @ sin ¢ (18)

y

z

rcos 6
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Figure 3. Spherical coordinate system. y

Equations (13), (15), and (17) are particular forms of the continuity equation
which applies to many other phenomena. 7.18.19)

According to the thermodynamics of irreversible processes, the unidirec-
tional diffusional flux for a real solution without the influence of external
forces is given by the expression“z’l(””)

N4 = —LBCB_‘(RT In ygcp) = —LBRT@(I ‘e éﬁ) (19)
dx YB dCB

where Ly is a phenomenological coefficient. For a real solution, the diffusion
coefficient of the species B is given by

Dy = —LBRT(l ,dIn 7") (20)
dln ncg

Equation (20) yields the diffusion coefficient as a function of the concentration

of the diffusing species. Nevertheless, in solutions of high ionic strength

involving, for example, a supporting electrolyte, for the minor components

(01n yg/d In cg) = 0. Accordingly, as a limiting case for the ideal solution

Dy = —LgRT (21)

Therefore, the diffusional flux equation written

dc oCs
at
implies a concentration-independent diffusion coefficient. This approximation

is usually satisfied by electrochemical systems, although it is objectionable
from a rigorous standpoint in dealing with real systems.

= DyVes | (22)
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4. Convective Flux

The convective flux of the species B (Np,) is produced by macroscopic
streams of fluid which carry species B toward the transfer plane.(4’7’18’19) The
convective flux is given by the expression

Nc = VCB (23)

where v means the fluid velocity. The expression of v depends on the type
of forces which cause the fluid displacement and the explicit dependences of
each of its components along a particular coordinate as a function of time.
Local density in a gravitational field due to concentration and thermal
gradients in a homogeneous phase, and external forces, such as mechanical
or magnetic forces,*>*" contribute to the convective flux. The instantaneous
space distribution of the velocity components along each coordinate are
obtained by solving the Navier-Stokes equation for each symmetry.&*?

5. General Expression of the Mass Transfer Equation

The sum of the three fluxes just defined independently, corresponding
to migration, diffusion, and convection, furnishes according to expression (4)
the total flux for the species B:

NT = "'ZBMBFCBV(ﬁ - DBVCB + vecg (24)

Equation (24) is the general expression for the transport of matter.

On applying Eq. (24) to electrochemical processes it is convenient to
deal with the fluxes in terms of current density (j), i.e., electrical current per
unit electrode surface area:

i= ‘"FlNTl (25)

Equations (24) and (25) can be extended to an electrochemical system of
multiple diffusing particles by admitting that there are no mutual interactions
of the various moving species.>*>

Taking into account Egs. (7), (22), and (23) for the flux of species B, the
rate of change of its concentration in the elementary unit volume is

V4 BD BF

% V- (Vécs) (26)

_— = 2 T
ot DBV cg—V VCB+ RT

This equation is valid only for an incompressible fluid and a concentration-
and distance-independent diffusion coefficient.

Equation (26) becomes even more general when it includes the possibility
that within the elementary reference volume there is either a source or a sink
of the species B due to an homogeneous chemical reaction. If +Rjy is the rate
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of such a process, where the + sign stands for the source and the — sign
for the sink, Eq. (26) results in

zgDgF,

dn V- (Vécs) = Rp 27)

2
—_—= \v) —v'V +
ot DB Cg—V CB RT

Equation (27) is the general expression for the material balance of species
B. This second-order partial differential equation with variable coefficients
can be analytically solved only in a few cases of a simple geometry if some
reasonable assumptions are made to make the mathematical problem easier
to handle. Certainly Eq. (27) is valid for each moving species present in the
electrochemical system.®*

5.1. Limiting Cases of Equation (27)

From the material balance equation (27) in the absence of a homogeneous
chemical reaction (+Rjg = 0), simple expressions are derived. The migration
flux term can be disregarded in two particular cases—(i) when the elec-
trochemical system contains a supporting electrolyte at a suitable concentra-
tion and (ii) for a binary electrolyte.(3’4) In the former case, the migration
contribution of the reacting species B is negligibly small compared to that of
the supporting electrolyte. For the binary electrolyte (case ii) the migration
term is dropped out through the mathematical operational procedure, but its
physical contribution is automatically included by defining an effective
diffusion coefficient that takes into account the migration effect.

Case (i): The migration contribution of species B to the mass transport
process is minimized when other ionic species at concentrations very much
larger than that of the species B are present in the electrolyte solution. The
supporting electrolyte increases the electrical conductivity of the solution,
taking on itself almost all of the migration current. Ideally, it must be elec-
trochemically inactive in the range of potentials where the species B of interest
reacts. Under these circumstances, the mass transport of species B occurs as
if it were a neutral particle. Then, under stationary conditions (8cg/8t = 0)
from Eq. (27) becomes®

v+ Veg = DgVicg (28)
Equation (28) is the convective-diffusion differential equation, which yields
the concentration distribution and is better fulfilled the larger the ratio between
the supporting electrolyte concentration and the concentration of species B.
Thus, when the latter ratio is 10>, N, = 10 >Ny. The incidence of the migra-
tion contribution to the mass transport has been evaluated in detail in the
literature. >**®

Case (ii): Let us consider a binary electrolyte solution, c.. and c_ being
the concentration of each component. The electroneutrality condition is

ZiCr+z_c_ = O (29)
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so that a reduced concentration, ¢, can be defined:

¢, C-
c=-—=— (30)
zZ_  zs
The material balance equation (26) applied to each species, in terms of c,
results in

dc > z+D.F
—_ + . = _—— .
o v-Vec =D, V¢ RT cV-Vo (31)
and
c z_D_F
— 4 v V — _ 2 + .
v:Vec=D_V'¢c RT cV-Vo (32)

By subtracting Eq. (31) from Eq. (32) and after replacing the latter into Eq.
(26), one obtains
ac

5=DV2c+v'VC _ (33)

where D, the effective diffusion coefficient, is

_D.D_(z+—z-)

D
Z+D+ - Z_D_

(34)
The migration term is formally absent in Eq. (33). Notwithstanding, expression

(34) considers the influence of both the counterion and the charge of species
(+)and (—).

5.2. Migration Contribution

Under certain circumstances, the total flux (current flowing through the
cell) can be associated with a concentration gradient of the reacting species
approaching zero (Vcg - 0), and, therefore, the diffusional contribution, com-
pared to that corresponding to an interfacial concentration of the reacting
species equal to zero, can be negligible. Then, the diffusional contribution
does not play a significant role in the total current in the cell. The entire
solution may be characterized by the conductivity of the solution, and, there-
fore, the current distribution can be determined just by solving a purely
electrical problem,(3’4) through either Laplace or Poisson equations. See Chap-
ter 4 in this volume.

On the other hand, if the current in the cell is comparable to the diffusional
limiting current, the contribution of the distribution of the reactant concentra-
tion becomes increasingly more important than the chemical and electrical
contributions in the overall rate of the electrochemical process. Then, the
current distribution is determined by resolution of the mass transport differen-
tial equations.
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When the concentration of the supporting electrolyte is low compared
to that of the reacting species, the presence of an electric field in the diffusion
layer can produce either an increase or a decrease in the flux toward the
surface due to the contribution of migration. Under these circumstances,
within the diffusion layer, migration and diffusion contribute to the mass
transport process.””

The problem of diffusion plus nonnegligible migration in the absence of
convection is particularly relevant for a solid electrolyte. See Chapter 9 in
Volume 3.

6. Pure Diffusion and the Mathematical Solution of the
Diffusion Equation

When, besides migration, the contribution of convection is also cancelled
in Egs. (24) and (26), diffusion remains as the only driving force for the
transport phenomena. Under these conditions, Egs. (24) and (26) yield Fick’s
first and second law, respectively.

The fluid movement due to any kind of forced convection in unstirred
solutions is eliminated by means of a vibration-free experimental device as
the forced convective flux is cancelled when v = 0. Nevertheless, natural
convection produced by density gradients in a gravitational field also con-
tributes to bulk transport of the electrolyte. However, its influence can be
practically cancelled by a number of different procedures such as electrolyte
jellying and electrolyte stratification, employing a small-area indicating elec-
trode, or by perturbing the system during a relatively short time."* Under
these circumstances either no density gradients can be established or the
system is unable to produce a massive displacement of the electrolyte during
the short perturbation periods.

Another interesting situation is the diffusion which occurs where a con-
centration gradient of the reacting species exists on the surface.” This
diffusional process, which corresponds to surface diffusion, is important in
electrocrystallization. In dealing with a solid electrolyte, convection effects
bein%gbsent, diffusion and migration are the only terms left in Egs. (24) and
(27).

The general mathematical solution of the diffusion equations for any set
of boundary conditions is relatively easier when the diffusion coefficient is
taken as a constant. These solutions have one or two standard forms. Thus,
for short times, solutions of either the error-function-type or integrals related
to it are found, while for long times solutions given in terms of trigonometric
series are satisfactorily convergent. For cylindrical-shaped surfaces, these
series transform into Bessel equations.®'%*¥

To solve the Fick equations, the usual mathematical procedures are
employed. They are expressed in terms of a coordinate system which, while
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suiting the geometry of the system, yield the simplest expression whose
solution can be straightforwardly interpreted. Therefore, Eqgs. (13), (15), and
(17) are those to be solved for the cases of the planar, spherical, and cylindrical
geometries, respectively. In other special cases a more adequate system of
coordinates must be chosen. Thus, for particular problems the partial differen-
tial equation takes the form of a simple unidirectional diffusion equation.

The initial and boundary conditions depend upon the operational form
of the system. The most frequently encountered problems of diffusion in
electrochemistry involve instantaneous sources, continuous sources, or exten-
ded initial distributions.”"® The three types of problems just referred to can
be achieved in electrochemical systems either through current, charge, or
potential control."’

Let us first consider a plane electrode of infinite dimensions located at
x = 0, where the diffusion process takes place in one direction on both plane
surfaces (infinite linear diffusion). At ¢ = 0 a constant potential E is applied
at which the electrochemical reaction (1) proceeds at an infinite rate, so that
a concentration profile of both ox and red species are instantaneously estab-
lished on both sides of the plane. At the potential E, the interfacial concentra-
tion ratio of ox and red, at x = 0, is therefore constant.

Then, the ox species diffuses from x » o to x = 0 and from x » —0 to
x = 0 or vice versa, depending on the direction of the reaction. The diffusion
of red occurs in the reverse direction. Under these circumstances, the boundary
conditions are expressed by the concentration of the ox species at two posi-
tions, namely, at a value of x > 0 and at a value of x < 0, respectively, and
by the equality of fluxes for ox and red at x = 0 on both plane surfaces
(Nox = —N;cq). When the diffusion takes place only toward positive x values,
it corresponds to semi-infinite linear diffusion.

Situations such as those of infinite linear diffusion or semi-infinite linear
diffusion can be induced by a punctual source, like the perturbation of the
electrochemical interface with an ideal instantaneous pulse current function
or by means of a continuous constant flux source located at the interface
(x = 0). This latter situation is practically approached when the elec-
trochemical interface is perturbed with a step current function (galvanostatic
method). Then, the initial condition depends on each particular case, but the
boundary condition which expresses the continuous flux is

de

DB< ) = const (35)
ox x=0

Sometimes the mathematical solution of the diffusion equation implies
time-dependent boundary conditions. This case is encountered, in general, in
the electrochemical methods with dynamic electrical variables (e.g., square-
wave polarography and linear potential sweeps technique) and in the perturba-
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tion of the electrochemical interface with sinusoidal functions as in the case
of the faradaic impedance method.* %29

When the Fick law is applied to an electrochemical system under a
potential-controlled perturbation, the degree of irreversibility of the reaction
is explicitly given as a boundary condition in contrast with the current-
controlled perturbation conditions. Thus, when the electrode reaction behaves
reversibly (jo = 107> A cm™2), the interfacial concentration ratio of the react-
ing species is determined by the applied potential. The resulting interfacial
concentration ratio applied-potential relationship is a boundary condition of
the problem. On the other hand, under either intermediate kinetic conditions
(1073 = Jo= 1077 Acm™?), or in the case of an irreversible reaction (jo <
1077 A cm™?) the interfacial concentration is determined by the rate of the
electrochemical reaction.

In the following section the mathematical solutions of Fick’s equation
for different geometries under a stationary state is considered first. Then the
problem under a nonstationary state is considered.

7. Stationary State

A system that has reached a stationary state for diffusion involves time-
independent local concentration values. This condition is expressed by

den _

ot (36)

The stationary state under pure diffusion is only an approximation. At the
initiation of diffusion, large variations of either the flux toward the interface
or the local concentration are produced. On the other hand, at long times,
either the increase or the depletion of concentration of the reacting species
at the interface causes density gradients in the gravitational field, which
generate the bulk fluid motions of natural convection. Under these circum-
stances, the stationary state is achieved by a complex transport mechanism
(convective diffusion) rather than by diffusion alone.

However, sometimes in electrochemical kinetics the analysis of the system
concerns a quasistationary condition. Then, it is convenient to solve the
diffusion equation as if one were dealing with a stationary state. These solutions
are of special interest in regard to diffusion through membranes as well as to
hydrogen diffusion in metals. Therefore, the diffusion equation reduces to

DBVZCB =0 (37)

which is applied independently to each component of the system. The following
deals with the classical solutions of Eq. (37) for those well-defined, simple-
geometry interfaces often encountered in experimental electrochemistry.
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7.1. Infinite-Plane Interface

Let us consider an infinite-plane interface where diffusion of the reacting
species takes place along the x axis (Figure 4). Then, Eq. (22) applied to the
unidirectional diffusion with condition (36) becomes

d2CB
R 0 (38)
By solving Eq. (38),
dCB
—_— = K
I 0 (39)
and
cg = Ko + le (40)

where K, and K, are integration constants. Accordingly, the concentration
profile is represented by a straight line, since the concentration gradient is a
constant. The constants K, and K; depend upon the boundary conditions.

direction flow of direction flow of

Red - species Red-species
/ > X
~ / Shecion fion
direction flow of direction flow of
Ox-species Ox-species

33099 Figure 4. Diffusional infinite flow to an infinite-plane plate.



DIFFUSION IN THE ABSENCE OF CONVECTION 79

Equations (39) and (40) are especially interesting for diffusion through mem-
branes. For a membrane whose thickness is / (Figure 5) the boundary condi-
tions must be given for both faces of the membrane, namely, at x = 0 and at
x = I, where cpo and cgy, are, respectively, the concentrations of the species
B at each plane. Then the concentration distribution results:

CB,0 — CB ZIC_ (41)

CB,0 — CB,I

and the current density associated with ion B, referred to one face of the
membrane, is

, ac
): _nBFDB(_E>

= _nBFDB(fM) 42)
ox

-0 l
According to Eq. (42), [ is the diffusion layer thickness in the membrane,
which is equal to the membrane thickness. )

The plane-interface diffusion equation can be applied to real systems as
long as the diffusion distance is much larger than the microscopic unevenness
of the plane. Furthermore, it can be extended to other different geometries
provided the radius of curvature of the surface is very much larger than the
diffusion distance.

Ci 1|
Flow direction
of the
§ -species B
7
g,
-
7
7/
gl
o umsm—
_____ + - X
Figure 5. Steady-state undirectional flow between 0 *! }* !

two infinite-plane plates at a distance /. dx
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7.2. Spherical Shell

To solve the problem of radial diffusion through a spherical shell (Figure
6), Eq. (17) is reduced on the assumption of a constant diffusion coefficient
and stationary-state conditions to

d 2dCB) _
dr(r ar) 0 (43)
its solution being
B
cs=A+ 7 (44)

where the integration constants A and B come out from the corresponding
boundary conditions. The r coordinate is bound to the condition r, = r =r,,
r, and r, being the radii of the spheres which determine the spherical shell.
ce.a and cpp are the concentrations of the reacting species at r, and 7,
respectively. Hence the concentration distribution within the shell is

_ TaCB,alre — 1) + ricp(r — 1a)

v r(ry = 1a) 43)
The total current (I) which flows through the outer sphere is
I = —nuF4mDy- "o (epp — Cna) (46)
b~ Ta

and the charge is given by the product Ir, where 7 is the duration of the
perturbation. Equation (46) gives the total current through the outer sphere.

Flow direction of
the & species B

Figure 6. Radial flow in a spherical shell.
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7.3. Cylindrical Interface

Let us consider a radial diffusion through a cylindrical shell of thickness
6 = r, — r, (Figure 7), where r, and r, are now the radii of the outer and inner
concentric cylinders, respectively. The diffusion equation in cylindrical coor-
dinates for a stationary flux is

9 dc_s) _
ar(DBr %) =0 47)

which is immediately solved on the assumption of a concentration- and
distance-independent diffusion coefficient to give

cg=A+Blnr (48)
When r =r,, ¢, = ¢, and r = r, ¢, = cp,, the concentration distribution is

_cpaln(r/r)+cppIn(r/ra)
5=

(49)

In (ry/ra)

Flow direction of
the & -species B

————— F-—--_1
//ﬂ ————— |——~\\ >~
0! >
k# : r
: -5 ,«—
rb '

Figure 7. Radial flow in a cylindrical shell.
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Analogously, the current per unit length of cylinder is

_ nBF27TDB(CB,b - CB,a)
In (rp/ra)

and the charge flowing during the time 7, per unit length, is equal to the
product j7. In the cases of the cylindrical or spherical shells, § represents the
true diffusional layer thickness. When § « r,, both Egs. (45) and (49) involve
as a limiting case that of the semi-infinite plane.

(50)

8. Resolution of the Fick Equation : The Nonstationary
State

In dealing with the kinetics of processes occurring at the electrochemical
interface, it is quite important to establish its response under different per-
turbations of the electrical variables. One variable is under control while the
other relaxes. Usually the relaxation variable is followed during the period
of perturbation, as is the case for the linear potential sweep methods, but it
might be also interesting to follow the variation of the relaxation variable for
a longer period than that of the perturbation function. The latter case is
encountered, for example, when either a potential pulse or a current pulse is
used.

During all these processes diffusion plays an important role, and, there-
fore, resolution of the Fick equation under a nonstationary state is quite
relevant, particularly in the field of electrochemical kinetics. Moreover, to a
great extent the type of solutions obtained furnish the quantitative basis for
a large number of electrochemical methods.

8.1. Boundary Conditions for the Nonstationary Solutions
under Potential Step Perturbation

The boundary conditions for the solution of the Fick equation depend
on the perturbation program as well as the kinetic characteristics of the
reaction. Let us consider that reaction (1) occurs at an interface that is
perturbed at ¢t = 0 with a potential step of magnitude E. Reaction (1) can be
considered either as a completely reversible or irreversible electrochemical
reaction.

8.1.1. Reversible Electrochemical Reaction

Let us consider reaction (1) as a reversible process. Initially (¢ = 0), the
concentration of ox is constant and equal to the bulk concentration, while
that of red may be either constant or equal to zero. Thus, the initial condition
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is either, att = 0,0 < n = c0:
Cox = Cox,0 » Cred = 0 ; (51&)

or
Cox = Cox,0 s Cred = Cred,0 (Slb)

where n defines the coordinate perpendicular to the electrode plane. n = x
in Cartesian coordinates and n =r —ro in either spherical or cylindrical
coordinates, ro being the corresponding surface radius.

The boundary conditions refer to the concentration of each reacting
species at the interface (n = 0) which depend upon the electrode potential.
The latter, as it is measured, corresponds to the overall potential drop at the
interface measured against a reference electrode.

In general, when the electrode potential is negative with respect to the
equilibrium potential (cathodic reaction), the concentration of the ox species
decreases at the reaction interface, while that of the red species increases—
both attaining a constant value. Moreover, when the potential is sufficiently
negative, a null concentration of the ox species may be reached at n = 0. Then

t>0,E->—-0,n=0: Cox = Coxe =0 (52)

For a reversible reaction this condition is approached with a relatively
small potential shift from the equilibrium value. In the bulk of the solution,
the boundary conditions depend on the initial composition of the solution
and are given by, at t > 0, n > 00,

Cox = cox,O’ Cred = 0 (533)

or

Cox = Cox,05 Cred = Cred,0 (53b)

When the potential shift from the equilibrium value is relatively small
so that the surface concentration of the reacting species remains finite, the
application of Fick’s equation to both the ox and red species requires two
initial [Eq. (51)] and four boundary conditions. Now the cox/creq ratioat n = 0
is determined by the Nernst equation:

Cox,e Yred nF

——=0=— [— E-E ]

Cred,e Yox exp RT( 0) (54)
where the vy..q and y,x are the activity coeflicients and E, is the standard
potential for the couple. Another boundary condition is related to the equality
of ox and red fluxes at the electrode plane. Therefore,

acox acred
D x( ) + Dre ( ) -
° on /,-o d on /=0 0 (5 5)
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and the boundary conditions at n - o are given by (53). A third possibility
corresponds to the formation of a solid metallic product on the electrode
surface.”’ As a first approximation, the solution of the equation is then
obtained for the case of a totally covered surface, so that the activity of the
solid is unity.

8.1.2. Irreversible Electrochemical Reaction

The first attempts to solve this problem yielding only approximate sol-
utions were based upon the Nernst diffusion layer concept.?’? Later, more
rigorous mathematical procedures were introduced for the semi-infinite plane
diffusion®'® as well as for diffusion toward the sphere surface.®>***? In
either case first-order charge-transfer reactions shall be considered.

When the electrochemical reaction (1) is highly irreversible, the initial
and boundary conditions corresponding to n » o are the same as described
for the reversible case [Egs. (51) and (53)] but those related to the electrode
surface (n = 0) are different. The concentration of the reacting species at the
interface is determined through the rate equation of reaction (1). For a simple
first-order process occurring in both directions, the reaction rate is given by
Eq. (2). Therefore, taking into account the material balance at n = 0, the
following boundary condition results:

0Cox
Dox(—o) = kRCox,e - kOCred,e (56)
an n=0
where the kg and ko terms are the formal potential-dependent rate constants
for the forward and backward reactions. The second boundary condition at
n = 0 is certainly the same as for the reversible case, namely, Eq. (55).

8.2. Nonstationary Concentration Distribution Equation : Ideal
Semi-infinite Plane Diffusion

Solution of Fick’s equation for semi-infinite linear diffusion toward a
plane is important because it can be reasonably extended to a number of
electrodes of different geometries commonly used in experimental measure-
ments. Furthermore, this model proves useful in tackling the mathematics of
diffusion problems involving relatively more complex electrochemical reac-
tions. The complexity may arise either because of the type of electrical
perturbation or of the characteristics of the electrode process.

8.2.1. Reversible Electrochemical Reaction

Let us consider the simple electrochemical reaction (1) taking place on
an ideal semi-infinite plane electrode (Figure 8), the reactant diffusing perpen-
dicularly toward this plane (unidirectional diffusion). Let us assume that the
magnitude of the perturbing potential is large enough to produce the clec-
trochemical reaction in one direction only and to make the interfacial con-
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Flow direcfion Ox-species
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|
Flow direction Red-species
] 1

Figure 8. Diffusion toward an ideal semi-
infinite plane plate electrode—semi-infinite
diffusion.

centration of the reacting species virtually zero. In this case only the diffusion
equation involving the ox species (for the cathodic reaction) should be con-
sidered. Then the mathematical solution of the differential equation requires
just one initial and two boundary conditions. The initial and boundary condi-
tions are already established by Egs. (51)-(53) and the diffusion equation,
for a constant diffusion coefficient, is

0Cox 8 Cox

ar -~ Doy, 57)

Different mathematical procedures can be followed to solve Eq. (57) with the
previously mentioned boundary conditions. One of them considers that the
solution of the differential equation is the superposition of the solutions of
an infinite number of linear (punctual) sources. Another method, widely used
in electrochemistry involves the application of a Laplace transform.

The concentration distribution of the ox species at any instant, which
comes out from Eq. (57), is

Cox = cox,Oerf[x/z(Doxt)l/z] (58)

Equation (58) is represented in Figure 9 for different values of ¢. For t > 0
the largest concentration change of the reacting species is located within a
short distance adjacent to the reaction plane. As ¢ increases, the concentration
gradient decreases due to the larger distance at which the bulk concentration
of the reacting species is reached. As ¢ approaches infinity, the bulk concentra-
tion is only reached at x = co.

Once the concentration distribution equation is known, the flux of ox
toward the electrode surface is obtained from the equation

2
dcox 2 ( X ) Cox,0 (59)

x 72T 207 2D
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1 T T T
591 t=1s
cox,O
075+ 4
t=10s
0501 4
025" t=100s J
0 ! L 1
0 ! 2 3 4 Figure 9. Plot of Eq. (58) for various times
x/{em X 10?) of electrolysis. Do, = 107 cm?s™?

Consequently, the flux of the reactant at the plane interface (x = 0) in terms
of the limiting current density, jym, is

dcox cox,ODc.'l»/(2

dx )Fo = (60)
Hence, under a constant potential, the semi-infinite diffusion of any species
which reacts very fast at the electrode according to reaction (1) provokes an
instantaneous current jump that steadily decreases as t increases, approaching
a jim = 0 value when ¢ > 0. Moreover, the product jumtl/ % is a constant at
any time and is linearly related to the concentration of the reacting species.
Equation (60), although involving the determination of an instantaneous
current, permits the practical evaluation of either cox,0 Or Dox.

The verification of the theory requires an experimental device actually
fitting semi-infinite diffusion conditions. The interference of free convection
can be eliminated if the electrochemical process produces the stratification
of the electrolyte. On this basis quite reliable results have been reported for
the [Fe(CN)s]*™/[Fe(CN)s]>~ redox system“" and for the electrodeposition
of silver, both on platinum electrodes.“” At equimolar concentration, the
cathodic reaction occurring in the former system [Fe(CN)s]> + e =
[Fe(CN)6]*™ has been studied with the working electrode facing upward, in
contrast with the reverse reaction where, for the same concentration, the
density of K4Fe(CN)s is somewhat larger than that of K;Fe(CN)s.

The solution of Eq. (58) carried out with the same initial and boundary
conditions as Eqgs. (51) and (53)-(55) gives the following concentration distri-
bution equations for the ox and the red species, both soluble and initially
present in solution:

fim = —nFDOX(

= £0 + erf (x/Dcl,,/(ztl/z)
ox ox,0 1 +§9

(61)
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£ erfc (x/ D)3t
1+ &6

Cred = Cox,0 (62)
where ¢ = (Dox/Drea)'’?. The concentration ratio, Cox,0/Crea,0 = 6, at the surface
depends on the applied potential. Equation (58) is included in Eq. (61) since for
E =-00,60 =0. At x =0, from Egs. (61) and (62) one gets

- £0

cox,e - cox,Ol + §0 (63)
_ £

Cred,e - Cox,Ol + §0 (64)

According to these equations, when E = E, if the vox/ ¥:eq 1atio is unity, then
Coxe = Crea,e at x = 0 [Eq. (54)]. The concentration profiles as given by Eqgs.
(61) and (62) are depicted in Figure 10. The reactant concentration has a
minimum value at x = 0 and approaches asymptotically the bulk concentration
as x increases. The reverse occurs with the concentration of the reaction
product. The distance at which the limiting concentration values are attained
depends quite markedly on the time elapsed and to a minor extent on the
value of 0. The current density expression for this case is

1
P 1/2
] nFDOX COK,OTrl/2t1/2(1 + é-a) (65)

Therefore, the current density given by Eq. (65) for the same value of cox0
is lower than that given by Eq. (60), which is valid when cox. = 0. From both

-ox Sred
c
ox,0 M ox,0

Figure 10. Plot of Eqs. (61) and (62) O T = =
at t = 10, for various values of 4.
Doy =2x10"°cm?s ™ =2 D, x/(cm X 10?)
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expressions (65) and (60) one obtains

. Jim

I =1+¢o (66)

Equation (66) contains the current-potential relationship of the reversible
electrochemical process represented by Eq. (1). Then,

RT Yred D, 12 RT jlim_j

E=E;———In ( ) +—In——
°TWF " ye\Ddd T AF "]

Obviously, to test Eq. (67) the currents must be read at the same intervals

of time counted from the application of the potential step. When j = 3 jiim,
E = E1 /24

(67)

1/2
RT Yred(D ) (68)

Eip=E;———F=In
1z 0 nF Yox D red.
E, > represents the half-wave potential—a magnitude, which for the reversible
electrochemical reaction, is independent of the time at which the current is
read and characteristic of the electrochemical system. Thus,
RT ]hm ]

E=E p+— 69
1/2 F ] ( )
The expression of E;; is different when the process becomes more complex
than that represented by reaction (1). This is the case, for example, when
either hydrogen-ion discharge participates in the ox to red electrochemical
process or for the electroreduction of a complex ion in the presence of a large
excess of a complex substance with the formation of an amalgam.”’ In any

case, Eq. (69) is still valid independently of the operational conditions.

8.2.2. Irreversible Electrochemical Reactions

Let us consider now reaction (1) as an irreversible electrochemical reac-
tion,*> namely, the resistance to the diffusion rate of the reacting species is
of the same order of magnitude as that of the proper electrochemical process.
Under these circumstances Eq. (57) is solved taking into account the initial
and boundary conditions given by Egs. (51), (53), (55), and (56). The mathe-
matical solution yields the equation for the current density related to the
reduction of ox";

j = Ji exp (A %1) erfc (Ar'/?) (70)
where
Ji = —nF[kedCox,0 €Xp (—aFE/RT) — kdxCreq,0 €Xp (aoFE/RT)] (71)

and k FE\ &k FE
?ed - gx Qg
A=pip e"p( RT ) *piz ex"( RT ) (72)
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where k$.q and k, are the standard-state rate constants. It is convenient to
write both equations in terms of jo, the standard exchange current density,
and the overpotential, n, which is defined as n = E — Eg, where E is the
irreversible electrochemical potential and E the reversible standard value.

