
www.ebook3000.com

http://www.ebook3000.org


I

Chemogenomics
in Drug Discovery

Edited by
H. Kubinyi, G. Müller

1239vch00.pmd 23.06.2004, 17:581



II

Methods and Principles in Medicinal Chemistry

Edited by R. Mannhold, H. Kubinyi, G. Folkers

Editorial Board
H.-D. Höltje, H. Timmerman, J. Vacca, H. van de Waterbeemd, T. Wieland

Recently Published Volumes:

G. Molema, D. K. F. Meijer (eds.)

Drug Targeting
Vol. 12

2001, ISBN 3-527-29989-0

D. Smith, D. Walker, H. van de Waterbeemd

Pharmacokinetics and
Metabolism in Drug Design
Vol. 13

2001, ISBN 3-527-30197-6

T. Lengauer (ed.)

Bioinformatics –
From Genomes to Drugs
Vol. 14

2001, ISBN 3-527-29988-2

J. K. Seydel, M. Wiese

Drug-Membrane Interactions
Vol. 15

2002, ISBN 3-527-30427-4

O. Zerbe (ed.)

BioNMR in Drug Research
Vol. 16

2002, ISBN 3-527-30465-7

P. Carloni, F. Alber (eds.)

Quantum Medicinal Chemistry
Vol. 17

2003, ISBN 3-527-30456-8

H. van de Waterbeemd, H. Lennernäs,
P. Artursson (eds.)

Drug Bioavailability
Vol. 18

2003, ISBN 3-527-30438-X

H.-J. Böhm, G. Schneider (eds.)

Protein-Ligand Interactions
Vol. 19

2003, ISBN 3-527-30521-1

R. E. Babine, S. S. Abdel-Meguid (eds.)

Protein Crystallography
in Drug Discovery
Vol. 20

2004, ISBN 3-527-30678-1

Th. Dingermann, D. Steinhilber,
G. Folkers (eds.)

Molecular Biology
in Medicinal Chemistry
Vol. 21

2004, ISBN 3-527-30431-2

1239vch00.pmd 23.06.2004, 17:582

www.ebook3000.com

http://www.ebook3000.org


Chemogenomics in Drug Discovery

A Medicinal Chemistry Perspective

Edited by
Hugo Kubinyi and Gerhard Müller

1239vch00.pmd 23.06.2004, 17:583



IV

Series Editors:

Prof. Dr. Raimund Mannhold
Biomedical Research Center
Molecular Drug Research Group
Heinrich-Heine-Universität
Universitätsstrasse 1
40225 Düsseldorf
Germany
raimund.mannhold@uni-duesseldorf.de

Prof. Dr. Hugo Kubinyi
Donnersbergstrasse 9
67256 Weisenheim am Sand
Germany
kubinyi@t-online.de

Prof. Dr. Gerd Folkers
Department of Applied Biosciences
ETH Zürich
Winterthurerstrasse 19
8057 Zürich
Switzerland
folkers@pharma.anbi.ethz.ch

Volume Editors:

Prof. Dr. Hugo Kubinyi
Donnersbergstrasse 9
67256 Weisenheim am Sand
Germany
kubinyi@t-online.de

Dr. Gerhard Müller
Axxima Pharmaceuticals AG
Max-Lebsche-Platz 32
81377 München
Germany
gerhard.mueller@axxima.com

All books published by Wiley-VCH are
carefully produced. Nevertheless, authors,
editors, and publisher do not warrant the
information contained in these books,
including this book, to be free of errors.
Readers are advised to keep in mind that
statements, data, illustrations, procedural
details or other items may inadvertently be
inaccurate.

Library of Congress Card No.: Applied for
British Library Cataloging-in-Publication Data
A catalogue record for this book is available
from the British Library.

Bibliographic information published by
Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication
in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the
internet at http://dnb.ddb.de.

© 2004 Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim

All rights reserved (including those of
translation in other languages). No part of
this book may be reproduced in any form –
nor transmitted or translated into a machine
language without written permission from
the publishers. Registered names, trade-
marks, etc. used in this book, even when not
specifically marked as such, are not to be
considered unprotected by law.

Printed in the Federal Republic of Germany.
Printed on acid-free paper.

Cover design    4t GmbH, Darmstadt
Composition    Manuela Treindl, Laaber
Printing    betz-druck GmbH, Darmstadt
Bookbinding    Buchbinderei J. Schäffer
GmbH & Co. KG, Grünstadt

ISBN  3-527-30987-X

1239vch00.pmd 23.06.2004, 17:584

www.ebook3000.com

http://www.ebook3000.org


Dedicated to the memory of the great medicinal chemist
Dr. Paul Janssen (1926–2003),

the discoverer of many breakthrough medicines.

1239vch00.pmd 23.06.2004, 17:585



1239vch00.pmd 23.06.2004, 17:586

www.ebook3000.com

http://www.ebook3000.org


VII

Contents

Preface    XV

A Personal Foreword    XVII

List of Contributors    XXI

Introduction    1
Gerhard Müller and Hugo Kubinyi    

References    4

I General Aspects    5

1 Target Family-directed Masterkeys in Chemogenomics    7
Gerhard Müller    

1.1 Introduction    7
1.2 Medicinal Chemistry-based Chemogenomics Approach    15

1.3 Densely Populated Target Families    16

1.4 Privileged Structures: A Brief Historical Assessment    18

1.5 Privileged Structures with Undesired Target Profiles    19

1.6 File Enrichment Strategies with Recurring Substructures    21

1.7 Recurring Structures Devoid of Target Family Correlations    22

1.8 Convergent Pharmacophores for Target-hopping    27

1.9 Target Family-directed Masterkey Concept    31

1.10 Conclusions and Perspective    36

References    38

2 Drug Discovery from Side Effects    43

Hugo Kubinyi    

2.1 A Historical Perspective: The Great Time of Serendipitous
Observations     44

2.2 Clinical Observations of Side Effects    47

1239vch00.pmd 23.06.2004, 17:497



VIII Contents

2.3 Privileged Structures Bind to Many Different Targets    51

2.4 Optimizing the Selectivity of Nonselective Lead Structures    55

2.5 Selective Optimization of Side Activities    59

2.6 Summary and Conclusions    65

References    65

3 The Value of Chemical Genetics in Drug Discovery    69

Keith Russell and William F. Michne    

3.1 Introduction    69

3.2 Knowledge Management in Drug Discovery    70

3.3 Knowledge Gaps, Their Importance, and How to Address Them    71

3.4 Target Validation: The Foundation of Drug Discovery    72

3.5 Chemical Genetics – How Chemistry Can Contribute to Target
Identification and Validation    72

3.6 Integration of Chemistry and Biology: Importance and Issues    75

3.7 Finding New Chemical Tools and Leads    75

3.8 Is Biological Selectivity an Illusion?    86

3.9 Synthesis of Chemical Genetics Libraries: New Organic Synthesis
Approaches to the Discovery of Biological Activity    89

3.10 Information and Knowledge Management Issues    91

3.11 Annotation of Small Molecules    92

3.12 Summary    94

References    94

4 Structural Aspects of Binding Site Similarity:
A 3D Upgrade for Chemogenomics    97

Andreas Bergner and Judith Günther    

4.1 Introduction    97

4.1.1 Binding Sites: The Missing Link    97

4.1.2 Target Assessment    98

4.1.3 Lead Finding    99

4.1.4 Lead Optimization    100

4.2 Structural Biology of Binding Sites    101

4.2.1 Energetic, Thermodynamic, and Electrostatic Aspects    102

4.2.2 Functional Aspects    104

4.2.3 Specificity versus Function    105

4.2.4 Evolutionary Aspects    105

4.3 Methods for Identifying Binding Sites    106

4.3.1 Integrated Methods for the Prediction of Binding Sites    106

4.3.2 Sampling the Protein Surface    107

4.4 Methods for Detecting Binding Site Similarity    107

4.4.1 Searches for Specific Structural Motifs    108

4.4.2 General Methods for Searching Similar Structural Motifs    108

4.4.3 Similar Shape and Property Searches    111

1239vch00.pmd 23.06.2004, 17:498

www.ebook3000.com

http://www.ebook3000.org


IXContents

4.5 Applications of Binding Site Analyses and Comparisons in Drug
Design     114

4.5.1 Protein Kinases and Protein Phosphatases as Drug Targets    114

4.5.2 Relationships of Fold, Function, and Sequence Similarities    115

4.5.3 Druggability    117

4.5.4 Relationship between Ligand Similarity and Binding Site Similarity    118

4.5.5 Selectivity Issues    120

4.5.6 Caveats    123

4.5.7 Protein Flexibility    124

4.5.8 Ambiguities in Atom Type Assignment    125

4.5.9 Versatility of Interaction Types    127

4.5.10 Crystallographic Packing Effects    128

4.6 Summary and Outlook    129

References    132

II Target Families    137

5 The Contribution of Molecular Informatics to Chemogenomics.
Knowledge-based Discovery of Biological Targets and
Chemical Lead Compounds    139

Edgar Jacoby, Ansgar Schuffenhauer, and Pierre Acklin    

5.1 Introduction    140

5.2 Molecular Information Systems for Targets and Ligands    141

5.3 Bioinformatics Discovery of Target Subfamilies with Conserved
Molecular Recognition    145

5.4 Cheminformatics Discovery of Potential Ligands of Target Subfamilies
with Conserved Molecular Recognition    149

5.5 Knowledge-based Combinatorial Library Design Strategies
within Homogenous Target Subfamilies    155

5.6 Conclusions    161

References    162

6 Chemical Kinomics    167

Bert M. Klebl, Henrik Daub, and György Kéri    

6.1 Introduction    167

6.2 Chemical Biology: The Hope    169

6.3 Chemical Kinomics: A Target Gene Family Approach in Chemical
Biology    169

6.3.1 Protein Kinase Inhibitor History    171

6.3.2 Chemical Kinomics: An Amenable Approach    172

6.3.2.1 Examples of Traditional Chemical Genomics Using Kinase Inhibitors    172

6.3.2.2 Forward Chemical Genomics Using a Kinase-biased Compound
Library     174

6.3.2.3 Chemical Validation    174

1239vch00.pmd 23.06.2004, 17:499



X Contents

6.3.3 Orthogonal Chemical Genetics    176

6.3.3.1 ASKAs: Analog-sensitive Kinase Alleles    176

6.3.3.2 Cohen’s Inhibitor-insensitive p38 Mutants    178

6.3.3.3 Active Inhibitor-insensitive Kinase Mutants
(Orthogonal Protein Kinases)    179

6.3.4 Chemical Proteomics for Kinases: KinaTorTM    182

6.4 Conclusions    187

References    188

7 Structural Aspects of Kinases and Their Inhibitors    191

Rogier Buijsman    

7.1 Introduction    191

7.2 Structural Aspects of Kinases    194

7.2.1 The General Structure of an Activated Kinase    194

7.2.2 Kinase Activation    197

7.3 Kinase Inhibition Principles    198

7.3.1 Substrate-competitive Inhibitors    198

7.3.2 ATP-competitive Inhibitors    200

7.3.3 Activation Inhibitors/Allosteric Modulators    200

7.3.4 Irreversible Inhibitors    203

7.4 Structural Aspects of Kinase Inhibitors    205

7.4.1 Kinase Inhibitor Scaffolds    205

7.4.2 Selectivity Issues    212

7.4.2.1 The Selectivity Dogma    212

7.4.2.2 The Gatekeeper    212

7.4.2.3 Hinge-directed Selectivity    214

7.4.2.4 Binding Region II-directed Selectivity    215

7.5 Outlook    216

References    216

8 A Chemical Genomics Approach for Ion Channel Modulators    221

Karl-Heinz Baringhaus and Gerhard Hessler    

8.1 Introduction    221

8.2 Structural Information on Ion Channels: Ion Channel Families    223

8.3 Lead-finding Strategies for Ion Channel Modulators    227

8.3.1 Ligand-based Lead Finding    228

8.3.2 Structure-based Lead Finding    230

8.4 Design of Ion Channel Focused Libraries: Chemical Genomics    233

8.4.1 Design Principles    233

8.4.2 Example: Building the Aventis Ion Channel Library    236

8.5 Conclusions    239

References    240

1239vch00.pmd 23.06.2004, 17:4910

www.ebook3000.com

http://www.ebook3000.org


XIContents

9 Phosphodiesterase Inhibitors: A Chemogenomic View    243

Martin Hendrix and Christopher Kallus    

9.1 Introduction    243

9.2 PDE Isoenzymes and Subtypes    244

9.3 Potential Therapeutic Applications of PDE Inhibitors    247

9.4 Nonspecific PDE Inhibitors    247

9.5 Inhibitors of the cGMP-specific PDE5 and PDE6    249

9.5.1 Substrate-analogous PDE5 Inhibitors    249

9.5.2 Inhibitors Carrying a Chloromethoxybenzyl Substituent    253

9.5.3 Indole-type PDE5 Inhibitors    255

9.6 PDE6 Inhibitors    258

9.7 Inhibitors of cAMP-metabolizing PDE4 and PDE3    259

9.7.1 Dual PDE4/3 Inhibitors    268

9.7.2 PDE3 Inhibitors    269

9.8 Inhibitors of Other Phosphodiesterases    272

9.8.1 PDE1    272

9.8.2 PDE2    275

9.8.3 PDE7    277

9.8.4 Recently Discovered PDEs 8–11    278

9.9 Summary: A Chemogenomic View of PDE Inhibitors    280

References    281

10 Proteochemometrics: A Tool for Modeling the Molecular Interaction Space    289

Jarl E. S. Wikberg, Maris Lapinsh, and Peteris Prusis    

10.1 Introduction    289

10.2 Definition and Principles of Proteochemometrics    290

10.3 Modeling and Interpretation of Interaction Space    292

10.4 Examples of Proteochemometric Modeling    295

10.4.1 Proteochemometric Modeling of Chimeric MC Receptors Interacting
with MSH Peptides    295

10.4.2 Proteochemometric Modeling of α1 Adrenoceptors Using z Scale
Descriptors for Amino Acids    296

10.4.3 Proteochemometric Modeling Using Wild-type Amine GPCRs    298

10.4.4 Interaction of Organic Compounds with Melanocortin Receptor
Subtypes    302

10.4.5 Modeling of Interactions between ‘Proprietary Drug-like Compounds’
and ‘Proprietary Proteins’    302

10.5 Large-scale Proteochemometrics    303

References    307

1239vch00.pmd 23.06.2004, 17:4911



XII Contents

III Chemical Libraries    311

11 Some Principles Related to Chemogenomics in Compound Library and
Template Design for GPCRs    313

Thomas R. Webb    

11.1 Introduction    313

11.2 Diverse Libraries versus Targeted Libraries    314

11.3 Design of Targeted Libraries via Ligand-based Design    315

11.4 Ligand-based Template Design for GPCR-targeted Libraries    315

References    320

12 Computational Filters in Lead Generation: Targeting Drug-like Chemotypes    325

Wolfgang Guba and Olivier Roche    

12.1 Introduction    325

12.2 Hard Filters    326

12.2.1 Reducing the Number of False Positive Hits    326

12.2.2 Lead-likeness, Drug-likeness    327

12.3 Soft Filters    329

12.3.1 Prediction of Physicochemical Properties    329

12.3.2 Prediction of ADME and Toxicity Properties    330

12.4 Prioritization of Chemotypes Based on Multivariate Profiling    331

12.5 Concluding Remarks    334

References    337

13 Navigation in Chemical Space: Ligand-based Design of Focused Compound
Libraries    341

Gisbert Schneider and Petra Schneider    

13.1 Defining Reference and Target    342

13.2 A Straightforward Approach: Similarity Searching    346

13.3 Fuzzy Pharmacophore Models    355

13.4 Fast Binary Classifiers for Library Shaping    358

13.4.1 Artificial Neural Networks    360

13.4.2 Support Vector Machines    361

13.4.3 An Important Step: Data Scaling    362

13.4.4 Application to Library Design    362

13.5 Mapping Chemical Space by Self-organizing Maps:
A Pharmacophore Road Map    366

13.6 Concluding Remarks    371

References    372

1239vch00.pmd 23.06.2004, 17:4912

www.ebook3000.com

http://www.ebook3000.org


XIII

14 Natural Product-derived Compound Libraries and Protein Structure Similarity
as Guiding Principles for the Discovery of Drug Candidates    377

Marcus A. Koch and Herbert Waldmann    

14.1 Introduction    377

14.2 Protein Folds and Protein Function    378

14.3 Implications for Library Design: Nature’s Structural Conservatism
and Diversity    379

14.4 Development of Natural Product-based Inhibitors for Enzymes
Belonging to the Same Family    381

14.4.1 Nakijiquinone Derivatives as Selective Receptor Tyrosine Kinase
Inhibitors    381

14.4.2 Dysidiolide Derivatives as Cdc25 Phosphatase Inhibitors    383

14.5 Development of Natural Product-based Small-molecule Binders
to Proteins with Low Sequence Homology yet Exhibiting the
Same Fold     386

14.5.1 Development of Leukotriene A4 Hydrolase Inhibitors    386

14.5.2 Development of Sulfotransferase Inhibitors    389

14.5.3 Development of Nuclear Hormone Receptor Modulators    393

14.6 Conclusion: A New Guiding Principle for Chemical Genomics?    399

References    401

15 Combinatorial Chemistry in the Age of Chemical Genomics    405

Reni Joseph and Prabhat Arya    

15.1 Introduction    405

15.2 Combinatorial Approaches to Natural Product Analogs    406

15.3 Diversity-oriented Synthesis of Natural-product-like Libraries    418

15.4 Conclusions    430

References    430

Index    433

Contents

1239vch00.pmd 23.06.2004, 17:4913



1239vch00.pmd 23.06.2004, 17:4914

www.ebook3000.com

http://www.ebook3000.org


XV

Preface

The term chemogenomics is applied to a diversity of approaches that use chemical
compounds to probe biological systems. While all of the approaches have at least
some relevance to drug discovery, the methods can be differentiated according to
the extent to which they employ stochastic versus directed approaches. Stochastic
chemogenomics approaches probe the global response of a biological system on
exposure to chemical compounds. Focused chemogenomics approaches use
chemicals as detailed probes of biochemical pathways that can play a key role in
target identification and validation. An integrated chemogenomics platform uses
affinity-based screening, directed combinatorial chemistry, and structure-based drug
design to rapidly develop drug-like tool compounds that can validate a target-based
therapeutic hypothesis in vivo.

Chemogenomics approaches are evolving to overcome key problems limiting
the efficiency of drug discovery in the postgenomic era. Many of these limits stem
from the low success rates in finding drugs for novel genomics targets whose
biochemical properties and therapeutic relevance is poorly understood. The
fundamental objective of chemogenomics is to find and optimize chemical
compounds that can be used to directly test the therapeutic relevance of new targets
revealed through genome sequencing. The chemogenomics approach defers
investment in biological target validation to a later stage in the discovery cycle,
where resources can be deployed more efficiently and with a higher probability of
success, thus providing a more direct route to finding new drugs.

The present volume on “Chemogenomics in Drug Discovery“ is organized in
three main sections. General aspects in the first section are dedicated to privileged
structures as target family-directed masterkeys (G. Müller), drug discovery from
side effects (H. Kubinyi), the value of chemical genetics in drug discovery (K. Russell)
and structural aspects of binding site similarity (A. Bergner and J. Günther).

The second section focuses on target families such as kinases (R. Buijsman), ion
channel modulators (K.-H. Baringhaus and G. Hessler), and phosphodiesterases
(M. Hendrix and C. Kallus). In addition, the contribution of molecular informatics
for chemogenomics (E. Jacoby et al.), chemical kinomics (B. Klebl), as well as
proteochemometrics (J. Wikberg et al.) are discussed.

Chemical libraries are the topic of the final section and cover chemogenomics in
compound library and template design for GPCRs (T. R. Webb), computational
filters in lead generation (W. Guba), navigation in chemical space (G. Schneider
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XVI

and P. Schneider), natural product derived combinatorial libraries (M. A. Koch and
H. Waldmann), and combinatorial chemistry in chemical genomics age (R. Joseph
and P. Arya).

We are grateful to the Volume Editors for their enthusiasm to organize this volume
and to work with such a fine selection of authors. We also want to express our
gratitude to Frank Weinreich from Wiley-VCH for his valuable contributions to
this project.

Dr. Paul A. J. Janssen, former Director of Janssen Pharmaceutica N. V., Beerse
Belgium, and founder of the Center for Molecular Design, Vosselaar, Belgium,
unexpectedly died on November 11, 2003. As he was one of the most prominent
medicinal chemists and discoverer of many breakthrough medicines, the Volume
and Series Editors would like to dedicate this book to the memory of this great
man.

March 2004 Raimund Mannhold, Düsseldorf
Hugo Kubinyi, Weisenheim am Sand
Gerd Folkers, Zürich
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XVII

A Personal Foreword

Chemical Genomics versus Orthodox Drug Development is the title of an essay published
in the February issue 2003 of Drug Discovery Today (Drug Discovery Today 8,
157−159, 2003), discriminating between two pharmaceutical research approaches;
the chemical genomics-based approach on one hand, as opposed to the classical
way of drug development, adhering to the accepted traditional strategies on the
other hand. Embedded in this apparent contradiction, defined by established
medicinal chemistry and the post-genomic approaches characterized by -omes and
-omics tags, this volume of Methods and Principles in Medicinal Chemistry attempts
to re-position the core discipline of Medicinal Chemistry right into the centre of
chemogenomics. Since chemogenomics is widely claimed to address key issues
posed by the sharp decrease in pharmaceutical industry’s productivity, the role and
relevance of modern medicinal chemistry has to be re-emphasised in this context.

All contributions of this issue focus on aspects of the systematic investigation of
molecular recognition phenomena that underlie drug–target interactions, and
subsequent extrapolation either within compound classes or within target families
with the ultimate aim to enhance efficiency of the drug discovery process.

G. Müller, H. Kubinyi, and K. Russell elaborate in their contributions on different
aspects of classification and systematisation. The target family-directed masterkey
concept conveyed by G. Müller intentionally takes advantage of privileged structures
that are tailor-made to explore entire gene families, thus accounting for the required
scalability of a once established chemistry concept in a chemogenomics framework.
The systematic exploitation of observed side-effects associated to known drugs is
described by H. Kubinyi as an efficient approach towards high-content leads for
novel targets and respective diseases. In more general terms, K. Russell introduces
into the manifold conceptual interfaces between biology and chemistry on a chemical
genetics platform. Apart from the aspects of target identification and validation,
the chemogenomics idea is developed out of the chemical genetics realm by
extrapolating compounds from tools to high-quality leads.

Predominantly, the book covers systematic elaborations on pharmaceutically
relevant target families with clear focus centred around systematic medicinal
chemistry access routes towards the distinct members of those target clusters.
Contributions by R. Buijsman and B. Klebl and colleagues provide detailed insights
into the world of protein kinase inhibitors. While R. Buijsman systematically focuses
on the detailed structural requirements of protein kinase binding sites that

1239vch00.pmd 23.06.2004, 17:4917



XVIII

determine small molecule design strategies, B. Klebl and co-workers provide detailed
insights into chemical kinomics, highlighting chemical genomics, chemical
validation strategies, chemical genetics approaches, and a chemical proteomics
technology, always emphasising the multiple purposes of specifically developed
kinase inhibitors.

Medicinal Chemistry approaches towards the target family of phosphodiesterases,
ion channels, and G protein-coupled receptors under a chemogenomics paradigm
are introduced in three distinct contributions. M. Hendrix and C. Kallus elaborate
the element of systematic strategies within medicinal chemistry for phospho-
diesterase inhibitors where common substructures are described to address
conserved features of an entire target family. Privileged chemotypes that qualify
for a target family-directed library design concept form the basis for a chemo-
genomics-based discovery strategy pursued for ion channels, as described by
K.-H. Baringhaus and G. Hessler. T. Webb refers to the area of G protein-coupled
receptors, where ligand-derived information is systematically used to design target
family-directed scaffolds that, upon further chemical variation, allow for rapid lead
generation.

Contributions by R. Joseph and P. Arya as well as M. A. Koch and H. Waldmann
focus on synthetic aspects towards lead structures originating from natural product-
derived scaffolds. R. Joseph and P. Arya refer to two complementary approaches,
the synthetic access to focussed libraries around bioactive natural product cores,
and diversity-oriented synthesis aiming at 3D scaffold diversity for hit generation,
respectively. On the other hand, M. A. Koch and H. Waldmann emphasise the
correlation of natural product-based library concepts with structural features of
targeted protein domains, thus strengthening the privileged structure concept from
a bioorganic viewpoint.

Systematic application and conceptual combination of chemoinformatics,
bioinformatics, and structural genomics approaches are covered by a variety of
contributions in this book. E. Jacoby and colleagues report on design strategies for
combinatorial compound libraries pursuing a system-based chemoproteomics
approach that is exemplified on the target family of G protein-coupled receptors.
Numerous aspects of ligand based in-silico design techniques are reviewed in detail
by G. Schneider and P. Schneider, touching upon algorithms and applications of
e.g. similarity searching, or pharmacophore models. W. Guba and O. Roche
highlight pragmatic applications of computational strategies for addressing drug-
like characteristics of chemotypes within the framework of lead finding and
optimisation. A. Bergner and J. Günther propose a systematic approach towards a
deeper understanding of target binding site characteristics and corresponding
similarities, thus integrating unique and precious protein structure knowledge into
the chemogenomics discussion. Finally, J. Wikberg and co-workers report on a novel
bioinformatics approach, termed proteochemometrics, to develop detailed insights
into molecular interaction space, by scrutinising binding data of different compound
series targeted towards different receptor systems.

As the field of chemogenomics is still maturating, this book is an attempt to
highlight the role of medicinal chemistry in the multi-disciplinary set-up that is

A Personal Foreword
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XIX

required for a successful drug discovery environment. Careful consideration of all
aspects discussed within this book will undoubtedly facilitate the development of a
clear definition of chemogenomics. In this context, the book will be helpful for
numerous researchers in the life science community, currently addressing any
aspect of drug discovery and development in pharmaceutical industry, as well as in
academia.

All chapter authors are very much acknowledged for their great enthusiasm,
their preparation of the manuscripts within a tough time frame and the high quality
of their contributions. The Editors would also like to thank Dr. Frank Weinreich
and the staff of Wiley-VCH for their engagement in the production of this
monograph.

April 2004 Hugo Kubinyi
Gerhard Müller

A Personal Foreword
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Introduction

Gerhard Müller and Hugo Kubinyi

The term “chemogenomics” evolved from the merger of chemistry and genomics.
Since this chapter introduces into a volume of Methods and Principles in Medicinal
Chemistry that is entitled “Chemogenomics in Drug Discovery: A Medicinal
Chemistry Perspective”, the attempt is made to provide a valid definition of
chemogenomics in the context of drug discovery, more specifically in the context
of medicinal chemistry. Prior to a more precise definition of chemo-related aspects
of chemogenomics, the parent discipline of genomics should be highlighted first.

The starting definition of genomics derives from Tom Roderick, as first cited in
print by Victor A. McKusick and Frank H. Ruddle in the inaugural edition of the
new journal Genomics [1]. At that time, genomics distinguished large-scale mapping
and sequencing efforts from molecular studies of only a few genes. Over time,
genomics has shifted in meaning to any studies that involve the analysis of DNA
sequence, and even to the study of how genes affect biological mechanism and
phenotype. This still includes the original meaning of genomics, but extends well
beyond that. Alongside with the biotechnology boom, genomics became a meaning
that is broader still and it was adopted as a buzzword, also to attract venture capital,
particularly in the period of 1998 to 2001, when many new companies emphasised
their involvment in proteomics and bioinformatics, categories that clearly overlap
with genomics. By the end of 2001, the term was considerably broader in meaning
and had become purely arbitrary in some cases.

Even the 2003 report of the WHO entitled “Genomics and world health: report
of the Advisory Committee on Health Research” (Geneva, WHO 2003) begins with
an overoptimistic statement, clearly supporting the idea of a direct gene-to-clinic
fast-track:

“The complete sequencing of the human genome, announced in 2001, marked the
culmination of unprecedented advances in the science of genomics, the study of the
genome and its function. The availability of genome sequences for many living organisms
clearly has important implications for health improvement, and it has been widely
predicted that elucidation of the sequences will lead to a revolution in medical research
and patient care.”
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Later in the report, a more adequate and realistic assessment is given, correcting
the rocketing expectations widely raised:

“An overoptimistic picture of the applications and benefits of genetic research has been
drawn. The potential medical applications of genomics are considerable and will lead
to major advances in clinical practice but the time-scale is difficult to predict.”

Up to now, chemogenomics has been applied to a diversity of approaches that use
chemical compounds to interrogate biological systems [2–4], but since some of
these approaches have only peripheral relevance to drug discovery, we felt it
worthwhile to focus on those aspects that address key issues posed by the sharp
decrease in pharmaceutical productivity that has occurred in the post-genome era.

And still, pharmaceutical industry severely suffers from a productivity gap, even
though a plethora of new technologies were implemented in the R&D structure of
virtually all pharmaceutical and biotechnology companies. The majority of those
innovative technologies have sent drug development costs soaring, unfortunately
with no measurable rise as yet in number of new chemical entities reaching the
market. As a generic conclusion, medicinal chemistry is viewed as a still limiting
factor in the creation of new drugs. The immense flow of gene and protein data at
the turn of the millennium led to the irresistible idea that once all of the disease
targets were characterized, drugs for each would eventually follow straightforwardly.

Alongside with the appearance of more and more gene and protein data, a whole
suite of “-omes” and “-omics” emerged. Generally, an “-omics” describes a technology
toolbox that is developed to study a specific object of interest at the largest possible
scale with highest degree of systematisation. Consequently, the object of interest is
the corresponding “-omes” that is associated to the respective “-omics”. Over the
last five years, for virtually any classical process step of the traditional drug discovery
and development value chain, a distinct -omics technology was born, no longer
working on single defined objects, but on the associated -omes. The spectrum
ranges from bibliomics, biomics, cellomics, chromosonomics, degradomics over
genomics, glycomics, immunomics, interactomics, lipidomics, metabolomics,
methylomics up to peptidomics, physiomics, regulomics, transportomics, and
vaccinomics, just to mention a selection of those technology toolboxes [5].

Chemogenomics, in most general terms, has been defined as the discovery and
description of all possible drugs to all possible targets [6]. Whereas such an attempt
would undoubtedly be the most systematic approach towards chemogenomics, it
remains impossible to ever achieve this goal.

Today, the most widely used definition of chemogenomics refers to the per-
turbation of biological systems with the help of small molecules, thus gaining a
holistic understanding of the interaction of such molecules with complex molecular
systems. In this context, chemogenomics is simply a subset of genomics in which
the focus is on small molecules [7, 8].

The ability to study certain subjects systematically on a large scale, better to the
largest possible extent, rather than on a one-by-one and on a case-by-case basis, is
what finally renders a specific technology to mature towards an associated “-omics”.
Just as genomics is the extension of genetics to a genome-wide scale, chemo-
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genomics has been defined as being the extension of chemical genetics to a genome-
wide scale. Chemical genetics is exactly the study of biological processes using
small molecule intervention, as opposed to genetic intervention. Just as genetics
offers a way to study biology by modulating gene function through mutation,
chemical genetics seeks to study biology my modulating protein function with
low-molecular weight compounds. For application of low-molecular weight
compounds to perturb complex biological systems not a great deal of medicinal
chemistry is required.

However, chemogenomics also has been predicted to produce chemical ligands
for all important proteins which should enable chemical modulation of their
activities, both positively or negatively, and completely of selectively [7]. With this
definition a claim is being made that directly reaches through into the innermost
core of medicinal chemistry. Unfortunately, statements of that type raise expectations
that by no means account for the complexity of any drug discovery attempt.
Projecting this ambitious goal of chemogenomics as outlined above [7] into the
reality of e.g. generating selective agonists for protein-binding G protein-coupled
receptors, then one can get the feeling that this sounds more like science fiction
than science. Also the design of protease activators, instead of inhibitors, will emerge
as a major undertaking. In essence, the majority of today’s definitions of chemo-
genomics refer to the process by which small molecules are used to gain insight
into the function of novel biological targets. Whenever chemogenomics is also
seen as a parallel approach to target validation and drug discovery, not too much of
medicinal chemistry-directed know-how is included. This insight was one of the
major driving forces to edit the current book and to lay the emphasis on medicinal
chemistry aspects that help to re-define chemogenomics.

Today, the majority of scientists involved in drug discovery and more and more
senior executives realize that the pay-offs of the automation and miniaturization
attempts associated with most of the “-omes” and “-omics” seem farther away then
originally hoped. It is obvious that the technological revolution of the last decade
has altered the way we pursue drug discovery in general and organic chemistry,
one of the underlying core disciplines of medicinal chemistry in particular. Success
in lead finding and optimisation still requires skilled scientists making the correct
choices on e.g. which hits are likely to play out as tractable leads that, upon
optimisation will finally take the numerous hurdles that any pre-clinical candidate
must surmount.

In addition, there is increasing evidence that implementation of those techno-
logies especially in small and mid-sized pharmaceutical companies resulted in a
fascination in technology that finally led to a defocusing of R&D efforts. In this
context, the editors believe that chemogenomics as advocated in this book will
define a new suite of tools and strategies that will primarily support the medicinal
chemist scaling his or her lead generation and optimisation capabilities from distinct
single experiences towards a broader and more systematic understanding and
subsequent application within drug discovery and development.

The scale-up of lead discovery from a case-by-case to a “genome-wide” effort
requires general guidelines that can be applied e.g. throughout entire target families,
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or allow to systematically explore tailored compound classes. In most general terms,
chemogenomics seeks for a correlation of tailored compound collections with well-
chosen target classes, thus utilizing a systematic effort aligned along two dimen-
sions, the compound dimension as well as the target dimension.

As genomics is concerned with taking large-scale sequence information to the
next higher level, thus annotating a functional understanding, chemogenomics
attempts to promote chemical structure-encoded information on a higher level in
order to correlate compound space with target space.

The editors do hope to have succeeded with this volume to position the scientific
discipline of Medicinal Chemistry into the focus of chemogenomics, thus making
it less of a buzzword by shifting the content of this “-omics” significantly towards
the chemisty-related aspects. On purpose, the emphasis is laid on chemistry to
remind that one of the major bottlenecks is the chemical aspect of chemogenomics,
which was and still is often underestimated within the today’s chemogenomics
discussion.
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1
Target Family-directed Masterkeys in Chemogenomics

Gerhard Müller

1.1
Introduction

Chemogenomics aims at providing a small molecule for every protein encoded by
the human genome for use as a molecular probe of cellular function and, in parallel,
as a possible lead candidate for drug development [1, 2]. This contribution attempts
to present a novel medicinal chemistry concept, namely the target family-directed
masterkey concept, which is based on tailor-made privileged structures [3] as a key
element of chemogenomics. In this context, chemogenomics is envisioned as a
still evolving and maturing paradigm in drug discovery, rendering the entire
preclinical discovery process more efficient through the systematic application of
new medicinal chemistry concepts on a ‘genomic’ scale. Rather than following the
classical approach, in which a single target protein is tackled at a time within a
distinct disease area, the masterkey concept [3] offers the opportunity to process
multiple related members of a target family simultaneously across numerous
therapeutic areas. The masterkey concept is considered as a chemogenomics
platform, since it allows one to deal with a large number of potential protein targets
with increased efficiency in lead generation, delivering target-specific molecules
amenable to parallel optimization toward progressible preclinical candidates.
This novel medicinal chemistry concept will contribute to an urgently required
renaissance of chemistry within the multidisciplinary area of drug discovery and
development. To position the masterkey concept into today’s landscape of drug
discovery, a general overview of the pharmaceutical industry’s current situation
and performance over the last decade is given.

The pharmaceutical industry is one of the largest industries worldwide still
exhibiting a strong growth potential. The associated market volume reached
US $ 365 billion in 2001, representing a 12% growth over the preceding year [4].
The top 10 leading products alone accounted for more than 10% of that market
(US $ 40 billion), reaching 22% growth over 2000. Apart from a single recombinant
protein, notably erythropoietin, the business predominantly deals with classical
small-molecule drugs (Table 1.1 and Figure 1.1) [4].
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Table 1.1  Top 10 best-selling pharmaceutical products of 2001 [4].

Figure 1.1  Chemical structures of the best-selling drugs of 2001 [4].
Nine of the top ten drugs are low-molecular-weight compounds.
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Brand 
name 

Ingredient Company Indication Sales (growth) 
[$ billion] 

Lipitor® 
Prilosec® 
Zocor® 
Norvasc® 
Prevacid® 
Zyprexa® 
Celebrex® 
Procrit® 
Paxil® 
Vioxx® 

Atorvastatin 
Omeprazole 
Simvastatin 
Amlodipine 
Lansoprazole 
Olanzapine 
Celecoxib 
Erythropoietin 
Paroxetine 
Rofecoxib 

Pfizer 
AstraZeneca 
Merck & Co. 
Pfizer 
Takeda/Abbott 
Eli Lilly 
Pharmacia/Pfizer 
J&J/Amgen 
GlaxoSmithKline 
Merck & Co. 

hypoercholesterolemia 
ulcers 
hypercholesterolemia 
hypertension 
ulcers 
schizophrenia 
pain, arthritis 
anemia 
depression 
pain, arthritis 

7.0 (31%) 
6.1   (0%) 
5.3 (25%) 
3.7 (14%) 
3.5 (13%) 
3.2 (35%) 
3.1 (32%) 
2.9 (35%) 
2.8 (19%) 
2.6 (44%) 

all 10 products $ 40 200 000 000 
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The current therapy leaders are the anti-ulcerants such as Omeprazole (Prilosec®)
or Lansoprazole (Prevacid®), which accounted for US $ 19.5 billion in 2001, thus
claiming a market share of 6%. The anti-ulcerants are closely followed by the
cholesterol reducers, e.g., Atorvastatin (Lipitor®) and Simvastatin (Zocor®), totaling
US $ 18.9 billion, the antidepressants (US $ 15.9 billion), and the NSAIDs
(nonsteroidal anti-inflammatory drugs; US $ 10.9 billion). Calcium antagonists,
antipsychotics, oral antidiabetics, ACE inhibitors, cephalosporins, and antihista-
mines complete the list of the best-selling therapy classes, with sales between
US $ 9.9 and 6.7 billion. It is interesting to note that four classes grew more than
20% in 2001, namely the cholesterol reducers (22%), the antipsychotics (30%), the
oral antidiabetics (30%), and the antihistamines (22%) [4].

Since the sales numbers taken from the 2001 analysis only represent a snapshot
in time of a considerably dynamic field, a trend analysis with more predictive value
can be obtained from the growth performance of products in conjunction with the
respective market share (Table 1.2) [4].

Table 1.2  Fastest-growing products of 2001. Growth is given relative to sales in 2000 [4].

1.1  Introduction

Brand name Ingredient Company Indication 
targets 

Sales (growth) 
[$ million] 

Nexium® Esomeprazole AstraZenec ulcers 
proton pump inhibitor 

  623 
(999%) 

Protonix® Pantoprazole Altana/Wyeth ulcers 
proton pump inhibitor 

  695 
(426%) 

Advair® Albuterol & 
Fluticasone 

GlaxoSmithKline asthma 
β2 agonist & corticosteroid 

1103 
(351%) 

Remicade® Infliximab J&J/Schering-Pl. Crohn’s, arthritis 
IgG mAB 

  753 
(168%) 

Aciphex® Rabeprazole J&J/Eisai ulcers 
proton pump inhibitor 

1017   
(99%) 

Rituxan® Rituximab Idec/ 
Genentech Roche 

Non-Hodgkin’s lymphoma 
IgG mAB 

  743   
(88%) 

Seroquel® Quetiapine AstraZeneca schizophrenia 
(5-HT’s, D’s, H1, α2) 

  793   
(82%) 

Actos® Pioglitazone Takeda/Eli Lilly diabetes 
PPARγ  agonist 

1151   
(79%) 

Avandia® Rosiglitazone GlaxoSmithKline diabetes 
PPARγ  agonist 

1128   
(65%) 

Diovan® Valsartan Novartis hypertension 
angiotensin antagonist 

  736   
(63%) 

Celexa® Citalopram Lundbeck/Forest depression 
SSRI’s (SERT) 

1107   
(61%) 
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Again, proton pump inhibitors such as Esomeprazole (Nexium®), Pantoprazole
(Protonix®), and Rabeprazole (Aciphex®) dominate the list of fastest-growing
products. The two PPARγ (peroxisome proliferator-activated receptor) agonists
Pioglitazone (Actos®) and Rosiglitazone (Avandia®) have already had sales of more
than US $ 1 billion each and still show dramatic growth performance. Among the
fastest-growing products in 2001 (Table 1.2), two immunoglobulin G monoclonal
antibodies are found, namely Infliximab (Remicade®) for the treatment of Crohn’s
disease and arthritis, and Rituximab (Rituxan®) against non-Hodgkin’s lymphoma.
It is also noteworthy to mention that Valsartan (Diovan®), one of the first nonpeptide
angiotensin II receptor antagonists, goes against the dominant role of the ACE
inhibitors in antihypertensive therapy [4].

At first glance, an industry with an associated market worth of more than several
hundred billion US dollars, based on products that achieve more than US $ 5 billion
annual sales with fast-follower products that display an annual growth performance
of several hundred percent might be in good shape with a bright future perspective.
However, to maintain the healthcare industry’s prospects for sustained growth and
to meet the changing needs of a global and aging society, increases in productivity
on the order of two- to four-fold are urgently required [5]. Productivity in this context
refers to research-intensive innovative drugs for numerous unmet medical needs.
But the discovery and development of new medicines is an expensive and time-
consuming effort. The Tufts University Centre for the Study of Drug Development
found that the time from synthesis of a new drug to US marketing approval has
increased dramatically [6]. The Tufts data indicate that this period has increased
from ~8 years for approvals in the 1960s to more than 14 years in the 1990s
(Figure 1.2).

Lengthening development times dramatically increase the costs of bringing a
new drug to market by increasing the capital needed for research and development
activities. According to the PhRMA (Pharmaceutical Research and Manufacturers

Figure 1.2  Analysis of research and development timelines in recent years [6].
The preclinical research, clinical development, and approval times are explicitly given.

1  Target Family-directed Masterkeys in Chemogenomics
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of America) Annual Membership Survey 2002 and data from the EFPIA (European
Federation of Pharmaceutical Industries and Associations), research and develop-
ment expenditures in the pharmaceutical industry were greater than US $ 40 billion
in 2000 (Figure 1.3) [7].

Despite a steady increase in research and development funding within the
pharmaceutical industry, the number of NCEs (new chemical entities) reaching
the market has failed to increase over the past decade [8]. Pollack reports in the
Business/Financial Desk section of the 19 April 2002 edition of the New York Times
in an article entitled “Despite Billions for Discoveries, Pipeline of Drugs Is Far
From Full”, that “Fewer new drugs are being discovered despite constant increase
in spending on research and development, causing some to worry that [the] new
product pipeline may be running dry; industry’s output of new drugs has risen
only moderately in [the] last two decades despite [a] more than six-fold increase,
after adjusting for inflation, in research and development spending, to more than
$ 30 billion annually in [the] last few years, output has actually declined.”

Apart from the increasing research and development costs and longer develop-
ment times, shorter exclusivity times for key products impose novel challenges, if
not threats to the overall healthcare industry. Viable Intellectual Property (IP)
strategies ensure that invention-based research and development investments are
protected. Strong IP protection is essential for the preservation and growth of a
research-based enterprise, and thus for the sustained development of new and
better medicines. Competition among research-based pharmaceutical companies
is continually increasing. One company’s patent on a specific drug does not preclude
other innovator companies from producing rival medicines to treat the same disease.
Increased competition in the search for new and improved drugs has led to a
shortening period during which, e.g., a novel blockbuster drug is without challenge
on the market. The anti-ulcer drug Tagamet®, introduced in 1977, had 6 years on
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Figure 1.3  Development of R&D expenditures in recent years [7].
Total R&D costs are derived from investments made by US and
by European companies, respectively.

1.1  Introduction

1239vch01.pmd 23.06.2004, 17:5111



12

the market before the follower drug Zantac® was introduced. In contrast, the HIV
protease inhibitor Invirase®, released in 1995, was on the market for only 3 months
before the first competitor drug, Norvir® was approved (Figure 1.4) [9].

This dramatically shrinking period of market exclusivity clearly represents an
often-underestimated challenge for the future of research-based pharmaceutical
companies.

To withstand the threats on the record of pharmaceutical research and develop-
ment productivity, numerous so-called paradigm changes have been announced
over the past 10–15 years, all aimed at resolving major bottlenecks along the value
chain of drug discovery [10–12].

From the mid 1990s onwards it was widely claimed that the trend toward structure-
based molecular design seemed to have fallen well short of expected productivity
gains. Concomitantly, molecular biology gained full impact in the early discovery
phases of preclinical research, and the accompanying development of high-
throughput screening (HTS) and combinatorial chemistry was believed to efficiently
remove one of the most persisting bottlenecks in drug discovery, notably the
generation of progressible lead compounds [13]. Consequently, the predominant
drug discovery process pursued by most pharmaceutical companies was based on
large and growing collections of compounds for use in HTS assays. The high degree
of sophisticated automation that emerged in the chemical laboratories in pharma-
ceutical research enabled the chemists to construct large screening libraries in a
relatively short time. Organic chemists involved in combinatorial chemistry or
automated synthesis were tempted to generate libraries that spanned as large a
volume of principally accessible space as possible, corroborated by the introduction
of the ‘maximum chemical diversity’ concept [14]. In this context, assessments of

Figure 1.4  Development of exclusivity timelines in recent years [9].
The first-in-class compounds are given on the left, and the
corresponding me-too drugs are given on the right.
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the size of the virtual organic chemistry space containing reasonably sized
compounds broadly range from 1040 to even greater than 10100 [15], with 1062 as a
commonly quoted middle-range estimate [16]. Given these unimaginably huge
numbers, any attempt to systematically scan this virtual molecular diversity space
by synthetic means is clearly doomed to failure.

In contrast to the assumption that the number of identifiable leads is related to
the degree of molecular diversity encoded in a multimillion compound library,
current experience clearly suggests that clinically useful candidates exist as small
tight clusters within the molecular diversity space [16, 17]. The number of
therapeutically relevant protein targets within the human genome was analyzed to
be in the range of 600 to 1500 [18], so aiming at maximal chemical diversity is an
inefficient molecular design strategy unless we expect a vast number of yet
undiscovered clinically useful targets to be out there.

Despite all advances and investments made in developing HTS technology and
combinatorial chemistry concepts, it was recently concluded that HTS has not lived
up to what it was hoped, since there is not a significant number of HTS-related
INDs (investigational new drugs) [19]. Obviously, the technical compromises and
loss of precision that occurred on adaptation of many assays for high-throughput
platforms generated high error rates that made hit follow-up by chemistry teams a
very laborious, inefficient, and frustrating process. According to a worldwide survey
among screening departments, only 43% of targets processed through HTS
initiatives generated progressible leads, thus emphasizing that certain target families
are HTS-resistant and that success in HTS is a direct correlate to the quality of a
compound library [19]. The average success rate of 43% was obtained from an
amazing variability ranging from 5% success rate to up to 100%. From 44 HTS
laboratories, 326 leads were reported to be found in 2001. However, a ‘lead’ in this
study was defined as a hit, confirmed by more than one assay in vitro in a manner
that shows biologically relevant activity that correlates to the target of interest. To
be a lead, the compound must further show evidence that a structure–activity
relationship can be built around it [19]. According to industry-wide accepted
standards, a lead is generally characterized more stringently. In most cases, a lead
emerges from a chemical optimization program, displaying efficacy in a disease-
relevant animal model. Further, a structure–activity relationship should already be
elaborated around the respective compound class with promise for achieving a
balanced ADME (absorption, distribution, metabolism, excretion) profile before a
lead decision is made.

In brief, the stochastic medicinal chemistry approaches pursued over the past
10 years by focusing on HTS in combination with combinatorial chemistry have
not met the expectations that were raised at the beginning of this ‘big numbers
game’. Consequently, the focus of HTS laboratories is now gradually changing
toward a concerted effort to improve the relevance and quality of assay operations,
in that high-information-content screens are becoming part of the screening
philosophy [19]. A steadily increasing number of HTS departments are involved in
conducting secondary screens and numerous in vitro ADMET (absorption,
distribution, metabolism, excretion, toxicology) assays. Also, the compound
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selection criteria are changing. In contrast to screening a few distinct libraries with
tens of thousands of compounds based on, e.g., an identical scaffold, front-loading
of drug-likeness and structure- or mechanism-related design approaches are
pursued. The concept of ‘fewer of many’ as opposed to ‘many of fewer’ offers a
substantially increased likelihood of discovering viable lead compounds [17]. The
current disillusion with screening huge, diverse libraries [20–23] has led to the
tendency to screen libraries that are biased toward our current medicinal chemistry
know-how [24, 25]. This reflects both the nonuniform distribution of drugs in
chemistry space and the realization that ADMET properties are as relevant as, or
even more relevant than, pure target affinities in the search for candidate compounds
with realistic therapeutic potential [16, 26, 27]. The current situation in the medicinal
chemistry-driven drug discovery disciplines is clearly characterized by a ‘knowledge
vs. diversity paradox’ [28]. The lifeblood of medicinal chemistry is still the combined
understanding and improvement of structure–activity and structure–property
relationships so as to gear optimization programs toward valuable clinical candidates
that possess a balanced activity, selectivity, and ADMET profile [29]. Once this process
gains strength, it automatically plays against the molecular diversity paradigm,
since the concept of ‘similarity’ becomes a more successful design principle than
the maximal diversity strategies.

After it was realized that neither computer-aided drug design nor the HTS/
combinatorial chemistry approaches alone significantly improved the record of
pharmaceutical industry productivity as measured by high-quality clinical can-
didates, the progress made in genome sequencing by the end of the last decade
was widely believed to have revolutionizing impact into the research and develop-
ment area. Although the entire pharmaceutical industry concentrated its efforts
on fewer than 500 protein targets with fairly well-elucidated biological functions
and disease relevance during the ‘pre-genome’ era [30, 31], a thorough application
of genomics and related technologies was considered to be generating a tidal wave
of novel drug targets that would sweep over the pharmaceutical industry with
numerous benefits for drug discovery and development in its wake [32]. The
knowledge of all genes encoded in the human genome was initially envisioned to
provide unprecedented opportunities for the discovery of new drugs with novel
modes of action. Headlines such as “Bioinformatics Battles Breast Cancer” [33]
suggested an yet undiscovered shortcut on the pathway from a therapeutic
hypothesis past the corresponding assays, hits, leads, and pre-clinical candidates,
to innovative therapeutic products, and thus to immediate profit. It was only in
2001 that a renowned pharma-consulting company stated that the impact of
genomics, if applied rigorously, would help to halve the cost and time it takes to
develop a new drug [32]. Surprisingly, in the same year a different consulting firm
arrived at a completely contrary conclusion that, rather than improving research
and development productivity, the impact of genomics on drug discovery and
development is primarily reflected by an increase in costs [34]. The quality of target
validation in genomics efforts was identified as a major obstacle. The flood of new
targets for discovery programs is not, by far, matched by the required information
content about these targets [35]. This lack of knowledge at the outset leads to
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numerous problems downstream in the drug discovery process and to even worse
attrition rates. The analysis further reveals that until 1995, large pharmaceutical
companies had up to 50 targets under scrutiny annually. Of these, 70% were
preceded with a wealth of associated information known from the literature. Most
likely, drugs were already on the market or in late-stage clinical trails against these
targets. With the emergence of large-scale genomics approaches, it is estimated
that, in 2005, the number of targets per company will increase to ~200 annually,
with only 30% of these precedented by any aspects of target validation. In
consequence, a significant increase in the absolute number of preclinical develop-
ment projects will occur. Due to the insufficient validation state of the targets under
investigation, a drop in preclinical research success by 25% and a decline in clinical
phase II success by 20% are predicted. The result of this costly attrition is that the
net present value per NCE will drop dramatically [34].

After a couple of years of progressing into the ‘omes’ and ‘omics’ era, one has to
recognize that the expected productivity gain has not been achieved. Undoubtedly,
genomics approaches produced a vast increase in biologically relevant information.
However, the translation of this information into efficient discovery strategies, as
opposed to interesting science, has proven elusive.

1.2
Medicinal Chemistry-based Chemogenomics Approach

Although several diverse factors affect pharmaceutical productivity, it is clear that
much of the lost productivity can be attributed to the failure of any new technology,
by itself, to make the complex discovery process more efficient. As with the
stringently applied computer-aided drug design and the combined HTS/com-
binatorial chemistry approaches, also for all genomics strategies the key hurdle in
the way of increased productivity lies not within the associated technology itself,
but with how to efficiently organize the implementation of real new paradigms.
Only new conceptual thinking, novel assemblies of well-validated technologies,
like the ones described in the previous paragraph, within different organizational
architectures will be best suited to creating meaningful improvements in research
and development productivity.

The highly synchronized orchestration of all the above-mentioned technologies
derived from structure-based molecular design – protein modeling, bioinformatics,
high-throughput screening, combinatorial chemistry, automated synthesis, ge-
nomics, and proteomics – defines the framework for a revised definition of
‘chemogenomics’, taking advantage of a classification principle within pharma-
ceutical research that is aligned according to target families, rather than to disease
areas.

The emphasis in this contribution is laid on an emerging paradigm in drug
discovery, notably the systematic classification of therapeutically relevant target
classes according to structure and function. These are subsequently correlated with
family-wide recognition motifs that can be translated into lead-like low-molecular-
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weight ligands, ultimately placing the molecular compound at the heart of a
chemogenomics approach. It is the systematic exploration of these densely
populated target families with a proven potential to yield drugs that opens up a yet
unexploited opportunity to increase preclinical research productivity based on the
genomics and proteomics advances of the last years.

This opportunity of systematization of drug discovery strategies follows from
accepting that biology as well as chemistry knowledge gained from one target can
be transferred to ‘adjacent’ targets in the same gene family. Even though systemati-
zation might require significant commitment of time and resources, it allows
enormous efficiencies to be gained through economies of scale, provided that the
target families are of significant size, richness, and diversity in therapeutic value.
Most importantly, an accumulation of target class-specific know-how is created
over time, whereby past experiences allow rapid attack on new members of the
target cluster of interest [36]. Comparative analyses over, e.g., inhibitory capabilities,
mechanism of action, and even binding modes of whole series of compounds against
dozens of members of a distinct enzyme family occur more frequently only in the
recent literature, giving first indications of a paradigm change in the way we pursue
lead finding and optimization under a chemogenomics perspective [37–39].

From a molecular design point of view, a precious knowledge base including
target structure, mechanism, and viable medicinal chemistry approaches toward
distinct representatives of densely populated target families is available. For almost
any given new emerging target from, e.g., the G protein-coupled receptor, ion
channel, nuclear receptor, kinase, or protease family, a medicinal chemistry strategy
could be devised even prior to completing a corresponding high-throughput
screening campaign. In this context, the concept of target family-directed molecular
masterkeys provides an alternative to both blind screening attempts and stringently
applied structure-based design approaches. Available knowledge on the structure
and/or function of target families is encoded in low-molecular-weight substructures
that, upon decoration, deliver high-quality lead structures for further expansion
toward viable preclinical candidates. The medicinal chemistry aspects of classifi-
cation of target family-wide commonalities in ligand recognition for the design of
privileged structures and the subsequent application of the masterkey concept to
broadly launch into the target cluster represent a chemogenomics approach.
Genomics information is directly utilized to drive lead discovery processes.

1.3
Densely Populated Target Families

According to a thorough analysis of drugs listed in the pharmacopoeia in 1996, the
total number of proteins within the human organism for which pharmaceutical
research had produced drugs is less than 500 [30, 31]. This analysis from the pre-
genome era further speculated on the existence of up to 10 000 potentially relevant
proteinogenic drug targets within the human genome, albeit irrespective of their
biochemical nature. Also in the post-genome era, hit generation and subsequent
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optimization work based on applied medicinal chemistry are still on the critical
path toward a viable preclinical candidate. Consequently, a drug target survey ‘from
a compound’s point of view’ seemed to be a more reasonable approach toward the
often-mentioned druggable genome. Researchers at Pfizer (UK) systematically
mined the human genome for rule-of-five [40] compliant putative drug targets and
produced a list of approximately 400 nonredundant proteins that have been shown
to bind low-molecular-weight compounds with binding affinities below 10 µM [18].
Not surprisingly, a great percentage of those targets cluster into target families
such as G protein-coupled receptors (GPCRs), kinases, proteases, ion channels,
and nuclear hormone receptors. Based on the assumption that, once a member of
a target family is amenable to rule-of-five compliant compounds, the entire gene
family is druggable, a theoretical number of approximately 3000 putative protein
targets was derived by systematic extrapolation within the corresponding gene
families (Figure 1.5).

Most importantly, the analysis revealed the potentially interesting target classes
for which medicinal chemistry is obviously capable of producing low-molecular-
weight compounds, even though irrespective of any proven disease relation. The
fact that these are multimember gene families allows an enormous opportunity
for systematization within the discipline of medicinal chemistry. Privileged
structures can be designed that account for a family-wide commonality in terms of
enzymatic mechanisms and/or molecular recognition elements. The most densely
populated target families, notably kinases, GPCRs, ion channels, proteases, nuclear
hormone receptors, and phosphatases, represent attractive fields of activity for
medicinal chemistry. Even though approximately 30% of all marketed drugs target
GPCRs, approximately 7% of drugs address ion channels, and approximately 4%
of marketed drugs bind to nuclear hormone receptors, only 2 drugs address kinase
targets (Imatinib (Gleevec®) and Gefitinib (Iressa®)), only 1 drug addresses a Ser-
protease (Argatroban (Acova®)), and only 1 metalloprotease is inhibited by marketed
drugs (angiotensin converting enzyme (ACE)). From these results it is obvious
that there is definitely sufficient if not tremendous room for innovation within the
realm of hit generation and optimization.

Figure 1.5  Detailed analysis of protein family distribution in the human ‘druggable genome’ [18].
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However, it should be emphasized again that the number of targets that are, in
principle, druggable (app. 3000) by far exceeds the number of drug targets, since
no aspects of disease relation were considered in this analysis [18]. Our current
view of the number of ‘druggable drug targets’ is far more modest and, thus, realistic
as compared with the very optimistic expectations that were spread within the
scientific community a few years ago. Within the human genome, the number of
pharmaceutically relevant target proteins is estimated to be in the range of 600 to
1500 [18].

1.4
Privileged Structures: A Brief Historical Assessment

The term ‘privileged structure’ originates from Evans and coworkers at the Merck
Sharp and Dohme Research Laboratories, who focused in 1988 on the design of
benzodiazepine-based CCK-A antagonists [41], and was later updated by Patchett
and Nargund [42] of the same company. Evans et al. [41] refer in their publication
to a finding from 1986 by Chang and colleagues [43], who discovered that the
previously described analgesic κ-opioid agonist tifluadom [44] also acts as a
peripheral CCK receptor antagonist. This documented activity of a single compound
at two different target proteins of the same gene family (GPCRs) led Evans and
colleagues to conclude that a single molecular framework can provide ligands for
diverse receptors. They stated, “What is clear is that certain ‘privileged structures’
are capable of providing useful ligands for more than one receptor”, and later in
their paper “judicious modification of such structures could be a viable alternative
in the search for new receptor agonists and antagonists” [41].

The concept of privileged structures was occasionally referred to during the mid
1990s, when the use of solid-phase synthesis for generating combinatorial libraries
was extended to nonpeptide structures. In a review published in 1996 by Ellman’s
group, privileged structures were defined as templates that have previously provided
potent compounds against a number of different receptor or enzyme targets [45].
It is interesting to note that in Ellman’s concept, a clear differentiation is made
between privileged structures and so-called designed templates, the latter being
based on key recognition motifs for specific protein targets. In this definition, a
privileged structure just needs to have a proven record in delivering therapeutically
relevant compounds, irrespective of any understanding of what makes a structural
element privileged, while a designed template bears encoded information of a
specific molecular recognition principle [45]. The syntheses of a dozen library
designs are summarized under the privileged structure–templated approach
(Figure 1.6) [45].

It is evident that all described privileged structures are heterocyclic scaffolds with
various ring sizes, heteroatom distributions, and substitution patterns. The synthesis
of these scaffolds was considered to be achievable by means of solid-phase chemistry,
thus yielding high-dimensional libraries. No emphasis is laid on whether the
template itself contains pharmacophoric elements or is just a scaffold with
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appropriate orientational characteristics for peripheral groups that contain the
pharmacophoric elements required for target binding. It is obvious that in these
days the opportunity to enrich the toolbox of solid-phase synthesis for library
generation dominated the conceptual considerations, rather than a detailed
understanding of structural determinants governing, e.g., details of family-wide
conserved ligand recognition principles or improving lead- or drug-like properties
of the library constituents.

1.5
Privileged Structures with Undesired Target Profiles

The most generic definition of a privileged structure refers to substructural elements
emerging in compounds that showed effects on more than one target protein [41],
irrespective of the corresponding target families they might belong to. This specific
characteristic of compounds that are discovered, e.g., as hits in numerous different
biological assays covering a broad range of protein targets, is not necessarily a
desired profile. The elimination of so-called ‘frequent hitters’ from compound
libraries was recently described by a group at Hoffmann-La Roche [46], since those
compounds were shown either to bind nonspecifically to a variety of targets or to
interfere with the utilized assay read-out methods. These compounds were clearly

Figure 1.6  Structural scaffolds that served as templates for so-called
privileged structure-based combinatorial compound libraries.
R-groups are depicted at positions of combinatorial variations [45].
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considered as undesirable starting points for optimization programs in medicinal
chemistry. Obviously, a differentiation between these promiscuous binders and
privileged structures is required, thus refining the original definition of Evans et
al. [41]. This is further supported by recent studies on underlying mechanistic
phenomena from Shoichet’s group at Northwestern University in Chicago [47]. An
in-depth study of screening hits that appear to be not drug-like with a noncompetitive
mode of action and contradictory structure–activity relationships revealed a common
mechanism that accounts for that undesired compound profile. The investigated
compounds tend to form molecular aggregates, as determined by dynamic light
scattering and electron microscopy, with particle sizes of 30 to 400 nm in diameter.
It is noteworthy that this phenomenon is not restricted to compounds that a trained
medicinal chemist would classify as not drug-like, but also occurs for drug-like
molecules such as steroids and kinase inhibitors [48] and even for known drugs
(Figure 1.7) [49].

In a comparative study, 50 unrelated drugs were assayed for inhibition of β-lacta-
mase, chymotrypsin, and malate dehydrogenase, although none of these enzymes
were considered targets of the selected drugs. Out of these 50 drugs, 7 compounds
were identified as behaving as aggregation-based inhibitors (Figure 1.7). Further
mechanistic studies revealed that the observed nonspecific inhibition resulted from

Figure 1.7  Chemical structures of compounds shown by biophysical
investigations to form molecular aggregates, thus eliciting false-positive
biological activities in a variety of biochemical assays [47–50].
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the reversible adsorption of enzymes to the surface of the aggregates, formed by
the promiscuous inhibitors, as shown by electron microscopy [50]. By this specific
mechanism, the aggregate-forming inhibitors reversibly sequester enzyme from
the assay system, resulting in apparent inhibition. It was further shown that this
enzyme–aggregate adsorption could be reversed and even prevented by the addition
of detergents [50, 51]. The findings that high-quality compounds also tend to elicit
nonspecific biological activities by forming aggregates not only renders numerous
screening hits and associated optimization programs highly questionable, but also
defines a principally new de-selection criterion for hit and lead assessment, which
requires biophysical investigations before any significant medicinal chemistry
resource assignment.

1.6
File Enrichment Strategies with Recurring Substructures

Although the studies mentioned above revealed undesired types of ‘privileged
structures’, numerous investigations have focused on the identification of desirable
privileged structural elements. Even though this contribution is not aimed at
reviewing those studies, two early approaches should be mentioned because they
can be seen as pioneering studies that provided guidelines for the medicinal chemist
for the fragmentation of compounds into core structures and peripheral decoration
and for how this approach might drive chemistry programs based on privileged
molecular fragments. In this context, the interested reader is referred to the excellent
work of Bemis and Murcko from Vertex [52, 53] and of Lewell and colleagues from
Glaxo Wellcome [54, 55]. Both studies reveal frequently recurring substructural
elements that can be employed for proactively enriching as well as focusing
chemistry efforts toward the more productive regions of multidimensional mole-
cular diversity space. A variety of further in-silico tools have been developed since
then, as exemplified by a recent study of Sheridan of the Merck Research Laborato-
ries, who developed a method to identify molecular substructures that are associated
with, e.g., a therapeutic area or a mechanism-based biological activity [56].

Fesik and his group at Abbott Laboratories pursued an experimentally based
procedure of identifying fragments with generally high propensity for protein
binding [57] that was conceptually modeled after the Vertex [52, 53] and Glaxo
Wellcome approaches [54, 55] that relied on in-silico database mining metho-
dologies. NMR-based screening of more than 10 000 selected fragment-type
compounds against 11 target proteins revealed 12 privileged substructures that
appeared with statistical significance in compounds that were shown to bind to the
selected targets.

The main conclusion from this study refers to the preferential utilization of those
substructures in combinatorial libraries with the aim of qualitatively enriching an
in-house screening compound collection. The quality criterion, of those structural
elements of being privileged, relates only to the observation that compounds
containing one of the identified fragments might bind to an unspecified target
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with higher than average probability. A clear rationale as to why those fragments
tend to bind and a fragment-target family relation are not apparent.

1.7
Recurring Structures Devoid of Target Family Correlations

Once the focus of privileged structures is laid on conformationally constrained
core structures, any trained medicinal chemist can easily identify recurring
structural motifs from his own work or from literature studies. The benzodiazepine
scaffold [58], for example, is believed to mimic a rigid β-turn peptide conformation
that might exhibit prominent orientational characteristics for a pharmacophore-
encompassing molecular periphery. Such structural features, combined with the
plausibility of introducing three to four points of diversity onto the corresponding
scaffold during its construction, have made numerous scaffolds appealing sub-
structures for, e.g., combinatorial library synthesis, and thus are easily called
privileged structures (see Figure 1.6) [45, 58, 59]. Indeed, these types of templated
libraries emerged as prolific sources of hits against a broad range of enzyme and
receptor targets, but the primary rationale for the generation of those focused

Figure 1.8  Chemical structures of derivatized 2-aminothiazoles
displaying biological activities on numerous target proteins.
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compound files always was a common synthetic route, rather than an explicit
pharmacophore pattern comparison across the target types to be screened.

This is exemplified by the 2-aminothiazole core that is found in numerous drugs,
as well as clinical and preclinical candidates, addressing a broad spectrum of targets
[3]. No target family correlation is evident; instead, the compounds bind to enzymes
such as cyclooxygenases, phosphodiesterases, kinases, acetylcholinesterase, and
numerous members of the GPCR family and integrins (Figure 1.8) [3]. Most likely,
the versatile chemistry approaches delivering a decorated 2-aminothiazole-derived
compound are the main reason for this scaffold to appear as a recurring structural
motif in compounds targeting members of numerous different gene families.

As outlined above (Figure 1.6) [45], oligo-substituted five-membered heterocycles
with a conserved vicinal (1,2) di-phenyl substitution pattern are ideal representatives
of a recurring core structure that is found in numerous biologically active com-
pounds, including cyclooxygenase inhibitors, kinase inhibitors, GPCR antagonists
and even agonists, phosphatase inhibitors, and dopamine transporter inhibitors
(Figure 1.9) [3].

Since the spatial extent of the common underlying 1,2-di-phenyl substituted
heterocycle by far exceeds that of a generic scaffold, and the nature of the underlying

Figure 1.9  Chemical structures of enzyme inhibitors, receptor
agonists, and antagonists that all refer to a common underlying
molecular topology (box in upper left) consisting of a central five-
membered heterocycle with at least two aromatic rings attached
in a vicinal arrangement.
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heterocycle is quite diverse, a versatile chemistry can be ruled out as the main
reason why this structure type frequently occurs in biologically interesting low-
molecular-weight compounds. Even though crystallographically derived structures
for a variety of these compounds in complex with their target proteins are known,
a structural interpretation on the privileged status of the common fragment remains
unclear. The heterocycle bearing two adjacent phenyl rings in a vicinal relation
clearly prevents the two aromatic rings from hydrophobic collapse, thus representing
an orientational variation of the frequently occurring diphenylmethane moiety [60]
within biologically active compounds. This nicely indicates that chemical similarity
does not necessarily correspond to biological similarity.

The tricyclic neuroleptics and antidepressants, classical pharmaceutical textbook
compounds, represent an amazing example of compounds with a high degree of
chemical similarity displaying a bewildering array of biological activities. A search
in drug databases based on the generic structure depicted in Figure 1.10 reveals
more than 150 released drugs, with Zyprexa® (Table 1.1 and Figure 1.1), number
six on the list of best-selling drugs in 2001, among them. None of these drugs
seems to display a ‘clean’ target profile; instead, the desired neuroleptic and
antidepressant activity is predominantly achieved by antagonistic activity against
an array of biogenic monoamine receptors from the GPCR family, in addition with,
e.g., serotonin-uptake inhibitory activity (Figure 1.10).

Figure 1.10  Selection of marketed neuroleptic and antidepressant
drugs belonging to the class of ‘tricyclics’. All depicted drugs have a
common underlying core structure (box in the upper left). The
receptor and enzyme targets for each compound are given explicitly.
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Figure 1.10  (continued)
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Anti-inflammatory and antihistaminic activity is encoded by a more selective
receptor antagonist profile, as exemplified by Olopatadine and Loratadine, respect-
ively (Figure 1.10). Based on the compounds shown in Figure 1.10, a target family
correlation might emerge, in that these compounds mainly address the classical
neurotransmitter-binding GPCRs, apart from a few other target proteins. However,
the database search mentioned above not only revealed compounds depicted in
Figure 1.10, but also a broad range of related analogs, individuals of which bind
quite selectively to a whole spectrum of enzymes and receptors (Figure 1.11).

Based on these findings, the question remains as to how a medicinal chemistry
setup could take advantage of these results in future programs. Since there is no
detailed insight in, e.g., a highly conserved compound–target interaction mode for
the structural elements described above, these findings can only serve to guide,
e.g., combinatorial chemistry initiatives or compound acquisition so that more
emphasis is laid on similarity to these recurring fragments, instead of undertaking
the attempt to systematically scan the molecular diversity universe.

1.7  Recurring Structures Devoid of Target Family Correlations
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Figure 1.11  Chemical structures of GPCR antagonists (top), channel blockers and
antagonists for receptors other than GPCRs (middle), and enzyme inhibitors (bottom)
that contain the same tricyclic skeleton as shown in the structures in Figure 1.10.
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1.8
Convergent Pharmacophores for Target-hopping

The idea of proactively reusing already-established inhibitor, agonist, or antagonist
concepts for a second lead-finding initiative aimed at another target is occasionally
described in the literature. At the end of the 1990s, researchers from Rhône-Poulenc
Rorer reported a novel arylsulfonylhydroxamic acid template (Figure 1.12) as an
underlying structure for a scaffolded combinatorial library [61, 62]. Subtle changes
in functional decoration displayed the necessary pharmacophoric patterns for
inhibition of members of either of two different target families, namely the matrix
metalloproteases (MMPs) and the phosphodiesterases (PDEs), respectively.

Even though there is little if any apparent structural similarity between the natural
substrates of the two enzyme classes – peptide sequences for MMPs vs. cyclic
nucleotide monophosphates for PDEs – there is an obvious element of convergence
of pharmacophoric arrangements. Minor changes in the backbone and aromatic
ring substituents yielded class-specific compounds (Figure 1.12). Apart from the
initial achievement of generating compounds that discriminate between the target
classes, nondiscriminating molecules were considered to constitute an intriguing
opportunity for developing dual inhibitors of MMPs and PDE4, based on the

Figure 1.12  The arylsulfonylhydroxamate scaffold (top) served as template
structure for compounds active on various members of the matrix metallo-
protease family, as well as of phosphodiesterase 4. By variation of the
molecular periphery (R-groups, X; top), discriminating compounds
(bottom left, bottom middle), as well as dual inhibitors (bottom right)
were obtained [61, 62].
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rationale that MMPs and PDE4 are key intervention points in a variety of inflamma-
tory diseases [62]. By fine-tuning the decoration pattern of the common arylsulfonyl-
hydroxamate template, compounds with well-balanced inhibitory profiles for
MMP-1, MMP-2, MMP-3, and PDE4 were identified (Figure 1.12) [62]. The emphasis
in these studies was primarily on convergence of a template design and utilized
combinatorial chemistry principles to maximize the impact of a single established
synthetic route in delivering compounds with more than a single application.
Although the pharmacophore relation between the two target families addressed
in these studies remains unclear, a certain element of convergence emerges with
the strategy of generating dual inhibitors against different targets for the treatment
of the same pathologies.

A research team at Sterling Winthrop aiming to develop low-molecular-weight
bradykinin B2 receptor antagonists used a well-defined element of convergence,
notably a proteolytic enzyme cleaving two different oligopeptides that specifically
bind to distinct receptors [63]. The metalloprotease angiotensin-converting enzyme
(ACE) cleaves angiotensin I to produce the vasoconstrictive angiotensin II within
the blood pressure controlling renin–angiotensin-system. But the hypotensively
active nonapeptide bradykinin is also cleaved by ACE to yield inactive products.
Since the enzyme ACE obviously recognizes both peptide sequences, a convergent
conformational relation exists between the two peptides. Consequently, ACE
inhibitors may also display structural features similar to those of bradykinin at its
ACE cleavage site. Based on this hypothesis, ACE inhibitors should also show
binding potential to the bradykinin B2 receptor, a member of the GPCR superfamily.
This last hypothesis is based on the assumption that the bioactive conformations
of bradykinin in the active site of ACE and the binding pocket of the B2 receptor
are identical, or at least highly similar. Based on preliminary structure–activity
relationships obtained from bradykinin-derived peptide analogs, an aromatic moiety
is required for B2 receptor binding at amino acid position 8 (P1’ as ACE substrate),
together with two terminal arginine sidechain-borne positive charges (Arg1 and
Arg9) that span a distance of roughly 10 Å. The authors projected these pharmaco-
phoric groups onto a classical ACE inhibitor, i.e., Quinalapril, to obtain a hybrid
compound consisting of the ACE inhibitor skeleton as core, with bradykinin-specific
decoration elements attached to it (Figure 1.13) [63].

The Tic moiety was retained and the Zn2+-coordinated carboxylate group of the
phenylbutanoyl fragment was removed to facilitate the incorporation of one of the
terminal charged groups. The resulting dipeptide analog showed a submicromolar
affinity as a B2 receptor antagonist. In this study, the convergent pharmacophore
of two apparently different bioactive compounds was ascribed to conformational
similarity, derived from the finding that both peptides served as substrates for the
same enzyme.

