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Preface

The term chemogenomics is applied to a diversity of approaches that use chemical
compounds to probe biological systems. While all of the approaches have at least
some relevance to drug discovery, the methods can be differentiated according to
the extent to which they employ stochastic versus directed approaches. Stochastic
chemogenomics approaches probe the global response of a biological system on
exposure to chemical compounds. Focused chemogenomics approaches use
chemicals as detailed probes of biochemical pathways that can play a key role in
target identification and validation. An integrated chemogenomics platform uses
affinity-based screening, directed combinatorial chemistry, and structure-based drug
design to rapidly develop drug-like tool compounds that can validate a target-based
therapeutic hypothesis in vivo.

Chemogenomics approaches are evolving to overcome key problems limiting
the efficiency of drug discovery in the postgenomic era. Many of these limits stem
from the low success rates in finding drugs for novel genomics targets whose
biochemical properties and therapeutic relevance is poorly understood. The
fundamental objective of chemogenomics is to find and optimize chemical
compounds that can be used to directly test the therapeutic relevance of new targets
revealed through genome sequencing. The chemogenomics approach defers
investment in biological target validation to a later stage in the discovery cycle,
where resources can be deployed more efficiently and with a higher probability of
success, thus providing a more direct route to finding new drugs.

The present volume on “Chemogenomics in Drug Discovery is organized in
three main sections. General aspects in the first section are dedicated to privileged
structures as target family-directed masterkeys (G. Miiller), drug discovery from
side effects (H. Kubinyi), the value of chemical genetics in drug discovery (K. Russell)
and structural aspects of binding site similarity (A. Bergner and ]. Glinther).

The second section focuses on target families such as kinases (R. Buijsman), ion
channel modulators (K.-H. Baringhaus and G. Hessler), and phosphodiesterases
(M. Hendrix and C. Kallus). In addition, the contribution of molecular informatics
for chemogenomics (E. Jacoby et al.), chemical kinomics (B. Klebl), as well as
proteochemometrics (J. Wikberg et al.) are discussed.

Chemical libraries are the topic of the final section and cover chemogenomics in
compound library and template design for GPCRs (T. R. Webb), computational
filters in lead generation (W. Guba), navigation in chemical space (G. Schneider

XV
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Preface

and P. Schneider), natural product derived combinatorial libraries (M. A. Koch and
H. Waldmann), and combinatorial chemistry in chemical genomics age (R. Joseph
and P. Arya).

We are grateful to the Volume Editors for their enthusiasm to organize this volume
and to work with such a fine selection of authors. We also want to express our
gratitude to Frank Weinreich from Wiley-VCH for his valuable contributions to
this project.

Dr. Paul A.J. Janssen, former Director of Janssen Pharmaceutica N. V., Beerse
Belgium, and founder of the Center for Molecular Design, Vosselaar, Belgium,
unexpectedly died on November 11, 2003. As he was one of the most prominent
medicinal chemists and discoverer of many breakthrough medicines, the Volume
and Series Editors would like to dedicate this book to the memory of this great
man.

March 2004 Raimund Mannhold, Diisseldorf
Hugo Kubinyi, Weisenheim am Sand
Gerd Folkers, Ziirich
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A Personal Foreword

Chemical Genomics versus Orthodox Drug Development is the title of an essay published
in the February issue 2003 of Drug Discovery Today (Drug Discovery Today 8,
157-159, 2003), discriminating between two pharmaceutical research approaches;
the chemical genomics-based approach on one hand, as opposed to the classical
way of drug development, adhering to the accepted traditional strategies on the
other hand. Embedded in this apparent contradiction, defined by established
medicinal chemistry and the post-genomic approaches characterized by -omes and
-omics tags, this volume of Methods and Principles in Medicinal Chemistry attempts
to re-position the core discipline of Medicinal Chemistry right into the centre of
chemogenomics. Since chemogenomics is widely claimed to address key issues
posed by the sharp decrease in pharmaceutical industry’s productivity, the role and
relevance of modern medicinal chemistry has to be re-emphasised in this context.

All contributions of this issue focus on aspects of the systematic investigation of
molecular recognition phenomena that underlie drug—target interactions, and
subsequent extrapolation either within compound classes or within target families
with the ultimate aim to enhance efficiency of the drug discovery process.

G. Miiller, H. Kubinyi, and K. Russell elaborate in their contributions on different
aspects of classification and systematisation. The target family-directed masterkey
concept conveyed by G. Miiller intentionally takes advantage of privileged structures
that are tailor-made to explore entire gene families, thus accounting for the required
scalability of a once established chemistry concept in a chemogenomics framework.
The systematic exploitation of observed side-effects associated to known drugs is
described by H. Kubinyi as an efficient approach towards high-content leads for
novel targets and respective diseases. In more general terms, K. Russell introduces
into the manifold conceptual interfaces between biology and chemistry on a chemical
genetics platform. Apart from the aspects of target identification and validation,
the chemogenomics idea is developed out of the chemical genetics realm by
extrapolating compounds from tools to high-quality leads.

Predominantly, the book covers systematic elaborations on pharmaceutically
relevant target families with clear focus centred around systematic medicinal
chemistry access routes towards the distinct members of those target clusters.
Contributions by R. Buijsman and B. Klebl and colleagues provide detailed insights
into the world of protein kinase inhibitors. While R. Buijsman systematically focuses
on the detailed structural requirements of protein kinase binding sites that

Xvil
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A Personal Foreword

determine small molecule design strategies, B. Klebl and co-workers provide detailed
insights into chemical kinomics, highlighting chemical genomics, chemical
validation strategies, chemical genetics approaches, and a chemical proteomics
technology, always emphasising the multiple purposes of specifically developed
kinase inhibitors.

Medicinal Chemistry approaches towards the target family of phosphodiesterases,
ion channels, and G protein-coupled receptors under a chemogenomics paradigm
are introduced in three distinct contributions. M. Hendrix and C. Kallus elaborate
the element of systematic strategies within medicinal chemistry for phospho-
diesterase inhibitors where common substructures are described to address
conserved features of an entire target family. Privileged chemotypes that qualify
for a target family-directed library design concept form the basis for a chemo-
genomics-based discovery strategy pursued for ion channels, as described by
K.-H. Baringhaus and G. Hessler. T. Webb refers to the area of G protein-coupled
receptors, where ligand-derived information is systematically used to design target
family-directed scaffolds that, upon further chemical variation, allow for rapid lead
generation.

Contributions by R. Joseph and P. Arya as well as M. A. Koch and H. Waldmann
focus on synthetic aspects towards lead structures originating from natural product-
derived scaffolds. R. Joseph and P. Arya refer to two complementary approaches,
the synthetic access to focussed libraries around bioactive natural product cores,
and diversity-oriented synthesis aiming at 3D scaffold diversity for hit generation,
respectively. On the other hand, M. A. Koch and H. Waldmann emphasise the
correlation of natural product-based library concepts with structural features of
targeted protein domains, thus strengthening the privileged structure concept from
a bioorganic viewpoint.

Systematic application and conceptual combination of chemoinformatics,
bioinformatics, and structural genomics approaches are covered by a variety of
contributions in this book. E. Jacoby and colleagues report on design strategies for
combinatorial compound libraries pursuing a system-based chemoproteomics
approach that is exemplified on the target family of G protein-coupled receptors.
Numerous aspects of ligand based in-silico design techniques are reviewed in detail
by G. Schneider and P. Schneider, touching upon algorithms and applications of
e.g. similarity searching, or pharmacophore models. W. Guba and O. Roche
highlight pragmatic applications of computational strategies for addressing drug-
like characteristics of chemotypes within the framework of lead finding and
optimisation. A. Bergner and J. Giinther propose a systematic approach towards a
deeper understanding of target binding site characteristics and corresponding
similarities, thus integrating unique and precious protein structure knowledge into
the chemogenomics discussion. Finally, J. Wikberg and co-workers report on a novel
bioinformatics approach, termed proteochemometrics, to develop detailed insights
into molecular interaction space, by scrutinising binding data of different compound
series targeted towards different receptor systems.

As the field of chemogenomics is still maturating, this book is an attempt to
highlight the role of medicinal chemistry in the multi-disciplinary set-up that is

MWw.ebook:%OOO.com
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A Personal Foreword

required for a successful drug discovery environment. Careful consideration of all
aspects discussed within this book will undoubtedly facilitate the development of a
clear definition of chemogenomics. In this context, the book will be helpful for
numerous researchers in the life science community, currently addressing any
aspect of drug discovery and development in pharmaceutical industry, as well as in
academia.

All chapter authors are very much acknowledged for their great enthusiasm,
their preparation of the manuscripts within a tough time frame and the high quality
of their contributions. The Editors would also like to thank Dr. Frank Weinreich
and the staff of Wiley-VCH for their engagement in the production of this
monograph.

April 2004 Hugo Kubinyi
Gerhard Miiller
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Introduction

Gerhard Miiller and Hugo Kubinyi

The term “chemogenomics” evolved from the merger of chemistry and genomics.
Since this chapter introduces into a volume of Methods and Principles in Medicinal
Chemistry that is entitled “Chemogenomics in Drug Discovery: A Medicinal
Chemistry Perspective”, the attempt is made to provide a valid definition of
chemogenomics in the context of drug discovery, more specifically in the context
of medicinal chemistry. Prior to a more precise definition of chemo-related aspects
of chemogenomics, the parent discipline of genomics should be highlighted first.

The starting definition of genomics derives from Tom Roderick, as first cited in
print by Victor A. McKusick and Frank H. Ruddle in the inaugural edition of the
new journal Genomics [1]. At that time, genomics distinguished large-scale mapping
and sequencing efforts from molecular studies of only a few genes. Over time,
genomics has shifted in meaning to any studies that involve the analysis of DNA
sequence, and even to the study of how genes affect biological mechanism and
phenotype. This still includes the original meaning of genomics, but extends well
beyond that. Alongside with the biotechnology boom, genomics became a meaning
that is broader still and it was adopted as a buzzword, also to attract venture capital,
particularly in the period of 1998 to 2001, when many new companies emphasised
their involvment in proteomics and bioinformatics, categories that clearly overlap
with genomics. By the end of 2001, the term was considerably broader in meaning
and had become purely arbitrary in some cases.

Even the 2003 report of the WHO entitled “Genomics and world health: report
of the Advisory Committee on Health Research” (Geneva, WHO 2003) begins with
an overoptimistic statement, clearly supporting the idea of a direct gene-to-clinic
fast-track:

“The complete sequencing of the human genome, announced in 2001, marked the
culmination of unprecedented advances in the science of genomics, the study of the
genome and its function. The availability of genome sequences for many living organisms
clearly has important implications for health improvement, and it has been widely
predicted that elucidation of the sequences will lead to a revolution in medical research
and patient care.”
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Later in the report, a more adequate and realistic assessment is given, correcting
the rocketing expectations widely raised:

“An overoptimistic picture of the applications and benefits of genetic research has been
drawn. The potential medical applications of genomics are considerable and will lead
to major advances in clinical practice but the time-scale is difficult to predict.”

Up to now, chemogenomics has been applied to a diversity of approaches that use
chemical compounds to interrogate biological systems [2—4], but since some of
these approaches have only peripheral relevance to drug discovery, we felt it
worthwhile to focus on those aspects that address key issues posed by the sharp
decrease in pharmaceutical productivity that has occurred in the post-genome era.

And still, pharmaceutical industry severely suffers from a productivity gap, even
though a plethora of new technologies were implemented in the R&D structure of
virtually all pharmaceutical and biotechnology companies. The majority of those
innovative technologies have sent drug development costs soaring, unfortunately
with no measurable rise as yet in number of new chemical entities reaching the
market. As a generic conclusion, medicinal chemistry is viewed as a still limiting
factor in the creation of new drugs. The immense flow of gene and protein data at
the turn of the millennium led to the irresistible idea that once all of the disease
targets were characterized, drugs for each would eventually follow straightforwardly.

Alongside with the appearance of more and more gene and protein data, a whole
suite of “-omes” and “-omics” emerged. Generally, an “-omics” describes a technology
toolbox that is developed to study a specific object of interest at the largest possible
scale with highest degree of systematisation. Consequently, the object of interest is
the corresponding “-omes” that is associated to the respective “-omics”. Over the
last five years, for virtually any classical process step of the traditional drug discovery
and development value chain, a distinct -omics technology was born, no longer
working on single defined objects, but on the associated -omes. The spectrum
ranges from bibliomics, biomics, cellomics, chromosonomics, degradomics over
genomics, glycomics, immunomics, interactomics, lipidomics, metabolomics,
methylomics up to peptidomics, physiomics, regulomics, transportomics, and
vaccinomics, just to mention a selection of those technology toolboxes [5].

Chemogenomics, in most general terms, has been defined as the discovery and
description of all possible drugs to all possible targets [6]. Whereas such an attempt
would undoubtedly be the most systematic approach towards chemogenomics, it
remains impossible to ever achieve this goal.

Today, the most widely used definition of chemogenomics refers to the per-
turbation of biological systems with the help of small molecules, thus gaining a
holistic understanding of the interaction of such molecules with complex molecular
systems. In this context, chemogenomics is simply a subset of genomics in which
the focus is on small molecules [7, 8].

The ability to study certain subjects systematically on a large scale, better to the
largest possible extent, rather than on a one-by-one and on a case-by-case basis, is
what finally renders a specific technology to mature towards an associated “-omics”.
Just as genomics is the extension of genetics to a genome-wide scale, chemo-
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genomics has been defined as being the extension of chemical genetics to a genome-
wide scale. Chemical genetics is exactly the study of biological processes using
small molecule intervention, as opposed to genetic intervention. Just as genetics
offers a way to study biology by modulating gene function through mutation,
chemical genetics seeks to study biology my modulating protein function with
low-molecular weight compounds. For application of low-molecular weight
compounds to perturb complex biological systems not a great deal of medicinal
chemistry is required.

However, chemogenomics also has been predicted to produce chemical ligands
for all important proteins which should enable chemical modulation of their
activities, both positively or negatively, and completely of selectively [7]. With this
definition a claim is being made that directly reaches through into the innermost
core of medicinal chemistry. Unfortunately, statements of that type raise expectations
that by no means account for the complexity of any drug discovery attempt.
Projecting this ambitious goal of chemogenomics as outlined above [7] into the
reality of e.g. generating selective agonists for protein-binding G protein-coupled
receptors, then one can get the feeling that this sounds more like science fiction
than science. Also the design of protease activators, instead of inhibitors, will emerge
as a major undertaking. In essence, the majority of today’s definitions of chemo-
genomics refer to the process by which small molecules are used to gain insight
into the function of novel biological targets. Whenever chemogenomics is also
seen as a parallel approach to target validation and drug discovery, not too much of
medicinal chemistry-directed know-how is included. This insight was one of the
major driving forces to edit the current book and to lay the emphasis on medicinal
chemistry aspects that help to re-define chemogenomics.

Today, the majority of scientists involved in drug discovery and more and more
senior executives realize that the pay-offs of the automation and miniaturization
attempts associated with most of the “-omes” and “-omics” seem farther away then
originally hoped. It is obvious that the technological revolution of the last decade
has altered the way we pursue drug discovery in general and organic chemistry,
one of the underlying core disciplines of medicinal chemistry in particular. Success
in lead finding and optimisation still requires skilled scientists making the correct
choices on e.g. which hits are likely to play out as tractable leads that, upon
optimisation will finally take the numerous hurdles that any pre-clinical candidate
must surmount.

In addition, there is increasing evidence that implementation of those techno-
logies especially in small and mid-sized pharmaceutical companies resulted in a
fascination in technology that finally led to a defocusing of R&D efforts. In this
context, the editors believe that chemogenomics as advocated in this book will
define a new suite of tools and strategies that will primarily support the medicinal
chemist scaling his or her lead generation and optimisation capabilities from distinct
single experiences towards a broader and more systematic understanding and
subsequent application within drug discovery and development.

The scale-up of lead discovery from a case-by-case to a “genome-wide” effort
requires general guidelines that can be applied e.g. throughout entire target families,
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or allow to systematically explore tailored compound classes. In most general terms,
chemogenomics seeks for a correlation of tailored compound collections with well-
chosen target classes, thus utilizing a systematic effort aligned along two dimen-
sions, the compound dimension as well as the target dimension.

As genomics is concerned with taking large-scale sequence information to the
next higher level, thus annotating a functional understanding, chemogenomics
attempts to promote chemical structure-encoded information on a higher level in
order to correlate compound space with target space.

The editors do hope to have succeeded with this volume to position the scientific
discipline of Medicinal Chemistry into the focus of chemogenomics, thus making
it less of a buzzword by shifting the content of this “-omics” significantly towards
the chemisty-related aspects. On purpose, the emphasis is laid on chemistry to
remind that one of the major bottlenecks is the chemical aspect of chemogenomics,
which was and still is often underestimated within the today’s chemogenomics
discussion.
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Target Family-directed Masterkeys in Chemogenomics

Gerhard Miiller

1.1
Introduction

Chemogenomics aims at providing a small molecule for every protein encoded by
the human genome for use as a molecular probe of cellular function and, in parallel,
as a possible lead candidate for drug development [1, 2]. This contribution attempts
to present a novel medicinal chemistry concept, namely the target family-directed
masterkey concept, which is based on tailor-made privileged structures [3] as a key
element of chemogenomics. In this context, chemogenomics is envisioned as a
still evolving and maturing paradigm in drug discovery, rendering the entire
preclinical discovery process more efficient through the systematic application of
new medicinal chemistry concepts on a ‘genomic’ scale. Rather than following the
classical approach, in which a single target protein is tackled at a time within a
distinct disease area, the masterkey concept [3] offers the opportunity to process
multiple related members of a target family simultaneously across numerous
therapeutic areas. The masterkey concept is considered as a chemogenomics
platform, since it allows one to deal with a large number of potential protein targets
with increased efficiency in lead generation, delivering target-specific molecules
amenable to parallel optimization toward progressible preclinical candidates.
This novel medicinal chemistry concept will contribute to an urgently required
renaissance of chemistry within the multidisciplinary area of drug discovery and
development. To position the masterkey concept into today’s landscape of drug
discovery, a general overview of the pharmaceutical industry’s current situation
and performance over the last decade is given.

The pharmaceutical industry is one of the largest industries worldwide still
exhibiting a strong growth potential. The associated market volume reached
US $ 365 billion in 2001, representing a 12% growth over the preceding year [4].
The top 10 leading products alone accounted for more than 10% of that market
(US $ 40 billion), reaching 22% growth over 2000. Apart from a single recombinant
protein, notably erythropoietin, the business predominantly deals with classical
small-molecule drugs (Table 1.1 and Figure 1.1) [4].
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Table 1.1 Top 10 best-selling pharmaceutical products of 2001 [4].

Brand Ingredient Company Indication Sales (growth)
name [$ billion]
Lipitor® Atorvastatin Pfizer hypoercholesterolemia 7.0 (31%)
Prilosec® Omeprazole AstraZeneca ulcers 6.1 (0%)
Zocor® Simvastatin Merck & Co. hypercholesterolemia 5.3 (25%)
Norvasc® Amlodipine Pfizer hypertension 3.7 (14%)
Prevacid® Lansoprazole Takeda/Abbott ulcers 3.5 (13%)
Zyprexa® Olanzapine Eli Lilly schizophrenia 3.2 (35%)
Celebrex® Celecoxib Pharmacia/Pfizer  pain, arthritis 3.1(32%)
Procrit® Erythropoietin ~ J&J/Amgen anemia 2.9 (35%)
Paxil® Paroxetine GlaxoSmithKline depression 2.8 (19%)
Vioxx® Rofecoxib Merck & Co. pain, arthritis 2.6 (44%)
all 10 products $ 40 200 000 000

F
Lipitor® / Atorvastatin
HMG CoA reductase inhibitor

Prilosec®/ Omeprazole
H*/K+ ATPase inhibitor

N Mg

R
N
(<
N 0

Prevacid®/ Lansoprazole
H+/K+ ATPase inhibitor

3

Norvasc®/ Amlodipine
Ca2* channel blocker

/
Y

Celebrex®/ Celecoxib
COX-2 inhibitor

Paxil®/ Paroxetine
serotonin transporter SERT

Figure 1.1 Chemical structures of the best-selling drugs of 2001 [4].
Nine of the top ten drugs are low-molecular-weight compounds.
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Table 1.2 Fastest-growing products of 2001. Growth is given relative to sales in 2000 [4].

Brand name  Ingredient Company Indication Sales (growth)
targets [$ million]
Nexium® Esomeprazole AstraZenec ulcers 623
proton pump inhibitor (999%)
Protonix® Pantoprazole  Altana/Wyeth ulcers 695
proton pump inhibitor (426%)
Advair® Albuterol & GlaxoSmithKline asthma 1103
Fluticasone B2 agonist & corticosteroid (351%)
Remicade®  Infliximab J&J/Schering-Pl.  Crohn’s, arthritis 753
IgG mAB (168%)
Aciphex® Rabeprazole  ]&J/Eisai ulcers 1017
proton pump inhibitor (99%)
Rituxan® Rituximab Idec/ Non-Hodgkin’s lymphoma 743
Genentech Roche IgG mAB (88%)
Seroquel® Quetiapine AstraZeneca schizophrenia 793
(5-HT’s, D’s, H1, 02) (82%)
Actos® Pioglitazone ~ Takeda/Eli Lilly  diabetes 1151
PPARYy agonist (79%)
Avandia® Rosiglitazone  GlaxoSmithKline diabetes 1128
PPARy agonist (65%)
Diovan® Valsartan Novartis hypertension 736
angiotensin antagonist (63%)
Celexa® Citalopram Lundbeck/Forest  depression 1107
SSRI’s (SERT) (61%)

The current therapy leaders are the anti-ulcerants such as Omeprazole (Prilosec®)
or Lansoprazole (Prevacid®), which accounted for US $ 19.5 billion in 2001, thus
claiming a market share of 6%. The anti-ulcerants are closely followed by the
cholesterol reducers, e.g., Atorvastatin (Lipitor®) and Simvastatin (Zocor®), totaling
US $ 18.9 billion, the antidepressants (US $ 15.9 billion), and the NSAIDs
(nonsteroidal anti-inflammatory drugs; US $ 10.9 billion). Calcium antagonists,
antipsychotics, oral antidiabetics, ACE inhibitors, cephalosporins, and antihista-
mines complete the list of the best-selling therapy classes, with sales between
US $ 9.9 and 6.7 billion. It is interesting to note that four classes grew more than
20% in 2001, namely the cholesterol reducers (22%), the antipsychotics (30%), the
oral antidiabetics (30%), and the antihistamines (22%) [4].

Since the sales numbers taken from the 2001 analysis only represent a snapshot
in time of a considerably dynamic field, a trend analysis with more predictive value
can be obtained from the growth performance of products in conjunction with the
respective market share (Table 1.2) [4].
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Again, proton pump inhibitors such as Esomeprazole (Nexium®), Pantoprazole
(Protonix®), and Rabeprazole (Aciphex®) dominate the list of fastest-growing
products. The two PPARY (peroxisome proliferator-activated receptor) agonists
Pioglitazone (Actos®) and Rosiglitazone (Avandia®) have already had sales of more
than US $ 1 billion each and still show dramatic growth performance. Among the
fastest-growing products in 2001 (Table 1.2), two immunoglobulin G monoclonal
antibodies are found, namely Infliximab (Remicade®) for the treatment of Crohn's
disease and arthritis, and Rituximab (Rituxan®) against non-Hodgkin's lymphoma.
It is also noteworthy to mention that Valsartan (Diovan®), one of the first nonpeptide
angiotensin II receptor antagonists, goes against the dominant role of the ACE
inhibitors in antihypertensive therapy [4].

At first glance, an industry with an associated market worth of more than several
hundred billion US dollars, based on products that achieve more than US $ 5 billion
annual sales with fast-follower products that display an annual growth performance
of several hundred percent might be in good shape with a bright future perspective.
However, to maintain the healthcare industry’s prospects for sustained growth and
to meet the changing needs of a global and aging society, increases in productivity
on the order of two- to four-fold are urgently required [5]. Productivity in this context
refers to research-intensive innovative drugs for numerous unmet medical needs.
But the discovery and development of new medicines is an expensive and time-
consuming effort. The Tufts University Centre for the Study of Drug Development
found that the time from synthesis of a new drug to US marketing approval has
increased dramatically [6]. The Tufts data indicate that this period has increased
from ~8 years for approvals in the 1960s to more than 14 years in the 1990s
(Figure 1.2).

Lengthening development times dramatically increase the costs of bringing a
new drug to market by increasing the capital needed for research and development
activities. According to the PhRMA (Pharmaceutical Research and Manufacturers

development
times [years]

16+ 14.2 14.2
14+

. approval phase

|:| clinical phase

D preclinical phase

12+

10+

1960's 1970's 1980's 1990's

Figure 1.2 Analysis of research and development timelines in recent years [6].
The preclinical research, clinical development, and approval times are explicitly given.
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R&D Expenditures
[Billion US $]

50+
40.027

40+

30+

20

1990 1995 2000

Figure 1.3 Development of R&D expenditures in recent years [7].
Total R&D costs are derived from investments made by US and
by European companies, respectively.

of America) Annual Membership Survey 2002 and data from the EFPIA (European
Federation of Pharmaceutical Industries and Associations), research and develop-
ment expenditures in the pharmaceutical industry were greater than US $ 40 billion
in 2000 (Figure 1.3) [7].

Despite a steady increase in research and development funding within the
pharmaceutical industry, the number of NCEs (new chemical entities) reaching
the market has failed to increase over the past decade [8]. Pollack reports in the
Business/Financial Desk section of the 19 April 2002 edition of the New York Times
in an article entitled “Despite Billions for Discoveries, Pipeline of Drugs Is Far
From Full”, that “Fewer new drugs are being discovered despite constant increase
in spending on research and development, causing some to worry that [the] new
product pipeline may be running dry; industry’s output of new drugs has risen
only moderately in [the] last two decades despite [a] more than six-fold increase,
after adjusting for inflation, in research and development spending, to more than
$ 30 billion annually in [the] last few years, output has actually declined.”

Apart from the increasing research and development costs and longer develop-
ment times, shorter exclusivity times for key products impose novel challenges, if
not threats to the overall healthcare industry. Viable Intellectual Property (IP)
strategies ensure that invention-based research and development investments are
protected. Strong IP protection is essential for the preservation and growth of a
research-based enterprise, and thus for the sustained development of new and
better medicines. Competition among research-based pharmaceutical companies
is continually increasing. One company’s patent on a specific drug does not preclude
other innovator companies from producing rival medicines to treat the same disease.
Increased competition in the search for new and improved drugs has led to a
shortening period during which, e.g., a novel blockbuster drug is without challenge
on the market. The anti-ulcer drug Tagamet®, introduced in 1977, had 6 years on

1
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Drug / Year of Introduction Follower Drug
Inderal® - 1965 | J13 1978 - Lopressor®
Tagamet® - 1977 | ] 6 1983 - Zantac ®
Capoten® - 1980< J 5 1985 - Vasotec®
Seldane®-1985[ 4 1989 - Hismanal®
Azte-1987| . ) 4 1991 — Videx (ddI)®
Mevacor® - 1987<j 4 1991 - Pravachol®
Prozac®-1988| ) 4 1992 - Zoloft®
Diflucan® - 1990< 2 1992 - Sporanox®
Recombinate® - 1992 | 1 1992 - Kogenate®
Invirase® - 1995< 0.25 1996 - Norvir®
Celebrex® - 1999 ] 0.25 1999 - Vioxx®
o 2 4 6 8 10 12 14

Years of Exclusivity

Figure 1.4 Development of exclusivity timelines in recent years [9].
The first-in-class compounds are given on the left, and the
corresponding me-too drugs are given on the right.

the market before the follower drug Zantac® was introduced. In contrast, the HIV

protease inhibitor Invirase®, released in 1995, was on the market for only 3 months
before the first competitor drug, Norvir® was approved (Figure 1.4) [9).

This dramatically shrinking period of market exclusivity clearly represents an
often-underestimated challenge for the future of research-based pharmaceutical
companies.

To withstand the threats on the record of pharmaceutical research and develop-
ment productivity, numerous so-called paradigm changes have been announced
over the past 10-15 years, all aimed at resolving major bottlenecks along the value
chain of drug discovery [10-12].

From the mid 1990s onwards it was widely claimed that the trend toward structure-
based molecular design seemed to have fallen well short of expected productivity
gains. Concomitantly, molecular biology gained full impact in the early discovery
phases of preclinical research, and the accompanying development of high-
throughput screening (HTS) and combinatorial chemistry was believed to efficiently
remove one of the most persisting bottlenecks in drug discovery, notably the
generation of progressible lead compounds [13]. Consequently, the predominant
drug discovery process pursued by most pharmaceutical companies was based on
large and growing collections of compounds for use in HTS assays. The high degree
of sophisticated automation that emerged in the chemical laboratories in pharma-
ceutical research enabled the chemists to construct large screening libraries in a
relatively short time. Organic chemists involved in combinatorial chemistry or
automated synthesis were tempted to generate libraries that spanned as large a
volume of principally accessible space as possible, corroborated by the introduction
of the ‘maximum chemical diversity’ concept [14]. In this context, assessments of
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the size of the virtual organic chemistry space containing reasonably sized
compounds broadly range from 10*° to even greater than 10'*[15], with 10°? as a
commonly quoted middle-range estimate [16]. Given these unimaginably huge
numbers, any attempt to systematically scan this virtual molecular diversity space
by synthetic means is clearly doomed to failure.

In contrast to the assumption that the number of identifiable leads is related to
the degree of molecular diversity encoded in a multimillion compound library,
current experience clearly suggests that clinically useful candidates exist as small
tight clusters within the molecular diversity space [16, 17]. The number of
therapeutically relevant protein targets within the human genome was analyzed to
be in the range of 600 to 1500 [18], so aiming at maximal chemical diversity is an
inefficient molecular design strategy unless we expect a vast number of yet
undiscovered clinically useful targets to be out there.

Despite all advances and investments made in developing HTS technology and
combinatorial chemistry concepts, it was recently concluded that HTS has not lived
up to what it was hoped, since there is not a significant number of HTS-related
INDs (investigational new drugs) [19]. Obviously, the technical compromises and
loss of precision that occurred on adaptation of many assays for high-throughput
platforms generated high error rates that made hit follow-up by chemistry teams a
very laborious, inefficient, and frustrating process. According to a worldwide survey
among screening departments, only 43% of targets processed through HTS
initiatives generated progressible leads, thus emphasizing that certain target families
are HTS-resistant and that success in HTS is a direct correlate to the quality of a
compound library [19]. The average success rate of 43% was obtained from an
amazing variability ranging from 5% success rate to up to 100%. From 44 HTS
laboratories, 326 leads were reported to be found in 2001. However, a ‘lead’ in this
study was defined as a hit, confirmed by more than one assay in vitro in a manner
that shows biologically relevant activity that correlates to the target of interest. To
be a lead, the compound must further show evidence that a structure-activity
relationship can be built around it [19]. According to industry-wide accepted
standards, a lead is generally characterized more stringently. In most cases, a lead
emerges from a chemical optimization program, displaying efficacy in a disease-
relevant animal model. Further, a structure—activity relationship should already be
elaborated around the respective compound class with promise for achieving a
balanced ADME (absorption, distribution, metabolism, excretion) profile before a
lead decision is made.