Ji = —jolexp (—acFn/RT) — exp (aaFn/RT)] (73)

and

A= do [exp (zaFn/RT) _ exp (aaFn/RT)] (74)

nF 1/2

Cox,OD ox Cred,OD :e/c%
Equation (70), which appears to be rather complex, implies different limiting
cases which are convenient to deal with independently. Thus, by expanding
the exp (A*t) erfc (AtY?) terms:

exp (At) erfc (Ar?)

_ 1 [ 1 1x3 1x3x%5 ]
B 771/2At1/2[1 TR A% (2A%)° + 5)
When At'2 > 5, Eq. (70) yields
. Ji
=TT 76
Equation (76), when c;eq0 = 0, gives
. nFc DD Y2 1
(aiiress = ——22759 (77)

7202 DG+ (kSy/k2a)DY? exp (FE/RT)

Another situation emerges when the second term on the right-hand side
of Eqgs. (73) and (74) is negligible as compared to the first one. Then, one

obtains s 2
) o a FE kieat kreat
J = —nFcoxk3eq €Xp ( ~RT ) exp ( D:x) erfc (FE}/‘T) (78)

Equation (78) is applicable when red is a metal. Both Egs. (76) and (78), at
high negative potentials, approach the linear j vs. 12 plot predicted for a
simple reversible process.

When At'/2 < 1, Eq. (70) reduces to

i 2A¢'2
] = Jk(l T i/2 )
T

(79)

This equation still contains the contribution of the reverse reaction. The
extrapolated value of j at ¢+ = 0 depends on E and allows the calculation of
Jo (or ko) if the value of e, is independently determined. When Ar'/? « 1 (the
electrochemical reaction is very slow), one obtains

J=Jk (80)
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the transient is represented by a step function. The equations for the variation
of current under a potentiostatic step perturbation function for more complex
mechanisms of reaction are given in the literature® and discussed in greater
detail in other chapters of this book.

The differential diffusion equations for higher-order irreversible processes
permit only an exact numerical solution. The analytical solutions are approxi-
mate.“*™” After comparing the exact numerical solution and the approximate
analytical one it is concluded that the coincidence range depends on the
pseudo-order of the reaction with respect to the reactant, on the initial
concentration, and on the overpotential, but it is independent of the exchange
current density and of the transfer coefficient. The lower the pseudo-order,
the smaller the coincidence range. The higher the concentration, the larger
the time range where the approximate equation is valid. Finally, the dis-
crepancy increases as the overpotential increases.

8.3. Spherical Diffusion

Let us consider the unidirectional radial diffusion of the reacting species
through a spherical shell of radius 7o so that the concentration changes may
be produced either for r < ry or for r > ro (Figure 11). In electrochemistry,
the solution of the diffusion equation for the second condition is the most
important one. The diffusion equation in spherical coordinates [Eq. (17)] can
be solved for the simple reaction (1), taking into account the initial and
boundary conditions already set up [Egs. (51)-(53)]. Now n = r — ro, where
ro stands for the radius of the spherical interface. The concentration distribu-
tion equation is®**4%

2 A
Cox = Cox,0 — (Cox,o - Cox,e):_o + (Cox,O - Cox,e)r_o' - J‘ exp (‘Yz) d)’ (81)
0

r v

Ar
S
P =~ 4
7 ~ ~
7 - eSS
Ve - 3 ~So F\
7 - ~
’ - ~
/ ° N
c
2
¢
=
« .
Figure 11. Radial flow toward the surface of the

0 sphere.
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since (2/vm) foe™dy =erf(A) and 1—erf(A)=erfc(A) where A =
[(r — 70)/2)(Doxt)"’>. When cox,. =0,

r
Cox = Cox,0<1 - _9) + Cox 0 ——J‘ exP (_)’ 2) dY (82)
r v 1
The latter equation can be expressed in a simpler form as
—r
Cox = Cox,o{ 1- erf [Z(Txt;)l/z]} (83)

The development of the concentration profiles according to Eq. (83) is seen
in Figure 12. From Eq. (83) the time-independent term in the concentration
distribution equation is therefore

R (84)

By deriving Eq. (83) at r = ro, the current density related to the flux of the
ox species is obtained:

. 1 1
—] = nFDcl))/(ZCOX,O—ﬂl/ztl 72 + nFDoxCOX,Or_ (85)
0

According to Eq. (85), the spherical diffusion implies a stationary current at
t » 00, The time-independent current density is given by

, 1

(])t-»co = _nFDoxCox,O— (86)
ro

This relationship holds when ry « ()2, Otherwise, when ry » (wt)” % the

spherical diffusion approaches the condition of the semi-infinite linear

diffusion to the plane [Eq. (60)].

Figure 12. Plot of Eq. (83) for various times L

of electrolysis. ro=0.1cm and D= 0 1 . 2
107 em®s ™", (r-rg)/(em x 107)
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The experimental test of Eq. (85) always yields currents larger than those
predicted.®” Equation (85) has been applied to both the dropping mercury
electrode and the hanging mercury electrode in the absence of kinetic
effects.“>**>® However, it fails either at >0 or ¢ > © because of the
convective effects. In the former case, the potential applied to the electrode
changes the surface tension of the liquid metal and produces a convective
flow within the bulk of the metal. In the latter case, the influence of convection
arises from the density gradients originated in the electrolyte side of the
interface. At short times there is also a relatively large contribution of the
double-layer charging effect. The use of microelectrodes to surmount in part
the interference of convection requires, however, experiments made in a
relatively short time.®”*®

8.4. Expanding Sphere Electrode

8.4.1. The llkovic Equation

The first quantitative treatment of diffusion toward an expanding sphere,
which is exemplified by the dropping mercury electrode (dme),***" was
presented by Ikovic.®*%® The problem was solved on the assumption that
the dme behaves as a plane electrode with an area equal to that of the surface
of the drop. The effect of the expansion of the mercury drop producing the
compression of the diffusion layer was taken into account by introducing a
correction factor equal to (7/ 3)!/2. The maximum diffusion current flowing
through the dme depends linearly on the concentration of the reacting species
and on the hydrostatic pressure of the mercury column.

A rather more rigorous model for the dme (Figure 5)©%®*% consists of
a sphere of radius r; which is immersed in a solution volume, V, comprised
between the radii o and r;. However, in this case the diffusion equation must
be corrected by considering a convective term that results from the advance
of the spherical surface toward the solution as the sphere expands. There is
then a lateral tangential movement of the fluid, and, because of the continuity
equation Vv = 0, there must be a flow of liquid and therefore a flux of
matter relative to the interface. This additional flux increases the current to
a value higher than it would have been without taking into consideration the
above effect. Nevertheless, since the diffusion occurs radially and the sphere
also expands into the solution, the diffusion layer thickness is always much
smaller than ro. Hence, the differential equation for unidirectional planar
diffusion can be extended to the present system. Thus, the corrected diffusion

equation for the ox species becomes®*”
2
9Cox 0 Cox 0dCox
Tl TV 87
ot ox axZ ox ( )

where x = r — ro. To evaluate v, the fluid velocity (rate of change of the radial
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coordinate), the time dependence of the spherical surface must be considered.
However, as the surface increases, due to the expansion sphere, the diffusion
layer‘thickness must decrease to keep the volume V constant. Consequently,
at the same reference time, the current density obtained on an expanding
sphere electrode is larger than that of the corresponding static sphere. The
volume of solution in the spherical shell r — ry is

V =3ml(ro + x)* = 13} (88)

After expanding the binomial and neglecting the higher-order terms in
x, for x « ro, Eq. (88) becomes

V =4nmrox = Ax (89)

where the area A is a function of time. Then

E=AE+XE'=O (90)
and
dx x dA
M=%~="aa O

Va=3mro=— 92)

where V, is the volume of the mercury drop and p the mercury density.
Equation (92) yields the radius of the mercury drop as a function of time in
terms of known magnitudes. Then, the expression for A in terms of r, is

2/3 2/3

A=dml= 477(%) (;) (mt)>? 93)

For the dme, p = 13.56 g cm™ at 25°C; therefore,

A =0.85(mt)*? (94)
and

dA
- = 2(0.85)(mt)*? 1 (95)

By replacing the expressions for A and dA/dt into Eq. (91) one obtains

dx
M—E——g; (96)
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Therefore, the diffusion differential equation (87) becomes

3Cox ’Cox , 2 X3Cox

ot > 3¢t ox

97)

On the assumption that the surface concentration is constant at ¢ = 0, (I),
the instantaneous current, is

1/2
—nFA-DOJ/( (Cox,O - Cox,e)

), =
D= G ™ o)
Taking into account the expression (94) for A:
(I = =0.732 nF (Cox0 — Cox.e)Dox m**1"/° (99)

where (I), is in amperes, F in coulomb/mole, A in em?, D in em®s™, m in
g5, cox in mole cm >, and ¢ in seconds. When cox. =0, (I); = (Iim)» Eq.
(99) gives the limiting current at the dme:

(Tim)e = —0.732 nFcox 0Dox m 1"/ (100)

This equation, in contrast to the case of the plane, exhibits a parabolic
current-time relationship.®®°***%® The mean current, (I), at the dme is
immediately obtained by averaging Eq. (100) between ¢ = 0 and ¢ = 7, where
7 is the lifetime of the mercury drop:

- 17"
== J' (I);dt = —0.627 nF (Cox0 — Cox,.)Dox'm**r'®  (101)
0

Therefore, the following ratio results:
() = 5. (102)
A similar relationship is obtained for (I;;), the average limiting current:
(Lim) = 0.627 nFcoxoDox’m* 7'/ (103)

The fair validity of these equations and the reproducibility of the dme are
the basis for their use in electrochemical kinetics, particularly in polarography.
The Ilkovic equation involves the following constant®”

= —LK;%T —0.627 nFD,. (104)

Cox,0m
The value of the constant can be obtained either from (I,) and ¢ or from
D.. The values resulting from these calculations show a discrepancy of about
+5% which is attributed to the mathematical simplifications of the models
for the expanding sphere, on one side, and to the more involved situation
encountered at the dme. For example, the curvature of the drop which was
neglected in Eq. (87) may have an appreciable influence.®”



DIFFUSION IN THE ABSENCE OF CONVECTION 95

The sphericity correction was introduced in the following way.®? To Eq.
(100), which determines the current density after correction for the advance
of the drop surface resembling the semi-infinite plane model, the stationary
term of the flux equation corresponding to the radial diffusion to the sphere
was added. For the latter r, was taken from Eq. (93). Finally, the average
current density equation, after integrating between 0 and results®®:

_ AD Y21/
(Tim)cors = —0.627 nFcox,oDéfm”%”ﬁ(l + 73—) (105)

A further advance toward a rigorous solution of the radial diffusion
equation applied to the expanding sphere is obtained after including in the
differential equation the expansion term, namely,(“’m
azCox 2 aCox] 3Cox

- -0

=D x[_+ r
[ ar? r or ar

dCox
at

(106)

The first and the second terms on the right-hand side of Eq. (106) refer to
the diffusion to a static sphere, while the third term corresponds to the
convective contribution of the expanding sphere. If the radius increases
according to

r* = a®t + const (107)
then
a2
v, = 32 (108)
where
3 m\'?
a= (E ;) (109)
Therefore the following initial and boundary conditions are considered:
t=0,r=0: Cox = Cox,0 (110)
and
t>0,r-> 00: Cox = Cox,0 (111)

The concentration of the ox species on the electrode surface is constant, and
the radial coordinate of the surface is time dependent. Therefore,

t>0,r=at"> Cox = Cox,e (112)

Introducing Eq. (108) into Eq. (106), the expression for the instantaneous
current after Koutecky®® is

(), = 0.732 nF (Cox0 — Cox.e)Del2m?3tV/5 .

« [ D<1,,/(2t1/6 (Dclj£2t1/6)2]

1+3.4W3——+1.5 —mTT (113)
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and for the average current
(I) = ~0.627 nF (Cox0 = Cox.e)Dox'm '/

D(l,,/(z 1/6 Dl’/(Z 1/6, 2
x[1+3.4Tf3—+ 15(71—?3—)] (114)
Another mathematical solution of the diffusion equation for the expand-
ing sphere has been proposed by Levich.” The corresponding average current
at the dme then results:
ox T

_ _ D1/2 1/
() = (I)nkovic(l + 3.39m—1,36) (115)

8.4.2. Irreversible Reactions and Spherical Diffusion

The problem of reaction (1), involving a system that initially contains the
soluble species ox and red as an irreversible process occurring on an expanding
sphere electrode, was solved in terms of the semi-infinite linear diffusion
equation for a plane plus a convective term, as already done in the case of
the reversible process.((’s’(’g) The curvature effect can only be ignored when
the measurements imply short time intervals and the faradaic current is large.
Accordingly, the differential equations for each reacting species are given in
terms of Eq. (87) applied to each reacting species. The initial conditions for
both ox and red are the same as already given (51). The boundary conditions
at the bulk of the solution are expressed by Eq. (53) and those corresponding
to the interface are given by Eqgs. (55) and (56). Equation (56) represents the
irreversibility of the electrode reaction. The solution given by Koutecky(68’7°'71)
is

Iir = IrevF(X) (116)

where I, is the current obtained for the irreversible process and I,., refers to
the current which would be measured if the process behaves reversibly. F(x)
is a tabulated function, the variable y being,((’o)

12)1/2[ kred kox ] 1/2
== + t 117
X ( 7 (Dox)1/2 (Dred)1/2 ( )

The approximate expression for the average (mean) current is

Iir = I-r

0~886[kred/(Dox)1/2 + kox/(Dred)l/z]Tl/2
1+ 0.886[Krea/ (Dox) "> + kox/ (Diea)*1r*"?

(118)

For a hanging drop electrode the convective term of Eq. (87) is dropped out
although the influence of the curvature of the drop must be considered.”®
The shielding effect due to the capillary tip and the influence of natural
convection are also neglected.”” Then, the corresponding differential
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equations are

Cox ¥ Cox | 29Cox

For o po L+ 1) (119)
ot ar r or

acred azcred 2 acred)

—=D, (—+——— 120
ot d or? r or ( )

The initial and boundary conditions already considered for the expanding
sphere are also valid in the present case [Eqgs. (51), (53), (55), and (56)]. The
solution in terms of j, derived from the Laplace transform on assuming that
Dox = Dred = D’ iS

- nF(kredCox,O - koxcred,O)[ 1+ rO(kred + kox)
1+ (ro/D)(krea + kox) | D

2
= Dt]

X exp [(l + Krea & ox )
x erfc [(l+m)(Dt)1/2]} (121)

ro D
ro D
Equation (121) approaches that of the plane electrode under semi-infinite
linear diffusion when either ry » 0 or ¢ > 0.
The analysis of Eq. (121) in terms of a simple totally irreversible elec-
trochemical reaction is made as usual, by neglecting the term of the rate

equation belonging to the reverse process. After introducing the following
dimensionless parameters

kredrO
A =2 1
D.. (122)
and
Dt
T=— (123)
ro

Eq. (121) becomes

—jro 1+ Aexp[(A +1°TJerfc[(A +1)T"?]
nFDcoxo 1+1/a

When T =0 (+=0), Eq. (124) reduces to Eq. (70). Moreover, after a
McLaurin series expansion of the term exp (xz) erfc (x), the resulting current
is proportional to T'/? at short times. Thus, a plot of the data in this way
would facilitate the extrapolation of the current at r = 0.7?

The validity of these equations has been tested with the electrochemical
reduction of the iodate ion in aqueous solution at pH 7.2 on the hanging drop
mercury electrode.”?

(124)
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More general equations are derived when the diffusion coefficients of
each species are used. Then, the concentration distribution equations are””
31034
e A [(D,ed)”z/l_;)
T -l e \u £

Dre 1/2
+ [1 - (——d)—-] exp (/,th) erfc (ut

31035
1/2)

rom
31036

1/2
- [1 - (27";—] exp (£°t) erfc (gr‘/z)} (125)
0

and

Cred = Cred,O +

A [D"?1 1)
E-wl rn \u ¢

(1- (Dox)”2

) exp () erfc (/1,!1/2)

o

_[1_@2

o ] exp (£%1) erfc (ftl/z)] (126)
[o]

where

joexp (—a.Fn/RT) joexp (a.Fn/RT)K'
= - 1/2 (127)

A
nFD ‘1,,/(2 nFD:ia

and K = Dox/D:q. Correspondingly, the current density is given by

L - 1 + 1 [[(Dre::l)l/2 - r0§][(Dox)1/2 - 7051
jt=0 1+ ro)t, + I‘()Ao § - /.L\ r(z,f
_ 172 _
X exp (Szt) erfc (§t1/2) _ (Drea "OIJf)[(ZDox) rom]
rom
x exp (u’t) erfc (m‘/z)} (128)

where

1/2 1/2 1/2 _ 1/292
u= %(A + (Dox) + (Dred) + {)12 + [(Dox) (Dred) ]

2
ro ro

_ 2Mr(Deet)”? = Ao(Do)*M(Drea)”” = <Dox)”2]}“2) (129)
ro

A = Ao(Dod"? + Ar(Dred)'”? (130)

A, = Jo°%P (-acFn/RT) (131)

nF D oxcox,O
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_ Joexp (aaFn/RT)
nFDredcred,O

AR (132)

1/2 1/2 1/2 _ 1/272
g=1 (A + Do) " + (Drea) ™ _ { 224 Do) 7= Drea) 7]

2 ro ro

2 1/2
- E[AR (Dred)1/2 - A0(l)ox)1/2:|[(l)red)1/2 - (Dox)l/z]} ) (133)

_ F
Ji=0 = fo[eXp ( ;o:ﬂ) —exp ('a—ﬂ)] = —nF(A0DoxCox,0 = ARDxedCrea,0)

RT
(134)

The short-time solution is obtained by use of the approximation
exp (x°) erfc (x) = 1 — (2/7"/*)x + x*, which is valid for small values of x.
Then

1/2
e + oxX
241 +(1+A———~——RD d 2A°D )Azt] (135)

=i 12
The long-time solution comes out after making use of the approximation

exp (xHerfc(x) ==Y 2x ™', which is valid for large values of x. The result is

- jt=0 [1 + "(z)l:AR/(Dred)l/2 + AO/(l)ox)l/z:l 1
1+ rol\R + rvol 1+ roAR + rvo (7Tt)1/2

J } (136)

Then, according to this equation, the current depends linearly on ¢ */%;

J =i+t ? (137)

which yields j,..«, the extrapolated current at ¢t > co:

N (7)e=0
(])t—»co = 1+ rohg + roho (138)
The slope o corresponds to _
2, 1/2 1/2
A Dre +A Dox .
o= ro[Ar/ (Drea) o/ ( ) ](])t=0 (139)

771/2(1 + f’oAR + r0A0)2

Under these circumstances, a constant current implies a mass-transfer-
controlled electrochemical process and no kinetic parameter of the proper
electrochemical reaction can be derived. Nevertheless, if the electrode surface
area is small, the reaction behaves as a charge-transfer-controlled process at
any time.

A general treatment of voltammetry at an expanding spherical electrode
in accord with any power law was given by Oldham“®"*” which yields an
equation of very wide generality. The solution of the latter gives the equations
already established for both the stationary electrode and dme.



100 SUSANA L. MARCHIANO and ALEJANDRO J. ARVIA

8.5. Cylindrical Diffusion

Cylindrical electrodes are seldom employed in electrochemistry, except
when either wires or small rods are used as working electrodes. Nevertheless,
the solution of the pertaining diffusion problem is interesting in order to
evaluate the geometry influence in the rate of diffusion-controlled processes.

8.56.1. Reversible Reaction

Let us consider reaction (1) under reversible conditions occurring at the
electrochemically active surface of a cylinder which extends to infinity parallel
to the cylinder axis. The diffusion of the reacting species occurs radially so
that the diffusion equation becomes

2
Ocox e, 1 =) (140)

at ar? r or
The initial and boundary conditions are given by the expressions (51), (52),
and (53) where n = r —ry. After the usual procedures, the concentration
distribution equation results**7®:

- Dox(

2 * 2
Cox = — —Cox,0 exp (_Doxu t)
™ 0

o Jolt, 1) Yolu, ro) = Yo(u, r)Jolu, ro) du

Jo(u, ro) — Yo(u, ro)
where u is an auxiliary variable and Jo(u, r) and Yo(u, r) are, respectively,
zero-order Bessel functions of the first and second class. The integrals were

evaluated by Jaeger and Clarke.”” The limiting current density is obtained
from (141) in the usual way:

__4nFDxCox0 J“’ exp (—Doxtt*t) du
Jim o J3(u, ro) + Yo(u,ro) u

(141)

(142)

2
m r

From Eq. (142) two limiting cases arise, namely, for ¢ -» 0,

1 1 11 ¢)1/2 1 )
o L G I ! ) I P 143
] nFDoxcox,Oro(Trl/Z(bl/Z 2 4(‘77' 8¢ ( )

and for ¢t » 0,

. 2 1 B 1
]——nFDoxcox,orO{ln o) 27 [n@s) -2 " } (144)

where ¢ = Dot/r* and v is the Euler-Mascheroni constant, equal to 0.5772.

From Egs. (143) and (144) one concludes that for t-> 0 the linear
diffusional equation for the plane is approached, while for ¢ - 00, the limiting
current density is given by

2 1 ]
L il P S 145
fim = —nFD °"c°*’°ro[1n 4Dt/ (145)
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Equation (145) shows that the current density approaches zero very slowly
because of the logarithmic function. By using a platinum-wire electrode sealed
to the end of a glass tube, a virtually constant current after a sufficiently long
time was observed.“" Notwithstanding, the possible contribution of a convec-
tive effect in the measurements is far from being discarded.“?

8.5.2. Irreversible Reactions and Diffusion Toward a Cylinder

The diffusional problem related to reaction (1) as an irreversible elec-
trochemical reaction occurring at a cylindrical surface electrode, although
involving a simple first-order irreversible reaction, admits no exact analytical
solution.”® The differential equation (140) was solved by Johnson and Bar-
nartt®"’® for both species ox and red with the boundary conditions (51),
(53), and (55). The other boundary conditions for ¢ > 0 and r = r, are related
to the reaction rate through the current density in the form

. a re ox
t>0,r=ry: j= nFDmdL2 = —nFDoxa—c— (146)
or or

Then the system of equations can be solved, in principle, by the Laplace
transform, but the analytical reverse transform to obtain ¢ .q and coy is difficult.
The inverse transform can be obtained for particular cases only, yielding an
exact solution. On the other hand, approximate analytical solutions are derived
for times much shorter than the smallest of r3/Dox, 75/Dred, 7o/A(Dred)'’?,
and ro/A (Dox)'’?, where A is given by Eq. (72).

The equation for the transformed current density j(s), is

- -~ 20(Dox)'"*Ko((s/ Dox)*ro)
is) = "=°/ J;[‘/” K1((5/Dox)*r0) :

AR (D,ed)”ZKo(s/Dred)”zro] (147)

Kl((s/Dred)l/er)

where K(x) is the modified Bessel function of the second kind of order zero,
and K,(x) is the modified Bessel function of the second kind of order 1.
Equation (147) can be inverse transformed in the following limiting cases.
For ¢t - 0 (s » 0), it becomes

jt=0
s+A (s)1/2 - (AODox + )\RDred)/er

is)~> (148)

which can be analytically inverted to yield

0 _1+8 [(1+5)2 2] [(1+5) 1,2]
P exp 2 A7t] erfc - At

- 12;5 exp [(1%5)2)‘2;] erfc [(1—;—5)MW] (149)
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where
1+ 2(ArDreq + AoDox) 12
8 — [ ( R d2 0 )] (150)
roA
After a series expansion of exp (x?) erfc (x), for x < 1, one obtains
.t 2 " re: + ox
&221———_)&”(1 1 ARDrea * AoDox i‘“D )Azt (151)
f,:() \/’77 2"0A

Similarly, the concentrations of the ox and red species at the surface, for
t -» 0, are, respectively,

- 2112 Do)"?
Cox,e = Cox,0 — —]”)—1/2{ — = [1 + (_')—] )‘t} (152)
F(Do)'*\ Vrr 2roA
and
o (2117 [ (D,ed)‘”] }
red,e == Cre + - +
Cred,e = Cred,0 F(Dred)l/z{ﬂl/z 1 2ol At (153)

Comparative plots of these equations are given in Figure 13 for the plane,
spherical, and cylindrical electrodes. This comparison is made taking into
account the numerical solutions of the transformed equations when a =
(DY?)/A and Dieq = Dox = D, according to the Papoulis method.”® Then,
one observes a coincidence of the three functions when Ar*? > 0. In contrast,
when A% > 00, their differences are such that the values of j,,« for the plane
are larger than those derived for the sphere, under comparable conditions.
A generalized rigorous numerical procedure and approximate methods
for the solution of the boundary-value problems concerning diffusion toward

T T T L
09 T
0.7+ 4
7
> 0.5 1
=
=
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03
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01 r
1 | 1 1
0 1 2 3 4 5

Atl/?

Figure 13. Constant potential current-time relationships for spherical, cylindrical, and plane
electrodes. [From Reference 73].
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planar, spherical, and dme at constant potential are given by Guidelli.”*®”
Comparison between the rigorous and approximate solutions reveals a satis-
factory degree of accuracy attainable by the approximate methods based on
the direct substitution of suitable power series of time into the boundary
conditions defining the diffusional problem.

9. Solution of the Diffusion Equation under a Constant Flux:
Galvanostatic Conditions

Constant-current techniques are widely used in electrochemical kinetics
and also in electroanalysis. Their applications are based upon the mathematical
solution of Fick’s equation under constant flux. These solutions were reported
a long time ago.®'%%

An electrochemical reaction under a constant flux implies that the reactant
is consumed at a constant rate, and consequently a concentration profile of
that species in established in a direction perpendicular to the electrode surface.
The concentration distribution is independent of the type of reaction taking
place, be it a reversible or an irreversible process. The equations to be solved
are the same as Egs. (13), (15), and (17), according to the electrode geometry.

Let us consider reaction (1) with only the ox species initially present in
a still solution yielding the soluble red species—the reaction occurring at an
infinite plane electrode. This model can be easily extended to other electrode
shapes if the electrolysis lasts for a short time, such that the thickness of the
diffusion layer remains much smaller than the curvature radius of either a
spherical or cylindrical electrode surface. The boundary condition at x » o
remains the same as given for a potential step perturbation [Eq. (53)]. At
x = 0 one of the boundary conditions is given by Eq. (55) and the remaining
one is

(ac“) | (154)
x=0 nFDox

The concentration distribution equation of the reactant was obtained by
Weber,®* Sand,®® and Rosebrugh and Miller®® and for both the reactant
and product by Karaoglanoff.®” By solving the diffusion equation (58) with
the initial and boundary conditions (51), (53), (55), and (154), the concentra-
tion of the ox species is

s ! x% \dt
o= e [, o (35 7 (159
where s, the constant flux toward the electrode surface, is
__d_
§ = ——==AD (156)

n
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The migration contribution can be neglected in solutions containing a
relatively large concentration of the supporting electrolyte. After solving the
integral of Eq. (155), the following concentration distribution equations are
obtained for the reactant and product, respectively:

2A(Doy)/?11? x? x
Cox = Cox,0 — T (-4Doxt) + Ax erfc ('2—(D—0x)1—/2t1—/§) (157)
and
2AD,t"? x? AxD,, X
Cred = Wl/z(Dred)l/z cxp (_4Dredt) B Dred erfc <2(Dred)1[2t1/2) (158)

When the product of the reaction is initially present, its initial concentration
enters the corresponding distribution equation. If the initial concentration is
denoted by ¢req,0, Eq. (158) becomes

2ADt"? x’ Doy x
s = coun 55, 720 (2, 1) ~ 2D s (5ip )
(159)

As the process occurs at a constant rate (j = const), the change in concentra-
tion also takes place at a constant rate (dcox/d¢ = const) at x = 0. At a fixed
time, the concentration of the ox species approaches cox 0 When x increases.
The value of x required for cox = cox,0 increases as the electrochemical process
advances.

At the electrode surface the reactant concentration is given by

IN(D) 22
Cox,e — Cox,0 — _—(——71_1)/—2—- (160)

and it becomes nil when ¢ = 7; namely,

2A (Do) 22
Cox,0 = —(__;12/7—_ (161)

. o e . 85
where 7 is defined as the transition time.®>

On the other hand, the concentration of products depends upon the
diffusion coefficients of both species but it is independent of the reactant
concentration. Thus, from Eq. (158), at x =0,

2ADoyt"?
After introducing Eq. (154) into Eq. (161), the Sand expression is obtained:

. 1/2 1/2 1/2
T nF(Dyy) (163)

Cox,0 2

(162)

The jr'/%/cox,0 ratio is a constant which depends only on the electrochemical
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system. For a simple reaction, this constant is independent of the degree of
reversibility and the total concentration of the reacting species. In contrast,
for complex electrochemical reactions the j*r” % term depends on the bulk
concentration of the reacting species.