A group at Fujisawa Pharmaceutical aiming at the discovery of nonpeptide
bradykinin B2 receptor antagonists also exploited the suggestive structural
correspondence between the same two peptides [64]. The applied lead-finding
strategy focused on a primary screen of only 300 compounds carefully selected
from a previously pursued angiotensin II antagonist program. From that, a weak
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Figure 1.13  A suggestive structural correspondence between the
ACE inhibitor Quinalapril (left) and bradykinin was used to design
novel B2 receptor antagonists, one of them shown on the right [63].
For details of this convergent pharmacophore strategy, see the text.
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Figure 1.14  Schematic illustration of the B2 receptor antagonist
design approach utilized by Fujisawa Pharmaceutical [64–66].
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hit was identified bearing a cyanopyrrolyl-phenyl substituent, an isoster of the
biphenyltetrazole moiety that became almost the trademark of nearly all marketed
nonpeptide angiotensin II antagonists (Figure 1.14).
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Based on that high-micromolar hit, the benzyloxy-heteroaromatic substructure
was defined as a constant core for a virtual database screening that revealed 400
compounds containing the desired structural element of the search profile. From
screening of these compounds, the benzyloxy-substituted imidazo[1,2-a]pyridine
core (Figure 1.14) emerged as a promising candidate that was synthetically expanded
into a lead finding and optimization program [65]. Highly active B2 receptor
antagonists were identified possessing promising pharmacokinetic properties that
were clearly superior to those of peptide-based candidates [66]. This work represents
a textbook example of how a target similarity (AII receptor vs. B2 receptor) and a
convergence point of two distinct proteolytic cascades of two different peptides
were conceptually overlaid on ligand similarity. Once established, the concept
provided the basis for rapid lead finding and optimization in a follow-up project,
reusing molecular scaffolds and associated chemistries. Starting with a hit structure
encoding the convergent pharmacophore, specific compounds were obtained by
subsequent rounds of optimization. From a conceptual viewpoint, these studies
represent a rudimentary interpretation of the privileged structure-based masterkey
philosophy [3], since two members of the same target family were addressed
specifically by series of compounds that can be traced back to common precursor
chemotypes. However, those structural elements that encode the family-wide
commonality in ligand binding, i.e., the ultimate privileged structure, and those
that account for the final target selectivity still remain unclear.

Although in the previous case studies the convergent pharmacophore could be
ascribed to a target similarity and a common binding event to exactly the same
enzyme, in the following example common co-substrates serve as the cross-relating
entities defining common pharmacophoric patterns and associated chemistries
among different targets. The enzymes of interest in these studies are carbohydrate
sulfotransferases as potential anti-inflammatory targets [67, 68] that catalyze the
transfer of a sulfuryl group from the sulfate donor 3′-phosphoadenosine-5′-
phosphosulfate (PAPS) to a hydroxy or amino group of an acceptor saccharide.
This co-substrate very closely resembles ATP, which is the phosphate donor for all
kinase-catalyzed phosphorylation reactions, thus establishing a relation of a
sulfotransferase inhibitor project to known kinase inhibitor concepts (Figure 1.15).

The fact that the hydrophobic adenine binding pocket of crystallized estrogen
sulfotransferase [69] and of the heparin N-sulfotransferase [70] are similar to those
of kinases was also taken into consideration. On the basis of these parallels, kinase
inhibitors were screened for cross-reactivity with carbohydrate sulfotransferases.
Compounds from these purine-based libraries (Figure 1.15) displayed, at 2.4 µM
PAPS (0.5 × KM), inhibitory activities in the range of 20 to 40 µM against the GlcNAc-
6-sulfotransferase NodH [71]. Following the same concept, active inhibitors against
the estrogen sulfotransferase were also identified in purine-based libraries [72]
(Figure 1.15).

These few examples were chosen to illustrate different elements of convergence
that can be exploited to utilize suggestive pharmacophore relations for cross-
fertilizing medicinal chemistry projects on targets in the same or different protein
families. However, the applied pharmacophoric relations did not reveal generic
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privileged structures with appropriate functional decoration patterns that would
allow systematic exploration of a target family in a chemogenomics perspective.

1.9
Target Family-directed Masterkey Concept

The target family-directed masterkey concept [3] represents the most rational and
stringent application of privileged structures and is tailor-made to a systematic
exploration of entire target classes by a once-established medicinal chemistry
concept. A privileged structure in this context is a substructural element with a
proven correlation to a target family. It encodes a single or a variety of key structural
elements that account for a target family-wide commonality in ligand binding.
Illustrative examples of this quality of privileged structures are reverse-turn mimics
with appropriate functional groups for decoration that simulate a specific peptide-
derived backbone conformation required for a peptide sequence to be recognized
by a variety of receptors [73, 74]. Although the skeleton of the turn mimic itself is
the molecular imprint of a common underlying recognition principle, thus being
the privileged structure, the peripheral decoration with selected pharmacophoric
groups ensures finally achieving the required selectivity for distinct peptide-binding
receptors. Since the recognition of peptide-encoded pharmacophores in reverse-

Figure 1.15  Co-substrate similarity between ATP (top left) and PAPS
(top right) initiated a directed search for carbohydrate sulfo-transferase
inhibitors based on kinase inhibitor compound collections [67, 68, 72].
The resulting sulfotransferase inhibitors together with their inhibitory
activities are shown at the bottom.
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turn conformations is a recognition principle widely spread over several target
families (e.g., integrins [75], GPCRs [76], SH2 domains [77]), the target family bias
of a corresponding masterkey concept is less pronounced.

The protein superfamily of proteases [78, 79], however, is an ideal framework for
a directed privileged structure-based masterkey concept. It has already been reported
that the 5,5-trans-fused lactam moiety was systematically optimized and explored
as a serine protease-directed scaffold by GlaxoSmithKline and has delivered
progressible lead compounds for various members of that target class [3], such as
thrombin [80, 81], elastase [82, 83], HCMV protease [84, 85], and the hepatitis C
virus-encoded NS3-4A protease [86, 87]. Here, the initially identified scaffold was
engineered toward the serine protease-wide commonality in substrate binding and
processing [3].

Proteases in general, and cysteine proteases [88] in particular, still represent a
major challenge for lead identification approaches, since these enzymes have turned
out to be resistant to, e.g., HTS-based lead-finding initiatives [78]. Consequently,
the family of cysteine proteases provides an ideal framework for the elaboration of
a masterkey concept, also because extensive family-wide characteristics in substrate
binding and processing are known. In general, a minimal fragment of 4–6 residues
of a peptide sequence is bound in an extended conformation, while all cysteine
proteases work with a direct nucleophilic attack on the scissile peptide bond with
the thiol sidechain of the active-site cysteine residue [89]. Based on this enzymatic
mechanism, the majority of inhibitor design principles established in the past years
employ irreversible alkylation reactions of the catalytically active thiol group with,
e.g., α-haloketones, α-diazoketones, epoxides, or vinyl sulfones [89]. Since irrever-
sible alkylation has tremendous toxic potential, due to nonspecific alkylation of
other biomolecule-encoded nucleophiles, reversibly modifying compounds are
considered as inhibitors of choice. Aldehydes, ketones, nitriles, and α-ketoesters
also bind covalently to the cysteine sidechain, but in a reversible reaction [78, 89].
Due to the chemical nature of these classical protease-directed warheads, the
corresponding, mostly peptidomimetic, inhibitors allow only either the left-side
(unprimed) or the right-side (primed) areas flanking the cleavage site of the peptide-
binding canyon within a protease structure to be addressed [90]. To achieve sufficient
binding affinity and, more importantly, the required target selectivity, active-site-
spanning cysteine protease inhibitors, as already developed and marketed for
aspartic protease inhibitors, are most preferred. They allow one to address binding
pockets at will on both sides of the catalytic centre. For that purpose, a bifunctional
building block including the mechanism-directed warhead in the central part of
the privileged structure allows not only addressing the thiol sidechain by reversible
complex formation, but also expanding the structure in both the unprimed and the
primed direction of the recognition pocket. In this context, structural analogs of
the 1,3-diaminopropanone moiety have emerged as versatile cysteine protease
inhibitor designs that reversibly form a hemithioketal when bound to the target
enzyme (Figure 1.16). Further, they can be appropriately modified on both amino
groups to explore binding epitopes all along the binding channel. Researchers at
Merck Research Laboratories first described the concept in 1994 for the synthesis
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of interleukin 1β converting enzyme (ICE) inhibitors, yielding a peptidomimetic
compound with nanomolar inhibitory activities [91]. No evidence of irreversible or
time-dependent inhibition was observed for the bis-acylated diaminopropanone
moiety-containing compounds (Figure 1.16).

The same concept was reintroduced 3 years later by a medicinal chemistry team
at SmithKline Beecham Pharmaceuticals designing cathepsin K inhibitors, initially
yielding a C2-symmetric 22 nM compound (Figure 1.16) [92]. Upon optimization
of the primed-side substituent of the diaminopropanone core, the inhibitory potency
was further increased to 1.8 nM [92] (Figure 1.16). Based on analysis of crystal
structures of enzyme–inhibitor complexes (PDB code: 1AU0 [92], 1AU2 [92]),
conformational constraints were introduced to optimize the steric fit, yielding a
series of cyclic diaminoketone derivatives as novel privileged structure cores [93].
An x-ray cocrystal structure of one of the cyclic diaminoketone-based inhibitors
showed that the inhibitor spans both sides of the active centre [93]. The versatility
of the diaminopropanone core as a cysteine protease-directed privileged structure
was recognized, and combinatorial chemistry concepts based on that inhibitor
principle were established in industry [94] as well as in academia [95]. At SmithKline
Beecham, a four-dimensional library comprising only 18 compounds was reported

1.9  Target Family-directed Masterkey Concept

Figure 1.16  Left: Schematic presentation of the 1,3-diaminopropanone
core moiety as cysteine protease-directed and active site-spanning inhibitor
principle (top). Upon reaction with the enzyme nucleophile, the ketone is
reversibly converted to a hemithioketal (bottom). Right: Peptidomimetic
cysteine protease inhibitors of subsequent generations are depicted
together with their inhibitory activity and primary targets.
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to deliver compounds that were assayed against a variety of cysteine proteases with
reported activities against cathepsin K, cathepsin L, and cathepsin B (Figure 1.17)
[94].

Ellman’s group expanded the scope of the difunctionalized ketone core, in that
not only 1,3 diaminoketones were prepared combinatorially, but also 1-amino-
propanones with acyloxy and alkylated mercapto substituents in the 3-position
(Figure 1.17) [95]. In this model study, no biological data on target proteases were
reported [95].

Seto and coworkers at Brown University further expanded the idea of a bifunctio-
nal cyclic ketone as a central building block for active site-spanning cysteine protease
inhibitors, to a cyclohexanone nucleus yielding a design for a two-dimensional
combinatorial library (Figure 1.17) [96]. This strategy is the extension of previous
work by that group on monofunctionalized heterocyclohexanones (Figure 1.17) that
were found to be active serine protease inhibitors [97], as well as cysteine protease
inhibitors [98]. These amino-substituted heterocyclohexanones allowed binding-
mediating entities to be positioned only on the unprimed side of the substrate-
recognition pocket. In contrast, the disubstituted and active site-spanning core

Figure 1.17  Combinatorial library designs for compound collections
that are based on cysteine and serine protease-directed scaffolds.
Top: Four-dimensional library design [94] (left) utilized by SmithKline
Beecham for generating cathepsin K inhibitors (right).
Middle: Three dimensional library design (left) employed by the
Ellman group [95] to generate viable protease inhibitors (right).
Bottom: The active site-spanning cyclohexanone core (left) was
conceptually derived from a non-active site-spanning mono-
substituted heterocyclohexanone derivative [96–98] (right).
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bridges over the catalytic centre and allows combining primed- and unprimed-side
binding epitopes. Synthesis and biological evaluation of a 400-member library
revealed detailed structure–activity and structure–selectivity relationships against
cathepsin B, plasmin, urokinase, kallikrein, and papain [97].

The difunctionalized linear or cyclic molecular skeletons encompassing a quies-
cent warhead targeted against active-site nucleophiles of proteases emerged as a
validated privileged structure with proven target family correlation. Additionally, the
privileged structure offers sufficient opportunities to engineer the required peri-
pheral diversity into the inhibitor compounds, since two to four diversification points
allow for tailoring selectivity, thereby fully exploiting the conceptual advantage of
active site-spanning inhibitors over the classical serine or cysteine protease inhibitor
concepts. In this context, combinatorial chemistry approaches were established that
aided in the generation of target family-biased compound libraries with front-loaded
rationales based on experimental validation of the privileged core entity.

Interestingly, researchers at Hoffmann-La Roche reported the foundations for a
similar concept applicable to aspartic proteases in 1999, identifying disubstituted
piperidines as renin inhibitors (Figure 1.18) [99, 100]. Also here, a cyclic disub-

Figure 1.18  Left: Piperidine-derived inhibitors (top) were shown to
inhibit aspartic acid proteases by bridging the two catalytically active
aspartate residues (bottom). Based on this finding [99, 100],
together with the knowledge of the cyclohexanone-based active site-
spanning cysteine protease inhibitors [96–98], novel cyclic warheads
against aspartic acid proteases can be designed as target family-
directed privileged structures [3, 101].

N
H

Cl

O

O

IC50: 26 µm

N
H H

R R

O

O

O

O

+

1.9  Target Family-directed Masterkey Concept

N
H

O N
OR1

O R2

R3
SO2

N
H

N
N

O

R3

R4

R2

SR1

O O

N
H

NN
R1

R2 R3

R4

1239vch01.pmd 23.06.2004, 17:5135



36

stituted structure contains the protease family-specific warhead, in this instance,
a protonated secondary amine forming two charge-enforced hydrogen bonds to
the catalytically active aspartate residues, while the peripheral substituents reach
into binding pockets on both sides of the catalytic centre.

This clearly resembles the inhibition mode of the serine and cysteine protease
inhibitors described above. Iterative refinement (Figure 1.18), e.g., by variation of
ring size and symmetrization of the functional decoration pattern, combined with
subsequent extrapolation of the renin-specific finding to the entire aspartate protease
family, is the apparent basis for a new generation of nonpeptide, lead-like inhibitors
with multiple therapeutically relevant endpoint opportunities. The five-membered
3,4-di(aminomethyl)-pyrrolidine (Figure 1.18) served as the core structure for highly
active aspartate protease inhibitors [101].

Additional tailor-made privileged structures that allow for systematic exploration
of pharmaceutically relevant target families are given elsewhere [3].

1.10
Conclusions and Perspective

The concept of target family-directed masterkeys based on privileged structures in
its most stringent definition [3] contributes to the repertoire of chemogenomics,
since it provides a powerful means for lead generation that is systematically
applicable to entire gene families. This establishes the required forward-integration
of genomic and proteomic data into the realm of synthetic chemistry. Genomics-
and proteomics-derived technologies, originally envisioned to provide multiple
opportunities for the discovery of new drugs with first-in-class and ideally best-in-
class characteristics, has undoubtedly delivered novel insights into the genetic and
mechanistic basis of several diseases, also reemphasizing the central importance
of target validation for the success of a drug discovery project. Together with the
rapid explosion of heterogeneous data that have become available to pharmaceutical
research teams, novel technologies and a high degree of automation have emerged
in all drug discovery-related disciplines. Despite all these revolutionary technologies
that have emerged in recent years, solid indications for a sustained decrease in the
pharmaceutical industry’s productivity are apparent. Recent technologies have not
yet succeeded in increasing the output of NCEs or in reducing the costs and
timelines for developing new drugs. Those technologies creating just new data
have by far outpaced the ability to contextualize these data into the framework of
drug research. The entire biotechnology revolution, mainly based on the allure of
‘omes’ and ‘omics’, seems to have made only a peripheral contribution to therapeutic
intervention in challenging diseases. Obviously, overly optimistic predictions
contributed to the development of totally unreasonable promises and expectations
as to the immediate impact of any novel technology on the discovery of new
therapeutics. Within the complex and challenging business of drug discovery,
experience will always win over expectations. This old insight increasingly dominates
today’s drug discovery in the pharmaceutical industry and is having growing impact
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also on the still young biotechnology industry, which is currently undergoing a
difficult period of consolidation. Since the majority of pharmaceutical companies
are organized around therapeutic areas with research teams sequentially scrutiniz-
ing targets from various receptor and enzyme families, the gene family-directed
masterkey approach presented in this contribution is predicted to have maximal
effect in smaller and more flexible medicinal chemistry oriented biotechnology
companies.

The major gain in lead discovery and optimization efficiency is achieved by
repeatedly using established and steadily growing knowledge on a target family in
all involved areas of biology and chemistry. Once optimized, technical procedures
for, e.g., protein production, purification, assay development, and screening, can
be used for numerous members of a target family of interest. A considerable
percentage of a compound collection with built-in target family bias, preferentially
based on tailor-made privileged structures [3], will show activity against distinct
members of the target enzyme or receptor cluster, with emerging structure–activity
and structure–selectivity relationships, respectively. Multiple use of target family-
directed biology and chemistry resources is definitely more efficient than starting
from scratch for each new discovery project, and so will accelerate lead finding and
optimization campaigns considerably.

In the chemogenomics approach outlined in this contribution, increased
productivity and shorter timelines are achieved by a strict reuse of well-designed
chemistry concepts, based on the mutual overlap between privileged structure-
based pharmacophore space and the structural and physicochemical requirements
of the ligand binding site of target family members. This overlap is the privileged
structure-encoded information content that is optimized for complementarity
toward the target family-wide commonality in molecular recognition. A clear
structural understanding of this relation is required to leverage the intrinsic potential
of a target family approach with associated multiple therapeutic scopes.

In conclusion, this contribution aims at strengthening the ‘chemo’ aspect of
chemogenomics. Over the long-term, chemogenomics will further mature into a
synthesis of genomics- and proteomics-derived approaches and modern medicinal
chemistry, resulting in a fully integrated approach to drug discovery.
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2
Drug Discovery from Side Effects

Hugo Kubinyi

Many important therapeutic discoveries have resulted from serendipitous ob-
servations. Side effects of drugs or drug candidates in the clinics have paved the
way to new applications of a drug or to the development of chemically modified
analogs. Unexpected pharmacological effects against physiologically related or other,
more diverse, targets have resulted in drug candidates with different modes of
action. In the past decade, more systematic approaches have been followed:
chemogenomics, the systematic investigation of the biological effects of certain
classes of compounds in certain target families, and the selective optimization of
drug side effects.

Such side effects may result from:

A physiological reaction of the body to the action of the drug (e.g., the reflex
tachycardia resulting from the antihypertensive activity of dihydropyridine
calcium-channel blockers).
Overdose of drugs with a narrow therapeutic range and/or unfavorable pharmaco-
kinetics (e.g., phenprocoumon or warfarin, which exert their action in a delayed
and indirect manner by inhibition of vitamin K biosynthesis).
Action on different targets by the same mechanism (e.g., gastrointestinal bleeding
after cyclooxygenase inhibition by acetylsalicylic acid, bradykinin-mediated cough
as a side effect of angiotensin-converting enzyme inhibitors).
Action on organs other than the target organ (e.g., peripheral tachycardic and
hypertensive effects of dopamine after systemic application of the anti-Parkinson
drug l-dopa, sedative side effects of lipophilic histamine H1 antagonists).
Lack of selectivity, i.e., inhibition, agonism, or antagonism at several different
targets, a most common reason for drug side effects (e.g., respiratory depression
by morphine, cardiotoxicity of certain drugs mediated by hERG channel inhibi-
tion).
Inhibition of cytochrome P450 isoenzymes (e.g., nonlinear pharmacokinetics of
propafenone, producing an exponential increase of plasma levels due to inhibition
of its metabolism by CYP2D6, after application of higher doses).

1239vch02.pmd 06.06.2004, 13:4443
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Drug–drug interactions resulting from cytochrome P450 inhibition or induction,
a very common reason for adverse drug effects (e.g., terfenadine, which exerts
fatal cardiotoxicity by hERG channel inhibition in the presence of a CYP3A4
inhibitor, whereas its active metabolite fexofenadine is not a hERG channel
inhibitor).
Genetic disposition, either by interaction of the drug with a mutant target or by
the lack of certain (or mutant) metabolic enzyme (e.g., the inability of about
1−3% of the Caucasian population to metabolize S-warfarin, due to a CYP2C9
deficiency).

There must always be a significant advantage of the achievable therapeutic benefit,
as compared to the risk of drug-related side effects. Severe side effects can only be
tolerated in treatment of chronic degenerative or life-threatening diseases like
arthritis, cancer, or AIDS. However, adverse drug side effects are frequently observed
after medication; their high incidence, even as a relatively common cause of death,
is only gradually being recognized.

However, a closer inspection of the history of drug discovery [1–3] shows that
many new drug applications resulted from clinical observations of side effects or
from the optimization of such unexpected side effects into new therapeutic areas.
Only some prominent drugs that resulted from serendipitous observations of clinical
side effects are discussed in the following sections. However, even these few
examples show the importance of this source of new leads in drug research. Some
more examples are discussed in special monographs on the history of drug research
[1–3], as well as in some other medicinal chemistry and pharmacology textbooks
[4–11] and reviews [12–14].

In addition to clinical observations of drug side effects, the optimization of side
activities that are discovered by in vitro investigation plays an important role in
drug research. Recently, Wermuth proposed using this approach as a general strategy
for the “selective optimization of side activities” (the SOSA approach) [15]; in support
of this concept he quotes Sir James Black, the 1988 Nobel Laureate in Physiology
and Medicine, who stated “the most fruitful basis for the discovery of a new drug is
to start with an old drug”.

2.1
A Historical Perspective: The Great Time of Serendipitous Observations

The early history of drug discovery is characterized by many serendipitous drug
discoveries [1–3, 9, 16]. After the preparation of nitrous oxide by Humphry Davy in
the early 19th century, fun parties with this gas, and also with ether, became popular;
people liked the euphoric effect after inhaling the chemicals. The anesthetic
properties of nitrous oxide and ether were discovered in the 1840s just by chance,
because participants of such events did not experience any pain after being hurt.
The antianginal properties of organic nitrites were discovered at about the same
time: inhalation of amyl nitrite vapor or oral uptake of a small amount of nitro-
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452.1  A Historical Perspective: The Great Time of Serendipitous Observations

glycerin resulted in severe headache but also in relief of angina pectoris symptoms.
Today we complain about the long development time of new drugs. However, this
has tradition: after the observation by the Italian chemist Ascanio Sobrero that
even a small dose of nitroglycerin causes headache, published in 1847, the first
application to a patient occurred only in 1878, 31 years later. People were obviously
frightened of using an explosive as a remedy; in his late years, Alfred Nobel, who
invented dynamite in 1867, had to take this drug himself [2, 3]. The incompatibility
of disulfiram (Antabus®) with alcohol consumption was discovered when rubber
workers, having contact with this antioxidant, complained about alcohol-induced
periods of sickness; another version says that two pharmacologists who took this
drug as an anthelmintic became ill at a cocktail party [1]. The hallucinogenic
properties of lysergic acid diethylamide (LSD) were discovered after the accidental
uptake of minor amounts of this compound by Albert Hofmann [9]. And, last not
least, all artificial sweeteners of major importance, i.e., saccharin, cyclamate, and
aspartame, were discovered by unexpected observations of their sweet taste [9].

A more or less systematic search for new drugs started in the last two decades of
the 19th century. Although acetylsalicylic acid 1 (ASS, Aspirin®, Bayer; Figure 2.1)
was originally designed as a ‘better’ derivative of salicylic acid, it is much more
than just a prodrug. ASS is more active than its parent drug and is indeed better
tolerated, but it causes gastrointestinal bleeding as a prominent side effect. In the
1970s it became clear that both its activity and its side effect are mediated by the
same target. ASS inhibits cyclooxygenase, which converts arachidonic acid into
prostacyclin, which is further converted into prostaglandins and thromboxane.
Whereas inhibition of biosynthesis of the pain-mediating prostaglandins is
responsible for the analgesic and antipyretic activities of ASS, inhibition of
thromboxane biosynthesis is responsible for the increased bleeding tendency. Since
thrombocytes have no nucleus and therefore no protein biosynthesis, platelet
cyclooxygenase remains inhibited over the whole thrombocyte lifetime of about
120 days; correspondingly, thrombosis protection by aggregation inhibition can be
achieved by application of only 100 mg or even less of ASS per day. Low-dose ASS
treatment is now a standard therapy for the prevention of stroke, heart attack, and
thrombosis.

Figure 2.1  Acetylsalicylic acid 1 (Aspirin®, Bayer) is much more than a
‘prodrug’ of salicylic acid. Its major contribution to biological activity
comes from a unique mechanism of action: the activated acetyl group
is transferred to a serine hydroxyl group in the binding site of cyclo-
oxygenase. Merbaphen 2 (Novasurol®, Bayer) was the first example
of an organomercurial diuretic; some analogs with less severe side
effects were the therapeutic standard from about 1920 to 1950.
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The diuretic organomercurials are most probably the very first example of the
discovery of a class of therapeutically useful drugs by a clinical side effect of one of
their members. In 1888, mercury salicylate was introduced for the treatment of
syphilis, followed by mersalyl in 1906 and arsphenamine (E 606), discovered by
Paul Ehrlich in 1909. On October 7, 1919, a pale and weak 21-year-old female,
Johanna M., was brought to the First Medical University Clinic in Vienna, in an
insane status, with clear symptoms of severe neurosyphilis. Alfred Vogl, a 3rd-year
medical student, was ordered to apply mercury salicylate, in a desperate attempt to
help. Not knowing about the properties of this compound, he asked for a 10%
aqueous solution for intramuscular injection. After a few days, when he had not
received the solution, he was told that the compound was too insoluble. A colleague
proposed trying a recently developed analog, merbaphen 2 (Novasurol®, Bayer;
Figure 2.1), a water-soluble salt of an organomercurial compound with barbitone.
After approval by his supervisors, he applied it to the suffering patient. To his great
surprise, the daily urine production by the patient increased from 200–500 mL to
1200 mL, and after the third application of the drug even to 2000 mL. Application
to other patients produced up to 10 L urine within 24 hours – a diuretic effect that
had not been observed before! Merbaphen was too toxic for therapeutic application,
but follow-on products held their place as diuretics till the 1950s, when another
observation of a clinical side effect led to the discovery of the much safer sulfonamide
diuretics (see below) [3, 4, 7].

A most fascinating area of rational drug research (indeed, rational drug re-
search is not an invention of our time) is the systematic structural variation of
morphine 3 (Figure 2.2). Morphine, discovered by Sertürner in 1806, has, in
addition to its strong narcotic and analgesic activities, also antitussive, con-
stipating, and respiratory depressant side effects. The creativity, intuition, and
tenacity of generations of medicinal chemists have produced many morphine
analogs, with much simpler chemical structures and different opiate receptor
subtype selectivities [3, 4, 17]. However, the side effects could also be optimized.
Whereas pethidine 4 (meperidine; originally designed as an anticholinergic
atropine analog) and fentanyl 5 are prototypes of morphine-related strong anal-
gesics (Figure 2.2), dextromethorphan 6 (the methyl ether of the d-enantiomer of
the analgesic levorphanol; Figure 2.3) is completely devoid of analgesic activity; it
retains only the antitussive properties of morphine. Loperamide 7 is also devoid
of analgesic activity, despite its ability to pass the blood–brain barrier; after its
uptake, the pGP transporter eliminates the drug by active transport; corres-
pondingly, loperamide is used for the treatment of acute and chronic diarrhea.
Further research in this area led to the highly potent neuroleptic haloperidol 8
(Figure 2.3). Whereas a pethidine analog with a butyrophenone side chain is still
a strong analgesic, haloperidol 8, bearing a hydroxyl group instead of the ester
group, turned out to be a potent dopamine antagonist [1–3]. As such, it is used
for the treatment of schizophrenia and other manic disorders. The morphine
series is also one of several examples in which the chemical structures of ago-
nists (e.g., morphine 3) and antagonists (e.g., nalorphine 9) are very closely
related [6–8].
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2.2
Clinical Observations of Side Effects

As with the diuretic effect of organomercurials, many other new drugs have resulted
from unexpected observations of clinical side effects. An especially rich source of
new drugs resulted from the discovery of the antibacterial sulfonamide sulfamido-
chrysoidine 10 (Prontosil rubrum®, Bayer; Figure 2.4) by Gerhard Domagk in 1935.
After Jacques and Therese Trefouel gave evidence that the metabolic cleavage product
sulfanilamide 11 is the active agent, many groups started on the synthesis of analogs,
to improve activity and pharmacokinetic properties [2, 3].

Massive doses of sulfanilamide, as well as of other sulfonamides, caused alkaline
diuresis as a side effect. From 1940 onwards, the mechanism of this side effect was
further investigated; it was confirmed that carbonic anhydrase inhibition was
responsible for the diuresis. Presenting the whole story of the development of
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Figure 2.2  Morphine 3 was the lead structure for many structurally
much simpler strong analgesics, e.g., pethidine 4 and fentanyl 5.

Figure 2.3  Dextromethorphan 6, the unnatural enantiomer of a
narcotic morphine analog, is an antitussive drug. The antidiarrhea
drug loperamide 7 and the neuroleptic drug haloperidol 8 also resulted
from structural modification of morphine. The morphine antagonist
nalorphine 9 differs from the opioid agonist morphine 3 (Figure 2.2)
only by having an N-allyl group instead of the N-methyl group.

2.2  Clinical Observations of Side Effects
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diuretic sulfonamides [1–3] is beyond the scope of this chapter, but some prototypes
12–15 of this highly successful class of therapeutics, with different mechanisms of
action, are presented in Figure 2.5. Today, these drugs are not only important
diuretics but are also used in combination therapy of high blood pressure [4, 6, 7].

Due to the carbonic anhydrase inhibition of sulfonamides, it was also possible to
design topically active analogs for the treatment of glaucoma, e.g., dorzolamide 16,
the result of a structure-based design (Figure 2.6) [18]. Sulfaguanidine 17 is a
sulfonamide with only poor bioavailability; accordingly, it was tested against
intestinal infections, but it turned out to be an inhibitor of thyroid hormone
biosynthesis. This unexpected result paved the way to antithyroid drugs of the
thiourea and thiouracil type [2, 3]. Dapsone 18 (Figure 2.6) may be considered a
phenylog of sulfanilamide; still nowadays it is a standard drug for the treatment of
leprosy [1].

In addition to the acceptable clinical side effects of many sulfonamides, some
severe toxic effects were observed. In 1942, Marcel Janbon, the head of the medical
faculty at Montpellier University, investigated an isopropylthiadiazole derivative of

Figure 2.4  Sulfamidochrysoidine 10 (Prontosil rubrum®, Bayer)
and related antibacterial sulfonamides act via the metabolite
sulfanilamide 11, which is an antimetabolite of p-aminobenzoic
acid in the bacterial biosynthesis of dihydrofolic acid.

 

NH2 N N

NH2

SO2NH2 NH2 SO2NH2

10 11

 NN

S SN
H O O

NH2
CH3

O

12

N
H

NH
SS

O O O O

Cl

NH2

N
H

S
O O

Cl

NH2

O

COOH

13

14 15

S
O O

O

NH2 COOH

NH

Figure 2.5  In addition to its antibacterial activity, sulfanilamide 11
(Figure 2.4) inhibits the enzyme carbonic anhydrase. Acetazolamide
12 is much more potent as a carbonic anhydrase inhibitor but its
clinical use as diuretic was impaired by some serious side effects.
Hydrochlorothiazide 13 is the prototype of orally active saluretic
sulfonamide diuretics. Furosemide (frusemide) 14 and bumetanide
15 are so-called ‘loop diuretics’.

1239vch02.pmd 06.06.2004, 13:4448

www.ebook3000.com

http://www.ebook3000.org


49

sulfanilamide, IPTD 19 (Figure 2.7), in typhoid patients. However, instead of being
cured, some patients became very ill and a few of them even died. Quick recovery
of the patients after intravenous glucose application led to the hypothesis that the
compound produced severe hypoglycemia. In his PhD work, the medical student
Auguste Loubatieres confirmed in animal experiments that the compound could
indeed be used for the treatment of diabetes. However, due to bad experience with
some other antidiabetic compounds and due to the general situation at the end of
World War II, this proposal was not pursued [2, 3]. Only 12 years later, in February
1954, Klaus Fuchs at the Auguste Victoria Hospital in Berlin investigated a new
sulfonamide for the treatment of severe infections, which was supplied by
Boehringer Mannheim. After the high doses that were needed for treatment, his
patients showed severe neurological symptoms as well as concentration and memory
defects. After self-administration, he experienced all the signs of a hypoglycemic

Figure 2.6  Dorzolamide 16, a topically active carbonic anhydrase
inhibitor, resulted from a structure-based ligand design; it is used
for the treatment of glaucoma. Sulfaguanidine 17 inhibits thyroid
hormone biosynthesis. A phenylog of sulfanilamide 11 (Figure 2.4),
dapsone 18, is used for the treatment of leprosy.
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state, which disappeared after eating lunch. Fuchs and his supervisor Hans Franke
investigated the compound in healthy and diabetic patients and were able to confirm
their potential as relatively safe antidiabetic agents. The very first antidiabetic sulfo-
namides, carbutamide 20 and tolbutamide 21, were later replaced by better-tolerated
analogs like glibenclamide 22 (Figure 2.7) [2, 3, 6, 7, 10].

The anilino-imidazoline clonidine 23 (Catapresan®, Boehringer Ingelheim;
Figure 2.8) was designed by the chemist Helmut Staehle as a nasal decongestant.
When the secretary of a colleague caught a nasty cold, she was ready to test the new
drug, telling them “I’ll take anything if I can just get rid of these sniffles!” Shortly
after taking the drug she became tired and fell asleep. After she was brought home,
she continued sleeping for about 20 hours. A controlled self-experiment by her
boss, the physician Martin Wolf, had the same outcome, with a heart rate reduction
to about 40–48 beats s–1 and a blood pressure decrease to 90 vs. 60 mm Hg. Clearly,
the compound was a potent antihypertensive drug, which was confirmed by further
pharmacological and clinical investigations [3, 10, 13].

Iproniazid 24, an alkyl analog of the antituberculous drug isoniazid 25 (Figure 2.8),
surprisingly showed mood-improving activity in several depressed tuberculosis
patients, which turned out to result from a monoamine oxidase (MAO) inhibitory
activity. Since the compound was already registered as an antituberculosis drug
and since it constituted the very first effective treatment of depression, more than
400 000 patients received it within only one year after the first announcement of its
antidepressant activity [2, 33]. Later it was withdrawn from therapy, due to
hepatotoxic side effects.

d-Penicillamine 26 (Figure 2.8) has for long time been used for the treatment of
Wilson’s disease, a metabolic disorder in which absorbed copper is deposited mainly
in the liver and in the brain. Long-term application of this compound leads to
suppression of rheumatoid arthritis, which now is its main therapeutic use [3].

Sildenafil (Viagra®, Pfizer), the first drug effective in male erectile dysfunction
(MED), has a very interesting history. More than 30 years ago, the company May &
Baker started research on antiallergic xanthine derivatives [19]. Their first leads 27

Figure 2.8  Clonidine 23 was designed as a nasal decongestant but
it turned out to be a potent antihypertensive drug. Clinical tests
revealed the antidepressant activity of iproniazid 24, an isopropyl
analog of the antituberculosis drug isoniazid 25. d-Penicillamine 26
was originally used to treat Wilson’s disease, to eliminate an excess
of copper ions; later it was recognized to have beneficial effects in
rheumatoid arthritis.
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and 28 (Figure 2.9), being between 40 times [19, 20] and 1000 times [21] more
active than cromoglycate, the standard drug at this time, were structurally closely
related to sildenafil. Zaprinast 27 (M&B 22, 948; Figure 2.9), was clinically tested
as an orally active ‘mast cell stabilizer’ against histamine- and exercise-induced
asthma. In addition to this activity, zaprinast has vasodilatory and antihypertensive
side effects. In the mid 1980s, Nick Terrett and his team at Pfizer were searching
for a new antihypertensive principle [22]. They followed the approach of enhancing
the biological activity of the atrial natriuretic peptide (ANP) by prolonging the action
of the second messenger of the corresponding receptor response. For this purpose,
they were looking for a compound that would prevent the degradation of cyclic
guanosine monophosphate (cGMP) by phosphodiesterase. As zaprinast 27 was
one of the very few cGMP PDE inhibitors known in 1986, they started from this
lead to improve its activity and selectivity. In 1989, the result of extensive structural
modification was the PDE5-selective inhibitor sildenafil 29 (UK-92, 480; Figure 2.9),
later clinically tested as an antianginal drug. The drug turned out to be safe and
well tolerated but its clinical activity was disappointing. However, early in 1992, a
10-day toleration study in healthy volunteers led to the observation of a strange
side effect. Among other effects, the patients reported some penile erections after
the 4th or 5th day. Although it was not an obvious choice to test the new drug in
male erectile dysfunction, its further clinical profiling went into this direction. After
convincing clinical results, Viagra® was introduced into therapy in March 1998 [22].

2.3
Privileged Structures Bind to Many Different Targets

In 1988, Evans observed that organic compounds with certain structures “appear
to contain common features which facilitate binding to various … receptor surfaces,
perhaps through binding elements different from those employed for binding of
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the natural ligands”. From this observation he concluded that “certain privileged
structures are capable of providing useful ligands for more than one receptor and
that judicious modification of such structures could be a viable alternative in the
search for new receptor agonists and antagonists” [23]. This was a generalization
of observations that had been made before in studies of several classes of com-
pounds, e.g., phenethylamines, tricyclic G protein-coupled receptor (GPCR) and
transporter ligands, benzodiazepines, and steroids (e.g. [24]).

Phenethylamines include a wide variety of biologically active compounds.
Depending on their lipophilicity, which correlates with their ability to penetrate the
blood–brain barrier, they exert central nervous system activities (e.g., the lipophilic
analogs amphetamine 30, methamphetamine 31, and MDMA 32), peripheral
activities (e.g., the polar analogs dopamine 33, norepinephrine 34, and epinephrine
35) or both (e.g., ephedrine 36), due to intermediate lipophilicity (Figure 2.10). The
amino acid l-dopa 37 (Figure 2.10) is a special case: although it is even more polar
than compounds 33–35, it is absorbed and distributed into the brain by the amino
acid transporter. In the brain, as well as in the periphery, it is then metabolically
decarboxylated to dopamine; in combination with a polar dopa decarboxylase
inhibitor, which acts only in the periphery, and a CNS-available monoamine oxidase
inhibitor, it is used in the treatment of Parkinson’s disease. The systematic chemical
variation of dopamine and epinephrine has produced many highly selective, subtype-
specific agonists, as well as antagonists (e.g. [3, 6, 7]).

Figure 2.10  Amphetamine 30, methamphetamine 31, and methylenedioxy-
methamphetamine 32 (MDMA, ecstasy, XTC) are lipophilic compounds with
good oral bioavailability; they easily cross the blood–brain barrier to exert
central nervous system effects. Dopamine 33, norepinephrine (noradrenalin)
34, and epinephrine (adrenaline) 35 are polar phenethylamines; they have
poor oral efficacy and do not pass the blood–brain barrier, producing only
peripheral effects after intravenous application. Ephedrine 36 has inter-
mediate lipophilicity; besides its peripheral effects it also acts as a central
stimulant. Although l-dopa 37 is even more polar than dopamine 33, it is
orally active and crosses the blood–brain barrier by active transport mediated
by the amino acid transporter.
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The history of H1 antihistaminics, neuroleptics, antidepressants, and some other
drugs started from the observation that an antiadrenergic drug, piperoxan 38
(Figure 2.11), could also antagonize histamine in the guinea pig ileum. A break-
through in therapy came after the synthesis of diphenhydramine 39 (Figure 2.11)
in 1943 by George Rieveschl and Wilson Huber at the University of Cincinnati.
Searle tried to get rid of the sedative side effect of this drug by combining it with
the weak stimulant 8-chlorotheophylline 40 (Figure 2.11) in a complex, dimen-
hydrinate. Although the desired stimulating effect could not be observed, an
interesting side effect appeared. A female patient, suffering from urticaria, realized
that she could now travel in streetcars without becoming car sick, as before. This
serendipitous observation led to the probably most curious ‘clinical study’ of all
times: on November 27, 1947, the troop ship General Ballou sailed from New York
to Bremerhaven. During the crossing, the sailors were treated with dimenhydrinate.
Only 4% of those who received the drug became seasick, in contrast to about 25%
of those who had received a placebo [2, 3].

Another antihistaminic, promethazine 41 (Figure 2.12), was the starting point
for the development of potent neuroleptics. Henri Laborit, a French surgeon, was
interested in preventing surgical shock by application of promethazine. Rhone-
Poulenc supported his work by providing several analogs of this compound. One
analog, chlorpromazine 42 (Figure 2.12), not only improved the condition of the
patients due to its anti-shock action, but also seemed to make them more relaxed
and less concerned about what was happening to them in the stressful preoperation
period. On January 19, 1952, Joseph Hamon, Jean Paraire, and Jean Velluz treated,
for the first time, a manic patient with chlorpromazine. After being injected with
the compound he became calm and remained so for several hours; this day must
be considered the start of successful drug treatment of psychotic diseases. Whereas
promethazine preferentially antagonizes histamine H1 receptors, chlorpromazine
is a dopamine antagonist [2, 3]. In the mid-1950s, Roland Kuhn at the Cantonal
Psychiatric Clinic in Münsterlingen, Switzerland, became interested in the
tranquilizing properties of chlorpromazine; his work was supported by the synthesis
of some new analogs by Geigy, Basle. Among these compounds, imipramine 43

Figure 2.11  The antiadrenergic agent piperoxane 38 was the lead
structure for the first antihistaminic drug diphenhydramine 39.
In an attempt to compensate for the sedative side effect of this
compound, a complex with 8-chlorotheophylline 40, dimen-
hydrinate, was investigated. In addition to its antihistaminic quality
it is also effective against travel sickness.
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(Figure 2.12) turned out to have pronounced antidepressant activity. Imipramine,
as well as its metabolite desipramine 44 (Figure 2.12), are neurotransmitter uptake
blockers [2, 3].

The structure–activity relationships of the tricyclic compounds (and some other
classes, e.g., the steroid hormones) prove that small structural variations may
significantly alter the mode of action. Another example of even minor modifications
being responsible for new mechanisms of action is that of some close analogs of
the antihistaminic prototype diphenhydramine 39 (Figure 2.11), e.g., orphenadrine
45, an atropine-type anticholinergic, and nefopam 46, a non-opioid analgesic with
largely unknown mechanism of action (Figure 2.13) [2, 3].

Benzodiazepines seem to be the most prominent class of privileged structures.
Only some prototypes 47–50 (Figure 2.14) with GABA agonist, antagonist, inverse
agonist, opiate agonist, and CCK antagonist activities are presented here [8, 23−27].
The CCK antagonist devazepide 51, a structurally simplified analog of the microbial
product asperlicin 52, is about 4 orders of magnitude more active than its natural
lead [7]. Other benzodiazepines are, e.g., muscle relaxants, antidepressants,
neuroleptics, hypnotics, NK-1 receptor and vasopressin receptor antagonists,
farnesyl transferase inhibitors, and potassium channel modulators.

Figure 2.12  Despite a very close structural analogy, promethazine
41 is an antihistaminic drug, chlorpromazine 42 is a dopamine
antagonist, and imipramine 43 and desipramine 44 are neurotrans-
mitter uptake inhibitors. Correspondingly, 41 is used for the treat-
ment of allergic inflammation, 42 for schizophrenia, and 43 and 44
for depression.
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2.4
Optimizing the Selectivity of Nonselective Lead Structures

Medicinal chemists always followed and still apply the principle of chemical and
biological similarity. Whenever they discover an active lead, they modify its chemical
structure more or less systematically, to find similar analogs with improved activities,
selectivities, ADME (absorption, distribution, metabolism, elimination) properties;
fewer side effects; and less toxic properties. However, as discussed above, structurally
closely related analogs may have significantly different specificity or even a
completely different mode of action.

Figure 2.14  Benzodiazepines are a striking example of diverse biological
activities of closely related structural analogs. The tranquilizer diazepam
47 is the prototype of a benzodiazepine agonist. The benzodiazepine
antagonist flumazenil 48 is used as an antidote in treating benzo-
diazepine intoxication and after benzodiazepine use in surgery.
Compound Ro-15-3505, 49, is an inverse agonist, which acts as a pro-
convulsant. Tifluadom 50 is a strong opioid agonist, which selectively
binds to the κ-opiate receptor, and a nanomolar cholecystokinin receptor
antagonist. Devazepide 51 is an orally active cholecystokinin-B (CCK-B)
antagonist, which is about four orders of magnitude more active than its
structurally much more complex lead, the natural product asperlicin 52.

2.4  Optimizing the Selectivity of Nonselective Lead Structures
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56 2  Drug Discovery from Side Effects

Despite their close chemical relationship, the benzimidazole carboxamides 53 and
54 (Figure 2.15) show very different receptor subtype selectivities. Compound 53
has a more than 300-fold higher affinity for the 5-HT3 ion channel than for the
G-protein-coupled 5-HT4 receptor (Ki 5-HT3 = 3.7 nM vs. Ki 5-HT4 > 1000 nM),
whereas compound 54 binds almost exclusively to the 5-HT4 receptor (Ki 5-HT3

> 10 000 nM vs. Ki 5-HT4 = 13.7 nM; selectivity > 700) [28, 29]. The chemically related
compound DF-1012, 55 (Figure 2.15), is an orally active antitussive drug [30].

Integrins are cell-surface receptors; several of them recognize the RGD (arginine-
glycine-aspartate) motif, obviously in different bioactive conformations. Thus,
selective antagonists of these receptors have been developed: SB 214 857 (lotrafiban,
SmithKline Beecham), 56, and SB 223 245, 57 (Figure 2.16) [31, 32]. Both com-
pounds are identical in their benzodiazepine part but differ in the amine residues
attached to the carboxylic acid function. Compounds 53 and 54, as well as
compounds 56 and 57, may be used as strong arguments for the potential of
automated parallel syntheses. Although these compounds were optimized in a
classical manner, they could also have resulted from combinatorial libraries, in
which a single acid reacted with different amines.
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Figure 2.15  Compounds 53 and 54 differ only in their amine part, but
53 shows a greater than 300-fold selectivity for the 5-HT3 receptor, as
compared to the 5-HT4 receptor, whereas 54 is at least three orders of
magnitude more active at the 5-HT4 receptor than at the 5-HT3 receptor.
The closely related compound 55 is an orally active antitussive drug.

Figure 2.16  Like the 5-HT receptor ligands 53 and 54 (Figure 2.15),
also lotrafiban 56 (failed in phase III clinical trials) and compound
57 differ only in their amine component but are highly selective for
different integrins. Lotrafiban binds preferentially to the fibrinogen
receptor (integrin GPIIb/IIIa), with a selectivity factor of about 4000,
whereas 57 binds preferentially to the vitronectin receptor (integrin
αvβ3), with a selectivity factor of 15 000. Overall, this constitutes
a selectivity ratio of more than seven orders of magnitude.
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Talopram 58 and citalopram 59 (Figure 2.17) are closely related in their chemical
structures. Nevertheless, talopram is a norepinephrine uptake blocker with a
selectivity factor of about 550 against serotonin uptake, whereas citalopram is a
serotonin uptake blocker, with a selectivity of 3400 against norepinephrine uptake.
A similar selectivity difference applies to the even more closely related pair nisoxetine
60, with a norepinephrine uptake selectivity of about 180, and fluoxetine 61
(Figure 2.17), with a serotonin uptake selectivity of 54 [33].

Out of a large number of different peptidomimetic somatostatin analogs,
compounds 62–66 (Figure 2.18) resulted from four different combinatorial libraries,
with up to 350 000 members per library. Every compound has a more or less
pronounced affinity to one of the five different somatostatin receptor subtypes
sst1−sst5, with remarkable selectivity against the other subtypes (Table 2.1) [34].

Most cases of chronic myelogenous leukemia result from a cross-over between
chromosomes 9 and 22, by which a longer chromosome 9+ and a shorter chromo-
some 22–, the so-called Philadelphia chromosome, are generated. The sequence at
the fusion point of the two DNA strands in the 22– chromosome codes for a new
protein, the so-called bcr-abl protein, with constitutionally enhanced tyrosine protein
kinase activity [35]. At Novartis, research started from a general lead structure 67
(Figure 2.19), with protein kinase C (PKC)-inhibitory activity. When amide residues
were introduced into an optimized PKC inhibitor 68, bcr-abl inhibition was also
observed for compound 69. A methyl group in position R1 (compound 70) then
surprisingly abolished the undesired PKC activity. The result of the optimization
was imatinib 71 (STI571, Gleevec®, Glivec®, Novartis; Figure 2.19), a highly
selective bcr-abl kinase inhibitor [35].

Figure 2.17  The structural analogs talopram 58 and citalopram 59
(upper compounds), as well as nisoxetine 60 and fluoxetine 61
(lower compounds), are chemically closely related. Whereas 58 and
60 (left compounds) are highly selective norepinephrine uptake
inhibitors (selectivity factors of 550 and 180, respectively), the close
analogs 59 and 61 (right compounds) are selective serotonin uptake
inhibitors (selectivity factors of 3400 and 54, respectively).
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58 2  Drug Discovery from Side Effects

Figure 2.18  The tetradecapeptide somatostatin is a nanomolar-to-subnanomolar
ligand of five different somatostatin receptor subtypes. Compounds 62–66 are
structurally simplified analogs from four combinatorial libraries, with up to 350 000
members per library. Each compound shows a remarkable selectivity against the
different sst1–sst5 receptor subtypes (Table 2.1). The orientation of the compounds
follows a projection of their superposition with a Merck cyclopeptide.
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Table 2.1  Somatostatin receptor subtype affinities of the tetradecapeptide somatostatin
(Ki values in nM) and compounds 62–66 (Figure 2.18; Kd values in nM) [34].

Compound sst1 sst2 sst3 sst4 sst5 

Somatostatin       0.4            0.04       0.7       1.7       2.3 

62 
63 
64 
65 
66 

      1.4  
2760  
1255 
  199 
      3.3 

     1875  
           0.05  
> 10000 
     4720 
         52 

2240  
  729  
    24  
1280 
    64 

  170  
  310  
8650  
      0.7 
    82 

3600  
4260 
1200 
3880 
      0.4 
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2.5
Selective Optimization of Side Activities

Recently, Wermuth proposed an alternative and complementary strategy to high-
throughput screening (HTS), the SOSA approach (SOSA = selective optimization
of side activities) [15]. Instead of the laborious and expensive investigation of several
hundred thousand compounds in HTS, he recommended screening new biological
targets only with a small set of well-known drug molecules for which bioavailability
and toxicity studies have already been performed. Hits from such a screening can
then be used in a drug discovery program. Most drugs in human therapy do not
interact with just one biological target; thus, if an interaction with some other target
is unrelated to the primary therapeutic effect, affinities could be reversed in the
optimization process, the former side effect now becoming the main effect and
vice versa.

This approach can be illustrated, e.g., by the structural variation of β-antiadrenergic
compounds. Several β-blockers have slight stimulating and hallucinogenic pro-
perties. If the side chain of the β-blocker prototype 72 (Figure 2.20) is cyclized, the
antidepressant viloxazine 73 results [2, 3]. Another β-blocker-related compound is
propafenone 74, a class Ic antiarrhythmic [3, 6, 7]. Cyclization of a β-blocker structure
to compound 75 produced, after optimization, the antihypertensive drug levocroma-
kalim 76 (Figure 2.20). However, 76 is no longer a β-blocker, it is a potassium channel
opener [15, 36].

A group of compounds for which a completely unrelated side effect was observed
are 4-hydroxy-pyrones and 4-hydroxy-coumarons, which are chemically closely
related to anticoagulant vitamin K antagonists. Screening at Parke-Davis showed

Figure 2.19  The lead structure 67 is a protein kinase C (PKC)
inhibitor prototype. Whereas the optimized analog 68 is a strong
PKC inhibitor, amides 69 also inhibit tyrosine kinases like the bcr-abl
kinase. Introduction of a methyl group, to form 70, abolishes the
PKC activity. The optimized analog imatinib 71 (Gleevec®, Glivec®,
Novartis) is a highly selective bcr-abl tyrosine kinase inhibitor.
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that the 4-hydroxy-pyrone 77 is a micromolar HIV protease inhibitor (Ki = 10 µM)
[37]. Optimization of this prototype led to the phenethyl-substituted thio ether 78
(Ki = 35 nM) [38], which could be further optimized, by exchange of a phenyl group
with an isopropyl residue and introduction of amino and hydroxyl groups, to
CI-1029, 79 (Ki = 0.11 nM) [39, 40]. At Upjohn, phenprocoumon 80, a therapeutically
used anticoagulant, was independently discovered to be a moderately active HIV
protease inhibitor (Ki = 1 µM) [41]. Optimization produced the bis-aralkyl-substituted
4-hydroxy-pyrone PNU-96 988, 81 (Ki = 38 nM) [41], and finally the picomolar
inhibitor tipranavir 82 (R,R diastereomer: Ki = 8 pM). Surprisingly, the other
diastereomers of tipranavir show a very low stereospecificity of drug action; they
are also very potent HIV protease inhibitors (R,S diastereomer: Ki = 18 pM; S,R
diastereomer: Ki = 32 pM; S,S diastereomer: Ki = 220 pM) [42].

The selective optimization of side activities was illustrated by Wermuth also with
some examples from his own research [15, 43–46]. The antidepressant minaprine
83 (Figure 2.22) has some weak side activities. It is, e.g., a 17 µM muscarinic M1

receptor ligand and a 600 µM acetylcholinesterase inhibitor (IC50, electric eel AChE).
Shift of the 4-methyl group of minaprine to the 5-position (compound 84) increased
its M1 affinity to 550 nM. Further optimization led to the tropane analog 85 (IC50

musc M1 = 50 nM) and its o-hydroxy derivative 86 (IC50 musc M1 = 3 nM;
Figure 2.22), an M1 partial agonist [15, 43].

Elimination of the 4-methyl group of minaprine 83 (Figure 2.22) and exchange of
the morpholine with a piperidine ring produced the AChE inhibitor 87 (Figure 2.23),

Figure 2.20  The general structure 72, with different residues X,
describes the prototype of a β-adrenergic antagonist. Cyclization of
the side chain produced the antidepressant viloxazine 73, whereas
the N-n-propyl analog propafenone 74 turned out to be a class Ic
antiarrhythmic with only weak β-antagonistic activity. An attempt to
cyclize β-blockers to structures of the prototype 75 finally produced
levocromakalim 76; as expected, it had antihypertensive activity
but its mode of action is different: instead of being a β-blocker, it is
a potassium channel opener.
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Figure 2.21  The achiral 4-hydroxypyrone 77 (Ki = 10 µM) is structurally
related to anticoagulant vitamin K antagonists; it was discovered at
Parke-Davis as a weakly active lead in a screening for HIV protease
inhibitors. Optimization produced the thio ether 78 (Ki = 35 nM) and
finally CI-1029, 79 (Ki = 0.11 nM). In an independent screening, Upjohn
discovered that the therapeutically used anticoagulant phenprocoumon
80 (Ki = 1 µM) is a weak HIV protease inhibitor. Optimization at Pharma-
cia and Upjohn produced PNU-96 988, 81 (Ki = 38 nM), and the pico-
molar HIV protease inhibitor tipranavir 82 (R,R diastereomer: Ki = 8 pM).

Figure 2.22  The antidepressant minaprine 83 is also a low-affinity
ligand of the muscarinic M1 receptor (Ki = 17 µM). Optimization of
this side activity to the 5-methyl isomer 84 (Ki musc M1 = 550 nM)
and the tropane analog 85 (Ki musc M1 = 50 nM) resulted in the
ortho-hydroxy-substituted analog 86 (Ki musc M1 = 3 nM).

 

N N
N
H

N

OMe

83

N N
N
H

N

OMe

84

N N
N
H

N

Me

85

N N
N
H

N

Me

OH
86

2.5  Selective Optimization of Side Activities

1239vch02.pmd 06.06.2004, 13:4461
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with a Ki value of 13 µM. Variation of the side chain to an N-benzyl-piperidino
derivative 88 increased the inhibitory activity to Ki AChE = 120 nM. Further optimi-
zation produced the cyclized analog 89 (Ki AChE = 10 nM: Figure 2.23) [15, 44, 45].

A close analog of minaprine 83 (Figure 2.22), compound 90, is a low-affinity
5-HT3 antagonist (IC50 5-HT3 = 425 nM). Whereas modifying the pyridazine to the
phenyl-substituted phthalazine 91 did not significantly change the affinity (IC50

5-HT3 = 370 nM), shifting the phenyl substituent increased the affinity by about
one order of magnitude (compound 92, IC50 5-HT3 = 36 nM), most probably because
of a better fit within the binding site. Correspondingly, the phthalazine 93 (IC50

5-HT3 = 10 nM), without a phenyl substituent, has a much higher affinity than the
other analogs (Figure 2.24) [46].

Figure 2.23  Minaprine 83 (Figure 2.22) is also a weak acetylcholin-
esterase (AChE) inhibitor (Ki AChE = 600 µM). Optimization of this
side activity to deoxo,demethyl-minaprine 87 (Ki AChE = 13 µM)
and an isomeric N-benzyl-piperazine 88 (Ki AChE = 120 nM) finally
resulted in the potent AChE inhibitor 89 (Ki AChE = 10 nM).
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Figure 2.24  The 3,6-substituted pyridazine 90 (Ki 5-HT3 = 425 nM),
which is chemically closely related to minaprine 83 (Figure 2.22),
is a low-affinity 5-HT3 receptor ligand. Optimization of this side
activity to the phenyl-substituted phthalazine 91 (Ki 5-HT3 =
370 nM) and the 3,5-substituted pyridazine 92 (Ki 5-HT3 = 36 nM)
resulted in the nanomolar 5-HT3 ligand 93 (Ki 5-HT3 = 10 nM).
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The atypical neuroleptic olanzapine 94 (Figure 2.25), one of the most successful
drugs of recent years, is a highly promiscuous, nanomolar ligand of more than a
dozen different GPCRs (Table 2.2) [47–49]. Thus, its real mechanism of action
remains unclear, as is also true for the antiadrenergic, antihistaminic, and
antiserotonergic antidepressant mianserin 95 (Figure 2.25), the so-called ‘good
humor pill’ of the 1970s. Thus, despite the fact that many structurally modified
analogs have already been synthesized and tested, such drugs could be the starting
point for different follow-on drugs with modified selectivities [2, 3].

Drug candidates have also been derived from herbicides and fungicides. By
screening the BASF library for endothelin receptor ligands, compound 96 was

Figure 2.25  The atypical neuroleptic olanzapine 94 is a highly
promiscuous ligand of many different G protein-coupled receptors
(Table 2.1). The antidepressant mianserin 95 also is a promiscuous
ligand; in addition to its α2-blocking activity, it blocks serotonin
uptake and is a histamine, 5-HT2, and 5-HT3 antagonist.
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Table 2.2  GPCR and 5-HT3 binding affinities of olanzapine 94 in different in-vitro models;
Ki values from two different sources [47–49].
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discovered; although this structure was originally designed as a potential herbicide,
it turned out to be a submicromolar, ETA-specific ligand (Ki ETA = 0.25 µM, Ki ETB

= 3 µM; Figure 2.26). Optimization by elimination of one steric center yielded the
nanomolar antagonists 97 (Ki ETA = 6 nM, Ki ETB = 1000 nM) and 98 (Ki ETA =
0.12 nM, Ki ETB = 29 nM) [50].

Sigma receptors were originally considered to be a subtype of opiate receptors.
Only recently has it become clear that, despite the fact that they bind some opiates,
they are neither G protein-coupled receptors nor do they have any other homology
to mammalian proteins. The closest related protein is yeast sterol C8–C7 isomerase
(ERG2 protein). According to this relationship, the BASF fungicides tridemorph
99 (Ki σ1 = 39 pM, guinea pig liver; Ki σ1 = 23 pM, guinea pig brain; replacement of
(+)-3H-pentazocine) and fenpropimorph 100 (Ki σ1 = 11 pM, guinea pig liver; Ki σ1

= 5 pM, guinea pig brain) are picomolar ligands of σ1 receptors (Figure 2.27) [51].
So far, they have not been converted into drugs, despite the fact that σ receptors
play a functional role in many important physiological processes.

Figure 2.26  The potential herbicide 96 has been discovered to be a
moderately active, selective ETA receptor antagonist. Optimization
produced the nanomolar to subnanomolar ETA antagonists 97 and 98.
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2.6
Summary and Conclusions

The discussed examples provide convincing evidence that, in addition to many
drugs that were serendipitous discoveries, many others have resulted from the
observation of side effects, in the laboratory, in clinics, or during their therapeutic
application. Today, we possibly focus too much on single targets that are investigated
in vitro. Hidden treasures may be discovered by testing ‘old chemistry’ against new
targets, by systematically optimizing some side effects of known drugs, and by
rescuing drugs that failed because of problems in their metabolism or hERG channel
inhibition. Thus, it might well be that known drugs are a much better source of
lead structures for new projects than we anticipated so far. As a consequence, we
will experience a successful comeback of traditional medicinal chemistry [8, 15].
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3
The Value of Chemical Genetics in Drug Discovery

Keith Russell and William F. Michne

3.1
Introduction

To understand what chemical genetics is and how it can add value to the drug
discovery process, we must first consider some of the challenges and needs of the
pharmaceutical industry. The process of discovering new drugs is a highly complex
multidisciplinary activity requiring very large investments of time, intellectual
capital, and money. Today the average cost of bringing an NCE to market is on the
order of $ 900 million [1]. For every 5000 compounds synthesized, only one makes
it to the market. Only three of ten drugs generate revenue that meets or exceeds
average R&D costs, and 70% of total returns are generated by only 20% of the
products [2]. Given this gloomy backdrop it is even more disturbing to learn that,
despite the proliferation of many new technologies of great potential (and great
cost), pharmaceutical productivity levels have not increased in the past ten years
(as shown graphically in Figure 3.1).

Pharmaceutical R&D costs continue to grow exponentially, driven in part by
investments in new technologies, but the return on this investment remains elusive.
There are many reasons for these disturbing trends. If we consider the pharma-
ceutical industry as primarily a generator of knowledge (defining knowledge as
compiled and interpreted information that can be acted upon) and focus on the
knowledge creation process, we can shed some light on how the current situation,
a productivity gap, emerged. Working harder is not likely to overcome this
productivity gap to deliver more drugs. Working smarter, doing things differently,
and focusing on what we actually need to deliver, i.e., knowledge, may be a new way
to approach the problem. Ultimately, spanning the ‘knowledge gap’ will lead us to
the efficient exploitation of the human genome to discover new drugs to meet
major medical needs.
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3.2
Knowledge Management in Drug Discovery

Pharmaceutical companies create and sell knowledge, e.g., knowledge that a drug
product will rid patients of the symptoms of their disease while not causing serious
side effects. The resources that go into the production of the drug pale alongside
the resources needed to discover the knowledge of what the drug will do when
administered to a patient. In the early years of drug discovery it was often true that
the literature provided a significant knowledge base for our efforts. Two approaches
were taken: (1) function-based screening, where one did not know what the target
was but could easily screen for small molecules that possessed the right biology [3];
and (2) ‘rational drug discovery’, where one has knowledge of the target and its
function [4]. What was needed were small molecules that would interact with the
target in the right way before being optimized for in vivo activity and safety.

The existing and evolving chemistry and biology literature fueled these efforts. It
is probably also true to say that the medical problems addressed in these early days
of drug discovery represented the more accessible opportunities. Often the biology
was not only reasonably well understood, but it was reasonably easy to study and
measure. Examples of biological effects that were tackled include blood pressure,
acid secretion, and cytotoxicity. The situation today is very different. We now face
many new targets we know little about and biology that is complex to study and
understand. In addition to these issues, advances in our knowledge of distribution,
metabolism, and pharmacokinetics, as well as toxicology and pharmacogenetics,
have led to the introduction of discovery processes that front-load measurement of
such small-molecule properties. This also raises the bar for passage of compounds
through the process – making the process more difficult and slower. While this
may lead to lower output of development candidates, it should also lead to lower
failure rates later in development, i.e., improvements in quality.

Figure 3.1  US drug approvals during the past ten years.
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3.3
Knowledge Gaps, Their Importance, and How to Address Them

The human genome has been solved and optimistic promises have been made. It
is clear that the human genome did not deliver knowledge (i.e., something
immediately useful); rather, it delivered a massive amount of data. Significant
advances have also been made in cell biology and systems biology. The relationship
between genes/proteins derived from the human genome and their function as a
part of a biological system constitutes the knowledge gap, and our appreciation of
the extent of this void is still emerging. The human genome is thought to consist
of ca. 30 000 genes. Each gene can potentially produce several proteins via alternative
splicing and post-translational modification, and every protein can potentially
combine with other proteins to form many different protein complexes. Clearly,
the number of different proteins and protein complexes is much larger than 30 000.
To add further complexity, small molecules (that we hope will become drugs) can
interact with different sites on a protein or via different mechanisms to further
expand the diversity of possible outcomes from the interaction of small molecules
with a protein target. We do not know what many gene products (proteins) do,
either physiologically or pathologically, and we do not really know how many of
these proteins can interact with small-molecule ligands [5]. There are many genes
about which we know nothing at all. In summary, there is clearly a vast knowledge
gap between knowing a gene and knowing the function (physiology and pathology)
of its protein product (Figure 3.2). The enormity of this knowledge gap has been
underestimated by the pharmaceutical industry.

To illustrate the size of the knowledge gap, consider the following (admittedly
approximate) analysis from the area of substance P. Substance P antagonists have
emerged in recent years as potential new treatments for depression, although none

Figure 3.2  The knowledge gap represents the large gap in under-
standing that exists between genetic information from the human
genome project and information regarding biological function from
cell and systems biology.

1239vch03.pmd 06.06.2004, 13:4771



72 3  The Value of Chemical Genetics in Drug Discovery

have yet been approved for this use. Substance P has been known since 1937, and
since that time (67 years!) there have been over 6500 papers published providing
significant new information on substance P. Thousands of scientists have worked
on generating this information during this period. It is sobering that our under-
standing of Substance P’s role in depression is still in its infancy. No one
pharmaceutical company can generate this volume of information. New faster and
more efficient methods must be developed to fill these knowledge gaps. Partnership
with the academic community will become increasingly important as the number
of druggable targets expands.

3.4
Target Validation: The Foundation of Drug Discovery

One critical piece of knowledge to the pharmaceutical industry relates to knowledge
of a drug target and its link to a disease process. In the context of small-molecule
drug discovery, we define target validation in a broader sense as including knowledge
of the protein target and its specific interaction with small molecules, and the
consequences of this interaction in terms of modifying a disease process. In fact,
drug discovery is primarily focused on the biology of a target in the presence of a
drug, i.e., drug-induced biology. It begins with a chemical effect – the interaction
of a ligand with a protein at a specific site in a specific manner – and ends in
patients’ gaining benefit from taking a drug derived from the application and
exploitation of this knowledge. Target validation that simply links a specific protein
and its function to a disease state does not include reference to whether a small
molecule can modulate the function of the protein. The protein may not therefore
constitute a true target since it is not a target for a small-molecule ligand and efforts
to do target validation on such a protein will ultimately lead to a negative outcome.
We can (and do) proceed to work on drug discovery before we have all the knowledge
we need. The absence of this knowledge constitutes the major risk of drug discovery.
One way to proceed is to focus on obtaining the most critical knowledge first. This
is the knowledge that modulation of a protein target by a small molecule can
ultimately lead to a clinical benefit in patients.

3.5
Chemical Genetics – How Chemistry Can Contribute to Target Identification and Validation

Target validation (TV) is the foundation of drug discovery and requires greater
attention if we are to reduce the risk of failure after significant investment.
Traditionally, target validation has been thought of as a biology problem. Thinking
in terms of what knowledge we need makes it clear that the problem does not
neatly fall into any particular discipline and is better characterized as an integrated
biology and chemistry problem. A schematic target validation roadmap is shown
in Figure 3.3, where the entire validation path from a chemical effect through various
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levels of biological effects to a clinical effect is outlined. To begin with, an
understanding of the function of a particular gene product can often be achieved
through the methods of classical genetics. However, the process can be slow and
tedious. For example, developing a mouse carrying the mutation of interest could
take months or years. Indeed, if the gene product is essential, the organism may
not survive long enough to be studied. On the other hand, the situation wherein a
molecule is available that alters the function of the gene product has a number of
advantages. However, we should recognize that significant chemical effort is often
required. The phenotype of interest is conditional, in that it is present only when
the molecule is present, allowing the study of essential gene products. It is also
tunable, i.e., the intensity of the phenotype can be adjusted by controlling the
concentration of the molecule.

Chemical genetics is the purposeful modulation of protein function through its
interaction with a small molecule. The principles of chemical genetics were established
in the rich history of using small molecules to explore biological function and, in
this sense, chemical genetics is not new. What is new is the development of a
systematic approach to studying biological function with small molecules – this is
the emerging field of chemical genetics. Just as genetic changes can alter protein
function, so can small molecule–protein interactions [6]. It is important to appreciate
that, by interaction of a ligand with a protein, we mean interaction of a small

Figure 3.3  The knowledge roadmap for target validation, beginning
with a chemical effect between a small molecule and a protein target
and ending with a beneficial clinical effect on a person with a disease.
Chemical genetics approaches provide some assistance in pursuing
this path.

3.5  Chemical Genetics – How Chemistry Can Contribute to Target Identification and Validation
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molecule at a specific site on a protein causing a specific protein change, con-
formational or otherwise, ultimately leading to a specific biological effect. Small
molecules can often interact with multiple sites on proteins and cause a multitude
of consequences such as agonism, antagonism, partial agonism, modulation,
competitive and noncompetitive inhibition, etc. They can also interact at junctions
between protein subunits. The sophistication of small molecule–protein interactions
and their biological consequences cannot be easily reproduced by techniques such
as gene knockin/out or the use of siRNA, by which genes/proteins are simply
removed or increased in concentration in a biological system. Having said that,
knockout models have certainly contributed significantly to drug discovery and
will continue to do so [7]. The power of chemical genetics resides in this sophisti-
cation of the small molecule–protein interaction and the precise way we can (in
principle) modulate the function of a protein. As a precursor to drug discovery it
serves the purpose of focusing us on where small molecule drug discovery really
begins – with the chemical interaction between a small molecule and a protein.

The knowledge gap outlined above can be thought of as a cycle linking the target
(a protein or protein complex) with a function ultimately linked to an effect important
in a disease process (Figure 3.4). Going from target to function represents the
knowledge path of target validation. Going from a function to a target represents
the knowledge path of target identification (TI) or deconvolution. Chemical genetics
approaches can be applied to both knowledge paths. Application to the target
validation path is called reverse chemical genetics. Application to the target identifi-
cation/deconvolution path is referred to as forward chemical genetics. At the heart of
this approach to knowledge generation in TI/TV is the simple concept that small
molecules are used to perturb biological systems. Manipulation of a biological system
in a controlled manner by small molecules allows us to study these systems more
systematically.

Figure 3.4  Chemical genetics tools (libraries) can help uncover
the function of proteins (target validation) and the protein target
responsible for biological function (target identification) in a
phenotype assay.
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3.6
Integration of Chemistry and Biology: Importance and Issues

Given that the foundation of target validation is a ligand–protein interaction
(a chemical effect) and its consequence (a biochemical/biological effect), we can
expect that advances in this area will come from a close integration of chemistry
and biology. Some key questions at the interface of chemistry and biology that are
fundamental to chemical genetics include – why are some molecules biologically
active while others are not? What is the biological profile of a small molecule’s
structure and how do we dissect this into what each part (fragment) of the small
molecule is doing to each protein target? Is there a protein ‘code’ for recognition of
small molecules that is used by every protein in the proteome? The following sections
begin to address these questions.

3.7
Finding New Chemical Tools and Leads

A chemical tool is small molecule that is sufficiently potent and selective for a protein
target to be used in the identification and validation of that target. It could, although
it need not, meet the rigorous absorption, distribution, metabolism, excretion, and
toxicology criteria required of a lead to start an optimization project. How do we
find such tools? The total number of ‘reasonable’ drug-like molecules has been
estimated [8] as approximately 1063 discrete molecules, a number so large that
synthesizing all of them is simply impossible. Natural products were designed by
nature to bind to proteins and other macromolecular targets and represent powerful
chemical tools for use in chemical genetics. Numerous examples exist in which
natural products have been identified that modulate biological function. The natural
products are then used to identify proteins that they interact with and so to begin
deconvolution (forward chemical genetics) of the target responsible for the biological
effect. For example, fumagillin inhibits new blood vessel growth (angiogenesis),
and analogs of this compound are now in Phase 3 trials. Using fumagillin as a
starting point, chemical tools (e.g., biotinylated analogs) were constructed to bind
and tag cellular proteins. One of these proteins, methionine aminopeptidase, has
been identified as the likely target for this class of molecules [9]. Some other examples
of natural products used in forward chemical genetics are shown in Table 3.1. Cases
in which these natural products were then used to deconvolute the target protein
are noted. Interestingly, some of the top-selling drug classes originated from a
forward chemical genetics approach, e.g., the gastric acid secretion inhibitors
omeprazole and esomeprazole were discovered by a process that began with
screening for antisecretory agents that lowered stomach acid [3].

Interestingly, given the discussion of the importance of understanding small
molecule–target protein interactions early in drug discovery, there is renewed
interest in reexamining many older drugs to more fully understand how they work
[10].

3.7  Finding New Chemical Tools and Leads
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Table 3.1  Natural products used to identify targets.

Biological effect Protein target Natural product Reference 

Angiogenesis Methionine 
aminopeptidase O

O

O

H

O

O
OH OMe

R

R

R
R

S
S

 
fumagillin 

9 

Immuno-
suppressive, 
anticancer 

Microtubule 
binder/ 
stabilizer 

OO

OH

OH

OH O

OH O

NH2

 
discodermolide 

59 

Immuno-
suppresion, 
IL-2 production 
inhibition 

Calcineurin 
(a protein 
phosphatase) 
inhibition 

N

O
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O OH
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HOH
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H

 
FK506 
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Histone 
deacetylase 
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trapoxin 
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Proteasome 
inhibition 
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lactacystin 

61 
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An advantage of the chemical genetics approach is that the small molecules
identified in biological screens can act both as conditional switches for inducing
phenotypic changes and as probes/chemical tools for identifying protein targets
implicated in those phenotypic changes. However, identifying the molecular target
and mechanisms by which the small molecules affect biological systems (target
deconvolution) can sometimes be difficult. Classical deconvolution approaches,
such as affinity chromatography and biochemical fractionation using photoactivat-
able and other affinity ligands to pull out the target protein, often work well [11].
More recently, genomics-based techniques have been added to the deconvolution
toolset [12].

Beyond natural products, finding chemical tools to modulate biological systems
is a difficult step and shares many of the risks associated with finding leads in a
drug discovery program [13]. Strategies for finding small-molecule tools representing
two poles on a continuum of approaches are illustrated by structure-based design
and the high-throughput screening approach. Given our focus on knowledge
generation, it is interesting to note that molecules at either end of this spectrum
also reflect different levels of information content. Individual molecules used in
high-throughput screening teach us (if we are fortunate) about a simple IC50 or
EC50. Molecules that additionally teach us how they bind to their molecular target
provide us with much more useful information, especially when we consider what
to do next to improve or change the biology of the molecule (Figure 3.5).

Schreiber has been a pioneer in this rapidly developing area of chemical biology.
He has constructed several structurally complex screening libraries using a diversity-
oriented synthesis approach and has used these libraries to uncover chemical tools
to begin to unravel complex biology. Using this approach, Schreiber discovered a
small-molecule chemical tool that he named uretupamine, which interacts with
the protein Ure2p. Ure2p represses the transcription factors Gln3p and Nil1p.

Figure 3.5  The spectrum of approaches to finding chemical tools
or leads, illustrating the inverse relationship between information
content and number of compounds needed.

3.7  Finding New Chemical Tools and Leads
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Uretupamine was found to specifically modulate a subset of glucose-sensitive genes
downstream of Ure2p. As noted earlier, this type of behavior, modulating a subset
of the function of Ure2p, cannot be replicated by gene knockouts (e.g., knockout of
the URE2 gene) or siRNA approaches and represents a real challenge for proteomics
to identify and control all inputs and outputs of a protein [14]. He used the natural
product FK506 to uncover its target FKBP12 [15] and then went on to design specific
molecular probes derived from FK506, guided by crystal structures of FKBP, FK506,
and calcineurin to uncover its mechanism of action as a ‘small-molecule dimerizer’
of FKBP12 and calcineurin [16]. The formation of this ternary complex led to
inhibition of the protein phosphatase activity of calcineurin [17]. This discovery,
together with the discovery by Gerald Crabtree of NFAT proteins, helped define the
calcium–calcineurin–NFAT signaling pathway, now known to be essential for
immune function, heart development, and the acquisition of memory in the
hippocampus [18].