In brief, the stochastic medicinal chemistry approaches pursued over the past
10 years by focusing on HTS in combination with combinatorial chemistry have
not met the expectations that were raised at the beginning of this ‘big numbers
game’. Consequently, the focus of HTS laboratories is now gradually changing
toward a concerted effort to improve the relevance and quality of assay operations,
in that high-information-content screens are becoming part of the screening
philosophy [19]. A steadily increasing number of HTS departments are involved in
conducting secondary screens and numerous in vitro ADMET (absorption,
distribution, metabolism, excretion, toxicology) assays. Also, the compound
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selection criteria are changing. In contrast to screening a few distinct libraries with
tens of thousands of compounds based on, e.g., an identical scaffold, front-loading
of drug-likeness and structure- or mechanism-related design approaches are
pursued. The concept of ‘fewer of many’ as opposed to ‘many of fewer’ offers a
substantially increased likelihood of discovering viable lead compounds [17]. The
current disillusion with screening huge, diverse libraries [20-23] has led to the
tendency to screen libraries that are biased toward our current medicinal chemistry
know-how [24, 25]. This reflects both the nonuniform distribution of drugs in
chemistry space and the realization that ADMET properties are as relevant as, or
even more relevant than, pure target affinities in the search for candidate compounds
with realistic therapeutic potential [16, 26, 27]. The current situation in the medicinal
chemistry-driven drug discovery disciplines is clearly characterized by a ‘knowledge
vs. diversity paradox’ [28]. The lifeblood of medicinal chemistry is still the combined
understanding and improvement of structure—activity and structure—property
relationships so as to gear optimization programs toward valuable clinical candidates
that possess a balanced activity, selectivity, and ADMET profile [29]. Once this process
gains strength, it automatically plays against the molecular diversity paradigm,
since the concept of ‘similarity’ becomes a more successful design principle than
the maximal diversity strategies.

After it was realized that neither computer-aided drug design nor the HTS/
combinatorial chemistry approaches alone significantly improved the record of
pharmaceutical industry productivity as measured by high-quality clinical can-
didates, the progress made in genome sequencing by the end of the last decade
was widely believed to have revolutionizing impact into the research and develop-
ment area. Although the entire pharmaceutical industry concentrated its efforts
on fewer than 500 protein targets with fairly well-elucidated biological functions
and disease relevance during the ‘pre-genome’ era [30, 31], a thorough application
of genomics and related technologies was considered to be generating a tidal wave
of novel drug targets that would sweep over the pharmaceutical industry with
numerous benefits for drug discovery and development in its wake [32]. The
knowledge of all genes encoded in the human genome was initially envisioned to
provide unprecedented opportunities for the discovery of new drugs with novel
modes of action. Headlines such as “Bioinformatics Battles Breast Cancer” [33]
suggested an yet undiscovered shortcut on the pathway from a therapeutic
hypothesis past the corresponding assays, hits, leads, and pre-clinical candidates,
to innovative therapeutic products, and thus to immediate profit. It was only in
2001 that a renowned pharma-consulting company stated that the impact of
genomics, if applied rigorously, would help to halve the cost and time it takes to
develop a new drug [32]. Surprisingly, in the same year a different consulting firm
arrived at a completely contrary conclusion that, rather than improving research
and development productivity, the impact of genomics on drug discovery and
development is primarily reflected by an increase in costs [34]. The quality of target
validation in genomics efforts was identified as a major obstacle. The flood of new
targets for discovery programs is not, by far, matched by the required information
content about these targets [35]. This lack of knowledge at the outset leads to
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numerous problems downstream in the drug discovery process and to even worse
attrition rates. The analysis further reveals that until 1995, large pharmaceutical
companies had up to 50 targets under scrutiny annually. Of these, 70% were
preceded with a wealth of associated information known from the literature. Most
likely, drugs were already on the market or in late-stage clinical trails against these
targets. With the emergence of large-scale genomics approaches, it is estimated
that, in 2005, the number of targets per company will increase to ~200 annually,
with only 30% of these precedented by any aspects of target validation. In
consequence, a significant increase in the absolute number of preclinical develop-
ment projects will occur. Due to the insufficient validation state of the targets under
investigation, a drop in preclinical research success by 25% and a decline in clinical
phase II success by 20% are predicted. The result of this costly attrition is that the
net present value per NCE will drop dramatically [34].

After a couple of years of progressing into the ‘omes’ and ‘omics’ era, one has to
recognize that the expected productivity gain has not been achieved. Undoubtedly,
genomics approaches produced a vast increase in biologically relevant information.
However, the translation of this information into efficient discovery strategies, as
opposed to interesting science, has proven elusive.

1.2
Medicinal Chemistry-based Chemogenomics Approach

Although several diverse factors affect pharmaceutical productivity, it is clear that
much of the lost productivity can be attributed to the failure of any new technology,
by itself, to make the complex discovery process more efficient. As with the
stringently applied computer-aided drug design and the combined HTS/com-
binatorial chemistry approaches, also for all genomics strategies the key hurdle in
the way of increased productivity lies not within the associated technology itself,
but with how to efficiently organize the implementation of real new paradigms.
Only new conceptual thinking, novel assemblies of well-validated technologies,
like the ones described in the previous paragraph, within different organizational
architectures will be best suited to creating meaningful improvements in research
and development productivity.

The highly synchronized orchestration of all the above-mentioned technologies
derived from structure-based molecular design — protein modeling, bioinformatics,
high-throughput screening, combinatorial chemistry, automated synthesis, ge-
nomics, and proteomics — defines the framework for a revised definition of
‘chemogenomics’, taking advantage of a classification principle within pharma-
ceutical research that is aligned according to target families, rather than to disease
areas.

The emphasis in this contribution is laid on an emerging paradigm in drug
discovery, notably the systematic classification of therapeutically relevant target
classes according to structure and function. These are subsequently correlated with
family-wide recognition motifs that can be translated into lead-like low-molecular-
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weight ligands, ultimately placing the molecular compound at the heart of a
chemogenomics approach. It is the systematic exploration of these densely
populated target families with a proven potential to yield drugs that opens up a yet
unexploited opportunity to increase preclinical research productivity based on the
genomics and proteomics advances of the last years.

This opportunity of systematization of drug discovery strategies follows from
accepting that biology as well as chemistry knowledge gained from one target can
be transferred to ‘adjacent’ targets in the same gene family. Even though systemati-
zation might require significant commitment of time and resources, it allows
enormous efficiencies to be gained through economies of scale, provided that the
target families are of significant size, richness, and diversity in therapeutic value.
Most importantly, an accumulation of target class-specific know-how is created
over time, whereby past experiences allow rapid attack on new members of the
target cluster of interest [36]. Comparative analyses over, e.g., inhibitory capabilities,
mechanism of action, and even binding modes of whole series of compounds against
dozens of members of a distinct enzyme family occur more frequently only in the
recent literature, giving first indications of a paradigm change in the way we pursue
lead finding and optimization under a chemogenomics perspective [37-39].

From a molecular design point of view, a precious knowledge base including
target structure, mechanism, and viable medicinal chemistry approaches toward
distinct representatives of densely populated target families is available. For almost
any given new emerging target from, e.g., the G protein-coupled receptor, ion
channel, nuclear receptor, kinase, or protease family, a medicinal chemistry strategy
could be devised even prior to completing a corresponding high-throughput
screening campaign. In this context, the concept of target family-directed molecular
masterkeys provides an alternative to both blind screening attempts and stringently
applied structure-based design approaches. Available knowledge on the structure
and/or function of target families is encoded in low-molecular-weight substructures
that, upon decoration, deliver high-quality lead structures for further expansion
toward viable preclinical candidates. The medicinal chemistry aspects of classifi-
cation of target family-wide commonalities in ligand recognition for the design of
privileged structures and the subsequent application of the masterkey concept to
broadly launch into the target cluster represent a chemogenomics approach.
Genomics information is directly utilized to drive lead discovery processes.

13
Densely Populated Target Families

According to a thorough analysis of drugs listed in the pharmacopoeia in 1996, the
total number of proteins within the human organism for which pharmaceutical
research had produced drugs is less than 500 [30, 31]. This analysis from the pre-
genome era further speculated on the existence of up to 10 000 potentially relevant
proteinogenic drug targets within the human genome, albeit irrespective of their
biochemical nature. Also in the post-genome era, hit generation and subsequent
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optimization work based on applied medicinal chemistry are still on the critical
path toward a viable preclinical candidate. Consequently, a drug target survey ‘from
a compound’s point of view’ seemed to be a more reasonable approach toward the
often-mentioned druggable genome. Researchers at Pfizer (UK) systematically
mined the human genome for rule-of-five [40] compliant putative drug targets and
produced a list of approximately 400 nonredundant proteins that have been shown
to bind low-molecular-weight compounds with binding affinities below 10 uM [18].
Not surprisingly, a great percentage of those targets cluster into target families
such as G protein-coupled receptors (GPCRs), kinases, proteases, ion channels,
and nuclear hormone receptors. Based on the assumption that, once a member of
a target family is amenable to rule-of-five compliant compounds, the entire gene
family is druggable, a theoretical number of approximately 3000 putative protein
targets was derived by systematic extrapolation within the corresponding gene
families (Figure 1.5).

Most importantly, the analysis revealed the potentially interesting target classes
for which medicinal chemistry is obviously capable of producing low-molecular-
weight compounds, even though irrespective of any proven disease relation. The
fact that these are multimember gene families allows an enormous opportunity
for systematization within the discipline of medicinal chemistry. Privileged
structures can be designed that account for a family-wide commonality in terms of
enzymatic mechanisms and/or molecular recognition elements. The most densely
populated target families, notably kinases, GPCRs, ion channels, proteases, nuclear
hormone receptors, and phosphatases, represent attractive fields of activity for
medicinal chemistry. Even though approximately 30% of all marketed drugs target
GPCRs, approximately 7% of drugs address ion channels, and approximately 4%
of marketed drugs bind to nuclear hormone receptors, only 2 drugs address kinase
targets (Imatinib (Gleevec®) and Gefitinib (Iressa®)), only 1 drug addresses a Ser-
protease (Argatroban (Acova®)), and only 1 metalloprotease is inhibited by marketed
drugs (angiotensin converting enzyme (ACE)). From these results it is obvious
that there is definitely sufficient if not tremendous room for innovation within the
realm of hit generation and optimization.

others 44%

nuclear receptor 2% kinase 22%

GPCR 15%
Zn?* protease 2%

ion channel 5%
phosphatase 4%
Ser protease 4%

Figure 1.5 Detailed analysis of protein family distribution in the human ‘druggable genome’ [18].
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However, it should be emphasized again that the number of targets that are, in
principle, druggable (app. 3000) by far exceeds the number of drug targets, since
no aspects of disease relation were considered in this analysis [18]. Our current
view of the number of ‘druggable drug targets’ is far more modest and, thus, realistic
as compared with the very optimistic expectations that were spread within the
scientific community a few years ago. Within the human genome, the number of
pharmaceutically relevant target proteins is estimated to be in the range of 600 to
1500 [18].

1.4
Privileged Structures: A Brief Historical Assessment

The term ‘privileged structure’ originates from Evans and coworkers at the Merck
Sharp and Dohme Research Laboratories, who focused in 1988 on the design of
benzodiazepine-based CCK-A antagonists [41], and was later updated by Patchett
and Nargund [42] of the same company. Evans et al. [41] refer in their publication
to a finding from 1986 by Chang and colleagues [43], who discovered that the
previously described analgesic k-opioid agonist tifluadom [44] also acts as a
peripheral CCK receptor antagonist. This documented activity of a single compound
at two different target proteins of the same gene family (GPCRs) led Evans and
colleagues to conclude that a single molecular framework can provide ligands for
diverse receptors. They stated, “What is clear is that certain ‘privileged structures’
are capable of providing useful ligands for more than one receptor”, and later in
their paper “judicious modification of such structures could be a viable alternative
in the search for new receptor agonists and antagonists” [41].

The concept of privileged structures was occasionally referred to during the mid
1990s, when the use of solid-phase synthesis for generating combinatorial libraries
was extended to nonpeptide structures. In a review published in 1996 by Ellman’s
group, privileged structures were defined as templates that have previously provided
potent compounds against a number of different receptor or enzyme targets [45].
It is interesting to note that in Ellman’s concept, a clear differentiation is made
between privileged structures and so-called designed templates, the latter being
based on key recognition motifs for specific protein targets. In this definition, a
privileged structure just needs to have a proven record in delivering therapeutically
relevant compounds, irrespective of any understanding of what makes a structural
element privileged, while a designed template bears encoded information of a
specific molecular recognition principle [45]. The syntheses of a dozen library
designs are summarized under the privileged structure-templated approach
(Figure 1.6) [45].

It is evident that all described privileged structures are heterocyclic scaffolds with
various ring sizes, heteroatom distributions, and substitution patterns. The synthesis
of these scaffolds was considered to be achievable by means of solid-phase chemistry,
thus yielding high-dimensional libraries. No emphasis is laid on whether the
template itself contains pharmacophoric elements or is just a scaffold with
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Figure 1.6 Structural scaffolds that served as templates for so-called
privileged structure-based combinatorial compound libraries.
R-groups are depicted at positions of combinatorial variations [45].

appropriate orientational characteristics for peripheral groups that contain the
pharmacophoric elements required for target binding. It is obvious that in these
days the opportunity to enrich the toolbox of solid-phase synthesis for library
generation dominated the conceptual considerations, rather than a detailed
understanding of structural determinants governing, e.g., details of family-wide
conserved ligand recognition principles or improving lead- or drug-like properties
of the library constituents.

1.5
Privileged Structures with Undesired Target Profiles

The most generic definition of a privileged structure refers to substructural elements
emerging in compounds that showed effects on more than one target protein [41],
irrespective of the corresponding target families they might belong to. This specific
characteristic of compounds that are discovered, e.g., as hits in numerous different
biological assays covering a broad range of protein targets, is not necessarily a
desired profile. The elimination of so-called ‘frequent hitters’ from compound
libraries was recently described by a group at Hoffmann-La Roche [46], since those
compounds were shown either to bind nonspecifically to a variety of targets or to
interfere with the utilized assay read-out methods. These compounds were clearly
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considered as undesirable starting points for optimization programs in medicinal
chemistry. Obviously, a differentiation between these promiscuous binders and
privileged structures is required, thus refining the original definition of Evans et
al. [41]. This is further supported by recent studies on underlying mechanistic
phenomena from Shoichet’s group at Northwestern University in Chicago [47]. An
in-depth study of screening hits that appear to be not drug-like with a noncompetitive
mode of action and contradictory structure—activity relationships revealed a common
mechanism that accounts for that undesired compound profile. The investigated
compounds tend to form molecular aggregates, as determined by dynamic light
scattering and electron microscopy, with particle sizes of 30 to 400 nm in diameter.
It is noteworthy that this phenomenon is not restricted to compounds that a trained
medicinal chemist would classify as not drug-like, but also occurs for drug-like
molecules such as steroids and kinase inhibitors [48] and even for known drugs
(Figure 1.7) [49].

In a comparative study, 50 unrelated drugs were assayed for inhibition of B-lacta-
mase, chymotrypsin, and malate dehydrogenase, although none of these enzymes
were considered targets of the selected drugs. Out of these 50 drugs, 7 compounds
were identified as behaving as aggregation-based inhibitors (Figure 1.7). Further
mechanistic studies revealed that the observed nonspecific inhibition resulted from
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Figure 1.7 Chemical structures of compounds shown by biophysical
investigations to form molecular aggregates, thus eliciting false-positive
biological activities in a variety of biochemical assays [47-50].
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the reversible adsorption of enzymes to the surface of the aggregates, formed by
the promiscuous inhibitors, as shown by electron microscopy [50]. By this specific
mechanism, the aggregate-forming inhibitors reversibly sequester enzyme from
the assay system, resulting in apparent inhibition. It was further shown that this
enzyme—aggregate adsorption could be reversed and even prevented by the addition
of detergents [50, 51]. The findings that high-quality compounds also tend to elicit
nonspecific biological activities by forming aggregates not only renders numerous
screening hits and associated optimization programs highly questionable, but also
defines a principally new de-selection criterion for hit and lead assessment, which
requires biophysical investigations before any significant medicinal chemistry
resource assignment.

1.6
File Enrichment Strategies with Recurring Substructures

Although the studies mentioned above revealed undesired types of ‘privileged
structures’, numerous investigations have focused on the identification of desirable
privileged structural elements. Even though this contribution is not aimed at
reviewing those studies, two early approaches should be mentioned because they
can be seen as pioneering studies that provided guidelines for the medicinal chemist
for the fragmentation of compounds into core structures and peripheral decoration
and for how this approach might drive chemistry programs based on privileged
molecular fragments. In this context, the interested reader is referred to the excellent
work of Bemis and Murcko from Vertex [52, 53] and of Lewell and colleagues from
Glaxo Wellcome [54, 55]. Both studies reveal frequently recurring substructural
elements that can be employed for proactively enriching as well as focusing
chemistry efforts toward the more productive regions of multidimensional mole-
cular diversity space. A variety of further in-silico tools have been developed since
then, as exemplified by a recent study of Sheridan of the Merck Research Laborato-
ries, who developed a method to identify molecular substructures that are associated
with, e.g., a therapeutic area or a mechanism-based biological activity [56].

Fesik and his group at Abbott Laboratories pursued an experimentally based
procedure of identifying fragments with generally high propensity for protein
binding [57] that was conceptually modeled after the Vertex [52, 53] and Glaxo
Wellcome approaches [54, 55] that relied on in-silico database mining metho-
dologies. NMR-based screening of more than 10 000 selected fragment-type
compounds against 11 target proteins revealed 12 privileged substructures that
appeared with statistical significance in compounds that were shown to bind to the
selected targets.

The main conclusion from this study refers to the preferential utilization of those
substructures in combinatorial libraries with the aim of qualitatively enriching an
in-house screening compound collection. The quality criterion, of those structural
elements of being privileged, relates only to the observation that compounds
containing one of the identified fragments might bind to an unspecified target

21
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with higher than average probability. A clear rationale as to why those fragments
tend to bind and a fragment-target family relation are not apparent.

1.7
Recurring Structures Devoid of Target Family Correlations

Once the focus of privileged structures is laid on conformationally constrained
core structures, any trained medicinal chemist can easily identify recurring
structural motifs from his own work or from literature studies. The benzodiazepine
scaffold [58], for example, is believed to mimic a rigid B-turn peptide conformation
that might exhibit prominent orientational characteristics for a pharmacophore-
encompassing molecular periphery. Such structural features, combined with the
plausibility of introducing three to four points of diversity onto the corresponding
scaffold during its construction, have made numerous scaffolds appealing sub-
structures for, e.g., combinatorial library synthesis, and thus are easily called
privileged structures (see Figure 1.6) [45, 58, 59]. Indeed, these types of templated
libraries emerged as prolific sources of hits against a broad range of enzyme and
receptor targets, but the primary rationale for the generation of those focused
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Figure 1.8 Chemical structures of derivatized 2-aminothiazoles
displaying biological activities on numerous target proteins.

WWW.ebook:%OOO.com


http://www.ebook3000.org

1.7 Recurring Structures Devoid of Target Family Correlations

compound files always was a common synthetic route, rather than an explicit
pharmacophore pattern comparison across the target types to be screened.

This is exemplified by the 2-aminothiazole core that is found in numerous drugs,
as well as clinical and preclinical candidates, addressing a broad spectrum of targets
[3]. No target family correlation is evident; instead, the compounds bind to enzymes
such as cyclooxygenases, phosphodiesterases, kinases, acetylcholinesterase, and
numerous members of the GPCR family and integrins (Figure 1.8) [3]. Most likely,
the versatile chemistry approaches delivering a decorated 2-aminothiazole-derived
compound are the main reason for this scaffold to appear as a recurring structural
motif in compounds targeting members of numerous different gene families.

As outlined above (Figure 1.6) [45], oligo-substituted five-membered heterocycles
with a conserved vicinal (1,2) di-phenyl substitution pattern are ideal representatives
of a recurring core structure that is found in numerous biologically active com-
pounds, including cyclooxygenase inhibitors, kinase inhibitors, GPCR antagonists
and even agonists, phosphatase inhibitors, and dopamine transporter inhibitors
(Figure 1.9) [3].

Since the spatial extent of the common underlying 1,2-di-phenyl substituted
heterocycle by far exceeds that of a generic scaffold, and the nature of the underlying
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heterocycle is quite diverse, a versatile chemistry can be ruled out as the main
reason why this structure type frequently occurs in biologically interesting low-
molecular-weight compounds. Even though crystallographically derived structures
for a variety of these compounds in complex with their target proteins are known,
a structural interpretation on the privileged status of the common fragment remains
unclear. The heterocycle bearing two adjacent phenyl rings in a vicinal relation
clearly prevents the two aromatic rings from hydrophobic collapse, thus representing
an orientational variation of the frequently occurring diphenylmethane moiety [60]
within biologically active compounds. This nicely indicates that chemical similarity
does not necessarily correspond to biological similarity.

The tricyclic neuroleptics and antidepressants, classical pharmaceutical textbook
compounds, represent an amazing example of compounds with a high degree of
chemical similarity displaying a bewildering array of biological activities. A search
in drug databases based on the generic structure depicted in Figure 1.10 reveals
more than 150 released drugs, with Zyprexa® (Table 1.1 and Figure 1.1), number
six on the list of best-selling drugs in 2001, among them. None of these drugs
seems to display a ‘clean’ target profile; instead, the desired neuroleptic and
antidepressant activity is predominantly achieved by antagonistic activity against
an array of biogenic monoamine receptors from the GPCR family, in addition with,
e.g., serotonin-uptake inhibitory activity (Figure 1.10).
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Figure 1.10 Selection of marketed neuroleptic and antidepressant
drugs belonging to the class of ‘tricyclics’. All depicted drugs have a
common underlying core structure (box in the upper left). The
receptor and enzyme targets for each compound are given explicitly.
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Anti-inflammatory and antihistaminic activity is encoded by a more selective
receptor antagonist profile, as exemplified by Olopatadine and Loratadine, respect-
ively (Figure 1.10). Based on the compounds shown in Figure 1.10, a target family
correlation might emerge, in that these compounds mainly address the classical
neurotransmitter-binding GPCRs, apart from a few other target proteins. However,
the database search mentioned above not only revealed compounds depicted in
Figure 1.10, but also a broad range of related analogs, individuals of which bind
quite selectively to a whole spectrum of enzymes and receptors (Figure 1.11).

Based on these findings, the question remains as to how a medicinal chemistry
setup could take advantage of these results in future programs. Since there is no
detailed insight in, e.g., a highly conserved compound-target interaction mode for
the structural elements described above, these findings can only serve to guide,
e.g., combinatorial chemistry initiatives or compound acquisition so that more
emphasis is laid on similarity to these recurring fragments, instead of undertaking
the attempt to systematically scan the molecular diversity universe.
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1.8
Convergent Pharmacophores for Target-hopping

The idea of proactively reusing already-established inhibitor, agonist, or antagonist
concepts for a second lead-finding initiative aimed at another target is occasionally
described in the literature. At the end of the 1990s, researchers from Rhéne-Poulenc
Rorer reported a novel arylsulfonylhydroxamic acid template (Figure 1.12) as an
underlying structure for a scaffolded combinatorial library [61, 62]. Subtle changes
in functional decoration displayed the necessary pharmacophoric patterns for
inhibition of members of either of two different target families, namely the matrix
metalloproteases (MMPs) and the phosphodiesterases (PDEs), respectively.

Even though there is little if any apparent structural similarity between the natural
substrates of the two enzyme classes — peptide sequences for MMPs vs. cyclic
nucleotide monophosphates for PDEs — there is an obvious element of convergence
of pharmacophoric arrangements. Minor changes in the backbone and aromatic
ring substituents yielded class-specific compounds (Figure 1.12). Apart from the
initial achievement of generating compounds that discriminate between the target
classes, nondiscriminating molecules were considered to constitute an intriguing
opportunity for developing dual inhibitors of MMPs and PDE4, based on the

H A\ H O//\\ H O//\\O
KM mp-1: 0.2 KM pmip-1: > 10 KM vmp-1: 1.0
MMP-2: 0.01 MMP-2: > 10 MMP-2: 0.01
MMP-3: 0.05 MMP-3: > 10 MMP-3: 0.5
1Cgo [MM] 1Cs, [UM] ICso [UM]
PDE4: > 1 PDE4: 0.001 PDE4: 0.03

Figure 1.12 The arylsulfonylhydroxamate scaffold (top) served as template
structure for compounds active on various members of the matrix metallo-
protease family, as well as of phosphodiesterase 4. By variation of the
molecular periphery (R-groups, X; top), discriminating compounds
(bottom left, bottom middle), as well as dual inhibitors (bottom right)
were obtained [61, 62].
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rationale that MMPs and PDE4 are key intervention points in a variety of inflamma-
tory diseases [62]. By fine-tuning the decoration pattern of the common arylsulfonyl-
hydroxamate template, compounds with well-balanced inhibitory profiles for
MMP-1, MMP-2, MMP-3, and PDE4 were identified (Figure 1.12) [62]. The emphasis
in these studies was primarily on convergence of a template design and utilized
combinatorial chemistry principles to maximize the impact of a single established
synthetic route in delivering compounds with more than a single application.
Although the pharmacophore relation between the two target families addressed
in these studies remains unclear, a certain element of convergence emerges with
the strategy of generating dual inhibitors against different targets for the treatment
of the same pathologies.

A research team at Sterling Winthrop aiming to develop low-molecular-weight
bradykinin B2 receptor antagonists used a well-defined element of convergence,
notably a proteolytic enzyme cleaving two different oligopeptides that specifically
bind to distinct receptors [63]. The metalloprotease angiotensin-converting enzyme
(ACE) cleaves angiotensin I to produce the vasoconstrictive angiotensin II within
the blood pressure controlling renin-angiotensin-system. But the hypotensively
active nonapeptide bradykinin is also cleaved by ACE to yield inactive products.
Since the enzyme ACE obviously recognizes both peptide sequences, a convergent
conformational relation exists between the two peptides. Consequently, ACE
inhibitors may also display structural features similar to those of bradykinin at its
ACE cleavage site. Based on this hypothesis, ACE inhibitors should also show
binding potential to the bradykinin B2 receptor, a member of the GPCR superfamily.
This last hypothesis is based on the assumption that the bioactive conformations
of bradykinin in the active site of ACE and the binding pocket of the B2 receptor
are identical, or at least highly similar. Based on preliminary structure—activity
relationships obtained from bradykinin-derived peptide analogs, an aromatic moiety
is required for B2 receptor binding at amino acid position 8 (P1’ as ACE substrate),
together with two terminal arginine sidechain-borne positive charges (Argl and
Arg9) that span a distance of roughly 10 A. The authors projected these pharmaco-
phoric groups onto a classical ACE inhibitor, i.e., Quinalapril, to obtain a hybrid
compound consisting of the ACE inhibitor skeleton as core, with bradykinin-specific
decoration elements attached to it (Figure 1.13) [63].

The Tic moiety was retained and the Zn**-coordinated carboxylate group of the
phenylbutanoyl fragment was removed to facilitate the incorporation of one of the
terminal charged groups. The resulting dipeptide analog showed a submicromolar
affinity as a B2 receptor antagonist. In this study, the convergent pharmacophore
of two apparently different bioactive compounds was ascribed to conformational
similarity, derived from the finding that both peptides served as substrates for the
same enzyme.

A group at Fujisawa Pharmaceutical aiming at the discovery of nonpeptide
bradykinin B2 receptor antagonists also exploited the suggestive structural
correspondence between the same two peptides [64]. The applied lead-finding
strategy focused on a primary screen of only 300 compounds carefully selected
from a previously pursued angiotensin II antagonist program. From that, a weak
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hit was identified bearing a cyanopyrrolyl-phenyl substituent, an isoster of the
biphenyltetrazole moiety that became almost the trademark of nearly all marketed
nonpeptide angiotensin II antagonists (Figure 1.14).
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Figure 1.13 A suggestive structural correspondence between the
ACE inhibitor Quinalapril (left) and bradykinin was used to design
novel B2 receptor antagonists, one of them shown on the right [63].
For details of this convergent pharmacophore strategy, see the text.
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Figure 1.14 Schematic illustration of the B2 receptor antagonist
design approach utilized by Fujisawa Pharmaceutical [64—66].
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Based on that high-micromolar hit, the benzyloxy-heteroaromatic substructure
was defined as a constant core for a virtual database screening that revealed 400
compounds containing the desired structural element of the search profile. From
screening of these compounds, the benzyloxy-substituted imidazo[1,2-a]pyridine
core (Figure 1.14) emerged as a promising candidate that was synthetically expanded
into a lead finding and optimization program [65]. Highly active B2 receptor
antagonists were identified possessing promising pharmacokinetic properties that
were clearly superior to those of peptide-based candidates [66]. This work represents
a textbook example of how a target similarity (AII receptor vs. B2 receptor) and a
convergence point of two distinct proteolytic cascades of two different peptides
were conceptually overlaid on ligand similarity. Once established, the concept
provided the basis for rapid lead finding and optimization in a follow-up project,
reusing molecular scaffolds and associated chemistries. Starting with a hit structure
encoding the convergent pharmacophore, specific compounds were obtained by
subsequent rounds of optimization. From a conceptual viewpoint, these studies
represent a rudimentary interpretation of the privileged structure-based masterkey
philosophy [3], since two members of the same target family were addressed
specifically by series of compounds that can be traced back to common precursor
chemotypes. However, those structural elements that encode the family-wide
commonality in ligand binding, i.e., the ultimate privileged structure, and those
that account for the final target selectivity still remain unclear.

Although in the previous case studies the convergent pharmacophore could be
ascribed to a target similarity and a common binding event to exactly the same
enzyme, in the following example common co-substrates serve as the cross-relating
entities defining common pharmacophoric patterns and associated chemistries
among different targets. The enzymes of interest in these studies are carbohydrate
sulfotransferases as potential anti-inflammatory targets [67, 68] that catalyze the
transfer of a sulfuryl group from the sulfate donor 3’-phosphoadenosine-5’-
phosphosulfate (PAPS) to a hydroxy or amino group of an acceptor saccharide.
This co-substrate very closely resembles ATP, which is the phosphate donor for all
kinase-catalyzed phosphorylation reactions, thus establishing a relation of a
sulfotransferase inhibitor project to known kinase inhibitor concepts (Figure 1.15).