9.1. Reversible Electrochemical Reaction

When reaction (1) proceeds as a reversible electrochemical reaction, the
concentrations of ox and red at the electrode surface are related to the
potential according to the Nernst equation:

RT 'Yoxcox,e

E=Ey+—In
nF YredCred,e

(164)

The potential-time relationship resulting for a current step function is immedi-
ately obtained by replacing the concentrations for ox and red at x = 0 in Eq.
(164) by those given in Egs. (160) and (162). Thus, one obtains

ln [Cox,O + 2jt1/2/771/2F(D0x)1/2]
nF [=2jt"% /72 F(Doy)'?]
(165)

In this equation the sum of the first two terms on the right-hand side corres-
ponds to the half-wave potential of the electrochemical reaction as usually
defined in polarography.®*" Equation (165) can be more simply expressed
as follows after considering Eqgs. (154) and (161):

RT Yox Dred 2 RT
E=Eo+-21 (—)(——) + 22
° nF 8 Yred Dox

RT, 72 —4¢/?
E =E1/2+;;;ln—77;— (166)

Thus, when ¢ =7, the potential should become infinite unless another
electrochemical reaction is involved at a potential larger than that related to
reaction (1). According to this expression, the half-wave potential is deter-
mined in the potential-time profile at ¢ = 7/4.:8¢57

Although the mathematics of the diffusional process under a constant
flux was known since the beginning of this century, the experimental test of
equations such as (163) and (166) was achieved with some success as recently
as the 1950 decade. All previous attempts had failed due to improper experi-
mental designs which involved other contributions such as migration and free
convection.®®*® The validity of Sand’s equation has been claimed for times
as large as 2905.°” On the other hand, when the transition times are very
short, the correction for the double-layer charging becomes increasingly
important.

The potential-time relationship is slightly different than that given by
Eq. (166) when both the ox and the red species are initially present in the
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solution. Then,
P2 _ 12

77| t1/2] (167)

RT
E=E;+—In [
2 nF (Cred,O/Cox,O)T
On the other hand, it is interesting to note that the abrupt change of the
potential-time profile when the red species is initially absent is not observed
when the red species is initially present. When the red species is insoluble,
the potential-time profile is then given by the following equation:

RT -2j RT
E=E+ipin[ pp ] g =2 a6y

9.2. Irreversible Electrochemical Process

Let us assume that reaction (1) represents an irreversible electrochemical
process.”” The corresponding rate equation can be now conveniently
expressed as

j = _nF(kredCox,e - koxcred,e) (169)
where the rate constants k,.q and k., are potential dependent according to
o a.FE
kred - kred exp( RT ) (170)
and
o a FE
ox = ki exp (%27 (171)

The concentrations of the ox and red species at x = 0 can be obtained from
Egs. (160) and (162). Substitution of these expressions into Eq. (169) results
in the potential-time relationship as a function of current density:

i _ e [ N 2jt'? ]ex ( aCFE>
= = Kre oX, 172 o~ 172 -
WF d| Cox,0 771/2HF(DOX)1 2 P R

2jt? ] a,,FE)
ox 1
Tk [w”an(D,ed)”2 e"p( RT (172)

Different limiting situations are derived from Eq. (172), depending on the
degree of reversiblity of the test reaction. Thus, when the potential is relatively
far from its equilibrium value, one of the terms on the right-hand side of Eq.
(172) may be eliminated. Let us consider a sufficiently high cathodic potential,
so that the following equation is valid:

o 1/2

It ] exp (—ﬂ> (173)

J o
—_— = kred [:Cox,O + W RT

nF
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then, from Eq. (173) at j = const, the following expression is obtained:

—RT, (Feoxe :ed) RT [ ( t)l/z]
E = == —(1-= 17
o F ln( — o F In|1 - (174)

In this case, the potential-time relationship explicitly depends on the kinetic
parameters of the electrochemical reaction. At ¢t = 0, Eq. (174) is

-RTln (Fk,edcox,o)
aF -

Hence, the initial potential depends on the magnitude of the current step and
on the concentration of the reacting species. According to Eq. (175), a plot
of E,;—o/log (Fk:caCox,0/J), Obtained at different concentrations of the reactant,
yields a. the transfer coefficient assisting the cathodic reaction.

Eio= (175)

9.3. Consecutive Diffusion-Controlled Electrochemical Reactions

It is interesting to establish the concentration distribution near the elec-
trochemical interface of the different species related to a set of consecutive
reactions occurring under a constant current. For a diffusion-controlled pro-
cess, the concentration profile of the reactant pertaining to the first process
remains unaltered as the following stages occur, but the concentration distribu-
tion of the species involved in a given stage is sensitive to the preceding ones.
There are many cases that can be considered as consecutive electrochemical
reactions, but only the following four are referred to here; namely, (i) the
initial reaction followed by the reoxidation of the reaction product (by
reversing the current step function); (ii) a consecutive reaction involving two
different substances; (iii) the step-by-step electroreduction of a single species;
and (iv) consecutive reactions involving an arbitrary number of reacting
species.

For consecutive reactions, the concentrations of species entering into the
first reaction appear in the boundary conditions of the following step and so
forth. Then, a different solution of the diffusional problem is obtained, depend-
ing on the type of process considered.

9.3.1. Electrochemical Reoxidation of the Reaction Product

Let us consider that the ox species is electrochemically reduced to the
red species at a constant current. When ¢t = 7, at x = 0, ¢ox. = 0. Now if at
the instant 7, the current is reversed, the electrochemical reoxidation of red
occurs.®® The concentration of the latter at x = 0 is given by Eq. (158) after
making ¢t = 7;. The time 7, is taken now as the starting point for time-counting,
so that

'=t—1 (176)

Then, as the reacting species is now red, one of the boundary conditions at
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x = 0 is given by Eq. (55) and the remaining one becomes

aCred) _ j' oyt
( 9x )ico nNFDieq A (177)

where j' represents the reversal current step. The initial condition comes from
Eq. (158) whent' =0 (or t = 74):

2.Dre 1/2 _1/2 2
(Crud)img = — L Pred) T3 )

nw PE P (—4Dred71
+ Ix erfc[ ad ]
nFDred 2(Dred)l/zT%/7
The boundary conditions at x - o are the same corresponding to the
electroreduction of the ox species [Eq. (53)]. The diffusion equation with
the new initial and boundary conditions is solved by using the Fourier cosine

transform. Accordingly, the concentration distribution equation is given by
the following relationship:

—2j [D,ed(mr')]”z [ x? ] ix
exp| —

(178)

Cred = +
4 WFD,.q p 4D, oo(t1 + )] nFD,q
x ]-_]-r Dredt' 1/2
X erfc{ ) + z( ) ( )
2[Dred(71 + t')]l/z nFDred m
2 . .
x J—J x

x - - S — 179
exp( 4D,edt’) (nFD,ed)x erfe [Z(D,edt')l/z] (179)

According to this equation a plot of cq vs. x, at a constant ¢ exhibits a
maximum at x # 0, since red species diffuses out to the bulk of the solution.
When t' = 7,, the concentration of red becomes zero at x = 0, for a preset
value of j'. From Eq. (179), when cr.q = 0 one obtains under the present
conditions the transition time:

(j/nFDred)le
T = - (180
> = [(7 = )/ nFDoual — (/D )
By choosing j' = —j, one obtains 7, = 71/3. On the other hand, substitution

of Eq. (179) and an equivalent equation for (cox,.):=~ into Eq. (164) yields,
after rearranging the terms, the corresponding potential-time relationship:

2j [Dox(‘rl+t')]1/2_ 4j (Do,(t')”2

Cox,0 +

RT nFD,, T nFDo\ w
E =Ey+—1 181
0 nF n _2]-1 [Dred(Tl + t’)] 1/2 R 4] (Dredt,)llz ( )
nFDred w nFD,ed T
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Equation (181) can be simplified as follows if c., ¢ is given in terms of 7, [Eq.
(163)]:
RT, 1> —[(r, + 1) = 2(t)"?]

= +—=1
E=Eipt pln (r + )72 =2(r)1?

(182)

9.3.2. Consecutive Reactions Involving Different Substances

Let us consider an electrochemical system (86) containing initially just
two soluble species ox; and ox, which are electroreduced to red; and red,,
respectively, at potentials quite apart from each other, according to the
following simple reactions:

0x; + nie =red; (183)
0X, + nye =red, (184)

The products are also soluble.

The concentration distributions of the ox; and the red; species are given
by the same expressions already given for the simple reaction [Egs. (157) and
(158)], since the occurrence of the second process has no influence on the
former one. In contrast, the second process is affected by the first process;
when the potential of the second process is attained the concentration of the
ox; species becomes zero at x = 0, but the diffusion of ox toward the electrode
surface continues. Therefore, the sum of the partial currents of reactions (183)
and (184) corresponds to the total applied current (j;) and this determines
the initial and boundary conditions x = 0.

In this case, a new time scale referred to 7; is introduced. Then, the
initial conditions are

'=0,0<x =< o0: Coxy = Cox,,0 (185)
2]'7'%/2 2
ox1 = 0X71, + T A~ 172 -
Coms = Com0 T B (Doe) > eXp( 4D0xln)
Jx x
- f [ ] 1
7iFDoy, o | 2(Doryr)” (186)

and the boundary conditions at x = 0 are

t'>0,x=0: Cox; = Coxpe = 0 (187)
and
acox acox _j
Dox( ) + Dox( ) " - 1
Mo\ Tox o T "\ T )0 (it m)F (188)
together with

X = 00: Cox; = Cox1,0 and Cox, = Cox,,0 (189)
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The first term of the left-hand side of Eq. (188) is derived by solving the
diffusion equation for conditions cox, . = 0 when t =71.

The second term of Eq. (188) is obtained by applying either the Laplace
transform or the Fourier transform method:

aCOX2 - _ _j (l l . T1— t’)
( ox )x=0 nzFDon 2 o aresin T1 + t' (190)
This equation is now replaced into the boundary-layer equation (188). After
introducing the function k(x, t'), defined as
h(xa t') = Cox,,0 — Cox, (191)

into Fick’s equation, the latter can be solved by using the Laplace transform,
after applying the convolution theorem. The following equation results for
x=0:

2j

Coxz,e — Cox,,0 + Trl/2n2F(Dox2)1/2[(Tl + t,)l/z - Ti/z] (192)

Cox, = 0 when ¢’ = 7. That is,

1/2 2 o 2 1/2 1/2 o
(Tl’ / nZF(DOX2)1/ COX2,O) (77' / n2F(D0X2) / coxz,O
1-2 = R - 2 .
2f 2j
The transition time of the second process depends on the concentration of
the ox, species and on the transition time of the former stage. As an example,
when 711 = 12, Coxy.0 = Coxpo aNd Dox, = Dox,, ONe obtains 72 = 37,. For this
case, the following relationship is obeyed:

—il(ry + 72)"/% = 71?1 = const (194)

Besides, (71 + 72)"/2 — 71/? is proportional to the concentration of the ox;
species.

)ri” (193)

9.3.3. Step-by-Step Electroreduction of a Single Species

Now let us consider the following sequence of electrochemical reac-
. (86)
tions .

ox; + nie =red; . (195)
red; + nye = red, (196)

As considered in the previous cases, the potential-time relationship for the
former step is that established by Eq. (167). When the potential of the second
stage is sufficiently different than that of the first stage, the first transition
time is definitely reached before the initiation of the second stage. On reaching
the potential of the second stage, the direct electroreduction of ox; to red,
becomes feasible, involving the transfer of (ny + n,) charges per mole of the
ox; species. This reaction occurs simultaneously with the second reaction if
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the reactant red, is available. The applied current step involves, therefore,
two contributions and can be expressed as follows:

d ox, 0 re:
-jt>-rl = (nl + n2)FDox( ¢ ) + nZFDredl( < dl) (197)
0x /y—o 0x Jy=o

where the time ¢’ has been defined previously. Following a procedure similar
to that described in case (ii), one of the boundary conditions becomes
’

acred,) —J (n1+ny)j ( 1 - t)
= + S+—a 198
( ox /Jy-o an'D,-ed1 nlnzFD,edl 2 rcsm T1+ t' ( )

Creq, 18 evaluated as in the earlier cases by using the Laplace transform. Then,
the concentration of the red; species at x = 0 is

-2 [”1 +n; 1/2 1/2]

redy,e = - +¢ 199

Cred,, 1/2n2F(Dred1)1/ (11 ) (199)

From this equation, when ceq, . = 0, the following relationship for the transi-
tion time results:

2
ra=m [2(@) + (ﬂ) ] (200)
ni ni

To obtain the concentration of red, at x = 0, the following boundary condition
is required:

9Cox dc red dc red

D, ( ‘) + D, (—1) + D, (——2) =0 201

ox ox x=0 4 ox x=0 od2 ax x=0 ( )
t>71 t>71 t>7

together with the initial condition (creq,);=r = 0. Thus, the following equation
results:
1/2’121:(Dred2

and the corresponding potential—time equation is

(Credz,e)t'>0 =

)1/2[(71 +1)2 - 717 (202)

(11 + )% = (71 + £)V?
re + -
= (E1/2)red, /red, noF ln (1 + 1) 12— 7172 (203)
(E1/2)red; /red, is defined in the same way as E,, for the simple reaction. The
time at which E = (E1/2)red,/req, is Obtained by making the argument of the
logarithm of Eq. (203) unity. After rearrangement and simple transformations,

L %’371 (204)

(t,)El/z =
Then when n; = n,, 7, = 37, and E, /2 is observed at t' = 57,/12. Therefore,
this time is 5/4th of the transition time found for the reduction of a single
species according to reaction (1).
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9.3.4. Reaction Involving an Arbitrary Number of Reacting Species

When the system contains a large number of reacting species,®® each
one participating in a single diffusion-controlled reversible electrochemical
process at a definite potential, the following initial and boundary conditions
are required to solve the diffusion problem under a constant flux:

t= 0’ 0 =X =00; Cox; = Cox,-,O, Credi = cred;,O (205)

0Cox;
t>0,x =0: j=—Zn,~FDoxi( ¢ )
i x=0

ax

(206)
Dox ((ZC_O’E) + Dwd(acred) =0
0xX /x=0 0x /x=o0
t> 0, X —> 00: Coxi = Cox‘,09 credi = cred,-,O (207)

The expressions for the concentration of the different species at x = 0 are
obtained after solving the mathematical problem by applying the Laplace
transform. Thus, one obtains

e we sty
1/2 _
cone=cmn=(p2) Nk B )
where
K = (:;’—:) (%:f)m exp [%(E _E: /z,i)] (210)
and
Eijsi = Eo; + % In (;’,’—d—) (%’f)l/z 211)

The general equation for potential-time curves in the case of an arbitrary
number of reducible (or oxidizable) substances is

nEF(Dox;)1/2Coxi,0
i=1 2

2jt'/?
171/2 -

M~

nF(E — E1/2,i))] (212)

[1+tanh<— RT

The right-hand side of Eq. (212) is proportional to the mean current observed
for the stepwise composite polarographic waves with the same system. From
the relationships of the polarographic reversible reduction of each species
one obtains

I = I“'“"’[l + tanh (— (213)

fre nF(E — E1/2,:))]

2RT
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and
Ilim,i = (P)ni(Dox)l/zcox,»,O (214)
where P, the polarographic constant, is given by 0.607m>’*t'/®. Equation
(212) can be written in the form
1/2
1/2 "o I,'
= 215
,Z‘l 2Pj (215)

The pth system participates in the electrode reaction after the (p — 1)th
reducible species is depleted at the electrode surface. Then, from (215) we
get the result

1/2

Tlp/z = ZP] (Tim1 +Tjima + -+ + Tiim,p) (216)

with
14
T,=Ymn 217)

where 7; is the transition time for the ith system. From Eq. (216) one obtains

_ Wl/zon(Doxp)l/zcoxLO
2j

which is the general formula for the particular case of two substances already

seen. The potential-time relationship for the pth system comes from Egs.
(215) and (218):

T, - T3 =

(218)

R TV? _ 2
= +—In=A 1
E=Eipp+ 5 N (219)

The polarographic half-wave potential is observed at time #,:

= (T,‘/2 + T;/_zl)
2
The foregoing equations are useful in developing a graphical procedure for
the analysis of potential-time curves.®®
The different equations derived in this section are employed in the

chronopotentiometric techniques, a review related to them having been
recently published.®”

2

(220)

9.4. Instantaneous Current Pulse

Another important diffusion problem is that resulting from the perturba-
tion of the electrochemical interface with a current pulse of infinitely small
length. When reaction (1) is a reversible electrochemical process, this type of



114 SUSANA L. MARCHIANO and ALEJANDRO J. ARVIA

perturbation program generates an excess of product and a deficit of reactant
at the electrode plane with respect to their corresponding bulk concentrations.
Therfore, diffusion processes set in, lasting in until the concentration gradients
disappear. Let us consider for simplicity only the case of a semi-infinite plane
electrochemical surface. It is obvious that the mathematical solution of the
diffusion equation is closely bound to that resulting from the previously
obtained current step perturbation, since the time derivative of a step function
is an instantaneous pulse. Then, at ¢ = 0, the constant flux of each species
switched on, is related to jouise, the corresponding instantaneous pulse flux,

. - K d] step
] pulse d ¢

(221)

where K denotes the relationship between the characteristics of the perturba-

tion function corresponding to the pulse and the step. This equation is

immediately solved through the Laplace transform. For the simple example

of a metal that dissolves anodically by the current pulse (instantaneous plane

source of metal ions),"? the space-time concentration distribution becomes
2

s x

————pmexp| - 222

(TTDMe”t)l/z P ( 4DMez+t) (222)

where cme:+ and D+, the concentration and diffusion coefficient, respec-

tively, refer to Me””, the metal-ion species generated by the current pulse.
Equation (222), when cpez+0 = 0 at ¢ = 0, results in

2

s x
——mexp| - 223
(‘77'DMe“l‘)l/2 P ( 4DMez+t) ( )
where s, the Laplace transform of the pulse flux, is the flux under a constant
current step. In the present case, it corresponds to the total concentration of
diffusing ions produced on the x = 0 plane at ¢t = 0. Then Eq. (223) in terms
of N, the number of ions, is

CMez* = CMe’*,O —+

CMez+ =

Ntotal _x2
N = D)2 XP (41)M nz) (224)

At any given time a semi-bell-shaped distribution curve is found. The height
of the curve at x = 0 decreases as ¢ increases, while simultaneously the spread
of ions along the distance x increases.

10. Diffusion Equation with Time-Dependent Boundary
Conditions

The electrochemical interface can be perturbed with different potential-
time functions. For each particular function there is a definite current-time
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response of the system which depends to a large extent on the kinetics of the
electrode reaction. There are different potential-time programs that are
convenient for electrochemical kinetic studies, particularly, the linear poten-
tial-time, the triangular potential-time, and the sinusoidal potential-time
perturbation functions. These functions can be applied either as a single
potential sweep or as repetitive potential sweeps. The single potential sweep
implies that after each perturbation, the system is allowed to recover its initial
conditions before applying another perturbation. On the other hand, for pure
diffusion the repetitive potential sweeps produce after a few cycles a quasi-
stationary average concentration of the reacting species at the interface which
differs from the initial one. The difference of concentration depends naturally
on the perturbation conditions. The experimental techniques related to repeti-
tive perturbations are the repetitive triangular potential sweep voltammetry
and polarography, oscillographic polarography, differential pulse polarogra-
phy, and faradaic impedance methods.

When the perturbation program at the interface is more complex, and when
influences such as the double-layer capacity and ohmic drop contributions are
considered, the corresponding differentialequations are either nonlinear or they
involve variable coefficients. Under these circumstances the mathematical
solution is only achieved through the application of approximate methods.

The following paragraphs refer to different types of time-dependent
perturbations on the assumption that the electric double-layer and ohmic
drop contributions are absent.

10.1. Linear Potential/Time Perturbation

The theory of both single linear-potential sweep and triangular-potential
sweep perturbations applied to electrochemical reactions involving diffusion
were first developed for the dme on the assumption that its smooth surface
could be considered in terms of the semi-infinite unidirectional plane interface
model.**°® The analysis was also extended to repetitive triangular-potential
sweeps.”” The pertaining equations were extended to solid electrodes of
different geometries.“%1%"

The linear-potential sweep starts at a potential where there is no faradaic
current through the electrode-solution interface. The changing potential
reaches the region where, as the electrochemical reaction occurs, the current
increases. Simultaneously, as long as the reaction proceeds and the latter
involves a diffusion contribution, the concentration of the reacting species at
the electrode decreases. Therefore, there are two antagonic effects on the
current due to the increasing potential and the decreasing concentration of
the reacting species at the electrode plane, since the rate of arrival of the
latter from the bulk becomes insufficient to balance its consumption by the
electrode process. Then the consumption rate of the reacting species prevails,
the faradaic current decreasing as the potential increases. The current-time
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response, therefore, is relatively complex and it exhibits a net current peak
at a definite potential.

For a simple reversible process, such as that expressed by reaction (1),
the current decreases after the maximum and reaches a stationary limiting
value. The potential at which the limiting current is attained increases as the
rate of the potential sweep increases. Let us compare this behavior with that
of the potential-step perturbation previously discussed.

Under a potential-step perturbation within the lapse where the system
is practically convection-free, the surface concentration adjusts to a constant
value, which corresponds to the applied potential, but the diffusion layer
thickness increases (relaxation of the diffusion layer). Conversely, during the
potential sweep both the surface concentration and the diffusion-layer thick-
ness change. The former decreases according to a defined concentration-time
profile, while the latter increases.®”

10.2. Mathematical Procedures

The mathematical solution of the differential equations pertaining to
diffusion with the time-dependent boundary conditions are mainly obtained
by using three methods; namely, (i) the application of the Laplace transform;
(ii) the numerical solutions obtained through the finite-difference method;
and (iii) the conversion of the boundary-value problem into an integral
equation.(%)

The first procedure is applicable to reversible and catalytic
reactions 1% 71%% rendering for these reactions definite integrals that can only
be numerically solved. The second method yields only numerical values
that are tabulated for different reaction mechanisms and kinetic
conditions.®>*""1°>1°? The third method is the most general one. The in-
tegral equations can be solved either by series>**1°%10%17 of
numerically.(33’95’99’108’“0) In all these methods the application of numerical
solutions is required at least in the final step.

Let us consider again the simple redox electrochemical reaction (1)
involving two soluble species. The unidirectional differential diffusion
equations for the ox and the red species are given through Eq. (57) applied
to each species. The corresponding initial condition is the same as that given
in expression (51), and the boundary conditions in the bulk of the solution
at ¢t =0 correspond to those given by Eq. (53). At x = 0, one boundary
condition is related to the balance of fluxes [Eq. (55)].

10.3. Solution by the Laplace Transform Method

By applying the Laplace transform to the set of Fick’s differential
equations [Eq. (57)], corresponding to each reacting species, and taking into
account the boundary conditions just mentioned, the following equations are
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obtained: )
a -Ox
Atx = 0, S(C-ox - Cox,O) = Do (7(:2) (225&)
- azc-red
S(Cred - Cred,O) = Dred( p) ) (225b)
ox
aon aEred

D — Lre =

ox D:;eq % p(s) (226)
And at x > oo,
Cox = Cox,0

227)

Cred = Cred,0

where
p(s) = ZL[I(t)/nFA]

Cox = LCox (228)
Cred = Lerea

and A is the electrode area.
By solving the set of transformed equations one obtains

- 1 p(s) 2 (X 12
Cox = Cox,0 — W ;1—/5 €xXp [—s (5—) ] (229)
and
_ 1 5(s) [ 1/2( %’ )”2]
red = Cre + 73 1 — e 30
Cred = Cred,0 (Dred)l/z §172 €Xp| —s Doy (230)

The surface concentrations of the different species are given by the following
transform equations:

1 p(s)

(Cox)x=0= Cox,0 — (—D;—)m s_l/—2 (231)
and 1 5(5)
~ p(s
(Cred)x=0 = Cred,0 + m ;1—]7 (232)
the inverse transform is obtained by applying the convolution theorem:
1 " $()
ox,e — Cox,0 — d 233
Cone = o s g | 3
and .
1 &(1)
red,e = re + d 234
Cose = o iy | % .
where
aCox 0Cred I(t)
t - ox| — = Dre ( ) = - 235
¢ b ( 9x )x=0 W\ ox «=0 nFA 235)
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The concentration distribution equations (231) and (232) just derived
are independent of the rate of the electrochemical reaction since only the
boundary conditions (53) and (55) were considered.

10.4. Reversible Reaction

For the case of reaction (1) behaving as a reversible process, the secondary
boundary condition at x = 0 results from the Nernst equation which relates
Cox and ceq at equilibrium [Eq. (54)]. The mathematical development is similar
to that already indicated for the potentiostatic step, but instead of having a
constant potential equation, it implies now a time-dependent potential. For
a linear potential sweep the potential-time program is given by

E = E,' — vt (236)

E; being the initial potential at which no current flows and v the rate of the
potential sweep. Certainly, the initial potential satisfies the equilibrium
equations,
RT c
Ei — EO +____ln Yox ox,e
nF ‘Yredcred,e

(237)

For a symmetric triangular potential perturbation, the potential-time per-
turbation function is

E =E;—2vA + vt (238)

which is valid for ¢ > A, where A = t/2 corresponds to the time of initiation

of the reverse potential sweep.
According to Eq. (236) and (237) or (238), the boundary condition (54)
is then

Loxe _ 68, (1) (239)
Cred,e
where
_ nF(E,- - EO)]
0 = exp [ RT (240)
and
t=A, Sx(t) = exp (—at) (241)
t>A, S, (t) = exp (at — 2aA) (242)
with
a="E (243)
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The unknown time-dependent function involved in the concentration
distribution equations (233) and (234) can now be solved. By means of the
boundary condition already seen, the concentration term is eliminated from
Egs. (233) and (234). The expression for S, (¢) is taken either for the potential
changing in the negative reaction (A <1t) or vice versa (A =¢) [Egs. (241)
or (242)]. When ceq,0 = 0, the following equation is obtained:

th ¢(T) _ Cox,OTrl/z(Dox)l/2
b (=) 2T T 1 488.(0)
where y = (Dox/D,ed)I/ 2,

By a proper change of variables, Eq. (244) can be written in a
dimensionless form. Thus, if

(244)

T=—
a

(245)
¢ (1) = g(ar)
and
g(at) = coxo(mDoxa)'*x (at) (246)
Then, the dimensionless form of Eq. (244) is
at

Equation (247) is an Abel integral equation, a particular case of the
Volterra integral equation. This type of equation can be solved either analyti-
cally or by power series, or by numerical methods. For the latter, the
dimensionless form is the most suitable one. From Egs. (235), (245), and
(244), the following equation for the current is derived:

I = —nFAC o o(mDoxa)" *x (at) (248)
The x(at) function is obtained either analytically or by power series, or

numerically.

10.4.1. Analytical Solution for X(at)
Solution of the Abel integral equation (96) yields

_ L(O) l at 1 dL(at)
x(at) = * L (at — 2)1/2[ d(at) ]at=z a

71'(at)1/2 T
where L(at) represents the right-hand side of Eq. (247) for at = 0. Substitution
of the definition of S, (at) gives
1 . 1 J‘ o dz
w(a)?(1+v8) 4w Jo (at —z)"*cosh’[In (v8 — 2)/2]

(249)

x(at) = (250)



120 SUSANA L. MARCHIANO and ALEJANDRO J. ARVIA

But the integral equation involved in the right-hand side of Eq. (250) must be
numerically solved, and to eliminate the singular point at at = z either a
change of variables®" or an integration by parts is done.**®

When the electrochemical problem involves a reversible reaction yielding
an insoluble product,®® only the differential equation (57) for the reactant
concentration is required. The same extends obviously to the initial and
boundary conditons. Now, there is only one condition at x = 0, which is
determined by the Nernst equation:

_ nF(E; — Eo)] nFof\
Cox,e = €XP [ RT exp ( RT) = 6 exp (—at) (251)
By using the Laplace transform the following equation is derived:
-2 (nF)3/2 1/2 172 nFv 172
= —= ——7,Cox, (Dox) v I:(_t) ] 252
T T R *War 252

where ¢ (x) = exp (—x°) s exp (z) dz. Its values are tabulated.*'” The
maximum value of ¢(a) is proportional to the current peak height (jpeax)
which is given by

vD ok

1/2
foenc = = (F)" (S22) " condl () (253)

Different values of ¢ (x)max are reported, depending on the mathematical
method employed. Thus, the values are 0.4463°% and 0.5410."°” According
to Berzins and Delahay in the equation for jpeax, at 25°C,1ov

Jpeak =-1367n 3/2Cox,0(Dox)l/zv 1/2 (254)

. . — . . . 2 -1 . —1
where jpeax is in A cm 2 Cox,0 in mole/liter, Doy incm”s™ ,and v in Vs .