Peter Schultz’s team used a combinatorial library of purines to identify agents
that could disassemble multinucleated myotubes into mononucleated fragments
(a morphological differentiation screen). A new microtubule-binding molecule,
mysoseverin, was identified in this way [19].

Structure-based design has been employed in some powerful examples of
chemical genetics by teams led by Kevan Shokat and by John Koh. Shokat’s team
has studied the function of kinases by engineering designed modifications into
both the kinase and kinase inhibitor ligand to create highly selective chemical tools
that can then be used to probe the function of individual kinases in complex kinase
cascades (for an explanation of the basic concept see Figure 3.6) [20].

John Koh’s team have focused their efforts on nuclear hormone receptors,
including the vitamin D receptor, in an effort to target specific clinical problems.
Koh studied a mutant version of the vitamin D receptor (an arginine located in the
binding pocket is mutated to a leucine) that binds vitamin D with only one
thousandth the affinity of the normal receptor. Analogs of vitamin D were
synthesized, based on computer modeling of their interaction in the mutant vitamin
D receptor. Some of these compounds were found to bind 500 times better than
vitamin D to the mutant receptor. This work may ultimately lead to drugs to treat a
disease known as vitamin D resistant rickets [21]. Koh previously demonstrated
the feasibility of this approach with other nuclear hormone members, including
thyroid hormone receptor [22].

David Corey’s team has also employed this approach, termed ‘engineered
orthogonal ligand–receptor pairs’, in studies of retinoid x receptor to find ‘near
drugs’. These near drugs are chemical tools used to discern the biology of the retinoid
x receptors [23].

To date, the results of efforts to find new biologically active molecules through
preparation of large libraries based solely on diversity considerations have been
disappointing. On the other hand, the collective experience of the global bioorganic
and medicinal chemistry community indicates that biological activity is not
uniformly distributed in chemistry space; rather, it is found within discrete regions.
Since we cannot know the locations of these regions a priori, we might look to
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known biologically active molecules to guide our search. There have been several
approaches to doing this. Many natural products derived from plants and animals
have evolved over time to have specific biological effects on either the parent
organism or an unrelated one. The pool of natural products is extremely large with
respect to both numbers and structural diversity. Not surprisingly, a number of
methods to produce natural product libraries have emerged [24]. Some companies
provide prefractionated extracts of unknown structures for screening. Structures
are determined after a hit is found. Many companies have established libraries of
single pure natural products. Yet another approach is the assembly of libraries of
derivatized natural products. Finally, one can develop syntheses of natural product
core structures and, using combinatorial techniques, decorate the cores with diverse
elements. In this way it is possible to prepare large libraries of peripherally diverse
compounds related to natural products for general screening. The following library
(Fig. 3.7) is illustrative [25]. It contains over 2 million compounds that are both
sterically and functionally complex. Little biological activity was observed; for the
purposes of the pharmaceutical industry this result might be viewed as somewhat
disappointing, given the size of the library and the effort invested in preparing it.
Why were more active compounds not found?

Figure 3.6  Replacing a bulky amino acid with glycine in the ATP-binding
site of a kinase enlarges the site. ATP binding and catalytic activity are
unaffected. The nonselective kinase inhibitor can now be modified to
create a molecule that selectively blocks the mutant enzyme.

3.7  Finding New Chemical Tools and Leads
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One reason might be related to the high degree of overall molecular complexity
of the library. Hann and coworkers [26] reported an in-depth analysis of the
relationship between molecular complexity and the probability of finding leads.
They derived a model system in which ligand complexity and ability to bind to a
protein target could be studied statistically. They found that, as systems became
more complex, the chance of observing a useful interaction for a randomly chosen
ligand fell dramatically. Thus, there may be an optimal complexity for molecules in
a screening library. Smaller libraries of less-complex molecules are likely to be
more productive in terms of finding relevant chemistry space, with enhancements
in potency and selectivity resulting from iterative rounds of synthesis and testing
to increase complexity. Although the compounds were not derived from a library, a
comparison of glutamic acid to LY354740 and MGS0028 is illustrative (Figure 3.8).

Glutamic acid is a relatively simple molecule with several degrees of rotational
freedom, and obviously interacts with all glutamate receptors, both ionotropic and
metabotropic. LY354740 is arguably more complex with respect to stereochemistry
and rigidity, is much more potent than glutamate at Group 2 mGluR’s, and has no
activity at iGluR’s [27]. MGS0028 is even more complex with respect to functionality
and heteroatoms and, although no more selective than LY354740, it is about 20
times more potent [28]. Most chemists would no doubt agree that molecular
complexity increases from glutamic acid to LY354740 to MGS0028, but there have
been few attempts to quantify molecular complexity. Bertz [29] developed a general

Figure 3.7  Potential coupling sites on a natural product-related
core-based diversity library. (Reprinted from [25] with permission,
copyright 1999, American Chemical Society).
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index of molecular complexity based on concepts of graph theory and information
theory and included features such as branching, rings, multiple bonds, heteroatoms,
and symmetry. In the work reported by Hann, the number of bits set in the Daylight
2D structure representation was taken as an indication of the internal bond
complexity, but the method does not capture notions of stereochemistry and rigidity.

A rather different approach to natural product-based libraries is being promoted
by Waldmann and coworkers [30]. Recent results in structural biology and
bioinformatics indicate that the number of distinct protein families and folds is
fairly limited. Often, many proteins use the same structural domain in a more or
less modified form created by divergent evolution. Protein families can have similar
folds, even though they at first seem to have completely different sequences and/or
catalyze quite different chemical reactions with a different arrangement of active-
site residues. However, proteins in these families evolved from the same ancestors
and can still bind similar ligands [31]. If ligand types or frameworks for certain
domain families are already known from the investigation of evolutionarily related
proteins, the underlying structure of this ligand may be employed as the guiding
principle for library development. Such ligands would provide targeted, biologically
validated starting points in structural space for the development of relatively small
compound libraries, which should yield significantly higher hit rates than much
larger libraries designed exclusively on the basis of available and proven chemical
transformations.

Accordingly, they synthesized a library of nakijiquinone analogs (Figure 3.9) [32],
the only natural products known to be inhibitors of the Her-2/Neu receptor tyrosine
kinase, and investigated them as possible inhibitors of the receptor tyrosine kinases
involved in angiogenesis. This led to the identification of inhibitors of IGF1R, Tie-2,
and VEGFR-3, with IC50’s in the range of 0.5–18 µM.

The growing awareness that biological activity is not uniformly distributed
throughout chemistry space has led to a number of efforts to determine those
molecular attributes that are drivers of that activity. At an elementary level, Ghose
and coworkers [33] carried out quantitative and qualitative characterization of known
drug databases with respect to computed physicochemical property profiles, such

Figure 3.9  Molecular composition of the nakijiquinone library.
(Reprinted from [32] with permission, copyright 2003, American
Chemical Society).
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as log P, molar refractivity, molecular weight, and number of atoms, as well as
characterization based on the occurrence of functional groups and important
substructures. For many parameters, they defined a qualifying range covering ≥ 80%
of the compounds. They also found that the benzene ring is the most abundant
substructure, slightly more abundant than all heterocyclic rings combined, and
that nonaromatic heterocycles were twice as abundant as aromatic heterocycles.
The most abundant functional groups were tertiary aliphatic amines, alcohols, and
carboxamides.

Bemis and Murcko [34] carried out an extensive structure-based analysis using
shape description methods to analyze a database of commercially available drugs
and prepare a list of common drug shapes. A useful way of organizing this structural
data is to group the atoms of each drug molecule into ring, linker, framework, and
side-chain atoms. On the basis of the 2D molecular structures (without regard to
atom type, hybridization, or bond order), there were 1179 different frameworks
among the 5120 compounds analyzed. However, the shapes of half of the drugs in
the database were described by the 32 most frequently occurring frameworks. This
suggests that the diversity of shapes in the set of known drugs is extremely low.
Within the set of 32 frameworks, 23 contained at least two six-membered rings
linked or fused together, and only three had more than five rotatable bonds. In a
second method of analysis, in which atom type, hybridization, and bond order
were considered, more diversity was seen: there were 2506 different frameworks
among the 5120 compounds in the database, and the most frequently occurring
42 frameworks accounted for only one-fourth of the drugs. Subsequently, the same
workers analyzed the side chains of the same set of drugs [35]. On the basis of the
atom pair shape descriptor (taking into account atom type, hybridization, and bond
order), there were 1246 different side chains among the 5090 compounds analyzed.
The average number of side chains per molecule was 4, and the average number of
heavy atoms per side chain was 2. Ignoring the carbonyl side chain, there were
approximately 15 000 occurrences of side chains. Of these 15 000, approximately
11 000 were from the ‘top-20’ group of side chains. This suggests that the diversity
that side chains provide to drug molecules is also quite low. The authors have
combined this information to generate new structures that are likely to be drug-
like and synthetically accessible. They used this approach to generate a set of
molecules optimized for blood–brain barrier penetration [36].

Ajay and coworkers [37] used a Bayesian neural network to distinguish between
drugs and nondrugs. They evaluated commercial databases of drug (Comprehensive
Medicinal Chemistry, CMC) and nondrug (Available Chemicals Directory, ACD)
molecules with respect to 1D and 2D parameters. The former contain information
about the entire molecule, like molecular weight, and the latter contain information
about specific functional groups. Their results correctly predicted over 90% of the
compounds in the drug database while classifying about 10% of the molecules in
the nondrug database as drug-like. The neighborhoods defined by their model are
not similar to those generated by standard Tanimoto similarity calculations, and
thus new and different information is being generated by these models, as shown
in Figure 3.10.
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Further efforts have been made to distinguish between drugs and nondrugs.
Sadowski and Kubinyi [38] developed a scoring scheme for rapid and automatic
classification of molecules into drugs and nondrugs. The method was set up by
using atom type descriptors for encoding the molecular structures and by training
a feed-forward neural network for classifying the molecules. It was parameterized
and validated by using large databases of drugs (World Drug Index, WDI) and
nondrugs (ACD). The method revealed features in the molecular descriptors that
either qualify or disqualify a molecule for being a drug and classified 83% of the
ACD and 77% of the WDI appropriately.

Clark and coworkers [39] investigated techniques for distinguishing between drugs
and nondrugs using a set of molecular descriptors derived from semiempirical
molecular orbital (AM1) calculations. These descriptors had been used successfully
to build absorption, distribution, metabolism, and excretion-related QSPR models.
A principal-components analysis was carried out for the descriptors in property
space. The third-most significant principal component of this set of descriptors
served as a useful numerical index of drug-likeness, but no others were able to
distinguish between drugs and nondrugs. The set of descriptors was extended,
and ultimately three descriptors were used to train a Kohonen artificial neural net
for the entire Maybridge dataset. Projecting the drug database onto the map so
obtained resulted in clear distinction between drugs and nondrugs.

Figure 3.11 demonstrates that there is no simple relationship between drug-
likeness and standard 2D similarity measures of molecules. Martin and coworkers
[40] addressed this question in a study using Daylight fingerprints. They showed
that, for IC50 values determined as a follow-up to 115 high-throughput screening
assays, there is only a 30% chance that a compound that is ≥0.85 Tanimoto similar
to an active is itself active.

Figure 3.10  Histogram of Tanimoto coefficients based on topo-
logical torsions of the most similar CMC molecule for each of the
drug-like molecules from the ACD. (Reprinted from [37] with
permission, copyright 1998, American Chemical Society).
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These workers also asked whether biologically similar compounds have similar
chemical structures. Considering such classic example pairs as the nicotinic agonists
acetylcholine and nicotine or the dopaminergic agonists dopamine and pergolide
(Figure 3.12), the expected answer is no. In fact, the highest Tanimoto similarity
within this group of four compounds is between nicotine and pergolide, and the
second-highest is between nicotine and dopamine. Nevertheless, in general, the
Daylight and Unity fingerprints are more similar for compounds with the same
biological properties than for compounds with different biological activities. What
might at first be perceived as a disappointing level of similarity-predicted actives
might be the result of compounds binding in subtly different ways to the same
receptor or to different but related populations of receptors.

Figure 3.11  The fraction of molecules that are similar to any active
that are themselves active, as a function of the number of actives
with similars. (Reprinted from [40] with permission, copyright 2002,
American Chemical Society).

Figure 3.12  Pairs of cholinergic and dopaminergic agonists.
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Pearlman and Smith [41] indicated that such distance-based algorithms are quite
satisfactory for simple subset selection, but are considerably less useful for all other
diversity-related tasks. In their view, traditional descriptors make rather poor
chemistry space metrics for three reasons: many of the traditional descriptors are
highly correlated, some traditional descriptors are strongly related to pharmaco-
kinetics but only weakly related to receptor affinity, and traditional descriptors convey
very little information about substructural differences that are the basis of structural
diversity. They defined BCUT metrics in a manner that incorporates both connecti-
vity information and atomic properties relevant to intermolecular interaction, i.e.,
atomic charge, polarizability, and H-bond donor and acceptor abilities. Given a set
of active compounds that all bind to a given receptor in the same way, it is certainly
reasonable to expect that these active compounds should be positioned near each
other in a small region of chemistry space if the chemistry space metrics are valid.
They developed the Activity-Seeded Structure-Based clustering algorithm, which
provides a method for directly testing that expectation in the typical case in which
the chemistry space dimensionality is greater than three and, thus, simple visual
inspection of the distribution of active compounds is difficult or impossible. Given
a number of compounds for which a particular receptor has significant affinity, they
can then identify the receptor-relevant subspace for that receptor by identifying the
axes along which compounds are tightly clustered. The algorithm also accounts for
the possibility of multiple receptor binding modes by allowing more than one cluster
of actives per relevant axis. In addition to their own application to ACE inhibitors
as an illustration of the method, Stanton [42] independently applied this method to
a QSAR study of dihydrofolate reductase inhibitors. The resulting model was highly
predictive, as shown in Figure 3.13. It is apparent that the BCUT metrics are

Figure 3.13  Comparison of estimated and observed DHFR inhibitor
activity values using a BCUT-based model (reprinted from [42] with
permission, copyright 1999, American Chemical Society).
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measuring particular structural features that can be related to the observed properties
of a variety of molecules. They appear to perform quite well in capturing structural
information important for understanding polar intermolecular interactions.

BCUT metrics are being used increasingly in QSAR studies and library design.
A particularly interesting study was done by Pirard and Pickett [43], who presented
studies with BCUTs for the classification of ATP site-directed kinase inhibitors
active against five different protein kinases, three from the serine/threonine family
and two from the tyrosine kinase family. In combination with a chemometric
method, the BCUTs were able to correctly classify the ligands according to their
target. The authors concluded that BCUTs are indeed a useful set of descriptors for
design tasks, extracting information in a manner relevant to describing ligand–
receptor interactions. They are particularly suited to the design of targeted libraries
and virtual screening of compound collections, as they are quick to calculate while
containing more information than a standard 2D fingerprint type descriptor.

3.8
Is Biological Selectivity an Illusion?

We have illustrated the enormity of chemistry space and the focus on biologically
relevant chemistry space, but what about biology space itself? How many biologically
relevant targets are there? Although this number has been estimated to be around
3000 [5], it may well be much larger than this if we extrapolate from what we know
about particular target classes, e.g., GPCRs, where there are many potential
druggable targets and many potential pharmacologies, from agonists to antagonists
to modulators to inverse agonists. In a typical drug discovery program, selectivity
of potential development candidates is often assessed against a panel of 50–100
biologies. Clearly, this does not cover a very large fraction of available biology space.
In fact, many compounds originally thought to be very selective were later found to
have effects against many other targets. For example, cholesterol-lowering HMG-
CoA reductase Inhibitors (statins) are among the world’s top-selling drugs. It was
recognized recently that statins possess additional biology. e.g., anti-inflammatory
activity, that is not explained by their interaction with this enzyme. High-throughput
screening of large chemical libraries has identified lovastatin (a statin) as an
extracellular inhibitor of LFA-1. Lovastatin was shown to decrease LFA-1-mediated
leukocyte adhesion to ICAM-1 and T-cell co-stimulation. Unexpectedly, lovastatin
was found to bind to a hitherto unknown site in the LFA-1 I (inserted) domain, as
documented by nuclear magnetic resonance spectroscopy and crystallography [44].

Some structural classes, e.g., benzodiazepines, are well known to exhibit diverse
biology depending on the precise substituent pattern and conformation. Selective
ligands with common cores have been obtained against many protein targets
(Figure 3.14). The existence of such privileged structures suggests that some
common structural binding motifs on proteins are reused across many different
protein families [31]. It is widely accepted that few if any of the known biologically
active molecules are exclusively selective for a single biological target. This forms
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the basis for the discovery of new uses for existing drugs and the explanation of
side effects observed for all drugs. Indeed, in a commentary on the molecular basis
for the binding promiscuity of antagonist drugs, LaBella [45] stated that it is unlikely
that binding-site dimensions, geometry, charge environments, hydrophobic
surfaces, and other features will ever be known to the extent that drug design
technology will yield a compound with absolute specificity for one species of
functional protein. On a molecular level this may well be a consequence of there
being a relatively small number of protein families and folding motifs (see above).
These considerations are being applied in interesting ways to quickly find new
biologically active compounds. For example, Kauvar [46] and Dixon [46] have
developed a method called affinity fingerprinting, for predicting ligand binding to
proteins. In this method, the binding potency of a small molecule is measured
against a panel of reference proteins, in which the panel members have been

Figure 3.14  The classic privileged structure – the benzodiazepine nucleus
with small structural modifications – is capable of many different biologies.
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empirically selected to provide binding sites that are well diversified with regard to
interactions with small molecules. The resulting set of pIC50’s constitutes the
molecule’s molecular fingerprint. Libraries of compounds can be evaluated and
the collection of corresponding fingerprints entered into a database. From this
large set, a subset is then chosen to represent the diversity of the set. The subset is
then screened against a new target protein. Those compounds with the best pIC50’s
against the new protein are used to query the database to find other compounds
with the same or similar fingerprint. Repetition of the cycle quickly finds the best-
binding compounds in the collection. These can then serve as seeds for combi-
natorial expansion, presumably accelerating the lead discovery process.

We have used a related strategy to analyze the performance of our corporate
collection in high-throughput screening over the past several years [47]. Our panel
of proteins consists of drug targets of interest and spans several target classes,
including GPCRs, several classes of enzymes, ion channels, etc. Our thesis is that
a compound that exhibits biological activity in any target class is more likely to
exhibit activity in another unrelated class than is a compound that has never
exhibited biological activity of any kind. We initially used a relatively small set of
assays and screened compounds and identified about 3500 compounds that were
biologically active in at least one assay and met our internal criteria with respect to
molecular weight, cLogP, polar surface area, and other chemistry-based filters. About
10% of these compounds were found to exhibit activity in other assays. The number
of active compounds was then to expanded about 10 000, and the number of assays
to 40 [48]. The hit rate of the general corporate collection was normalized to a
frequency of 1 and compared to the hit rate of the 10 000 known biologically active
set. The results are shown in Figure 3.15.

Figure 3.15  Observed hit rates for a biology-based library on a scale
in which the hit rate of the general collection was normalized to 1.
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Clearly, the hit rate exceeds that of the general collection in the majority of screens.
However, recent publications have sounded a cautionary note. Roche and coworkers
[49] reported the development of a virtual screening method for the identification
of ‘frequent hitters’. These compounds appear as hits in many different biological
assays covering a wide range of targets for two main reasons: (1) the activity of the
compound is not specific for the target; and (2) the compound perturbs the assay
or the detection method. They found that, with an increasing drug-likeness of the
database, a decreasing fraction of frequent hitters is predicted. Sheridan [50] reported
finding multiactivity substructures by mining databases of drug-like compounds.
Shoichet and coworkers [51] described a common mechanism underlying this
phenomenon. In their study they observed that several nonspecific inhibitors formed
aggregates 30–400 nm in diameter and that these aggregates were likely responsible
for the inhibition. With these two reports in mind, we returned to our corporate
database and identified, again after suitable filtering, a set of 72 000 biologically
active compounds. We then selected a subset of about 25 000 compounds based on
the following criteria: (1) compounds with confirmed activity in at least two assays,
(2) compounds with confirmed activity in no more than five assays, (3) compounds
tested in at least ten assays. We felt that this simple approach would give us a set of
information-rich compounds largely free of frequent hitters. Using Daylight 2D
fingerprints and a Tanimoto distance of 0.3, the set consists of 9200 clusters, of
which there are almost 5100 singletons. We propose that this richly diverse subset
is an ideal starting platform for the design of screening libraries and for the discovery
of new privileged structures. Interestingly, with respect to physical properties, the
subset is slightly more lipophilic and has slightly larger polar surface area than the
general collection, but the distribution of molecular weights and the numbers of
hydrogen-bond donors and acceptors is the same. We conclude that the currently
accepted drug-like physical properties boundary conditions are necessary but not
sufficient to define biological activity and that other, poorly understood, factors are
the true drivers of such activity. We continue to explore just what those factors
might be.

3.9
Synthesis of Chemical Genetics Libraries: New Organic Synthesis Approaches
to the Discovery of Biological Activity

The recognition that the intersection of biology space is limited within chemistry
space has encouraged the development of new strategies in organic synthesis for
the discovery of biological activity. For example, Ellman and coworkers [52] have
developed combinatorial target-guided ligand assembly. In this method, a set of
potential binding elements is prepared in which each molecule incorporates a
common chemical linkage group. The set of potential binding elements is screened
to identify all binding elements that interact even weakly with the biological target.
A combinatorial library of linked binding elements is prepared in which the binding
elements are connected through a set of flexible linkers. The library is then screened

3.9  Synthesis of Chemical Genetics Libraries
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to identify the tightest-binding ligands. Using this approach they identified a potent
(IC50 = 64 nM) inhibitor of the nonreceptor tyrosine kinase c-Src. An extension of
this strategy has been developed by Lehn and others [53]. So-called dynamic
combinatorial chemistry uses self-assembly processes to generate libraries. In
contrast to the stepwise assembly of molecules in the library, this method allows
for the generation of libraries based on continuous interconversion among the
library constituents. Addition of the target ligand or receptor creates a driving force
that favors formation of the best-binding constituent. Sharpless and coworkers
[54] have investigated a slightly different approach. Rather than using a set of
interconverting constituents, they allow the target to select building blocks and
synthesize its own inhibitor. Dubbed ‘click chemistry,’ it depends on the simul-
taneous binding of two ligands, decorated with complementary reactive groups, to
adjacent sites on the protein. Their colocalization is then likely to accelerate the
reaction that connects them. The reaction of course must be selected so as to not
take place in undesired ways within biochemical systems. One such reaction is the
cycloaddition of azides to acetylenes to yield 1,2,3-triazoles. As a proof of principle,
AChE was used to select and synthesize a triazole-linked bivalent inhibitor by using
known site-specific ligands as building blocks. This resulted in the discovery of an
inhibitor with a Kd in the range of 77–410 fM (femtomolar), depending on the
species. This is the most potent noncovalent AChE inhibitor known to date, by
approximately two orders of magnitude.

The standard approach to parallel synthesis of libraries is to start with a
polyfunctional common core and elaborate those functions with diversity elements.
With just a few diversity locations and the large number of commercially available
diversity reactants, this can result in libraries consisting of tens or hundreds of
thousands, or even more, members. Nevertheless, such libraries retain the common
core for all members, which necessarily limits the total diversity of the library. Far
more challenging, and arguably more valuable to the efficient exploration of
chemistry space, would be the synthesis of libraries whose members are based on
disparate cores. Schreiber [55] is addressing the problem of skeletal diversity by
using a synthesis strategy that involves transforming substrates with different
appendages that pre-encode skeletal information into products that have different
skeletons, with the use of common reaction conditions.

Our own interest in this problem was the result of our work on the biology-based
collections discussed above. We found that roughly only half the compounds were
available as solid samples for further study, and the remainder were dropped from
consideration for that reason. The efficient resynthesis of hundreds or thousands
of disparate compounds was simply not practical. Or was it? Perhaps there was an
easy way to sort multiple syntheses into common starting materials and reactions
and to carry them out in parallel. To that end, we used LeadScope software [56] as
our management tool. Normally, LeadScope links chemical and biological data,
allowing chemists to explore large sets of compounds by a systematic substructural
analysis using a predefined set of 27 000 structural features. More importantly for
our purposes, two sets can be compared with respect to these features. We chose
the ACD database as our second set. We could then easily select those starting
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materials that would give rise to many products via different routes. We then ran
as many reactions as possible using parallel synthesis methods. We have used this
method for syntheses of up to four steps and have been able to maintain a
productivity level of one compound per chemist per day, 25 mg scale, purified
≥85%, and characterized by LC/MS and NMR.

We are developing an approach to true simultaneous synthesis of disparate core
compounds. Most molecules of the size and complexity we are interested in would
likely be prepared in no more than five steps. The actual transformations are usually
limited to the chemistry background and experience of the chemist(s) involved in
the project. However, the routes need not be so limited. Indeed, consider the
generation of tens or hundreds of routes to each compound of interest. The problem
then becomes one of how to prepare the maximum number of compounds using
the minimum set of common chemistries, staging the routes as necessary so as to
maximize the overlap of reagents and conditions. The generation of syntheses is
software based. Two or three decades ago there was a lot of effort to develop software
to predict the most efficient syntheses of complex organic molecules; most have
been abandoned. We chose to use the SynGen program [57] for the very reason
that it usually produces several routes to a molecule, each of which begins with a
commercially available starting material and whose transformations usually have
a literature precedent. Common chemistries can be grouped at three levels:
(1) reaction type, e.g., acylation of amines; (2) reagent type, e.g., acylation of
secondary amines; and (3) specific reagents, e.g., acylation of diethyl amine. Each
level is specifically encoded by the program, making searching, sorting, and
matching fairly easy. We will not necessarily choose the shortest route to each
molecule, since it is entirely possible that some longer routes would give rise to
additional commonalities, thereby allowing the preparation of a larger total number
of compounds. We are in the process of testing this concept using a set of 100 very
different structures and will report the results in due course.

3.10
Information and Knowledge Management Issues

The integration of chemistry and biology that constitutes the engine for chemical
genetics presents a major challenge for existing models of information and
knowledge management. The management of information and knowledge is so
critical as to deserve a place as one of the three critical components necessary to
truly enable chemical genetics (Figure 3.16). Linking chemical structures with
biology in a systematic way has challenged pharmaceutical companies and software
vendors for many years, and several proprietary and off-the-shelf solutions now
exist. Typically, these products are not scaleable or flexible enough to deal with the
problems exposed by chemical genetics.

3.10  Information and Knowledge Management Issues
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Figure 3.16  Chemical genetics requires the integration of the three critical
elements of chemistry, biology, and information/knowledge management.

3.11
Annotation of Small Molecules

Several groups have realized the information management challenges posed by
chemical genetics. The US National Cancer Institute is developing a powerful open-
access database called ChemBank that will link small-molecule structure and
associated effects on proteins, cell pathways, and tissue formation [58]. Additionally
the effect of small molecules on an organism’s phenotype will also be captured.
ChemBank is a chemical genetics database, which has been described as a chemical
version of GenBank, the online repository of genetic data [55]. The NCI plans to
synthesize and screen thousands of molecules for their biological activity. Annotation
of small molecules should allow for much closer integration of chemical structure
and biological activity. Use of such annotated compounds (sometimes referred to
as information-rich compounds) as chemical tools for probing biological systems
promises to be a fruitful area of future research.

The central informatics issue in chemical genetics is annotation of chemical
structures in the same way as annotation of genes, i.e., annotation of the biology
and other properties of a chemical structure. In a typical single-drug discovery
project, it is common for many structures to be profiled by a single biological screen
generating a simple vertical data format (Figure 3.17). In chemical genetics we
focus on single compounds annotated with many biologies – a horizontal data
format (Figure 3.17).

NCI is asking scientists from all over the world to deposit information on the
effects of small molecules on cells on the micro (gene expression) [13] and macro
levels in ChemBank. One of the hopes here is to link phenotypic changes with
structures and to use this information in predicting the mechanism of action of
drugs.

Chemistry Biology

Information &
Knowledge

Management
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Structure Biology 
(IC50, µM) 

mol   1 1.00 

mol   2 2.00 

mol   3 1.50 

mol   4 0.10 

mol   5 0.00 

mol   6 1.20 

mol   7 12.10   

mol   8 0.20 

mol   9 0.80 

mol 10 2.20 

mol 11 0.00 

mol 12 0.04 

mol 13 5.10 

mol 14 0.40 

mol 15 0.90 

mol 16 0.02 

mol 17 4.10 

mol 18 6.30 

mol 19 0.00 

mol 20 0.20 

mol 21 0.70 

mol 22 2.90 

mol 23 5.90 

mol 24 13.20   

mol 25 1.60 

mol 26 0.20 

mol 27 0.01 

mol 28 7.30 

mol 29 8.50 

 

Figure 3.17  Chemical genetics databases require the annotation of
individual compounds with many biologies, in contrast to the more
traditional way of capturing the assay results of many compounds
against a single biology.

Structure Biology 1 
(IC50, µM) 

Biology 2 
(IC50, µM) 

Biology 3 
(IC50, µM) 

Biology 4 
(IC50, µM) 

mol 1 1.00 0.01   2.00   1.50 

mol 2 2.00 2.40 30.00 30.00 

 
Structure Biology 5 

(IC50, µM) 
Biology 6 
(IC50, µM) 

Biology 7 
(IC50, µM) 

Biology 8 
(IC50, µM) 

mol 1   0.10 30.00   1.20 12.10 

mol 2 30.00   0.02 30.00 12.10 

 

Vertical to horizontal data sets

• Small molecule annotation
(cf. gene annotation)

• Structure Activity Relationships
(vs. many biology’s)

3.11  Annotation of Small Molecules
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3.12
Summary

Bridging the knowledge gap between the data provided by the human genome
project and our knowledge of biological processes and systems is a requirement
for the efficient and effective exploitation of this knowledge in drug discovery. We
see this knowledge gap as being best bridged by a truly interdisciplinary approach
and a close integration of chemistry and biology – in both thinking and experiment.
Chemical genetics provides a framework for the systematic study of small molecules
to perturb and thus understand biological systems. The adoption of chemical
genetics thinking is already growing in influence among chemists and biologists,
and the fruits of this integrated approach to drug discovery promises to be an exciting
and rewarding area of research for the next decade.
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4
Structural Aspects of Binding Site Similarity:
A 3D Upgrade for Chemogenomics

Andreas Bergner and Judith Günther

4.1
Introduction

4.1.1
Binding Sites: The Missing Link

The idea of chemogenomics is just starting to take shape. One approach, which
leaves room for many definitions as to what techniques and applications the concept
of chemogenomics comprises, considers it to be the effort of creating links between
chemistry space and the genome space. This notion may appear rather vague;
however, it points directly to the interface between biology and chemistry where
chemogenomics is expected to assume its definite form. Undeservedly, the wealth
of protein structural data is often disregarded in this area. The aim of this article is
to review this perception, and to demonstrate that using the perspective and methods
of structural biology can enhance the way in which chemogenomics is integrated
into pharmaceutical research and development.

The idea that a small molecule, active with a particular target protein, is very
likely to be active also with a sequence-related protein is by no means new. Over
several decades medicinal chemists have acquired valuable experience as to how to
systematically explore chemistry space around a given lead structure, how to
establish structure–activity relationships, and how to use such knowledge for
refining the selectivity profile of the drug candidate. Often, selectivity with a related
protein can be achieved by relatively small modifications to the original small
molecule’s structure.

With the decoding of the human genome it has become apparent that the
development of pharmaceutically active substances has so far targeted only a very
small fraction of the human proteome. It is commonly assumed that many more
druggable targets are available that offer new perspectives for drug development
[1]. Whether due to convergent or divergent evolution, the genome space contains
clusters of gene (and accordingly target) families whose mutual similarity is
conventionally described by the sequence homology of the target proteins. Given
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these advances in the genomics area, the experience previously acquired for a
particular target and compound class can now be exploited in an unprecedented
way, reusing relevant information and know-how. A small molecule well-profiled
for a particular target provides an excellent starting point for the exploration of its
neighbors in genome space and possibly even for the subsequent development of
drug candidates for related proteins.

Although the term chemogenomics obviously neglects protein structural aspects,
and structural genomics [2, 3] has become an established field in its own right,
ultimately, the similarity of two proteins on the level of their native 3D structure
provides the basis for the binding of structurally related small molecules. In
particular, the protein cavity accommodating the small molecule largely determines
the recognition features of the target protein. Thus, the characteristics of a binding
site, often illustrated as the lock into which a drug molecule fits like a key [4], provide
the missing link needed for a thorough understanding of the correlation between
chemistry space and genome space that chemogenomics aims to achieve.

Although relationships between small-molecule structures and protein families
can be established on a purely empirical basis, and 3D protein-structure information
is not a necessary precondition, it would be foolish not to consider such information
whenever it is available. With the rapidly growing number of protein structures
collated in the PDB [5], the chance of finding either the experimentally determined
3D structure of the target protein or at least one of a closely related protein that
allows a sufficiently reliable homology model to be built [6] are constantly increasing.

This section approaches chemogenomics from the viewpoint of structural biology,
focusing on the relevant aspects of binding site characteristics and similarities.
The authors believe that the implementation of this perspective can be advantageous
in virtually all stages of the drug development process. Clearly, the impact of struc-
tural biology is extremely beneficial for lead finding and lead optimization; never-
theless, it can also be used to facilitate drug discovery projects in the early stages.

4.1.2
Target Assessment

The number of biologically validated targets known to date is large, forcing
pharmaceutical companies to carefully select the targets to be pursued in a lead-
finding project. With an increasing number of feasible targets being discovered
through DNA chip technologies, the need for prioritizing target candidates for
biological validation and then selecting the most promising targets is gaining
importance. One approach to target selection, along the lines of chemogenomics,
is to take advantage of all the knowledge collected in projects that failed at a very
late stage of development, leaving active compound(s) with well-tailored ADMET
profile(s). Such data can then be used as a starting point for searching the available
genome data for related proteins. The identified proteins can then be critically
assessed with respect to their potential for representing biologically valid drug
targets. If one of the initially identified proteins indeed turns out to be a valid
target, a new lead-finding project can take advantage of all the knowledge collected
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on the target family in general. The ‘fallen angel’ provides an excellent starting
point for structural modifications, and one can benefit from the fact that the
chemistry for this compound class is already well established.

Predicting the success of a target project before it has begun remains visionary,
but structural biology can certainly assist in identifying those targets that are likely
to pose particular difficulties, thus rendering them less promising. This can be
particularly helpful if the biological validation data for the target candidates are all
equally sound. Comparison of the binding sites for different proteins belonging to
one family allows an assessment of whether or not selectivity between two proteins
can be feasibly achieved. This is particularly valuable in the situations mentioned
above, where a ‘fallen angel’ inspires the initiation of a new project focusing on a
related target protein. In the course of a long-pursued project a protein crystal
structure often becomes available, enabling an estimation of whether selectivity
towards the old, unsuccessful target can be achieved.

As a first approximation, the sequence of the protein of interest can be mapped
onto the known 3D structure of a homologous protein (e.g., a previously investigated
target protein of the same class). Tools for mapping sequential features onto protein
structures, including intuitive visualization features, were recently developed by
Lion Bioscience [7] and are publicly available through a web service [8]. Thus, the
3D structure of the target protein does not necessarily have to be solved.

The same holds true for assessing the druggability of a target by analyzing the
shape and physicochemical properties of a binding site. Large, shallow binding
sites with unbalanced proportions of polar and hydrophobic atoms exposed to the
binding site surface appear less promising than deep crevices, which can bury
large portions of a ligand and bind it via both H-bonding and hydrophobic
interactions [9].

4.1.3
Lead Finding

High-throughput screening (HTS) of enormous compound libraries has been
pursued in almost all pharmaceutical companies for more than a decade and has
not resulted in the initially expected number of hits suitable for further lead
optimization. Furthermore, virtual high-throughput screening (vHTS) methods
have increasingly been used as a complementary means of finding small molecules
that are active with a particular target [10, 11]. In silico methods allow for the
screening of millions of molecules within a few days. Although pre- or post-filtering
techniques for focusing on drug-like molecules, often based on filters such as
Lipinski’s rule of five [12], have been developed, other requirements for an initial
hit to be promising, such as synthetic accessibility of the compound class, cannot
be considered well with vHTS methods. For both HTS and vHTS, the sheer number
of compounds does not improve the chance of finding the right molecule, and due
to the size of chemical space, a complete sampling is nearly impossible (the number
of possible molecules with a molecular weight less than 500 Da has been estimated
to be 10200, 1060 of which might possess drug-like properties [13]). Therefore,
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increasing attention is being paid to finding so-called privileged structures. Such
compounds may not exhibit the desired potency or selectivity profile, but they
provide a promising starting point for further exploration of the surrounding
chemical space in order to find related compounds that are suitable as lead
candidates. Along these lines, efforts in combinatorial chemistry have focused on
the synthesis of target family based libraries, which are preferentially screened
whenever a lead structure for a member of the respective target family is to be
found. To provide enhanced hit rates for such targets, target family based libraries
feature a scaffold that qualifies the designed structures to bind to various members
of the target family. To this end, the ligands have to form interactions to binding
site residues that are well conserved within this family (and, if possible, which also
contribute well to binding affinity). At the same time, the substituents attached to
the scaffold should be designed for exploring regions of high structural variability
within the protein pockets, thus raising the chances of finding fairly selective
compounds in the screened library.

Fragment screening techniques are increasingly being utilized for identifying
suitable scaffolds. Both X-ray crystallography [14] and NMR [15] have proved to be
useful methods for extracting small molecules with moderate affinity from a mixture
of compounds. The compounds in such cocktails are synthetically easily accessible
and small enough to leave room for chemical modification by attaching further
functional groups. Some groups have used computational screening techniques
for prioritizing fragments and picking out hits that appear to fit well into the protein
pocket of interest for subsequent experimental screening [16–18]. A fragment that
forms well-conserved interactions within the binding pockets of the particular
protein family can provide a privileged structure. Knowledge of the binding mode
of the fragment can guide further synthesis, for example, by pointing to further
attachment sites for new substituents to be added to the core and by estimating the
spatial and physicochemical requirements for the substituent.

4.1.4
Lead Optimization

Once lead finding has been accomplished and the stage of lead optimization has
begun, detailed knowledge about the binding site of the target protein becomes
even more important, especially if the selectivity profile of the lead compound is
suboptimal. If the binding mode of a small molecule in the pocket of the target
protein has been determined, the detected structural differences between two
binding sites can be systematically exploited to guide further synthetic efforts. If
crystallization of the target protein turns out to be difficult, a drug candidate can
alternatively be cocrystallized with a closely related protein (e.g., an anti-target);
this approach is usually referred to as the surrogate approach. Apart from sequential
insertions and deletions that have a major effect on the binding site’s shape,
substitutions of corresponding amino acid residues are the most obvious differences
one can take advantage of if selectivity between two closely related proteins is to be
achieved. If the side chains of the residues are sufficiently different in size and/or

1239vch04.pmd 06.06.2004, 13:50100

www.ebook3000.com

http://www.ebook3000.org


101

physicochemical properties, a single interaction can be sufficient to obtain
reasonably large differences in affinity (see Section 4.5.5, Selectivity Issues). In this
situation, mapping of sequential differences onto the structure of one of the proteins
or, alternatively, construction of a homology model, is often sufficient for guiding
chemical modification of the lead structure. If the amino acids expose fairly similar
recognition features to the ligand or interact with it only via backbone atoms, smaller
differences affecting the overall shape of the binding sites could be targeted by
suitably tailored compounds. Here, experimental determination of both protein
structures complexed with the current lead candidate is highly advisable. Even more
subtle differences, such as different extents of protein flexibility in the binding
pocket, are fairly difficult to exploit, because the underlying effects are poorly
understood and X-ray crystallography can give only a very limited picture of these
phenomena.

A tool for analyzing and comparing the binding sites of sequence-related proteins
is available within the receptor–ligand database Relibase [19, 20]. Superposition
and visualization of any combination of such similar proteins from the PDB can
be done using a free web service [21]. The enhanced version of Relibase, Relibase+,
provides an automatic analysis of their structural similarities and differences,
including backbone and side chain movements, conserved solvation sites, and
volume overlap of bound ligands. A related tool utilizing a database of prealigned
binding sites is Ligbase [22].

These scenarios highlight the importance of 3D structural information in different
steps of drug design by means of chemogenomics. Clearly, a thorough under-
standing of the nature of protein binding pockets, alongside the means for evaluating
common features and differences of such cavities, is of great relevance for the
success of such efforts.

This chapter is organized into five sections. The next section provides an
introduction to the structural biology of binding sites and sheds some light on why
nature usually uses pockets for intermolecular recognition processes. Sections 4.3
and 4.4 review computational methods for detecting binding sites, given a 3D protein
structure, as well as different approaches for describing binding site similarities
among a set of protein structures. Section 4.5 looks at applications of binding site
comparisons, focusing on some of the popular target classes and highlighting how
the consideration of binding site similarities can inspire and promote drug discovery
projects at different stages. The review concludes with a future vision outlining the
implementation of methods for analyzing and comparing protein binding sites
within the framework of chemogenomics efforts.

4.2
Structural Biology of Binding Sites

The biological function of most proteins depends on specific interactions with other
molecules binding to particular surface areas, the binding sites. Binding sites can
be defined as clusters of amino acids whose structural, dynamic, and physico-
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chemical properties directly affect the interaction and transformation of the binding
molecules. These molecules can be, for example, other proteins, nucleic acids, or
organic ligands, or, classifying them by their function, effectors, substrates,
inhibitors, cofactors, agonists, or antagonists. Binding sites constitute the arena in
which the function(s) of a protein are turned into action. In spite of the dazzling
array of protein functions, researchers have tried to identify structural determinants
capable of distinguishing binding sites from other surface areas or, in other words,
to understand what makes a binding site a binding site [23]. To act as a functional
unit, a binding site has to possess several characteristics that are also reflected in
its structure. The following section discusses the energetic, functional, specificity-
related, and evolutionary aspects that restrain, and thus characterize, the constitution
of binding sites, from a 3D-structural perspective in the light of recent research.
The bound ligands, the actual focus of attention in medicinal chemistry, are sidelined
in this section. The question of how ligand similarity and binding site similarity
are related is discussed in more detail following this introduction.

Early attempts to understand the nature of binding sites focused on the chemical
composition, i.e., the amino acid distribution in protein binding sites. A study by
Villar and Kauvar [24] revealed an accumulation of some residues, in particular
Arg, His, Trp, and Tyr. Young et al. [25] found that protein–protein interface areas
often correspond to the strongest hydrophobic clusters on the protein surface. Also,
about 10% of protein structures (total dataset size: 419) appear to exhibit at least
one large cluster of charged amino acid residues [26, 27]. Typically, negatively charged
clusters are involved in the formation of metal binding sites, whereas mixed-charge
clusters occur in stable protein–protein interactions. However, these observations
on their own are not really suitable for reliably detecting binding sites.

4.2.1
Energetic, Thermodynamic, and Electrostatic Aspects

A binding site has to be assembled in such a way that the binding of an interacting
molecule is energetically feasible. This may seem trivial; however, recent studies
provide several different perspectives linking some surface properties with the
thermodynamics of binding. Generally, binding depends on formation of contacts
between chemical groups, including van der Waals contacts and H bonds. The
larger the number of contacts, the tighter the binding will be. Obviously, an increased
contact surface area corresponds to an increased number of potential contacts,
thus facilitating stronger binding. A structural means for increasing the contact
surface area, which is particularly relevant for the binding of small molecules, is
the formation of a cleft or cavity on the protein surface. The implications of active-
site clefts have been broadly analyzed and discussed by Laskowski et al. [28]. This
study also stresses the importance of the burial of enzyme substrates in clefts. The
shielding of the reaction center from surrounding water molecules is essential for
many biochemical reactions, in particular those involving electron transfer
processes. Moreover, because of its burial in a pocket, a substrate molecule
encounters an environment with a significantly decreased local dielectric constant.
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This allows the enzyme to generate the strong electrostatic forces required for
enzyme catalysis.

A study by Pettit and Bowie analyzing the roughness of protein surfaces, qualified
as fractal dimension [29], showed that functional sites are generally much rougher
than other areas on the surface of a protein [30]. It has been postulated that the
roughness of a protein surface is also related to binding [29]. The fractal dimension
correlates with the surface area squeezed into a fixed volume. In a rougher surface
patch, the effective surface area (per volume) is larger than in a smooth patch, thus
allowing for more energetically favorable van der Waals contacts facilitating tight
binding. The study showed that particularly small binding sites exhibit surface
roughness values significantly above average; for larger interaction sites there is
apparently no need for squeezing more contact (area) into a small volume. The
study concluded that, although surface roughness alone does not guarantee binding,
smoothness effectively precludes binding if the binding interface area is small.

In recent years, it has become evident that the energy of stabilization of a protein
structure is not evenly distributed throughout the molecule. A series of site-directed
mutagenesis studies have revealed that functionally important residues energetically
destabilize the protein; often the mutation of such residues yields more stable
proteins (see Sancluz-Ruiz and Mahatadze for a review [31]). An interesting
theoretical approach exploiting this observation, based on continuum electrostatic
methods (see Honig and Nicholls for a review [32]), has been reported by Elcock
[33]. For six selected proteins, Elcock showed that residue-based calculations of the
electrostatic free energy enable the identification of amino acid residues found to
be energetically destabilizing in experiments. By implication, these are supposed
to be of functional relevance. The study showed that the residues identified by the
method cluster on the protein surface, representing the functional binding site;
the discussion also mentions that false positives can be easily detected. A large-
scale study based on a 216 protein dataset supports this idea and suggests that
residues estimated to be destabilizing are also more likely to be conserved.

Related methods for the prediction of hotspots on protein–protein interfaces
using virtual mutagenesis and virtual alanine scanning have recently been reviewed
by DeLano [34].

Another study on structural stability, by Luque and Freire [35], revealed more
dual characteristics of binding sites. According to their study, binding sites appear
to comprise areas of both high and low stability. Interestingly, low-stability areas in
the regulatory binding sites of allosteric enzymes appear to be essential for
propagation of the signal to the catalytic site, as exemplified by glycerol kinase. The
method they used is based on the COREX algorithm. COREX calculates the stability
constant for each amino acid residue based on the generation of a large ensemble
of partially folded local conformations used for estimating the probability, and thus
the stability, of these states. It is worth adding that an increase in structural stability
by point mutations in areas that undergo conformational changes upon ligand
binding can have a major effect on the binding affinity, even if the respective amino
acid residue is distally located from the binding site. The study demonstrates this
nicely for HIV-1 protease.

4.2  Structural Biology of Binding Sites

1239vch04.pmd 06.06.2004, 13:50103



104 4  Structural Aspects of Binding Site Similarity: A 3D Upgrade for Chemogenomics

A noteworthy diagnostic tool for the identification of enzyme active sites,
THEMATICS (theoretical microscopic titration curves), has been described by
Ondrechen et al. [36]. The approach is related to the hypothesis that ionizable
residues in the active site of enzymes require a complex perturbed electrostatic
field to regulate their acid or base strengths, so as to achieve the protonation state
needed for proper enzymatic activity. This cannot be accomplished by a simple
decoupled acid-dissociation reaction. The method employs theoretical titration
curves plotting the net charge (which depends on the pKa) of each ionizable residue
against the pH. Calculation of the pKa values is carried out with finite-difference
Poisson–Boltzmann (PB) methods. The study impressively demonstrates that
perturbed titration curves exhibit a distinctive shape that is different from standard
curves and that they mostly represent amino acids of the active site. THEMATICS
has been tested with triosephosphate isomerase, aldose reductase, and phospho-
mannose isomerase showing that most residues belonging to titration curves with
a perturbed shape are part of the active site or are situated very close to it.

4.2.2
Functional Aspects

If the functionally relevant process is to take place at a given binding site, the
molecular machinery itself must be implemented as part of the binding site. (In
other types of sites, such as the regulatory sites of allosteric enzymes, the binding
site has to transmit the signal given by an interacting molecule to a distant functional
site, triggering highly specific responses.). For example, the catalytic ability of
enzymes rests on a specific spatial arrangement of chemical groups building up
the molecular machinery through which the chemical and structural steps of the
biotransformation are orchestrated. This also means that the interaction partner
has to be bound and anchored in a particular conformation, enabling the catalytic
machinery of the binding site to carry out the biotransformation. Deep clefts are
particularly well suited for facilitating anchoring; this, in addition to the energetic
advantages described above, is probably the reason why, in most enzymes, the
largest cleft on the protein surface represents the functional active site [28]. In fact,
the study conducted by Laskowski et al. [28] showed that, in 83.6% of the structures
contained in an enzyme dataset (size: 67), the functional active site corresponds to
the largest cleft; in another 9%, to the second largest cleft. Also, the largest cleft
tends to be much larger than all other clefts present on the protein surface. In
contrast to the active sites of enzymes, functional sites involved in protein–protein
interactions are characterized by shallower, flat surfaces [37]. Methods for identifying
active sites of enzymes are therefore often based on purely geometrical considera-
tions, detecting clefts and depressions on the protein surface. These include
programs such as APROPOS (automated protein pocket search) [38] and CAST
[39] (see the two references for details about the underlying geometrical methods).
CASTp (computed atlas of surface topography) provides a free online resource for
cavities in proteins. It should be noted that, for multichain proteins, the success of
such methods relies on the biologically relevant multimer used as input. A web
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resource [40] providing such information for the PDB is the PQS (protein quaternary
structure) database [41].

A heuristic approach to analyzing the properties of residues directly involved in
enzyme catalysis, using secondary structure, solvent accessibility, flexibility,
conservation of quaternary structure, and function, was recently published by
Bartlett et al. [42]. Such studies will help to provide a more general picture of the
environment of enzyme active sites.

4.2.3
Specificity versus Function

The interaction between a ligand and its target protein has to be specific, i.e., the
binding site can be expected to feature chemical properties complementary to those
of the interaction partner, facilitating molecular recognition. The discrimination
between function and specificity is important since it determines which attributes
and structural features of a binding site have to be conserved among a series of
proteins for maintaining the function, and which properties can be allowed greater
variation. For example, all proteases include a specific motif responsible for
accomplishing the hydrolysis of polypeptides. There are a limited number of these
motifs, representing different mechanisms for the same catalytic reaction. For
example, serine and cysteine proteases feature catalytic triads with Ser or Cys
nucleophiles; other specific motifs are found in metalloproteinases and aspartic
proteases. Serine proteases, regardless of their sequence homology, also contain a
pocket substructure referred to as the oxyanion hole [43], which facilitates stabili-
zation of the tetrahedral transition state via formation of H bonds between the
substrate and the enzyme. Thus, from a functional point of view, there is a limited
set of motifs representing the catalytic machinery. In contrast, there is a wealth of
very different protease binding sites featuring a huge variety of diverse chemical
and electrostatic properties, governing the selectivity and specificity of proteolytic
enzymes.

4.2.4
Evolutionary Aspects

Generally, fewer mutations, and thus a higher degree of conservation, are observed
in functionally relevant residues than in other parts of a protein, since a loss of
functionality leads to the dismissal of a protein mutant in evolution. This was shown
by Ma et al. [44] for protein–protein interfaces. Their study shows that binding
hotspots tend to be conserved, thus differentiating between binding sites and the
remainder of the molecular surface. The authors of the study propose that the
most conserved polar residues make the interface rigid, thus minimizing binding
entropy, due to the decrease in conformational flexibility.

A method for detecting conserved residues, called evolutionary tracing (ET), was
developed by Lichtarge et al. [45]. Several groups have embarked on developing
methods for detecting functional sites based on ET and related methods (see
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Lichtarge and Sowa [46] for a recent review). Generally, these methods are based
on mapping evolutionary data onto the 3D surface of the protein, so as to identify
clusters of conserved residues representing the binding site. Recent approaches
include ConSurf, by Armon and coworkers [47], and an enhanced method, Rate4Site,
by Pupko et al. [48, 49]. Some applications of ConSurf have been described by
Glaser et al. [50]. A related method for assessing functional inheritance within
protein superfamilies was reported by Aloy et al. [51].

Another advanced evolutionary method for identifying functionally relevant
clusters was reported by Landgraf et al. [52]. Their approach uses multiple sequence
alignment data for both the overall (global) structure and residue-specific alignments
(local). It has been shown that the use of regional conservation scores overcomes
some of the disadvantages of using ET only, particularly for transient interfaces, as
exemplified for MAP kinase ERK2.

These examples show that binding site formation is governed by physical,
chemical, and evolutionary constraints and that these principles can be used for
uncovering functional binding sites.

4.3
Methods for Identifying Binding Sites

4.3.1
Integrated Methods for the Prediction of Binding Sites

The conditio sine qua non for structure-based drug design is the identification and
functional annotation of the relevant binding site(s) in a target protein. A number
of methods, closely related to the characteristics of binding sites and the restraints
imposed on the formation of functional structural units, are discussed in Section
4.2. The most commonly used methods can be classified into geometry-based
methods for cavity detection, methods for identifying specific patterns, and
evolutionary methods.

Recently, some more advanced methods have been reported that integrate the
disparate features used for the characterization of functional binding sites. It can
be expected that the cooperative effect of using all the information available will
greatly enhance the reliability of binding site prediction and detection tools.

One approach employing neural networks for the prediction of active sites in
enzymes was recently reported by Gutteridge et al. [53]. In this approach, a neural
network is used to estimate the likelihood of a residue being catalytically active,
utilizing both evolutionary and structural information. The neural network is trained
on experimentally confirmed active sites. A network score is calculated for each
residue, based on the weights derived during training. A clustering algorithm,
equipped with a significance test, identifies accumulations of highly scored residues
at the protein surface. High weights are assigned to network parameters such as
conservation, diversity of position, relative solvent accessibility, and charged
residues, whereas secondary structure and uncharged residues contribute less to
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the network scoring. A success rate of 69% is reported for correctly detecting the
active sites (spatial overlap of predicted and real site > 50%) and another 25% for
partially correct detection (spatial overlap < 50%). Successful examples for correctly
identifying the (known or proposed) active site of proteins include, e.g., the SET
domain containing histone lysine methyltransferase, intron endonuclease I-TevI,
and α-l-arabinanase. Putative active sites have been suggested for FemA (factor
essential for methicillin resistance). However, the main problem of the method
remains the generation of a high number of false positives. Nevertheless, the study
nicely demonstrates the benefit of integrating structural and sequence-related
(evolutionary) information in binding site prediction methods.

A related approach integrating sequence information (conservation), geometric
information (cleft detection), and data on local stability calculated by Poisson–Boltz-
mann methods was reported by Ota et al. [54]. The method was used for predicting
catalytic residues (polar atoms only) in enzymes. A number of putative active sites
for a series of hypothetical proteins were found and are discussed in the study.

4.3.2
Sampling the Protein Surface

A different concept for predicting binding sites is exemplified by docking-related
methods specifically designed for probing a protein surface for energetically
favorable interactions (see the recent review by Sotriffer and Klebe [55] and the
method described by Silberstein et al. [56]). A multi-scale approach has been reported
by Glick et al. [57] and Davies et al. [58]. Their method aims to locate binding sites
for specific ligand–protein pairs, using simple feature points for describing the
characteristics of the ligand. Sampling of the protein surface is an iterative
procedure; the number of feature points is increased in each step. Representation
of the probe on different scales allows for initially finding general clefts and surface
depressions, followed by a refined scanning for preferred ligand positions.

4.4
Methods for Detecting Binding Site Similarity

The development of methods for comparing 3D protein structures and for searching
for similarities, so as to understand evolutionary and functional relationships, is
one of the most challenging and thriving areas of structural bioinformatics.
Similarity between protein structures can be searched for on different levels of
structural hierarchy. These include methods for determining similarity of primary
structures (amino acid sequences), for comparing secondary structures or small
spatial motifs [59, 60], and for investigating the similarities of tertiary and quaternary
structures dedicated to the analysis and comparison of protein folds [61, 62]. In
contrast to the enormous variability in sequence coding for functionally relevant
proteins, current estimates suggest that there are only 1000–5000 distinct, stable,
polypeptide chain folds in nature [3]. Methods for detecting binding site similarity,
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the focus of this chapter, represent an intermediate area crossing this structural
hierarchy. They offer a highly complementary approach to fold and sequence
comparison methods. The methods available to date can be roughly classified into
two groups, although there are no definite boundaries. First, there are approaches
for finding specific structural motifs, defined as topological arrangements of
functionally important atoms or amino acid residues. Such methods appear to be
most promising for finding functional motifs in, for example, enzyme active sites,
where a distinct structural arrangement of some key components is essential for
the protein’s function, so that major structural variations are not possible. The
second group of methods comprises approaches that try to encapsulate the general
flavor of binding sites in terms of their chemical or electrostatic nature, by using
descriptors that are independent of specific tertiary patterns, making them more
tolerant in terms of finding structural matches.

4.4.1
Searches for Specific Structural Motifs

Related to the set of methods belonging to the first group (above), it is worth mention-
ing studies specifically designed for investigating particular binding site 3D motifs.
Fetrow and Skolnick [63] used fuzzy functional forms (FFF) to describe protein
active sites in terms of conformation and geometry. FFFs were constructed and
successfully used to detect glutaredoxins/thioredoxins and T1 ribonuclease active
sites within datasets comprising high-resolution structures and threading models.

Zhao et al. [64] developed a grid-based method for deriving recognition templates
for adenylate binding sites. Previous studies revealed some fuzziness in adenylate
binding pockets, which lack universally conserved residues [65]. This hampers easy
construction of a recognition template that incorporates all the relevant structural
and energetic features of the binding motif. The approach by Zhao et al. [64] is
based on grid-based affinity potentials and aims to produce a comprehensive
description of all conserved active site features. It is related to methods that estimate
the likelihood of intermolecular interactions in a binding site, such as GRID [66]
and SuperStar [65], but employs combined maps derived from superposed struc-
tures, referred to as consensus affinity maps. These consensus maps are used for
generating recognition templates, which are given by the expected interaction
energies assigned to each atom position in the purine ring. The predictive power
of the method was demonstrated by identifying adenylate binding sites in a series
of dinucleotide binding proteins. The method can discriminate adenine- from
guanine-specific pockets when the respective recognition templates are used.

4.4.2
General Methods for Searching Similar Structural Motifs

One approach, belonging to the first group of methods mentioned above, for
performing searches using 3D templates is TESS (template search and super-
imposition) [67]. TESS is based on a geometrical hashing algorithm and allows
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searching a database of protein structures using user-defined query templates
consisting of any arbitrary geometrical arrangement of atoms and amino acid
residues. TESS also enables specification of more generalized templates. For
example, the catalytic triad Ser-His-Asp, present in trypsin-like proteases, can be
generalized as Nuc-His-El, where Nuc stands for a nucleophilic group and El denotes
an electrostatic group stabilizing the His residue of the triad. The consensus template
derived in this way also includes the catalytic triads Ser-His-Glu of lipases and
Asp-His-Asp of haloalkane dehalogenases. A database consisting of 3D enzyme
active site templates derived using TESS, PROCAT [67, 68], is available on the web
[69].

A related method for searching triad-type sidechain patterns using a multi-
dimensional index tree was reported by Hamelryck [70]. With this approach, mirror
images of patterns are detected, which appear to be very common among metal
binding sites.

Another method, FEATURE, searches microenvironmental patterns, which are
represented as a statistical model of a given set of functional sites. FEATURE is
based on a supervised learning algorithm that estimates the significance of
physicochemical properties present in each functional site. A study utilizing
FEATURE revealed previously unknown features conserved among the active sites
of non-homologous serine proteases [71]. These include an abundant number of
amino acid residues with a high number of freely rotatable bonds in the region
near the active site entrance. The authors speculate that this flexibility supports the
accommodation of the substrate molecule in the binding site. Also, an increased
polarity between the catalytic serine and the oxyanion hole, accompanied by a fairly
well-conserved amide opposite the oxyanion hole, is reflected in the property
descriptors used in the learning algorithm, indicating additional electronic
stabilization of the transition state. The relationship between trypsin-like and
carboxypeptidase active sites as approximate enantiomers is also discussed.
Recently, a web-based service [72], WebFEATURE, has been established [73], which
currently includes statistical models for magnesium [74], calcium, chloride, and
ATP binding site motifs (see also section 4.5), and these motifs can be searched in
a single protein structure.

Methods such as TESS and FEATURE require specification of a protein-based
query template. An approach to the detection of 3D side chain patterns, without
predefinition of a query motif or prior knowledge of the active site or binding site,
has been devised by Russell [75]. The method is based on a string-matching
procedure originally developed for fold recognition. To reduce the initial search
space, a number of amino acids are excluded from the search, mostly unreactive
amino acids having only carbon atoms in their side chains (Ala, Gly, Ile, Leu, Phe,
Pro, Val) and all amino acid positions that are not well conserved. The conservation
analysis is carried out by multiple sequence alignments. The search procedure
detects amino acid side chains that are present in two structures in approximately
the same orientation. A weighted rmsd for the pair of side chains is calculated, and
a statistical significance test estimating the probability of actually observing a given
rmsd is carried out. The probability is derived from analyzing the distribution of
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random structural patterns. An all-against-all (to our knowledge the first one ever
carried out) comparison of SCOP (structural classification of proteins [76], see web
service [77]) representatives, in addition to confirming already known functional
motifs (such as catalytic triads and tetrads, metal binding centers, and Mg-ATP
binding motifs), revealed new examples of evolutionary converged motifs. These
include, for example, a di-zinc binding pattern present in phosphatases and
aminopeptidases, a motif common to chitobiase and neuraminidase, and a motif
shared by DNAse I and endocellulase. Recent developments have involved assessing
the statistical significance of local structural similarities [78], and a web service,
PINTS (pattern in nonhomologous tertiary structures) [79, 80], utilizing an amended
search method and an improved significance check, has been set up. PINTS enables
similar patterns to be uncovered in new structures and assesses their significance,
allowing for the prediction of functional relationships among structurally different
proteins. PINTS is continuously being updated. At the time of writing, it was possible
to carry out searches for protein vs. pattern and pattern vs. protein and also to do
pairwise comparison of protein structures.

A related approach for detecting recurring side chain patterns (DRESPAT) was
recently developed by Wangikar et al. [81]. Picking up on some ideas developed by
Russell [75] (considering one functional atom per side chain only, ignoring
hydrophobic residues), the method treats structural patterns as complete subgraphs
comprising three to six nodes that represent non-carbon side chain atoms. All
possible structural patterns are generated for all proteins to be investigated, and
the patterns recurring most frequently are selected based on geometrical considera-
tions (rmsd) and on evaluating a statistical significance value based on the number
of proteins in the dataset, the recurrence frequency, and the number of atoms in
the pattern. In total, 128 datasets were generated, representing groups of non-
redundant representatives of SCOP superfamilies, 17 of which were investigated
in more detail in the study. These include, for example, catalytic triads and tetrads
present in serine, aspartyl, and cysteine proteases and lipases, EF-hand proteins, a
series of metal binding proteins, SH3 domains, and restriction endonucleases.
Depending on the rmsd thresholds chosen for the pattern selection, most of the
biologically relevant patterns known to be present in the structures can be found
(with a high rmsd cutoff value). Unfortunately, this is accompanied by finding a
huge number of false positives. In contrast, decreasing the rmsd cutoff results in a
high number of false negatives. Generally, the method appears to perform best for
finding patterns comprising four, five, or six atoms; however, it appears to function
fairly poorly for finding three-atom patterns.

Common features between any two protein structures with different folds can
be detected by using GENFIT, which was developed by Lehtonen et al. [82]. GENFIT
locates similar local structures in a protein, using an algorithm for finding equivalent
Cα atoms contained in unique equivalent protein fragments. By restricting the
search to a limited subset of atoms that represent cofactor binding sites, binding
site similarity among proteins with different folds could be identified. This was
demonstrated for selected binding sites for pyridoxal phosphate (PLP) [83] and
ATP [84].
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Three-dimensional side chain patterns of amino acids can also be found with
ASSAM, as reported by Spriggs et al. [85]. ASSAM employs a common subgraph
isomorphism technique. Each amino acid is represented as a vector connecting
the main chain position with a functionally relevant position in the side chain. All
vectors are specified with three points: start (S), middle (M), and end (E). In the
graph-theoretical approach, the vectors represent the nodes of the graph. The edges
are given as the distances between vectors (nodes) and comprise six components
each: SS, SM, SE, MM, ME, and EE. Auxiliary programs can be used for generating
the appropriate input from a set of coordinates representing the 3D query motif.
Recent developments allow for the specification of more generic queries and also
of patterns including main chain, secondary structure, and solvent accessibility
information, as well as disulfide bridges. The method has been tested for several
3D query motifs, including phosphate binding proteins and the catalytic triads of
α-chymotrypsin and papain. A discussion of the α-chymotrypsin example demon-
strated the ability of the method to reasonably detect such patterns.

Another program suite for finding templates and particular motifs in a huge
preprocessed database containing common amino acid configurations was reported
by Oldfield [86].

The methods summarized so far are independent of the order of the binding site
residues in the primary sequence. By including the order dependence of sequence
patterns, protein surface sequence patterns can be utilized for binding site
comparisons. In an approach reported by Binkowski et al. [87], all residues
constituting a particular binding site are extracted from the primary sequence and
concatenated in the same order, forming a short sequence motif (the approach
uses precalculated binding sites stored in the CASTp database [88]). These motifs
can then be used for initial surface patch similarity searches, which are followed by
methods for investigating the spatial match of the patterns found.

4.4.3
Similar Shape and Property Searches

The second group of approaches, seeking similarities in the shapes and chemical
surface properties of binding sites, include recently developed tools such as CavBase
[89, 90], eF-Site [91], and SuMo [92]. An earlier technique using surface shape only
for binding site comparisons was reported by Rosen et al. [93]. The reliability of
this geometric surface-matching approach has been shown for the catalytic triad of
serine proteases and chorismate mutase.

CavBase was developed by Schmitt et al. [89, 90] and is fully integrated into the
protein–ligand data mining system Relibase+ [19, 20]. With CavBase, cavities are
detected on the basis of a purely geometrical grid-based approach, Ligsite [94]. Ligsite
effectively rasters the protein structure and evaluates the local degree of burial for
each grid point. Areas above a certain threshold are considered to represent cavities
in the protein surface. After cavity detection, the amino acid residues lining the
cavity are transformed into simplified 3D property descriptors, referred to as pseudo-
centers. The current implementation of CavBase features five types of pseudo-
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centers, namely donor, acceptor, donor–acceptor, π-aromatic, and aliphatic.
Geometrical considerations concerning the directionality of possible surface
interactions are used to analyze which pseudo-centers project their chemical
properties to the surface. Pseudo-centers that match the criteria governing the
surface property are assigned to corresponding surface patches (defined on a grid);
all other pseudo-centers are omitted. All information regarding pseudo-centers,
surface patches, and corresponding amino acid residues is stored in the CavBase
database. Similarity searches with CavBase are based on a clique detection algorithm
and can be performed by using either all pseudo-centers representing a query cavity
or a selected subset of pseudo-centers representing, e.g., a particular subpocket.
For clique detection, the pseudo-centers of a cavity represent the nodes of a graph,
and the distances between them are the edges of the graph. The algorithm detects
the largest common subgraph of two given graphs. A scoring function based on
calculating the overlap of surface patches belonging to matching pairs of pseudo-
centers is used to rank the solutions found.

The study of Schmitt et al. nicely showed that CavBase can detect binding site
similarity for a number of examples, regardless of sequence or fold similarity. These
include trypanothione reductase and a subpocket of HIV protease, which were
found to share some similarity with the adenine binding pocket of cAMP-dependent
kinase. Recently, Weber et al. [95] discovered unexpected cross-reactivity between
the COX-2 specific sulfonamide inhibitor celecoxib and members of the structurally
unrelated carbonic anhydrase family. Using CavBase, a database containing 9433
cavities was searched for similarities with subpockets of the celecoxib binding site
in COX-2. The subpockets lining the sulfonamide moiety (25 pseudo-centers) and
the trifluoromethyl group (7 pseudocenters) of celecoxib were used as query
subpockets, and corresponding subpockets were detected in carbonic anhydrase.
Recent developments of CavBase include an improved clique detection method
based on clique hashing [96], which has enhanced the performance of the cavity
comparison algorithm. This, in conjunction with improved similarity scoring
functions, will enable more unexpected binding site similarities to be found within
large structure databases in a high-throughput fashion.

Another similarity search method, also based on clique detection, is eF-Site [91,
97], an improved version of an older approach [98]. In eF-Site, the physicochemical
properties of the surface are described by the electrostatic potential on the surface,
calculated by numerically solving the Poisson–Boltzmann equation. Currently, the
eF-Site database comprises more than 7000 entries from the PDB, including
molecular surface and electrostatic potential data. For the graph-theoretical search
approach, the nodes are vertices of triangles representing the molecular surface.
The electrostatic potential and the local surface curvature are assigned to each node.
The suitability of the method has been demonstrated by comparing proteins
exhibiting completely different folds but sharing similar functions. A database search
using the entire surface of phosphoenolpyruvate carboxykinase (PDB entry 1ayl)
as the query was carried out, finding a number of proteins containing mono-
nucleotide binding sites. Furthermore, an eF-Site search with a ligand-free structure
of a ‘hypothetical’ protein as query, which was later shown to bind ATP, revealed a
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series of ATP binding proteins as hits. The study did not, however, discuss the
issue of significance and scoring of hits when applying the method to a large
database to discover functional similarities.

A recent approach for detecting common sites in proteins is SuMo (surfing the
molecules) [92, 99]. This approach is related to that of CavBase, but in this work
individual amino acid residues are transformed into descriptors that represent
different chemical groups. These can be, for example, hydroxyl or aromatic and,
according to their chemical nature, are assigned to one or more amino acid. The
positions of the chemical groups (represented by points in space) are then used to
build up triangles. A graph of adjacent triangles representing the query surface
area is then subjected to a graph-theoretical approach for actually performing the
similarity search. Potentially similar patches initially found by this approach are
further refined based on a geometrical approach, taking into account the local atom
density as a descriptor of the degree of burial of atoms and groups. The method
has been successfully applied to the detection of similarities among serine proteases
comprising the Asp-His-Ser catalytic triad (γ-chymotrypsin, subtilisin) and between
legume lectins. For the lectins, SuMo was able to reasonably distinguish between
functionally active (i.e., carbohydrate binding) and inactive representatives among
the 106 legume lectin structures in the test dataset. However, we think that, in
disagreement with Jambon et al., pattern-based methods, such as TESS, or the
approach described by Russell are better suited to the detection of specific 3D motifs
such as catalytic triads. Also, the investigation of lectins was restricted to a selected
set of lectins and thus lacks any indication of how the approach would perform in
terms of producing false hits in database searches.

A concept in the spirit of CavBase was reported by Stahl et al. [100]. Their approach
employs a cavity detection algorithm related to Ligsite, based on calculating access
values for positions representing the solvent space, followed by extracting the cavities
as contiguous clusters of points with high access values. The solvent-accessible
surfaces are calculated for protein residues forming cavities, using the Connolly
algorithm [101]. A descriptor for the possible interaction types (aliphatic, H-bond
donor or acceptor, aromatic face or edge) is assigned to each surface point, based
on geometrical considerations taking the orientation of functional groups into
account. Similarity searches are performed using Kohonen self-organizing neural
networks [102]. Kohonen networks are a commonly used means for (nonlinearly)
projecting high-dimensional dependencies into low-dimensional (here, 2D)
descriptions. In this case, the neural network was trained by using cross-correlation
vectors representing the distances between points on the solvent-accessible surface,
in this way encoding the spatial distribution of the properties associated with the
surface points. The training set contained 175 structures from different structural
families. The results showed a clustering into different groups of enzymes in the
2D Kohonen map, including carbonic anhydrase, alkaline phosphatase, and
metalloproteinases. The latter were split into three independent clusters. Interest-
ingly, some of the outliers could be easily explained: the method failed for structures
containing shallow pockets (superoxide dismutase) and structures containing a
large variable loop region in their binding site (β-lactamase). The predictive power
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of the method was tested for 18 zinc enzymes not present in the training set. With
only one exception, the method was able to distinguish the active site out of the five
largest cavities in the protein being considered. Furthermore, these pockets were
nicely assigned to the clusters belonging to the correct enzyme type.

Initial results based on ideas that are related to the CavBase approach were
reported by Pickering et al. [103]. Their method encodes the characteristics of a
binding site by assigning a shape index, a curvedness value, and chemical features
(based on their parent amino acid residue) to each of the vertices on a Connolly
surface. Likewise, as in the other approaches described above, the surfaces are
represented as graphs, and the best match between two surfaces is detected with a
clique detection algorithm. Initial results include calculations on the NAD binding
sites of alcohol dehydrogenases (ADH) from different species. A comparison of
various ADH binding sites with the NAD binding site of the more distantly related
glyceraldehyde-3-phosphate dehydrogenase revealed that typically 30%–35% of the
features match in both cavities.

4.5
Applications of Binding Site Analyses and Comparisons in Drug Design

4.5.1
Protein Kinases and Protein Phosphatases as Drug Targets

Chemogenomics efforts have so far focused on protein families encompassing a
large number of drug targets or target candidates. Both protein kinases and protein
phosphatases represent such families and are the focus of many ongoing research
projects in pharmaceutical companies. In this chapter, we embark on a tour of
sequence space by taking a closer look at these two protein families.

Phosphorylation and dephosphorylation of proteins play a fundamental role in
the regulation of protein activity. The enzymes responsible for these transformations,
protein kinases and phosphatases, act as mutual opponents in the up- and down-
regulation of individual protein functional activity. The addition or removal of a
phosphoryl group, usually attached to a Ser, Thr, or Tyr residue sidechain, initiates
a conformational change triggering the activation or deactivation of the substrate
protein. Protein kinases and phosphatases are involved in many crucial cellular
events such as signal transduction processes, the modulation of which are of major
importance for a variety of pathological conditions. An important therapeutic area
in which protein kinases in particular have attracted much attention is oncology.
Apart from these, both kinases and phosphatases are validated targets for the
treatment of, for example, diabetes, cardiovascular and inflammatory diseases, and
autoimmune disorders.
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4.5.2
Relationships of Fold, Function, and Sequence Similarities

In spite of the closely related functional roles of protein kinases and phosphatases
in many biochemical pathways, a comparison of both enzyme classes exemplifies
the variability of relationships among function, sequence, and fold.

In principle, nature has decoupled protein function and protein fold. The most
commonly known example for a fold conveying a broad variety of functions is the
TIM barrel. First found in triosephosphate isomerase, the TIM barrel also occurs
in proteins as diverse as aldose reductase, enolase, and adenosine deaminase (see,
e.g., the review by Nagano et al. [104]). To date, the TIM barrel fold, as a generic
scaffold, is associated with 15 different types of enzymatic functions.

On the other hand, a particular protein function can be realized with different
protein folds, and an example of this are protein phosphatases. Protein phosphatases
feature two distinctively different catalytic mechanisms for hydrolytically cleaving
phosphorylated amino acid residues. The active sites of serine/threonine protein
phosphatases (PPs) contain two metal centers that directly activate a water molecule
for nucleophilic attack of the phosphate ester bond. In contrast, protein tyrosine
phosphatases (PTPs) [105] possess a Cys residue present in the active site loop
containing the conserved PTP signature motif HCXXXXXRS. The Cys sidechain
acts as the attacking nucleophile in the formation of a phosphocysteine intermediate,
which is eventually hydrolyzed by a water molecule [106]. The same catalytic
mechanism is also shared by dual-specificity phosphatases (see below).

For both classes of protein phosphatases representing the two different de-
phosphorylation mechanisms, different folds of the catalytic domain are known.
The PP class can be subdivided into the PPM family (e.g., PP2C) and the PPP
family (e.g., PP1) which differ in fold. Different architectures found for the PTP
domains include classical pTyr-specific PTPs, low molecular weight PTPs, dual-
specificity phosphatases, and CDC25 phosphatases. Apart from the active site loop
PTP signature motif, these subfamilies share little or no sequence similarity.
However, a significant 3D structural similarity between their binding sites can be
established (Figure 4.1).