The fact that the hydrophobic adenine binding pocket of crystallized estrogen
sulfotransferase [69] and of the heparin N-sulfotransferase [70] are similar to those
of kinases was also taken into consideration. On the basis of these parallels, kinase
inhibitors were screened for cross-reactivity with carbohydrate sulfotransferases.
Compounds from these purine-based libraries (Figure 1.15) displayed, at 2.4 uM
PAPS (0.5 x Ky), inhibitory activities in the range of 20 to 40 uM against the GIcNAc-
6-sulfotransferase NodH [71]. Following the same concept, active inhibitors against
the estrogen sulfotransferase were also identified in purine-based libraries [72]
(Figure 1.15).

These few examples were chosen to illustrate different elements of convergence
that can be exploited to utilize suggestive pharmacophore relations for cross-
fertilizing medicinal chemistry projects on targets in the same or different protein
families. However, the applied pharmacophoric relations did not reveal generic
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Figure 1.15 Co-substrate similarity between ATP (top left) and PAPS
(top right) initiated a directed search for carbohydrate sulfo-transferase
inhibitors based on kinase inhibitor compound collections [67, 68, 72].
The resulting sulfotransferase inhibitors together with their inhibitory
activities are shown at the bottom.

privileged structures with appropriate functional decoration patterns that would
allow systematic exploration of a target family in a chemogenomics perspective.

1.9
Target Family-directed Masterkey Concept

The target family-directed masterkey concept [3] represents the most rational and
stringent application of privileged structures and is tailor-made to a systematic
exploration of entire target classes by a once-established medicinal chemistry
concept. A privileged structure in this context is a substructural element with a
proven correlation to a target family. It encodes a single or a variety of key structural
elements that account for a target family-wide commonality in ligand binding.
lustrative examples of this quality of privileged structures are reverse-turn mimics
with appropriate functional groups for decoration that simulate a specific peptide-
derived backbone conformation required for a peptide sequence to be recognized
by a variety of receptors [73, 74]. Although the skeleton of the turn mimic itself is
the molecular imprint of a common underlying recognition principle, thus being
the privileged structure, the peripheral decoration with selected pharmacophoric
groups ensures finally achieving the required selectivity for distinct peptide-binding
receptors. Since the recognition of peptide-encoded pharmacophores in reverse-
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turn conformations is a recognition principle widely spread over several target
families (e.g., integrins [75], GPCRs [76], SH2 domains [77]), the target family bias
of a corresponding masterkey concept is less pronounced.

The protein superfamily of proteases [78, 79], however, is an ideal framework for
a directed privileged structure-based masterkey concept. It has already been reported
that the 5,5-trans-fused lactam moiety was systematically optimized and explored
as a serine protease-directed scaffold by GlaxoSmithKline and has delivered
progressible lead compounds for various members of that target class [3], such as
thrombin [80, 81], elastase [82, 83], HCMV protease [84, 85], and the hepatitis C
virus-encoded NS3-4A protease [86, 87]. Here, the initially identified scaffold was
engineered toward the serine protease-wide commonality in substrate binding and
processing [3].

Proteases in general, and cysteine proteases [88] in particular, still represent a
major challenge for lead identification approaches, since these enzymes have turned
out to be resistant to, e.g., HTS-based lead-finding initiatives [78]. Consequently,
the family of cysteine proteases provides an ideal framework for the elaboration of
amasterkey concept, also because extensive family-wide characteristics in substrate
binding and processing are known. In general, a minimal fragment of 4-6 residues
of a peptide sequence is bound in an extended conformation, while all cysteine
proteases work with a direct nucleophilic attack on the scissile peptide bond with
the thiol sidechain of the active-site cysteine residue [89]. Based on this enzymatic
mechanism, the majority of inhibitor design principles established in the past years
employ irreversible alkylation reactions of the catalytically active thiol group with,
e.g., a-haloketones, o-diazoketones, epoxides, or vinyl sulfones [89]. Since irrever-
sible alkylation has tremendous toxic potential, due to nonspecific alkylation of
other biomolecule-encoded nucleophiles, reversibly modifying compounds are
considered as inhibitors of choice. Aldehydes, ketones, nitriles, and o-ketoesters
also bind covalently to the cysteine sidechain, but in a reversible reaction [78, 89].
Due to the chemical nature of these classical protease-directed warheads, the
corresponding, mostly peptidomimetic, inhibitors allow only either the left-side
(unprimed) or the right-side (primed) areas flanking the cleavage site of the peptide-
binding canyon within a protease structure to be addressed [90]. To achieve sufficient
binding affinity and, more importantly, the required target selectivity, active-site-
spanning cysteine protease inhibitors, as already developed and marketed for
aspartic protease inhibitors, are most preferred. They allow one to address binding
pockets at will on both sides of the catalytic centre. For that purpose, a bifunctional
building block including the mechanism-directed warhead in the central part of
the privileged structure allows not only addressing the thiol sidechain by reversible
complex formation, but also expanding the structure in both the unprimed and the
primed direction of the recognition pocket. In this context, structural analogs of
the 1,3-diaminopropanone moiety have emerged as versatile cysteine protease
inhibitor designs that reversibly form a hemithioketal when bound to the target
enzyme (Figure 1.16). Further, they can be appropriately modified on both amino
groups to explore binding epitopes all along the binding channel. Researchers at
Merck Research Laboratories first described the concept in 1994 for the synthesis
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Figure 1.16 Left: Schematic presentation of the 1,3-diaminopropanone
core moiety as cysteine protease-directed and active site-spanning inhibitor
principle (top). Upon reaction with the enzyme nucleophile, the ketone is
reversibly converted to a hemithioketal (bottom). Right: Peptidomimetic
cysteine protease inhibitors of subsequent generations are depicted
together with their inhibitory activity and primary targets.

of interleukin 1B converting enzyme (ICE) inhibitors, yielding a peptidomimetic
compound with nanomolar inhibitory activities [91]. No evidence of irreversible or
time-dependent inhibition was observed for the bis-acylated diaminopropanone
moiety-containing compounds (Figure 1.16).

The same concept was reintroduced 3 years later by a medicinal chemistry team
at SmithKline Beecham Pharmaceuticals designing cathepsin K inhibitors, initially
yielding a C,-symmetric 22 nM compound (Figure 1.16) [92]. Upon optimization
of the primed-side substituent of the diaminopropanone core, the inhibitory potency
was further increased to 1.8 nM [92] (Figure 1.16). Based on analysis of crystal
structures of enzyme—inhibitor complexes (PDB code: 1AUO [92], 1AU2 [92]),
conformational constraints were introduced to optimize the steric fit, yielding a
series of cyclic diaminoketone derivatives as novel privileged structure cores [93].
An x-ray cocrystal structure of one of the cyclic diaminoketone-based inhibitors
showed that the inhibitor spans both sides of the active centre [93]. The versatility
of the diaminopropanone core as a cysteine protease-directed privileged structure
was recognized, and combinatorial chemistry concepts based on that inhibitor
principle were established in industry [94] as well as in academia [95]. At SmithKline
Beecham, a four-dimensional library comprising only 18 compounds was reported
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to deliver compounds that were assayed against a variety of cysteine proteases with
reported activities against cathepsin K, cathepsin L, and cathepsin B (Figure 1.17)
[94].

Ellman’s group expanded the scope of the difunctionalized ketone core, in that
not only 1,3 diaminoketones were prepared combinatorially, but also 1-amino-
propanones with acyloxy and alkylated mercapto substituents in the 3-position
(Figure 1.17) [95]. In this model study, no biological data on target proteases were
reported [95].

Seto and coworkers at Brown University further expanded the idea of a bifunctio-
nal cyclic ketone as a central building block for active site-spanning cysteine protease
inhibitors, to a cyclohexanone nucleus yielding a design for a two-dimensional
combinatorial library (Figure 1.17) [96]. This strategy is the extension of previous
work by that group on monofunctionalized heterocyclohexanones (Figure 1.17) that
were found to be active serine protease inhibitors [97], as well as cysteine protease
inhibitors [98]. These amino-substituted heterocyclohexanones allowed binding-
mediating entities to be positioned only on the unprimed side of the substrate-
recognition pocket. In contrast, the disubstituted and active site-spanning core
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Figure 1.17 Combinatorial library designs for compound collections
that are based on cysteine and serine protease-directed scaffolds.
Top: Four-dimensional library design [94] (left) utilized by SmithKline
Beecham for generating cathepsin K inhibitors (right).
Middle: Three dimensional library design (left) employed by the
Ellman group [95] to generate viable protease inhibitors (right).
Bottom: The active site-spanning cyclohexanone core (left) was
conceptually derived from a non-active site-spanning mono-
substituted heterocyclohexanone derivative [96-98] (right).
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bridges over the catalytic centre and allows combining primed- and unprimed-side
binding epitopes. Synthesis and biological evaluation of a 400-member library
revealed detailed structure—activity and structure—selectivity relationships against
cathepsin B, plasmin, urokinase, kallikrein, and papain [97].

The difunctionalized linear or cyclic molecular skeletons encompassing a quies-
cent warhead targeted against active-site nucleophiles of proteases emerged as a
validated privileged structure with proven target family correlation. Additionally, the
privileged structure offers sufficient opportunities to engineer the required peri-
pheral diversity into the inhibitor compounds, since two to four diversification points
allow for tailoring selectivity, thereby fully exploiting the conceptual advantage of
active site-spanning inhibitors over the classical serine or cysteine protease inhibitor
concepts. In this context, combinatorial chemistry approaches were established that
aided in the generation of target family-biased compound libraries with front-loaded
rationales based on experimental validation of the privileged core entity.

Interestingly, researchers at Hoffmann-La Roche reported the foundations for a
similar concept applicable to aspartic proteases in 1999, identifying disubstituted
piperidines as renin inhibitors (Figure 1.18) [99, 100]. Also here, a cyclic disub-
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Figure 1.18 Left: Piperidine-derived inhibitors (top) were shown to
inhibit aspartic acid proteases by bridging the two catalytically active
aspartate residues (bottom). Based on this finding [99, 100],
together with the knowledge of the cyclohexanone-based active site-
spanning cysteine protease inhibitors [96-98], novel cyclic warheads
against aspartic acid proteases can be designed as target family-
directed privileged structures [3, 101].
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stituted structure contains the protease family-specific warhead, in this instance,
a protonated secondary amine forming two charge-enforced hydrogen bonds to
the catalytically active aspartate residues, while the peripheral substituents reach
into binding pockets on both sides of the catalytic centre.

This clearly resembles the inhibition mode of the serine and cysteine protease
inhibitors described above. Iterative refinement (Figure 1.18), e.g., by variation of
ring size and symmetrization of the functional decoration pattern, combined with
subsequent extrapolation of the renin-specific finding to the entire aspartate protease
family, is the apparent basis for a new generation of nonpeptide, lead-like inhibitors
with multiple therapeutically relevant endpoint opportunities. The five-membered
3,4-di(aminomethyl)-pyrrolidine (Figure 1.18) served as the core structure for highly
active aspartate protease inhibitors [101].

Additional tailor-made privileged structures that allow for systematic exploration
of pharmaceutically relevant target families are given elsewhere [3].

1.10
Conclusions and Perspective

The concept of target family-directed masterkeys based on privileged structures in
its most stringent definition [3] contributes to the repertoire of chemogenomics,
since it provides a powerful means for lead generation that is systematically
applicable to entire gene families. This establishes the required forward-integration
of genomic and proteomic data into the realm of synthetic chemistry. Genomics-
and proteomics-derived technologies, originally envisioned to provide multiple
opportunities for the discovery of new drugs with first-in-class and ideally best-in-
class characteristics, has undoubtedly delivered novel insights into the genetic and
mechanistic basis of several diseases, also reemphasizing the central importance
of target validation for the success of a drug discovery project. Together with the
rapid explosion of heterogeneous data that have become available to pharmaceutical
research teams, novel technologies and a high degree of automation have emerged
in all drug discovery-related disciplines. Despite all these revolutionary technologies
that have emerged in recent years, solid indications for a sustained decrease in the
pharmaceutical industry’s productivity are apparent. Recent technologies have not
yet succeeded in increasing the output of NCEs or in reducing the costs and
timelines for developing new drugs. Those technologies creating just new data
have by far outpaced the ability to contextualize these data into the framework of
drug research. The entire biotechnology revolution, mainly based on the allure of
‘omes’ and ‘omics’, seems to have made only a peripheral contribution to therapeutic
intervention in challenging diseases. Obviously, overly optimistic predictions
contributed to the development of totally unreasonable promises and expectations
as to the immediate impact of any novel technology on the discovery of new
therapeutics. Within the complex and challenging business of drug discovery,
experience will always win over expectations. This old insight increasingly dominates
today’s drug discovery in the pharmaceutical industry and is having growing impact
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also on the still young biotechnology industry, which is currently undergoing a
difficult period of consolidation. Since the majority of pharmaceutical companies
are organized around therapeutic areas with research teams sequentially scrutiniz-
ing targets from various receptor and enzyme families, the gene family-directed
masterkey approach presented in this contribution is predicted to have maximal
effect in smaller and more flexible medicinal chemistry oriented biotechnology
companies.

The major gain in lead discovery and optimization efficiency is achieved by
repeatedly using established and steadily growing knowledge on a target family in
all involved areas of biology and chemistry. Once optimized, technical procedures
for, e.g., protein production, purification, assay development, and screening, can
be used for numerous members of a target family of interest. A considerable
percentage of a compound collection with built-in target family bias, preferentially
based on tailor-made privileged structures [3], will show activity against distinct
members of the target enzyme or receptor cluster, with emerging structure—activity
and structure—selectivity relationships, respectively. Multiple use of target family-
directed biology and chemistry resources is definitely more efficient than starting
from scratch for each new discovery project, and so will accelerate lead finding and
optimization campaigns considerably.

In the chemogenomics approach outlined in this contribution, increased
productivity and shorter timelines are achieved by a strict reuse of well-designed
chemistry concepts, based on the mutual overlap between privileged structure-
based pharmacophore space and the structural and physicochemical requirements
of the ligand binding site of target family members. This overlap is the privileged
structure-encoded information content that is optimized for complementarity
toward the target family-wide commonality in molecular recognition. A clear
structural understanding of this relation is required to leverage the intrinsic potential
of a target family approach with associated multiple therapeutic scopes.

In conclusion, this contribution aims at strengthening the ‘chemo’ aspect of
chemogenomics. Over the long-term, chemogenomics will further mature into a
synthesis of genomics- and proteomics-derived approaches and modern medicinal
chemistry, resulting in a fully integrated approach to drug discovery.
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2
Drug Discovery from Side Effects

Hugo Kubinyi

Many important therapeutic discoveries have resulted from serendipitous ob-
servations. Side effects of drugs or drug candidates in the clinics have paved the
way to new applications of a drug or to the development of chemically modified
analogs. Unexpected pharmacological effects against physiologically related or other,
more diverse, targets have resulted in drug candidates with different modes of
action. In the past decade, more systematic approaches have been followed:
chemogenomics, the systematic investigation of the biological effects of certain
classes of compounds in certain target families, and the selective optimization of
drug side effects.

Such side effects may result from:

e A physiological reaction of the body to the action of the drug (e.g., the reflex
tachycardia resulting from the antihypertensive activity of dihydropyridine
calcium-channel blockers).

e Overdose of drugs with a narrow therapeutic range and/or unfavorable pharmaco-
kinetics (e.g., phenprocoumon or warfarin, which exert their action in a delayed
and indirect manner by inhibition of vitamin K biosynthesis).

o Action on different targets by the same mechanism (e.g., gastrointestinal bleeding
after cyclooxygenase inhibition by acetylsalicylic acid, bradykinin-mediated cough
as a side effect of angiotensin-converting enzyme inhibitors).

e Action on organs other than the target organ (e.g., peripheral tachycardic and
hypertensive effects of dopamine after systemic application of the anti-Parkinson
drug 1-dopa, sedative side effects of lipophilic histamine H; antagonists).

e Lack of selectivity, i.e., inhibition, agonism, or antagonism at several different
targets, a most common reason for drug side effects (e.g., respiratory depression
by morphine, cardiotoxicity of certain drugs mediated by hERG channel inhibi-
tion).

e Inhibition of cytochrome P450 isoenzymes (e.g., nonlinear pharmacokinetics of
propafenone, producing an exponential increase of plasma levels due to inhibition
of its metabolism by CYP2D6, after application of higher doses).
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¢ Drug—drug interactions resulting from cytochrome P450 inhibition or induction,
a very common reason for adverse drug effects (e.g., terfenadine, which exerts
fatal cardiotoxicity by hERG channel inhibition in the presence of a CYP3A4
inhibitor, whereas its active metabolite fexofenadine is not a hERG channel
inhibitor).

e Genetic disposition, either by interaction of the drug with a mutant target or by
the lack of certain (or mutant) metabolic enzyme (e.g., the inability of about
1-3% of the Caucasian population to metabolize S-warfarin, due to a CYP2C9
deficiency).

There must always be a significant advantage of the achievable therapeutic benefit,
as compared to the risk of drug-related side effects. Severe side effects can only be
tolerated in treatment of chronic degenerative or life-threatening diseases like
arthritis, cancer, or AIDS. However, adverse drug side effects are frequently observed
after medication; their high incidence, even as a relatively common cause of death,
is only gradually being recognized.

However, a closer inspection of the history of drug discovery [1-3] shows that
many new drug applications resulted from clinical observations of side effects or
from the optimization of such unexpected side effects into new therapeutic areas.
Only some prominent drugs that resulted from serendipitous observations of clinical
side effects are discussed in the following sections. However, even these few
examples show the importance of this source of new leads in drug research. Some
more examples are discussed in special monographs on the history of drug research
[1-3], as well as in some other medicinal chemistry and pharmacology textbooks
[4-11] and reviews [12-14].

In addition to clinical observations of drug side effects, the optimization of side
activities that are discovered by in vitro investigation plays an important role in
drug research. Recently, Wermuth proposed using this approach as a general strategy
for the “selective optimization of side activities” (the SOSA approach) [15]; in support
of this concept he quotes Sir James Black, the 1988 Nobel Laureate in Physiology
and Medicine, who stated “the most fruitful basis for the discovery of a new drug is
to start with an old drug”.

2.1
A Historical Perspective: The Great Time of Serendipitous Observations

The early history of drug discovery is characterized by many serendipitous drug
discoveries [1-3, 9, 16]. After the preparation of nitrous oxide by Humphry Davy in
the early 19th century, fun parties with this gas, and also with ether, became popular;
people liked the euphoric effect after inhaling the chemicals. The anesthetic
properties of nitrous oxide and ether were discovered in the 1840s just by chance,
because participants of such events did not experience any pain after being hurt.
The antianginal properties of organic nitrites were discovered at about the same
time: inhalation of amyl nitrite vapor or oral uptake of a small amount of nitro-
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2.1 A Historical Perspective: The Great Time of Serendipitous Observations

glycerin resulted in severe headache but also in relief of angina pectoris symptoms.
Today we complain about the long development time of new drugs. However, this
has tradition: after the observation by the Italian chemist Ascanio Sobrero that
even a small dose of nitroglycerin causes headache, published in 1847, the first
application to a patient occurred only in 1878, 31 years later. People were obviously
frightened of using an explosive as a remedy; in his late years, Alfred Nobel, who
invented dynamite in 1867, had to take this drug himself [2, 3]. The incompatibility
of disulfiram (Antabus®) with alcohol consumption was discovered when rubber
workers, having contact with this antioxidant, complained about alcohol-induced
periods of sickness; another version says that two pharmacologists who took this
drug as an anthelmintic became ill at a cocktail party [1]. The hallucinogenic
properties of lysergic acid diethylamide (LSD) were discovered after the accidental
uptake of minor amounts of this compound by Albert Hofmann [9]. And, last not
least, all artificial sweeteners of major importance, i.e., saccharin, cyclamate, and
aspartame, were discovered by unexpected observations of their sweet taste [9].

A more or less systematic search for new drugs started in the last two decades of
the 19th century. Although acetylsalicylic acid 1 (ASS, Aspirin®, Bayer; Figure 2.1)
was originally designed as a ‘better’ derivative of salicylic acid, it is much more
than just a prodrug. ASS is more active than its parent drug and is indeed better
tolerated, but it causes gastrointestinal bleeding as a prominent side effect. In the
1970s it became clear that both its activity and its side effect are mediated by the
same target. ASS inhibits cyclooxygenase, which converts arachidonic acid into
prostacyclin, which is further converted into prostaglandins and thromboxane.
Whereas inhibition of biosynthesis of the pain-mediating prostaglandins is
responsible for the analgesic and antipyretic activities of ASS, inhibition of
thromboxane biosynthesis is responsible for the increased bleeding tendency. Since
thrombocytes have no nucleus and therefore no protein biosynthesis, platelet
cyclooxygenase remains inhibited over the whole thrombocyte lifetime of about
120 days; correspondingly, thrombosis protection by aggregation inhibition can be
achieved by application of only 100 mg or even less of ASS per day. Low-dose ASS
treatment is now a standard therapy for the prevention of stroke, heart attack, and
thrombosis.

ooH | O._ _COO Na* 7 Et
O\H/CH3 ~ 2" HN £t
o Hg* '0)\\N o

1 2

Figure 2.1 Acetylsalicylic acid 1 (Aspirin®, Bayer) is much more than a
‘prodrug’ of salicylic acid. Its major contribution to biological activity
comes from a unique mechanism of action: the activated acetyl group
is transferred to a serine hydroxyl group in the binding site of cyclo-
oxygenase. Merbaphen 2 (Novasurol®, Bayer) was the first example
of an organomercurial diuretic; some analogs with less severe side
effects were the therapeutic standard from about 1920 to 1950.
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The diuretic organomercurials are most probably the very first example of the
discovery of a class of therapeutically useful drugs by a clinical side effect of one of
their members. In 1888, mercury salicylate was introduced for the treatment of
syphilis, followed by mersalyl in 1906 and arsphenamine (E 606), discovered by
Paul Ehrlich in 1909. On October 7, 1919, a pale and weak 21-year-old female,
Johanna M., was brought to the First Medical University Clinic in Vienna, in an
insane status, with clear symptoms of severe neurosyphilis. Alfred Vogl, a 3rd-year
medical student, was ordered to apply mercury salicylate, in a desperate attempt to
help. Not knowing about the properties of this compound, he asked for a 10%
aqueous solution for intramuscular injection. After a few days, when he had not
received the solution, he was told that the compound was too insoluble. A colleague
proposed trying a recently developed analog, merbaphen 2 (Novasurol®, Bayer;
Figure 2.1), a water-soluble salt of an organomercurial compound with barbitone.
After approval by his supervisors, he applied it to the suffering patient. To his great
surprise, the daily urine production by the patient increased from 200-500 mL to
1200 mL, and after the third application of the drug even to 2000 mL. Application
to other patients produced up to 10 L urine within 24 hours — a diuretic effect that
had not been observed before! Merbaphen was too toxic for therapeutic application,
but follow-on products held their place as diuretics till the 1950s, when another
observation of a clinical side effect led to the discovery of the much safer sulfonamide
diuretics (see below) [3, 4, 7].

A most fascinating area of rational drug research (indeed, rational drug re-
search is not an invention of our time) is the systematic structural variation of
morphine 3 (Figure 2.2). Morphine, discovered by Sertiirner in 1806, has, in
addition to its strong narcotic and analgesic activities, also antitussive, con-
stipating, and respiratory depressant side effects. The creativity, intuition, and
tenacity of generations of medicinal chemists have produced many morphine
analogs, with much simpler chemical structures and different opiate receptor
subtype selectivities [3, 4, 17]. However, the side effects could also be optimized.
Whereas pethidine 4 (meperidine; originally designed as an anticholinergic
atropine analog) and fentanyl 5 are prototypes of morphine-related strong anal-
gesics (Figure 2.2), dextromethorphan 6 (the methyl ether of the p-enantiomer of
the analgesic levorphanol; Figure 2.3) is completely devoid of analgesic activity; it
retains only the antitussive properties of morphine. Loperamide 7 is also devoid
of analgesic activity, despite its ability to pass the blood—brain barrier; after its
uptake, the pGP transporter eliminates the drug by active transport; corres-
pondingly, loperamide is used for the treatment of acute and chronic diarrhea.
Further research in this area led to the highly potent neuroleptic haloperidol 8
(Figure 2.3). Whereas a pethidine analog with a butyrophenone side chain is still
a strong analgesic, haloperidol 8, bearing a hydroxyl group instead of the ester
group, turned out to be a potent dopamine antagonist [1-3]. As such, it is used
for the treatment of schizophrenia and other manic disorders. The morphine
series is also one of several examples in which the chemical structures of ago-
nists (e.g., morphine 3) and antagonists (e.g., nalorphine 9) are very closely
related [6-8].
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Figure 2.2 Morphine 3 was the lead structure for many structurally
much simpler strong analgesics, e.g., pethidine 4 and fentanyl 5.
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Figure 2.3 Dextromethorphan 6, the unnatural enantiomer of a
narcotic morphine analog, is an antitussive drug. The antidiarrhea
drug loperamide 7 and the neuroleptic drug haloperidol 8 also resulted
from structural modification of morphine. The morphine antagonist
nalorphine 9 differs from the opioid agonist morphine 3 (Figure 2.2)
only by having an N-allyl group instead of the N-methyl group.

2.2
Clinical Observations of Side Effects

As with the diuretic effect of organomercurials, many other new drugs have resulted
from unexpected observations of clinical side effects. An especially rich source of
new drugs resulted from the discovery of the antibacterial sulfonamide sulfamido-
chrysoidine 10 (Prontosil rubrum®, Bayer; Figure 2.4) by Gerhard Domagk in 1935.
After Jacques and Therese Trefouel gave evidence that the metabolic cleavage product
sulfanilamide 11 is the active agent, many groups started on the synthesis of analogs,
to improve activity and pharmacokinetic properties [2, 3].

Massive doses of sulfanilamide, as well as of other sulfonamides, caused alkaline
diuresis as a side effect. From 1940 onwards, the mechanism of this side effect was
further investigated; it was confirmed that carbonic anhydrase inhibition was
responsible for the diuresis. Presenting the whole story of the development of
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Figure 2.4 Sulfamidochrysoidine 10 (Prontosil rubrum®, Bayer)
and related antibacterial sulfonamides act via the metabolite
sulfanilamide 11, which is an antimetabolite of p-aminobenzoic
acid in the bacterial biosynthesis of dihydrofolic acid.
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Figure 2.5 In addition to its antibacterial activity, sulfanilamide 11
(Figure 2.4) inhibits the enzyme carbonic anhydrase. Acetazolamide
12 is much more potent as a carbonic anhydrase inhibitor but its
clinical use as diuretic was impaired by some serious side effects.
Hydrochlorothiazide 13 is the prototype of orally active saluretic
sulfonamide diuretics. Furosemide (frusemide) 14 and bumetanide
15 are so-called ‘loop diuretics’.

diuretic sulfonamides [1-3] is beyond the scope of this chapter, but some prototypes
12-15 of this highly successful class of therapeutics, with different mechanisms of
action, are presented in Figure 2.5. Today, these drugs are not only important
diuretics but are also used in combination therapy of high blood pressure [4, 6, 7].

Due to the carbonic anhydrase inhibition of sulfonamides, it was also possible to
design topically active analogs for the treatment of glaucoma, e.g., dorzolamide 16,
the result of a structure-based design (Figure 2.6) [18]. Sulfaguanidine 17 is a
sulfonamide with only poor bioavailability; accordingly, it was tested against
intestinal infections, but it turned out to be an inhibitor of thyroid hormone
biosynthesis. This unexpected result paved the way to antithyroid drugs of the
thiourea and thiouracil type [2, 3]. Dapsone 18 (Figure 2.6) may be considered a
phenylog of sulfanilamide; still nowadays it is a standard drug for the treatment of
leprosy [1].

In addition to the acceptable clinical side effects of many sulfonamides, some
severe toxic effects were observed. In 1942, Marcel Janbon, the head of the medical
faculty at Montpellier University, investigated an isopropylthiadiazole derivative of

MWw.ebook:%OOO.com


http://www.ebook3000.org

2.2 Clinical Observations of Side Effects | 49

JCHS NH,
A" e Sy
E 2

17
| |

I\ N\
co oo |-|2N4<;>—so,r<i>—m-l2
18

16

Figure 2.6 Dorzolamide 16, a topically active carbonic anhydrase
inhibitor, resulted from a structure-based ligand design; it is used
for the treatment of glaucoma. Sulfaguanidine 17 inhibits thyroid
hormone biosynthesis. A phenylog of sulfanilamide 11 (Figure 2.4),
dapsone 18, is used for the treatment of leprosy.
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Figure 2.7 N-Isopropyl-thiadiazolyl sulfanilamide (IPTD) 19 was the
first sulfonamide that showed antidiabetic properties in the clinics.
Carbutamide 20 and tolbutamide 21 are also antidiabetics;
tolbutamide 21 has a shorter biological half-life than carbutamide
20, due to its methyl group instead of the chlorine atom; in addition,
tolbutamide does not show antibacterial activity. Glibenclamide 22
is an antidiabetic drug with improved therapeutic properties.

sulfanilamide, IPTD 19 (Figure 2.7), in typhoid patients. However, instead of being
cured, some patients became very ill and a few of them even died. Quick recovery
of the patients after intravenous glucose application led to the hypothesis that the
compound produced severe hypoglycemia. In his PhD work, the medical student
Auguste Loubatieres confirmed in animal experiments that the compound could
indeed be used for the treatment of diabetes. However, due to bad experience with
some other antidiabetic compounds and due to the general situation at the end of
World War II, this proposal was not pursued [2, 3]. Only 12 years later, in February
1954, Klaus Fuchs at the Auguste Victoria Hospital in Berlin investigated a new
sulfonamide for the treatment of severe infections, which was supplied by
Boehringer Mannheim. After the high doses that were needed for treatment, his
patients showed severe neurological symptoms as well as concentration and memory
defects. After self-administration, he experienced all the signs of a hypoglycemic
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Figure 2.8 Clonidine 23 was designed as a nasal decongestant but
it turned out to be a potent antihypertensive drug. Clinical tests
revealed the antidepressant activity of iproniazid 24, an isopropyl
analog of the antituberculosis drug isoniazid 25. p-Penicillamine 26
was originally used to treat Wilson’s disease, to eliminate an excess
of copper ions; later it was recognized to have beneficial effects in
rheumatoid arthritis.

state, which disappeared after eating lunch. Fuchs and his supervisor Hans Franke
investigated the compound in healthy and diabetic patients and were able to confirm
their potential as relatively safe antidiabetic agents. The very first antidiabetic sulfo-
namides, carbutamide 20 and tolbutamide 21, were later replaced by better-tolerated
analogs like glibenclamide 22 (Figure 2.7) [2, 3, 6, 7, 10].