10.4.2. Numerical Solution of X (at)

The numerical solution of Eq. (247) is achieved by dividing the integration
range into N equally spaced subintervals (z = 6v) from ¢ = 0 to at = M. The
order number of the subintervals, n, is n = at/§ where § = M/N. Then, Eq.
(247) becomes

1/2 " X(5V) 1 2
= 55
J L (n —v)'"? dv 1+ y8S5(5n) 255)

After an integration by parts, the singular point of Eq. (255) at n = v is
obtained:

J' x (8v) ‘372 _ 2{/\’(0)" vz j (n —v)"d[x(6v)] (256)
o (n—v) o
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By replacing the integral on the right-hand side of Eq. (256) by its sum and

after eliminating the values corresponding to i = 0 and i = n, one derives
n—1 1
1/2 1/2 1/2r /- o
+ -1 +1) - } =— (257

28" (W4 S 0 =D+ ) = x O] = e @57)
This relationship defines N algebraic equations in x (n). When 8, < 8,, S5,./n
becomes equal to exp (—én), while for 8, > 8, the function becomes equal to
exp (8, — 26A). This calculation procedure yields the function y (at) both for
a single linear-potential sweep and for the repetitive sweeps. The numerical
solutions of the equation are tabulated in terms of (E — E;,2)n; and
7%y (at).®®

10.4.3. Series Solution of X(at)

Either the faradaic current or x(at), the current determining function,
is given in terms of a series that converges very rapidly for large potential
excursions."® One proposed series is

1 = i1 S inF (E —
x(at) = — -21 (-1)"*iexp [— &RTLI/Z)] (258)
Ti=
which for nFat/RT = 5 can be written
X(at)=x—\/§x2+~/§x3—\/2x4+--- (259)
where
F(E -E
X = exp [%J (260)

10.5. Irreversible and Quasirreversible Electrochemical Reactions

When reaction (1) is irreversible, the boundary condition at x = 0 and
¢t > 0 is that indicated by Eq. (56) together with E given either by Eq. (236)
or (238). For sufficiently large cathodic potentials (E » —o0), the term of the
rate equation corresponding to the reverse reaction can be neglected so that
the boundary condition (56) is simplified:

dCox
0x

(261)

£6) = Dox( =)

RT

Under a linear-potential sweep it is convenient to refer the rate constant to
the initial potential [Eq. (236)]:

) = KredCox,e €XP (—
x=0

ki = krea €Xp (—
Then, Eq. (261) becomes
f(t) = kicox,. €xp (b?) (263)

acFEi)

RT (262)
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where b = (a.F/RT)v. The concentration distribution equation derived from
Eq. (247) is obtained by applying Duhamel’s method ****®

1 ! x% \ dr
Cox = Coxo = 5172 L f(t —7)exp (— m) e (264)

where 7 is an auxiliary time value. From Eq. (263), the concentration distribu-
tion equation can be transformed into an integral equation. Thus, for

1/2
exp (u) = @—QI(L (265)
and a = b(¢t — 7), one obtains
bt
(z)dz
1- L W = exp (u — be)x (bt) (266)

After fixing certain values of u and different values of bt, values of the
function x (bt) are obtained after a series expansion. ®®!°® From the following
relationships,

E;.— E
bt = E(RT—) 267)
and
j = = nFcoxo(mDaoxh)" *x (b1) (268)

the current density—potential curves of the irreversible process are traced.
After replacing b from Eq. (267) and x (b¢) for x (bf)max the peak current
results:
aF 1/2

Tpea = — const X w”an(R—T) A(Do)cor o0 (269)

where the (1r1/ 2 % const) factor depends on the number of terms used in the
series expansion. The following values for the constant have been reported:
0.4998,%? 0.4958,°® and 0.496."°”

Matsuda and Ayabe® derived the expression of x(bt) taking into
account the boundary condition (56). After replacing in Eq. (56) the concentra-
tions at x = 0 according to expressions (229) and (230) and dividing both
members by the following relationship,

krea (_acFE) Ko oo (aaFE)

Do) P\ " RT )~ (D2 P\ 'RT (270)
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the Volterra integral is obtained:

1 $(t)
kredYox)aa kox')’red)ae [_ acF(E _E1/2)] [aaF(E _E1/2)]
( Dox ( Dwa | P RT +exp RT
nF(E — E1/2)
(Dox)l/zcox,o - (Dred)l/zcred,o exp [__#]
- nF(E - El/z)]
1 +exp [ RT

1 J‘ " p(s)

_ ds (271)

a2l Ve —s

Equation (271) is simplified after introducing the new variables:

3 nF(E — Eip) ant_ .

¢= RT RT 272)
[=- nF(E(Isz)T— Eyp) _ rf;s —a (273)
where
_ nF(EO _E1/2) _ Cox,0 Dox 172
- RT =In Cred,0 (Dred) (274)
and
w(E) = ) 275)
(Dox)'2cox,o(nFv/RT)
Thus, the following integral equation results:
1 26 _l-ewp[-¢+a)] 1 Jf vl
Aexp(ag) +exp[-(1-a)¢]  l+exp(-¢) =) (e-0"?
(276)
with
1/2 ag 1/2 o,
A= [kred'Yox/(Dox) ] [koered/(Dred) ] (277)

nFv/RT

The behavior of the function depends upon the values of A, a,, a., and a,
but when Eo — E;/2 > 300/n mV, ¢(¢) becomes independent of a. Under this
condition, regarding the values of A, a,, and a., three different cases are
distinguished.
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When A > 15, the following integral-differential equation results:

_l+exp(-a) ¢ 1 dn
v == | e
1 (fd vin) dn
=l dn [exp (@) + exp <—aan>] c-m7 7
which can be solved as a power series in A.
W& = 1-exp (-a)|fol®) + T -10)] 279)

An approximate numerical calculation yields f1(£)/fo(¢) =0.4 for [>1.
Therefore, for A = 15, the A-containing terms in Eq. (278) can be eliminated
within a 1-2% error’® and then the integral equation is

_ 1+exp(—a)J‘5 1 dn
‘//rev(g) - 417_1/2 b COShZ (n/z) (g _ n)1/2 (280)
In terms of the new variables, Eq. (280) becomes
_l+exp(-a) J‘/"“’“ dn
‘//rev(g) - 217_1/2 o COSh2 [(g _ n2)/2] (281)

These equations correspond to the limiting case of a reversible process, since
they involve no parameters related to the kinetics of the proper electron-
transfer reaction. Equation (281) is transformed into a sum after applying the
Euler-McLaurin method. When the initial potential is far from E;,,, that is,
a > 12, e,(€) becomes independent of a. Then the equation to be numerically
solved is

h /1 1 ® 1
rev = s +
Yeeil6) 277”2(2 cosh® (£/2) ,gl cosh’ {[¢ — (lh)z]/Z}) (282)
and for & = 0.1, the resulting ¢, (£)max is 0.447, a value close to that reported
by Matsuda and Ayabe."* Hence, at 25°C, the equation for jpeax results in

jpeak = —269n2/3cox,0D (1”/(22)1/2 (283)

When A < 10723%*9_ the reaction behaves as an irreversible process, and
the current density equation is

ac_Fv)‘” ) {_ [aCF(E - E1p)

ES
L - ]+lnA} (284)

j=- nFcox,oDéiz(

where A* = A/al’? and ¢i(x) changes accordingly with the argument. The
current peak value, related to ¢;(x )max IS

1/2
aFi ”) (285)

foeate = — 0.4961F¢ o o(Dox) (ﬁ
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Values of A are between the two limiting cases just referred to, 15=A =
1072** correspond to quasirreversible processes.%

Diffusional problems under a linear-potential sweep have also been solved
for more complex electrochemical processes on a spherical surface,"® on an
expanding sphere,®” and on a cyclindrical surface.®” Their solutions are
mostly based on the application of the mathematical solutions given in the
present chapter as well as on the application of computational procedures

beyond the scope of the present text.!'>!'?

11. Time-Dependent Boundary Conditions: Sinusoidal
Perturbations

The electrochemical interface can be perturbed with a sinusoidal current
or with a sinusoidal potential. This signal can also be superimposed on a dc
level or modulated on a linear time-dependent base function, as in the case
of the potential in alternating current (ac) polarography. @411

The theory of perturbing the interface with a sinusoidal potential was
developed by Breyer, Gutmann, and Bauer."'*'!® In this case, when the
perturbing potential covers a small amplitude, the current induced at the
interface consists of the algebraic sum of two components—one alternating
component (ac) and one direct current (dc) component. When an ac flux is
controlling the interface behavior, such as in ac chronopotentiometry, ¢*'”
the net flux through the interface is the sum of an ac and a dc component,
but in this case a large ac potential component contributes in the region of
the transition time together with the dc component.'® The mathematical
resolution of both problems to obtain the integral equation for the surface
concentration of the reacting species follows the same pattern.

Let us again consider reaction (1) involving both ox and red as soluble
species on a plane electrode. The corresponding diffusional equations are
bound to the initial and boundary conditions given by Egs. (51) and (53),
respectively. The boundary conditions at x = 0 change accordingly, the per-
turbed variable being either the potential or the current. In any case, the
integral surface concentration distribution equations for both the ox and the
red species are obtained after the Laplace transform. They are given by,
respectively,®®

c°xe=coxo+f———[(’_”)d“ (286)
’ 0" Jo nFA(mDoxu) 2

_ " I(t—u)du
Cred,e = Cred,0 4[) nFA(n'D,edu)l/z (287)

The perturbed function is usually imposed on a dc component, therefore, the
concentration of any species will primarily change according to the dc com-
ponent but will fluctuate in phase with the applied ac signal.
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11.1. Potential Sinusoidal Perturbation

Modern ac polarography(38'97) consists of the modulation of a dc linear-

potential sweep with different perturbations, namely, triangular, square, or
sinusoidal potential waves, ®*¢+°71% A14116,119-129) A exact solution of this
problem has been obtained for reaction (1) under reversible conditions with
a sinusoidal controlled perturbation.®”

E(t) = E4. — AE sin wt (288)
AE is the amplitude of the perturbation and w its frequency. For simplicity,

let us assume that the reduced form is initially absent from the solution
(Crea,0 = 0). The boundary conditions at x = 0 and ¢ > 0 are

aCox acred) I(t)
- ox = red\ —..__ =0 2 9
b (ax )x=0 B d( 0X /x=0 nFA ( 8 )
and
_ (7) (D,ed)l” o [nF(E—Euz)] (290)
Cox,e — Cred,e red Dox P RT

The latter expression implies a Nernstein response of reaction (1). After
replacing in Eq. (290) the concentration as given in expression (286) and
(287), the following integral equation results”®

nF(E—El/z)][ J’ I t—u }
_hF(E — E1p) d
P [ RT 1+ nFACoro (Do) (mu) > ™"

I t—u
- J NFACox0(Dox)'’> (mu)'’? du (291)

By introducing expression (288) into the exponential of Eq. (291), one obtains

[ nF(E—-El/z)] [ nF(Edc—El/z)] (nFAE
exp|————F=7-+——|=exp|————%+ | XP

RT RT RT )smwt (292)

The first exponential on the right-hand side contains a time-independent
exponent which involves the dc potential component. In contrast, the second
one is time dependent and can be conveniently expressed as a series
expression:

exp ("oeE nor) = § ("R2E) (25 (299
4= £ 0,0 (PE2EY’ (294)

p=01,2,3,... (295)
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where
e
nF ACox,O(D ox)l/2

¥(t) = (296)

After substituting Egs. (293) and (294) in Eq. (291) and equating coefficients
of equal power of ¢, the system of integral equations is obtained:

exp (-J)Gsinwt)? F (sinwt) [* t—u
o B DS ey
_ t‘/’p(t - u)
. L Wdu (297)
and
=2 E By (298)

p represents the various faradaic components (k = 0 for dc, k = 1 for the
fundamental harmonic ac, etc.) according to

P=2q+k (g=0,1,2,3,...) (299)

When P = 0 (k = 0), the dc component results:

t
(t—u) _ 1
L el p— (300)
By solving the problem through the Laplace transform one obtains
_ 1/2
nFCox,0D ox (301)

Jae = [1+exp (N)](me)"?

which corresponds to the current response for reaction (1) on a plane electrode
under a potentiostatic step function.

For p = 1, at small amplitude perturbations, the equation for the funda-
mental harmonics is

n*F?Acoxo(@Dox)/*AE sin (wt + 7/4)
4RT cosh® (J/2)

Small-amplitude ac signal perturbations are usually employed in ac polaro-
graphy and in faradaic impedance techniques, where equations such as (302)
are generally applied. This equation corresponds to a faradaic impedance z;,
given by(25,26)

I(wt) = — (302)

4RT cosh® (J/2)

=
! hn 2F2AC ox,0 (wDox)1/2

(303)
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which is equivalent to a series RC circuit with

__1 _ 4RT cosh’(J/2)
wCs n 2F2Acox,0(wDox)l/2

R; (304)
Mathematical solutions also exist for ac perturbations involving relatively
large amplitudes® and larger values of p, either for the dc component
(p =2,4,6,...) or for the ac fundamental harmonics (p = 3,5,7,...).

11.2. Sinusoidal Current Perturbation

The mathematical description of this problem for a simple reversible
process occurring at a plane electrode is given for the conditions of
chronopotentiometry with a superimposed alternating current of constant
amplitude."*® In this case, the flux of the ox species is the sum of the dc and
ac components. Thus at x = 0,

(305)

—D.. (acox) _ I + Al sin wt _ I
x=0

3 nFA nF

where Al is the amplitude and w is the frequency of the ac signal. The initial
and the other boundary conditions are given by Egs. (51) and (53). By solving
the diffusion equation for linear diffusion with those conditions, the concentra-
tion of the ox species at x = 0 is given by

1 2Ust'? AL
Cox,e = Cox,0 T [ d1/2 + 12 sin (wt - z)] (306)
™ w 4

nFA(Doy)'"?
-1 2Utt? A . -
Cred,e = nFA(Dred)l/z[ 7172 + 02 sin (wt - Z)] (307)

For the reversible reaction, the potential is the sum of a slowly varying
component which changes, as in the case of conventional chronopoten-
tiometry," plus an ac component which has the same frequency as the current.
Then

RT. (1 - [k sin (0t — 7/$)]/ "> - t”z)}
= - 308
Eac=Eact nF In { 1 + [k sin (ot — m/4)]/t*"? (308)

1/2
Al
k T (309)
and
RT. ("% =tV

Ea=Eip+ ln (17,2— (310)

The term I r'/? is also given by expression (163). The second term on the
right-hand side of Eq. (309) represents the ac potential contribution which,
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when the argument is small, allows the series expansion of the log term,
yielding

RT /2 w2 AT 11')

Epe=~-— sin ((ut -—
* nF 772 = %) 2 '?

2 (311)

which is —45° out of phase with respect to the current. The transition time
can be detected more easily from the variations of the ac potential than from
conventional potential-time curves.!**'?®

The theory of sinusoidal perturbations, either potential-controlled or
current-controlled, has been extended to quasireversible first-order reactions,
irreversible reactions, and more complex electrochemical processes. 2°¢°*127)
Their analysis, however, is beyond the scope of the present chapter.

Auxiliary Notation

E, standard electrode potential

E{ reversible electrode potential
E,/, half-wave potential

k°  standard rate constant

k potential-dependent rate constant
m  rate of flow mercury

V4  volume of mercury drop

y Euler-Macheroni constant

A time at which scan is reversed
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3
Convective Mass Transport

N. IBL and O. DOSSENBACH

1. Introduction

1.1. Convective Mass Transport: Qualitative Considerations

This chapter deals with convective mass transport, i.e., a hydrodynamic
flow in the electrolyte system. Let us start by a few qualitative remarks. As
an example, we consider the electrolysis of a solution of CuSO4 + H,SO, in
a cell with two plane, parallel, copper electrodes. The solution streams parallel
to the electrode in laminar flow. Copper is deposited at the cathode. The
concentration of H,SO, is much larger than that of CuSO, so that migration
of the Cu®" jons is negligible. Near each of the electrodes a diffusion layer
builds up in which the concentration of the Cu®" is different from its value
in the bulk (Section 1, Chapter 1). Similarly, a hydrodynamic boundary layer
is established in which the flow velocity is different from its value in the bulk
solution. The reason is that, due to the viscous forces, there can be no slip
of the liquid at a wall; i.e., the flow velocity at a stationary interface electrode
solution is zero. Figure 1 is a schematic of the velocity and concentration
profiles near the cathode.

The slowing down of the liquid due to the friction forces at the electrode
becomes more and more effective downstream: Near the leading edge (x = 0)
only the layers immediately adjacent to the wall are retarded in their move-
ment by the action of the wall. However, further downstream these layers of
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Figure 1. Concentration, temperature, and velocity profiles near a cathode.

low velocity slow down in turn, through the viscous forces, layers of liquid
located further away from the electrode. Therefore, at increasing distance x
from the leading edge, the zone with decreased velocity extends more and
more into the interior of the solution. The thickness 8, of the hydrodynamic
boundary layer thus becomes larger at increasing x (Figure 2).

The liquid flowing into the diffusion layer carries Cu®* ions of the bulk
concentration cpo: A flux of electroactive species equal to cgovo (Where vo
is the flow velocity parallel to the electrode) thus enters the diffusion layer.t
This convective flux accelerates the mass transport toward the cathode (as
compared to the case of a quiescent liquid, where the transport proceeds by
diffusion and migration only). The supply of cations by convection com-
pensates for the cations discharged at the cathode. This establishes a steady
state which in our example is reached after a time of the order of 10-60s.
Figure 3 shows a mass balance over the whole diffusion layer for steady-state
conditions.t In this stationary state the concentration profile is independent
of time. This is in contrast to the situation without convection where the

+ In the above argument and in the mass balance of Figure 3 we have considered, for the sake
of simplicity, conditions (excess of indifferent electrolyte, see Section 5, Chapter 1) in which
the migration is negligible. If this is not so (e.g., in the case of a solution of CuSO, only) a flux
due to migration enters into the diffusion layer through the plane AB. However, this flux is
smaller than the amount of Cu®* ions discharged per unit time at the cathode and there is a
deficit in the mass balance of the diffusion layer. In the steady state this deficit is compensated
by the balance of the convective fluxes entering and leaving the control volume ABCD. The
argument becomes somewhat more complicated but remains essentially the same as that
developed on pp. 134 and 135-136 for the case of a negligible migration flux.

1 Note that although the flow is on the whole parallel to the electrode there is a velocity component
v, near the electrode in the y direction perpendicular to the electrode. This effect is due to
the slowing down of the liquid downstream and can be easily deduced from a mass balance
for the liquid. Thus, there is a flux of the electroactive species leaving the diffusion layer both
in the x and y directions. It is the difference between these fluxes and the flux entering the
diffusion layer in the x direction at the leading edge which is available to compensate the above
mentioned deficit in the mass balance.
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diffusion layer keeps on growing because the cations removed from the layer
at the cathode cannot be compensated from outside of the diffusion layer, so
that the overall amount of Cu®* jons present in the diffusion layer must
continuously decrease with time; i.e., the thickness of the diffusion layer
increases (see Section 1, Chapter 1).

The steady state in convective transport is the situation most commonly
encountered in industrial electrolytic systems. The thickness of the diffusion
layer in the steady state depends on the kind and velocity of the hydrodynamic
flow: The more effective the stirring, the thinner the diffusion layer and the
faster the transport toward the cathode. A consequence is that in the example
of Figures 1 and 2, the diffusion layer becomes thicker downstream due to
the aforementioned slowing down of the convective stream with increasing
distance from the leading edge. The thicknesses of the diffusion layer § and
the hydrodynamic boundary layer 8§, both increase downstream (Figure 2).
We will discuss more quantitatively later how the two layers are related
(Section 4.5). For the moment, let us point out that the variation of the
thickness of the diffusion layer along the electrode is another characteristic
feature of convective mass transport, in constrast to convection-free electroly-
sis. In the latter case, with the cell geometry of Figure 1, the diffusion layer
would be uniform (except for small edge effects at both ends). In convective
mass transport there are also systems in which the thickness of the diffusion
layer is constant over the electrode, but, in general, the hydrodynamic flow
may cause a nonuniformity of the diffusion layer and thus a variation of the
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(NB,c)a
D} — —
< » (Ng,. ).
Ngg :
Figure 3. Mass balance for boundary layer (steady-
state). ABCD, control volume; Np 4 diffusion flux
T out of control volume; N, convective fluxes in and
c out (concentration times flow velocity). (For a
, definition of these fluxes, see Chapter 1, Sections 2.1,
3.1, and 3.2.) In the steady state, Np 4 + (Ng.); =
(NB‘c)1 (NB.C)2 + (NB,C)3'

rate of mass transport or of interfacial concentrations over the electrode
surface. '

Before we turn toward the quantitative treatment of the problem, let us
make a few more qualitative remarks about the mechanism of convective
mass transport. In Figure 3 we have made a mass balance for the whole
diffusion layer. We will get further insight by considering a volume element
dx dy dz within the diffusion layer (Figure 4). The velocity v, decreases
downstream and so does the flux density v,cg: The amount of electroactive
species entering the volume from below is larger than that leaving at the
upper end.t The difference between the two is available for diffusion toward
the cathode: It serves to increase the diffusion flux toward the cathode over
the distance dy. The increase in diffusion flux when one approaches the
cathode can also be seen from Figure 1. The concentration gradient increases

1 In reality, the situation is more complicated because there is also a fluid flow v, away from the
cathode (see second footnote on p. 134) and this flow carries species B. Part of the decrease
of the convective flux of B in the x direction serves to increase the convective flux of B in the
y direction over the distance dy. But this does not change the conclusion of the argument
developed in the main text. Quantitatively, the mass balance for the infinitesimal volume
dx dy dz is described by the differential equation (2.6) (see Section 2.1) (see also Figure 3,
Chapter 1).
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Figure 4. Volume element in diffusion layer for qualitative discussion [see also Section 2.1 and Eq.

M)

toward the cathode and so does the diffusion flux which is proportional to
the concentration gradient according to Fick’s first law. In each volume
element, in the steady state, the increase in the diffusion flux over the distance
dy is compensated by the decrease of the convective flux over the distance
dx. Within the diffusion layer the convective flux in the x direction is progress-
ively converted (at least partly) to a diffusion flux in the y direction. In the
outer parts of the diffusion layer, the concentration gradient and the diffusion
flux are very small and mass transport by convection is predominant. On the
other hand, very close to the electrode the flow velocity tends to zero (Figure
1) and transport by convection is negligible. In this region the diffusion flux
can no longer increase with decreasing y: The concentration profile is a straight
line which is the situation characteristic of steady-state convection-free
diftusion.

This state of affairs suggests a simplified view of the diffusion layer which
dates back to the dawn of this century and which was first expressed by
Brunner” and Nernst.?’

1.2. Nernst Model for the Diffusion Layer

The linear part of the concentration profile is extended until the con-
centration in the bulk solution is reached. The diffusion layer is thus approxi-
mated by the broken line shown in Figure 5. In physical chemistry, this model
is called the Nernst diffusion layer; in chemical engineering, the equivalent
or effective diffusion layer. The leading idea is that the solution can be roughly
divided into two parts: a thin layer near the electrode with no convection on
the one hand, and the bulk solution where the stirring ensures perfect mixing—
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i.e., uniform concentration, on the other hand. Thus it is assumed that the
transition from transport by convection to that by diffusion occurs abruptly
at point C. In reality, as we have seen, this transition is progressive and the
true concentration profile is not a straight line. Nevertheless, the model of
an adhering unmoved layer has proved quite useful and been popular during
many years in physical chemistry and electrochemistry. One advantage is that
it allows the assignment, in a simple and unambiguous manner, of a thickness
6 to the diffusion layer, as shown on Figure 5. In contrast to this, in the case
of the true profile (continuous line in Figure 5) the thickness of the diffusion
layer is undefined because the concentration tends asymptotically to the bulk
value cpo. One has thus to recourse to some arbitrary definition anyhow,
such as that the thickness of the diffusion layer is the distance from the
electrode at which (cg — ¢g..)/(cB,0 — ¢B,.) = 0.99. Such an arbitrary definition
is no more expedient than that given by the Nernst model. However, it should
be recognized that the Nernst diffusion layer has a fictitious character.
Nevertheless, the thickness of this layer is, in general, related to and rep-
resentative of any “true’’ diffusion layer thickness which we may define.

An effective hydrodynamic boundary layer of thickness &, can be defined
in a way quite similar to that for the diffusion layer. It is represented by the
linear velocity profile (broken line) of Figure 5.

The Nernst model further gives simple expressions for the interfacial flux
density Ng.. For an electroactive species B present in small concentration
(excess of indifferent electrolyte) one obtains (see also Section 5.4, Chapter 1)

dCB

€B.0 = CBie
Ng. =-Ds (71';)6 =-Dsp —8’05—8’ 1)

where Dy is the diffusion coefficient of the species reacting at the electrode.

cs,l,v

Vo

T

Cgo

Cge

T

y

Figure 5. Nernest approximation: — — -, linear approximation of the profiles; —, true profiles.
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The current density, for the deposition of a metal, is

, CB,0 — CB,
j = —zpFDg ———=

- @

where zp is the charge number of the metallic ions. In the case of the solution
of a single electrolyte we have (see Section 5.4, Chapter 1)

Ng.=-(1- tB)—lD(CB,O —Cg,.)/8 (3)
and
j=-(1- tB)—lZBFD(CB,O —CB,.)/8 4)

where fg is the transport number of the metallic cations.

Equations (1), (2), (3), and (4) are similar to Ohm’s law for the conduction
of electricity: The interfacial flux density is proportional to cg,o — cg,. Which
can be regarded as the driving force for the mass transport of the metallic
cations to the cathode. It is inversely proportional to the thickness of the
diffusion layer which can be regarded as a resistance to the mass transport:
The longer the diffusion path the smaller the mass transport rate. By and
large, the equivalent thickness § of the diffusion layer, just as the true
thickness, is smaller the more effective the convection is.

It should be noted at this point that the proportionality between Ng,
and cp — cp,. suggested by the Nernst model applies only if § is independent
of cgo — cB.. The model by itself does not allow us to decide whether or not
this is true. It turns out, however, that this is generally the case, both for
convective and convection-free mass transport. A variety of electroanalytical
methods (polarography and related techniques) are based upon this fact.
However, there are exceptions, such as the case of natural convection, which
will be discussed in Section 7.

1.3. Mass Transfer Coefficient

In chemical engineering the proportionality between Ny, and ¢go —~ Cp,.
is often expressed in another manner; namely, by means of the mass transfer
coefficient k,

NB,e = _kd(cB,O - CB,e) (5)
Comparison of Egs. (1) and (5) shows that
kqa= Dg/é (6a)

Equation (1) and (5) both show the proportionality between Ny, and cgo —
cs... However, in the first case it is expressed in terms of a “‘resistance” 6 and
in the second case in terms of a “‘conductivity’’ k,; The two representations
are equivalent. In this context the thickness of the Nernst fictitious layer can
be regarded as being only another way of expressing the mass transfer
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coefficient. However, it is more illustrative than the latter and this has probably
contributed to its widespread use in electrochemistry so far.

Note that Egs. (5) and (6a) apply to a case where there is no migration
(excess of supporting electrolyte). In the case of a binary electrolyte, the
contribution of migration has to be taken into account. From Eq. (3) it follows
that

Ng.e =—D(cpo—¢B.)/8 + Np.ls (6b)

The second term on the right-hand side can be regarded as a migration term
and the first term as a transport term excluding migration. Since the mass
transfer coefficient is usually employed in conjunction with nonelectrolytic
systems, we equate the first term D(cpo — ¢p,.)/8 t0 ki(cpo — CB.e):

Ng,. = —kalcpo— cB,.) + Np. .8 (6¢)
or
Ng.=—-(1- tB)_lkd(cB,O — CB.e) (6d)

In the case of a binary electrolyte the proportionality factor between the total
flux density and the concentration differences is not k, but (1 — te) ka.

1.4. Application Example for the Nernst Model

The proportionality between Ng . and cgo — cg,. can be used to derive a
relationship describing the current dependence of the concentration over-
potential, for example, in the deposition of a metal from a solution containing
in addition to the metallic cation B of charge zp an excess of indifferent
electrolyte. We consider the steady state in a convective mass transport system
such as that considered in Section 1.1 (see also Figure 5). The equivalent
diffusion layer thickness & is independent of cpo — cg,.. Therefore, if one
increases the current density j applied to the electrode, cg o — cp,. must increase
according to Eq. (2). The interfacial concentration cg. thus decreases at
increasing current density and drops to zero at the limiting current density
jum. The latter is thus given by

Jiim = —ZBFDBCB,0/5 (7

On the other hand, below the limiting current one may apply Eq. (2).
Now the concentration overpotential 7, is given byT

T - e
RT, cse_ R ln(l—————CB’O CB’) 8)

Ne = In

zgF  cpo zBF CB,0

+ As was pointed out in Section 7.2, Chapter 1, one may wish to include in the concentration
overpotential the potential drop across the diffusion layer due to the different mobilities of the
diffusing species. However, in the case of an excess of supporting electrolyte, the latter effect
is small and Eq. (8) can be used as an approximation for the concentration overpotential,
independent of how one wishes to define it.
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The bulk concentration cgo can be eliminated by expressing it through the
limiting current with the help of Eq. (7). Combination of Egs. (2), (7) and
(8) yields

1- “-‘) 9

This equation gives the relationship between 7. and the current density j. At
the limiting current n. becomes infinite.

This example shows that the Nernst model results in conclusions of
practical interest. Its chief weakness is that it is not able to provide any
information about the actual value of & or about its dependence on the
hydrodynamic regime or on the flow velocity. This can only be obtained
experimentally or by applying the modern theory of hydrodynamics to the
problem of convective mass transport.

1.5. Current-Voltage Curve: Limiting Current

In Figure 6 the current density as given by Eq. (9) is plotted schematically
as a function of 7, (solid line). It represents the current-voltage curve for
steady-state conditions in a stirred electrolyte, in the case where there is only
concentration overpotential due to the slowness of the mass transport. When
Jj approaches jim, In (1 — j/jim) tends toward In 0 and 7, increases very fast.
One observes on the current-voltage curve a horizontal segment (plateau)
that corresponds to the limiting current (see also Section 1, Chapter 1). Except
in the case of natural convection (see Section 7.3) the height of the plateau
is usually proportional to the bulk concentration cg ¢ of the species consumed
at the electrode (in the example of Section 1.4 to the concentration of metallic
ions). One can thus deduce the concentration from an experimental determina-
tion of the current-voltage curve. This method is used in electroanalysis.
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Figure 6. Current-voltage curve: ——, for a concentration overpotential only; - - —, with activation

overpotential and ohmic drop in addition.
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The length of plateau A is limited by the occurrence of an additional
reaction. In the example of Section 1.4 the first reaction is the deposition of
metal, for example, copper. Once the potential is sufficiently negative, there
is, in addition, hydrogen evolution and the total current increases over the
value of ji, (Which corresponds to the maximum rate of mass transport of
Cu®* toward the cathode at ccu?t. = 0 (part B of the curve). In order to
observe a well-defined limiting-current plateau, the reversible potentials of
the two possible reactions should not be too close. Otherwise, the plateau is
too short and eventually disappears.

