Process-Based
Software
Project
Management

F. Alan Goodman

Auerbach Publications
A Taylor & Franci

cis Group
k

Auerbach Publications is an imprint of the

© 2006 by Taylor & Francis Group, LLC

Published in 2006 by

Auerbach Publications

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2006 by Taylor & Francis Group, LLC
Auerbach is an imprint of Taylor & Francis Group

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10987654321

International Standard Book Number-10: 0-8493-7304-2 (Hardcover)
International Standard Book Number-13: 978-0-8493-7304-6 (Hardcover)
Library of Congress Card Number 2005058918

This book contains information obtained from authentic and highly regarded sources. Reprinted material is
quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts
have been made to publish reliable data and information, but the author and the publisher cannot assume
responsibility for the validity of all materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic,
mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration
for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate
system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only
for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Goodman, F. Alan.
Process based software project management / F. Alan Goodman.
p. cm.
Includes bibliographical references and index.
ISBN 0-8493-7304-2 (alk. paper)
1. Computer software--Development--Management. I. Title.

QA76.76.D47G6534 2006
005.1°068--dc22 2005058918

[]
Visit the Taylor & Francis Web site at
I n O rI I Ia http://www.taylorandfrancis.com

) Taylor & Francis Group and the Auerbach Publications Web site at
is the Academic Division of Informa plc. http://www.auerbach-publications.com

© 2006 by Taylor & Francis Group, LLC

www.copyright.com
www.taylorandfrancis.com
www.auerbach-publications.com
www.auerbach-publications.com
www.taylorandfrancis.com
www.copyright.com

Other Auerbach Publications in

Software Development, Software Engineering,
and Project Management

The Complete Project Management
Office Handbook

Gerard M. Hill

0-8493-2173-5

Complex IT Project Management: 16
Steps to Success

Peter Schulte

0-8493-1932-3

Creating Components: Object Oriented,
Concurrent, and Distributed Computing
in Java

Charles W. Kann

0-8493-1499-2

The Hands-On Project Office:
Guaranteeing ROl and On-Time Delivery
Richard M. Kesner

0-8493-1991-9

Interpreting the CMMI®: A Process
Improvement Approach

Margaret Kulpa and Kent Johnson
0-8493-1654-5

1SO 9001:2000 for Software and Systems
Providers: An Engineering Approach
Robert Bamford and William John Deibler Il
0-8493-2063-1

The Laws of Software Process: A New
Model for the Production and
Management of Software

Phillip G. Armour

0-8493-1489-5

Real Process Improvement Using the
CMMI®

Michael West

0-8493-2109-3

Six Sigma Software Development
Christine Tayntor
0-8493-1193-4

Software Architecture Design Patterns
in Java

Partha Kuchana

0-8493-2142-5

Software Configuration Management
Jessica Keyes 0-8493-1976-5

Software Engineering for Image
Processing
Phillip A. Laplante 0-8493-1376-7

Software Engineering Handbook
Jessica Keyes 0-8493-1479-8

Software Engineering Measurement
John C. Munson 0-8493-1503-4

Software Metrics: A Guide to Planning,
Analysis, and Application

C.R. Pandian

0-8493-1661-8

Software Testing: A Craftsman’s
Approach, Second Edition

Paul C. Jorgensen

0-8493-0809-7

Software Testing and

Continuous Quality Improvement,
Second Edition

William E. Lewis

0-8493-2524-2

IS Management Handbook,

8th Edition

Carol V. Brown and Heikki Topi, Editors
0-8493-1595-9

Lightweight Enterprise Architectures
Fenix Theuerkorn
0-8493-2114-X

Outsourcing Software Development
Offshore: Making It Work

Tandy Gold

0-8493-1943-9

Maximizing ROl on Software
Development

Vijay Sikka

0-8493-2312-6

Implementing the IT Balanced Scorecard
Jessica Keyes

0-8493-2621-4

AUERBACH PUBLICATIONS

www.auerbach-publications.com
To Order Call: 1-800-272-7737 » Fax: 1-800-374-3401
E-mail: orders@crcpress.com

© 2006 by Taylor & Francis Group, LLC

www.auerbach-publications.com
www.auerbach-publications.com

Dedication

| dedicate this book to my wife Corinne,
whose Parkinson’s Disease has robbed her
of any shared joy that she would have had
in my writing accomplishments.

<

© 2006 by Taylor & Francis Group, LLC

Contents

LiSt Of FIQUIES ...cevuuuuueiiiiiiimmmnneiiiicitieenmeeisisieeteessseesssssssssessssessssssssssesns xi
05 A0 0 o) Lt XV
JEN 0 T0 101 o U1 11 4 U3 o xvii
PLEFACE ..uceirirvrrnneiiieniiinnnteciiisetiiesaneeessssssssssssssessssssssssssssssssssssssssssssens Xix
INEFOAUCTION c.ceueeeneeinennienenneencssses xxi

SECTION I: ESSENCE OF SOFTWARE PROJECT MANAGEMENT

1 The Software Project Management Big Picture.........cccceceeeunen. 3
INErOAUCHION .eeeiiiiiiiiiiiiiiiiic et 3
Pre-execution Efforts for Government Contractorsccccceeeeevrnuvnnneee. 5
Pre-execution Efforts for Commercial Companiescccccceeeeeeennnnnn. 12
Execution Efforts for Both ... 13

2 Planning and Tracking: The Big Picture........cccceeeeeeeueercerencee 17
INELOAUCHION .oeeiiiiiiiiiiiiiii et 17
Proposal-Time Planning............ooccuviiiiiiieiiiiiiiiiiieeeeieieeceee e 19
The Software Project Schedule.............cccccoviiiiiiiiiiiiiiiiiieeee 21
The Project Management Plan (PMP) Document...........ccccueveeeeeeeeennnnnnn. 26
Planning the SOftware Projectccccceeiiiiiiiiiiiiiiiiiiiiiceeee e 27
Traditional Conversion of Planning Packages to Work Packages 28
Tracking the Software Projectoeeeiiiiiiiiiiiiiiiiiiiiiiniieeceee e 30

SECTION 1I: PROCESS FRAMEWORK ARCHITECTURE

3 PrOCESS OVEIVIEW .uueeeueeeereeeeeeeeeeieeeseeessssssssssssssesssssssssssssssssssssssses 37
INELOAUCHION ..uvtiiiiiiiiie e e e e e e e aaaanns 37
The Software Process Framework Model Overviewccue..... 46

vii

© 2006 by Taylor & Francis Group, LLC

viii

m Contents

4

Life-Cycle Mapping.....cccceeeeieeemmeesoneesesesnseessssssssssssssessssssssssssssssss 51
INErOAUCHION ...eeiiiiiiiiiiiiiiiicce e e 51
Life-Cycle Web Representation.............uuuuuueuuuuuiiuiimuiiiiiiiiiiiaaaaaaaaeeeeeeenns 53
Life Cycle/Schedule CONNECHON.........cceeeeeriiiiiiiiiieeeeeeiiiiiieeeee e e 59
Life-Cycle/Event-Driven Procedure Connectioneeeevieeeeenennn. 61
The ProCess ACHIVILY c.ccecceeeerrcccceeeeeeeeeesssssneeeeeeeessssssssnssssesessssssnes 63
TOELOAUCTION L.ttt ettt ettt et e eseeeseaeenneenneas 63
Activity IMpPlementationc..ocuveeuierierieiieeieeiieniie e sve e 67

Special Process Activities for Software Project

MANAGEMENT..ccuuceeureenerenernneeencreeseresscesssesessesasssosssssssssssssssssssens 77
INEEOAUCHION .oeeiiiiiiiiiiiiiiii e 77
N O\ 7Nt 1075 1 PR 79
ACCOUNTING ACTIONS ...ttt e e et e e e e e eeb e e eeeeees 83
Engineering Development ACHONScoovvuvviiiiiiiiiiniiiiiiiiiieeeee e 85
SPIM ACTIONS ..ttt e ettt e e e e e et e e eeeeees 87

SECTION HI: INSTITUTIONALIZATION CONSIDERATIONS

7

Process Framework Model Institutionalized 91
INErOAUCHION ...ooiiiiiiiiiiiiiiiiic e 91
Process Repository Institutionalized.............cccooceeiiiniiiiinniiiinniieennnn. 92
Script Programming Institutionalizedcccooevieviiieeiiieniieeneeenee. 96
Inspection Procedure Institutionalized..................cccoooviiiiiiiiiiiiinnnninnnn. 98
Inspection Checklists Institutionalized...............cccocoiiiinniiiiinniiiennnn. 102
Activity Estimations Institutionalized...............cccoccoiiiiiiiiinnnn.. 104

Work Breakdown Structure and Charge Numbers

INSItUtIONALIZEdcceennriiiiiiiiainneiiiiiieineannesisseensssensnesssssssssscannee 107
INErOAUCHION ..eeviiiiiiiiiiiiiiicc e 107
WBS InsStitutioNalizedooeeiiiiiiiiiiiiiiiieeieee e 108
Charge Number Institutionalized..................oovuiiiiiiiiiiiiiiiiiiiiiiens 116
Software Project Management Role Partners

J TR 100 U8 (030] 7/« N 125
INEEOAUCHION ..eeeiiiiiiiiiiiiiiicec e 125
Engineering Role Partner Institutionalized.............cccccooeeiiiiiiiiiiinennennn. 128
Accounting Role Partner Institutionalized...................ccccvvviiiiiiiiiiiinn. 129
SCM Role Partner Institutionalized...............oeeeiiiiiiiniiiiiiieiieinnneee. 130
SPM Role Partner Institutionalizedoeeeiiiiiiiniiiiiiieeeeinnnnieee. 131
SQA Role Partner Institutionalizedoovviiiiiiiiiiiiiiiiiiiiiiieennn. 132

SECTION 1V: PRE-EXECUTION SEGMENT

10

PrepropoSal...... e eeeeeeeeeeeeeeeeeeeeeeesesesessssesssssssssssssssssssssssssssssss 135
INEEOAUCHION ..eeiiiiiiiiiiiiiiiiieee e e e 135
Using the Process for Pre-execution DireCtioncccoeevuiviveeeerennn. 139

© 2006 by Taylor & Francis Group, LLC

Contents ® ix

11

PLOPOSALcuueeeeeeeeeiieecerercrenneeeeeeeesssssssssssssaessssssssssasssssssssssssene 143
INELOAUCHONeviiieiiiiiee ettt et e e e e e et ee e e entbeeeeenens 143
Proposal REPOSILOTYcocuvviiieiiiiieeiiiieeeeciiee e et e e eireeeeeaeeeeeesereeeeenens 149
REQUITEMENTScoiiiiiiiiiiiiiiiii e 150
Other CONSIAETATIONSeviiieeeiiiiiiiiiiitiee e e e et e e e e e e e eiiieeeeeaeeeeeae 157

SECTION V: EXECUTION SEGMENT

12

13

14

15

16

PLOJECE SETUP ceeeeeeereneeeeercnereesasneeacsssnaseessssnsessssssnsssssssansassssansases 167
INEFOAUCHON ...uviiiiiiiiicc e ettt e e 167
ProCESS BaSISooiiiiiiiiiiiiiiic e 168
REPOSITOTIES.....oeiiiiiiiiiiiiiiiiiiiiiiiieeeee s 172
Charge NUMDEISoooiiiiiiieiiiiie et e et e e e e eeeeea e 174
Planning SChedULIEoooiiiiiiiiiiiiiiiiiiii s 179
Planning up t0 DESiGM ccceeeeeeeeeeeeeeeeeeeeeneeneeeseeeneeessesssssssssssssssssss 185
INErOAUCHONoooiiiiiiii e e e 185
Contract Schedule Items Planning.............oooovuviiieiiieeeiiiiiiiiiieeeeeeeee 186
Target-System Schedule Items Planning.............ccccvveeeeeeeeenniiiiinieenenn.. 186
Planning after DESIQIcccuiieeeeeeriieeneireeeneessssessssoassessssssssssssssee 191
INErOAUCHION ...eeviiiiiiiiiiiiiiiicc et 191
Planning “Design Down (SYStEM)”ooviiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeees 191
Planning “Design Down (SUbSYStem A)”..........uuuuuuuriieiiiiiiiiiiiineeennns 196
Planning “Update Integration Plan (Subsystem A)”ccccccevviiiiinnnn. 200
Planning “Design Down (Subsystem B)”uuviiiiiiiiiiiiiiiiiiiiienn, 201
Planning “Update Integration Plan (Subsystem B)”cccccoevviiiinnnnn. 203
Other Planning Considerations..............eeeeeeriiiuiiiieiieeeeeenniiiiireeeeeeeeeans 206
Project TraCKingeeseeesesesssessssssnsses 213
INErOAUCHION ..eeiiiiiiiiiiiiiiiiecc e e 213
Planning PACKAZESccouviiiiiiiiiie ittt 214
ACHVILY TEACKINGottt ettt 216
SCM-Based TraCKing...........coeeiiiiiiiiiiiiiiieeeeeeeeee e 219
ReWOTK TraCKing..........oooiiiiiiiiiiiiiiiiiiiii s 220
Project CloSedOWN.......eeeeeeeeeeeeeeeeeeeneeenneseeesssssssssssssssssssssssssssssss 223
INEPOAUCHON ... es 223
Repositories 0n ClOSEAOWIcuiiiiiiiiiiieeiiie it eeiiee e eiee e 224
Metrics Collection on ClOSEAOWNvvvviviiiiiiiiiiiiiiiiiiieneeeeennns 225
Post Mortem on ClOSEAOWNoeviiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e eanes 229

© 2006 by Taylor & Francis Group, LLC

List of Figures

Figure 0.1
Figure 0.2
Figure 0.3
Figure 0.4
Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Figure 1.8
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4-4
Figure 4.5

Immature company project scheduling.................... xxi
Immature company Venn diagramc.......... XXii
Mature company project scheduling...................... XXiii
Mature company Venn didgram............cceveereeeennn... xXxXiii
The SPM big picture for contractors............c.cceoueeen. 4
The SPM big picture for commercial companies....... 5
Contractor requirements definition flow..................... 6
Requirements normalization example 7
Requirements clarification example..........ccccooveennne 8
Estimation model story for costs........cccccooviviiinnnnnn. 10
Pricing top-level Story...........ccocooiiiiiiiiiiiniii, 11
Commercial requirements definition flow............... 12
General aspects of an external schedule.................. 18
Typical internal planning/tracking schedule 18
Progress by time-unit completion method 33
Progress by task completion method........................ 33
Process “spaghetti chart” for process failures........... 38
Defect-compounding effect...........coocoeviiiiiiiiinnn. 40
Early-defect detection effect............cccoooiiiiiiiiinnn. 40
Desired process training flow..........cc.ccccoooiiiiiiinnn. 42
Process architecture “pyramid”ccccooviiiiininnnnn 47
The real-world what/how connection 48
The software process improvement loop 50
Nonlife-cycle stovepipe approach to process 52
Multiple-life-cycle Web representation 54
General Web layout for any life cycle...................... 55
Representative life-cycle Web page..........cccccooeennn. 56
Life-cycle segment Web representation..................... 58

xi

© 2006 by Taylor & Francis Group, LLC

xii W [jst of Figures

Figure 4.6
Figure 4.7
Figure 4.8
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 6.1

Figure 6.2
Figure 6.3

Figure 6.4

Figure 6.5
Figure 6.6

Figure 6.7
Figure 6.8
Figure 6.9
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 8.1

Figure 8.2

Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6

Phase Web representation..........ccccoocvvviiiiicenienncnnn 58
Schedule/process activity connection........................ 61
Schedule/process activity “morphing”....................... 61
Activity connection to a phasecccoceeviienirenn. 64
Adjoining activities executed together 66
Regular activity format...........cccooeiiviiiniiiiiiiiieen 68
Gate activity fOrmatccccoovveieiiiiieiiiiee e 70
Quality perspective for high-level steps 70
GET ACHONociiiiiiiiciiceee e 74
PUT QCHON ...ttt 74
INSPECT aCUON ...ceiiiiiiiiiiiiciiiiiceiteec e 75
Life cycle as an inspection chainccccocceeen... 75
Possible “Design Phase” pad showing “Design
Down” and “Update Integration Plan”...................... 78
Impact of the two key SPM activities 79
Allocating subsystem folders to the development
TEPOSIEOTY .ottt e 80
SCM repository expansion when units are

KNOWIL 1. 81
Initial sandbox structure for a project 82
Sandbox areas elaborated as pieces/parts

KNOWIL Lo 83
Schedulable part of a WBS........cccooeiiiiiiiii 84
Nonschedulable portion of the WBSccc.oe.. 85
Time charging number breakdown........................... 85
Process repository StruCtUrecooovviiieiiiieininennn 93
Each category version-controlled...............ccccoccoeei. 95
Simple process update procedure.............cceeeveenn.nn 96
HTML tag example for script processing.................. 97
Sample script output — role involvements.............. 97
Sample script output roles and work products........ 98
Sample script output for training packages.............. 99
Basic inspection checKklist.........cooiiviiiiiiiniii 102
Schedulable perspective of a work breakdown
structure (WBS) ...c.oiiiiiiiiiiiiiiccc e 109
Symbolic activity name connection to the

WBS NUMDET ... 110
Can add WBS hierarchy via activity groups........... 111
Top-level view of the WBS..........cccooiiiiiiiiiii, 111
Top-level structure of the WBScccoocviiiiiinnne. 112
Nonscheduled part of the WBS..........cccoeviiiiienn. 113

© 2006 by Taylor & Francis Group, LLC

List of Figures ® xiii

Figure 8.7
Figure 8.8
Figure 8.9
Figure 8.10

Figure 8.11
Figure 9.1

Figure 9.2
Figure 10.1
Figure 10.2
Figure 10.3
Figure 11.1
Figure 11.2
Figure 11.3
Figure 11.4
Figure 11.5
Figure 11.6
Figure 11.7
Figure 11.8
Figure 11.9
Figure 11.10
Figure 11.11
Figure 11.12

Figure 11.13
Figure 11.14
Figure 11.15
Figure 11.16

Figure 12.1
Figure 12.2
Figure 12.3

Figure 12.4
Figure 12.5
Figure 12.6
Figure 12.7
Figure 12.8
Figure 12.9
Figure 12.10

Scheduled part of the WBS.........cccooviiiiiiin 113
System part of the WBSccccooiviiiiiiii e, 114
Subsystem or unit part of the WBSc.cccoenie 114
Nonscheduled and other perspective of the

WBS - 115
Time charging SysStem...........ccocceiviiinniiiiiieiiiiene, 116
SCM development repository buildup for

ACCOUNTING ..ttt 129
Accounting charge number file for process........... 130
Pre-execution life-cycle guidance.............cccooeee. 139
Pre-execution SEZMENTuuuuviviiiiiiiiiiiiiiiiiiiieeeeeen 141
Interest opportunity phaseccccceevviveeviieennnnnn. 142
The SPM big picture for proposalsccccccoouni.e. 146
Proposal SCM repository top-level structure 147
Top-level repository structure at proposal time..... 151
Requirements normalization flow..............c....cco. 152
Requirements normalization example 1.................. 153
Requirements normalization example 2.................. 153
Requirements normalization example 3.................. 154
Ambiguous normalization example 4...................... 154
Requirements clarification example 1 155
Requirements clarification example 2 156
Typical document production.............ccceeevvirennnnne. 158
Document preparation from a process

PEISPECIIVEiiiieeiiiiiiii et 158
Virtual document submission.............cccceecvveienienin. 159
Use process as an estimation tool..............c...cce..... 160
Proposed work — inside/outside efforts................ 161
Process activities flowed down to

SUDCONIIACLOLS. ...t 162
Process repository starting Structure........................ 169

Structure to determine process basis candidates ... 169
Structure to add system-level placeholders and

EEMPIALES ..t 173
Add project-level template for charge numbers..... 173
Set up project sandbOXcccevviiiiiiiiii 174
Top-level nine-digit charge number format............ 176
Process-based view of charge numbers................. 177
Piece/part view of charge numbers 178
Target portion of charge number................c...o....... 179
Proposal-time execution schedule basis 181

© 2006 by Taylor & Francis Group, LLC

xiv B [jst of Figures

Figure 12.11
Figure 12.12
Figure 13.1

Figure 13.2

Figure 13.3
Figure 13.4
Figure 13.5
Figure 14.1
Figure 14.2

Figure 14.3
Figure 14.4

Figure 14.5
Figure 14.6

Figure 14.7
Figure 14.8

Figure 14.9
Figure 14.10
Figure 14.11
Figure 15.1
Figure 15.2
Figure 15.3
Figure 15.4
Figure 15.5
Figure 16.1
Figure 16.2
Figure 16.3
Figure 16.4

Cull that execution schedule basis..........c.ccccooeene. 181
Create initial execution schedule............................. 182
Proposal connection to initial planning

schedule ... 187
Actual phase PADs involved in the initial

planning schedule..............ccoooiii 187
Possible “Requirements Phase” PAD 187
Requirements PAD converted to a schedule.......... 188
Possible “Design Phase” PADccccooveviiiiiienn. 189
Design-phase PAD mapped onto schedule 192
Schedule after system-level “Design Down”

EXECCULION ..ttt 194
SCM action on system-level “Design Down”
EXECUTION ...ttt 195
Charge number after system-level “Design

DOWN” €XECUOMN ...t 196
Possible “Build Product” phase PAD..........c............ 197
Charge number after “Design Down

(subsystem A)” eXeCUtion............ccccveeveiivreeeiireenennne. 199
Charge number after “Design Down

(subsystem B)” eXeCUtiON..........covvveviieniieiiieaiiene, 203
Consider separate “Allocate Requirements”

to shorten life cycle. ..., 206
Where requirements come in for rework............... 210
Project schedule summary determination 211
Summaries versus tasks on a schedule................... 212
Planning/tracking relationshipcccccoocvviininnn, 214
Earned value reconciliation...........ccccoovviiiiiinann, 217
Internal activity tracking..........cccoocoiviiiniiniiinnn, 218
SCM developmental repository tracking 219
Rework trackingccocevviiviiiiiiiiiiiiiicceieee 221
Activity story in a Pareto chart...........c.ccocoeeeinnnn. 226
Activities by object chart.........c.c.ooccooiiiiiiiiii 227
Costs by activity group pie chartccocoeeennne. 227
Cost by a subsystem piece/partccoceevceerienne. 228

© 2006 by Taylor & Francis Group, LLC

List of Tables

Table 5.1 ACtVity AtDULESooovoviiiiiiiiiieiecc e 09
Table 14.1 SubSYStemM A.......ccccocoiiiiiiiiiiiiieiiee e 205
Table 14.2 Subsystem B.........cccccooiiiiiiiiiiiiiii e 205

XV

© 2006 by Taylor & Francis Group, LLC

About the Author

F. Alan Goodman has over 20 years’ experience in the software process
field. He is now an independent process consultant in the San Diego
area. Al holds a MScEE degree from the University of California (Santa
Barbara). His extensive background covers both commercial and DoD
contracting software engineering environments. Al has had all possible
software engineering-related roles throughout his career in both man-
agement and nonmanagement positions.

Al has been the past president of the San Diego chapter of the
Society for Software Quality (SSQ) for two years. He has taught
computer-related courseware at West Coast University and National
University in San Diego at both the undergraduate and graduate levels.
Al has also been a presenter at the Software Engineering Group (SEPG),
Society for Software Quality (SSQ), San Diego Computer Society, and
the San Diego Project Management Institute (PMID). He has California
teaching credentials for engineering topics at the college level. He is
currently pursuing being an adjunct professor at the University of
California at San Diego (UCSD) Extension. He will teach “Process-
Based Software Project Management” where he will apply his process
approach to the real world of software project management.

For more information on the author, please see www.theprocessguy.
com,

Xvii

© 2006 by Taylor & Francis Group, LLC

www.theprocessguy.com
www.theprocessguy.com
www.theprocessguy.com
www.theprocessguy.com

Preface

After writing “Defining and Deploying Software Processes” [1], it struck
me that the biggest beneficiary of this process architectural model
approach was the software project manager. I kept uncovering values
for any software project manager who used this underlying process
framework model. T will admit that many of my anecdotal stories are
a direct result of seeing a range of Software Project Management (SPM)
expertise that covered the entire spectrum of really bad to really good.
I can also relate some of my own experiences as a new SPM trying
to follow company rules for getting the job done. I must also admit
that the part of being a software project manager that I really hated
was dealing with the politics of the job. I concluded that T was just
too darn honest for spinning project progress beyond the realm of
reality into a fantasy world. I have also run into my share of SPMs
who act like some neurosurgeons (i.e., above “normal” people) and
are not about to have anyone tell them that a right process approach
helps them significantly. T suspect these “I know it all — don’t bother
me” folks will not read this book at all. For those of you who want
a better way of doing your job, this book’s for you.

I'm predominately a “process guy” who has had almost every role
possible within a software engineering environment. This makes me
a generalist due to my broad background in many facets of develop-
ment and project management. My background has also included being
a university adjunct professor teaching computer topics at both the
undergraduate and graduate levels. I mention this because I'm going
to come at software project management from a “process guy” point
of view.

What you will discover as you go through this book is not only a
tight coupling of processes with the SPM but also a tight coupling with:

Xix

© 2006 by Taylor & Francis Group, LLC

xx W Preface

Software engineering

Software configuration management
Software quality assurance
Accounting

Earned value people

Metrics people

I have purposely written in a style that I hope is easily read by a
range of people from software leads through to company executives.
I have written this book as if T were talking to you. I have made a
conscious effort to not make this an “academia” book. My main
objective is to leave the reader with a really good understanding of
where 'm coming from and to show how a tight coupling to this
process model approach will really turn the act of managing software
projects on its end for many of you. I hope to really change your
mind about many aspects of SPM.

I am consciously aware that process is only good if it supports the
organization. I have also run into fellow “process people” who have
lost sight of this fact. Some companies have established a process
bureaucracy for the sake of process. This type of company also has
the “document everything that moves” kind of attitude. People who
know me know that T am not in favor of papering the walls with
processes. I believe in the motto “Be sensible about process.” Not all
things need to be documented. If I have learned anything as a “process
guy,” it’s that people will follow and embrace processes if they are
easy and make sense to them. If you try to ram processes down
people’s throats, the pushback will be unbelievable!

Anyway ... enjoy!

References

[1] “Defining and Deploying Software Processes” by F. Alan Goodman,
Auerbach Publishers ISBN #0-8493-9845-2

[2] “Business Development Process” chart by Shipley Associates, 653 North
main Street, P.O. Box 970, Farmington, UT 84025-0970 Tel: 801-451-
2323

© 2006 by Taylor & Francis Group, LLC

Introduction

There have been many books written about software project manage-
ment (SPM). These books have mostly concentrated on:

Software project management setup

Software project management planning aspects

Software project management tracking aspects

Earned value

Software project management customer interface elements

Software project management project people management

aspects

Subcontractor selection related to software project management

Subcontractor execution management related to software project

management

B Risk management related to software project management

B Requirements management related to software project manage-
ment

B Software project management closedown

Many consider SPM as primarily creating and managing project
schedules along with some people skills. My book does not deal with
people aspects of performing SPM. My book does not deal with risk
management aspects of SPM. I do not deal with budgeting (cost
accounts, contract budget baseline) except that I do describe a very
different way of creating a WBS to support planning packages and
work packages. The book’s focus is on the process architecture role
(or process underpinnings) in performing successful SPM. The process
connection to software project management is not readily understood
by traditional methods of software project management. Once you

XXi

© 2006 by Taylor & Francis Group, LLC

xxii W [ntroduction

understand this process connection, you will realize that SPM can be
accomplished totally in tune with your developmental processes. This
process connection to SPM will automatically align SPM with all your
ongoing software process improvements. These seemingly dissimilar
worlds should be tightly coupled for incredible benefits but unfortu-
nately are not embraced by many companies.

Most books have not addressed the important role that integrated
process architecture performs in doing software project management.
Many books look at software project management as a pipelined (and
a separate) role that “sits on” whatever you have out there for your
developmental processes. This process separation does just that —
separates the SPM basis (schedule management primarily) from the
development basis (software processes). This separation can lead to
disastrous results.

If you subscribe to the notion that a major aspect of SPM is primarily
involved with schedule creation and management, then the schedule
tasks are really important for that SPM effort. We’ll take a look at these
schedule tasks.

Planning schedule tasks come from different sources:

B Software management/leads based on their proposed develop-
mental approach

B Governmental/industry standards related to phases/deliverables

B Target project requirements for builds/capabilities

B Project SPM requirements for technical and management inter-
changes/reviews

B Internal company milestones/quality gates

Subsequent planning schedule tasks come from these different
sources:

B Software management/leads based on increasing visibility from
design

B Software management/leads based on integration planning

B Customer requirements changes affecting schedule tasking

B Software management/leads based on rework

These are the schedule tasks that get tracked during the course of
any project. Because of the different sources of schedule tasks, it is
highly probable that not all these schedule task contributors are on
the same page for schedule task descriptions or task ordering. This is

© 2006 by Taylor & Francis Group, LLC

Introduction ® xxiii

Software Hardware System Software
Engineering Engineering Engineering Project
Leads/Mgmt. Leads/Mgmt. Leads/Mgmt. Management
SW Target HW Target System Target Project
Requirements/ Requirements/ Requirements/ Management
Designs/Plans Designs/Plans Designs/Plans Requirements
Past experience/ Past experience/ Past experience/ Past experience/
Tribal knowledge/ Tribal knowledge/ Tribal knowledge/ Tribal knowledge/
Standards knowledge) |Standards knowledge| |Standards knowledge] |Standards knowledge
Task Task Task Task
Descriptions Descriptions Descriptions Descriptions

Integrate Tasks

Project
Schedule

Figure 0.1 Immature company project scheduling.

particularly true for process-immature organizations where task descrip-
tions and task ordering are ad hoc from each source. This is depicted
graphically in Figure 0.1.

What you end up with are schedules that:

B Have different levels of detail

Have a mix-and-match of verb-based task descriptions and
noun-based task descriptions

Have inconsistent descriptions across leads

Have inconsistent implied task actions across leads

Have inconsistent task ordering and connections

Have no schedule connection to process architecture

If you recognize this scenario, you probably have the situation as
portrayed in Figure 0.2.

These schedule tasks may be mostly divorced from your process
architecture as practiced by your software developers. From a software
project management perspective, if you get your schedule tasks done
correctly, you should be able to plan and track project progress —

© 2006 by Taylor & Francis Group, LLC

xxiv B [ntroduction

Schedule

:

Software
Project
Management

Development

Processes

Figure 0.2 Immature company Venn diagram.

right? The developers however, may be operating on a nonschedule
basis (and usually are). If your process basis is not totally aligned with
schedule tasking, the software project manager may be managing those
tasks in a total void with development reality. I have personally seen
this SPM/development separation, and it's not pretty.

When you align the software process world with the software
project management schedule world, you align development with SPM
by inserting a repeatable process filter to schedule task descriptions
and ordering from your engineering organizations. This process filter
applies a common, repeatable approach to tasking regardless of the
source. This is shown graphically in Figure 0.3. When I talk about a
process filter, I am talking about a process framework architecture that
minimally separates “what you want done” from “how you are to do
it” and has a 1:1 relationship of “what” process elements to generic
tasks as seen on a schedule. I describe such process framework
architecture in my previous book [1] and reinforce that description in
this book. With this process approach, the SPM schedule tasks are
merely instances of process “what you have to do” activity elements
from the process world. Improvements in process content, deliverables,
and ordering are picked up by SPM almost in real time. Process “what”
element changes now have a 2-for-1 effect for both software project
development and software project management. Process improvements
show up during software development and are reflected by the SPM
at the same time. This tight connection is a powerful force for a quality
SPM effort.

If you have this process basis and apply this process filtering to
develop schedule tasking, you have the situation as portrayed in Figure
0.4.

© 2006 by Taylor & Francis Group, LLC

Introduction ® xxv

Software Hardware System Software
Engineering Engineering Engineering Project
Leads/Mgmt. Leads/Mgmt. Leads/Mgmt. Management
SW Target HW Target System Target Project
Requirements/ Requirements/ Requirements/ Management
Designs/Plans Designs/Plans Designs/Plans Requirements
Process basis/ Process basis/ Process basis/ Process basis/

Standards knowledge| |Standards knowledge Standards knowledge Standards knowledge

Task Task | Task Task
Descriptions Descriptions v Descriptions Descriptions

Integrate Tasks

Project
Schedule

Figure 0.3 Mature company project scheduling.

Software Project
Management
AND
Development Processes
AND
Schedule

Figure 0.4 Mature company Venn diagram.

If you're shaking your head at this point and wondering why this
makes SPM so darn effective, stay tuned. I will show you that this
strong process connection to SPM is extremely powerful for:

B Software proposals
B Software project management set up

© 2006 by Taylor & Francis Group, LLC

XXVi

® /ntroduction

Software project estimation

Software project planning

Software project tracking

Software project earned value calculations
Software project planning package management to work packages
Software project schedule rework management
Subcontract management related to SPM

Software process improvements related to SPM
Project requirements management related to SPM
Software quality related to SPM

Software project management repeatability
Software configuration management related to SPM
Life cycle management related to SPM

Software project management closedown

I will also show you what kinds of things need to be institutionalized
to really support all this. T hope to demonstrate to you why your
process framework architecture is so important for software project
management. You can do SPM without that tight process coupling, but
why would you? The bottom line for any SPM effort is to effectively
plan and track progress. If the representation for progress (the project
schedule) is identical to the development tasking via process, there is
no separation and no misunderstandings between your engineering

areas

and SPM. Everyone is on the same page.

This book is broken into the following sections:

Section I: Essence of Software Project Management. This sets
the foundation for the book from a 40,000-foot view of SPM.
Section II: Process Framework Architecture. This section describes
the process approach that makes SPM so different than traditional
approaches. It concentrates on those aspects of the process frame-
work model pertinent to SPM and the SPM partners.

Section III: Institutionalization Considerations. This section calls
out those things that really need to be firmly embedded in your
company culture to fully support SPM

Section IV: Pre-execution Segment. This section is the first sec-
tion that applies information from the first three sections to the
front-end segment of any project life cycle.

Section V: Execution Segment. This section applies information
from the first three sections to the execution portion of any
project life cycle.

© 2006 by Taylor & Francis Group, LLC

Introduction W xxvii

I will provide a lot of examples throughout this book as I cover
various aspect of SPM and show you why the process approach is so
critical to SPM success. I'm a great believer in pictures reinforcing
words. T hope to change your views about the role of process as it
relates to SPM. Try to clear your mind of how you have done software
project management in the past and allow me to offer you a far better
way of performing this vital role.

I hope to show the readers that there are huge differences in this
process-based software project management over traditional SPM. Tra-
ditional SPM assumes the role of trying to manage and control a bunch
of software engineers in executing the project roadmap via a project
schedule. This places the SPM as the sole lightning rod for attacks if
things don’t proceed as expected. In my method, key engineering per-
sonnel actually are responsible for identifying the schedule tasks and
determine the ordering of those tasks on a project schedule — all based
on process. I have absolutely removed the “us versus them” syndrome
in software project management. Engineering, along with software
configuration management, software quality, accounting, metrics per-
sonnel, and earned value personnel become true role partners with
the SPM. This role division is very similar to a surgical team where
different disciplines are involved for success, but there still is a chief
surgeon who’s running the show. The SPM is that chief surgeon. As
you read through this book, this will become apparent to you.

© 2006 by Taylor & Francis Group, LLC

ESSENCE II

OF

SOFTWARE
PROJECT
MANAGEMENT

Chapter 1

The Software Project
Management Big Picture

Introduction

Before getting into why the process of architectural underpinning is
so vital for successful software project management (SPM), it is impor-
tant to set the stage for the kinds of activities required to manage a
software project. I used the word “successful” because you can certainly
achieve varying levels of success that range from abominable to
excellent. T have had personal experience of dealing with one SPM
who could have easily run a death camp in a different era with no
problem at all. The friction, shouting, and table thumping were some
things that nobody looked forward to on a daily basis as a way to run
a project. You can also achieve some level of success at SPM by pure
brute force along with constant care and feeding of this SPM “beast.”
If you are (or know of) a software project manager who can’t take a
day off in case all hell breaks loose on your project, you will really
need this book. T hope to show you that I can significantly reduce the
SPM care and feeding aspect with this described, layered, and selectable
process framework architecture as an SPM foundation.

I always like to start off with “the big picture.” This provides the
basis for all the elaborated topics that will be discussed. If you look
at SPM from the 40,000-ft level, you could certainly see the SPM efforts
involved within two major “buckets” of efforts:

w

© 2006 by Taylor & Francis Group, LLC

4 m Process-Based Software Project Management

Contract
Requirementj\
Customer Project The Proposal _> To external
Requirements D l External Plan) customer
System roposed LA
Y H System
I equlrementsl Approach
Establish/update
internal Plan
AACCiF())t::c{ Set Up for Project Completed Close down
I[’)foject SPM for * * product/ ’ SPN.[o2
R h— project - Tracking deliverables project
e
E', ! L

Figure 1.1 The SPM big picture for contractors.

B Project pre-execution efforts
B Project execution efforts

Having spent half of my career in the commercial world and the
other half in the defense-contracting world, T can tell you that they
are driven by very different needs. This 40,000-ft view is significantly
different in the pre-execution part of the life cycle, culminating in a
proposal submission. The execution part of the life cycle is, for all
intents and purposes, very similar. I say “very similar” because gov-
ernment contractors are still in the documentation business a lot
(imposed by the government), whereas commercial companies pro-
duce documentation only when needed. Another variant is the defi-
nition of “customer.” Government contractors really have an external
customer, whereas many commercial companies are very driven by
internal customers (usually the marketing folks). That’s the big differ-
ence at execution time. These are shown in Figure 1.1 and Figure 1.2,
respectively.

I know that there are some out there who are saying, “Wait a minute
— SPM is only involved once you start executing the project!” The
reality is that SPM functions are involved in two stages. I have per-
sonally seen the scenario in which a proposal-type software project
manager gets involved at pre-execution time, whereas a different
software project manager performs at execution time. I can tell you
from my experience that commitments can be made to the customer

© 2006 by Taylor & Francis Group, LLC

The Software Project Management Big Picture ®m 5

ch;gt(:;d The Proposal * To internal

Approach [|External Plan) customer

A

Internal Marketing
Requirements

Establish/update
internal Plan
Accepted/ Set Up for Project Completed Close down
Ag f (fz‘clid SPM for * * product/ SPM for
Requiré _— project 0; Tracking deliverables| project
E,! L

Figure 1.2 The SPM big picture for commercial companies.

at proposal time that any execution-time SPM would choke on. Pro-
posal-time software project managers can commit to anything because
they don’t have to do the actual work. In fact, many times, this up-
front software project manager can promise anything to get a “win.”
This mentality is especially prevalent in the government-contracting
world. With a solid process/schedule/estimation connection, the prob-
ability of this separation gets decreased significantly (or eliminated) —
even if two different individuals are involved. In an ideal world, the
person who will be managing the execution work should be the same
person who made those important commitments to the customer.

Pre-execution Efforts for Government Contractors

In the government-contracting world, you get customer requirements
(or what I call “raw” customer requirements) given to you via a request
for proposal (RFP) or request for quotation (RFQ). These requirements
tend to be very disciplined with requirements clearly identified and
with each requirement having a “shall.” I mention the term “tend to
be” because incoming requirements are quite often not normalized
(the act of having discrete requirements) and clarified (semantic elab-
orations for ambiguous requirements). In addition to target-system
requirements, the government also requires a whole host of contract
requirements that are to show up throughout the development life

© 2006 by Taylor & Francis Group, LLC

6 ® Process-Based Software Project Management

Normalized/ Determine

Clarified design
system target approach \
requirements To Costing/

[Normalization/ >
Clarification
of customer

requirements |

Pricing for
Proposal

Customer
requirements

Normalized/
Clarified contragct
requirements

Figure 1.3 Contractor requirements definition flow.

cycle. The requirements definition story for contractor requirements is
shown in Figure 1.3.

This figure shows that all requirements are separated into two
“buckets:”

B Target-system requirements
B Nontarget-system requirements (i.e., contract requirements)

Even though contract requirements tend to be OK as is, there are
many times when the incoming requirements are not normalized or
clarified and still need that level of attention. Contract requirements
are usually very clear and need only to be accounted for by the
software project manager. These contract requirements deal with:

Major reviews, including the when-and-where aspects
Interface meetings, including meeting cycles, etc.
Deliverables, including how many and when
Status-reporting meetings

In addition to various reviews and meetings, the government iden-
tifies the set of deliverables (called contract data requirements list
[CDRLD by name, along with when they are to be produced and how
many versions of each are needed. For many years, the government
even went as far as identifying the exact format and contents needed
for each deliverable by way of data item descriptions (DIDs). These
formats tend to be more “contractor determined” today. All need to
be cost estimated, be priced, and to show up on your external plan
that goes back to the customer.

© 2006 by Taylor & Francis Group, LLC

The Software Project Management Big Picture ®m 7

It has been my experience that system requirements always need
to be normalized and at least partially clarified prior to doing any kind
of design-approach determination. System requirements are usually
voluminous but generally clear as to what is a requirement and what
is not. It is these requirements that need a level of understanding and
clarity to even come up with a proposed system approach. Here’s the
rub — you need to do enough requirements analysis and design to
do a proposal but not enough to do the real work on your own dime!
At this point, you're not paid for anything. You may not even get the
contract! Having said that, it should be obvious to the reader that you
want to reuse as much as possible from your proposal effort to get a
head start at execution time. I have worked at a few companies where
the attitude has been, “Well, that’s that for proposals, and now we’ll
do the real thing at execution time!” In other words, the proposal effort
can be considered fiction for the win only. It has nothing to do with
what we really want to do! Both paths go on to costing and pricing
as part of the estimating effort after design has been finalized.

At this point, there may be readers out there who are asking
questions such as, “What is normalization?” and “What has this got to
do with SPM?” Normalization is the act of decomposing multiple
requirements embedded in a single English sentence into separate and
discrete requirements. Requirements can get overlooked when they
are not pulled out as discrete requirements. I'll provide an example
in Figure 1.4 as to why project managers should be concerned about
doing this. Although engineering performs requirements management
activities, the impact on SPM can be huge if they are not done.