The anilino-imidazoline clonidine 23 (Catapresan®, Boehringer Ingelheim;
Figure 2.8) was designed by the chemist Helmut Staehle as a nasal decongestant.
When the secretary of a colleague caught a nasty cold, she was ready to test the new
drug, telling them “I’ll take anything if I can just get rid of these sniffles!” Shortly
after taking the drug she became tired and fell asleep. After she was brought home,
she continued sleeping for about 20 hours. A controlled self-experiment by her
boss, the physician Martin Wolf, had the same outcome, with a heart rate reduction
to about 4048 beats s~ and a blood pressure decrease to 90 vs. 60 mm Hg. Clearly,
the compound was a potent antihypertensive drug, which was confirmed by further
pharmacological and clinical investigations [3, 10, 13].

Iproniazid 24, an alkyl analog of the antituberculous drug isoniazid 25 (Figure 2.8),
surprisingly showed mood-improving activity in several depressed tuberculosis
patients, which turned out to result from a monoamine oxidase (MAO) inhibitory
activity. Since the compound was already registered as an antituberculosis drug
and since it constituted the very first effective treatment of depression, more than
400 000 patients received it within only one year after the first announcement of its
antidepressant activity [2, 33]. Later it was withdrawn from therapy, due to
hepatotoxic side effects.

p-Penicillamine 26 (Figure 2.8) has for long time been used for the treatment of
Wilson's disease, a metabolic disorder in which absorbed copper is deposited mainly
in the liver and in the brain. Long-term application of this compound leads to
suppression of rheumatoid arthritis, which now is its main therapeutic use [3].

Sildenafil (Viagra®, Pfizer), the first drug effective in male erectile dysfunction
(MED), has a very interesting history. More than 30 years ago, the company May &
Baker started research on antiallergic xanthine derivatives [19]. Their first leads 27
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Figure 2.9 Already three decades ago, the clinical candidate zaprinast
27 (M&B 22, 948) and its sulfonamide analog 28 were synthesized.
Whereas 27 is about 40 times more active as an antiallergic agent
than the standard compound cromoglycate, 28 has a 1000-fold
activity. Sildenafil 29 was originally investigated as an antianginal
drug, but turned out to support and maintain penile erections.

and 28 (Figure 2.9), being between 40 times [19, 20] and 1000 times [21] more
active than cromoglycate, the standard drug at this time, were structurally closely
related to sildenafil. Zaprinast 27 (M&B 22, 948; Figure 2.9), was clinically tested
as an orally active ‘mast cell stabilizer’ against histamine- and exercise-induced
asthma. In addition to this activity, zaprinast has vasodilatory and antihypertensive
side effects. In the mid 1980s, Nick Terrett and his team at Pfizer were searching
for a new antihypertensive principle [22]. They followed the approach of enhancing
the biological activity of the atrial natriuretic peptide (ANP) by prolonging the action
of the second messenger of the corresponding receptor response. For this purpose,
they were looking for a compound that would prevent the degradation of cyclic
guanosine monophosphate (cGMP) by phosphodiesterase. As zaprinast 27 was
one of the very few cGMP PDE inhibitors known in 1986, they started from this
lead to improve its activity and selectivity. In 1989, the result of extensive structural
modification was the PDE5-selective inhibitor sildenafil 29 (UK-92, 480; Figure 2.9),
later clinically tested as an antianginal drug. The drug turned out to be safe and
well tolerated but its clinical activity was disappointing. However, early in 1992, a
10-day toleration study in healthy volunteers led to the observation of a strange
side effect. Among other effects, the patients reported some penile erections after
the 4th or 5th day. Although it was not an obvious choice to test the new drug in
male erectile dysfunction, its further clinical profiling went into this direction. After
convincing clinical results, Viagra® was introduced into therapy in March 1998 [22].

23
Privileged Structures Bind to Many Different Targets

In 1988, Evans observed that organic compounds with certain structures “appear
to contain common features which facilitate binding to various ... receptor surfaces,
perhaps through binding elements different from those employed for binding of
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the natural ligands”. From this observation he concluded that “certain privileged
structures are capable of providing useful ligands for more than one receptor and
that judicious modification of such structures could be a viable alternative in the
search for new receptor agonists and antagonists” [23]. This was a generalization
of observations that had been made before in studies of several classes of com-
pounds, e.g., phenethylamines, tricyclic G protein-coupled receptor (GPCR) and
transporter ligands, benzodiazepines, and steroids (e.g. [24]).

Phenethylamines include a wide variety of biologically active compounds.
Depending on their lipophilicity, which correlates with their ability to penetrate the
blood-brain barrier, they exert central nervous system activities (e.g., the lipophilic
analogs amphetamine 30, methamphetamine 31, and MDMA 32), peripheral
activities (e.g., the polar analogs dopamine 33, norepinephrine 34, and epinephrine
35) or both (e.g., ephedrine 36), due to intermediate lipophilicity (Figure 2.10). The
amino acid 1-dopa 37 (Figure 2.10) is a special case: although it is even more polar
than compounds 33-35, it is absorbed and distributed into the brain by the amino
acid transporter. In the brain, as well as in the periphery, it is then metabolically
decarboxylated to dopamine; in combination with a polar dopa decarboxylase
inhibitor, which acts only in the periphery, and a CNS-available monoamine oxidase
inhibitor, it is used in the treatment of Parkinson's disease. The systematic chemical
variation of dopamine and epinephrine has produced many highly selective, subtype-
specific agonists, as well as antagonists (e.g. [3, 6, 7]).
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Figure 2.10 Amphetamine 30, methamphetamine 31, and methylenedioxy-
methamphetamine 32 (MDMA, ecstasy, XTC) are lipophilic compounds with
good oral bioavailability; they easily cross the blood—brain barrier to exert
central nervous system effects. Dopamine 33, norepinephrine (noradrenalin)
34, and epinephrine (adrenaline) 35 are polar phenethylamines; they have
poor oral efficacy and do not pass the blood-brain barrier, producing only
peripheral effects after intravenous application. Ephedrine 36 has inter-
mediate lipophilicity; besides its peripheral effects it also acts as a central
stimulant. Although L-dopa 37 is even more polar than dopamine 33, it is
orally active and crosses the blood-brain barrier by active transport mediated
by the amino acid transporter.
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Figure 2171 The antiadrenergic agent piperoxane 38 was the lead
structure for the first antihistaminic drug diphenhydramine 39.

In an attempt to compensate for the sedative side effect of this
compound, a complex with 8-chlorotheophylline 40, dimen-
hydrinate, was investigated. In addition to its antihistaminic quality
it is also effective against travel sickness.

The history of H, antihistaminics, neuroleptics, antidepressants, and some other
drugs started from the observation that an antiadrenergic drug, piperoxan 38
(Figure 2.11), could also antagonize histamine in the guinea pig ileum. A break-
through in therapy came after the synthesis of diphenhydramine 39 (Figure 2.11)
in 1943 by George Rieveschl and Wilson Huber at the University of Cincinnati.
Searle tried to get rid of the sedative side effect of this drug by combining it with
the weak stimulant 8-chlorotheophylline 40 (Figure 2.11) in a complex, dimen-
hydrinate. Although the desired stimulating effect could not be observed, an
interesting side effect appeared. A female patient, suffering from urticaria, realized
that she could now travel in streetcars without becoming car sick, as before. This
serendipitous observation led to the probably most curious ‘clinical study’ of all
times: on November 27, 1947, the troop ship General Ballou sailed from New York
to Bremerhaven. During the crossing, the sailors were treated with dimenhydrinate.
Only 4% of those who received the drug became seasick, in contrast to about 25%
of those who had received a placebo [2, 3].

Another antihistaminic, promethazine 41 (Figure 2.12), was the starting point
for the development of potent neuroleptics. Henri Laborit, a French surgeon, was
interested in preventing surgical shock by application of promethazine. Rhone-
Poulenc supported his work by providing several analogs of this compound. One
analog, chlorpromazine 42 (Figure 2.12), not only improved the condition of the
patients due to its anti-shock action, but also seemed to make them more relaxed
and less concerned about what was happening to them in the stressful preoperation
period. On January 19, 1952, Joseph Hamon, Jean Paraire, and Jean Velluz treated,
for the first time, a manic patient with chlorpromazine. After being injected with
the compound he became calm and remained so for several hours; this day must
be considered the start of successful drug treatment of psychotic diseases. Whereas
promethazine preferentially antagonizes histamine H; receptors, chlorpromazine
is a dopamine antagonist [2, 3]. In the mid-1950s, Roland Kuhn at the Cantonal
Psychiatric Clinic in Minsterlingen, Switzerland, became interested in the
tranquilizing properties of chlorpromazine; his work was supported by the synthesis
of some new analogs by Geigy, Basle. Among these compounds, imipramine 43
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Figure 2.12 Despite a very close structural analogy, promethazine
41 is an antihistaminic drug, chlorpromazine 42 is a dopamine
antagonist, and imipramine 43 and desipramine 44 are neurotrans-
mitter uptake inhibitors. Correspondingly, 41 is used for the treat-
ment of allergic inflammation, 42 for schizophrenia, and 43 and 44
for depression.

(Figure 2.12) turned out to have pronounced antidepressant activity. Imipramine,
as well as its metabolite desipramine 44 (Figure 2.12), are neurotransmitter uptake
blockers [2, 3].

The structure—activity relationships of the tricyclic compounds (and some other
classes, e.g., the steroid hormones) prove that small structural variations may
significantly alter the mode of action. Another example of even minor modifications
being responsible for new mechanisms of action is that of some close analogs of
the antihistaminic prototype diphenhydramine 39 (Figure 2.11), e.g., orphenadrine
45, an atropine-type anticholinergic, and nefopam 46, a non-opioid analgesic with
largely unknown mechanism of action (Figure 2.13) [2, 3].

Benzodiazepines seem to be the most prominent class of privileged structures.
Only some prototypes 47-50 (Figure 2.14) with GABA agonist, antagonist, inverse
agonist, opiate agonist, and CCK antagonist activities are presented here [8, 23-27].
The CCK antagonist devazepide 51, a structurally simplified analog of the microbial
product asperlicin 52, is about 4 orders of magnitude more active than its natural
lead [7]. Other benzodiazepines are, e.g., muscle relaxants, antidepressants,
neuroleptics, hypnotics, NK-1 receptor and vasopressin receptor antagonists,
farnesyl transferase inhibitors, and potassium channel modulators.
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Figure 2.13 Minor structural modifications of the antihistaminic
drug diphenhydramine 39 (Figure 2.11) produced the anticholinergic
drug orphenadrine 45 and the non-opioid analgesic nefopam 46.
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Figure 2.14 Benzodiazepines are a striking example of diverse biological
activities of closely related structural analogs. The tranquilizer diazepam
47 is the prototype of a benzodiazepine agonist. The benzodiazepine
antagonist flumazenil 48 is used as an antidote in treating benzo-
diazepine intoxication and after benzodiazepine use in surgery.
Compound Ro-15-3505, 49, is an inverse agonist, which acts as a pro-
convulsant. Tifluadom 50 is a strong opioid agonist, which selectively
binds to the k-opiate receptor, and a nanomolar cholecystokinin receptor
antagonist. Devazepide 51 is an orally active cholecystokinin-B (CCK-B)
antagonist, which is about four orders of magnitude more active than its
structurally much more complex lead, the natural product asperlicin 52.

(o)

24
Optimizing the Selectivity of Nonselective Lead Structures

Medicinal chemists always followed and still apply the principle of chemical and
biological similarity. Whenever they discover an active lead, they modify its chemical
structure more or less systematically, to find similar analogs with improved activities,
selectivities, ADME (absorption, distribution, metabolism, elimination) properties;
fewer side effects; and less toxic properties. However, as discussed above, structurally
closely related analogs may have significantly different specificity or even a
completely different mode of action.
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Figure 2.15 Compounds 53 and 54 differ only in their amine part, but
53 shows a greater than 300-fold selectivity for the 5-HT, receptor, as
compared to the 5-HT, receptor, whereas 54 is at least three orders of
magnitude more active at the 5-HT, receptor than at the 5-HT; receptor.
The closely related compound 55 is an orally active antitussive drug.

Despite their close chemical relationship, the benzimidazole carboxamides 53 and
54 (Figure 2.15) show very different receptor subtype selectivities. Compound 53
has a more than 300-fold higher affinity for the 5-HT; ion channel than for the
G-protein-coupled 5-HT, receptor (K; 5-HT; = 3.7 nM vs. K; 5-HT, > 1000 nM),
whereas compound 54 binds almost exclusively to the 5-HT, receptor (K; 5-HT;
>10 000 nM vs. K; 5-HT, = 13.7 nM; selectivity > 700) [28, 29]. The chemically related
compound DF-1012, 55 (Figure 2.15), is an orally active antitussive drug [30].

Integrins are cell-surface receptors; several of them recognize the RGD (arginine-
glycine-aspartate) motif, obviously in different bioactive conformations. Thus,
selective antagonists of these receptors have been developed: SB 214 857 (lotrafiban,
SmithKline Beecham), 56, and SB 223 245, 57 (Figure 2.16) [31, 32]. Both com-
pounds are identical in their benzodiazepine part but differ in the amine residues
attached to the carboxylic acid function. Compounds 53 and 54, as well as
compounds 56 and 57, may be used as strong arguments for the potential of
automated parallel syntheses. Although these compounds were optimized in a
classical manner, they could also have resulted from combinatorial libraries, in
which a single acid reacted with different amines.

0 /Me 0 /Me
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HN H *-cooH H “-cooH
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Figure 2.16 Like the 5-HT receptor ligands 53 and 54 (Figure 2.15),
also lotrafiban 56 (failed in phase IlI clinical trials) and compound

57 differ only in their amine component but are highly selective for
different integrins. Lotrafiban binds preferentially to the fibrinogen

receptor (integrin GPy ), with a selectivity factor of about 4000,

whereas 57 binds preferentially to the vitronectin receptor (integrin
o, B5), with a selectivity factor of 15 000. Overall, this constitutes

a selectivity ratio of more than seven orders of magnitude.

MWw.ebook:%OOO.com


http://www.ebook3000.org

2.4 Optimizing the Selectivity of Nonselective Lead Structures

Figure 2.17 The structural analogs talopram 58 and citalopram 59
(upper compounds), as well as nisoxetine 60 and fluoxetine 61
(lower compounds), are chemically closely related. Whereas 58 and
60 (left compounds) are highly selective norepinephrine uptake
inhibitors (selectivity factors of 550 and 180, respectively), the close
analogs 59 and 61 (right compounds) are selective serotonin uptake
inhibitors (selectivity factors of 3400 and 54, respectively).

Talopram 58 and citalopram 59 (Figure 2.17) are closely related in their chemical
structures. Nevertheless, talopram is a norepinephrine uptake blocker with a
selectivity factor of about 550 against serotonin uptake, whereas citalopram is a
serotonin uptake blocker, with a selectivity of 3400 against norepinephrine uptake.
A similar selectivity difference applies to the even more closely related pair nisoxetine
60, with a norepinephrine uptake selectivity of about 180, and fluoxetine 61
(Figure 2.17), with a serotonin uptake selectivity of 54 [33].

Out of a large number of different peptidomimetic somatostatin analogs,
compounds 62-66 (Figure 2.18) resulted from four different combinatorial libraries,
with up to 350 000 members per library. Every compound has a more or less
pronounced affinity to one of the five different somatostatin receptor subtypes
sst1—sst5, with remarkable selectivity against the other subtypes (Table 2.1) [34].

Most cases of chronic myelogenous leukemia result from a cross-over between
chromosomes 9 and 22, by which a longer chromosome 9+ and a shorter chromo-
some 22—, the so-called Philadelphia chromosome, are generated. The sequence at
the fusion point of the two DNA strands in the 22— chromosome codes for a new
protein, the so-called ber-abl protein, with constitutionally enhanced tyrosine protein
kinase activity [35]. At Novartis, research started from a general lead structure 67
(Figure 2.19), with protein kinase C (PKC)-inhibitory activity. When amide residues
were introduced into an optimized PKC inhibitor 68, bcr-abl inhibition was also
observed for compound 69. A methyl group in position R1 (compound 70) then
surprisingly abolished the undesired PKC activity. The result of the optimization
was imatinib 71 (STI571, Gleevec®, Glivec®, Novartis; Figure 2.19), a highly
selective bcr-abl kinase inhibitor [35].
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Figure 2.18 The tetradecapeptide somatostatin is a hanomolar-to-subnanomolar
ligand of five different somatostatin receptor subtypes. Compounds 62-66 are
structurally simplified analogs from four combinatorial libraries, with up to 350 000
members per library. Each compound shows a remarkable selectivity against the
different sst1—sst5 receptor subtypes (Table 2.1). The orientation of the compounds
follows a projection of their superposition with a Merck cyclopeptide.

Table 2.1 Somatostatin receptor subtype affinities of the tetradecapeptide somatostatin

(K; values in nM) and compounds 62-66 (Figure 2.18; K values in nM) [34].

Compound sst1 sst2 sst3 sst4 sst5
Somatostatin 0.4 0.04 0.7 1.7 2.3
62 1.4 1875 2240 170 3600
63 2760 0.05 729 310 4260
64 1255 > 10000 24 8650 1200
65 199 4720 1280 0.7 3880
66 33 52 64 82 0.4
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Figure 2.19 The lead structure 67 is a protein kinase C (PKC)
inhibitor prototype. Whereas the optimized analog 68 is a strong
PKC inhibitor, amides 69 also inhibit tyrosine kinases like the bcr-abl
kinase. Introduction of a methyl group, to form 70, abolishes the
PKC activity. The optimized analog imatinib 71 (Gleevec®, Glivec®,
Novartis) is a highly selective bcr-abl tyrosine kinase inhibitor.

2.5
Selective Optimization of Side Activities

Recently, Wermuth proposed an alternative and complementary strategy to high-
throughput screening (HTS), the SOSA approach (SOSA = selective optimization
of side activities) [15]. Instead of the laborious and expensive investigation of several
hundred thousand compounds in HTS, he recommended screening new biological
targets only with a small set of well-known drug molecules for which bioavailability
and toxicity studies have already been performed. Hits from such a screening can
then be used in a drug discovery program. Most drugs in human therapy do not
interact with just one biological target; thus, if an interaction with some other target
is unrelated to the primary therapeutic effect, affinities could be reversed in the
optimization process, the former side effect now becoming the main effect and
vice versa.

This approach can be illustrated, e.g., by the structural variation of B-antiadrenergic
compounds. Several B-blockers have slight stimulating and hallucinogenic pro-
perties. If the side chain of the -blocker prototype 72 (Figure 2.20) is cyclized, the
antidepressant viloxazine 73 results [2, 3]. Another B-blocker-related compound is
propafenone 74, a class Ic antiarrhythmic [3, 6, 7). Cyclization of a B-blocker structure
to compound 75 produced, after optimization, the antihypertensive drug levocroma-
kalim 76 (Figure 2.20). However, 76 is no longer a B-blocker, it is a potassium channel
opener [15, 36].

A group of compounds for which a completely unrelated side effect was observed
are 4-hydroxy-pyrones and 4-hydroxy-coumarons, which are chemically closely
related to anticoagulant vitamin K antagonists. Screening at Parke-Davis showed
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Figure 2.20 The general structure 72, with different residues X,
describes the prototype of a -adrenergic antagonist. Cyclization of
the side chain produced the antidepressant viloxazine 73, whereas
the N-n-propyl analog propafenone 74 turned out to be a class Ic
antiarrhythmic with only weak B-antagonistic activity. An attempt to
cyclize B-blockers to structures of the prototype 75 finally produced
levocromakalim 76; as expected, it had antihypertensive activity
but its mode of action is different: instead of being a B-blocker, it is
a potassium channel opener.

that the 4-hydroxy-pyrone 77 is a micromolar HIV protease inhibitor (K; = 10 uM)
[37]. Optimization of this prototype led to the phenethyl-substituted thio ether 78
(K =35 nM) [38], which could be further optimized, by exchange of a phenyl group
with an isopropyl residue and introduction of amino and hydroxyl groups, to
CI-1029, 79 (K;=0.11 nM) [39, 40]. At Upjohn, phenprocoumon 80, a therapeutically
used anticoagulant, was independently discovered to be a moderately active HIV
protease inhibitor (K;=1 uM) [41]. Optimization produced the bis-aralkyl-substituted
4-hydroxy-pyrone PNU-96 988, 81 (K; = 38 nM) [41], and finally the picomolar
inhibitor tipranavir 82 (R,R diastereomer: K, = 8 pM). Surprisingly, the other
diastereomers of tipranavir show a very low stereospecificity of drug action; they
are also very potent HIV protease inhibitors (R,S diastereomer: K; = 18 pM; S,R
diastereomer: K; = 32 pM; S,S diastereomer: K; = 220 pM) [42].

The selective optimization of side activities was illustrated by Wermuth also with
some examples from his own research [15, 43—46]. The antidepressant minaprine
83 (Figure 2.22) has some weak side activities. It is, e.g., a 17 pM muscarinic M,
receptor ligand and a 600 uM acetylcholinesterase inhibitor (ICs,, electric eel AChE).
Shift of the 4-methyl group of minaprine to the 5-position (compound 84) increased
its M; affinity to 550 nM. Further optimization led to the tropane analog 85 (ICs,
musc M; = 50 nM) and its o-hydroxy derivative 86 (ICs, musc M; = 3 nM;
Figure 2.22), an M, partial agonist [15, 43].

Elimination of the 4-methyl group of minaprine 83 (Figure 2.22) and exchange of
the morpholine with a piperidine ring produced the AChE inhibitor 87 (Figure 2.23),
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Figure 2.21 The achiral 4-hydroxypyrone 77 (K, = 10 uM) is structurally
related to anticoagulant vitamin K antagonists; it was discovered at
Parke-Davis as a weakly active lead in a screening for HIV protease
inhibitors. Optimization produced the thio ether 78 (K; = 35 nM) and
finally CI-1029, 79 (K; = 0.11 nM). In an independent screening, Upjohn
discovered that the therapeutically used anticoagulant phenprocoumon
80 (K; =1 uM) is a weak HIV protease inhibitor. Optimization at Pharma-
cia and Upjohn produced PNU-96 988, 81 (K; = 38 nM), and the pico-
molar HIV protease inhibitor tipranavir 82 (R,R diastereomer: K; = 8 pM).

Me o Me 0}
-~ nu@ @Q\N}nu@

83 84
A 5D oo
=\ H =\ H
N /N N N\ /N N
N-N N-N

85 O g6

Figure 2.22 The antidepressant minaprine 83 is also a low-affinity
ligand of the muscarinic M, receptor (K; = 17 uM). Optimization of
this side activity to the 5-methyl isomer 84 (K, musc M, = 550 nM)
and the tropane analog 85 (K; musc M, = 50 nM) resulted in the
ortho-hydroxy-substituted analog 86 (K; musc M, = 3 nM).

61



62| 2 Drug Discovery from Side Effects
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Figure 2.23 Minaprine 83 (Figure 2.22) is also a weak acetylcholin-
esterase (AChE) inhibitor (K, AChE = 600 uM). Optimization of this
side activity to deoxo,demethyl-minaprine 87 (K; AChE = 13 uM)
and an isomeric N-benzyl-piperazine 88 (K; AChE = 120 nM) finally
resulted in the potent AChE inhibitor 89 (K; AChE = 10 nM).

with a K] value of 13 uM. Variation of the side chain to an N-benzyl-piperidino
derivative 88 increased the inhibitory activity to K; AChE = 120 nM. Further optimi-
zation produced the cyclized analog 89 (K; AChE = 10 nM: Figure 2.23) [15, 44, 45].

A close analog of minaprine 83 (Figure 2.22), compound 90, is a low-affinity
5-HT; antagonist (ICs, 5-HT; = 425 nM). Whereas modifying the pyridazine to the
phenyl-substituted phthalazine 91 did not significantly change the affinity (ICs,
5-HT; = 370 nM), shifting the phenyl substituent increased the affinity by about
one order of magnitude (compound 92, IC;, 5-HT; = 36 nM), most probably because
of a better fit within the binding site. Correspondingly, the phthalazine 93 (IC;,
5-HT; = 10 nM), without a phenyl substituent, has a much higher affinity than the
other analogs (Figure 2.24) [46].

Oy O
N\ / -
azere™
91

920

— Q —
\ N N-Me A\ )—N N-Me

/)
N—-N
92 93

Figure 2.24 The 3,6-substituted pyridazine 90 (K; 5-HT; = 425 nM),
which is chemically closely related to minaprine 83 (Figure 2.22),

is a low-affinity 5-HT; receptor ligand. Optimization of this side
activity to the phenyl-substituted phthalazine 91 (K; 5-HT; =

370 nM) and the 3,5-substituted pyridazine 92 (K; 5-HT; = 36 nM)
resulted in the nanomolar 5-HTj; ligand 93 (K; 5-HT; = 10 nM).
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oot W

Me

Figure 2.25 The atypical neuroleptic olanzapine 94 is a highly
promiscuous ligand of many different G protein-coupled receptors
(Table 2.1). The antidepressant mianserin 95 also is a promiscuous
ligand; in addition to its o,-blocking activity, it blocks serotonin
uptake and is a histamine, 5-HT,, and 5-HT; antagonist.

The atypical neuroleptic olanzapine 94 (Figure 2.25), one of the most successful
drugs of recent years, is a highly promiscuous, nanomolar ligand of more than a
dozen different GPCRs (Table 2.2) [47-49]. Thus, its real mechanism of action
remains unclear, as is also true for the antiadrenergic, antihistaminic, and
antiserotonergic antidepressant mianserin 95 (Figure 2.25), the so-called ‘good
humor pill' of the 1970s. Thus, despite the fact that many structurally modified
analogs have already been synthesized and tested, such drugs could be the starting
point for different follow-on drugs with modified selectivities [2, 3].

Drug candidates have also been derived from herbicides and fungicides. By
screening the BASF library for endothelin receptor ligands, compound 96 was

Table 2.2 GPCR and 5-HT; binding affinities of olanzapine 94 in different in-vitro models;
K; values from two different sources [47-49].

Receptor K values [nM]
5-HTo, 2.5;4
5-HT,, 12
5-HT,¢ 11; 29
5-HT, 57

dop D, 31; 119
dop D, 11

dop D, 27
musc M; 1.9; 2.5
musc M, 18
musc M; 13; 25
musc M, 10; 13
musc Mg 6

adr oy 19

adr o, 230

hist H, 7
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Figure 2.26 The potential herbicide 96 has been discovered to be a

moderately active, selective ET, receptor antagonist. Optimization
produced the nanomolar to subnanomolar ET, antagonists 97 and 98.

Me, Me
—\ — (l':Hs Me
0 N—(CH,),-CH, q N—CH;CH—CH;@—QMe
— — e
Me Me
99 100

Figure 2.27 The fungicides tridemorph 99 (n = 12 is the major
component, but n =10, 11, and 13 are present in minor amounts)
and fenpropimorph 100 are picomolar o, receptor ligands which
still await their optimization to drug candidates.

discovered; although this structure was originally designed as a potential herbicide,
it turned out to be a submicromolar, ET s-specific ligand (K; ET, = 0.25 uM, K; ETy
= 3 uM; Figure 2.26). Optimization by elimination of one steric center yielded the
nanomolar antagonists 97 (K; ET, = 6 nM, K; ETy = 1000 nM) and 98 (K; ET, =
0.12 nM, K; ETj, = 29 nM) [50].

Sigma receptors were originally considered to be a subtype of opiate receptors.
Only recently has it become clear that, despite the fact that they bind some opiates,
they are neither G protein-coupled receptors nor do they have any other homology
to mammalian proteins. The closest related protein is yeast sterol Cg—C, isomerase
(ERG2 protein). According to this relationship, the BASF fungicides tridemorph
99 (K, 6, = 39 pM, guinea pig liver; K; 6, = 23 pM, guinea pig brain; replacement of
(+)-*H-pentazocine) and fenpropimorph 100 (K; 6, = 11 pM, guinea pig liver; K; o,
=5 pM, guinea pig brain) are picomolar ligands of ¢, receptors (Figure 2.27) [51].
So far, they have not been converted into drugs, despite the fact that ¢ receptors
play a functional role in many important physiological processes.
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2.6

Summary and Conclusions

References | 65

The discussed examples provide convincing evidence that, in addition to many
drugs that were serendipitous discoveries, many others have resulted from the
observation of side effects, in the laboratory, in clinics, or during their therapeutic
application. Today, we possibly focus too much on single targets that are investigated
in vitro. Hidden treasures may be discovered by testing ‘old chemistry’ against new
targets, by systematically optimizing some side effects of known drugs, and by
rescuing drugs that failed because of problems in their metabolism or hERG channel
inhibition. Thus, it might well be that known drugs are a much better source of
lead structures for new projects than we anticipated so far. As a consequence, we
will experience a successful comeback of traditional medicinal chemistry [8, 15].
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3
The Value of Chemical Genetics in Drug Discovery

Keith Russell and William F. Michne

3.1
Introduction

To understand what chemical genetics is and how it can add value to the drug
discovery process, we must first consider some of the challenges and needs of the
pharmaceutical industry. The process of discovering new drugs is a highly complex
multidisciplinary activity requiring very large investments of time, intellectual
capital, and money. Today the average cost of bringing an NCE to market is on the
order of $ 900 million [1]. For every 5000 compounds synthesized, only one makes
it to the market. Only three of ten drugs generate revenue that meets or exceeds
average R&D costs, and 70% of total returns are generated by only 20% of the
products [2]. Given this gloomy backdrop it is even more disturbing to learn that,
despite the proliferation of many new technologies of great potential (and great
cost), pharmaceutical productivity levels have not increased in the past ten years
(as shown graphically in Figure 3.1).

Pharmaceutical R&D costs continue to grow exponentially, driven in part by
investments in new technologies, but the return on this investment remains elusive.
There are many reasons for these disturbing trends. If we consider the pharma-
ceutical industry as primarily a generator of knowledge (defining knowledge as
compiled and interpreted information that can be acted upon) and focus on the
knowledge creation process, we can shed some light on how the current situation,
a productivity gap, emerged. Working harder is not likely to overcome this
productivity gap to deliver more drugs. Working smarter, doing things differently,
and focusing on what we actually need to deliver, i.e., knowledge, may be a new way
to approach the problem. Ultimately, spanning the knowledge gap will lead us to
the efficient exploitation of the human genome to discover new drugs to meet
major medical needs.
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Figure 3.1 US drug approvals during the past ten years.