Another reason for a smearing of the curve is the occurrence of overpoten-
tials other than concentration overpotential (e.g. activation overpotential 7,
due to the slowness of the charge exchange reaction at the interface). This
overpotential adds itself to n. and one obtains the broken line of Figure 6.
Furthermore, even if a Luggin capillary with reference electrode is used for
the measurement of the electrode potential (see Chapter 2, Volume x), there
is an ohmic drop in the solution close to the working electrode, which is
included in the potential measurement. This causes a further shift of the
measured current-voltage curve to the right. Such effects decrease the accuracy
of the determination of the limiting current and often smear out the curve to
such an extent that virtually no measurable plateau is obtained even if the
reversible potentials of the competing reactions are quite different. In elec-
troanalysis, one minimizes these effects by using solutions that are dilute with
respect to the species reacting at the electrode and concentrated with respect
to indifferent (nonreacting) species. This strongly decreases both components
of the ohmic drop rj—the resistance r through the high concentration of
indifferent eletrolyte, the current density j through the small concentration
of the reacting species. Furthermore, in electroanalysis, mercury electrodes
are often used because in this case 7, for most reactions (but not for hydrogen
evolution) is much smaller than at solid electrodes.

In order to obtain accurately measurable limiting currents, the hydro-
dynamic conditions must be well defined. A popular arrangement is the
rotating disk electrode (see Section 11).

1.6. Historical Note

The application of hydrodynamic theory to electrochemical systems star-
ted only after World War II. It has been fostered by the early and detailed
work of Levich.®* Further pioneer papers are those by Wagner® who
calculated in 1949 the limiting current for vertical electrodes under the
condition of natural convection, by Wilke, Eisenberg and Tobias® who
determined experimentally in 1954 the influence of the relevant hydrodynamic
parameters on the limiting current in natural convection and at rotating
cylinders. In 1947 Agar” and in 1955 Ibl® applied dimensional analysis to
electrochemical systems. Ibl, Barrada, and Trimpler® in 1954 measured
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interferometrically the thickness of the diffusion layer in electrolysis with
natural convection and showed it to be in good agreement with theory. In
1954 Vielstich™” discussed the relationship between the diffusion layer and
the hydrodynamic boundary layer. Later, the Berkeley School (Tobias, New-
man, and others) contributed decisively to the further development of the
application of hydrodynamic theory to electrochemical systems. Many other
authors published in the field in the last 20 years. At least part of this work
will be quoted in the following sections as well as in Chapters 5 and 6.

The theoretical approach to convective mass transport in electrolytic
systems will be sketched in the next sections.

2. Theoretical Approach Based on Fundamental
Equations

2.1. Basic Equations

In this section, as well as in all other sections of this Chapter, we will
restrict ourselves to the case of an ideal dilute solution and consider a situation
where the electric potential can be eliminated from the basic equations. As
has been pointed out in Section 5.1 of Chapter 1, this simplification is strictly
valid in the two limiting cases of (a) a single (binary) electrolyte solution and
(b) an electroactive species present in small concentration compared to the
overall concentration (excess of indifferent electrolyte).

The fundamental equations for the flux density under these conditions
have been established in Sections 3.2 and 5.1 of Chapter 1 [see, in particular,
Eq. (53)]:

Ng = —Dg Veg + cgv (case b) (10)

it+
Z4

N.=-D V¢, +vc, + (case a) 11)
where Dy and D are the diffusion coefficients of the minority species and of
the neutral electrolyte [Eq. (54)], respectively. The subscript + refers to the
cations. A relationship similar to (11) holds for the anions. The first terms
on the right-hand side of Eq. (10) and (11) correspond to mass transport by
diffusion; the second terms correspond to mass transport by convection, and
the third term in Eq. (11) to mass transport by electric migration.

The equation expressing the conservation of mass in an incompressible
liquid can be written [Eqs. (49) and (55) of Section 5.1, Chapter 1]

0

6—:=DV20 —v.Vec+Y o (case a) (12)
dcp _ 2 *
—a-t——DBV cg— v Veg +Y v5, (case b) (13)
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cp and ¢ are the concentrations of the minority species and of the neutral
electrolyte, respectively. dc/dt is the change of concentration with time at a
given point of the solution. On the right-hand side, the first term is the change
in the diffusion flux density over a volume element around the point considered
(Figure 4); the second term is the change in convective flux density and ¥, v,
is a source term, taking into account the generation or consumption of the
species considered by a chemical reaction taking place in the diffusion layer.

Note that Egs. (12) and (13) are formally identical. In the following we
will retain only Eq. (13) (excess of indifferent electrolyte), it being under-
stood that the equation can be used also for a single electrolyte (with a
somewhat different meaning of the diffusion coefficient). In the following
sections we will consider cases where the steady state is established and there
are no chemical reactions taking place in the diffusion layer. Equation (13)
thus reduces to

DB VZCB =V VCB (14)
or, written in Cartesian coordinates
d°cg ocs  dc ac ac ac
DB( >+ =+ f)=vx——5+vy—§+vz—3 (15)
0x ay 0z ax ay 9z

It is seen that in the steady state, in the absence of a chemical reaction, the
change in the diffusion flux [left-hand side Eq. (15)] is compensated by the
change in the convective flux (right-hand side). This effect has been discussed
in a more illustrative manner in Section 1.1.

In order to obtain the quantities of practical interest (i.e., the limiting
current or the current density at a given value of the concentration overpoten-
tial, the interfacial concentration, and the concentration overpotential at a
given current density), Eq. (14) must be integrated with the appropriate
boundary conditions (see Section 8, Chapter 1). This requires knowledge of
the velocity field [v = f(x, y, z)]. In a complete ab ovo calculation, this field
can be obtained by integrating the continuity equations and Navier-Stokes
equations which have been presented in Section 2.6 of Chapter 1 for an
incompressible Newtonian liquid [Eqgs. (14) and (15a)]. For a dilute solution,
we can equate the mass average velocity v, to the velocity of the solvent and
thus write Eq. (14) and (15a) of Chapter 1 in the form

Vevs= =0 (continuity equation) (16)
dx Jdv o0z
a(pv) _ 2 : :
o v+ V(pv) + vV (pv) - Vp + pg (Navier-Stokes equation) (17)

where p is the density of the liquid and » the kinematic viscosity (m*s™"), Vp
is the gradient of the hydrostatic pressure, and pg the force of gravity per
unit volume. 3(pv)/dt = p dv/at represents the change of flow velocity with
time at a given point of the solution.
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Equation (17) follows from Newton’s law of motion, expressed as the
principle of conservation of momentum. The latter is a vector and Eq. (17)
involves the gradient of this vector. Thus, the equation has a tensorial charac-
ter. However, we can reduce it to a vectorial form similar to that of the
equation of conservation of matter [Eq. (14)] by writing Eq. (17) in terms of
the components v,, v,, v, of the velocity vector.

Apvy) _ [az(pvx) & (pvy) 62(pvx)]
=v 7t 7t )
at ox ay 0z

a(pvy) 0 a(pvy) 0 a(pvy) 9px

2 + pg. 17
¥ ox 1Y oz dx P8 (172)
3(pvy) _ [az(pvy) 3*(pvy) az(pvy)]
=v 7+ 7+ 3
at ax ay 9z
a(pvy) d(pvy) d(pvy) dp,
- - — o, By 17
U ox by dy 0z dy Py (17b)
3(pv.) _ [az(pvz) 3*(pv.) 62(pvz)]
=V 7+ 7t 2
at ax ay 0z

a(pv,) a(pv,) a(pv;) dp,
-0 -0 -—+

ax Y ay 9z dz P& (17¢)

In Egs. (17a)-(17¢c) the Navier-Stokes relationship has been written in such
a way that the analogy with the equation for the conservation of mass [Eq.
(13)] is particularly striking. We will return to this interesting and important
aspect in Section 4. We will also discuss in that connection the physical
meaning of the various terms of Egs. (17a)-(17c).

In many cases the terms Vp and pg approximately cancel (as in hydro-
statics). We will further restrict ourselves to steady-state conditions where
the velocity field is independent of time, i.e., d(pv)/dt = 0. Equations (17a)
and (17b) thus reduce to

2 2 2
X X x a x a X
V[a (pzz)x) 49 (pzz) )+8 (pzz) )] -0, a(pv )+ s, (pv )+ . (pvy) (18a)
ax ay 0z dx ay az
3*(pvy) _ 8°(pvy) 82(pvy)] dpvy) | d(pvy)  (pvy)
= + + v, 18b
V[ ox> * ay® * az° U ox Oy dy Yoz (18b)

with a similar equation for the z component of v.

The velocity field is obtained by integrating Egs. (17) or (18) with the
appropriate boundary conditions (usually v = 0 at the electrode surface). The
values of v so obtained are introduced into Eqgs. (12) and (13) or (15) and
the latter are then integrated. In spite of the simplified situation considered
in Egs. (15) and (18) (steady state, absence of chemical reaction, elimination
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of the electric field), the integration of these differential equations is, because
of their nonlinear character, a formidable affair, even in the era of the
computer. Additional simplifications are usually made.

2.2. Prandti Boundary-Layer Simplifications

Decisive progress in the integration of the Navier-Stokes equation was
made around 1904 when Prandtl introduced the boundary-layer
simplifications which are today named after him. The leading idea is as follows.
The thickness of the diffusion layer and of the hydrodynamic boundary layer
is very small compared to the dimensions of the interface; i.e., in the example
of Figure 2 8§ and &, are small compared to the width and length of the
electrode. Therefore, the average concentration gradient dcg/dy in the direc-
tion perpendicular to the electrode is very much larger than those in the
directions parallel to the electrode, dcg/dx and dcg/dz. We can thus also write
8%cp/dy® » 9%cp/ox* and 8%cp/dy” » 9°cp/dz>, so that the terms 3°cp/dx> and
8%c/dz in Eq. (15) can be neglected. The same argument shows that
8% (pvy)/3x2, 8%(pvy) /022, 8*(pv,)/ox>, and 6*(pv,)/dz> can be dropped in the
Navier-Stokes equation [Eq. (17a), (17b), (18a), and (18b)]. Furthermore,
some of the terms involving the first derivatives of the concentration and of
the velocity with respect to distance can be neglected.

The validity of the boundary-layer simplifications can be verified a pos-
teriori by assuming them as a first approximation and by checking that the
solution obtained yields very thin diffusion and hydrodynamic boundary layers.

In the next section we will apply the boundary-layer simplifications to
the quantitative treatment of mass transfer to a plane electrode in laminar
flow. Further simplifications arise here, because cg and v are virtually constant
in the z direction perpendicular to the flow and parallel to the electrode.
Equation (15) thus reduces to

8%c ac ac
DBa—yTB=vx3)—C§+v,,-5y—B (19)
For a constant fluid density the momentum equation pertaining to this flow
system, Eq. (18a), reduces to

a"-vx ; v, + v, 20
= e v, —
6y2 ox Y ay (20)

14

Before we proceed with the quantitative treatment of our example, let
us point out that the theoretical approach outlined above is based on differen-
tial equations from which the electric potential has been eliminated (see
Section 5, Chapter 1). The peculiarity of the electrochemical systems is thus
lacking in these equations. The only aspect specific to electrochemistry
arises in the connection of the interfacial flux density with the electrode
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current, which has been discussed in Section 4.2 of Chapter 1 and which will
be recalled occasionally in the next sections. It is thus possible to readily
transpose to electrochemistry the numerous empirical or theoretical mass
transport correlations that have been established in physical chemistry or
chemical engineering at large. In principle, it would suffice to refer to the
pertinent textbooks"'™® and be content here to deal with a few specific
aspects, such as the connection between the interfacial concentration gradient
and electrode current or the experimental methodology for the electro-
chemical determination of mass transport coefficients. Nevertheless, we will
discuss in the following section the theory of some hydrodynamic systems of
particular interest to electrochemists. It should be understood that, for many
flow systems not mentioned here, the nonelectrolytic correlations can be
applied. Finally, we will devote some attention in Section 6 to the theoretically
very complicated case intermediate between the solution of a single electrolyte
and an excess of indifferent electrolyte, where the electric potential cannot
be eliminated from the basic equations and which thus has specifically elec-
trochemical features.

2.3. Mass Transfer to a Plate in Laminar Flow

We consider a plane electrode along which an electrolyte flows in parallel
flow. From the leading edge (x = 0) a diffusion layer and a hydrodynamic
boundary layer develop (Figure 2). The mass transport to the electrode is
calculated by integrating the mass conservation equation by the method
outlined in Section 8.2 of Chapter 1. We assume the situation to be such that
the requirements for the validity of Eq. (19) enumerated in Sections 2.1 and
2.2 (boundary-layer simplifications, ideal dilute solution, steady state, excess
of supporting electrolyte, etc.) are fulfilled with a sufficient approximation.
Equation (19) is thus our starting differential equation. The boundary condi-
tions for its integration depend on the experimental situation. We consider
the case of an electrolysis with a prescribed, constant interfacial concentration
of the species B consumed (or generated) at the electrode.t Outside of the
diffusion layer there is a uniform concentration, cg 0. The boundary conditions
are

x=0: CB = CBo (21a)
y = 00: CB = Cpyo (21b)
y =0: CB = CB.e (21¢)

The profiles of the velocity components v, and v, in the neighborhood of the

T This case is realized at the limiting current or, more generally, in a potentiostatic experiment
(i.e., at a constant electrode potential, independent of x) in the absence of any overpotentials
other than concentration overpotential. For a more detailed discussion of the boundary condi-
tions the reader is referred to Section 8.1 of Chapter 1.
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electrode are obtained from the integration of the Navier-Stokes equation
(20) together with the continuity equation:

0. , v,

dx dy =0 (22)

We consider the case where the hydrodynamic boundary layer is thin
compared to the distance between the electrodes. That is, there is a region
outside the boundary layer where the flow velocity v, is uniform. We further
note that the flow velocity is zero at a stationary solid interface because of
the friction forces (see beginning of Section 1.1). Therefore the boundary
conditions for the integration of Eqs. (20) and (22) are

x=0: Uy = Vo (23a)
y=00: v,=10g (23b)
y =0: v, =0 (23¢)

The main difficulty in the integration of a set of equations such as (19), (20),
and (22) is their partial differential character involving two spatial coordinates,
x and y. However, it is often possible to reduce such partial differential
equations to ordinary ones by introducing a dimensionless group, also called
similarity variable. It combines the effect of the two independent variables x
and y, thus reducing the number of variables of the problem (see also Section
3). With an appropriate choice, the dependent variables (v,, v,, cg) may
become functions of the above similarity variable only.

The starting point is the generally accepted fact that in such boundary
layers the velocity and also the concentration profiles at various points along
the plate are similar. Therefore, the velocity and concentration at any point
along the plate should be a unique function of a normalized wall distance
n = y/8. In order to determine how the boundary-layer thickness § depends
on the relevant parameters, we make an order-of-magnitude analysis of the
momentum equation (20). If we linearize v, = f(y) the derivative dv,/d, is
equal to v,_5/8, and this is the order of magnitude of dv,/dy. Similarly, dv,/dx
is of the order of (vo — vx)/x = vo/x (v, is small as compared to v, over most
of the boundary layer). We may thus write Eq. (22) in the approximate form:

2420 (24)
x O
from which we obtain
Vo6
Uy—s = = (25)
X

v, is also of this order of magnitude.

+ The reader interested in a detailed treatment of the flat-plate problem is referred to Schlichting’s
book.?? An approximate solution of the mass transport problem for the flat plate using the
von Karman-Pohlhausen integral method has been given by Wranglen."”
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Finally, using these orders of magnitude, the analysis of the momentum
equation yields

or

5~(2) (26)
With this expression our similarity variable becomes

n = y(vo/vx)"? 27)

We now introduce it into the mass transfer boundary-layer equation (19) in
order to reduce it to an ordinary differential equation. We further define a
dimensionless concentration

Cp = -2 LBe (28)

CB,0 — CB,e

Finally we profit from the fact that the solution of the flow problem of the
flat plate is known. We can express the velocity components v, and v, in terms
of a function f of the similarity variable n:

Uy = Uof (29)
vy = oo 22) s (r - L"fdn) (30)

where Egs. (29) and (30) satisfy the continuity equation.
With the definition of the similarity variable n [Eq. (27)], the derivatives
of the concentration in Eq. (19) become

éc _ ,

—o =~ (eno = cp)Ch (31a)
ac vo\ /? ,

2= (%) can-enaCh (31b)
dcp -1_-1 ”
3_)/2 =DV X (CB,O - cB,e)CB (310)

where the primes denote differentiation with respect to n. With Egs. (28)-(31c¢)
inserted into (19) the mass transport boundary-layer equation becomes

n
;;—%chgj fdn =0 (32)
0
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where Sc = v/Dg is the dimensionless Schmidt number. With the boundary
conditions

Csg =0, atn =0 (33a)
Cs=1, atn > (33b)
the complete solution of Eq. (32) is

J e[ =5 (], ran) an]an

Cs=—% Sc n (34)
(o[ S ([an)en o

As already mentioned earlier the hydrodynamic problem of the plate has
been solved and the generalized velocity profile f(n) is available in the form
of tables.*®*'® This allows Eq. (34) to be integrated numerically. Figure 7
shows the concentration profiles obtained by Eckert and Drewitz?” in
dimensionless form for different values of the Schmidt number.

As one can see in Figure 7 the diffusion layer becomes thinner with
increasing Schmidt numbers. This is not only the case for the flow along a
plate but is true for other geometries as well. We will discuss this in more

detail in Section 4. For the moment, let us note that at high Sc values (as

Cs

1.0

0.8

06+

041

0.2+

|
0 2 4 6 n

Figure 7. Dimensionless concentration profiles at the plate electrode, Parameter is the Schmidt
number. The curve for Sc = 1 also represents the velocity profile.
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they prevail in aqueous solutions) the thickness of the diffusion layer is much
smaller than that of the hydrodynamic boundary layer. The diffusion layer
lies entirely within a practically linear part of the velocity profile, and therefore
the latter can in our calculation be approximated by the first term of its Taylor
expansion in the dimensionless distance 7:

)
fy=[L2]  xq 39)
m Jy-0
The value of the slope of the velocity profile at the origin is 0.332%"
f(n) =~ 0.3327 (36)

With this approximation the concentration profile (34) becomes
_ Joexp (=2.77 x 107 Sc n°) dn
B [Cexp (=277 x 102 Sc n°) dn

The integral in the denominator can be expressed in terms of a gamma function
if we make the following substitution:

t=277x10"2Scq’ (38)

@37

Then

J exp (—2.77 x 1072Sc n’) dn = (2.77 x 107> SC)_I/S%I 172 exp (=) dt
0 0

39)
With
%w (" exp (~1) dt = 3TG) = T6) = 0.893 (40)
Eq. (37) becomes
Cs = 0.339 8¢ Lﬂ exp (=277 x 1072 Sc n°) dn 1)

Frequent use of this kind of approximation is made in the calculation of
concentration profiles in laminar convective diffusion systems. It can be applied
if the diffusion layer is thin compared to the hydrodynamic boundary layer,
which is the case at high Schmidt numbers. The possibility of replacing the
generally complicated velocity profiles by a simple function (in many cases a
straight line) allows us to simplify the convection terms in the conservation
equation and to make its integration considerably easier.

Let us now evaluate the interfacial flux density Ny, of the species B
which is the quantity of practical interest in our problem, since it is related
directly to the electrolysis current density. We can disregard convection
because at a solid electrode surface the interfacial flow velocity is zero, and
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therefore the contribution of convection to mass transport vanishes. The
diffusion flux is [Eq. (1)]
aCB
N = Naa =D (22)
B, dift 2\%y /. ¢))
or in terms of our dimensionless variables Cg and  [Egs. (27), (28), and (31b)],

d
Ng. =—-Dg 5’;’ (cBio— ¢.e)(Ch)e (42)

The dimensionless concentration gradient at the surface is obtained by

differentiating Eq. (34):
e ([ ),

J, e[ =5[], ran) én] a

The gradient depends on the Schmidt number in a complicated way. However,
we can again simplify the problem by means of the high-Schmidt-number
approximation. We replace Eq. (34) by (41):

(43)

(Ch)e = 0.339 Sc'/? [exp (=2.77 x 1072 Sc 7°)]. (44)
For the interface, n = 0 and the term in parentheses is 1. We get
(Ch). = 0.339Sc'? (45)
Introducing (45) into (42),
Na.. = —0.339 Dy Sc"*(cpo — ca.) g—;’ (46)

and finally, taking into account the definition of n [Eq. (27)] and of the
Schmidt number, Sc = »/Dg, we get

Ng,. = —0.339(cpo — cB,e)D,za/3V_l/6v(1,/2x_1/2 47)

Equation (47) gives the mass flux density toward the electrode. Ng,. is a
local value; it decreases downstream with the square root of the distance from
the leading edge. This behavior is, of course, linked with the fact that, due
to friction, convection becomes more and more ineffective downstream—a
fact we have already discussed qualitatively in Section 1.1. The result of our
calculation is also in accordance with the Nernst model (see Section 1) in that
the mass transfer rate is proportional to the concentration difference between
the bulk and the interface. We can therefore calculate the thickness of the
Nernst diffusion layer § and the mass transfer coefficient k, from (47), (1),
and (5):

8 =2.95(Dg/v)*(vx/vo)"?;, k4 =0.339Dg(v/Ds)"*(vo/vx)"/* (48a)
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Corresponding to the decrease of the flux density the thickness of the diffusion
layer increases downstream.

As pointed out previously, these results are valid for higher Schmidt
numbers. At lower values of Sc the dependence of Ny, 8, and k; on Sc is
more complicated. However, the influence of Scis not very large. For instance,
at Sc = 1 a good approximation for § and k, is@?

8 =3.01(Ds/v)(wx/vo)’?;  ka = 0.332Dg(v/Dg)"(vo/vx)"*> (48b)

Let us finally calculate the average flux density Ny, over a plate of length /:
!

Ng. = 1“f Ng.dx (49)
0

With the expression for the local flux density (47),
A_, _0 678(6‘30_ CBe)D2/3 -1/6 1/21—1/2 (50)

We have assumed at the beginning that species B are consumed in an
electrochemical reaction at the interface. The treatment of the problem so
far has had no particular electrochemical features due to the assumption of
an excess of indifferent electrolyte. We can now use the nonelectrolytic solution
of the mass transport equation to calculate the average electric current density
at an electrode with a constant interfacial concentration:

j—-_— ZBFNB,G (51)
Introducing (50) into this equation,
j =—0.67825F (c 0 — cs.)DF v 0y 1712 (52)

(We can of course obtain the local current density j exactly the same way
by multiplying Ng . by zgF).
The total current I at an electrode of length / and width b is given by

I=jlb (53)
I = —0.6782z5F (cp o — cs..)DY v "0 %12 (54)

Note that Eqs. (52) and (54) apply only to the case of the discharge of cations
of charge zg at the cathode from a solution with an excess of supporting
electrolyte (see Sections 1.2 and 5.4, Chapter 1). For more complicated
electrode reactions (including redox processes) one has to use instead of Egs.
(51) and (1) the more general equations (64) and (31) of Chapter 1. For a
metal deposition from a binary electrolyte, Eq. (52) becomes [because of Eq.
(65) of Chapter 1]

= —0.678(1 — t) 'zpF(cpo — cp.)D* 3™ Vop/2 712 (52')

where D is the diffusion coefficient of the neutral electrolyte.
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Let us complete this section by a brief outline of the solution of the
flat-plate problem for the case of a uniform electrode current density. In
Section 8 of Chapter 1 the possibility of realizing such a condition was
discussed. Usually it corresponds to a constant-current experiment well below
the limiting current. In this case, the interfacial concentration is the quantity
of practical interest since it allows us to calculate the electrode potential. The
situation regarding the hydrodynamics and mass transport mechanisms in the
boundary layer is exactly the same as in the example treated above. Therefore
we have to solve the same set of differential equations [(19), (21), (22)]. The
only difference concerns the boundary condition (21c): Instead of a constant
interfacial concentration of B we now have a constant interfacial concentration
gradient which is given by the imposed current density. Thus, the new boun-
dary condition is

dc B

—2 = —j(zgFDg)”" aty=0 (55)
dy

For the solution of this problem we define the dimensionless concentration as

Cs = £B (56)

CB,0
With this definition, the dimensionless differential equation and the boundary
condition describing the situation far from the electrode have the same form
as in the previous treatment [Eqgs. (32) and (33b)]. The dimensionless form

of boundary condition (55) is
Ch = —j(zsFDgcpo) (vo/vx)™?  atn =0 (55")

With the linear approximation for the dimensionless velocity profile (35)
(high Schmidt number), the integration of Eq. (32) with boundary conditions
(33b) and (55') yields the following concentration profile:

—1/2 a0
Cs = 1 + j(z5FDgcpo) " (:-;) J exp (—2.77 x 102Scn®) dn  (57)

The integral can be split into two parts, one of which can be expressed in
terms of a gamma function [see Eqgs. (38)—(40)]. Equation (57) then takes the
form

-1/2
Cs =1+ j(zFDgcpo) " (3)%)
V.

X [2.951 Sc™1/3 —J

0

n
exp (—2.77 x 1072 Sc n?) dn] (58)

Since we wish to calculate the interfacial concentration of B we have to
evaluate the integral in (58) for n = 0. Replacing the integrand by its Taylor
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expansion about the origin yields
n
J' exp (—2.77 x107>Sc ) dn = 7 (59)
0

Inserting (59) into (58), setting n = 0, and remembering the definitions of Cy
and Sc, we finally obtain for the interfacial concentration of cg:

CBe = Cpo + 2.95j(z5F) ' Ds? 31" 051 2512 (60)

Equation (60) describes the variation of the interfacial concentration of
species B with the relevant parameters for a given electrode current density.
In particular, it shows that this concentration varies along the electrode. For
example, for a cathodic reaction the current density has a negative sign (Section
5, Chapter 1) and cg,. can be shown to decrease downstream. This result
corresponds to the decrease in current density along the plate in the constant-
potential experiment [Eq. (47)]. In the latter case (constant-potential) the
increasing depletion of the diffusion layer results in a decrease of the interfacial
flux density, whereas in the former case (constant-current) a decrease of the
interfacial concentration is needed in order that the driving concentration
gradient at the interface can be maintained constant.

3. Dimensional Analysis

3.1. Principle

When the hydrodynamic conditions are complex, a complete calculation
starting from the basic equations is too cumbersome or not possible even in
the computer era. This applies, in particular, to the turbulent-flow regime
(see Section S). Experimental or semiempirical correlations then have to be
used. A great help in establishing them is provided by dimensional analy-
sis.?*?® The leading idea is as follows. Any equation that describes properly
a physical phenomenon must be so constructed that calculations made with
it are independent of the size of the fundamental units which have been
arbitrarily introduced by man to measure mass, length, and time. The equation
must remain valid independently of whether we have expressed the length in
millimeters or kilometers, the time in seconds or centuries. Consequently, the
terms of a physically significant relationship must be homogeneous with respect
to the fundamental units. In contrast to the derived units (such as velocity),
the fundamental units are those that cannot be reduced to other units and
are defined by comparison with a standard. In mechanical or mass transport
problems the fundamental units are those of mass (or amount of substance),
length, and time.

Let us consider as a simple example the period T of a swinging pendulum.
We may expect that the period depends on its length / (m), mass m (kg), and
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acceleration of gravity g (ms™>):
T =f(m]lzg) (61)

There is only one way of writing this equation if it is to be homogeneous;
namely,

T =K(l/g)"? (62)

It can be easily seen that the mass does not enter into the equation at
all; otherwise the period of the pendulum would depend upon whether we
express the mass in g or kg. The value of the numerical constant K remains
unknown. But, in principle, it can be determined by a single experiment
whereas the experimenter who would have approached our problem without
the above argument would have had to carry out an incomparably larger
number of measurements to obtain Eq. (62). Of course, in the present example
it would have been easy to derive expression (62) from the basic equations
of mechanics.

The principle which allows us to make a far-reaching statement regarding
the relationship in which we are interested will remain valid for any compli-
cated differential equation that we may be unable to integrate. Of course, in
order to apply dimensional analysis one must first know the variables in play.
However, we hardly ever approach our problem without some prior know-
ledge. Consciously or unconsciously, we make use of a lot of experience, both
ours and that of the generations before us. In mass, heat, and momentum
transport the fundamental differential equations, describing the phenomena
involved, are well established and the relevant variables are thus determined.
Indeed, the applications of dimensional analysis are particularly popular in
these fields.

3.2. Dimensionless Groups

Let us now assume in a general way that we know the variables

as, as, ..., a; on which a quantity a; depends, and let us write the relationship
connecting them in the implicit form:
fla, az...,4)=0 (63)

It is shown in dimensional analysis that if this equation is independent of the
size of the fundamental units, it must be possible to write it in terms of new

dimensionless variables A, A,, ..., A;

F(A, A, ...,A)=0 (64)
where

A;=af"azz - aj (65)

The new variables A; are obtained by multiplying the original variables a;
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Table 1
Dimensional Matrix for Mass Transport to
a Plate in Laminar Flow

M L T

(a) 8 62
.. 1 -2 -1
CB,0 — CB,e 1 -3 0
l 0 1 0
Vo 0 1 -1
Dy 0 2 -1
v 0 2 -1

with each other and raising them to some power (which may be positive,
negative, or zero).