An entirely different picture emerges for protein kinases. In spite of the
evolutionary differentiation of serine/threonine and tyrosine kinases, which is
apparent on the sequence level, the catalytic mechanism is conserved and always
involves transfer of the γ-phosphate group of the substrate cofactor ATP. (Only the
individual mechanisms of the preceding kinase activation are very different.) Since
the substrate binding pocket of protein kinases appears to be difficult to target by
small molecules, usually the cofactor binding pocket is the focus of interest in
current kinase inhibitor development. A conserved Lys residue, present in the
N-terminal subdomain, along with amino acid residues of the glycine-rich loop
(GXGXXGXV) interact with the phosphate groups of ATP. The primary Mg2+ ion
is coordinated by a conserved Asp residue present in the DFG motif. The Asp and
Asn residues present in the conserved DXXXN motif play a role in catalysis and in
coordinating a secondary Mg2+ ion, respectively. Whether the phosphoryl transfer
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Figure 4.1  Protein tyrosine phosphatase 1B
(2hnq (a)) and CDC25B (1cwt (b)) employ
the same catalytic mechanism for hydrolysis
of phosphorylated substrates but share no
sequence homology and exhibit very different
folds. The similarity of their binding sites
can, however, be detected on the level of the
interaction properties exposed to a ligand.
A CavBase calculation found 14 pairs of
matching pseudo-centers, resulting in the
superposition of the two binding sites shown

in (c). The positions of the sulfate ions in
the two structures match remarkably well.
PTP-1B is shown with carbon atoms in green
and CDC25 with white carbon atoms.
The pseudocenters are shown as spheres,
and interaction types are indicated by colors
(blue = donor, red = acceptor, yellow = donor/
acceptor, green = aliphatic). (a) and (b) were
prepared with Insight II [144], and (c) was
prepared with SYBYL [145].
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involves an associative (SN2-like) or dissociative (SN1-like) transition state [107, 108]
has not yet been clarified.

All catalytic domains of protein kinases exhibit the same characteristic fold, with
the ATP-binding niche being located in the cleft between the N-terminal and
C-terminal subdomains (for kinases operating on non-protein substrates, however,
other folds are also found [109]). The uniqueness of this picture is even more
surprising, given that the human genome is estimated to include approximately
520 protein kinases [110], compared to a mere 150 protein phosphatases [111].

4.5.3
Druggability

The abundance of kinases, along with the conserved nature of many of their ATP-
binding-site residues, has cast the suitability of protein kinases as drug targets into
doubt. There has been a long debate as to whether protein kinases can be considered
promising drug targets at all and whether selectivity between closely related kinase
structures can possibly be achieved. Since the launch of Gleevec® [112], this
discussion has tapered off. Interestingly, the X-ray crystal structure of Abl kinase in
complex with Gleevec® revealed an enormous movement of the activation loop.
Thus, the conformational flexibility of protein kinases [113, 114] might extend their
range of structural differentiation and thereby improve the chances of finding
selective inhibitors. At the same time, it must be stressed that most of the known
kinase inhibitors [115–117] have been developed for cancer treatment, where
selectivity against all other related targets is often not critical or even desirable. Yet,
for certain conditions protein kinases appear to be valid, druggable targets.

The druggability of protein phosphatase binding pockets has some problematic
aspects as well, though they are different from those encountered with protein
kinases. To accomplish phosphorylation, protein kinases have to bind ATP as a
cofactor. Thus, the need to recognize the ATP molecule constitutes the fundamental
similarity of the binding niches for all protein kinases. Conversely, phosphatases
must be able to bind phosphate groups. By comparison with ATP, phosphate is a
small structural fragment, which can be accommodated in protein cavities in many
different ways, leaving room for varying shape and constitution of phosphate-
binding pockets [118]. This is in accordance with the diversity of folds among the
phosphatase family [119]. Most notably, anchoring a phosphate group can already
be achieved with a very small pocket. In fact, some protein phosphatases feature
just a small protein surface depression for phosphate binding and achieve specific
intermolecular recognition with the partner protein via flat, extended interaction
interfaces, as is typical of protein–protein interactions [120]. Dual-specificity
phosphatases (DSPs) employ such flat-shaped binding sites as a direct consequence
of the need to bind both Ser/Thr and Tyr residues [121]. If DSP binding pockets
were deep enough to accommodate entire phospho-tyrosine moieties, as given for
PTPs, neither Ser nor Thr residues could reach the bottom of these cavities. In
other words, protein architecture here complies with the principle ‘form follows
function’.

4.5  Applications of Binding Site Analyses and Comparisons in Drug Design
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Unfortunately, the flat shape of such binding pockets can impose severe
restrictions in terms of druggability. It appears to be difficult to construct drug-like
molecules that bind tightly and specifically to such shallow surface areas (Figure 4.2).
Unless the accommodation of a ligand induces local conformational changes in
the protein in such a way that a real pocket is formed upon binding, lead finding
projects for this type of target are more likely to get stuck with a compound series
exhibiting moderate binding but lacking a concise SAR. Sadly, the prediction of
such induced-fit effects remains an unsolved problem.

4.5.4
Relationship between Ligand Similarity and Binding Site Similarity

The classification of binding pockets based on their recognition patterns brings us
closer to shedding some light on links between genome (or sequence) space and
chemical space. Establishing such links is by no means simple, and only few studies
have attempted to do so directly. From the numerous studies undertaken by
independent research groups, which resulted in completely different drug candidate
molecules for the same target protein, it is obvious that one pocket can bind small
molecules that differ strikingly in structure. Thus, a given starting point in sequence
space cannot be linked to a particular area in chemistry space in a one-to-one
relationship unless the underlying structural description captures the features that
determine molecular recognition.

Figure 4.2  The global shapes of binding
pockets are an important aspect of assessing
the druggability of a target family. A distinctly
different picture emerges for protein phos-
phatases and protein kinases. While the
ATP binding pocket of all protein kinases
emerges as a deep narrow cleft between the
N-terminal and the C-terminal subdomains
(CDK2 structure 1fin (a)), the binding pockets
of phosphatases are, in general, more open
and shallow. However, there are significant
differences among various phosphatases.
A binding site should be capable of burying
large portions of a small molecule ligand,

enabling tight, specific binding. For shallow
binding sites as in KAP (1fpz (b)) this can be
difficult (the Ligsite [94] algorithm does not
even detect a cavity here). The presence of
subpockets adjacent to the catalytic pocket
offers alternative interaction areas for ligands,
enhancing the chance of finding a suitable
drug candidate. For example, in PTP-1B,
a validated drug target in the treatment of
diabetes, a second aryl binding site was
detected by Puius et al. [146] (1pty (c)); in this
structure two phosphor-tyrosine molecules
are bound to the active site. The figure was
prepared with SYBYL [145].
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A noteworthy chemometrical method (CHEMDOCK) for establishing comple-
mentary relationships between receptors and ligands has been devised by Oloff
et al. [122]. Their approach employs atomic descriptors derived by quantum
chemical methods (TAE/RECON descriptors [123]), which represent both the
ligand structures and the protein binding pockets in global a descriptor space.
The software was trained by using a dataset comprising 99 PDB protein–ligand
structures (SMoG dataset [124]). The correct ligand for any of the receptors
included in the test set could be identified within the ten best hits, with the
average rank order of the native ligand being the third on the hit list. The
approach is widely applicable, since links can be established in either direction.
Knowledge of a receptor’s active site structure facilitates straightforward identifi-
cation of complementary ligands from large databases, and starting from a given
ligand structure may equally well identify possible complementary receptor
cavities.

In the context of chemogenomics, a related question is also worth addressing:
can two proteins binding to the same or very similar ligands be expected to share
similarity in their binding sites, and if so, to what extent? Although we are not
aware of any systematic studies related to this question, several studies on similarity
aspects of adenine binding sites can be referred to, to provide a guideline. Adenine
is part of the ATP cofactor of kinases, but is also a common substructure of other
enzyme cofactors such as AMP, ADP, NAD, and FAD, making it one of the most
widespread chemical groups present in a large number of different protein
structures. Since many adenine binding proteins represent targets of major
pharmaceutical interest, unraveling the determinants of adenine binding has
attracted a number of researchers in recent years. Various studies have been reported
which aimed to identify structurally invariant patterns in adenine binding pockets
[65, 125–129]. A study by Moodie et al. [65] revealed that complementary shape and
electrostatic properties between the adenylate group and the protein can be achieved
via a number of alternative amino acid residue arrangements, without these residues
being conserved. These findings are supported in related studies by Denessiouk et
al. [126–128]. A recent study by Cappello et al. [129] suggests that the structural
diversity of adenine binding pockets appears to be even larger than previously
described. Not only can different amino acids form the same kind of interaction,
recognition of the ligand can even be accomplished by different interaction patterns.
Generally, the adenine moiety is sandwiched between mostly nonpolar areas above
and below the ring plane. However, there are a broad variety of in-plane interactions,
and a number of different H-bonding patterns were identified around the rim of
the purine ring system. Notably, the number of H-bonds formed is generally smaller
than the number of theoretically feasible H-bonds, and, in agreement with the
findings of Moodie et al. [65], water molecules appear to be important H-bonding
partners for adenine. The H-bonding patterns were used to establish a simple pattern
recognition classification scheme, based on encoding the actual involvement of
polar adenine atoms in H-bonding as bit strings. The study showed that these
recognition motifs appear to be conserved only among very closely related proteins.
Even within protein families, significant differences in the adenine binding site

4.5  Applications of Binding Site Analyses and Comparisons in Drug Design

1239vch04.pmd 06.06.2004, 13:51119



120 4  Structural Aspects of Binding Site Similarity: A 3D Upgrade for Chemogenomics

composition were observed; whereas, in contrast, very similar binding sites
belonging to different folds could also be found.

These studies indicate that protein cavities binding the same ligand do not
necessarily exhibit a high degree of structural similarity. Thus, if one is looking
only for related targets that could bind the same molecule, considering genome
space, then taking a given ligand structure as a starting point is a reasonable
approach. Trying to identify all target proteins binding to a given ligand in this way
is certainly inadequate. However, searching the neighborhood of a given target can
facilitate the identification of targets for which selectivity problems might be
encountered, thus assisting project planning, such as early setup of assays, etc.
Nevertheless, unexpected selectivity problems can always emerge with other proteins
that are unrelated on the sequence and even functional level.

4.5.5
Selectivity Issues

Achieving an appropriate selectivity profile is one of the major challenges in drug
design. Selectivity problems arise if, unintentionally, an active compound interacts
with proteins other than the target protein, modulating their functional activity.
On a microscopic scale, this implies that the active compound binds to protein
cavities present in one or more antitargets.

As discussed above, two binding sites (in different proteins) exhibiting some
degree of structural similarity may or may not bind the same ligand. The selectivity
of a ligand towards such binding sites depends on the structural elements of the
protein pockets involved in ligand binding. If only conserved structural features
present in both pockets are used to facilitate ligand binding, no selectivity can be
expected. Utilizing recognition features unique to one of the structures will, in
contrast, enable selectivity. Although drug design efforts usually aim to develop
selective inhibitors, the identification of a scaffold representing a nonspecific ligand
can also be extremely valuable, provided that the scaffold offers high optimization
potential. Selectivity toward members of the same protein family can be introduced
by attaching appropriate substituents to the core structure. In targeting protein
tyrosine phosphatases, the Novo Nordisk group succeeded in finding a general,
competitive, efficient, and lead-like inhibitor, 2-oxalylamino-benzoic acid (OBA)
[130]. The X-ray structure of OBA in complex with PTP-1B (PDB code 1c85) was
determined. The binding mode of the OBA ligand largely resembles that of tyrosine
phosphate, as found in the natural substrate, and includes H-bond formation with
the PTP signature motif (Figure 4.3). Analogous to the phosphate group, the
carboxylate anchor forms four H bonds with the protein (two H-bonds with the
guanidinium group of Arg221 and one H-bond with each backbone nitrogen atom
of Ser216 and Ala217). Other H-bonds bridge the carboxy group of the oxalylamino
moiety with the backbone nitrogen atom of Gly220 and the o-carboxylate group
with Asp181. Asp181 acts as a general acid and is therefore protonated. Also, a weak
salt bridge (contact distance: 3.41 Å) between the o-carboxylate group and Lys120
is formed. Although the phenyl ring in OBA is shifted up relative to the phenyl
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ring in tyrosine phosphate, it occupies largely the same hydrophobic pocket. OBA
appears to be the most potent ‘minimal unit’ phenylphosphate mimetic obtained
so far.

The OBA scaffold has been further developed into potent and selective PTP-1B
inhibitors. A sequence alignment of the catalytic domains from 106 known
vertebrate PTPs was carried out. This information, in combination with the crystal
structure of PTP-1B, was used to identify residues unique to PTP-1B reasonably
close to its active site. In this way, a set of four residues was found, namely, Arg47,
Asp48, Met258, and Gly259. Initial attempts at optimizing the ligand focused on
interactions with Asp48, since many PTPs have an uncharged Asn in this position.
Introducing a charged nitrogen atom into the core structure enabled formation of
a new salt bridge with Asp48 in PTB-1B, while, presumably, the presence of repulsive
forces between the positive charge and the Asn sidechains present in other PTPs
resulted in the desired gain in selectivity [131].

Further optimization steps focused on enhancing the selectivity for PTPs
possessing the conserved Asp48 residue, but differing at position 259. In PTP-1B,
position 259 is a Gly residue, whereas, for example, PTPα has a Gln residue here.
The bulkier sidechain of the Gln residue changes the substrate recognition
properties of the phosphatase. Hence, the guiding principle for enhancing the
selectivity at this optimization step was that of exploiting steric hindrance, rather

Figure 4.3  Binding mode of 2-oxalylaminobenzoic acid (OBA) in the
catalytic pocket of PTP-1B (1c85). The inhibitor was developed as a
phenyl phosphate mimetic and provided the starting point for the
development of inhibitors selective toward individual PTPs. OBA binding
largely resembles the interactions between PTP and its natural substrate.
The figure was prepared with RasMol [147].
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than differences in the electrostatic properties of a given pocket area [132]. With
PTPα as a model for the anti-targets, an analog of the compound lacking the basic
nitrogen atom responsible for PTP-1B selectivity was used as a starting point for
chemical modification. Thus, any improvement in selectivity could unambiguously
be attributed to residue 259. By extending the inhibitor towards the so-called 258/259
gateway region, activity against PTPα was completely lost, supporting the rationale
of the design. Moreover, the affinity of the inhibitor to PTP-1B was improved by a
factor of 100. The crystal structure of PTP-1B in complex with the newly designed
inhibitor revealed a feasible reason for the improved binding: Asp48 was found in
a different rotameric state compared to the structures belonging to the first
compound series, where it formed a salt bridge to the basic nitrogen atom. A water
molecule, not observed in the other structures, facilitates ligand binding via a water-
mediated protein–ligand contact bridging to Asp48. This additional contact also
provides an explanation for the seemingly contradictory finding of reasonably high
selectivity against the tyrosine phosphatase SHP-1, which has a Gly residue in
position 259.

In summary, the manipulation of both the attractive and repulsive forces for
residue 48 and exploiting steric differences for residue 259 independently lead to
an increase in selectivity. The authors of this work [132] conclude with the convincing
hypothesis that combination of these efforts could yield inhibitors with significantly
improved selectivity against the majority of related PTPs.

The situation described above, where a crystal structure is available only for the
target protein but not for the relevant anti-targets, is very common. Nevertheless, if
crystal structures were available for all (or a sufficient number of) the anti-targets,
advanced possibilities could be opened up for analyzing the structural determinants
of selectivity. An elegant approach for systematically exploiting 3D protein structural
data with the aim of identifying selectivity-related differences in binding sites was
presented by Kastenholz et al. [133]. Its application to kinases was recently reported
by Naumann and Matter [134]. In their study, the molecular recognition properties
of the ATP pockets of 26 different kinase structures were investigated. All structures
contained in the dataset were superimposed, and GRID [66] fields were calculated
using the N1, O, and DRY probes (representing H-bond donor, H-bond acceptor,
and hydrophobic interaction properties) for each protein. The calculated interaction
energies of all grid points and all probes were concatenated in a vector. These
26 vectors represent the rows in an X-matrix used for a subsequent chemometric
analysis by PCA and CPCA (consensus principal component analysis) methods
[135]. The PCA and CPCA score plots, termed target family landscapes by the authors,
allow a classification of the binding sites according to the similarities of their binding
patterns. The first principal component (PC1) separates CDK and MAP/receptor
kinases from the family of PKA kinases. The CDK structures fall into two separate
clusters, representing the cyclin-bound (activated) and the inactivated state of a
kinase. The two states differ significantly in conformation. The second PC separates
MAP and other receptor kinases from the CDK family.

For an interpretation of the GRID/PCA model in structural terms, contour plots
for individual probes were derived from the loadings of the first and second PC,
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respectively. These plots highlight regions of observed differences with respect to
interaction with a particular probe. Thus they indicate positions where a particular
ligand functional group should optimally be placed, to initially achieve or enhance
selectivity. In fact, the results were in good agreement with the experimental
selectivity profile of a series of 2,6,9-substituted purine compounds used as a
scaffold for CDK inhibitors. The fact that hydrophobic groups attached to the
purine N9 atom improve the selectivity towards CDK (and against PKA) could be
nicely explained by the PC1 contour plot for the DRY probe. The compounds
roscovitine and purvalanol A and B, all selective toward CDK, contain an isopropyl
group in this position, which appears to be more favorable than a smaller methyl
group (as present in olomoucine). In CDK2, the subpocket accommodating these
alkyl groups is lined with Val64, Phe80, and Ala144, while the PKA subpocket
exhibits more polar features, with a Thr residue replacing the Ala residue and a
Met residue replacing the Phe residue. The PC2 contour plot demonstrates that
the same substitution also improves selectivity against MAP kinases, in which the
corresponding residues Ile82, Gln103, and Ala144 form a more polar environ-
ment. Furthermore, roscovitine, purvalanol A, and purvalanol B carry an ethyl or
isopropyl group at the C2′ position of the hydroxyethyl group. These moieties bind
to another hydrophobic subpocket (lined with Ile10 and Val18). The impact of this
subpocket on specificity can also be identified in the PC1 contour plot. The
favorable hydroxyethyl moiety attached to N1′ in roscovitine, olomoucine and both
purvalanol compounds points to a contour patch in the N1 probe-derived PC2 plot.

In addition to providing an explanation for the experimentally determined
selectivity profiles of known CDK inhibitors, the study also pointed out further
opportunities for forming selective interactions that have not been exploited by
any of the compounds in the series. With an increasing number of kinase structures
being solved, the range of applications for this approach [133, 134] will increase,
providing a valuable tool for designing selective inhibitors.

4.5.6
Caveats

Switching from the sequence level to the 3D structure level allows one to focus
directly on the molecular determinants of ligand binding, i.e., the physicochemical
properties featured in the ligand binding site. There are, however, several caveats
to remember. So far, it has been assumed that the level of sequence similarity in a
pair of proteins correlates with the structural similarity of their binding sites (in
fact, the clustering of the different kinase families in the target family landscapes
supports this concept). However, this is a simplified picture that cannot be
universally applied. Neither the physicochemical properties that binding site
residues project onto the cavity surface nor the 3D arrangement of such interaction
centers are unambiguous and unalterable.

4.5  Applications of Binding Site Analyses and Comparisons in Drug Design

1239vch04.pmd 06.06.2004, 13:51123



124 4  Structural Aspects of Binding Site Similarity: A 3D Upgrade for Chemogenomics

4.5.7
Protein Flexibility

One of the most common problems that binding site comparisons involve is that
of protein flexibility [136]. The dynamic nature of proteins can appear on different
levels of the structural hierarchy, ranging from the thermal motion of individual
side chains, over shifts of backbone segments, to movements of entire domains
[20]. As previously mentioned, protein conformational changes are often triggered
by the binding of a ligand. By means of standard X-ray crystallography, only single
snapshots of 3D structures can be generated, and assertions regarding flexibility
can only be made based on B-factor distributions and interpretation of the electron
density. Thus, structural changes in protein structures triggered by, for example,
variations in the crystallization conditions, or, more importantly, binding of different
ligands, cannot be captured by a single crystal structure. However, a series of crystal
structures representing different relevant structural states can facilitate an under-
standing of the conformational flexibility of proteins and their binding sites [137].
Since all existing methods for comparing binding sites refer to rigid coordinates,
they are bound to fail if two distinctly different conformations are compared. Thus,
existing similarities that can be easily detected on the sequence level might not be
revealed.

The problem of protein flexibility can be exemplified with both the families of
protein kinases and protein phosphatases.

Apart from major loop rearrangements, as found with Gleevec, the ATP pocket
of kinases can also undergo more subtle structural adaptations upon binding of a
ligand. Staurosporine is an unspecific kinase inhibitor that, due to its large aromatic
ring system, distends the respective binding cavity. Taking the structure of CDK2
in complex with staurosporine (1aq1) as a reference and searching for similar
pockets with CavBase, one finds that the ranking of the derived pockets does not
reflect the sequence relationship of the different kinases. Interestingly, the pocket
of the Src kinase 1byg, which binds staurosporine as well but shares a sequence
identity of only 26% with CDK2, appears to be more similar to 1aq1 (35 matching
pseudo-centers, similarity score 5051) than the pocket of the sequence-identical
CDK2 structure 1fvv, which represents the cyclin-bound state of the kinase with an
oxindole inhibitor (28 matching pseudo-centers with 1aq1, similarity score 4691).
This example illustrates two effects: on the one hand, binding of the same ligand
can increase the structural similarity between distantly related pockets; on the other
hand, binding of different ligands can decrease the structural similarity between
closely related pockets.

Marked induced-fit effects are also found for protein phosphatases. The PTP-1B
active site is surrounded by several surface loops, which are important for catalysis
and substrate recognition. Binding of pTyr, tyrosine-phosphorylated substrates, or
inhibitors like OBA (see above) induces an 8 Å movement of the so-called WPD
loop, which brings Asp181 (the general acid) into the catalytic site. This movement
closes the active site pocket and in turn traps the substrate. A comparison of the
ligand-free structure 2hnp to the ligand-bound structure 1bzj shows how the
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transition of the WPD loop from the open to the closed conformation affects the
overall binding site shape (Figure 4.4). Effectively, one of the cavity walls is built up
by the loop closure.

Statistics including large and diverse sets of protein structures have revealed
that the 20 amino acid residue types exhibit distinctly different levels of flexibility
[138]. Gln residues appear to be amazingly flexible (given their medium size) and
are used in the following section for exemplifying some of the caveats that complicate
binding site comparisons.

4.5.8
Ambiguities in Atom Type Assignment

In X-ray crystallography, the decision as to which of the terminal atoms of Gln (and
Asn) sidechains is oxygen or nitrogen is prone to error. The X-ray scattering power
of oxygen and nitrogen is very similar. As a result, the electron density of Gln and
Asn sidechains usually appears symmetric, thus hampering unambiguous assign-
ment of the correct atom type. (A similar situation is encountered with the Cγ and
Oγ atoms in Thr side chains, as well as the Nε2 and Nδ1 atoms in His residues).
Unless the resolution is very high, which would allow for identification of the
hydrogen atoms bound to the amide nitrogen atom, only indirect methods making
use of chemical knowledge can be applied to overcome the ambiguities. By taking
the H-bond characteristics of the oxygen atom (acceptor) and nitrogen atom (donor)

Figure 4.4  Comparison of a ligand-free (2hnp) with a complexed
(1bzj) structure of PTP-1B reveals a pronounced induced-fit effect.
Upon inhibitor binding, the WPD loop closes over the catalytic
pocket. The same structural rearrangement is also produced by
substrate binding and involves shifting the general acid Asp181
required for catalysis in the active site. The figure was prepared
with Insight II [144].

4.5  Applications of Binding Site Analyses and Comparisons in Drug Design
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into consideration and analyzing the local environment of these atoms for potential
H-bond partners, for 75% of the residues the atoms can be unambiguously assigned
[139]. Nevertheless, an investigation of the stability of potential H-bond networks
provided evidence that there are still a substantial number of misassignments in
the PDB. In many cases, calculations revealed more stable networks when the
positions of the oxygen and nitrogen atoms in Gln/Asn side chains were switched
[140]. In addition, some structures are genuinely difficult, resulting in arbitrary
assignments.

Clearly, donors and acceptors have to be considered as non-matching properties
in binding site comparisons (this of course does not hold for bifunctional groups
such as hydroxyl groups, which can act as either hydrogen donors or acceptors).
Wrong atom type assignments, leading to erroneous property descriptions, can
hamper the success of binding site comparison methods by producing false or
missing hits. The ostensibly promising workaround of unifying atom assignments
among corresponding Gln residues in a set of pockets could, however, conceal real
flexibility effects. An example of this situation is given by the elastase structures
1ela and 1elc (Figure 4.5). In 1ela, Gln200 acts as an H-bond donor via its Nε2 atom,
bridging to a carbonyl group in the ligand. In 1elc, Gln200 is flipped with respect
to 1ela, and its Oε2 atom interacts with an amide nitrogen atom in the ligand.

Figure 4.5  Assignment of atom types for the N and O atoms in Gln
sidechains can be difficult and often relies on interpreting the H-bond
partners in the local environment. For the two elastase structures 1ela
(green carbon atoms) and 1elc (yellow carbon atoms), a donor and
an acceptor group in the ligand form close contacts with the Gln amide
group, respectively. This allows unambiguous assignment of the O and N
atom types. The position and orientation of the amide plane are almost
identical in the two structures; only the O and N positions are switched.
The figure was prepared using RasMol [147].
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4.5.9
Versatility of Interaction Types

Apart from the caveats discussed so far, H-bonds are not the only type of inter-
molecular interaction in which Gln side chains can be involved. As for peptide
backbone bonds, the π-face of the amide moiety can interact with ligands via π–π
interactions. Thus, even if the side chain orientation can be unambiguously
determined from the crystal structure, the type of interaction occurring between a
ligand and a Gln side chain is not predetermined. Since π–π interactions usually
occur with aromatic ring systems of a ligand, within a series of ligands the fragments
that interact with a particular Gln residue can even be chemically very different.

In summary, the general flexibility of Gln side chains, the variability of their
donor and acceptor properties enabled by amide flipping, and their ability to present
different characteristics (polar group or π-face) to a ligand, all reveal Gln residues
to be a kind of chemical chameleon. Gln residues contribute greatly to the ability of
some protein binding pockets to adapt to a large variety of diverse ligand structures.

Figure 4.6  Comparison of the three trypsin structures 1k1n (cyan), 1aq7
(magenta), and 1gi0 (orange) illustrates the side chain flexibility of Gln192
and its ability to take part in different interaction types with chemically diverse
ligand structures in the binding site. Different rotamers are found among the
structures (a). While in 1k1n (b) and 1aq7 (c), H bonds are formed with
ligand acceptor groups, the ligand in 1gi0 (d) interacts with the Gln192 side
chain via π–π stacking. The figures were prepared with RasMol [147].

4.5  Applications of Binding Site Analyses and Comparisons in Drug Design
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An example of this is found in the serine protease trypsin (Figure 4.6). The
conserved Gln192 residue shows substantial variability in terms of its spatial
orientation and interactions with various ligands. A comparison of the three trypsin
structures 1aq7, 1k1n, and 1gi0 revealed pronounced side chain reorientations
depending on the ligand bound in the active site. In 1aq7 and 1k1n, Gln192 forms
H-bonds to the ligands. In 1gi0, the amide group covers one side of a phenol ring
in a coplanar arrangement. This π–π stacking interaction reduces the solvent
accessibility of the hydrophobic face of the ligand. The variations in the interaction
patterns are accompanied by significant rearrangements of the Gln192 side chain.

Changes in the interaction type of Gln side chains can also occur without major
spatial reorientations, as shown by a comparison of the blood coagulation factor
Xa structures 1fax and 1xkb. In 1fax, the Nε2 atom of Gln192 forms an H-bond
with the carboxylate group of the ligand. Conversely, in 1xkb the face of the amide
plane forms a π-stacking interaction with one aromatic ring of the biphenyl moiety.

4.5.10
Crystallographic Packing Effects

It is commonly accepted that protein X-ray crystal structures represent the ‘real’
structure and thus reflect the molecular situation of the relevant biological system.
However, in a crystal, protein surface areas are involved in interactions with
neighboring molecules, forming the contacts that hold the crystal together. In certain
circumstances, such interactions can also severely affect the binding sites for small
ligands, leading to binding modes that are unlikely to represent the physiological
situation. Such problems arising from crystal contacts not only demand careful
examination when applying structural knowledge to rational drug design projects
[141], but they also complicate binding site comparisons in chemogenomics
approaches. This can be exemplified further by structures of factor Xa.

In 1fax, the ligand (3-letter code DX9) fills the entire unprimed active site, forming
favorable interactions in the S1 (salt bridge between naphthylamidine group and
Asp189) and S4 (H bond between terminal imido group and Glu97.O) specificity
pockets (Figure 4.7). As in 1fax, the benzamidine moiety of the ligand in 1xkb
(3-letter code 4PP) also forms a salt bridge with Asp189 in the S1 pocket. However,
the ligand extends less far into the S4 pocket, only partially filling it. Notably, a
lysine side chain (Lys79 in the EGF-like domain, B chain) found in the crystallo-
graphic packing environment invades this empty area, forming an H bond with
Glu97.O. The pyridyl ring of 4PP, not centered in the S4 pocket, forms an H bond
with Thr98.O. Another H bond between Gln56 (B-chain) in the crystal packing
and the carboxylate group of 4PP suggests a pulling force shifting the ligand out of
the S4 pocket [142].

Although the problems discussed above can impose some restrictions on the
use of binding site comparisons in chemogenomics programs, the broad array of
methods available still offers significant support for the majority of cases. Careful
assessment of the target structure and the relevant structural data can certainly
guide the choice of appropriate methods. For example, the application of methods
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allowing for the detection of partial matches (common subpockets) appears to be
advantageous for binding sites that show a significant degree of flexibility. Once a
structural relationship between two binding sites can be established, an analysis of
differences is just as interesting as the analysis of similarities, especially if selectivity
issues are to be addressed.

Clearly, the quantitative methods for describing binding site similarities, required
for large-scale database searches in the spirit of ‘omics’ efforts, still need to be
improved. The development of powerful scoring functions is an area of ongoing
research, and hopefully some of the shortcomings will be resolved in the near
future. Nevertheless, the examples discussed in this section demonstrate, within
the realms of possibility, the usefulness of binding site comparison methods.

4.6
Summary and Outlook

On a molecular level, the binding sites of proteins represent the locations where
the functions of a protein take place. In this article, we have reviewed the
characteristics and constitutional principles of binding sites from the 3D perspective

Figure 4.7  Crystallographic packing effects in factor Xa binding sites,
shown for PDB structures 1fax and 1xkb. 1fax is shown with white
carbon atoms, the superimposed 1xkb structure (rms deviation of
binding site Cα atoms: 0.38 Å) is omitted. The ligand of 1fax is
shown in green and the ligand of 1xkb in magenta. Residues present
in the crystal packing environment of 1xkb are shown in yellow.
The figure was prepared with RasMol [147].

4.6  Summary and Outlook
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of structural biology and have demonstrated the application of such knowledge for
detecting functional binding sites. Furthermore, methods for establishing structural
relationships and for investigating binding site similarities have been described.
In the context of chemogenomics, such methods can be utilized for revealing local
structural similarities among proteins and thus for finding cavities or subcavities
likely to bind a ligand or functional group already known from previous projects.
Since fold is even more conserved than sequence, protein targets that are related
on the genome level can be expected to share a certain degree of structural similarity
in their binding sites. This is all the more true because binding site residues usually
exceed other protein residues in their degree of conservation during their evolution.
A practical limitation is given for binding sites exhibiting pronounced flexibility.
In such situations, representation of the accessible conformational space can be
incomplete unless many crystal structures of the target protein complexed with
different ligands are available. Thus, for two crystallographically characterized,
closely related proteins the detection of similarity can occasionally be difficult on
the structural level, even though recognizing the similarity based on their sequences
would be trivial.

On the other hand, the analysis of binding sites in terms of shape and physico-
chemical properties rather than on the level of sequence relationships provides an
outstanding advantage: as discussed above, two binding sites can exhibit a high
degree of structural similarity without the respective proteins sharing any sequence
homology. Implementation of this idea in the drug discovery pipeline opens up
entirely new possibilities, extending beyond what is genuinely encompassed by
the concept of chemogenomics. Approaches such as the transfer of an established
active compound class from one target to another appear promising as long as the
binding sites are similar. A relationship of these targets in genome space is not a
necessary precondition. Although most often, two proteins with similar binding-
site features are also sequence-related, comparisons of binding sites throughout
the entire pool of PDB structures can sometimes reveal unexpected binding-site
similarities. Such findings can provide innovative ideas for drug design and even
allow for jumps between genomic target classes. Likewise, even the similarity of
two subpockets belonging to binding sites that differ in other parts can stimulate
structure-based drug design. A molecular fragment bound to a reference structure
could be equally well embedded in the matching subpocket of a second protein.
Attaching such a chemical moiety to an existing lead structure for the latter target
could therefore be a promising approach for optimizing the ligand structure. De-
novo design programs could increasingly resort to such knowledge.

Considering chemogenomics in the context of other ‘omics’ approaches, it appears
that some possible synergies have not been exploited so far. Driven by advances in
the automation of protein crystallization and in X-ray data collection and analysis,
the current efforts in structural genomics can be expected to lead to an enormous
increase in the number of known protein structures. Naturally, this will provide a
wealth of previously unknown information on binding sites and their 3D arrange-
ments. Nevertheless, one has to remember that the major aim of structural genomics
is not to produce data ideally suited to binding site related analyses and studies as
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described above. Structural genomics is focused on acquiring protein structures in
a high-throughput fashion. Its goal is to make at least one 3D protein structure per
fold representative available, so as to completely cover the ‘fold space’. Currently,
only 700 out of 1000–5000 estimated protein folds [3] are available as experimental
structures.

A more practical perspective considers the goal of structural genomics as the
experimental determination of the minimum number of structures that are required
for building all other structures by homology modeling techniques. This usually
requires a sequence identity of at least 30% between the template and the modeled
structure. In addition, it is obvious that structural genomics does not aim to solve
the structures of a large number of representatives of the same protein family [2].
However, comprehensive knowledge of all structures belonging to a particular
protein family could provide an optimal basis for chemogenomical approaches
utilizing binding site information. Moreover, in structural genomics programs,
the proteins to be investigated are often chosen according to the availability of
suitable crystals and not necessarily by their pharmaceutical relevance. Jhoti [143]
compared this situation with the development of combinatorial chemistry: an
impressive number of synthetically easily accessible molecules were generated as
the first generation of compounds, but these were then found to be of very limited
value. Finally, it should be mentioned that the emphasis on revealing the overall
architecture of proteins is accompanied by minor interest in structural detail. Thus,
optimization of crystallization conditions for obtaining high-resolution crystal
structures is rarely pursued in structural genomics programs. However, information
with this level of detail is highly desirable for addressing, for example, selectivity
issues from a chemogenomics point of view.

Hopefully, the focus of structural genomics will shift in the future, so that more
attention can be paid to the potential applications of structural data in drug design.
Undoubtedly, the technical advances that promoted the development of structural
genomics can also be applied for the in-depth study of particular target families.
Often, a successful crystallization protocol for a particular member of a protein
family can facilitate the crystallization of another protein in the same family. The
information thus derived will certainly stimulate chemogenomics efforts and
encourage researchers to look more often at proteins through the eyes of a structural
biologist.
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5
The Contribution of Molecular Informatics to Chemogenomics.
Knowledge-based Discovery of Biological Targets and
Chemical Lead Compounds

Edgar Jacoby, Ansgar Schuffenhauer, and Pierre Acklin

Summary

A central aspect of chemogenomics refers to the systematic exploration of target
families and aims at identification of all possible ligands of all target families. The
elucidation of the human genome in 2001 stimulated such chemogenomics
approaches by the fact that now almost all members of a target family are visible at
the DNA sequence level. Targets are no longer viewed as singular objects having
no interrelationship, and the systematic exploration of selected target families
appears to be a promising way to speed up and further industrialize target-based
drug discovery, especially in the target-identification and lead-finding processes.
Here, we summarize chemogenomics knowledge-based strategies that are currently
being investigated for target identification and lead finding. The underlying principle
of chemogenomics knowledge-based strategies is that similar ligands bind to similar
targets. We will show how previously generated knowledge in both the biological
and chemical knowledge spaces is useful in simultaneously identifying both new
targets and their potential ligands. Since the entire process is knowledge-driven,
we emphasize the integration of cheminformatics and bioinformatics into a
molecular informatics platform for drug discovery. This chapter has four parts: (1)
molecular information systems for targets and ligands; (2) bioinformatics discovery
of targets within subfamilies with conserved molecular recognition; (3) chem-
informatics discovery of potential ligands of target subfamilies with conserved
molecular recognition; and (4) knowledge-based combinatorial library design
strategies within homogenous target subfamilies. Special focus is given to the
chemogenomics of G-protein coupled receptors, which constitutes one of our main
fields of interest.
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5.1
Introduction

To organize drug discovery around target families is not new, and indeed in the
past a number of target families, e.g., the monoamine GPCRs (G-protein coupled
receptors) were explored systematically, so that today, selective ligands are known
for a large number of the receptors in these families [1]. Discoveries of new binding
sites for known hormones or drugs in the early days of molecular pharmacology
were only later followed by identification of the corresponding molecular receptors,
which were often subtypes or subsubtypes of previously investigated receptors.
The elucidation of the human genome further stimulated the approach, because
now almost all members (sequences) of a target family are visible and accessible.
The promotion of the approach to an industrial discovery technology was probably
first emphasized by researchers at Glaxo Wellcome, who, in a supplement to Nature
magazine in 1996 on redesigning drug discovery, discussed the concept of
systematizing drug discovery within target families, based on analysis of the gene
families that had been successfully explored for drug discovery at that time [2].
The Glaxo Welcome scientists highlighted obvious advantages of system-based
approaches, for example, combining advances in gene cloning and expression,
automation, combinatorial chemistry, and bioinformatics. Since then, numerous
pharmaceutical and biotechnology companies have built their business models
on these principles. Most notably, the pioneering company Vertex Pharmaceuticals
designed its entire drug discovery process around target families, in contrast to
the traditional disease-area-oriented organization of pharmaceutical research
[3–5].

The promise that chemogenomics, which aims to identify all possible chemical
ligands and drugs of all target families, will continue to affect the drug discovery
process is very high. Indeed, because of the commonalities existing inside a target
family or a homogenous subgroup of it, especially for aspects of molecular
recognition, it is only logical to expect that, through additional focus within target
families, it will be possible to discover ligands and drugs for new targets at an
increased rate and to improve the ‘innovation deficit’ in the pharmaceutical industry
[4, 6–8]. Chemogenomics approaches are expected to be especially effective within
previously well-explored target families, for which, in addition to protein sequence
and structure information, considerable knowledge on pharmacologically active
chemical classes and SAR (structure–activity relationship) data exists. A recent
retrospective analysis of the pharmacologically explored targets to date for which
high affinity drug-like compounds have been discovered, shows that, first, their
number (399) represents a rather small set, and that, second, nearly half of these
targets fall into just six gene families: GPCRs, serine/threonine and tyrosine protein
kinases, zinc metallopeptidases, serine proteases, nuclear hormone receptors, and
phosphodiesterases [6, 9]. Since the genome is rich with additional members of
these families, the authors of the study [6] concluded that these proven druggable
gene families are still underexploited and will continue to be a source of cost-effective
medical innovation. This chapter summarizes chemogenomics knowledge-based
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strategies for target-identification and lead-finding that are currently being
investigated by us and other groups.

The fact that similar ligands bind to similar targets is the underlying principle of
chemogenomics knowledge-based strategies for drug discovery. This principle was
first summarized and generalized by Stephen Frye at Glaxo Welcome as the SARAH
(structure–activity relationship homology) concept, which aims to group drug
discovery targets into families based on the relatedness of the SAR data of their
ligands [10]. The evolutionary conservation of binding-site architecture within a
target family or subfamily translates into conservation of the architectures of ligands
that bind to these targets. Since the approach is knowledge-driven, we emphasize
the integration of cheminformatics and bioinformatics into a molecular informatics
platform for chemogenomics.

5.2
Molecular Information Systems for Targets and Ligands

Based on the SARAH concept [10], it is logical to expect that pharmacological
investigations of new members of the main known druggable gene families should
benefit from knowledge-based compound selection and design strategies that try
to extract relevant characteristics from the established knowledge.

However, given that the cheminformatics and bioinformatics worlds have evolved
more or less independently, it is first necessary to establish classification and
annotation schemes that link the chemical and biological knowledge spaces.

Annotation and classification efforts in bioinformatics have focused mainly on
gene sequences and protein structures. Comprehensive gene ontologies like GO
(Gene Ontology) [11] – annotating the biological process, molecular function, and
cellular component of gene products – are the ultimate goal of this research. More
specifically, several nomenclature and classification committees have established
comprehensive class-specific molecular information systems for proteins in general
or for proteins associated with drug therapeutic effects (e.g., enzymes [12], GPCRs
[1, 13], NRs (nuclear receptors) [13], and LGICs (ligand-gated ion channels) [14]),
which are accessible through the Internet. Compared to this, only limited effort
has been made on annotation schemes for ligands. Ligand molecular information
systems have mainly evolved from the need to track literature, patent, and clinical
status information. Catalogues like the MDDR (MDL Drug Data Report) [15], WDI
(World Drug Index) [16], CMC (Comprehensive Medicinal Chemistry) [17], IDdb
(Investigational Drugs database) [18], or PharmaProjects [19] are typical database
systems that provide structural information on ligands together with molecular
target or therapeutic class information.

Because the molecular target information provided within the ligand database
systems contains only the target name, if anything, and does not provide any further
relationships among the targets, the potential of these systems for lead-finding
applications remains limited. Ligands of close homologous receptors are, for
instance, generally accepted as putative starting points in lead-finding programs

5.2  Molecular Information Systems for Targets and Ligands
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for receptors for which no specific ligands are yet known [6, 20]. Therefore, ligand
classification schemes that reflect phylogenetic or other relationships of conserved
molecular recognition should be useful for lead finding. The main purpose of such
a ligand ontology concept should be that ligands of specified levels can easily be
collated to serve as comprehensive reference sets for cheminformatics-based
similarity searches and for library design or compound selection in purchasing
campaigns of target-class-focused collections.

Within this context, while we were in the Combinatorial Chemistry group at
Novartis in 2000, we initiated annotation schemes for ligands of four major target
families of interest [21]. The MDDR01.1 [15] database, which includes target
information for a large number of its ligands, constituted the underlying ligand
dataset. Our ligand–target ontology is based on the classification references
established by the EC [12], GPCRDB [13], NuclearDB [13], and LIGCDB [14]. By
linking MDDR activity keys to the targets of the classification schemes, we were
able to group the MDDR ligands within their macromolecular target classes. In
total, 309 of the 799 activity keys used in MDDR01.1 could be linked to a target,
which allowed annotating 53 211 of the total 113 821 compounds (Figure 5.1).

Linking the leaf nodes of the ligand–target classification tree to the sequence
accession codes (e.g., SWISS-PROT AC) of the precise molecular targets allows
BLAST-type sequence similarity-based identification of the ligands of the next
homologous receptors; for this purpose relating potential ligands to sequences.
The molecular information system can also be used for analysis of corporate HTS
(high-throughput screening) and profiling data, which are a very rich source of
structure–activity data, including large amounts of proprietary data. If one links
each assay to a target node in the classification scheme, it is possible to select all

Figure 5.1  Molecular information system highlighting the GPCR ontology.
The ligand–target classification of each of the four target families considered
is based on the references established by the EC [12], GPCRDB [13],
NuclearDB [13], and LIGCDB [14]. These reference systems use different
classification criteria and allow different numbers of classification levels.
Most of the classifiable compounds (53 211 out of 113 821) are active on
enzymes (28 418) and GPCRs (20 961); substantially fewer LGIC (2941) and
NR (1443) ligands were classifiable. Within the enzymes, hydrolases –
especially peptidases – were previously the most intensively investigated,
followed by oxidoreductases and transferases (the latter class includes the
kinases). The EC naming system, which is based on considerations of
chemical catalysis, is restricted to exactly four levels of hierarchy, resulting in
limitations; for example, it does not discriminate between the different types
of protein tyrosine kinases. The second important group of targets are the
GPCRs for which most structures are active against the peptide-binding or
amine-binding class A GPCRs. The GPCRDB uses an unlimited number
of hierarchy levels, and the scheme distinguishes GPCR subtypes and
subsubtypes. The same is true for the scheme of NuclearDB, which was
built by the same researchers following the same guidelines, based on
consideration of the pharmacological nature of the ligands and the results of
sequence analyses. The LGICs are classified in three different superfamilies
without evolutionary relationship. For further details see [21].
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assays related to a target family. In a second step, all compounds that showed activity
in at least one assay can be used to collect the compounds active against a target
family. These compounds can then be used in assays on related targets or can
serve as reference structures for further in-silico screening or design of target-
class-focused libraries. Both disciplines rely on the possibility of retrieving
comprehensive sets of ligands that are likely to share a conserved molecular
recognition mode. Alternatively, such a system enables previously known active
sets to be subtracted from HTS hit lists, thus providing a strategy for enhancing
the potential for discovery of truly novel chemotypes from HTS campaigns. An
additional value of the molecular information system is that it is a basis for rational
navigation systems for the fast-growing number of datasets generated within the
HTS and profiling factories.

The Novartis molecular information system addresses four major target classes
and will have to be extended to include novel target families in the genome. The
EC classification system should be extended to differentiate subfamilies like the
protein kinases [22–24]. The models of classification for GPCRs and NRs, which
are based on sequence analyses, are possibly best suited for the purpose of
identifying ligands that share commonalities in molecular recognition. The
standardized gene grouping and family resources of the HUGO (Human Genome
Organization) Genome Nomenclature Committee can be a reference for this [25].
The usefulness of a classification is always closely linked to the nature of the desired
application, and several challenges were encountered when the Novartis ligand–
target ontology was first implemented. Regarding the EC system, we and others
recognized that EC families often do not correlate well with structural families,
due to two general problems: first, the EC system may cluster structurally dissimilar
proteins as functionally similar; and second, the EC system may cluster structurally
similar proteins as functionally dissimilar [26, 27]. Furthermore, many multidomain
enzymes are multifunctional and thus belong in multiple classes. Developments
of new classification systems for describing enzyme function at the sequence/
structure and chemistry levels of granularity were thus suggested for use in inferring
functional properties from sequence and structural similarities [27].

The nonstatic nature of annotations and classifications also has to be taken into
account. The 880 human GPCRs, including 342 unique functional nonolfactory
human GPCR sequences, were recently reclassified on the basis of phylogenetic
analysis, resulting in the GRAFS (glutamate, rhodopsin, adhesion, frizzled/taste2,
and secretin families) classification system, which differs in detail from the GPCRDB
classification [28, 29]. Ways of addressing multiple classifications in parallel thus
need to be implemented. InterPro [30], an integrated documentation resource of
protein families, domains, and functional sites promises to become an invaluable
database, in view of the further generalization of protein family data. InterPro was
created in 1999 as a means of amalgamating the major protein signature databases
(PROSITE [31], Pfam [32], PRINTS [33], ProDom [34], SMART [35], and TIGRFAMs
[36]) into a single comprehensive resource that provides results in a single format,
rationalizing the results that would be obtained by searching the member databases
individually. Ongoing InterPro developments, which include integration of PIR
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superfamilies [37] and integration of the structural classifications from SCOP
(structural classification of proteins) [38] and CATH (class, architecture, topology,
homology) [39], will enhance the utility of the database in the field of protein
classification, facilitating retrieval of protein family information, identification of
domain and family relationships, and classification of multidomain proteins.
iProClass is an other integrated database of protein family, function, and structure
information which is comparable to InterPro [40].

The field of ligand–target classification turns out to be quite complex and is related
to the bioinformatics projects on ontologies for proteomics that aim at a systematic
definition of the structure and function of proteins that scales to the genome level
[41, 42]. Because the current ontologies in the fields of protein structure (primary,
secondary, tertiary, and quaternary) and function have been developed separately
and remain largely isolated, a key point remains their integration [41]. The
description of active sites and binding sites in protein structures is here recognized
as one potential connection point that describes the protein function. Classifications
based on molecular interactions [41, 43], in which each protein is associated with a
row vector that consists of the probability of its binding to various ligands – the
central chemogenomics idea – may thus become prominent in the future [41, 44].

It is noteworthy that chemogenomics knowledge-based companies such as Aureus
Pharma [45], Inpharmatica [46], and Jubilant [47] are developing comprehensive
molecular information systems for a variety of target classes, including GPCRs,
kinases, ion channels, and proteases. Their main contribution is to comprehensively
integrate data from patents and selected literature, including 2D structures of the
ligands, target sequence and classification, mechanism of action, structure–activity
data, assay and bibliographic information, together with chemical and biological
search engines. Additional ongoing academic and commercial developments in
the area of ligand–target molecular information systems address targets of adverse
reactions [48, 49], targets implied in ADME mechanisms, and targets that define
metabolic and signaling pathways [47, 50–52]. The Cerep BioPrint [53, 54] and
NIMH Psychoactive Drug Screening Program [55] database are two recent phar-
macoinformatics systems with strong focus on GPCR pharmacology and profile
structure–activity data.

5.3
Bioinformatics Discovery of Target Subfamilies with Conserved Molecular Recognition

The sequence and functional similarities within a gene family usually indicate a
general conserved binding-site architecture and molecular recognition of ligands
[6, 20]. This suggests that, if one member of gene family were able to bind a ligand,
other members with conserved molecular recognition should also be able to bind
compounds with similar chemical structure. Based on this principle, the investi-
gation of sequence similarities through phylogenetic or fingerprint analyses is a
commonly used strategy to classify new orphan members of gene families and to
facilitate identification of the endogenous ligands.

5.3  Bioinformatics Discovery of Target Subfamilies with Conserved Molecular Recognition
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Within the GPCR family, for which several bioinformatics studies have now
comprehensively mined the human genome for potential members [28, 29],
phylogenetic analyses were useful for predicting that sphingosine-1-phosphate, the
endogenous ligand of the EDG1 (endothelial differentiation gene) GPCR, is also
the ligand of the EDG3, EDG5, EDG6, and EDG8 GPCRs [56]. Also, the ligand for
and the pharmacology of the human histamine HHR4 GPCR was predicted through
phylogeny [56]. On the other hand, examples are known for which sequence
homology can be misleading; for example, a receptor originally known as P2Y7

(BLT1) was thought to be a nucleotide receptor based on its similarity to P2Y
purinoceptors, but it was shown to be activated by an unrelated ligand, leukotriene
B4 [57, 58]. This indicates that bioinformatics deorphanization strategies based on
the overall sequence have limitations and that, for ligand pairing of the remaining
140 orphan GPCRs, additional wet experiments are needed [59].

Because, in general, a broad diversity of chemical structures are recognized
endogenously and selectively as substrates, inhibitors, or agonists (e.g., peptide
and protein hormones, nucleosides and nucleotides, and lipids) by individual
members of the same target family, it is expected that conserved molecular
recognition will only exist within subfamilies of each gene family. For successful
lead-finding strategies, it is thus necessary to classify the orphan members of each
target family based on the relatedness of their molecular recognition. Understanding
the principles of molecular recognition in combination with residue- and motif-
based 1D and 3D bioinformatics datamining are becoming essential elements for
implementing successful chemogenomics knowledge-based strategies. Our recent
analysis of monoamine-related GPCRs illustrates such a datamining approach to
searching for orphan GPCRs deposited in the 2001 versions of the SwissProt and
SPTREMBL databases [60]. The conserved aspartate residue D3.32 [61] in TM3
(transmembrane helix three) was demonstrated by 2D mutation experiments (in
which both the ligand and receptor are mutated according to the underlying
interaction hypothesis) to be responsible for the recognition of the charged amino
group of monoamine ligands by their GPCRs [62]. Focusing on the central
importance of the D3.32 residue and using the D3.32X16(DE)R(YFH) motif in TM3
as a sequence signature defining relatedness to the monoamine GPCR subfamily,
we identified 50 human GPCRs for which the sequence comparisons, both for the
7TM (seven transmembrane) domain and for the ligand-binding sites, are presented
in the form of a dendrogram Figures 5.2 and 5.7. The 50 receptors include 7 orphan
GPCRs (two of which are now known to correspond to pseudogenes) and, somewhat
surprisingly, 9 peptide class A GPCRs – somatostatin and opiate receptors – which,
by our definition, are related to the monoamine GPCRs. The dendrogram analysis
of the 7TM domain shows that the peptide and monoamine GPCRs are separated
into two distinct, non-intermixing groups, and that the identified orphan receptors
fall into three groups. GPR14, recently identified as the urotensin receptor [63],
and GPR24, recently identified as the MCH (melanin-concentrating hormone)
receptor [64], are peptide receptor singletons connected to the somatostatin and
opiate node. GPR7 and GPR8 fall into a separate cluster directly connected to the
somatostatin receptors; in 2002, subsequent to our study, both receptors were ligand-
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Figure 5.2  Neighbor-joining tree of sequence similarity in the 7TM
domains of human monoamine-related GPCRs. The receptors are
coded according to the SwissProt nomenclature scheme; orphan
receptors are coded with the prefix ‘GPR’ followed by an index number.
Distance corresponds to percent sequence identity, scale is indicated
by a 5% bar. The tree is rooted by outgrouping the node of the H1 and
muscarinic receptors. The numbers on the branches are the result of
bootstrap analysis (1000 replicates). For further details see [60].
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paired and are, respectively, the NPW (neuropeptide W) and NPB (neuropeptide B)
receptors [59]. GPR_AF021818 (PNR), and the pseudogenes GPR57 and GPR58
form an orphan cluster connected to the monoamine receptors. These three
receptors belong to the trace amine family: after our study, 22 members were
identified in humans and rodents which all conserve the D/E3.32X16(DE)R(YFH)
signature motif [65]. Trace amine receptors have a potential role in psychiatric and
neurological disorders [66].

5.3  Bioinformatics Discovery of Target Subfamilies with Conserved Molecular Recognition
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The challenging hypothesis resulting from this analysis is that all the identified
receptors should be able to recognize ligands of the tertiary amine chemotype known
to be active as synthetic agonists or antagonists to many monoamine GPCRs.
Indications that this hypothesis is valid can be found in the facts that the tertiary
amine chemotype binds to opiate GPCRs (e.g., morphines) and that ergoline [67]
and benzoquinoline [68] ligands bind as antagonists to somatostatin GPCRs, as
was recently discovered at Novartis. Interestingly, the overall architecture of these
somatostatin GPCR ligands is similar to those of previously well explored mono-
amine GPCR ligands, thus indicating that the identified peptide- and monoamine-
binding GPCRs do indeed contain conserved elements for molecular recognition.
This hypothesis is supported by mutagenesis data, demonstrating the role of D3.32
for ionic interaction with the endogenous ligands of the opioid [69], somatostatin
[70, 71], and MCH peptide receptors [72]. The tertiary amine chemotype should
thus also be a valid starting point for lead-finding programs investigating the
identified orphan monoamine-related GPCRs. This can easily be tested by focusing
screening on the ligands of the monoamine-related receptors that were previously
successfully investigated and listed in our molecular information system, together
with similar ligands for them, which were identified in cheminformatics similarity
searches (see Section 5.4).

It is worth emphasizing that sequence similarity searches based on overall
sequence identity can lead to different conclusions than motif-based analyses: for
instance, the two orphan receptors GPR61 and GPR62 were reported to have overall
sequence identities of 30% with the human 5HT6 receptor and were thus classified
as monoamine-like receptors [73]. Strikingly, both of them show mutations of the
D3.32 residue and should therefore belong to a different subfamily. The art thus
lies in identifying those characteristic motifs that define a conserved mode of
molecular recognition. Such motifs can in principle be rationalized only after
detailed knowledge of ligand–receptor interaction is available based on the 3D
structure of the ligand–receptor complex or on mutagenesis experiments.

Noteworthy in this perspective is the recent work done at Pfizer and Biofocus
(see Section 5.5), where, based on analysis of sequence data, mutation data, and
physicochemical properties of the ligands, approaches were outlined for discovering
sequence patterns characteristic of specific ligand classes. Pfizer applied the
approach successfully to the construction of a sequence motif characteristic of
monoamine GPCRs [74].

The sequence motifs identified in this way may be different from the motifs/
fingerprints listed in the Prosite [31], Blocks [75], and especially PRINTS [33, 76]
databases, which use single or multiple conserved regions as consensus signatures
to describe families or subfamilies and which are used as automated diagnostic
tools for inserting new members into the framework of the already classified
members.

A further element of proof of our transposition hypothesis can be recognized in
the recently described characterization of the binding site of CCR2b chemokine
receptor spiropiperidine antagonists (see Figure 5.5), binding to a common
chemokine GPCR motif within the 7TM bundle [77]. Again, these ligands are of
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the tertiary amine chemotype and also bind with high affinity to some monoamine
GPCRs. Surprisingly, the CCR2b receptor lacks the critical aspartate D3.32 in TM3.
Instead, the residue glutamate E7.39 (E291 in the CCR2b) in TM7 that is conserved
among chemokine receptors is responsible for recognition of the tertiary amine
chemotype; residue positions [61] 7.39 and 3.32 are close together and are positioned
on opposite sides of the central binding cavity within the rhodopsin-based models
of class A GPCRs. Chemokine GPCRs can thus, for certain aspects of molecular
recognition, be classified as monoamine-related GPCRs.

Such examples reveal the challenges for designing ligand selectivity during lead
optimization, which should ideally include profiling against all targets with expected
conserved molecular recognition. Mining the human genome for new targets
homologous to previously well-characterized targets, for which the principles of
ligand recognition are well rationalized and for which ligand and SAR information
are abundant, appears highly promising. This of course does not eliminate the
necessary target-validation step.

5.4
Cheminformatics Discovery of Potential Ligands of Target Subfamilies
with Conserved Molecular Recognition

The principle of chemogenomics knowledge-based strategies for ligand identi-
fication is that similar ligands bind to similar targets. The similarity principle is
prominent in medicinal chemistry, although it is well known as the similarity
paradox, i.e., that very minor changes in chemical structure, such as the introduction
of an additional methyl group, can result in total loss of activity [78–82]. The type of
molecular similarity relevant to chemogenomics knowledge-based approaches is
illustrated in Figure 5.3, which shows several monoamine-GPCR ligands and drugs,
which, for a given molecular architecture type, look structurally similar to the
medicinal chemist’s eye and are biologically active on multiple members of this
target family.

Computer-based similarity searching is one core discipline of cheminformatics,
and in the 1990s many molecular descriptors, similarity metrics, and similarity-
ranking methods were developed and are now available in commercial software
packages [82, 84–88]. In the view of chemogenomics, cheminformatics similarity-
searching methods that are able to identify, not only ligands binding to the same
target as the reference ligand(s), but also potential ligands of other homologous
targets for which no ligands are yet known, are essential tools for further exploration
of previously successful target families. Until now, very few studies have investigated
the power of similarity-searching methods on targets different from the reference
target. Similarity-searching methods are now mostly used to identify lead com-
pounds for a target for which a large number of reference compounds are already
known – allowing competitors to find catch-up lead molecules. A very important
concept was introduced in 1999 by researchers at Roche, aiming at similarity
methods able to enable ‘scaffold hopping’, which allow to escape from a patented

5.4  Cheminformatics Discovery of Potential Ligands of Target Subfamilies
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Figure 5.3  Molecular similarities and architectures of known monoamine
GPCR ligands included in the Novartis molecular information system
[60, 83]. Ligands that are the same size as the endogenous ligands are
called ‘simple one-site filling’ ligands here (top row). In addition to this
natural architecture, ligands exist in which two or three such ‘simple’
ligand fragments are joined around a basic positively charged group:
these ligands are called ‘double’ and ‘triple’ ligands (middle and bottom
rows). Exploration of the architectures of known monoamine GPCR
ligands constitutes a direct way of providing evidence for the existence
of three binding sites. The ‘triple’ ligands especially demonstrate the
existence of three binding sites (see Figure 5.6).
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chemical class [89]. Today, several such methods, using pharmacophores [89], feature
trees [90], or reduced graphs [91], that abstract descriptions of the reference and
candidate molecules are available.

Chemogenomics homology-based similarity searching requires molecular
representations that reflect the conserved aspects of molecular recognition between
ligands and their targets. The Similog keys, which we described recently [92], were
designed to meet this and the ‘scaffold-hopping’ requirements. The Similog keys
are counts of atom triplets in which each triplet is characterized by the interatom
graph distances and the types of its atoms. The atom-typing scheme classifies each
atom by its function as an H-bond donor or acceptor and by its electronegativity
and bulkiness. In combination with various distance-averaging methods based on
the Tanimoto coefficient, we showed in retrospective in-silico screening experiments,
which included ligand sets of several target families (GPCRs, NRs, and proteases)
derived from our molecular information system, that the Similog keys perform
better than other conformation-independent molecular representations like the
Unity 2D fingerprints [86], 2D topological descriptors [87], ISIS public key count
[93], or the E-state descriptors (Figure 5.4) [94].

Our analyses showed that similarity searching based on Unity 2D fingerprints
or Similog keys are equally effective in the identification of molecules binding to
the same target as the reference set – the classical application scenario of similarity
searching. However, use of the Similog keys is more effective in identification of
ligands binding to targets homologous to the reference target – the chemogenomics
scenario. We attribute this superiority to the fact that the Similog keys provide a
generalization of the chemical elements and that the keys are counted instead of
merely noting their presence or absence in a binary form. The Similog keys thus
capture the potential points of interactions between the ligands and the target
proteins. The difference in the performance of the distance-averaging methods is
attributed to the fact that the centroid method in particular is able to enhance
commonalities displayed in the pharmacophore representations of the reference
compounds, crystallizing in this manner the main repeated pharmacophore
features. The results obtained suggest that ligands for a new target within a
previously well-explored family with supposed conserved molecular recognition
can be identified by the following three-step procedure: (1) select at least one target
with known ligands that is homologous to the new target – both must belong to the
same subfamily with conserved molecular recognition; (2) combine the known
ligands of the selected target(s) into a reference set; and (3) search candidate ligands
for the new targets by their similarity to the reference set using the Similog method.
This clearly enlarges the scope of similarity searching from the classical application
to a single target to the identification of candidate ligands for whole target families.
Applying homology-based similarity searching, one expects that ligands binding to
the reference target are accumulated preferentially and that, in consequence,
unselective ligand candidates are identified. The method is thus less suitable for
the lead-optimization process, in which target selectivity is one of the main
objectives, but it is most suitably applied early in the lead-finding process. To a first
approximation, the only knowledge required to identify homologous targets with

5.4  Cheminformatics Discovery of Potential Ligands of Target Subfamilies

1239vch05.pmd 23.06.2004, 17:52151



152 5  The Contribution of Molecular Informatics to Chemogenomics

Figure 5.4  Retrospective in-silico screening experiments comparing the retrieval
performance of Similog keys with that of other molecular descriptors in chemo-
genomics homology-based similarity-searching applications. The MDDR01.1
dataset was split randomly into two halves; the first was used to obtain reference
sets and the second as a test set. Enrichment curves showing the number of
recovered hits as a function of the similarity score (rank) of the candidate test set
compared with the reference query set are shown. D2 GPCR ligands were used to
search for: (1) ligands of the other dopamine GPCRs excluding D2 hits (upper
panel); and (2) ligands of the other monoamine GPCRs excluding all dopamine
GPCR hits (lower panel). The two searches illustrate the approximate differences in
retrieval performance for increasing phylogenetic distance. The Similog keys were
compared with other descriptors, including the Unity-2D fingerprints, 2D topo-
logical descriptors, ISIS public key count, and the E-state descriptors. These
descriptors were used in combination with two Tanimoto distance-averaging
methods: 1NN (nearest neighbor) and cent. (centroid). For further details see [92].
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known ligands is the sequence of the target protein; rigorous searches should be
based on a detailed analysis and comparison of the binding-site residues, requiring
knowledge of a 3D structure model.

As a recent successful application of the method within Novartis, we can cite a
search for antagonists to 5HT7 GPCR, which has the 5HT1A receptors as its next
neighbor (see Figures 5.2 and 5.7) for which reference ligands are abundantly
known. Searching with 5HT1A reference compounds by using the Similog centroid
method within a designed tertiary amine combinatorial library (see Section 5.5), we
were able to identify a 10% hit rate (pKB < 5 µM) when only a biological assay with
limited capacity (88 compounds) was available. The hits were arylpiperazines (see
Figure 5.8), which in follow-up studies were also active on other monoamine GPCRs.

Homology-based similarity searching is also invaluable for design of target-family-
focused combinatorial libraries, for compilation of compound-acquisition selections,
and for intelligent structuring of the HTS collection; it is currently being used for
these applications at Novartis. Whether the performance of our method might be
further increased by using data-fusion models based on scoring and rank methods
and a combination of several descriptors simultaneously [95] or by using profile-
scaling methods [96] remains to be evaluated; such methods were, in the classical
scenario, recently shown to increase the similarity-search performance of molecular
fingerprints.

Directly related to the similarity-searching methods are cheminformatics methods
that try to align the chemical and biological spaces based on mapping procedures.
The goal here is to identify which parts (islands) of the chemical space correspond
to a specific target family or therapeutic activity and vice versa. Testing such
approaches is motivated by the observation that, within the different therapeutic
classes of drugs, molecular properties like AlogP, molecular weight, or calculated
molar refractivity show distinct statistical distributions. The average computed AlogP
for antipsychotic drugs is, for instance, one unit higher than that of antihypertensive
drugs [97]. Low-dimensional projections using principal component analysis based
on pharmacophore fingerprints [98, 99] and singular-value decomposition pro-
jections based on MACCS fingerprints, pharmacophore holograms, and topological
descriptors [100, 101] have showed that such mapping is in some cases feasible.
The studies included multiple chemical classes active on different targets not
belonging to the same target family, and revealed, in particular, that points that are
close together on the 2D maps have similar chemical structures. By leaving out the
dimension-reduction aspect, which is necessary for graphical representation and
for eliminating correlations among descriptors, it has been shown that accurate
partitioning of compounds belonging to diverse activity classes is possible in
principle. Further investigation is required to address the question of how well
these methods are suited to differentiation within subfamilies of a given target
class like the class A GPCRs or protein kinases. The recent study of Pirard and
Pickett is encouraging in this respect, showing that BCUT descriptors can be used
for classifying ATP site-directed kinase inhibitors active against five different protein
kinases: three from the serine/threonine family and two from the tyrosine kinase
family [102, 103].

5.4  Cheminformatics Discovery of Potential Ligands of Target Subfamilies
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The use of privileged substructures or molecular master keys, whether target-
class specific or not, is an accepted concept in medicinal chemistry [8, 44, 104,
105]. The approach emphasizes scaffolds that have been shown to be able to provide
ligands for diverse receptors within the known target classes and was, for instance,
successfully used in the design of GPCR antagonists and protease inhibitors
(Figure 5.5).

The design of combinatorial libraries around these master keys has proven to be
a very successful strategy, allowing multiple members of a target family to be
addressed [8, 44, 105, 106]. The development of cheminformatics methods and
procedures enabling the automatic identification and extraction of such privileged
structures is a recently developed discipline. Most of the known privileged structures
were identified empirically (e.g., GPCR antagonists) or were designed with structure-

Figure 5.5  Examples of empirically identified privileged structures
of GPCR ligands. The privileged structures are highlighted. A ligand
pair is shown for each privileged motif. A ‘privileged’ structure does not
always correspond to an exact substructure, as shown for the capped
amino acid and spiropiperidine types [8, 44, 104–106].

N
H

O

N

O

N

O

N

N
H

O

N

N

Cl

N

N

O

O

N

N

N

O

NO

N

O

OH

O

N
N

N NH

N
O

N
H

O

NH2

N
N

N NH

N
H

N
H

N

O

O

O N
H

O

N
H

O

N
H

OH

             RS504393
      α1A / CCR2b antagonist

Diovan
AT1 antagonist

             Merck_2
        GHr agonist

             Meiji Seko
      µ1 agonist / D2 antagonist

             Merck_1
        NK1 antagonist

             Pfizer_1
        CCK antagonist

             Naftopidil
          α1 antagonist

             Servier_1
        NK1 antagonist

1239vch05.pmd 23.06.2004, 17:52154

www.ebook3000.com

http://www.ebook3000.org


155

based and mechanism-based approaches (e.g., protease inhibitors). Automatic
privileged structure identification methods are especially needed in the context of
differentiating frequent HTS hitters and for generating knowledge from HTS data
[107, 108]. The development of fast maximum common subgraph isomorphism
algorithms [109], as implemented for example in the Bioreason HTS data analysis
software, addresses this need and allows the analysis of multiple assays in parallel
[110]. The Leadscope chemical classification system, which uses a hierarchy of
over 27 000 chemical features, based on the building blocks of medicinal chemistry,
can also be used for this purpose [111].

Noteworthy in this perspective is the work by Bemis and Murcko, who developed
a method for decomposing molecules into frameworks, sidechains, and linkers
and analyzed the statistical occurrence of the frameworks within a subset of drugs
listed in the CMC catalog [112]. This analysis revealed that only 32 frameworks
describe the shapes of half the drugs in the CMC set (~5000 compounds) and
resulted in the design of the SHAPES NMR screening library – a limited but diverse
library of small molecules derived from the shapes most commonly found – which
Vertex uses within the lead-finding process [113].

For both similarity-searching and privileged-structure strategies, it was correctly
pointed out that intellectual property considerations can become a capital issue [8].
This stresses again the above-mentioned need for scaffold hopping and bioisostere-
identification methods and also the value of proprietary chemical and biological
data [114–117].

5.5
Knowledge-based Combinatorial Library Design Strategies
within Homogenous Target Subfamilies

Based on the commonly accepted strategy that ligands of closely homologous
receptors are generally accepted as putative starting points in lead-finding programs
for receptors for which no specific ligands are yet known, and based on the premise
that the existence of multiple binding sites and modular ligand architectures –
cross-linking the individual sites – are fundamental to knowledge-based strategies
aiming to transition toward orphan receptor systems, we recently proposed a
chemogenomics knowledge-based ligand-design strategy for lead finding and
combinatorial library design [60, 83]. The strategy is based on integration of both
the deconvolution of known ligands of homologous receptors into their component
fragments and a structural bioinformatics comparison of the binding sites for the
individual ligand fragments. In essence, by analysis of both the ligand architectures
and the structures of the component ‘one-site filling’ fragments of known ligands,
it should be possible, by referring to the locally most directly related and character-
ized receptors in the ligand space, to identify those component ligand fragments,
which, based on binding-site similarities, are potentially best-suited for designing
ligands tailored to the new target receptor. This strategy was presented with respect
to monoamine-related GPCRs, for which positioning analyses in the sequence space

5.5  Knowledge-based Combinatorial Library Design Strategies
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of the 7TM domains of the receptors and in the sequence spaces of the three
previously identified distinct ligand-fragment binding regions of the monoamine
GPCRs were carried out, with the objective of characterizing orphan receptors and
monoamine receptors for which no specific ligands are yet known (see Figure 5.6).

Applied to the 5HT1E and 5HT5 receptors (for which no selective ligands are yet
known – see IUPHAR receptor compendium [1]) and the 5 orphan receptors GPR7,
GPR8, GPR14, GRP24, and GPR_AF021818, which are depicted in Figures 5.2
and 5.7, the two strategies result in different conclusions for ligand design proposals.

Figure 5.6  Three-ligand binding-site models for monoamine-related
GPCRs illustrated by a rhodopsin-based 3D model of the 5HT1A receptor
(left: extracellular view; right: side view). We recently proposed a three-
binding-sites hypothesis for the molecular recognition of ligands by
monoamine GPCRs [60, 83] by combining (1) analyses of the architectures
of known monoamine GPCR ligands (see Figure 5.3); (2) analyses of
molecular models of the ligand–receptor interactions; and (3) structural
bioinformatics analyses of the sequence similarities of the three distinct
binding regions of ‘one-site filling’ ligand fragments within the monoamine
GPCR family. For the 5HT1A receptor, which provided a frame for the
discussion of other, related, ligand–GPCR interactions, mutagenesis studies
map three spatially distinct binding regions, which correspond to the
binding sites of the ‘small, one-site filling’ ligands 5-HT (serotonin: yellow),
propranolol (blue), and 8-OH-DPAT (8-hydroyxy-N,N-dipropylaminotetralin:
green), respectively. All three binding sites are located within the highly
conserved 7TM domain of the receptor and overlap at residue Asp3.32
(D 116) in TM3, which constitutes the key anchor site for basic monoamine
ligands. The three distinct binding sites are also reflected by the archi-
tectures of known high-affinity ligands that crosslink two or three ‘one-site
filling’ fragments around a basic amino group. See Figure 5.3 for chemical
structures; for further details see [60, 83].
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Based on the overall sequence similarity of the 7TM domain of the receptors
(Figure 5.2), known 5HT1F ligands are suggested as potential 5HT1E ligands; known
5HT1 and 5HT7 ligands are suggested as potential 5HT5 ligands; serotonin,
dopamine, and adrenoceptor ligands are suggested as potential GPR_AF021818
ligands; somatostatin and opiate receptor ligands are suggested as potential GPR14
and GPR24 ligands; and somatostatin receptor ligands are suggested as potential
GPR7 and GPR8 ligands. Compared to this, the ‘three binding sites’ hypothesis
localizes the homology to the different binding sites. The following hints are
provided according to inspection of the neighbor-joining trees of the individual
fragment-binding sites depicted in Figure 5.7. For potential 5HT1E ligands, the
5HT1D and 5HT1B ligand fragments are the nearest neighbors in the ‘5HT’ site,
and the 5HT1F ligand fragments are the nearest neighbors for the ‘propranolol’
and ‘8-OH-DPAT’ sites. For potential 5HT5 ligands, the 5HT1A ligand fragments
are the nearest neighbors in the ‘5HT’ site, and 5HT7 ligand fragments are the
nearest neighbors in the ‘propranolol’ and ‘8-OH-DPAT’ sites. For potential GPR7,
GPR8, and GPR24 ligands, the dendrogram analyses indicate no preference for
opiate over somatostatin receptor ligand fragments. Similarly, because of the low
bootstrap values, no further conclusions can be reached regarding preferable
component fragments of potential GPR_AF021818 ligands. For potential GPR14
ligands, monoamine ligand fragments, in general, are suggested at the ‘5HT’ site,
whereas opiate and somatostatin peptide GPCR ligand fragments are the nearest
neighbors in the ‘propranolol’ and ‘8-OH-DPAT’ sites, as observed from the overall
sequence similarity analysis. GPR14 represents a quite interesting local binding-
site similarity pattern. Compared to the predictions based on the strategy of
analyzing the overall sequence similarity of the 7TM domain, the number of starting
points is hence increased and, more importantly, the sequence homology is localized
to the different binding sites.

Within a target subfamily with a presumed conserved ligand-recognition type,
like the conserved Asp3.32 anchor site for the recognition of amine ligands in the
monoamine-related GPCRs analyzed here, the proposed approach is to identify
the next neighbors for each binding site and to accordingly identify the previously
used ligand fragments, which should be recombined on an appropriate scaffold to
yield ligands for a newly investigated target. Databases of site-specific ligand
fragments are the keystones of such a knowledge-based system. Their generation
is, in principle, possible through deconvolution of the known ligands guided by
SAR and by molecular similarity consideration. Given the promiscuity of some
fragments (e.g., symmetric ligands – see Dibozane in Figure 5.3), one has to be
cautious before drawing definitive conclusions about the actual positioning of the
fragments [60, 83]. In the particular example of the design of monoamine-related
GPCR ligands, the general approach might be hampered by the occasional difficulty
of attributing individual ligand fragments to a specific receptor site. Pragmatically,
these limitations to the generation of site-specific ligand fragment databases can
however be approached by pooling fragments into multiple pools and by designing
generic combinatorial libraries of known privileged active fragments around
appropriate scaffolds. This strategy was used at Novartis for designing the TAM

5.5  Knowledge-based Combinatorial Library Design Strategies
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(tertiary amine) combinatorial libraries which, using reductive amination of selected
aldehydes and secondary amines, contributed ~20 000 tertiary amines to the general
HTS collection. Prototype structures of TAM libraries are shown in Figure 5.8.