“The supplier shall
design, code, test, and
demonstrate product

“The supplier shall design product ABC.”

“The supplier shall code product ABC.”

“The supplier shall test product ABC.”

“The supplier shall demonstrate product ABC.”

Figure 1.4 Requirements normalization example.

© 2006 by Taylor & Francis Group, LLC

8 ®m Process-Based Software Project Management

Ambiguous as stated

| “The supplier shall demonstrate product ABC.” |

?7?

Customer
shows up at our
site, looks over

tester’s
shoulder to

serve as a
demonstration

We are to write
demonstration
software and
run for
customer’s
approval at our
site

We send a crew
to China for a
month to
demonstrate
product ABC
to the customer

Figure 1.5 Requirements clarification example.

This example is taken from one company I worked for where
normalization was not done. Omitting this step cost this company a
small fortune. The original customer requirement was shown as a
single English sentence, but it actually represented four requirements.
In the real-world case, the last requirement about demonstrating was
completely overlooked. That was a real “gotcha” for this company and
the project manager. Only when you decompose incoming English
sentences into discrete requirements (i.e., the act of normalizing) do
you really know what you have without losing anything.

When you look at the normalized requirement in this example, it
cries out to be clarified because its meaning is totally ambiguous. In
Figure 1.5, I show graphically what kinds of thinking go into clarifying
this ambiguous requirement example.

Something 1 learned a long time ago is that if you don’t clarify,
your customers will come back on you with their intent — usually
way later in the developmental life cycle. Without clarification, true
customer intentions were probably not factored into your efforts. It is
in your own best interest to clarify ambiguous requirements — even
in a vacuum. When clarifications are fed back to the customer, it is
much better to adjust contract costs, prices, and durations on expec-
tation differences than when nothing is done. In this real-world com-
pany, the last clarification was closer to what the customer expected
than the first one. The cost and time differential was enormous. The
company “ate it” with this oversight. As a “process guy,” I suggested
a customer meeting after a requirements pass-through for normalization
and clarification to increase the “yes’s” and decrease the “but’s” related
to requirements. The management of that company thought I was com-
pletely out of my mind. I just loved the reason for not doing this —

”»

© 2006 by Taylor & Francis Group, LLC

The Software Project Management Big Picture ®m 9

“We've never done that before!” It was my opinion that this would
have been the best-attended meeting they’d ever have involving their
customer, and that it would clear up any and all misunderstandings
up front before effort occurs. This same company had customers in
house at test time (close to the end of the life cycle), asking questions
such as, “What the h@#& is this?”, etc. Test time is not the right time
to have surprises over contract expectations! The software project
manager became the lightning rod for criticism and fault over this. T
will show you that all this can be totally avoided with a process-based
approach to SPM.

With system requirements normalized and partially clarified, we can
now look at design approaches culminating in a proposed design. For
design approach analysis, it is not my intent to endorse any specific
technique, but I have personally used a Stuart-Pugh-type method very
effectively for arriving at a winning proposal design. I mention this
because you want to retain design alternatives, trade-offs, and design
decisions made at proposal time as an input at execution time. Very
often, the group making the proposal may not be the same players at
execution time later on. The execution design team had better have
really good insight into why the proposed design was selected and
why other designs were not! No matter how you go about that, you
should have a very firm and unambiguous foundation on which to
base any proposed design.

As part of the proposed design approach, you need to determine
if there are derived requirements. Logically, deriving requirements
comes after proposal design, because you have better visibility on the
proposed design direction. In my process model, I recommend a high-
level step in the “determine design approach” activity specifically to
make sure that deriving requirements are not overlooked. There’s a
lot of misinformation out there about derived requirements. Derived
requirements occur mostly as a result of your domain knowledge that
the customer does not have. Let’s look at a roofing example. If you
had to reroof your house, you would look over a variety of roofing
materials presented by your roofing contractor. If you selected a
reinforced-concrete roofing material versus a lighter-weight composi-
tion roof, there is a derived requirement that the roof be strengthened
to support that extra weight. The contractor knows this and should
include this additional effort in the estimate of costs and time that
would not have shown up on a lighter-weight roofing selection. You
only wanted that particular type of roof. The contractor-added derived
requirement didn’t come from you. Again, there may be software project

© 2006 by Taylor & Francis Group, LLC

10 ®m Process-Based Software Project Management

Estimation techniques:
COCOMO, experience,
process, function points,

The design approach
“What needs to be done”

Estimate cost/duration HTQ pricing

The contract stuff to be
accounted for

Figure 1.6 Estimation model story for costs.

managers reading this that would take exception to the notion that
deriving requirements is important to them. After all, doesn’t engineer-
ing do this? Similar to other factors, if whole sections of work are not
factored in for cost and effort, guess who will take the hit for this? It’s
the project manager.

At this point, we enter the wonderful world of estimations based
on a proposed design approach plus all the other contractual stuff
needed, and we come up with, among other items:

B Estimated cost
B Estimated durations
B Estimated manpower loading

This top-level view is given in Figure 1.0.

Here’s another instance where system aspects and nonsystem
aspects are treated very differently. There are several established esti-
mation techniques for software. Methods such as source lines of code
(SLOC) estimations have been around for years. Function point analysis
is another — especially for software applications. Programs such as
COCOMO, etc., can be used as well. Then you have my all-time favorite
method of “I know what I'm doing — it will take xxx months at a
cost of $yyy,” with no backing whatsoever. Later in this book, T will
show you a process-based estimation technique that can supplement
whatever approaches you currently use. This technique will serve as
a validation (or not) of how you're currently doing business. T will
also show you that you can reuse the whole front end of my technique
for your execution-time schedule — a veritable two-for-one sale.

© 2006 by Taylor & Francis Group, LLC

The Software Project Management Big Picture ®m 11

Competition,
strategic reasons, etc.

Price

Estimated cost/duration I—> project/Possibly —> To customer

adjust duration

Figure 1.7 Pricing top-level story.

Once we have a cost understanding of the tasks and their magni-
tude, we enter the pricing world. This can be graphically shown, as
in Figure 1.7.

As T stated earlier, the customer pricing on this project may not be
higher than the cost! There may be either strategic or competitive
reasons for having a low price. The margins here may be low or
negative. This is one area that I know some software project managers
get confused about. Costs are internal estimates to do the work,
whereas the price is the external bid to the customer. Project managers
need to track costs, not price! Your pricing the project lower than the
estimated costs should not be a reason for beating up engineering if
they exceed the price boundary.

In both the big-picture figures, you’ll notice that I use the term
“external plan” as something different from an “internal plan.” The
external plan is merely your best estimate of what it will take to do
the work at a certain price and duration. Estimates can range from a
seat-of-the-pants estimate to a highly structured and disciplined approach
to estimates. At one place I worked, the estimates were based on round
numbers and whether they could stick on the wall for a few minutes! It
is the external plan that goes to the customer. The internal plan is the
one that you actually use to track project progress. If you ever want to
see some ugly SPM and engineering fights, try using the external plan
to track progress! Some software project managers confuse these plans.
Keep in mind that the external plan is your best guess sent to the
customer. Some managers also confuse cost versus price as well, which
can also cause massive fights. The price is something that is of interest
to your customer, whereas the cost is your internal estimate to finish
the work. There are companies out there that do this erroneously.

© 2006 by Taylor & Francis Group, LLC

12 ®m Process-Based Software Project Management

High-level
system
requirements

Elaboration Determine To Costing/
of system * Design * Pricing for
requirements Approach Proposal

Figure 1.8 Commercial requirements definition flow.

In the contracting environment, the external plan is a huge docu-
ment, the format of which is dictated by the government. Quite often,
the external plan is so large that it’s in multiple volumes. Preparation
of this work product is a major effort. This document has all the pretty
print graphics, foldouts, and glossies for a “wow” marketing document.

Pre-execution Efforts for Commercial Companies

Unlike the government-contracting world, you may get requirements
from your internal marketing people to stay competitive. The require-
ments definition story for commercial companies is shown in Figure 1.8.
These requirements may be of such high level that you absolutely
have to define what they mean. I once worked for a large cellular
telecommunications company in which one such requirement was,
“We need roaming.” That was the requirement! I would certainly not
call this disciplined. You may never see a “shall” in this environment.
At this point, the incoming “requirement” is up in the stratosphere. In
this commercial world, it falls on the shoulders of systems engineering
to create a set of real requirements based on the statement “We need
roaming.” The reader may notice that I did not include normalization
and clarification in this flow. This omission was done on purpose.
Hopefully, your own internal people generate normalized and clarified
requirements out of the gate when doing any kind of elaboration of
requirements. I would also hope that they introduce any needed
derived requirements. If they don’t, then provide requirements training
for your staff as a corrective action measure. All this action goes on
in the box labeled “Elaboration of System Requirements.” After getting
some real-looking (normalized, clarified, and derived) requirements,
you can proceed further with determining the design approach.
Unlike the government-contracting world, you don’t get contract
requirements — you just get target-system requirements. All nonsystem
tasks or events usually come from the company’s life-cycle way of

© 2006 by Taylor & Francis Group, LLC

The Software Project Management Big Picture ®m 13

doing business and not from the outside. Also, documents tend to be
minimal and are only produced when there’s some value to the
organization. Commercial companies are not going to spend time and
effort creating fancy documents for their own consumption. It’s just
not going to happen. The external plan in this environment is quite
often very informal (because it’s essentially going back to marketing),
covering, among other considerations:

B Can we do it?
B When we can produce?
B What might suffer?

For commercial companies, the system analysis at proposal time
tends to be a whole lot less rigorous than the government-contracting
world and is also much faster. Commercial companies really want a
general feel for impact on continuing development to insert this new
marketing requirement. The concept of “my dime” (proposal time)
versus “your dime” (execution time) is nonexistent because, quite often,
there is no external customer. Unfortunately, many commercial com-
panies do not do a good job of retaining design decisions, trade-offs,
etc., at proposal time because the normal working pace is hectic. T
have also seen the effects of not doing this properly, especially when
you have a large and dynamic workforce. They could spend a lot of
time at execution time (when it counts for time to market) trying to
figure out why this design was called out? Why not that design, etc.?
The proverb “penny wise and pound foolish” comes to mind here.

Both environments need to cost out the estimated effort. Typically,
in the commercial world, pricing is wholly contained in the marketing
world and is totally separated from the SPM/development world.
Pricing is totally divorced from the development environment.

Even though you might not have an external customer, I still use
the term “external plan” as something different from an “internal plan.”
The external plan, even if it's going to marketing, is merely your best
estimate of what it will take to do the work and when it can be done.
With one of my employers, that external plan was a PowerPoint slide.

Execution Efforts for Both

You'll notice that Figure 1.1 and Figure 1.2 look the same for the
execution segment. These representations are essentially true, with the
following caveats:

© 2006 by Taylor & Francis Group, LLC

14 m Process-Based Software Project Management

Government-contracting execution:

B Acceptance/approval may never happen! The fact that you
submitted a proposal does not ensure that you’ll get to
execute that project! Unless this is a sole-source type of
contract, the execution segment may not exist.

B Acceptance/approval is a very formal process via the con-
tracts department.

B Time delay between an external plan submission and any
“go-ahead” could take months. The government goes
through a vetting of all submissions that could include site
visits, capability audits, and a scoring process against all
submitters.

Commercial company execution:

B Acceptance/approval is almost certainly a slam-dunk because
marketing wants additional capabilities and features. They
have a vested interest to provide that go-ahead.

B Acceptance/approval is very informal. I've seen this done
verbally and via e-mail. No contracts department involvement
at all.

B Time delay between an external plan submission and any
go-ahead is extremely short. It is effectively a sole-source
situation.

No matter what, you do need some type of project setup at the
beginning of the execution segment. This involves various things such
as setting up development repositories, charge numbers, process basis,
etc. I will talk a lot more about this later.

The big event during the execution segment is project planning
and tracking. This is the bulk of any execution segment for time and
effort. Both government contractors and commercial companies need
to do planning and tracking. The centerpiece of project planning and
tracking is the project schedule. I devote Chapter 2 to this aspect of
the execution segment because it is a key component of this process-
based SPM approach. As you read on, I will show you why the schedule
is by far the most important work product you have in managing any
software project. In my approach, every schedule task has a direct
connection to the process world for consistency, repeatability, earned
value, quality gates, metrics data collection, and software configuration
management (SCM) control hooks. Most companies do not have this
process—schedule task connection and suffer a lot because of it. T will

© 2006 by Taylor & Francis Group, LLC

The Software Project Management Big Picture ®m 15

show you why this is crucial to SPM and why you really need to think
hard about incorporating this process approach [1] into your company
for effective SPM. T am passionate about this process approach that
supports SPM and hope to get the readers excited about this, too! T
will bring up this topic throughout this book, showing many reasons
why there are huge benefits in adopting this method.

From this 40,000-ft level, we deliver the product and deliverables
to the customer. I remind the reader again that the customer can be
external or internal.

At the execution end, you have some kind of project “closedown.”
Commercial companies tend to be more informal and shorter than
government contractors. Closedown happens anyway. This involves
various things such as closing down development repositories, charge
numbers, etc. It's a good idea to have a postmortem to look back at
what was done right and what could be done differently. T will also
talk a lot more about this in Chapter 16.

© 2006 by Taylor & Francis Group, LLC

Chapter 2

Planning and Tracking:
The Big Picture

Introduction

In Chapter 1, a box is shown (Figure 1.1 and Figure 1.2) for planning
and tracking in both the government-contracting world and the com-
mercial world of software project management (SPM). That is the whole
game as far as any software project manager is concerned. It is for
this reason that I am dealing with this “big-picture view” separately in
this chapter.

This big-picture view tends to be the traditional way of looking at
planning and tracking. In reality, you have two plans:

B Proposal-time plan (external plan) for project estimation cost,
price, and duration, primarily done for the software project
customer. This effort can range from a fully delivered plan (for
the government contractor) to a roll-up summary for end price,
period of performance, or end date (for commercial companies)
based on the estimation plan. This estimation, by definition, has
to include the entire cradle-to-grave story for the project. I want
to point out again that this is your best guess and may have
nothing to do with system reality at execution time. You may
have estimated five subsystems at proposal time only to find
out later that you actually have six subsystems at execution time!

17

© 2006 by Taylor & Francis Group, LLC

18 ® Process-Based Software Project Management

B Execution-time plan (internal plan) that is primarily used for
planning/tracking purposes to manage progress on the project.
This plan, by definition, has to reflect reality at execution time.
That means that it has to be incremental. It can’t start out as a
cradle-to-grave story. You simply don’t know everything up
front. Only by executing top-level design tasks do you even
know the system and subsystem piece/part story. Only by
following the integration plan do you know the proper imple-
mentation ordering and integration ordering of those
pieces/parts.

Proposal-Time Planning

You plan a project at a very rough level if you have a proposal phase
in your project’s life cycle. Most government-contracting companies
need to respond to a government proposal with that initial planning
story. Many commercial companies need to respond to competitive
challenges quickly, and this drives their initial plan. It is this plan that
becomes the basis for an initial understanding on what needs to be
done at execution time and for how much. It always amazes me when
I see plans produced early as part of the bid process being totally
ignored when the job is to be executed. It’s similar to a “that was
then” and “this is now” kind of attitude.

For any external plan submitted to the (usually government) cus-
tomer, you lay all this out at the summary level merely because it is
derived as a result of estimation. Many commercial enterprises have
no such thing as a deliverable external schedule and merely give an
end date for completion along with a cost. These same companies
really do have a “hip pocket” external plan that supports that end
date. Any external plan is characterized by the following:

B Noun-based phases, deliverables, or reviews
B Summary based (no lower-level tasking)
B Giving a top-level view

Figure 2.1 shows the summary aspect of an external schedule.

Believe it or not, this estimation planning data can come from thin
air (10,000 hr seems a really nice round number ...), or it can come
from a solid estimation basis. If you do project planning based on
round numbers, you deserve bad SPM. If you have a mature organi-
zation and have a database of prior actuals based on similar projects,

© 2006 by Taylor & Francis Group, LLC

Planning and Tracking: The Big Picture ®m 19

Schedule Duration — Days/Weeks/Months
Top-level

Descriptions

Design

Major Review 1 A

Implementation

Deliverable 1

Status Reviews ‘ A ‘ ‘ A

Etc.

>

Figure 2.1 General aspects of an external schedule.

you will have a really good idea of what this new effort will entail.
Past estimations can provide enough data to present to a customer to
give that feel for length and cost of any described effort.

A good process repository develops better and better estimation
data exactly for this cause. This is an area where you can get into
source lines of code (SLOC) estimates, function points, past experience,
etc. I will leave it to the reader to deduce how this planning data gets
derived. Generally, two approaches and consolidation are the best
validation approach to this.

I hope to show you that the process framework architecture itself
can do wonders in this area to get better (and more accurate) estimation
data that can be used for external planning. I still advocate a second
estimation approach to validate the resultant data. I want to reiterate
that this estimation planning data is just that — it only provides overall
guidance. It will not serve as an execution piece/part roadmap even
though some software project managers try to do this. Throughout my
government-contracting days, 1 found that this double usage seemed
to be the norm, which consequently caused all kinds of problems,
both internally and externally. T will show you that by using the process
basis for the initial external planning, you can come close to approx-
imating the whole thing to start your execution! The customer “plan”
and the developer “plan” come from the same basis — not separate ones.

The biggest problem that software project managers may have at
execution time is that the proposal-time planning may be way off the
mark for budget, time, and resources. All of which factor into the
pricing of this project. Remember, you can’t be profitable in your
pricing if you don’t have a good handle on your costs. Companies

© 2006 by Taylor & Francis Group, LLC

20 ® Process-Based Software Project Management

that don’t pay attention to this tend to go out of business. Your customer
needs to get the impression that you know what you're doing. You
need proper costing for resource management and personnel avail-
ability. You need something as a roadmap. Human resources need this
to staff your project. You don’t know where you are if you don’t have
a map. This should be the “map.” For government contractors, this
external project planning is usually a required deliverable. Commercial
companies need to do external project planning properly to be prof-
itable and stay in business.

This is where the cost account management (CAM) system can
really bite you. You have to break down all estimated work into cost
accounts. Typically this breakdown is by logical functional areas. For
example, if you were building a house, cost accounts (a layer of your
work breakdown structure) might include, among others, the following:

Foundation
Framing
Plumbing
Electrical

Drywall

Within each cost account, you’d have a further breakdown that is
reflected in the work breakdown structure (WBS). Physically, these
areas of work tend to be done by different people with different skills.
Each of these areas would ultimately have a cost account manager, a
budget, a period of performance, and resource data. Complications
arise because the budget is not a monolithic number, but is a distributed
budget over a calendar that can be further grouped into fiscal year
budgets. The budgeting part of this is probably a book unto itself. I
will just skim over this topic — only relating parts of this to the
presented process-based SPM approach.

The unfortunate thing that happens is that any cost account manager
(at execution time) is stuck with proposal-time planning packages.
These planning packages really reflect future work within a cost
account that has not yet become work packages. Planning packages
have firm budgets, estimated start and end dates, and a statement of
work. Planning packages are usually around six months in duration.
Here’s the rub — any deviation from a planning package to a work
package (at execution time) carries a heavy burden filling out deviation
and revision requests or reports and “taking the gas pipe” over those
variances. The approach Tll describe can make things considerably

© 2006 by Taylor & Francis Group, LLC

Planning and Tracking: The Big Picture m 21

easier if you use the process as a basis for estimation that, in turn,
becomes the basis for planning packages. I will revisit this topic later
when I show you how you can effectively use this process-based SPM
for proposal or pre-execution estimations and also reuse quite of lot
of that work for project execution to improve the integrity of your
planning packages.

At execution time, I advocate having a just-in-time schedule based
on your process activity diagrams (PADs; more on that later) to really
reflect reality for the developer, software project manager, software
configuration manager, and quality engineers alike.

The Software Project Schedule

The software project manager’s big “plan” is really the software project
schedule. That’s the single-most important work product there is in
managing projects. It is also the one item that regularly “misses the
mark” as an indicator of “done” and is the major focus of disgruntlement
for all levels of management when tasks are not met. For many
companies, the schedule is viewed as “that thing the software project
manager deals with” — not as an integrated work product on which
workers and management are all focused. I have personally seen cases
in which software leads had their schedules and the software project
manager had his or her own schedule. These same leads would have
updated the “other schedule” to satisfy the software project manager
whether it reflects reality or not. It’s no wonder we get into trouble
managing software projects when this type of stuff is going on. The
probability that these two schedules are synchronized is slim to zero.
My approach treats the SPM schedule as the one-and-only schedule
for planning and tracking, using a process-basis approach to SPM.

I have always been amazed at what some people think a project
plan is. The initial schedule by itself is a plan. As I have stated before,
this is the major artifact for any software project manager. Some other
things are derived from that schedule plan that do need to be described
elsewhere. Let’s look at what the schedule itself can provide; it includes
the following:

Project start and finish
Project duration

Tasks

Task ordering

© 2006 by Taylor & Francis Group, LLC

22 ®m Process-Based Software Project Management

Where we are in real time... ’ NN Actually completed tasks

Calendar — Days/Weeks/Months

Schedule Tasks

DESIGN Summary|
Design Down

|
(System) ANNNNNNNNN\\W

Design Down

(Subsystem A) AN\

Design Unit (AA)

| .

Design Unit(AB)

Design Down

(Subsystem B) [INNNNNN\\\\W

Design Unit(BA)

1

Design Unit (BB)

[

Design Unit(BC)

|

Figure 2.2 Typical internal planning/tracking schedule.

Tasking responsibilities

Project life cycle developmental approach
Major revisions and reviews

Manpower loading

Level of effort (LOE) activities
Deliverables

Some readers may take exception to the emphasis on the schedule
itself and feel that there are other important artifacts used in SPM, such
as:

B Data management spreadsheets for deliverable controls

B Project metrics and charts

B Various accounting spreadsheets related to budgets, costs, and
estimated time to complete projects, earned value, etc.

B Monthly status reports, etc.

All these are secondary to the software project schedule. The
schedule drives a lot of these ancillary artifacts and, therefore, T will
not address these secondary work products. If the schedule gets done
right, other things will follow suit.

© 2006 by Taylor & Francis Group, LLC

Planning and Tracking: The Big Picture m 23

If you could step back and look at a schedule, you can see that it
is merely a representation of the complete workflow necessary to get
from the beginning to the end of any project. I am a big proponent
of the idea that an execution-time planning schedule should never
have anything on it that does not reflect reality. T don’t want to see
planning package representations superimposed on my schedule,
because they don't reflect reality. Planning packages remain off to one
side until they become work packages and only then do these work
packages show up on my schedule. Even then, they don’t show up
unless they are meant to be real. In other words, using a checkbook
analogy, T want 35 tasking “checks” on my schedule if there are 35
tasking “checks” to process.

I need to mention that both the external (proposal) schedule and
the internal (planning) schedule have schedule elements that represent
the following:

B Engineering part: Ideally these come from a small set of reusable
process elements that have predecessor/successor relationships
to other process elements based on engineering principles,
designed pieces/parts story, integration planning, and project
planning. They do in my approach.

B Contractual part: These are customer-imposed interface meet-
ings, major design review events, deliverable schedules, etc.

B Management part: These are support items, LOE items, internally
imposed tasks and events, periodic internal management
reviews, etc.

The engineering part is the most uncertain and can’t be totally laid
out up front. The other two parts can be laid out totally up front with
a high degree of certainty that it’s correct. Because of this phenomenon,
the engineering part can be laid out up to the execution of top-level
designs with a high degree of certainty. Top-level design executions
gives you the system piece/part story so that you can identify the
schedule tasking required. The integration plan can provide you with
a tremendous amount of insight into how those pieces/parts get
ordered on a schedule along with the integration story.

It must be blatantly obvious to the reader that managing a software
project schedule is only as good as the following:

B The workflow represented on that schedule
B The connection of the workers to that workflow

© 2006 by Taylor & Francis Group, LLC

24 ®m Process-Based Software Project Management

You can manage fiction or you can manage reality. Too many
software project managers manage fiction; i.e., what is managed (as
per the schedule) has:

B Little to no relationship to the real end-to-end life-cycle story
B Little to no relationship to what is really going on in the software
engineer’s world (i.e., to those actually “working the project”).

The first point deals with the key question: “Just how did the
software project manager come up with this stuff on the schedule?” 1
have seen schedule details that look as if they were made up and
came from nowhere. I have also seen schedule inputs that came from
multiple leads, which had no resemblance to each other in name or
level of detail. These inputs just got “plopped” into the schedule. At
two separate companies, I actually asked software leads what “Imple-
ment Unit” meant on a schedule. The responses I received were scary;
for example:

B “When we get a clean compile, we’re done.”

B “After compiling OK we do a quick code walk-through.”

B “After compiling with no errors, we create a little driver and
test that code.”

B “We compile and then inspect the code. Then we’re done.”

B “After compiling, we integrate our new code with the existing
code to see if it hangs together.”

My point is that you may have hundreds of “Implement Unit” tasks
on your schedule and they may mean different things based on which
software lead provided that schedule line item to you! You may be
going along believing one thing, whereas other interpretations are also
being made. This is just on an implementation kind of task. Can you
imagine the possibilities with design-type tasks?

I hope to show you that because this is an important SPM artifact,
it needs to be created and managed predicated on an intelligent process
basis not by the seat of your pants. I also hope to show you that
when you align the schedule with a suitable process model, you align
your schedule with both SPM and software development management.
You can take advantage of near real-time software project improve-
ments and make life a whole lot simpler for all concerned — including
yourself.

© 2006 by Taylor & Francis Group, LLC

Planning and Tracking: The Big Picture m 25

For your internal planning schedule, you can only lay out what
you know when you do know it! The basic elements of an internal
planning schedule are called tasks and events. Tasks are verb-based,
indicating actions to be done. Events are noun-based. These schedule
elements have predecessor/successor relationships to other schedule
line items. Tasks produce one or more work products to signify “done.”
Tasks work on objects. Tasks get assigned to real people, along with
a responsible task lead, when executed. When completed, a schedule
has lots and lots of tasks and events all strung together, representing
the end-to-end workflow. Related tasks and events can be rolled up
into noun-based summaries. You can even have summaries of sum-
maries to achieve varying levels of detail in a schedule to accommodate
different audiences. Practitioners are supposed to work the low-level
tasks (I say “supposed to” because in many companies the schedule
is looked at by the software project manager and the real work is
done by some other mechanism!). Project management likes higher-
level summaries because it provides a macro view to upper manage-
ment and to external customers. It is that workflow detail that you are
managing, however. I cannot overemphasize enough that it is the
internal plan or schedule that is used for planning and tracking. This
has the real-world tasking shown along with rolled-up summaries and
provides a low-level roadmap of things that need to be done.

Think about it: the schedule is the real work driver for schedulable
things. Later in this book, I will address all the nonschedulable things
via the process model. The schedule indicates, what you need to do —
not how you are to do it. I intend to show you that once you directly
connect schedule tasking “whats” to process “whats,” there are many
marvelous benefits.

Unfortunately, I have seen my share of internal planning schedules
that have a mix of verb-based and noun-based tasks along with variable
task semantics (mentioned earlier), depending on who submitted them
to the software project manager. I have also seen that most companies
have no such schedule—process connection at all! T will show you that
with my described method, you totally eliminate this ambiguity and
significantly improve task repeatability. Figure 2.2 shows this internal
planning type of schedule.

You will notice that for purposes of illustration T have shown
completed tasks differently from noncompleted tasks. I have also
shown only a fragment, using design tasks as an example. In reality,
I suggest you use the checkbook method to indicate task completion.

© 2006 by Taylor & Francis Group, LLC

26 W Process-Based Software Project Management

Merely add a column in your schedule to check off tasks that are done
— as you would do for check reconciliation. One place I worked had
huge schedule charts plastered on the walls throughout the company
with an elaborate color-coding system for completed tasks versus
noncompleted tasks. The concept of “now” was a pen on a dangling
string moved across the schedule. If a task was completed on or before
the designated time, it was colored green. If a task was not completed,
it was colored red. The software project manager would be verbally
beaten up, depending on how much red showed up! Schedule updates
were a group-grope session on a weekly basis. It was no wonder that
people were not lining up to be software project managers at this place.

As you read further, you will see that T make the case that life-
cycle phases, as described by each PAD from the process repository,
are possible summaries for scheduling. I will also show you why they
don’t make sense for progress reporting. Later on, I will introduce you
to process activities that become schedule task instances and activity
groups that are used for progress reporting. At this stage, you might
be shaking your head about PADs, activities, and activity groups. I'll
explain all that later and clear it up for you.

The Project Management Plan (PMP) Document

For many years, the government forced contractors to provide an actual
document called the PMP. This document even required a complete
format outline of what had to be included, as described in a data item
description (DID). Many project managers had to “cut and paste” a
schedule into this document to satisfy the government. This violated basic
database rules because we now had two copies of the schedule — one
real and one inside the PMP. Over time, which one do you believe?
The government put two buckets of information into a single document
container — stuff from a schedule and stuff beyond a schedule.
There are some things that need to be part of a PMP document
that are not available via a project schedule. These are, for example:

Risks

Process basis for this project

Test environment

Software and environment descriptions

If you use a process-based approach to SPM, much of that infor-
mation is already documented in the process repository and does not

© 2006 by Taylor & Francis Group, LLC

Planning and Tracking: The Big Picture m 27

need to be documented again. It is a big mistake to cut and paste
schedule stuff into this document. Resist the urge to do this. Make
reference to your schedule as your plan. T can’t tell you how many
times I have observed that the PMP is considered as “something to be
done” and then shelved rather than be used as a real plan. It was
always unbelievable to me that some people have this attitude. Here’s
a novel approach — use a plan as a plan! In my approach, the
combination of schedule (the major plan) and the associated topics in
the PMP become the basis for the software project managers to do
their job as well as serve as the basis for quality audits and compliance.
I will show you later that plans are an incredible multipurpose work
product that you really will want to use — especially with the described
layered process framework architecture. I will show you that plans are
truly the drivers of work rather than something to be done and ignored.
I will also show you the benefits of a “virtual document” so that you
don’t violate database concepts and don’t waste time in the actual
document preparation business. You have enough to do without being
an English major and a document specialist.

Planning the Software Project

At the beginning of the execution segment of your project, you have
the proposal-time schedule, which should include the following:

B All the contract requirements embedded in the schedule
B All the deliverables identified in the schedule
® Al the support level of effort (LOE) stuff identified in the schedule

What you don’t have primarily involves the following engineering
part of the schedule:

B The development life cycle representation in the schedule. This
may have been alluded to at the proposal time.

B The system piece/part tasking story — because we’re not there yet.

B The schedule task ordering — because there is no integration
plan yet.

B Probably also all the internal management stuff (e.g., internal
reviews).

Plans are not static. Plans need revisions and updating for things
such as the following:

© 2006 by Taylor & Francis Group, LLC

28 ®m Process-Based Software Project Management

Better visibility

Customer requirements changes

Changes in subcontractor work assignments
Process rework

In this described approach, plans are naturally extended (or
changed) as we get better visibility on the system pieces/parts and
tasking ordering. Customer requirement changes, if significant, almost
always require pruning of entire schedule branches of tasks for the
future revisit of those tasks. In my approach, we can actually tag these
pruned and relocated task branches (via the charge number) as rework.
The most cosmetic change to a plan involves changes in assignments
within your organization. Changes in subcontractor work assignments
can also be cosmetic if your subcontractor is aligned with your charge
numbering system — otherwise, it may take some time to reassign
tasks across separate companies. Process-based rework is the worst of
all. This means you are forced into rework because your process basis
has failed you. This rework reason hits at the heart of your SEPG
(software engineering process group) efforts and could affect your
whole institution.

Traditional Conversion of Planning Packages
to Work Packages

This SPM concept can be the biggest mistake anyone can do when
practicing software project management. The idea is that at estimation
planning time, we know we want to do certain things, but, because
no real designing has been done, we can only identify big chunks of
future work (called planning packages) and break them up later (into
work packages) as we get a better idea of what really needs to be
done. This assumes that what you estimated earlier equals what you
are really doing later! How stupid that is! At execution time, you usually
have no idea how these planning package chunks were derived:

B Was it from something real?

B Was it an educated guess?

B Was it off the wall?

Then to add insult to injury, we now try to fit what we're really

doing to this fantasy!

© 2006 by Taylor & Francis Group, LLC

Planning and Tracking: The Big Picture m 29

My advice to any software project manager is, “don’t do that.”

Unfortunately, there are software project managers out there who
think that a schedule can represent what you think it will be (planning)
and “mark off” work as it's done (tracking). The traditional planning
schedule and tracking schedule tend to be two separate threads
because traditional thinking tries to compare how we're doing in
relation to some base position. The thinking prevails that because we
don’t know all things up front, we can be very general in our planning
and create planning-type summaries called planning packages to rep-
resent work to be done. As we get better visibility of what really needs
to be done, we can subdivide these planning packages to create a set
of work packages (also known as tasks). This is where, hopefully, real
work is done.

What I have just said is the traditional way of doing SPM. The
problem with this traditional approach is that earlier estimates are
almost never equal to the real work unfolding during execution! T
worked at one place where the project manager had a fit because the
design type of planning package identified three subsystems — yet the
actual design came up with four subsystems. His tantrums were so bad
that the designers forced the number of subsystems to be three — even
though it resulted in a bad design. Software project managers need to
really understand that an estimate is an estimate — period. Allow the
actual design to be what it should be. Take lessons learned and fold
them into your next project’s estimate — don’t force them into this
one. Estimations primarily drive estimated costs, which, in turn, drive
contract bid pricing. Both are past history. You have a built-in moti-
vation for getting better estimates. You won’t stay in business long
without doing this!

This is one area in which I will show the reader what some may
consider an unconventional approach to SPM. I make no effort to
mark off fictional planning packages representing earlier estimations
that include all the time, effort, and aggravation of variance reporting.
In an ideal software development world, your estimates are so “on”
that they match the later reality of execution. Dream on! By not doing
this, T eliminate all the aggravation of trying to make sense of two
(possibly dissimilar) metrics. T never want to superimpose any
piece/part story at estimation time when executing a project. T will
also show you that execution tasks are never to be placed on a project
schedule unless they are real. Traditional software project managers
may have a lot of trouble with this thinking, but most people will
agree that it makes sense. I do advocate using the process itself as

© 2006 by Taylor & Francis Group, LLC

30 ®m Process-Based Software Project Management

the implied set of planning packages. Stay tuned to see how all this
works effortlessly, given the described process underpinning.

Tracking the Software Project

You can’t track what you didn’t plan correctly! That would be akin to
having 26 entries in your checkbook, with 35 checks to be accounted
for (or tracked)! Unfortunately, many of the software project managers
I've worked with didn’t really understand this fundamental concept.
The plan part is built on sand for many project managers. You can
never track a project when your plan basis is a pile of best guesses
of what you think might happen versus what really is going to happen.
With this process-based SPM approach, I hope to convince the readers
that my method does not allow figments of anyone’s imagination to
show up on any plan. Also, I will show that the planning basis is
rooted in process and endorsed by engineering. Remember, engineer-
ing are the folks who are doing the real work. That powerful partner-
ship provides a plan that does reflect reality for actual work and for
project tracking. If you have 35 checks to be accounted for, you’ll
have 35 entries in your checkbook.

Traditionally, to track any software project assumed that you had
something to track against! That something was, for the most part, the
time-based project plan expressed by your planning schedule. The
thought was that if you have a garbage plan, you have garbage tracking.
There was no point in even discussing software project tracking if
your plan was bogus. If the project plan was incomplete by missing
some work elements, you could not successfully track that project.

Historically, many software project managers took the planning
schedule, made up of lots of planning packages, and decomposed
these planning packages into work packages or schedule tasking as
visibility dictated. Once this was done, they could assign work pack-
ages (tasks) to be done and check them off as work is done. The
problem with this is that the planning packages seldom, if at all,
matched reality once execution started.

Tracking involves initiating work elements or tasks in a structured
way to create work products that signify “done” for any task. Once
done, you can mark these off the list of things to be done and get on
with the next task at hand. As each task is marked off, you can update
any of your earned value calculations to show progress and revise
things such as budgeted work performed, performance indicators, and
estimated time to complete (ETC) calculations.

© 2006 by Taylor & Francis Group, LLC

Planning and Tracking: The Big Picture m 31

All this works great if your original schedule is great. It is horrible
if your schedule does not reflect the reality of the work tasks. Ideal
tracking has a 1:1 relationship to designated tasks on a software project
schedule. Unfortunately, I have seen more examples than I care to
admit of plan schedules not aligning with real-world tasks. If that
happens, it is extremely difficult (if not impossible) to provide effective
progress indicators against a fictional plan.

I will probably shock my readers at this point and suggest a totally
different way of doing this that is simpler, process based, and makes
sense. I advocate a planning/tracking approach that uses the process
execution itself to drive the planning schedule for effective tracking.
My approach actually uses design results for all of the following:

B Be an input to further target designs/implementations (norm).

B Drive the project schedule so that tasks reflect reality.

B Drive the software configuration management project repository
structures.

B Drive charge number expansion.

In addition, my approach places a heavy dependence on the
integration plan to:

B Identify pieces/parts for integration planning.
B Dictate task ordering on your schedule.

I hope to show you that once you have a process-based SPM
approach, you will get that alignment automatically for real progress
indicators.

The traditional way to report progress is time based. This method
does not consider all tasks the same but looks at completed tasks
based on a calendar. Fach task is taken on its own merit for the
duration. Traditional SPM tends to favor this method. T hope to convert
you from doing business this way. It is certainly one method of progress
reporting but is complicated and quite often meaningless. It does have
a lower granularity than what 'm going to propose. As a software
development manager, asking people where they were and getting a
response that 80 percent of the work has been done is a useless piece
of information. It’s possible that the first 80 percent was really easy
and the last 20 percent is going to take 5 times longer. Many software
project managers use the unit-of-time based way of reporting progress.

Let’s look at the scenario from Figure 2.2 as an example. We have
a set of design tasks on a schedule as follows:

© 2006 by Taylor & Francis Group, LLC

32 ® Process-Based Software Project Management

“Design Down (system)” is done and took 2 time units (e.g.,
weeks).

“Design Down (subsystem A)” is done and took 1.5 time units.
“Design Unit (AA)” is not done and will take 1 time unit.
“Design Unit (AB)” is not done and will take 1.5 time units.
“Design Down (subsystem B)” is done and took 2 time units.
“Design Unit (BA)” has not started and is a 1-time-unit item
“Design Unit (BB)” has not started and is a 2-time-unit item.
“Design Unit (BC)” has not started and is a 2-time-unit item.

The reporting information is as follows:

Total tasks = 8

Completed tasks = 3

Total time units = 13
Completed time units = 5.5

5.5 Units of time completed —
out of 13 units

Design Units of Time

Figure 2.3 Progress by time-unit completion method.

The time-unit method of reporting progress is shown in Figure 2.3.
There is no question that time-based reporting is, on one hand, of
a finer granularity than activity-based reporting. On the other hand,
each unit of time may not reflect the real progress. As an example, I
had a new fence put in. I knew how many fence posts had to go in.
I also knew from the first post that each post took a certain amount

© 2006 by Taylor & Francis Group, LLC

Planning and Tracking: The Big Picture ®m 33

of time to install. Unexpectedly, we ran across a huge rock seam where
one posthole was to go. The amount of time for that post was several
orders of magnitude greater than all the others. If we had counted
progress for 10 posts at 90 percent for the easy posts, we would have
no clue as to real progress because the last 10 percent took as much
as all the other 9 combined. I quote this method as a widely used
method of reporting progress. I am advocating a different method, as
described in the text that follows.

3 tasks completed —
out of 8 tasks

Design Tasks
|

Figure 2.4 Progress by task completion method.

A really simple way (but not as exact) is to consider each task as
a reportable unit, being the same as any other task. We know that this
is not exactly true, because a top-level design might be considerably
shorter than a lower-level detail design. Statistically, however, over the
life of a project, it doesn’t matter. To show this comparison, let’s view
each task as weighted the same as any other task. This provides a
really easy way to communicate progress: merely count the “done”
tasks as compared to the overall number of tasks contained in that
summary. This is the task (activity) method of reporting progress;
Figure 2.4 depicts this simpler method.

You will notice that these progress management indicators are not
that different; however, with this latter method, it is absolutely simple
to derive these metrics. Simply add up the tasks belonging to the
metric topic (in our case, “design”), and every time you complete a

© 2006 by Taylor & Francis Group, LLC

34 m Process-Based Software Project Management

task you count “1” as a “done” count. What could be simpler! T will
show you that the simpler method is far superior and yet easier once
we head toward an activity or task-based scheduling method. Don'’t
complicate SPM unnecessarily.

© 2006 by Taylor & Francis Group, LLC

PROCESS I I I

FRAMEWORK
ARCHITECTURE

Chapter 3

Process Overview

Introduction

At this point, the reader is probably asking what a process architectural
foundation has to do with software project management (SPM). After
all, you map out tasks on a project schedule, based on past experience
and software engineering practices. Your organization has piles of
procedural “how-to” processes along with document templates, forms,
and various checklists in their process repository. Engineers check the
work, and the organization produces all the necessary documents for
any project. What’s the problem?

I do realize that for many people the word “process” is a four-letter
word. Unfortunately some of my process colleagues have lost sight of
the fact that process is there to support the organization — not the
other way around. Many companies have piles and piles of processes
that are not connected to anything but are there because of the
possibility that there may be some tidbits of value to someone — if
they could find it.

Here’s an action item if you feel you have that situation:

B Take a functional area of your company.

B Identify all the process elements that relate to that functional
area.

B Draw a box for each process element and name it — all on a
single page.

B Draw a line from each reference to its referenced box.

© 2006 by Taylor & Francis Group, LLC

38 m Process-Based Software Project Management

Figure 3.1 Process “spaghetti chart” for process failures.

Is it clean or is it a “spaghetti chart?” If it’s similar to Figure 3.1,
you need major surgery on your process basis. This chart actually
represents “subcontract management” at one company where I worked!
I personally took paper copies of all subcontract-management-related
process elements home over a weekend and drew this picture. The
middle was a blob of black. I presented this to company executives
on Monday morning and told them that this was why they’re having
subcontractor management problems! No one in his right mind could
possibly follow this — even if they wanted to!