The only condition is that the group thus formed is independent of the
size of the fundamental units, i.e., is a pure number. If we write the dimensional
formula of a; in the classical way (assuming that the fundamental units are
those of mass M, length L, and time T),t

a; = MSLATY (66)
The condition that A; is dimensionless requires
Z mya; = 0; Z m,'iﬂj = 0; Z miry; = 0 (67)
] 7 7

The «;, B;, ¥; of all “dimensional” quantities a; can be written in the form of
a matrix called a dimensional matrix (Table 1).

3.3. = Theorem

An essential question is: How many dimensionless groups A; have to be
introduced instead of the original variables in order to describe the problem
entirely? According to the 7 theorem the necessary number r of dimensionless
variables is equal to the number n of the original variables a; minus the rank
p of the dimensional matrix: r = n — p. In the majority of cases, the rank of
the dimensional matrix is equal to the number of fundamental units, which
is three in mass transport problems—i.e., r = n — 3.

Note that the 7 theorem determines only the number of dimensionless
groups. In egs. (67) the a;, B;, and v, are known but not the m, For each
dimensionless group A; to be introduced, the number of unknown exponents
is equal to »n and is usually larger than the number of Eqgs. (67) which is equal

+ The exponents a, B, v indicate how a derived quantity changes when the size of the fundamental
units is changed. For example, for the density [p] = [ML ] the unit of p becomes 10 times
larger if the unit of the mass is increased by a factor of 10; but it becomes 1000 times smaller
if the unit of length is made 10 times larger.
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to the number of fundamental units. Therefore, one or more exponents m;
are to be set arbitrarily. The result is that the dimensionless groups for a
given problem can be usually selected in a great variety of ways. Their choice
is governed by considerations of convenience. For example, it is expedient
to have dimensionless groups with m; values as small as possible. Let us now
illustrate the application of dimensional analysis by two examples from the
field of mass transport. We will consider mass transport excluding migration
in the remaining part of this section; N . denotes an interfacial flux density
in which migration takes no part.

3.4. Application Examples

Case a: We consider the case of electrolysis with linear diffusion
(without convection and migration) to a plane electrode (See section 8, Chapter
2). If the concentration difference cpo — cp,. between bulk and interface is
fixed (controlled-potential experiment), we ask for the variation of the inter-
facial flux density Ng . with time . If Ng . is fixed (controlled-current experi-
ment), we ask for the variation of cgo — cp,. With time. Let us assume that
the edge effects are negligible and the diffusion layer can extend indefinitely
into the interior of the solution (no influence of a counterwall). Thus, there
is no characteristic length involved. Since we ask for the flux density at a
certain spot (located at the interface), Ng . is not a function of any length.
The same is true of cgo — cp.. We further know the fundamental differential

equation of the problem 5
des _py ey 68)
ot B3y (
which involves the diffusion coefficient Dg. We may thus conclude that there
are four relevant variables: Ng . [ML 2T, ¢go — ¢p.. [ML™"], ¢ [T], and Dg
[L>T™"]. According to the 7 theorem we need 4 — 3, i.e., only one dimension-
less group A to describe the problem:

A = Ngi(cpo—cpe)™t"™Dg* = K = const (69)

Since we have only three equations (67) and four exponents m; one of them
must be set arbitrarily. For the sake of simplicity we write m; = 1. We thus have

1+m2=—2—3m2+2m4=—1+m3—m4=0 (70)
A =Ng.(cao—cp.) 't°D5"? =K (71)

If we remember that Ny, is proportional to the electrolysis current
density, it is seen that Eq. (71) is identical with Cottrell’s relationship (control-
led-potential) and Sand’s equation (controlled-current) [Egs. (60) and (163)
of Chapter 2]. Dimensional analysis thus enables us to derive in a very simple
way these two important relationships, except for the numerical value of K.
This could, in principle, be determined by a single experiment. Or it can be
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obtained through the much more difficult integration of Eq. (68). It turns out
that K is =~ /2 in the first case, and 37'/? in the second case.

Case b: Our second example is the flat electrode in parallel flow con-
sidered in Section 2.3. We are interested in the average interfacial flux density,
Ng.., which establishes itself at a given value of the concentration difference
B0 — Cp.. between bulk and interface. N . is not a function of the coordinates
X, ¥, z and thus we need not take these variables into account. The problem
may still depend on certain characteristic lengths, which in our case could be
the distance from the counterelectrode and the width and length of the working
electrode. If the counterelectrode is sufficiently far away, its distance does
not play any role and the electrode width can also be left out for reasons of
symmetry provided that the width is sufficiently large. We thus retain only
the length / of the working electrode in the direction of the flow.T Inspection
of the differential equations for mass and momentum transport [Eqgs. (19)
and (20)] indicates that as further variables we have the given cgo — cp . and
the given flow velocity v,, the diffusion coefficient Dy and the kinematic
viscosity ». We thus have six variables, the dimensions of which are shown
in the dimensional matrix of Table 1. According to the 7 theorem, we need
6 — 3, i.e., 3 dimensionless groups of the form

A = 1\7]';‘:‘21 (CB,O - CB,e)mizlmi3Ugl‘4Dgisl/mi6 (72)

We have only three Egs. (67) to determine the six exponents m; involved in
each of the three A;; i.e., we have to set arbitrarily the values of three
exponents for each A;. We select three variables as the main ones and arrange
the dimensionless groups in such a way that each of them contains only one
of the main variables and this with the power 1. We choose as main variables
Nz, vo, and v. We thus set

miu=1, myu=me=0 (for A,)
Mo =My =0, my=1 (for A,);
m3; =m3s =0, mze=1 (for A3)
Applying Egs. (67) we now obtain
A1 = Ng.l/Dg(cs. — cso)=Sh  (Sherwood numbert) (73)
A, = vol/v = Re (Reynolds number) (74)
Az =v/Dg=Sc (Schmidt number) (75)

1 The dependence of Ny, on [ is also suggested by the general experience of convective mass
transport (change of thickness of the hydrodynamic boundary layer along the surface; see
Section 1). If one is uncertain about whether a variable is relevant or not, it is safer to include
it and to accept the risk that one has unnecessarily increased the number of dimensionless
groups by one.

$In particular, in the older literature Sh is often called the Nusselt number for mass trans-
port(s’zg’so’ and denoted by Nu*. Note further that in Eq. (73) 1\-13,6 is the interfacial flux density
excluding migration.
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The Sherwood number can be regarded as a normalized (or ‘‘adimensional-
ized”’) flux density or mass transfer rate, the Reynolds number as a normalized
(or “adimensionalized”’) flow velocity. The meaning of the Schmidt number
will be discussed in Section 4.3.

Instead of the relationship connecting the six original variables

f(NB,e’ (CB,O - CB,e)’ Do, l, v, DB) = 0 (76)
one can now write
F(Sh,Re, Sc) =0 (77)

The function F() is not known better than f(), but it involves only three
variables instead of six. In the case of laminar flow along a plate, the functions
f() and F() can be obtained by integrating the fundamental equations.
Rewriting Eq. (50) in terms of Sh, Re, and Sc we have

Sh = 0.678 Re'/? Sc¢'/? (78a)

However, in turbulent flow the basic equations are not amenable to an
analytical solution and the relationship connecting the variables has to be
determined experimentally (see Section 5). Equation (77) is then very much
superior to Eq. (76).

Note that we could have described our problem by many sets of three
dimensionless groups other than Sh, Re, and Sc. But the latter three are
those most commonly used in convective mass transport. Other frequently
employed dimensionless groups will be mentioned later in the corresponding
sections throughout this volume.

In the above example it may happen that another characteristic length,
for example, the interelectrode distance /', plays a role. Re and Sh can then
be formed with / or /. In order to describe the problem entirely we have to
introduce an additional dimensionless group such as I'/l.

We may note that Eq. (78a) yields an average value of the Sherwood
number. We can also define a local value

Sh = NB,ex/DB(CB,e - CB,o) (78b)
which is then given, for Sc = 1, by
Sh = 0.332 Rel/*Sc'”? (78¢)

where Re, is the local Reynolds number formed with the distance from the
leading edge x.

3.5. Concluding Remarks

By and large, it can be said that dimensional analysis provides, on a
broad basis, a powerful approach to physical problems. Its general applicability
is both its strength and weakness. Dimensional analysis can be used in any
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problem, provided the relevant variables and their dimensions are known.
However, it yields only a partial solution. The functional relationship between
the variables remains basically unknown. Yet the use of dimensionless groups
has decisive advantages that we will briefly review.

(i) The diminution of the number of variables facilitates drastically the
experimental determination of the desired relationship. This advantage is the
more impressive the smaller the number of dimensionless groups to be
introduced.

(ii) The smaller number of variables allows a much simpler graphical
representation of the experimental data. Dimensional analysis puts order into
our measurements. Without this structuring principle Reynolds would never
have been able to achieve a neat correlation of his results.

(iii) The dimensionless groups are very useful in modelling. Consider for
instance in our example of the flow along a plate, a model and a scaled-up
version with different values /; and /, of the characteristic length but with
flow velocities so adjusted that v,/v, = I,/1,. The Reynolds numbers are then
the same in both cases. At constant Sc, the Sherwood numbers are also the
same. It is thus possible to predict the behavior of the scaled-up version from
that of the model without having to determine the whole correlation between
Sh, Re, and Sc. The two systems are then said to be similar. The method of
modelling is widely used in certain branches of engineering. Its theory and,
more generally, the introduction of dimensionless groups are often derived
from the principle of similitude rather than from that of dimensional analysis.
In reality, the two methods are only different aspects of one and the same
basic idea and are essentially equivalent. In the derivation of Section 2.3 we
have made use of the method of similitude.

(iv) The dimensionless groups are most convenient when one wishes to
make use of the analogy between mass, heat, and momentum transport which
will be discussed in the next section.

A more detailed treatment of the method of dimensional analysis is to
be found in a number of monographs and textbooks.**® An early discussion
of the application of the method to electrochemistry has been made by Agar”’
and Ibl.®*** More recently, it was used in connection with the optimization
of electrochemical systems.®"

4. Analogy between Mass, Heat, and Momentum
Transport

4.1. General Aspects

The equation for the mass flux density Ng is an ideal dilute solution has
been recalled in Section 2.1. A relationship quite similar to Eq. (10) holds
for the heat flux density q (which is defined quite similarly to Ny as the vector
that indicates the direction in which the heat flows and the amount of heat
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flowing, divided by time and area):
=—a V(pc,T) + v(pc,T) (79)

The product of fluid density p (kg m™>), specific heat ¢, (Jkg ' K™"), and
temperature 7, i.e., pc,T, represents the amount of energy per unit volume
and can be regarded as the concentration of energy, analogous to cg (which
is the concentration of species B). The first term on the right-hand side of
Eq. (79) is the heat flux by conduction, analogous to the diffusion flux. It is
proportional to the gradient of the “concentration” of energy, the proportion-
ality factor being a which is the thermal diffusivity. The second term on the
right-hand side represents the heat transport by convection, analogous to the
term cgv of Eq. (10).

In the case of momentum transport, the analogy is complicated by the
fact that the momentum myv is a vector, in contrast to the amount of heat or
of matter. To work out the analogy we have to consider the components of
momentum along the three spatial coordinate axes (mv,, mv,, mv,), which are
scalar quantities. In a way this corresponds to a situation that we would have
in the case of mass transport, three different species (where, however, these
concentrations may be independent, whereas v,, v,, and v, are related through
the continuity equation (16). The momentum flux density (kgm™'s?) is
defined similarly to Ng: 7, is a vector that indicates the direction in which the
x component of momentum flows at a given point of the fluid and that gives
the amount of momentum flowing, divided by time and area (similar definitions
holding for 7, and 7,). Physically, 7, has the following meaning. We consider
for a given point a surface element represented by the vectort dA. The scalar
product 7, - dA for that point gives the x component of the friction force
acting on that surface element. Similarly, 7, - dA and 7, - dA give the y and
z components of that force. The momentum flux density (r,). at the electrode
solution interface corresponds to the x component of the shear stress acting
on the electrode.

The relationships for 7,, 7,, and 7, are analogous to those for q and Npg.
For example, for 7, we have

7. = —v V(pv,) + (pv)v (80)

pv, (amount of momentum per unit volume) can be regarded as the concentra-
tion of the x component of momentum. The first term on the right-hand side
is the momentum flux due to the viscous drag (friction) and is analogous to
diffusion. It is proportional to the gradient of the “concentration’ of momen-
tum, the proportionality factor being the kinematic viscosity ». The second
term on the right-hand side represents momentum transport by convection
and is analogous to the term cpv of Eq. (10).

t The vector dA is perpendicular to the surface element and its intensity is equal to the area of
the element.
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The second terms on the right-hand side of Egs. (10), (79), and (80)
represent macroscopic transport processes, in which the transported quantity
is dragged along by the hydrodynamic flow. In contrast to this, the first terms
correspond to molecular transport processes: diffusion, heat conduction, or
momentum transport by viscous drag. They are equalizing processes (Aus-
gleichvorgdnge), due to molecular motion. Because of this random movement
the particles are exchanged between the various parts of the fluid. The
exchanged particles carry with them their properties: amount of energy (which
is related to temperature), momentum (which is related to flow velocity), and
chemical potential (which is related to molar concentration). These properties
are thus also exchanged between adjacent parts of the fluid and the result is
a tendency to render uniform, over the whole fluid, the distribution of these
properties; i.e., to render uniform the molar concentration, the temperature,
and the flow velocity. The macroscopically observable equalizing processes
through which this is achieved are the aforementioned phenomena of diffusion,
heat conduction, and viscous drag. The corresponding kinetic parameters are
Dg, a, and v; their meaning will be discussed further toward the end of this
section. Note that all of them have the same dimension L*T™". This underlines
again the analogy of mass, heat, and momentum transport.

A further cornerstone of the analogy structure is provided by the conserva -
tion law which holds for each of the three transport phenomena considered.
Application of the conservation principle (see Section 2.6, Chapter 1) to an
infinitesimal volume element yields, in the case of mass transport, Eq. (13)
and, in the case of momentum transport, Eq. (17a) (which is the Navier—
Stokes equation written for the x component of momentum). In the case of
heat, an energy balance for an infinitesimal volume element yields (for an
incompressible fluid) the similar equation

dpe,T) _

2= = a V*(pc,T) = v- V(pc,T) + @ (81)

The left-hand sides of Egs. (13), (81), and (17a) represent, for a given point
of the fluid, the change with time of the concentration of a species, of energy,
or of momentum, respectively. The first and the second terms on the right-hand
sides of these equations correspond to the molecular and convective transport
modes, respectively. The third term on the right-hand sides represent a source
or a sink. In the case of Eq. (13) (mass transport) it corresponds to the
generation taking place in the volume element considered. In Eq. (81) the
dissipation term ® represents the amount of heat generated or consumed
(divided by time and volume), due for example, to a chemical reaction or to
the ohmic effect of the passage of an electric current through the fluid. Finally,
in Eq. (17a) the source term is the x component of the resultant external
forces acting, per unit volume, on the fluid at the point considered. In the
most usual case where the external forces reduce to the hydrostatic pressure
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and the gravity force, the source term is given by,—dp,/dx + pg., as indicated
in Eq. (17a). Similarly, the corresponding term in Eq. (17b) represents the y
component of the external forces. The meaning of the source term in the
Navier-Stokes equation can be derived from Newton’s law of motion applied
to a volume element and expressed in terms of the forces being equal to
change of momentum with time.

It should be pointed out at this stage that the perfect symmetry between
the basic equations for mass transport and those for the other transport
phenomena applies only to ideal dilute solutions. The situation is much more
complicated if one has to consider the conjugate mass fluxes discussed in
Section 2 of Chapter 1 or the interfacial velocities mentioned in Section 5.4
of Chapter 1. However, in electrolytic transport one uses in most cases the
simpler equations (12) and (13) (or their further simplified versions). Further-
more, one usually assumes Dy and v to be constant within the boundary
layer. Under these circumstances not only the basic differential equations are
formally the same for mass, heat, and momentum transport, but also the
solution of these equations is the same in the three cases, provided that one
considers corresponding conditions, in particular, equivalent boundary condi-
tions. This is of great practical importance because it allows us in many cases
to predict convective mass transport in electrolysis from calculations or
measurements of heat and momentum transport (i.e., from heat exchange
rates and shearing stresses) or vice versa.

Let us first demonstrate the benefit of the analogy argument in an example
of a theoretical treatment.

4.2. Application Example for a Theoretical Approach

Let us consider as a concrete example mass transport to a plate in
longitudinal laminar flow. The basic differential equations for mass transport
have been integrated in Section 2.3. For a constant interfacial concentration,
steady-state conditions, and Sc = 1, one obtains the following relationship for
the local mass transfer coefficient k; and the equivalent thickness of the
diffusion layer at distance x from the leading edge [Eq. (48b)]:

k, = 0.332Dgs(v/Ds)(vo/vx)"?; 8 = 3.01(Dg/v)"*(vx/vo)"?
(82)

Let us now consider the heat exchange at a plate in laminar flow under
the same hydrodynamic and geometric conditions as those assumed in Section
2.3. To further preserve the symmetry of the two problems, we will regard
the generation or consumption of heat within the system as negligible [i.e.,
® = 0 in (81)] just as we assumed there is no chemical reaction in the solution
in deriving Eq. (82) [i.e., v&, = 0 in Eq. (12) and (13)]. The fundamental
differential equation for heat transport [Eq. (81)] is formally identical with
that for mass transport [Eqgs. (12) and (13)], with pc,T replacing cg and a
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replacing Dg. To the mass transfer at the interface (i.e., the amount of matter
removed from or supplied to the liquid phase) corresponds the heat exchanged
between the plate and the fluid. The first is given by the interfacial mass flux
density N, the second one by the interfacial heat flux density, g. J m >s™?).
Dividing through by the difference between the temperature T in the bulk
of the fluid and that at the interface 7, we obtain the heat transfer coefficient:

h=4q./(To—T.) (83a)

which is similar to the mass transfer coefficient k;. Near the interface a
temperature boundary layer develops with a temperature profile similar to
the concentration profile in the diffusion layer (Figures 1 and 2). Let the
temperature in the bulk of the fluid (7)) and that at the plate (T,) be maintained
at a given constant value. This corresponds to the boundary condition ¢g = cg
for y =00 and cg = ¢, for y = 0 in the mass transport problem of Section
2.3. If the bulk of the fluid and the plate are maintained at given constant
temperatures (T’ = T, for y = 00, T = T, for y = 0), the boundary conditions
correspond to those considered at the beginning of Section 2.3. Therefore,
not only the fundamental equations (79), (81), (10), and (13) but also the
boundary conditions are formally the same. The integration of Eq. (81) (with
the Prandtl boundary-layer simplifications; see Section 2.2) yields the same
result as that given by Eq. (82):

h =0332a(v/a)(vo/vx)"?; &1 =3.01(a/v)(vx/ve)"'? (84)

h plays the same role in heat transfer as k; in mass transfer.

Strictly speaking the quantity corresponding to k, is not 4 but rather k.
which is defined as the ratio of g, to the driving heat concentration difference
between bulk and interface pc,(To — T,)

k. = CIe/PCp(To -T,) = h/PCp (83b)

k. and k, have the same dimension, namely, that of a velocity, m s '. However,
traditionally in the heat transfer literature, h is more commonly used than k.
but, in principle, they are equivalent.

We have chosen the equation analogous to Eq. (82) [(48b)] which is
valid for Sc = 1 because the dimensionless group Pr which corresponds to the
Schmidt number Sc in heat transfer (Pr = v/a, see later) is of the order of 1
rather than 1000.

o is the thickness of the equivalent temperature boundary layer, approxi-
mated by a straight line for the temperature profile, analogous to that of the
Nernst diffusion layer (Figure 5).

Obviously, we can turn the problem around: If we find in the literature
the solution of the heat transport equation (81) yielding Egs. (84) we can
deduce from this, without any further calculations, that Egs. (82) hold for
mass transport with corresponding boundary conditions. This is of great
practical importance because (especially in the past) more correlations have
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been established (theoretically or experimentally) for heat than for mass
transfer. An excellent review of heat conduction in a great variety of situations
has been given by Carslaw and Jaeger® ?_ while a comprehensive compilation
of correlations for convective heat transfer are to be found in the books by
McAdams®? and others.®*®

Finally let us discuss, from the viewpoint of analogy, the momentum
transport at a plate under the hydrodynamic conditions considered in Section
2.3. The laminar flow along the x axis, parallel to the plate, exerts on the
plate a viscous drag, or friction force in the x direction (also called shear
stress). The force per unit electrode area, 7,, is equal to the amount of
momentum (along the x axis) transferred from the fluid to the wall, per unit
electrode area and per unit time. It corresponds to the amount of mass, or
of heat, transferred at the interface in the case of mass or heat transport,
respectively. It is equal to the interfacial flux density of the x component of
momentum (mv,): 7, = J.. Note that we are dealing with the component of
momentum along the axis parallel to the electrode (i.e., the latter is pushed
in the direction parallel to itself), but the flux of momentum goes in the y
direction, perpendicular to the plate, just as in the case for the fluxes of mass
and heat, N, and q.. The driving force for N is the molar concentration
difference cgo — cg,. over the diffusion layer, and, similarly, the driving force
for the flux of momentum is the difference in the momentum concentrations
pv over the hydrodynamic boundary layer, which develops near the plate,
with a velocity profile similar to the concentration profile (Figures 1 and 2).
However, whereas cg. can have any value, the interfacial flow velocity at a
stationary wall must be zero because of the friction forces (see Section 1.1),
and the driving momentum concentration difference reduces to pvo, where
vo is the velocity outside the boundary layer. Therefore, in order to obtain a
quantity corresponding to k4, we do not divide the flux density by a concentra-
tion difference cg o — Cg,., but simply by the momentum concentration in the
bulk pvo, yielding 7./pvo. It is the quantity corresponding to k,; and k. and
has the same dimension as the latter, namely, that of a velocity, m s~

It is calculated by integrating Eq. (17a) in which the source term,
—dp,/dx — pg., is dropped because we consider a case with no external forces.
Equation (17a) is then formally the same as Eq. (13) for ¥, vg, = 0 (with po,
instead of cp and v instead of Dg). With the boundary-layer simplifications,
Egs. (17a) and (13) reduce for steady-state conditions to Egs. (20) and (19),
respectively—the similitude of which has already been noted in Section 2.3.
The boundary conditions given by Egs. (23a)-(23c) are also formally the same
as for the mass transport equation [Egs. (21a)-(21c)]. The solution is therefore
also the same and we have

./pvo = 03320 (vo/vx)"%; 8, = 3.01(vx/vo)"? (85)

These are indeed the relationships demonstrated in the textbooks on
hydrodynamics.m) In contrast to Eq. (82), a factor of the kind v/ Dg is missing
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in Eq. (85). The reason is that the Dg of Eq. (13) is replaced by » in Eq.
(17a) so that v/Dgy turns into v/v = 1. §, is the equivalent thickness of the
hydrodynamic boundary layer (Figure 5). A uniform presentation of momen-
tum, mass, and heat transfer, pointing out the analogies between these
phenomena, is to be found in particular textbooks."'"'**”

4.3. Remarks on the Boundary Layers for Mass, Heat, and
Momentum Transport

The thicknesses of the boundary layers given by Egs. (82), (84), and (85)
are the equivalent values, defined by assuming the concentration, temperature,
or velocity profile to be a straight line up to the point where the value in the
bulk solution is reached (Figure 5). In general, the three layers exist simul-
taneously near the electrode. This is the case in the electrolysis of Figure 2
(copper deposition in a cell with electrolyte flow). The occurrence of a diffusion
layer is due to the removal of copper from the solution at the cathode, the
temperature boundary layer is due to the necessity of evacuating the heat
generated in the systemt and the hydrodynamic boundary layer develops
because of the loss of momentum at the electrode due to the friction forces.
At the interface, there are fluxes of mass, heat, and momentum.i The thick-
nesses of the three corresponding boundary layers [which, for the steady state,
are given by Egs. (82), (84), and (85)] depend in the same way on the relevant
parameters. For example, in laminar flow the thickness of all boundary layers
increases downstream for the reasons discussed in Section 1.1 (Figure 2). But
the absolute values are different because the coefficients for molecular trans-
port—Dpg, a, and v—are not the same. Let us elaborate somewhat on the
relationship between &, 81, and §,. For the sake of simplicity we consider first
a convection-free nonsteady state. Such a situation is encountered at the
beginning of electrolysis when the diffusion layer builds up (see Section 1.1)
or when a hydrodynamic boundary layer develops at a plate suddenly set into
motion. The time variation of the interfacial mass flux density has been derived
in ‘Chapter 2. For a constant interfacial concentration is given by Eq. (60) of
Chapter 2:

NB,e = —(CB,O - CB,e)l)IIB/z'”'_I/zt_l/2 (86)

T The heat flux may go to the electrode or toward the solution. This depends on the relative
amounts of the heat generated within the solution through ohmic effects and of the heat
produced at the electrode solution interface due to the overpotential as well as on the relative
ease with which the heat is transferred to the surroundings through the various boundaries of
the cells (walls, electrodes, free surface of the solution) and, possibly, by the passage of the
liquid through the cell. The evacuation of the heat may be of considerable importance in
technical applications of electrochemistry.

1 In addition, there is a further flux at the interface; namely, that of charges which corresponds
to the electrolysis current. Note that the flux of charges through the solution outside the diffusion
layer obeys Ohm’s law j ~ k V®, which is formally the same as Fick’s law of diffusion or
Fourier’s law of heat conduction.
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Combining with Eq. (1) we obtain
8 = (wDgt)""? (87)

In the convection-free nonsteady state the diffusion layer grows in proportion
to the square root of the diffusion coefficient Dy and of the time ¢ Because
of the analogy with heat and momentum transfer it can be expected (and it
can be derived from the respective relationships) that similar relationships
hold for 7 and 6,

or = (mat)'?;, 8, = (mvt)"/? (88)

The ratio of the thicknesses reached by the boundary layers at a given time
is equal to the ratio of the square roots of the respective coefficients, i.e.,
8/8, = (Dg/v)"?, etc. This leads us to a further understanding of the physical
meaning of the coefficients Dg, a, and »: They are a measure of the rate at
which a nonuniformity of concentration of temperature or of velocity, respec-
tively, progresses into the fluid. The steady state is reached when this expansion
is stopped by convective supply to the boundary layer which then equals the
rate of removal at the interface, as discussed in Section 1.1. It is plausible
that, as shown by Eqgs. (82), (84), and (85), the depth of penetration of the
nonuniformity into the fluid is larger the greater the coefficient Dg, a, or ».
Indeed, the rate of removal at the interface of mass, heat, and momentum
increases with increasing Dp, a, and », respectively, whereas the rate of supply
through convection of mass, heat, and momentum becomes larger with increas-
ing distance BC in Figure 3. Therefore, 8, 81, and §, have to increase with
increasing Dg, a, and v, respectively. On the other hand, the rate of supply
becomes greater with increasing bulk flow velocity vy so that 8, 61, and §,
decrease with increasing vo.

4.4. Advantage of Using Dimensionless Groups in Analogy
Considerations

The differential equations describing mass, heat, and momentum trans-
port are formally the same, but they include quantities that have a different
physical meaning. This difference disappears if one uses dimensionless correla-
tions. For example, the relationship for the plate in laminar flow, Eq. (78¢)
is valid for both mass and heat transport. The numerical values of the variables
are independent of the kind of transport considered. However, their meaning
is not the same. In the case of mass transport, Sh is defined by Eq. (78b),
whereas for heat transport it is equal to g.x/apc, (T, — To) and is usually called
the Nusselt number, Nu (x being again a characteristic length such as the

T It is interesting to note that this is also true for the case of a constant interfacial flux density.
From Eq. (163) of Chapter 2 and Eq. (1) one obtains & = 2(Dgt/m)"/?, which differs only
slightly in the numerical coefficient from Eq. (87).
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distance from the leading edge of the plate in the example of Section 2.3).
Whereas Sh is the variable characteristic for the mass transfer rate, Nu is a
kind of adimensional heat transfer rate. On the other hand, Sc represents in
mass transport the ratio »/Dsg, but in heat transport v/a and is then usually
called the Prandtl number, Pr. In the electrolysis of aqueous solutions or
molten salts v/ Dy is of the order of a few hundred to a few thousand, whereas
for air Pr is about 1 and for water and various other common liquids it is of
the order of 10. Therefore, the prediction of electrolytic mass transfer rates
from heat transfer measurements with air or water (which are the most
common ones) involves the difficulty that the Schmidt and Prandtl numbers
are different, so that an extrapolation becomes necessary. This may not lead
to a serious error (see Figure 17), but it is an element of uncertainty. Of
course, if measurements or theoretical calculations at Sc = Pr are available,
the prediction of mass transfer from heat transfer or vice versa is a perfectly
reliable one.