3.2
Knowledge Management in Drug Discovery

Pharmaceutical companies create and sell knowledge, e.g., knowledge that a drug
product will rid patients of the symptoms of their disease while not causing serious
side effects. The resources that go into the production of the drug pale alongside
the resources needed to discover the knowledge of what the drug will do when
administered to a patient. In the early years of drug discovery it was often true that
the literature provided a significant knowledge base for our efforts. Two approaches
were taken: (1) function-based screening, where one did not know what the target
was but could easily screen for small molecules that possessed the right biology [3];
and (2) ‘rational drug discovery’, where one has knowledge of the target and its
function [4]. What was needed were small molecules that would interact with the
target in the right way before being optimized for in vivo activity and safety.

The existing and evolving chemistry and biology literature fueled these efforts. It
is probably also true to say that the medical problems addressed in these early days
of drug discovery represented the more accessible opportunities. Often the biology
was not only reasonably well understood, but it was reasonably easy to study and
measure. Examples of biological effects that were tackled include blood pressure,
acid secretion, and cytotoxicity. The situation today is very different. We now face
many new targets we know little about and biology that is complex to study and
understand. In addition to these issues, advances in our knowledge of distribution,
metabolism, and pharmacokinetics, as well as toxicology and pharmacogenetics,
have led to the introduction of discovery processes that front-load measurement of
such small-molecule properties. This also raises the bar for passage of compounds
through the process — making the process more difficult and slower. While this
may lead to lower output of development candidates, it should also lead to lower
failure rates later in development, i.e., improvements in quality.
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3.3
Knowledge Gaps, Their Importance, and How to Address Them

The human genome has been solved and optimistic promises have been made. It
is clear that the human genome did not deliver knowledge (i.e., something
immediately useful); rather, it delivered a massive amount of data. Significant
advances have also been made in cell biology and systems biology. The relationship
between genes/proteins derived from the human genome and their function as a
part of a biological system constitutes the knowledge gap, and our appreciation of
the extent of this void is still emerging. The human genome is thought to consist
of ca. 30 000 genes. Each gene can potentially produce several proteins via alternative
splicing and post-translational modification, and every protein can potentially
combine with other proteins to form many different protein complexes. Clearly,
the number of different proteins and protein complexes is much larger than 30 000.
To add further complexity, small molecules (that we hope will become drugs) can
interact with different sites on a protein or via different mechanisms to further
expand the diversity of possible outcomes from the interaction of small molecules
with a protein target. We do not know what many gene products (proteins) do,
either physiologically or pathologically, and we do not really know how many of
these proteins can interact with small-molecule ligands [5]. There are many genes
about which we know nothing at all. In summary, there is clearly a vast knowledge
gap between knowing a gene and knowing the function (physiology and pathology)
of its protein product (Figure 3.2). The enormity of this knowledge gap has been
underestimated by the pharmaceutical industry.

To illustrate the size of the knowledge gap, consider the following (admittedly
approximate) analysis from the area of substance P. Substance P antagonists have
emerged in recent years as potential new treatments for depression, although none

y

Human Genome: Cell & Systems Biology:
Many new genes and proteins of Many new cell based assays and
unknown function and relevance imaging methods to study cell &
to physiology and disease system function under normal

and pathological conditions

Figure 3.2 The knowledge gap represents the large gap in under-
standing that exists between genetic information from the human
genome project and information regarding biological function from
cell and systems biology.
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have yet been approved for this use. Substance P has been known since 1937, and
since that time (67 years!) there have been over 6500 papers published providing
significant new information on substance P. Thousands of scientists have worked
on generating this information during this period. It is sobering that our under-
standing of Substance P’s role in depression is still in its infancy. No one
pharmaceutical company can generate this volume of information. New faster and
more efficient methods must be developed to fill these knowledge gaps. Partnership
with the academic community will become increasingly important as the number
of druggable targets expands.

34
Target Validation: The Foundation of Drug Discovery

One critical piece of knowledge to the pharmaceutical industry relates to knowledge
of a drug target and its link to a disease process. In the context of small-molecule
drug discovery, we define target validation in a broader sense as including knowledge
of the protein target and its specific interaction with small molecules, and the
consequences of this interaction in terms of modifying a disease process. In fact,
drug discovery is primarily focused on the biology of a target in the presence of a
drug, i.e., drug-induced biology. It begins with a chemical effect — the interaction
of a ligand with a protein at a specific site in a specific manner — and ends in
patients’ gaining benefit from taking a drug derived from the application and
exploitation of this knowledge. Target validation that simply links a specific protein
and its function to a disease state does not include reference to whether a small
molecule can modulate the function of the protein. The protein may not therefore
constitute a true target since it is not a target for a small-molecule ligand and efforts
to do target validation on such a protein will ultimately lead to a negative outcome.
We can (and do) proceed to work on drug discovery before we have all the knowledge
we need. The absence of this knowledge constitutes the major risk of drug discovery.
One way to proceed is to focus on obtaining the most critical knowledge first. This
is the knowledge that modulation of a protein target by a small molecule can
ultimately lead to a clinical benefit in patients.

35
Chemical Genetics — How Chemistry Can Contribute to Target Identification and Validation

Target validation (TV) is the foundation of drug discovery and requires greater
attention if we are to reduce the risk of failure after significant investment.
Traditionally, target validation has been thought of as a biology problem. Thinking
in terms of what knowledge we need makes it clear that the problem does not
neatly fall into any particular discipline and is better characterized as an integrated
biology and chemistry problem. A schematic target validation roadmap is shown
in Figure 3.3, where the entire validation path from a chemical effect through various
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Figure 3.3 The knowledge roadmap for target validation, beginning
with a chemical effect between a small molecule and a protein target
and ending with a beneficial clinical effect on a person with a disease.
Chemical genetics approaches provide some assistance in pursuing
this path.

levels of biological effects to a clinical effect is outlined. To begin with, an
understanding of the function of a particular gene product can often be achieved
through the methods of classical genetics. However, the process can be slow and
tedious. For example, developing a mouse carrying the mutation of interest could
take months or years. Indeed, if the gene product is essential, the organism may
not survive long enough to be studied. On the other hand, the situation wherein a
molecule is available that alters the function of the gene product has a number of
advantages. However, we should recognize that significant chemical effort is often
required. The phenotype of interest is conditional, in that it is present only when
the molecule is present, allowing the study of essential gene products. It is also
tunable, i.e., the intensity of the phenotype can be adjusted by controlling the
concentration of the molecule.

Chemical genetics is the purposeful modulation of protein function through its
interaction with a small molecule. The principles of chemical genetics were established
in the rich history of using small molecules to explore biological function and, in
this sense, chemical genetics is not new. What is new is the development of a
systematic approach to studying biological function with small molecules — this is
the emerging field of chemical genetics. Just as genetic changes can alter protein
function, so can small molecule—protein interactions [6]. It is important to appreciate
that, by interaction of a ligand with a protein, we mean interaction of a small
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molecule at a specific site on a protein causing a specific protein change, con-
formational or otherwise, ultimately leading to a specific biological effect. Small
molecules can often interact with multiple sites on proteins and cause a multitude
of consequences such as agonism, antagonism, partial agonism, modulation,
competitive and noncompetitive inhibition, etc. They can also interact at junctions
between protein subunits. The sophistication of small molecule—protein interactions
and their biological consequences cannot be easily reproduced by techniques such
as gene knockin/out or the use of siRNA, by which genes/proteins are simply
removed or increased in concentration in a biological system. Having said that,
knockout models have certainly contributed significantly to drug discovery and
will continue to do so [7]. The power of chemical genetics resides in this sophisti-
cation of the small molecule—protein interaction and the precise way we can (in
principle) modulate the function of a protein. As a precursor to drug discovery it
serves the purpose of focusing us on where small molecule drug discovery really
begins — with the chemical interaction between a small molecule and a protein.

The knowledge gap outlined above can be thought of as a cycle linking the target
(a protein or protein complex) with a function ultimately linked to an effect important
in a disease process (Figure 3.4). Going from target to function represents the
knowledge path of target validation. Going from a function to a target represents
the knowledge path of target identification (TT) or deconvolution. Chemical genetics
approaches can be applied to both knowledge paths. Application to the target
validation path is called reverse chemical genetics. Application to the target identifi-
cation/deconvolution path is referred to as forward chemical genetics. At the heart of
this approach to knowledge generation in TI/TV is the simple concept that small
molecules are used to perturb biological systems. Manipulation of a biological system
in a controlled manner by small molecules allows us to study these systems more
systematically.

|Chem Gen Libraries
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Figure 3.4 Chemical genetics tools (libraries) can help uncover
the function of proteins (target validation) and the protein target
responsible for biological function (target identification) in a
phenotype assay.
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3.6
Integration of Chemistry and Biology: Importance and Issues

Given that the foundation of target validation is a ligand—protein interaction
(a chemical effect) and its consequence (a biochemical/biological effect), we can
expect that advances in this area will come from a close integration of chemistry
and biology. Some key questions at the interface of chemistry and biology that are
fundamental to chemical genetics include — why are some molecules biologically
active while others are not? What is the biological profile of a small molecule’s
structure and how do we dissect this into what each part (fragment) of the small
molecule is doing to each protein target? Is there a protein ‘code’ for recognition of
small molecules that is used by every protein in the proteome? The following sections
begin to address these questions.

3.7
Finding New Chemical Tools and Leads

A chemical tool is small molecule that is sufficiently potent and selective for a protein
target to be used in the identification and validation of that target. It could, although
it need not, meet the rigorous absorption, distribution, metabolism, excretion, and
toxicology criteria required of a lead to start an optimization project. How do we
find such tools? The total number of ‘reasonable’ drug-like molecules has been
estimated [8] as approximately 10°* discrete molecules, a number so large that
synthesizing all of them is simply impossible. Natural products were designed by
nature to bind to proteins and other macromolecular targets and represent powerful
chemical tools for use in chemical genetics. Numerous examples exist in which
natural products have been identified that modulate biological function. The natural
products are then used to identify proteins that they interact with and so to begin
deconvolution (forward chemical genetics) of the target responsible for the biological
effect. For example, fumagillin inhibits new blood vessel growth (angiogenesis),
and analogs of this compound are now in Phase 3 trials. Using fumagillin as a
starting point, chemical tools (e.g., biotinylated analogs) were constructed to bind
and tag cellular proteins. One of these proteins, methionine aminopeptidase, has
been identified as the likely target for this class of molecules [9]. Some other examples
of natural products used in forward chemical genetics are shown in Table 3.1. Cases
in which these natural products were then used to deconvolute the target protein
are noted. Interestingly, some of the top-selling drug classes originated from a
forward chemical genetics approach, e.g., the gastric acid secretion inhibitors
omeprazole and esomeprazole were discovered by a process that began with
screening for antisecretory agents that lowered stomach acid [3].

Interestingly, given the discussion of the importance of understanding small
molecule—target protein interactions early in drug discovery, there is renewed
interest in reexamining many older drugs to more fully understand how they work
[10].
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Table 3.1 Natural products used to identify targets.
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An advantage of the chemical genetics approach is that the small molecules
identified in biological screens can act both as conditional switches for inducing
phenotypic changes and as probes/chemical tools for identifying protein targets
implicated in those phenotypic changes. However, identifying the molecular target
and mechanisms by which the small molecules affect biological systems (target
deconvolution) can sometimes be difficult. Classical deconvolution approaches,
such as affinity chromatography and biochemical fractionation using photoactivat-
able and other affinity ligands to pull out the target protein, often work well [11].
More recently, genomics-based techniques have been added to the deconvolution
toolset [12].

Beyond natural products, finding chemical tools to modulate biological systems
is a difficult step and shares many of the risks associated with finding leads in a
drug discovery program [13]. Strategies for finding small-molecule tools representing
two poles on a continuum of approaches are illustrated by structure-based design
and the high-throughput screening approach. Given our focus on knowledge
generation, it is interesting to note that molecules at either end of this spectrum
also reflect different levels of information content. Individual molecules used in
high-throughput screening teach us (if we are fortunate) about a simple ICs, or
EC;,. Molecules that additionally teach us how they bind to their molecular target
provide us with much more useful information, especially when we consider what
to do next to improve or change the biology of the molecule (Figure 3.5).

Schreiber has been a pioneer in this rapidly developing area of chemical biology.
He has constructed several structurally complex screening libraries using a diversity-
oriented synthesis approach and has used these libraries to uncover chemical tools
to begin to unravel complex biology. Using this approach, Schreiber discovered a
small-molecule chemical tool that he named uretupamine, which interacts with
the protein Ure2p. Ure2p represses the transcription factors GIn3p and Nillp.
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Figure 3.5 The spectrum of approaches to finding chemical tools
or leads, illustrating the inverse relationship between information
content and number of compounds needed.
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Uretupamine was found to specifically modulate a subset of glucose-sensitive genes
downstream of Ure2p. As noted earlier, this type of behavior, modulating a subset
of the function of Ure2p, cannot be replicated by gene knockouts (e.g., knockout of
the URE2 gene) or siRNA approaches and represents a real challenge for proteomics
to identify and control all inputs and outputs of a protein [14]. He used the natural
product FK506 to uncover its target FKBP12 [15] and then went on to design specific
molecular probes derived from FK506, guided by crystal structures of FKBP, FK506,
and calcineurin to uncover its mechanism of action as a ‘small-molecule dimerizer’
of FKBP12 and calcineurin [16]. The formation of this ternary complex led to
inhibition of the protein phosphatase activity of calcineurin [17]. This discovery,
together with the discovery by Gerald Crabtree of NFAT proteins, helped define the
calcium—calcineurin-NFAT signaling pathway, now known to be essential for
immune function, heart development, and the acquisition of memory in the
hippocampus [18].

Peter Schultz’s team used a combinatorial library of purines to identify agents
that could disassemble multinucleated myotubes into mononucleated fragments
(a morphological differentiation screen). A new microtubule-binding molecule,
mysoseverin, was identified in this way [19].

Structure-based design has been employed in some powerful examples of
chemical genetics by teams led by Kevan Shokat and by John Koh. Shokat’s team
has studied the function of kinases by engineering designed modifications into
both the kinase and kinase inhibitor ligand to create highly selective chemical tools
that can then be used to probe the function of individual kinases in complex kinase
cascades (for an explanation of the basic concept see Figure 3.6) [20].

John Kol's team have focused their efforts on nuclear hormone receptors,
including the vitamin D receptor, in an effort to target specific clinical problems.
Koh studied a mutant version of the vitamin D receptor (an arginine located in the
binding pocket is mutated to a leucine) that binds vitamin D with only one
thousandth the affinity of the normal receptor. Analogs of vitamin D were
synthesized, based on computer modeling of their interaction in the mutant vitamin
D receptor. Some of these compounds were found to bind 500 times better than
vitamin D to the mutant receptor. This work may ultimately lead to drugs to treat a
disease known as vitamin D resistant rickets [21]. Koh previously demonstrated
the feasibility of this approach with other nuclear hormone members, including
thyroid hormone receptor [22].

David Corey’s team has also employed this approach, termed ‘engineered
orthogonal ligand-receptor pairs’, in studies of retinoid x receptor to find ‘near
drugs’. These near drugs are chemical tools used to discern the biology of the retinoid
X receptors [23].

To date, the results of efforts to find new biologically active molecules through
preparation of large libraries based solely on diversity considerations have been
disappointing. On the other hand, the collective experience of the global bioorganic
and medicinal chemistry community indicates that biological activity is not
uniformly distributed in chemistry space; rather, it is found within discrete regions.
Since we cannot know the locations of these regions a priori, we might look to
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Figure 3.6 Replacing a bulky amino acid with glycine in the ATP-binding
site of a kinase enlarges the site. ATP binding and catalytic activity are
unaffected. The nonselective kinase inhibitor can now be modified to
create a molecule that selectively blocks the mutant enzyme.

known biologically active molecules to guide our search. There have been several
approaches to doing this. Many natural products derived from plants and animals
have evolved over time to have specific biological effects on either the parent
organism or an unrelated one. The pool of natural products is extremely large with
respect to both numbers and structural diversity. Not surprisingly, a number of
methods to produce natural product libraries have emerged [24]. Some companies
provide prefractionated extracts of unknown structures for screening. Structures
are determined after a hit is found. Many companies have established libraries of
single pure natural products. Yet another approach is the assembly of libraries of
derivatized natural products. Finally, one can develop syntheses of natural product
core structures and, using combinatorial techniques, decorate the cores with diverse
elements. In this way it is possible to prepare large libraries of peripherally diverse
compounds related to natural products for general screening. The following library
(Fig. 3.7) is illustrative [25]. It contains over 2 million compounds that are both
sterically and functionally complex. Little biological activity was observed; for the
purposes of the pharmaceutical industry this result might be viewed as somewhat
disappointing, given the size of the library and the effort invested in preparing it.
Why were more active compounds not found?
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Figure 3.7 Potential coupling sites on a natural product-related
core-based diversity library. (Reprinted from [25] with permission,
copyright 1999, American Chemical Society).

One reason might be related to the high degree of overall molecular complexity
of the library. Hann and coworkers [26] reported an in-depth analysis of the
relationship between molecular complexity and the probability of finding leads.
They derived a model system in which ligand complexity and ability to bind to a
protein target could be studied statistically. They found that, as systems became
more complex, the chance of observing a useful interaction for a randomly chosen
ligand fell dramatically. Thus, there may be an optimal complexity for molecules in
a screening library. Smaller libraries of less-complex molecules are likely to be
more productive in terms of finding relevant chemistry space, with enhancements
in potency and selectivity resulting from iterative rounds of synthesis and testing
to increase complexity. Although the compounds were not derived from a library, a
comparison of glutamic acid to LY354740 and MGS0028 is illustrative (Figure 3.8).

Glutamic acid is a relatively simple molecule with several degrees of rotational
freedom, and obviously interacts with all glutamate receptors, both ionotropic and
metabotropic. LY354740 is arguably more complex with respect to stereochemistry
and rigidity, is much more potent than glutamate at Group 2 mGluR’s, and has no
activity atiGluR’s [27]. MG S0028 is even more complex with respect to functionality
and heteroatoms and, although no more selective than LY354740, it is about 20
times more potent [28]. Most chemists would no doubt agree that molecular
complexity increases from glutamic acid to LY354740 to MGS0028, but there have
been few attempts to quantify molecular complexity. Bertz [29] developed a general
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Figure 3.8 Increasing structural complexity of glutamate analogs.
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index of molecular complexity based on concepts of graph theory and information
theory and included features such as branching, rings, multiple bonds, heteroatoms,
and symmetry. In the work reported by Hann, the number of bits set in the Daylight
2D structure representation was taken as an indication of the internal bond
complexity, but the method does not capture notions of stereochemistry and rigidity.

A rather different approach to natural product-based libraries is being promoted
by Waldmann and coworkers [30]. Recent results in structural biology and
bioinformatics indicate that the number of distinct protein families and folds is
fairly limited. Often, many proteins use the same structural domain in a more or
less modified form created by divergent evolution. Protein families can have similar
folds, even though they at first seem to have completely different sequences and/or
catalyze quite different chemical reactions with a different arrangement of active-
site residues. However, proteins in these families evolved from the same ancestors
and can still bind similar ligands [31]. If ligand types or frameworks for certain
domain families are already known from the investigation of evolutionarily related
proteins, the underlying structure of this ligand may be employed as the guiding
principle for library development. Such ligands would provide targeted, biologically
validated starting points in structural space for the development of relatively small
compound libraries, which should yield significantly higher hit rates than much
larger libraries designed exclusively on the basis of available and proven chemical
transformations.

Accordingly, they synthesized a library of nakijiquinone analogs (Figure 3.9) [32],
the only natural products known to be inhibitors of the Her-2/Neu receptor tyrosine
kinase, and investigated them as possible inhibitors of the receptor tyrosine kinases
involved in angiogenesis. This led to the identification of inhibitors of IGF1R, Tie-2,
and VEGFR-3, with IC50’s in the range of 0.5-18 uM.

The growing awareness that biological activity is not uniformly distributed
throughout chemistry space has led to a number of efforts to determine those
molecular attributes that are drivers of that activity. At an elementary level, Ghose
and coworkers [33] carried out quantitative and qualitative characterization of known
drug databases with respect to computed physicochemical property profiles, such

R — L-serine L-threonine D-threonine D-valine glycine
|

HN™ ~COOH
o] n o n
o o o)
0 Q %?g %?K
-] % o - o - o}
HY OH OH AA

\ o % 7‘% -
Nakijiquinones

Figure 3.9 Molecular composition of the nakijiquinone library.
(Reprinted from [32] with permission, copyright 2003, American
Chemical Society).
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as log P, molar refractivity, molecular weight, and number of atoms, as well as
characterization based on the occurrence of functional groups and important
substructures. For many parameters, they defined a qualifying range covering > 80%
of the compounds. They also found that the benzene ring is the most abundant
substructure, slightly more abundant than all heterocyclic rings combined, and
that nonaromatic heterocycles were twice as abundant as aromatic heterocycles.
The most abundant functional groups were tertiary aliphatic amines, alcohols, and
carboxamides.

Bemis and Murcko [34] carried out an extensive structure-based analysis using
shape description methods to analyze a database of commercially available drugs
and prepare a list of common drug shapes. A useful way of organizing this structural
data is to group the atoms of each drug molecule into ring, linker, framework, and
side-chain atoms. On the basis of the 2D molecular structures (without regard to
atom type, hybridization, or bond order), there were 1179 different frameworks
among the 5120 compounds analyzed. However, the shapes of half of the drugs in
the database were described by the 32 most frequently occurring frameworks. This
suggests that the diversity of shapes in the set of known drugs is extremely low.
Within the set of 32 frameworks, 23 contained at least two six-membered rings
linked or fused together, and only three had more than five rotatable bonds. In a
second method of analysis, in which atom type, hybridization, and bond order
were considered, more diversity was seen: there were 2506 different frameworks
among the 5120 compounds in the database, and the most frequently occurring
42 frameworks accounted for only one-fourth of the drugs. Subsequently, the same
workers analyzed the side chains of the same set of drugs [35]. On the basis of the
atom pair shape descriptor (taking into account atom type, hybridization, and bond
order), there were 1246 different side chains among the 5090 compounds analyzed.
The average number of side chains per molecule was 4, and the average number of
heavy atoms per side chain was 2. Ignoring the carbonyl side chain, there were
approximately 15 000 occurrences of side chains. Of these 15 000, approximately
11 000 were from the ‘top-20’ group of side chains. This suggests that the diversity
that side chains provide to drug molecules is also quite low. The authors have
combined this information to generate new structures that are likely to be drug-
like and synthetically accessible. They used this approach to generate a set of
molecules optimized for blood—brain barrier penetration [36].

Ajay and coworkers [37] used a Bayesian neural network to distinguish between
drugs and nondrugs. They evaluated commercial databases of drug (Comprehensive
Medicinal Chemistry, CMC) and nondrug (Available Chemicals Directory, ACD)
molecules with respect to 1D and 2D parameters. The former contain information
about the entire molecule, like molecular weight, and the latter contain information
about specific functional groups. Their results correctly predicted over 90% of the
compounds in the drug database while classifying about 10% of the molecules in
the nondrug database as drug-like. The neighborhoods defined by their model are
not similar to those generated by standard Tanimoto similarity calculations, and
thus new and different information is being generated by these models, as shown
in Figure 3.10.
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Figure 3.10 Histogram of Tanimoto coefficients based on topo-
logical torsions of the most similar CMC molecule for each of the
drug-like molecules from the ACD. (Reprinted from [37] with
permission, copyright 1998, American Chemical Society).

Further efforts have been made to distinguish between drugs and nondrugs.
Sadowski and Kubinyi [38] developed a scoring scheme for rapid and automatic
classification of molecules into drugs and nondrugs. The method was set up by
using atom type descriptors for encoding the molecular structures and by training
a feed-forward neural network for classifying the molecules. It was parameterized
and validated by using large databases of drugs (World Drug Index, WDI) and
nondrugs (ACD). The method revealed features in the molecular descriptors that
either qualify or disqualify a molecule for being a drug and classified 83% of the
ACD and 77% of the WDI appropriately.

Clark and coworkers [39] investigated techniques for distinguishing between drugs
and nondrugs using a set of molecular descriptors derived from semiempirical
molecular orbital (AM1) calculations. These descriptors had been used successfully
to build absorption, distribution, metabolism, and excretion-related QSPR models.
A principal-components analysis was carried out for the descriptors in property
space. The third-most significant principal component of this set of descriptors
served as a useful numerical index of drug-likeness, but no others were able to
distinguish between drugs and nondrugs. The set of descriptors was extended,
and ultimately three descriptors were used to train a Kohonen artificial neural net
for the entire Maybridge dataset. Projecting the drug database onto the map so
obtained resulted in clear distinction between drugs and nondrugs.

Figure 3.11 demonstrates that there is no simple relationship between drug-
likeness and standard 2D similarity measures of molecules. Martin and coworkers
[40] addressed this question in a study using Daylight fingerprints. They showed
that, for IC50 values determined as a follow-up to 115 high-throughput screening
assays, there is only a 30% chance that a compound that is 20.85 Tanimoto similar
to an active is itself active.
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Figure 3.11 The fraction of molecules that are similar to any active
that are themselves active, as a function of the number of actives
with similars. (Reprinted from [40] with permission, copyright 2002,
American Chemical Society).

These workers also asked whether biologically similar compounds have similar
chemical structures. Considering such classic example pairs as the nicotinic agonists
acetylcholine and nicotine or the dopaminergic agonists dopamine and pergolide
(Figure 3.12), the expected answer is no. In fact, the highest Tanimoto similarity
within this group of four compounds is between nicotine and pergolide, and the
second-highest is between nicotine and dopamine. Nevertheless, in general, the
Daylight and Unity fingerprints are more similar for compounds with the same
biological properties than for compounds with different biological activities. What
might at first be perceived as a disappointing level of similarity-predicted actives
might be the result of compounds binding in subtly different ways to the same
receptor or to different but related populations of receptors.
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Figure 3.12 Pairs of cholinergic and dopaminergic agonists.
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Pearlman and Smith [41] indicated that such distance-based algorithms are quite
satisfactory for simple subset selection, but are considerably less useful for all other
diversity-related tasks. In their view, traditional descriptors make rather poor
chemistry space metrics for three reasons: many of the traditional descriptors are
highly correlated, some traditional descriptors are strongly related to pharmaco-
kinetics but only weakly related to receptor affinity, and traditional descriptors convey
very little information about substructural differences that are the basis of structural
diversity. They defined BCUT metrics in a manner that incorporates both connecti-
vity information and atomic properties relevant to intermolecular interaction, i.e.,
atomic charge, polarizability, and H-bond donor and acceptor abilities. Given a set
of active compounds that all bind to a given receptor in the same way, it is certainly
reasonable to expect that these active compounds should be positioned near each
other in a small region of chemistry space if the chemistry space metrics are valid.
They developed the Activity-Seeded Structure-Based clustering algorithm, which
provides a method for directly testing that expectation in the typical case in which
the chemistry space dimensionality is greater than three and, thus, simple visual
inspection of the distribution of active compounds is difficult or impossible. Given
anumber of compounds for which a particular receptor has significant affinity, they
can then identify the receptor-relevant subspace for that receptor by identifying the
axes along which compounds are tightly clustered. The algorithm also accounts for
the possibility of multiple receptor binding modes by allowing more than one cluster
of actives per relevant axis. In addition to their own application to ACE inhibitors
as an illustration of the method, Stanton [42] independently applied this method to
a QSAR study of dihydrofolate reductase inhibitors. The resulting model was highly
predictive, as shown in Figure 3.13. It is apparent that the BCUT metrics are
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Figure 3.13 Comparison of estimated and observed DHFR inhibitor
activity values using a BCUT-based model (reprinted from [42] with
permission, copyright 1999, American Chemical Society).
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measuring particular structural features that can be related to the observed properties
of a variety of molecules. They appear to perform quite well in capturing structural
information important for understanding polar intermolecular interactions.
BCUT metrics are being used increasingly in QSAR studies and library design.
A particularly interesting study was done by Pirard and Pickett [43], who presented
studies with BCUTs for the classification of ATP site-directed kinase inhibitors
active against five different protein kinases, three from the serine/threonine family
and two from the tyrosine kinase family. In combination with a chemometric
method, the BCUTs were able to correctly classify the ligands according to their
target. The authors concluded that BCUTS are indeed a useful set of descriptors for
design tasks, extracting information in a manner relevant to describing ligand-
receptor interactions. They are particularly suited to the design of targeted libraries
and virtual screening of compound collections, as they are quick to calculate while
containing more information than a standard 2D fingerprint type descriptor.

3.8
Is Biological Selectivity an Illusion?

We have illustrated the enormity of chemistry space and the focus on biologically
relevant chemistry space, but what about biology space itself? How many biologically
relevant targets are there? Although this number has been estimated to be around
3000 [5], it may well be much larger than this if we extrapolate from what we know
about particular target classes, e.g., GPCRs, where there are many potential
druggable targets and many potential pharmacologies, from agonists to antagonists
to modulators to inverse agonists. In a typical drug discovery program, selectivity
of potential development candidates is often assessed against a panel of 50-100
biologies. Clearly, this does not cover a very large fraction of available biology space.
In fact, many compounds originally thought to be very selective were later found to
have effects against many other targets. For example, cholesterol-lowering HMG-
CoA reductase Inhibitors (statins) are among the world’s top-selling drugs. It was
recognized recently that statins possess additional biology. e.g., anti-inflammatory
activity, thatis not explained by their interaction with this enzyme. High-throughput
screening of large chemical libraries has identified lovastatin (a statin) as an
extracellular inhibitor of LFA-1. Lovastatin was shown to decrease LFA-1-mediated
leukocyte adhesion to ICAM-1 and T-cell co-stimulation. Unexpectedly, lovastatin
was found to bind to a hitherto unknown site in the LFA-1 I (inserted) domain, as
documented by nuclear magnetic resonance spectroscopy and crystallography [44].

Some structural classes, e.g., benzodiazepines, are well known to exhibit diverse
biology depending on the precise substituent pattern and conformation. Selective
ligands with common cores have been obtained against many protein targets
(Figure 3.14). The existence of such privileged structures suggests that some
common structural binding motifs on proteins are reused across many different
protein families [31]. It is widely accepted that few if any of the known biologically
active molecules are exclusively selective for a single biological target. This forms
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Figure 3.14 The classic privileged structure — the benzodiazepine nucleus
with small structural modifications — is capable of many different biologies.

the basis for the discovery of new uses for existing drugs and the explanation of
side effects observed for all drugs. Indeed, in a commentary on the molecular basis
for the binding promiscuity of antagonist drugs, LaBella [45] stated that it is unlikely
that binding-site dimensions, geometry, charge environments, hydrophobic
surfaces, and other features will ever be known to the extent that drug design
technology will yield a compound with absolute specificity for one species of
functional protein. On a molecular level this may well be a consequence of there
being a relatively small number of protein families and folding motifs (see above).
These considerations are being applied in interesting ways to quickly find new
biologically active compounds. For example, Kauvar [46] and Dixon [46] have
developed a method called affinity fingerprinting, for predicting ligand binding to
proteins. In this method, the binding potency of a small molecule is measured
against a panel of reference proteins, in which the panel members have been
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empirically selected to provide binding sites that are well diversified with regard to
interactions with small molecules. The resulting set of pIC50’s constitutes the
molecule’s molecular fingerprint. Libraries of compounds can be evaluated and
the collection of corresponding fingerprints entered into a database. From this
large set, a subset is then chosen to represent the diversity of the set. The subset is
then screened against a new target protein. Those compounds with the best pIC50’s
against the new protein are used to query the database to find other compounds
with the same or similar fingerprint. Repetition of the cycle quickly finds the best-
binding compounds in the collection. These can then serve as seeds for combi-
natorial expansion, presumably accelerating the lead discovery process.