If you are experiencing the following problems, they are also strong
indicators that you need underlying process architecture:

Schedules being missed by a large margin

Rework being a large percentage of the developmental life cycle
Product quality and reliability being low or questionable
Defects being primarily found at test time

People working excessive hours — tired, creating defects

No consistency for tasks and work products

Lack of configuration management control on developmental
work products

Quality emphasis being focused on testing

Chaotic, firefighting mode of operation generally

B Excessive thrashing on internal releases between test and engi-
neering

Having raised all these factors, it is now important to note the
standards that any process solution has to meet; these are:

© 2006 by Taylor & Francis Group, LLC

Process Overview ®m 39

B An end-to-end repeatable solution for any development life
cycle

B A methodology that supports both schedule estimation and
execution

B Flexibility and extensibility at the how-to level for inter- or

intraproject and project-scale variances

A methodology that supports built-in quality gates throughout

the life cycle

A methodology that supports metrics collection

A methodology that supports process audits

A methodology that supports process improvements

A methodology that is role based to show process involvement

A methodology that produces standard work products

A methodology that is easy to use

For a software project manager, in particular, there are many reasons
why a process-based approach to SPM is important:

B Short process basis determination for a project.

B Better and better planning estimations of work.

B Accurate internal planning schedule for effective tracking.

B Shortened time to market (TTM).

B Easier earned value calculations.

B Direct partnership with accounting, software configuration man-
agement (SCM), and software quality assurance (SQA).

B Deterministic metric data collection.

B Total alignment with process improvements for your project.

B Seamless engineering staffing from one project to another.

B It’s just easier!

Let's take a look at some of these benefits for a software project
manager now. I will deal with these topics in much more detail in
this section of the book.

A big killer of any project is the cost of errors. We all understand
the value of compounding when it relates to interest received on a
savings account. That's a good thing. Compounding also happens with
defects — except it's negative compounding for any software project
manager. Defects introduced early in the life cycle (and not detected)
have a huge compounding effect on defects later in the life cycle.
Over time, those compounded defects get more and more expensive
to fix. The trick is to catch and fix defects as early as possible, while

© 2006 by Taylor & Francis Group, LLC

40 m Process-Based Software Project Management

vy
g
=]
a &
S Q
° o
& 17
Q Q
2
= Q
=}
z
Time
Figure 3.2 Defect-compounding effect.
vy
g
S
a] &
5 2
8 7
£ S
=]
g R

Time

Figure 3.3 Early-defect detection effect.

they are still cheap to fix and have not started compounding the errors.
We can see this defect-compounding effect graphically in Figure 3.2.

Unfortunately, many companies experience this phenomenon and
address this by having SQA people obtain quality via testing at the
end of the life cycle. That quality focus is too little too late. This SQA
involvement is the little “q” of quality. From an SPM perspective,
massive defects at test time can torpedo the project. You see this
manifested in the thrashing and churning between your engineering
group and your test group that can reach a point at which the
developmental impact on your SPM agenda can be horrendous.

You want to head to a process solution that catches defects early,
while they’re inexpensive and, ideally, have system test be a nonevent.
You need to consciously include quality gates into each and every
task for that very reason. This is the big “Q” of quality. The described
process model gives huge importance to meeting this quality objective.
This effect is shown in Figure 3.3.

© 2006 by Taylor & Francis Group, LLC

Process Overview m 41

This process model emphasizes inspections on work products
throughout the life cycle. The process model does recognize that not
all work products are created equal. Some need stringent inspections.
Some don’t. The efficiency of the inspection procedure is the single-
most important procedure that any software project manager can have
in his or her arsenal. As a “process guy,” I have certainly run into
horrible review or inspection procedures. I have also experienced
situations in which this procedural element is somebody’s “baby” and
he or she is not about to have it changed or replaced — even though
it is totally useless! T know; I've been there. At one large cellular
telecommunications company, I had a supportive boss and was able
to replace their existing inspection and review procedure with a Web-
based solution that was all of the following:

More efficient for accessibility and usage

Up to ten times faster

Provided higher-quality inspections than before

Provided multisite inspector capability

Provided both defect detection and defect prevention capability
Built into the entire life cycle

This new inspection method sold itself. The practitioners loved it.
The managers loved it. Other divisions in the company wanted it
because word-of-mouth endorsements work wonders in any organi-
zation. I cannot overemphasize how much the inspection procedure
is fundamental to this described approach, and it needs to be such
that your workers use it because it works for them. If you have an
inspection procedure that has all the bells and whistles but is not used,
get rid of it.

You may not have given much thought to the impact a layered
process architecture has on SPM. As a software project manager, you
want people assigned to your project who can go in running. You simply
can't afford a workforce that is wasting (your) project time. If you're a
ship’s captain, you want your sailors to be able-bodied seamen — not
landlubbers! My point is that a layered process architecture that is
tightly coupled to your schedules and institutionalized in your organi-
zation provides trained people for you. You end up with a seamless
engineering, SCM, SQA, and accounting support for your project, which
can readily move from project to project with little to no special
training. That also applies to any software project manager moving
from one project to another. How’s that for cost savings? You want
your training to look similar to Figure 3.4.

© 2006 by Taylor & Francis Group, LLC

42 ®m Process-Based Software Project Management

Project A
Specific
Training
P Repeatable
Framework Process o
==X | Training || . o
(\ Overview Training
Project n
L Y, Spe.c1'ﬁc
N Training
Common

Figure 3.4 Desired process training flow.

With this process architecture institutionalized, you provide all
employees with overview training on the process framework architec-
tural model itself, followed by detailed training on the life-cycle con-
nection to the processes. In this model, I advocate inspection procedure
training as part of the common training. These types of training courses
are common to all hands. The only project-specific training that might
apply is in the use of a particular process element that is to be
employed on that project. There may be other project-specific training
needs related to tool usage, etc., or specialized training to successfully
execute certain activities (e.g., requirements normalization and clarifi-
cation training). I hope the reader can readily see that moving employ-
ees from one project to another becomes really easy because of the
process basis.

The problem, in a nutshell, is that the very essence of “what you
need to do” tasks are not represented on a 1:1 basis in your process
repository. If T have a design-type task versus an integrate task, what
are the inputs, steps, outputs, etc., for one task lead versus another
task lead? Do T just assume that everyone knows what they’re doing
and cross my fingers for repeatability and success? Many do just that!

I should be able to close my eyes, point to any task at random on
the project schedule, and:

B Relate that task to a process “what we need to do” activity for
“what” level information, such as:
— Task dependencies.
— Inputs to this task.
— High-level “what you have to do” steps to complete this task.
This provides the linkage to the “how-to” world.
— Outputs from this task.

© 2006 by Taylor & Francis Group, LLC

Process Overview m 43

— Roles involved in getting this task done.
— Training involved to do this task.
— Metrics involved in this task.
— Task estimates.
B Relate that task to predecessor or successor tasks based on a
process life cycle.

I should also be able to pull out any one of the “how-to” procedures
and get a satisfactory answer to the “where does this fit in the life
cycle?” question. If you can’t answer this, you are an organization with
piles of process stuff out there, and that’s all. “How-to” elements should
be tied to one (or more) of these “what” anchors, i.e.:

B High-level “what” steps inside any activity as an elaboration of
that “what”

B High-level “what” requirements in any international standard
that you're following (e.g., ISO9001)

B High-level “what” requirements in any government regulation
that you're following (e.g., FAA, FDA, etc.)

B High-level “what” pseudo requirements in any maturity model
that you’re following (e.g., CMMI)

B High-level “what” requirements from the company policies that
you're following

Elaborated “how-to” procedures tied to activities are directly tied
to places in the life cycle via the process activity diagrams (PADs).
The others are event-driven procedures that are also tied to the life
cycle by virtue of being global (e.g., corrective action) or by being
segment or phase dependent (e.g., requirements changes and internal
builds). This book will focus on the elaborated ones tied to activities
and touch on all the others because of the book’s perspective on SPM.
I will discuss these topics in more detail later.

If you had a process architecture that provided all of these:

B “What you had to do” process elements separated from “how
you need to do it” process elements.

B These “what” process elements were self-contained and pro-
vided everything you needed to know about doing that “what-
level” process element.

B These same “what” process elements showed you all the valid
predecessor and successor “what” elements for the end-to-end

story.

© 2006 by Taylor & Francis Group, LLC

44 m Process-Based Software Project Management

These same “what” process elements could be identified within
life-cycle phases.

These same “what” process elements were grouped under
umbrella terms.

Then, you would end up with SPM schedules made up of:

Consistent “what-level” descriptions directly tied to your process
world for high-process repeatability; i.e., a drag-and-drop
approach to schedule tasks from a process-based “pick list” of
“what you have to do” activities.

Consistent predecessor and successor relationships based on
your process life-cycle roadmap of “what-level” tasks — not
based on individual leads.

Consistent task umbrella terms for SPM metrics.

Built-in SCM controls for each “what-level” task appropriate to
that task’s outputs; i.e., you eliminate the problem of the “what
level of CM control is needed?” question. It’s built-in.

Built-in quality gates for each “what-level” task that places
quality responsibility on the producer — not the consumer. The
questions of “what templates do I use?” and “where are the
inspection checklists or examples?” are eliminated. It’s built-in.
This reduces later (and expensive) defects.

Consistent inputs by “what-level” task. The questions of “what
do I need to do this task?” along with “where do I get it?” are
eliminated. It’s built-in.

Consistent outputs by “what-level” task. The questions of “what
gets produced?” and “where do they go?” are eliminated. It’s
built-in.

Consistent role assignments per “what-level” task. This is a
definite aid to SPM and development management for task
assignments to get the right mix of people performing the job
for success.

Consistent metrics data collection per “what-level” task. Metrics
data collection is built into the process activity and, thus, to the
schedule task. It virtually eliminates pushback for metrics data
collection because it’s an integral part of “doneness” for the task.
Consistent special training requirements per “what-level” task.
This is also a definite aid to SPM and development management
to make sure that special training needs have been handled for
task success.

© 2006 by Taylor & Francis Group, LLC

Process Overview ®m 45

Consistent dependencies per “what-level” task. These address
things such as “is the test lab in place and set up?” kinds of
dependencies. Again, tying this to process activities (and thus
tasks) makes sure that all things are in place for success.
Schedule tasks that developers, SCM, quality, accounting, and
SPM work and manage. There is absolutely no reason for
multiple schedules. Developers are connected to tasks (and,
thus, process activities) for “what you need to do” instructions
along with “how-to” hooks to get the job done. Accounting
manages the enfolding charge numbers assigned to tasks. You
achieve total repeatability for development efforts. SCM hooks are
present to make sure the correct level of configuration control is
being used. Quality is built-in by quality gate inspections along
with total auditability of task completion built into this model.
SPM manages task completions for earned value calculations.

What this means is that the SPM world is directly connected to the
software development world, the software quality world, the SCM
world, and the accounting world. All are connected to the process
world with these awesome benefits:

Software process improvements can be included in your projects
close to real-time if you so choose.

Software process improvements drive all SPM schedules for total
consistency across the enterprise.

Time charges can be directly tied to process “what-level” activ-
ities for better project estimations based on prior actual data.
Earned value calculations can be based on activity or task
granularity for simplicity.

Software developer work elements are identical to SPM work
elements, period!

All process elements are auditable for quality checking. Audits
can be done by anyone in the spirit of the ISO 9001 definition
of “quality.”

SCM is built into the process “what you need to do” world that
shows up as schedule tasks.

Very high level of process repeatability because tasks and pro-
cess activities are the same.

Software subcontractor management can be much cleaner
because all the “whats” need doing, regardless of what badge
is being worn. Only the “how-tos” are different (along with tool
variations).

© 2006 by Taylor & Francis Group, LLC

46 m Process-Based Software Project Management

B Project-specific “how-to” processes can be incorporated into the
process “how-to” pool of selectable procedures. This encourages
better mousetraps.

B The process basis for any project is the set of process “what-level”
activities along with “how-to” selections. This can be accomplished
in minutes for quality auditing and project execution.

I will now describe a process framework model architecture that
makes SPM so much better. I will concentrate on those aspects of the
process architecture pertinent to SPM. For a full description of this
architecture, see Reference 1. T have written this book such that you
will not need any reference to understand what I'm getting at to
perform SPM successfully using a process-based model. This book is
intended to be self-contained.

The Software Process Framework Model Overview

Let me introduce the reader to the overall process architecture “pyra-
mid.” See Figure 3.5, which shows the user view of the major layers
of process elements in this process framework architectural model.

Repeatable
Level

Implementation
Level

Support
Level

Figure 3.5 Process architecture “pyramid.”

© 2006 by Taylor & Francis Group, LLC

Process Overview m 47

The model layers are broken down into four major levels of process
elements as follows:

B Authority level: This level contains all the reasons why we’re
doing this in the first place. The following types of things go
in here:

— International standards (e.g., ISO 9001) requirements. These
are the top-level “shall” statements that you must follow if
you are ISO certified. For example, ISO 9001 has a standard
requirement that states: “The supplier shall have a corrective
action system.” This top-level “what” requirement can be
directly connected with your “corrective action” procedural
element as its reason for being.

— Maturity model (e.g., Capability Maturity Model for Software
[SW-CMM], Capability Maturity Model Integration [CMMI])
“requirements.” Although the “M” stands for “model,” these
are, for all intents and purposes, real requirements. Most
companies involved with CMMI consider these as pseudo
requirements even though it's not a standard but a model.

— Government regulations to be followed. This is for those
regulated industries that are required to follow FDA, FAA,
etc., regulations. Similar to ISO 9001, top-level government
regulations are “what” requirements that need connectivity
to something in your process arsenal.

— Company policies to be followed. These are company-specific
policies to be followed. Usually these are low in number,
but they are still requirements that have to be followed.
Writing company policies in a vacuum makes no sense unless
these get connected to something in the process repository
that actually fulfills those policies.

B Repeatable level: This level contains all the “what you have to
do” processes. T call these “activities.” This level also includes
end-to-end life-cycle story representations of those “what” ele-
ments. These are a collection of PADs that, when strung together,
form a life cycle. This level connects the process world to the
project schedule world and is the single-most important level
for any software project manager.

B Implementation level: So called because this is where the “rub-
ber meets the road” for all the “how-to” procedures that elab-
orate on elements in the two layers mentioned earlier. Many
say this is where the real work happens. In this model, I

© 2006 by Taylor & Francis Group, LLC

48 m Process-Based Software Project Management

introduce a concept called the “how selector” to provide that
flexibility and extensibility for “how-tos.” “How-to” procedural
selectability address project scalability differences, site differ-
ences, and tool set differences that occur in the real world.
Almost nothing in life has only one way of doing things. This
model accommodates that philosophy.

B Support level: This level contains all the information about work
products and forms, including templates, quality checklists,
guidelines, coding standards, and examples. You will under-
stand later why I place a big emphasis on quality checklists for
not only detecting defects but also for providing a mechanism
for defect prevention. I use these checklists to achieve software
process improvements throughout any life cycle.

In this process model, I do not allow process elements to just “be
there.” All process elements are connected to something above it in
the pyramid. If you ever have a process element by itself, get rid of
it. T also have stringent rules for that connectivity:

(]

B “Whats” flow down to “how-to’s” and support items.
B “How-to’s” flow down to support items.

This connectivity is shown in Figure 3.6.
The big thing to notice is you can break down the real-world usage
of process into two groups:

B Schedulable things
B Nonschedulable things

Schedulable/ Non Schedulable/
Life Cycle Driven What you Event-Driven
have to do Process Elements

Process Elements |

%ector #1 000 /Selector #n% ésﬁecto?g/l/é 000 %ector{{

[P et [t e el el 2 i ‘_‘_‘_‘_J‘_‘_‘_‘:‘_. i ‘_‘_‘_‘_ ————2

| : How you 'l How you | : How you | : How you

‘| doit#l “t| doit#n “tf doit#l ‘| doit#n
—— —————t e — —

I N I I

| : WPs/Forms/ | : WPs/Forms/ | : WPs/Forms/ | : WPs/Forms/

“t| Tools #1 “i Tools #n L Tools #1 L Tools #n

Figure 3.6 The real-world what/how connection.

© 2006 by Taylor & Francis Group, LLC

Process Overview m 49

The schedulable world has a “what you have to do” aspect that
becomes that end-to-end life cycle manifested onto a project schedule.
The nonschedulable world does not have that layer. No matter what,
both have a set of selectable “how-to” procedures that, in turn, are
associated with work products, forms, tools, etc. Both schedulable and
nonschedulable process elements have a connection to some part of
any life cycle. The schedulable activities (or task instances) are explicit
members of a designated phase within any given life cycle (e.g.,
“Design Down” activity is within the “design” phase). The nonsched-
ulable event-driven procedures have a less granular connection with
a life cycle. These event-driven procedures can be:

B Global to the entire life cycle (e.g., corrective action, process
assessments, etc.)

B Associated with a life-cycle segment (pre-execution versus exe-
cution) (e.g., requirements changes)

B Associated with a life-cycle phase (e.g., design phase)

Any reverse connectivity associated with Figure 3.6 (i.e., traceability)
is accomplished via compliance matrices. Your assessors, auditors, and
SEPG folks mostly use these.

With this process activity—schedule task connection along with
event-driven procedure connections to the life cycle, you are com-
pletely in the loop for process improvements as close to real-time as
you want. This loop is shown in Figure 3.7.

Software Process Improvements

<— Company Processes

v

Company Operations
(Schedules/Procedures)

Figure 3.7 The software process improvement loop.

© 2006 by Taylor & Francis Group, LLC

50 ® Process-Based Software Project Management

For this book, I will concentrate mainly on the repeatable level
and, thus, the schedulable part. This is the portion of the process
repository that directly connects the process world to the wonderful
world of SPM project schedules. If the reader wants a full understanding
of the whole architectural model, T recommend my earlier book [1],
in which T not only address this view but also the other sides of the
pyramid model (e.g., where training packages fit).

© 2006 by Taylor & Francis Group, LLC

Chapter 4

Life-Cycle Mapping

Introduction

It is extremely important that you map your process activities into
phases of a life cycle. As a reminder, process activities become task
instances on a project schedule and represent the “what you need to
do” process elements. As a “process guy,” I have been absolutely
amazed at what some companies do with their processes. Some
examples are as follows:

They do nothing. “We just know what we're doing.” These are
the companies that don’t last long. I just love this one.

They have a sparse set of things that people can use if they
want to and if they can find it. This is the “hide-and-seek”
approach to process.

They have a horrendous pile of stuff with overlapping docu-
mentation and variations on any given topic. This is the “good
luck to you” approach in getting anything done.

They have a pile of process elements with no consistency and
no architecture. Pick out whatever you think applies. The
“whats,” “hows,” and “policies” are all mixed in with each other.
This is the “Yeah, we have processes” approach, but no one is
using it much.

Major functional areas of the company organize processes. This
is the guaranteed “stovepipe” approach to processes and is far

© 2006 by Taylor & Francis Group, LLC

52 ® Process-Based Software Project Management

/]
i

Manage the Manage Acquire New Manage Engineer The | | Manufacture
Enterprise Resources Business Projects Product The Product

Figure 4.1 Nonlife-cycle stovepipe approach to process.

from real-world considerations. Possibilities of dangling refer-
ences (or arrows) are excellent between functional areas. This
is the “I know what I do — I don’t care what you do” approach
to process.

B My choice — Processes are mapped to life cycles no matter
what roles are involved. This is the process-schedule approach
to process. This directly supports intergroup coordination.

If you have the stovepipe approach, it would be similar to slicing
the process pyramid shown in Figure 3.5 to arrive at Figure 4.1.

The functional areas shown in this figure shows the way that one
company actually did this and then wondered why they ended up
with stovepipe processes by functional area of the company. The only
alignment they achieved was that they had separate vice presidents in
charge of each functional area and each could claim a set of processes

© 2006 by Taylor & Francis Group, LLC

Life-Cycle Mapping ® 53

as his or her own. This particular company selected the following
major categories to map processes:

Manage the enterprise.
Manage resources.
Manage projects.
Acquire new business.
Engineer the product.
Manufacture the product.

It turned out that the first three bulleted items were exclusively
event-driven “how-to” procedures that really supported the last three
items. The last three bulleted items really do have some kind of life-
cycle basis. They mixed apples and oranges and ended up with no
connectivity to any project schedule. You quite often have a senior
manager who has put his or her job on the line behind this approach.
If someone such as me steps into this environment and tries to change
it to a life-cycle process mapping, the pushback can be enormous.
Dealing with abortion, religion, or homosexual rights would be a
cakewalk in comparison!

Life-Cycle Web Representation

I do recognize that some companies have more than one life cycle.
They might have a development life cycle and a product support life
cycle, for example. These enterprises need a super top-level Web site
that directs users to the correct life cycle for their project. For software
engineering companies that do software development using develop-
mental model variations, you can use the same process life-cycle
representation for all of the following:

B Waterfall software development model
B [terative software development model
B Spiral software development model

The activity selection criterion on a schedule decides the development
model for execution purposes. Think of selectable activities as magnets
that you can organize on a board. The ways they are laid out make it a
spiral model versus an iterative model versus a waterfall model.

You might see something similar to Figure 4.2 if you have this
multiple life-cycle situation.

© 2006 by Taylor & Francis Group, LLC

54 ® Process-Based Software Project Management

/ Life Cycle #1.
Project ABC — | /
Project DEF
Project GHI Life Cycle #2.
Project XXX&/’
Project YYY o
Project ZZ7Z o

\ o
\ Life Cycle #n.
To different top-level
List of active projects web sites — one per life cycle

Figure 4.2 Multiple-life-cycle Web representation.

With an emphasis on mapping processes to a life cycle, it is
important to point out that the real world of process execution can
be broken down into two distinct areas of interest as follows:

B Schedulable process elements: These are the ones that show
up on your project schedule. These are the ones that you use
for both proposal-time planning and execution-time planning
and tracking. The schedulable process element is the process
activity that resides in one (or more) life-cycle phases.

B Nonschedulable process elements: These are the event-driven
asynchronous type of procedures that either just “show up” or
are done on a periodic basis. The nonschedulable process
element is the how-to procedure whose scope can exist at the
phase, segment, or life-cycle level.

Both need to be represented on your Web-based life-cycle mapping
representation. Figure 4.3 shows the general method I've used to
address both these worlds.

Let’s look at this figure and break it down into its component parts.
Some readers may disagree with my terms and are free to use their
own terminology. It is meant to be a one-stop shopping place for the
life-cycle story:

B The top part is merely a two-layer table of hyperlinks into
various parts of the process repository. People get really upset
if they are somewhere in the Web hierarchy after drill downs
and have to do back—back-back and link-link-link to get some-
where else. Make this a common table for all your Web pages.

© 2006 by Taylor & Francis Group, LLC

Life-Cycle Mapping ® 55

([[[[[[[)
([[[[[[[)

Life Cycle Inputs Life Cycle Name Life Cycle Outputs|| o
s g
Segments =]
S
£
Phases A
L
Phases =
=
< §
Segments 2
Q9
v wn
Life Cycle 5
Z

Figure 4.3 General Web layout for any life cycle.

B The big box that follows this table is labeled “Schedulable
Section.” This is further broken down into three rows:

— The life-cycle row: This contains the life cycle’s name along
with the major inputs and outputs to this life cycle.

— The segment row: This contains the named segments within
that life cycle. Examples might be “Pre-execution” and “Exe-
cution.”

— The phase row: This contains all the phases within each
segment within that life cycle. Examples might be “Require-
ments,” “Design,” and “Product Build,” etc.

B The bottom box is labeled “Nonschedulable Section.” This is
also broken down into three rows (except that it is a mirror
image of the “Schedulable Section”):

— The phase row: This contains all the phases within each
segment within that life cycle. Within each phase are zero
or more links to the event-driven procedures whose scope
is at that phase level.

— The segment row: This contains all the segments within that
life cycle. Within each segment are zero or more links to
the event-driven procedures whose scope is at that segment
level.

— The life-cycle row: This contains zero or more links to the
event-driven procedures whose scope is at that life-cycle
level.

I am showing you the format I've used. It is merely one format.
You may choose to represent these life-cycle elements in a different

© 2006 by Taylor & Francis Group, LLC

56 W Process-Based Software Project Management

Engineering Development
Process Assessment

Event

C I [[[[[|)
L | I I I | I I J
Life Cycle Inputs Engineering Development Life Cycle Outputs| g
3]
Q
wv
Pre-Execution Segment Startup Execution Segment Closeout |
Segment Segment | £
E
<
Phase Phase Phase Phase Phase Phase Phase || &
‘ 1 A‘ 2 3 a4 = 00000 10 11 2
=
Event Event Event Event Event 00000 Event Event || S
Event Event Event Event Event I Event Event 2
9]
Pre-Execution Segment Execution Segment =
Startu . Closeout| =
Change Requirements (1) S pt Change Requirements (2) S ¢ =
Event egment | Eoot egmen 5
S
X
o
S
Z

Figure 4.4 Representative life-cycle Web page.

way. Also, this whole format maximizes the use of hyperlinks through-
out this life-cycle Web-based representation. The life-cycle process
representation of the total end-to-end story is absolutely vital because
the project schedule represents the total end-to-end story.

Figure 4.4 shows the same general format but with some more
detailed possibilities to help cement in where I'm coming from.

I have no intention of defining a life cycle or its breakdown in this
book as a one-size-fits-all kind of solution. What I will do is provide
some more examples for you to apply to your own company situation.
I have chosen to show only details relevant to software project man-
agement (SPM).

There are some points I want to make about this last figure; these
are as follows:

B You will notice that the entire life cycle is identified by the
name “Engineering Development.” This naming may be a moot
point if you have one, and only one, life cycle.

B You will also notice that T have subdivided this life cycle into
these segments:

— Pre-execution
— Startup

© 2006 by Taylor & Francis Group, LLC

Life-Cycle Mapping m 57

— Execution
— Closeout

You can name your segments similar to this or use different terms.

B [have also subdivided each segment into one or more named
phases. For illustration purposes, the “Pre-execution” segment
has been subdivided into four phases:

Phase 1

Phase 2

Phase 3

Phase 4

You should be able to recognize that I could have easily substituted
other names for these phases such as “Strategic Planning Phase,” “Bid
Interest Phase,” “Bid Pursue Phase,” and “Bid Phase,” for example.

B In the “Nonschedulable Section,” I have identified the following
event-driven procedures:

— Change requirements: You'll notice I have shown it within
the “Pre-execution Segment” as well as the “Execution Seg-
ment.” If requirements change at proposal time, you need a
very different how-to procedure than if requirements change
at execution time. That's the reason behind this.

— Process assessment: You can do this kind of asynchronous
event anytime during the entire life cycle. The how-to pro-
cedure is the same no matter when this event-driven proce-
dure is executed. That’s why it is shown in the life-cycle row.

Clicking on the “Pre-execution Segment” hyperlink would take you
to a drill-down Web page representing just that segment. This is shown
in Figure 4.5.

This same figure provides that top-level picture of what phases are
involved as part of the end-to-end story for pre-execution. You'll notice
the inputs and outputs reflect that segment’s inputs and outputs —
not the entire life cycle.

Clicking on the “Phase 1”7 hyperlink would take you to a drill-down
Web page representing just that phase. This is where you start to see
the activity mapping within any given phase. It is this level that shows
us the process activities associated with that phase along with all the
predecessor/successor relationships either within that phase or with
another phase. This is shown in Figure 4.6.

© 2006 by Taylor & Francis Group, LLC

58 ® Process-Based Software Project Management

T

—LJ

Segment Inputs Segment Outputs
Pre-Execution Segment
Phase A| Phase Phase Phase
1 2 3 4
Event Event Event Event
Event Event Event Event

Pre-Execution Segment

Change Requirements (1)
Event

Engineering Development

Process Assessment
Event

Schedulable Section

Non-Schedulable Section

Figure 4.5 Life-cycle segment Web representation.

T

—L

Phase Inputs Phase Outputs

Phase 1
| ——
| S |
Phase 1
Event
Event

Pre-Execution Segment
Change Requirements (1)

Event

Engineering Development

Process Assessment
Event

Schedulable Section

Non-Schedulable Section

Figure 4.6 Phase Web representation.

© 2006 by Taylor & Francis Group, LLC

Life-Cycle Mapping ® 59

You'll notice the inputs and outputs reflect that phase’s inputs and
outputs. You'll also notice that I've enclosed the activity mappings into
an entity that I call the process activity diagram or PAD. This is a fairly
standard modeling technique used within the software industry (e.g.,
Unified Modelling Language [UML]). Also notice the dotted line within
the PAD. That is what separates “swim lanes.” It merely separates main
event (or production) activities from support activities. I find that two
swim lanes are sufficient for almost all companies. You might find it
desirable to color-code support activities differently than production
activities. That is also shown in this figure. From this Web page, you
can click on any process activity and get all the details about that
activity.

Life Cycle/Schedule Connection

In the real world of project schedules, we have tasks that show up in
one part of the life cycle whereas others show up at other parts of
the life cycle. Design types of tasks do not show up as part of system
testing, for example. They show up much earlier in the life cycle —
while we’re doing design. I hope the reader will agree with me that
task placement within a life cycle really does matter. We can really
break down any life cycle into chunks (typically called phases) and
place activities into those life-cycle portions that will become tasks on
a schedule. T hope the reader will also recognize that this mapping of
activities to a phase is a static thing. We can predetermine what activities
go where once, and this can be valid for all usages of those activities.

Engineering practices also give us a really big clue as to what shows
up first, second, third, etc. This deals with task connectivity. We do
system design before we do subsystem design, before we do unit
design, before we do unit coding, etc. A lot of the predecessor/
successor relationships are predetermined as part of normal industry
practice. We typically don’t code something before we design it
(although T worked for one organization that seemed to want to do
this a lot to save time — so they said!). I have already established that
individual tasks can be contained statically in a life-cycle phase. Now,
I'm stating that connections between tasks can also be established
statically — both within a phase and between phases. This too can
be determined once and be valid for all usages of those tasks.

If we can relate the “what you have to do” schedule tasks to “what
you have to do” process activities, we can subdivide any life cycle
into phases and map process activities, along with their connections

© 2006 by Taylor & Francis Group, LLC

60 ® Process-Based Software Project Management

to other activities, in the process world. We can create the entire static
end-to-end story across phases for any life cycle. At the high level,
we can predetermine:

B What the set of activities are. These are the schedulable things
that can become tasks on a schedule. These are also the
selectable “what” elements.

B What gets “hooked” to what activity, either as a predecessor
activity or successor activity.

Consider each schedule task as merely one instance of a process
activity. If you had 100 units to code, there would be 100 instances
(or tasks) on your schedule of a single process element (or activity)
called the “Implement Unit” activity. Similarly, if you had a three-
subsystem type of system requiring design at all these levels, you
would have four “Design Down” tasks (one for the system level and
one for each subsystem) on your schedule but one “Design Down”
process activity used for all. For schedule tasks, we add two more
pieces of information from the process activity name to make it a task
instance; these are as follows:

B The object being worked (e.g., the system name, the subsystem
name, the unit name, etc.)
B The responsible task lead name

For schedule tasks, the combination of the activity name, object,
and responsible person make it an activity instance. I hope the reader
will readily see that with this triad it is possible to hyperlink the activity
name part directly to your process activity in your intranet process
repository! Your schedule tasks are totally connected to your process
“what you have to do” activities. There should be no schedule tasks
that are “floaters,” i.e., not connected to the process world! What a
concept! Software process improvements to the process activity can
be picked up near real-time on your schedule. This is illustrated in
Figure 4.7.

On one implementation, we actually created a schedule template
and preloaded all the activity names at the bottom that were already
hyperlinked to the respective activity location in the process repository.
The software project manager merely selected and dropped each
activity into his or her schedule, ending up with all schedule tasks
connected to the process description of exactly what needs to be done,
etc. This is also shown in the figure.

© 2006 by Taylor & Francis Group, LLC

Life-Cycle Mapping ® 61

One of the activity instances in the project schedule

Design Down |(ABC) Jane Doe
R P _L_ ______ N Tasks| Project Schedule
: Activity Lead i . N 1
i (Activity instance- | [Zan =
1 responsible person) : v 1
: Object of Activity 1 | ||
: (activity instance variable) : g
Activity Name ==~ -TTTTT TSI TSI ! ‘ 0
(What you have to do) -JW; o
N \
Design Down Qne of the static activities “Pick list”of hyperlinked activities
in the process repository
Figure 4.7 Schedule/process activity connection.
Activity Instances on a Schedule Process Activity Diagram (s) (PADs)
Tasks Project Schedule ﬁ
= AN | Collapse the activity n H H H H —
. oad] instances to get the
] | end-to-end process map —
. .]
. - Create instances from —H 1+
h .
8 the ath} ty map to get Schedulable “what you need
o the project schedule ”
o to do” task elements
0

Figure 4.8 Schedule/process activity “morphing.”

If we do the activity identification and mapping correctly, we should
be able to take all the connected process activities within and across
phases depicted in the process world and “morph” them to make any
project schedule! Alternatively, we should be able to deduce the
process world’s representation of activities from any project schedule!
When we tie the described process architecture to SPM, we connect
software process improvements directly to SPM! To get a firm picture
of this morphing phenomenon, see Figure 4.8.

Life-Cycle/Event-Driven Procedure Connection

Although the software project manager’s world is primarily focused on
scheduled tasks, there are procedural aspects of SPM that he or she

© 2006 by Taylor & Francis Group, LLC

62 ®m Process-Based Software Project Management

will need to know about. We saw these in Figure 4.6. An organization
may have how-to procedures related to the following:

The SPM
Engineering

SCM

SQA

Data management

These can quite often be as a result of some outside event (e.g.,
changes in requirements) or may be cyclical by calendar (e.g., every
week T am to do ...). It is important that any how-to procedure that
needs documenting gets placed in the correct life-cycle scope (phase,
segment, or global) and shows up on your life-cycle Web representations.

Although minor in comparison to the scheduled tasks, these event-
driven activities can reduce or eliminate defects in the nonscheduled
world that you deal with also.

© 2006 by Taylor & Francis Group, LLC

Chapter 5

The Process Activity

Introduction

The process activity is the heart and soul of the real-world connection
to software project schedules. The very name of the activity should
be verb based because each activity, when executed on a schedule,
is itself a high-level “what has to be done” action. The term action
implies a verb. I cringe when I see schedule tasks shown as nouns
or noun-based items. Leave the nouns or noun-based items to the
schedule summary description line items or events. For summaries and
events, it is appropriate to be a noun or noun-based description.

I hope the reader will agree with me that we can subdivide our
entire life cycle into high-level “what has to be done” actions — called
activities. To proceed, the question now becomes “What constitutes
an activity?”

In this process model, I have identified two types of activities:

B The general activity (or just “activity”)
B The gate activity

The general activity occurs throughout the entire life cycle and
reflects an entity of work to be done. This regular activity has been
represented throughout this book as a rectangle within any process
activity diagram (PAD). An example of a regular activity is the “Design
Unit.” The gate activity occurs prior to the execution segment only

© 2006 by Taylor & Francis Group, LLC

64 ® Process-Based Software Project Management

Development
Phase Phase Phase |[ooooooo| Phase Life Cycle

General
Activity activities/gate
activity within a

phase of a life
cycle

—| Activity Activity

Activity

Figure 5.1 Activity connection to a phase.

and reflects a major go/no-go decision point to proceed or not. Some
companies use the terms control gate or control point to reflect these
decision points. I like the term gate because it really does denote an
open—close meaning. You just need to realize that after executing a
gate activity, you may stop and not go on at all. This gate activity has
been represented throughout this book as a triangle within any PAD
prior to the execution segment. An example of a gate activity is “Bid?”
When mentioning the word “activity” throughout this book, I am mostly
referring to the general form of activity.

Both these types of activities show up inside a PAD. As a reminder,
the entire life cycle is subdivided into phases, and each phase contains
a PAD of all the activities involved in that phase. This relationship is
graphically shown in Figure 5.1.

I will now show you what you need to consider for any action to
be an activity (and thus a schedule task instance) as follows:

B [t needs to be a logical unit of thought.

B [t needs to be a schedulable task, i.e., something that could
show up on a project schedule. I purposely used “schedulable”
versus “scheduled” because early life-cycle activities (pre-
execution time) may or may not be on an actual schedule as
the project hasn’t started yet.

B It has a defined object when executed; e.g., a “Design Down”
activity has a generic object of the system/subsystem piece/part
on which you’re doing a flow-down design. At execution time,
the generic object would be replaced by the real name, e.g., if
you were doing a system to subsystem design for system “A,”
the task description would show “Design Down (A).” A sub-
system ABC flow-down design to units would show “Design

© 2006 by Taylor & Francis Group, LLC

The Process Activity ® 65

Down (ABC).” The activity name is the same; the object at
execution time is different.

B [t needs to perform one high-level function, not more; e.g.,
“Design and Test” are two dissimilar functions that should not
be combined into a single activity. The reason here is select-
ability. See the following item.

B It needs to be selectable. Activities are atomic elements that
you should be able to mix and match in an intelligent fashion
on a schedule. “Test Unit” activity, for example, could show up
on a schedule for any unit requiring a unit test, but it may be
omitted for those units not requiring a unit test.

B As an atomic element, once placed on a schedule, you should
never be allowed to break off in the middle of an activity. You
do all steps, not some steps. For a software project manager,
that translates to “once assignments are made to an activity
instance (or task) and started, you complete that activity instance
(or task) totally — no matter what.” You never cut it off in the
middle. This is a data integrity issue by leaving the activity in
a deterministic state.

B [t needs to convey some “value added” function. An activity
cannot be something that reads something, and that’s all. You
need to add something, convert something, etc., to an input to
be an activity.

B It needs to produce one or more work products to signify
“done.” How can you possibly take earned value on any task
if it’'s unclear what “done” means?

In case there’s any “if-then-else” connotation of steps to be done
within an activity, you’re too low. Also, adjoining activities that always
go together should be candidates for combining. Conversely, single
activities that take too long could become candidates to become
adjoining activities. This last point reflects a reality that may have to
exist but has a downside of possibly creating a process defect when
implementing as schedule tasks; i.e., you may forget to place the
second activity after the first one!

To try to prevent that possible process defect, I suggest you graph-
ically show this situation as per Figure 5.2 to make it abundantly clear
that these two activities are tightly connected.

I now hope you recognize that a single activity can provide a wealth
of information that can be created by your software engineering
process group (SEPG) for an incredibly high level of repeatability when
executing projects. You absolutely eliminate project execution prob-
lems such as:

© 2006 by Taylor & Francis Group, LLC

66 W Process-Based Software Project Management

— Activity [Activity — versus | —| Activity i Activity —
* No indication that they are * Strong indication that they are
tightly coupled for execution tightly coupled for execution
* As shown — both could be * As shown — both need to be
executed or either selected executed once selected

Figure 5.2 Adjoining activities executed together.

B What do I actually do when executing this task?

B What are my inputs? Where are they? What SCM procedure is
involved?

B What are my outputs? Where do I place them? What SCM
procedure is involved?

B What templates do I use? Where are they?

B What guidelines exist for the work product outputs? Where are
they?

B What examples are out there? Where are they?

B What inspection checklists do I need to see to create quality
outputs? Where are they?

B What metrics do I need to gather, if any? Who gets these metrics?

B Who do I notify when finished?

These are built-in to the process activity. Because the schedule task
is an instance of an activity, all these directives and guidelines are
readily available to anyone working that task on a schedule. The power
of this is enormous.

There is one more major consideration for activity naming. I have
established that activities represent actions and, thus, must be in a
“<verb><object>" form. It is highly desirable that all the pre-execution
activity names are different from execution activity names. The reason
for this is quite simple: pre-execution work is nonpaid overhead work,
whereas execution work is paid work. If you really want to get a
handle on this nonpaid work to factor into your overhead rates, you’ll
need to do this. Also, pre-execution activity estimations are based on
prior actuals averages, whereas execution-time activities are estimated

© 2006 by Taylor & Francis Group, LLC

The Process Activity m 67

with that same average but with a loading factor added to account for
overhead costs. These estimation factors will be discussed later. A slight
variation to the activity name form is to place a “P-” prefix (“P” for
Pre-execution) in front of the activity name. You can choose your own
method, of course. This comes up mostly in the top-level-design type
of activity and requirements types of activities. You do a gross top-
level system design at proposal time, and you do a more refined top-
level design at execution time. You might want to place the “Design
Down” activity in both places, but I can assure you that it complicates
activity estimations technique! I recommend you have a “P-Design
Down” in the proposal phase (pre-execution segment) and a “Design
Down” activity in the design phase (execution segment). Similarly, if
you are doing partial requirements clarification at proposal time and
more requirements clarifications at execution time, use “P-Clarify
Requirements” and “Clarify Requirements,” respectively. T will show
you why this name separation is important both to this process model
and for real-world considerations.

It is worth mentioning again that the ultimate goal is to have all
schedule tasks created from a pick-list of process activities. How
powerful is that for repeatability! Developers, software leads, quality
engineers, SCM, and the software project manager are all reading from
the same “sheet of music.”

Activity Implementation

From an implementation perspective, you can certainly make an activity
as fancy as you want, graphically. However, I found the simplest
representation was the best. Figure 5.3 shows a tabular form of a
general process activity.

You'll notice that there are two boxes at the top. I found it useful
to place hyperlinks there to point to the predecessor activities (left
box) and to the successor activities (right box). This allows horizontal
traversal through the end-to-end activities in your life cycle. The
hyperlinks match the graphical representation in each phase’s PAD.

The main box is essentially a two-column table with a header. The
header contains the activity name and its generic object names. The
left column contains a set of attributes that you'll need when executing
this activity on a project schedule. The attributes I've used are given
in Table 5.1

Gate activities have a very identical format as shown in Figure 5.4.