Very often the correlations for heat or mass transfer can be written with
a fair approximation in the simple form

Sh=aRelSc®  witha, a, B = numerical constants (89a)
Nu=a RelPr®  witha,a, B = numerical constants (89b)

Now, Sh and Nu do not only represent adimensionalized transfer rates, they
can also be regarded as normalized or adimensionalized boundary-layer
thicknesses. Indeed, from Eq. (1) as well as from the definition of Nu given
above or from Eq. (73) for Sh, it follows that

Sh = x/6; Nu = x/6¢ (90)

Furthermore, applying Eqgs. (89a) and (89b) we obtain

Sh _6r_ §E)B_<L)B
Nu & —(Pr “\Dg ©1)

The ratio of the thicknesses of the boundary layers is equal to the ratio of
the molecular transport coefficients raised to the power with which Sc or Pr
appears in the correlation. Similarly, it can be shown that Sc™* and Pr* (raised
to some power) represent the ratio of the thicknesses of the diffusion and
temperature boundary layer, respectively, to the thickness of the hydro-
dynamic boundary layer.

In the above discussion of the use of dimensionless groups in analogy
considerations, we have referred explicitly to the mass and heat transport. In
principle, quite similar remarks apply to momentum transport but the analogy
involves in that case some pecularities which we will discuss in the next section.
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4.5. Considerations on Analogy with Momentum Transport

From Egs. (5) and (78b) it is easily seen that Sh and Nu can be written
in terms of the transfer coefficients k; and k. as

Sh = kyx/Dg; Nu = k.x/a 92)

In momentum transport the quantity analogous to k, and k. is 7./pvo. There-
fore, the dimensionless group corresponding to Sh and Nu is

TxX
VpUo

-

(93)

If we use (93) to rewrite Eq. (85) in dimensionless form we obtain
Nu’ = 0.332 Re}/? (94)

If we compare this with Eq. (78c) we note that the multiplicative term
corresponding to Sc'/? is missing. As was briefly mentioned, this is due to the
fact that Pr is deduced from Sc by substituting a for Dy and if one does the
corresponding substitution for momentum transport (i.e., » for Dg) one
obtains »/v = 1. The physical reason for this state of affairs is as follows. In
Section 1.1 we realized that the steady state is established when the rate of
removal at the interface through diffusion (which depends on Dg) is com-
pensated by the rate of supply by convection (which depends on the thickness
of the hydrodynamic boundary layer and thus on ») (see Figure 3). Therefore,
& (and also Sh which is equal to x/§) depends on both Dg and ». In the case
of shear stress, the supply of momentum to the boundary layer through
convection again depends on the thickness of the hydrodynamic boundary
layer and thus on », but so does the rate of removal of momentum at the
interface through friction. The relevant coefficient happens to be the same
here because the boundary layer governing the rate of the molecular transport
process at the interface is now the same as the boundary layer which governs
the supply by convection from the bulk. We may also express the result by
saying that, in the case of momentum transfer at a wall, the dimensionless
group corresponding to Sc and Pr is necessarily equal to one. Therefore,
strictly speaking, prediction of mass or heat transfer rates from the shearing
stress should be made only for Sc or Pr = 1.

Another peculiarity of momentum transport is due to custom. Tradi-
tionally in hydrodynamics, the shearing stress has not been made dimensionless
by introducing Nu’ given by Eq. (93) but by using the dimensionless friction
coefficient f/2 defined as

[_ (95)

which characterizes the ratio of the viscous forces to the kinetic energy (or
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inertia forces). The friction coefficient can also be written

7. TX/vpvo Nu f
—S === 96
pvd vox/v Re, 2 96)

We see that the dimensionless group commonly employed in hydrodynamics
to describe the shearing stress does not correspond to Sh or Nu but to Sh/Re
or Nu/Re. Therefore, if we want to predict mass or heat transfer rates from
one of the numerous correlations of the form

/2 = F(Re) 97)

available in hydrodynamics, we must substitute Sh/Re or Nu/Re for f/2 in
the above relationship. Of course, the conditions must be corresponding ones.
This involves two difficulties.

First, as we have already pointed out, the dimensionless group corres-
ponding to Sc and Pr is necessarily one in momentum transport, whereas in
electrolytic systems Sc and Pr are large. To circumvent this difficulty, one
often extrapolates to high Sc or Pr by assuming Sh ~ Sc'/? and Nu ~ Pr'/?.
This method was proposed by Chilton and Colburn in 1934%® and is usually
referred to today as the Chilton—-Colburn analogy. One introduces the new
dimensionless group

, Sh ) Nu
= Resc™ M T Rep” ©8)
According to the Chilton-Colburn analogy,"'®

(97) and sets

one takes f/2 from correlation

jo =ju =f/2 99)

In principle, this allows us to predict limiting currents in electrolysis from
friction-force measurements in hydrodynamics. The method has proved useful
in a considerable number of cases, particularly for flat or streamlined surfaces.
For many systems Sh and Nu are approximately proportional to Sc*/* or Pr'/3.
Moderate deviations from the exponent 1/3 are very damped in their effect
on the value of the predicted heat or mass transfer rate because of the low
value of the commonly encountered exponent (1/3).

However, there is another important complication which comes in addi-
tion to the problem of the Schmidt or Prandtl number. It is due to the
occurrence of a form drag at curved surfaces (including rough ones). Let us
consider as an example a liquid flowing past a stationary sphere. Especially
in the turbulent region, the flowing fluid exerts on the front and rear side of
the sphere pressures that are unequal and do not cancel. The result is a form
drag in the flow direction which has no counterpart in mass or heat transfer.
In the rear of the above sphere a turbulent wake develops which contributes
to the degradation of mechanical energy to heat but causes very little mass
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or heat transfer. The Chilton-Colburn analogy cannot be expected to hold
in cases where the form drag is significant. This applies mainly to curved
surfaces that are not streamlined. For a fluid flowing past a long cylinder
perpendicularly to its axis, f/2 has been found to be 5-200 times larger than
7" A measure for the departure from the Chilton-Colburn analogy is the
Le Goff number; Lf, defined as

Jo _ JH
Lf 7272 (100)
When this analogy holds, Lf is equal to 1. When drag friction is significant,
Lf may take values commonly ranging from 1 to 1072, The Chilton-Colburn
analogy, and more generally the analogy between mass, heat, and momentum
transport, has been recently reviewed by LeGoff.®*

The above complication of an LF # 1 is linked with the fundamental fact
that the amounts of mass (or substance) and of heat are scalar quantities,
whereas the momentum is a vector. In Section 2.1 we have circumvented this
difficulty by writing the fundamental differential equations in terms of the
spatial components of the momentum, which are scalar quantities [Egs. (17a),
(17b), (17c)]. Each of these three equations is then formally identical with
the equations for heat and mass transport. No difficulty arises in the use of
the analogy as long as one has to solve only one of these equations, as it was
in the case for the plate in laminar flow considered in Section 2.3. Indeed, in
that case only the x component of momentum is transferred to the wall.
However, with a curved surface one may have to consider the equation for
the y component (and possibly even that for the z component) as well. The
integration then yields two interfacial fluxes of momentum 7, and 7, (and
possibly three), which represent two components of the stress that have to
be added vectorially to yield the usually measured drag. This operation has
no counterpart in mass and heat transport.

Recently Le Goff has presented a new view of the analogy between the
transport phenomena based on an energy concept.“o)

5. Mass Transport in Turbulent Flow

5.1. Fluctuating and Time-Averaged Quantities

Above a certain critical Reynolds number, characteristic for a given flow
system, the nature of fluid flow changes drastically; it passes from laminar to
turbulent motion. While in steady laminar flow the fluid particles follow
definite streamlines, turbulent flow is characterized by a random chaotic
motion of eddies superimposed on the main stream motion. Turbulent flow
is unsteady in nature in the sense that at a given point the velocity, and, as
a consequence, other properties such as pressure and composition, vary with
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Figure 8. Motion of turbulent eddies (schematic).

respect to time. The eddies carry momentum and mass toward regions of
lower concentration of these quantities: There is in turbulent flow an addi-
tional, very effective transport mechanism that can be visualized as follows.
Macroscopic liquid volume elements (eddies) undergo a random movement,
very roughly similar to the Brownian motion of molecules in a gas, except
that the moving entity is larger by many orders of magnitude (Figure 8). The
eddies carry momentum as well as the dissolved species with them. If eddies
of different concentrations are exchanged against one another a fluctuation
of concentration results. Note that, in the sense of Section 4, concentration
may mean one of momentum or of a species. If one considers a sufficiently
large number of eddies in a system with a gradient of concentration, say, in
the —y direction, the overall amount of momentum or of a species transported
during a given time in the +y and —y directions do not cancel, and the result
on the time average is a macroscopically observable flux of momentum or of
a species in the +y direction. There is a rough analogy with the fluxes due
to friction or to diffusion, but the transport rates are much higher than for
the molecular phenomena, because the moving entities are very much bigger.
As a consequence mass transport rates are considerably higher in turbulent flow
than in a laminar regime.

Turbulent flow plays an important role in industrial electrochemical
processes. Since mass transport limits the rate of electrode reactions it is often
of advantage to work under turbulent-flow conditions in order to realize the
high mass transfer rates (i.e., current densities) which are necessary to keep
the dimensions of the reactor at a reasonable size for a given production rate.
However, turbulent flow has a disadvantage in that not only mass and heat
but also momentum transfer is enhanced, which results in an increased
resistance to flow. The gain achieved by reducing the size of the reactor is
therefore partly counteracted by the larger pumping or stirring power required.



174 N. IBL and O. DOSSENBACH

The optimization of the stirring of an electrochemical reactor will be discussed
in Section 10.

The flow patterns in turbulent flow are extremely complex and there is
no possibility to predict them completely even for the most simple flow
geometry. Of course, the conservation equations remain valid in turbulent
flow and are satisfied by the instantaneous values of the velocity components
and of the concentration. However, they cannot be solved because of the
random nature of the fluctuations. In the analysis of turbulent transport
phenomena, one is usually not interested in the fluctuations but rather in
mean quantities. To this end, the time average of the pertaining equations is
taken and the properties are split up in a time-averaged mean part and a
fluctuating part in the form

v=v+V
p=p+p (101)
cg=Cp+Ch

where v, p, and cp are the instantaneous values, ¥, p, and Cg are the time-
averaged values, and v/, p', and cp are the fluctuations. This representation
of the properties is illustrated in Figure 9 for the case of the concentration.
The time-averaged value of the concentration is defined as

1 t+At

CB Ar), CB dt (102)
where At is a time interval that is large compared to the period of the
fluctuations. The mean values of the pressure and of the components of the
velocity vector are defined in the same way.

The implications of this approach in the study of transport phenomena
will be illustrated by considering the continuity equation, the equation of
motion, and the equation of convective diffusion. The continuity equation for
the instantaneous values of the velocity components is (incompressible fluid)

Vev=0 (103)

Cs

Cg

Figure 9. Fluctuation of the con-
t centration in turbulent flow.
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The x-momentum equation in terms of the instantaneous values of the velocity
components and the pressure is written as (Newtonian fluid)

op

W) _ g (vop) + 1 VP, — o, T e (104)

at

Neglecting the source term, we write the equation of convective diffusion
for the instantaneous values of v,, v,, v,, and cp in the form

3lew)

Py —V -+ (veg) + DVicp (105)

The instantaneous values of the properties are then replaced by the sums of
the mean and the fluctuating part [Eqs. (101)], and the time average of Eqs.
(103), (104), and (105) are taken. We bear in mind that by virtue of the
foregoing definitions, the time average of a fluctuation is zero:

V=p=¢=0 (106a)

On the other hand, the fluctuations of the velocity components and of the
concentrations are not independent, and_therefore the time averages of
products of fluctuations such as v,v} and v,cp may be different from zero.
For example, one obtains for the product of ¢ and v,

csVx = (Cs + ¢B) (D, + V%) = Cai, + By + CovY + chve  (106b)
and upon averaging (¢sd, = égx = 0),
BV, = Cply + CBU (106¢)

Thus the time-averaged conservation equations become

Vev=0 (continuity) (107)
d(pD,) - 2~ - \_9%p
Tor =-V-op)+uVid,—-V--Vvp)- P + pg, (x momentum)
(108)
a(act‘*) = -V (¥)+ DV%s —V-(Vcp)  (convective diffusion)

(109)

We note that the time-averaged velocity components satisfy the same con-
tinuity equation as for laminar flow.

A comparison of the time-averaged equations of motion and of convective
diffusion with the corresponding equations for laminar flow reveals that they
are the same except for an additional convective term [third term on the
right-hand side of Egs. (108) and (109)] containing the fluctuating components
of the velocities and concentration. Note that quite generally, cgv is a convec-
tive flux (see Section 1) and therefore the cgv’ terms are the fluctuations of
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that flux, as compared to the flux that one would have if a fluid with the
concentration g was moving at the velocity 7 (i.e., at a velocity equal to the
average value). An average cpv’ of the fluctuating flux different from zero
means that there is, on the average, a macroscopically observable flux due to
the random fluctuations. Therefore, the additional convective terms of Eqgs.
(108) and (109) correspond to an additional transport brought about by the
intense motion of the turbulent eddies.
In view of this situation the following notation is introduced:

7o = poLV' (110)
Ng = cpV (111)
7, is the turbulent flux of the x component of the momentum, also called
turbulent shear stress or Reynolds stress. N is the turbulent mass flux. The

total fluxes can thus be considered as the sum of a molecular and a turbulent
term

=10+l = —p Vi, +polv (112)
NB = Ng + N;; = —DBVC-B + C’BV, (113)
The conservation equations (108) and (109) then take the form
W) - v o)+ V- (w95 -voie) - L pg,  (114)
18 ax
and
kY4 _ N
—atE = -V (vcg) + V- (DsVés — Vch) (115)

The treatment so far illustrates the nature of the turbulent transport
mechanisms but it provides no means to relate them in a quantitative way to
known properties of the flow system. In fact, due to the complexity of the
phenomenon of turbulence, there is no fundamental theory. The time-
averaged conservation equations cannot be used for computational purposes
unless relationships between the turbulent fluxes and mean quantities can be
established.

5.2. Mass Transport Correlations

Many semiempirical models have been proposed to predict Reynolds
stresses and turbulent heat and mass fluxes. In view of the qualitative model
discussed in the first paragraph of Section 5.1 one can expect that there is
such a flux (and thus average values of cgv’, etc. different from zero) when
there is a concentration gradient in the fluid. Furthermore, the analogy
between the turbulent and molecular transport processes suggests that the
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turbulent flux densities are proportional to the corresponding concentration
gradients, which is a relationship commonly used today:

7 =pvyV = —pe Vi, (116)

Ni; = C’BV’ = —EMVEB (117)

¢ is called the eddy kinematic viscosity; €y is the turbulent or eddy diffusivity.
The proposal to write the shear stress proportional to the velocity gradient
was made as early as 1877 by Boussinesq.(“) In contrast to the molecular
viscosity and diffusivity, £ and eas are not characteristic properties of a fluid
but depend on the intensity of the fluid motion. In general, they will therefore
vary with position in a flow system. This variation is especially important in
the neighborhood of solid walls where the motion of the fluid is slowed down
by the friction forces. The eddies are gradually damped in the boundary layer
and become inactive at the wall. In the bulk of a turbulent fluid ps and eas
are very large compared to the molecular transport properties u and Dg, but
they decrease strongly when approaching the wall and become zero at the
interface. When considering mass or momentum transfer to or from a solid
wall, not only turbulent but also molecular diffusion has to be taken into
account since both transport mechanisms are equally important in the region
where pe and e)s become comparable to u and Dsg, respectively. At the wall
itself it is the molecular transport that predominates. The total fluxes near
the interface are therefore given by

7. = —(u + pe)Vi, (118)
NB = —(DB + EM)VEB (119)

These equations do not allow us to calculate turbulent transfer rates a
priori, but they are the starting point for the derivation of semiempirical
equations for turbulent mass transport. In the following it shall be demon-
strated how such a correlation can be obtained. We start from a one-
dimensional form of Eq. (119); i.e., we consider mass transport in the direction
y perpendicular to a solid wall (e.g., an electrode):

NB = —(DB + “;‘1\4)"1—(;E (120)

dy
The integration of Eq. (120) between the limits y = 0 (interface) and y =
(bulk of the fluid) yields the concentration difference between bulk and
interface ¢ — ¢, Which is relevant for the mass flux toward the interface:

o NB
CB0—CBe = — —d 121
B,0 B, J:) D y ( )

B+ M

In developed turbulent mass transport the thickness of the boundary
layer is virtually independent of location along a pipe or a plate. In contrast
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to the situation in laminar flow (Figure 3), the influx of substance into the
boundary layer parallel to the interface [which would correspond to (Ng):
of Figure 3] is negligible. Therefore, the flux density of B perpendicular to
the interface is virtually independent of y and equal to the interfacial flux
density Ng ..T Then, together with the definition of the mass transfer coefficient
k4 given in Section 1.3, one obtains

1 % dy

k7 = L B (122)

In order to determine how the eddy diffusivity of mass £y, varies with

the distance from the interface y, one assumes that it is equal to the eddy
viscosity €. In other words, the turbulent transport mechanisms for momentum
and mass are considered to be the same.f With this assumption it is possible
to obtain £x; = ¢ from a known velocity profile.§ In the numerous studies of
turbulence near solid walls it has been found that the dependence of the

tangential velocity &, on the distance y from the wall can be adequately
described by a generalized correlation between two dimensionless variables

defined.as follows . 1/2
v* = o.(r./p) (123a)

yr =y (n/p)? (123b)

The expression (re/p)” 2 = p* is called shear stress velocity and v* can
be regarded as a velocity normalized with the shear stress velocity. From the
one-dimensional form of Eq. (118) we derive

|7
e=— __, (124)
lodz./dyl
As in the case of the mass flux, 7, is constant in the layer adjacent to the
wall and equal to its value 7, at the interface. Introducing the substitutions

(123a) and (123b) gives -
£_ (@_) 1 (125)

v \dy"

Thus the turbulent exchange coefficient ¢ is given by the slope of the
dimensionless velocity profile. Equation (125) is inserted into the expression
for the mass transfer coefficient:

-1 _ ® dy
ka ‘L J[Do/v + (@0 /dy")  —1] (126)

t For the same reason the usual convective terms have been neglected in the expressions for the
momentum and mass fluxes [Eqs. (118) and (119), respectively].

+ This idea seems plausible if one admits that there is a certain similarity between the motions
of macroscopic eddies in turbulent flow and of the molecules in a gas. In the latter case, the
kinetic theory of gases leads to the same values for the different transport properties of the gas.

§ Certain authors have integrated (122) using correlations between ¢ and y* which were based
on empirical knowledge or dimensional considerations.“>*?
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or

k_1 _ (E)_l/zjw dy+ (127)
4 p o Sc M+ (dvt/dyt) T -1

where Sc = v/Dpy is the dimensionless Schmidt number (see Section 3.4).

Many equations describing the generalized velocity profile can be found
in the literature. Wasan and Wilke (44), for example, use the following
correlations:

0 =y " =1.04x107*(y")* +3.03x 107°(y*)°  fory" <20 (128)
v =25Iny*+55 fory'>20 (129)

As in laminar flow, the concentration boundary layer is much thinner than
the hydrodynamic boundary layer at the Schmidt numbers prevailing in
aqueous solutions. Therefore, the integration of Eq. (127) is sufficiently
accurate if we use only Eq. (128) for calculating ¢/v and take y* = 20 as an
arbitrary upper integration limit. The result of the numerical integration of
(127) between y* =0 and 20 with dv*/dy” derived from (128) can be
expressed as

k7' =17.24(r./p) V* S (130)

This equation is valid at Schmidt numbers above about 100.
In general, all the derivations based on the analogy between momentum
and mass transfer lead to the general result

k' (t./p)""* = f(Sc) (131)

where f(Sc) is usually a rather complicated function. At higher values of the
Schmidt number, all these functions approach the form

f(Sc) - const x Sc” for Sc » 1 (132)

where n has values between 0 and 1 depending on the amount of eddying
assumed in the fluid layer adjacent to the wall; i.e., depending on the
expression used for /v in the integration of Egs. (122) or (127). A value of
n = 2/3, as in the case of the example given above, seems to correspond best
to the experimental findings in turbulent mass transport studies, although
measured values of 3/4 are also encountered in the literature.

We solve Eq. (130) for the mass transport coefficient k; and introduce
the dimensionless friction factor f which is linked with the wall shear stress
through

_ 27,
=
pLo

f (133)

where v, is a characteristic velocity of the flow system. This leads to
ks = 0.058 vo (f/2)"/* Sc™*/ (134)



180 N. IBL and O. DOSSENBACH

Finally, we can make Eq. (134) dimensionless by means of the Stanton number
St = k,/vo (135)
St = 0.058(f/2)"/* Sc™*/? (136)

The derivation of this turbulent mass transport equation does not specify
the flow system to which it can be applied. In fact the treatment is quite
general, and its result should be valid for any type of boundary layer and
pipe flow. The particular flow situation is taken into account by introducing
an appropriate expression for the friction factor. For example, for developed
turbulent pipe flow the latter is given by the Blasius equation

f=0.079Re™* (137)
and one obtains for turbulent mass transport to the walls of a pipe
St =0.0115Re "/®Sc™>? (138)
or in terms of a Sherwood number (Sh = St Re Sc)
Sh = 0.0115 Re”’® S¢'/? (139)

Similar correlations can be obtained for other flow systems by inserting
the appropriate expression for the friction factor into Eq. (136). Correlations
for turbulent mass transfer can be found in the textbooks on transport
phenomena”'™'® which all contain more or less extensive treatments of
turbulent transport. Flow systems of particular interest in electrochemical
engineering are discussed in the book by Pickett*> and also in the review
article by Selman and Tobias.“®

5.3. General Remarks

Let us conclude this section with a few general remarks on the origin
and occurrence of turbulence. If the laminar streamline flow pattern is dis-
turbed, for example, by an obstacle (such as a protrusion on a wall) or by a
vibration, this disturbance, in general, will be damped out by the viscous
forces so that the flow remains laminar. However, if the kinetic energy of the
streaming fluid is large compared to the friction forces, sufficient momentum
is transferred from the main flow to the disturbances to sustain them: The
flow looses its stability and becomes turbulent. Therefore, the relative magni-
tude of the kinetic energy (or, in other words, of the inertial forces) and of
the viscous forces should be decisive for whether a disturbance is damped or
not, i.e., for whether a flow is laminar or turbulent under given conditions.
The ratio of these two quantities is the dimensionless Reynolds number
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Re = vl/v. The higher the value of Re, the larger the ratio of inertial forces
to viscous forces.

In fact, there is for each flow system a critical Reynolds number above
which the flow may become turbulent. For pipe flow, the critical Reynolds
number is 2300 (with the pipe diameter as the characteristic length).
However, laminar flow can be observed at much higher values provided that
possible disturbances are carefully excluded (perfectly straight tube, very
smooth surface, etc.).?" Actually it is not possible to say above which
Reynolds number the flow must become turbulent; one only knows that
below about Re = 2000 the flow is always laminar no matter how large a
disturbance is.

The so called transition flow (at Reynolds numbers not much higher than
the critical value) may have an intermittent character in that there is a random
succession of short laminar and turbulent periods.m) In this regime it is very
difficult to describe the flow quantitatively and thus the mass transfer behavior
is hardly predictable.

In turbulent flow the velocity profile is significantly different from that
encountered in laminar flow. Figure 10(a) shows schematically the velocity
profiles for laminar and turbulent flow in a tube. In laminar flow one has a
parabolic distribution, whereas in turbulent flow it is much flatter due to the
lateral exchange of momentum. In boundary-layer flow systems, such as the
flow past a plate (Section 2.3), the flow becomes turbulent at a distance x
from the leading edge which corresponds to the critical Reynolds number of
about 3 x 10° for a smooth plate. One can thus have laminar and turbulent
flow simultaneously on a plate. In the turbulent part the velocity profile is
steeper at the wall and the hydrodynamic boundary-layer thickness is larger
than in laminar flow, as is shown schematically in Figure 10(b). This enlarge-
ment of the boundary layer is characteristic for turbulent flow.

A somewhat different type of turbulence is encountered in systems where
the overall Reynolds number is below its critical value, but where the flow
near the wall is disturbed by obstacles such as a fixed bed of particles or cloths
placed in the fluid flow. In the wake of an obstacle, eddies are formed which
enhance mass transport to the wall. According to what has just been said
about the stability of laminar flow, the eddies should be damped by viscosity
at low Reynolds numbers. However, since the obstacles are closely packed,
new eddies are produced continuously. The flow is not turbulent in the usual
sense and therefore one speaks of flow systems with eddy promoters. Since
the ratio of increase in mass transfer rate to increase in momentum transfer
rate (=friction losses) is considerably larger with eddy promoters than in
ordinary turbulence,“” these systems are of interest in industrial elec-
trochemical processes.(48

For further information on turbulence the reader is referred to textbooks

11-16 .
on transport phenomena,"'® on hydrodynamics,”” and on turbulent
9-51)
flow.“
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Figure 10. (a) Velocity distribution in a tube for
laminar (curve A) and turbulent (curve B) flow.
(b) Transition from laminar to turbulent flow on
r 0 r a plate.
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6. Influence of Migration on Limiting Currents

6.1. Introduction

For the sake of simplicity, most of the considerations and discussions in
this chapter are restricted to convective diffusion without migration. As a
result, for the major part of the subjects treated here (e.g., the Nernst model,
turbulent transport mechanism, and dimensional analysis), the argument is
the same for electrolytic as well as for nonelectrolytic mass transport. Besides,
we have seen that in electrolytic mass transport there are two limiting cases.
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In one of them the contribution of migration to the overall mass transfer rate
can be neglected (excess of supporting electrolyte), and in the other the
contribution can be treated as if migration were absent (binary electrolyte).
In Section 5 of Chapter 1 it has been shown that in these two cases the electric
potential can be eliminated from the basic equations.

In the case of a binary electrolyte, the application of the electroneutrality
condition leads to exactly the same form of the conservation equation as in
nonelectrolytic mass transport, except for the diffusion coefficient for which
the value of the neutral electrolyte has to be taken. In the equation for the
electrode current density the influence of the electric field is expressed through
the transport number and the use of the diffusion coefficient of the neutral
electrolyte.

On the other hand, the addition of an excess of an indifferent electrolyte
reduces the electric field to such an extent that it loses its influence on the
transport of a minor ionic species in the solution, and diffusion and convection
are the only transport mechanisms to be considered. Again we can apply the
equations valid for nonelectrolytic mass transport or those for heat and
momentum transport through the analogy. There are thus no specifically
electrochemical phenomena in these two situations and the transport problems
in these types of electrochemical systems can therefore be tackled with our
knowledge from other domains in which transport processes play a role.

However, the problem becomes specifically ‘“‘electrochemical” in the
intermediate cases where a supporting electrolyte is present in a solution, but
not in a large excess. There is also some practical interest in electrolyte
solutions in which migration contributes to the overall current density. In
fact, for practical applications binary electrolyte solutions are not very interest-
ing because of their relatively low conductivity. The resulting ohmic potential
drop can make limiting currents undetectable in analytical applications or in
mass transport measurements (see Section 1.5). On the other hand in industrial
applications the ohmic losses enhance the energy consumption of the process
considerably so that the addition of an inert electrolyte is an economic
necessity. Since in many cases the supporting electrolyte lowers the limiting
current density and may have other disadvantages, one will probably avoid
a large excess of it and instead make a compromise between maximum
conductivity and maximum limiting current density.

In this section we will examine ionic mass transport in solutions with
moderate concentration of supporting electrolyte, the theoretical treatment
of which cannot be sufficiently approximated by considering one of the two
limiting cases mentioned above.

We restrict our considerations to the case of the limiting current, i.e.,
the interfacial concentration ¢y, . of one of the species is zero. We call this
species the limiting one and denote all quantities referring to it by the subscript
lim. We further assume that the ions of the supporting electrolyte do not
react at the electrode under the prevailing potential conditions.
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6.2. Theoretical Approach

In principle, the theoretical approach is the same as for nonelectrolytic
systems: The integration of the conservation equations, in which now the
terms containing the electric potential are explicitly present together with the
boundary conditions appropriate for the system under consideration, leads
to the concentration and potential distributions from which one can calculate
the interfacial flux densities of the reacting species and the electrode current
density. For an ideal dilute electrolyte solution of arbitrary composition in
which no chemical reactions take place, the conservation equation is [Eq.
(21), Chapter 1]

Qac—t‘i = DgV2cg + F(RT) '25DgV « (c5 V) — v+ Veg (140)
For each of the species present in the solution, Eq. (140) has to be solved
together with the electroneutrality condition [Eq. (12), Chapter 1]

Z ZiC;i = 0 (141)

in order to obtain the solute concentrations and the potential.