We have used a related strategy to analyze the performance of our corporate
collection in high-throughput screening over the past several years [47]. Our panel
of proteins consists of drug targets of interest and spans several target classes,
including GPCRs, several classes of enzymes, ion channels, etc. Our thesis is that
a compound that exhibits biological activity in any target class is more likely to
exhibit activity in another unrelated class than is a compound that has never
exhibited biological activity of any kind. We initially used a relatively small set of
assays and screened compounds and identified about 3500 compounds that were
biologically active in at least one assay and met our internal criteria with respect to
molecular weight, cLogP, polar surface area, and other chemistry-based filters. About
10% of these compounds were found to exhibit activity in other assays. The number
of active compounds was then to expanded about 10 000, and the number of assays
to 40 [48]. The hit rate of the general corporate collection was normalized to a
frequency of 1 and compared to the hit rate of the 10 000 known biologically active
set. The results are shown in Figure 3.15.
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Figure 3.15 Observed hit rates for a biology-based library on a scale
in which the hit rate of the general collection was normalized to 1.

mww.ebook3000.com


http://www.ebook3000.org

3.9 Synthesis of Chemical Genetics Libraries

Clearly, the hit rate exceeds that of the general collection in the majority of screens.
However, recent publications have sounded a cautionary note. Roche and coworkers
[49] reported the development of a virtual screening method for the identification
of ‘frequent hitters’. These compounds appear as hits in many different biological
assays covering a wide range of targets for two main reasons: (1) the activity of the
compound is not specific for the target; and (2) the compound perturbs the assay
or the detection method. They found that, with an increasing drug-likeness of the
database, a decreasing fraction of frequent hitters is predicted. Sheridan [50] reported
finding multiactivity substructures by mining databases of drug-like compounds.
Shoichet and coworkers [51] described a common mechanism underlying this
phenomenon. In their study they observed that several nonspecific inhibitors formed
aggregates 30400 nm in diameter and that these aggregates were likely responsible
for the inhibition. With these two reports in mind, we returned to our corporate
database and identified, again after suitable filtering, a set of 72 000 biologically
active compounds. We then selected a subset of about 25 000 compounds based on
the following criteria: (1) compounds with confirmed activity in at least two assays,
(2) compounds with confirmed activity in no more than five assays, (3) compounds
tested in at least ten assays. We felt that this simple approach would give us a set of
information-rich compounds largely free of frequent hitters. Using Daylight 2D
fingerprints and a Tanimoto distance of 0.3, the set consists of 9200 clusters, of
which there are almost 5100 singletons. We propose that this richly diverse subset
is an ideal starting platform for the design of screening libraries and for the discovery
of new privileged structures. Interestingly, with respect to physical properties, the
subset is slightly more lipophilic and has slightly larger polar surface area than the
general collection, but the distribution of molecular weights and the numbers of
hydrogen-bond donors and acceptors is the same. We conclude that the currently
accepted drug-like physical properties boundary conditions are necessary but not
sufficient to define biological activity and that other, poorly understood, factors are
the true drivers of such activity. We continue to explore just what those factors
might be.

3.9
Synthesis of Chemical Genetics Libraries: New Organic Synthesis Approaches
to the Discovery of Biological Activity

The recognition that the intersection of biology space is limited within chemistry
space has encouraged the development of new strategies in organic synthesis for
the discovery of biological activity. For example, Ellman and coworkers [52] have
developed combinatorial target-guided ligand assembly. In this method, a set of
potential binding elements is prepared in which each molecule incorporates a
common chemical linkage group. The set of potential binding elements is screened
to identify all binding elements that interact even weakly with the biological target.
A combinatorial library of linked binding elements is prepared in which the binding
elements are connected through a set of flexible linkers. The library is then screened
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to identify the tightest-binding ligands. Using this approach they identified a potent
(ICs = 64 nM) inhibitor of the nonreceptor tyrosine kinase c-Src. An extension of
this strategy has been developed by Lehn and others [53]. So-called dynamic
combinatorial chemistry uses self-assembly processes to generate libraries. In
contrast to the stepwise assembly of molecules in the library, this method allows
for the generation of libraries based on continuous interconversion among the
library constituents. Addition of the target ligand or receptor creates a driving force
that favors formation of the best-binding constituent. Sharpless and coworkers
[54] have investigated a slightly different approach. Rather than using a set of
interconverting constituents, they allow the target to select building blocks and
synthesize its own inhibitor. Dubbed ‘click chemistry,” it depends on the simul-
taneous binding of two ligands, decorated with complementary reactive groups, to
adjacent sites on the protein. Their colocalization is then likely to accelerate the
reaction that connects them. The reaction of course must be selected so as to not
take place in undesired ways within biochemical systems. One such reaction is the
cycloaddition of azides to acetylenes to yield 1,2,3-triazoles. As a proof of principle,
AChE was used to select and synthesize a triazole-linked bivalent inhibitor by using
known site-specific ligands as building blocks. This resulted in the discovery of an
inhibitor with a K in the range of 77-410 fM (femtomolar), depending on the
species. This is the most potent noncovalent AChE inhibitor known to date, by
approximately two orders of magnitude.

The standard approach to parallel synthesis of libraries is to start with a
polyfunctional common core and elaborate those functions with diversity elements.
With just a few diversity locations and the large number of commercially available
diversity reactants, this can result in libraries consisting of tens or hundreds of
thousands, or even more, members. Nevertheless, such libraries retain the common
core for all members, which necessarily limits the total diversity of the library. Far
more challenging, and arguably more valuable to the efficient exploration of
chemistry space, would be the synthesis of libraries whose members are based on
disparate cores. Schreiber [55] is addressing the problem of skeletal diversity by
using a synthesis strategy that involves transforming substrates with different
appendages that pre-encode skeletal information into products that have different
skeletons, with the use of common reaction conditions.

Our own interest in this problem was the result of our work on the biology-based
collections discussed above. We found that roughly only half the compounds were
available as solid samples for further study, and the remainder were dropped from
consideration for that reason. The efficient resynthesis of hundreds or thousands
of disparate compounds was simply not practical. Or was it? Perhaps there was an
easy way to sort multiple syntheses into common starting materials and reactions
and to carry them out in parallel. To that end, we used LeadScope software [56] as
our management tool. Normally, LeadScope links chemical and biological data,
allowing chemists to explore large sets of compounds by a systematic substructural
analysis using a predefined set of 27 000 structural features. More importantly for
our purposes, two sets can be compared with respect to these features. We chose
the ACD database as our second set. We could then easily select those starting
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materials that would give rise to many products via different routes. We then ran
as many reactions as possible using parallel synthesis methods. We have used this
method for syntheses of up to four steps and have been able to maintain a
productivity level of one compound per chemist per day, 25 mg scale, purified
>85%, and characterized by LC/MS and NMR.

We are developing an approach to true simultaneous synthesis of disparate core
compounds. Most molecules of the size and complexity we are interested in would
likely be prepared in no more than five steps. The actual transformations are usually
limited to the chemistry background and experience of the chemist(s) involved in
the project. However, the routes need not be so limited. Indeed, consider the
generation of tens or hundreds of routes to each compound of interest. The problem
then becomes one of how to prepare the maximum number of compounds using
the minimum set of common chemistries, staging the routes as necessary so as to
maximize the overlap of reagents and conditions. The generation of syntheses is
software based. Two or three decades ago there was a lot of effort to develop software
to predict the most efficient syntheses of complex organic molecules; most have
been abandoned. We chose to use the SynGen program [57] for the very reason
that it usually produces several routes to a molecule, each of which begins with a
commercially available starting material and whose transformations usually have
a literature precedent. Common chemistries can be grouped at three levels:
(1) reaction type, e.g., acylation of amines; (2) reagent type, e.g., acylation of
secondary amines; and (3) specific reagents, e.g., acylation of diethyl amine. Each
level is specifically encoded by the program, making searching, sorting, and
matching fairly easy. We will not necessarily choose the shortest route to each
molecule, since it is entirely possible that some longer routes would give rise to
additional commonalities, thereby allowing the preparation of a larger total number
of compounds. We are in the process of testing this concept using a set of 100 very
different structures and will report the results in due course.

3.10
Information and Knowledge Management Issues

The integration of chemistry and biology that constitutes the engine for chemical
genetics presents a major challenge for existing models of information and
knowledge management. The management of information and knowledge is so
critical as to deserve a place as one of the three critical components necessary to
truly enable chemical genetics (Figure 3.16). Linking chemical structures with
biology in a systematic way has challenged pharmaceutical companies and software
vendors for many years, and several proprietary and off-the-shelf solutions now
exist. Typically, these products are not scaleable or flexible enough to deal with the
problems exposed by chemical genetics.
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Figure 3.16 Chemical genetics requires the integration of the three critical
elements of chemistry, biology, and information/knowledge management.

3.11
Annotation of Small Molecules

Several groups have realized the information management challenges posed by
chemical genetics. The US National Cancer Institute is developing a powerful open-
access database called ChemBank that will link small-molecule structure and
associated effects on proteins, cell pathways, and tissue formation [58]. Additionally
the effect of small molecules on an organism’s phenotype will also be captured.
ChemBank is a chemical genetics database, which has been described as a chemical
version of GenBank, the online repository of genetic data [55]. The NCI plans to
synthesize and screen thousands of molecules for their biological activity. Annotation
of small molecules should allow for much closer integration of chemical structure
and biological activity. Use of such annotated compounds (sometimes referred to
as information-rich compounds) as chemical tools for probing biological systems
promises to be a fruitful area of future research.

The central informatics issue in chemical genetics is annotation of chemical
structures in the same way as annotation of genes, i.e., annotation of the biology
and other properties of a chemical structure. In a typical single-drug discovery
project, it is common for many structures to be profiled by a single biological screen
generating a simple vertical data format (Figure 3.17). In chemical genetics we
focus on single compounds annotated with many biologies — a horizontal data
format (Figure 3.17).

NCI is asking scientists from all over the world to deposit information on the
effects of small molecules on cells on the micro (gene expression) [13] and macro
levels in ChemBank. One of the hopes here is to link phenotypic changes with
structures and to use this information in predicting the mechanism of action of
drugs.
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Figure 3.17 Chemical genetics databases require the annotation of
individual compounds with many biologies, in contrast to the more
traditional way of capturing the assay results of many compounds

against a single biology.
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3.12
Summary

Bridging the knowledge gap between the data provided by the human genome
project and our knowledge of biological processes and systems is a requirement
for the efficient and effective exploitation of this knowledge in drug discovery. We
see this knowledge gap as being best bridged by a truly interdisciplinary approach
and a close integration of chemistry and biology — in both thinking and experiment.
Chemical genetics provides a framework for the systematic study of small molecules
to perturb and thus understand biological systems. The adoption of chemical
genetics thinking is already growing in influence among chemists and biologists,
and the fruits of this integrated approach to drug discovery promises to be an exciting

and rewarding area of research for the next decade.
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4
Structural Aspects of Binding Site Similarity:
A 3D Upgrade for Chemogenomics

Andreas Bergner and Judith Giinther

4.1
Introduction

4.1.1
Binding Sites: The Missing Link

The idea of chemogenomics is just starting to take shape. One approach, which
leaves room for many definitions as to what techniques and applications the concept
of chemogenomics comprises, considers it to be the effort of creating links between
chemistry space and the genome space. This notion may appear rather vague;
however, it points directly to the interface between biology and chemistry where
chemogenomics is expected to assume its definite form. Undeservedly, the wealth
of protein structural data is often disregarded in this area. The aim of this article is
to review this perception, and to demonstrate that using the perspective and methods
of structural biology can enhance the way in which chemogenomics is integrated
into pharmaceutical research and development.

The idea that a small molecule, active with a particular target protein, is very
likely to be active also with a sequence-related protein is by no means new. Over
several decades medicinal chemists have acquired valuable experience as to how to
systematically explore chemistry space around a given lead structure, how to
establish structure—activity relationships, and how to use such knowledge for
refining the selectivity profile of the drug candidate. Often, selectivity with a related
protein can be achieved by relatively small modifications to the original small
molecule’s structure.

With the decoding of the human genome it has become apparent that the
development of pharmaceutically active substances has so far targeted only a very
small fraction of the human proteome. It is commonly assumed that many more
druggable targets are available that offer new perspectives for drug development
[1]. Whether due to convergent or divergent evolution, the genome space contains
clusters of gene (and accordingly target) families whose mutual similarity is
conventionally described by the sequence homology of the target proteins. Given
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these advances in the genomics area, the experience previously acquired for a
particular target and compound class can now be exploited in an unprecedented
way, reusing relevant information and know-how. A small molecule well-profiled
for a particular target provides an excellent starting point for the exploration of its
neighbors in genome space and possibly even for the subsequent development of
drug candidates for related proteins.

Although the term chemogenomics obviously neglects protein structural aspects,
and structural genomics [2, 3] has become an established field in its own right,
ultimately, the similarity of two proteins on the level of their native 3D structure
provides the basis for the binding of structurally related small molecules. In
particular, the protein cavity accommodating the small molecule largely determines
the recognition features of the target protein. Thus, the characteristics of a binding
site, often illustrated as the lock into which a drug molecule fits like a key [4], provide
the missing link needed for a thorough understanding of the correlation between
chemistry space and genome space that chemogenomics aims to achieve.

Although relationships between small-molecule structures and protein families
can be established on a purely empirical basis, and 3D protein-structure information
is not a necessary precondition, it would be foolish not to consider such information
whenever it is available. With the rapidly growing number of protein structures
collated in the PDB [5], the chance of finding either the experimentally determined
3D structure of the target protein or at least one of a closely related protein that
allows a sufficiently reliable homology model to be built [6] are constantly increasing.

This section approaches chemogenomics from the viewpoint of structural biology,
focusing on the relevant aspects of binding site characteristics and similarities.
The authors believe that the implementation of this perspective can be advantageous
in virtually all stages of the drug development process. Clearly, the impact of struc-
tural biology is extremely beneficial for lead finding and lead optimization; never-
theless, it can also be used to facilitate drug discovery projects in the early stages.

4.1.2
Target Assessment

The number of biologically validated targets known to date is large, forcing
pharmaceutical companies to carefully select the targets to be pursued in a lead-
finding project. With an increasing number of feasible targets being discovered
through DNA chip technologies, the need for prioritizing target candidates for
biological validation and then selecting the most promising targets is gaining
importance. One approach to target selection, along the lines of chemogenomics,
is to take advantage of all the knowledge collected in projects that failed at a very
late stage of development, leaving active compound(s) with well-tailored ADMET
profile(s). Such data can then be used as a starting point for searching the available
genome data for related proteins. The identified proteins can then be critically
assessed with respect to their potential for representing biologically valid drug
targets. If one of the initially identified proteins indeed turns out to be a valid
target, a new lead-finding project can take advantage of all the knowledge collected
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on the target family in general. The ‘fallen angel provides an excellent starting
point for structural modifications, and one can benefit from the fact that the
chemistry for this compound class is already well established.

Predicting the success of a target project before it has begun remains visionary,
but structural biology can certainly assist in identifying those targets that are likely
to pose particular difficulties, thus rendering them less promising. This can be
particularly helpful if the biological validation data for the target candidates are all
equally sound. Comparison of the binding sites for different proteins belonging to
one family allows an assessment of whether or not selectivity between two proteins
can be feasibly achieved. This is particularly valuable in the situations mentioned
above, where a ‘fallen angel inspires the initiation of a new project focusing on a
related target protein. In the course of a long-pursued project a protein crystal
structure often becomes available, enabling an estimation of whether selectivity
towards the old, unsuccessful target can be achieved.

As a first approximation, the sequence of the protein of interest can be mapped
onto the known 3D structure of a homologous protein (e.g., a previously investigated
target protein of the same class). Tools for mapping sequential features onto protein
structures, including intuitive visualization features, were recently developed by
Lion Bioscience [7] and are publicly available through a web service [8]. Thus, the
3D structure of the target protein does not necessarily have to be solved.

The same holds true for assessing the druggability of a target by analyzing the
shape and physicochemical properties of a binding site. Large, shallow binding
sites with unbalanced proportions of polar and hydrophobic atoms exposed to the
binding site surface appear less promising than deep crevices, which can bury
large portions of a ligand and bind it via both H-bonding and hydrophobic
interactions [9].

413
Lead Finding

High-throughput screening (HTS) of enormous compound libraries has been
pursued in almost all pharmaceutical companies for more than a decade and has
not resulted in the initially expected number of hits suitable for further lead
optimization. Furthermore, virtual high-throughput screening (VHTS) methods
have increasingly been used as a complementary means of finding small molecules
that are active with a particular target [10, 11]. In silico methods allow for the
screening of millions of molecules within a few days. Although pre- or post-filtering
techniques for focusing on drug-like molecules, often based on filters such as
Lipinski’s rule of five [12], have been developed, other requirements for an initial
hit to be promising, such as synthetic accessibility of the compound class, cannot
be considered well with vHTS methods. For both HTS and vHTS, the sheer number
of compounds does not improve the chance of finding the right molecule, and due
to the size of chemical space, a complete sampling is nearly impossible (the number
of possible molecules with a molecular weight less than 500 Da has been estimated
to be 102, 10°° of which might possess drug-like properties [13]). Therefore,
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increasing attention is being paid to finding so-called privileged structures. Such
compounds may not exhibit the desired potency or selectivity profile, but they
provide a promising starting point for further exploration of the surrounding
chemical space in order to find related compounds that are suitable as lead
candidates. Along these lines, efforts in combinatorial chemistry have focused on
the synthesis of target family based libraries, which are preferentially screened
whenever a lead structure for a member of the respective target family is to be
found. To provide enhanced hit rates for such targets, target family based libraries
feature a scaffold that qualifies the designed structures to bind to various members
of the target family. To this end, the ligands have to form interactions to binding
site residues that are well conserved within this family (and, if possible, which also
contribute well to binding affinity). At the same time, the substituents attached to
the scaffold should be designed for exploring regions of high structural variability
within the protein pockets, thus raising the chances of finding fairly selective
compounds in the screened library.

Fragment screening techniques are increasingly being utilized for identifying
suitable scaffolds. Both X-ray crystallography [14] and NMR [15] have proved to be
useful methods for extracting small molecules with moderate affinity from a mixture
of compounds. The compounds in such cocktails are synthetically easily accessible
and small enough to leave room for chemical modification by attaching further
functional groups. Some groups have used computational screening techniques
for prioritizing fragments and picking out hits that appear to fit well into the protein
pocket of interest for subsequent experimental screening [16-18]. A fragment that
forms well-conserved interactions within the binding pockets of the particular
protein family can provide a privileged structure. Knowledge of the binding mode
of the fragment can guide further synthesis, for example, by pointing to further
attachment sites for new substituents to be added to the core and by estimating the
spatial and physicochemical requirements for the substituent.

4.1.4
Lead Optimization

Once lead finding has been accomplished and the stage of lead optimization has
begun, detailed knowledge about the binding site of the target protein becomes
even more important, especially if the selectivity profile of the lead compound is
suboptimal. If the binding mode of a small molecule in the pocket of the target
protein has been determined, the detected structural differences between two
binding sites can be systematically exploited to guide further synthetic efforts. If
crystallization of the target protein turns out to be difficult, a drug candidate can
alternatively be cocrystallized with a closely related protein (e.g., an anti-target);
this approach is usually referred to as the surrogate approach. Apart from sequential
insertions and deletions that have a major effect on the binding site’s shape,
substitutions of corresponding amino acid residues are the most obvious differences
one can take advantage of if selectivity between two closely related proteins is to be
achieved. If the side chains of the residues are sufficiently different in size and/or
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physicochemical properties, a single interaction can be sufficient to obtain
reasonably large differences in affinity (see Section 4.5.5, Selectivity Issues). In this
situation, mapping of sequential differences onto the structure of one of the proteins
or, alternatively, construction of a homology model, is often sufficient for guiding
chemical modification of the lead structure. If the amino acids expose fairly similar
recognition features to the ligand or interact with it only via backbone atoms, smaller
differences affecting the overall shape of the binding sites could be targeted by
suitably tailored compounds. Here, experimental determination of both protein
structures complexed with the current lead candidate is highly advisable. Even more
subtle differences, such as different extents of protein flexibility in the binding
pocket, are fairly difficult to exploit, because the underlying effects are poorly
understood and X-ray crystallography can give only a very limited picture of these
phenomena.

Atool for analyzing and comparing the binding sites of sequence-related proteins
is available within the receptor-ligand database Relibase [19, 20]. Superposition
and visualization of any combination of such similar proteins from the PDB can
be done using a free web service [21]. The enhanced version of Relibase, Relibase+,
provides an automatic analysis of their structural similarities and differences,
including backbone and side chain movements, conserved solvation sites, and
volume overlap of bound ligands. A related tool utilizing a database of prealigned
binding sites is Ligbase [22].

These scenarios highlight the importance of 3D structural information in different
steps of drug design by means of chemogenomics. Clearly, a thorough under-
standing of the nature of protein binding pockets, alongside the means for evaluating
common features and differences of such cavities, is of great relevance for the
success of such efforts.

This chapter is organized into five sections. The next section provides an
introduction to the structural biology of binding sites and sheds some light on why
nature usually uses pockets for intermolecular recognition processes. Sections 4.3
and 4.4 review computational methods for detecting binding sites, given a 3D protein
structure, as well as different approaches for describing binding site similarities
among a set of protein structures. Section 4.5 looks at applications of binding site
comparisons, focusing on some of the popular target classes and highlighting how
the consideration of binding site similarities can inspire and promote drug discovery
projects at different stages. The review concludes with a future vision outlining the
implementation of methods for analyzing and comparing protein binding sites
within the framework of chemogenomics efforts.

4.2
Structural Biology of Binding Sites

The biological function of most proteins depends on specific interactions with other
molecules binding to particular surface areas, the binding sites. Binding sites can
be defined as clusters of amino acids whose structural, dynamic, and physico-
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chemical properties directly affect the interaction and transformation of the binding
molecules. These molecules can be, for example, other proteins, nucleic acids, or
organic ligands, or, classifying them by their function, effectors, substrates,
inhibitors, cofactors, agonists, or antagonists. Binding sites constitute the arena in
which the function(s) of a protein are turned into action. In spite of the dazzling
array of protein functions, researchers have tried to identify structural determinants
capable of distinguishing binding sites from other surface areas or, in other words,
to understand what makes a binding site a binding site [23]. To act as a functional
unit, a binding site has to possess several characteristics that are also reflected in
its structure. The following section discusses the energetic, functional, specificity-
related, and evolutionary aspects that restrain, and thus characterize, the constitution
of binding sites, from a 3D-structural perspective in the light of recent research.
The bound ligands, the actual focus of attention in medicinal chemistry, are sidelined
in this section. The question of how ligand similarity and binding site similarity
are related is discussed in more detail following this introduction.

Early attempts to understand the nature of binding sites focused on the chemical
composition, i.e., the amino acid distribution in protein binding sites. A study by
Villar and Kauvar [24] revealed an accumulation of some residues, in particular
Arg, His, Trp, and Tyr. Young et al. [25] found that protein—protein interface areas
often correspond to the strongest hydrophobic clusters on the protein surface. Also,
about 10% of protein structures (total dataset size: 419) appear to exhibit at least
one large cluster of charged amino acid residues [26, 27]. Typically, negatively charged
clusters are involved in the formation of metal binding sites, whereas mixed-charge
clusters occur in stable protein—protein interactions. However, these observations
on their own are not really suitable for reliably detecting binding sites.

4.2.1
Energetic, Thermodynamic, and Electrostatic Aspects

A binding site has to be assembled in such a way that the binding of an interacting
molecule is energetically feasible. This may seem trivial; however, recent studies
provide several different perspectives linking some surface properties with the
thermodynamics of binding. Generally, binding depends on formation of contacts
between chemical groups, including van der Waals contacts and H bonds. The
larger the number of contacts, the tighter the binding will be. Obviously, an increased
contact surface area corresponds to an increased number of potential contacts,
thus facilitating stronger binding. A structural means for increasing the contact
surface area, which is particularly relevant for the binding of small molecules, is
the formation of a cleft or cavity on the protein surface. The implications of active-
site clefts have been broadly analyzed and discussed by Laskowski et al. [28]. This
study also stresses the importance of the burial of enzyme substrates in clefts. The
shielding of the reaction center from surrounding water molecules is essential for
many biochemical reactions, in particular those involving electron transfer
processes. Moreover, because of its burial in a pocket, a substrate molecule
encounters an environment with a significantly decreased local dielectric constant.
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This allows the enzyme to generate the strong electrostatic forces required for
enzyme catalysis.

A study by Pettit and Bowie analyzing the roughness of protein surfaces, qualified
as fractal dimension [29], showed that functional sites are generally much rougher
than other areas on the surface of a protein [30]. It has been postulated that the
roughness of a protein surface is also related to binding [29]. The fractal dimension
correlates with the surface area squeezed into a fixed volume. In a rougher surface
patch, the effective surface area (per volume) is larger than in a smooth patch, thus
allowing for more energetically favorable van der Waals contacts facilitating tight
binding. The study showed that particularly small binding sites exhibit surface
roughness values significantly above average; for larger interaction sites there is
apparently no need for squeezing more contact (area) into a small volume. The
study concluded that, although surface roughness alone does not guarantee binding,
smoothness effectively precludes binding if the binding interface area is small.

In recent years, it has become evident that the energy of stabilization of a protein
structure is not evenly distributed throughout the molecule. A series of site-directed
mutagenesis studies have revealed that functionally important residues energetically
destabilize the protein; often the mutation of such residues yields more stable
proteins (see Sancluz-Ruiz and Mahatadze for a review [31]). An interesting
theoretical approach exploiting this observation, based on continuum electrostatic
methods (see Honig and Nicholls for a review [32]), has been reported by Elcock
[33]. For six selected proteins, Elcock showed that residue-based calculations of the
electrostatic free energy enable the identification of amino acid residues found to
be energetically destabilizing in experiments. By implication, these are supposed
to be of functional relevance. The study showed that the residues identified by the
method cluster on the protein surface, representing the functional binding site;
the discussion also mentions that false positives can be easily detected. A large-
scale study based on a 216 protein dataset supports this idea and suggests that
residues estimated to be destabilizing are also more likely to be conserved.

Related methods for the prediction of hotspots on protein—protein interfaces
using virtual mutagenesis and virtual alanine scanning have recently been reviewed
by DeLano [34].

Another study on structural stability, by Luque and Freire [35], revealed more
dual characteristics of binding sites. According to their study, binding sites appear
to comprise areas of both high and low stability. Interestingly, low-stability areas in
the regulatory binding sites of allosteric enzymes appear to be essential for
propagation of the signal to the catalytic site, as exemplified by glycerol kinase. The
method they used is based on the COREX algorithm. COREX calculates the stability
constant for each amino acid residue based on the generation of a large ensemble
of partially folded local conformations used for estimating the probability, and thus
the stability, of these states. It is worth adding that an increase in structural stability
by point mutations in areas that undergo conformational changes upon ligand
binding can have a major effect on the binding affinity, even if the respective amino
acid residue is distally located from the binding site. The study demonstrates this
nicely for HIV-1 protease.
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A noteworthy diagnostic tool for the identification of enzyme active sites,
THEMATICS (theoretical microscopic titration curves), has been described by
Ondrechen et al. [36]. The approach is related to the hypothesis that ionizable
residues in the active site of enzymes require a complex perturbed electrostatic
field to regulate their acid or base strengths, so as to achieve the protonation state
needed for proper enzymatic activity. This cannot be accomplished by a simple
decoupled acid-dissociation reaction. The method employs theoretical titration
curves plotting the net charge (which depends on the pK,) of each ionizable residue
against the pH. Calculation of the pK, values is carried out with finite-difference
Poisson—Boltzmann (PB) methods. The study impressively demonstrates that
perturbed titration curves exhibit a distinctive shape that is different from standard
curves and that they mostly represent amino acids of the active site. THEMATICS
has been tested with triosephosphate isomerase, aldose reductase, and phospho-
mannose isomerase showing that most residues belonging to titration curves with
a perturbed shape are part of the active site or are situated very close to it.

4.2.2
Functional Aspects

If the functionally relevant process is to take place at a given binding site, the
molecular machinery itself must be implemented as part of the binding site. (In
other types of sites, such as the regulatory sites of allosteric enzymes, the binding
site has to transmit the signal given by an interacting molecule to a distant functional
site, triggering highly specific responses.). For example, the catalytic ability of
enzymes rests on a specific spatial arrangement of chemical groups building up
the molecular machinery through which the chemical and structural steps of the
biotransformation are orchestrated. This also means that the interaction partner
has to be bound and anchored in a particular conformation, enabling the catalytic
machinery of the binding site to carry out the biotransformation. Deep clefts are
particularly well suited for facilitating anchoring; this, in addition to the energetic
advantages described above, is probably the reason why, in most enzymes, the
largest cleft on the protein surface represents the functional active site [28]. In fact,
the study conducted by Laskowski et al. [28] showed that, in 83.6% of the structures
contained in an enzyme dataset (size: 67), the functional active site corresponds to
the largest cleft; in another 9%, to the second largest cleft. Also, the largest cleft
tends to be much larger than all other clefts present on the protein surface. In
contrast to the active sites of enzymes, functional sites involved in protein—protein
interactions are characterized by shallower, flat surfaces [37]. Methods for identifying
active sites of enzymes are therefore often based on purely geometrical considera-
tions, detecting clefts and depressions on the protein surface. These include
programs such as APROPOS (automated protein pocket search) [38] and CAST
[39] (see the two references for details about the underlying geometrical methods).
CASTp (computed atlas of surface topography) provides a free online resource for
cavities in proteins. It should be noted that, for multichain proteins, the success of
such methods relies on the biologically relevant multimer used as input. A web
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resource [40] providing such information for the PDB is the PQS (protein quaternary
structure) database [41].

A heuristic approach to analyzing the properties of residues directly involved in
enzyme catalysis, using secondary structure, solvent accessibility, flexibility,
conservation of quaternary structure, and function, was recently published by
Bartlett et al. [42]. Such studies will help to provide a more general picture of the
environment of enzyme active sites.