The big differences between a gate activity and regular activity are:

© 2006 by Taylor & Francis Group, LLC

68 ® Process-Based Software Project Management

Previous Next
«_ Activity(ies) Activity(ies) -—> For end-to-end process map traversal
Hyperlinks Hyperlinks

Activity description (x)

<Activity Name>
(Generic Activity Object)
Attributes Description

Activity dependencies (*)

Activity inputs ()
Activity (high-level) steps (x) —p To
“how-tos”

Activity outputs (*)

Activity roles (*)

Activity training (*)

Activity metrics (*)

Activity estimates(x)

o000 o
o000 o0

(*) Maximum use of Hyperlinks

Figure 5.3 Regular activity format.

B A different color (I used red) to clearly distinguish a gate activity
from a regular activity.

B Presence of a special high-level step (CONDUCT) that does not
show up in regular activities. I will cover these high-level steps
later in this chapter.

As this is a Web page, I am a big advocate of keeping verbiage as
short as possible. This is not the place to write a treatise on anything.
One-liners are better than two. If you really feel the urge to write
more, place a “More” hyperlinked tag at the end and take your
practitioner to that extra verbiage. People get really upset if you have
a scroll bar down the side, and they have to play with it to get to
what they want.

The reader will notice that the high-level steps inside an activity
provide potential “hooks” to the how-to world. In this model, not all
high-level “what” steps require a “how,” but every “how” requires a
“what.” Sometimes the best how-to of all doesn’t exist or is a simple
mind-jogger checklist kind of thing. T am purposely not getting into
the “how-to” model aspects because our focus is on SPM connection
to activities. I refer the reader to my earlier book [1] for more details
on this subject. Verb-based steps exist inside an activity to fulfill two
requirements:

B They are steps that you absolutely and positively want people

to do.
B They are important how-to hooks.

© 2006 by Taylor & Francis Group, LLC

The Process Activity ® 69

Table 5.1 Activity Attributes

Description

This has a one-liner summary description.

Dependencies

This is meant to describe external dependencies
such as the presence of a test lab if this was a system-
test-type-activity.

Inputs

List of all the generic inputs needed for this activity.

Steps

A list of high-level “what you need to do” steps.
Those steps that have a how-to elaboration are
hyperlinked to the how-to world. This is the main
part of an activity that connects the “whats” to the
“hows.”

Outputs

List of all the generic outputs created or updated by
this activity.

Roles

All the roles involved in the execution of this activity.
Suggest hyperlinking each role to a more descriptive
role-based list.

Training

Identifies any special training needs to successfully
execute this activity. Suggest hyperlinking each
training reference to the actual training package.

Metrics

Identifies any metrics to be collected when executing
this activity.

Estimates

Reference to prior estimates to execute this activity.
Suggest MIN (minimum), AVG (average), L-AVG
(loaded average), and MAX (maximum). These will be
used by the software project manager for planning
and tracking.

It is important

to stress again that once an activity is selected and

placed on a schedule, all steps are to be executed — not the first four,
last three, etc. Although not intuitively obvious, any high-level step
can be done when its inputs are there. That might not be obvious
because the high-level steps are shown sequentially in any activity. In
addition, these high-level steps can all be audited by anyone for quality.
See Figure 5.5. This is in keeping with the ISO 9001 concept of quality,
which is everybody’s responsibility.

I hope the reader will now grasp another incredible benefit with
this process connection to SPM: namely, you can embed important
“hook” steps to important things. We can now place common steps
in each and every activity to address common things such as:

© 2006 by Taylor & Francis Group, LLC

70 ® Process-Based Software Project Management

Attributes Description .

©oocooo
o ocooo

For end-to-end process map traversal

Gate activity description (*)

Gate activity dependencies ()

Gate activity inputs (%)

Gate activity (high-level) steps (*) —p» To
Gate activity outputs () “how-tos”
Gate activity roles (*)

Gate activity training (x)

Gate activity metrics (*)

Gate activity estimates (*)

(*) Maximum use of Hyperlinks

Figure 5.4 Gate activity format.

Previous

«- Activity(ies)

Hyperlinks

Next

Hyperlinks

Activity(ies) -*

(Generic

<Activity Name>

Activity Object)

Attributes

Description

Steps

BEGIN...
GET...
DESIGN...
INSPECT...
PUT...
END...

¢ All steps to be executed

¢ Each step has a “done”
artifact

* Anyone can check all
steps are done

o
o

(engineering or SQA)

Figure 5.5 Quality perspective for high-level steps.

B Assigning a charge number to this task

B Notifying key players that a task is starting

B Providing a SCM hook in getting input work products out of
the project’s developmental library

B Giving a quality hook to the inspection procedure as a quality

gate

B Providing a SCM hook in getting output work products into the
project’s developmental library

© 2006 by Taylor & Francis Group, LLC

The Process Activity ®m 71

B Passing off metrics data to whoever gets metrics in your orga-
nization

B Notifying key players that a task has finished — for schedule
continuity and management plus earned value purposes

I found that these capabilities can be accomplished with these
common-to-all-activity high-level steps:

BEGIN <charge number>

GET <charge number, filename>

PUT <charge number, filename>

CONDUCT <charge number> " Only used inside gate activities *
INSPECT <charge number, filename>

END <charge number>

You may of course choose other verbs. I think these are really
simple to grasp as to intent. Most software engineers understand the
BEGIN ... END concept. I have applied that same structure to a process
activity. Let’s look at the SPM value of these steps that are common
to all activities (and thus all schedule tasks):

BEGIN: This is a great SPM hook to possibly:

B Let key players know that something is starting. I believe
the software project manager is a definite key player, don’t
you think?

B Assign the charge number to people working this schedule
task. Remember, SPM-presented metrics are only as good as
work metrics gathered. In Chapter 8, I will show you the
power of charge number alignments to process activities.

GET: This too is a great SCM hook to make sure you get the inputs
from the right place in the development SCM repository and placed
in your activity’s “sandbox.” Again, if this is not done properly,
you suffer from the “garbage-in-garbage-out” syndrome. This is
also a great SCM how-to hook for the correct procedural element
for this part of the life cycle. You eliminate the SCM level of
control question totally at execution time. That's powerful.

PUT: This is another great SCM hook to make sure you place your
outputs from your “sandbox” in the right place in the develop-
mental repository. This action is the opposite of the GET action.

CONDUCT: Also a great SPM “hook,” this makes sure you get
connected to the correct how-to methodology and roles for this
important gate meeting. Only used in gate activities.

© 2006 by Taylor & Francis Group, LLC

72 ® Process-Based Software Project Management

INSPECT: This is a critical hook to get to the inspection procedure.
The described model has a heavy emphasis on detecting and
correcting early defects. You want to drastically reduce test-time
defects by attacking these possible defects earlier. The described
model also has a heavy emphasis on placing “the monkey” on
the producer’s back — not the consumer’s! I have worked for
several companies where work products were handed off to
the next person in line with a “good luck to you” attitude.
Because this shows up in all activities, you need an efficient
inspection procedure.

END: The purpose of this great SPM hook is to:

B Let key players know that this task is done. Key player could
be:
— The software project manager
— The development manager
— The development lead
— The folks collecting earned value
— Quality — in case they want to do near-real-time process
audits
— SCM (for repository management)
— Accounting (for additional charge numbers)
B Pass off metrics data collection to the folks collecting this data

I have very effectively used a Web-based interface for these common
high-level steps. I am going to discuss at length the role that the charge
number has to this process model approach, and why you should
seriously consider aligning charge numbers with process activities. At
this point, I will merely say that if you could enter the charge number
to this Web page interface, you could certainly derive the following
dynamic information at execution time:

The project you're working on

The type of activity being executed

The specific activity object being acted upon

Whether this is an original or a reworked task

Sufficiency of the information to know exactly what task we’re
talking about on your project schedule

The power of this dynamic information is enormous. Essentially,
these common Web-based interfaces convert the static world of the
activity to the dynamic world of the project schedule’s task. It doesn’t
take too much imagination for you to have an ATM-like interface here,

© 2006 by Taylor & Francis Group, LLC

The Process Activity m 73

where you feed back something on the lines of “Are you on <Project
XXX> using activity type <Activity Name> for object <object name>?”
for a yes/no verification. With this information, you can easily tailor
automatic e-mails to specific role responsibilities by project to stream-
line this activity-based communication. I leave it to you whether or
not you take advantage of this awesome project role interface. Any of
your hotshot programmers or Web master can easily do this.

Furthermore, when you add the filename, you know exactly which
work product you're talking about for that particular task identified in
previous paragraphs. This is a powerful capability to exactly extract
inputs from the correct place in the SCM repository and place outputs
in the correct place as well. You totally eliminate errors (and extra
time) in controlling your developmental work products via this mech-
anism. The developers can be totally insulated from SCM controls to
concentrate on their computer science reason-for-being.

The software engineers will love it — along with SCM and SPM.
Also, inspections know exactly what specific work product is the target
for inspection purposes. This can be captured for metrics purposes.

The GET, PUT, and INSPECT “hooks” all pass the filename to this
Web interface in addition to the charge number. The INSPECT hook
uses this mechanism to specifically identify where we are in the life
cycle when the inspection occurs for a particular file. That is powerful
information to store in our inspection database. GET and PUT are
important SCM hooks and do considerably more behind the scenes
for your developers. Let’s look at these SCM interfaces separately.

I need to introduce the concept of a “sandbox” when talking about
the GET and PUT “hooks.” That’s the common working area in which
developmental repository files are placed (GET) and taken from (PUT)
while an activity is executed. I will be talking more about this in
Chapters 6 and 9. If you have a filename, the SCM procedure can
retrieve this file from the correct place in the developmental repository
(including the right version) for activity execution and do the reverse
for outputs. This is shown graphically in Figure 5.6

In this figure, the developmental repository is:

B Activity object based (system pieces/parts) for its structure

B Incrementally developed by SCM and triggered by END steps
from the “Design Down” activity executions

B Version controlled

B Subject to any file “checked-out” being considered a read-only
operation

© 2006 by Taylor & Francis Group, LLC

74 ®m Process-Based Software Project Management

Development sl Activity/Object
Repository based “sandbox”

--for task work

Figure 5.6 GET action.

Activity/Object

based “sand box” —> DeveloPment
Repository
--for task work

Figure 5.7 PUT action.

The sandbox is:

B Version controlled

B Activity based, statically

B Providing additional activity objects when known by SCM

B Incrementally developed by SCM and triggered by any END
step from a “Design Down” activity execution

B So used as to ensure that any file checked into it (the sandbox)

is for activity execution

A similar but opposite action occurs with the PUT operation. This
is shown in Figure 5.7.

Of all the high-level steps, the INSPECT step needs special attention.
It is the major hook to the inspection procedure. In this process model,
I insist that each and every work product that should be inspected
has a quality-inspection checklist associated with that work product.
There should be a 1:1 correspondence of work products to inspection
checklists. This is depicted in Figure 5.8.

© 2006 by Taylor & Francis Group, LLC

The Process Activity m 75

WP <_> Check
List
Activity —
\ WP ‘_’ Check
List

*

INSPECT .
STEP Inspection

Procedure

Figure 5.8 INSPECT action.

Activity Activity Activity Activity
Execution Execution Execution Execution

Producer responsible for
quality gate inspections—
before passing work products
on to consumer

Figure 5.9 Life cycle as an inspection chain.

With inspections in place in each activity, you get inspections in
place throughout your life cycle. This directly addresses the lower
costs of detecting defects sooner rather than later — a boon to any
software project manager. This link-chain effect is shown in Figure 5.9.

B Developers know what how-to procedures to use on this
project.

B SQA knows what process elements are to be audited for this
project.

B Subcontractors know what they need as how-to alternatives for
scheduled activities.

B Customers know what processes you are using on their project.

© 2006 by Taylor & Francis Group, LLC

76 W Process-Based Software Project Management

It gets rid of all uncertainty when executing any project. Any
software project manager has a vested interest in this. Additionally,
your entire organization gets into the habit of refocusing attention on
the process activity throughout the development of your schedule.
How’s that for really getting institutionalization of your processes on
a culture fast track?

© 2006 by Taylor & Francis Group, LLC

Chapter 6

Special Process Activities
for Software Project
Management

Introduction

I have established that in this process approach, there is a direct
connection from process activities to project schedules. When we place
activity instances on a project schedule, they become schedule tasks.
The statically defined common steps within each activity can be used
dynamically to tie procedural actions to a particular task in your project
schedule. Furthermore, plans produced as a result of task execution
can be directly applied by the software project manager to schedule
planning. T intend to use process execution to not only progress toward
a target system, but also to be heavily used by project managers to
help with their software project management (SPM) effort.

There are two activities that have special interest to any software
project manager:

B The “Design Down” activity
B The “Update Integration Plan” activity

77

© 2006 by Taylor & Francis Group, LLC

78 ®m Process-Based Software Project Management

TETBiiis Development Life Cycle
< Pevepent e e gy, 5

From // To
Req.O_ Understand [|Analyze Design '/DeSLgn /__ Design Build
Phase |Proposal Design|| Approaches Unit Product
//////// Phase
b Update”
_Elntegration 4
... Plan,]

[Document| |Document]
(Top || (Detailed
Design) Design)

Figure 6.1 Possible “Design Phase” pad showing “Design Down” and
“Update Integration Plan.”

Figure 6.1 shows a possible design-phase-based process activity
diagram (PAD) that includes these activities.

I will revisit this same PAD when I talk about project planning
using an example scenario. I have purposely shaded the two activities
in question to help you identify where they are inside this PAD. An
astute reader may ask, “Why isn’t the integration plan updated as part
of the ‘Design Down’ activity?” After all, when you do top-level designs,
you get more visibility on the lower-level pieces/parts of the system,
right? The answer is that not all “Design Down” activity executions get
an “Update Integration Plan” activity connected to them. Throughout
this book, T have used “system” as the top level, “subsystem” as the
next level, and “unit” as the lowest level. You may use terms different
from these. You'll notice that by using the term “Design Down,” I am
not locked into any piece/part terminology at all. Most people recog-
nize “Design Down” as a top-level design versus a detailed design
type of activity. A “Design Down (system)” decomposes the design
into subsystems. At this level, you don’t have enough information to
do any kind of integration planning. However, when you do “Design
Down (subsystem)” executions that take you down to units, you have
enough information to execute an “Update Integration Plan” activity.

The execution of the END step in these activities has a very special
meaning to a software project manager. These particular END execu-
tions involve major players as follows:

© 2006 by Taylor & Francis Group, LLC

Special Process Activities for Software Project Management ® 79

To next activity instance

/ for implementation in the #

> Documented end-to-end life cycle
Design
"= To SPM, SCM, Accounting

Design Down

More and to include pieces/parts determined
more from design into schedule, charge
visibility Numbers, development repository,
Activity sandbox area
Update P
Integration | s> & ePglf;lon mm- To SPM to intelligently order tasks
Plan

Figure 6.2 Impact of the two key SPM activities.

B Software configuration management (SCM; developmental
repository actions)

B Accounting (charge number actions)

B Yourself as software project manager (schedule task planning
and schedule task ordering)

As soon as your engineering design team identifies the lower-level
pieces/parts, the project management partners can, in almost real-time,
use that design for SCM controls, charge number expansion, and
schedule task planning and ordering. This is a veritable n-for-one sale
where engineering itself becomes a key SPM driver. With this method,
engineering can no longer take a separate position from SPM. Engi-
neering and SPM are now tightly bound via this process approach.
The impact of these two activities is graphically shown in Figure 6.2.

SCM Actions

SCM has two distinct areas involved with the END step from any
“Design Down” activity. These are:

B The evolving version-controlled software development repository
B The creation of “sandboxes” for any activity’s internal work

A software project manager has a vital and vested interest in getting
these done right and done timely — because it saves time.

© 2006 by Taylor & Francis Group, LLC

80 m Process-Based Software Project Management

At project start, SCM creates a skeleton developmental repository
that has:

B A root project node
B A subfolder for proposal work products
B A subfolder for the system

At proposal time, SCM also populates this repository with known
templates and placeholder files for any/all work products needed at
proposal time. These become version 0 of the files.

At start-up time (front of execution), SCM adds all the work products
and placeholders under the “System” node that are known at that
system level. As in the previous paragraph, these become version 0
of these files. These populated files include templates or placeholders of
all the known deliverables prepositioned in the correct place in that
repository. At this point, SCM has no idea what the subsystem story is
about this system because top-level design has not been done yet — so
no further subfolders are created under the system node.

Now we get to the END SCM action on the “Design Down (system)”
activity instance (or schedule task). At this time, SCM does know:

B The exact number of subsystems as per engineering design
B The exact name of those subsystems as per engineering design

SCM now creates a subfolder under “System” for each subsystem
and names them according to the design. Also, SCM populates each
subfolder with all the known file templates and placeholders for
subsystem-related work products. As with the others, these become
version 0 of these files. This is graphically shown in Figure 6.3.

Executed Tasks SCM Development Repository Structure - System

= Establish root onl
Start of Project Y Sl
Activity
o
o

o Know subsystems | |
Design Down
(System)

_>| Subsystem| 000 |Subsystem n|

Figure 6.3 Allocating subsystem folders to the development repository.

© 2006 by Taylor & Francis Group, LLC

Special Process Activities for Software Project Management ®m 81

Executed Tasks SCM Development Repository Structure - System
Start of Project Establish root only System
Setivity
)
0
o Know subsystems |
Design Down _>| Subsystem| |Subsystem n|
(System)
)
o .
o Know units
Design Down | Unit Unit n
(Subsystem) >| |000| |

Figure 6.4 SCM repository expansion when units are known.

At this point, some readers are going to say, “We don’t use SCM
for this type of thing.” In this process-based SPM approach, you use
SCM directly to aid you in performing your work as a software project
manager. If some of you are also questioning how SCM knows about
work product templates, etc. — remember that tasks = activities =
associated work products. The process will tell you this.

The same kind of thing happens when SCM gets notification of the
END for any given subsystem. At this time SCM does know:

B The exact number of units within that subsystem as per engi-
neering design
B The exact name of those units as per engineering design

SCM now creates a subfolder under the appropriate subsystem
folder for each unit and names them according to the design. Also,
SCM populates each subfolder with all the known file templates and
placeholders for unit-related work products. As with the others, these
become version 0 of these files. This is shown graphically in Figure 6.4.

In addition to expanding the developmental repository that is totally
aligned with engineering design, SCM has an added role related to all
the working “sandboxes” needed for development. By having these
as SCM responsibilities, you remove all the “gotchas” with developers
storing work products on their own C drive or desk drawer, etc. You
also ensure that developers are versioning their work products even
within their respective sandboxes. Any software project manager has
got to be concerned about things such as developers getting sick, going
on vacation, getting transferred, quitting, or even having accidents, etc.

© 2006 by Taylor & Francis Group, LLC

82 ®m Process-Based Software Project Management

Executed Tasks SCM Sandbox Structure - System

Start of Project Project
" of e —»*

| Activity | 0000 | Activity |

Figure 6.5 Initial sandbox structure for a project.

You have a high probability of recovering when SCM has control and
responsibilities over these areas. From a personal experience, software
engineers like it too, because it gets rid of all the dreary aspects of
their job so that they can concentrate on programming (which they
love). Also, this mechanism is identical from project to project. There
is no learning curve involved with your development staff.

Let’s turn our attention now to sandboxes set up by SCM. These
are storage areas used by the assigned team members for any given
schedule task. You want to set up a structure that has a virtual firewall
around each and every sandbox so that interactivity interference does
not occur. Again, we want to pay attention to data integrity to eliminate
this from biting the software project manager.

Sandboxes are set up for each project as part of project setup at
start of execution. SCM creates a root node for the designated project
and a set of subfolders — one per activity name. We don’t need a
system subfolder, because the project root node serves both the project
and system to be produced. This is shown in Figure 6.5.

Because generic objects are statically associated with process activ-
ities, we can relate execution-time-specific piece/part names to those
generic names. “Design Unit” activity, for example, has a wvalid
piece/part of a unit name as an activity object. As each “Design Down”
activity is executed, we now know the decomposed piece/part from
that design. A “Design Down (system)” execution provides SCM with
real piece/part names of all the subsystems. These subsystem names
become subfolders under those activities that allow that name. At this
point, under the “Design Down” subfolder within the sandbox, you'd
have a subfolder for each of the subsystems named from design. For
each executed “Design Down (subsystem),” you’d know all the named
units. SCM would create a subfolder for each and every named unit
under those activities that allow unit names. Similarly, at this point,
under the “Design Unit” subfolder within the sandbox, you'd have a

© 2006 by Taylor & Francis Group, LLC

Special Process Activities for Software Project Management ® 83

Executed Tasks SCM Sandbox Structure - System

Start of Project
Activity

© o0 o000 o

Know decomposed

Desian Down pieces/parts - - - -
(Syst %S bsvst)_>| Piece/part || Piece/part | | Piece/part || Piece/part |
ystem/Subsystem

Figure 6.6 Sandbox areas elaborated as pieces/parts known.

subfolder for each of the units named from design. You’d also see the
same lineup under “Implement Unit.” This is shown in Figure 6.6.

What you end up with is a working (and version-controlled) area
for each activity type/activity object combination for use by your
developer during schedule execution. Each and every GET and PUT
can intelligently store and retrieve work products from/to the devel-
opmental repository in separate work areas during schedule task
executions. By doing this, you have significantly reduced/eliminated
data conflicts and race conditions. The engineering staff know exactly
where their sandbox is for activity execution-time processing. As
software project manager, you are amply insulated from staffing hiccups
and changes due to this mechanism.

Accounting Actions

Accounting has two actions involved with the END step from any
“Design Down” activity. These are:

B Expand the project’s charge number.
B Associate the new number with the symbolic piece/part name.

Just as previously observed, any END execution from a “Design
Down” on your project schedule informs accounting that a top-level
design is “done,” and the appropriate level of pieces/parts have been
identified and named. Armed with this information, accounting can
now expand the activity-based charge numbers for your project to
reflect the engineering design.

© 2006 by Taylor & Francis Group, LLC

84 m Process-Based Software Project Management

Activity Object

[

|
Activity + Activity
List Objects
Static List Dynamic List
as per as per
process process
repository execution

Figure 6.7 Schedulable part of a WBS.

At this point, you may be wondering how all this works because
you already have a charge number system. I am advocating a charge
number system that is totally aligned with processes and that makes
it aligned to your schedule tasking. I fully understand that anyone
suggesting a different charge number approach is probably going to
be summarily tossed out the door. I hope to show you unbelievable
benefits in aligning your charge numbers to process and schedules.

In my approach, I first of all tackle the work breakdown structure
(WBS). I have divided the WBS format, in general, into two categories:

B To cover schedulable work
B To cover nonschedulable and other work

The general makeup of the former is shown in Figure 6.7. Later in
the book (Chapters 12 and 14), T will take you through an example
in which T show you how this gets elaborated and how it is aligned
to the process activities and activity objects. These are the same entities
that show up on project schedules for actual work.

The form for the latter is shown in Figure 6.8. These cover a host
of other items and event-driven procedural work from the process
model approach.

I am suggesting a charge numbering system that has your WBS
embedded in it as shown in Figure 6.9.

This format essentially places the project ID as a prefix and rework
counter as a suffix around the WBS. This charge number approach is
made up of four general sections:

© 2006 by Taylor & Francis Group, LLC

Special Process Activities for Software Project Management ® 85

00 Non- Event- ? Other (used 7
scheduled Driven |/ for charges)

v

Change requirements g; //4

0Correctlve action —> 03 Lab equipment?

04 Leases 7

o Z

05 Software %

© Test equipment%

Event- Event- %ramllng 2

Driven Driven rave %

Procedure Procedure 000 f

symbolic number

names equivalents

Figure 6.8 Nonschedulable portion of the WBS.

+ Static part |Dynamic part + Rework

LA D of WBS of WBS counter

[] Static [] Dynamic

Figure 6.9 Time charging number breakdown.

Project 1D

Static part of the WBS
Dynamic part of the WBS
Rework counter

It is the dynamic part that will be determined by engineering design
and filled in by accounting. In the project-setup portion of this book
(Chapter 12), T will describe a 9-digit format as an example.

Engineering Development Actions

In this process-based SPM approach, I do suggest the following actions
from engineering development when executing any “Design Down”
and “Update Integration Plan.” Many companies are not currently doing
this.

© 2006 by Taylor & Francis Group, LLC

86 W Process-Based Software Project Management

“Design Down (subsystem)” activity executions: For those top-level
designs that decompose down to the unit level, I require:

B The exact number of units and their unique names
B Whether the units:
— Need coding with unit test (typically critical units)
— Need coding without unit test (i.e., inspection is sufficient)
— Are reused units but still need some coding (tweaking) along
with unit test
— Are reused units but still need some coding (tweaking) with
no unit test
— Are reused units we can use as is
B Units that need to be done early (even before we do any
integration planning)

The first bulleted item is critical for SCM, SPM, and accounting. The
last two bulleted items are extremely useful to an SPM and will
significantly reduce or eliminate schedule rework. Information about
each unit totally corresponds to activity selectability on a project
schedule. That's why we need this information. Engineering develop-
ment really does know up front which units are of higher priorities
than others for execution — even prior to integration planning. This
information allows the software project manager to lay out the exe-
cution of those units on the schedule before the integration plan is
finished. It is really the integration plan that gives the software project
manager insight into execution ordering. In the meantime, the software
project manager can intelligently place unit executions on a schedule,
based on engineering input. I realize this is a little more than most
designs do — but this information is absolutely necessary for a software
project manager in this approach.

“Update Integration Plan” activity executions: For these activities, 1
require:

B Units to be grouped into integration sets that go together for
integration

B Each integration set to be named with its units identified

B Integration ordering by integration set

Integration sets can span subsystems. As a result of the integration
planning done by engineering development, the software project man-
ager can now flesh out the remainder of the schedule under the
direction of that plan. The software project manager can delay some
units while moving up others for just-in-time integrations. Furthermore,

© 2006 by Taylor & Francis Group, LLC

Special Process Activities for Software Project Management ® 87

if your company flows requirements down to the integration sets
specified in the integration plan, qualified system testing can be started
immediately after integration executions. This can really shorten up
the time-to-market schedule. I talk a lot more about this in Chapter 14.

SPM Actions

After every “Design Down” END notification, the software project
manager will know:

B The exact decomposed design pieces/parts and their names

B Whether any “Implement Code” activity gets placed on the
schedule for any given unit

B Whether any “Test Unit” activity gets placed on the schedule
for any given unit — along with the “Create Unit Test” activity
to create the unit driver

B Those activities that are totally reused and off-the-shelf

B Those units that are known to be early contenders for schedule
planning

In other words, the software project manager has the complete
piece/part schedule identification story. The software project manager
also knows what subset of that story can be placed on the schedule,
with a high certainty that it stays put (i.e., no rework). What the
software project manager does not know is the ordering of the rest
of that story. That information is provided when the integration plan
is implemented.

After every “Update Integration Plan” END notification, the software
project manager will know:

B The number of integration sets
B The number of “integrate” executions
B The unit execution ordering for the rest of the piece/part story

As 1 mentioned earlier, the software project manager can do intel-
ligent early (but qualified) system testing directly tied in with the
termination of each “Integrate” — if requirements were flowed down
to these integration sets. The software project manager should be able
to completely map out the project schedule with this information from
engineering development. This makes engineering a real role partner
with the software project manager for project success.

© 2006 by Taylor & Francis Group, LLC

INSTITUTIONAL- I I I I

IZATION
CONSIDERATIONS

Chapter 7

Process Framework
Model Institutionalized

Introduction

To be really effective in performing software project management
(SPM) using this process-based approach, you need the entire process
environment to be an integral part of everyone’s day-to-day life. To
reach that goal, the process model has to be an active part of your
company culture.

Let’s start with the process framework architectural model itself. At
this point, I'm really talking to many companies out there who have
piles of processes that have these characteristics:

B Paper based in binders

B Mix and match of policies, what you need to do, and how you
need to do it

No relationship of process elements to your project schedules
No relationship of process elements to your project life cycles
Verbosity

Pretty looks only (nice graphic glossies)

Little to no active use

If T have described your company’s situation, you probably have a
useless pile of stuff that no one uses or cares about. You have probably

91

© 2006 by Taylor & Francis Group, LLC

92 ® Process-Based Software Project Management

spent a lot of money developing this useless pile. Believe it or not,
these companies would rather stay with this than change. They are
quite willing to continue with poor quality, no repeatability, chaos,
fire fighting, and high costs until the end of the company itself. I
mention this because I have experienced that very situation. A process
guy such as me would be considered the enemy rather than a sup-
porting person. Making my proposed changes will have incredible
benefits.

The process architectural model approach I'm describing is orga-
nized with a place for everything, but can also be just “nice” if not
institutionalized. The big thing I've learned over the years is that
practitioners and managers alike will use your processes if, among
other things, they:

Make sense

Are short and to the point

Aid (not hinder) them in their jobs
Don't insult their intelligence
Aren’t overbearing

With this approach, the processes need to be a “click” away and
need to be totally integrated into everything.

Process Repository Institutionalized

The first order of business is the process repository itself. This needs
to be a Web-based, version-controlled repository. I have personally
used two products for this very thing:

B Livelink
B SharePoint

I am not endorsing these products. I understand there are more
candidates out there — except that I have had experience only with
these two applications. Unfortunately, there are many companies who
still cling to the notion of a process repository as one area and a Web
repository as another area. You can do this, but why? You are asking
for trouble by maintaining two separate repositories and keeping them
in sync for changes. It's so much easier to have one and only one
repository that has a dual function:

© 2006 by Taylor & Francis Group, LLC

Process Framework Model Institutionalized ®m 93

Enterprise
Processes
Work Work
e . How-To Form
Training | | Activities Procedures Forms || Product || Product
Packages Selectors Selectors
Selectors Sets

Authority Top-Level Roles Compliance Project
Level ||Web Pages| Matrices || Estimates

Figure 7.1 Process repository structure.

B Keeping different versions of all your process elements
B Automatically using the latest version (tip) for intranet Web
displays and access

Versioning is vital, particularly for process elements. When you start
up any project, you have a single piece of information that is critical
for determining your process basis — the project start date. With that
date, you can automatically determine all the process elements that
are candidates for your project. I will describe this later in this chapter.
As time goes on, processes change. No software project manager wants
to automatically chase the process “tail” for process improvements.
Chasing process improvements can cause disruptions in your project.
If you're at a point in the life cycle when you can step up to a later
version of a process element, this should be your choice. By having
the Web-displayed version as the latest and greatest process version, there
is a built-in incentive to stay current for any software project manager
— without forcing a step up to that version.

Figure 7.1 shows a process repository structure that I have used.

You'll notice a very flat structure. The names of the subfolders are
the same names in the two-row table shown at the top of Figure 4.3
through Figure 4.6, except for “Top-Level Web Pages.” Every Web page
has a hyperlink reference to all these subfolders for rapid access to
process elements. The process repository is subdivided into these
subfolders:

1. Activities. These are the “What you have to do” process elements
that are portrayed inside process activity diagrams (PADs) and
show up as schedule tasks.

© 2006 by Taylor & Francis Group, LLC

94 m Process-Based Software Project Management

2. How-To Selectors. These are the front-end process elements to
selectable how-to procedures.

3. Procedures. These are the “How you are to do it” process
elements that are connected to “How-To Selectors.”

4. Form Selectors. These are the front-end process elements to
selectable forms.

5. Forms. These are the forms that are connected to “Form Selec-
tors.”

6. Work Product Selectors. These are the front-end process ele-
ments to selectable work products.

7. Work Products. These are the work products that are connected
to “Work Product Selectors.”

8. Roles. This is where all described roles are located. Any role-
reference hyperlinks into this file at the appropriate anchor
point.

9. Training Packages. This is where all the training packages exist,
which are mentioned with activities or procedures.

10. Project Estimates. This is where you retain companywide esti-
mation data to help any SPM.

11. Authority Level. These are where all the high-level requirements
are kept or referenced, and they include ISO 9001, CMMI,
regulations, and company policies.

12. Compliance Matrices. This is where you have all the process
compliance tracing to authority-level standards, maturity models,
or policies.

13. Top-Level Web Pages. This is self-explanatory.

Of these 13 items, the first 12 should show up on all Web pages
for direct connectivity to these areas. All use the last item implicitly
as they use the Web. Of these same 13 items, practitioners and
management primarily use the first 10. The last 3 items tend to be of
more interest to your software engineering process group (SEPG),
assessors, or auditors. The beauty of direct hyperlinking into this
process repository is that you get a list of files automatically arranged
in alphabetical order. On file access, you automatically get the latest
version.

Within each subfolder, you should have versions of each and every
file. This is shown graphically in Figure 7.2.

As part of institutionalization, I highly recommend that every process
element inside the process repository use a date only as a version. I
further recommend that the date be in the YYYYMMDD format. There
are some very good reasons behind this:

© 2006 by Taylor & Francis Group, LLC

Process Framework Model Institutionalized ®m 95

Enterprise
Processes

Traiing
Training
Packages

Project

00000000

Project
Estimates

Figure 7.2 Each category version-controlled.

B Revision numbers are too cumbersome. For process elements,
you want to encourage updates for process improvements with-
out going through the Arabic numbering system.

B Revision letters make no sense at all for process elements. You
can getintothe A ... Z, AA ... ZZ, AAA ... ZZZ mode really fast.

B The YYYYMMDD form can be easily compared to any project
start date to determine a process basis via script processing.
Dates “equal to” or closest “less than” the project start date are
the candidate process basis set. Make it easy on yourself.

B Version date can be an HTML tag. HTML ignores tags that it
doesn’t recognize. You can easily add something such as <Pro-
cess-Version> YYYYMMDD </Process-Version> in your HTML
file for script processing.

I know this defies conventional wisdom for version identification,
but I hope you can see why this will simplify your institutionalized
processes.

With a version-controlled process repository, we now have an
incredibly simple way of performing process updates. This is shown
in Figure 7.3.

In most companies, the SEPG will be the group that actually makes
changes to process elements. Because we are dealing with a version-
controlled repository, we “Checkout-for-Update” the file that we want
to change and make necessary changes to the checked out file. As
you can see from the flowchart, if the changes are trivial, typos, or
minor in nature, it is just fine to do a “Check in” back into the
repository. This action automatically makes it “live” for Web access. If
the changes are considered substantive, I recommend an inspection
on the changes before doing that “Check in” operation. This change
procedure works well with single-process elements or multiple-asso-
ciative elements.

© 2006 by Taylor & Francis Group, LLC

96 W Process-Based Software Project Management

Y

Check-out latest version
of item to be updated

Make needed changes

Conduct inspection &
make changes as necessary

Substantive
changes?

Web

Check-in new version
. . h updated
in repository

automatically

Figure 7.3 Simple process update procedure.

Script Programming Institutionalized

I really believe that you can create some awesome metrics automatically
for your process repository with some fairly simple script programming.

To support script programming, you need to embed HTML tags
within your process elements. As I've stated before, HTML has a
characteristic that is absolutely great for process elements — it ignores
tags it doesn’t recognize. This opens the door for your SEPG to embed
process-related HTML tags in each and every process element that is
ignored by HTML but used by your script programming.

This process model approach is role based for activities, procedures,
work products, and forms. Wouldn't it be great to know the following:

What is the major ownership role for any process element?
What roles show up where — throughout the process reposi-
tory?

Who “owns” certain work products?

Who “owns” certain forms?

What roles are associated with what training package?

© 2006 by Taylor & Francis Group, LLC

Process Framework Model Institutionalized m 97

000
000
<ProcessRoles>
SQA,
SCA,
Software Engineer
</ProcessRoles>
000

000

Figure 7.4 HTML tag example for script processing.

Process Activities
Roles

SQA X
SCM X X

SW
Engineer

Etc.

Figure 7.5 Sample script output — role involvements.

Just think about employee training for a minute. If you have an
SCM analyst, you could identify all the SCM process elements that
“belong” to SCM. In addition, you could identify where SCM shows
up throughout any/all process elements. This is no longer a guess —
but accurate. Figure 7.4 shows an example of embedded HTML tags.
The only rule that your SEPG has to follow is that embedded process-
related tags follow HTML rules.

With a little bit more script programming, you could easily generate
a matrix showing activities (or procedures) along one side and roles
down the other. Whenever that role is involved in that process element,
an “X” is placed at the intersection of these two items. This is shown
in Figure 7.5. These kinds of matrices provide a top-level view of role
participation throughout your processes. I hope the reader will readily

© 2006 by Taylor & Francis Group, LLC

98 m Process-Based Software Project Management

Work Products
Roles
SQA X X
SCM X
SW
Engineer XXX
Etc.

Figure 7.6 Sample script output roles and work products.

see that software project managers or development managers can use
this for task resource allocations. You can also use this as a functional
area training guide. This can be used for new hire or transfer personnel
training as well. You get all this via institutionalized script programming.

In the process world, another big question involves the relationship
of roles to work products. This can also be achieved with script
programming, using the embedded process-oriented HTML tags. Figure
7.6 shows a similar matrix as before, except that roles are mapped to
work products. Do something similar for forms.

In the training world, you don’t build training packages in a vacuum.
You build them for a specific purpose and for specific roles. With this
process-based SPM approach, we explicitly identify training requirements
within pertinent activities and procedures. Both activities and procedures
identify roles involved in those process elements. With institutionalized
script programming, you can easily map your training packages to where
they are needed within your process elements. This is shown in Figure 7.7.

Inspection Procedure Institutionalized

From an institutionalized perspective, inspections have two major
components that need to be addressed at the company level:

B The inspection procedure itself
B Inspection checklists — one per work product that requires an
inspection

© 2006 by Taylor & Francis Group, LLC

Process Framework Model Institutionalized ®m 99

Training Process Elements
Packages

Framework XX [X|X[X | X

Requirements

Inspection
Procedure X|X|X|X|X

Etc.

Figure 7.7 Sample script output for training packages.

Many companies may have the former and not the latter. For these
companies, something is thrown on your desk with a “check this” type
of command. It’s no wonder that people waste a lot of time in this
environment over spelling, typos, styles, etc. — all of which are in
the noise level and don’t produce quality inspections. That's why
inspections have a bad name.

The most important procedure in this process-based SPM approach
is the inspection procedure. Some companies call them reviews (in
error, according to me). If you don’t have one, you need one. If you
do have one, is it efficient? Is it used? Is its use haphazard? Can it
support multisite inspections? Can it support both defect detection and
prevention? T have personally seen awful examples of inspection
procedures. I have been at more than one company that has certainly
had an inspection (or review) procedure that was so bad that no one
used it. One company had so many bells and whistles built in for
metrics purposes that people dreaded the experience of using it at all.
Don’t do this, especially when you’re not a mature organization and
people are not even paper trained on process! I am a big proponent
of keeping it simple. People will use an inspection procedure if they
see value to it. They won't if they see no value to it or consider it a
waste of time. The absolutely worst one I saw with document inspec-
tions was done by making transparencies of each and every page of
the document, inviting 20 people into a room, and then flipping
through the transparencies using an overhead projector. The inspection
was done page by page. The moderator asked questions such as,
“Does anyone have anything on page 1?” These inspections took a
long time and ended up finding things such as missing semicolons,

© 2006 by Taylor & Francis Group, LLC

100 ® Process-Based Software Project Management

spacing issues, bullets versus numbers, and all kinds of petty things.
People hated to show up at these inspections because it shot down
a good chunk of the day. If you have that kind of inspection, I feel
sorry for you.

As an aside and being a process purist, I really mean “inspection”
and not “review.” I make a huge distinction between these two terms.
The primary purpose of an inspection is to find (and fix) defects. The
primary purpose of a review is to externalize one or more work
products to your audience, with a side possibility of finding defects.
The focus is different in these two definitions. I want inspections. In
the DoD contracting world, you see major reviews called out, in which
large numbers of people are gathered in a room to go over top-level
or detailed designs. This use of “review” really does externalize those
designs to the gathered group and, yes, they sometimes find defects!
Finding defects is not the main purpose of them being there.

Let me refer you back to Figure 5.8 to put this inspection procedure
in context. You get to the inspection procedure via the INSPECT step
within activities. In this process model, INSPECT is hyperlinked to the
INSPECT How-To Selector, which, in turn, gets you to the inspection
procedure. The How-To Selector is important inasmuch as you can
have more than one inspection procedure to select. I found this very
useful for:

B Allowing a new inspection procedure to be introduced

B Allowing inspection procedure variations across groups/sites/
countries

B Allowing for scalable inspection procedures based on type of
project

Trying to introduce a better inspection “mousetrap” at many com-
panies is very difficult, especially when the old version is somebody’s
“baby.” T have been shot down more than once over this very thing.
The beauty of an INSPECT How-To Selector is that you can introduce
a new and better approach while leaving the old one there. A simple
Web counter really helps here. If, over time, you have 1000 hits on
one form of inspection procedure versus 10 hits on another, it’s a
really good indicator of which one should be kept and which one
should be dropped. Numbers don't lie.

A basic inspection procedure should:

B Be intranet based for maximum inspection value.
B Have inspection roles defined (e.g., author, inspector, and work
product lead).

© 2006 by Taylor & Francis Group, LLC

Process Framework Model Institutionalized m 101

B Take inspection direction from an inspection checklist. Checklist
is subdivided by inspection criteria, by role, and by author’s
entry criteria for that inspection.

B Create findings based on defects, summarizing “noise” defects.

B Minimize elapsed time between individual inspections and
inspection meeting.

B Support offline author responses to inspector findings, to min-
imize inspection meeting time.

B Use prioritized findings as the inspection meeting agenda.

B Support defect prevention, i.e., where defect should have been
picked up.

In this process model, INSPECT passes the charge number and
filename from any given task execution to the inspection procedure.
This provides the inspection procedure with the following derived
information:

The project involved

The activity type involved

The activity object involved for that activity type

Data on whether this was an inspection involved with rework

The filename provides the inspection procedure with the exact
target file ID of the file or work product being inspected. Inspections,
by definition, are conducted against files in the activity’s sandbox area.
So, the inspection procedure knows exactly which part of the sandbox
is involved, and which file within that sandbox is the target file. There
is absolutely no ambiguity with any inspection because of this process
model.