Researchers at Biofocus have developed the thematic analysis method for
designing focused class A GPCR libraries [118, 119]. Their method, which, like our
approach, is based on the SARAH concept, is more general and systematic. SARs
were analyzed in detail across the whole class A GPCR family, and family–activity
relationships were used to develop a new classification process based on pairing
sequence themes and ligand structural motifs. A sequence theme is a consensus
collection of amino acids within the central binding cavity, and a motif is a specific
structural element binding to such a particular microenvironment of the binding
site. The Biofocus analysis resulted in a compilation of themes and motifs, which
to date are used at Biofocus to generate focused discovery libraries for class A GPCRs
and to increase the lead optimization efficiency for these targets. The individual
Biofocus libraries target subsets of GPCRs, including orphans, that share a
predefined combination of themes consisting of a central dominant theme and
peripheral ancillary themes. The library scaffold is designed so that it complements

Figure 5.7  
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Figure 5.7  Neighbor-joining trees of
the sequence homology of each
binding site for monoamine-related
GPCRs. The underlying sequence
blocks correspond to transmembrane
residues identified within the 6-Å
contact spheres of 5-HT (panel A),
propranolol (panel B) and 8-OH-DPAT
(panel C), respectively, in the rho-
dopsin-based models of the 5-HT1A

receptor–ligand complexes. Details as
in the legend for Figure 5.2.

the central theme and is amenable to the incorporation of a variety of structural
motifs addressing the individual sequence themes. Each library, consisting of
approximately 1000 compounds, can thus be thought of as representing a number
of predefined themes, which are either present or absent in any given receptor –
allowing an appropriateness score to be computed for each receptor through this
kind of fingerprinting. Thematic analysis is also used to aid lead optimization by
analysis of those themes that are involved or not involved in binding a particular
hit molecule and by the exploitation of new combinations of used and unused
themes to increase affinity and selectivity [118, 119].

In both the Novartis and Biofocus approaches, the identification of building blocks
is essential. Several computational approaches to deconvoluting known drugs into
their component fragments exist and are discussed here. Two different approaches
were developed at Glaxo. Lewell et al. [120] developed a method for drug motif-
based diverse monomer selection using clustering and similarity analysis. The
candidate building blocks were first clustered with Jarvis–Patrick clustering, and
then the overall similarity and the substructure similarity of each centroid to 30 000
compounds from the WDI catalogue was calculated; this drug motif knowledge

5.5  Knowledge-based Combinatorial Library Design Strategies
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Figure 5.8  Prototype structures of the Novartis TAM combinatorial
libraries generated through reductive amination of selected aldehydes
and secondary amines. The structures were designed to be similar to
those shown in Figure 5.3, and all three architectures of known mono-
amine GPCR ligands are included. The TAM libraries are being screened
in current GPCR campaigns, and high hit rates are observed especially
for the monoamine-related GPCRs. The library includes many new
combinations of known active fragments and privileged GPCR motifs.
In addition to addressing new receptors, this should allow the discovery
of interesting multireceptor profiles of potential pharmacological
interest.
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was then used for the selection of building blocks. As a follow-up development, the
same group described the RECAP (retrosynthetic combinatorial analysis procedure)
method, a computational technique that fragments molecules based on chemical
knowledge of 11 retrosynthetic steps [121]. Combined with statistical frequency
analysis and applied to databases of biologically active molecules, RECAP allows
the identification of building block fragments compatible with common synthesis
methods and rich in biologically recognized elements. When applied to the WDI
catalogue, the procedure identified privileged motifs for specific therapeutic classes
and resulted in the creation of a WDI fragment knowledge base that stores drug
motifs together with general and class-specific frequency information. The
application to ligand design by recombining RECAP fragments was then later
illustrated by Schneider et al. [122] with the evolutionary de-novo construction of
compounds for several specific targets, but not yet for entire target classes, applying
a dynamic programming algorithm and feature tree representations.

In an approach different from the molecular fragment or structural motif-based
approaches, several groups have developed knowledge-based library design
strategies using neural networks based on molecular descriptors. These approaches
are based on the pioneering work of Sadowski and Kubinyi at BASF and Ajai et al.
at Vertex, who introduced neural network methods for discriminating drug and
nondrug molecules and for designing CNS (central nervous system) active
molecules [123–125]. Since then, several groups have applied neural networks for
the design of broad gene family focused libraries, especially targeting GPCRs and
proteases [126, 127], and more recently, specifically to distinguish family subgroups
like class A monoamine GPCRs and class A peptide-binding GPCRs [128].

5.6
Conclusions

Chemogenomics knowledge-based approaches draw a logical roadmap for the
discovery of targets and lead compounds within the framework of previously well
explored target families for which an abundance of both chemical and biological
knowledge exists. To establish standardized molecular informatics platforms and
real drug discovery ontologies at the genome level, which integrate the relevant
chemical and biological knowledge, is thus being pursued within academic and
industrial drug discovery organizations and informatics-based discovery technology
companies [47, 129, 130]. Fundamental to the success of such knowledge-based
strategies is the question of how broad or narrow the similarity of the binding sites
is locally and globally. Emerging structural bioinformatics methods that aim to
compare the binding sites of the entire protein-structure world will be very important
to this goal and will potentially contribute to the design of selective compounds
[131–134].

One immediately favorable drug-discovery strategy in the post genomic age might
be to identify, by bioinformatics analysis, new targets that are directly related –
having conserved molecular recognition – to previously successfully explored targets

5.6  Conclusions
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and to screen the ligand sets that are similar to the ligands of these targets. These
ligands can be identified by cheminformatics methods and should be abundantly
available within corporate compound archives. Given that, based on a recent analysis
of the target portfolio of the pharmaceutical industry, only 120 proteins are the
targets of today’s successfully marketed drugs [6] and that there are in total about
400–500 protein targets, which have been pharmacologically explored up to now
[6, 9], this appears to be a focused effort.

A now established in-silico technology, which we did not highlight in this chapter,
is HTD (high-throughput docking) for protein structure-based in-silico screening.
Recent developments within the chemogenomics area include the application of
HTD to the evaluation of multiple libraries against multiple targets and the docking
of single compounds against the comprehensive protein structure database [135,
136]. In the context of the GPCR family, a number of HTD studies based on
homology models have been published recently [137, 138].

An important question is related to the more distant targets and to the members
of novel target families, which have not been explored in the past and for which, in
consequence, little or no knowledge exists. This situation is obviously more
challenging, and drug discovery chemistry will probably have to first generate new
structural classes to make the application of chemogenomics knowledge-based
strategies possible also here; HTD, fragment-based de-novo design, and NMR/X-
ray diffraction studies, as well as needle screening approaches, are potential catalysts
to this aim [139–143].
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6
Chemical Kinomics

Bert M. Klebl, Henrik Daub, and György Kéri

6.1
Introduction

This chapter on ‘chemical kinomics’ does not intend to add another ‘omics’ discipline
to a constantly growing family. Rather, chemical kinomics is a discipline of chemical
genomics, reflecting the appreciation of chemical genomics as a truly emerging
direction in the world of drug discovery. Chemical genomics evolved because there
is an urgent need for novel druggable targets and an even more urgent need for
generating novel chemical entities against those targets, with the ultimate goal of
elaborating new treatments for all kinds of diseases. Based on the wealth of
information coming from genomics, chemical genomics tries to exploit the results
from genomics and translate it into efficient drug development. The long-term
goal is to generate a specific small-molecule ligand for every protein encoded by
the genome, whether through combinatorial or organic chemistry or through
natural-product screening. Such a ligand must not only bind to the protein of
interest, but also modulate its biological activity, which usually means to inhibit its
biological function. Only in a few instances do such ligands act through activating
the target. Rationally, these genome-wide ligand–protein interactions represent an
ideal starting point for drug development for any kind of disease. Given good
knowledge of the physicochemical and pharmacological properties, these ligands
are ideal tools for investigating the biological function of unknown proteins. Such
ligands can validate the druggability of a protein of interest.

The human genome includes approximately 32 000 genes [1, 2], which are
subsequently translated into the proteome. The human proteome is estimated to
include from 100 000 to several million different protein molecules [3–5]. The
proteome is much larger than the genome, because single genes can be translated
into different proteins, and distinct proteins can be post-translationally modified
through phosphorylation, glycosylation, ubiquitination, etc. Ideally, the chemical
biology space should cover ≥ 100 000 specific ligands, one specific to each individual
protein. But it is rather unrealistic to assume that ligands can become specific
enough to discriminate between splice variants or even post-translationally modified
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proteins. Therefore, 32 000 specific small-molecule ligands – each one designed
for the products of one particular gene – would serve the ultimate goal of under-
standing the function of every gene by modifying the protein functions by using
these ligands as tools for testing in biological models. Synthesizing 32 000 specific,
selective ligands seems a gigantic task. Reaching the shear number is not so much
a problem [6] as solving the specificity and selectivity issues of the compounds.
Undoubtedly, the pharmaceutical and biotechnology industries have the most
immediate interest in generating ligands that are as specific and selective as possible.
Typically, such ligands are then used as starting points for chemical optimization
in drug discovery programs. Drug development teaches us that the generation of a
specific ligand and its translation into a lead compound is a time-consuming process.
Despite this timing issue in generating selective and specific ligands, the central
goal of chemical genomics is to accelerate the process of drug discovery [7]. Chemical
genomics and chemical biology cannot be understood simply as the workhorse for
generating a chemical toolbox. As was mentioned above, the compounds should
also serve as ideal starting points for medicinal chemistry projects. Since the
generation of such highly specific ligands through directed organic chemistry is a
tremendously laborious task, it is wise to focus on achievable goals. For example, a
target gene family approach is such an achievable goal, which allows keeping the
focus not only on biology, but also on the underlying chemistry. Proteases, G-protein
coupled receptors (GPCRs), nuclear receptors, and protein kinases, for example,
represent such target families [8]. The common feature of the protein kinase family
is their catalytic center, the kinase domain. All kinases accept adenosine triphosphate
(ATP) as a cosubstrate so as to transfer the γ phosphate of ATP to a protein, peptide,
or lipid substrate [9]. The ATP-binding site of kinases has been well described
through numerous crystallization and cocrystallization efforts. In the direct vicinity
of the ATP-binding site, kinases also bear special hydrophobic front and back
pockets. These pockets are ideally suited to bind specifically designed chemical
ligands [10]. The ligands exploit the hydrophobic pockets and the hinge region of
the ATP-binding site to bind mostly in an ATP-competitive manner to the kinase
domains [11]. Experience in drug discovery – especially since the past 10 years –
teaches us that specific ATP-site specific protein kinase inhibitors can be generated,
despite the high amino acid sequence homologies of kinase domains within the
protein kinase family [12]. These ATP-site competitors, like Gefinitib (IressaTM)
and Imatinib (GleevecTM), have made it into the clinic and onto the market [13, 14].
An urgent requirement for generating such a target-to-product success story is a
strong integration between biology and chemistry, as well as their close interaction.
This integrated approach to specialized kinase biology and kinase chemistry is
referred to here as chemical kinomics. Researchers in the field of chemical kinomics
intend to generate as many as possible specific kinase inhibitors and to implement
them as tools in signal-transduction research and as leads for drug discovery.
Subsequently, these leads need to be converted into marketable drugs, thereby
providing help, especially in curing life threatening diseases.
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6.2
Chemical Biology: The Hope

The chemical genomics and biology approaches have been implemented to
accelerate drug discovery. In the pharmaceutical industry, we went through times
of pharmacological profiling, which were then replaced by the paradigm of structure-
based drug design. In the 1990s the advents of high-throughput screening and
combinatorial chemistry peaked, leading to a high degree of automation in screening
and chemistry. But still the number of new chemical entities did not increase
significantly [15]. Just around 2000, the ‘omics’ popularity began in industrial
research, providing companies with an endless list of targets, but no real solutions.
There is a significant amount of criticism that all these ‘omics’ technologies have
not delivered the expected results – new drugs [16]. Undoubtedly, it is still too early
to be overcritical, especially with the more recent developments. The era of chemical
biology and genomics is just now trying to apply these technologies in parallel, to
shorten the duration of drug development and to gain from the resulting synergies.
Clearly, this demands a seamless integration of chemistry, biology, and pharmaco-
logy. Traditionally, research and development in the pharmaceutical industry has
been oriented along the value chain (Figure 6.1 a). A project starts with identifying
and validating a potential target through biological means, which usually takes
~2 years. Within this period, an assay for compound screening is developed and
adapted to high-throughput screening. Screening efforts typically result in a number
of active compounds, which, after inspection and evaluation, turn into hits. Now
medicinal chemistry comes into play and eventually turns these hits into leads.
Further chemical optimization of leads from one or more classes is done with the
intention of increasing the activity to the target. In modern drug development,
lead compounds are not only improved in terms of their activity against the primary
target, but also in terms of their pharmacological and physicochemical properties
[17]. Ultimately, a compound with a balanced profile is nominated as a candidate
and enters preclinical and clinical development. The process from hit to candidate
usually takes approximately 4 to 5 years. In a typical chemical biology approach, all
these activities are brought together in a parallel fashion to accelerate drug
development (Figure 6.1 b) [7, 18].

6.3
Chemical Kinomics: A Target Gene Family Approach in Chemical Biology

This section focuses on the topic of this review – on the chemical genomics approach
within the target family of protein kinases. First, we give a short introduction to the
successful drug development activities in the field of protein kinases. Then, we
describe some standard forward and reverse chemical genomics technologies, again
specifically designed and adjusted for use with kinases.

Chemical genetics is a subdivision of the larger field of chemical genomics.
Orthogonal chemical genetics turned into an important novel discipline in the
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Figure 6.1  The classical pharmaceutical value
chain extrapolated into the era of chemical
biology.
(a) Until recently, drug discovery was rather
linear in terms of both activities and decision
making. In an exploratory phase, a project
team identifies a target and subsequently tries
to validate this target. This process usually
takes about 2 years and also includes the
development of an assay that can be used for
high-throughput screening. The period of
high-throughput screening, hit verification,
hit optimization, lead nomination, and lead
optimization takes on average 4.5 years until
the nomination of a candidate. Preclinical
and clinical development represent precisely
defined steps in drug development and can-
not be condensed much. A drug discovery

Lead 
optimization

Pre-clinical 
development

Clinical 
development

Target
identification

Target
validation

Hit identificat. 
& evaluation

(a)            Classical value chain of the pharmaceutical industry

target to product: 12 – 15 years, 300 – 900 Mio $ US

compound to product – estimated: 8.5 – 11.5 years, costs ??

(b)            Condensed early phases in chemical biology

area of kinase research and is a subdivision of chemical kinomics. Three related
approaches, which now have great impact, are described. Another important
subdivision of chemical kinomics is a kinase-directed, specialized chemical
proteomics technology, the KinaTorTM (see Section 6.3.4). In summary, the discipline
of chemical kinomics is composed of chemical genomics, chemical genetics,
screening, and chemical proteomics technologies. In the following four sections,
we describe technologies as well as their applications.

program takes between 12 and 15 years from
target to product.
(b) In the era of chemical kinomics (biology),
a drug discovery program starts with screening
a profiled and biased library for compounds
active in a biological model for a disease of
interest. The actives are then used for target
identification and validation in a typical
forward chemical genomics approach.
In parallel, hits are nominated from the group
of actives, and chemical optimization is begun,
to generate optimized leads. Ideally, the biased
library consists of lead-like compounds and
allows an efficient, short optimization
program. We can anticipate that this parallel
approach in chemical biology will lead to time
reduction by ~ 3.5 years as compared to the
classical linear approach.
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6.3.1
Protein Kinase Inhibitor History

Protein kinases catalyze the phosphorylation of proteins, peptides, lipids, and sugars
by using ATP, the energy store of the cell, as a phosphate donor:

Protein kinase-catalyzed reactions:

ATP + substrate kinase⎯⎯⎯→  ADP + substrate-P

Scheme 6.1

Until 1995, the family of protein kinases was regarded as undruggable. This was
due to their high degree of sequence homology, identical catalytic mechanisms,
highly identical protein folding topologies, and their common cosubstrate ATP.
This attitude drastically changed when Novartis started to work on Bcr-Abl and its
inhibitor STI571 (CGP57148B, Imatinib, now marketed as GleevecTM) [10, 13] and
SmithKline initiated work on p38 inhibitors like SB203580 [19]. Bcr-Abl is a ‘fused’
mutant of the human tyrosine kinase c-Abl. Unlike c-Abl, the mutant Bcr-Abl is
constitutively active and thus causes cells of a myeloid origin to proliferate, leading
to chronic myeloid leukemia [13]. p38 is a member of the MAP kinase family and
has been reported to be involved in a number of physiological processes such as
cell survival, cell cycle, proliferation, apoptosis, cytoskeletal changes, and gene
expression. Therefore, kinases play a central role in signal transduction in every
kind of cell [20]. As a consequence, kinases are reported to be involved in a plethora
of diseases. Basically, there is no therapeutic indication for which protein kinases
can be excluded as potential targets, at least on the biological side. Genes for 518
kinases were originally discovered in the human genome [9] but, using our in-
house bioinformatics tools, we have identified and cloned 534 protein kinases. In
the past 8 to 9 years, the pharmaceutical industry has experienced an enormous
paradigm shift: kinases are now regarded as druggable. This is mostly due to the
launch of GleevecTM in 2001 for chronic myeloid leukemia [13] and IressaTM, another
small-molecule drug, acting on the EGF receptor tyrosine kinase [14], which was
launched for non small cell lung cancer in 2002. In addition to small-molecule
design, some of the tyrosine kinase receptors, which are accessible from the
extracellular side, have also been used as targets for the development of biologicals
such as trastuzumab. Trastuzumab is a humanized monoclonal antibody against
the receptor tyrosine kinase ErbB2. Trastuzumab is effectively used in certain types
of breast cancers and is marketed as HerceptinTM [21].

As of August 2003, at least 48 small-molecule kinase inhibitors are in va-
rious clinical trials (published in Pharmaprojects: http://www.pjbpubs.co.uk/
pharmaprojects.htm). The R&D spending for small-molecule development is
currently highest for protein kinase based research in the pharmaceutical and
biotech industry [8]. Most of these small-molecule kinase inhibitors are designed
as ATP-site competitors. Today, it is believed that specificity and selectivity can be
achieved for small molecules even within such narrow spaces as highly homologous

6.3  Chemical Kinomics: A Target Gene Family Approach in Chemical Biology
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kinase domains. When protein kinases are addressed as molecular targets in a
drug discovery program, small molecules are the preferred option, since most, if
not all, kinase activities are located inside cells.

6.3.2
Chemical Kinomics: An Amenable Approach

Chemical kinomics implies a focused target gene family approach, dealing with
protein kinases in the field of chemical biology. As mentioned above, the seamless
integration of chemistry and biology is an important prerequisite for accelerating
drug discovery. Focusing on a target class like protein kinases bears many
advantages. When working within a target gene family, we face many commonalities
with respect to biological methods such as purifying proteins, assaying activities,
etc. The same is true in chemistry, especially with a focus on ATP-site competitors.
Chemistry can use a limited number of core structures and differently decorate
them to gain selectivity and specificity. In the following sections, we review several
technologies that represent typical chemical biology/genomics tools. These tools
have been developed especially for protein kinases, too.

6.3.2.1 Examples of Traditional Chemical Genomics Using Kinase Inhibitors
Among others, the biotechnology company Rosetta was a pioneer in applying target-
specific ligands on a genomic scale. A breakthrough for these technologies was
achieved when Hughes and colleagues [22] published their compendium of
expression profiles. They published a strategy for exploiting gene expression profiles
of known and unknown genes, to discern the function of the novel genes. They
demonstrated that the role of novel genes can be functionally discovered by
determining the gene expression profile of a knockout mutant of the gene of interest.
The profile of the knockout strain or cell line is compared to the experimentally
determined gene clusters of transcription profiles of knockouts or perturbations of
known genes. Typically, the profile for a novel gene matches one of these clusters
and therefore suggests and anticipates a role for the gene of interest. This gene
profiling technique can be equally well applied to the analysis of perturbations
caused by treatment with chemical ligands.

An example [22] illustrates how gene expression profiling can be used to assign
a target pathway to a compound of interest. In an effort to identify the unknown
target for the topical anesthetic dyclonine, a transcriptional response most similar
to the knockout of ERG2 in yeast was obtained after treating a wild-type yeast strain
with dyclonine. Indeed, subsequent functional genomics experiments suggested
that yeast Erg2p was a molecular target for dyclonine. Erg2p is the yeast homolog
of the human sigma receptor, which is a neurosteroid-interacting protein that
positively regulates potassium conductance. Thus, a potential mechanism for
dyclonine is that it binds the sigma receptor and inhibits nerve conduction by
reducing the potassium current [22]. Hence, gene expression profiling and
transcriptome analysis represents a way of defining the mode of action of novel
drugs and compounds.
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A similar but less comprehensive approach was published by Gray et al. [23].
They, for the first time, implemented global gene expression profiling for kinase
inhibitors. They determined the expression profiles for 2 different cyclin-dependent
kinase (CDK) inhibitors, flavopiridol and compound 52, a purvalanol B analog.
Since these inhibitors inhibited human and Saccharomyces cerevisiae CDKs equally
well, yeast was used as a living ‘computer’ for understanding gene function.
Importantly, they showed that the inhibitors indeed affect cell cycle genes as well
as phosphate metabolism genes, which are known to be under the control of a
yeast-specific CDK, Pho85p. As expected, the transcriptional profiles for the two
structurally different CDK active-site inhibitors overlapped by only ~50%, suggesting
that the two compounds may affect pathways involving CDKs to different degrees.
The compound-induced profiles were also compared to a transcriptional analysis
of a genetic disruption in one of the yeast CDKs. Again, significant overlap, but
also differences, were observed between the genetic and chemical perturbations.
Thus, this approach demonstrated a useful way of evaluating the selectivity of drug
candidates in identifying proteins whose inhibition might specifically potentiate
the effects of a primary drug. The lack of correspondence in the changes of mRNA
transcript levels resulting from chemical and genetic inactivation underscores the
intrinsic differences in these methods in modulating biological function [23]. On a
genomic level these findings underscore the fact that chemical inactivation of the
target affects only the CDK activity, whereas genetic inactivation affects the entire
protein. There is an important and fundamental difference between applying a
kinase inhibitor to a biological system of interest and using a knockout of a kinase
gene in the same system. This finding has an important effect on classical target
validation strategies. Typically, a gene product is defined as a valid drug target if the
knockout of a gene of interest suppresses a relevant phenotype. In light of the
above findings, it should be emphasized again that it is much more valuable to
achieve effects through the use of a modulatory ligand. Knockouts are a nice add-
on technology, but must not be used as a decision point in chemistry-driven drug
discovery projects.

Another approach was used for the immunosuppressant rapamycin [24, 25].
Rapamycin binds to FKBP12, and this complex inactivates the kinase mTor as well
as its yeast homologs Tor1p and Tor2p. mTor is a member of the phosphatidylinositol
kinase-related kinases. Rapamycin treatment and transcriptional profiling in yeast
were used to determine the role of Tor proteins in glucose activation and nitrogen
discrimination pathways and in the pathways that respond to the diauxic shift [24].
Using epistasis experiments in the presence of chemical ligands (‘chemical
epistasis’) and global expression analyses resulted in the transcriptional program
induced by rapamycin being partitioned among five effectors of the Tor proteins.
Clearly, a striking similarity between shifting yeast to low-quality carbon or nitrogen
sources and treatment with rapamycin was demonstrated. Depending on which
nutrient is limited in quality, the Tor proteins can modulate a given pathway
differentially. Integrating the partition analysis of the transcriptional program of
rapamycin with the biochemical data, a novel architecture of Tor protein signaling
and of the nutrient-response network was proposed [25]. This work is a masterpiece
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in chemical biology/genomics, exploiting a compound to learn and understand
more about biology and cellular physiology.

In the meantime, pioneering transcriptional profiling work has been extended
from yeast to eukaryotes like Caenorhabditis elegans [26], Drosophila melanogaster
[27], and higher eukaryotes like Danio rerio [28], and also to mammalian cells [29].
All the investigations show that it is possible to determine the effects of chemical
ligands on the transcriptional profile. Practical applications of these approaches
include the development of transcriptional profiles and gene-expression com-
pendiums that can be used to predict drug toxicology and to detect drug-related
‘off-target’ effects. There is optimism that the development of cellular gene-
expression fingerprints associated with compounds having known toxicological
properties or mechanisms might lead to the ability to predict in-vivo toxicity of new
compounds in advance of extensive animal toxicological testing [30–32]. This will
be equally applicable to new kinase inhibitors.

6.3.2.2 Forward Chemical Genomics Using a Kinase-biased Compound Library
In this section, we refer to a broadly applicable method, which has been optimized
for the use on kinases.

Our in-house library has been designed by exploiting existing public and
proprietary knowledge in current small-molecule kinase chemistry. It consists of
~8500 ATP-site competitors, composed of more than 85 different chemical scaffolds,
most of which have been described in the scientific literature and in patents,
including patent applications. These kinase-biased inhibitors cover a broad spectrum
of inhibition. The kinase inhibitors can be used in a typical forward chemical
genomics approach [30]. An immediate requirement for a forward chemical
genomics approach is a cell-based assay, ideally a phenotypical assay. These assays
typically resemble a disease of interest on the cellular level. The assay is adapted to
allow compound screening and screening is then performed without knowing the
molecular target [33]. Compounds that elicit biological activity can be pharmaco-
logically profiled or can be used immediately for target identification. Target
identification is a straightforward approach especially within the family of kinases,
since we have implemented a very efficient technology for identifying kinase targets,
called KinaTorTM. KinaTorTM is described in detail in Section 6.3.4.

6.3.2.3 Chemical Validation
This section also describes a kinase-specialized technology that could in theory
have a much broader applicability. The technology was developed as a tool for the
validation of druggable kinase targets in various biological models of relevant
diseases. It resembles a reverse chemical genomics approach [30]. ‘Chemical
validation’ is a tool for proving the druggability and validity of a presumed kinase
target that has been proposed as a target for a given disease through other means.

A fraction of our in-house ~8500 ATP-site competitor compounds have been
profiled in a number of cellular assays for toxicity, solubility, and permeability.
Nontoxic, soluble, permeable compounds have been gathered into a subset of the
main library, which we call the ‘validation library’. The validation library currently
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consists of ~570 compounds. For chemical validation a potential kinase target is
expressed and purified, a cell-free activity assay is developed, and in parallel a cellular
disease model has to be established. The 570 compounds of the validation library
were first tested in a biochemical assay. Ranking the IC50 values of the most potent
inhibitors generated a chemical fingerprint for the kinase of interest. Inhibitors
with IC50s in the single-digit micromolar range or lower are suitable for chemical
validation and subsequent testing in the cellular disease model. Typically, we need
more than 5 different inhibitors, covering at least 3 orders of magnitude of inhibition
with regard to their biochemically determined IC50s. The inhibitors, which have
defined the chemical fingerprint in the cell-free activity assay, are now used in the
cellular assay representing the disease model. If the ranking of the IC50s can be
qualitatively reproduced in the cellular assay, the target is validated through this

Figure 6.2  Chemical validation.
(a) Axxima’s master library consists of 8500
ATP-site competitive small-molecule kinase
inhibitors, and ~570 of these compounds have
been sufficiently profiled in terms of toxicity
(in cellular assays), permeability, and solubility.
These are assembled in the so-called validation
library. Compounds in the validation library
have a purity of > 95% and are available in at
least one-gram quantities.
(b) Compounds from the validation library are
used for chemical fingerprinting. First, these
compounds are screened against a kinase of
interest at a concentration of 10 µM in an

6.3  Chemical Kinomics: A Target Gene Family Approach in Chemical Biology
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in-vitro kinase activity assay. Then the potent
inhibitors are selected and promoted to the
stage of IC50 determination. Inhibitors with
IC50s in the single-digit micromolar range or
below can be used for chemical validation in a
subsequent cellular assay. The graph schema-
tically represents the IC50 values (y axis) for a
number of potent compounds, indicated on
the x axis. The solid line indicates the qualita-
tively matching values in a corresponding
cellular assay, preferably a disease model. The
in-vitro data clearly parallel the cellular data in
this graph, demonstrating that the target kina-
se can be validated via chemical validation.

570 compounds
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chemical fingerprint (Figure 6.2). We should mention that the absolute IC50 values
do not have to match quantitatively. Rather, the chemical fingerprint needs to be
reproduced qualitatively (Figure 6.2 b). We have used the chemical validation
approach successfully for a number of kinase targets, which have further progressed
significantly in our in-house pipeline. Chemical validation might be used also for
other target genes.

6.3.3
Orthogonal Chemical Genetics

The benefits of combining orthogonal chemistry and genetics in drug discovery
have been revealed through several studies in diverse areas of cell biology [34].
Each of the experiments has used the same fundamental approach of first modifying
a small-molecule ligand (to make it ‘orthogonal’), followed by changing the protein
structure in a complementary way to accept the orthogonal ligand. This ‘lock and
key’ approach takes place in a stepwise fashion: first, a small molecule (the ‘key’)
that binds to the protein of interest is modified in a manner designed to eliminate
its ability to bind to its native target. This modified compound is said to be orthogonal
in normal cells, because it can no longer interact with its natural protein target or
with any other target in the cell. Second, the individual protein (the ‘lock’) of interest
is engineered to accept the orthogonal compound. Importantly, the mutation to
the protein must affect only the binding of the orthogonal compound and not
otherwise modify the protein’s function [35]. Pioneering work was done by Hwang
and Miller in 1987 for GTPases [36]. Kevan Shokat and coworkers implemented
orthogonal chemical genetics successfully for protein kinases by introducing analog-
sensitive kinase alleles (ASKA).

6.3.3.1 ASKAs: Analog-sensitive Kinase Alleles
The ASKA technology is based upon the discovery of analog-sensitive kinase alleles
(the locks) and corresponding small-molecule analog compounds (the keys) that
specifically modulate ASKA activity [37]. Unlike other orthogonal chemical genetic
approaches, the ASKA system can be applied even to members of diverse protein
kinase subfamilies [38]. It is highly modular and can be efficiently applied across
the kinase superfamily. The key feature of the ASKA approach is the creation of a
subtle but unique structural distinction between the catalytic domain of one kinase
and all other kinases in the genome. This distinction is achieved by introducing a
mutation in the ATP-binding pocket of the kinase. All kinases have a bulky amino
acid residue at a conserved position in the ATP-binding pocket, the ‘gatekeeper’.
Mutation of the gatekeeper to an alanine or glycine allows access to the deep
hydrophobic pocket. Importantly, this mutation is quiet in terms of kinase function
and activity. This method is widely applicable and does not require 3D structural
information. The gatekeeper is readily apparent from simple amino acid sequence
alignments [38]. Next, a small modular set of functional ATP analogs and potent
inhibitors are synthesized that fit only the engineered kinases Thus. the ASKA
system works efficiently across the kinase superfamily to analyze and validate each
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kinase target. The ASKA technology has multiple applications to the drug discovery
process, including [35].

Identification of direct kinase substrates, facilitating the understanding of target
function in the context of disease-relevant cellular pathways and facilitating assay
development.
Cell-based and in-vivo model systems for pharmacologically relevant target
validation.
Chemical genomic profiling – using microarrays to determine the effects of highly
specific drug-mediated kinase inhibition of gene expression.
Direct coupling of chemical genomic profiling to high-throughput and high-
content drug screens.
Preclinical in-vivo models with reference compounds to establish therapeutic
indices and provide a source of biomarkers.

Shokat and colleagues demonstrated the versatility of the ASKA system by
experimentally identifying novel kinase substrates through the use of functional
ATP analogs. Implementing this technology, they recently determined that hnRNP-
K is a direct substrate of Jnk-2 [39], Dok-1 for v-Src [40], and 181 different substrates
for the S. cerevisiae cyclin-dependent kinase (Cdk1p) [41]. These were demonstrated
to be direct substrates for Cdk1p – a kinase for which few substrates have been
described despite its importance in cell-cycle control. Only 12 proteins from these
181 Cdk1p substrates had been previously described as Cdk1p substrates. In this
study, 695 yeast ORFs were analyzed, allowing the total number of Cdk1p substrates
in yeast to be estimated as greater than 500. Studies like the Cdk1p substrate
identification approach may lead to the discovery of unforeseen regulatory
connections in cell-cycle control. In a recent study, Eblen et al. [42] described direct
substrates of ERK2, which also were identified through the ASKA method. After
initial labeling with a radioactive cyclopentyl ATP analog and identification of the
spots in 2D gels, the procedure was scaled up to detect the immunoprecipitated
substrates by mass spectrometry. The ubiquitin ligase EDD and the nucleoporin
Tpr were identified as two novel substrates in addition to the known substrate
Rsk1. Elucidation of kinase pathways by direct substrate identification is important
for pathway placement and functional annotation of orphan kinases [35] and also
for assay development and screening.

ASKAs not only accept functional ATP analogs as cosubstrates, they are also
inhibited by orthogonal kinase inhibitors, which are highly potent and cell permeable
and show excellent bioavailability and low toxicity in mice. Thus, a specific kinase
can be validated as a drug target by treating ASKAs in cells or whole animals with
the orthogonal inhibitor and studying the genomic, proteomic, cellular, physio-
logical, and/or phenotypic consequences of such inhibition [35]. For thorough
validation of a kinase as a drug target for one or more diseases, homologous
recombination in embryonic stem cells or traditional transgenic approaches (on
kinase knockout backgrounds) have to be used to generate ASKA knockin cell lines
or knockin mice. Thus, the ultimate validation of a kinase of interest can be
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conducted before or in parallel with lead identification and optimization, but well
before entering costly preclinical or clinical development. The ASKA system, in
combination with the orthogonal kinase inhibitor, can be also combined with gene
expression profiling experiments (see Figure 3 in reference [35]). The complete set
of genes that are up- or down-regulated in an inhibitor study represents a
comprehensive genomic blueprint of specific kinase inhibition. This blueprint forms
the basis of an array-based high-content assay for optimizing potency and specificity
in a kinase inhibitor lead series (by comparing the ASKA/orthogonal ligand results
with the lead series, see Figure 4 in reference [35]). We should mention that the
blueprints generated by the ASKA approach are fundamentally different from those
generated by knockdown or knockout technologies, as has been demonstrated in a
rather straightforward analysis using S. cerevisiae. There, the role of Pho85p in a
crucial metabolic pathway was revealed only upon acute chemical inhibition of the
ASKA, and it was missed by pure knockout analysis [43].

Finally, ASKA mice should provide crucial information regarding the therapeutic
index. ASKA-based in-vivo studies will be able to establish mechanism and target-
based efficacy and toxicity for most protein kinases. Such information should prove
useful in the preclinical testing of development candidates, because it will allow
distinction between mechanism (target)-based and compound (off-target)-based
toxicities [35]. At this point, we would like to challenge the scientific community
and express our interest in the development of p38-ASKA mice, to either promote
or discourage the numerous clinical trials of p38 for various indications and to
clarify the associated liver toxicity upon treatment of patients with p38 inhibitors.

6.3.3.2 Cohen’s Inhibitor-insensitive p38 Mutants
The MAP kinase p38 has been reported to play a crucial role in LPS- and TNFα-
mediated inflammatory responses. Inhibition of p38 is supposed to inhibit the
inflammatory response, such as secretion of TNFα and other cytokines. In addition,
p38 has been reported to be involved in a number of other cellular responses, such
as cell survival, cell cycling, proliferation, apoptosis, cytoskeletal changes, and gene
expression. Almost as numerous as its potential cellular roles are the associations
with a number of diseases, including inflammatory diseases like rheumatoid
arthritis, Crohn’s disease, inflammatory bowel diseases in general; cardiac hyper-
trophy; and Alzheimer’s disease, where dysregulation of p38 has been reported to
play a role [44]. SmithKline promoted the development of a p38-specific inhibitor
for inflammation, for diseases such as rheumatoid arthritis and psoriasis. They
generated the prototypical anti-inflammatory compound SB203580, a pyridinyl
imidazole (Figure 6.6 a) and derivatives thereof to inhibit p38α and p38β [19].
SB203580 is a small-molecule ATP-site competitor of p38 [19]. SB203580 was the
first p38 inhibitor under development [19], and SB242235 is its chemical analog,
which has been promoted to the stage of clinical trials. As a consequence of the
pioneering work with SB203580 and p38α, there are now at least 6 different clinical
trials underway, having in common the inhibition of p38 and underscoring the
importance of this kinase and its modulation with a chemical ligand. In the
meantime, SB203580 became commercially available through a number of vendors.
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Cocrystallization of p38α with pyridinyl imadazoles related to SB203580 [45, 46]
pinpointed Thr-106 as being critical to inhibition by SB203580. Thr-106 or the
conserved residue in other kinases was subsequently nominated as the so-called
gatekeeper residue. As predicted, mutation of the gatekeeper to amino acids with
larger sidechains made p38α insensitive to SB203580 [45–47]. By implication, the
insensitivity of other MAP kinase family members to SB203580 was due to amino
acid residues with larger sidechains at this position than the Thr-106 of p38α. Indeed,
mutating these larger amino acids to smaller residues rendered the respective MAP
kinases sensitive to the drug [47–49].

In the following paragraph, we describe the development of the technology, based
on its first example, the kinase p38α.

Essentially, SB203580 and its analog SB202190 have been described more than
2000 times as specific and selective p38α/β inhibitors in the scientific literature.
Some doubts arose with regard to the selectivity of the compound. Subsequently,
the Cohen lab generated a drug-resistant mutant of p38α, p38αT106M,H107P,L108F.
This triple mutant also includes a mutation in the above-described gatekeeper
residue, Thr-106, and no longer binds SB203580. The mutant was reintroduced
into the 293 cell line to generate a stable cell line that allows the inducible expression
of p38αT106M,H107P,L108F. A corresponding stable cell line was generated with wild-
type p38α as a control [50]. They anticipated that the downstream phosphorylation
of bona fide p38α substrates would not be inhibited in the presence of the inhibitor-
insensitive mutant and SB203580, whereas it should be inhibited in the presence
of wild-type p38α and SB203580. This system was used to confirm that MAPKAP-
K2, MSK1, HSP27, and CREB/ATF1 are indeed downstream, although not
necessarily direct substrates of p38α. In contrast, the activation of c-Raf, induced
by SB203580, is independent of the inhibition of p38α and presumably caused by
direct binding of SB203580 to c-Raf itself [50].

This was the first time that a drug-insensitive protein kinase was used for the
purpose of drug target validation. Eyers et al. also discussed the general applicability
to the study of other protein kinases [50], as is described in the next section.

6.3.3.3 Active Inhibitor-insensitive Kinase Mutants (Orthogonal Protein Kinases)
Based on the work done by Shokat and colleagues on ASKAs, the work done in the
Cohen lab, and clinical information coming from the analysis of GleevecTM-
insensitive chronic myeloid leukemia patients [51], we learned that every protein
kinase can be mutated into an active, inhibitor-insensitive mutant. The structural
requirements for inhibitor binding are crucial determinants in designing the
inhibitor-insensitive mutants. Often, changing the gatekeeper residue into a bulkier
residue results in generation of an inhibitor-insensitive mutant (schematically
illustrated in Figure 6.3). Underlying structural information from cocrystallization
experiments facilitates generation of the mutants. In addition, we were also able to
generate inhibitor-insensitive mutants even for kinases for which no structural
information is available. As with the ASKAs, the mutation is quiet in terms of
kinase function and activity. Since we have a large library of relatively specific kinase
inhibitors, this method works efficiently across the entire kinase family. The only
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requirement is a specific kinase inhibitor for a novel kinase target, which is usually
identified through library screening in a biochemical activity assay. Like the ASKA
technology, this method is used for a highly stringent target validation. In contrast
to the ASKA system, inhibitor-insensitive kinases do not need to be integrated into
the genome as transgenes; a simple, efficient transfection method is sufficient.
The active inhibitor-insensitive kinases and the specific inhibitor can be reintroduced
into the cellular model system for a disease of interest. Only if the inhibitor looses
its inhibitory potential in the presence of the kinase mutant, the kinase in question
is also a proper druggable target for the disease of interest.

We have applied this method and initially validated the technology in a model
system employing the EGF receptor (EGF-R) and its specific inhibitors PD153035
[52]. Figure 6.4 a shows the rationale for mutating threonine residue 766 of the
EGF-R to a methionine (EGF-RT766M). As expected, PD153035 very potently inhibits

Figure 6.3  Schematic illustration of the
generation of inhibitor-insensitive kinase
mutants. The interaction of ATP-site
competitors with kinase domains has been
structurally characterized through the so-
called Traxler model [10]. The part of the
inhibitor that corresponds to the adenine
ring binds to the hinge region of the kinase
domain via H bonds. Next to the hinge
region are the hydrophobic back pocket and
the surface-exposed front pocket, which do
not play a role in ATP binding. However,
these pockets are extremely critical deter-
minants in inhibitor binding, since the

so-called gatekeeper is found in the back
pocket. There is also a sugar-binding pocket
and a phosphate-binding region, which do not
have a major influence on inhibitor design.
The gatekeeper and the residues around
it in the back pocket are the important
determinants for high-affinity binding.
ATP-site competitors typically exploit the
steric space in the hydrophobic back pocket.
By mutating a small amino acid in the back
pocket into one with a bulkier residue,
inhibitor binding is abolished, typically
without affecting the specific activity of the
kinase reaction.
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Figure 6.4  Legend see page 182.
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EGF-R tyrosine autophosphorylation and the EGF-RT766M mutant no longer
responds to PD153035 treatment (Figure 6.4 b). It is known that EGF binds to and
activates EGF-R. EGF-R induces phosphorylation of a MAP kinase cascade involving
MEK1 and ERK1/2. Activation of this cascade leads to up-regulation of c-Fos [53].
For the purpose of validating our technology, EGF-R inhibitors like PD153035 can
prove the known role (validity) of EGF-R in the regulation of c-Fos expression
(Figure 6.4 c). Indeed, in the presence of the EGF-RT766M mutation, the expression
of c-Fos is no longer inhibited by specific EGF-R inhibitors. Thus, these active,
inhibitor-insensitive kinase mutants are very potent tools for target validation. The
parallel use of specific chemical ligands and genetic methods provides a maximum
of specificity and accuracy in deciphering the roles of potential targets.

6.3.4
Chemical Proteomics for Kinases: KinaTorTM

KinaTorTM was mentioned in Section 6.3.2.2. as a technological solution for forward
chemical genomics approaches, for identifying the molecular targets of biologically
active kinase inhibitors. The identification of a valid molecular target is necessary
for a subsequent classical target-driven compound optimization program to generate
a clinical candidate. The KinaTorTM technology is straightforward in theory. It relies
on the coupling of specific, selective small-molecule kinase inhibitors via a linker
to a matrix (Figure 6.5) to generate an affinity chromatography material that exploits
the strong binding affinities of specific kinase inhibitors for their molecular targets.

Figure 6.4  Inhibitor-insensitive EGF-R mutants
and their use for target validation. The EGF-R
signaling pathway is well understood. It is
used here to prove the validity of the Axxima
technology.
(a) Thr-766 of EGF-R was selected as a target
for mutation, based on the published
information for the Gleevec- and PD180790-
resistant Bcr-Abl mutants, for which Thr-315
has been described as the critical determinant
for inhibitor binding [53]. Subsequent amino
acid alignment led to the identification of
Thr-766 in EGF-R as a potential residue for
mutagenesis.
(b) EF1.1 –/– fibroblasts derived from EGF-R
knockout mice were a generous gift from M.
Sibilia and E. Wagner (Vienna, Austria).
Retroviral infections of EF1.1 –/– cells,
immunoprecipitations, and experimental
details are described in [54], The upper-left
panel shows inhibition of the wild-type EGF-R
in the presence of increasing concentrations

of PD153035, as measured by tyrosine
autophosphorylation of EGF-R. Both lower
panels represent control loading of the
individual lanes with equal amounts of EGF-R,
as determined with a polyclonal anti-EGFR
antibody. The upper-right panel shows results
for cells expressing EGF-RT766M instead of wild-
type EGF-R.
(c) EF1.1 –/–cells, stably expressing either
EGF-R or EGF-RT766M as described in B, were
treated as outlined in B. Instead of monitoring
EGF-R activity, total cell lysates were prepared
and analyzed for c-Fos protein expression
with a polyclonal anti-c-Fos antibody. c-Fos
expression is induced through the EGF-R/
MAPK cascade. Lane 1 represents a mock-
transfected cell line treated with EGF.
Cell extracts in lanes 2 to 5 and lanes 6 to 9
represent cells transfected with wild-type
EGF-R and EGF-RT766M, respectively.
10 ng mL–1 EGF and 1 µM PD153035 were
added where indicated [54].
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In the past, immobilization of compounds and subsequent affinity chromatography
has been tried at many companies and at universities. So far, with a few exceptions
coming from the field of the CDK inhibitors, purvalanol and paullones [54–56], the
technology has not yet delivered, because the following factors were not considered:

structural aspects of ligand binding to its receptor,
physicochemical properties of the derivative for immobilization,
feasibility of chemical synthesis of the derivatives.

Perhaps the most important points are the adsorption and elution conditions during
the actual affinity chromatography. Cocrystallization of kinase domains with
inhibitors, or at least a good binding model hypothesis, are important sources of
information feeding into the generation of such affinity chromatography materials.
To generate a functional affinity chromatography matrix, the solvent-accessible sites
of the small-molecule inhibitor need to be assessed. Coupling of the linker material
to the kinase inhibitor is ideally achieved through these solvent-accessible sites.
Typically, kinase inhibitors with a known biological activity and one known in-vitro
target are linked to a matrix. The free ligand, the functionalized derivatives, and
the coupled material are routinely checked for activity in an in-vitro kinase assay.

Figure 6.5  Scheme for developing a kinase inhibitor affinity matrix.
Structural information from kinase–inhibitor cocrystals is valuable for
determining the solvent-accessible sites of an inhibitor. The solvent-
accessible site is subsequently functionalized by introducing an
amino group, which is needed for coupling the inhibitor to the linker,
which has been bound to Sepharose beads. For coupling details,
refer to [58]. The length of the spacer is an important parameter for
subsequent affinity chromatography with these matrices.
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Only active compounds are pursued. After coupling to the matrix, immobilized
ligands are then processed in an affinity chromatography approach to identify all
the relevant targets and off-targets that bind to the matrix. Typically, a crude extract
is prepared from a cell line or a relevant tissue. The immobilized kinase inhibitor
with biological activity is incubated under stringent conditions with this extract
(conditions have to be optimized for each ligand) [57]. After this binding step, the
beads are washed and the bound material is eluted either with free ligand or under
denaturing conditions to identify all the bound material. The eluates are applied to
gel electrophoresis. The 16-BAC/SDS/PAGE method is used for preparative gel
electrophoresis [58]. Protein spots are excised, digested with trypsin, and identified
by mass spectrometry. Thus, all qualitatively binding proteins can be identified
(Figure 6.6 b, right). In a subsequent step, all the initially bound kinase and
nonkinases (if any) are cloned, expressed, and purified. In-vitro enzyme assays are
established for every bound protein. Using these in-vitro assays, the affinity of the
free ligand for the various kinases and nonkinases is determined. Thus, quantitative
binding can be determined and even the binding to nonkinases can be verified.

As a typical example and to illustrate the KinaTorTM technology, we immobilized
the p38 inhibitor SB203580 (Figure 6.6 a), which we introduced in Section 6.3.3.2.
In a large number of publications SB203580 and its closely related analog SB202190
have been used as chemical ligands to probe biological effects; that is, the application
of SB203580 to cellular systems or in animals to cause biological responses. These
responses have been assigned solely to the action of p38. But recently we learned
that SB203580 is not exclusively selective for p38α and p38β. It also inhibits another
serine/threonine kinase, GSK3β, to some extent [59]. We immobilized SB203580,
relying on structural information obtained from pyridinyl-imidazole–p38 cocrystals

Figure 6.6  SB203580 KinaTorTM.
(a) Chemical structures of SB203580 and its
amino derivative used for immobilization.
(b) Frozen HeLa cells were lysed and applied
to the immobilized SB203580 material.
16-BAC/SDS/PAGE was performed on the
eluant as described [60]. The protein spots
were excised and subjected to analysis by
mass spectrometry. MALDI spectra were
acquired with a Bruker Ultraflex time-of-flight
(TOF)/TOF mass spectrometer with LIFT
technology and anchor chip targets. Data
analysis was performed with Bruker’s Biotools
and the MASCOT program. The kinase
positions are indicated in the gel. Further
experimental details are in [59]. Kinases known
to bind to SB203580 have black labels, novel
ones have grey labels.
(c) Kinases were identified by mass spectro-
metry as described in B. Active kinases were

purchased or were cloned, expressed, and
purified as described in [59]. The assay
conditions for each single kinase were
established. Subsequently, SB203580 was
tested in in-vitro kinase assays initially at a
concentration of 10 µM. When potent
inhibition occurred, the IC50s for SB203580
were determined (RICK, p38α, GAK, CK1δ:
plot on the left). Kinase activities in the
absence of inhibitors were set to 100%, and
remaining activities at different concentrations
of SB203580 are expressed relative to this
value. Values for p38β and GSK3β were taken
from [61]. Sequence alignments covering the
hydrophobic back pockets [10] are shown on
the right and suggest a similar mode of
binding of SB203580 to the various kinases,
via the so-called gatekeeper (shaded).
For further experimental details, refer to
[59].
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Figure 6.6  Legend see page 184.
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[45, 46]. First we generated an amino group containing the SB203580 derivative,
which has an unchanged activity on p38α in an in-vitro kinase assay. Then a HeLa
cell lysate was prepared and applied to the SB203580 affinity material. Following
the above-described procedure for affinity purification, separation, and identification
(see also the legend for Figure 6.6 b), we have been able to identify at least 7 novel
kinases that bind to the SB203580 matrix (Figure 6.6 b) [58]. As a positive control,
p38α was identified as well. In cell-free in-vitro kinase assays, we demonstrated
that some of these novel interaction partners have a very high affinity for SB203580.
For example, SB203580 is twice as potent as an inhibitor of RICK (RIP2, CARDIAK)
than of p38α (IC50s of 16 nM and 38 nM for RICK and p38α, respectively (Figure
6.6 c)). RICK is a serine/threonine kinase, which has been identified within the
7 novel binders. SB203580 inhibits the serine/threonine kinases GAK and CK1δ
in the same range of potency as for p38α (Figure 6.6 c). These results raise the
question as to the reality of the broadly described biological effects of p38α and
p38β, which were defined as such by simply adding SB203580 to biological model
systems and testing its effects. Typically, SB203580 has been applied at a concentra-
tion of 10 µM to the cellular models. Given a roughly equipotent activity of SB203580
against RICK, GAK, CK1α, CK1δ, and CK1ε, the SB203580-mediated effects in
cells cannot be simply attributed to inhibition of p38. Rather, the combined inhibi-
tion of all these kinases or the inhibition of just one of them could be responsible
for the compound-induced phenotype. In particular for inflammatory processes,
we tend to question the assigned role of p38α, since RICK has also been reported
to play an important role in the innate immune response [57, 60, 61]. Given this
knowledge, the time has come to generate inhibitor-insensitive mutants (see Section
6.3.3.3) of p38α and RICK in order to define the individual roles of each kinase.
The involvement of kinases like GAK, PKNβ, Jak1, CK1α, CK1δ, and CK1ε could
be tested by using inhibitor-insensitive mutants as well, or by using other target-
validation technologies, such as siRNA-mediated suppression of gene transcripts.

In summary, the KinaTorTM technology appears to be extremely potent for
potentially revealing all binding partners of biologically active kinase inhibitors.
Transmembrane domain proteins bind, as well as lipid kinases and other nucleotide-
binding proteins, such as heat-shock proteins and oxidoreductases (unpublished
data). So far, there are no limitations.

A very important and additional aspect of KinaTorTM is its use for lead optimization
in kinase projects. Every pharmaceutical drug development program based on
kinases suffers from the issue of selectivity. So far, the only solution has been to
arbitrarily test lead compounds against as many kinases as possible in the available
biochemical kinase assays. With KinaTorTM, a lead can be immobilized on a matrix
and the binding partners can be determined experimentally as outlined above for
SB203580. Subsequently, the binding partners of KinaTorTM are assembled into a
project-specific selectivity panel. Thus, this panel is not an arbitrarily assembled
collection of available kinase assays, but rather an experimentally determined panel.
Such a project-specific selectivity panel has huge implications for lead optimization,
because the chemistry is now directed in a proper way to optimize for the target of
interest and away from the off-targets, which have been identified through
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KinaTorTM. Typically, we suggest repeating the KinaTorTM process at least one more
time near the end of a lead optimization program.

Applying KinaTorTM in lead optimization bears a further advantage: it is assumed
that lead optimization is not a simple hunt for activity against the molecular target,
but also includes optimization in terms of physicochemical and pharmacological
properties. Thus, using KinaTorTM for compounds in the late lead optimization
stage relies on having a balanced lead compound. It is anticipated that this lead
compound will not be monospecific to one target of interest, but rather will display
a good therapeutic window of inhibition with regard to potential off-targets.
Therefore, it is further anticipated that kinases will be identified that still bind to
the inhibitor matrix. These kinases could very well be of further therapeutic interest
for other indications. Consequently, such a combined application of KinaTorTM to
lead compounds can feed the so-called MasterKey approach [62], exploiting a well
balanced compound class more than once within a target gene family for a number
of different indications. We predict that the combination of KinaTorTM with the
MasterKey approach will significantly help to shorten drug development times in
kinase programs.

6.4
Conclusions

The era of chemical genomics started out in by helping to significantly shorten
drug development times. We are convinced that a radical and seamless integration
of biology and chemistry is absolutely required to allow chemical genomics, or
better, chemical biology to deliver on this promise. Importantly, chemical ligands
per se cannot be regarded as lead compounds just because they can cause biological
responses. A ligand or a biologically active compound usually needs to go through
a number of optimization cycles to become a lead and finally a candidate. Therefore,
chemical biology can aid drug development, but it cannot allow us to abandon
classical medicinal chemistry. Keeping the needs for compound optimization in
mind, we believe that chemical biology is most efficiently implemented within a
target gene family approach, just as described in this article for the family of protein
kinases. By applying technologies like inhibitor-insensitive kinases in combination
with KinaTorTM and the MasterKey approach, we were recently able to shorten drug
development times, especially in the early phases of target identification/validation
and lead optimization. We are looking forward to a period in which many novel
drugs may result from kinase inhibitor projects.

Acknowledgments

We thank all our colleagues at Axxima and Vichem for their support and encourage-
ment. Without their contributions this work would not have been possible. We
gratefully acknowledge the intellectual support of Gerhard Müller and Matthias

6.4  Conclusions

1239vch06.pmd 22.06.2004, 10:04187



188 6  Chemical Kinomics

Stein-Gerlach. Thanks also to Käthe Klebl for all the support. We are thankful for
the financial support from the BMBF and our investors for establishing the chemical
validation and KinaTorTM technologies.

1 E. S. Lander, L. M. Linton, B. Birren,

C. Nusbaum, M. C. Zody, J. Baldwin,

K. Devon, K. Dewar, M. Doyle,

W. Fitz-Hugh et al., Nature 2001, 409,
860–921.

2 J. C. Venter, M. D. Adams, E. W. Myers,

P. W. Li, R. J. Mural, G. G. Sutton,

H. O. Smith, M. Yandell, C. A. Evans,

R. A. Holt et al., Science 2001, 291,
1304−1341.

3 T. Laurell, G. Marko-Varga, Proteomics
2002, 2, 345–351.

4 G. L. Miklos, R. Maleszka, Proteomics
2001, 1, 169–178.

5 D. A. Jeffery, M. Bogyo, Curr. Opin.
Biotech. 2003, 14, 87–95.

6 G. MacBeath, Genome Biol. 2001, 2, 1–6.
7 A. Sehgal, Curr. Med. Chem. 2003, 10,

749–755.
8 A. L. Hopkins, C. R. Groom, Nat. Rev.

Drug Discovery 2002, 1, 727–730.
9 G. Manning, D. B. Whyte,

R. Martinez, T. Hunter, S. Sudar-

sanam, Science 2002, 298, 1912–1934.
10 P. Traxler, G. Bold, E. Buchdunger,

G. Caravatti, P. Furet, P. Manley,

T. O’Reilly, J. Wood, J. Zimmermann,
Med. Res. Rev. 2001, 21, 499–512.

11 P. Cohen, Curr. Opin. Chem. Biol. 1999,
3, 459–465.

12 D. Fabbro, S. Ruetz, E. Buchdunger,

S. W. Cowan-Jacob, G. Fendrich,

J. Liebetanz, J. Mestan, T. O’Reilly,

P. Traxler, B. Chaudhuri, H. Fretz,

J. Zimmermann, T. Meyer, G. Caravatti,

P. Furet, P. W. Manley, Pharm. Thera-
peutics 2002, 93, 79–98.

13 R. Capdeville, E. Buchdunger,

J. Zimmermann, A. Matter, Nat. Rev.
Drug Discov. 2002, 1, 493–502.

14 M. Mushin, J. Graham, P. Kirkpatrick,
Nat. Rev. Drug Discov. 2003, 2, 515–516.

15 G. M. Mine, Annu. Rep. Med. Chem.
2003, 38, 383–396 (see also
http://www.phrma.org/).

16 D. E. Szymkowski, Drug Discovery Today
2003, 8, 157–159.

17 H. Van de Waterbeemd, E. Gifford,
Nat. Rev. Drug Discov. 2003, 2, 192–204.

18 A. Sehgal, Curr. Opin. Drug Discovery
Dev. 2002, 5, 526–531.

19 J. C. Lee, J. T. Laydon,

P. C. McDonnell, T. F. Gallagher,

S. Kumar, D. Green, D. McNulty,

M. J. Blumenthal, J. R. Keys,

S. W. Landvatter, J. E. Strickler,

M. M. McLaughlin, I. R. Siemens,

S. M. Fisher, G. P. Livi, J. R. White,

J. L. Adams, P. R. Young, Nature 1994,
372, 739–746.

20 P. Cohen, Trends Biochem. Sciences 2000,
25, 596–601.

21 K. Mokbel, D. Hassanally, Curr. Med.
Res. Opin. 2001, 17, 51–59.

22 T. R. Hughes, M. J. Marton,

A. R. Jones, C. J. Roberts,

R. Stoughton, C. D. Armour,

H. A. Bennett, E. Coffey, H. Dai,

Y. D. He, M. J. Kidd, A. M. King,

M. R. Meyer, D. Slade, P. Y. Lum,

S. B. Stepaniants, D. D. Shoemaker,

D. Gachotte, K. Chakraburtty,

J. Simon, M. Bard, S. H. Friend, Cell
2000, 102, 109–126.

23 N. S. Gray, L. Wodicka,

A. M. Thunnissen, T. C. Norman,

S. Kwon, F. H. Espinoza, D. O. Morgan,

G. Barnes, S. LeClerc, L. Meijer, S. H.

Kim, D. J. Lockhart, P. G. Schultz,
Science 1998, 281, 533−538.

24 J. S. Hardwick, F. G. Kuruvilla,

J. K. Tong, A. F. Shamji,

S. L. Schreiber, Proc. Natl. Acad. Sci.
USA 1999, 96, 14866–14870.

25 A. F. Shamji, F. G. Kuruvilla,

S. L. Schreiber, Curr. Biol. 2000, 10,
1574–1581.

26 N. Custodia, S. J. Won, A. Novillo,

M. Wieland, C. Li, I. P. Callard,
Ann. N Y Acad. Sci. 2001, 948, 32–42.

References

1239vch06.pmd 22.06.2004, 10:04188

www.ebook3000.com

http://www.ebook3000.org


189

27 G. Le Goff, S. Boundy, P. J. Daborn,

J. L. Yen, L. Sofer, R. Lind,

C. Sabourault, L. Madi-Ravazzi,

R. H. ffrench Constant, Insect
Biochem. Mol. Biol. 2003, 33, 701–708.

28 P. R. Hoyt, M. J. Doktycz, K. L. Beattie,

M. S. Greeley Jr., Ecotoxicology 2003, 12,
469–474.

29 F. W. Frueh, K. C. Hayashibara,

P. O. Brown, J. P. Whitlock Jr., Toxicol.
Lett. 2001, 122, 189–203.

30 F. R. Salemme, Pharmacogenomics 2003,
4, 257–267.

31 L. J. Browne, L. M. Furness,

G. Natsoulis, C. Pearson, K. Jarnagin,
Targets 2002, 1, 59–65.

32 J. E. Staunton, D. K. Slonim,

H. A. Coller, P. Tamayo, M. J. Angelo,

J. Park, U. Scherf, J. K. Lee,

W. O. Reinhold, J. N. Weinstein,

J. P. Mesirov, E. S. Lander, T. R. Golub,
Proc. Natl. Acad. Sci. USA 2001, 98,
10787–10792.

33 G. E. Croston, Trends Biotech. 2002, 20,
110–115.

34 A. C. Bishop, O. Buzko, S. Heyeck-

Dumas, I. Jung, B. Kraybill, Y. Liu,

K. Shah, S. Ulrich, L. Witucki,

F. Yang, C. Zhang, K. M. Shokat,
Annu. Rev. Biophys. Biomol. Struct. 2000,
29, 577–606.

35 K. Shokat, M. Velleca, Drug Discovery
Today 2002, 7, 872–879.

36 Y. W. Hwang, D. L. Miller, J. Biol. Chem.
1987, 262, 13081–13085.

37 A. C. Bishop, O. Buzko, K. M. Shokat,

Trends Cell Biol. 2001, 11, 167–172.
38 A. C. Bishop, J. A. Ubersax, D. T. Petsch,

D. P. Matheos, N. S. Gray, J. Blethrow,

E. Shimizu, J. Z. Tsien, P. G. Schultz,

M. D. Rose, J. L. Wood, D. O. Morgan,

K. M. Shokat, Nature 2000, 407, 395–401.
39 H. Habelhah, K. Shah, L. Huang,

A. L. Burlingame, K. M. Shokat,

Z. Ronai, J. Biol. Chem. 2001, 276,
18090–18095.

40 K. Shah, K. M. Shokat, Chem. Biol.
2002, 9, 35–47.

41 J. A. Ubersax, E. L. Woodbury,

P. N. Quang, M. Paraz, J. D. Blethrow,

K. Shah, K. M. Shokat, D. O. Morgat,
Nature 2003, 425, 859–864.

42 S. T. Eblen, N. V. Kumar, K. Shah,

M. J. Henderson, C. K. W. Watts,

K. M. Shokat, M. J. Weber, J. Biol.
Chem. 2003, 278, 14926–14935.

43 A. S. Carroll, A. C. Bishop,

J. L. DeRisi, K. M. S hokat,

E. K. O’Shea, Proc. Natl. Acad. Sci. USA
2001, 98, 12578–12583.

44 S. Kumar, J. Boehm, J. C. Lee, Nat. Rev.
Drug Discovery 2003, 2, 717–726.

45 K. P. Wilson, P. G. McCaffrey,

K. Hsiao, S. Pazhanisamy, V. Galullo,

G. W. Bemis, M. J. Fitzgibbon,

P. R. Caron, M. A. Murcko, M. S. S. Su,
Chem. Biol. 1997, 4, 423–431.

46 L. Tong, S. Pav, D. M. White, S. Rogers,

K. M. Crane, C. L. Cywin, M. L. Brown,

C. A. Pargellis, Nat. Struct. Biol. 1997, 4,
311–316.

47 P. A. Eyers, M. Craxton, N. Morrice,

P. Cohen, M. Goedert, Chem. Biol.
1998, 5, 321–328.

48 R. J. Gum, M. M. McLaughlin,

S. Kumar, Z. Wang, M. J. Bower,

J. C. Lee, J. L. Adams, G. P. Livi,

E. J. Goldsmith, P. R. Young, J. Biol.
Chem. 1998, 273, 15605–15610.

49 T. Fox, J. T. Coll, X. Xie, P. J. Ford,

U. A. Germann, M. D. Porter,

S. Pahzanisamy, M. A. Fleming,

V. Galullo, M. S. S. Su, K. P. Wilson,
Protein Sci. 1998, 7, 2249–2255.

50 P. A. Eyers, P. van den Ijssel,

R. A. Quinlan, M. Goedert, P. Cohen,
FEBS Letters 1999, 451, 191–196.

51 P. La Rosee, A. S. Corbin, E. P. Stoff-

regen, M. W. Deininger, B. J. Druker,
Cancer Res. 2002, 62, 7149−7153.

52 S. Blencke, A. Ullrich, H. Daub,
J. Biol. Chem. 2003, 278, 15435–15440.

53 D. B. Chen, J. S. Davis, Mol. Cell.
Endocrinol. 2003, 200, 141–154.

54 M. Knockaert, N. Gray, E. Damiens,

Y. T. Chang, P. Grellier, K. Grant,

D. Fergusson, J. Mottram, M. Soete,

J. F. Dubremetz, K. Le Roch,

C. Doerig, P. Schultz, L. Meijer,
Chem. Biol. 2000, 7, 411–422.

55 M. Knockaert, K. Wieking, S. Schmitt,

M. Leost, K. M. Grant, J. C. Mottram,

C. Kunick, L. Meijer, J. Biol. Chem.
2002, 277, 25493–25501.

56 L. M. Schang, A. Bantly, M. Knockaert,

F. Shaheen, L. Meijer, M. H. Malim,

N. S. Gray, P. A. Schaffer, J. Virol. 2002,
76, 7874−7882.

References

1239vch06.pmd 22.06.2004, 10:04189



190 6  Chemical Kinomics

57 K. Godl, J. Wissing, A. Kurtenbach,

P. Habenberger, S. Blencke,

H. Gutbrod, K. Salassidis,

M. Stein-Gerlach, A. Missio,

M. Cotten, H. Daub, Proc. Natl. Acad.
Sci. USA 2003, 100, 15434–15439.

58 H. Daub, S. Blencke,

P. Habenberger, A. Kurtenbach,

J. Dennenmoser, J. Wissing,

A. Ullrich, M. Cotten, J. Virol. 2002,
76, 8124–8137.

59 S. P. Davies, H. Reddy, M. Caivano,

P. Cohen, Biochem. J. 2000, 351, 95–105.
60 A. I. Chin, P. W. Dempsey, K. Bruhn,

J. F. Miller, Y. Xu, G. Cheng, Nature
2002, 416, 190–194.

61 K. Kobayashi, N. Inohara,

L. D. Hernandez, J. E. Galán,

G. Núnez, C. A. Janeway, R. Medzhitov,

R. A. Flavell, Nature 2002, 416, 194–199.
62 G. Müller, Drug Discovery Today 2003, 8,

681–691.

1239vch06.pmd 22.06.2004, 10:04190

www.ebook3000.com

http://www.ebook3000.org


191

7
Structural Aspects of Kinases and Their Inhibitors

Rogier Buijsman

7.1
Introduction

Kinases are pivotal regulators of the signal transduction pathways, thereby
controlling cellular processes like metabolism, transcription, cell cycle progression,
apoptosis, and differentiation. Kinases form by far the largest enzyme family [1]
constituting ~1.7% of the human genome and currently having 518 different family
members. It is now well established that many diseases, like cancer, diabetes, and
rheumatoid arthritis, are modulated by kinases. In this respect it is no surprise
that selective kinase inhibition has become an important goal for the pharmaceutical
industry. Currently, over 20% of all research programs at major pharmaceutical
companies are aimed at kinases. These research efforts have resulted in the recent
approval of two new kinase inhibitors, Gleevec (Imatinib) and Iressa (Gefitinib)
(Figure 7.1). Moreover, approximately 40 selective inhibitors have entered clinical
trials, and new patent applications are published almost every day (Table 7.1) [2].

The advent of high-throughput technologies in structural biology provided a
plethora of kinase X-ray structures. The structural information embedded in these
structures gave profound insight into kinases at a molecular level and facilitated
the design of potent and selective inhibitors [3]. In this chapter current insights
into protein kinases as well as their small-molecule inhibitors are discussed
according to their reported X-ray structures.

The first section describes the structure of kinases in general, the specific domains
as well as the activation mechanism, and is followed by a section on the different
kinase inhibition principles. In the next section, a detailed description of the
structural features of all kinase inhibitors currently cocrystallized with their target
kinase is given. Finally, some structural features that determine the selectivity of
several kinase inhibitors are addressed.

The aim of this review is to give the reader a brief overview of the exciting research
field of protein kinases. It is, however, by no means a comprehensive overview, and
I would like to invite motivated readers to read one of the many excellent reviews
on this research topic [4].
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Figure 7.1  Structures of kinase inhibitors currently on the market or in phase 3 clinical trials.
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Table 7.1  Presentation of all kinase projects currently in clinical trials
(taken from http://www.iddb3.com).

Status Company Drug Disease Kinase target 

Launched Novartis Gleevec (STI-571, 
Imantinib) 

Cancer Abl (cKit, PDGF) 

Launched AstraZeneca Iressa (ZD1839, 
Gefinitib) 

Cancer EGFr 

Phase 3 Novartis, 
Schering AG 

CPG-79787 
(Vatalanib) 

Cancer VEGF 

Phase 3 OSI, Roche, 
Genentech 

Erlotinib  
(OSI-774, Tarceva) 

Cancer EGFr 

Phase 3 Lundbeck, 
Cephalon, Kyowa 

CEP-1347 Alzheimer, 
Parkinson 

PKC, JNK, MLK 

Phase 3 Eli Lilly LY-333531 
(Ruboxistaurin) 

Cancer PKC-β 

Phase 2/3 Boehringer 
Ingelheim 

BIRB-796 
(Doramapimod) 

Inflammation, RA, 
Psoriasis, Crohn 

p38 

Phase 3 Bayer/Onyx BAY-43-9006 Cancer c-Raf 

Phase 2 Pfizer PD-184352 
(CI-1040) 

Cancer MEK-1 

Phase 2 Scios/J&J SCIO-469 RA, Crohn p38 

Phase 2 Pfizer CI-1033 
(PD-183805, 
Canertinib) 

Cancer EGFr 

Phase 2 GSK GW-572016 
(Lapatinib) 

Cancer EGFr, ErbB-2β 

Phase 2 Wyeth EKB-569 Cancer EGFr, ErbB-2β 

Phase 2 Aventis ZD-6474 Cancer VEGF, Kdr, EGFr 

Phase 2 Kyowa UCN-01 Cancer CDK, Chk1, PKC 

Phase 2 Cephalon CEP-701 Cancer Flt-3 

Phase 2 Novartis PKC-412 
(Midostaurin) 

Cancer PKC 

Phase 2 Pfizer SU-6668 Cancer FGF, VEGF, PDGF

Phase 2 Pfizer SU-11248 Cancer PDGF 

Phase 2 Aventis Alvocidib Cancer CDK 

Phase 2 Cyclacel CYC-202 Cancer CDK 

Phase 2a) Schering, Asahi ZK-258594 (Fasudil) Angina Rock 

Phase 2 Vertex/Kissei VX-702 Inflammation, 
Cardiovascular 
Disease 

p38 

Phase 2 Eli Lilly LY-317615 Cancer PKCβ 

Phase 2 Rigel R-112 Allergic rhinitis, 
Asthma 

Syk 

Phase 2 Pfizer SC-80036 RA p38 

Phase 2 Pfizer, Agouron AG-13736 Cancer VEGF, PDGF 
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7.2
Structural Aspects of Kinases

7.2.1
The General Structure of an Activated Kinase

In 1991 the structure of PKA was determined [5], which provided a complete view
of the 3D arrangement of amino acids that constitute the protein kinase domain.
The rapid growth of X-ray data on many other kinases that followed revealed that
the folding topology of protein kinases is extremely well conserved. Protein kinases
are folded into two subdomains or lobes: (1) the N-terminal lobe, which is composed
of a five-stranded β sheet and one α helix (C helix) and (2) the C-terminal lobe,
which is larger and predominantly helical (Figure 7.2) [6]. The two lobes are
connected via a hinge domain, which allows rotation of the two lobes. A comparison
between active and inactive CDK2 in complex with indirubin-5-sulfonate showed
that the N lobe rotates by ~5° with respect to the C lobe upon activation [7]. The
hinge domain is also involved in the binding of ATP, forming two hydrogen bonds.
The first hydrogen bond is formed between the backbone carbonyl of Glu-81(CDK2
numbering [8]) and the N6 of ATP, and second between the backbone NH of Leu-
83 and the N1 of ATP (Figure 7.3).

a) Fasudil is marketed in Japan.

Table 7.1  (continued)

Status Company Drug Disease Kinase target 

Phase 1 BMS BMS-387032 Cancer CDK2 

Phase 1 Pfizer CP-547632 Cancer VEGF 

Phase 1 Roche Ro-320-1195 RA, inflammation p38 

Phase 1 Pfizer CP-724714 Cancer ErbB2, HER2 

Phase 1 Millenium MLN-518 Cancer Flt-3 

Phase 1 Novartis AEE-788 Cancer EGFr, ErbB-2β, 
VEGF 

Phase 1 Pfizer CP-690550 Psoriasis, 
Transplantation 

JAK-3 

Phase 1 Celgene CC-401 Immune Disorder, 
Transplantation 

JNK 

Phase 1 Bayer BAY-57-9352 Cancer Kdr 

Phase 1 Ariad AP-23573 Cancer mTOR 

Phase 1 Roche R-1487 RA NR 

Phase 1 Amgen AMG-548 RA, inflammation p38 

Phase 1 GSK 681323 RA, COPD p38 

Phase 1 Scios/J&J SCIO-323 RA p38 

Phase 1 Astra-Zeneca AZD-2171 Cancer VEGF 

Phase 1 GSK 786034 Cancer VEGF-2 
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Figure 7.2  Folding topology of kinases.

Figure 7.3  Key residue interactions with ATP in the active site of CDK2.

7.2  Structural Aspects of Kinases
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The C helix forms the back wall of the ATP-binding site [9]. It contains a conserved
glutamic acid residue (Glu-52), which is of key importance in the phosphotransfer
process, forming an ion pair with Lys-33 (Figure 7.3). Lys-33, which is buried deep
in the ATP-binding cleft, makes a crucial contact with the α,β-phosphate oxygens,
positioning them so as to facilitate the γ-phosphoryl transfer [4 (i)].

The phosphate-binding loop (or glycine-rich loop) forms the roof of the ATP-
binding site and contains a conserved glycine-rich sequence motif (GXGXφG), where
φ is usually tyrosine or phenylalanine. The glycine residues make the loop very
flexible, thus allowing the ATP-binding site to open and close during catalysis.
Taylor et al. [9] suggested that, during the fast phosphoryl transfer step, the enzyme
is in its closed conformation and opens again during the slower, rate-determining
step to release ADP (Scheme 1).

E + ATP E + ATP + S E + ADP + P E
k2

k-2

k4

k-4

k3

~20 sec-1>500 sec-1

Closed Open

Scheme 7.1  Reaction pathway for catalysis (taken from [9]).
S = substrate peptide, P = phosphopeptide product.

Another very important conserved domain in kinases is the activation loop. This
20–30 amino acid region is positioned between a highly conserved DFG and APE
motif (IDA region, inter DFG–APE region). In its activated state the activation
loop is in an open, extended conformation, which allows substrate binding to the
kinase. The aspartate residue (Asp-145) of the DFG motif interacts with one of the
two magnesium ions in the active site.

The presence of the two magnesium ions, which chelate the β- and γ-phosphate
oxygens, positions the terminal phosphate group and reduces electrostatic repulsion
of the incoming nucleophile [4 (i)].