423
Specificity versus Function

The interaction between a ligand and its target protein has to be specific, i.e., the
binding site can be expected to feature chemical properties complementary to those
of the interaction partner, facilitating molecular recognition. The discrimination
between function and specificity is important since it determines which attributes
and structural features of a binding site have to be conserved among a series of
proteins for maintaining the function, and which properties can be allowed greater
variation. For example, all proteases include a specific motif responsible for
accomplishing the hydrolysis of polypeptides. There are a limited number of these
motifs, representing different mechanisms for the same catalytic reaction. For
example, serine and cysteine proteases feature catalytic triads with Ser or Cys
nucleophiles; other specific motifs are found in metalloproteinases and aspartic
proteases. Serine proteases, regardless of their sequence homology, also contain a
pocket substructure referred to as the oxyanion hole [43], which facilitates stabili-
zation of the tetrahedral transition state via formation of H bonds between the
substrate and the enzyme. Thus, from a functional point of view, there is a limited
set of motifs representing the catalytic machinery. In contrast, there is a wealth of
very different protease binding sites featuring a huge variety of diverse chemical
and electrostatic properties, governing the selectivity and specificity of proteolytic
enzymes.

4.2.4
Evolutionary Aspects

Generally, fewer mutations, and thus a higher degree of conservation, are observed
in functionally relevant residues than in other parts of a protein, since a loss of
functionality leads to the dismissal of a protein mutant in evolution. This was shown
by Ma et al. [44] for protein—protein interfaces. Their study shows that binding
hotspots tend to be conserved, thus differentiating between binding sites and the
remainder of the molecular surface. The authors of the study propose that the
most conserved polar residues make the interface rigid, thus minimizing binding
entropy, due to the decrease in conformational flexibility.

A method for detecting conserved residues, called evolutionary tracing (ET), was
developed by Lichtarge et al. [45]. Several groups have embarked on developing
methods for detecting functional sites based on ET and related methods (see
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Lichtarge and Sowa [46] for a recent review). Generally, these methods are based
on mapping evolutionary data onto the 3D surface of the protein, so as to identify
clusters of conserved residues representing the binding site. Recent approaches
include ConSurf, by Armon and coworkers [47], and an enhanced method, Rate4Site,
by Pupko et al. [48, 49]. Some applications of ConSurf have been described by
Glaser et al. [50]. A related method for assessing functional inheritance within
protein superfamilies was reported by Aloy et al. [51].

Another advanced evolutionary method for identifying functionally relevant
clusters was reported by Landgraf et al. [52]. Their approach uses multiple sequence
alignment data for both the overall (global) structure and residue-specific alignments
(local). It has been shown that the use of regional conservation scores overcomes
some of the disadvantages of using ET only, particularly for transient interfaces, as
exemplified for MAP kinase ERK2.

These examples show that binding site formation is governed by physical,
chemical, and evolutionary constraints and that these principles can be used for
uncovering functional binding sites.

4.3
Methods for Identifying Binding Sites

431
Integrated Methods for the Prediction of Binding Sites

The conditio sine qua non for structure-based drug design is the identification and
functional annotation of the relevant binding site(s) in a target protein. A number
of methods, closely related to the characteristics of binding sites and the restraints
imposed on the formation of functional structural units, are discussed in Section
4.2. The most commonly used methods can be classified into geometry-based
methods for cavity detection, methods for identifying specific patterns, and
evolutionary methods.

Recently, some more advanced methods have been reported that integrate the
disparate features used for the characterization of functional binding sites. It can
be expected that the cooperative effect of using all the information available will
greatly enhance the reliability of binding site prediction and detection tools.

One approach employing neural networks for the prediction of active sites in
enzymes was recently reported by Gutteridge et al. [53]. In this approach, a neural
network is used to estimate the likelihood of a residue being catalytically active,
utilizing both evolutionary and structural information. The neural network is trained
on experimentally confirmed active sites. A network score is calculated for each
residue, based on the weights derived during training. A clustering algorithm,
equipped with a significance test, identifies accumulations of highly scored residues
at the protein surface. High weights are assigned to network parameters such as
conservation, diversity of position, relative solvent accessibility, and charged
residues, whereas secondary structure and uncharged residues contribute less to
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the network scoring. A success rate of 69% is reported for correctly detecting the
active sites (spatial overlap of predicted and real site > 50%) and another 25% for
partially correct detection (spatial overlap < 50%). Successful examples for correctly
identifying the (known or proposed) active site of proteins include, e.g., the SET
domain containing histone lysine methyltransferase, intron endonuclease I-Tevl,
and o-r-arabinanase. Putative active sites have been suggested for FemA (factor
essential for methicillin resistance). However, the main problem of the method
remains the generation of a high number of false positives. Nevertheless, the study
nicely demonstrates the benefit of integrating structural and sequence-related
(evolutionary) information in binding site prediction methods.

A related approach integrating sequence information (conservation), geometric
information (cleft detection), and data on local stability calculated by Poisson—Boltz-
mann methods was reported by Ota et al. [54]. The method was used for predicting
catalytic residues (polar atoms only) in enzymes. A number of putative active sites
for a series of hypothetical proteins were found and are discussed in the study.

4.3.2
Sampling the Protein Surface

A different concept for predicting binding sites is exemplified by docking-related
methods specifically designed for probing a protein surface for energetically
favorable interactions (see the recent review by Sotriffer and Klebe [55] and the
method described by Silberstein et al. [56]). A multi-scale approach has been reported
by Glick et al. [57] and Davies et al. [58]. Their method aims to locate binding sites
for specific ligand—protein pairs, using simple feature points for describing the
characteristics of the ligand. Sampling of the protein surface is an iterative
procedure; the number of feature points is increased in each step. Representation
of the probe on different scales allows for initially finding general clefts and surface
depressions, followed by a refined scanning for preferred ligand positions.

4.4
Methods for Detecting Binding Site Similarity

The development of methods for comparing 3D protein structures and for searching
for similarities, so as to understand evolutionary and functional relationships, is
one of the most challenging and thriving areas of structural bioinformatics.
Similarity between protein structures can be searched for on different levels of
structural hierarchy. These include methods for determining similarity of primary
structures (amino acid sequences), for comparing secondary structures or small
spatial motifs [59, 60], and for investigating the similarities of tertiary and quaternary
structures dedicated to the analysis and comparison of protein folds [61, 62]. In
contrast to the enormous variability in sequence coding for functionally relevant
proteins, current estimates suggest that there are only 1000-5000 distinct, stable,
polypeptide chain folds in nature [3]. Methods for detecting binding site similarity,
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the focus of this chapter, represent an intermediate area crossing this structural
hierarchy. They offer a highly complementary approach to fold and sequence
comparison methods. The methods available to date can be roughly classified into
two groups, although there are no definite boundaries. First, there are approaches
for finding specific structural motifs, defined as topological arrangements of
functionally important atoms or amino acid residues. Such methods appear to be
most promising for finding functional motifs in, for example, enzyme active sites,
where a distinct structural arrangement of some key components is essential for
the protein’s function, so that major structural variations are not possible. The
second group of methods comprises approaches that try to encapsulate the general
flavor of binding sites in terms of their chemical or electrostatic nature, by using
descriptors that are independent of specific tertiary patterns, making them more
tolerant in terms of finding structural matches.

4.4.1
Searches for Specific Structural Motifs

Related to the set of methods belonging to the first group (above), it is worth mention-
ing studies specifically designed for investigating particular binding site 3D motifs.
Fetrow and Skolnick [63] used fuzzy functional forms (FFF) to describe protein
active sites in terms of conformation and geometry. FFFs were constructed and
successfully used to detect glutaredoxins/thioredoxins and T, ribonuclease active
sites within datasets comprising high-resolution structures and threading models.
Zhao etal. [64] developed a grid-based method for deriving recognition templates
for adenylate binding sites. Previous studies revealed some fuzziness in adenylate
binding pockets, which lack universally conserved residues [65]. This hampers easy
construction of a recognition template that incorporates all the relevant structural
and energetic features of the binding motif. The approach by Zhao et al. [64] is
based on grid-based affinity potentials and aims to produce a comprehensive
description of all conserved active site features. It is related to methods that estimate
the likelihood of intermolecular interactions in a binding site, such as GRID [66]
and SuperStar [65], but employs combined maps derived from superposed struc-
tures, referred to as consensus affinity maps. These consensus maps are used for
generating recognition templates, which are given by the expected interaction
energies assigned to each atom position in the purine ring. The predictive power
of the method was demonstrated by identifying adenylate binding sites in a series
of dinucleotide binding proteins. The method can discriminate adenine- from
guanine-specific pockets when the respective recognition templates are used.

4.4.2
General Methods for Searching Similar Structural Motifs

One approach, belonging to the first group of methods mentioned above, for
performing searches using 3D templates is TESS (template search and super-
imposition) [67]. TESS is based on a geometrical hashing algorithm and allows
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searching a database of protein structures using user-defined query templates
consisting of any arbitrary geometrical arrangement of atoms and amino acid
residues. TESS also enables specification of more generalized templates. For
example, the catalytic triad Ser-His-Asp, present in trypsin-like proteases, can be
generalized as Nuc-His-El, where Nuc stands for a nucleophilic group and El denotes
an electrostatic group stabilizing the His residue of the triad. The consensus template
derived in this way also includes the catalytic triads Ser-His-Glu of lipases and
Asp-His-Asp of haloalkane dehalogenases. A database consisting of 3D enzyme
active site templates derived using TESS, PROCAT [67, 68], is available on the web
[69].

A related method for searching triad-type sidechain patterns using a multi-
dimensional index tree was reported by Hamelryck [70]. With this approach, mirror
images of patterns are detected, which appear to be very common among metal
binding sites.

Another method, FEATURE, searches microenvironmental patterns, which are
represented as a statistical model of a given set of functional sites. FEATURE is
based on a supervised learning algorithm that estimates the significance of
physicochemical properties present in each functional site. A study utilizing
FEATURE revealed previously unknown features conserved among the active sites
of non-homologous serine proteases [71]. These include an abundant number of
amino acid residues with a high number of freely rotatable bonds in the region
near the active site entrance. The authors speculate that this flexibility supports the
accommodation of the substrate molecule in the binding site. Also, an increased
polarity between the catalytic serine and the oxyanion hole, accompanied by a fairly
well-conserved amide opposite the oxyanion hole, is reflected in the property
descriptors used in the learning algorithm, indicating additional electronic
stabilization of the transition state. The relationship between trypsin-like and
carboxypeptidase active sites as approximate enantiomers is also discussed.
Recently, a web-based service [72], WebFEATURE, has been established [73], which
currently includes statistical models for magnesium [74], calcium, chloride, and
ATP binding site motifs (see also section 4.5), and these motifs can be searched in
a single protein structure.

Methods such as TESS and FEATURE require specification of a protein-based
query template. An approach to the detection of 3D side chain patterns, without
predefinition of a query motif or prior knowledge of the active site or binding site,
has been devised by Russell [75]. The method is based on a string-matching
procedure originally developed for fold recognition. To reduce the initial search
space, a number of amino acids are excluded from the search, mostly unreactive
amino acids having only carbon atoms in their side chains (Ala, Gly, Ile, Leu, Phe,
Pro, Val) and all amino acid positions that are not well conserved. The conservation
analysis is carried out by multiple sequence alignments. The search procedure
detects amino acid side chains that are present in two structures in approximately
the same orientation. A weighted rmsd for the pair of side chains is calculated, and
a statistical significance test estimating the probability of actually observing a given
rmsd is carried out. The probability is derived from analyzing the distribution of
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random structural patterns. An all-against-all (to our knowledge the first one ever
carried out) comparison of SCOP (structural classification of proteins [76], see web
service [77]) representatives, in addition to confirming already known functional
motifs (such as catalytic triads and tetrads, metal binding centers, and Mg-ATP
binding motifs), revealed new examples of evolutionary converged motifs. These
include, for example, a di-zinc binding pattern present in phosphatases and
aminopeptidases, a motif common to chitobiase and neuraminidase, and a motif
shared by DNAse I and endocellulase. Recent developments have involved assessing
the statistical significance of local structural similarities [78], and a web service,
PINTS (pattern in nonhomologous tertiary structures) [79, 80], utilizing an amended
search method and an improved significance check, has been set up. PINTS enables
similar patterns to be uncovered in new structures and assesses their significance,
allowing for the prediction of functional relationships among structurally different
proteins. PINTS is continuously being updated. At the time of writing, it was possible
to carry out searches for protein vs. pattern and pattern vs. protein and also to do
pairwise comparison of protein structures.

A related approach for detecting recurring side chain patterns (DRESPAT) was
recently developed by Wangikar et al. [81]. Picking up on some ideas developed by
Russell [75] (considering one functional atom per side chain only, ignoring
hydrophobic residues), the method treats structural patterns as complete subgraphs
comprising three to six nodes that represent non-carbon side chain atoms. All
possible structural patterns are generated for all proteins to be investigated, and
the patterns recurring most frequently are selected based on geometrical considera-
tions (rmsd) and on evaluating a statistical significance value based on the number
of proteins in the dataset, the recurrence frequency, and the number of atoms in
the pattern. In total, 128 datasets were generated, representing groups of non-
redundant representatives of SCOP superfamilies, 17 of which were investigated
in more detail in the study. These include, for example, catalytic triads and tetrads
present in serine, aspartyl, and cysteine proteases and lipases, EF-hand proteins, a
series of metal binding proteins, SH3 domains, and restriction endonucleases.
Depending on the rmsd thresholds chosen for the pattern selection, most of the
biologically relevant patterns known to be present in the structures can be found
(with a high rmsd cutoff value). Unfortunately, this is accompanied by finding a
huge number of false positives. In contrast, decreasing the rmsd cutoff results in a
high number of false negatives. Generally, the method appears to perform best for
finding patterns comprising four, five, or six atoms; however, it appears to function
fairly poorly for finding three-atom patterns.

Common features between any two protein structures with different folds can
be detected by using GENFIT, which was developed by Lehtonen et al. [82]. GENFIT
locates similar local structures in a protein, using an algorithm for finding equivalent
C,, atoms contained in unique equivalent protein fragments. By restricting the
search to a limited subset of atoms that represent cofactor binding sites, binding
site similarity among proteins with different folds could be identified. This was
demonstrated for selected binding sites for pyridoxal phosphate (PLP) [83] and
ATP [84].
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Three-dimensional side chain patterns of amino acids can also be found with
ASSAM, as reported by Spriggs et al. [85]. ASSAM employs a common subgraph
isomorphism technique. Each amino acid is represented as a vector connecting
the main chain position with a functionally relevant position in the side chain. All
vectors are specified with three points: start (S), middle (M), and end (E). In the
graph-theoretical approach, the vectors represent the nodes of the graph. The edges
are given as the distances between vectors (nodes) and comprise six components
each: SS, SM, SE, MM, ME, and EE. Auxiliary programs can be used for generating
the appropriate input from a set of coordinates representing the 3D query motif.
Recent developments allow for the specification of more generic queries and also
of patterns including main chain, secondary structure, and solvent accessibility
information, as well as disulfide bridges. The method has been tested for several
3D query motifs, including phosphate binding proteins and the catalytic triads of
o-chymotrypsin and papain. A discussion of the a-chymotrypsin example demon-
strated the ability of the method to reasonably detect such patterns.

Another program suite for finding templates and particular motifs in a huge
preprocessed database containing common amino acid configurations was reported
by Oldfield [86].

The methods summarized so far are independent of the order of the binding site
residues in the primary sequence. By including the order dependence of sequence
patterns, protein surface sequence patterns can be utilized for binding site
comparisons. In an approach reported by Binkowski et al. [87], all residues
constituting a particular binding site are extracted from the primary sequence and
concatenated in the same order, forming a short sequence motif (the approach
uses precalculated binding sites stored in the CASTp database [88]). These motifs
can then be used for initial surface patch similarity searches, which are followed by
methods for investigating the spatial match of the patterns found.

443
Similar Shape and Property Searches

The second group of approaches, seeking similarities in the shapes and chemical
surface properties of binding sites, include recently developed tools such as CavBase
[89, 90], eF-Site [91], and SuMo [92]. An earlier technique using surface shape only
for binding site comparisons was reported by Rosen et al. [93]. The reliability of
this geometric surface-matching approach has been shown for the catalytic triad of
serine proteases and chorismate mutase.

CavBase was developed by Schmitt et al. [89, 90] and is fully integrated into the
protein-ligand data mining system Relibase+ [19, 20]. With CavBase, cavities are
detected on the basis of a purely geometrical grid-based approach, Ligsite [94]. Ligsite
effectively rasters the protein structure and evaluates the local degree of burial for
each grid point. Areas above a certain threshold are considered to represent cavities
in the protein surface. After cavity detection, the amino acid residues lining the
cavity are transformed into simplified 3D property descriptors, referred to as pseudo-
centers. The current implementation of CavBase features five types of pseudo-
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centers, namely donor, acceptor, donor—acceptor, m-aromatic, and aliphatic.
Geometrical considerations concerning the directionality of possible surface
interactions are used to analyze which pseudo-centers project their chemical
properties to the surface. Pseudo-centers that match the criteria governing the
surface property are assigned to corresponding surface patches (defined on a grid);
all other pseudo-centers are omitted. All information regarding pseudo-centers,
surface patches, and corresponding amino acid residues is stored in the CavBase
database. Similarity searches with CavBase are based on a clique detection algorithm
and can be performed by using either all pseudo-centers representing a query cavity
or a selected subset of pseudo-centers representing, e.g., a particular subpocket.
For clique detection, the pseudo-centers of a cavity represent the nodes of a graph,
and the distances between them are the edges of the graph. The algorithm detects
the largest common subgraph of two given graphs. A scoring function based on
calculating the overlap of surface patches belonging to matching pairs of pseudo-
centers is used to rank the solutions found.

The study of Schmitt et al. nicely showed that CavBase can detect binding site
similarity for a number of examples, regardless of sequence or fold similarity. These
include trypanothione reductase and a subpocket of HIV protease, which were
found to share some similarity with the adenine binding pocket of cAMP-dependent
kinase. Recently, Weber et al. [95] discovered unexpected cross-reactivity between
the COX-2 specific sulfonamide inhibitor celecoxib and members of the structurally
unrelated carbonic anhydrase family. Using CavBase, a database containing 9433
cavities was searched for similarities with subpockets of the celecoxib binding site
in COX-2. The subpockets lining the sulfonamide moiety (25 pseudo-centers) and
the trifluoromethyl group (7 pseudocenters) of celecoxib were used as query
subpockets, and corresponding subpockets were detected in carbonic anhydrase.
Recent developments of CavBase include an improved clique detection method
based on clique hashing [96], which has enhanced the performance of the cavity
comparison algorithm. This, in conjunction with improved similarity scoring
functions, will enable more unexpected binding site similarities to be found within
large structure databases in a high-throughput fashion.

Another similarity search method, also based on clique detection, is eF-Site [91,
97], an improved version of an older approach [98]. In eF-Site, the physicochemical
properties of the surface are described by the electrostatic potential on the surface,
calculated by numerically solving the Poisson—Boltzmann equation. Currently, the
eF-Site database comprises more than 7000 entries from the PDB, including
molecular surface and electrostatic potential data. For the graph-theoretical search
approach, the nodes are vertices of triangles representing the molecular surface.
The electrostatic potential and the local surface curvature are assigned to each node.
The suitability of the method has been demonstrated by comparing proteins
exhibiting completely different folds but sharing similar functions. A database search
using the entire surface of phosphoenolpyruvate carboxykinase (PDB entry layl)
as the query was carried out, finding a number of proteins containing mono-
nucleotide binding sites. Furthermore, an eF-Site search with a ligand-free structure
of a ‘hypothetical protein as query, which was later shown to bind ATP, revealed a
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series of ATP binding proteins as hits. The study did not, however, discuss the
issue of significance and scoring of hits when applying the method to a large
database to discover functional similarities.

A recent approach for detecting common sites in proteins is SuMo (surfing the
molecules) [92, 99]. This approach is related to that of CavBase, but in this work
individual amino acid residues are transformed into descriptors that represent
different chemical groups. These can be, for example, hydroxyl or aromatic and,
according to their chemical nature, are assigned to one or more amino acid. The
positions of the chemical groups (represented by points in space) are then used to
build up triangles. A graph of adjacent triangles representing the query surface
area is then subjected to a graph-theoretical approach for actually performing the
similarity search. Potentially similar patches initially found by this approach are
further refined based on a geometrical approach, taking into account the local atom
density as a descriptor of the degree of burial of atoms and groups. The method
has been successfully applied to the detection of similarities among serine proteases
comprising the Asp-His-Ser catalytic triad (y-chymotrypsin, subtilisin) and between
legume lectins. For the lectins, SuMo was able to reasonably distinguish between
functionally active (i.e., carbohydrate binding) and inactive representatives among
the 106 legume lectin structures in the test dataset. However, we think that, in
disagreement with Jambon et al., pattern-based methods, such as TESS, or the
approach described by Russell are better suited to the detection of specific 3D motifs
such as catalytic triads. Also, the investigation of lectins was restricted to a selected
set of lectins and thus lacks any indication of how the approach would perform in
terms of producing false hits in database searches.

A concept in the spirit of CavBase was reported by Stahl et al. [100]. Their approach
employs a cavity detection algorithm related to Ligsite, based on calculating access
values for positions representing the solvent space, followed by extracting the cavities
as contiguous clusters of points with high access values. The solvent-accessible
surfaces are calculated for protein residues forming cavities, using the Connolly
algorithm [101]. A descriptor for the possible interaction types (aliphatic, H-bond
donor or acceptor, aromatic face or edge) is assigned to each surface point, based
on geometrical considerations taking the orientation of functional groups into
account. Similarity searches are performed using Kohonen self-organizing neural
networks [102]. Kohonen networks are a commonly used means for (nonlinearly)
projecting high-dimensional dependencies into low-dimensional (here, 2D)
descriptions. In this case, the neural network was trained by using cross-correlation
vectors representing the distances between points on the solvent-accessible surface,
in this way encoding the spatial distribution of the properties associated with the
surface points. The training set contained 175 structures from different structural
families. The results showed a clustering into different groups of enzymes in the
2D Kohonen map, including carbonic anhydrase, alkaline phosphatase, and
metalloproteinases. The latter were split into three independent clusters. Interest-
ingly, some of the outliers could be easily explained: the method failed for structures
containing shallow pockets (superoxide dismutase) and structures containing a
large variable loop region in their binding site (B-lactamase). The predictive power
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of the method was tested for 18 zinc enzymes not present in the training set. With
only one exception, the method was able to distinguish the active site out of the five
largest cavities in the protein being considered. Furthermore, these pockets were
nicely assigned to the clusters belonging to the correct enzyme type.

Initial results based on ideas that are related to the CavBase approach were
reported by Pickering et al. [103]. Their method encodes the characteristics of a
binding site by assigning a shape index, a curvedness value, and chemical features
(based on their parent amino acid residue) to each of the vertices on a Connolly
surface. Likewise, as in the other approaches described above, the surfaces are
represented as graphs, and the best match between two surfaces is detected with a
clique detection algorithm. Initial results include calculations on the NAD binding
sites of alcohol dehydrogenases (ADH) from different species. A comparison of
various ADH binding sites with the NAD binding site of the more distantly related
glyceraldehyde-3-phosphate dehydrogenase revealed that typically 30%-35% of the
features match in both cavities.

4.5
Applications of Binding Site Analyses and Comparisons in Drug Design

4.5.1
Protein Kinases and Protein Phosphatases as Drug Targets

Chemogenomics efforts have so far focused on protein families encompassing a
large number of drug targets or target candidates. Both protein kinases and protein
phosphatases represent such families and are the focus of many ongoing research
projects in pharmaceutical companies. In this chapter, we embark on a tour of
sequence space by taking a closer look at these two protein families.

Phosphorylation and dephosphorylation of proteins play a fundamental role in
the regulation of protein activity. The enzymes responsible for these transformations,
protein kinases and phosphatases, act as mutual opponents in the up- and down-
regulation of individual protein functional activity. The addition or removal of a
phosphoryl group, usually attached to a Ser, Thr, or Tyr residue sidechain, initiates
a conformational change triggering the activation or deactivation of the substrate
protein. Protein kinases and phosphatases are involved in many crucial cellular
events such as signal transduction processes, the modulation of which are of major
importance for a variety of pathological conditions. An important therapeutic area
in which protein kinases in particular have attracted much attention is oncology.
Apart from these, both kinases and phosphatases are validated targets for the
treatment of, for example, diabetes, cardiovascular and inflammatory diseases, and
autoimmune disorders.
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4.5.2
Relationships of Fold, Function, and Sequence Similarities

In spite of the closely related functional roles of protein kinases and phosphatases
in many biochemical pathways, a comparison of both enzyme classes exemplifies
the variability of relationships among function, sequence, and fold.

In principle, nature has decoupled protein function and protein fold. The most
commonly known example for a fold conveying a broad variety of functions is the
TIM barrel. First found in triosephosphate isomerase, the TIM barrel also occurs
in proteins as diverse as aldose reductase, enolase, and adenosine deaminase (see,
e.g., the review by Nagano et al. [104]). To date, the TIM barrel fold, as a generic
scaffold, is associated with 15 different types of enzymatic functions.

On the other hand, a particular protein function can be realized with different
protein folds, and an example of this are protein phosphatases. Protein phosphatases
feature two distinctively different catalytic mechanisms for hydrolytically cleaving
phosphorylated amino acid residues. The active sites of serine/threonine protein
phosphatases (PPs) contain two metal centers that directly activate a water molecule
for nucleophilic attack of the phosphate ester bond. In contrast, protein tyrosine
phosphatases (PTPs) [105] possess a Cys residue present in the active site loop
containing the conserved PTP signature motif HCXXXXXRS. The Cys sidechain
acts as the attacking nucleophile in the formation of a phosphocysteine intermediate,
which is eventually hydrolyzed by a water molecule [106]. The same catalytic
mechanism is also shared by dual-specificity phosphatases (see below).

For both classes of protein phosphatases representing the two different de-
phosphorylation mechanisms, different folds of the catalytic domain are known.
The PP class can be subdivided into the PPM family (e.g., PP2C) and the PPP
family (e.g., PP1) which differ in fold. Different architectures found for the PTP
domains include classical pTyr-specific PTPs, low molecular weight PTPs, dual-
specificity phosphatases, and CDC25 phosphatases. Apart from the active site loop
PTP signature motif, these subfamilies share little or no sequence similarity.
However, a significant 3D structural similarity between their binding sites can be
established (Figure 4.1).

An entirely different picture emerges for protein kinases. In spite of the
evolutionary differentiation of serine/threonine and tyrosine kinases, which is
apparent on the sequence level, the catalytic mechanism is conserved and always
involves transfer of the y-phosphate group of the substrate cofactor ATP. (Only the
individual mechanisms of the preceding kinase activation are very different.) Since
the substrate binding pocket of protein kinases appears to be difficult to target by
small molecules, usually the cofactor binding pocket is the focus of interest in
current kinase inhibitor development. A conserved Lys residue, present in the
N-terminal subdomain, along with amino acid residues of the glycine-rich loop
(GXGXXGXYV) interact with the phosphate groups of ATP. The primary Mg** ion
is coordinated by a conserved Asp residue present in the DFG motif. The Asp and
Asn residues present in the conserved DXXXN motif play a role in catalysis and in
coordinating a secondary Mg?* ion, respectively. Whether the phosphoryl transfer
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Figure 4.1 Protein tyrosine phosphatase 1B
(2hnq (a)) and CDC25B (1cwt (b)) employ
the same catalytic mechanism for hydrolysis
of phosphorylated substrates but share no
sequence homology and exhibit very different
folds. The similarity of their binding sites
can, however, be detected on the level of the
interaction properties exposed to a ligand.

A CavBase calculation found 14 pairs of
matching pseudo-centers, resulting in the
superposition of the two binding sites shown
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in (c). The positions of the sulfate ions in

the two structures match remarkably well.
PTP-1B is shown with carbon atoms in green
and CDC25 with white carbon atoms.

The pseudocenters are shown as spheres,
and interaction types are indicated by colors
(blue = donor, red = acceptor, yellow = donor/
acceptor, green = aliphatic). (a) and (b) were
prepared with Insight Il [144], and (c) was
prepared with SYBYL [145].
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involves an associative (Sy2-like) or dissociative (Sy1-like) transition state [107, 108]
has not yet been clarified.

All catalytic domains of protein kinases exhibit the same characteristic fold, with
the ATP-binding niche being located in the cleft between the N-terminal and
C-terminal subdomains (for kinases operating on non-protein substrates, however,
other folds are also found [109]). The uniqueness of this picture is even more
surprising, given that the human genome is estimated to include approximately
520 protein kinases [110], compared to a mere 150 protein phosphatases [111].

453
Druggability

The abundance of kinases, along with the conserved nature of many of their ATP-
binding-site residues, has cast the suitability of protein kinases as drug targets into
doubt. There has been a long debate as to whether protein kinases can be considered
promising drug targets at all and whether selectivity between closely related kinase
structures can possibly be achieved. Since the launch of Gleevec® [112], this
discussion has tapered off. Interestingly, the X-ray crystal structure of Abl kinase in
complex with Gleevec® revealed an enormous movement of the activation loop.
Thus, the conformational flexibility of protein kinases [113, 114] might extend their
range of structural differentiation and thereby improve the chances of finding
selective inhibitors. At the same time, it must be stressed that most of the known
kinase inhibitors [115-117] have been developed for cancer treatment, where
selectivity against all other related targets is often not critical or even desirable. Yet,
for certain conditions protein kinases appear to be valid, druggable targets.