With this process model approach, you know where you are in
any project. You know where defects have been found. These get
deduced directly from the charge number parameter. If your inspectors
think any defect should have been found earlier in the life cycle, they
can either select an activity name from a drop-down list of activity
names to provide the appropriate defect prevention capability or just
indicate this finding as a “Defect Prevention” one for the SEPG to
determine. Your SEPG can take this information and improve an earlier
checklist to address that defect. How’s that for a closed-loop process
improvement method?

At this point, any traditional software project manager will probably
be saying, “That’s all very nice, but what has that got to do with SPM?”
As a software project manager, you want defects caught early because

© 2006 by Taylor & Francis Group, LLC

102 ® Process-Based Software Project Management

it’s cheaper and it doesn’t create defect compounding throughout the
project. You really want to head toward a smooth (almost uneventful)
system test position. That's why I have emphasized the importance of
an efficient inspection procedure for SPM. You want the monkey on
the producer’s back for quality. I have to admit that just having
inspections improves quality. If T were a developer and I knew that
my internal work product was going to be scrutinized by my peers,
you better believe that T will get that item in as good a shape as
possible before any inspection. I just don’t want to look bad in front
of my colleagues.

Inspection Checklists Institutionalized

The other big point to observe in the referenced Figure 5.8 is that
each work product has its own inspection checklist. T cringe when I
see inspection checklists hung off the inspection procedure. The check-
list needs to go with the targeted work product. They are a matched set.

Figure 7.8 shows an inspection checklist format that I found to be
very effective.

In the top portion of the checklist, place the suggested inspector
roles involved in this inspection. That information is a great help to
the work product lead who is calling for the inspection. I have found
that inviting your internal customer as an inspector is very useful to

Inspection Checklist - <Work Product Name>

Suggested Inspection roles:
Author Q: -
Entry Q: —------
Criteria Q: -------
Inspection (o Tyumm——
Criteria (o pm——
(Technical role) [

Q eerer

Qi -een

Q -orees
Inspection (o Tyumm—
Criteria (o yum——
(Non-technical Q: _______
role) ’

Figure 7.8 Basic inspection checklist.

© 2006 by Taylor & Francis Group, LLC

Process Framework Model Institutionalized ®m 103

improve quality. As an aside, if the author thinks the consumer of his
or her efforts is an inspector, you’ll be amazed at the higher degree
of quality reached before the inspection.

The body of the inspection checklist is subdivided into three major
chunks:

B Author Entry Criteria
B Inspection Criteria (Technical Role)
B Inspection Criteria (Nontechnical Role)

For the author entry criteria, this is a great place to put all the
mind-jogger items that you want the author to do prior to the inspection.

If the inspected work product were a document, you'd see, among
others, author mind-jogger things such as:

Has document been spell-checked?

Has table of contents been updated correctly?
Is pagination correct?

Are document headers correct?

If the inspected work product were coded in C++, you'd see, among
others, author mind-jogger things such as:

B Has lint been run (or equivalent)?
B [s code header correct?
B Were coding guidelines followed?

Finally, you take all the inspection questions and organize them
into at least two categories: technical and nontechnical. It is insane to
have a technical person spend time inspecting nontechnical parts of
a work product. Use them wisely and have them inspect areas that
they know. Conversely, have nontechnical people inspect the non-
technical aspects of work products. Technical editors do a marvelous
job at style/format types of things, for example. Software programmers
are horrible in that role. In my experience, software programmers are
definitely not English majors. Grammar and sentences are not their
bag. Any misalignment here can cost the software project manager a
lot in wasted productivity, time, and slipped schedules.

This is why you need the concept of inspection checklists connected
to work products that, in turn, are used by the inspection procedure
to be institutionalized.

© 2006 by Taylor & Francis Group, LLC

104 ®m Process-Based Software Project Management

Activity Estimations Institutionalized

One of the standard attributes in all activities is “Activity estimates.”
This was originally shown in Figure 5.3 when I showed what an activity
would look as a Web page. What exactly does that mean?

The very essence of estimation is to divide and conquer. You take
the whole effort and keep breaking it down into manageable chunks.
The idea is that estimation variances on any given manageable chunk
should be close to reality when you finally get around to executing
that chunk. You finally map out the chunk pieces to reflect possible
concurrent operations and predecessor/successor relationships as a
complete roadmap back up to the entire job at hand. That's what
estimation is all about. The end resultant estimation is comprised of
smaller estimations that feed into the final estimation.

After doing that drill, you need to add a loading factor to allow for
vacations, sick time, and overhead support functions, which are real
but don’t show up when estimating target systems. Clearly, if your
engineering staff were senior people with 4 to 6 weeks vacations, that
loading factor would be very different than if your staff had 2 weeks
vacation. If you were programming in downtown Baghdad versus
downtown Cleveland, the loading factor would need to include massive
security overhead costs. I will now show you why this process
approach really simplifies the estimation effort by attaching a loading
factor to each and every activity rather than a global loading factor
approach. This granularity will provide a more accurate estimation
approach.

Because process activities become schedule tasks, the entire project
schedule can be subdivided into activity types. Furthermore, when
charge numbers are aligned to activities, you can extract real-world
costs in manpower and durations for all activities or tasks in a schedule.
These actuals provide the input grist for future estimations. For the
first time up — no prior actuals for estimation — you really do need
to provide an educated guess for each activity type and keep your
fingers crossed.

With this actual data extracted from your project schedule execution,
I am suggesting that you do some simple things such as:

B Taking an actual average estimate (dollars, duration, manpower,
etc.) for each activity type. If you had 200 “Implement Unit”
activities in a project schedule, I maintain that you can rapidly
determine what an average “Implement Unit” means. Also, you

© 2006 by Taylor & Francis Group, LLC

Process Framework Model Institutionalized ®m 105

are not restricted to a single project. You can get better and
better estimates over multiple projects that, over time, will
improve progressively. For low-usage activities such as “Design
Down,” you may need multiple projects to get a more accurate
average estimation.

B Taking an actual MIN estimate. I am not a statistical person, but
wiser heads than mine can take a set of real-world actuals and
determine a minimum value or values for estimation purposes.
Statistically, you would discard deviations from the norm.

B Taking an actual MAX estimate. Just as earlier, take a set of
real-world actuals and determine a maximum value or values
for estimation purposes. Statistically, you would discard devia-
tions from the norm.

Unlike the traditional way of estimating, I would then take each
activity’s AVG estimation data and add your loading factor to the
activity’s average estimations. Typically, loading factors are expressed
as a percentage. This provides an average for estimation purposes to
be used by the software project manager. I have called this estimation
the L-AVG for loaded average. You can call it what you want. When
going through an estimation breakdown drill, the software project
manager uses:

B The AVG for all pre-execution activities to be worked. The
straight average is used because all this work is nonpaid and
is part of your overhead-loading factor.

B The L-AVG for all execution activities to be worked. The loaded
average is used because you want to include the overhead
factor.

To summarize, each activity type will have four estimation sets of
values:

MIN (low need)

AVG (basis for L-AVG calculation and used for pre-execution
activity work)

MAX (earned value variance trigger)

L-AVG (used for activity estimates at execution time by the SPM)

Of these, the software project manager will be using the last two
items:

© 2006 by Taylor & Francis Group, LLC

106 ® Process-Based Software Project Management

B When tracking, actuals exceeding the activity’s MAX will trigger
a variance report as part of any earned value system. Actuals
within the MIN to MAX range are to be considered OK. This
provides reasonable wiggle room for your development staff.

B [-AVG is used per execution-time activity and rolled up for each
activity group if you want to create planning packages. The
activity group becomes your planning package; e.g., the
“design” activity group is made up of activities such as:

“Determine Design Approach”
“Design Down”
“Design Unit”

All these estimations are attached to each activity and updated after
each project closes down. I do realize that you may have more than
one set of four things if you have multiple life cycles in which activity
actuals are widely different from one life cycle to the other. That's
your call for this capability.

I suggest you make these four values available via the “Activity
estimates” hyperlink within each activity. You may certainly add other
supporting information such as experience levels of the people behind
these estimates, etc.

The point is that activities and tasks are one and the same thing.
Charge numbers are aligned to activities, and thus to tasks. Actuals
come directly out of your time card system. Those same actuals have
a feedback loop for new estimations. This is one area in which data
from the time card system is crunched and made available to the
activity process elements for further estimations. This whole aspect of
estimation needs to be institutionalized.

© 2006 by Taylor & Francis Group, LLC

Chapter 8

Work Breakdown
Structure and
Charge Numbers
Institutionalized

Introduction

This is one area that, if done correctly, will yield enormous benefits.
There will be readers for whom the work breakdown structure (WBS)
or charge number system is so sacrosanct that it will take an act of
Congress to change it. I hope to show you that by adopting the
methodology described in this book, tremendous software project
management (SPM) control is possible over your projects.

Before getting into this, I want to define work in this process-based
SPM approach. I would like to see this WBS or charge number system
invoked at the very beginning of the life cycle. You may have had
several false starts in the business development area, but you would
have surely expended costs and efforts in the pre-execution segment
of any life cycle. Ideally, you should be able to capture all this and
factor it into your loaded averages per activity. I will discuss this later
on in this chapter. Pretending that work starts at the beginning of
execution is crazy. Work starts before proposal time and continues

107

© 2006 by Taylor & Francis Group, LLC

108 ® Process-Based Software Project Management

after proposal time. With this process-based technique, we now have
a really good way of capturing those work costs because all the pre-
execution activities are uniquely named and associated with nonpaid
work effort.

Let’s look at a top-level view of WBS and charge numbers. Software
costs money to create. These costs come from the following:

B Actual work performed
B Other things

All costs should be captured via a charge number in the time card
system. You want to know if person A is performing design versus
system test. If you were building a house, you would want to know
foundation costs versus drywall costs. These kinds of costs reflect the
work done. So, part of any charge number system should incorporate
work-related costs versus nonwork-related costs. For example, buying
software applications, “seats” for software usage, or plane tickets
involve costs, but these are not work related.

The work-related charges are reflected in a WBS part of the charge
number, whereas the nonwork-related charges are reflected in another
part of the charge number. The bottom line is that both of these costs
need a way of being organized so that it is meaningful to any person
familiar with accounting.

Traditionally, most WBSs are based on piece/part or functional area.
Using the house example, there would be structures that captured
costs for the following:

Foundation
Framing
Roofing
Electrical
Plumbing

In this case, each of these areas usually calls for different skill sets.

WABS Institutionalized

In my process-based method, I will be using a nontraditional approach
for the WBS that is process based. I maintain that you can achieve a
piece/part view as well using a process perspective.

© 2006 by Taylor & Francis Group, LLC

Work Breakdown Structure and Charge Numbers ® 109

Activity Object Jane Doe
f ‘ Work Driver - Schedule
= Tasks Project Schedule
Activity Activity v~ | -
List + Objects =
~ [
Static List Dynamic List A -
as per as per °
process process 2
repository execution o

Figure 8.1 Schedulable perspective of a work breakdown structure (WBS).

I have already established the direct connection between process
activities and schedule tasks. Schedule tasks are merely execution
instances of one or more process activities. If you look back at Figure
4.7, you should notice that task items are made up of three main
components:

B Activity name
B Activity object
B Activity lead

The first of these identifies the specific process activity being used.
The second identifies the piece/part being acted on by that activity.
The last element (the person) is the individual (along with all the
employees) who are filling in the time charges.

I will now direct you to Figure 8.1.

This figure shows the connection of those first two schedule-tasking
elements to the schedulable perspective of the WBS. I hope the reader
will see that a number that comes directly from the activity list in the
process repository can represent the activity itself. It is my opinion
that an engineering development life cycle should have about 40
process activities for all schedule task instances. These activities can
be assigned a unique activity number — usually a two-digit number.
By this activity assignment, you can specifically identify work done by
an activity type. For example, all executions of a “Design Down”
activity provide you with work done for top-level design work. Simi-
larly, all executions of an “Implement Unit” activity provide you with
work done for coding development work.

© 2006 by Taylor & Francis Group, LLC

110 ® Process-Based Software Project Management

0 o
0 0
0 0
Define Requirements 07
Design Down 08
Design Unit P o
Implement Unit 10
Integrate 11
o o
o 0
o 0
Activity Activity
symbolic names number equivalents

Figure 8.2 Symbolic activity name connection to the WBS number.

Let’s turn our attention to the activity object in Figure 8.1. You will
only know the piece/part story after you execute the “Design Down”
activity. As I have mentioned earlier, the END step in that special
activity triggers action by accounting to expand the dynamic part of
the WBS (also wholly contained within a charge number) for all the
newly designed pieces/parts. This really creates an indented parts list
based on the design that is incorporated into the WBS and charge
number system.

We now have tasks on a project schedule containing the symbolic
names of the activity and activity object that are totally aligned with
numbered equivalents in the WBS (and charge number). The activity
part of the WBS is static. The activity object part of the WBS is dynamic.
If you want a process view of the WBS, you will use the activity as
your basis. If you want a piece/part view, you will use the activity
object as your basis. The piece/part view does require that you include
all activities that have the same activity object (or offshoots of that
object).

Let’s dig a little deeper and look into accounting’s actions regarding
the WBS and activities. All activities in the process repository get
assigned a unique activity number. This action is shown in Figure 8.2.

I have shown a two-digit numbering scheme that should be suffi-
cient for most companies. I have also numbered activities from 01 to
99, leaving out 00 for a reason. This provides a very flat structure for
your WBS. If you want more of a hierarchy for your WBS, you could
easily take it to the next level and incorporate activity groups into
your WBS as well. T have shown this in Figure 8.3.

© 2006 by Taylor & Francis Group, LLC

Work Breakdown Structure and Charge Numbers m 111

o o o
o o o
o o o
Define Requirements 07 06
Design Down 08 07
Design Unit _> 09 _> 07
Implement Unit 10 08
Integrate 11 08
o o o
o o o
o o o
Activity Activity Activity
symbolic names number equivalents groups

Figure 8.3 Can add WBS hierarchy via activity groups.

Static part |Dynamic part
of WBS of WBS

Predetermined Determined

by process

by process
execution

Figure 8.4 Top-level view of the WBS.

You'll notice that “Design Down” (or activity #08) and “Design Unit”
(or activity #09) both belong to the “Design” activity group (#07). You
could include the activity group number into your WBS if you really
wanted a structure that was not flat. That, however, would take up
four numbers versus two. I maintain you can always deduce activity
groups without the additional two-digit number in your WBS. That’s
just me. You choose. Both activities and activity groups are static for
accounting.

Let’s now look at the WBS at a top level. This is depicted in Figure 8.4.

Essentially, you have a fixed part that is determined by process and
a dynamic part determined by the pieces/parts as per design activity
executions. Looking at the static part, we have already established that
activities are numbered from 01 to 99. We now use 00 to make the
top-level breakdown of a WBS, as in Figure 8.5.

© 2006 by Taylor & Francis Group, LLC

112 ® Process-Based Software Project Management

Major WBS
Code

00 01.99
Non-scheduled Scheduled

All the event-driven All the activities
procedures here here

[] static

Figure 8.5 Top-level structure of the WBS.

I have broken the whole top-level WBS into two main camps as
follows:

B The nonscheduled world as identified by the 00 code.
B The scheduled world as identified by the range 01 through 99
for all the activities in the process repository.

I found this to be a clean division of work at this level.
This process model deals with the following:

B Schedulable process elements, called activities
B Nonschedulable process elements, called event-driven procedures

Work occurs in both areas. The former type of work can be seen
on the project schedule. The latter type of work cannot — but it still
costs time and money. We need to allow for both of these in our WBS
method.

Drilling down on the nonscheduled part of the WBS (signified by
00 at the root level), I have further subdivided that category as shown
in Figure 8.6.

This figure shows that I have subdivided this nonscheduled world
into two categories as follows:

B Other (depicted by another 00 code)
B Event-driven procedures numbered 01 to 99

At this point of the WBS numbering development, a front-end 0000

signifies “nonscheduled or other.” A 00XX (where XX is a unique
identifier for an event-driven procedure) signifies a nonscheduled

© 2006 by Taylor & Francis Group, LLC

Work Breakdown Structure and Charge Numbers ® 113

00
Non-scheduled

00 01.99
(Event-driven
(O Procedures)
D Static
Figure 8.6 Nonscheduled part of the WBS.
01.99
Activity
| |
(01.99) 0 (01.99) (1.9)
System Subsystems

I:l Static I:l Dynamic

Figure 8.7 Scheduled part of the WBS.

procedure for work purposes. All information at this WBS development
stage is static in nature. We can now capture work done on this project
for all the invoked event-driven procedures that don’t show up on the
software project manager’s schedule.

Let's look at the scheduled side of the WBS from the top down.
This is shown in Figure 8.7.

Any leading two-digit number (in the range of 01 to 99) is, by
definition, an activity type. In the system hierarchy I have used, the
ordering is as follows:

B System
B Subsystem

B Unit

You may have other orders and nomenclature. Next, T assigned a
single digit to the next layer as follows:

B O for system
B 1 to 9 for subsystems

© 2006 by Taylor & Francis Group, LLC

114 ®m Process-Based Software Project Management

(01.99) 0
System

(01.99) 0
(xxx.yyy)

D Static D Dynamic

Figure 8.8 System part of the WBS.

(01.99) (1.9)
Subsystem

(01.99) (1.9)
(001.999)
Units

D Dynamic

Figure 8.9 Subsystem or unit part of the WBS.

Clearly, if your business has a system with 15 subsystems, you’ll
need a two-digit number to express this. It is interesting to note here
that the system part is static, whereas the subsystem part is dynamic —
based on system design. This breakdown is shown in Figure 8.7

For the system (0) WBS elements, I followed the 0 with a three-
digit code for all the items that you want at the system level. If you
have unique activity names in the pre-execution part of the life cycle
versus those in the execution part of the life cycle, all the earlier target
activities can all be associated at this system level. These are things
such as deliverables, integration sets, etc. I chose not to add much
more here. This breakdown is shown in Figure 8.8.

For any particular subsystem, these break down into units within
that subsystem. The unit numbering is subsystem dependent, and I
have represented units with a three-digit number per subsystem. Figure
8.9 shows this breakdown. Please note that this part of the WBS is
dynamic — based on executed top-level designs.

So now, just looking at the first six digits of a WBS that had 041003,
I can tell you that this is work related to the following:

© 2006 by Taylor & Francis Group, LLC

Work Breakdown Structure and Charge Numbers ® 115

00 Non- Event- ZOther (used 7
scheduled Driven /‘ for charges)
Change requirements 01 /
ive acti Z
Corrective action > 02 Lab equipment %
© 03 Leases 4
7
© 04 Software %
© 05 Test equipment%
Training %
Event-Driven Event-Driven Travel f
Procedure Procedure 000 7
symbolic number
names equivalents

Figure 8.10 Nonscheduled and other perspective of the WBS.

B Activity #04
B Subsystem #1
B Unit #003 within subsystem #1

The subsystem part of this is a qualifier of the unit we’re talking
about. If activity #4 was an “Implement Unit” type of activity, then
we’re talking about work done using that activity on unit file abc.c
(#003) within subsystem 1. That ties the WBS right to the task in the
schedule that matches those parameters, namely, an “Implement Unit
(abc.c)” task.

When it comes to the nonscheduled part of the WBS and “other”
things, T am cheating a bit by including nonwork charge items within
the WBS numbering system to conserve numbering space. For any
purist, WBS numbers should only reflect work-related charges. Let me
show you how I handled the “other” problem, shown in Figure 8.10.

I took the 00 leading two digits to represent “nonscheduled,”
followed by a two-digit number for event-driven procedures. I num-
bered event-driven procedures from 01 onward. I left the 00 designa-
tion to mean “other.” Now, if there was a WBS with leading 0000
numbers, that opens the door for me to follow these zeros with a two-
digit number for all the other (nonwork-related) things such as the
following:

B Lab equipment

B Leases
B Software

© 2006 by Taylor & Francis Group, LLC

116 ® Process-Based Software Project Management

B Test equipment
B Training
B Travel

You end up with a WBS that is a six-digit WBS number with different
meanings based on scheduled versus nonscheduled; i.e.:

Scheduled:

AA — Activities (01 ... 99)

S —System (0) or subsystems (1 ... 9)

UUU — System-related things or subsystem units (001 ... 999)
Nonscheduled:

00 — Signifying nonscheduled

PP — Other (00) or event-driven procedures (01 ... 99)

MM — 00 for event-driven procedures or other miscellaneous

items

Now we place the entire WBS inside the charge numbering scheme.

Charge Number Institutionalized

The charge number that people put on their time cards will now be
as shown in Figure 8.11.
This charge number is subdivided into three big chunks as follows:

B Project ID
B WBS (static part and dynamic part)
B Rework counter

The project ID prefix is a unique number for your project. I have
used a two-digit number here, reusing the numbers when I reached
99. We have just discussed the makeup of the WBS. The rework counter
suffix is a single-digit number that reflects whether or not there is
rework. I used the following:

+ Static part |Dynamic part + Rework
of WBS of WBS () counter

(*) Except for“Other”which is static

[] Static [] Dynamic

Project ID

Figure 8.11 Time charging system.

© 2006 by Taylor & Francis Group, LLC

Work Breakdown Structure and Charge Numbers ® 117

B (for no rework; i.e., the original work
B 1 .. 9 for a rework counter, cycling around this range

Every activity instance placed on a project schedule gets a rework
counter of 0 to represent original work. If the software project manager
has to prune the schedule for things such as requirements changes
and move schedule “branches” further down the schedule, these
repeated (or reworked) tasks get a 1 suffix. If you ever get to reworking
reworked activities, the counter goes to 2, etc.

This charge number system exactly aligns to this process-based SPM
method, providing an incredible array of benefits, which include the
following:

B Charge number matches schedule tasking for scheduled work.

B Charge number matches event-driven procedural work for all
nonscheduled work.

B Charge number, when passed from common steps within any
activity, makes the link from the static process activity to the exact
task on the project schedule for actuals and project metrics.

B Charts can be produced by process activity, activity group, or
piece/parts directly from the time-card system.

I have shown a nine-digit charge number. You may have a different
charge numbering system. I hope I've conveyed the concept of what
you can do with this. You need to tailor this for your own company’s
situation. Anyhow, this general format for the change number needs
to be institutionalized.

Sometimes, a blow-by-blow description helps cement all this in. I
will be revisiting all this later, in Section IV. The description in this
chapter will provide some more insight into where I'm heading on
this topic.

For my hypothetical company, I am going to assume that I have
from 8 to 15 ongoing projects. That tells me that I can assign two
digits of my charge number to a project. I will also assume that I can
use a circular buffer approach on these two digits; i.e., I will assign
numbers from 01 through 99 after which I will cycle back to 01 again.
Again, T have purposely stayed away from using 00, which can be
used for general (nonproject-specific) stuff.

At this point, T have developed the front end of my charge number
heading toward this form:

<Project number><Process activity number>

© 2006 by Taylor & Francis Group, LLC

118 ® Process-Based Software Project Management

I can now add in activity identifications. I have set up a complete
end-to-end story made up of process activity diagrams (PADs) — one
per life-cycle phase in my process repository. I know I have 40*
reusable activities whose instances will show up on any project schedule.

The probability of this hypothetical company having more than 99
process activities is extremely small. With this information, I can now
determine that two of my numbers within a charge number will be
mapped to a process activity. For illustration purposes, I will make
this assumption. Your company may choose to allocate three digits for
this. Don’t get wrapped around the axle about this, however.

In the main process framework model described in Reference 1, I
have avoided relating a number to an activity because there are some
people out there who view this number as an ordering number —
which it isn’t. When you use numbers for ordering purposes, you will
be saying, for example, that activity 09 is the predecessor to activity
10, etc., which you don’t want implied. Also, if you have to add an
activity between them (as part of software process improvement), will
this new one be numbered 9.5? For this reason, I have been firm about
keeping the activity description as an alphabetic description. The
number assignment I'm talking about here merely represents an alpha-
betic description of a portion of a charge number. The operative word
here is “number.”

At this point, T have established that two of the numbers in any
charge number represent the process activity. This mapping is a static
mapping from 01 to 99. I have purposely not used 00 because we
used that for all the nonscheduled stuff.

A front end of 1510 would tell me this is for project 15 (assigned
at enterprise level) and for activity 10 (probably assigned by the
software engineering process group [SEPG]) used within that project.
Both of these pieces of information are relatively static.

I can now add the piece/part dynamic story.

At this point, we have merely identified the project and the static
process activity. A process activity, once placed on a schedule, has
two more pieces of information added to it to make it a schedule task;
these are as follows:

B What's the object of the task?
B Who'’s responsible for this schedule task?

* The number 40 is not unreasonable for a complete engineering life cycle. Some
companies may have less, and some may have more.

© 2006 by Taylor & Francis Group, LLC

Work Breakdown Structure and Charge Numbers ® 119

For any charge number system, we definitely are interested in the
former and not in the latter. One company I worked for wanted to
add in the “who” part to use it as ammunition against the concerned
individual. How’s that for killing any initiative! My take on this is,
“don’t do it.” Leave the individual out of this encoding.

For the most part, the object of a task (or instance of a process
activity) is a piece/part of your system. This is not a totally true
statement, but it’s mostly true. For example, if we have a system design
and three subsystem designs, there will be four tasks on the schedule
(one system and three subsystems) but only one process activity.

This statement is probably going to blow away traditional software
project managers: Don’t assign dynamic portions of any charge number
until you know for sure they exist. You don’t know any piece/part of
the system exists until after you have executed a “Design Down” kind
of activity. What I'm saying here is that on any “Design Down” activity
END step, you notify the accounting folks so that they can establish
the unfolding charge number. At the end of your system design, you
know exactly how many subsystems there are. At the end of any
subsystem design, you know exactly how many units there are. The
term “unit” could be a C++ class or Ada package, for example. This
approach uses the process life-cycle execution itself to drive both
follow-on activities and develop the charge number itself via account-
ing. Your accounting charge number system is totally aligned with your
engineering design.

For the piece/part number assignments, these are project depen-
dent. For example, if we started with 1510 and added 3 to get 15103,
that has a different meaning than 09103. The former is subsystem 3
related to project 15, and the latter is a different subsystem 3 for project 09.

For companies that are in the system and subsystem design business,
I suspect that a single reusable number is quite adequate to represent
a system and subsystem. Similar to what was done before, this single
number assignment is in the range of 1 through 9. I purposely did
not use 0. That use will be dealt with later.

If after doing a “Design Down” on subsystem 3 for project 15, your
design comes up with 100 units — then a 3-digit project-dependent
number can now be added to the charge number for any given unit.
For unit 023, my unfolding charge number is now 15103023, where:

15 = Project represented by 15 — static part

10 = Activity 10 — static part

3 = Subsystem 3 for project 15 — dynamic part
023 = Unit 023 under subsystem 3 — dynamic part

© 2006 by Taylor & Francis Group, LLC

120 ® Process-Based Software Project Management

The astute reader will point out that this is all well and good, but
what about the execution of the “Design Down” itself — prior to
knowing the number of subsystems (system design) or number of units
(subsystem design)? This is where the 0 comes in. Assuming activity
10 was the “Design Down” activity, the folks working a system-level
design for project 15 would charge to 15100 ... 0, where:

15 = Project 15
10 = Activity 10
0 = System-level design — implied by 0

Given the same activity and project assumption, the folks working
the subsystem 3 design would charge to 15103000, where:

15 = Project 15
10 = Activity 10
3 = Subsystem 3 for project 15
000 = Subsystem level design — implied by 000

The reader may make another very relevant observation: Because
this numbering structure is activity based, we know what activities
have what objects. For example, you can’t do a “Design Down” activity
on a unit object. You can’t do an “Implement Unit” activity on a
subsystem object. This scheme has a built-in way of validating charge
numbers because of this connection to the process world.

If should be clear to you by now that certain activities are more
important for SPM than others. The “Design Down” activity is one
example. You don’t know things such as the following until you
execute one of the “Design Down” activities on a schedule:

The enfolding piece/part story as a result of that design
Drives further activities on the project schedule

Drives the enfolding project charge number

Provides the unfolding integration planning story
Drives the unfolding piece/part-based SCM repositories

The execution of this particular activity on a schedule gives you a
many-for-one sale because of the tight coupling of processes to sched-
ules.

The process model referenced in [1] also considers the integration
plan itself to probably be the most important work product you can

© 2006 by Taylor & Francis Group, LLC

Work Breakdown Structure and Charge Numbers m 121

produce. This is an interesting concept. You actually use the integration
plan to drive the schedule. Let’s detour a little and look at the
integration plan’s role in all this:

B After executing a “Design Down” on a subsystem, you know
the unit-level piece/part story. These are the actual elements
that must be integrated into a total system in some order. This is
the time you update your integration plan to address which
pieces/parts get integrated first, second, or third, etc., within that
subsystem. You update on each subsystem “Design Down” task.

B The resultant integration plan now has an integration roadmap
at the unit level. You will see things such as: “Integrate units
3, 4, 7, and 10 first in subsystem ABC, then integrate that base
with units 2, 5, 6, 9, and 11, etc.” You keep building on the
base until everything is integrated.

B Each set of things to be integrated is something I call the
“integration set.” For the “integrate units” process activity, an
object is a pseudo system piece/part — being an integration
set coming right out of the integration plan. This plan is used
to drive the schedule. From a charge number perspective, we
merely need to number the integration sets for charging purposes.

If the integration plan calls for 10 integrations, building progressively
upwards on an increasing base, we know we have 10 instances of the
single “Integrate Units” process activity on the schedule. The develop-
ers need a specific “integration set” object when executing that sched-
ule task. From a charging perspective, we would see something similar
to “1524XX ...,” where:

15 = Project 15
24 = Activity 24 for “Integrate Units”
XX = 01-10 for the 10 integration sets

Integration sets are treated similar to the system object. Similar to
the mapping of pieces/parts, accounting needs to extract the integration
set identifiers and map it to a charge number. This is a very different
role for accounting. This action places accounting as an integral mem-
ber of the SPM team. Most accounting groups don’t do this.

I have advocated a direct alignment of your WBS with your process
activities for all the schedulable work. Some readers may take me to
task here and remind me that this is a very flat structure — e.g.,
approximately 40 named process activities for most companies.

© 2006 by Taylor & Francis Group, LLC

122 ® Process-Based Software Project Management

You can remedy this flatness very easily. Every process activity has
a static belonging to a process group. See Reference [1] for a detailed
explanation of process groups. I will give you some examples of
process groups that you might want to incorporate into your WBS
structure as part of your indentured list of WBS items.

Some examples are as follows:

B “Design Down” and “Design Unit” may be two of your named
process activities that would belong to the “Design” process
group.

B “Integrate Units” and “Test System” may be two of your named
process activities that would belong to the “Test” process group.

You could certainly place these process group names for any subtitle
in your WBS as follows:

WBS structure
00 — Nonschedulable items

01-99 — Schedulable items (activities)

Design

18 — Design Down
23 — Design Unit
Test

28 — Integrate Units
34 — Test System

For my hypothetical company, I have created a structured charge
number for schedulable things based on process activities as follows:

<Project ID> ::= 01-99

<Process activity ID>/00 ::= 01-99 (this determines the following
structure)

<Variable piece/part or object> ::= 0000-9999

<Rework indicator> ::= 0-9

The maximum numbering representation I've used is a nine-digit

charge number. You may use more. You may place your rework
indicator elsewhere in this numbering structure.

© 2006 by Taylor & Francis Group, LLC

Work Breakdown Structure and Charge Numbers ®m 123

Tying the charge number and WBS to your schedule tasks and
process activities provides incredible SPM metrics for any project. You
can determine the following:

Total effort for a project.

Work effort by process activity type, i.e., how much was spent
on implementation.

Work effort by process activity group, i.e., how much was spent
in all testing activities.

What was the total effort spent on a particular piece/part of the
system?

What was the pie breakdown on effort on my whole project?
How does it relate to industry standards?

What was my rework costs?

Show me the chart on all activities organized from most to least.
Where did T spend most of my effort? (This gives a big clue to
your SEPG people as to which activity to optimize!)

These kinds of metrics results should be maintained and used for
subsequent projects. It should provide any software project manager
with a wealth of information to get better estimates from past results.
With time charge system records in place, you should be able to
reconstruct these at a moment’s notice.

If you’re scratching your head now, don’t worry; I'll be explaining
this further in Section IV.

© 2006 by Taylor & Francis Group, LLC

Chapter 9

Software Project
Management Role
Partners Institutionalized

Introduction

In this process-based software process management (SPM) approach,
there are definite and directly connected “role players” that cooperate
in various ways with the software project manager. These role players
are the following:

Engineering

Accounting

Software configuration management (SCM)
Software quality assurance (SQA)

Unlike traditional methods of SPM, these role players are true
partners of SPM — not merely subcontracted helpers hanging around
the fringes. This described method has a tight connectivity of process
to schedules. This method also has clearly defined expected actions
from these role players that are triggered by the END common high-
level steps with the “Design Down” schedule tasks. Success depends
on each member of the team playing his or her part. The philosophy

125

© 2006 by Taylor & Francis Group, LLC

126 ® Process-Based Software Project Management

is very analogous to a surgical team. You certainly need to have a
chief surgeon, but you also need operating room nurses and an
anesthesiologist for the operation’s success. Each has a definite role.
Each is expected to perform that role flawlessly and on cue. This same
concept applies to effective SPM. This process approach to SPM is not
very tolerant of your team players disconnection from you or abdicating
their responsibilities to you. Going back to the surgical team analogy,
the anesthesiologist does not function according to his or her whim.
In surgery, there are certain triggering events that require immediate
action. This is true of this process-based SPM approach. We will now
look at these triggers for your role partners.

Just go back to Figure 4.8 for a moment. This figure is critical to
the understanding of the task—activity relationship. In this chapter, we
are concentrating on the right-to-left arrow at the bottom of that figure.
The major points to be made are the following:

B Process activities are “what you need to do” process elements.

B Process activities contain high-level steps to be done — some
of which are common to all activities.

B Process activities have predecessor/successor relationships to
other activities.

B Process activities exist in process activity diagrams (PADs) in
the process repository.

B Each PAD represents one phase of the life cycle.

B Activities, once placed on a project schedule, become schedule
tasks.

B Project tasks are instances of activities.

Because all tasks on a schedule emanate from one or more activities
and because all activities have common high-level steps, it follows that
we can connect our role partners via these high-level steps throughout
the life cycle.

I described the process activity with its high-level steps at length
in Chapter 5. In this chapter, 'm going to concentrate on the END
common high-level step as role-partner triggers.

For every activity instance (or schedule task) that is executed, the
END high-level step communicates that “doneness” to the various roles.
Because the charge number is passed with the END, we can determine
the appropriate project, the activity type, the activity object, and
whether or not it was a reworked task. In other words, we can tie an
END to a particular task in your project schedule. The normal END
actions are the following:

© 2006 by Taylor & Francis Group, LLC

Software Project Management Role Partners Institutionalized ®m 127

B Notify the software project manager that this particular task is
done.

B Notify the next activity lead on the schedule that this particular
task is done.

B Notify the earned value folks that this particular task is done.

B Possibly notify SQA that this particular task is done (for auditing
purposes).

B Possibly notify the development manager that this particular
task is done.

B Possibly notify the metrics folks that this particular task is done
when passing on the metrics data (if it’s a metrics-producing task).

Of all the activities that can be activity instances (or tasks) on a
schedule, there are only two activities that are far more important than
the others for the software project manager. They are the following:

B The “Design Down” activity
B The “Update Integration Plan” activity

The “Design Down” activity does high-level design that decomposes
the target of the design into smaller designed pieces/parts. System
design identifies subsystem pieces/parts. Subsystem design identifies
unit pieces/parts. Thus, every execution of a “Design Down” done by
engineering provides more visibility on the system’s hierarchical
pieces/parts list. In addition to the standard actions from an END step,
this particular activity’s END triggers immediate action from the fol-
lowing role partners:

B Engineering — for SPM guidance on unit-based information and
early-up developmental units

Accounting — for charge number elaborations

SCM — for developmental repository elaborations

SCM — for sandbox elaborations

SPM — for schedule planning elaborations

The “Update Integration Plan” activity determines the integration
sets (of units) and the integration roadmap ordering. In addition to
the standard actions from an END step, this particular activity’s END
triggers the software project manager to expand the project-planning
schedule based on that integration plan. This particular activity is key
to intelligent project schedule planning.

© 2006 by Taylor & Francis Group, LLC

128 ® Process-Based Software Project Management

Engineering Role Partner Institutionalized

Engineering needs to understand that the high-level designs serve more
than one purpose; these purposes include the following:

B Actual flow-down design for the targeted system

B Input to accounting for charge number expansions

B Input to SCM for developmental repository structure expansions
(and initial population)

B Input to SCM for project working areas (sandbox) structure
creation

Engineering needs to do a thorough job of these decomposing
types of designs. All high-level designs in this process-based approach
includes the following:

B Identifying the newly designed pieces/parts
B Creating a unique file identifier or a name for each designed
element

In addition, those high-level designs that decompose designed
elements down to the unit (leaf) level need to add the following pieces
of information:

B Whether the unit is to be implemented and unit tested. These
tend to be critical units.

B Whether the unit is to be implemented but no unit testing is
to be done. These are units where a unit code inspection (built-
in) is sufficient or where it makes no sense to develop unit test
drivers. Embedded units or units that are not critical quite often
fall into this category.

B Whether the unit is reused from before and needs additional
code tweaking and a unit test.

B Whether the unit is reused and can be used as is, i.e., without
code tweaking and unit testing.

B Finally, which units for any implementation are needed first on
the project schedule. Engineering knows this. The software
project manager only needs a get-started list of units that, in
engineering’s judgment, are candidates for early implementation.

All this is valuable information for the software project manager for
schedule planning. The last bulleted item provides the software project

© 2006 by Taylor & Francis Group, LLC

Software Project Management Role Partners Institutionalized ®m 129

manager with a get-started lineup of unit-based tasks early-on in the
schedule while waiting for the full-blown integration plan that really
ties this down for task ordering. This engineering role needs to be
institutionalized.

Accounting Role Partner Institutionalized

The END step for any “Design Down” notifies accounting that a high-
level design is now done. Accounting now knows the following:

B The number of designed elements (subsystems or units)
B The designed elements’ names (subsystem names or unit names)

Accounting can now assign codes to each piece/part within the
WBS. The WBS structure and format was described in Chapter 8. In
addition, accounting is responsible for creating a table relating charge
numbers with their breakdown fields. Figure 9.1 shows where the
charge number file is located within the project’s developmental repos-
itory for accounting updates.

The actual charge number file is a multicolumn table relating the
charge number (expanded by accounting) to items such as the following:

The activity number

The activity name

The activity object number
The activity object name

Executed Tasks SCM Development Repository Structure - Project

Start of Project
Activity
° Charge number template file

o
o

Design Down
(System/subsystem) Accounting:
Know pieces/parts—
update charge number file

Figure 9.1 SCM development repository buildup for accounting.

© 2006 by Taylor & Francis Group, LLC

130 ® Process-Based Software Project Management

Activity| Activity | Activity Activity

Charge # Number| Name Object # Object Name

Figure 9.2 Accounting charge number file for process.

Figure 9.2 shows a representative table to be used for this purpose.
I did not show other possible accounting tables to cover the non-
activity aspects of any charge number.

Although created by accounting, all the common high-level steps
use this file to associate the charge number parameter to their symbolic
equivalent fields as part of a graphical user interface (GUD to the
process practitioner. In addition, parameterized filenames will also be
accessing this table.

Accounting may not have that role in your company currently. They
need to take on this role for this process-based SPM approach. That’s
why this needs to be institutionalized.

SCM Role Partner Institutionalized

The END step for any “Design Down” activity notifies SCM that a high-
level design is now done. SCM also knows the following:

B The number of designed elements (subsystems or units)
B The designed elements names (subsystem names or unit names)

SCM can now take the newly designed names and create another
layer of subfolders under the system node or applicable subsystem
node for each subsystem and unit, respectively. The developmental
repository structure is close to real time and parallels to the high-level
design. Once the subfolders have been established, SCM can now
populate these subdirectories with appropriate templates and place-
holders in readiness for engineering’s execution of the next GET high-
level step.

© 2006 by Taylor & Francis Group, LLC

Software Project Management Role Partners Institutionalized ®m 131

As an adjunct to the developmental repository structure getting set
up, SCM also needs to expand the project’s sandbox. This entails setting
up a subfolder for each designed element name under those activities
where that type of piece/part is valid. As a reminder, the project’s
sandbox basic structure was shown in Figure 6.6. For example, if the
“Design Down” created units, you would see all the unit names as
subfolders under “Implement Unit,” “Test Unit,” and “Create Unit Test”
folders in the sandbox. You would not see unit names under those
activities where a unit name was not valid (e.g., “Design Down”).
Unlike the developmental repository, the project’s sandbox is always
a three-layer structure.

SCM is critical for a software project manager in this approach. SCM
must move swiftly and act on the END from the “Design Down” task
to provide just-in-time support for the software project manager and
engineering to keep going on the project schedule. It is for these
reasons that SCM’s actions must be institutionalized.

SPM Role Partner Institutionalized

The END step for any “Design Down” notifies the software project
manager that a high-level design is now done. Just as the other role
partners, the software project manager knows the following:

B The number of designed elements (subsystems or units)
B The designed elements’ names (subsystem names or unit names)

This provides the check-off list for the software project manager to
account for on the project schedule.

If the “Design Down” happens to be a subsystem design down to
the unit level, the software project manager is provided a lot more
information:

B Whether the unit is to be implemented and unit tested

B Whether the unit is to be implemented but no unit testing is
to be done

B Whether the unit is reused and needs additional code tweaking
and a unit test

B Whether the unit is reused and can be used as is

B Finally, which are the units for early implementation on the
project schedule

© 2006 by Taylor & Francis Group, LLC

132 ® Process-Based Software Project Management

The software project manager can take the information from the
last bulleted item, qualified by the earlier bulleted items, and place it
all on the planning schedule immediately. This information comes
directly from engineering’s high-level design activity.

Later, when the integration plan has been completed (triggered by
the END on “Update Integration Plan”), the software project manager
can completely order the entire planning schedule based on the parts
list from design and ordering direction from the integration plan. The
resultant planning schedule is totally aligned with the engineering
design and integration plans. The SPM actions here need to be insti-
tutionalized.