Several other highly conserved key residues assist in the phosphotransfer catalysis.
Asp-127 is located near the incoming nucleophile and may direct the hydroxyl
function for the attack on the terminal phosphate. Asn-132 interacts with the second
magnesium ion, and Lys-129 forms an ion pair with the terminal phosphate.

Although most of the conserved phosphate-binding residues in the ATP-binding
site are crucial for the catalytic process, they do not contribute much to the free
energy of binding of the ATP kinase, which is nicely reflected in the equipotent
affinity of PKA for ATP, ADP, and adenosine [10].
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7.2.2
Kinase Activation

The conformational changes that occur during the activation of a kinase are
illustrated by four different crystal structures of CDK2 (1HCL [11], 1FIN [12], 1JST
[13], and 1QMZ [14]), each representing a different stage in the activation process.
The activation of CDK2 is triggered by its binding to cyclin-A. The crystal structure
of inactive monomeric CDK2 (stage 1; Figure 7.4) shows the activation loop in its
unphosphorylated state, located in the active-site area. In this conformation the
activation loop prevents binding of ATP and the substrate.

In the absence of cyclin-A, the C helix is twisted and the conserved Glu-51 residue
on its surface faces the solvent and is unable to coordinate with Lys-33, which
instead coordinates with Asp-145. The torsion angles of Phe-146 and Asp-145 in
the DFG motif are typical for an inactive kinase [15] (Table 7.2) and show that the
orientation of Asp-145 is unfit for catalysis.

Figure 7.4  CDK2 in its inactivated form (pdb code: 1HCL).

Table 7.2  Torsion angles of Asp and Phe residues in the conserved DFG loop.

7.2  Structural Aspects of Kinases

 Stage 1 Stage 2 Stage 3 Stage 4 Hck inact.  
(1QCF) 

Lck act.  
(3LCK) 

Asp φ 
Asp ψ 
Phe φ 
Phe ψ 

61.4 
30.4 

–66.4 
137.4 

41.8 
80.5 

–45.5 
25.6 

48.9 
78.8 

–92.2 
30.3 

60.2 
70.4 

–88.6 
22.3 

66.1 
14.5 

–58.7 
126.2 

54.2 
81.3 

–95.0 
22.6 
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Upon binding cyclin-A (stage 2), the C helix rotates around its long axis, swinging
Glu-51 inward and thus enabling it to contact Lys-33. The activation loop, which
seems to be structurally coupled to the C helix, adopts a conformation that is similar
to the activated form of CDK2. In stage three, Thr-160 has been phosphorylated by
a CDK-activating kinase, and the conformation of the activation loop is stabilized
by an ion pair between the phosphorylated Thr-160 and its conserved neighbor
Arg-150. In stage four the substrate is bound to the kinase, which has all its catalytic
residues lined up now for the γ-phosphotransfer (Figure 7.5). Similar activation
mechanisms have been reported for the Src family of kinase and the insulin receptor
kinase (IRK), although the trigger of activation is different [6].

7.3
Kinase Inhibition Principles

7.3.1
Substrate-competitive Inhibitors

The substrate-binding site seems to have obvious advantages over the ATP-binding
site as a target for inhibiting kinase activity. First, substrate-binding inhibitors are
not affected by the high ATP concentration found in cells. Second, the substrate-

Figure 7.5  CyclinA-CDK2 in its activated form (pdb code: 1QMZ).
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binding site of a kinase controls selectivity, whereas the ATP-binding site is highly
conserved throughout all kinase family members.

Substrate-competitive inhibition is a well known strategy for targeting enzymes,
which has been applied successfully in enzyme classes such as the proteases.
Nevertheless, its use for kinase inhibition has met with little success. One of the
reasons is the rather stretched substrate pocket of kinases. Kinases are likely to use
additional binding pockets, which are not located in the immediate environment
of the active site [16, 17]. Therefore, kinases lack the specific hydrophobic pockets
that could serve as targets for peptidomimetics, as occurs with HIV protease or
thrombin.

One of the few examples of substrate-competitive inhibitors is the natural product
Erbstatin (Figure 7.6). The phenolic moiety in Erbstatin is supposed to act as a
tyrosine mimic, and this hypothesis led to the synthesis of Erbstatin [18] analogs
called Tyrphostins. Levitski et al. [19] recently reported that one of their tyrphostins,
AG-538, was selective for IGF-1R over Src and PKB. Promising as this may seem,
the progress after a decade of research in the tyrphostin area has been rather
disappointing.

Another approach toward effective substrate-competitive inhibitors was recently
reported by Hubbard et al. [20]. Linking the known IRS-727 octadecapeptide
substrate to a stable ATP mimic resulted in a combined ATP- and substrate-
competitive inhibitor (compound 1, Figure 7.7) having a Ki of 370 nM for IRK.

Figure 7.6  Structures of Erbstatin and AG-538.
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An obvious drawback of this approach is that it involves large peptide-like molecules,
which are notorious for problems with oral absorption, stability, and cell penetration.

7.3.2
ATP-competitive Inhibitors

The road toward potent, selective ATP-competitive inhibitors is burdened with an
impressive amount of hurdles, and for a long time, finding these inhibitors was
generally considered a mission impossible. The most prominent hurdle in
developing ATP-competitive inhibitors is specificity. Apart from the fact that many
proteins use purine-based cofactors [3], there are 518 kinase family members that
share a highly conserved ATP-binding site. Another puzzling hurdle is potency.
The intracellular concentration of ATP is overwhelming (up to 8 mM), which has a
major impact on the potency of a competitive inhibitor. Concentrations required
for an inhibitor to reach 50% inhibition are typically two to three orders of magnitude
higher than its inhibition constant (Ki) [21].

Against all odds, the pharmaceutical industry began an intensive search for these
‘magic bullets’. Fortunately, production and crystallization of kinases is relatively
easy in comparison to other protein families, and an impressive number of crystal
structures of many kinases and their small-molecule inhibitors has become available
(see Figure 7.16, Section 7.4.1). This wealth of structural information has aided the
design and synthesis of high-affinity ligands for kinases. An in-depth discussion of
these structures is included in Section 7.4.

Today 23 ATP-competitive inhibitors for which structures have been disclosed
are under clinical evaluation (5 in phase 1 clinical trials, 14 in phase 2, 4 in phase 3),
and Iressa was recently approved by the U. S. FDA (see Figure 7.1 and Table 7.1).

Staurosporine analogs (5) and the 4-anilinoquinazolines and closely related
structures (6) are the most represented kinase templates in these trials.

7.3.3
Activation Inhibitors/Allosteric Modulators

The true pearls of kinase inhibition are compounds that prevent activation of kinases
rather than competing with the endogenous cofactor ATP. The first compound
identified as having such a mechanism of action was Gleevec (see Figure 7.1). After
determination of the 3D structure of Abelson kinase (c-ABL) in complex with
Gleevec [22, 23], it became clear that the compound has an extended interaction
with a binding site spatially distinct from the ATP-binding site. Access to this
allosteric binding site is normally impeded by the phenyl moiety of the conserved
DFG motif (DFG-in). Gleevec induces a structural transition that leads to movement
of the Phe-382 residue of the DFG motif toward the ATP-binding site (DFG-out)
(Figure 7.8). Consequently, the activation loop adopts a conformation that mimics
substrate binding to the enzyme and prevents its activation by other kinases.

Conformational restriction of the activation loop clearly comes at the cost of
binding free energy (negative entropy), which is compensated for by the numerous
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van der Waals interactions of Gleevec with c-Abl. Apart from additional hydrophobic
interactions in the allosteric binding region, Gleevec induces a typical [24, 25] con-
formational change in the glycine-rich loop of the Abelson kinase, moving Tyr-253
within van der Waals distance from its pyrimidine core (Figure 7.9). Nevertheless,
the ATP-competitive inhibitor PD-173955 (Figure 7.10) shows greater potency
against c-Abl than does Gleevec, despite the large difference in binding surface area
(1251 Å2 for Gleevec vs. 913 Å2 for PD-173955), indicating that the entropy penalty
due to the conformationally restricted activation loop is indeed considerable [26].

Figure 7.8  Binding of Gleevec to c-Abl (pdb code: 1IEP) and the difference
in activation loop conformation between Gleevec and PD-173955 bound c-Abl.

Figure 7.9  Glycine-rich loop in Gleevec-bound c-Abl.

7.3  Kinase Inhibition Principles
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Figure 7.10  Structures of PD-173955 and BIRB-796.

Figure 7.11  Binding of BIRB-796 to p38 MAP kinase (pdb code: 1KV2).

The unique binding mode of Gleevec with c-Abl is not a stand-alone case,
as shown recently for the p38 MAPK inhibitor BIRB-796 (Doramapimod, see
Figure 7.10). The slow binding kinetics of BIRB-796 indicates that p38 undergoes
a rearrangement upon binding. X-ray studies [27] of BIRB-796 showed that the
pyrazole moiety of this diaryl urea class inhibitor indeed binds in a similar allosteric
binding pocket as Gleevec, which is exposed by a conformational change in the
activation loop (DFG-out, Figure 7.11).

The t-butyl as well as the toluyl group in BIRB-796, which do not have an
equivalent in Gleevec, contribute significantly to the free energy of binding. BIRB-
796 has a dual mechanism of action, inhibiting p38 MAP kinase activity as well as
p38MAP kinase activation by other kinases [28].

The last compound class known to bind allosterically to its target kinase is the
2-(4-iodo-phenylamino)benzhydroxamate esters. CI-1040 (Figure 7.12), which is a
member of this class of inhibitors, has a potent binding to MEK1 and is currently
in phase 2 clinical trials for cancer. An analog of CI-1040 (compound 2, Figure 7.12)
has recently been cocrystallized with MEK1 and ATP [29]. The ternary complex
showed that the inhibitor occupies the same binding site as Gleevec and BIRB-796
and that the activation loop adopts an inactive conformation.
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7.3.4
Irreversible Inhibitors

Irreversible inhibitors have a major advantage over their reversible counterparts in
that their action is sustained after systemic clearance. However, the pharmaceutical
industry usually does not make use of irreversible inhibition principles, because
unspecific binding to proteins other than the target enzyme may lead to considerable
toxicity. Since most of the current cancer therapies are unspecific and very toxic,
the irreversible kinase inhibition principle may well be applied in this research
area, provided that an improved risk/benefit ratio is observed [4e].

The first example of an irreversible inhibitor is the natural product Wortmannin,
which was isolated from Penicillium wortmannii [30]. Wortmannin effectively inhibits
PI3K at low nanomolar concentration and was shown to be specific across a large
panel of kinases [31]. Covalent attachment to PI3K occurs after attack by Lys-883,
which is essential for phosphate transfer (see Section 7.2), at the furan ring of
Wortmannin [32]. Attack at this ring specifically occurs within the catalytic site of
the PI3K kinase and is unaffected by nucleophiles in aqueous solution.

Apart from many hydrophobic interactions, which seem to account for most of
the binding energy of Wortmannin, five possible hydrogen bonds can be observed
in the crystal structure (Figure 7.13). Noteworthy is the formation of a hydrogen
bond between Asp-964 and the enol function of the B ring, which is unchallenged
by desolvation enthalpy prior to binding to the PI3K kinase and therefore contributes
fully to the free energy of binding.

The 6-acrylamido-4-anilinoquinazolines constitute another class of irreversible
inhibitor targeted at the EGFr tyrosine kinase. This type of inhibitor has been derived
from the very potent (6 pM) and selective 4-anilinoquinazolines, e.g., PD-0153035
[4e]. A detailed description of the binding mode of the 4-anilinoquinazolines is
given in Section 7.4.1. The Michael acceptor at the 6-position of the 4-anilino-

Figure 7.12  Structure of CI-1040 and the binding mode of a CI-1040 analog 2 (taken from [29]).
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quinazolines was rationally designed to target a cysteine (Cys-773) residue located
in the ATP-binding site and found exclusively in EGFr kinase. The 6-acrylamido-4-
anilinoquinazolines were unequivocally demonstrated to selectively bind to the
catalytic domain of EGFr and alkylate Cys-773. Today, three compounds of this
class are in clinical trials: CP-724714 (Pfizer, Phase 1), EKB-569 (Wyeth, Phase 2),
and CI-1033 (Canertinib, Pfizer, Phase 2) (Figure 7.14 and Table 7.1).

Figure 7.13  Binding of Wortmannin to PI3K (pdb code: 1E7U).
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Figure 7.14  Structures of PD-153035 and three irreversible inhibitors currently in clinical trials.
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Figure 7.15  Traxler’s binding model for ATP-competitive inhibitors.

7.4
Structural Aspects of Kinase Inhibitors

7.4.1
Kinase Inhibitor Scaffolds

According to Traxler’s binding model [33] for ATP-competitive kinase inhibitors,
there are five distinct subsites (Figure 7.15) within the ATP-binding site that have a
distinct chemical environments and local sequence differences that enable the
medicinal chemist to design potent, specific kinase inhibitors. The five subsites are:

Adenine-binding region (ABR) – all ATP-competitive kinase inhibitors bind in
this hydrophobic region and interact with the hinge domain via hydrogen bonds.
Ribose-binding pocket (RBR) – this region is hydrophilic and is often exploited to
accommodate solubilizing groups. This region is not highly conserved and
contains unique residues, which could be used to direct selectivity (e.g., Cys-773
in EGFr, see Section 7.3.4).
Binding region I (BR-I) – this pocket extends in the direction of the N6 of ATP
and is not involved in binding ATP. This region is not conserved and is used to
improve affinity as well as selectivity. Access to this region is controlled by the so-
called gatekeeper residue (see Section 7.4.2.2).
Binding region II (BR-II) – this region is not accessed by ATP and could be used
to obtain binding affinity and selectivity.
Phosphate-binding region (PBR) – this hydrophilic region is highly solvent-exposed
and seems unimportant for affecting affinity (see Section 7.2.1).

There are currently 82 different X-ray structures [34] deposited in the Protein
Databank, which contain 20 different kinase inhibitor classes and 16 different
kinases (Table 7.3). Figure 7.16 presents each of the 20 different kinase inhibitor
classes and their respective binding modes in the kinase.

7.4  Structural Aspects of Kinase Inhibitors
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Figure 7.16  Binding modes of all known kinase inhibitor classes in their respective kinases.
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Figure 7.16  (continued)

7.4  Structural Aspects of Kinase Inhibitors
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Figure 7.16  (continued)
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Figure 7.16  (continued)

7.4  Structural Aspects of Kinase Inhibitors
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Table 7.3  Available kinase inhibitor classes in the Protein Databank.

No. PDB 
code 

Res. Kinase Species Inhibitor 
class 

IC50 (nM) Ref. 

  1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
 
10 

1A9U
1BL6 
1BL7 
1BMK 
1OUK 
1OZ1 
1PMN 
1PMQ 
1PME 
 
3ERK 

2.5 
2.5 
2.5 
2.4 
2.5 
2.1 
2.2 
2.2 
2 
 
2.1 

p38α 
p38α 
p38α 
p38α 
p38α 
p38α 
JNK3 
JNK3 
ERK2 
 
ERK2 

human 
human 
human 
human 
human 
human 
human 
human 
human 
(mutant) 
rat 

1 
1 
1 
1 
1 
1 
1 
1 
1 
 
1 

48 
160 
19 
25 

0.13 
6 
7.1 
1.6 
0.76 

 
1,800 

35 
35 
35 
35 
36 
37 
38 
38 
39 
 
35 

11 
12 
13 

1DI8 
1DI9 
1M17 

2.2 
2.6 
2.6 

CDK2 
p38α 
EGFr 

human 
human 
human 

2 
2 
2 

1,000 
5,000 

2 

40 
40 
41, 42

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

1E8Z 
1QPD 
1QPJ 
1BYG 
1NVQ 
1NVR 
1NVS 
1AQ1 
1PKD 
1STC 

2.4 
2 
2.2 
2.4 
2 
1.8 
1.8 
2 
2.3 
2.3 

PI3K 
LCK 
LCK 
CSK 
CHK1 
CHK1 
CHK1 
CDK2 
CDK2 
cAPK 

human 
human 
human 
human 
human 
human 
human 
human 
human 
bovine 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

9,000 
40 
40 

> 1,000 
5.6 
7.8 

15 
7 

30 
8* 

43 
44 
44 
45 
46 
46 
46 
47 
46, 48
49 

24 
25 
26 
27 
28 
29 
30 
31 

1H0V
1E1V 
1GZ8 
1H0U 
1H1P
1H1Q 
1H1R 
1H1S 

1.9 
1.95 
1.3 
2 
2.1 
2.5 
2 
2 

CDK3 
CDK2 
CDK2 
CDK2 
CDK2 
CDK2 
CDK2 
CDK2 

human 
human 
human 
human 
human 
human 
human 
human 

4 
4 
4 
4 
4 
4 
4 
4 

35% @ 100 µM    
12,000*   

31% @ 100 µM    
40% @ 100 µM    

12,000 
1,000 
2,300 

6 

50 
51 
50 
50 
52 
52 
52 
52 

32 
33 
34 
35 
36 
37 
38 

1H00 
1H01 
1H06 
1H07 
1H08 
1JSV 
1E1X 

1.6 
1.79 
2.31 
1.85 
1.8 
1.96 
1.85 

CDK2 
CDK2 
CDK2 
CDK2 
CDK2 
CDK2 
CDK2 

human 
human 
human 
human 
human 
human 
human 

5 
5 
5 
5 
5 
5 
5 

38,000 
22,000 
35,000 
3,000 

> 100,000 
2,000* 
1,300 

53 
53 
53 
53 
53 
54 
51 
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Table 7.3  (continued)

7.4  Structural Aspects of Kinase Inhibitors

No. PDB 
code 

Res. Kinase Species Inhibitor 
class 

IC50 (nM) Ref. 

39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

1E9H 
1FVT 
1FVV 
1KE5 
1KE6 
1KE7 
1KE8 
1KE9 
1P2A 
1AGW 
1FGI 
1EH4 

2.5 
2.2 
2.8 
2.2 
2 
2 
2 
2 
2.5 
2.4 
2.5 
2.8 

CDK2 
CDK2 
CDK2 
CDK2 
CDK2 
CDK2 
CDK2 
CDK2 
CDK2 
FGFR1 
FGFR1 
CK1 

human 
human 
human 
human 
human 
human 
human 
human 
human 
human 
human 
fission yeast 

6.1 
6.1 
6.1 
6.1 
6.1 
6.1 
6.1 
6.1 
6.1 
6.1 
6.1 
6.2 

35 
60 
10 

560 
5.6 
8.9 

1,000 
660 
12 

10,000 
20,000 
1,000 

55 
56 
56 
57 
57 
57 
57 
57 
58 
24 
24 
59 

51 
52 
53 

1GIH 
1GII 
1GIJ 

2.8 
2 
2.2 

CDK2 
CDK4 mimic CDK2 
CDK4 mimic CDK2 

human 
human 
human 

7 
7 
7 

96 
250 

1,600 

60 
60 
60 

54 
55 
56 

1OPL 
2FGI 
1M52 

3.4 
2.5 
2.6 

c-Abl 
FGFR1 
c-Abl 

human 
human 
mouse 

8 
8 
8 

1 
29 

1 

61 
62 
23 

57 
58 

1QCF 
1QPE 

2 
2 

HCK 
LCK 

human 
human 

9 
9 

– 
20 

63 
65 

59 
60 

1JVP 
1PMV 

1.53 
2.5 

CDK2 
JNK3 

human 
human 

10 
10 

1,600 
150 

64 
65 

61 1DM2 2.1 CDK2 human 11 70 66 

62 
63 
64 

1E90 
1E8W 
2HCK 

2.7 
2.5 
3 

PI3K 
PI3K 
HCK 

wild boar 
wild boar 
human 

12.1 
12.2 
12.3 

1,800 
3,800 

– 

43 
43 
67 

65 1PMU 2.7 JNK3 human 13 590 65 

66 
67 

1CKP 
1G5S 

2.05 
2.61 

CDK2 
CDK2 

human 
human 

14 
14 

– 
48 

68 
69 

68 1BX6 2.1 cAPK mouse 15 4.7* 70, 71

69 
70 
71 

1FPU 
1OPJ 
1IEP 

2.4 
1.8 
2.1 

c-Abl 
c-Abl 
c-Abl 

mouse 
mouse 
mouse 

16 
16 
16 

400 
38 
38 

72, 75
73, 75
74, 75

72 
73 
74 
75 

1YDR 
1YDS 
1YDT 
2CSN 

2.2 
2.2 
2.3 
2.5 

cAPK 
cAPK 
cAPK 
CK1 

bovine 
bovine 
bovine 
fission yeast 

17 
17 
17 
17 

3,000 
1,200 

48 
8,500* 

76 
76 
76 
77 

76 1E7U 2 PI3K wild boar 18 4.2 43 

77 
78 
79 

1M7Q 
1OVE 
1OUY 

2.4 
2.1 
2.5 

p38α 
p38α 
p38α 

human 
human 
human 

19 
19 
19 

2.6 
4.3 
0.74 

78 
36 
36 
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7.4.2
Selectivity Issues

7.4.2.1 The Selectivity Dogma
As long ago as the 1990s the possibility of selective kinase inhibition was demon-
strated by medicinal chemists at Novartis. This group found that introduction of a
single methyl group (Figure 7.17) changed an unselective PKCα inhibitor into a
potent and selective PDGFR and c-Abl kinase inhibitor [33]. The underlying rationale
for this induced selectivity is a forced change in the preferred conformation of the
phenyl ring resulting in a steric clash with the ATP-binding site of PKCα kinase.
The identification and, especially, the fast approval of Gleevec dispelled the dogmatic
view of the pharmaceutical industry that selective kinase inhibition was impossible
to achieve.

7.4.2.2 The Gatekeeper
As mentioned in Section 7.3.3, Gleevec binds to an extended form of the hydro-
phobic binding region I, access to which is controlled by a so-called ‘gatekeeper’
residue (Thr-315). The importance of this residue is demonstrated in Gleevec-
resistant CML patients, who most commonly have a T315I mutation, thus locking
up the hydrophobic pocket. [79]. By expressing the T315I mutant form of c-Abl
kinase, it was subsequently shown that Gleevec was unable to bind to this mutant
form [80].

Another well explored example of a gatekeeper residue determining selectivity is
the binding of SB-203580 to p38α and p38β. MAP kinases p38α and β both contain
a threonine (Thr-106) as a gatekeeper residue, which exposes the hydrophobic
binding region I to the p-fluorophenyl group of SB-203580 (Figure 7.18 a). Other
related kinases, such as p38γ, p38δ, and the JNK family are unaffected by SB-203580,
because they lack the Thr gatekeeper and have a methionine residue instead blocking
entrance to region I (Figure 7.18 b). The gatekeeper theory is supported by
mutagenesis studies [81], which indicate that sensitivity to SB-203580 is reduced
10 fold with a T106M mutation. Moreover, binding to p38γ,δ and JNK-1 can be
observed by a gatekeeper change to Thr. Selectivity of SB-203580 over other, less
closely related kinases can be anticipated by the nature of their respective gatekeeper

Figure 7.17  Selectivity of Gleevec is due to a single methyl group.
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residues. Lee and coworkers [82] identified a nice correlation between the activity
of SB203580 against a particular kinase and its corresponding gatekeeper residue
(Table 7.4). In several instances, however, the gatekeeper residue is identical to
p38α, and still a low activity is observed for these kinases. Furthermore, one should
be very careful not to overemphasize the effect of the gatekeeper residue. A recent
report [65] on a JNK3 crystal structure together with an analog of SB-203580 (i.e.,
compound 3, Figure 7.19) showed that Met-146 no longer blocks the entrance for
the lipophilic dichlorophenyl moiety and adopts a different conformation, moving
3 Å to the back (Figure 7.19). In this conformation the sulfur atom of Met-146 is
engaged in a favorable [83] contact with the dichlorophenyl ring of the inhibitor.

Table 7.4  Correlation between activity of SB203580 on a kinase and identity of its gatekeeper residue.

Figure 7.18  
a) Binding of SB203580 to P38 Map kinase (pdb code 1A9U).
b) Binding of SB203580 to JNK-3.

7.4  Structural Aspects of Kinase Inhibitors

Kinase Gatekeeper residue SB203580 (IC50, nM) 

p38α 
p38β 
p38γ 
p38δ 
UNK1 
JNK2β1 
JNK2α2 
ERK2 
MEK-1 
CDC2 
PKA 
PKC-β2 
TGF-βI 
TGF-βII 
c-Raf 
MAPKAP-K2 
ZAP-70 
LCK 
EGFr 

Thr 
Thr 
Met 
Met 
Met 
Met 
Met 
Gln 
Met 
Phe 
Met 
Met 
Ser 
Thr 
Thr 
Met 
Met 
Thr 
Thr 

48 
50 

> 10 000 
> 10 000 

~ 5 000 
280 

1 900 
> 100 000 

61 000 
> 50 000 

83 000 
> 50 000 

20 000 
40 000 

360 
> 10 000 
> 20 000 

20 000 
10 000 
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Figure 7.19  Structure of compound 3
and its binding to JNK-3 (pdb code:
1PMQ).

Figure 7.20  Structure of compound 4
and its binding to p38 (pdb code: 1OUY).
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7.4.2.3 Hinge-directed Selectivity
As seen in Section 7.4.1, most kinase inhibitors share a hydrogen bond-acceptor and
-donor pattern complementary to the hinge domain of their target kinase, which is
necessary to avoid repulsion upon interaction. The dihydropyridopyrimidinone class
of p38 MAP kinase inhibitor [78] is unique in this respect, having a carbonyl
hydrogen bond-accepting group that is not complementary to the lower mainchain
carbonyl group of the hinge domain. To avoid repulsion, a peptide flip between Met-
109 and Gly-110 of the hinge domain in p38 occurs, thus allowing formation of two
hydrogen bonds between the mainchain nitrogens of Met-109 and Gly-110 and the
carbonyl group of the inhibitor (compound 4, Figure 7.20). It is known that for this
type of peptide flip to occur without a significant loss of binding energy, the hinge
domain should have an X-Gly motif [84]. Glycine-110 is a residue that is conserved
only in the p38 α,β, and γ isoforms, hence providing a perfect explanation for the
observed selectivity of the dihydropyridopyrimidinone inhibitors for these isoforms.
Constructed mutants of p38α (G110A and G110D) supported this hypothesis,
showing a reduced inhibition by this type of inhibitor [36].
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7.4.2.4 Binding Region II-directed Selectivity
Selective inhibition of the target kinase can also be obtained by addressing binding
region II. The Banyu Tsukuba Research Institute has explored this particular strategy
in their search for selective cyclin-dependent kinase 4 (CDK4) inhibitors [60, 85,
86], which are believed to suppress tumor growth by G1 arrest.

A very elegant de-novo design protocol making use of CDK2 structural infor-
mation enabled them to identify a very potent and selective CDK inhibitor
(compound 5, Figure 7.21). Subsequently, an attempt was made to improve the
selectivity of the compound toward CDK4. By analyzing a sequence alignment of
CDK4 and CDK2, they anticipated that CDK4 could accommodate larger sub-
stituents in the solvent-exposed binding region II, because of a difference in one
residue (Thr-102 in CDK4 vs. Lys-89 in CDK2). Creating a steric repulsion in CDK2
by equipping the inhibitor with an aminochloroindanyl moiety at a suitable position
enormously improved its selectivity toward CDK4 (compound 6, Figure 7.21 and
Table 7.5).

A reversed CDK selectivity profile could be obtained by targeting Lys-89, as
illustrated by the discovery of Purvalanol B, which is a potent and selective CDK2
inhibitor having almost no activity against CDK4 [87]. The crystal structure of
Purvalanol B in CDK2 revealed that Lys-89 makes a strong salt bridge with the
carboxylate moiety of Purvalanol B. This interaction improved the potency towards
CDK2 10 fold and the selectivity towards CDK4 more than 100 fold compared to
Purvalanol A, which lacks the carboxylate function (Table 7.5).
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H
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N

N

N

H

N
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O O

H
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N

O N
H

N

O

H
N

Val-96

Lys-35

Asp-99

BR-II

Phe-93

Thr-102 (CDK4)

Gln-98

Lys-89 (CDK2)

Leu-83

BR-II

Phe-80

Gln-85

Lys-89

Glu-81

5

6

Purvalanol B

-

Figure 7.21  Structures and binding modes of compounds 5 and 6 and Purvalanol B.

Compound CDK2 (nM) CDK 4 (nM) CDK2/CDK4 CDK4/CDK2 

5 
6 
Purvalanol A 
Purvalanol B 

78 
189 
70 
6 

42 
1.6 
850 
> 10 000 

1.9 
118.1 

 
 
12.1 
> 1667 

 

Table 7.5  Activity and selectivity of CDK inhibitors 4 and 5 and Purvalanol A and B.

7.4  Structural Aspects of Kinase Inhibitors

1239vch07.pmd 22.06.2004, 10:08215



216 7  Structural Aspects of Kinases and Their Inhibitors

7.5
Outlook

This has been an exciting decade for researchers in the kinase field. High-throughput
screening of various compound collections and structural insights into the human
‘kinome’ have enabled the development of an impressive repertoire of kinase inhibi-
tors. As a result, a new generation of potent, selective kinase inhibitors is now under
clinical evaluation, which will certainly emphasize the maturity of this research field
and change the view that Gleevec and Iressa are ‘just’ exceptions to the rule.
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8
A Chemical Genomics Approach for Ion Channel Modulators

Karl-Heinz Baringhaus and Gerhard Hessler

8.1
Introduction

Ion channel modulators offer significant therapeutic opportunities in a number of
areas, including arrhythmia, asthma, CNS disorders, coronary heart disease,
hypertension, inflammation, and water retention. New ion channels are constantly
being discovered and characterized in terms of their pharmacology, physiology,
and structure [1]. In addition, more and more selective ion channel modulators are
emerging, upon which drug discovery programs can be initiated.

The physiological effects of ion channels are based on the regulation of ion fluxes
(e.g., K+, Na+, Ca2+, Cl–) across membranes, which affect, for example, osmotic
pressure, nerve signal transmission, and muscle contraction. Ion permeation is
extremely fast (up to 107 ions s–1) and highly selective [1].

Drews et al. [2] classified ion channels as the fourth-most important target class
for drug therapies after receptors, enzymes, and hormones, and a more recent
analysis considered kinases, GPCRs, and cation channels to be the most interesting
target classes for pharmaceutical research [3]. Currently, drugs targeting ion
channels generate over 24 billion dollars in sales per annum.

Appropriate drug targets should meet several criteria, such as known biological
functions, as well as robust assay systems for in vitro characterization and testing.
Furthermore, they need to be accessible to low molecular weight compounds in
vivo. Ion channels meet most of these ‘druggability’ criteria and can be viewed as
suitable targets for small molecule drugs [3].

Potassium (K+) ion channels, for example, are recognized as critical regulators
of cellular activities and are linked to several disease indications, including
ventricular arrhythmias, long QT syndrome, and atrial fibrillation, as well as to
insulin secretion and T-cell activation [4]. The long QT syndrome, for instance, is
associated with an inhibition of the hERG channel in the heart. hERG inhibition
represents an important safety consideration in drug discovery. Due to their hERG
blocking properties and subsequent QT interval prolongation, several diverse drugs
such as Terfenadine, Cisapride, and Astemizole have been withdrawn from the
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market [5]. In comparison, the voltage-gated Kv1.3 channel is of interest in
therapeutic immune modulation in multiple sclerosis and other T-cell mediated
autoimmune diseases, and Ca2+-activated potassium channels are of interest for
reducing hyperactive bladder by hyperpolarization of the smooth muscle in the
bladder.

Calcium-channel blockers are used for treating cardiac arrhythmia and pulmonary
hypertension and for prevention of reperfusion injury. Sodium channels have been
linked to epilepsy and hyperkalemic periodic paralysis (Table 8.1).

Recently approved ion channel modulators include, for example, Nateglinide
and Nimodipine. Nateglinide was approved in December 2000 as a blood glucose
lowering agent. Nateglinide depolarizes pancreatic β cells by blocking the ATP-
sensitive potassium (KATP) channel, whereby calcium channels are opened,
resulting in calcium influx and insulin secretion. The extent of insulin release is
glucose-dependent and decreases at low glucose levels. Nateglinide is highly tissue
selective with low affinity for heart and muscle.

Nimodipine was approved in August 2000 for the improvement of neurological
outcome by reducing the incidence and severity of ischemic deficits in patients
with subarachnoid hemorrhage.

The sodium-channel inhibitor Amiloride is used for the treatment of chronic
bronchitis, and the most frequently used anesthetic drug, Lidocain, inhibits voltage-
gated sodium-channel α subunits, which mediate the pathophysiology of pain.

Despite their remarkable physiological value, ion channels are still an unexploited
therapeutic target class, especially in comparison to G-protein coupled receptors.
Hence, lead finding and lead optimization programs for ion channel modulators
are becoming more and more interesting. As ion channels are strongly related to
each other, a systematic exploration of this target family appears to be a promising
way to accelerate drug discovery [6]. Chemical genomics refers to such systematic
and in-depth exploration of a target family and fosters a knowledge-driven drug
design approach [7]. This method is especially feasible for ion channel modulators,
since considerable knowledge of pharmaceutically active structural classes and
structure–activity relationships exists. In this chapter we summarize our current

Channel Disease 

Calcium channels Arrhythmia, diabetes, epilepsy, hypertension, migraine, stroke 

Chloride channels Cystic fibrosis, myotonia, muscoviscidos 

Potassium channels Arrhythmia, asthma, blood pressure, cardiac ischemia, cell 
proliferation, diabetes, epilepsy, cancer, immune suppression 

Sodium channels Epilepsy, migraine, myotonia, pain, stroke 

Ligand-gated ion channels Allergy, asthma, epilepsy, gastroesophageal reflux, 
inflammation, ischemia, learning and memory, migraine, 
neurodegenerative diseases, stroke 

 

Table 8.1  Pathophysiological conditions related to ion channels.
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chemical genomics knowledge-based strategies for drug discovery of ion channel
modulators. This includes structural information about ion channels, as well as
lead-finding strategies in this field. The impact of this strategy is outlined by several
successful examples.

We consider the highest impact of this strategy to be in lead finding, although
such a target family-related approach offers further obvious advantages in the field
of assay development, HTS technology, and compound optimization. In particular,
the selectivity of ion channel modulators can be addressed by appropriate profiling
of these compounds and by building channel-specific models applicable to lead
optimization.

8.2
Structural Information on Ion Channels: Ion Channel Families

Ion channels form a large, diverse family of membrane proteins that can be grouped
according to various criteria, such as the gating behavior or the ion selectivity, as
shown in Table 8.2.

Classification according to such a scheme is not always simple, since ligand-
gated channels like the NMDA-activated ion channel may show voltage dependence,
and, on the other hand voltage-gated channels have ligand-binding sites [1]. Voltage-
gated sodium channels can be activated by drugs like Veratridine, whereas the
MaxiK channel is gated by calcium ions [1].

The classification of ion channels by their topology is exemplified for potassium
channels in Figure 8.1 [1]. Potassium channels can be classified into 2TM/P
channels, which contain two transmembrane helices (TM) with one P loop (P)
between them, 6TM/P channels, 7TM/P channels, 8TM/2P channels, and 4TM/2P
channels. The 4TM/2P family is called leakage channels and is targeted by numerous
anesthetics [8].

The 6TM/P channel family contains six transmembrane helices, labeled S1 to
S6. The S4 helix contains four to seven positively charged amino acids, which are
responsible for sensing the membrane potential. Therefore, the S4 helix is called
the voltage sensor. The S5 and S6 helices form the ion-conducting pore by
tetramerization.

Gating Ion selectivity 

Voltage Na+ 

Ligand Ca2+ 

Mechanical K+ 

Thermal Cl– 

 any ion, any cation, any monovalent cation 

 

Table 8.2  Classification schemes for ion channels.

1239vch08.pmd 06.06.2004, 14:08223



224 8  A Chemical Genomics Approach for Ion Channel Modulators

A number of different X-ray structures of bacterial potassium channels reveal
the detailed atomic picture of the pore-forming part, helices S5 and S6 [9]. KcsA,
which is crystallized in the closed conformation, has an overall structure similar to
an inverted teepee [9a]. Four identical subunits surround the ion-conducting pathway
(Figure 8.2). Each subunit contains two full transmembrane helices, S5 and S6, as
well as the P loop. The S6 helices line the central cavity, whereas the S5 helices are
involved in interactions with the lipid environment. In the closed channel con-
formation the transmembrane helices meet at the cytosolic side to block the ion
conduction path. In the open conformation of the channel, the S6 helix kinks at a
conserved glycine residue to open the ion conduction path, as shown in the structure
of the bacterial channel MthK [10]. The ion conduction path is formed by the
selectivity filter and the large water-filled central cavity.

The solution of potassium channel X-ray structures has significantly contributed
to the understanding of mechanistic questions like the amazing selectivity of
potassium channels. Although the atomic radii of potassium (1.33 Å) and of sodium
(0.95 Å) differ only slightly, potassium channels select potassium over sodium ion
by a factor of 1000. This tremendous selectivity is achieved by the coordination
geometry of eight amide carbonyl groups in the selectivity filter, optimized for the
coordination sphere of potassium ions [11].

Structural data on potassium channels has also improved the understanding of
the gating mechanism. Gating comprises a signaling step and the opening of the
ion conduction path. The elucidation of the structure of the bacterial voltage-gated
potassium channel KvAP [9a], crystallized by using monoclonal antibody Fab
fragments, yielded some unexpected insights into the design of the voltage-sensor
helix S4. Mutational data demonstrated the role of the S4 helix in voltage sensing,
and fluorescence labeling has shown movement of the S4 helix during gating [12,
13]. The prevailing model so far suggests a movement of helix S4 from one side of
the membrane to the other upon changes in the membrane potential, although the
findings of MacKinnon imply a different model. First, helix 3 is actually split into
two different helices: the second part of helix 3 – called helix 3b – forms a helix–
turn–helix motif with helix S4. This unit, called the ‘voltage-sensor paddle’, is actually
oriented perpendicular to the pore unit and moves to the outer membrane side
when the channel is opened.

Figure 8.1  Architectures of potassium channels: different trans-
membrane topologies shown together with potassium channels
as examples. In the 6TM family, the voltage-sensor helix S4 is
highlighted, together with the pore-forming helices S5 and S6.
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Nevertheless, it is still unknown how the movement of the voltage-sensor paddle
is linked to the opening of the ion conduction pathway, which is achieved by an
outward bending of the S6 helix at the position of a conserved glycine. This helix
movement opens the inner cavity to the cytosol, as shown by a comparison of the
KcsA and MthK structures (Figure 8.2). For the inward-rectifying potassium channel
family, a glycine residue in a different position could be the hinge position for
formation of the opening pathway [14].

Chloride channels have a completely different structure from potassium channels
[15]. The dimeric structure has two ion pathways, one formed by each monomer.
The ion pathway does not run straight through the membrane, but is U-shaped.
Amino acids stabilize the ion in the pathway by forming direct interactions with
the chloride atom via hydrogen bond donors, just as the carbonyl groups in the
selectivity filter of potassium channels stabilize the potassium cation.

Although, as described above, a couple of structures of ion channels have been
solved, it is still a challenging task to express, purify, and crystallize these membrane

Figure 8.2  
(a) Topology of 6TM/P potassium channels.
(b) X-ray structure of KcsA (PDB code: 1j95). The four monomers
tetramerizing to form the functional channel are shown in different
colors. Important structural features such as the S5 and S6 helices,
central cavity, and selectivity filter are indicated.
(c) Structure of MthK pore (PDB code: 1LNQ). The structure is in
the open channel conformation. The glycine residues that serve as a
hinge for the bending of helix S6 are indicated.

8.2  Structural Information on Ion Channels: Ion Channel Families
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proteins. Chang et al. [16], for example, state that approximately 24 000 crystallization
conditions were tested to solve the structure of the MscL homolog from Myco-
bacterium tuberculosis, a mechanosensitive ion channel. Therefore, the number of
3D structures of ion channels is still very small compared to the number of enzyme
structures. Most importantly, no crystal structure of a ligand–ion channel complex
has been obtained so far.

Thus, structure-based drug design in the field of ion channels still has to rely on
homology models of ion channels, which can be combined with conventional
methods to map the ligand binding site, such as site-directed mutagenesis or
photoaffinity labeling [17]. A number of different binding sites have thus been
recognized on ion channels. For voltage-gated sodium channels, at least six different
binding sites for toxins or drugs are known and are schematically depicted in
Figure 8.3 [18].

Voltage-gated potassium channels also have a number of different binding sites.
Similar to sodium channels, there is a binding site for peptide toxins at the outer
vestibule of the pore. This binding site has been identified by site-directed
mutagenesis for different peptide toxins, e.g., for the toxin ShK from a sea anemone,
which blocks Kv1.3, or for Charybdotoxin, which blocks various potassium channels
[19, 20].

Potassium channels also have binding sites within the ion conduction pore, as
has been demonstrated for example for Kv1.3, Kv1.5, and hERG [21, 22]. Within
the central cavity, there might be distinct but possibly overlapping binding sites.
Ammonium ions bind in the upper part of the cavity, close to the selectivity filter;
whereas for the hERG channel or for Kv1.3, mutational data indicate drug binding
sites closer to the cytosolic part of the cavity. A recent study by Milnes et al. [23]
raises the question of whether there is a ‘nonaromatic’ binding site within the
hERG channel, since the binding affinity of Fluvoxamine is only partially attenuated
by mutations of Tyr652 and Phe656 [23, 24].

Figure 8.3  Topology of voltage-gated sodium channels.
Known binding sites of peptides and drugs are marked.
Voltage-gated sodium channels possess four 6TM/P domains.
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Recently, another binding site has been identified, the first binding site for a
potassium channel activator [25]. The benzodiazepine derivative R-L3, a partial
agonist of KCNQ1, binds between the S5 and S6 helices as indicated in Figure 8.4.
Interestingly, the structurally related compound L-7 blocks KCNQ1 binding in the
central cavity [26].

This example illustrates the difficulty of drug design in the absence of detailed
structural knowledge, since even slight modifications can have a tremendous effect
on the binding site and mode of action. In the field of ion channels, rational design
is even more hampered by the fact that voltage-gated ion channels cycle through at
least three different states – a resting state, an open state, and an inactivated state.
Electrophysiological studies give evidence that blockers can interact with open
channels as well as with closed channels. Vesnarinone or MK-499 require channel
opening to bind [27, 28]. Other drugs, like Ketoconazole, bind to a closed state of
the hERG channel, but Bertosamil binds to it in both its open and inactivated
states [29, 30].

8.3
Lead-finding Strategies for Ion Channel Modulators

Appropriate lead-finding strategies for ion channel modulators make use of as much
information as possible [31]. This includes information on modulators of closely
related ion channels and presumably some 3D information about the particular
target, either a homology model or available X-ray or NMR structures. The ligand
information can be used for a ligand-based lead finding approach, whereas 3D
structures are applicable to structure-based design. This section illustrates both
lead-finding techniques through their application in several case studies.

Figure 8.4  Structure of potassium channels with different binding
sites in the pore domain marked. To show the binding location of
R-L3 between helices S5 and S6, only the monomer is shown.

8.3  Lead-finding Strategies for Ion Channel Modulators
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8.3.1
Ligand-based Lead Finding

Ligand-based lead finding is based solely on information about putative ligands for
a particular target or for a closely homologous target. This ligand information is
then applied to select compounds that are closely linked to the reference molecules.
This is achieved by 2D or 3D techniques. The 2D approach consists mainly of
similarity and substructure searching, whereas the 3D method makes use of 3D
pharmacophores built from a set of diverse compounds [32].

For similarity searching, all molecules are described by an appropriate binary
descriptor (consisting of only zeros and ones). Such a binary fingerprint contains
all structural information for a particular molecule and was applied at Aventis to
identify new Kv1.5 inhibitors in the compound collection.

The Kv1.5 channel is a member of the voltage-gated K+ channel family (which
belongs to the 6TM/P family), whose functional form consists of four α subunits
each containing 6 transmembrane segments [33]. The Kv1.5 pore domain is formed
by four S5 and S6 segments from four different α subunits. In the human atrium,
Kv1.5 is the molecular component of the repolarizing K+ current Ikur, which
contributes to the falling part of the cardiac action potential. Since Ikur has been
found only in the human atrium, blockade of Kv1.5 has emerged as a promising
approach for developing new atrial-selective antiarrythmics devoid of undesired
effects observed with the currently available antiarrythmics [34]. When the Kv1.5
project was started at Aventis, no high-throughput screening assay was available,
and our lead-finding strategy relied on database searching.

We used a compound from an Icagen patent as a query and identified two
structurally different molecules that showed almost identical Kv1.5 activity as our
reference molecule (Figure 8.5 a). Additionally, a Kv1.5 pharmacophore was derived
from a lead series of Kv1.5 inhibitors. This pharmacophore, consisting of three
hydrophobic features in a specific spatial orientation, was used to identify new
putative Kv1.5 inhibitors in our corporate compound collection. The 12 most-
promising compounds were selected based on their fit to the Kv1.5 pharmacophore.
Subsequent biological profiling revealed one new lead structure (Figure 8.5 b).

Known side effects of a lead compound or drug can become an interesting
opportunity to turn the side effect into the main pharmacological action of the
compound. For the calcium antagonist Nifedipine, weak blocking of the calcium
dependent potassium channels IKCa has been reported. IKCa is assumed to be
involved in several diseases such as sickle cell anemia, immune disorders, and
ischemic events [35–37]. Blocking of this channel was also proposed to be beneficial
in traumatic brain injury [38]. Therefore, the calcium channel blocker Nifedipine
was used as a starting point for developing a selective IKCa blocker with beneficial
properties in a traumatic brain injury model [39]. Since the NH group of the
dihydropyridine ring is a prerequisite for calcium antagonistic activity, it was
replaced by the isoelectronic oxygen (Figure 8.6), leading to phenylpyrans that
showed significant IKCa blocking activity [40]. Added electron-withdrawing sub-
stituents at the para position of the phenyl ring were able to further increase the
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Figure 8.5  
(a) Similarity-based 2D database searching for Kv1.5 inhibitors.
(b) Ligand-based Kv1.5 pharmacophore and its application in 3D database searching.

8.3  Lead-finding Strategies for Ion Channel Modulators

potassium channel activity. Overall, the SAR for the phenylpyrans on the IKCa

channel was found to be orthogonal to the SAR of the dihydropyridines on the
L-type calcium channel, allowing for the identification of IKCa-selective compounds.

Thus, this recent example nicely demonstrates that ion channel ligands can be
valuable starting points for the identification of drugs acting against other members
of the ion channel protein family.
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8.3.2
Structure-based Lead Finding

Structure-based lead finding requires a target 3D structure to start with. However,
experimental elucidation of ion channel structures either NMR or X-ray crystallo-
graphy is extremely difficult to achieve. Nevertheless, homology modeling of closely
homologous channels to KcsA or MthK, for which 3D structures are available (see
Section 8.2), makes this approach feasible.

In an early structure-based design effort, a combinatorial library was designed
by using LUDI for Kv1.3 [41, 42]. Kv1.3 is involved in regulation of the membrane
potential of human T cells, controlling calcium influx into the cell by voltage-depen-
dent calcium channels [43]. Calcium influx ultimately results in cytokine release
and cell proliferation. Therefore, Kv1.3 blockers might be interesting immuno-
suppressive compounds [44]. Various peptide toxins are known to block Kv1.3.
Chandy and coworkers have used these structures in combination with mutant
cycle analysis to derive a model of the outer vestibule of the Kv1.3 channel [45].

Within this outer vestibule model, LUDI calculations were focused on three amino
acids from each subunit, which are known to be important for toxin binding: His404,
Gly380, and Asp386 [46]. LUDI was used to suggest fragments interacting with
these key amino acids. Fragment linking and modifications of the whole molecules,
followed by molecular mechanics calculations, resulted in a phenylstilbene scaffold,
which in the next step was varied in a combinatorial library comprising 400
compounds. The most active compound showed an IC50 of 2.9 µM (Figure 8.7).

This study was based on a model of the outer vestibule, which was developed using
indirect evidence like the structure of known ligands and data from mutational
analysis. At that time, the KcsA crystal structure or other potassium channel X-ray
structures were not available. Meanwhile, more detailed knowledge of the atomic
details of potassium channels allows the development of homology models [47] that
can be successfully used in drug design, as demonstrated by the following example.

A recent structure-based lead-finding strategy was used for Kv1.5 inhibitors. The
pore-forming domain of Kv1.5 exhibits 54% sequence homology with the bacterial
K+ channel KcsA from Streptomyces lividans, for which a crystal structure of the

Figure 8.6  Nifedipine (left) provided a good starting point to obtain
a selective blocker of IKCa (right), by slight changes in the central
scaffold and the substitution pattern.
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closed channel is available. This structure (PDB code: 1bl8) was subsequently used
as a template to build a homology model of the Kv1.5 pore-forming domain, using
the Composer module of Sybyl 6.6 [48]. Starting with the α subunit of KcsA, a
model of the S4 and S6 segments of Kv1.5 was built. Four of these segments were
assembled according to the arrangement of the four α subunits of KcsA, represent-
ing the pore domain of Kv1.5. This model was refined by a two-step minimization
protocol, involving minimization of the protein sidechains while keeping the
backbone rigid, followed by minimization of the whole protein. The Sybyl 6.6
implementation of the AMBER forcefield was used to evaluate the energy of the
system. The minimized structure was submitted to several tests for its quality and
internal consistency, which included both geometric and profile analyses.

A computational elucidation of putative binding sites using the PASS algorithm
revealed an internal site as most interesting for small organic molecules to interact
with [49]. Subsequent more detailed analysis resulted in the derivation of a protein-
based pharmacophore (Figure 8.8).

Use of this particular pharmacophore in subsequent 3D database searching of
about 1 million compounds resulted in 244 interesting compounds, from which
19 compounds showed IC50 values below 10 µM.

The alignment of three of these hits is shown in Figure 8.9 a. Of course, these
compounds exhibit high spatial similarity and fit remarkably well into the Kv1.5
binding site.

Figure 8.7  
(a) Schematic representation of the proposed interactions of the phenylstilbene
scaffold with residues from the outer vestibule.
(b) The shown structure has the highest activity for Kv1.3 found in this library.

8.3  Lead-finding Strategies for Ion Channel Modulators
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Figure 8.8  
(a) Knowledge-based homology modeling of the
closed Kv1.5 pore.
(b) Identification of a putative Kv1.5 binding site.

Figure 8.9  
(a) Alignment of the three most
active Kv1.5 inhibitors.
(b) Experimental validation of
the Kv1.5 homology model by
mutational data.
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We proposed several mutations to the Kv1.5 channel to validate our model.
Docking of our inhibitors in the Kv1.5 binding site revealed Thr477 as very important
for binding. Indeed, mutation of Thr477 to serine left the Kv1.5 channel fully func-
tional, but the activity of all four types of Kv1.5 inhibitors significantly decreased [50].

8.4
Design of Ion Channel Focused Libraries: Chemical Genomics

The consideration of all available ligand information concerning ion channel
modulators, as well as the use of 3D structural information is required for designing
appropriate ion channel focused libraries. This can be achieved by matching
chemical and biological information in the target family of ion channels. The
intersection of biological structures and functionalities with chemical structures
and properties is derived to perform a knowledge-driven biased library design. This
allows extraction of common structural features for ion channel modulators out of
a practically infinite chemical space [51]. Applying such design criteria leads to
chemical libraries that are enriched in preferred features of ion channel modulators.
This section covers design principles and their application.

8.4.1
Design Principles

Matching chemical and biological information in the field of ion channels requires
combined 2D and 3D analysis (Figure 8.10). The 2D approach is based on a collection

Figure 8.10  Computational tools for analyzing ion channels in knowledge-driven design.
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of biologically active compounds and consists mainly of similarity and substructure
searching and of analysis of common frameworks and fragments to identify
privileged chemotypes. Applicable 3D techniques are either ligand- or structure-
based. The ligand-based method requires biologically active ion channel modulators
to derive 3D pharmacophores, and the structure-based technique uses a 3D structure
of ion channels for subsequent virtual screening.

Substructure searching is often used in drug design and needs no further
clarification. Similarity searching is also a very well known technique described in
more detail elsewhere [52]. We usually use MACCS keys, Unity fingerprints, CATS
descriptors, and feature trees for similarity searching [53]. Each technique has its
own strengths and weaknesses, so we favor parallel application of two or three of
them.

Framework analysis was published by Bemis and Murcko in 1996 [54]. They
analyzed shapes of existing drugs in a commercial database to extract drug-related
molecular frameworks by following a graph theoretical approach to decompose
molecules into rings and noncyclic sidechains. Linkers and rings together form
the framework of a molecule, whereas sidechains are omitted (Figure 8.11). For
example, framework analysis of Thioridazine starts with removal of the acyclic
sidechains and leaves a framework composed of two rings and one inter-ring linker.

Application of this topological framework analysis to ion channel modulators
yields access to privileged ion channel chemotypes. Conversion of these frameworks
into appropriate scaffolds for synthesis allows subsequent building of ion channel
focused libraries.

Fragment analysis is based on the RECAP algorithm, published in 1998 [55].
This retrosynthetic combinatorial analysis starts with a collection of active molecules
and then fragments these molecules using any set of retrosynthetic reactions
(Figure 8.12). For example, Cisapride is cleaved into four fragments based on three
different bond cleavage types.

Figure 8.11  Topological framework analysis.
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Resulting fragments are clustered and reclassified into sets of monomers for
subsequent library design. The RECAP procedure derives not only suitable
chemotypes but also appropriate building blocks for scaffold decoration. Since the
monomers are extracted from biologically active compounds, there is a high
likelihood that new molecules derived from them will contain biologically important
motifs.

The 3D approach makes use of ion channel-specific pharmacophores, ion channel
X-ray structures, and homology models (see Section 8.3). Ion channel X-ray and
homology models are not as precise as structures of smaller proteins. The
uncertainty regarding the binding mode of ion channel modulators also adds
additional complexity to structure-based virtual screening. However, valid 3D
pharmacophores can be derived from these structures and subsequently used to
identify privileged ion channel chemotypes by virtual screening in proprietary and
public databases [56]. Needless to say, both ligand- and structure-based pharmaco-
phores require in-depth validation prior to their use in virtual screening.

Figure 8.12  Retrosynthetic combinatorial analysis procedure (RECAP).
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8.4.2
Example: Building the Aventis Ion Channel Library

Ion channels are of potential interest in several therapeutic areas. However,
appropriate high-throughput assays to test several hundred thousand compounds
against a particular ion channel still lack sufficient signal-to-noise ratios [57].
Therefore, a biased ion channel library is of high interest for lead finding.

We performed a combined 2D and 3D analysis of chemical and biological space
to identify ion channel privileged chemotypes. The 2D approach was based on a
collection of biologically active compounds and consisted mainly of similarity and
substructure searching and of analysis of common frameworks and fragments.
Our 3D approach relied on multiple ion channel pharmacophores and homology
models, which were used for virtual screening.

Our iterative ion channel library design process is outlined in Figure 8.13.
Retrieval and critical review of literature and in-house data on ion channel
modulators resulted in a collection of valuable lead compounds, suitable for 2D
and 3D database mining in internal and external compound collections. Among
others, we took into account calcium channel blockers like Clonidine, chloride
channel blockers, potassium channel openers, K(ATP) channel blocker and openers
(e.g., Glibenclamide), and NHE-1 inhibitors.

Scaffold proposals were collected and reviewed according to privileged ion channel
motifs, chemical feasibility, and fit to our multiple pharmacophores. Building block
selection, virtual library design, and filtering yielded small virtual libraries suitable
for automated solution-phase synthesis. All synthesized compounds were finally
purified and characterized prior to addition to our focused library.

Picked and purchased compounds, as well as all new designed chemotype focused
libraries, were assessed in terms of quality, diversity, and drug-likeness [58]. The

Figure 8.13  Design of the Aventis ion channel focused library.
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Figure 8.14  Key properties of
the Aventis ion channel library.
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remaining compounds were plated in our ion channel library, which is frequently
used for screening of ion channels. New compounds and chemotypes from novel
ion channel projects are continuously added to this focused library, and thus we
constantly increase the value of our ion channel ligand collection.

The key properties of our ion channel library, namely molecular weight, polar
surface area, clogP, and number of hydrogen bond acceptors and donors, are within
the lead-like range of compounds (Figure 8.14) [59]. A purity analysis of a small
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subset of our liquid ion channel collection revealed that more than 75% of the
compounds had acceptable purity.

Currently, the Aventis ion channel library contains approximately 16 000
compounds related to 1740 scaffolds and 80 chemotypes. Almost 6500 compounds
have emerged from database mining, and 9500 compounds were synthesized
(Figure 8.15).

Screening of this library or subsets of it against new ion channels revealed hit
rates of approximately 4% (Figure 8.15), which is substantially higher than typical
hit rates from high-throughput screening (~0.01%–0.1%). In addition, this focused
screening identified highly valuable hits, since the library contains primarily drug-
like or lead-like compounds. Profiling this library against several ion channels not
only reveals channel-subtype specific chemotypes, but also offers the opportunity
to build early structure–activity relationships on scaffolds, which is very helpful
especially for optimizing activity and selectivity. Hence, our chemical genomics
approach has yielded improved screening hit rates and better starting points for
subsequent compound optimization, thus reducing the cycle times for screening
and optimization.

Although almost all our screening efforts using this focused library against new
ion channel targets have resulted in good hit rates, we were recently disappointed
by finding a hit rate of only 0.8% against a specific potassium channel, and we
thought about opportunities for improvement. Current antiarrhythmic agents, for
example Sotalol, quite often show adrenoceptor inhibition and potassium- or multi-
channel blockade [60]. Hence, a future prospect for our ion channel library is to
identify common GPCR and ion channel chemotypes by profiling our GPCR library
against ion channels and vice versa.

Subset Screening against ion channelsSubset Screening against ion channels
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Figure 8.15  Aventis ion channel library: current status and hit rates.
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8.5
Conclusions

Identification of suitable lead compounds for subsequent optimization is one of
the key needs in drug discovery today. Several techniques have been successfully
applied, while a chemical genomics-driven approach, by building target family
related compound libraries, seems to be a promising future strategy for lead finding.
The high complexity of these efforts motivates a knowledge-driven design strategy,
taking into account as much information as possible from targets and ligands.
An in-depth scientific understanding of the intersection of biological and chemical
information is crucial for enabling higher productivity in early compound identi-
fication. Hence, the relationship between certain chemotypes and biological targets
within target families should drive this lead identification strategy.

The effort to bridge the chemical and biological space is called chemical genomics
or chemogenomics. So far, no unique definition of chemical genomics has emerged
from the literature, but the systematic exploration of target families is a common
goal, based on the assumption that similar compounds bind to similar targets by
similar mechanisms. This assumption is one of the foundations for the selection
of compounds for our ion channel biased screening collection. Another important
principle of chemical genomics is the integrated use of state-of-the-art computational
tools to derive new ion channel binding motifs.

This chapter has discussed such a chemical genomics approach for ion channel
modulators. Some case studies for ion channel lead finding illustrate the oppor-
tunities of target- and ligand-related strategies. Target family-related knowledge is
of course mandatory for this process. However, limited accessibility to ion channel
3D structures and uncertainties in homology models mean that structure-based
approaches are feasible only after thorough validation of the underlying models.

However, identification of ion channel modulators by screening compound
libraries enriched with ion channel privileged chemotypes offers rapid, efficient
access to lead compounds. Flexible data-driven building and optimization of such
an ion channel focused library will enable better and faster lead identification of
ion channel modulators.

The increasing information in biological and chemical space and its effective
transformation into a knowledge-driven ion channel focused library may foster a
paradigm shift in lead identification.
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9
Phosphodiesterase Inhibitors: A Chemogenomic View

Martin Hendrix and Christopher Kallus

9.1
Introduction

The superfamily of mammalian cyclic nucleotide phosphodiesterases is responsible
for the degradation of the nucleotide 3′,5′-cyclic phosphates cGMP and cAMP to
their respective hydrolysis products 5′-GMP and 5′-AMP (Figure 9.1) [1]. This
seemingly simple change has far-reaching consequences, because it switches off
the biological signal transmitted by the second messengers cAMP and cGMP. Not
surprisingly, the enzymes that control this pathway are found in all animal tissues
and cell types, and there are generally several PDE isoenzymes in any given cell.
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For quite some time now it has likewise been recognized that these key enzymes
also present an important opportunity for pharmacological intervention, and efforts
in this area have begun to pay off. There is now a considerable body of information
available on a multitude of PDE inhibitors. The purpose of this chapter is to take a
unifying view of this complex field and try to extract the now apparent general
structural features useful in PDE inhibitor design [2].

9.2
PDE Isoenzymes and Subtypes

Today 11 members of the human PDE superfamily are known, all of which are
class I phosphodiesterases and all of which are intracellular or membrane-bound
enzymes. Several of the isoenzymes are encoded by more than one gene which, in
combination with the presence of different splice variants, brings the number of
different PDE proteins to well over 50. The different isoenzymes are characterized
according to their substrate specificity, sequence homology, kinetic properties, and
sensitivity to certain known PDE inhibitors. Table 9.1 shows these properties
together with the predominant tissue expression of the various PDEs.

The different PDE isoenzymes share a common domain structure, which
comprises N-terminal regulatory domains and a C-terminal 250–300 amino-acid
catalytic domain (Figure 9.2). All the different functional domains appear to be of
ancient origin; gene duplication and domain shuffling seem to account for the
multitude of contemporary isoenzymes. Among the different parts of the enzyme,
the catalytic domains show the highest sequence identity among members of a
PDE family (up to 80%). They contain two conserved metal-binding sites in a
histidine-rich region with a HD(X2)H(X4)N motif, similar to metalloproteases such

Figure 9.2  Schematic representation of the domain structure of PDEs.
The conserved catalytic domain is in the C-terminal portion (solid bars),
whereas various regulatory domains make up the N terminus.
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Table 9.1  Genomic organization of human phosphodiesterases.

VSCM: vascular smooth muscle cells CaM: calmodulin
SMC: smooth muscle cells Corp. cav.: corpus cavernosum

as thermolysin [3]. Five histidines, designated H-1 to H-5, are invariant in all
Class I PDEs. H1, H2, H3 and H4 are part of the two metal-binding domains.
Overall, 21 amino acids are invariant in the catalytic domain of 10 of the 11 human
PDEs.

Amino acid residues of both metal-coordinating sites seem to be important for
catalytic activity [4]. Zn, Mg, Co, and Mn all constitute possible catalytically active
metals, although the catalytic activity varies. Based on recent publications, there
seems to be a consensus now that a combination of Zn and Mg is the physiologically
relevant catalytic species.

The N-terminal protein sequences show considerably more variation than the
C terminus, reflecting the broad range of regulatory stimuli that they transmit to
the enzyme (e.g., phosphorylation, calcium concentration, substrate activation,
interaction with regulatory proteins). Thus, PDE1 contains a pair of calmodulin
binding sites, making the enzyme sensitive to changes in calcium concentration.

cAMP cGMP Name Characteristics 

Km (µM) 

Number 
of genes 

Primary tissue/ 
cellular distribution 

PDE1 Ca2+-CaM-
stimulated 

110 (PDE1A) 
25 (PDE1B) 
1 (PDE1C) 

5 (PDE1A)
3 (PDE1B)
1 (PDE1C)

3 VSMC, brain, lung, heart 

PDE2 cGMP-
stimulated 

30–100 10–30 1 adrenal cortex, brain, heart, 
liver, olfactory bulbus 

PDE3 cGMP-inhibited 0.1–0.5 0.1–0.5 2 heart, lung, liver, adipocytes,
immunocytes, pancreas 

PDE4 cAMP-specific 0.5–4 > 50 4 immunocytes, lung, brain  

PDE5 cGMP-specific > 40 1.5 1 VSMC, SMC, lung, corp. 
cav., platelets 

PDE6 photoreceptor 2000 60 3 retina (rods and cones) 

PDE7 cAMP 
high-affinity 

0.2 > 1000 2 skeletal muscle, T-cells 

PDE8 cAMP 
high-affinity 

0.7 > 100 2 broadly expressed, testis, 
ovary, intestine, colon 

PDE9 cGMP 
high-affinity 

> 100 0.07 1 broadly expressed, liver, 
kidney, spleen, brain 

PDE10 dual substrate 0.5 3 1 broadly expressed, in mice 
most abundant in brain, 
testis  

PDE11 dual substrate 1 0.5 1 testis, brain, corp. cav., 
skeletal muscle, prostate 
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The cAMP-specific PDE4 contains a pair of upstream conserved regions (UCR)
that regulate catalytic activity. Perhaps the most prominent N-terminal sequence
motif is the presence of so-called GAF domains in several cGMP-hydrolyzing
enzymes (PDE2, 5, 6, 10, 11). The name GAF refers to the three protein types in
which this homology sequence has been found so far: cGMP-PDEs, adenylyl
cyclases, and a protein called FhIA. These are, at least in principle, allosteric cGMP-
binding sites, although in some instances (e.g., the second GAF domain of PDE2)
they remain unoccupied [5]. In addition to these regulatory functions, the N-terminal
protein domains can also mediate dimerization. Most PDE enzymes appear in vivo
as dimers or oligomers, although there does not seem to be cooperativity between
the catalytic domains of the monomers.

Structural information on the catalytic domain of PDEs is now available for two
isoenzymes (PDE4 and PDE5) by means of X-ray structural analyses including
bound ligands. This has made it possible to understand the molecular basis of
substrate recognition and features of the catalytic mechanism. In the initial
landmark study of Xu et al. [6], the substrate cAMP was modeled into the active
site of the experimentally determined PDE4B structure (Figure 9.3). The adenine
is located in a hydrophobic core binding pocket made up of Leu393, Pro396, Ile410,
Phe414, and Phe446. The nucleotide is recognized by a bidentate H-bond motif
involving Gln443, a residue conserved across all PDE families. The rotation of this
critical sidechain amide is fixed by a network of additional H bonds. If guanine
(cGMP) instead of adenine needs to be recognized, as in cGMP-specific PDE5, the
rotation of the same sidechain amide is reversed to meet the inverted H-bond
requirements of the lactam of guanine. In this model, the charged phosphodiester
is placed close to the binuclear metal center that is responsible for catalysis.

Figure 9.3  Recognition of cAMP by PDE4. A bidentate interaction
between Glu443 and two of the adenine nitrogens is key to nucleotide
discrimination for this cAMP-specific PDE. The core binding pocket
contributes hydrophobic interactions with the heterocycle. The cyclic
phosphate is thought to interact with the binuclear metal center,
which may deliver an activated water molecule.
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Hydrolysis of the phosphodiester bond proceeds with inversion of configuration
at phosphorus, hence suggesting a standard nucleophilic substitution reaction by
a water molecule [7]. A mechanism consistent with this finding has recently been
suggested based on the structure of cAMP-bound PDE4: the water molecule or,
more likely, the deprotonated hydroxide ion is activated by the Zn metal, whereas
the other metal (Mg) could function as a charge-neutralizing Lewis acid [8].
Consistent with an in-line nucleophilic displacement reaction, the O3′ leaving group
can be protonated by His234 acting as a proton donor.

9.3
Potential Therapeutic Applications of PDE Inhibitors

Medical applications of PDE inhibitors are numerous, and the subject is beyond the
scope of this chapter. For detailed considerations, the reader is referred to in-depth
reviews detailing the individual PDEs. Theophylline and other nonselective in-
hibitors have had a long history of medical use. However, the first widely adopted
clinical use was that of selective PDE5 inhibitors for the treatment of erectile
dysfunction (ED). As far as PDE4 is concerned, FDA approval of the first selective
PDE4 inhibitor is still eagerly awaited. Such agents would have broad potential
applications in inflammatory diseases such as asthma or COPD (chronic obstructive
pulmonary disease) and possibly beyond (e.g., cognition disorders). On the other
hand, PDE3 inhibitors have been available as approved drugs for some time, but
have only seen limited clinical use, for example, in patients with heart failure. This
may reflect particular issues with the limited PDE3 inhibitors available to date (e.g.,
lack of subtype selectivity for PDE3A vs. 3B) or may result from a more principal
pharmacological feature of PDE3 as a target. Other PDEs have received far less
attention. This is due to two main reasons: (1) suitable inhibitors have not been
available, (2) basic understanding of the underlying biological mechanisms is still
in development. The latter argument is particularly true for the ‘young’ PDEs 7–11.

9.4
Nonspecific PDE Inhibitors

The prototypical structural class of nonselective PDE inhibitors is represented by
the methylxanthines (Figure 9.4), a family of plant-derived alkaloids that includes
theophylline (1), caffeine (2), and theobromine (3) [9]. Although limited in potency,
these simple naturally occurring xanthines were the ‘parents’ in the later discoveries
of more potent synthetic derivatives such as pentoxyfylline (4) and isobutylmethyl-
xanthine (IBMX, 5). In particular, the latter compound has been widely used and
has been regarded for decades as the ‘gold standard’ nonselective inhibitor of all
PDEs. Only recently has it become clear that some of the newer PDEs (8 and 9) are
not inhibited by IBMX. Derivatives of IBMX carrying substituents at the 8 position
confer increased potency [10]. An example is compound 6, which retains most of

9.4  Nonspecific PDE Inhibitors
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the nonselectivity of IBMX. However, depending on the nature of the substituent,
selectivity may start to emerge, as occurs for the bulky 8-norbonylmethyl-IBMX (7)
which is indeed a selective PDE1/5 inhibitor. This approach of variation of a common
core motif to introduce different PDE isoenzyme selectivity represents a recurring
theme in the rest of this chapter.

The nonselective xanthines have served as a historical starting point and the first
pharmacological tools in the area of PDE inhibitors. Isoenzyme-selective PDE
inhibitors have been obtained by modification of the xanthine substituents and,
more importantly, by turning to different core structures. These are discussed in
the following sections, starting with inhibitors of cGMP-specific PDE5 and PDE6,
followed by inhibitors of cAMP-specific PDE4 and the related dual-substrate PDE3.
These two areas represent the bulk of available information regarding isoenzyme-
selective inhibitors. We then discuss the knowledge on inhibitors of the remaining
PDEs, with particular focus on structural themes that were introduced during the
discussion of PDE5 and PDE4.

Figure 9.4  Nonselective xanthine derivatives. IBMX is considered the
prototypical nonselective PDE inhibitor (even though two of the ‘new’ PDEs
are insensitive to it).
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9.5
Inhibitors of the cGMP-specific PDE5 and PDE6

PDE5 is known as the cGMP-binding, cGMP-specific PDE. Only one gene product
has been found, with four different splice variants. PDE5 contains two allosteric
cGMP-binding domains in the amino-terminal region (GAF A and GAF B) [11].
PDE5 activation occurs upon binding of cGMP to the GAF A domain. Low catalytic
activity has been observed in the nonactivated state. Both the catalytic domain
(residues 537–860) and the allosteric binding site of PDE5 are highly specific for
cGMP, and cGMP binding to the catalytic site seems to influence its binding to the
allosteric site [12, 13]. As for many other PDE family members, PDE5 is a
homodimer of 99-kDa subunits.

PDE5 was the first PDE for which the presence of metal-binding domains was
demonstrated. Zn2+ is the most suitable metal ion for catalytic activity and leads to
higher catalytic activity than Mn2+ and Mg2+. In addition, a phosphorylation site is
found on Ser92, thus giving rise to different regulatory pathways. Phosphorylation
increases the activity of the enzyme at substrate concentrations below the KM.
Occupation of both allosteric cGMP binding sites is required for phosphorylation
at Ser92. However, the catalytic domain alone seems to suffice for hydrolytic activity,
since a truncated version containing only this region demonstrates catalytic activity
[14].

Inhibition of PDE5 is a very broad field, and several reviews covering PDE5
inhibitors have appeared [15]. Instead of trying to cover all known inhibitors, a
classification according to structural type is attempted. At least three main classes
can be recognized:

Substrate analogs characterized by an amide moiety, preferably tied
into a pyrimidinone ring.
Inhibitors carrying a methoxychlorobenzyl moiety.
Indole-type PDE5 inhibitors.

9.5.1
Substrate-analogous PDE5 Inhibitors

The substrate-analogous PDE5 inhibitors are the broadest class of PDE5 inhibitors
and include two marketed products, sildenafil and vardenafil (Figure 9.5). The cGMP
analog zaprinast (8) served as starting point in this class. Importantly, zaprinast,
which was originally in clinical trials as a potential treatment for asthma, introduced
the important ortho-alkoxyphenyl moiety into the PDE5 inhibitors. At the time,
zaprinast, with a Ki of 130 nM [16], constituted an important tool for evaluation of
the role and function of PDE5.

A next step towards more potent inhibitors is exemplified by DMPPO (9), featuring
a more hydrophobic right-hand portion of the core and the addition of a polar
sulfonamide to the aromatic ring. These pyrazolopyrimidinones have been used
for the construction of PDE inhibitors since the mid 1980s [17]. DMPPO in particular

9.5  Inhibitors of the cGMP-specific PDE5 and PDE6
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demonstrates the flexibility of the binding pocket on the right side of the molecule
and shows an IC50 of 3 nM [18]. The next step in development was marked by the
introduction of sildenafil (Viagra, UK 92,480, 10). Considerable variability is allowed
in the polar group in these structures, and a sulfonamide can be replaced by, e.g.,
ordinary amides (11) or ureas. These variations had been made so as to increase
selectivity for PDE5 vs. PDE6. But, although the potency of such inhibitors compared
to sildenafil was found to be increased, selectivity vs. PDE6 was not profoundly
improved [19].

Vardenafil (Levitra, 12), an imidazotriazinone PDE5 inhibitor, also falls into the
substrate-analogous PDE5 inhibitor class. It demonstrates the most potent PDE5
inhibition of the marketed products in this class (IC50 = 0.7 nM). Compound 13
exemplifies isomeric pyrazolopyrimidinones with comparable activity to sildenafil
[20]. Considering the observed binding of sildenafil with a water-mediated H bond
between N2 of the pyrazole portion and Tyr612, the potent inhibitory activity suggests
either a different binding mode or considerable distortion in the binding pocket.

As has been demonstrated through X-ray crystallographic analysis [21] with
sildenafil (10) and vardenafil (12), the amide moiety forms a bidentate H-bond
interaction with Gln 817, analogous to the mode in which the lactam portion of
cGMP itself is expected to bind (Figure 9.6). The orientation of the sidechain amide

Figure 9.5  Substrate-analogous PDE5 inhibitors.
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is fixed by further H-bond interactions within the protein. Interestingly, the
analogous residue in PDE4B (Gln443) can reverse its orientation and thereby fit
the inverted donor–acceptor requirements of the adenine nucleotide. Despite the
H-bond acceptor role of the pyrimidinone oxygen, the sulfur analog of sildenafil,
which should be a weaker H-bond acceptor, still demonstrates potent PDE5
inhibition [22]. The alkoxyphenyl sidechain fits into a hydrophobic pocket that differs
from the PDE4 binding site by the substitution of a leucine by a methionine, which
may be in part responsible for the only weak interaction of sildenafil with PDE4.
Substantial binding energy is likely derived from this contact in particular, and it
was even noted that the ethoxy group does not fill the entire pocket. Surprisingly,
the very polar sulfonamide fragment does not seem to be involved in H-bond
interactions, and the methyl piperazine residue points toward the protein surface
and is engaged in some hydrophobic contacts.

Apart from the recognition of the lactam, the core region is largely engaged in
hydrophobic contacts to the heterocycle. One exception is the pyrazole nitrogen,
which makes a water-mediated contact to the metal binding site, which contains
two metal ions. One of them, a zinc ion, makes contacts to several aspartate and
histidine residues, whereas the other – presumably a magnesium ion – shares one
of these contacts (Asp654) and is otherwise surrounded by five water molecules. In
the binding model of cGMP in the active site, both metals can contact the cyclic
phosphate moiety.