The druggability of protein phosphatase binding pockets has some problematic
aspects as well, though they are different from those encountered with protein
kinases. To accomplish phosphorylation, protein kinases have to bind ATP as a
cofactor. Thus, the need to recognize the ATP molecule constitutes the fundamental
similarity of the binding niches for all protein kinases. Conversely, phosphatases
must be able to bind phosphate groups. By comparison with ATP, phosphate is a
small structural fragment, which can be accommodated in protein cavities in many
different ways, leaving room for varying shape and constitution of phosphate-
binding pockets [118]. This is in accordance with the diversity of folds among the
phosphatase family [119]. Most notably, anchoring a phosphate group can already
be achieved with a very small pocket. In fact, some protein phosphatases feature
just a small protein surface depression for phosphate binding and achieve specific
intermolecular recognition with the partner protein via flat, extended interaction
interfaces, as is typical of protein—protein interactions [120]. Dual-specificity
phosphatases (DSPs) employ such flat-shaped binding sites as a direct consequence
of the need to bind both Ser/Thr and Tyr residues [121]. If DSP binding pockets
were deep enough to accommodate entire phospho-tyrosine moieties, as given for
PTPs, neither Ser nor Thr residues could reach the bottom of these cavities. In
other words, protein architecture here complies with the principle ‘form follows
function.
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Figure 4.2 The global shapes of binding enabling tight, specific binding. For shallow
pockets are an important aspect of assessing binding sites as in KAP (1fpz (b)) this can be
the druggability of a target family. A distinctly difficult (the Ligsite [94] algorithm does not

different picture emerges for protein phos- even detect a cavity here). The presence of
phatases and protein kinases. While the subpockets adjacent to the catalytic pocket
ATP binding pocket of all protein kinases offers alternative interaction areas for ligands,
emerges as a deep narrow cleft between the enhancing the chance of finding a suitable
N-terminal and the C-terminal subdomains drug candidate. For example, in PTP-1B,
(CDK2 structure 1fin (a)), the binding pockets a validated drug target in the treatment of

of phosphatases are, in general, more open diabetes, a second aryl binding site was

and shallow. However, there are significant detected by Puius et al. [146] (Tpty (c)); in this
differences among various phosphatases. structure two phosphor-tyrosine molecules

A binding site should be capable of burying are bound to the active site. The figure was
large portions of a small molecule ligand, prepared with SYBYL [145].

Unfortunately, the flat shape of such binding pockets can impose severe
restrictions in terms of druggability. It appears to be difficult to construct drug-like
molecules that bind tightly and specifically to such shallow surface areas (Figure 4.2).
Unless the accommodation of a ligand induces local conformational changes in
the protein in such a way that a real pocket is formed upon binding, lead finding
projects for this type of target are more likely to get stuck with a compound series
exhibiting moderate binding but lacking a concise SAR. Sadly, the prediction of
such induced-fit effects remains an unsolved problem.

4.5.4
Relationship between Ligand Similarity and Binding Site Similarity

The classification of binding pockets based on their recognition patterns brings us
closer to shedding some light on links between genome (or sequence) space and
chemical space. Establishing such links is by no means simple, and only few studies
have attempted to do so directly. From the numerous studies undertaken by
independent research groups, which resulted in completely different drug candidate
molecules for the same target protein, it is obvious that one pocket can bind small
molecules that differ strikingly in structure. Thus, a given starting point in sequence
space cannot be linked to a particular area in chemistry space in a one-to-one
relationship unless the underlying structural description captures the features that
determine molecular recognition.
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A noteworthy chemometrical method (CHEMDOCK) for establishing comple-
mentary relationships between receptors and ligands has been devised by Oloff
et al. [122]. Their approach employs atomic descriptors derived by quantum
chemical methods (TAE/RECON descriptors [123]), which represent both the
ligand structures and the protein binding pockets in global a descriptor space.
The software was trained by using a dataset comprising 99 PDB protein-ligand
structures (SMoG dataset [124]). The correct ligand for any of the receptors
included in the test set could be identified within the ten best hits, with the
average rank order of the native ligand being the third on the hit list. The
approach is widely applicable, since links can be established in either direction.
Knowledge of a receptor’s active site structure facilitates straightforward identifi-
cation of complementary ligands from large databases, and starting from a given
ligand structure may equally well identify possible complementary receptor
cavities.

In the context of chemogenomics, a related question is also worth addressing:
can two proteins binding to the same or very similar ligands be expected to share
similarity in their binding sites, and if so, to what extent? Although we are not
aware of any systematic studies related to this question, several studies on similarity
aspects of adenine binding sites can be referred to, to provide a guideline. Adenine
is part of the ATP cofactor of kinases, but is also a common substructure of other
enzyme cofactors such as AMP, ADP, NAD, and FAD, making it one of the most
widespread chemical groups present in a large number of different protein
structures. Since many adenine binding proteins represent targets of major
pharmaceutical interest, unraveling the determinants of adenine binding has
attracted a number of researchers in recent years. Various studies have been reported
which aimed to identify structurally invariant patterns in adenine binding pockets
[65, 125-129]. A study by Moodie et al. [65] revealed that complementary shape and
electrostatic properties between the adenylate group and the protein can be achieved
via a number of alternative amino acid residue arrangements, without these residues
being conserved. These findings are supported in related studies by Denessiouk et
al. [126-128]. A recent study by Cappello et al. [129] suggests that the structural
diversity of adenine binding pockets appears to be even larger than previously
described. Not only can different amino acids form the same kind of interaction,
recognition of the ligand can even be accomplished by different interaction patterns.
Generally, the adenine moiety is sandwiched between mostly nonpolar areas above
and below the ring plane. However, there are a broad variety of in-plane interactions,
and a number of different H-bonding patterns were identified around the rim of
the purine ring system. Notably, the number of H-bonds formed is generally smaller
than the number of theoretically feasible H-bonds, and, in agreement with the
findings of Moodie et al. [65], water molecules appear to be important H-bonding
partners for adenine. The H-bonding patterns were used to establish a simple pattern
recognition classification scheme, based on encoding the actual involvement of
polar adenine atoms in H-bonding as bit strings. The study showed that these
recognition motifs appear to be conserved only among very closely related proteins.
Even within protein families, significant differences in the adenine binding site
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composition were observed; whereas, in contrast, very similar binding sites
belonging to different folds could also be found.

These studies indicate that protein cavities binding the same ligand do not
necessarily exhibit a high degree of structural similarity. Thus, if one is looking
only for related targets that could bind the same molecule, considering genome
space, then taking a given ligand structure as a starting point is a reasonable
approach. Trying to identify all target proteins binding to a given ligand in this way
is certainly inadequate. However, searching the neighborhood of a given target can
facilitate the identification of targets for which selectivity problems might be
encountered, thus assisting project planning, such as early setup of assays, etc.
Nevertheless, unexpected selectivity problems can always emerge with other proteins
that are unrelated on the sequence and even functional level.

4.5.5
Selectivity Issues

Achieving an appropriate selectivity profile is one of the major challenges in drug
design. Selectivity problems arise if, unintentionally, an active compound interacts
with proteins other than the target protein, modulating their functional activity.
On a microscopic scale, this implies that the active compound binds to protein
cavities present in one or more antitargets.

As discussed above, two binding sites (in different proteins) exhibiting some
degree of structural similarity may or may not bind the same ligand. The selectivity
of a ligand towards such binding sites depends on the structural elements of the
protein pockets involved in ligand binding. If only conserved structural features
present in both pockets are used to facilitate ligand binding, no selectivity can be
expected. Utilizing recognition features unique to one of the structures will, in
contrast, enable selectivity. Although drug design efforts usually aim to develop
selective inhibitors, the identification of a scaffold representing a nonspecific ligand
can also be extremely valuable, provided that the scaffold offers high optimization
potential. Selectivity toward members of the same protein family can be introduced
by attaching appropriate substituents to the core structure. In targeting protein
tyrosine phosphatases, the Novo Nordisk group succeeded in finding a general,
competitive, efficient, and lead-like inhibitor, 2-oxalylamino-benzoic acid (OBA)
[130]. The X-ray structure of OBA in complex with PTP-1B (PDB code 1c85) was
determined. The binding mode of the OBA ligand largely resembles that of tyrosine
phosphate, as found in the natural substrate, and includes H-bond formation with
the PTP signature motif (Figure 4.3). Analogous to the phosphate group, the
carboxylate anchor forms four H bonds with the protein (two H-bonds with the
guanidinium group of Arg221 and one H-bond with each backbone nitrogen atom
of Ser216 and Ala217). Other H-bonds bridge the carboxy group of the oxalylamino
moiety with the backbone nitrogen atom of Gly220 and the o-carboxylate group
with Asp181. Asp181 acts as a general acid and is therefore protonated. Also, a weak
salt bridge (contact distance: 3.41 A) between the o-carboxylate group and Lys120
is formed. Although the phenyl ring in OBA is shifted up relative to the phenyl
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Figure 4.3 Binding mode of 2-oxalylaminobenzoic acid (OBA) in the
catalytic pocket of PTP-1B (1c85). The inhibitor was developed as a
phenyl phosphate mimetic and provided the starting point for the
development of inhibitors selective toward individual PTPs. OBA binding
largely resembles the interactions between PTP and its natural substrate.
The figure was prepared with RasMol [147].

ring in tyrosine phosphate, it occupies largely the same hydrophobic pocket. OBA
appears to be the most potent ‘minimal unit’ phenylphosphate mimetic obtained
so far.

The OBA scaffold has been further developed into potent and selective PTP-1B
inhibitors. A sequence alignment of the catalytic domains from 106 known
vertebrate PTPs was carried out. This information, in combination with the crystal
structure of PTP-1B, was used to identify residues unique to PTP-1B reasonably
close to its active site. In this way, a set of four residues was found, namely, Arg47,
Asp48, Met258, and Gly259. Initial attempts at optimizing the ligand focused on
interactions with Asp48, since many PTPs have an uncharged Asn in this position.
Introducing a charged nitrogen atom into the core structure enabled formation of
anew salt bridge with Asp48 in PTB-1B, while, presumably, the presence of repulsive
forces between the positive charge and the Asn sidechains present in other PTPs
resulted in the desired gain in selectivity [131].

Further optimization steps focused on enhancing the selectivity for PTPs
possessing the conserved Asp48 residue, but differing at position 259. In PTP-1B,
position 259 is a Gly residue, whereas, for example, PTPa has a Gln residue here.
The bulkier sidechain of the Gln residue changes the substrate recognition
properties of the phosphatase. Hence, the guiding principle for enhancing the
selectivity at this optimization step was that of exploiting steric hindrance, rather
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than differences in the electrostatic properties of a given pocket area [132]. With
PTPa as a model for the anti-targets, an analog of the compound lacking the basic
nitrogen atom responsible for PTP-1B selectivity was used as a starting point for
chemical modification. Thus, any improvement in selectivity could unambiguously
be attributed to residue 259. By extending the inhibitor towards the so-called 258/259
gateway region, activity against PTPo was completely lost, supporting the rationale
of the design. Moreover, the affinity of the inhibitor to PTP-1B was improved by a
factor of 100. The crystal structure of PTP-1B in complex with the newly designed
inhibitor revealed a feasible reason for the improved binding: Asp48 was found in
a different rotameric state compared to the structures belonging to the first
compound series, where it formed a salt bridge to the basic nitrogen atom. A water
molecule, not observed in the other structures, facilitates ligand binding via a water-
mediated protein-ligand contact bridging to Asp48. This additional contact also
provides an explanation for the seemingly contradictory finding of reasonably high
selectivity against the tyrosine phosphatase SHP-1, which has a Gly residue in
position 259.

In summary, the manipulation of both the attractive and repulsive forces for
residue 48 and exploiting steric differences for residue 259 independently lead to
an increase in selectivity. The authors of this work [132] conclude with the convincing
hypothesis that combination of these efforts could yield inhibitors with significantly
improved selectivity against the majority of related PTPs.

The situation described above, where a crystal structure is available only for the
target protein but not for the relevant anti-targets, is very common. Nevertheless, if
crystal structures were available for all (or a sufficient number of) the anti-targets,
advanced possibilities could be opened up for analyzing the structural determinants
of selectivity. An elegant approach for systematically exploiting 3D protein structural
data with the aim of identifying selectivity-related differences in binding sites was
presented by Kastenholz et al. [133]. Its application to kinases was recently reported
by Naumann and Matter [134]. In their study, the molecular recognition properties
of the ATP pockets of 26 different kinase structures were investigated. All structures
contained in the dataset were superimposed, and GRID [66] fields were calculated
using the N1, O, and DRY probes (representing H-bond donor, H-bond acceptor,
and hydrophobic interaction properties) for each protein. The calculated interaction
energies of all grid points and all probes were concatenated in a vector. These
26 vectors represent the rows in an X-matrix used for a subsequent chemometric
analysis by PCA and CPCA (consensus principal component analysis) methods
[135]. The PCA and CPCA score plots, termed target family landscapes by the authors,
allow a classification of the binding sites according to the similarities of their binding
patterns. The first principal component (PC1) separates CDK and MAP /receptor
kinases from the family of PKA kinases. The CDK structures fall into two separate
clusters, representing the cyclin-bound (activated) and the inactivated state of a
kinase. The two states differ significantly in conformation. The second PC separates
MAP and other receptor kinases from the CDK family.

For an interpretation of the GRID/PCA model in structural terms, contour plots
for individual probes were derived from the loadings of the first and second PC,
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respectively. These plots highlight regions of observed differences with respect to
interaction with a particular probe. Thus they indicate positions where a particular
ligand functional group should optimally be placed, to initially achieve or enhance
selectivity. In fact, the results were in good agreement with the experimental
selectivity profile of a series of 2,6,9-substituted purine compounds used as a
scaffold for CDK inhibitors. The fact that hydrophobic groups attached to the
purine N9 atom improve the selectivity towards CDK (and against PKA) could be
nicely explained by the PC1 contour plot for the DRY probe. The compounds
roscovitine and purvalanol A and B, all selective toward CDK, contain an isopropyl
group in this position, which appears to be more favorable than a smaller methyl
group (as present in olomoucine). In CDK2, the subpocket accommodating these
alkyl groups is lined with Val64, Phe80, and Alal44, while the PKA subpocket
exhibits more polar features, with a Thr residue replacing the Ala residue and a
Met residue replacing the Phe residue. The PC2 contour plot demonstrates that
the same substitution also improves selectivity against MAP kinases, in which the
corresponding residues Ile82, GIn103, and Alal44 form a more polar environ-
ment. Furthermore, roscovitine, purvalanol A, and purvalanol B carry an ethyl or
isopropyl group at the C2’ position of the hydroxyethyl group. These moieties bind
to another hydrophobic subpocket (lined with Ile10 and Val18). The impact of this
subpocket on specificity can also be identified in the PC1 contour plot. The
favorable hydroxyethyl moiety attached to N1’ in roscovitine, olomoucine and both
purvalanol compounds points to a contour patch in the N1 probe-derived PC2 plot.

In addition to providing an explanation for the experimentally determined
selectivity profiles of known CDK inhibitors, the study also pointed out further
opportunities for forming selective interactions that have not been exploited by
any of the compounds in the series. With an increasing number of kinase structures
being solved, the range of applications for this approach [133, 134] will increase,
providing a valuable tool for designing selective inhibitors.

4.5.6
Caveats

Switching from the sequence level to the 3D structure level allows one to focus
directly on the molecular determinants of ligand binding, i.e., the physicochemical
properties featured in the ligand binding site. There are, however, several caveats
to remember. So far, it has been assumed that the level of sequence similarity in a
pair of proteins correlates with the structural similarity of their binding sites (in
fact, the clustering of the different kinase families in the target family landscapes
supports this concept). However, this is a simplified picture that cannot be
universally applied. Neither the physicochemical properties that binding site
residues project onto the cavity surface nor the 3D arrangement of such interaction
centers are unambiguous and unalterable.
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4.5.7
Protein Flexibility

One of the most common problems that binding site comparisons involve is that
of protein flexibility [136]. The dynamic nature of proteins can appear on different
levels of the structural hierarchy, ranging from the thermal motion of individual
side chains, over shifts of backbone segments, to movements of entire domains
[20]. As previously mentioned, protein conformational changes are often triggered
by the binding of a ligand. By means of standard X-ray crystallography, only single
snapshots of 3D structures can be generated, and assertions regarding flexibility
can only be made based on B-factor distributions and interpretation of the electron
density. Thus, structural changes in protein structures triggered by, for example,
variations in the crystallization conditions, or, more importantly, binding of different
ligands, cannot be captured by a single crystal structure. However, a series of crystal
structures representing different relevant structural states can facilitate an under-
standing of the conformational flexibility of proteins and their binding sites [137].
Since all existing methods for comparing binding sites refer to rigid coordinates,
they are bound to fail if two distinctly different conformations are compared. Thus,
existing similarities that can be easily detected on the sequence level might not be
revealed.

The problem of protein flexibility can be exemplified with both the families of
protein kinases and protein phosphatases.

Apart from major loop rearrangements, as found with Gleevec, the ATP pocket
of kinases can also undergo more subtle structural adaptations upon binding of a
ligand. Staurosporine is an unspecific kinase inhibitor that, due to its large aromatic
ring system, distends the respective binding cavity. Taking the structure of CDK2
in complex with staurosporine (laql) as a reference and searching for similar
pockets with CavBase, one finds that the ranking of the derived pockets does not
reflect the sequence relationship of the different kinases. Interestingly, the pocket
of the Src kinase 1byg, which binds staurosporine as well but shares a sequence
identity of only 26% with CDK2, appears to be more similar to 1aql (35 matching
pseudo-centers, similarity score 5051) than the pocket of the sequence-identical
CDK2 structure 1fvv, which represents the cyclin-bound state of the kinase with an
oxindole inhibitor (28 matching pseudo-centers with laql, similarity score 4691).
This example illustrates two effects: on the one hand, binding of the same ligand
can increase the structural similarity between distantly related pockets; on the other
hand, binding of different ligands can decrease the structural similarity between
closely related pockets.

Marked induced-fit effects are also found for protein phosphatases. The PTP-1B
active site is surrounded by several surface loops, which are important for catalysis
and substrate recognition. Binding of pTyr, tyrosine-phosphorylated substrates, or
inhibitors like OBA (see above) induces an 8 A movement of the so-called WPD
loop, which brings Asp181 (the general acid) into the catalytic site. This movement
closes the active site pocket and in turn traps the substrate. A comparison of the
ligand-free structure 2hnp to the ligand-bound structure 1bzj shows how the
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Figure 4.4 Comparison of a ligand-free (2hnp) with a complexed
(1bzj) structure of PTP-1B reveals a pronounced induced-fit effect.
Upon inhibitor binding, the WPD loop closes over the catalytic
pocket. The same structural rearrangement is also produced by
substrate binding and involves shifting the general acid Asp181
required for catalysis in the active site. The figure was prepared
with Insight Il [144].

transition of the WPD loop from the open to the closed conformation affects the
overall binding site shape (Figure 4.4). Effectively, one of the cavity walls is built up
by the loop closure.

Statistics including large and diverse sets of protein structures have revealed
that the 20 amino acid residue types exhibit distinctly different levels of flexibility
[138]. Gln residues appear to be amazingly flexible (given their medium size) and
are used in the following section for exemplifying some of the caveats that complicate
binding site comparisons.

45.8
Ambiguities in Atom Type Assignment

In X-ray crystallography, the decision as to which of the terminal atoms of GIn (and
Asn) sidechains is oxygen or nitrogen is prone to error. The X-ray scattering power
of oxygen and nitrogen is very similar. As a result, the electron density of Gln and
Asn sidechains usually appears symmetric, thus hampering unambiguous assign-
ment of the correct atom type. (A similar situation is encountered with the C, and
O, atoms in Thr side chains, as well as the N, and Ng; atoms in His residues).
Unless the resolution is very high, which would allow for identification of the
hydrogen atoms bound to the amide nitrogen atom, only indirect methods making
use of chemical knowledge can be applied to overcome the ambiguities. By taking
the H-bond characteristics of the oxygen atom (acceptor) and nitrogen atom (donor)
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into consideration and analyzing the local environment of these atoms for potential
H-bond partners, for 75% of the residues the atoms can be unambiguously assigned
[139]. Nevertheless, an investigation of the stability of potential H-bond networks
provided evidence that there are still a substantial number of misassignments in
the PDB. In many cases, calculations revealed more stable networks when the
positions of the oxygen and nitrogen atoms in GIn/Asn side chains were switched
[140]. In addition, some structures are genuinely difficult, resulting in arbitrary
assignments.

Clearly, donors and acceptors have to be considered as non-matching properties
in binding site comparisons (this of course does not hold for bifunctional groups
such as hydroxyl groups, which can act as either hydrogen donors or acceptors).
Wrong atom type assignments, leading to erroneous property descriptions, can
hamper the success of binding site comparison methods by producing false or
missing hits. The ostensibly promising workaround of unifying atom assignments
among corresponding Gln residues in a set of pockets could, however, conceal real
flexibility effects. An example of this situation is given by the elastase structures
lela and 1elc (Figure 4.5). In lela, GIn200 acts as an H-bond donor via its N, atom,
bridging to a carbonyl group in the ligand. In lelc, GIn200 is flipped with respect
to lela, and its O,, atom interacts with an amide nitrogen atom in the ligand.

Clndoo

" d—

Figure 4.5 Assignment of atom types for the N and O atoms in GIn
sidechains can be difficult and often relies on interpreting the H-bond
partners in the local environment. For the two elastase structures lela
(green carbon atoms) and Telc (yellow carbon atoms), a donor and

an acceptor group in the ligand form close contacts with the Gln amide
group, respectively. This allows unambiguous assignment of the O and N
atom types. The position and orientation of the amide plane are almost
identical in the two structures; only the O and N positions are switched.
The figure was prepared using RasMol [147].

WWw.ebookBOOO.com


http://www.ebook3000.org

4.5 Applications of Binding Site Analyses and Comparisons in Drug Design

459
Versatility of Interaction Types

Apart from the caveats discussed so far, H-bonds are not the only type of inter-
molecular interaction in which Gln side chains can be involved. As for peptide
backbone bonds, the n-face of the amide moiety can interact with ligands via n—=
interactions. Thus, even if the side chain orientation can be unambiguously
determined from the crystal structure, the type of interaction occurring between a
ligand and a Gln side chain is not predetermined. Since n—n interactions usually
occur with aromatic ring systems of a ligand, within a series of ligands the fragments
that interact with a particular Gln residue can even be chemically very different.
In summary, the general flexibility of Gln side chains, the variability of their
donor and acceptor properties enabled by amide flipping, and their ability to present
different characteristics (polar group or n-face) to a ligand, all reveal Gln residues
to be a kind of chemical chameleon. Gln residues contribute greatly to the ability of
some protein binding pockets to adapt to a large variety of diverse ligand structures.

Figure 4.6 Comparison of the three trypsin structures 1k1n (cyan), 1aq7
(magenta), and 1gi0 (orange) illustrates the side chain flexibility of GIn192
and its ability to take part in different interaction types with chemically diverse
ligand structures in the binding site. Different rotamers are found among the
structures (a). While in 1kTn (b) and Taq7 (c), H bonds are formed with
ligand acceptor groups, the ligand in 1gi0 (d) interacts with the GIn192 side
chain via - stacking. The figures were prepared with RasMol [147].
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An example of this is found in the serine protease trypsin (Figure 4.6). The
conserved GIn192 residue shows substantial variability in terms of its spatial
orientation and interactions with various ligands. A comparison of the three trypsin
structures 1aq7, 1kln, and 1gi0 revealed pronounced side chain reorientations
depending on the ligand bound in the active site. In 1aq7 and 1kln, GIn192 forms
H-bonds to the ligands. In 1gi0, the amide group covers one side of a phenol ring
in a coplanar arrangement. This n—n stacking interaction reduces the solvent
accessibility of the hydrophobic face of the ligand. The variations in the interaction
patterns are accompanied by significant rearrangements of the Gln192 side chain.

Changes in the interaction type of Gln side chains can also occur without major
spatial reorientations, as shown by a comparison of the blood coagulation factor
Xa structures 1fax and 1xkb. In 1fax, the N, atom of GIn192 forms an H-bond
with the carboxylate group of the ligand. Conversely, in 1xkb the face of the amide
plane forms a m-stacking interaction with one aromatic ring of the biphenyl moiety.

4.5.10
Crystallographic Packing Effects

It is commonly accepted that protein X-ray crystal structures represent the ‘real
structure and thus reflect the molecular situation of the relevant biological system.
However, in a crystal, protein surface areas are involved in interactions with
neighboring molecules, forming the contacts that hold the crystal together. In certain
circumstances, such interactions can also severely affect the binding sites for small
ligands, leading to binding modes that are unlikely to represent the physiological
situation. Such problems arising from crystal contacts not only demand careful
examination when applying structural knowledge to rational drug design projects
[141], but they also complicate binding site comparisons in chemogenomics
approaches. This can be exemplified further by structures of factor Xa.

In 1fax, the ligand (3-letter code DX9) fills the entire unprimed active site, forming
favorable interactions in the S1 (salt bridge between naphthylamidine group and
Asp189) and S4 (H bond between terminal imido group and Glu97.0) specificity
pockets (Figure 4.7). As in 1fax, the benzamidine moiety of the ligand in 1xkb
(3-letter code 4PP) also forms a salt bridge with Asp189 in the S1 pocket. However,
the ligand extends less far into the S4 pocket, only partially filling it. Notably, a
lysine side chain (Lys79 in the EGF-like domain, B chain) found in the crystallo-
graphic packing environment invades this empty area, forming an H bond with
Glu97.0. The pyridyl ring of 4PP, not centered in the S4 pocket, forms an H bond
with Thr98.0. Another H bond between GIn56 (B-chain) in the crystal packing
and the carboxylate group of 4PP suggests a pulling force shifting the ligand out of
the S4 pocket [142].

Although the problems discussed above can impose some restrictions on the
use of binding site comparisons in chemogenomics programs, the broad array of
methods available still offers significant support for the majority of cases. Careful
assessment of the target structure and the relevant structural data can certainly
guide the choice of appropriate methods. For example, the application of methods
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GIn56

Gln192

Figure 4.7 Crystallographic packing effects in factor Xa binding sites,
shown for PDB structures Tfax and 1xkb. 1fax is shown with white
carbon atoms, the superimposed 1xkb structure (rms deviation of
binding site C,, atoms: 0.38 A) is omitted. The ligand of 1fax is
shown in green and the ligand of 1xkb in magenta. Residues present
in the crystal packing environment of 1xkb are shown in yellow.

The figure was prepared with RasMol [147].

allowing for the detection of partial matches (common subpockets) appears to be
advantageous for binding sites that show a significant degree of flexibility. Once a
structural relationship between two binding sites can be established, an analysis of
differences is just as interesting as the analysis of similarities, especially if selectivity
issues are to be addressed.

Clearly, the quantitative methods for describing binding site similarities, required
for large-scale database searches in the spirit of ‘omics’ efforts, still need to be
improved. The development of powerful scoring functions is an area of ongoing
research, and hopefully some of the shortcomings will be resolved in the near
future. Nevertheless, the examples discussed in this section demonstrate, within
the realms of possibility, the usefulness of binding site comparison methods.

4.6
Summary and Outlook

On a molecular level, the binding sites of proteins represent the locations where
the functions of a protein take place. In this article, we have reviewed the
characteristics and constitutional principles of binding sites from the 3D perspective
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of structural biology and have demonstrated the application of such knowledge for
detecting functional binding sites. Furthermore, methods for establishing structural
relationships and for investigating binding site similarities have been described.
In the context of chemogenomics, such methods can be utilized for revealing local
structural similarities among proteins and thus for finding cavities or subcavities
likely to bind a ligand or functional group already known from previous projects.
Since fold is even more conserved than sequence, protein targets that are related
on the genome level can be expected to share a certain degree of structural similarity
in their binding sites. This is all the more true because binding site residues usually
exceed other protein residues in their degree of conservation during their evolution.
A practical limitation is given for binding sites exhibiting pronounced flexibility.
In such situations, representation of the accessible conformational space can be
incomplete unless many crystal structures of the target protein complexed with
different ligands are available. Thus, for two crystallographically characterized,
closely related proteins the detection of similarity can occasionally be difficult on
the structural level, even though recognizing the similarity based on their sequences
would be trivial.

On the other hand, the analysis of binding sites in terms of shape and physico-
chemical properties rather than on the level of sequence relationships provides an
outstanding advantage: as discussed above, two binding sites can exhibit a high
degree of structural similarity without the respective proteins sharing any sequence
homology. Implementation of this idea in the drug discovery pipeline opens up
entirely new possibilities, extending beyond what is genuinely encompassed by
the concept of chemogenomics. Approaches such as the transfer of an established
active compound class from one target to another appear promising as long as the
binding sites are similar. A relationship of these targets in genome space is not a
necessary precondition. Although most often, two proteins with similar binding-
site features are also sequence-related, comparisons of binding sites throughout
the entire pool of PDB structures can sometimes reveal unexpected binding-site
similarities. Such findings can provide innovative ideas for drug design and even
allow for jumps between genomic target classes. Likewise, even the similarity of
two subpockets belonging to binding sites that differ in other parts can stimulate
structure-based drug design. A molecular fragment bound to a reference structure
could be equally well embedded in the matching subpocket of a second protein.
Attaching such a chemical moiety to an existing lead structure for the latter target
could therefore be a promising approach for optimizing the ligand structure. De-
novo design programs could increasingly resort to such knowledge.

Considering chemogenomics in the context of other ‘omics’ approaches, itappears
that some possible synergies have not been exploited so far. Driven by advances in
the automation of protein crystallization and in X-ray data collection and analysis,
the current efforts in structural genomics can be expected to lead to an enormous
increase in the number of known protein structures. Naturally, this will provide a
wealth of previously unknown information on binding sites and their 3D arrange-
ments. Nevertheless, one has to remember that the major aim of structural genomics
is not to produce data ideally suited to binding site related analyses and studies as
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4.6 Summary and Outlook

described above. Structural genomics is focused on acquiring protein structures in
a high-throughput fashion. Its goal is to make at least one 3D protein structure per
fold representative available, so as to completely cover the ‘fold space’. Currently,
only 700 out of 1000-5000 estimated protein folds [3] are available as experimental
structures.

A more practical perspective considers the goal of structural genomics as the
experimental determination of the minimum number of structures that are required
for building all other structures by homology modeling techniques. This usually
requires a sequence identity of at least 30% between the template and the modeled
structure. In addition, it is obvious that structural genomics does not aim to solve
the structures of a large number of representatives of the same protein family [2].
However, comprehensive knowledge of all structures belonging to a particular
protein family could provide an optimal basis for chemogenomical approaches
utilizing binding site information. Moreover, in structural genomics programs,
the proteins to be investigated are often chosen according to the availability of
suitable crystals and not necessarily by their pharmaceutical relevance. Jhoti [143]
compared this situation with the development of combinatorial chemistry: an
impressive number of synthetically easily accessible molecules were generated as
the first generation of compounds, but these were then found to be of very limited
value. Finally, it should be mentioned that the emphasis on revealing the overall
architecture of proteins is accompanied by minor interest in structural detail. Thus,
optimization of crystallization conditions for obtaining high-resolution crystal
structures is rarely pursued in structural genomics programs. However, information
with this level of detail is highly desirable for addressing, for example, selectivity
issues from a chemogenomics point of view.

Hopefully, the focus of structural genomics will shift in the future, so that more
attention can be paid to the potential applications of structural data in drug design.
Undoubtedly, the technical advances that promoted the development of structural
genomics can also be applied for the in-depth study of particular target families.
Often, a successful crystallization protocol for a particular member of a protein
family can facilitate the crystallization of another protein in the same family. The
information thus derived will certainly stimulate chemogenomics efforts and
encourage researchers to look more often at proteins through the eyes of a structural
biologist.
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