SQA Role Partner Institutionalized

The END step for any “Design Down” notifies SQA that a high-level
design is now done. SQA has a role to check the integrity of the SCM
repository and sandbox area as a quality function. SQA could also
perform a quality check on the accounting charge number file if it is
so desired. It is critical that both be set up accurately.

© 2006 by Taylor & Francis Group, LLC

PRE-EXECUTION III

SEGMENT

Chapter 10

Preproposal

Introduction

This book does not have a primary focus on all that needs to be done
prior to issuing a proposal for bid work. Having said that, it does after
considerable guidance on what that entails on the Web. I ran across
a very comprehensive business development (BD) process chart [2]
that provides almost 100 steps or mind-jogger items that need to be
considered for a BD process. This particular chart is a marvelous aid
if you really want process guidance in that area.

When does software project management (SPM) show up in the
life cycle? T mention this because, believe it or not, I have been at
companies that could not give you a straight answer on this. Many
places T worked would look you right in the eye and tell you a project
starts when they get paid for a go-ahead. All the work that happened
before was not a real project. Huh! The effort was real. The manpower
was real. The costs were real.

If you look at the entire pre-execution segment, all the phases up
to the proposal phase are inherently both of the following:

B They are BD oriented.
B They have an enterprise or business focus that just happens to
be related to the proposed project.

135

© 2006 by Taylor & Francis Group, LLC

136 W Process-Based Software Project Management

Most companies tend to separate out charges during this period
because the BD focus really applies potentially to a lot of projects
within some sphere. From a process perspective, we still:

Execute process activities (tasks)

Execute event-driven procedures

Need some kind of version-controlled repository
Need some kind of activity-based “sandbox”
Need charge numbers

The only difference is that these efforts are not project related —
they are enterprise BD related. In this process-based SPM approach,
we really need the same kinds of things during BD as we do elsewhere.
We need the same:

B Life-cycle mapping described in Chapter 4

B Process activity connectivity to “how-to’s” described in Chapter 5

B Institutionalized considerations described in Chapter 7 through
Chapter 9

We don’t need Chapter 6, because the special process activities
only show up during the execution segment.

The big difference in this BD world is that although there are costs
incurred, they are not specific to any given project to a large extent.
The costs here are better extrapolated to the real projects. Remember,
you may execute the BD part of your life cycle many times more than
you have real projects for execution. Any one pass through BD may
not have a resultant project to associate charges against.

No matter how many false starts you may have during BD, the
costs should be accounted for as part of your overhead expenses. I
have been at companies that would go after anything that passes the
door. These are either very hungry companies or very stupid ones.
You can literally “go under” if you spend precious resources and time
on things that have a minimal-to-no-chance of winning. It is beyond
the scope of this book, but if you’re in that situation, you really need
to look at your long-term and short-term strategic plans as to what
business you're really in. I've had to deal with this very subject as an
independent consultant. I consider myself a “process guy” who places
an emphasis on software process architecture and deployment. I hap-
pen to believe that a solid process foundation directly supports major
roles such as SPM, engineering, software configuration management

© 2006 by Taylor & Francis Group, LLC

Preproposal ®m 137

(SCM), and software quality assurance (SQA). That same solid process
foundation makes CMMI compliance and ISO 9001 certification a slam
dunk. I don’t go after consulting jobs that do not match my capabilities.
It'’s true for an individual. It’s true for a company.

Throughout this book, T have described how connecting processes
to the wonderful world of SPM has incredible value. Everything prior
to the proposal phase has, as its goal, the production of a proposal
for a “win.” That final proposal has a plan that gets submitted to your
customer. In the SPM planning world, I want to make it really clear
that there are two SPM plans you need to develop; these are the
following:

B One plan exists to support your bid position. This plan is an
educated guess based on experience and past history and is
primarily done for the customer. It is that plan that hopefully
gets more and more refined on other projects as we get better
estimations based on prior actuals. T call this first plan the
“external” plan. This plan is for the customer. All the pre-
proposal efforts are meant to culminate in that bid submission.

B Another plan is developed that is used for tracking progress
purposes. I will show you that you can’t do all of this plan up
front. At best, you can get an understanding of requirements
and make clarification where necessary, plus have a very top-
level design approach developed at proposal time. Of all the
parts of this plan, the engineering part is the most unknown.
You can only determine the very early part up to the high-level
design and then you have to fill out the remainder after you
actually do that design, etc., at execution time. I call this second
plan the “internal” plan. This plan is for tracking purposes. At
pre-proposal time, the best you have that may “stick” for plan-
ning or tracking purposes are the following:

— All the contract stuff related to reviews, meetings, etc.

— Known deliverables.

— Internal company-imposed project management require-
ments.

— Engineering actions up to high-level design.

Beyond that you know nothing.

Many software project managers are confused about this basic

premise. Many software project managers I have known consider the
first plan (i.e., the one for the customer) to be the same plan you

© 2006 by Taylor & Francis Group, LLC

138 ® Process-Based Software Project Management

track against. How crazy is that! You are almost guaranteed to be
tracking reality (execution results) against fiction (the guesswork done
earlier). This is the one area in which I've personally seen software
project managers come unglued when reality doesn’t match up with
the earlier guess-based plan. As mentioned before, an extreme case
of this occurred when the software project manager became so irate
that the developers had to placate this person and force the execution-
time piece/part story to be the same as the guessed piece/part story.
This action ended up with disastrous results.

When there is interest in bidding for a project, an SPM presence
shows up — even if it’s in a subservient role. The bid process is pretty
standard for government-contracting companies, whereas the equiva-
lent shows up in commercial companies when features or capabilities
are being seriously considered for near-term release.

Think about the following:

B You are following a process to do the pre-proposal world. This
is where the BD reference chart [2] would help.

B You are following some kind of pre-execution schedule for doing
work. You may not have a formal schedule in the execution
sense, but you still need some kind of roadmap during this time.

B You are heading toward that go/no-go decision point (gate
activity) to proceed (or not proceed) with an actual proposal.

B You're spending company money that needs to be recouped
over time so that you stay in business.

Sometimes the “proposal manager” is not only the person respon-
sible for getting the proposal out but he or she may also be the
candidate who executes the SPM. I maintain that a process is a process.
We have pre-execution segment processes and execution segment
processes. Although the skill set of the former is more marketing
oriented than the latter, there is a lot of overlap for both segments —
especially with engineering.

There is something to be said for having a pre-execution segment
“project manager” whose team includes the proposed software project
manager. Engineering designs (and development) are the major differ-
ences that show up between pre-execution and execution segments.
You do not want to promise engineering directions at pre-execution
time that an execution-time engineering component could not embrace
or “run with.” If you don’t do this, there may be a tendency for the
proposal-time software project manager to promise all kinds of things,

© 2006 by Taylor & Francis Group, LLC

Preproposal ®m 139

Loputs Software Development Life Cycle Ouiputs
S
Pre-Execution Execution]
3
i wvy
B’tra%eg:c/ i . . Build System 2
Business|Interest| Pursue| Bid artup | Requirements. Design Product Test Closeout | 3
Planni =
anning| Phase | Phase | Phase | Phase Phase Phase Phase Phase Phase]
Phase 2
%3
wv)

Po1| | [PO2| | [PO3 i P07 PO8| P09 P10|

POl

02| | [PO3| [|PO4 %I P08 P10

\ Pre-Execution / Execution
_/ Software Development Life Cycle

Non-Schedulable Section

Figure 10.1 Pre-execution life-cycle guidance.

knowing full well that he or she is not going to have to manage the
“real thing” later. This will turn out to be a classic “good luck to you”
approach to SPM.

Using the Process for Pre-execution Direction

I have subdivided the pre-execution segment into the following phases:

Strategic or business planning phase
Interest (opportunity) phase

Pursue phase

Bid phase

The first three items reflect pre-proposal efforts (i.e., they have a
business focus). The last item is where we actually produce a proposal
(i.e., it has a project focus). This is shown in Figure 10.1.

It is in these first three phases (prior to proposal) that you will see
the gate activity within a phased process activity diagram (PAD). I had
introduced you to this kind of activity in Figure 5.1 (triangle icon),
showing it in a phase PAD, and also in Figure 5.4, showing what a
gate activity detail would resemble on the Web. These gate activities
are at the end of a phase, indicating some kind of go/no-go action. I
hope that you will readily see that after going through an interest
(opportunity) phase, you may or may not proceed with any proposal.

© 2006 by Taylor & Francis Group, LLC

140 ® Process-Based Software Project Management

In Figure 10.1, I have highlighted that part of the developmental
life cycle in which you take your process guidance. There are some
other things to be noted in that figure as follows:

B The entire life cycle is made up of two segments:
— Pre-execution
— Execution

B The pre-execution segment is made up of four phases that I've
already described.

B The execution segment is made up of six phases:
— Start-up phase
— Requirements phase
— Design phase
— Build product phase
— System test phase
— Closeout phase

B All phases, segments, and the entire life cycle also have a bottom
section to accommodate event-driven procedures related to their
respective scopes.

B The top-left and top-right corners show all the inputs and
outputs for the entire life cycle.

You may have a different set of phases and segments in your life
cycle. If you were to click on the pre-execution segment hyperlink, it
would take you to Figure 10.2.

This drilldown just presents the phases pertinent to the pre-execution
segment. At this point, we still don’t see any “meat.” As an example,
if you were to drill down on the interest phase hyperlink, you would
see a Web page that looks similar to Figure 10.3

It is at the phase level that you'll see the activity-flow meat. Please
notice that the inputs and outputs are strictly for that phase. Also notice
that there are five regular activities and a gate activity. Two of the
activities can be done concurrently, if manpower resources allow.

The point of all of this is that you take all your direction from the
pre-execution segment of the life cycle. It will show you the following:

B All the “what you have to do” tasks

B The how-to procedures that elaborate on the high-level steps
inside each activity

B The inputs and outputs by activity, phase, and segment

B Any event-driven procedural how-to actions that may be needed

© 2006 by Taylor & Francis Group, LLC

Preproposal ®m 141

Software Development

Life Cycle
Inputs | | Outputs
Pre-Execution
Strategic/
Business |Interest | Pursue | Bid
Planning | Phase | Phase | Phase
Phase
P01 P0O2 P03 PO4
P01 P02 P03 P04

Pre-Execution

Software Development
Life Cycle

Schedulable Section

Non-Schedulable Section

Figure 10.2 Pre-execution segment.

This is no different from the direction you would take while

executing a project.

In other words, it is all laid out for you to follow. Each pre-execution
activity that you’'re working should use the AVG (average) estimate
when this part of your nonpaid work is being performed. Remember,
AVG is not the loaded-average version (L-AVG) used when in the
execution portion of your life cycle. When you complete the work
represented by all the activities in this pre-execution segment, you can
update your estimates (and in particular the AVG) with actuals for
better work estimates on future endeavors.

© 2006 by Taylor & Francis Group, LLC

142 ®m Process-Based Software Project Management

Inputs Software Development m
Life Cycle — Interest Opportunity Phase
Gather Establish Understand - .
Customer [—{ Customer Customer ; eterm/n;fe
Information Contact Requirements AN
Opportunity Identify
Identified Probable
Competition
Interest
<None>
Phase
Requi h Pre-Execution
equirements change Segment
Process Assessment Development
Life Cycle

Schedulable section

Non-schedulable section

Figure 10.3

Interest opportunity phase.

© 2006 by Taylor & Francis Group, LLC

Chapter 11

Proposal

Introduction

The proposal phase is really the first phase that is project specific but
not paid. Payment is made only after project award. All phases prior
to the proposal phase are essentially enterprise-based with a slight
project perspective. It is in this phase that we could set up some basic
project-related repositories to ensure that proposal artifacts get carried
forward into the execution segment.

At proposal time, there are some major factors that will drive the
software project management (SPM) plan in relation to the external
customer:

B An understanding of the target customer requirements after
normalization and clarification

B An understanding of the contract customer requirements after
normalization and clarification

B Deliverables

B Execution of a top-level design approach, as provided in the
proposal response

From these factors, the primary schedule-related end results you
want to achieve at this early stage are as follows:

B Duration in calendar units (weeks/months/etc.)
B Rough planning package distribution across that time span
B Manpower estimates across that span

143

© 2006 by Taylor & Francis Group, LLC

144 ®m Process-Based Software Project Management

This rough picture certainly converts to a dollar equivalent for
internal costing and external pricing. This rough roadmap may be
based on the customer’s own directives or your own competencies in
regard to the staffing situation. At this point, the customer may ask
for capabilities to be delivered over time. That directive converts to
an incremental developmental life cycle. If the customer wants a full-
blown system all at once, it will convert to a waterfall model for your
developmental life cycle. Typically, at this stage, you don’t calendarize
your rough durational schedule unless the customer has so specified.

Let’'s now turn our attention to the process drivers that produce
this external plan. This part of any life cycle has diametrically opposing
goals:

B You need to have enough information to create this external
plan, yet you don’t want to spend too much time and effort as
freebie time, i.e., time not paid for.

B You want information derived at this stage to be used as a head
start if you actually get this project to execute, but you want
to restrict that information to really useful execution-time infor-
mation.

In my experience, I have seen companies come to these rough
schedules from the following:

Wild guesses

Rounded-off numbers

Past experience

Lines of code estimates
Function point analysis

To fit customer’s expectations

In this process-based approach to SPM, this early part of the life
cycle is spelled out in your early process activity diagram (PAD). You
should have a process activity called “Set Up Project” that contains,
among other things, these two high-level steps:

B Set up charge numbers.
B Set up software configuration management (SCM) repository.

I remind the reader that activities are schedulable tasks — what
you need to do — and high-level steps are actions that we absolutely,

© 2006 by Taylor & Francis Group, LLC

Proposal ®m 145

positively want people to do. With these steps in a process activity
that, in turn, are shown in your early PAD, you are guaranteeing
repeatability in accomplishing early SPM efforts. With these steps in
place, you can use them as “hooks” to any how-to procedural element
if you want to spell that out.

By the time you get to a proposal phase, you are really interested
in being a candidate for execution selection. Companies tend not to
expend dollars on any proposal unless there is a good probability of
a win situation. Software proposals can be extremely expensive if
you're just doing it for a drill.

I have certainly been involved in huge proposal efforts in the U.S.
Department of Defense (DoD) contracting world. In that environment,
you really need to pay attention to customer requirements for the
following:

B Proposal requirements (for the proposal itself)
B Target-system requirements for the proposed end product

Both tend to be collated, gathered, and distributed to the proposal
writers. If T were assigned certain sections, I would be provided with
storyboard themes and requirements that must be accounted for in my
presented proposal product and proposal end-product descriptions.
I've seen problems with requirements at this stage because not enough
effort was spent normalizing and clarifying requirements. T will talk
about requirements a lot, as well as why it is important to thoroughly
understand requirements during this phase.

This process-based approach deals with the proposal requirements
(for the proposal itself) via the following:

B High-level activity steps within the proposal phase

B Elaborated procedural support for high-level steps with any
activity

B Possible event-driven procedures whose scope is the proposal
phase

In other words, all the necessary tasks and actions come from the
process life cycle Web representation. All activities in the pre-execution
segment should clearly be identified as pre-execution types of activities.
Later, we want to add up all the work expended on our own dime
and include it in our overhead-loading factor (refer back to Chapter
7 for the L-AVG determination). It is especially true during the proposal

© 2006 by Taylor & Francis Group, LLC

146 ® Process-Based Software Project Management

Contractors
Contract
Requirements \ The
Raw Project W Proposal ' To external
Requirements A (External customer
System P§°Pt05'3d Plan)
; H ystem
Requirements Apeeedh
Or
Commercial
The
Internal Marketin, Proposed To internal
Requirements S System f— (P];otposall —> customer
Approach ;le“)]a
an

Figure 11.1 The SPM big picture for proposals.

phase because we do gross-level tasks similar to what goes in during
the execution segment. In Figure 10.3, if I had expanded the “proposal
phase” versus the “interest opportunity” phase, you would see the
lineup of schedulable activities supporting proposal development. The
execution results of those activities provide the proposed target-system
information to the customer.

The focus of this book is more on the target-system aspects of the
proposal and the relationship of the proposal efforts to the execution
segment of the life cycle. Processes fit into this phase in these areas:

B SCM proposal-time repository that feeds into execution-time
developmental repository

B Life-cycle activities for completeness and repeatability

B Deliverable alternative customer pricing for real versus virtual
documents

B Process-based estimations as an adjunct to other estimation
techniques

B Get-started execution planning schedule

B Controlling requirements

B Process flow down to proposed subcontractors

In Figure 11.1, T have shown the 40,000-ft view of the proposal
phase from two different points of view.

Figure 11.1 is really a top-half extraction of Figure 1.1 and Figure 1.2.
It is important to focus in on the proposal part of the pre-execution

© 2006 by Taylor & Francis Group, LLC

Proposal m 147

segment from a government contractor perspective and a commercial
perspective. I realize I have taken tremendous liberties with these views
because commercial requirements almost always call for elaborations first,
even before you can start. As I mentioned earlier, a commercial require-
ment in the cellular base station world, “we need roaming” is hardly
anything to go on in its present form. Conversely, government require-
ments tend to be quite disciplined stipulations (“shall ...”).

The biggest difference (from that 40,000-ft perspective) in these two
worlds, deals with the presence or absence of contract requirements.
Commercial requirements almost never include these at all. The biggest
detail that marketers want to know from engineering is regarding the
question, “when can you do it?” Government stipulations include both
contract requirements and target-system needs.

The biggest dilemma in SPM at proposal time is that you need to
do enough to accurately estimate the scope of work in all its facets
and yet don’t do too much on your own dime. It's a huge balancing
act at this time in the life cycle.

For government contractors, here is the good news about contract
requirements:

B They are usually self explanatory.

B They can be accounted for and placed on your proposal sched-
ule and applied totally in your execution schedule — if you
get chosen for that execution.

I must admit I tend to look at all requirements as candidates for
normalization and clarification. Although not explicitly shown, it is my
contention that you really need to massage requirements from their
“raw” state for both environments. If these terms seem strange to you,
don’t be alarmed; I will be discussing requirements a lot, later in this
chapter. This is the one area that can really sabotage your efforts if
you don’t pay attention to requirements.

Some other things to note about Figure 11.1 for both environments
are the following:

B Both will go through efforts to come up with a target-system
approach. The formality of this may vary, but it still happens.

B Both produce some kind of proposal to the customer. In the
government arena, the customer is external, and the proposal
is formal. For commercial companies, the customer tends to be
internal marketing, and the proposal is very informal.

© 2006 by Taylor & Francis Group, LLC

148 ® Process-Based Software Project Management

Be aware that at this early stage of the SPM plan, you may or may
not do any rough-level design at all. You may extract information from
a past project. You simply cannot assume that some level of design is
going to happen — on your own dime. You can assume that, no
matter what, you need a clear understanding of the job at hand via
the requirements definition.

I have some ambivalence on this topic. You could certainly make
the argument that you really do need a rough design from the system
to subsystem level at this point in time. If you do a rough design, it
means that you are executing a form of “Design Down” activity at
proposal time (term suggested: “P-Design Down,” the pre-execution
form). Be aware that this effort is an overhead function. You are not
compensated for this at all. For those who do this, you need to capture
your top-level designs in your SCM developmental repository. If you
take this route, the term design would also mean, possibly, allocating
requirements down to those newly designed pieces/parts. Do you
really want to do this on your own money? At this stage, I would
suggest just a rough-level design and no allocations of requirements.
Leave that for paid work.

Unlike homebuilders, software builders may or may not know
where certain functionalities or capabilities reside? Homebuilders know
that the cooking capability goes in the kitchen and the bathing or
showering capability goes in a bathroom. For certain industries with
an extensive wealth of experience behind them, they may know which
capability goes where in the system. When I worked in the cellular
telecommunications industry, it was well known what goes in a cell
phone versus a cell tower versus a base station controller. For new
software development, that might be pushing the envelope, because
you may not know where all this resides.

My pitch to software project managers at this point in time is this:
if you are not absolutely certain of your capability mappings in regard
to your system components, don’t go ahead! Do not attempt that
mapping or keep those capability mappings to a really high level. I
have personally witnessed an ugly scene when the proposal-time
system picture turned out to be different from the real picture after
execution. Your customer will be left wondering if you really know
what you’re doing. Again, don’t do this.

There’s a lot of work done during proposal time. It's absolutely
foolish not to capture that work as a foundation for execution — if
execution is to occur. I have worked at several companies that treated
proposal stuff as just something to get business in the door. Once
awarded, it becomes an attitude of the kind, “let’s do it for real now.”

© 2006 by Taylor & Francis Group, LLC

Proposal ®m 149

I can also tell you from personal experience that I would have loved
to know what design trade-offs and decisions occurred at proposal
time to come up with the presented design. This information doesn’t
show up in the customer proposal. This information is behind-the-
scenes kind of stuff that would sure be useful to the execution team.
A pet peeve of mine relates to costs and pricing. There may have
been a conscious effort to low-bid the project to get a foot in the door
for some marketplace. This low bid may have little to no relevance
to the estimated cost, duration, and manpower estimates. I have known
software project managers who flog the development staff to meet the
proposed price goals even though it's totally fictitious compared to
estimated costs. If you have an 18-month-estimated period of perfor-
mance but tell the customer it will be done in 12 months, it is not fair
to beat up engineering when schedules exceed the one-year mark. It
is this kind of behavior that does not endear a software project manager
to engineering. Guess what happens on the next project for this
manager — no one believes the individual and they will make no
effort to meet SPM deadlines. I have seen this more times than I care
to think about. The point here is that estimated costs are valid to be
communicated to the execution team — not the price.

Proposal Repository

As you are developing any proposal, there is a need to capture all
details, so that you can get a leg up on all this at execution time.
Figure 11.2 shows a top-level view of such a proposal repository.

If you haven'’t realized this before, this is a SCM issue. You certainly
need a root node for the project itself. Under that root node, you need

Project ID

| |
| System-ID | Proposal stuff — as

Proposal target stuff to A~rm read-only for
be carried forward A~ development
la Vet

for development

Figure 11.2 Proposal SCM repository top-level structure.

© 2006 by Taylor & Francis Group, LLC

150 ® Process-Based Software Project Management

a subfolder for the target system and one for proposal work products.
There are some points to be made about Figure 11.2:

B Ideally this repository is a version-controlled repository using a
“check-in” or “checkout” kind of accessibility.

B Ideally this repository becomes the developmental repository
once you win the execution.

The following proposal work products need to be carried forward
into the execution segment if you get a job award:

Design trade-offs

Design decisions/rationale

Processed requirements from proposal phase
Estimated duration of performance costs
Estimated manpower costs.

If at all possible, your actual proposal-time design should be placed
under the system subfolder as a version 0 file. The design trade-offs
and decisions stay under the proposal subfolder, because they are
behind-the-scenes kinds of work products. The processed requirements
should have been divided into contract and target-system requirements
at proposal time. Contract requirements go under the “Project ID”
subfolder, and target-system requirements go under the “System ID”
subfolder. If you are processing requirements via a tool such as
DOORS, an attribute field can handle this division.

The bottom line is that you want the repository at proposal time
to be your base repository at execution time. You want to end up
with a base structure as shown in Figure 11.3.

This structure is all set to add subsystem subfolders later when we
do the real design at execution time. The reader might question why
we don’t set up subsystem subfolders right now at proposal time. After
all, didn't we do a rough design identifying those subsystems? The
answer is that we may have different lineups at execution time and
at proposal time. It may be a mistake to do this lower-level structure
too early. Let the “Design Down” executions definitely determine your
subsystems at execution time; i.e., use the process to drive this structure.

Requirements

As mentioned before, you need to do enough to understand the scope
of the work, but you also need to recognize what can be done at

© 2006 by Taylor & Francis Group, LLC

Proposal ®m 151

Proposal work products for read-

only value to development go here
Project-ID

Proposal-Folder

Subsystem folders go here after System-ID

“Design Down” activity executed > { Subsystem-A
Subsystem-B

aaa

bbb

Proposal system-level work / |
ccc

products to be carried forward to
development go here

Figure 11.3 Top-level repository structure at proposal time.

execution time, when you’re getting paid for your efforts. This is far
from a perfect approach, but, in general, T have found that you really
need to break down all your customer requirements into discrete units
at proposal time — both contract and target-system requirements. If
you don’t, you may miss some vital requirements that elude your cost
estimates for inclusion. There are companies out there that choose to
do selective normalization, superimposing a judgment call on what
requirements affect cost. That’s a balancing act decision that may still
hurt you if you miss something.

For those of you in the commercial world, you may have to
elaborate your customer requirements to even get to a starting position.
The example that I mentioned before (we need roaming) is hardly a
basis for requirements when you get this kind of input from marketing.
This is where your technical people come in to create a set of high-
level requirements that reflect the marketing need. Hopefully, these
same technical folks will create normalized/clarified requirements
because that’s an in-house operation that is under your control. Figure
11.4 shows this flow for commercial environments.

I really recommend that you retain the “raw” customer requirements
as is within your requirement tool. You always want to go back to
the customer-supplied requirement in the form it was in. This serves
as your top-layer for traceability and volatility of requirements when
changes occur.

Normalization is the act of decomposing raw customer requirements
into discrete units. English can be a terrible language to describe
requirements as the language is not exact. In mathematics, we can
write formulas with precedence semantics built into the formula. No

© 2006 by Taylor & Francis Group, LLC

152 W Process-Based Software Project Management

I Elaboration Normfallzatllon/
. Clarification
of commercial

" of
requirements .
I requirements

Input
requirements

Figure 11.4 Requirements normalization flow.

such exactness occurs in the English language. We are at the mercy
of whoever wrote the customer requirement for its true meaning.

At normalization time, we can certainly subdivide (and mark) the
requirements into two categories:

B Contract requirements
B Target-system requirements

I have found that full normalization of contract requirements seems
to be appropriate at proposal time. You could certainly make the case
that some normalization could be held off until execution time if you
truly believe that it’s not a cost driver at proposal time. I favor complete
normalization at proposal time just to make good and sure that nothing
falls through the cracks that might affect our costing efforts. Normal-
ization effort can be very distributed and done by a lot of people. You
really want English majors, for instance, but not technical people
(except as needed), for this drill. If you do this right, normalization
can be done very quickly.

I thought it worthwhile to show the readers some examples of
normalized requirements.

Figure 11.5 shows one such example in which the incoming require-
ment was really four separate and distinct requirements. This is a real-
world example at one company in which I worked. This company did
not do requirements normalization and missed the part about demon-
strating the product. That was an expensive oversight. In this example,
all four normalized requirements would trace back to the original
customer-supplied requirement.

Figure 11.6 shows an “or” list example.

The wording on the customer-supplied requirement has a list of
items that has an “or” to be incorporated. In this example, this single
requirement is good as is. It doesn’t need normalization. As crazy as
this sounds, I have marked this as “normalized” even though it’s exactly

© 2006 by Taylor & Francis Group, LLC

Proposal ®m 153

“The supplier shall
design, code, test, and
demonstrate product

ABC”

}

“The supplier shall design product ABC.”

“The supplier shall code product ABC.”

“The supplier shall test product ABC.”

“The supplier shall demonstrate product ABC.”

Figure 11.5 Requirements normalization example 1.

“The supplier shall
support either:
*Aor

«B.

“The supplier shall
support either:
*Aor

«B.”

Figure 11.6 Requirements normalization example 2.

the same as the customer-supplied requirement. By providing that
traceability, I have also identified this one as being processed.

If you look at Figure 11.7, you have an example of an all-inclusive
list that can be normalized.

Because both list items need doing, we can convert this single
requirement into two normalized requirements as shown.

Figure 11.8 shows why English is a horrible language for describing
requirements.

Is it (A and B) or (C and D)? Is it A and (B or C) and D? Is it ((A
and B) or C) and D? Is it something else? This customer-supplied
requirement is totally ambiguous as written. You need to go back to
the customer for intent on this one.

© 2006 by Taylor & Francis Group, LLC

154 ® Process-Based Software Project Management

“The supplier shall
support both:

+A and

«B.”

“The supplier shall
support A”
“The supplier shall
support B”

Figure 11.7 Requirements normalization example 3.

“The supplier shall
do A and B or
CandD.”

Figure 11.8 Ambiguous normalization example 4.

Once you've normalized the requirements, you now need to clarify
ambiguous requirements or open-ended requirements to make them
unambiguous. It is in this area that the commercial company has a
distinct advantage over the government contractor world. When you
run across ambiguous requirements in the commercial world, you can
quite often merely ask your customer what that meant. Government
contractors don’t have that luxury and need to create default clarifica-
tions to proceed with proposal costing. Default clarifications can be
changed for intent and cost once the actual customer delineates those

© 2006 by Taylor & Francis Group, LLC

Proposal m 155

Ambiguous as stated

| “The supplier shall demonstrate product ABC.” |

—

Customer shows
up at our site,
looks over
tester’s
shoulder to
serve as a
demonstration

We are to write
demonstration
software and
run for
customer’s
approval at our
site

We send a crew
to China for a
month to
demonstrate
product ABC to
the customer

Figure 11.9 Requirements clarification example 1.

intents. You can always smile and say, “We made a cost estimate based
on clarification X. If you want clarification Y, there are some cost/time
adjustments that may need to be made.”

There is a huge caveat with clarification that needs to be made
regarding proposal-time efforts. It is quite satisfactory to impose judg-
ment calls on what needs to be clarified now versus later. You certainly
want to clarify ambiguous requirements at proposal time if there is a
cost impact involved. It is quite acceptable not to clarify ambiguous
requirements when a judgment is made in which there are no cost
impacts. These types of requirements mostly show up as target-system
requirements. When you think about it, design itself is a clarifying type
of activity. It is unrealistic to think that we can clarify all things at
proposal time. In a fencing job, for example, if your customer wanted
three 2x4 boards between posts, it is ambiguous about their position
placement but not for a board count. You could defer clarifying whether
the 2x4s are flat or on end to a later stage. There is no cost impact
involved at proposal time.

Figure 11.9 shows a clarification example that was a real-world
requirement.

A normalized requirement such as the one in Figure 11.9 cries out
for clarification. I just showed three clarification possibilities. The cost
and effort differences are enormous if you leave this kind of require-
ment unclarified. At one place I worked, I was actually in a meeting
with company management and customer management that almost
turned into a fistfight over requirement—intent differences. The com-
pany could have acted in one of two ways to mitigate this kind of
trauma:

© 2006 by Taylor & Francis Group, LLC

156 W Process-Based Software Project Management

Ambiguous as stated — commercial example

| “The product shall work.” |
Define exacF y Clarify directly
what you think .
“ » with customer
shall work OR
for your
means as a -
. . cost/price
clarification for . .
. clarification
cost/price

Figure 11.10 Requirements clarification example 2.

B If you can’t close the loop with the customer at proposal time,
at least pick a clarification position and cost it. At least you
have a shot at revisiting this clarification for some other intent
with its associated cost/effort adjustments.

B Close the loop with the customer at proposal time and agree
on the correct clarification for cost/effort.

By the way, a customer meeting early on to go over any and all
clarifications is very worthwhile if it is allowed. Your customer will
love you for it. You get to do it correctly, out of the box. This is a
veritable win-win situation. T actually suggested an off-site meeting for
this at one commercial company. I received puzzled looks in response
that seemingly said, “who is this person?” You want to increase the
“yes” requirement items and decrease the “but” requirement items. Test
time is not the time to be arguing about requirements and their intent.

I have added another clarification example in Figure 11.10 for you
to see.

This was an actual acceptance type of customer requirement given
to us related to a program of the small file transfer kind. This is another
example of a requirement that cries out for clarification. 1 actually
asked the software lead what he thought “will work” means? He told
me that if we could transfer X number of 80 character records and Y
number of binary 512 records successfully, he would consider that as
meeting the “will work” definition. We clarified that acceptance as per
the lead’s call on this and fed it back to the customer. We ended up
getting customer approval of that clarification quite early. There was
absolutely no ambiguity about acceptance criteria because we did this.

© 2006 by Taylor & Francis Group, LLC

Proposal m 157

Other Considerations

There are several other topics that need to be covered as they relate
to this process-based approach to software project management:

B Documents preparation
B Process as an estimation tool
B Subcontract management

Even today, there are many software companies that are essentially
in the documentation business rather than in the software business. I
make a big distinction between these two terms:

B Documentation
B Documents

You want to do the former, and you want less of the latter. Software
engineers are notorious for not being good at English grammar and
spelling. Why do we have these types of people writing documents?
They are not good at it and don’t like it. T don’t know about you, but
this is a recipe for failure in my book. Software engineers view
document preparation as the dreary part of their job. You make your
software engineers really happy when you reduce the drudgery of
their job so that they can concentrate on computer science stuff. They
love that world of programming. At a large telecommunications com-
pany, their software workforce was mostly made up of engineers for
whom English was their second language. How crazy it is to have
these people write documents!

My process architectural model (the basis of this book) has a strong
bias toward building work products from each and every activity —
not documents. This was done on purpose.

Figure 11.11 shows the scenario in which you have many work
products contained in a document.

Documents have a table of contents that essentially states that
Chapter 1 contains this kind of stuff, Chapter 2 has that kind of stuff,
and so on. Many documents need to copy from one or more work
products and paste that information into the pretty print. It's my claim
that you have now violated the basic database rule relating to a single
information source. For documents, you have one source as a work
product and a copy in time of that same source in the document.
Notice I said “in time.” If that work product was information in a tool,
you will end up with the tool getting updated whereas the document

© 2006 by Taylor & Francis Group, LLC

158 W Process-Based Software Project Management

Document
Copied TOC :
Work Copied Section 1
Product
Section 2 <
Work Copied
Product \ Section 3 <
Copied
Work Section 4 <
Product

Figure 11.11 Typical document production.

(Main “Swim Lane”)

Activity Activity Activity
000 — producing — producing producing ooo
WP#1 WP#2 WP#3
Activity
producing
WP#4

(Support “Swim Lane”)

Activity To
— producing —» Customer
document

Figure 11.12 Document preparation from a process perspective.

is not updated. You may have a situation in which some engineers
are looking at the document whereas others are looking at the tool.
How’s that for introducing defects into your developmental life cycle!

In each and every PAD, I have shown a dotted line dividing the
main line activities from the support activities. 1 called these swim
lanes. Let's now turn our attention to Figure 11.12 for an elaboration
of why we need a swim lane.

If you had to really produce a document in pretty print, that activity
would show up in the support swim lane. In Figure 11.12, T show
four main line activities producing work products 1 through 4. T show

© 2006 by Taylor & Francis Group, LLC

Proposal m 159

Direct to
Customer
Work
tual
Product 2 # (actual or
web
accessible)
Work
Product 3
Work

Product 4 /

Figure 11.13 Virtual document submission.

the document-producing activity after all four work products are done.
People such as technical editors, who worry about headers, footers,
margins, styles, bulleted lists, etc., do this activity. They are much
better at doing it than your software engineers. Also, this document-
producing activity can be separated for your customer at an alternate
cost and price. You smile and tell your customer, “We can produce
virtual documents for you at no charge or a real document for $x.”
You'd be surprised how many customers will opt for the cheaper
solution.

What is a virtual document? Let’s look at Figure 11.13.

This example showed this virtual document as being made up of
a cover page (or pages) followed by four work products. You might
imagine that WP1 is a Microsoft Word file, WP2 is a Microsoft Excel
file, WP3 is a Microsoft PowerPoint file, and WP4 is a Microsoft Project
file. At one company, we actually sent five separate files to the customer
as a virtual document. If you use standard Microsoft Office products,
the customer prefers to open up WP2 with his Microsoft Excel appli-
cation rather than looking at a PDF type of file. Because work products
are natural outputs from activities, there is no cost to this type of
document. You don’t take the time to copy, and you retain the single
source for information at the same time. Think about virtual documents
as a freebie option for your customer versus an added cost/price for
a real document. As an aside, I cringe when software engineers take
their inputs from a document. I keep telling them that it is at best a
snapshot in time and may not be correct.

© 2006 by Taylor & Francis Group, LLC

160 ® Process-Based Software Project Management

~
Rough

Proposal Tasks | Estimated Schedule
Design

+ > —

Process
Activity
Schedule
Mapping J

ki
I

[eleNeoReoXo]

Figure 11.14 Use process as an estimation tool.

I want to switch topics now and look at the process itself as an
estimation tool. I am not suggesting this as your one-and-only estima-
tion method. It has definite value in validating (or not validating) any
estimation technique you have used.

If you step back and look at the very essence of estimating work,
you would notice that it involves breaking activities down to manage-
able chunks for estimation and rolling those estimates up to form that
big picture. Work can be sequential. Work can have predecessor/suc-
cessor relationships to other work. Work can be concurrent. Work can
have dependencies on other work, etc. Haven’t I just described the
schedulable activities in each PAD over a life cycle? Tt is on this basis
that T am promoting the process model itself as a marvelous estimating
tool. The process model has the following elements:

B Activities what you need to do linked with other activities
representing predecessor/successor relationships

B PADs containing activities

B Life cycle containing a set of PADs

In Chapter 7, I introduced you to the concept of the L-AVG for
each activity type. The term L-AVG is the average effort to do this type
of activity with a loading factor added to it. From a SPM perspective,
I can lay out my projected work based on the process roadmap and
on the rough proposal design, and get loaded times for each and every
activity for rolling up estimates. I show this graphically in Figure 11.14.

What may not be intuitively obvious about this figure is that the
front end of this estimation drill can be totally lifted as a “get-started”
execution schedule. There are some things we can lift for certain and
some that we can’t. Because we haven’t done a real-world systems-

© 2006 by Taylor & Francis Group, LLC

Proposal ® 161

In-house
Development

Subcontractor
Development

Figure 11.15 Proposed work — inside/outside efforts.

level design (that’s an execution activity), we can’t carry forward
anything past the “Design Down (system)” activity. But we can carry
forward everything up to that point to get a head start on the real
execution-time schedule. This is a veritable two-for-one sale.

I'd like to talk about subcontracted work now and its relationship
to the process model described.

It has always amazed me how subcontractors and in-house workers
are treated differently. If you think about work, people wearing a blue
badge or a red badge do it. It really doesn’t matter who does the
work. What does matter is each of the following:

B Allocated requirements for the work
B Schedules for the work
B Acceptance criteria to consider the work “done”

An internal worker should have the same exit criteria imposed as
an external worker. If you think of all work as a pie, then a slice of
that pie may be allocated to a subcontractor. This is shown in Figure
11.15.

No matter what, you want exit criteria, acceptance, quality, and
configuration controls.

For many government contractors, the government demands that
you flow down processes to your subcontractors. This process model
really stands out in this area. Let’s see Figure 11.16.

© 2006 by Taylor & Francis Group, LLC

162 W Process-Based Software Project Management

“What” Level Activities “What” Level Activities
SNIRAN

= [+ SAE—~
LI

In-house How-to
Procedures/Tools

Figure 11.16 Process activities flowed down to subcontractors.

Because we have a definite “what” and “how” separation in the
process model, we can actually flow down all the PADs (with their
activities) to a subcontractor as is. It should be totally portable at this
level. No matter which badge you’re wearing, you do design, coding,
testing, etc. What is different is at the how-to level. Your subcontractors
have their own procedures and toolsets that are probably different
from what you have. That's OK. From a software quality assurance
(SQA) subcontractor selection perspective, you merely want to confirm
that they have an equivalent how-to connection to the high-level steps
for schedulable work and an equivalent set of event-driven procedures
that you show. SQA can now use the process model as the basis for
subcontractor selection. The process model facilitates subcontractor
process flow down for the government very well. For large term
contracts, you can even incorporate subcontractor process offerings
right into your own intranet process displays. Pretty exciting, eh?

I hope you realize that this same figure cannot only be used for
subcontractor process flow down, but the same process portability can
also be applied to the following:

B Different sites within your own company, both domestic and
international
B Acquired companies

In Chapter 3 and Chapter 5, T introduced you to the model itself.
This “what”-level portability can easily use “how” selectors that would
direct you to things such as the San Diego how-to option versus the
Texas how-to option.

© 2006 by Taylor & Francis Group, LLC

Proposal ®m 163

Similar to the pre-proposal part of the pre-execution segment, you
can update all the AVG estimates for each activity used and update
them with new actuals. This way, you get better and better estimates
for these pre-execution work activities on the next go-around.

I realize that there is a whole lot more to say about proposals. I
highlighted the aspects of proposal efforts as it relates to this process
architectural model approach to SPM.

© 2006 by Taylor & Francis Group, LLC

EXECUTION ‘I

SEGMENT

Chapter 12

Project Setup

Introduction

There are some things that you need to set up for this process-based
software project management (SPM) approach. These fall into two
categories:

B Enterprise setup level
B Project setup level

Section III talked about all systems that needed to be institutional-
ized (or set up) at the enterprise level. In this chapter, I will address
project-specific items that need to be set up.

At this point in the life cycle, you are now being paid. At this stage
you should have the following enterprise structures:

B Process repository institutionalized

B Script programming institutionalized for process practitioners

B Inspection procedure institutionalized along with inspection
checklists for quality

B Activity estimations established

B Work breakdown structure (WBS) and charge number founda-
tion structures in place

B Software project management (SPM) role partners set up and
trained

167

© 2006 by Taylor & Francis Group, LLC

168 W Process-Based Software Project Management

In addition, having gone through the proposal phase, you should
have the following project foundation items set up and established:

B Proposal repository structure populated with proposal work
products
B Requirements normalized and partially clarified

We now have to do these at the project level:

B Establish the process basis for this project’s execution.

B Convert the proposal repository to the developmental repository.
B Populate the developmental repository with known templates
and placeholders at the project and system levels. This includes
all deliverables.

Establish the project’s sandbox.

Establish the project release repository.

Establish the static portion of the project’s charge numbers.
Establish the beginning planning schedule from the proposal
schedule basis.

Add real calendar dates to that schedule.

Add any outstanding contract events to the schedule.

B Identify project members.

Clearly there are more line items to set up (i.e., office space, labs,
etc.). I chose not to deal with these matters as they are beyond the
scope of this book.