Figure 9.7 demonstrates the substantial flexibility in the right side of the substrate-
analogous inhibitors. Compound 14 shows subnanomolar PDE5 inhibition
combined with improved selectivity (90-fold) over PDE6 compared to sildenafil
[23, 24]. The derivatives 15 and 16 demonstrate the effect of a bulky substituent in
the region of N1 of sildenafil: potency and PDE6 selectivity are improved simulta-

Figure 9.6  Binding of sildenafil to the PDE5 active site.
The key glutamine residue is engaged in a bidentate interaction,
which is also postulated for the recognition cGMP itself.
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neously, although the molecular weight of the benzyl-carrying molecule approaches
a value that may be problematic for good absorption from the GI tract [25]. The
fused polycyclic derivatives 17–20 demonstrate that highly lipophilic heterocycles
fused to the pyrimidinone are also accepted by the enzyme and are sufficient for
high potency [26]. A comprehensive study has compared different heterocycle-fused
pyrimidinone PDE5 inhibitors and demonstrated considerable influence of the
heterocycle part [27]. The left side of the molecule likewise shows some flexibility,
and even quite simple, low molecular weight derivatives such as 21 can serve as
potent PDE inhibitors, although 21 lacks selectivity against PDE3 [28]. In keeping
with the notion that the NH in such substrate analogs is directly involved in an
H-bond, the N-alkylated derivative of 21 shows a much reduced PDE5 inhibitory
potency.

Compound 22 (Figure 9.8) is a representative of Schering-Plough’s tetracyclic
PDE inhibitors that also include dual PDE1/5 inhibitors and that are characterized
by the additional fused ring attached to the pyrimidinone [29]. This type of
compound must be considered as extended xanthine analogs. Indeed, xanthines
such as 23 can be potent, selective PDE5 inhibitors. Another variation of the xanthine
theme is represented by 24 [30]. With respect to classification, the xanthines pose
an interesting problem. As has been discussed, typical xanthine-based PDE

Figure 9.7  Structural variability within the substrate-analogous inhibitor family.
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inhibitors such as IBMX carry an alkyl substituent on N1 of the pyrimidinedione
ring and thus technically lack the signature lactam moiety. However, the structural
commonalities of the depicted examples to the inhibitors already discussed,
including the presence of an NH close to the carbonyl oxygen (or equivalent H-bond
acceptor), justifies their classification with the other substrate-analogous pyrimi-
dinone inhibitors (Figure 9.8, inset).

Nonetheless, greater structural variation is allowed within the xanthine group
which does not easily fit the above rationale. This is demonstrated by 25, which can
be considered a hybrid of 13 or 14 and a xanthine core [31]. By transitioning into
the related tetracyclic guanine series, very potent inhibitors of PDE5 with very high
selectivity for PDE6 were created, e.g., 26 [32]. Indeed, 25 and 26 represent the
transition between substrate analogs and the series of chloromethoxybenzyl-type
compounds discussed below.

9.5.2
Inhibitors Carrying a Chloromethoxybenzyl Substituent

Classification according to a substituent is of course unusual, since medicinal
chemists conventionally group structures by their common core, thought to define
a pharmacophoric element, and a set of substituents which, by definition, do not

Figure 9.8  Xanthine-type PDE5 inhibitors.
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belong to the pharmacophore and allow some variability. Nevertheless, a chloro-
methoxy substituent (or isosteres thereof, e.g., methylenedioxy or dimethoxyphenyl)
has been incorporated in enough interrelated PDE5 inhibitors that this classification
seems justified. This includes a very diverse set of scaffolds and – together with the
tadalafil series – seems to be an area of intense current patenting activity.

A number of 6,6 or 5,6 fused-ring systems fall into this category. A typical example
of a quinazolinone-based inhibitor is E4021 (27) (Figure 9.9) [33]. This series of
diaminoquinazolines has also spawned potent kinase inhibitors. Compound 28,
bearing a pyrazole fragment that resembles the right side of sildenafil, and the
tricyclic derivative 29 demonstrate the broad variability of cores in this class [34]. In
addition, analogs of 29 have been disclosed, in which the ring fused to the thiophene
can also be an aromatic or a simple cyclohexyl ring [35]. Example 30 shows the
transition from quinazolines to quinolines with retained PDE5 inhibitory activity
[36]. In 31 the lipophilic part of the quinazoline has been replaced with a phenyl
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substituent at the 5 position of the pyrimidine [37]. In addition, nitrogen is
exchanged for oxygen as a linker to the benzyl group. The changes result in a
somewhat reduced activity; however, PDE5 inhibition is still in the low double-
digit nanomolar range.

Next to the quinazolines, phthalazines represent the most important heterocyclic
series in this class of PDE5 inhibitors. At least two compounds from this category
have reached clinical trials: E4010 (32) [38] and BMS341400 (33) [39]. Both
compounds show subnanomolar PDE5 inhibition. Again, a chloromethoxybenzyl
substituent seems to be among the preferred substituents in the top part of the
molecule; polar substituents in the bottom part also characterize this series.

Phthalazines were discovered as scaffolds for both PDE5 inhibitors and kinase
inhibitors. Similarly, anthranilic acid amides were disclosed for both pharmaco-
logical activities (Figure 9.10). Compared to the phthalazines, putatively an internal
H-bond keeps the two substituents in a comparable spatial arrangement. Extremely
potent PDE5 inhibitors can be found in this class, e.g., 34 [40]. A similar internal
H-bond can be speculated for 35, for which potent PDE5 inhibitory activity was
likewise reported [41]. Compound 36 represents the transition between phthalazines
and anthranilic acid amides [42].

9.5.3
Indole-type PDE5 Inhibitors

This series of PDE5 inhibitors is rapidly expanding, in part in response to the
market entry of tadalafil (37, Figure 9.11). Tadalafil itself is a potent PDE5 inhibitor
(IC50 = 2 nM), with improved selectivity for PDE6 compared to sildenafil and
vardenafil but demonstrating a much lower selectivity for PDE11 (IC50 = 37 nM)
[43]. The binding mode of tadalafil shows considerable differences from the
substrate-analogous PDE5 inhibitors. The indole NH is involved in a single, not
bidentate, H bond with Gln817 (Figure 9.11, inset). The methylenedioxy aromatic

Figure 9.10  Different scaffolds for presentation of the chloromethoxyphenyl group.
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portion occupies space that is filled by the alkoxyaromatic group in vardenafil and
sildenafil, i.e., the hydrophobic pocket. Only one of the two carbonyl oxygens in the
diketopiperazine ring is essential for potent PDE5 inhibitory activity (compare 38
and 39) [44]. The N-methyl group also seems to be important for high activity (40)
[45]. Compounds 41 and 42 demonstrate the sensitivity of the system to substitution
in the aromatic ring [46]. This highly regiospecific effect is reminiscent of the
phthalazine class of PDE5 inhibitors. The bulky sulfonamide derivative 43 illustrates
the room for large substituents on N1 of the diketopiperazine ring system [47].

The diketopiperazine system itself is not mandatory for potent PDE5 inhibition,
as exemplified by compounds 44 and 45 (Figure 9.12) [48]. Compound 45 also
demonstrates that the methylenedioxy fragment in tadalafil can be replaced by a
methoxy group. Other compounds (48) show a dihydrofuran in this region. Although
47 completely lacks the diketopiperazine ring, the urethane carbonyl group
substitutes for the more important carbonyl functionality and assures good activity
[49]. As shown in 43, the right side of the molecule shows some structural flexibility
and can accommodate structures such as 47 and 48 [50].
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Figure 9.11  Indole-type PDE5 inhibitors. In contrast to the
substrate-analogous inhibitors, the key glutamine residue is
engaged in only a single – not a bidentate – H bond to the indole
NH of tadalafil (see inset).
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An indole is not strictly required in this type of compound (Figure 9.13). An
example is given by the quinolinones 49 and 50, which show the transition from
the tadalafil 6,5,6 fused system to an analogous 6,6,5 system. This quinolinone
structure preserves the ability of the heterocycle NH to form the crucial H-bond to
the glutamine oxygen of Gln817. The inhibitory potency of these compounds is
excellent. Again, the diketopiperazine system is not essential, and compounds with
only the requisite lower carbonyl functionality also show very potent PDE5 inhibition
(50). Other compounds, such as 51 and 52, seem to also bear some resemblance to
the structural topology found in tadalafil, although the analogy is much less clear
[51]. Although the trimethoxyphenyl part shows some similarity to the methylene-
dioxyphenyl group in tadalafil and both are connected to a hydrophobic aromatic
core residue, the H-bond donor function is lacking. On the other hand, for the
analogs of 51, the presence of the carbonyl groups was also found to be important,
another parallel to the SAR in the tadalafil series.

Since most standard medicinal chemistry issues (potency, selectivity, pK, etc.)
have been addressed with various inhibitor classes and since three compounds
are already on the market, new PDE5 inhibitors in the future may be especially
relevant in indications distinct from male erectile dysfunction, as dual (or multiple)-
specificity PDE inhibitors, or as templates for the synthesis of other PDE or kinase
inhibitors.

Figure 9.12  Indole-type PDE5 inhibitors lacking the diketopiperazine ring.
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9.6
PDE6 Inhibitors

PDE6 shows high selectivity for cGMP and also contains two allosteric cGMP
binding sites in the N-terminal half of the protein. The occupation of these allosteric
sites seems to play an important role in the control of catalytic activity, although
the catalytic function does not seem to be directly influenced by these sites. Rather,
occupation seems to affect the affinity for other regulatory proteins binding to PDE6
and thus indirectly influence catalytic activity [52].

Three different gene products are known for PDE6, which consists of hetero-
tetramers formed from two homodimers. Historically, the monomeric subunits of
PDE6 have been known as α (99 kDa), α‘ (94 kDa) and β (98 kDa) [53]. In addition,
a much smaller γ subunit (9.7 kDa) acts as an inhibitory regulator of PDE6 activity
and binds with very high affinity. The less frequently occurring soluble form of
PDE6 also contains a δ subunit [54].

PDE6 is by far the dominant PDE occurring in rod and cone cells of the vertebrate
retina. It plays a key role in visual signal transduction, which is unique among the

Figure 9.13  Tadalafil analogs without an indole ring, and related compounds.
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PDE family members. Absorption of light first activates rhodopsin which in turn
activates the G protein transducin. Light activation of PDE6 then occurs through
interaction of the activated (GTP-bound) α subunit of transducin with the inhibitory
γ subunit of PDE6, thus leading to removal of PDE6 inhibition and rapid decline in
cGMP concentration. This results in closure of cGMP-gated cation channels,
inducing a hyperpolarized state in the receptor cells.

Since several vision impairments have been traced to defects in proper PDE6
function, and since side effects such as blue vision that occur in patients taking
sildenafil have been speculated to be linked to a lack of sufficient PDE6 selectivity,
PDE6 inhibitors have not been the target of intensive medicinal chemistry endeavors
and so far have not been reported in their own right. The catalytic domain of PDE6
is very similar to the catalytic site of PDE5, which may be the reason for overlapping
activity. Vardenafil and sildenafil inhibit PDE6 in the double-digit nanomolar range,
and tadalafil at a considerably higher IC50. As already mentioned, recent publi-
cations disclose PDE5 inhibitors with reduced PDE6 inhibitory activity.

9.7
Inhibitors of cAMP-metabolizing PDE4 and PDE3

PDE4 is often referred to as the cAMP-selective PDE, due to its high substrate
specificity. Four different gene products are known, and differential splicing leads
to more than 15 isoenzymes that fall into three categories: long (85–110 kDa),
short (68–75 kDa), and super-short (< 68 kDa) [55]. In addition, both membrane-
bound and cytosolic variants are known. The most unusual feature of the PDE4
long forms is the presence of two upstream conserved regions (UCR1 and UCR2)
which are 55 and 75 amino acids long and separated by a linker. Both UCRs are
highly conserved between different species, implying an important role in PDE4
function. Putatively, the UCRs are involved in regulatory events, with the UCR2
domain acting to reduce catalytic activity. Variants with deleted portions of UCR1
and/or UCR2 show different sensitivity to the inhibitor rolipram (53, Figure 9.14).
PDE4 can be activated by PKA phosphorylation at two sites, one of which is located
in the UCR1. The phosphorylated enzyme has a lower IC50 for rolipram [56].

Pharmacologically, PDE4 is one of the best-investigated members of the PDE
family, and many inhibitors of this enzyme are already known [57]. In recent years,
insights into the atomic structure of PDE4 and into the interactions of substrate
and inhibitors with the enzyme’s active site have been acquired. From a chemo-
genomic point of view, understanding the design principles of PDE4 inhibitors
with the help of structural information has become a valuable basis for extrapolation
of these principles to other PDE members with similar conserved catalytic domains.

The most prominent group of structurally related PDE4 inhibitors was built on
the structure of the archetypical inhibitor rolipram (53). Rolipram also serves to
illustrate a particular difficulty in the field of PDE4 inhibitors, namely, the confusion
that has surrounded the different behaviors of PDE4 preparations toward this (and
other) inhibitors. This has led to the concept of low-affinity rolipram binding (LARB,

9.7  Inhibitors of cAMP-metabolizing PDE4 and PDE3
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IC50 = 100–1500 nM for rolipram) and high-affinity rolipram binding (HARB, IC50

= 1–50 nM for rolipram) states. Today, most investigators believe that these represent
two different conformational states of the same enzyme and that interactions with
other proteins and/or phosphorylation of the enzyme can control the particular
state. Much of the work discussed in this section was concerned with trying to
identify molecules that preferably inhibit the LARB form, since the HARB form is
thought to mediate dose-limiting inhibitor side effects such as nausea and vomiting.
However, in a significant portion of the available literature and patent reports, it is
unclear which state the experimentally employed PDE4 enzyme was in.

The defining structural element found in rolipram and its relatives is the
dialkoxyphenyl (catechol) moiety. Although the development of rolipram (then for
depression) was terminated early, many companies have since disclosed PDE4
inhibitors intended primarily for indications such as asthma and COPD (chronic
obstructive pulmonary disease) [58]. For a long time, cilomilast (Ariflo, 54) has
appeared to be ahead in this race [59]. In November 2003, GSK received an
‘approvable’ letter from the FDA, despite the FDA advisory panel’s earlier negative
opinion of the compound. The extent to which new studies may have been requested
by the FDA and will delay approval remains to be seen.

A second prominent structural feature found in many catechol type inhibitors,
the 3,5-dichloropyridine residue, was introduced first in piclamilast (55) [60]. In a
modified form, this combination of pyridine and catechol was taken up by many
companies. Most notably, it is found in roflumilast (56) which, apart from
cilomilast, must be considered the most advanced clinical candidate to date [61].
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Figure 9.14  Catechol-type PDE4 inhibitors.
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The pharmacophoric pattern of the catechols allows for substantial variability.
Thus, acyclic derivatives such as the oxime derivative found in filamilast (57) can
replace the lactam in rolipram [62]. The size of the hydrophobic group can also
be increased, as seen in 58 [63].

How do the catechol inhibitors interact with the enzyme active site? The first
insight into this question came from the crystal structure of PDE4D complexed
with the mixed PDE4/3 inhibitor zardaverine (59, Figure 9.15) [64]. Zardaverine
displays an overall flat molecular architecture combining the typical dialkoxyaryl
motif of many PDE4 inhibitors with the pyridazinone ring carrying an amidic N−H,
a fragment found in a number of PDE3 inhibitors. In contrast to other PDE4-
specific inhibitors, the bulky substitution at the alkoxy group is not present [65].
Interestingly, the main H-bonding interaction found in the structure is the bidentate
complexation of Gln466 by the catechol ether oxygens. This is the very same, highly
conserved glutamine residue that is thought to interact in the key bidentate
recognition of the substrate cAMP. In the structure of PDE5 the corresponding
residue (Gln817) is also the one that provides the sole direct H bond to the substrate-
analogous inhibitors sildenafil and vardenafil. The aryl moiety spans the core pocket
of the active site. In particular, a stacking interaction is observed with Phe469.
Furthermore, zardaverine partially extends into the metal binding region containing
the two metal centers (probably Zn2+ and Mg2+) that coordinate residues of the
highly conserved PDE sequence motifs His-Asn-X-X-His and His-Asp-X-X-His. In
the crystal structure, zardaverine also appears to make H bonding contact to a
cacodylate group (dimethyl arsenate, a phosphodiester mimic), which cocrystallized
with the metal centers. Whether this implies similar interaction under physiological
conditions (e.g., with a phosphate) is unclear.

Zardaverine is small enough that it occupies only part of the active site. Inhibitors
such as rolipram, containing the larger cyclopentyl group instead of methyl, would
be expected to fill the S1 pocket of PDE4D (corresponding to the hydrophobic pocket
of PDE5). Modeling studies on rolipram itself have come to differing conclusions.
In a recent publication, Houslay and Adams [1e] suggested the binding mode
depicted in Figure 9.15, whereas an earlier modeling study made a different proposal
[66]. Based on the zardaverine structure, however, it seemed likely that the catechol
fragment would be positioned in an analogous manner. Indeed, this was shown to
be so in the recently published X-ray structure of rolipram bound to PDE4D [67].

A distinct variation within the catechol series is the introduction of an additional
phenyl group branching from the variable connection between the catechol itself
and the pyridine or equivalent polar fragment. As shown in Figure 9.16, this gave
rise to Celltech’s CDP-840 (60), a compound that was codeveloped with Merck/
Frosst but was stopped in phase 2 [68]. The additional hydrophobic feature may be
a contribution to the hydrophobic S3 pocket identified in the PDE4D structure (see
above). Later developments by the Merck/Frosst group included compounds 61
and 62, eventually leading to 63. A variation with a different spacing for the phenyl
group is demonstrated in compounds 64 and 65 [69]. The latter compound once
again underscores the exchangeability of an amide (as in rolipram) and a pyridine
ring (roflumiast, CDP-840) in this structural environment. Interestingly, the
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Figure 9.15  Binding of catechol Inhibitors to the active site of PDE4.
The key glutamine residue (corresponding to Gln817 in PDE5) is
involved in an H bonding contact with the catechol moiety.
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deoxygenated (i.e., indane instead of indanedione) derivative of 64 is a much less
potent inhibitor. Finally, a classical scaffold approach is shown in 66, in which
morpholine serves as a template to present the three important PDE inhibition
motifs in a correct topology [70].
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Figure 9.17 displays a related subfamily of PDE4 inhibitors, in which the typical
catechol fragment is itself part of condensed bicyclic system as a chemical scaffold.
For example, a variety of dialkoxy-substituted dihydrophthalazine (67) and dihydro-
isoquinoline (68) derivatives have appeared in the patent literature [71]. Again, the
combination of these scaffolds with a pyridyl moiety is preferred. Only one catechol
oxygen is required, and replacing the second one with a methylene group (69) even
results in enhanced activity. Interestingly, even an elaborate alkine moiety can replace
the cyclo-pentyloxy fragment (70).

Another chemical subtype for inhibition of PDE4 comprises benzo-condensed
heterocycles (Figure 9.18). In these structures one alkoxy group is typically placed
in an α position to the ring fusion. As part of the heterocycle, an endocyclic
heteroatom acting as an H-bond acceptor is placed ortho to the alkoxy group. Of
course, from a pharmacological point of view these motifs are essentially masked
catechol derivatives. These rigid chemical scaffolds define further series of privileged
structures for PDE4 inhibition. Examples include alkoxy-substituted benzoxazoles
(72), benzofuranes (73, 75, 76), and quinolines (74) and also extend to structures
lacking one acceptor heteroatom, such as benzimidazoles (77) and indoles [72–75].
Known privileged fragments, which were already introduced in combination with
catechols, are recurring in this constellation: we can notice the dichloropyridine/

Figure 9.17  Fused catechol-type PDE-4 inhibitors where the catechol
moiety is part of a bicyclic framework.
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phenyl motif in 73–76, also allowed as the N-oxide variant (77), or its replacement
by a donor-substituted cyclohexyl nitrile as in 72 (compare cilomilast 54). Further-
more, an additional lipophilic residue on the five-membered ring system is clearly
preferred.

A particularly interesting heterocyclic replacement for the catechol group is the
indazole ring system and related heterocycles (Figure 9.19). The relationship can
be illustrated in a series of PDE4 inhibitors from ICOS beginning with IC-197 (78).
As seen in 79 and 80, the catechol moiety can be replaced with an indazole without
much loss in potency [76]. This is in agreement with the previous finding that only
one of the alkoxy donor moieties in the catechols is strictly required (compare 69,
70, 77). The notion of this particular bioisosterism has also been utilized by scientists
at Pfizer, who reported pyrazolopyridinones 81 and 82 [77]. Not surprisingly, the
concept has also been extended to compounds 83 and 84, which are the respective
indazole analogs of roflumilast and cilomilast, although no enzyme inhibition data
have been reported [78].

An extension of the scaffold concept introduced with compound 66 is given in
the following examples (Figure 9.20). Typically, up to three substituents are
orientated by using a heterobicylic template like benzoxazole 85, benzimidazole
86, or adenines 87, 88 [79–81]. Since one of these substituents is always a catechol

Figure 9.18  Masked catechols.
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derivative, one can speculate as to whether the heterocyclic scaffold serves not only
as a template but simultaneously as a pyridine replacement.

A very interesting series of derivatives related to the early PDE4 inhibitor
nitraquazone (89) [82] is shown in Figure 9.21 [83]. These lack the catechol moiety
and may be more related to the xanthines like arofylline (99), but they are structurally
distinct, and perhaps their most distinguishing feature is the presence of a lipophilic
phenyl ring appended to a heterobicyclic core, resulting in a L-shaped molecular
structure. Another common feature is the presence of a carbonyl group or analog
thereof opposite the phenyl ring attachment. Examples that illustrate the scope of
heterocycles are the azabenzopyrimidinones 90 and 91 from Yamanouchi and the
condensed triazole 92 from Almirall [84]. Interestingly, in analogy to the catechols,
the familiar pyridine motif can be combined with these core structures as well,
giving rise to the highly potent PDE4 inhibitors 93 and 94 [85]. It is therefore
tempting to speculate that these inhibitors likewise act in a substrate-like manner
addressing the core adenosine binding pocket of PDE4. Possibly related to this
structural motif is a series of rigidified benzodiazepinones from Pfizer/Parke Davis
exemplified by 95 [86]. This eventually gave rise to two clinical candidates, of which
CI-1044 (96) is the most recent [87].

Figure 9.19  Indazoles as catechol mimics.
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Figure 9.20  Heterocyclic scaffolds for PDE4 privileged structures.

In comparison to the numerous compounds that fall into the catechol or related
class, far fewer compounds belong to the other ‘classical’ scaffold types of PDE
inhibitors. The xanthine core, which was the basis of several selective, highly potent
PDE5 inhibitors, has been far less successful in the PDE4 arena by comparison
(Figure 9.22). Denbufylline (97) was an early example with a structure close to IBMX
[88]. This compound is representative of the trend toward more lipophilic and space-
filling substituents at both pyrimidine nitrogens. The same holds true for cipam-
fylline 98 [89] and arofylline 99 [90]. The latter compound demonstrates that an
aromatic moiety rather than the usual aliphatic residue can act as one of the lipophilic
groups.

Beyond these classical examples regarding structural motifs, which fall into more
or less sizeable clusters, there are some inhibitors that are not readily categorized
into any of the above classes. We will discuss only two of these that have become
significant because they both have proceeded into advanced stages of clinical
development (Figure 9.23). BAY 19-8004 (100) has been developed by Bayer for the
treatment of asthma and COPD [91]. This compound falls into a class of benzofuran
derivatives which seemingly do not fit into the catechol-related group. Another
compounds, AWD 12-281 (101), was discovered by AWD (formerly Asta Medica)
and is currently under development by GSK [92]. Here, the familiar chloropyridine
is presented without the catechol attachment, at least if one discounts the potential
phenolic acceptor.
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Figure 9.21  Aryl substituted heterocyclic compounds as PDE4 inhibitors.

Figure 9.22  Xanthine-based PDE4 inhibitors.
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9.7.1
Dual PDE4/3 Inhibitors

For several reasons, dual inhibitors of PDE4 and PDE3 have been of interest to
pharmaceutical companies. Such inhibitors have been found, in particular, with
the dihydroisoquinoline core (Figure 9.24) [93]. These inhibitors feature the classical
catechol fragment embedded in a rigid tricyclic framework with an additional
aromatic substituent. Examples include tolafentrine (102) and pumafentrine (103).
Interestingly, it appears that, upon transitioning from the aza series to the carba
analog, PDE3 inhibition is lost and selective PDE4 inhibitors are obtained, such as
compound 104.
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Figure 9.24  Dihydroisoquinoline derivatives as PDE4/3 inhibitors.
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9.7.2
PDE3 Inhibitors

PDE3 hydrolyses cAMP with 10-fold higher activity than cGMP and is inhibited by
high cGMP concentrations. Both nucleotides compete for the same catalytic site,
thus creating crosstalk between cAMP- and cGMP-regulated pathways. Two gene
products, PDE3A and PDE3B, have been found encoding proteins with a molecular
mass of approximately 122 kDa. A membrane-anchoring domain is an additional
feature of the particulate PDE3s that are found, e.g., in adipocytes and hepatocytes.
A unique structural feature of the PDE3 sequence is a 44 amino acid insertion
sequence at the amino-terminal end of the catalytic domain that is essential for
activity [94]. Regulation of this dimeric enzymes occurs mainly via interaction with
hormones such as leptin, glucagon, and insulin, and it plays a major role in the
regulation of glycogen levels [95]. In addition, phosphorylation by PKA also leads
to activation. Both ways of activation act independently and seem to work super-
additively [96].

The known PDE3 inhibitors present a good example of a chemogenomic principle:
the recognition of a conserved chemical pattern by a genetically conserved
biologically active domain. A careful investigation shows that many PDE3 inhibitors
are constructed according to a common blueprint, consisting of up to three modular
building blocks (Figure 9.25). A constituent element of a PDE3 inhibitor is a lactamic
structure which may appear in different hetero-substituted forms, e.g., as a

Figure 9.25  Milrinone and related PDE3 inhibitors.
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semicarbazone or as a thiourea. In every structure, an amidic NH motif is essential
for good binding. The second module is an aromatic ring, which may be a direct
substituent of the lactamic ring (105–108) or part of a condensed lactamic polycycle
(109) [97–100]. Both framework alternatives frequently contain a pyridyl substructure
(as in the classical PDE3 inhibitors amrinone 105 and milrinone 106) or a
benzimidazole substructure (e.g., meribendan 112, pimobendan 113, Figure 9.26)

Figure 9.26  PDE3 inhibitors with extended pharmacophores.
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that matches the common hydrophobic pharmacophore. These two-module
inhibitors constitute a first subfamily of PDE3 inhibitors. Interestingly, in the
simplest example the second motif on the lactam ring can be a ketone, as shown in
110 and 111 in which an methyl or ethyl carbonyl moiety replaces the pyridyl residue
of milrinone [101].

The addition of a lipophilic ring pharmacophore to this bicyclic aryl or biaryl
structure, e.g., phenyl, methoxyphenyl, ethylthiophenyl, imidazolyl, pyrazolyl, or
pyridyl, generates the second inhibitor subfamily: full-length inhibitors consisting
of three modules, such as meribendan or CI-930 (112–115, Figure 9.26) [102, 103].
Again, the middle pharmacophore can be incorporated into the lactam module
(116, 117) or into the additional lipophilic part of the inhibitor (118, 119). Extreme
condensation of the pharmacophores, so as to incorporate all three modules into
one tricyclic system, resulted in inhibitors 120 and 121.

Alternatively, the second of these two modules can be left out, as in 122 and 123
(Figure 9.27). Here, the lactam module and the lipophilic ring module on the other
end are connected by a flexible alkyl linker, leading to structures that are reminiscent
to those constructed by fragment-based approaches, thus forming a third inhibitor
subfamily (Figure 9.27).

It is of great interest for the design of new PDE3 inhibitors to gain deeper insights
on the 3D structures of inhibitors and their interaction with the enzyme. Earlier
investigations have shown that a planar constellation of all three inhibitor parts is
crucial for selective PDE inhibition [104]. More recently, studies based on a PDE3
homology model constructed from the X-ray structure of PDE4B2B shed some
light on the structure–function relationship of this inhibitor type [105]. The lactam
part of the inhibitors is suggested to occupy a hydrophobic pocket above the
phosphate-binding region of cAMP formed by Thr908, Leu910, His913, Lys947,
and Ile951; the major interaction of the lactam motif takes place between the
backbone carbonyl of Thr908 and the ε-amino group of Lys947. Following the model
further, the middle pharmacophore occupies the ribose position and blocks the
catalytic activity of Tyr751 and His752. The third recognition pocket is proposed to
be formed of Ile951, Ile968, Phe972, Leu1000, and in particular Phe1004, where
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the adenine ring of cAMP comes to reside. It might be addressed by the lipophilic
fragments of the inhibitors equipped with the third module. Since these inhibitors
are the most effective ones, the importance of this lipophilic adenine-binding pocket
must be emphasized, especially in the context of new inhibitor and library design.
The outstanding role of Phe1004 for high affinity has been shown by chemical site-
directed mutagenesis experiments and is demonstrated by the de-novo designed
inhibitor 125 [106]. Although the potency of 124 is almost exclusively based on the
lactam pocket affinity, introduction of a phenyl group (presumably capable of π
interactions with Phe1004) resulted in a dramatic increase in PDE3 inhibition
(Figure 9.28).

9.8
Inhibitors of Other Phosphodiesterases

9.8.1
PDE1

The 75-kDa PDE1 isoenzyme is characterized by its dual specificity and its activation
by Ca2+/calmodulin. Three different gene products, PDE1A, PDE1B and PDE1C,
are known. In addition, several C- and N-terminal splice variants have been
characterized [107]. Among the different PDE1 isoenzymes, the substrate selectivity
and the activation efficiency by Ca2+/calmodulin varies. Although PDE1C hydrolyses
both cyclic nucleotides with equal effectiveness, PDE1A and 1B prefer cGMP as
the substrate.

The regulatory domain near the N terminus contains two calmodulin-binding
domains (domain A and domain B), although only one calmodulin seems to bind
to PDE1. Close to the calmodulin-binding domain A, an autoinhibitory domain
has been found. Truncation of this region leads to activation of the enzyme with
retained calmodulin-binding capacity. In addition to activation by Ca2+/calmodulin,
PDE1 can also be regulated by phosphorylation; the phosphorylation appears close
to the calmodulin-binding domain B and leads to decreased sensitivity to activation
by calmodulin [108].

Figure 9.28  Influence of potential hydrophobic interaction with the core pocket.
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PDE1 modulation has not been firmly tied pharmacologically to the treatment of
a particular disease. PDE1’s broad tissue distribution and dual substrate specificity
make it an important player in the regulation of cellular cyclic nucleotide second
messengers. In contrast to PDEs 5 and 4/3, which have received considerable
attention from medicinal chemists, there is also much less information available
on inhibitors of PDE1. For many years the alkaloid vinpocetine (126) could be cited
as the most significant selective, albeit weak, PDE1 inhibitor (Figure 9.29) [109].

Several xanthine derivatives are potent inhibitors of PDE1. In this regard, the
dual PDE1/5 inhibitor 8-methoxymethyl-IBMX (127) can be regarded as a first
lead. In an effort to identify more potent PDE1/5 inhibitors, a team at Schering
Plough has focused on the structurally related tetracyclic guanines (Figure 9.30)
such as the benzyl-substituted 128 or the even more potent alkyl analog 129 [110].
In contrast, the isomeric 3-substituted benzyl derivative 130 is less potent.
Nonetheless, if both substitutions are combined, they produce highly potent and
selective PDE1 inhibition, as in 131 and 132. The latter represents the most potent
and specific PDE1 inhibitor published to date. Another hint as to the specific
requirements of PDE1 can be gained from the tricyclic compound 133, which has
reduced hydrophobicity and steric bulk compared to 134 and is both more potent
and more selective toward PDE1.

Much earlier, a structurally different inhibitor type bearing the heterocyclic core
of sildenafil appeared in the patent literature (Figure 9.31). Compound 135 is a
micromolar PDE1 inhibitor, which also shows affinity for the adenosine receptor
[111]. By tuning the substituents, the more potent and selective inhibitor 136 was
obtained some 10 years later by the Pfizer UK group [112].

A different approach was taken by medicinal chemists at Sterling Winthrop
(Figure 9.32) [113]. In an attempt to combine the structural features of the PDE5
inhibitor zaprinast and the PDE3 inhibitor milrinone, they arrived at WIN 61626
(137) and WIN 61691 (138), which are dual PDE1/3 inhibitors with slight selectivity
for PDE1.

Completely unrelated structures have appeared in the patent literature disclosed
by Japanese inventors (Figure 9.33). The two imidazole derivatives 139 and 140 are
micromolar PDE1 inhibitors [114]. More potent, and bearing some structural
resemblance to the alkaloid papaverine, are the quinazolines 141 and 142 from

Figure 9.29  Classical inhibitors of PDE1.
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Figure 9.30  Tetracyclic guanine inhibitors of PDE1 and PDE5.
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Figure 9.31  Imidazotriazinone Inhibitors of PDE1.
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Eisai [115]. We should note, however, that no selectivity data have been published
for these compounds.

In contrast to the other members of the PDE family, PDE1 is unique in its ability
to interact with calmodulin. As would be expected therefore, this interaction can
also be the target of potential inhibitors. This appears to be so for some natural-
product inhibitors of PDE1 isolated from ginseng root. The ginsenosides Rb, Rc,
and Re are moderately active (5–15 µM) steroidal inhibitors of CaM PDE isolated
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from bovine heart [116]. Interestingly, they cannot inhibit the CaM PDE from bovine
brain, suggesting that the calmodulin interaction may be different for different
PDE1 isoforms. Another steroid that may share the same inhibitory mechanism
and possesses somewhat higher potency (60 nM) is the Streptomyces metabolite
KS-505a.

9.8.2
PDE2

The dual-substrate PDE2 is a unique 105-kDa enzyme that is characterized by the
ability to have its catalytic activity stimulated by cGMP binding to the allosteric
regulatory site consisting of the tandem GAF domains GAF A and GAF B. The
activation can be as high as 50 fold and is due to increased affinity of the enzyme
for the substrate. The X-ray structure of cGMP bound to GAF B has recently been
solved and revealed: in the cGMP-bound state both GAF domains form a hetero-
dimer [117]. Only a single PDE2 gene product has been characterized, with several
splice variants [118].

Figure 9.32  Dual PDE1/3 Inhibitors.
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PDE2 shows broad tissue distribution in cytosolic as well as membrane-bound
forms with a particularly high level of expression in the central nervous system. It
has been speculated that the high capacity of PDE2 in the activated state makes it a
possible emergency system in situations of uncontrolled increasing cyclic nucleotide
levels. However, the biochemical and pharmacological characterization of PDE2
has clearly been hampered by a lack of potent, selective inhibitors. For many years,
the only PDE2 inhibitor available was erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA,
143; Figure 9.34), a potent adenosine deaminase inhibitor (IC50 = 1 nM); its much
less pronounced PDE inhibitory effects (IC50 = 0.8 µM) were not discovered until
1992 [119]. EHNA is selective for PDE2 over other PDEs, but its dual pharmaco-
logical activity presents a problem for its use as a biochemical tool. Another purine
derivative (144) was reported to be a mixed PDE2/4 inhibitor [120].

More recently, Bayer disclosed potent, selective PDE2 inhibitors in a series of
patents (Figure 9.34) [121]. A key feature of these inhibitors, which belong to the
substrate-analog series, is a benzylic rather than a phenylic substitution at position
2 (using the common numbering system of purine nomenclature) of the heterocycle.
Thus, inhibitors 145 and 146 demonstrated moderate potency toward PDE2 and

 

NH

N

O

N
N

OH
MeO

OMe

N

N

NH2

N

N

OH

(CH2)5CH3

NH

N

O

N

N

OH

OMe

S
N

O O

HO2C

NH

N

O

N
Y

X

OMe

MeO

N

N

NH2

N

N

Cl

F F

  EHNA (143)
PDE2  0.8 µM

BAY 60-7550 (148)
    PDE2  4 nM

        147
 PDE2  1 nM

   145
(X=CH
 Y=N )

300 nM
300 nM
300 nM

PDE1
PDE2
PDE5

   146
(X=N
 Y=N )

500 nM
  80 nM
300 nM

         144
PDE1     50 µM
PDE2    0.7 µM
PDE3     93 µM
PDE4    1.7 µM
PDE5 >100 µM
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show a mixed PDE1/2/5 inhibitor profile. In contrast, the purinone 147, bearing a
more elaborate substitution pattern, with a 2-hydroxy-6-phenylhexyl sidechain on
one side and a sulfonamide residue on the other, is a very potent, selective inhibitor
of PDE2. Bayer has also disclosed that selective PDE2 inhibitors can improve
cognitive performance and thus could be used in the treatment of Alzheimer’s
disease and related disorders [122]. To this end, BAY 60-7550 (148) was shown to
be active in animal models of learning and memory.

9.8.3
PDE7

Two splice-variants of PDE7A and a second gene product PDE7B with variations in
the N-terminal portion of the protein are known; the two different gene products
show 70% identity [123]. The molecular weight varies from 50 kDa (PDE7A2) to 52
kDa (PDE7B) and 57 kDa (PDE7A2). PDE7 is highly specific for cAMP and is
inhibited neither by rolipram, the prototypical PDE4 inhibitor, nor by zaprinast,
the classical PDE5 inhibitor. It is however inhibited by the broad-spectrum PDE
inhibitor IBMX.

Inhibition of PDE7 is still an upcoming topic, and published reports including
activity and SAR data are the exception. Nevertheless, patent filing has increased
considerably during the past few years, giving a rough impression of the privileged
pharmacophoric patterns for PDE7 inhibition. Reassuringly, classical substrate
analogs such as purinone 149 (Figure 9.35) from Celltech are among the range of
known PDE7 inhibitors, thus demonstrating that the principles discussed in the
above sections can be transferred to this family of PDEs as well [124]. However,
there is much heterogeneity within the group of patented/published PDE7
inhibitors. The group includes benzopyrrolidine 150 (Ono [125]), perhaps remi-
niscent of the prominent catechol-type scaffolds among PDE4 inhibitors, to
spirocyclic urea 151 and thiadiazoles like 152 (both from Warner Lambert [126]),
to thienopyrimidine 153 and related condensed heterocycles from Bayer [127].
Another company with interest in this field of inhibitors, Altana, successfully
converted their previous PDE4/3-selective dihydroisoquinoline derivatives (see
pumafentrine, 103) into a lead series with PDE7 activity, as demonstrated by
compound 154 [128].

The increasing number of patents in this area clearly suggests that substantial
pharmaceutical interest is directed toward additional PDE7 inhibitors and that the
disclosure of additional selective and potent compounds is only a matter of time.
Inhibitors of PDE7 might offer a novel strategy in the treatment of T-cell mediated
diseases and in modulating inflammatory and immunological responses. This thesis
is supported by the clearly shown involvement of PDE7 in T-cell activation [129].
Since PDE7 is also present in airway epithelial cells, it may be an attractive target
in the area of airway and inflammatory diseases as well [130]. More recently, it was
discovered that PDE7 mRNA expression levels are altered in the brains of Alz-
heimer’s patients, thus suggesting that inhibition of PDE7 could modulate the up-
regulated cAMP pathways in Alzheimer’s disease [131].

9.8  Inhibitors of Other Phosphodiesterases
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9.8.4
Recently Discovered PDEs 8–11

In contrast to the numerous PDE inhibitors reported for the ‘early’ PDEs 1–5,
PDEs 8–11 have as yet somewhat of an orphan status. The scattered information
that is available was mostly disclosed in the patent literature, although a significant
surge in activity can be expected. The available data suggest that these PDEs can be
addressed with scaffolds that are related to those known for other PDE inhibitor
classes. PDE8 (currently two subtypes 8A and 8B are known) shows high affinity
for cAMP, even surpassing that of PDE4 (called the ‘cAMP-specific PDE’), although
its turnover is much lower than that of PDE4. PDE8 is not inhibited by the
prototypical PDE4 inhibitor rolipram but shows some sensitivity to dipyridamole
[132]. Only one isoform (encompassing several splice variants) is known for the
cGMP-specific PDE9, the smallest PDE known to date (between 465 and 593 amino
acids). The catalytic domain shows all 21 conserved amino acids common to PDE1–
PDE8. The dual-specificity PDE10 occurs as a single gene product with at least two
splice variants of approximately 88 kDa. The catalytic domain shows relatively low
sequence identity with other PDEs. In common with several other PDEs, a pair of

Figure 9.35  Diverse structures of PDE7 inhibitors.
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cGMP-binding GAF domains has been identified in the N terminus of the protein
[133]. PDE11 is the most recently identified member of the PDE superfamily and
likewise demonstrates dual specificity for cAMP and cGMP. Similar to PDE10,
this rather small (490 amino acid residues, ~56 kDa) isoenzyme contains a GAF
domain of unknown function. The most potent inhibitor for PDE11 found to date
is tadalafil (IC50 = 36 nM), an unintentional circumstance that was discovered during
the clinical development of this PDE5 inhibitor. Zaprinast and IBMX also inhibit
PDE11, albeit on a micromolar level.

Interest in PDE 10 has been stimulated by the distinct high level of expression of
the enzyme in the striatum region of the brain [134]. Scientists at Pfizer who were
working with PDE10 found that papaverine (155, Figure 9.36), a classical PDE
inhibitor that was previously thought to be unspecific, is a reasonably selective and
potent inhibitor of the enzyme (the next-closest IC50 values are those for PDE4D
and 4C, with values of 320 nM and 800 nM, respectively, and for PDE6 with 860 nM)
[135]. Apart from this isolated example, Bayer has disclosed several PDE10 inhibitors

Figure 9.36  Papaverine and related inhibitors of PDE10.
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that fall into two different chemical series. Compounds 156 and 157 are imidazo-
triazine-based inhibitors that, on the one hand share the core of the PDE5 inhibitor
vardenafil; on the other hand one could argue that they bear at least some structural
resemblance to papaverine as well [136]. The other series of dihydropyrroloiso-
quinolines 158 to 161 are characterized by a dialkoxy substitution in the benzene
ring and by an aromatic residue replacing the pyrrole [137]. These compounds
likewise show some intriguingly similar features to papaverine, and thus all the
inhibitors may loosely reflect a distinct structural motif in the PDE inhibitor family,
leading to emphasis on the PDE10 isoform but yet general enough to inhibit other
family members, as has been demonstrated with papaverine.

Still more elusive have been inhibitors of the remaining PDEs – types 8, 9, and
11. In particular, PDE8 and PDE9 are not sensitive to the prototypical inhibitor
IBMX and thus appear to form a distinct class of their own. However, in a recent
patent from Pfizer, moderately potent PDE9 inhibitors were disclosed that featured
the ‘classical’ purinone-type heterocyclic core having a benzylic substituent in
position 2 (again using purine numbering) [138]. In position 9 either aromatic,
e.g., 162, or aliphatic, e.g., 163, residues appear to be tolerated (Figure 9.37). This
again demonstrates that the same design principles can be carried over from one
isoenzyme within a family to the next. Thus we may reasonably anticipate that
potent specific inhibitors of PDE8 and PDE11, which have so far remained elusive,
may soon be discovered within one of the known structural classes of inhibitor.

9.9
Summary: A Chemogenomic View of PDE Inhibitors

This chapter has illustrated the numerous advances made toward identifying
selective PDE inhibitors. Despite the heterogeneity that may appear at first glance,
several common structural features have become clear. The majority of compounds
can be grouped into families of common substructures that address conserved
features of the PDE active site. Most notably, the substrate-like cGMP-PDE5
inhibitors, the structurally unrelated indoline derivatives, and the cAMP-PDE4
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inhibitors from the catechol class all form crucial H bonds to the same conserved
glutamine residue that guides nucleotide recognition. Furthermore, in all instances,
the hydrophobic interaction within the core-binding domain plays a key role in the
energetics of inhibitor binding. This set of shared binding interactions mediated
by completely different structures can be considered a chemical equivalent of
convergent evolution, by which a common result is reached from different starting
points. The design principles that have been at the root of this progress can be
transferred from one PDE class to another, making us confident that an accelerated
pace of discovery of new inhibitors may be near. This would be highly welcome
from a pharmacological point of view, because new selective inhibitors are needed
to explore and understand biological functions and, ultimately, to identify new drugs.
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10
Proteochemometrics:
A Tool for Modeling the Molecular Interaction Space

Jarl E. S. Wikberg, Maris Lapinsh, and Peteris Prusis

10.1
Introduction

The function of living matter is determined by the structure, organization, and
interaction of its constituents. The composition of living matter is ultimately
determined by the genome. The advent of the complete genome sequences of several
species has opened completely new vistas to the understanding of the functions of
organisms at the molecular level.

However, experimental assignment of functions and mapping interactions over
whole genomes and proteomes will involve very large costs. The number of genes
in the human genome is estimated to about 30 000–40 000, and the number of
proteins in the human proteome may be between 200 000 and 2 million, due to
alternative splicing, posttranslational processing, and different subunit assembly.
Although genes remain essentially unchanged throughout life, the proteome
undergoes constant changes depending on the tissues it resides in, the organism’s
age, etc., due to different processing in the cells. On top of that, the genomes
contain substantial genetic variation, with an estimate of 3 million single nucleotide
polymorphisms (SNPs) in the human genome. Considering also the genomes of
microorganisms, of which more than 100 bacterial genomes have been cloned
with about 4000 genes each, and the genomes of animals and plants of scientific
and commercial value, the task is indeed large. If one then also considers mapping
the interactions of organic compounds (drugs and metabolites) with the proteome,
the task reaches astronomical proportions. The number of organic compounds
with molecular weights less that 500 Da is estimated to 10200, of which 1060 may
be ‘drug-like’ (i.e., likely to be nontoxic, not containing reactive groups, and
showing likelihood of passing biological barriers) [1]. Accordingly, without effective
approaches to select the relevant combinations of interacting entities for ex-
perimental evaluation, and without the availability of computational methods that
correctly predict the functions of the biomolecules and their interactions with the
surroundings, mapping of functions over entire genomes may never actually
happen.
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Current computational methods of assessing protein function rely to a large extent
on predictions based on the sequence similarity of proteins with other proteins
having known functions. The accuracy of such predictions depends on the ability
of the computational methods to extend sequence similarity to functional similarity.
Computational approaches to molecular recognition have hitherto essentially
required access to protein 3D structures. Computational determination of a 3D
structure is resource-demanding and error-prone, and generally requires prior
knowledge, such as the 3D structure of a homologous protein. The experimental
determination of protein structure is a large bottleneck. For water-soluble proteins
the pilot structural genomics project succeeded in obtaining only about 10% of the
X-ray structures of the proteins in the trial [2].

Recently, a new bioinformatics approach aiding the mapping of molecular
recognition was developed. This technology, which does not necessarily require
knowledge of the 3D structure of the biomacromolecules, was termed proteochemo-
metrics (abbreviated PCM) [3]. Proteochemometrics contrasts with most previous
bioinformatics approaches in that it starts with information derived from the
chemical properties of the biomolecules. This chapter deals with various aspects of
proteochemometrics, including its foundation, technical aspects of its use, examples
of its application, and its potential for the future.

10.2
Definition and Principles of Proteochemometrics

Proteochemometrics originates in chemometrics. Chemometrics constitutes a
collection of technologies that evolved when chemists obtained more and more data
characterizing the substances they were working with. It then became necessary to
apply sophisticated mathematical and statistical methods to deal with the increasing
amounts of information. There is no exact definition of chemometrics, which can
be attributed to the fact that it has evolved gradually, but the definition presented at
the first International Chemometrics Internet Conference (InCINC’94) gives a good
clue: “Chemometrics is the science of relating measurements made on a chemical
system or process to the state of the system via application of mathematical or
statistical methods.” Others have stated that it is a set of “mathematical, statistical,
graphical, and symbolic methods to improve the understanding of chemical
information” and “the art of extracting chemically relevant information from data
produced in chemical experiments.” In lieu of a stringent definition, Svante Wold
humorously stated that “chemometrics is what chemometricians do,” and actually
the statement comes very close to the truth, because chemometrics has been a
dynamically evolving field since its origin more than 30 years ago. For the sake of
the present discussion we can regard chemometrics as a discipline in chemistry
that uses mathematical, statistical, and other methods to analyze chemical data [4].

Chemometrics has been most successfully applied in four areas, namely (1) multi-
variate calibration, (2) quantitative structure–activity relationship (QSAR) studies,
(3) pattern recognition, classification, and discriminant analysis, and (4) multivariate
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modeling and monitoring of processes [5]. The most relevant areas to PCM are
QSAR, classification, and discriminant analysis. In QSAR the aim is to correlate
chemical data of series of compounds (i.e., compounds contained in a ‘chemical
space’) to a biological activity. ‘Biological activity’ relates to the strength of interaction
of a compound with a target, whatever that target is, e.g., an organism, a cell, or a
protein. Thus, in QSAR we deal not only with chemical data, but also with data
characterizing the chemical substances’ interactions with a target. In PCM, however,
we study several targets, such as a series of proteins. In the original setting we
simultaneously studied interactions of several targets with several ligands. The
benefit of PCM is then that it deals not only with the chemical space of series of
compounds, as does QSAR, but also with the ‘interaction space’ of the targets and
the interacting entities. As a result we can extract a much richer set of information
about the interactions occurring between targets and the interacting molecules, and
the PCM models also become more stable [6]. PCM can accordingly be defined as
the area in which we study the molecular interactions between proteins and their
interacting entities, using chemometric techniques. Chemometrics can be applied
to data characterizing proteins per se as well, or for that matter, even to data for any
other type of macromolecule and their interactions with their surroundings. For
the present discussion we refer to all of this as proteochemometrics.

A central approach used in PCM is schematically outlined in Figure 10.1. PCM
is here based on modeling data for sets of biopolymers interacting with sets of
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..DVMMCTASILNLCAISIDRY...

..DVMLCTASIFNLCAISVDRF...
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Figure 10.1  Outline of the principles of proteochemometrics. Descriptors of
training sets of biopolymers and ligands are correlated with experimentally deter-
mined interaction activities, using a suitable mathematical modeling method.
The predictive ability of the resulting model is assessed by validation, using test sets
of ligands and biopolymers. When its validity has been confirmed, the proteochemo-
metric model can be used for predicting the activity of novel biopolymers and
ligands and for interpreting factors that determine biopolymer–ligand interactions.
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chemical entities (ligands). To create a PCM model, we need to obtain a set of
biopolymers showing sequence variation, as well as a set of ligands showing variation
in their chemical structure. These entities are then evaluated for their abilities to
interact, which creates training and test sets of data. PCM models are made by
correlating suitable descriptors of the biomolecules and the ligands with the
experimentally determined interaction activities of the training set. The model thus
obtained needs to be validated for correctness (e.g., using the test set) and can
thereafter be used for interpretations and predictions (Figure 10.1).

The interaction activities can be measured by any standard interaction assay, such
as radioligand binding, plasmon resonance, and enzymatic assays. Other measures,
such as of downstream signaling, can also be used for indirectly estimating the
interaction activity, but interpretation may then become somewhat different.

10.3
Modeling and Interpretation of Interaction Space

Properties of organic molecules (i.e., ligands) can be described with physico-
chemical, structural, and binary descriptors, and this is a well studied field in QSAR
(Scheme 10.1). In PCM biopolymers (i.e., proteins, nucleic acids, polysaccharides,
and assemblies thereof) are described, and the problem is more difficult due to their
size and complexity. One option is to consider the polymeric nature of the biomole-
cules and provide numeric characterizations according to the position and properties
of each monomer. However, since any standard description used in QSAR might
include from 100 to 20 000 or more descriptors for each monomer, the resulting data
table for any normal biopolymer would be extremely large, giving rise to immense
problems in subsequent modeling steps. A solution is to consider only so-called
principal properties, which are obtained by compressing monomer descriptions by
principal component analysis (PCA) [7]. For amino acids such principal property
descriptors were developed based on a large number of measured and computed
physicochemical properties of the amino acid monomers, resulting in 3–5 principal
property scales (‘z scales’). Such z scales encapsulate about 70−95% of the physico-
chemical properties of the amino acids in 3–5 z scales (Scheme 10.1) [8].

With z scales, a whole protein can be directly translated from its amino acid
sequence into a vector of numbers. However, sets of proteins of different sequence
lengths yield matrices of nonuniform size, which is incompatible with subsequent
correlation methods used in PCM modeling. Alignment of sequences is a solution
to forming uniform matrices. However, the primary sequences of proteins are
seldom conserved to the extent that alignments can be made unambiguously.
Wrongly aligned sequences preclude comparisons of the proteins’ chemical space.
A method called auto cross-covariance (ACC) transforms was developed, which
provides a uniform matrix from a set of sequences of unequal lengths by capturing
sets of characteristic physicochemical patterns of the sequences. Applying ACC
transformations to z-scale coded sequences has proven of value for descriptions
from short peptides to proteins [9].
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Scheme 10.1  Examples of derivation of descriptors (ordinary terms)
for ligands (organic molecules, etc.) and biopolymers and of
derivation of cross terms.

10.3  Modeling and Interpretation of Interaction Space

Physico-chemical properties:

(a)  Description of ligands

- One-dimensional (constitutional): number of atoms, bonds, rings, groups etc.

- Two-dimensional: topological (connectivity) indices.

- Three-dimensional: molecular modeling + CoMFA (Comparative Molecular Field Analysis)
descriptors, CoMSIA (Comparative Molecular Shape Indices Analysis) indices, GRIND 
(GRind INDependent) descriptors etc.

- Four and more dimensional: representation of multiple conformations, orientations, 
protonation states etc.

Structural descriptors:

N
O

N

O

Molecular weight, van der Waals volume, molecular surface area, number of hydrogen bond 
donors and acceptors, polarizability, electronegativity, logP, NMR shifts, chromatographic
retention times etc.

(b)  Description of biopolymers

Principal physico-chemical properties of the monomer sequences

Binary representation of chimeric biopolymers

Z-scales are obtained by principal component analysis of 
physico-chemical properties of monomers. E.g., the first 
Z-scales of amino acids describe hydrophobicity (z1), 
steric bulk/polarisability (z2) and polarity (z3) of the amino 
acids. 

Chimeric biopolymers are formed by interchanging 
sequence portions of two native biopolymers. Eg. the 
number 1 can be taken to represent physico-chemical 
properties of a sequence portion of  the first native 
biopolymer, whereas the number 0 (or -1) can be taken  
to represent the physico-chemical properties of the corre-
sponding sequence portion of the other native biopolymer.

Binary representation: Presence or absence of particular structural features in a 
molecule can be represented by bitstrings. Binary representation can also be used to 
characterize values of physico-chemical properties over or below a certain limit.

(c)  Cross-terms

Descriptors of ligands and biopolymers 
can be used to derive intra-ligand, 
intra-biopolymer and ligand-biopolymer 
cross-terms, e.g. by multiplication of 
descriptor-values.
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If the variation in sequence in a whole biopolymer set is restricted to only two
possibilities, binary descriptions can be used. They are useful for describing chimeric
proteins containing alternating stretches of amino acids from two different proteins
(Scheme 10.1).

PCM modeling aims to find an empirical relation (a PCM equation or model)
that describes the interaction activities of the biopolymer–molecule pairs as accurate
as possible. To this end, various linear and nonlinear correlation methods can be
used. Nonlinear methods have hitherto been used to only a limited extent. The
method of prime choice has been partial least-squares projection to latent structures
(PLS), which has been found to work very satisfactorily in PCM. PCA is also an
important data-preprocessing tool in PCM modeling. Modeling includes statistical
model-validation techniques such as cross validation, external prediction, and
variable-selection and signal-correction methods to obtain statistically valid models.
(For general overviews of modeling methods see [10]).

In PCM we are interested in exploring how molecules interact. When we are
using linear modeling, these descriptions reveal the contribution of linear combi-
nations of properties to the interaction. However in reality, complex nonlinear
processes govern interactions. Such nonlinearities can be explored by investigating
the contribution of nonlinear combinations of descriptors, by forming so-called
cross terms. Cross terms are formed from ordinary terms by a suitable mathematical
operation, usually multiplication. (Ordinary terms are the descriptors for molecules
and biopolymers.) In PCM we can derive three types of cross terms, namely ligand
cross terms, ligand–biopolymer cross terms, and biopolymer cross terms (Scheme
10.1). Together with the ordinary terms, these then form five descriptor blocks,
which represent a polynomial approximation of the interaction space (Scheme 10.1).
Depending on the problem to be solved, one or more of these blocks is sometimes
omitted [11].

The key to understanding PCM modeling is to understand the meaning of
descriptors. Although the ordinary terms for molecules that correlate with the
interaction activity relate to the ability of the underlying property to form interactions
with invariant parts of the biopolymers and vice versa, correlated ligand–polymer
cross terms reveal points of complementary interactions between varying parts of
ligands and varying parts of biopolymers. A large absolute value for a coefficient of
a descriptor in the PCM equation indicates a large influence of that descriptor on
the interaction activity. With this information, insights into the nature of the
molecular interactions can be obtained; it also indicates how we can modify a ligand
and/or a biopolymer so as to achieve a desired property for their interaction. Hence,
PCM finds application in areas such as functional genomics, drug design, and
protein engineering.

From the coefficients of the PCM equation various measures have been derived
to aid the interpretation of molecular recognition processes. These include uses of
the sum of the absolute values of coefficients for a group of descriptors, computation
of contribution estimates, and various measures to reveal the properties underlying
ligand selectivity [11].
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10.4
Examples of Proteochemometric Modeling

10.4.1
Proteochemometric Modeling of Chimeric MC Receptors Interacting
with MSH Peptides

The first successful PCM study that simultaneously used series of proteins and
ligands was performed on wild-type and chimeric melanocortin receptors (MCRs)
interacting with melanocyte-stimulating hormones (MSHs) and analogs thereof
[12a]. The MCRs are G-protein coupled receptors (GPCRs) that contain seven
transmembrane regions, TM1–TM7. Their N-terminal portion and three loops
(EL1−EL3) are located toward the cell membrane’s extracellular face, and three
loops (IL1–IL3) and the C-terminal portion are located toward the intracellular face.
There are five subtypes of MCRs (MC1–5), but the modeling study included only
subtypes MC1R and MC3R. Chimeras of the latter had been created by dividing the
amino acid sequences into four parts, the first containing the N terminus and
TM1; the second IL1, TM2, EL1, and TM3; the third IL2, TM4, EL2, TM5, IL3, and
part of TM6; and the fourth the other part of TM6, EL3, TM7, and the C terminus,
and then including sequences from the MC1R and MC3R subtypes in various combi-
nations [12b]. The eight chimeras thus created, and the wild-type MC1R and MC3R
subtypes (in total, 10 receptors), were evaluated for their interaction activities with
α-MSH, the phage-display-selected MC1R-selective peptide MS04, and two chimeric
variations between α-MSH and MS04 that contained two stretches of three and
five amino acids from the original peptides [12c]. Since the chemical variation had
been created from a total of four amino acid stretches from two original receptors,
and two original initial peptides, the interaction space could be described by six
binary descriptors [12a].

Applying PLS modeling by using the six binary descriptors of the peptides and
receptors (i.e., using these six binary descriptors as ordinary terms) provided a
preliminary model that was substantially improved by including ligand–receptor
and receptor–receptor cross terms. The final model had R2 = 0.93 and Q2 = 0.75,
which represents a very good model of high validity. (R2 represents the explained
variance of the model and Q2 is a measure of the predictive ability by cross
validation: Q2 > 0.4 is considered acceptable, and Q2 > 0.9 is excellent). The fact
that the model was improved very substantially when the cross terms were included
showed that a substantial part of the peptide and MCR interactions depend on
complimentary interactions between the receptor and the peptides, as well as on
interactions within the receptors. Analysis of the model using measures of its PLS
regression coefficients showed that the high-binding affinity of MSH peptides was
achieved primarily by interactions of the peptides’ C-terminal amino acids with
TM2 and TM3 of the MCRs and to a lesser extent by the interaction of the N
terminus with TM1, TM2, and TM3. Moreover, analysis of the intrareceptor cross
terms revealed the existence of strong interaction between TM6/7 and TM2/3 in
the receptors.

10.4  Examples of Proteochemometric Modeling

1239vch10.pmd 06.06.2004, 14:11295



296 10  Proteochemometrics: A Tool for Modeling the Molecular Interaction Space

A method for assessing the interactions responsible for peptide selectivity was
also developed, by creating a separate model in which the interaction activity was
expressed as the MC1R selectivity of each peptide, rather than as absolute values
for ligand-binding activity. Also here, a very good model was obtained (R2 = 0.92,
Q2 = 0.72), which interestingly revealed that the MC1R selectivity of the peptides
were primarily determined by interaction of their N termini with TM2/3 of the
MCRs [12a].

The first study was very encouraging, because very robust PCM models could
be created, despite the fact that only six binary descriptors were used to describe
the underlying dataset. It became of obvious interest to verify that PCM modeling
can be applied to other similar datasets and also to broaden the complexity of the
problem by using more varied forms for the interacting entities. In a subsequent
study, the interactions of a broader set of linear and cyclic MSH peptides were
studied, using the wild-type and chimeric MC1R and MC3R subtypes mentioned
above. Also in this study, binary descriptions were used for the peptides, namely
for describing the absence or presence of cyclization in the peptide, the d- or l-
conformation of a particular peptide bond, and the presence one of two different
amino acid at a certain position in the MSH peptides. Since the receptor set was
the same as above, it was described in the same way as before. Also here, the
models were improved substantially by adding cross terms, resulting in very good
PCM models (R2 = 0.97, Q2 = 0.91 for an affinity model and R2 = 0.91, Q2 = 0.83
for a selectivity model). The validity of the modeling procedure was ascertained by
external prediction, by creating a model using the experimental data for only half
the observations and using that model to predict the interaction activities for the
omitted observations. The results of these external predictions showed that the
omitted interaction activities could be ‘predicted’ with high precision. Interpretation
of the models placed the binding pocket for the MSH peptides in the same place
as had been deduced from the first study described above. Another interesting
result that emerged was the possibility of analyzing cross terms between peptide
descriptors, which indicated that PCM modeling can distinguish between differ-
ences in the conformational space of peptides that affect the binding affinity and
selectivity of the peptides [12d].

10.4.2
Proteochemometric Modeling of α1 Adrenoceptors Using z Scale Descriptors
for Amino Acids

The above studies were conducted on chimeric receptors put together from the
sequences of two receptors. Subsequent studies were directed at biopolymer sets
containing larger variations. One of these studies utilized a set of chimeric and
point-mutated α1-adrenoceptors (α1-ARs) that allowed a much richer description
compared to the binary descriptions used above. The biopolymer set in the study
comprised in total 18 α1-ARs, namely the wild-type α1a, α1b, and α1d-ARs and 15
mutated α1-ARs. The latter had been constructed by exchanging TM segments of
α1a-AR with the corresponding segments of the α1b or α1d-ARs (i.e., cassette
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mutations) or by exchanging single amino acids (i.e., point mutations). This resulted
in a set of biopolymers that had 11 positions with three amino acids varied and 43
with two amino acids varied. The interaction data comprised the interaction activity
of a series of 12 structurally closely related α1-AR-active 4-piperidyl oxazoles
determined in radioligand binding-competition assays. In this study five amino
acid z scales were used to describe the receptors. For the positions that differed by
only two amino acids, the z scales could be merged into one numeric value by
calculating the physicochemical distance between the two amino acids (i.e., the
geometric distance between the two property vectors). The quite limited variation
among the 4-piperidyl oxazoles, namely changes in substituents at three positions,
suggested the use of binary structural descriptors for the organic compounds also
[13].

The data for the 3 wild-type, 8 cassette-mutated receptors, and 12 4-piperidyl
oxazoles were modeled first. This neatly demonstrated the importance of cross
terms. Although neither receptor nor organic compound descriptors alone yielded
valid models, it was possible to create a reasonable model based on the ordinary
receptor and ligand descriptors (R2 = 0.87, Q2 = 0.79). However, creating a model
based on ordinary terms and ligand–receptor cross terms yielded a substantially
improved model showing very high validity (R2 = 0.96, Q2 = 0.91). The gain achieved
showed that ligand–receptor cross terms explain a substantial part of the interaction
activity. Following the success of this modeling, 7 point-mutated receptors were
included in the modeling, yielding at total of 18 receptors interacting with 12
4-piperidyl oxazoles. Again, an excellent PCM model was achieved when the
appropriate ordinary terms and cross-term blocks were included (R2 = 0.94,
Q2 = 0.87).

The models were interpreted by using scaled sums of absolute values of PLS
coefficients of ordinary terms (in this study called ‘significance of primary variable’
or ΣSOP) and sums of absolute values of PLS coefficients of cross terms (in this
study called ‘significance of a variable cumulated from ligand–receptor cross terms’
or ΣSOC). These measures gave different insights into the roles of receptor regions
in their interactions with the ligands. ΣSOPs represent the importance of amino
acid descriptors for explaining the variation in the affinity of an average ligand
for the biopolymers in a dataset, and ΣSOCs describe the joint importance of
amino acid and ligand descriptors for creation of ligand selectivity. The ΣSOPs
showed that that TM regions two and five have the greater importance for the
α1-ARs’ ability to bind 4-piperidyl oxazoles, and the ΣSOCs showed that only TM
region two is important for discriminating selective from nonselective 4-piperidyl
oxazoles.

An even more detailed picture was obtained by analyzing the model that included
both the cassette- and point-mutated receptors. For example, this model showed
that the properties of the amino acid at sequence position 86 in TM region two of
the α1-ARs are important for activity. Moreover, this model showed that the single
amino acid at position 185 was responsible for almost all of the ΣSOP values,
although in the model based only on cassette-mutated receptors high ΣSOP values
were assigned to the whole TM region five. These results show that inclusion of

10.4  Examples of Proteochemometric Modeling
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more data in a model allows successive refinement of the PCM modeling, aiding
the interpretation of the molecular recognition processes for interacting entities
[13].

Yet another important observation for the model including both cassette- and
point-mutated receptors was a noticeable improvement in its quality upon inclusion
of receptor–receptor cross terms – comparable improvement did not occur for the
model based only on cassette-mutated receptors. A detailed analysis of the
importance of the receptor–receptor cross terms then revealed that important
interactions occur mainly between amino acids at positions 85 (TM region two)
and 185 (TM region five) and nonmutated parts of TM region five. The results in
fact indicated the presence of distant interactions in the receptor, which could affect
packing or tilting of the TM regions. Taking the analysis further revealed that it is
not just the presence of valine at position 185 of the α1A-ARs that determines their
overall high affinities for 4-piperidyl oxazoles, but rather the cooperation of Val185
with other parts of TM region five [13].

10.4.3
Proteochemometric Modeling Using Wild-type Amine GPCRs

The studies reviewed above were performed on chimeric and mutated receptors.
The need to use engineered proteins seemed to pose restrictions on the application
of PCM on a large scale, in view of the large costs involved in creating such artificially
altered proteins. However, the scope and applicability of PCM was recently enlarged
significantly by a study that showed that a large set of related wild-type proteins is
sufficient to provide highly valid PCM models. The study was performed using 21
GPCRs for amines comprising subtypes of dopamine, serotonin, adrenergic, and
histaminergic receptors. The ligands tested on these receptors were a series of 23
organic amines, antipsychotics, and alkaloids, which showed quite varied structures,
prompting the need for extensive descriptions of their 3D structures [14a]. To provide
a uniform matrix of descriptors from 3D descriptions for use in the subsequent
modeling, one option would have been to perform structural alignments of the
compounds. However, due to the absence of a common core structure in the
compounds, any superimpositions would be at high risk of producing erroneous
results if the resulting alignments had no relation to the real orientation of the
ligands at the receptors’ binding sites. Therefore, an approach to the calculation of
alignment-independent 3D descriptors, so-called GRIND descriptors, was used
[14b]. Briefly, according to this approach molecular interaction fields (MIFs) are
obtained by placing probe ‘atoms’ on grid points surrounding the molecule and
calculating interaction energies at each grid point. The probe atoms used in this
study were DRY, O, and N1, representing hydrophobic, H-bond acceptor, and
H-bond donor interactions, giving three MIFs. A so-called maximum auto- and
cross-correlation (MACC) algorithm was then used to calculate alignment-inde-
pendent descriptors from the pairs of MIFs. In this way six blocks of descriptors,
DRY–DRY, O–O, N1–N1, DRY–O, DRY–N1, and O–N1 were obtained (in all, 230
descriptors) [14].
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Amine GPCRs are known to interact with their ligands within the cleft formed
between the seven TM regions. Therefore, the receptor descriptors were selected
only from the TM segments. This strategy also had the advantage that the sequence
homology of the TM segments was high enough to allow their unambiguous
alignment. (TM segments were overall 35%–45% homologous to the consensus
sequence of amine GPCRs.) In all, 159 amino acids were used and described by 5 z
scales each.

Thus, a fair amount of ordinary descriptors were needed, which would give a
very large number of cross terms. To reduce the descriptors to a manageable
number, PCA was applied separately to the different blocks of ligand descriptors
and descriptors for receptor TM regions prior to using them for calculation of
cross terms [14a]. It was then shown that using only ordinary descriptors (after
PCA) did not allow a valid model to be obtained (R2 = 0.41, Q2 = 0.31). However,
after addition of ligand–receptor cross terms and a form of higher-order ligand–
receptor ‘cross terms’ (see [14a] for details) a very good model was obtained
(R2 = 0.92 and Q2 = 0.75).

Figure 10.2  The use of contributions of
descriptor blocks for evaluating the inter-
actions of organic amines with amine GPCRs.
The study used a PCM model based on the
interactions of 23 organic amines with 21
amine GPCRs. The x axis shows the binding
affinity (pKi) of sertindole for 21 different
amine GPCRs, as computed from the model.
The y axis shows the change in the calculated
interaction activity (∆op) when the values of
variables characterizing some receptor
property were changed in-silico to the values
for a hypothetical amino acid, so that the
receptor property’s value changes to that of the
‘average’ property for the descriptor at that
amino acid position in the dataset.
(a)–(c) show the ∆op values accumulated from
the descriptors of TM region two of the amine
GPCRs and the cross terms formed with
different molecular interaction fields of the
organic compounds (DRY, O, and N1,
respectively). Two contribution indices can
thereby be obtained for any compound, namely
the contribution of any of its described
properties to the average affinity (αsp, derived
from the horizontal lines) and to the selectivity
(σsp, derived from the slopes of the lines).
(Reproduced from Mol. Pharm. 2002, 61, 1465–
1475 by courtesy of the American Society for
Pharmacology and Experimental Therapeutics).
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Figure 10.3  Radar plots of αsp (left) and σsp (right) values for
sertindole’s DRY, O, and N1 interactions with each of the seven TM
regions in amine GPCRs. The plots are based on the same PCM model
as in Figure 10.2. As seen, the αsp values (left) do not discriminate
very clearly between the different receptor regions. However, the σsp

values (right) reveal that distinct interaction types and TM regions are
responsible for selectivity, the DRY–TM2, DRY–TM6, and DRY–TM7
interactions having the largest contributions. (Reproduced from Mol.
Pharm. 2002, 61, 1465–1475 by courtesy of the American Society
for Pharmacology and Experimental Therapeutics).
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To solve the problems imposed by the large numbers of descriptors and the use
of PCA prior to formation of cross terms, as well as the use of higher-order terms,
so-called contribution estimates and groupings thereof, were used for model
interpretation (see [14a] for details). Thus, contribution values were computed for
each descriptor (in the study, called ∆pKi), and the contributions were summed for
regions of interest (in the study, called contribution blocks) (Figures 10.2 to 10.4).
Figure 10.2 a–c shows the contributions (called ∆op) to the affinity of one compound
(sertindole) of the studied series of (a) hydrophobic, (b) H-bond acceptor, and (c)
H-bond donor interactions with one TM region for each amine receptor in the
study plotted against the pKi values (i.e., the negative logarithms of the interaction
activity values) of this compound for each receptor. From these plots two further
indices can be calculated, namely, the average contribution to the affinity of the
TM region of each receptor for a certain type of chemical interaction with a certain
compound (in the study called αsp), and the slope of the trend line (in the study
called σsp). The slope indicates how each chemical property contributes to the ability
of the selected transmembrane region of the different amine receptors to discrimi-
nate the compounds.

The further uses of αsp and σsps are illustrated in Figure 10.3, which shows the
results for all chemical interaction types for all TM regions binding to one
compound. As seen, the set of all regions and chemical interactions reveals widely
varied contributions to the average affinity for and selective discrimination of ligands.
When these contributions are compared for different compounds, they show major
differences, in particular the σsp, as shown in Figure 10.4 for four different ligands.
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  Figure 10.4  Radar plots of σsp for haloperidol, clozapine, tiospirone, and
yohimbine interactions with each of the seven TM regions in amine GPCRs.
The plots are based on the same PCM model as in Figure 10.2. Hierarchical
clustering of the σsp data for 23 compounds identified four significant clusters
of compounds: the centre compounds – haloperidol, clozapine, tiospirone,
and yohimbine – are shown here. As seen, prominent DRY interactions occur
between TM6 and TM7 and haloperidol, clozapine, and tiospirone, but not
when yohimbine is the ligand. For yohimbine the most prominent feature is
instead O-interactions with TM6 and TM7. In addition, tiospirone also shows
prominent DRY interactions with TM2 and TM4. The overall profiles of
haloperidol and clozapine were similar, although these compounds prefer
different receptors (i.e., haloperidol is selective for dopamine receptors, and
clozapine shows highest affinity for α1A adrenergic and 5HT2B receptors).
(Reproduced from Mol. Pharm. 2002, 61, 1465–1475 by courtesy of the
American Society for Pharmacology and Experimental Therapeutics).

These selectivity contributions can be further used to cluster ligands into different
categories, indicating that groups of ligands bind to the receptors with distinct
binding modes, in turn suggesting the existence of distinct binding pockets for
different categories of ligands in the amine GPCRs [14a].

The results of the study also indicate how contribution estimates can be used to
map each individual amino acid (and each amino acid physicochemical property)
in the receptors with respect to its contribution to the activity and selectivity for
every amine ligand [14a].
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10.4.4
Interaction of Organic Compounds with Melanocortin Receptor Subtypes

Yet another study using wild-type GPCRs investigated the interactions of a series
of 54 organic compounds with the four MCR subtypes MC1,3–5 [15]. Since the dataset
included only four proteins, it was of interest to find out whether PCM modeling
showed any advantage over conventional QSAR modeling. Three modeling
approaches were compared, namely, four separate QSAR models (i.e., one for each
receptor), multiresponse QSAR, and PCM modeling. The compounds were
characterized by structural descriptors, including GRIND descriptors, topological
descriptors, and geometrical descriptors.

The low number of receptors suggested that using extensive descriptions of the
physicochemical properties of the receptor sequences would yield little benefit in
the PCM modeling. The MCRs were therefore described with only four variables,
which were based on the receptor sequence identities. For the comparisons with
QSAR models, the PCM model was validated so that all four observations of a
compound were always included in the same cross-validation group, i.e., when
predicting the affinity of a given compound for each of the receptors, no information
was present in the model about the binding of this compound to the other receptors.
Despite this strict criterion, cross validation gave a high Q2 = 0.71 and R2 = 0.80.
Thus, a notable small difference between Q2 and R2 was achieved, indicating a
high-validity model.

Statistical analysis showed that, although the separate QSAR models and PCM
gave similar predictive ability, interpretation of the PCM model was more reliable.
After variable selection, each of the four QSAR models retained different sets of
descriptors, which made it difficult to find determinants for the receptor-subtype
selectivity of the compounds. In contrast, interpretation of the PCM model was
straightforward, and the selectivity of the compounds could be explained on the
basis of a relatively small number of cross terms [15].