This is a very complicated mathematical problem even for simple mass
transport systems. It has been solved analytically by Eucken in 1907 for the
simple case of three univalent ions in a stagnant Nernst diffusion layer.®?
Gordon et al.°® gave a solution for the rotating disk electrode with the
assumption of a constant electric field in the diffusion layer. A numerical
solution exists for the case of a growing mercury drop.”* The major contribu-
tions in this field are due to Newman who calculated the influence of migration
on limiting currents by means of a numerical method for a number of
cases.®>” One of them is the rotating disk electrode which will illustrate
the procedure. The problem of convective diffusion for this system is treated
in more detail in a later volume. The axial flow velocity v, depends only on
the distance y normal to the disk and is, for a given y, constant over the disk.
Therefore, the influx of substance from the bulk toward the interface is uniform
over the disk and the thickness of the diffusion layer is constant; i.e., the
concentration is a function of y only. On the other hand, the diffusion layer
is very thin compared to the radius R of the disk (boundary-layer
simplification) so that the potential gradient in the radial direction r, d¢/ar,
is negligible compared to d¢/dy. Therefore, Eq. (140) reduces to

dZCB dCB -1 d d¢

—s —v,— + F(RT D —( —)=O 142

o7 Yy (RT) 'zg B\ By (142)
In addition, the velocity v, can be approximated by the first term of its

power series expansion, the diffusion layer being much thinner than the

Dg
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hydrodynamic boundary layer at the Schmidt numbers prevailing in elec-
trolytic solutions:

v, = —0.51(w>/v)"?y? (143)

Also we can state that the concentrations of all the species are constant and
equal to their bulk values far from the electrode. This yields a first boundary
condition:

CB = CB,0 at y =0 (144)

Except for the limiting species, the concentrations at the electrode solution
interface are not known a priori. However, if one assumes that the reaction
taking place at the electrode can be represented by [Eq. (30), Chapter 1]

vgB' + vcC' +: > vgB+vcC+ 4+ ne (145)
one can relate the interfacial flux densities of the species to the electrode
current density by means of Eq. (31) in Chapter 1:

Ng,. = jvg(nF)" (146)

While the electrode current density is not known in advance, the inter-
facial flux density of any of the species can be related to that of the limiting
species. We can write

Np=""Nim aty=0 (147)

lim

or, with the expressions for the flux densities [Eq. (19), Chapter 1],

DB 'dC_B + F(RT)_IZBDBCB d_¢
dy dy
dcim _
= LB—[Dlim i‘ + F(RT) lzlimDumclim d_¢] at y= 0 (148)
Viim dy dy
This yields, together with the boundary condition for the limiting species

Ciime = 0 (149)

as many boundary conditions for the concentration as there are Eqs. (142).
In order to obtain a boundary condition concerning the electric potential
one can set ¢ equal to zero at an arbitrary distance from the interface:

¢=0 aty=yn (150)

With these boundary conditions the set of coupled ordinary differential
equations (142) is solved numerically together with the electroneutrality
equation.t After having calculated the concentration and potential profiles,

+ The numerical method as well as the computer program used by Newman are described in
reference 57.
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the limiting current density can be evaluated from the interfacial flux density
of the limiting species.

The result is represented in terms of a correction factor Ijm m/liim, Where
Liim,m is the limiting current determined by diffusion and migration, and Iy,
is the diffusion limiting current. Figure 11 shows the limiting-current correction
factor for steady-state conditions as a function of the electrolyte composition
for different cathodic reactions at a rotating disk electrode as calculated by
Newman. The electrolyte composition is described by r, which is the ratio of
the supporting electrolyte to the total electrolyte concentration (normality).
The maximum enhancement of the limiting current density is found for r = 0,
i.e., in the case of the binary salt. Under these conditions the correction factor
for, say, the reduction of a cation is calculated from

(Ilim,m/Ilim)r=0 = (D/D+)2/3(1 - t+)—1 (151)

Equation (151) can be derived by dividing Eq. (4) by Eq. (1) (with
¢, = 0) and remembering that for the rotating disk electrode the diffusion-
layer thickness is proportional to the one-third power of the diffusion
coefficient. If the transport number is eliminated from (151) by combining
Egs. (44), (46), and (54) of Chapter 1, Eq. (151) can be written in an alternate

form
1/3

(Iﬁ>0 -(1- i‘)(ﬁp‘) (152)

For a symmetrical salt z_ = —z, and Lim m/lim = 2(D/D.)" 3. If the diffusion
coefficient of the cation and the anion are not very different, the value of
D/D., is close to unity [Eq. (54), Chapter 1], and the limiting current for the
binary electrolyte will be about 2 times larger than in the case of the supported
solution. In fact for the deposition of copper and silver, L, ../ Iim at r = 0 is
rather close to 2 (Figure 11). In both cases D, < D_ and therefore D/D, < 1.
As a consequence (fiim,m/ Lim)-—0 < 2. However, for the discharge of hydrogen
ions, the enhancement of the limiting current is larger due to the large value
of the diffusivity of this ion compared to the diffusivities of the other ions
present in the solution.

Migration does not necessarily enhance limiting currents. If an anion is
reduced at a cathode, the electric field pushes the anion away from the
electrode and migration thus counteracts diffusion. The ‘“‘chemical force”
driving the ions toward the electrode is still larger than the electric force, but
the limiting current density is smaller than if there was an excess of indifferent
electrolyte. An example for such a situation is the deposition of copper from
a cyanide complex—mentioned in this context in Section 5.4 of Chapter 1.
However, in this case the effect of migration is reduced by the cyanide ions
that are liberated from the complex during the electrode reaction and that
are accumulated in the diffusion layer. Their presence lowers the electric field
in this region so that in a sense their action is that of an indifferent electrolyte.
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It is not possible with such a system to realize the situation of a binary
electrolyte with only one cation and one anion in solution. The same is true
for redox reactions where the product species is always present in the vicinity
of the electrode. Using the same method just described, Newman®® calculated
the effect of migration on the limiting currents for both the cathodic reduction
of the ferricyanide ion and for the anodic oxidation of the ferrocyanide ion
at a rotating disk electrode. Since the reacting species are anions in both
cases, the limiting current is enhanced by migration in the anodic reaction
while it is reduced in the cathodic process. The result is shown in Figure 12
for equimolar bulk concentrations of potassium ferricyanide and ferrocyanide
in potassium hydroxide. Even in the complete absence of supporting elec-
trolyte, the enhancement and reduction of the limiting currents are less than
10%. The maximum and minimum values for Iy, ../ I are found when there
is no supporting electrolyte and no product ion in the bulk solution. According
to Newman the values for the rotating disk electrode are then Ijim m/lim =
1.169 and Ijim,m/Iim = 0.886 for the anodic and the cathodic reactions, respec-
tively.
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Figure 12. Limiting-current correction factor for ferri/ferrocyanide system at rotating disk
electrode®: (a) anodic reaction, (b) cathodic reaction.

A particular situation is encountered in solutions containing sulfate as
anions and sulfuric acid as the supporting electrolyte. Such an electrolytic
solution is used, for example, in copper refining as well as in copper and zinc
electrowinning. Bisulfate ions do not dissociate completely except at low
concentrations. In a solution with only partial dissociation, the concentration
of hydrogen ions is smaller than in the case of total dissociation. Therefore,
the conductivity is lower and as a consequence the electric field is reduced
to a smaller extent than if all the sulfuric acid was dissociated into protons
and sulfate jons. Hsueh and Newman®® have calculated the effect of migration
on limiting currents in the copper sulfate-sulfuric acid system for different
degrees of dissociation. Figure 13 shows the result for the rotating disk
electrode for the two extreme cases of no dissociation and of total dissoci-
ation.T One can see that the difference between the two situations is quite
remarkable. The curve for a practical system will lie between these extreme
cases depending on the dissociation constant of the bisulfate ion for which
an equation correlating it to the ionic strength of the bulk solution is given
in reference 58.

The considerations leading to Eqgs. (151) and (152) are, in principle, the
same for any hydrodynamic situation. It is easy to see that the correction
terms for the limiting-current densities at r = 0 (single salt solution) should
be the same for all flow systems which have the same dependence of the

+ For the curve in Figure 11 total dissociation was assumed.
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Figure 13. Limiting-current correction factor for deposition of copper from CuSO,-H,SO,
solutions for (a) total and (b) no dissociation of bisulfate.*®

diffusion-layer thickness on the diffusion coefficient, provided that the com-
ponents of the electrolytic solution are the same. In fact, Newman has shown®”
that the results obtained in the whole range 0 < r <1 for the rotating disk
electrode can be directly applied to systems with arbitrary two-dimensional
(e.g., flat plate) or axisymmetric (e.g., pipe flow) boundary layers.

Also, the correction factor shows the same dependence on the solution
composition r for two unsteady diffusion systems: stagnant semi-infinite fluid
and growing mercury drop. However, this correction factor is different from
that applying to the aforementioned two-dimensional or axisymmetrical layers
such as shown in Figures 11 and 12. But the difference is not large, except
if the reacting ions have a very different mobility (as is the case for protons).
It is remarkable and useful that the same or nearly the same correction can
be used for a variety of hydrodynamic systems. It should be noted, however,
that the integration which has to be performed numerically depends on the
physical data of the system (diffusivities and mobilities of the species) and
thus on the components of the solution.

Although the diffusion coefficients of most ionic species in aqueous
solutions have similar values and the curves Iy m/ILim do not differ much,
there will be cases where it might be desirable, because of the peculiarity of
the system or in order to achieve a better accuracy, to remake the whole
calculation with the data pertinent to the system at hand. This can be readily

done with the help of the detailed computer program given by Newman in
his book.®”
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A problem is the concentration dependence of the physical data. In the
calculation leading to the numerical results of Figures 11 and 12 concentration-
independent diffusivities were assumed, and values based on the ionic conduc-
tivities for infinite dilution were used. The correction factors presented in
Figures 11 and 12 thus depend on the ratio r but not on the absolute values
of the concentrations. In the case of concentrated solutions, one may prefer
to employ values corresponding to the actual concentrations but the derivation
sketched earlier in this section implies the use of the Nernst-Einstein relation-
ship [Eq. (4.4) of, Chapter 1]

Dg = u}RT = ugRT(zF)! (153)

which is valid only for infinite dilution.

6.3. Approximate Method

Before we complete this section let us briefly mention a simple approxima-
tion for the estimation of migration effects which has been widely used in the
literature since it was employed by Wilke, Tobias and Eisenbergin 1953-1954
to describe electrolytic mass transport in natural convection and at rotating
disks.®***%” One makes the overall mass balance for the whole diffusion
layer, as we have considered it in the context of Figure 3. In the case of no
migration the equation

Ng.a+ (Npc)1 = (Np,)2+ (Ns,o)s

holds. If migration is not negligible the migration flux through plane AB of
Figure 3 has to be taken into account in addition. For example, in the case
of discharge of metallic cations of charge zp and transport number tg the
migration flux density of these cations entering into the control volume ABCD
through plane AB, is jtg/zsF, where j is the current density.¥ On the other
hand, the flux density of the cations leaving the control volume at the cathode
(through plane CD) is j/zpF. The mass balance yields

j(1 —tg)/28F = (Ng,c)1 = (Ng,c)2 = (Ng,c)3 = (NB,2)e (154)

where it has been assumed that the algebraic sum of the convective fluxes of
the cations Ng . remains the same, independent of whether there is migration

+ This statement implies that the current density j is independent of y. This might seem at first
sight surprising because in the control volume of Figure 3 the flux density of B by diffusion
plus convection strongly varies with y. However, it must be remembered that the resultant of
the convective fluxes Ng . of all species does not carry any current according to Eq. (23) of
Chapter 1. Therefore no charges enter the control volume through BC when there is no
diftusion flux.
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or not. That is, it is assumed the equation
Ng.a+ (Ns,c)1 = (NB.c)2+ (NB,c)3

remains valid. The diffusion flux density (Ng4). is given by the usual mass
transfer correlation applying to the hydrodynamic system considered. For
example, for laminar flow along a plate it is given by Eq. (50). A question
arises regarding the diffusion coefficients to be used. One can employ experi-
mental values for the concentrations at hand (such as those given by Selman
and Tobias for CuSO,4 + H,SO, of various concentrations“® or an average
such as

D = D] + r(Dz —Dl) (155)

where D; and D; are the diffusion coefficients for r = 0 and r = 1, respectively
(i.e., the values for the pure salt and for a great excess of indifferent electrolyte).
For an ideal dilute solution, the correction factors Iy ./ Iim of Figures 11
and 12 can be compared to those calculated from Egs. (154) and (155). In
that case tg is computed from Eq. (46) of Chapter 1 and D, and D, are taken
for the ideal dilute solution. For a rotating disk the two values of Iy m/Iim
differ by a factor of 1-1.05 for CuSO, + H,SO, and by a factor of 1-1.36 for
HCI1 + KCl. In the case of concentrated solutions one can use in Egs. (154)
and (155) experimental values of tg, D, and D, for the solution at hand,
whenever available. A comparison with the results of the integration of Eq.
(142) is difficult in this case because, as has been already mentioned, the
integration implies the validity of the Nernst-Einstein equation which is, in
principle, valid only for infinite dilution. In any case an accurate treatment
of concentrated solution is hardly possible at the present time. We will cover
the tricky problem of electrolytic mass transport in concentrated systems in
Section 9.

To conclude, let us note that in this section we have restricted ourselves
to the influence of migration on limiting currents which is indeed the most
important effect. However, migration also causes changes of concentration
of the nonreacting species. For example, in the system CuSO, + Na,SO, the
Na" ions are drawn toward the cathode by the electric field and, since they
are not discharged there, they accumulate until in the steady state the electric
force is compensated by an osmotic or chemical force due to the concentration
gradient acting in the opposite direction (see Section 4.7, Chapter 1). Such
concentration changes can be of practical interest when, under special circum-
stances, they cause a noticeable change in pH near the interface, or when the
concentration changes, through the concomitant variations of density, affect
the hydrodynamic flow and thus indirectly the limiting current as in natural
convection (see Section 7). The concentration changes of the supporting
electrolyte have also been treated quantitatively by Newman. The reader is
referred to his comprehensive work for further information.”*™”
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7. Selected Systems of Interest to the Electrochemist

7.1. Introduction

The mass transfer behavior of a great number of flow systems has been
investigated by electrochemical methods, but rather few of them are of
practical interest in electrochemistry itself. Some specific flow systems are
being used in electroanalysis and in methods for studying electrochemical
reactions. In these applications one is interested in having a well-defined flow
situation for which the mass transport correlation is known and/or in having
a system that allows a variation of the mass transport rate in a large range.
The latter aspect is especially important in studies of electrode kinetics when
one wishes to distinguish between the contribution of different reaction steps
to the overall kinetics of a process. Well-known flow systems for these purposes
are the rotating disk, the rotating ring-disk, the rotating cylinder, the rotating
wire, the wall-jet, and porous and thin-layer flow-through cells.

7.2. Industrial Processes

Inindustrial electrochemistry there are not many processes working under
forced convection conditions. In some of them the concentrations of the
reacting species are high, so that the actual working current densities are
rather limited by energetic factors (ohmic drop) rather than by mass transfer.
For example, this is the case in water and in chlorine electrolysis. In addition,
the gas bubbles generated in a number of processes accelerate mass transport
at the electrode where they are evolved (as well as at the counterelectrode)
in a very efficient way. In chlorate electrolysis where one wants the electrolyte
to circulate through the cell very rapidly, the ascending electrolytically formed
gas bubbles act as an electrolyte pump in virtue of the gas-lift effect (see
Chapter 3, Volume 2). A treatment of gas-evolving electrodes can be
found in Chapter 7 of this volume.

7.3. Natural Convection

7.3.1. Vertical Electrodes with Laminar Flow: Theoretical Aspects

A very important kind of flow in certain industrial processes, especially
in electrometallurgy, is natural convection. Natural or free-convection flow
is caused by the density differences in a fluid which result from temperature
or concentration gradients near an interface. For example, at a vertical
electrode the concentration changes in the diffusion layer are usually accom-
panied by density changes in the horizontal direction. Depending on whether
the electrolyte in the diffusion layer is heavier or lighter than in the bulk, a
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Figure 14. Velocity and concentration profiles in natural convection at a vertical electrode
(schematic).

buoyancy force or a downward force acts on the diffusion layer and an upward
or downward flow along the electrode results. In turn, the fluid flow influences
the concentration profile and thus the mass flux at the wall. Eventually a
steady state is established in which the mass and momentum transfer processes
are closely linked. As in forced convection the main concentration and velocity
changes occur in a narrow region near the electrode: The boundary-layer
simplifications are applicable. Figure 14 shows schematically the velocity and
concentration distributions in the boundary layer in natural convection at a
vertical wall. A theoretical treatment of the coupled mass and momentum
transport processes requires that the following set of equations be solved
simultaneously:

vy | v,

=0 continuity equation 156
ox ay ( yeq ) (156)
avx 9 x 62 x - . .
v,— + vy—v = V—% + g(p_po) (equation of motion)  (157)
dx ay ay Po
ac ac o%c . P .
v— + vy—~E = DB—f’ (convective diffusion equation)  (158)
ox ay ay

y is the direction perpendicular to the wall, and x is the vertical direction.
The last term in Eq. (157) represents the gravitational force acting on the
fluid, po being the density in the bulk. It is customary to express the density
difference by a linear dependence on the concentrations of the species present
in solution:

E—L0 5 ailei — ci0) (159)

Po i

a is the densification coefficient. Its meaning is comparable to that of the
thermal expansion coeflicient, which in natural convection heat transfer is the
proportionality factor between the density and the temperature.
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Early solutions of Egs. (156)-(158) were obtained by the von Kdrman-
Pohlhausen integral method in which one refrains from fulfilling the funda-
mental differential equations for each volume element and instead requires
a mass and momentum balance over the whole boundary layer, assuming
arbitrary but plausible functions for the velocity and concentration
profiles.®°*®? Exact solutions of Egs. (156)-(158) have been given by
Ostrach,®® Sparrow and Gregg,®® and more recently by Selman and
Newman.(“)

For constant concentrations in the bulk and at the interface, the calcula-
tions lead to the following equation for mass transfer at the wall (laminar flow):

Sh = C(Sc Gn)"/* (160)

The dimensionless coefficient C is a function of the Schmidt number. Its
limiting value at high Schmidt numbers (Sc > 10%) is 0.67 (for the average
Sherwood number over an electrode of height L). Gr is the dimensionless
Grashof number characteristic for natural convection:

3
Gi= g(pop Vpe)L (161)
0

or, with (159)

g[Z a;(cio— Ci,e)]L3
Gr=— 5 (162)

14

The characteristic length L in Gr and Sh is the electrode height.

From Eq. (160) we can calculate the mass transfer coefficient ks We
obtain for the case of a binary electrolyte solution such as CuSO, (with
deposition or dissolution of copper)

K, = 0.67 g 4acusol(ccusol)o — (ccusos)e 4DV 4v 4LV (163)

The value C = 0.67 in (160) is used since in electrolyte solutions the Schmidt
number is usually large. We have also taken into account that for a binary
electrolyte the density term in the Grashof number reduces to

Po — P.

—;‘_e = acuso,[(Ccuso,)o — (ccuso,)e] (164)

0

where acuso, is the proportionality factor relating the concentration of the
CuSO, solution to its density.t From the mass transfer coefficient we can
calculate the current density in the same way as was done in Section 2.3. One

t+In principle, two coefficients a are involved, acy>* and asp3-. However, because of elec-
troneutrality cc,2+ is everywhere equal to cso3- and the only measurable quantity is the overall
proportionality factor acuso.-
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obtains from Eq. (163) together with Egs. (3), (4), and (6d) for the cathodic
limiting current density [(ccuso,)e = (ccuz+)e = 0]

j—lim = —0.67 zgF(1 — tB)_lD3/4(CCu2+)5/4(gaCuSO4/VL)1/4 (165)

In contrast to the case of forced convection, jyn is not proportional to
the concentration difference between bulk and interface but is proportional
to the power 5/4 of this difference. The reason is that according to Eq. (163)
k4 (and thus &) are not as usual independent of concentration, because the
buoyancy force and thus the flow velocity depend on the density difference
and therefore on the concentration difference between bulk and interface.
Equation (165) is quite analogous to that applying to natural convection heat
transfer.

In the case of a mixture of electrolytes the situation is more complicated
because then the density difference po — p. entering into the Grashof number
not only depends on the concentration of the reacting species but also on that
of the ions which do not react at the electrode. Let us consider a specific
example, that of Cu deposition from a solution of CuSO,4 + H,SO,, as used
in the industrially important refining and electrowinning of copper. The
cathode potential is such that virtually no hydrogen is evolved. The H" ions
migrate toward the cathode under the influence of the electric field, and since
they are not discharged they accumulate there until a concentration develops
such that, in the steady state, a diffusion (or osmotic) force balances the
electric force (see Section 4.7 of chapter 1). Thus in the vicinity of the cathode
there is an increase in acidity. Figure 15 shows schematically the concentration
profiles of the H" and Cu®* jons in the boundary layer. The concentration
variation of the acid affects the density profile and thus the mass transport
conditions. We see that in contrast to the case of forced convection the addition

Cs cu?*

H+

y

Figure 15. Concentration profiles of Cu®* and H* ions in the deposition of copper from
CuSO,-H,S0, solutions (schematic).
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of a supporting electrolyte—although it eliminates the influence of migration—
does not make the electrolytic natural convection problem fully similar to the
nonelectrolytic situation.

First we treat the problem in a very simple generally applicable manner,
which has been repeatedly used in the literature®****” and which is based
essentially on the approximate procedure discussed at the end of Section 6
for the estimation of the migration effects in electrolytic mass transport.

Since the densification coefficients of the individual ionic species are
unknown one uses the densification coefficients of the neutral electrolytes
which are readily obtained from solution density data. Thus,

Z a;(cio— Ci,e) = ai(c1,0— Cl,e) + ax(c20 — C2,e) (166)

where the subscripts 1 and 2 refer to CuSO, and H,SO,, respectively. The
concentrations of the neutral electrolytes are directly related to the concentra-
tions of the ions: ¢; = ccu?+; €2 = 5cu+ (total dissociation of the sulfuric acid
being assumed). Thus, instead of (166) we can write

1
Z ai(Cio = Cie) = a1(ccu*,0 = Ccu?t,e) + @z 2(CH*0 — CH" ) (167)
1

The concentration difference of the hydrogen ion can be related to that of
the cupric ion. Applying the approximate method for the estimation of
migration effects as discussed in Section 6, one obtains from Eq. (163) for
the interfacial flux density of a species B

T 1/4
~ t
Ng,. = z]—?; —-0.67 g1/4[z ai(cio — ci,e)] D133/4V_1/4L—1/4(CB,0 - CB,e)
(168)

Equation (168) is written both for the cupric and hydrogen ion. Combina-
tion of these two equations, taking into account that for the nonreacting
hydrogen ion Ng . = 0, yields (see p. 22 of Chapter 1)

3/4

2ty D2+
(era= ) = Caino —cer o) (pr) - (169)

Thus, the densification can be expressed in terms of an overall densification
coefficient @ and the concentration difference of the reacting copper ion

Z ai(Ci,o - Ci,e) = a(CCu“,o - CCuz*,e) (170)
with?
— _ tH+ (DCu2+)3/4
a =a a2—1 "t \ Di (171)

+ Note that the same problem, mentioned toward the end of Section 6, regarding the diffusion
coefficients to be used arises here. Further discussion of this point is to be found in Section 9.
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We now calculate the limiting current density for the copper deposition
reaction by inserting (170) into (168), setting ccy,2+,. = 0 and multiplying by
ZBF

Jiim = 0.67 z5F(1 — tey2+) ' DEb+cdb+ o (ga/wL)* (172)

A more sophisticated treatment involving a numerical integration of the
fundamental differential equation has been presented by Selman and
Newman.®® The approach method was similar to that outlined in the first
part of Section 6. The result is represented in terms of a multiplicative
correction factor ¢ for the preexponential coefficient C in the dimensionless
(nonelectrolytic) mass transport correlation [Eq. (160)] as a function of the
solution composition in Figure 16. The correction factor has been calculated
for both complete and no dissociation of the bisulfate ion. As in the example
given in Section 6, the effect of migration is much more important with
bisulfate than with sulfate. It is interesting to note that the limiting current
correction factor does not approach unity for an excess of sulfuric acid as is
the case in forced convection systems but is lower than one.

1 1 1 1

0 02 04 06 08 10
r

Figure 16. Correction factor for migration effect in copper deposition from CuSO,~H,SO,
solutions under natural convection conditions: (a) total and (b) no dissociation of bisulfate.*®
Meaning of ¢ given in Section 7.3.1.
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There is, besides migration, an additional effect accounted for by the
correction factor. It is due to the fact that the diffusion layer of H,SO, is
thicker than that of CuSO, (see Figure 15) because the hydrogen ion has a
larger diffusion coefficient than the copper ion. As a result the density profile
shows a minimum within the diffusion layer. This phenomenon, in turn,
influences the velocity profile and thus the mass transfer rate in such a way
that the limiting current is smaller than expected at an excess of sulfuric acid.

7.3.2. Vertical Electrodes with Laminar Flow: Experimental Results

Figure 17 shows experimental results, including measurements of limiting
currents in metal deposition, nonelectrolytic dissolution of salts, and heat
transfer data to air.®>>°” In the electrolytic experiments, mixtures of elec-
trolytes were used and the Grashof number was calculated by the approximate
method of Eq. (171). All variables (L, co, D, v) were varied within a broad
range. Nevertheless, all results fall neatly on the same line when they are
represented in terms of the dimensionless numbers Sh, Gr, and Sc. This
illustrates the advantage of using dimensionless groups. The figure also illus-
trates the fact that by and large electrolytic mass transport is only a special
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Figure 17. Natural convection at vertical plates. Experimental results. Points, mass transfer (O and
A dissolution experiments, other points limiting-current measurements); broken line, heat transfer;
solid line, Eq. (160) with C = 0.67.
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case of transport phenomena in general and can be well predicted from other
transport data. This appears to apply even to natural convection where the
situation is less favorable than usual because, as discussed in Section 7.3.1,
electric migration influences the hydrodynamic flow through its action on the
concentrations within the diffusion layer, including those of nonreacting
species. Note that the lines for heat and mass transfer are fairly close in spite
of the fact that Pr was about 1 (air) whereas Sc ranged from 400 to 80,000.
The exponent of Sc Gr and the coefficient C agree well with theoretical
expectations.

7.3.3. Vertical Electrodes with Turbulent Flow

At a certain height the natural convection becomes turbulent, in spite of
the low flow velocities involved (typically a few mms™"). The critical value
of ScGr is about 10'% It seems to depend on Sc and is lower at low Sc
values. In industrial processes, with stirring by natural convection, essentially
(e.g., copper refining) vertical electrodes of a height of 1 m are used. Under
these conditions, with concentrated solutions, the natural convection is tur-
bulent, at least for a large part of the electrode. Limiting-current measure-
ments with electrodes up to 1 m in height yielded the correlation

Sh = ¢(Sc Gr)* (173)

with a = 0.28, ¢ = 0.31,%® and a = 0.29, ¢ = 0.15.” The results pertain to
systems where the flow probably was not turbulent over the whole electrode.
For fully developed turbulence values of about 0.33 for the exponent a have
been reported. The numerous studies of mass and heat transfer by laminar
and turbulent natural convection are reviewed in references 70 and 71. A
recent comprehensive discussion of the instability phenomena in natural
convection is to be found in references 72.

7.3.4. Occurrence and Decay of Natural Convection: Case of
Horizontal Plates

Natural convection, in principle, is always present in electrolytic systems
with the electrodes arranged such that gravitational forces can cause a fluid
flow. This is not the case at horizontal electrodes with the electrolyte density
decreasing in the upward direction, since this is a hydrodynamically stable
situation. Natural convection flow can also be suppressed by the viscous forces
in systems with small dimensions. In a cell with vertical parallel electrodes,
the flow is slowed down by friction more and more when the interelectrode
distance decreases and eventually disappears completely. Bohm and Ibl”*
have shown that this transition occurs at electrode distances of about 0.5 mm
and that with smaller gaps one has convection-free electrolysis, described in,
Chapter 2, in which the current is inversely proportional to the interelectrode
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distance. Other systems in which natural convection flow is impeded by friction
are porous electrodes.”® Both cases are important in electrolytic cell design
and especially in battery design where a large specific electrode area is one
of the essential requirements.

At horizontal electrodes with the density decreasing in the downward
direction, the situation is hydrodynamically unstable and a minor disturbance
initiates a fluid flow. Experimental studies of mass transport at horizontal
electrodes of different shapes have shown that in laminar flow the mass
transport correlation is similar to that for the vertical plate

Sh = ¢(Sc Gr)V* (174)

with ¢ = 0.54 (reference 75) and ¢ = 0.64 (reference 76).

The characteristic length in (174) is the diameter of circular electrodes
or an equivalent diameter (surface area divided by surface perimeter) in the
study using electrodes of different shapes.”” The difference in the coefficient
¢ may be due to the fact that the electrodes used in reference 76 were
embedded in an insulating plate. At horizontal electrodes the flow becomes
turbulent at much lower values of Sc Gr than at vertical plates. The critical
value is about 10”. Above this limit experimental studies yielded for the mass
transport correlation

(76)

Sh = ¢(Sc Gr)"/? (175)

with ¢ = 0.15 (reference 75), ¢ = 0.16 (reference 76), and ¢ = 0.19 (reference
77).

In reference 77 the distance between the electrode and a horizontal
diaphragm placed above the electrode was used as the characteristic length.
However, this distance had no influence on the mass transfer rate unless it
was less than a few millimeters. The choice of a characteristic length is not
very important here since the (Sc Gr)'/> dependence of Sh demonstrates
that the mass transfer rate does not depend on the dimensions of the electrodes.
This is quite often the case with mass transport under fully developed turbulent
flow conditions (see Section 7.4).

In the case of a mixture, the same difficulty regarding the evaluation of
po — p. is encountered as for vertical electrodes. The same approximate method
as that explained on p. 196 has been used to take into account the influence
of the concentration changes of an indifferent electrolyte. The use of this
approximation may be one of the reasons for the abovementioned differences
between the ¢ values reported by various authors.

7.4. Channel Flow

Unless three-dimensional electrodes are used, the electrodes in elec-
trolytic reactors commonly have the form of plates and are arranged in parallel.
This configuration is suitable for accelerating the mass transport rate by
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Figure 18. Schematic representdtion of channel cell.

stirring. This is achieved by pumping the electrolyte through the gap formed
by the electrodes. We shall examine mass transfer in this flow system, usually
referred to as channel flow, as a second example (Figure 18). The electro<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>