Process Basis

I hope to refresh your memory regarding this topic. If your process
elements have been done correctly, they should all be as follows:

B Version controlled in the process repository
B Version stamped by date with HTML tags in the YYYYMMDD
format

Figure 12.1 shows the process repository with process areas of
interest to the software project manager so marked. I should be able
to see all the versions (by date) on all process elements right up to
the latest and greatest version — the tip. Figure 12.2 graphically shows
the versions.

© 2006 by Taylor & Francis Group, LLC

Project Setup ®m 169

Enterprise
Processes
W 555 55 S
,,,,, S0 7230 P
Selectors/J Procedures elector / / A Selectors] [product Sets

Roles | Compliance Project
Matrices Estimates
Of interest to a SPM

Figure 12.1 Process repository starting structure.

| Authorlty || Top- Level
Level Web Pages

Enterprise
Processes

,\Xlork roduct

ini 7 [y Work product

=ty 00000000 ST T7TTTTTIT

% % élWork product;
Packages / o

/ ets /|
s rrrrrrr

Yy

Figure 12.2 Structure to determine process basis candidates.

The project has one piece of data needed to extract all the process
candidates as the process basis for this particular project. That one
piece of data is the project start date (you could use the term start of
proposal, because it's project specific, but, generally, the phrase paid
start date is better). With that single date, you can scan all the files in
the process repository and identify the versions whose dates are closest
in time or equal to that start date. This provides your initial candidate
list of processes pertinent to your project. Ideally that scanning effort
is done via script programming. You can do it manually if you want.

As an example, if our project started on December 13, 2005, that
date would be in the form 20051213 to comply with the YYYYMMDD
format. Let's say we had this sampling of process versions in our
process repository:

© 2006 by Taylor & Francis Group, LLC

170 ® Process-Based Software Project Management

B “Design Down” activity version 20051101, version 20050716,
and version 20050202

B “Update Integration Plan” activity version 20051217,
version 20051207, and version 20050620

B “Inspection” how-selector version 20060108, version 20051210,
and version 20050821

B “Inspection” procedure (San Diego) version 20060105,
version 20051213, and version 20050825

B “Inspection” procedure (Dallas) version 20051209,
version 20051208, and version 20050825

B “Build” procedure version 20050705, version 20050404,
version 20050317, and version 20041118

A sweep through this subset process repository using 20051213 as
a search field will yield these “hits:”

“Design Down” activity version 20051101

“Update Integration Plan” activity version 20051207
“Inspection” how-selector version 20051210
“Inspection” procedure (San Diego) version 20051213
“Inspection” procedure (Dallas) version 20051209
“Build” procedure version 20050705

You probably have noticed that one of these items was an exact
hit on date. The others are all closest in time to that date. This method
allows process improvements to go on by adding later and still later
versions of any process element. It is the software project manager’s
prerogative to “step up” to a later version if he or she chooses once
the project is underway. It is not reasonable to chase process improve-
ments automatically. That kind of process volatility just causes havoc
on any project.

You're not finished yet, however. In this subset, you will notice
that T have two inspection procedures — one for San Diego and one
for Dallas. If we are a San Diego project, you can delete the Dallas
version of the inspection procedure from your list.

For process activities, you merely identify the closest- or equal-in-time
activities to your project start date as your process basis. Typically, this
goes in your PMP (project management plan). The activity part of your
process basis is almost boilerplate stuff and should take a few minutes.

This is also true of training packages, how-selectors, work product
selectors, form selectors, templates, inspection checklists, etc.

© 2006 by Taylor & Francis Group, LLC

Project Setup m 171

In the procedural how-to world, work product world, and form
world, you have one more task to do to establish your process basis:
select one (or more) from each selectable set. I mention “or more”
because the software project manager may have a primary pick for
one part of the life cycle and a secondary pick for another part of the
life cycle. Additional training may be involved in that decision. Most
of the time, one selection from each group is made. I feel that software
quality assurance (SQA) has a definite role to play in validating those
selections by a project manager. I have certainly seen some project
managers select procedures based on an unprofessional attitude, (how
much can I get away with) not on an analysis of what is appropriate
for this project. At one company where I worked, they had one-person
projects of writing demonstration software. A design review for that
kind of project will be very informal and pertinent to that one-person
effort. A fifty-person project’s design review would be much more
formal. You can’t allow a project manager to pick the informal version
for a fifty-person project just because it is easier. That's where SQA
comes in as an enterprise “conscience.”

When completed, the process lineup for this project is described
in the PMP. As an aside, I am a proponent of physically placing the
process basis descriptions in the project’s developmental repository
and referencing (or copying) that file from the PMP. The main process
basis is in the project developmental repository, however. The place-
ment in the repository makes it unambiguous for these users:

You — the software project manager
Project support team

Developers

SQA

SCM (software configuration management)
Customer

Subcontractors

To all people working your project (in any capacity), the question,
“what processes do I use?” is absolutely known:

B Developers know what how-to procedures, work products,
forms, and training packages to use on this project.

B Quality knows what process elements are to be audited for this
project.

© 2006 by Taylor & Francis Group, LLC

172 ® Process-Based Software Project Management

B Subcontractors know what they need as how-to alternatives for
scheduled activities.
B Customers know what processes you are using on their project.

Repositories

There are three repositories that need setting up at this time:

B The project developmental repository
B The project’s sandbox
B The project release repository*

At proposal time, we should have established the top-level structure
of a proposal repository. This is the time to make that same repository
the developmental repository. What we get coming into the setup
phase is:

B The top-level structure with project as a root node and proposal
and system as subdirectories
B Proposal area populated with proposal work products*

Because we are being paid for work now, we need to populate
this repository with templates and placeholders as follows:

B Under “Project:” Charge number template file, process basis file,
all templates for deliverables, all known project-level work
product templates or placeholders. This is a great place for the
schedule itself.

B Under “System:” All known system-level work product tem-
plates or placeholders.

The “we” part represents SCM. 1 certainly see a SQA role here to
validate/check this file population. This is shown in Figure 12.3 and
Figure 12.4.

Some companies have a separate and distinct repository for releases whereas
others handle this via the developmental repository and have meta-scripts related
to important releases within that repository. For this book, I will assume a
separate and distinct repository.
** Some work products may be starting files for execution — such as system
design. These types of files should be placed under “system.”

© 2006 by Taylor & Francis Group, LLC

Project Setup m 173

Project ID

| |
| System-1D I Proposal stuff — as

A~ read-only for
Proposa% work products development
carried forward PRR
000
SCM adds system-level Ao~
work product templates A ‘\
or placeholders 000 Based on SPM work

product selections

Figure 12.3 Structure to add system-level placeholders and templates.

Charge Number
File Template

Project ID

| |
| System-1D | Proposal stuff — as

read-only for
development

Figure 12.4 Add project-level template for charge numbers.

Templates and work product versions are based on the project’s
process basis file contents that were determined by the software project
manager. There may be more than one version of a template and it’s
important to get the right one in that repository.

The SCM seeding of version 0 files is important for several reasons:

It establishes a set of work products to be processed.

It provides an instant view of what is not getting done; i.e., the
original template/placeholder is still there.

It provides unambiguous get-started templates for development.
It allows process elements to always GET — even the first time.

Now let’s turn our attention to the project’s sandbox. I introduced
this sandbox concept in Figures 6.5 and 6.6. At this time, we don’t
know the piece/part story, so we can’t set up all the piece/part object
names as subfolders to each activity. The piece/part story unfolds as

© 2006 by Taylor & Francis Group, LLC

174 ®m Process-Based Software Project Management

Project ID

| Activity | 000 | Activity |

Figure 12.5 Set up project sandbox.

we execute “Design Down” activities at execution time. What we can
set up is the root node with all the activity names as subfolders. This
top-level sandbox structure is now established for all activities as a
runtime working area. This is shown in Figure 12.5.

Finally, we set up a project release repository that will contain those
matching sets of versioned work products that go together as a release
package. Unlike the developmental repository, we also want to capture
the following:

B The exact versions of the compilers that produced this code for
reproducibility purposes

Chip set versions (if applicable) if software is “burned on” any chip
Exact build instructions

Version descriptions

Executable code modules

Hardware versions (if applicable) on which the software resides
Jumper cable settings if applicable

Any others

Of these repositories, the developmental repository and the project’s
sandbox are the most critical to set up now. The release repository
can be deferred until it’s close to being needed.

Charge Numbers

In Chapter 8, T described the general concept behind both the WBS
and the charge number to support this process-based SPM approach.

A project charge number is established at the time you go after it
(after the bid decision). The establishment of a charge number is not
delayed until the start of execution. Charges prior to the actual proposal
should be nonproject and general in nature. If T can use the analogy
of pregnancy, you establish a project at conception time, not at birth
time. Conception time for a project is the start of the proposal phase.
The reasons for this are quite simple:

© 2006 by Taylor & Francis Group, LLC

Project Setup m 175

B Work is expended — even though you’re not paid for it. You
need to know what this is.

B You need a basic charge number system early on to capture
these project charges.

B The SCM repository needs to be set up to jump-start execution
from any work developed earlier.

B You need valid company metrics on the cost of doing business
when you don’t get accepted for execution.

B You execute process activities before execution as part of the
overall life cycle. They need tracking.

General business development charges need to be extrapolated
over all your projects if you really want to include those pre-proposal
charges as part of overhead.

I recognize that because proposal charges and execution charges
are mutually exclusive, you certainly have the option to have one
charge number interpretation at proposal time to be replaced by
another interpretation at execution time. I have not addressed proposal-
time charge numbers in this book, but I hope you recognize that this
overlay tactic could be used. To avoid this dual use of activities (pre-
execution and execution), I strongly recommend that all your pre-
execution activities have names different from those used at execution.
Most are mutually exclusive, but some can show up in both places.
For those, make a distinction between the pre-execution form of that
activity and the execution form of that activity.

In this chapter, I will build on that information and show you what
one such execution charge number may resemble. Figure 12.6 shows
a top-level nine-digit charge number format.

The basic charge number structure is made up of three major
elements:

B The project identifier, shown as PP
B The WBS — schedulable and nonschedulable sections
B The rework counter

The WBS portion is further organized into two main chunks:
B Activity numbered 00 followed by the nonschedulable aspects
of the WBS

B Activity identifications, numbered 01 through 99, followed by
the schedulable aspects of the WBS

© 2006 by Taylor & Francis Group, LLC

176 W Process-Based Software Project Management

PP Project ID
/| 00 Non-scheduled Items
00 Other charges
01 Lab equipment
02 Leases
03 Software
04 Training
05 Travel
etc.
01-99 Even-Driven Procedures (e.g. Corrective Action, Requirements Changes...)
00 Unused
01-99 Scheduled Items (activities)
0 Target System

001-999 (e.g. system deliverables, integration sets (activity objects)...)
1-9 Target subsystems
001-999 Units

0 Rework counter

. Dynamic part of charge number

Figure 12.6 Top-level nine-digit charge number format.

For companies with lots and lots of activities, this may be a three-
digit front end rather than two.
The nonscheduled portion is further subdivided into two camps:

B Other charges represented by 00, such as lab equipment, leases,
software, training, travel, etc.

B All the event-driven procedures represented by 01, ..., 99 in
which work happens.

The scheduled portion is also subdivided into two camps:

B System-level activities for all the system objects (such as deliv-
erables) represented by 0. This captures work related to that
object for any given activity.

B All the subsystems in which work happens represented by 1,

. 9.

The subsystem portion drills-down to yet another layer:

© 2006 by Taylor & Francis Group, LLC

Project Setup m 177

PP Project ID
00 Non-scheduled Items
00 Other charges
01 Lab equipment
02 Leases
03 Software
04 Training

05 Travel
etc.

| 01-99 Even-Driven Procedures (e.g. Corrective Action, Requirements Changes...)

00 Unused
| 01-99 Scheduled Items (activities) |
0 Target System
001-999 (e.g. system deliverables, integration sets (activity objects)...)
1-9 Target subsystems
001-999 units

P

Y

| 0 Rework counter |

- Primary importance

Figure 12.7 Process-based view of charge numbers.

B Subsystem-related objects represented by 000
B All the units within any given subsystem represented by 001,
.y 999.

In Figure 12.6. you’ll notice a box around part of this charge
number structure. It is that portion of the charge number that is
dynamic. That part can be determined once the appropriate “Design
Down” activities are executed in which we know the number of
subsystems and units within those subsystems for sure.

This charge number form can provide two different views or
perspectives using that charge number:

B The process-based view
B The piece/part-based view

The process-based view is shown in Figure 12.7.

You will notice that T have highlighted the parts of the charge
number that provide that process viewpoint.

© 2006 by Taylor & Francis Group, LLC

178 W Process-Based Software Project Management

PP Project ID
00 Non-scheduled Items

00 Other charges
01 Lab equipment
02 Leases

03 Software

04 Training

05 Travel

etc.

01-99 Even-Driven Procedures (e.g. Corrective Action, Requirements Changes...)
00 Unused
01-99 Scheduled Items (activities)

N

0 Target System

001-999 (e.g. system deliverables, integration sets (activity objects)...)
1-9 Target subsystems

001-999 units

0 Rework counter

- Primary importance

r

Figure 12.8 Piece/part view of charge numbers.

Figure 12.8 shows the same format but with a piece/part perspective
highlighted for the reader. This duality meaning of charge numbers with
one orientation to piece/part objects provides metrics data such as these:

B Summary of all activities (tasks) related to a particular activity
object (e.g., all charges related to subsystem A)

B Summary of all event-driven procedures related to a particular
activity object (e.g., all charges related to system X)

The piece/part view is an inverted process view of any charge
number.

Now, I hope you can see that the target portion of any charge
number comes from two places:

B The schedule and “Design Down” execution provides the activity/
activity object part of this.

B Accounting provides the wrapper charge number part of this.

This division is shown graphically in Figure 12.9. This figure may be
a little misleading because 1 have not included reworked activity costs.

© 2006 by Taylor & Francis Group, LLC

Project Setup m 179

. Activity Charge
% tivity Object\\ / Number

Clomes from schedule Created
nd “Design Dowh” By
execyition Accounting

Figure 12.9 Target portion of charge number.

Let’s turn our attention to rework. Most companies have no real
grasp of the real cost of rework. With this alignment of charge numbers
to process activities to schedule tasks, you can now directly address
the cost of rework.

I recommend you leave a single digit at the end of your charge
number as the rework indicator. The number 0 indicates first time through
(or no rework) whereas 1 through 9 indicates a rework counter.

You are marching along your schedule, when your customer makes
some serious changes to your requirements. You are past design and
have started some implementation. You need to do an impact analysis
on those requirements changes to determine what needs reworking
based on where you are in the life cycle; you need to “prune” some
schedule tree branches for rework based on redesigns that need doing,
and so forth You prune all the schedule tasks and move them forward
in the schedule and either start with 1 at the end of the charge number
or add 1 to what you have (with a cycle of 9). Any charge number
with anything but a 0 at the end is a rework item. How’s that for utter
simplicity in getting a handle on actual rework costs! The rework part
of the charge number comes directly from the project schedule. I hope
the reader will notice that a rework counter of 3 indicates you've done
this three times.

Planning Schedule

The big ticket item when setting up any software planning project at
execution time is to establish all schedule line items such that they

© 2006 by Taylor & Francis Group, LLC

180 ® Process-Based Software Project Management

truly reflect work to be done. You never want anything on that planning
schedule that can cause you grief when attempting to track work progress.

In my mind, the planning schedule is made up of two threads of
information:

B Contractual/management thread
B Target-system thread

The only facts you know for sure are the contractual elements
needed in your planning schedule. These include, among others, the
following:

B Deliverables, including versions or updates of each
B Major reviews needed
B Periodic technical update meetings

This contractual thread should be known and can be laid out on
a schedule. You might need some minor tweaking for placement but
all the elements should be accounted for. The proposal schedule would
have included these contractual items most likely as feedback items.

From a target-system perspective, no execution-time designs have
been done to even give you a clue about the nature and organization
of those target-system-related schedule tasks. At best, you have a
summary schedule reflecting an estimated system piece/part story.

The question becomes this: “how much of the proposal schedule
(related to the target system) is salvageable as an execution planning
schedule?” If you had used the process repository as an estimation
tool, you would have laid out the estimated pieces/parts according to
process direction for your proposal. Figure 12.10 shows the relationship
of process phase process activity diagram (PAD) inputs to create that
proposal schedule.

In Figure 12.10, T showed six phases as examples that were used
as inputs into creating that proposal schedule. Your life cycle may
differ from what I have shown. We know right now that most of the
back end of this is absolutely bogus as a planning schedule because
it reflects estimations for everything.

To create that initial planning schedule related to the target-system
thread, we have a basic choice of either of the following:

B Cut back (or cull) known fictitious chunks of that proposal
schedule that are to be our initial planning schedule

B Create that initial planning schedule using life-cycle process
guidance

© 2006 by Taylor & Francis Group, LLC

Project Setup m 181

Start Up \

Phase

Requirements Estimated Schedule

Phase

Design

Phase > _»

Build Product
Phase

e

[eNeNeNeNe)

System Test
Phase

Close Down

Phase /

Figure 12.10 Proposal-time execution schedule basis.

Start Up \
Phase

Requirements Execution Schedule

Phase

Design

v/ Phase 7/

7777777777777,

V BuilsilIirloguctV
///A,P,ha,s,e%

777 777777777777,

/ FTITI77777777,

7777777777777

% is;gﬁgvy

L 77 j

7 .
% That part of execution schedule culled out

e

> —

[efe}e)eo)eo)

N

AAMMMIMITMIITMIINININRY

Figure 12.11 Cull that execution schedule basis.

Figure 12.11 shows the former whereas Figure 12.12 shows the
latter.

The first figure (Figure 12.11) graphically shows what needs to be
dropped or culled from the original estimation schedule to create the
target-system thread. The only facts we know for sure are all the
activities (with their predecessor/successor relationships) up to and

© 2006 by Taylor & Francis Group, LLC

182 ® Process-Based Software Project Management

Tasks Execution Schedule
St;l}t;t Up) = .
ase
tV \ 4 I
Requirements ~ -
Phase > —> ~n~ -

o
Design g
QL7772) 0

Figure 12.12 Create initial execution schedule.

including the system-level design. After that, we consider everything
else as fiction. Because schedule tasking comes totally from activity
roadmaps inside phase PADs, we know exactly what tasks are going
to be needed, and in what order, up to the top-level system design.
That becomes our initial planning schedule related to the target system.
If you had not used this process roadmap for estimation, Figure 12.12
shows you a similar story, but you need to build your planning
schedule directly from your process PADs, as shown.

At this point, our initial planning schedule should have an accurate
depiction of the following:

B All contractual schedule tasks/events
B All target-system schedule tasks up to and including the system-
level design

We can fill in all the activity objects because they are all either
“project” or “system.” What we don’t have (and need to add) are these:

B Activity lead name assignments per schedule task/event
B Calendar-based initial planning schedule converted from a pure
duration in the proposal time

There is a possibility that some of our contractual line items (tasks/
events) may have to be placeholders at the bottom of the schedule
until we can map them properly as our visibility improves on the
unfolding schedule.

We now have a complete initial planning schedule that has a high
degree of correctness for project execution and tracking. The target-
system part of this schedule is totally blank at this time after “Design

© 2006 by Taylor & Francis Group, LLC

Project Setup m 183

Down (system).” I can just tell that traditional software project managers
are going to cringe about that. I would rather have nothing on this
schedule to be used for tracking than a fantasyland approach of putting
tasks on the schedule with a hope that they reflect reality. I've expe-
rienced too many bloodbaths over this very circumstance when reality
met fantasy on a schedule.

© 2006 by Taylor & Francis Group, LLC

Chapter 13

Planning up to Design

Introduction

There is an interesting phenomenon that factors into your execution-
time planning schedule, which includes the following:

B You absolutely know all the contract-related tasks/events. You
may not know where they all fit at this point in time.

B You only know target-system-related tasks up to and including
system design. After that, you haven’t a clue what goes on a
schedule for planning purposes because the actual design has
not occurred yet.

All the work you have done during the pre-execution segment,
culminating in getting a proposal out, was estimated using the AVG
(average) factors. This is because pre-execution work is all nonpaid
work and is thus overhead. All the projected execution-time activities
rolled up for the customer use the loaded average factor or L-AVG.
These same activities up to and including the system-level “Design
Down” from your proposal estimations can now be the initial planning
schedule, using the same L-AVG estimations when we work these
activities (or tasks).

185

© 2006 by Taylor & Francis Group, LLC

186 W Process-Based Software Project Management

Contract Schedule Items Planning

For the contract schedule items, I recommend placing them all on
your schedule as schedule line items — even if they are put at the
bottom as mind-jogger items for later placement. The schedule is a
great place to store these contract schedule items so that you don’t
forget any. Fixed periodic contract items can be placed there now but
other contract tasks/events may have successor relationships to target
schedule items that are not there yet.

Target-System Schedule Items Planning

For the target-system schedule items up to and including system design,
you have two marvelous clues as to what should go there; these are
the following:

B The target-system proposal schedule itself — if you used the
process basis for estimation

B The process life cycle process activity diagrams (PADs) relevant
to getting you up to system design

Figure 13.1 shows those proposal-phase target-system activities and
their relationship to your initial planning schedule for execution. Figure
13.2 shows what actual phase PADs are included in that transfer. An
interesting thing to note about Figure 13.2 is that project setup is being
done right then, i.e., the steps I'm talking about in this book are the
very guidance steps executed by the software project manager and
members of his or her role partner team.

You might have done some activities totally at proposal time (such
as normalizing requirements) and thus don’t need to do them again
at execution time. Other activities (such as clarifying requirements)
may have been partially done at proposal time but need to be finished
at execution time. For that scenario, you’ll have a “P-Clarify Require-
ments” activity at proposal time and a “Clarify Requirements” at exe-
cution time. This separation clearly tells the practitioner that the former
is done prior to execution, as part of the proposal effort, whereas the
latter is done after contract award during the execution segment.

Figure 13.3 shows a possible requirements-phase PAD that we know
needs to show up on the initial planning schedule.

© 2006 by Taylor & Francis Group, LLC

Planning up to Design ® 187

Proposal Phase

Target System
Activities
[|

| |
[* Execution Segment |

Initial planning Process execution-based planning

Figure 13.1 Proposal connection to initial planning schedule.

Tasks Execution Schedule
Start Up) ~hy [-
Phase (Now) v =
R
Requirements ~ -
Phase > —> ~n -
o
Design g
Q77773) 0

Figure 13.2 Actual phase PADs involved in the initial planning schedule.

Requirements Phase

From To

Setup (O) Clarify Design

Phase Requirements Phase
Document
(Req. Spec)

Figure 13.3 Possible “Requirements Phase” PAD.

© 2006 by Taylor & Francis Group, LLC

188 ® Process-Based Software Project Management

Activity | Activity| Activity

Name Object | Lead Schedule

<D-%velopment Life Cycle

equirements Phas®®™

Clarify Jim

Requirements| System Green q \
Document Reg. Sally h \

Spec. | Support

7

Figure 13.4 Requirements PAD converted to a schedule.

Observe that we show a single mainline activity called “Clarify
Requirements” in one swim plane and we have one support-type
activity in the other swim lane. If we had done partial requirements
clarifications at proposal time, there would have been a “P-Clarify
Requirements” activity within the proposal-phase PAD. Also observe
that if you have the need to create a real document called a “Require-
ments Specification,” it has a predecessor connection to the “Clarify
Requirements” activity; i.e., we don’t do it until the predecessor activity
is “done.” If you don’t have a need to create a real document, you
merely don’t do that activity. Remember, each activity is selectable as
an atomic element. If this was your process-phase PAD, you have all
the guidance you need to put that part of the planning schedule
together. Figure 13.4 shows the planning schedule that was directly
derived from the process-phase PAD.

Let’s turn our attention now to bringing the planning schedule up
to system design. Figure 13.5 shows a possible design-phase PAD from
the process world.

There are some points to be made about this figure, which are as
follows:

B Quite often, there is a large time gap between any proposal
submission and the contract award. There is a high probability
that the folks that worked on the proposal are not the same group
that will be working the project. It is safe to assume that the

© 2006 by Taylor & Francis Group, LLC

Planning up to Design ®m 189

Inputs . Development Life Cycle . Outputs
Design Phase
From To
PI;er_ Understand [| Analyze Design [| Design [[| Design P?;l(;ljct
ase Proposal Design || Approaches Down Unit Phase
Update
- Integration
pPlan
Document
B (Top Design)
Document
(Detailed Design)

Figure 13.5 Possible “Design Phase” PAD.

proposal-time team had to understand the requirements, etc., to
come up with a proposed design. This new team may not be up
to speed on the proposed design at all, and they will need to be.

B Again, I would assume that the proposal-time team looked at
different design approaches before settling on the proposed
design. If that is true, you probably don’t want to analyze design
approaches again. That tells me that you will want to skip the
analyze design approaches activity at execution time. That par-
ticular activity exists in case you really do need to analyze
design approaches at execution time.

B At proposal time, there would have been a gross (or rough)
design effort done at the system level. A “P-Design Down”
would have been done in the proposal phase. This “Design
Down” is a known activity that we definitely need in the initial
planning schedule at execution time.

B If there is a contractual need for a top-level design document,
we can place that support activity on the initial planning sched-
ule immediately. If a design document is not called for, we
don’t need to do this support activity (task).

B All the other parts of this phase PAD are not needed just yet
for our initial planning schedule. We have to wait for the “Design
Down (system)” task to be executed to really know the sub-
system story. We also have to wait for each “Design Down
(subsystem)” task to be executed to really know the unit story
for that subsystem.

© 2006 by Taylor & Francis Group, LLC

190 ® Process-Based Software Project Management

At this point, we have completed our initial planning schedule and
know for sure that each and every schedule task represents real work
to be done and can be tracked on a 1:1 basis with the planning
schedule. We also know that each schedule task (or activity instance)
has estimated durations, work units, manpower numbers, etc., based
on the “L-AVG” associated with each of those activity types. We also
know that when we get to activity tracking, we have a built-in maxi-
mum (MAX) estimate that can be used as a trigger for any variance
reporting for your earned value system.

© 2006 by Taylor & Francis Group, LLC

Chapter 14

Planning after Design

Introduction

This is by far the potential “choke point” for planning if not done
correctly. Conversely, it virtually guarantees a smooth planning sched-
ule for tracking purposes if done correctly. This process-based software
project management approach does not allow planning tasks on a
schedule unless they are known for sure. This level of knowingness
has to come directly from the execution of key tasks (such as “Design
Down” and “Update Integration Plan” tasks) coupled with prompt
action by you as software project manager and your role partners. This
is the one area in which this process approach is not very forgiving
if you and your team don’t act promptly.

There will be traditional software project managers that get really
nervous about all this right now. After all, up to top-level design, you
have almost nothing on your planning schedule; after top-level design
and integration plan are done, you have the whole works!

Planning “Design Down (System)”

I intend to walk you through this planning drill. Let’s start back at the
design-phase process activity diagram (PAD) from the process repos-
itory. We want to convert that PAD representation of activities onto
our project schedule. This is shown in Figure 14.1

191

© 2006 by Taylor & Francis Group, LLC

192 ® Process-Based Software Project Management

Activity | Activity| Activit
y y
Name Object | Lead Schedule
Development Life Cycle Understand Dann
P i Proposal Y

“4= Design Phase

ol

System | Design
Design
Design Syst Sylvia
Down ystem System

Document Harold
System ; \

(Design) Green

Went with proposal totally — no need for
design approach analysis

Figure 14.1 Design-phase PAD mapped onto schedule.

At execution time, I have a design team different from proposal
time. I need the design team to understand the proposal design. I
place that first activity on my planning schedule and add the activity
object (the system name) and the proposed activity lead’s name.

I will accept the proposal-time design approach so there is no need
for the “analyze design approaches” activity to be placed on the
schedule. Because activities are atomic elements and are selectable, 1
can do this.

I know for sure that T can place the “Design Down (system)” and
“Document (system)” activities on the schedule. Because of the prede-
cessor/successor relationships shown on the phase PAD, I know that I
can place the “Design Down (system)” after the “Understand Proposal
Design” task. I also know that I can attach the “Document” type of activity
after the “Design Down” task. Beyond that, T cannot put anything more
onto the schedule because we haven’t executed that top-level design yet.

To take you through a real-world scenario, T am going to assume
the following results of design activities at the system and subsystem
levels:

B The target system is made up of two subsystems: subsystem A
and subsystem B.

B Subsystem A is made up of 100 units:
— Units 1-10 are reused units that need additional “tweaking.”
— Units 11-25 are reused units that can be used as is.

© 2006 by Taylor & Francis Group, LLC

Planning after Design ® 193

Units 26—45 need to be designed and are considered critical.
They require unit testing beyond code inspections.

Units 46-100 need to be designed and do not need unit
testing, but just code inspections.

B Subsystem B is made up of 50 units:

Units 1-10 need to be designed and are considered critical.
They require unit testing beyond code inspections.

Units 11-50 need to be designed and do not need unit
testing, but just code inspections.

I will later describe my assumptions as a result of “Update Integration
Plan” activity executions. For now, we’ll go with the earlier assumptions.

The “Design Down (system)” activity is the top-level system design
that does a design down to the subsystem level. After executing the
“Design Down (system)” task on the project schedule, the design calls
out that there are two subsystems: subsystem A and subsystem B.

Recall that the END high-level step of the “Design Down” activity
(and thus schedule task) has a crucial role to play for project planning.
You as software project manager and your role partners are notified.
Actions by each are as follows:

Software project manager:

You need two more “Design Down” tasks on the project
schedule: one called “Design Down (subsystem A)” and the
other called “Design Down (subsystem B)” in which the
subsystem names are the activity objects.

You know that these two new tasks have the “Design Down
(system)” task as the predecessor task.

After each “Design Down (subsystem),” you could certainly
update your detailed design document.

You need two “Update Integration Plan tasks” on the project
schedule: one called “Update Integration Plan (subsystem
A)” and the other called “Update Integration Plan (subsystem
B)” in which the subsystem names are the activity objects.
These are needed because you have now designed down
to the lowest-level “leaf” elements — the units.

The “Update Integration Plan (subsystem A)” task has the
“Design Down (subsystem A)” task as the predecessor task.
The “Update Integration Plan (subsystem B)” task has the
“Design Down (subsystem B)” task as the predecessor task.
Figure 14.2 shows these.

© 2006 by Taylor & Francis Group, LLC

194 ®m Process-Based Software Project Management

Activity Activity | Activity

Name Object Lead Schedule

Design Alan

Down SubA Suba k
Update
Integration Sub A George L
Plan Jones
Design Brian
Down SubB Subb ﬁ \
Update Jimm
Integration Sub B Y

Plan Green

Figure 14.2 Schedule after system-level “Design Down” execution.

B You know that the respective activity-type-loaded estimations
(duration) using the L-AVG factors will be used for task
durations on the project schedule.

B Get together with engineering for activity lead determination
and manpower assignments for the preceding new tasks.

B Optionally, fill in the charge number for each task after
accounting has determined that number.*

Software configuration management (SCM):

B SCM knows for sure that they need two more subfolders
under the system folder in the developmental repository,
one for each subsystem.

B SCM knows that the developmental repository subfolders are
“Subsystem A” and “Subsystem B” in particular. See Figure
14.3.

B SCM knows to populate each subfolder with all the known
subsystem templates or placeholders needed during devel-
opment.

B SCM knows for sure to add both these subfolders named
earlier to all the activity folders (that have the potential for
a generic subsystem object) in the project’s sandbox. For
example, under “Design Down” folder in the project’s sandbox,

* In one implementation, it was found that actually storing the charge number
with the task was beneficial. That is your choice to make.

© 2006 by Taylor & Francis Group, LLC

Planning after Design ® 195

Executed Tasks SCM Development Repository Structure - System
- Establish system node
Start of Project System
Activity
o
o
o Know subsystems /[
Design Down || Subsystem A Subsystem B
(System)
Template Template
Template Template
Placeholder Placeholder
Etc. Etc.
For Sub A For Sub B

Figure 14.3 SCM action on system-level “Design Down” execution.

you would add “Subsystem A” and “Subsystem B” to the
existing “System” subfolder. After SCM action, “Design
Down” would now have three subfolders against the one
before.

Accounting:

B Accounting now knows that there are two subsystems named
A and B.

B Accounting can now assign charge number codes for each
subsystem. See Figure 14.4.

B Accounting can now make sure the charge number file (at
the project level in the project’s developmental repository)
has the charge number mapping to the symbolic piece/part
names.

Software quality assurance (SQA):

B SQA can now verify the structure and initial population of
the developmental repository set up by SCM.

B SQA can now verify the structure of the project’s sandbox
set up by SCM.

B SQA can now verify the contents of the charge number file
set up by Accounting.

B SQA can now possibly verify the added schedule tasks and
their connectivity to other tasks set up by the software project
manager.

© 2006 by Taylor & Francis Group, LLC

196 W Process-Based Software Project Management

PP Project ID
/| 00 Non-scheduled Items
00 Other charges
01 Lab equipment
02 Leases
03 Software
04 Training
05 Travel
etc.
01-99 Even-Driven Procedures (e.g. Corrective Action, Requirements Changes...)
00 Unused
01-99 Scheduled Items (activities)
0 Target System
001-nnn (system deliverables should have been assigned)
1 Subsystem A
2 Subsystem B
000 Unassigned units
0 Rework counter

N\

Figure 14.4 Charge number after system-level “Design Down” execution.

Planning “Design Down (Subsystem A)”

The “Design Down (subsystem A)” activity is the next-level design that
does a design down to the unit level. After executing the “Design
Down (subsystem A)” task on the project schedule, the design calls
out that there are 100 units. The big difference between this “Design
Down” and the system-level “Design Down” is that the decomposed
designed elements are units or lowest-leaf elements for design. For
this task, T ask the developers to not only identify the decomposed
elements or units but add the following attributes to each unit:

Does it need designing?

Is it a reused unit?

Does it need coding (whether new or reuse tweaking)?

Does it need to be unit tested (or does a code inspection suffice)?

These attributes are critical to the software project manager for this
process-based approach, because they provide an exact layout of tasks
per unit. T also ask the developers to give their best shot as to which
subset of those units should be done early. Software engineering knows
this. The early-up units provide the software project manager with

© 2006 by Taylor & Francis Group, LLC

Planning after Design ®m 197

s . Development Life Cycle ' Ouiimitic
P Build Product Phase P
From To
Build Implement |[Develop Unit{| Test || Integrate _O Test

Product Unit Test Unit Units Phase
Phase

Figure 14.5 Possible “Build Product” phase PAD.

guidance on what needs to go on the schedule early — even before
any integration plan is done that can possibly validate this. The software
project manager cannot wait for the integration plan to be done to lay
out planned work to be done on the project schedule.

Just as before, the END high-level step of the “Design Down” activity
(and thus schedule task) has a crucial role to play for project planning.
You (as software project manager) and your role partners are notified.
Actions by each are as follows:

Software project manager:

B You need 100 units to be accounted for on the project
schedule in which the actual unit filenames are the activity
objects.

B You know what the early-up units are for scheduling.

B You know what pattern of unit activities are appropriate for
each unit based on the unit attributes mentioned earlier. Figure
14.5 shows a possible “Build Product” phase PAD showing
these process activities. Let’s go through some of these:

— Any unit to be designed, coded, and tested needs the
following:
e A “Design Unit” task
e An “Implement Unit” task
e A “Develop Unit Test” task
e A “Test Unit” task

© 2006 by Taylor & Francis Group, LLC

198 ® Process-Based Software Project Management

— Any unit to be designed, coded but not tested needs the
following:

e A “Design Unit” task

e An “Implement Unit” task

— Any unit that is identified as a reused unit but needs
tweaking with no unit test needs the following:

e An “Implement Unit” task only

— Any unit that is identified as a reused unit but can be
used as is with no unit test needs the following:

e <Nothing> note: Still suggest an explicit line item for
this unit to show it was not just a forgotten unit —
even if it's a null entry

— Any unit that is identified as a reused unit but needs
tweaking and requires a unit test needs the following:

e An “Implement Unit” task

e A “Develop Unit test” task

e A “Test Unit” task

B You know which of the preceding patterns to use for the
early-up units identified by engineering.

B You know that the respective activity-type loaded estimations
(duration) using the L-AVG factors will be used for task
durations on the project schedule for all unit-based activities.

B Get together with engineering for activity lead determination
and manpower assignments for the new tasks mentioned
earlier.

B As before, you could fill in the charge number for each task
after accounting has determined it.

SCM:

B SCM knows for sure that they need 100 more subfolders
under the “Subsystem A” folder in the developmental repos-
itory — one for each unit.

B SCM knows that the filenames of each and every unit, in
particular, filenames prior to file extensions, are used as the
subfolder names.

B SCM knows to populate each subfolder with all the known
unit templates or placeholders needed during development
if applicable.

B SCM knows for sure to add the 100 subfolders named earlier
to all the activity folders (that have the potential for a generic
unit object) in the project’s sandbox. For example, under the
“Design Unit” folder in the project’s sandbox, you would
add all 100 unit names as subfolders.

© 2006 by Taylor & Francis Group, LLC

Planning after Design ®m 199

PP Project ID
/] 00 Non-scheduled Items
00 Other charges
01 Lab equipment
02 Leases
03 Software
04 Training
05 Travel
etc.
01-99 Even-Driven Procedures (e.g. Corrective Action, Requirements Changes...)
00 Unused
01-99 Scheduled Items (activities)
0 Target System
001-nnn (system deliverables should have been assigned)
1 Subsystem A
001-100 units (101.999 unassigned)
2 Subsystem B
000 Unassigned units

N\

Y

0 Rework counter

Figure 14.6 Charge number after “Design Down (subsystem A)” execution.

Accounting:

B Accounting now knows that there are 100 units in subsystem
A.

B Accounting can now assign charge number codes for each
unit. See Figure 14.0.

B Accounting can now make sure the charge number file (at
the project level in the project’s developmental repository)
has the charge number mapping to the symbolic unit names.

SQA:

B SQA can now verify the structure and initial population of
the developmental repository at the unit level (for subsystem
A) set up by SCM.

B SQA can now verify the structure of the project’s sandbox
set up by SCM related to units in subsystem A.

B SQA can now verify the contents of the charge number file
set up by Accounting.

B SQA can now possibly verify the added schedule tasks and
their connectivity to other tasks set up by the SPM.

© 2006 by Taylor & Francis Group, LLC

200 ® Process-Based Software Project Management

Planning “Update Integration Plan (Subsystem A)”

Back in Figure 14.2, T showed this activity being executed after the
“Design Down (subsystem A).” On the initial execution of this activity,
the version of the integration plan that we’re updating is the version
0 template only at this point in time.

This is a key task for the software project manager. The END high-
level step is used to notify the software project manager that an
integration plan has been updated. The END does not reflect that this
is the final update of the integration plan. The software project manager
needs the project schedule to make that call. This task is important to
the project manager because it takes the set of designed units from
the “Design Down (subsystem A)” and provides an ordering for the
project schedule. The “Design Down” by itself just identifies the
decomposed pieces/parts and provides a get-started hint about which
units should be done early.

The information we have is that subsystem A has 100 units, some
of which are totally reused, some are reused with some modifications,
and some are to be developed from scratch. The development team
executing this particular activity has the following responsibilities:

B Define integration sets of units.
B Define an integration ordering of those sets.*

For illustration purposes, I'm going to assume the following:

Integration Set 1A = units 1-40
Integration Set 2A = units 41-50
Integration Set 3A = units 51-80
Integration Set 4A = units 81-100

Based on this first (incomplete) update of the integration plan, the
software project manager knows the following:

Units 1-40 need to be done early.

Units 41-50 need to be done after units 1-40.
Units 51-80 need to be done after units 41-50.
Units 81-100 need to be done after units 51-80.

* Because this is the first subsystem, we don’t have other sets from any other
subsystem to incorporate at this time.

© 2006 by Taylor & Francis Group, LLC

Planning after Design ® 201

The actual integration ordering may change on the next (final)
update of the integration plan. Even with this partial information, the
software project manager can do intelligent ordering of the unit activ-
ities such that they align with the integration planning. Looking at the
unit lineup already mentioned, the project manager knows that unit
93 can be significantly deferred from unit 23 for schedule planning.
The project manager also knows that units 1-40 all need to be “done”
before you can ever have any kind of integration testing.

Planning “Design Down (Subsystem B)”

Similar to the “Design Down (subsystem A)” activity, the “Design Down
(subsystem B)” is another second-level design that does a design down
to the unit level. After executing the “Design Down (subsystem B)”
task on the project schedule, the design calls out that there are 50
units. Similar to the subsystem A design, this design also asks the
developers for unit-related attributes, etc.

As before, the END high-level step of this “Design Down” activity
(and thus schedule task) has a crucial role to play for project planning.
You (as software project manager) and your role partners are again
notified. Actions by each are as follows:

Software project manager:

B You need 50 units to be accounted for on the project
schedule in which the actual unit filenames are the activity
objects.

B You know what the early-up units (related to subsystem B)
are for scheduling.

B You know what pattern of unit activities are appropriate for
each unit (from subsystem B) based on the unit attributes
supplied by engineering. This is what we know for sure:

— Units 1-10 are to be designed, coded, and tested. They
need this pattern:
e A “Design Unit” task
e An “Implement Unit” task
e A “Develop Unit Test” task
e A “Test Unit” task
— Units 11-50 are to be designed and coded but not tested.
They need the following:
e A “Design Unit” task
e An “Implement Unit” task

© 2006 by Taylor & Francis Group, LLC

202 m Process-Based Software Project Management

B You know which of these patterns to use for the early-up
units identified by engineering.

B You know that the respective activity-type-loaded estimations
(duration) using the L-AVG factors will be used for task
durations on the project schedule for all unit-based activities.

B Get together with engineering for activity lead determination
and manpower assignments for the new tasks mentioned
earlier.

B As before, you could fill in the charge number for each task
after accounting has determined it.

SCM:

B SCM knows for sure that they need 50 more subfolders under
the “Subsystem B” folder in the developmental repository —
one for each unit.

B SCM knows that the filenames of each and every unit, in
particular, filenames prior to file extensions, are used as the
subfolder names.

B SCM knows to populate each subfolder with all the known
unit templates or placeholders needed during development
if applicable.

B SCM knows for sure to add 50 subfolders named earlier to
all the activity folders (that have the potential for a generic
unit object) in the project’s sandbox. For example, under
“Implement Unit” folder in the project’s sandbox, you would
add all 50 unit names as subfolders.

Accounting:

B Accounting now knows that there are 50 units in subsystem
B.

B Accounting can now assign charge number codes for each
unit. See Figure 14.7.

B Accounting can now make sure the charge number file (at
the project level in the project’s developmental repository)
has the charge number mapping to the symbolic unit names.

SQA:
B SQA can now verify the structure and initial population of
the developmental repository at the unit level (for subsystem
B) set up by SCM.
B SQA can now verify the structure of the project’s sandbox
set up by SCM related to units in subsystem B.

© 2006 by Taylor & Francis Group, LLC

Planning after Design ® 203

PP Project ID
7l 00 Non-scheduled Items
00 Other charges
01 Lab equipment
02 Leases
03 Software
04 Training
05 Travel
etc.
01-99 Even-Driven Procedures (e.g. Corrective Action, Requirements Changes...)
00 Unused
01-99 Scheduled Items (activities)
0 Target System
001-nnn (system deliverables should have been assigned)
1 Subsystem A
001-100 units (101.999 unassigned)
2 Subsystem B
\ | 001-050 units (051.999 unassigned)

N\

0 Rework counter

Figure 14.7 Charge number after “Design Down (subsystem B)” execution.

B SQA can now verify the contents of the charge number file
set up by Accounting.

B SQA can now possibly verify the added schedule tasks and
their connectivity to other tasks set up by the software project
manager.

Planning “Update Integration Plan (Subsystem B)”

Referring back to Figure 14.2 again, I showed the execution of this
activity after the “Design Down (subsystem B)” and after “Update
Integration Plan (subsystem A).” On execution of this activity, the
integration plan being updated was the result of subsystem A’s inte-
gration planning.

As before, the END high-level step is used to notify the software
project manager that an integration plan has been updated. The dif-
ference here is that this update contains the final integration plan for
schedule planning by the project manager.

The information we have is that subsystem B has 50 units. The
development team executing this particular activity has the following
responsibilities:

© 2006 by Taylor & Francis Group, LLC

204 m Process-Based Software Project Management

B Define integration sets of units from subsystem B.

B Define an integration ordering of those units.

B Merge the integration sets from the previous update (from
subsystem A) to form a comprehensive integration plan.

For illustration purposes, I'm going to assume the following:

B Integration Set 1B = units 1-35
B Integration Set 2B = units 36-50

Based on the merging of integration sets, a comprehensive integra-
tion plan is notified to the software project manager:

Integration set A = Integration set 1A

Integration set B = Integration set A + Integration set 1B
Integration set C = Integration set B + Integration sets 2A and 3A
Integration set D = Integration set C + Integration set 2B
Integration set E = Integration set D+ Integration set 4A

I just used the single-alpha designation for activity sets used as
objects when actually performing integration testing.

The software project manager knows the following schedule infor-
mation for sure:

B There will be five instances of the “Integrate Units” activity on
the project schedule.

B The ordering of those five integrations.

B Units 1-40 from subsystem A are the earliest scheduled units
because those units are needed for integration set 1A.

B Units 1-35 from subsystem B are next because those units are
needed for integration set 1B.

B Units 41-80 from subsystem A are next because those units are
needed for integration sets 2A and 3A.

B Units 36-50 from subsystem B are next because those units are
needed for integration set 2B.

B Units 81-100 from subsystem A are last because those units are
needed for integration set 4A.

In addition, for each unit, the project manager knows exactly what
activity threads are needed per activity to feed into each integration
execution. This information came from engineering’s “Design Down”
activities on subsystem A and subsystem B. This is summarized in
Table 14.1 and Table 14.2.

© 2006 by Taylor & Francis Group, LLC

Planning after Design ® 205

Table 14.1 Subsystem A

Units Design Unit | Implement Unit | Develop Unit Test | Test Unit
1-10 No Yes No No
11-25 No No No No
2640 Yes Yes Yes Yes
41-45 Yes Yes Yes Yes
46-80 Yes Yes No No
81-100 Yes Yes No No

Table 14.2 Subsystem B

Units Design Unit | Implement Unit | Develop Unit Test | Test Unit
1-10 No Yes Yes Yes

11-35 Yes Yes No No

36-50 Yes Yes No No

I leave it to the reader to complete the planning schedule with the
“System Test” phase PAD. I am reluctant to spell this out because each
company has a very different way of doing system testing. I have seen
huge differences between the government contracting world and com-
mercial companies in this area. At two commercial companies I worked
for, they had different types of system testing that started off with a
basic sanity test composed of some basic functions (to see if they
worked first), regression testing, and, finally, a full system test.

I do maintain that once the “Design Down” and “Update Integration
Plan” tasks are executed, the software project manager can lay out the
entire planning schedule with a high certainty that the plan matches
reality. You should never use the words “always” and “never” — so it is
possible (although it is a slim possibility) that the software project manager
might have to make some minor adjustments to this planning schedule.

The biggest impact on this planning schedule exists when require-
ments change during project execution and portions of the planning
schedule need to be cut and moved on the schedule to accommodate
rework. When that happens, the software project manager also changes
the charge numbers of the reworked tasks to include the rework
counter at the end of that charge number. Even then, the planned
work should exactly match the proposed work.

© 2006 by Taylor & Francis Group, LLC

206 m Process-Based Software Project Management

7 2/
N i Update Integrate / Test/
Design ; g
8 Integration 00000 — ’ Ysrrs L
Down Plan Units ///S}}t/%
7/

Allocate
Requirements

Figure 14.8 Consider separate “Allocate Requirements” to shorten life cycle.

Other Planning Considerations

For many years, I pushed for the notion that allocating requirements
was an integral part of the “Design Down” type of activity. Using this
process model, that notion would be implemented as a high-level step
called “Allocate Requirements” within any “Design Down” activity.
Being a high-level step ensures that it gets done. I was only partially
correct. It is certainly true that a major result of any “Design Down”
is to identify all the decomposed design pieces/parts of the target
scope of that design. The “Design Down” on a system identifies all
the subsystems. The “Design Down” on any subsystem identifies all
the units within that subsystem. The flaw in my position was that you
want to allocate requirements at the system—subsystem level, but you
don’t want to allocate requirements on the subsystem—unit level. The
process model is very clear about not putting in high-level steps within
any activity that can be optional. That’s a big no-no. Allocating require-
ments to pieces/parts of a system can be very onerous, costly, and
time consuming if you allocate down to too low a level of detail, such
as the unit level. Also, in practical terms, software engineers create
units for all kinds of reasons including common functions, support
units, etc. It’s very difficult (if not impossible) to allocate down to that
granularity for those reasons.

Why am I bringing this up? What has this got to do with SPM? It
turns out it has a lot to do with SPM and can be instrumental in
significantly shortening your overall life cycle and shortening your
system test time. I now refer you to Figure 14.8.

A better way of doing this is to have a separate activity called
“Allocate Requirements” that has a successor relationship to both the
following:

B The “Design Down” activity
B The “Update Integration Plan” activity

© 2006 by Taylor & Francis Group, LLC

Planning after Design ®m 207

The “Design Down” connection allows the software project manager
to place the “Allocate Requirements” on a project schedule after the
“Design Down (system)” task; but don’t do this after a “Design Down
(subsystem)” type of task. This way, you allocate requirements down
to the subsystem level with that connectivity, but not at the unit level.

Let me refresh your memory about what the “Update Integration
Plan” task does. A major result of this task execution is that groups
of units are organized into integration sets. It is the integration set that
gets merged onto an ever-widening base — also of integration sets.
The point here is that we have created an entity that is not as high
as a subsystem and not as low as a unit. Every time we execute an
“Update Integration Plan,” we have more visibility on the following:

B The number of integration sets
B The makeup of each integration set (i.e., the specific units)
B The integration ordering

From an “Allocate Requirements” perspective, we can allocate sub-
system requirements to these higher-level chunks called integration
sets. The burning question is why do this at all? What's in it for me?

This subsystem integration set allocation can be done totally in
parallel with all your early unit-level implementation tasks right through
to (and including) the first “Integrate Units” task. You don’t need that
allocation until after the first “Integrate Units” task is done. With that
allocation, you have totally aligned your requirements with your inte-
gration efforts. What this means is that you can do an engineering
integration immediately followed by a partial system test. Integration
testing is an engineering function whose focus is on whether the
designed pieces all fit together. System testing has a requirements focus
to make sure that the customer needs (requirements) are met. When
you allocate requirements to the integration sets, you can spawn
incremental system testing intelligently by passing the requirements
involved with this partial system test. I can’t tell you how many times
I have seen engineering throw something over the wall to system test
with a curt “test this.” The lack of qualification regarding test require-
ments causes all kinds of wasted system test time, countless error
reports, and engineering/test thrashing. We want to avoid all this. This
process model approach always calls upon a system test task to pass
on “requirements under test.” The testers know what not to do; they
don’t waste time doing nonsensical stuff. You can get a huge start on
system testing connected directly to your integration tasking on your

© 2006 by Taylor & Francis Group, LLC

208 m Process-Based Software Project Management

schedule. By the time you’re at the final integration, most of your
system testing is complete. That is why allocating requirements to
integration sets is so important to any software project manager who
is really serious about shortening the test time. I even advocate having
a system testing role presence (along with engineering) in the “Update
Integration Plan” task to make sure that the test team has a direct say
about the integration sets. By having that presence, you can also have
a huge start on your system test planning based on integration planning
well before when you really need it.

You may have noticed that I shaded the “Test System” activity. That
was done on purpose. Some companies do not have a single “flavor”
of system testing but have procedures such as the following:

B A very basic test (sometimes called a sanity test) to make sure
the new software under test still does some basic functions

B Regression testing to make sure the new software has not
broken anything that was tested before

B A full system test to make sure that all the customer needs
(requirements) are met

B An operational test that moves out of the lab environment to
the real-world environment in which the software is supposed
to perform

Just showing a single activity called test system may indeed be
several activities noted earlier.

If you had that kind of system test breakdown, the software project
manager would probably place that single activity after the first inte-
gration completion because of the following:

B You may not have enough basic functionality to do a sanity test.
B You have no regression testing because this is the first-up system
test task.

On subsequent integrations, these two additional activities would
show up on your project schedule. The sanity test is a judgment call
on the point at which you have enough to perform some basic
functions. Subsequent integrations would always need regression test-
ing. The final integration execution would invoke all four activities,
the fourth activity being the operational test. I am somewhat reluctant
to be too specific here because every company does have a different
suite of activities involved in system testing. I did want to show one

© 2006 by Taylor & Francis Group, LLC

Planning after Design ®m 209

possibility, however, in case you need that type of information where
you work.

I hope I have shown in the preceding text that allocating require-
ments down to the integration sets can allow you to do partial system
testing while engineering development is still progressing. This SPM
action can significantly reduce test time and shorten the overall life
cycle or time-to-market timeframe. This result coupled with inspections
at each and every link in the schedule chain of tasks should make
your system test almost a nonevent.

There’s another interesting aspect about requirements allocation and
planning that crops up when you need to do replanning. Replanning
occurs when you have to repeat certain tasks based on the following:

B Customer requirements change
B Developmental redesigns
B Process failures

The first item is totally out of your control and can happen anytime
while executing a project schedule. The others are serious internal
problems that need immediate action by engineering or the software
engineering process group (SEPG). If you adopt this process model,
you should never see the developmental redesigns or process prob-
lems, unless your workforce is totally inept in doing their job.

If you think about this process model, every task on your schedule
is an activity instance from the process world. Every task has an object
associated with that activity name. Each object is a piece/part-based
object. Units are associated with a particular integration set. Integration
sets are associated with a particular subsystem. Subsystems are asso-
ciated with the target system. All these pieces/parts are mapped from
the lowest element to the system level. All show up on your project
schedule. Figure 14.9 shows those requirements allocation flows in
one direction and requirements traceability in the other direction.

Now comes a customer requirements change. If we have done the
requirements flow down and traceability correctly, we know what
pieces/parts are affected by this change. We know what parts (or
branches) of our project schedule need to be redone. This information
allows us to “prune” the project schedule and move the affected
schedule branches forward in the schedule, making sure we change
the charge number to reflect rework. Replanning almost becomes a
minor drill in identifying the affected pieces/parts as per your task
(activity) objects and making that schedule section change. Rework is

© 2006 by Taylor & Francis Group, LLC

210 m Process-Based Software Project Management

o
& Schedule

by
%

Figure 14.9 Where requirements come in for rework.

a killer for SPM. You can’t avoid some rework. Others you can avoid.
Just be aware that in addition to schedule pruning, you have your
SPM role partners involved as well. SCM may have to reconfigure the
developmental repository and project sandbox. Accounting may have
to change the project’s charge numbers and associated files. This
process basis removes a lot of the uncertainty of exactly what is affected
for a professional replanning effort, however.

To summarize project planning, the smart software project manager
does the following:

Uses activity-loaded estimates for project planning (L-AVG)
Gets variance reporting beyond the MIN-MAX range determined
from those activities

Uses “Design Down” to determine the system piece/part story
Gets early-up unit-based direction from engineering as a result
of any “Design Down (subsystem)” task execution

Gets unit schedule tasking direction from engineering as a result
of any “Design Down (subsystem)” execution

Insists on solid integration planning to get that unit integration
set mapping and ordering

Insists on requirements traceability down to the integration set
level for schedule life cycle compaction

Allows incremental system testing after each and every integra-
tion execution for shortened test time

Does replanning based on requirements flow down and trace-
ability through the process-based project schedule

© 2006 by Taylor & Francis Group, LLC

Planning after Design ® 211

Design Summary
4D—e_velopment Life Cycle First

Design Phase Instance

Design PAD |®|= |~
ol K _h

H.I. _—

Last 0000000O0O

Instance
Design PAD 000000000

Figure 14.10 Project schedule summary determination.

One last item for planning involves project summaries. In this
process model, T want to make sure that you don’t confuse these two
items:

B Project summary items
B Activity groups

The project summary is a phase-based (and, thus, a PAD-based)
start-end rollup of pertinent activities within the PAD that shows up
on a project schedule. This is shown in Figure 14.10.

The summary is derived from the beginning of the first activity
instance (task) on a schedule through to the end of the last activity
instance (task) on the schedule. Summaries merely show the elapsed
time or durations of executing all the activities within a process-phase
PAD. Summaries should not be used for progress reporting, whereas
activity groups should be used for progress reporting.

From a physical schedule appearance perspective, the summary
line has a name (should be noun-based) but no object or responsible
person fields shown. The schedule tasks (should be verb-based) have
all these fields filled in. Figure 14.11 shows this separation. The
“reconcile” (or “R” column) is primarily used for tracking tasks. You
could use that same field for summary line reconciliation if all the
activities for that summary are done.

© 2006 by Taylor & Francis Group, LLC

212 m Process-Based Software Project Management

Summary {

Activity
instances
or
tasks

Activity Names/
Summaries

Activity Objects

Activity Leads

DESIGN

Understand Proposal
Design

Project Proposal

Jimmy Green

000

000

000

Design Unit

XYZ

Susie Brown

Figure 14.11

Summaries versus tasks on a schedule.

© 2006 by Taylor & Francis Group, LLC

Chapter 15

Project Tracking

Introduction

You can’t track what you didn’t plan. Many traditional software project
managers may have a complete schedule of what they think needs to
be done based on earlier estimations. It is almost guaranteed that
project estimations used to cost/price this project have no relationship
to the reality of actual design/development. Woe betide that engineer-
ing lead or engineering manager who dares to tell you a story that
differs from what you have in your planning schedule! I've actually
seen some conflicts because of this that have come close to fistfights.

What T have described throughout this book is a project schedule
with all it’s tasks and predecessor/successor relationships — all based
on process and actual engineering activity executions. The planning
schedule used for tracking does reflect reality — not the estimation
fiction. The probability of an exact alignment of planned tasks to real
tasks is extremely high! Planning prior to the “Design Down (system)”
is totally based on the process activity roadmaps within each phase
process activity diagram (PAD). Planning after the “Design Down
(system)” is based on the process activity roadmaps within each phase
PAD and engineering execution of certain process activities. Tracking
is based on both of these sections of the planning schedule. This
relationship is shown in Figure 15.1. Engineering personnel who are
the main players for design and development are also the main players
for establishing the schedule built on a process foundation. This

213

© 2006 by Taylor & Francis Group, LLC

214 m Process-Based Software Project Management

| Life Cycle

Initial planning Process execution-based planning

Life cycle tracking

Figure 15.1 Planning/tracking relationship.

process-based software project management (SPM) approach actually
removes the software project manager to a large extent from schedule
development and gives him or her more of a director role that combines
process with engineering activity executions.

Using a checkbook example, you need a checkbook entry to “mark
off” when reconciling a check. When an entry is not recorded, there
is havoc when check reconciliation clashes with the check “plan.” T
want you to have a very complete and accurate portrayal of planned
work to expected real work. This described process-based approach
accomplishes that objective.

Planning Packages

A big difference between this approach and conventional approaches
is the heart and soul of what a planning package is. Traditional planning
packages (future work) have strongly suggested the need for about a
six-month period for any given planning package. These planning
packages have budget and statement-of-work types of information
associated with them. Planning packages are also “owned” by a cost
account manager. These are the entities that are converted to work
packages just prior to actual work kickoff, when visibility and need
dictate that conversion. Many companies (believe it or not) create
planning packages from the estimations made at proposal time. These
planning packages are almost guaranteed to not equal the real work
to be performed because you’re comparing fiction to fact. It’s when
reality disagrees with fiction that sparks fly between engineering and
the software project manager. I've seen this a lot, and it's not pretty.

In this process-based approach, you really can’t create execution-
time planning packages until top-level designs are done and the
software project manager has mapped out the entire schedule based
on those designs. The fundamental need for traditional planning packages
is questionable using this process approach because of the following:

© 2006 by Taylor & Francis Group, LLC

Project Tracking ®m 215

B Schedule tasks equal activity instances.
B Schedule task estimations are the same for each activity type.
B Planning packages (if needed) comprise associated schedule tasks.

The granularity of work variance is by process activity type that is
predetermined by past process activity executions. The only need for
planning packages in this approach are in the following cases:

B If you organize all planning tasks by activity group and report
progress metrics by each activity group (e.g., 25 percent design
done)

B If you organize all planning tasks by activity object and report
progress metrics for each piece/part of the system (e.g., 30
percent subsystem A done)

The former method has a granularity of cost account management
(CAM) accountability down to the activity or task level, because you
may never have a single cost account manager for all activities within
“Design” versus “Test” etc. This method essentially makes a cost
account manager out of each and every activity lead. All activity types
of any given activity group become a “planning package.” For example,
the “Design” activity group is made up of all tasks that are “Analyze
Design approaches,” “Design Down,” and “Design Unit” activity types.
Tasks (or activity instances) on a planning schedule that are not
executed are part of a planning package for that activity group. Tasks
executed or being executed are equivalent to work packages for that
activity group’s planning package. Both are merely activity instances
(or tasks) belonging to an activity group — whether executed or not.
From a traditional earned value perspective, this lower granularity of
CAM involvement would seem to be cumbersome. In fact, the opposite
is true. Because each activity type has a predetermined set of estimates
for work (duration, manpower, etc.), the activity lead (or cost account
manager) has only to perform against existing engineering-based
ranges established from past executions of that same activity type. That
is very possible to be done.

The latter method has a higher granularity of CAM accountability
for all activities related to the stated object (and its children objects).
This method is used when you want a piece/part perspective of work
progress. You take any and all activity types pertinent to any activity
object (or its children objects) and lump them into a planning package.
This method is useful when your workforce is organized by subsystems

© 2006 by Taylor & Francis Group, LLC

216 ®m Process-Based Software Project Management

and you create planning packages by subsystem. For any given sub-
system, this means taking all the tasks that directly reference that
subsystem object on the schedule plus all the tasks related to the units
within that subsystem, and making the subsystem lead be the cost
account manager. As for the system-level activities, you can break
those down by activity group within that system object (e.g., system
test versus system documentation, etc.). For the system-level, it is likely
that different people (and thus the cost account managers) are in
charge of different aspects of that system level.

Traditional approaches to planning packages convert planning pack-
ages to work packages as work progresses. My approach does not —
because both executed and unexecuted schedule tasks are all included
in any given planning package by definition. Planning packages are
defined at planning time after design is done and is a static entity.
There is no need to go through that conversion. Because planning
packages address “what needs to be done” versus any ordering of
those same work elements, you don’t need the integration plan infor-
mation for any planning package drill. The software project manager
needs the integration plan to order tasks correctly on the project
schedule for maximized efficiency.

Activity Tracking

In this method, because tasks on a schedule are merely activity
instances, each task completion should be tracked to a planned task
on the planning schedule. Once “done,” you can mark it off as done
by merely placing a “v” in the reconcile (or “R”) column of your
project schedule. This is shown in Figure 15.2.

This is the simplest method for tracking completed tasks versus
noncompleted tasks. Because tasks equal activities, you can do all
kinds of things from a metrics perspective to provide valuable progress
data. T am a great believer in keeping things simple. Because all
activities have predetermined static planning estimates with variances
by activity type, make it easy on yourself and count “1” for each “done”
task. Here are some things you could do:

B You could add up all the tasks (activity instances) on your
schedule and calculate the number done versus the total. For
example, if you had 1500 tasks on your schedule and you had
300 marked with a “v',” you could report 20 percent completion
for earned value.

© 2006 by Taylor & Francis Group, LLC

Project Tracking ®m 217

Activity Activity Activity R

Name Object Lead
v ‘r

Figure 15.2 Earned value reconciliation.

B You could take the same overall task total and break it down
into activity groups. For each activity type marked with a “v')”
you could take a percentage of that group and do this for all
activity groups. If you had the same 1500 tasks mentioned
earlier, they may break down, among others, into:

Requirements — 6

Design — 10

Development — 1400

Test — 64

Documentation — 20

You might have 100 percent requirements done, 60 percent
design done, 0 percent development done, 5 percent docu-
mentation done, etc.

B You could take the major activity objects and subdivide all your
tasks by that object:

System object — for all documentation, integration, and
system testing, etc.
Subsystem objects — for all subsystem-related activities,

including the units belonging to that subsystem

This gives you a piece/part view of progress. For example,
you could have 25 percent system work done, 80 percent
subsystem A done, and 70 percent subsystem B done.

I want to revisit what “done” means for any task. Because each
task is an activity, the following are predetermined:

© 2006 by Taylor & Francis Group, LLC

218 m Process-Based Software Project Management

<Activity Name>
(Generic Activity Object)
Attributes Description
. f
Steps BEGIN... 3 steps done out of 6
v GET... «+ (37100)/6 = 50%
v DESIGN... activity completed
INSPECT...
PUT.
END.
0 0
) 0

Figure 15.3 Internal activity tracking.

B Inputs
B High-level steps
B Outputs

In addition, T have predetermined that there will be certain high-
level steps in all activities. The main ones for “doneness” include the
following:

BEGIN
GET
PUT
INSPECT
END

I insist on an inspection for each produced work product as part
of “done.” T insist on retrieving and placing your work products in a
version-controlled software configuration management (SCM)-con-
trolled repository. 1 insist that the END be the key driver for commu-
nicating “done” on all your schedule tasks. When an END gets
executed, you can be fairly assured that you are really “done.” If you
have six high-level steps, each step is auditable to make sure even
the most errant software task lead is indeed “done.” You could even
subdivide those steps if you wanted an even lower granularity of
“done” within any particular activity. This is shown in Figure 15.3.

It should be obvious to the reader that because these common
high-level steps exist in all activities, an inefficient “how-to” procedural
connection to these common steps could have a huge detrimental

© 2006 by Taylor & Francis Group, LLC

Project Tracking ®m 219

ripple effect throughout the life cycle. It is for this reason that the
INSPECT procedure, in particular, must be as efficient as you can make
it. At one large wireless telecommunications company, I improved this
particular procedure, making it six to ten times more efficient than
their existing practice and improved the quality of the inspection itself
as well. The practitioners dreaded the old method and loved the new
one. Because of word-of-mouth advertising, other parts of the company
also wanted me to train their folks on this new approach.

Similar to the activity level (although I'm well aware that each step
is not weighted the same), just count the steps done versus the total
steps. Make no effort to factor in step weighting — it just complicates
things unnecessarily.

SCM-Based Tracking

This process approach provides yet another avenue for project tracking
based on the developmental repository controlled by SCM. Traditional
tracking is task based. This is work product based. I realize this may
sound strange to some of you — but it is another perspective related
to tracking progress.

SCM has not only set up the structure for the developmental
repository based on engineering design executions but has populated
that repository with version 0 files of templates and placeholders. This
was done to ensure that software engineering developers could execute
a GET and truly get something. It was also done to ensure the correct
template for developers so that they don’t have to hunt for any
template. Figure 15.4 shows this SCM repository for tracking.

System

— System deliverable templates
— System work product template

— Placeholders
— Etc.

Subsystem A Subsystem B

Subsystem A work product templates
Placeholders
Etc.

Subsystem B work product templates
Placeholders
Etc.

Figure 15.4 SCM developmental repository tracking.

© 2006 by Taylor & Francis Group, LLC

220 m Process-Based Software Project Management

Because of this, SCM could take a document-centric perspective
and know for sure which work products are not started (i.e., still at
version 0) versus those that are in progress (i.e., something other than
version 0). Because of the END notification capability in this process
model, it is also conceivable that SCM could capture the final versions
of particular work products and make an additional call on the per-
centage of work products in progress versus the percentage of work
products completed. This SCM perspective strictly looks at the work
product picture and not the tasking picture that produced any work
product. In this approach, you could easily have three task executions
involved with updates on a single work product! SCM counts “1,”
whereas a task perspective would count “3.”

Rework Tracking

Tracking is great if nothing changes between the planning schedule
roadmap and the actual work being done. That is not the real world,
however. The one constant in life is change. This process approach
will eliminate a lot of the rework that is self-inflicted; i.e.:

B Process based
B Redesign based

What it can’t do is control rework from an external source — such
as requirements changes coming in from your customer (usually at the
most inopportune time). When requirements change, you will invoke
an event-driven procedure in this model that determines impact anal-
ysis on those changes. Requirements changes during proposal time
are handled very differently from those at execution time. In this model,
you would have one “how-to” at pre-execution segment time and
another at execution segment time to accommodate those “how-to”
differences. To determine change impact, you not only need to cost
out the proposed changes on their own merit, but you need to look
at where you are on the project schedule. Early requirements changes
are less costly than later ones. If T had contracted a painter to paint
my house blue with white trim and changed that early (before he
bought the paint), the change would probably be a wash. If I decided
to change the colors after he had bought the paint, I would be charged
for an additional visit/labor involved in changing the order. If he had
already started painting the blue and white combination when I
changed my mind, the cost would include the used blue and white

© 2006 by Taylor & Francis Group, LLC

Project Tracking m 221

Tasks Project Schedule
o | =

S~ - | p—

. (—

o N\

OOOOO(

Figure 15.5 Rework tracking.

paint plus the reworked labor on the house itself. This is similar to
what happens in software development. Changes prior to design are
one thing. Changes at test time are enormous. These need to be
factored into the change analysis.

Having said all that, the project schedule itself becomes a changed
work product for the software project manager related to rework. The
software project manager has to physically move whole chunks of the
schedule over to be reworked. In addition, the charge numbers need
to reflect a reworked task by changing the rework counter from 0 to
1. Note that if you are reworking rework, the number goes from 1
through 9 and then back to 1. If you're in that mode, you're in deep
trouble. Figure 15.5 shows this rework phenomenon.

© 2006 by Taylor & Francis Group, LLC

Chapter 16

Project Closedown

Introduction

There are a host of tasks you want to perform at the close of a project.
Some are applicable to any project. Some have direct relevance to this
process-based approach to software project management (SPM). The
one act you don’t want to do is delete everything and wipe the slate
clean for these reasons:

B Software does not end with software development. Once in the
field, you embark on the whole maintenance and support cycle.
This means fixing field-related problems, updating the software,
rebuilding, and rereleasing.

B Your customer may come back to you with a new order that
is mostly this product with new contractual changes to be made.

B A brand new customer may want a software product that you
can leverage from this product.

You can’t do any of these without the development base.
So let’s take a look at what you need to do at project closedown:

B You need an orderly wrap-up of the developmental repository,
making sure that final delivered versions are either well under-
stood and documented or are physically moved from software
configuration management (SCM) control to a CM-controlled
product release repository.

223

© 2006 by Taylor & Francis Group, LLC

224 m Process-Based Software Project Management

B You need to physically capture the versions of software that
created this project. These include various tools, compilers, test
kits, etc. The point here is that you need the entire set of stuff
that can recreate that software.

B You probably need your releases in the product repository —
beyond the project level. A release includes source, object,
executables, version descriptions, release notes, etc. Some com-
panies have an enterprise CM-controlled repository for these
kinds of things. Control is passed from a software CM organi-
zation to a product CM organization.

B You need to either delete or archive your project sandbox. This
is the working area used by all your tasks while developing
your software.

B You need to collect project metrics for process improvements
and to update activity-based estimations for future projects.

B You need to close down your project charge number.

B You need to close down your project resources (human and
material).

B You need a postmortem that takes a look back at what went
right and what went wrong so that these findings can be
analyzed and handled. These findings could point to software
process improvements, organizational issues to be fixed, insti-
tutional issues to be fixed, etc.

Repositories on Closedown

From an SCM perspective, we have two repositories associated with
your project:

B The developmental repository. This is a version-controlled
repository containing all versions of all work products produced
during the course of the project’s life cycle.

B The project sandbox. This is the working area for all the task
executions in your project that created the work products in
the developmental repository.

The former repository should not contain any version 0 file for any
work product unless there’s a really good reason for it. All files should
have moved off that base. It is this repository that can provide a
possible reconstruction of your project from a target perspective. The
developmental software suite (such as compilers, linkers, loaders, tools,

© 2006 by Taylor & Francis Group, LLC

Project Closedown m 225

etc.) is another story and also needs to be captured to complete that
reconstruction effort — if you need it. This repository needs to be
archived in its totality. This archiving action may get into ISO 9001
issues on “how long to archive” type of questions? That’s another topic,
however. There is also a need to tighten controls to disallow further
updates from the developmental area related to released products
heading for the CM-controlled environment.

The latter repository needs to either be deleted totally or maintained
as a structure only (.e., depopulate all the sandbox areas). This
repository would have some marginal value if you had to crank up
the project again and didn’t want to start from ground zero.

The one repository that gets built up at this stage is the product
CM repository. This area should be tightly controlled. You simply
cannot allow the developers to modify these CM-controlled products.
CM also needs to physically capture and document all the develop-
mental software (along with their versions), so that product releases
can be reconstructed, if necessary. The product release staple is the
executable module sent to the customer. The enterprise sure needs to
be able to reconstruct this executable module as well.

For all this action, you need off-site backup facilities to address
catastrophes, whether natural or man-made. This is true of all your
intellectual properties, including the project repositories and product
repository.

Metrics Collection on Closedown

This is where this process-based approach to SCM makes its mark.
Because schedule tasks are the same as process activities, you can
readily get real insight into your project. These are what you can do:

Count the number of tasks for this project.

Break that number down by activity type.

Break that number down to activity groups.

Get the number and type of activities by activity object.
Get actual costs per activity type. This provides new feedback
for adjusting activity-type estimations for future projects.
Get costs per activity group.

Get costs per system piece/part across all activities.

Get rework costs for this project.

Get rework costs by activity type.

Get rework costs by activity group.

© 2006 by Taylor & Francis Group, LLC

226 ®m Process-Based Software Project Management

140 4 — Total activities = 1,500
130
120
110
100
90
80
70
60 -
50
40 +

30 ,
20
10 g

Activity types

Et

Implement Unit (135)
0

Number of activity instances
Design Unit (125)

st Unit|

T

Figure 16.1 Activity story in a Pareto chart.

You may be able to think up more that you can get from this
process-based approach to SPM.

You can readily see the activity (task) story for your project by
taking each activity type, enumerating the activities in each type, and
arranging these in a Pareto chart. Figure 16.1 shows this possibility.

This provides a really good insight into where your money was
spent. It also provides your software engineering process group (SEPG)
with guidance on which activity types would yield the most project
execution improvement with activity process improvements.

From an enterprise perspective, a project perspective, and an orga-
nizational perspective (if you have subsystem leads), having a
piece/part view is also important. Because each schedule task has an
object associated with it and the object aligns with the generic object
specified at the process activity, you can readily achieve this metric.
This is how you do this:

B You separate all the activities at the system level from all others.
B For system objects, further separate these into the following:
— System deliverables.
— System analysis.
— System test.
B For all others, separate all the subsystem A activities (including
units) from subsystem B’s set, and so on. Figure 16.2 might
show that kind of story for subsystem A.

© 2006 by Taylor & Francis Group, LLC

Project Closedown m 227

Total activities for subsystem A = 4

Number of activity instances

Document (2)

Design Down (2)

Activity types

Figure 16.2 Activities by object chart.

Requirements
12%

Implementation
23%

Support
10%

Integration
12%

System Test
23%

Total system cost = $xxxx

Figure 16.3 Costs by activity group pie chart.

A pie graph is a great way of seeing where your money went by
activity group across your whole project. You could, for example, take
percentages of the pie for each group and compare them to industry
standards. Figure 16.3 shows that kind of representation.

© 2006 by Taylor & Francis Group, LLC

228 m Process-Based Software Project Management

Requirements
extrapolated
12%

Implementation
23%

Support
10%

Integration
extrapolated
12%

System
Test
extrapolated
23%

Total subsystem cost = $yyy

Figure 16.4 Cost by a subsystem piece/part.

You can do something similar for any subsystem. One possible
complication could come in when you need to extrapolate costs to
that subsystem. Figure 16.4 shows that kind of pie graph.

This provides not only the piece/part cost but also how that cost
was distributed. Again, this is a marvelous metric.

Rework is something that you really want to control. Rework needs
to be either eliminated or reduced for any company to survive. This
process approach allows you a direct way to calculate rework. As a
reminder, the last digit of any charge number is either O for original
(nonreworked effort) or 1 to 9 for rework efforts. Because charge
numbers are associated with schedule tasks and tasks equal process
activities, we can easily determine the following:

Percentage rework related to total cost
Rework of rework

Rework by activity type

Rework by activity object

Rework by activity group

What we can’t deduce from the rework counter in the charge
number is whether the rework is self-induced (process/engineering/
institutional issues) or customer-caused (target requirements changes/
contract changes).

© 2006 by Taylor & Francis Group, LLC

Project Closedown m 229

Post Mortem on Closedown

I have used two of the 7M-toolsets (modified somewhat) very success-
fully for a variety of purposes:

To dig out enterprise process pain issues

To dig out project pain issues while the project is in progress
For preaudits and preappraisals

For a project post mortem

These two 7M-tool techniques have fancy names:

B Infinity brainstorming
B [nterrelational digraphs

I don’t use these terms when I conduct these techniques; I just call
them focus groups, action groups, or postmortem. Using fancy terms
will turn people off. Don’t do it. This particular technique is fast (less
than 2 hr mostly) and is totally anonymous (no retribution). This
particular technique levels the playing field for quiet introverted people
versus loud dominant ones. That quiet and shy person may be the
very person with a lot to express anonymously.

The most successful group session was done with about 35 people
in about an hour and a half. At this point, you're probably thinking
I'm crazy when I have a successful session with 35 people. Conven-
tional wisdom says the success of any meeting is conversely propor-
tional to the number of attendees. The higher the number of people,
the lower the level of success; the lower the number of people, the
higher the success level. This technique is just the opposite. You need
at least 12 people to be successful. A really small group simply won’t
work for this technique.

Here are the supplies needed to conduct these sessions:

B Large Post-It notes — about 20 Post-Its (minimum) per partic-
ipant.

B Butcher paper or flip-chart paper. These are taped to three walls
of the conference room. Four or five charts are taped to one
wall. Five or six charts are taped to the opposite wall. One
chart is taped on a third wall (for infinity brainstorming rules).
One chart will be used to capture the major impact analysis
after we collect the data from the infinity brainstorming part of
this session. The size of the room will determine how many

© 2006 by Taylor & Francis Group, LLC

230 m Process-Based Software Project Management

walls are actually used. No matter what, you need at least two
walls for charts.

B Masking tape for the large paper sheets already mentioned.

B Fine-point felt pens — enough for participants and facilitator.

You need a large conference room that will hold all the participants
and has wall space onto which you can tape large paper charts on
three walls.

You need to reserve the room for about 2%2 to 3 hr to allow for
facilitator setup time, time for the actual session, and time for winding
up. The participants will show up about % hr after the room-reserved
start time. You should have all the supplies out and the charts up
around the room.

This is what you need to do ahead of time:

B Write down the session rules on a single chart. The rules are

as follows:

— One finding per Post-It.

— You can write as many Post-Its as you want within the
allotted time.

— Use only the supplied fine-point felt pen for writing.

— No handwriting — print your finding.

— No names (i.e., anonymous).

— Don’t get personal — make it process related.

— Be businesslike (but not crude) in your remarks on findings.

— Make findings clear as to your intent. Can another person
understand your point?

— Be quiet when writing findings.

Here’s how this technique works:

B Take a few minutes to explain to the assembled group what
you will be doing. Make sure the group knows about your
expectations and desired end results. I have even put this in
written form and sent it to the group ahead of time to make
sure that everyone’s on board with this technique. This sets the
foundation (5 min maximum).

B Announce that during this period of time, participants are to
write one finding per Post-it® note on as many Post-it notes as
you want — within that timeframe. Pens are supplied — don’t
use your own. This is a totally quiet part of this technique. After
writing, participants take their individual Post-its and stick them

© 2006 by Taylor & Francis Group, LLC

Project Closedown ® 231

onto one wall’s paper charts. Random placement is in order.

This part actually brings to light all the project issues (as well

as good aspects), as experienced/known by the participants, in

a way that there is no retribution because no names are used

(10 min maximum).

B Explain that we are now going to place the findings into “like”
groupings by placing Post-its from one wall into Post-it group-
ings on another. Explain that, at this point, an attempt will be
made to cluster similar items together and that we may have
to make some adjustments later. Also point out that we have
two predetermined categories called Orphans and Good. The
Orphans mailbox category catches all the miscellaneous findings
that we don’t know where they go. The Good mailbox category
is for the things we did right on a project.

B Have everyone stand up, grab a pile of Post-its from one wall,
and place on another wall as Post-it clusters. Remember, one
ground rule is that once a finding is established, it can’t be
removed. Some talk among people can happen at this point. If
you do this correctly, you will try to limit the category clusters
to about 10-12 groups at a maximum (about 10-12 min).

B [dentify a “reader” from the group; this individual will be reading
the Post-its to the entire group and possibly rearranging some
Post-its (about 1-2 min).

B Have the reader stand up and read each Post-it finding aloud
to the group in each cluster. This accomplishes the following:
— Everyone gets to hear all the findings.

— Everyone gets to persuade the reader to remove a Post-it
seen as not being a good fit in that group.

— Finally, the group establishes a mailbox name for that cluster
of Post-its. Keep the name short, if possible. I found that
using the names from one project as predetermined names
for subsequent postmortems was helpful for metrics data. I
had one group that disagreed with this and felt it was stifling
to have a set of mostly predetermined names, especially
when they disagreed with an earlier group over those names.

B The reader repeats this for all Post-it clusters until all cluster
groups have a category name. It is during this timeframe that
some Post-it notes may be moved from one group to another.
Finally, an attempt is made to place any and all “orphaned”
Post-it notes into a named category. If not, they stay as orphans.
This part takes the findings and attempts to categorize them for
the interrelational digraph part of this technique (15-20 min).

© 2006 by Taylor & Francis Group, LLC

232 m Process-Based Software Project Management

B The moderator takes a large blank matrix and writes all the
category names down the left side of the matrix and then writes
the same set across the top of the matrix. The moderator shades
out the box in which each category intersects itself. You should
end up with a diagonal line of shaded boxes from the top-left
down to the bottom-right in the matrix. This is the foundation
for the interrelationship digraph. We want to end up with some
idea of what we need to work on first, second, third, etc., to
get the biggest bang for the buck in the process (about 2 min).

B The moderator takes each category name down the left side of
the matrix and asks, “What are the other categories that have
a major impact on this category?” The group participates in
identifying other categories that have a major impact. The
moderator simply places an X across the row for the targeted
category. This gets repeated for each category name down the
left until the last category (10 min maximum).

B The moderator simply totals up the number of X marks per
column and writes the total at the bottom of each column. This
provides a really good idea of what categories should be
attacked first that has the most impact on other categories (about
2 min).

B Thank the group for their time and dismiss them.

Is this a perfect technique? No. Is it fast? Yes. Does it get at
postmortem issues? You bet. By spending about 1% hr on this, you
will extract both project issues as well as its good aspects from
everybody. There is no retribution, because there are no names
involved. The quiet person can write down stuff anonymously just as
the extrovert can. The inputs come from the very people who have
worked the project from the trenches.

After a session, I record all the findings by category into a Microsoft
Excel spreadsheet. This is a great application to count things and to
come up with percentages, etc. The completed spreadsheet gets sent
back to all the participants immediately. I have cautioned this group
to keep the information under wraps because it is confidential company
data. This is also a good time to perform one pass through the findings
and attach a role to that finding. T have found that a postmortem
category can have process-related findings for the SEPG and organi-
zational and enterprise findings for management. It is good to make
this separation by role; i.e., who might be the appropriate folks to
deal with a finding. The top three categories do provide some insight
into what should be done first, second, third, etc.

© 2006 by Taylor & Francis Group, LLC

Project Closedown ® 233

If you use common categories across projects, it certainly opens
the door to collecting some cross-project metrics related to categorized
findings.

The beauty of doing a postmortem at project closedown time is
that issues are still fresh with the project participants. This particular
method tends to extract a lot of data so that you can constantly improve
your future projects. With anonymity built-in, people are not hesitant
to raise valid issues for the betterment of the entire enterprise. All in
all, postmortems are well worth doing.

Hopefully, T have left you with many points to think about. Go
forth and do good things.

© 2006 by Taylor & Francis Group, LLC