10.4.5
Modeling of Interactions between ‘Proprietary Drug-like Compounds’
and ‘Proprietary Proteins’

A study was recently published [16a], which in essence represents a PCM study.
Unfortunately this study was performed on proprietary proteins and proprietary
drug-like molecules, so it is a bit difficult to evaluate. The dataset represented the
interaction measurements of 576 drug-like compounds with 10 proteins; 3286 binary
variables were used to describe topological features of the compounds, and 476
proprietary variables were used to characterize the proteins (no further data was
provided). By applying PCA, the number of compound and protein descriptors
was reduced to 12 and 5, respectively [16a]. Correlation of these 17 principal
components with the affinity data was performed by applying a nonparametric
regression algorithm called multivariate adaptive regression splines (MARS) [16b].
Cross validation of the model was performed by leaving out one protein at a time,
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and the correlation between the observed and predicted values for the four best-
predicted proteins was 0.82, 0.66, 0.35, and 0.32. A closer analysis showed that the
model was predictive only for proteins that had similar counterparts remaining in
the model. The study lead to the conclusion that modeling of a small number of
unrelated proteins would likely fail to make predictions for proteins outside the
modeled domain. In contrast, rather good predictive ability was observed in cross
validation after leaving out 10%–20% of the compounds, correlation between
observed and predicted values being 0.78 (corresponding to Q2 = 0.6). The authors
also stated that the models were difficult to interpret, in particular with respect to
the protein descriptions, something that in fact may be related to the proprietary
nature of the modeled problem [16a]. The MARS regression modeling approach
itself does not seem to suffer from a lack of interpretability and could be an
alternative to calculating all ligand–protein cross terms. However, in a comparative
study on some PCM datasets, the predictability, and in particular the robustness,
of MARS models appeared inferior to those of PLS models [16c].

10.5
Large-scale Proteochemometrics

The ability to build statistically valid models that can predict the interaction of new
macromolecules with new ligand molecules based on descriptors derived from the
molecules’ primary chemical structure gives great promise in a number of important
areas in biology and chemistry. The obvious ones are drug design, protein
engineering, and prediction of protein function. PCM can also be used for traditional
bioinformatics and functional genomics tasks such as protein annotation, classifi-
cation, and functional analysis. A great advantage of PCM is that it needs only data
that are readily obtainable from the use of simple, well developed assay techniques
for measuring the strength of interaction of interacting entities. Interaction assays
are routinely performed on recombinant targets expressed in crude preparations
on which chemical compounds, often in form of libraries, are tested. Crude
preparations from animal tissues may also be useful, if the specificity of the assay
method is good enough and so well characterized that the sequence of the interacting
biopolymer is known.

Although PCM has until now been applied mainly to modeling the interactions
of GPCRs with peptides and organic molecules, for which the interaction strength
was quantified at steady state by radioligand binding, the approach is not limited to
any particular class of protein or to the particular method used for measuring
interactions. It has already been applied in principle to analysis of the kinetics of
antibody–antigen interactions and of DNA–protein interactions [17]. PCM can be
applied to any protein and fold family. In fact, nothing hinders us from building
PCM models covering the interactions of entire proteomes and genomes. In view
of the wide applicability of models covering large areas of the proteome and genome,
its construction is a matter of high importance. We have elected to call projects
aiming at the construction of such models ‘large-scale proteochemometrics’

10.5  Large-scale Proteochemometrics
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(Figure 10.5). Such projects need not to be limited to any particular species, because
data collected for any biopolymer is useful across species. PCM models can be
used for predictions regarding any biopolymer and ligand, given that the interaction
space of the entities of interest are within the bounds of the model.

Thus, large-scale proteochemometrics would aim to collect interaction data on a
broad scale. One possibility is to use existing literature data. A large problem here
is that, in the past, interaction data were collected in quite a nonsystematic fashion,
with each separate study covering fairly small, nonoverlapping series. This creates
problems in finding datasets of high enough quality from the existing literature.
Sometimes the existence of overlapping measurements between studies allows
the data to be transformed and scaled to make the results of different studies
comparable even when different assay methods were used. A very common finding
is, however, that the data lack multivariability. Mutational changes were often
performed on one or a few single amino acids, which were altered into an
unnecessarily large number of different amino acids. Such design of experiments
yields datasets that contain limited information and are quite useless for PCM.

In contrast to the well organized information on the structures of biomolecules
and synthetic compounds within genome databases and databases of organic
compounds, interaction data are still fairly poorly systematized. Open interaction
databases include various protein–protein interaction databases such as the
Biomolecular Interaction Network Database (BIND), the Database of Interacting
Proteins (DIP), the Interact database, the protein–nucleic acid interaction database
ProNit, and some protein–organic compounds interaction databases such as
Binding DB, the GPCRDB for G-protein coupled receptors, and the PDSP database
for GPCRs and other proteins [18]. Although such databases contain information
of some usability, there are many deficiencies. For example, protein–protein
databases contain information on protein pairs that interact but no information on
protein pairs that do not interact. In PCM both types of information are equally
important. Many databases also do not contain any information on the interaction
strength, which of course is highly desirable information in PCM. Other common
problems of protein–ligand databases are the lack of easily accessible structural
information on organic compounds (often there is a generic name or a code name
with reference to a published article). Assay conditions are also sparsely given (often
a reference to an original article in which the desired information was not reported).
The situation may be better in the proprietary databases of some large organizations.
However, even in these instances one may find that a large number of compounds
were tested on a few targets, but data on structurally similar targets are lacking.
Hence, the datasets lack multivariability with respect to the interaction space desired
for proteochemometric analysis.

It is thus obvious that a systematic approach is needed, to apply PCM on a large
scale. Some key factors to success can be identified, namely the use of experimental
design to reduce the number of experiments and the development of proper
database- and PCM-analysis tools for storage and management of data. Thus, having
many thousands of potential macromolecular targets and an essentially unlimited
number of interaction partners (i.e., drug-like structures, peptides, proteins, DNA,
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Figure 10.5  Outline of large-scale proteochemometrics. Interaction space
(IS) encompasses the noncovalent interactions of all molecules. It contains
subsets of interaction spaces, such as the protein interaction space (Protein
IS), which includes the noncovalent interactions of all proteins with all
molecules (e.g., the interactions of all proteins with all organic compounds,
proteins, peptides, lipids, nucleic acids, etc.). The protein IS is then sub-
divided into protein superfamily interaction spaces. Each protein superfamily
IS contains the interaction spaces of protein subfamilies. Experimental
design is used to select the optimal observations covering the largest
possible area of the interaction space with the fewest number of obser-
vations (i.e., selecting the best combinations of proteins and interacting
entities to be analyzed experimentally). PCM models created from the data
can then be used to predict new experiments, allowing continuous updating
and improvement of the models. Models thus created may be used to
predict the interaction space within the boundaries of the modeled inter-
action space, as well as to extrapolate to neighboring interaction spaces
(e.g., taking advantage of similarities in domain and fold structures).
Unification of the PCM models for several subfamilies will lead to large-scale
proteochemometrics models (maps) covering the interaction space of whole
protein superfamily classes and beyond.
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etc.), only a negligible portion of all possible experiments for finding interaction
partners can be performed. Accordingly, experiments must be optimally selected
so as to minimize the number of experiments and maximize the information
content of the data. Statistical experimental design (SED) has found increasing use
in place of testing huge chemical libraries in drug design and could be applied to
large-scale proteochemometrics as well. The purpose of SED is to plan and perform
experiments in such a way that predictive models can be obtained over the
experimental domain with as few experiments as possible. SED should provide
estimates as to the influence of each experimental factor (which for PCM includes
ligand, protein, and environmental descriptors) on the interaction activity [19].

To reach this goal, multivariate approaches can be used. Thus, PCA can be applied
to features so as to obtain a small number of uncorrelated factors. All these factors
are then varied simultaneously (rather than one at a time) in a set of experiments,
and the data obtained are analyzed by PLS and similar multivariate methods [20].

SED can be divided into screening-phase designs, which include full-factorial,
fractional-factorial, Placket–Burman, and D-optimal designs, in which simple
models with information about dominating factors are obtained; and optimization
or response-surface modeling designs, which include multilevel-factorial, central-
composite, and D-optimal designs. In factorial designs, each factor is typically
explored on two levels; the required number of observations in full-factorial design
being 2V, where V is the number of factors. In fractional-factorial designs the number
of observations most often are between 2V–1 and 2V–4. D-optimal design makes use
of a computer-selected set of observations that maximizes the volume of factor
space covered by the set. It is generally more practically useful than fractional-
factorial designs, since D-optimal design is based on real observations, rather than
on property combinations that may not be physically available. Detailed reviews of
various design types are available [21].

Several studies have demonstrated that using SED enables the structural space
of chemical libraries to be spanned by a small number of compounds. For example,
the size of a peptoid library was reduced from over 2 billion to only 120 compounds,
and in another study 19 peptides were sufficient to create a model for membrane
partitioning of 640 000 possible sequences [22]. In a similar manner libraries of
biopolymers and interacting entities can be designed, or selected from existing
entities, so as to optimize the information content of the interaction space so that
a practically manageable number of experiments covering the proteomes and
genomes of the organisms can be performed.

In view of its size, the large-scale proteochemometrics project is not particularly
suited to any single organization. It is, moreover, not a desired project for a
proprietary organization, for many reasons. The pharmaceutical industry has shown
a steady decline in productivity over the past decade, the major reasons being
nonscientific and related to market considerations (e.g., blockbuster and merger
philosophies leading to cancellation of many projects), legal issues (patents and
other proprietary considerations precluding the initiation of many promising
projects), and the sheer ineffectiveness of large organizations [23]. Rather, building
proteochemometric maps on a large scale should be open and provide the
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infrastructure upon which future developments can be based with equal opportunity.
Such maps would be used to increase efficiency in the development of target- (as
well as multitarget-) selective pharmaceuticals and to aid in elucidating the functions
of the genomes and proteomes. The iterative nature for the creation of these maps
is also emphasized. Models are thus used to guide the selection of new experiments,
which are then incorporated to improve the models (Figure 10.5). Ultimately, the
large-scale proteochemometric map may become the prime source of information
in biology and the infrastructure that developments in biomedicine and biotechno-
logy will spring from.
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11
Some Principles Related to Chemogenomics in
Compound Library and Template Design for GPCRs

Thomas R. Webb

11.1
Introduction

Several reviews have appeared recently covering various topics that are relevant
to the discipline encompassed by the term ‘chemogenomics’. Despite this, there
currently does not seem to be much agreement as to the exact meaning of this
term, although it is generally agreed to be at the interface of cellular/molecular
biology and medicinal chemistry [1–8]. This chapter uses a description set forth
previously and considers “chemogenomics … [as] biased towards the rapid identifi-
cation of novel drugs and drug targets embracing multiple early phase drug
discovery technologies ranging from target identification and validation over
compound design and chemical synthesis to biological testing and physico-
chemical profiling” [1]. At the same time, we see that the ultimate goal of
chemogenomics is “the discovery and description of all possible drugs to all
possible targets” [2]. Clearly, pursuit of this goal will require significant im-
provements in computational and experimental methods, as well as new insights
in data interpretation. A significant part of recent discussion in chemogenomics
has focused on important computational methods for deriving information on the
relationships between known targets and known ligands, in order to develop the
knowledge, and the computational tools, to bridge the small-molecule world to
the world of protein targets [3]. This chapter concentrates instead on the develop-
ment of methods to generate novel templates using information about common
features of some native ligands for GPCRs, with the expectation that more such
small-molecule template design methods, and the resulting new ligands, will be
crucial in developing the data that will help to establish a useful fundamental
understanding of the structural relationships between small ligands and large
protein families.

Recently, new comprehensive approaches have been developed that use com-
pound libraries for screens in whole living cells using specific phenotype readouts.
Some of the applications of this type of approach have been called chemical genetics
or chemogenomics [9–27]. In many instances it is probably more accurate to call
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these experiments chemical genetics, even though the data that is generated is
relevant to chemogenomics. These chemical genetic approaches allow for the
investigation of fundamental biology and the discovery of small-molecule tools, or
drug leads simultaneously. By the application of specialized cell- or whole-organism-
based screens, changes in the phenotypes can be observed to be modulated by
specific compounds that are present in diverse compound libraries. With the advent
of ultra high-throughput screening (ultra HTS), high-quality compound libraries
have become increasingly available, and a significant number of these studies have
appeared that rely on commercially available compound libraries such as DiverSet
[9–27]. The increasing need for such libraries has led to a new discipline within
organic synthesis that we now call ‘diversity chemistry’. During the time that diversity
chemistry has been developing, great advances have been made in molecular biology
and cell-based screening techniques. The combined progress in both fields has led
to the successful application of chemical genetics to numerous targets. To pursue
these types of projects it is important that researchers have a practical understanding
of recent advances in chemical diversity, chemical libraries, and appropriate bioassay
technology.

11.2
Diverse Libraries versus Targeted Libraries

It has been reasonably argued that there is a need to refine the early conceptual
approaches that were used to design diverse libraries [28]. In library design, if we
just try to sample all possible diversity space, the resulting ‘virtual chemistry space’
(variously measuring up to 1060 compounds or more) is beyond all conceivable
practical HTS or synthetic reach [29]. Various concepts have been developed to
better define ‘molecular diversity’, including the Tanimoto index, BCUT, and
pharmacophore-based diversity [30–32]. These methods attempt to evenly fill and
select from ‘diversity space’, assuming that compounds that are very similar by
some relevant measure will give correspondingly similar activity and are therefore
redundant for the purposes of screening. Although these relatively early con-
siderations are important, it is also arguable that they are incomplete, since the
even filling of diversity space does not optimally match the pharmacophoric
preferences of protein targets [33]. We should recognize that the filling of actual
diversity space will ultimately be driven by synthetic accessibility and not by
pharmacophore and physical property desirability, unless synthetic chemists have
understandable practical guidelines for introducing such a bias. Based on these
considerations, is it apparent that advanced diversity compound libraries should
become more directed toward diverse compounds that are generally ‘drug-like’.
Initially this has meant compounds that contain the combination of calculated
physiochemical or molecular properties (such as cLogP, rotatable bonds, total polar
surface area, molecular weight, etc.) that are required of compounds that are
expected to penetrate cell membranes and be orally active [34]. These considerations
significantly reduce the size of chemical diversity space and are very useful in library
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design. Truly drug-like compounds should also be further defined as compounds
that fill the relevant pharmacophore diversity space.

Other important considerations in library design had been developed from
collected compounds and were eventually incorporated into combinatorial library
design. Some desirable sample characteristics, such as high purity, lack of any
highly reactive functionality, stability during storage, and synthetic scalability, may
seem trivial, but are really of critical importance to researchers in chemogenomics,
just as they are in high-throughput screening. Accumulated expertise in the design
of substructure ‘filters’ that can be used to remove compound types that are
notoriously problematic in bioassays has been used to develop both collected and
combinatorial libraries that reduce the presence of false positives in screening.
Additional considerations, such as the design of compounds with ‘lead-like’
characteristics, have also been introduced [35].

11.3
Design of Targeted Libraries via Ligand-based Design

In the area of library design, the concept of ‘privileged geometries’ that may lie
behind some classes of ‘privileged structures’ has been proposed [36, 37]. I propose
that an understanding of these atomic arrangements may allow for the design of
novel privileged structures, which can be a source of valuable chemical diversity
for the discovery of GPCR molecular tools and drug leads. The concept that implicitly
lies behind targeted library design is that there is a relevant pharmacophore diversity
space. The patterns of density that fill this space reflect the large, but limited, set of
interaction types created by the restrictions imposed by the statistics of the probable
(and possible) combination of contact types derived from the functional groups
arrayed around the primary, secondary, and tertiary structures that proteins may
present to assemble a recognition site for ligands. Furthermore, limitations on the
molecular recognition of pharmacophore types by protein families may be imposed
by the common features of the ligands that these protein families recognize.
Although it is not currently obvious how to take advantage of the former observation
to do library design, it is possible to take advantage of the latter fact so as to design
libraries that target certain protein families. This type of ligand-based pharmaco-
phore method has in fact been used to design kinase- and GPCR-targeted libraries
[32, 38].

11.4
Ligand-based Template Design for GPCR-targeted Libraries

One of the most challenging subclasses in the chemogenomics of GPCRs is the
receptors that recognize peptides as ligands [39]. This subclass may also offer some
interesting opportunities for chemogenomic approaches via ligand-based methods,
since there is sometimes a genetic relationship between the ligand–receptor pairs

11.4  Ligand-based Template Design for GPCR-targeted Libraries
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that may serve as a basis for predicting a ligand’s bioactive conformation and,
potentially, for predicting the common ‘template’ core that is recognized [40, 41].
A significant amount of research has been directed toward ‘peptide mimics’ for
these and other targets [42–44]. This section focuses on recent progress and
prospects in the design of nonpeptide (non-amino acid-based) templates that mimic
the constraints imposed on small peptides by β turns and α helices; it does not
focus on templates primarily intended to initiate secondary structures in peptides
[45] or other types of protein mimetics [46]. Furthermore, the main topic is mimics
of β turns and α helices, since numerous known ligands for GPCRs adopt solution
structures containing these constraints [47, 48]. Some previous work on the design
of templates mimicking β sheets [33] and β strands [45, 49] is relevant to the
chemogenomics of protein families other than GPCRs [50], so it is not discussed
here.

Some examples of important peptide ligands for GPCRs, in which β-turn
constraints have been implicated in the bioactive conformation or in the native
peptide solution structure, are angiotensin [51], bradykinin [52], cholecystokinin
[53], melanocyte stimulating factor [54], and somatostatin [55]. Some examples of
well known native GPCR ligands that may adopt a solution structure or a known
bioactive helical structure are corticotrophin releasing factor [56], parathyroid
hormone-related protein [57], neuropeptide Y [58], vasoactive intestinal peptide [59],
and growth hormone releasing factor [40].

A useful empirically-based design concept is that of ‘preferred structures’ for
GPCRs and other target families [36, 37]. An important challenge in this approach
is the creative construction of new ‘preferred structures’ based on insights into the
origin of the ‘preference’ [32]. One area that has been explored has been the design
and construction of β-turn-mimicking templates [42]. Much of this effort has been
guided by the design based on cyclic peptide structural analogs [60]. Such a design
method may not be preferred, since such templates are primarily intended to
maintain a very specific constraint and are not selected on the basis of desirable
‘drug-like’ physical properties. It is apparent that synthetic chemists need guiding
principles for the design of nonpeptide peptide mimics when designing templates
for ‘relevant-diversity’-based libraries. At least one example is found in the seminal
work of Garland and Dean [61, 62], who had the insight that the geometric

Figure 11.1  An example of one
GPCR-preferred structure (the
template from GW 5823) [53],
showing the rigid conformation that
matches two of the three different
Garland–Dean constraints.
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constraints imposed by peptide ligand conformations can be viewed as three specific
C-α atom triangular geometries. They also showed that this geometry is found in
certain preferred structures such as the benzodiazepines [61].

Our group has observed that some specific peptide-mimicking GPCR-preferred
structures also exhibit the unusual combination of characteristics of matching one
or more of the geometric constraints described by Garland and Dean, while at the
same time being substituted at the pseudo C-α positions (Figures 11.1 and 11.2)
[63]. The example CCK1 agonist shown in Figure 11.1 has been particularly well
studied [53] and is of particular interest in that the vast majority of nonpeptidic
CCK1 receptor agonists are benzodiazepines with substituents in the 1, 3, and 5
positions [53], which are the positions that precisely match the Garland–Dean
geometry to create ‘pseudo C-α’ positions (Figures 11.1 and 11.2). The correct
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substitution pattern and precise Garland–Dean match are also seen with 1,4-
benzodiazapine derivatives, as well with other ‘preferred substructures’ [36, 37, 53,
54] found in compounds active against numerous GPCR targets (Figure 11.2) [64].
We recently extended these observations to the design of novel template types that
offer desirable physical and synthetic properties [63, 65]. Our design of synthetically
tractable templates containing the correct geometry that can be modified to be
suitable for substitution with reagents that mimic the sidechains of the natural
amino acids is a stepwise process. First we searched > 450 000 compounds in our
internal 3D database of library screening structures to find structural starting points,
following the published method that was previously applied to a subset of the
compounds in the Available Chemical Directory (ACD) [61]. The structures that
matched were ranked, giving priority to molecules containing the fewest number
of rotatable bonds. The top 50 structures were selected by inspection, for evaluation
based on their suitability to redesign. In addition to the general types of structures
that were previously reported [61], we also obtained matches with numerous bicyclic
(and spirobicyclic) ring systems. The various ring systems that matched were then
combined and modified with the introduction of heteroatoms, where needed, until
structures that contained multiple Garland–Dean geometries in the same template
with no internal rotatable bonds were designed and subjected to retrosynthetic
analysis. After several iterations of design, modeling, synthetic analysis, and
redesign, we developed several potential molecular targets including the novel
general scaffold 1 (Figure 11.3).

Thus, we have developed a method for the design of nonpeptide templates, such
as 1, that can be elaborated to mimic the activity of peptides on a set of closely
related receptors [63]. It was shown, by partial exploration of a few of the numerous
combinatorial positional and substitution possibilities, that the selectivity and
potency to even closely related receptors could be modulated. These examples
indicate that this design paradigm, and templates such as 1, show great potential
for the exploration and discovery of new active pharmacophores and corresponding
new chemical entities with activity against other protein families that recognize
the β-turn motif. Additional exploration and refinement should also lead to more
potent and selective compounds active against the somatostatin receptor and
potentially to other receptors of interest. Recently, this approach was used to design
other new templates, such as 2 (Figure 11.4, see page 320) [65]. Extension of the
work to other derivatives of template 1 with the aim of targeting other peptide
GPCRs is currently in progress in the laboratories of ChemBridge Corporation
and ChemBridge Research Labs., LLC.

As previously mentioned, the design of small-molecule β-turn mimics has received
significant attention [42, 44], and recent advancements have been made in evaluating
the correct geometry of potential templates [66]. Surprisingly, mimicry of α-helical
peptides has received relatively modest consideration from the standpoint of small-
molecule or template design [67–69], although some effort has also been directed
toward the development of α-helix initiators [70]. The templates that have been
reported are highly hydrophobic and have not been designed with ‘drug-like’
properties in mind. Also so far, no ‘stencils’ have been elucidated to guide the
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Figure 11.3  The general structure of template 1 along with overlays
representing the atoms mimicking the positions of the C-α atoms and
the distances in angstroms between these atoms. The Garland–Dean
class-3 distances that are the best matches (with standard deviations
in parentheses) are 5.42 (± 0.57), 3.82 (± 0.01), 5.44 (± 0.55).
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design of new templates that can mimic the constraints imposed by an α helix. as
was done for β turns. An analysis that would yield such a prototype would be very
beneficial to chemists who are currently looking for principles to direct their
synthetic efforts in a meaningful way. It is interesting to note that, in at least certain
instances, the important bioactive sidechain interactions of a β turn (RGDF) may
be closely mimicked by an α helix (RGYFDV) [71]. This means that the sidechain
positioning in some α helices may be mimicked by an appropriately substituted
nonpeptide β-turn template.

The need for new ‘preferred templates’ for GPCRs that offer intellectual property
opportunities, as well as desirable physical and synthetic properties (which are all
important drivers in the pharmaceutical industry), has generated an interest in
developing guiding principles in preferred template design. Garland–Dean
geometries have been observed in several ‘preferred substructures’. Furthermore,
these constraints can be used to design new nonpeptide templates that can be
specifically elaborated to show some of the activity associated with the native peptide
ligands. If insights similar to that of Garland and Dean can be derived from other
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secondary structures, then perhaps other elegant general guiding principles can
be elucidated. Secondary structures such as the α helix are obvious candidates for
the development of such guiding principles, since many important peptide ligands
for GPCRs adopt this conformation in solution. Design work in the area of templates
that mimic α helices suggests that the biphenyl group may owe its status as a
‘preferred substructure’, at least in part, to the fact that, when properly substituted,
its derivatives can act as mimics of bioactive α-helical peptides. Clearly, there is a
need for simple structural guiding principles to be elucidated and made available
to diversity-oriented chemists. Collaborative approaches between computational
chemists and synthetic chemists will be one of the keys for the advancement of
chemogenomics.
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12
Computational Filters in Lead Generation:
Targeting Drug-like Chemotypes

Wolfgang Guba and Olivier Roche

12.1
Introduction

The pharmaceutical industry is struggling with a productivity gap, which is reflected
in a reduced number of drug applications to the regulatory authorities, an increase
in development times, and sharply rising costs for development [1, 2]. The ‘fail
early, fail cheap’ paradigm requires the early elimination of compounds with
pharmacokinetic or toxic liabilities and with a low potential for optimizing potency
or selectivity. Knowledge-based decisions about advancing or dropping lead
candidates as early as possible in the drug-discovery chain require a systematic
approach to gathering and analyzing relevant data for the assessment of compounds.

Therefore, lead generation groups have been established with a mission to
discover high-quality leads with a balanced pharmacodynamic and ADME (ab-
sorption, distribution, metabolism, absorption) profile [3, 4]. The goal of lead
generation is to submit high-content leads to a full-scale lead-optimization program
with a high chance of success. However, there will always be a risk of unexpected
failures and, therefore, multiple lead series differing in chemotype and pharmaco-
logical profiles are required for each target to decrease the risk to the project
portfolio.

Computational chemistry has a pivotal role in the interface between chemistry,
biology and the corporate data warehouse in extracting relevant information,
recognizing correlations between chemical and biological data, and deriving
guidelines for knowledge-based decisions. The systematic exploration of similarity
relationships between molecular targets and pharmacologically active ligands is in
the realm of chemogenomics [5–9]. The efficiency of hit finding is enhanced by
organizing targets into protein superfamilies (GPCRs, ion channels, nuclear
hormone receptors, proteases, kinases, phosphatases), by identifying the molecular
recognition principles, and by matching these generic recognition motifs with
chemical master keys (privileged structures) [10, 11]. The common theme for the
systematization of chemotype discovery can be summarized as ‘similar pharmaco-
phores bind to similar targets’.
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Computational strategies for addressing the drug-like character of chemotypes
are the topic of this chapter. The emphasis is not on a compilation of available in-
silico filters, for which excellent reviews [12–20] are available, but rather, on their
pragmatic application within the lead-generation process. Computational filters
are categorized into two classes, i.e., ‘hard filters‘, which actually remove compounds
from further progression in the lead-generation process, and ‘soft filters‘, which
raise alerts for potential liabilities of molecules. The applicability and pitfalls of
property-prediction schemes are highlighted, and techniques for using the results
of a multivariate in-silico profiling to rank compounds are demonstrated.

12.2
Hard Filters

In the lead-generation process, initial hits are first validated and a limited SAR is
generated around each hit class. Compounds meeting these criteria, i.e., qualified
hits, are then progressed to lead series, which require further optimization and
fine-tuning of pharmacodynamic and pharmacokinetic properties in the lead-
optimization process. Lead compounds, therefore, do not necessarily have to display
the targeted properties of the final drug, but, nevertheless, a balanced property
profile needs to be present to allow for further lead optimization without driving
either potency or selectivity and pharmacokinetic properties into an unacceptable
range.

Hard filters are the most stringent in-silico filters and are used to shape the
property profile of screening or combinatorial libraries and to prune hit lists from
primary screening. They are derived from 1D and 2D molecular properties
(molecular weight, number of H-bond donors/acceptors, number of rotatable bonds,
and so forth) and, as is described below, they are commonly used to reduce the
number of false positive hits and to favor lead-like or drug-like chemotypes.

12.2.1
Reducing the Number of False Positive Hits

Reactive, unstable compounds, as well as covalent binders, can be removed from
screening collections by substructure searches [21, 22]. At Roche, a global team of
experienced medicinal chemists has defined more than 100 functionalities which
are reviewed at regular intervals. This list has been augmented by unwanted features
(e.g., polyacids, alkyl aldehydes, polyhalogenated phenols, etc.) which are chemically
unattractive starting points for a hit-to-lead optimization, because they often result
in non-optimizable SAR patterns. These chemotypes have been coded into Markush-
type substructures for automated detection and removal of unwanted compounds.
However, we need to stress that these filters are fully customizable, and removed
chemotypes can be restored if required.

Another source of false positive hits is promiscuous binders, which were shown
by McGovern et al. [23–26], via dynamic light scattering, to form aggregates above
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the critical micelle concentration. These aggregates do not compete with the binding
of the natural ligand but prevent access to the binding site by clustering around the
target. This is reflected by the lack of a structure–activity relationship (SAR) and by
unselective binding to a wide range of targets.

A different approach to detecting promiscuous compounds and to developing
an in-silico filter was implemented by Roche et al. [27]. In a first step, frequent
hitters were retrieved from the corporate database by identifying molecules that
were among the best 1000 hits across 161 high-throughput screening (HTS) assays
more than 8 times or that were requested by more than 6 different drug-discovery
projects for follow-up testing. A panel of 11 independent teams of medicinal
chemists from all major Roche research sites was asked to assess the ‘frequent
hitter‘ potential of these compounds, based on their intuition and expert knowledge.
Thus, the final votes were based on medicinal chemistry expertise. This approach
not only identifies promiscuous compounds based on the formation of aggregates
but, in addition, molecules that perturb assays or detection methods are also
recognized. The empirically identified ‘frequent hitter’ compounds are flagged in
the corporate database, and this annotation is regularly reviewed and updated.

Based on this in-house dataset, an in-silico prediction model [27] (three-layered
neural network, Ghose and Crippen [28, 29] descriptors) was constructed to evaluate
the frequent hitter potential before compound libraries are purchased or synthe-
sized. This model was validated with a dataset of the above-mentioned promiscuous
ligands published by McGovern et al. [26], in which 25 out of 31 compounds were
correctly recognized.

At this point, we need to emphasize that an automated prediction tool for frequent
hitters does not necessarily distinguish between an unwanted promiscuous binder
and a privileged structure that might be transformed into a selective ligand by
further decoration of the ‘chemical masterkey‘ [11]. Therefore, the in-silico tool
should be used only for flagging compounds, and the final decision about
eliminating a molecule should be left to medicinal chemistry expertise. On the
other hand, the strategy outlined above for identifying frequent hitters in the
corporate database yields a valid rationale for excluding chemotypes in the screening
collection from further follow-up.

12.2.2
Lead-likeness, Drug-likeness

Following a knowledge-driven deductive approach, the molecular structures and
properties of marketed oral drugs have been analyzed to derive common structural
patterns and molecular property ranges [30–32]. Similarly, drugs were compared
with the lead structures from which they originated [33–36]. Analysis of lead–drug
pairs yields information about the differences in molecular properties between
leads and drugs with important implications for library design.

In two landmark publications, Lipinski [30, 31] related drug-likeness to the balance
between potency, permeability, and the required level of solubility for oral absorption.
The higher the potency of a compound, the lower is the required solubility for a
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given permeability, and vice versa. A low permeability needs to be compensated by
a correspondingly higher solubility. Lipinski’s simple mnemonic ‘Rule of 5’ (Ro5)
predicts that poor absorption or permeation is more likely if two or more of the
following criteria are met (exceptions: antibiotics, antifungals, substrates for
transporters): > 5 H-bond donors (OH, NH), molecular weight > 500, clogP > 5,
> 10 H-bond acceptors (sum of N and O). These rules were derived to encompass
90% of 2245 drugs in the World Drug Index and were recently reevaluated by
Wenlock et al. [32], who determined somewhat tighter limits. Oprea [35] and
Viswanadhan et al. [37] pointed out that the Ro5 do not discriminate well between
drug and nondrug datasets and suggested both additional descriptors (e.g., number
of rings, rotatable bonds, polar surface area, etc.) and tighter property ranges.
Nevertheless, there is general agreement that high molecular weight and lipophilicity
are very rare in oral drugs, due to low solubility and permeability, extensive
metabolism, and toxic liabilities via the formation of reactive metabolites. The
purpose of the Ro5 and related filters is not to identify a drug candidate but to
guide both library design and the selection of chemotypes toward a drug-like
physicochemical property profile.

A comparison of the property profiles of lead–drug pairs [32–34, 38] showed that
the process of optimizing a lead into a drug results in more complex structures,
i.e., higher molecular weight and lipophilicity. To allow for an increase in molecular
weight and lipophilicity during lead optimization, Oprea et al. [33, 34, 38] suggested
more stringent criteria than contained in the Ro5. An upper limit of 350 for
molecular weight, a clogP range between 1 and 3, and the presence of a maximum
of one charge (preferably a secondary or tertiary amine) are recommended.

The concept of lead-likeness has been supported by a recent theoretical study by
Hann et al. [39], in which increasing complexity of ligands is correlated with a
reduced chance for a successful match with the receptor during the molecular
recognition event. They concluded that less-complex molecules are more suitable
starting points for the discovery of drugs than highly functionalized compounds.
As a metric for molecular complexity, the number of bits set in the Daylight [40]
fingerprint was suggested.

Summing up, there is no definition for a good lead, but there seems to be a
consensus on nonlead-like or nondrug-like properties. The most commonly applied
molecular descriptors for assessing drug- or lead-likeness are molecular weight,
number of H-bond donors and acceptors, number of rings, lipophilicity, and the
number of rotatable bonds. Although these metrics are used as hard filters to
eliminate compounds from further progression, the absolute limits have to be set
taking into account the number of hits and the required physicochemical property
profile for a given target (e.g., protease vs. lipid-binding G-protein coupled receptor).
Before actually eliminating molecules, it is absolutely essential to check the list of
discarded compounds and to adjust the settings of the filters accordingly. Further
criteria for pruning hit lists are patentability and synthetic accessibility, but this
assessment requires expert knowledge and presently cannot be automated.

Apart from analyzing molecular property ranges of oral drugs, pattern-recognition
methods for predicting drug-likeness have been used to extract features from
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successful drugs and to embed this information in prediction models. Both Ajay et
al. [41] and Sadowski and Kubinyi [42] described the first uses of neural networks
for classifying molecules into drug-like and nondrug-like compounds. The frequency
of correct classification is about 80%, but these models have a ‘black box’ character,
since the classification result cannot be traced back to the molecular structure. In
addition, the definition of a nondrug training dataset is far from trivial, because
nondrug-likeness is inferred from the fact that the respective compound does not
have a drug history. Thus, prediction of drug-likeness based on the similarity of a
molecule to known drugs has to be differentiated from the customizable definition
of lead- or drug-like molecular property ranges. The former should be used only as
a soft filter, the latter can be used for biasing the design of compound libraries
toward a favorable physicochemical property profile.

12.3
Soft Filters

Whereas hard filters can be considered to be knowledge-driven, soft filters are the
result of a data-driven approach. A quantitative structure–activity or structure–
property relationship (QSAR/QSPR) is established to predict a property from a set
of molecular descriptors. Examples are the above-mentioned in-silico prediction
tools for frequent hitters [27] and drug-likeness [41, 42]; additional models for ADME
properties are described below.

No matter whether linear or nonlinear algorithms are used as the statistical engine
in prediction tools, at this point the medicinal chemist can no longer influence the
result by adjusting parameters. Compounds are either categorized into classes (e.g.,
drug-like, nondrug-like) or a property is predicted (e.g., bioavailability). All models
contain errors, and valuable chemotypes might be eliminated for the wrong reason.
Therefore, soft filters are to be used only as flags to raise alerts, and we will show
how to deal with multiple flags for prioritizing compounds. The most common
soft filters deal with ADME, toxicity, and physicochemical properties and have been
summarized in an excellent review by van de Waterbeemd and Gifford [43]. Thus,
only a short overview is given here from our perspective.

12.3.1
Prediction of Physicochemical Properties

Lipophilicity is a key parameter influencing membrane permeability, drug ab-
sorption, distribution, and clearance. Several algorithms for logP calculations are
available, with each approach showing weaknesses for different structural classes
[44]. Thus, multivariate profiling with logP prediction programs is recommended
to compensate for errors. The distribution coefficient logD is physiologically more
relevant than logP, because the charge state is considered at a given pH (e.g., blood
pH 7.4, intestinal pH 6.5). However, the available pKa calculators are not equally
well parameterized for all structural fragments, and the error may be unacceptably
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high. The situation is even worse for solubility prediction: the effects of counter-
ions and crystal forms are taken into account only indirectly, by using the
experimental melting point as an additional parameter, which very often is not
available. At present, there are no methods available to reliably predict the
pharmaceutically relevant solubility range of up to 100 µg mL–1.

12.3.2
Prediction of ADME and Toxicity Properties

One of the fundamental assumptions in modern science is the applicability of
reductionism to the understanding of complex systems. Complex systems are
broken down into a set of simpler components that are modeled separately, and it
is assumed that the whole system can be simulated by linking together the less
complex parts. Along the lines of reductionist thinking, the complex problem of
understanding the molecular basis of pharmacokinetics is approached by reducing
it to the sum of simpler components, i.e., absorption, distribution, metabolism,
and excretion, which themselves are traced to fundamental physicochemical
properties (molecular weight, pKa, solubility, lipophilicity, polar surface area,
permeability). Molecular structure descriptors and derived properties are correlated
with ADMET (ADME and toxicity) data to generate stable, predictive in-silico models,
so as to bias compound libraries towards a favorable pharmacokinetic profile
avoiding toxic liabilities. However, we are still far from ‘prediction paradise’ [43]
and, apart from the reductionist approach, which neglects synergistic interactions
between system components, the major problems are limitations of the available
datasets with respect to the number of data points and the representativeness of
molecular structures. Nevertheless, from our perspective, some of the ADMET
models have proven to be useful for in-silico profiling within the lead-generation
process, and they are listed below.

Both intestinal and brain–blood barrier (BBB) permeation by passive diffusion
are predicted reasonably well by the polar surface area (PSA) of a molecule [45–47].
For intestinal absorption the PSA should be < 140 Å2, and for the tighter BBB the
maximum PSA is between 80 and 100 Å2. Calculation of the PSA requires a 3D
structure, but the calculation speed can be greatly increased by the recently published
topological PSA (tPSA) approach [48]. The tPSA is calculated from SMILES strings
by adding increments for oxygen and nitrogen atoms in their respective topological
environments.

A recent study by Kratochwil et al. [49]. critically reviewed the implications of
plasma protein binding for the design of lead-like compounds. With the exception
of chemotherapeutics (including antibiotic, antiviral, antifungal, and anticancer
drugs), in which 77.2% of the compounds display a protein binding below 90%, no
clear trend could be observed for other therapeutic classes. The relevance of drug
displacement interactions to the clinical efficacy of drugs is often overestimated.
However, protein binding values are important for establishing potential safety
margins for human exposure (allometric scaling) and for selecting the final dose
range for human trials. For this purpose it is essential to differentiate between
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submicromolar and nanomolar binders, which corresponds to the range between
99.0% and 99.99% protein binding. Therefore, Kratochwil et al. [49] used pharmaco-
phoric similarity descriptors to develop a computational model for the prediction
of drug association constants to human serum albumin. The prediction error is
comparable to the experimental error, and the calculated binding constants may
assist, in combination with other ADME soft flags, in the prioritization of
chemotypes.

For modeling pharmacokinetic properties that are closely linked with physico-
chemical parameters, e.g., oral bioavailability, BBB permeability, and Caco-2 cell
permeability, the VolSurf [50] descriptors have been successful in yielding stable,
predictive models [51–55]. From GRID [50] molecular interaction fields with the
water, the hydrophobic DRY, and optional H-bond donor and -acceptor probes, the
size of polar and hydrophobic interaction sites and their spatial distribution is
calculated without the need for superposition of 3D molecular structures. Thus,
molecular structures are translated into a set of molecular surface descriptors
encoding size, shape, lipophilicity, and H-bonding properties. Recently, a chemical
space navigation system (ChemGPS, chemical global positioning system) based
on VolSurf [50] descriptors was introduced [56–59], which allows for a global ranking
of compounds with respect to solubility and permeability. Thus, ChemGPS can be
considered as an in-silico analog of the Biopharmaceutics Classification System
(BCS), which is recommended by the U. S. Food and Drug Administration (FDA)
[60]. The BCS categorizes drugs into four different classes according to combinations
of high or low solubility and high or low permeability, and indicates whether the
oral bioavailability of a molecule is limited by solubility and/or permeability.

Early assessment of a potential hERG liability is becoming increasingly important
in the lead-generation process, since QT prolongation via inhibition of the K+ hERG
channel is associated with cardiac arrhythmia and sudden death [61–63]. The
experimental determination of the potency of K+-channel inhibition via patch–clamp
electrophysiology measurements is very time-consuming and has low throughput,
therefore, reliable in-silico models are needed. The predictivity of all published
hERG models is impaired by limited training datasets [64, 65]. Thus, dynamic
refinement with newly generated experimental data is essential to allow for a more
universal application of these models. Computational chemists are the driving force
behind enlarging the scope of the presently limited in-silico filters and enhancing
the efficiency of spotting problematic chemotypes early in the drug-development
process.

12.4
Prioritization of Chemotypes Based on Multivariate Profiling

The development of predictive models for drug-likeness, frequent hitters, ADME
processes, and toxicological endpoints has so far yielded a great deal of soft filters
(see discussion above and the compilation of ADMET computational models by
Yu and Adedoyin [66]), and the trend still continues to improve both accuracy and
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general applicability. Different algorithms and datasets often result in several in-
silico models for the same property, e.g., BBB permeation or bioavailability. Since
none of these models is a truly global model with equal predictive power for diverse
chemotypes, a comparison of the variability of results allows their pragmatic value
in drug-discovery projects to be judged.

The medicinal chemist is usually left alone with the task of prioritizing compounds
that are often characterized with far more than 10 different computational and
experimental parameters representing pharmacodynamic, pharmacokinetic, and
physicochemical properties.

The most commonly adopted approach is to rank compounds according to the
total number of alerts. If molecules are to be prioritized with respect to properties
such as permeability, solubility, and so forth, the goal is to find the best compromise
between these continuous parameters. For this purpose, each property is scored by
assigning a dimensionless scale di between zero (‘criterion not met’) and one (‘target
achieved’), with intermediate values being obtained by interpolation between the
minimum and maximum for each property. The score profile for each compound
is summarized into an overall desirability D by calculating the geometric mean of
the individual di values [67, 68]:

D = (d1 d2 d3 … dn)1/n

The desirability D is high if all the individual scores are high as well, and it
decreases if individual scores are low. If only one property is in an unacceptable
range, the compound gets a total score of zero and is eliminated from a further
progression. The final ranking is obtained by sorting according to the desirability
D indicating how well molecules meet the targeted profile.

The two methods described above are conceptually simple and easy to implement.
However, a great deal of information is lost, because a multivariate profile is
condensed into a single number. The analysis of property profiles is analogous to
consumer marketing studies in which products are ranked by consumers. A data
matrix is generated with one row for each product and one column for each
consumer. The matrix elements represent the ranking of a given consumer for the
respective product. Preference mapping [69] is used to reveal which products are
favored or rejected by the consumers, and whether there are different groups of
consumers or individuals with diverse opinions. Within the context of this chapter,
‘products’ correspond to molecules and ‘consumers’ to calculated and experimental
properties.

Preference mapping can be accomplished with projection techniques such as
multidimensional scaling and cluster analysis, but the following discussion focuses
on principal components analysis (PCA) [69] because of the interpretability of the
results. A PCA represents a multivariate data table, e.g., N rows (‘molecules’) and
K columns (‘properties’), as a projection onto a low-dimensional table so that the
original information is condensed into usually 2–5 dimensions. The principal
components scores are calculated by forming linear combinations of the original
variables (i.e., ‘properties’). These are the coordinates of the objects (‘molecules’)
in the new low-dimensional model plane (or hyperplane) and reveal groups of similar
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molecules, trends, and outliers. The scores are sorted in descending importance,
i.e., the first principal component t1 explains more variance than does t2, etc. The
loadings of each component define how the original variables (‘properties’) are
linearly combined to form the scores, i.e., the projected coordinates of the objects
(‘molecules’). The loadings indicate the correlation of the original variables
(‘properties’) with the position of the objects (‘molecules’) in the scores plot.
Summing up, a principal components analysis summarizes a data table as the
matrix product of scores and loadings (‘systematic information’) plus a residual
matrix (‘noise’) representing the distance of each object from the model plane (or
hyperplane). The original multidimensional space is condensed and simplified
into a few components, which are sorted according to their information contents.
Molecules are projected into the scores plot, which allows similarity relationships
and systematic trends to be visualized, and the loadings plot shows how the original
variables contribute to forming patterns between the compounds.

Multivariate preference mapping is illustrated with the following example of a
GPCR-targeted library from an external vendor. The initial 3412 compounds were
reduced to 2822 by excluding molecules that were either too similar to the Roche
compound stock or that contained unwanted structural features. In addition, the
following property filters were applied: molecular weight ≤ 500, number of H-bond
donors ≤ 5, clogP ≤ 7, number of aromatic rings ≤ 5. After removing molecules
with a pairwise Tanimoto distance of ≤ 0.19 (DVS [70], Daylight fingerprints [40]) a
final subset of 1064 compounds was obtained for multivariate profiling with the
following soft filters: drug-likeness (DND) [42], hERG [65], human serum albumin
binding (HSA) [49], frequent hitters (FH) [27], BBB [50], Caco-2 [50], and protein
binding (ProtBind) [50]. This profile was complemented with descriptors for size
(molecular weight MW), polarity (polar surface area PSA), and lipophilicity (clogP
[40], AlogP [28, 29, 71, 72]).

Upon applying PCA to the multivariate property matrix, a 3-component model
was obtained. Since the first two components dominated and accounted for 58%
of the variation of the data matrix, the analysis here focuses on these components.
The scores plot in Figure 12.1 (top) shows an even distribution of compounds
without outliers or obvious clusters. From the loadings plot in Figure 12.1 (bottom),
we can see that the first component separates lipophilic compounds with high
loadings of clogP and AlogP on the right from more-polar compounds on the left
(PSA). The second component differentiates between high molecular weight (MW)
and highly functionalized (PSA) molecules on the top from smaller molecules on
the bottom. Whereas protein binding (ProtBind) calculated by VolSurf [50] is highly
collinear with lipophilicity (clogP, AlogP), there is no correlation with the protein
binding model (HSA) of Kratochwil et al. [49]. This model predicts HSA association
constants based on a pharmacophoric similarity concept and thus has a unique
information content within this dataset. Compounds with predicted high BBB and
Caco-2 cell permeabilities are located in the lower right region of the scores plot,
which also corresponds to both low molecular weight and polar surface area. Neither
the predicted hERG liabilities nor the computed HSA association constants
contribute to partitioning the compounds along the first two components. The

12.4  Prioritization of Chemotypes Based on Multivariate Profiling
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predicted drug-likeness DND and frequent hitter score FH occupy unique positions
and therefore have to be examined closely if they are to be used for prioritizing
molecules. Clustered properties are more reliable as predictors, because possible
prediction errors can be compensated for by related soft filters in the same cluster.

Summing up, preference mapping allows one to detect correlations between
properties and to spot unique soft filters that should be checked experimentally or
be applied cautiously for profiling compounds. Understanding the information
contents of soft filters is essential for making knowledge-based decisions about
progressing or abandoning chemotypes.

12.5
Concluding Remarks

User-friendly web interfaces allow medicinal chemists to launch a whole battery of
in-silico prediction models without the need to know the scope and limitations
behind the black box. Only a combination of ‘in silico’ with ‘in cerebro’ will avoid
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Figure 12.1  Multivariate preference mapping of a set of 1064 com-
pounds that were profiled with 11 descriptors (see text for explana-
tion). The upper scores plot shows the projection of the molecules
onto the first two components of the principal components analysis.
The lower loadings plot illustrates how the descriptors contribute
to the positions of the projected compounds in the scores plot.
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frustration and provide for judicious and productive application of these models
[73].

Therefore, the prime question should always be: What is the predictivity range
and the confidence interval of the model? QSAR/QSPR models allow only for an
interpolation but not for an extrapolation to novel chemotypes. Good in-silico models
check whether the prediction dataset is contained within the property space of the
training dataset, otherwise a warning is issued. If a model is based on a small
number of molecules, one cannot assume that predictions will be reliable for
compounds that are structurally diverse from the training set. This is illustrated in
Figure 12.2 [74], where the training sets of the hERG and BBB in-silico filters are
compared via PCA. Both sets were characterized with Ghose and Crippen [28, 29]
descriptors, and after autoscaling, the molecules were projected onto the scores
plot of the first two principal components. It is obvious that the two sets occupy
different regions of the plot with only minor overlap. This is because the structural
series are constrained to different locations in chemistry space, and the prediction
of an hERG liability is therefore risky for those compounds of the BBB set that are
distant from the hERG cluster.

Figure 12.2  The compound sets from which the hERG (filled
triangles) and the BBB (open circles) in-silico filters were derived are
compared by principal components analysis, and one structure of
each set is depicted. Ghose and Crippen descriptors were calculated
for all the molecules, and after autoscaling, the compounds were
projected onto the scores plot of the first two components [74].
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Furthermore, in-silico models need to be challenged with new data, since models
derived from small training datasets may become unstable upon the addition of
new compounds. Finally, the prediction of physicochemical properties should be
checked against experimental data for representative members of a lead series.

The predictive power of in-silico filters depends on both the accuracy of identifying
true liabilities (‘true positive’) and the probability for raising false alerts (‘false
positive‘). The prime question for ranking compounds is: What is the probability
that a flagged molecule actually has the indicated liability? Considering as an
example the ‘frequent hitters‘ filter by Roche et al. [27], this question is discussed
by presenting the statistical information in natural frequencies [75–80] instead of
by using Bayes’ theorem (Figure 12.3). The total dataset contained 902 structures
with 479 frequent hitters and 423 nonfrequent hitters; 460 out of 479 molecules
(96%) were correctly classified as frequent hitters, and 17 of the 423 nonfrequent
hitters were predicted to be false positives (i.e., 4% false positives among the
nonfrequent hitters). Based on the total dataset of 902 compounds, the probability
that a raised alert correctly identifies a frequent hitter (‘true positive’) equals
460/(460 + 17), i.e., an excellent 96%. However, if the same probabilities for true
and false positives are applied to a dataset that contains, not 53%, but only 5%
frequent hitters, the results are considerably different (Figure 12.3): the probability

Figure 12.3  Using the example of the ‘frequent hitters‘ prediction
model of Roche et al. [27], the probability that a flagged molecule
actually has the indicated liability is calculated for a dataset with an
even distribution between frequent and nonfrequent hitters (top) and
for one with only 5% frequent hitters (bottom). In both scenarios it is
assumed that frequent hitters are correctly classified with 96% and
that the false positive rate equals 4%.
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that a flagged compound is a true positive has now dropped to 56% (43 true positives/
(43 true positives + 34 false positives)). Flipping a coin would yield a 5% probability
of correctly diagnosing a frequent hitter liability in this dataset.

Summing up, the accuracy with which true positives are identified is not sufficient
for correctly judging the performance of a prediction model. The critical factor is
the number of false positives, which in turn depends on the enrichment of the
dataset with compounds raising alerts. The fewer true positives are contained within
a dataset, the higher will be the number of false positives flagged by a soft filter.
Assuming that in typical applications the proportion of molecules with liabilities is
well below 50%, this example shows that in-silico prediction tools work reasonably
well for prioritizing large compound sets but are not suitable for ranking single
molecules. In addition, multivariate profiling will enable more reliable identification
of liabilities than ranking based on single soft filters.

In conclusion, the quest for novel chemotypes is a long, expensive process.
Therefore, the statistical relevance, predictivity range, and stability of computational
filters need to be scrutinized in order to prevent a potential lead series from being
rejected for the wrong reason.
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13
Navigation in Chemical Space:
Ligand-based Design of Focused Compound Libraries

Gisbert Schneider and Petra Schneider

An aim of research in the field of chemogenomics and chemical biology is to a
provoke defined biological response by interaction of sets of chemical agents with
macromolecular targets [1]. A substance does not necessarily interact specifically
with only one receptor; a compound library-based approach rather helps to under-
stand the relationship between sets of small molecules and their biological activity
profiles. Understanding the connections between target space and ligand space
will provide us with a chemogenomic foundation for the rapid identification of
hits and lead compounds by making possible heuristic predictions of desired and
potential undesired activities in early-phase virtual screening and thereby facilitating
the selection of appropriate leads in the drug-discovery process [2]. Recently, focus
on such activities has increased, due to high clinical failure rates and constantly
increasing development costs, and as a consequence “the vast emerging oppor-
tunities from efforts in functional genomics and proteomics demands a departure
from the linear process of identification, evaluation and refinement activities towards
a more integrated parallel process”, as stated by Alanine and coworkers [3]. Early
awareness of the expected activity profile is required to make an informed selection
and prioritization of candidate leads with reduced attrition liability. The library-
based approach is well suited for following several search tracks in chemical space
(‘backup’ compounds) in parallel and for assisting the medicinal chemist in the
task of scaffold hopping, i.e., finding an isofunctional but different molecular
architecture to an already known hit or lead structure [4, 5]. The general idea is to
define similarity between molecules on a level that permits escaping a local optimum
in search space without losing the desired activity. A well known example of such a
scaffold hop is given by structures 1 and 2 (Scheme 13.1). Using a topological
pharmacophore descriptor of molecule 1 (Mibefradil), structure 2 was predicted to
be isofunctional and was indeed shown to exhibit the same target function, namely
blocking the human T-type calcium channel [4]. This chapter provides an overview
of a straightforward chemogenomics approach to ligand-based library design,
highlighting selected emerging computer-based techniques and their application.

We should stress that modern combinatorial chemistry approaches span a
chemistry space that easily contains 1060 drug-like molecules [6]. No computational
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technique is able to deal directly with such large quantities of data, and therefore
the full enumeration of chemistry space is impossible. (A hypothetical enumerator
that began to work at the time of the Big Bang some 13 billion years ago would
have needed to produce about 1043 structures per second to have completed the job
by today.) Even when the synthesis strategies used are restricted to feasible chemical
reactions, the combinatorial explosion still leads to huge chemistry spaces, typically
between 106 and 1020 virtual compounds. Although for most of these still large (but
manageable) virtual libraries a full enumeration might be doable, it would not be
time- or cost-effective. Therefore, other strategies, like virtual de-novo synthesis
and adaptive optimization methods, are necessary for dealing with large combi-
natorial spaces [7]. The basic problem can be formulated as the selection of the
most promising candidates for real synthesis from a large virtual combinatorial
library. Promising candidates are those compounds that are likely to meet certain
selection criteria, most importantly drug- or lead-likeness, including sufficient
aqueous solubility, and a desired activity profile. Here we present some product-
based selection methods, but the discussion of de novo techniques is beyond the
focus of this chapter.

13.1
Defining Reference and Target

Ligand-based design of focused drug-like compound libraries requires known
molecules exhibiting the desired properties or pharmacological activity as a starting
point. These molecules are often called seed structures or reference compounds.
Novel structures having identical or very similar activity can be designed in silico
or picked from collections of physically available compounds so that they exhibit
similarity to the reference set. Such focused compound libraries can then be tested
for activity in vitro. The choice of an appropriate similarity metric depends on the
drug-discovery project and is context-dependent (see below) [8]. Two complementary
compound sources are accessible for virtual screening: databases of physically
available structures and virtual libraries including enumerated combinatorial
libraries. Several commercially available databases are commonly relied on as

Scheme 13.1
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sources of reference compounds for library design purposes. The most popular are
(1) the World Drug Index (WDI; Derwent Information London, UK), containing
over 60 000 pharmaceutical compounds in all stages of development; (2) the
Comprehensive Medicinal Chemistry database (CMC; MDL Information Systems,
Inc., San Leandro, CA, USA), with over 7500 structures and properties of drugs;
and (3) MDDR (Drug Data Report; MDL Information Systems), representing a
compilation of more than 100 000 structures and activity data of compounds in the
early stages of drug development. In addition, several companies offer large libraries
of both combinatorial and historical collections on a commercial basis. Usually the
combinatorial collections contain 10 000–100 000 structures, and commercially
available historical collections rarely exceed 200 000 compounds. Most of the major
pharmaceutical companies have compound collection in the range ≥ 700 000. We
should mention that combinatorial synthesis methods have significantly advanced
from straightforward approaches, such as mixtures of Ugi reaction products, to
fully automated parallel synthesis of well characterized compounds of high purity.
Once these samples are fully characterized – e.g., by HPLC and mass spectroscopy
– the data are of interest for structure–activity purposes. In most companies, these
combinatorial products are also present in the ‘historical’ collection of compounds,
generally derived from classical medicinal chemistry programs, and most of them
have very well defined chemical characteristics. Commercial compound collections
can also be purchased that fall in between these two extremes. Collectively, therefore,
the information used to relate biological activity and chemical structure must clearly
integrate all of these types of compounds. Combinatorial chemistry, high-throughput
screening (HTS), and the availability of large compound selections have put us in
the comfortable position of having a large number of hits to choose from for lead
optimization – at least for certain classes of drug targets.

Although these data collections provide a large number of pharmacologically
active compounds with some activity information, their usefulness for compilation
of reference sets can be limited. Detailed information is necessary but not always
provided or cannot be easily extracted from the databases. On a minimalist basis,
reference compounds for ligand-based library design should be annotated according
to target receptor class and receptor subtype, including quantitative activity values,
e.g., IC50 or Ki (the IC50 and Ki of a compound can vary significantly). Ideally,
complementary information about assay conditions and specificity data should be
accessible. Such a body of information facilitates reasonable grouping of molecules
according to meaningful attributes (features), compilation of conclusive reference
data, and implicit or explicit formulation of quantitative structure–activity relation-
ship (QSAR) models. As a step toward such a reference collection that can be used
for chemogenomics studies, we have compiled approximately 6000 pharmaco-
logically active molecules from the recent scientific literature, including receptor
information and activity data (COBRA, Collection of Bioactive Reference Analogues)
(Figure 13.1) [9].

The GPCR group consists of compounds binding to mainly class A rhodopsin-
like GPCR; olfactory GPCR ligands are excluded. ‘Hormone’ represents the class
of nuclear hormone receptor ligands. ‘Enzyme’ contains those enzyme targets that
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are not contained in the Protease or Kinase sets. The Proteins group consists of
ligands to various protein targets, including integrins, transfer proteins, transporters
and symporters, viral envelope proteins, and others. Finally, the ‘Other’ set is used
for a set of compounds with unidentified targets or additional targets, e.g., DNA.
Antiinfective agents are not included here. The relative distribution of ligands reflects
the fact that enzymes, in particular proteases, and membrane-bound receptors,
specifically GPCR, represent the dominant target classes. Therapeutic target classes
have been subdivided into seven main categories by Drews [10]: receptors 45%,
enzymes 28%, hormones and factors 11%, ion channels 5%, nuclear receptors
2%, nucleic acids 2%, and unknown 7%. Constructing libraries targeted to one of
these classes is an ongoing effort of common interest. For example, neural network
techniques have been used for designing GPCR-targeted libraries [11] and serine
protease-targeted libraries [12] using the Ensemble Database (Prous Science 2002)
as a training set. It is evident that a target family can be defined on various levels of
abstraction. For example, ‘GPCR ligand’ describes a superfamily that can be
subdivided into further categories down to the level of an individual receptor subtype,
e.g., 5HT-2A. Although this seems trivial, it is important to keep this in mind for
application of library-filtering criteria.

The molecular weights (MW) and calculated octanol/water partition coefficients
(clogP) obtained from all COBRA compounds have average values of 〈MW〉 = 412
and 〈clogP〉 = 3.2. These values are within both the limits proposed by Lipinski’s
‘rule of five’ (MW < 500; clogP < 5) [13] and the quantifying ranges suggested by
Ghose and coworkers (MW < 480; clogP < 5.6) [14]. This means that published
bioactive structures generally ‘obey’ the rules for recommended maximal values of
MW and clogP. With the slight exception of the protease set (〈MW〉 = 495), none of
the average values calculated for the individual sets of molecules is above the
recommended maximum values, but some general trends become visible. Most
strikingly, the COBRA molecules tend to have a higher molecular weight and higher
clogP than reported earlier for other collections of drugs or drug-like molecules
[15–17]. For example, Ghose and coworkers used the CMC database as a compound
resource (6304 molecules) and found 〈MW〉 = 360 and 〈clogP〉 = 2.3 [14]. Considering
that most compounds in COBRA are recently developed molecules and that the
CMC database consists of comparably ‘older’ compounds, we conclude that modern

Figure 13.1  Receptor-class distribution of 4825 ligands of the COBRA collection.
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drug discovery tends toward the development of larger, more lipophilic molecules.
A similar general observation was recently made by Lipinski [18], and a shift to
higher molecular weight and lipophilicity is also apparent for the development
process from leads to drugs [19].

Relying on a definition of a target family and a collection of corresponding
reference compounds, we can begin to systematically design target-family-specific
libraries [20]. A straightforward method is to start with the analysis of general ligand
properties. Table 13.1 gives an overview of the characteristic MW and clogP
distributions for the target families mentioned above. It is apparent that, e.g.,
protease inhibitors tend to have a comparably high molecular weight and a low
clogP, which means that these compounds tend to be large and hydrophilic In
contrast, nuclear hormone receptor ligands (mostly steroids) are relatively smaller
and significantly more lipophilic. Careful use of such thresholds is necessary to
find a balance between a stringent focus on the one hand and exploration of a
compound library on the other. The latter is critically important for allowing scaffold
hops to occur. For example, applying a strict cutoff at MW = 500 would lead to a
dramatic loss of potential protease inhibitors. The rule-of-5 does indeed indicate a
potential problem with oral bioavailability for molecules with molecular weights
greater than approximately 500, but we should stress that this rule’s recommended
parameter values were derived from all kinds of drugs, not just proteases [18].
If one intends to specify an unrefined focal area for library design by using property
thresholds, an analysis of carefully selected, well defined reference compounds
can be useful. Note that the minimum and maximum values and the standard
deviations in Table 13.1 indicate a wide distribution of property values, which means
that there will always be a significant proportion of exceptions to the rule.

An example of library design by multiple property optimization is shown in
Figure 13.2. A pool of 83 400 molecules was subjected to property analysis, and a
subset was cherry-picked to form the selected library containing 7350 members.

MW clogP Receptor class 
(number of compounds) 

Avg. Min. Max. σ Avg. Min. Max. σ 

GPCR (N = 1467) 406 121 993 134 3.6 –11.1 13.7 2.6 

Protease (N = 1015) 495 136 945 114 2.9 –8.2 10.3 2.4 

Kinase (N = 387) 395 74 717 104 3.1 –5.6 8.7 2.2 

Enzyme (N = 839) 364 68 849 119 2.6 –5.2 10.9 2.5 

Hormone (N = 227) 336 142 949 115 4.0 –5.2 10.1 2.9 

Ion channel (N = 412) 375 208 969 106 3.1 –11.1 10.8 2.7 

 

Table 13.1  Molecular weight (MW) and lipophilicity (clogP) of sets of ligands
taken from the COBRA compound collection [9]. Average, maximum and minimum
values, and standard deviations (σ) are given. Properties were calculated with the
software suite ChemOffice (CambridgeSoft Corp., Cambridge MA).

13.1  Defining Reference and Target
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The particular method used in this sample application for selection of compounds
is detailed later in this chapter. However, note that several properties were considered
in parallel and no cutoff or threshold values were applied to any of the properties.
This can be seen from the rule-of-5 violations in Figure 13.2: one might reject
compounds having two or more violations, but the ‘soft’ selection method does not
discard candidates simply because of this; rather, a multidimensional ranking of
molecules is performed, and the high-ranking candidates become members of the
library subset. Further examples and related methods for library design by
optimization of property distributions can be found elsewhere, e.g., in a special
volume on combinatorial library design and evaluation edited by Ghose and
Viswanadhan [21].

13.2
A Straightforward Approach: Similarity Searching

To reliably predict molecular properties, the molecules under investigation must
be represented in a suitable fashion. In other words, the appropriate level of
abstraction must be defined to perform rational virtual screening. A convenient
way to do this is to employ molecular descriptors, which can be used to generate
molecular encoding schemes reaching from general properties (e.g., lipophilicity,
molecular weight, total charge, volume in solution, etc.) to very specific structural
and pharmacophoric attributes (e.g., multipoint pharmacophores, field-based
descriptors) [22]. Filtering tools can be constructed using a simplistic model relating
the descriptors to some kind of bioactivity or molecular property. However, the
selection of appropriate descriptors for a given task is not trivial, and careful statistical
analysis is required. Besides an appropriate representation of the molecules under
investigation, any useful feature-extraction system must be structured in such a
way that meaningful analysis and pattern recognition are possible. Technical systems

Figure 13.2  Multiple property-based library shaping. Property
distributions are shown for the raw collection (gray bars) and for
the selected library members (black bars). The drug-likeness score
corresponds to the output value of an artificial neural network,
where a value of 1 indicates maximal drug-likeness (for details,
see the text). The rule-of-5 violations are counted per molecule.

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

20

40

60

80

100

0 1 2

%
 c

om
po

un
ds

%
 c

om
po

un
ds

drug-likeness score Rule-of-5 violations

before after

1239vch13.pmd 22.06.2004, 10:14346

www.ebook3000.com

http://www.ebook3000.org


347

for information processing are intuitively considered to mimic some aspects of
human capabilities in the fields of perception and cognition. Despite great
achievements in artificial intelligence research during recent decades and an
increasing application of machine learning methods in virtual screening, we are
still far from understanding complex biological information-processing systems
in detail. This means that a feature-extraction task that looks very simple to a human
expert can be extremely hard or even impossible for a technical system, e.g., certain
virtual screening software. As we have learned from many years of artificial
intelligence research, it is extremely difficult (if not impossible) to develop virtual
screening algorithms that mimic the medicinal chemists’ intuition. Furthermore,
there is no common ‘gut feeling’, because different medicinal chemists have
different educational backgrounds, skills, and experience. Despite such limitations
there is, however, substantial evidence that it is possible to support drug discovery
in various ways with the help of computer-assisted library design and selection
strategies. Two specific properties of computer-based approaches make virtual
screening very attractive for library design:

Speed and throughput of virtual testing can be much better than what is possible
by means of wet-bench experimental systems.
Virtual screening of virtual libraries, or virtual library construction, enables
hitherto unknown parts of chemical space to be explored.

Due to its ease of implementation and speed of execution, chemical similarity
searching has a long tradition in this area, and many different similarity metrics
have been proposed for rapidly analyzing very large virtual libraries [23]. The general
idea is to define a query, e.g., a single reference molecule, a set of molecules, or a
pharmacophore model, and then to rank the members of the virtual library so that
the compounds that are most similar appear at the top of the ranked list. The aim
of a similarity searching can be characterized in one of the following two ways.
First, it can be used with a set of n known active molecules. Then one can evaluate
the parameters used (query structures, descriptor, distance metric) by means of
the enrichment factor (Eq. 13.2) [24]. This application of a similarity search is called
retrospective screening. In contrast, prospective screening can be performed to
find molecules that potentially exhibit activity for the same target as the query
structure. The decision as to which specific parameters should be employed for a
prospective screen has to be based on prior experience, and retrospective screening
provides a useful means for this purpose.

The enrichment factor ef provides a way to rate a similarity search. Given a database
containing Dall compounds, of which Dact have known biological activity against a
desired target, a certain fraction F, e.g., the top 5%, is taken from a similarity ranked
list. The fraction contains Fall compounds, of which Fact are indeed experimentally
validated actives. Provided that Dact is randomly distributed among Dall, the expected
number of active molecules among Fall is

= act
act,expected all

all

D
F F

D
(13.1)
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Thus, a similarity search can be qualified by calculating the enrichment of active
molecules within Fall over a random distribution of the active molecules:

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

act act

all all

ef
F D

F D
(13.2)

where ef is called the ‘enrichment factor’. An enrichment factor greater than 1 is
returned by a method that is superior to random selection of compounds within Fall.
Typically, the enrichment factor is obtained by retrospective analysis of reference
data. The trick for scaffold hopping is first to find an appropriate set of descriptors
and a suitable similarity metric by retrospective screening, and then to make pre-
dictions for those molecules that appear in between the top-ranking known actives.

In the following sections, we discuss the use of retrospective screening and the
meaning of ‘similarity’ and ‘enrichment of actives’ in more detail, beginning with
a classical example of similarity searching. The neurotransmitter dopamine and
two derived pharmacophore models are shown in Figure 13.3 [25]. Depending on
the dopamine rotamer considered (3 or 4), different pharmacophore models appear
to be equally plausible. When additional reference compounds are available for
mutual alignment of compounds, rotamer 4 and the corresponding pharmacophore
can be assigned an agonist motif, under the assumption of similar binding modes.
If only a single reference compound is used for similarity searching, both
pharmacophore models in Figure 13.3 are equally valid, since there is no additional
information that might be of use for weighting the models. We must be aware of
this kind of situation whenever a similarity search is performed that relies on a
single query molecule.

An example may help to clarify this statement. Figure 13.4 shows the 10 highest-
ranking compounds that were retrieved from the COBRA database by a topological
pharmacophore similarity search (CATS method, see below). The query structure
was Haloperidol, a dopamine (D2) receptor antagonist. Not surprisingly, classic
variations of the query structure are found in ranks 1 and 2. These are not very

Figure 13.3  Two rotamers of dopamine and derived pharmacophore
models (adapted from [25]). A: H-bond acceptor, D: H-bond donor,
P: positively charged, L: lipophilic. The pharmacophore model on the
right resulted from inspection of several other dopamine receptor ligands,
which led to a single remaining donor site at one of the hydroxyl groups.
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interesting from the library design or scaffold-hopping points of view. At ranks
5 and 9, two additional D2 receptor ligands are found, one of which, surprisingly,
is an agonist (rank 5), and the other is the well known Melperone structure (rank 9),
which represents a substructure of Haloperidol. Retrieval of the rank-5 molecule
could already be regarded as a scaffold hop, because the compound has a different
structure than the query. This molecule is a D2 ligand and can be regarded as
isofunctional on this description level of bioactivity, but it does not necessarily
exhibit the same kind of functional activity (the compound at rank 5 is an agonist,
not an antagonist, as is the query molecule). Looking at the first molecules ranked
between known D2 ligands, we find an annotated ion-channel blocker (GABA
transporter type I, GAT1) at rank 3 and an antiinflammatory PPAR-γ agonist
(Pioglitazone) at rank 4. Based on the similarity ranking, it would now be worthwhile
to test these molecules in a dopamine receptor binding assay. Indeed, coinhibition
of dopamine transporter and GAT1 has been reported for Orphanin FQ, an
endogenous antagonist of the dopamine transporter [26], and Pioglitazone has been
found to prevent dopaminergic cell loss [27]. These are first indications that the
similarity search might have produced useful results. Still, only a biochemical test

Figure 13.4  Results of a CATS similarity search. Similarity between the
query structure (Haloperidol, a D2 antagonist; upper left) and database
compounds was defined in terms of a topological pharmacophore
descriptor. The top 10 most-similar molecules found are shown.
Stars indicate the ranks occupied by known D2-receptor ligands.
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can validate the results. An argument against the compound at rank 4 might be the
lack of a basic amine function. Looking at the lower-ranking structures, we find a
serotonin receptor 5-HT2C antagonist (rank 6), a histamine receptor H3 antagonist
(rank 7), a TNF-α inhibitor (rank 8), and another ion-channel blocker (Eliprodil,
rank 10).

To assess these findings, it is important to learn about other activities of the
query structure: Ki (D1) = 270 nM, Ki (D3) = 21 nM, Ki (D4.2) = 11 nM, Ki (5-HT2A)
= 25 nM, Ki (α1) = 19 nM, Ki (H1) = 730 nM. This means that Haloperidol exhibits
binding activity against a whole family of targets and is not specific for the D2
receptor. Therefore, retrieving an H3 ligand at rank 7 can be considered a success
if we keep in mind that the query has significant binding potential at the H1 receptor.
This brief example of a pharmacophore-based similarity search demonstrates that
one has to be very careful when analyzing a ranked list, and a seeming contradiction
with what was expected as an outcome of the experiment might be resolved by
considering multiple activity of the query structure.

Similarity searching can be successful only when molecules are represented by a
suitable description of the chemical space. The definition of ‘important’ attributes
depends heavily on the query structure and therefore on its associated binding
partner. Descriptors of chemical space can be categorized, e.g., according to their
data representation and according to the dimensionality of molecular attributes
(1D, 2D, or 3D) they describe. Binary fingerprints are a typical data representation
for similarity searching [28]. They describe the presence or absence of a feature,
e.g., a substructure [29], or a certain pharmacophore [30, 31], in a linear bit-string
format. Fingerprints vary in length from 57 bits for mini-fingerprints (a collection
of 1D and 2D molecular descriptions) [32] up to millions of bits for 4D-pharmaco-
phore fingerprints (all combinations of four-point pharmacophores) [31]. For an
extensive review of issues related to conformer generation in the process of property
calculations, see [33].

Pharmacophore models seem to be specifically suited for scaffold hopping and
respective library design [34]. If we want to pick members of a compound library
from a very large virtual chemistry space, calculation of 3D conformers and
subsequent structural or potential pharmacophore point-based alignment of
molecules can be a limiting factor. Therefore, alignment-free models have value,
particularly during the early phases of library design [35]. To demonstrate the idea
of retrospective screening and its use for library-design purposes, one representative
of these methods – correlation vector representations (CVR) – is discussed in more
detail.

The correlation vector approach was introduced to the field of cheminformatics
by Broto and Moreau in 1984 [36] and was brought to wider attention through
studies by Gasteiger and coworkers [37]. The basic idea of CVR is to map molecular
features, e.g., pharmacophore points or properties, to a numerical vector of fixed
length. As a consequence, each molecule is encoded by such a vector of a given
dimension, and pairwise comparison of vectors (similarity calculation) can be
executed very quickly without having to explicitly align the molecular structures.
CVR belongs to the class of alignment-free descriptors. Several applications of CVR
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to similarity searching have been reported by our group and others previously,
exploiting the possibility for very fast virtual screening of large compound collections
and their use in de-novo design [2, 4, 37, 38].

The CATS descriptor follows the CVR idea and was introduced to provide a concept
for scaffold hopping [4]. Its original implementation was based on the 2D structure
of a molecule and therefore avoids the issue of conformational flexibility. It belongs
to the category of atom-pair descriptors and encodes topological information of a
molecule [39]. The centers of the atom pairs are not characterized by their chemical
element type, but by their membership in a potential pharmacophore point (PPP)
group, i.e., generalized atom types. Typically, five PPP groups are considered: H-
bond donor (D), H-bond acceptor (A), positively charged or ionizable (P), negatively
charged or ionizable (N), and lipophilic (L). These five groups are assumed to
represent potential pharmacophore points of a molecular structure. If an atom
does not belong to one of the five PPP types it is not considered; i.e., in the standard
implementation of CATS the atom type ‘null’ does not exist. However, it would be
a worthwhile exercise to quantify a null atom’s influence on similarity searching
results. A straightforward definition of atom types is given by the following
assignment [40]: lipophilic: {C(C)(C)(C)(C), Cl}; positive: {[+], NH2}; negative: {[–],
COOH, SOOH, POOH}; H-bond donor: {OH, NH, NH2}; H-bond acceptor: {O,
N[!H]}. Thus, every atom of a molecule is assigned to none, one, or two PPP types.
Of course, many other sets of generalized atom types have been described and may
be used instead [41].
The occurrences of all 15 possible pairs of PPP types (DD, DA, DP, DN, DL, AA,
AP, AN, AL, PP, PN, PL, NN, NL, LL) are then counted, and the resulting histograms
are divided by the number of nonhydrogen atoms in the molecule to obtain a scaled
vector. Other scaling methods are applicable also, e.g., scaling by the expected
background frequency of an atom type. After scaling, all 15 possible pairs of CATS
types are associated with the number of intervening bonds between the two
corresponding atoms, using the shortest path length. The minimum distance
between a pair of CATS types is zero bonds, and the maximum distance is typically
chosen to be nine bonds. Thus, the result of the calculation of the CATS descriptor
is a 150-dimensional correlation vector representation. The general procedure to
obtain the CATS 2D pharmacophore model is

1. Extract the unweighted, hydrogen-depleted molecular graph.
2. Assign PPP atom types to the nodes of the molecular graph.
3. Calculate the distance matrix.
4. Calculate the correlation vector representation CVR:

= =
= δ∑ ∑ ,

1 1

1
CVR

A A
T T
d ij d

i jA
(13.3)

where d is the path length, T is the atom type pair, A is the number of nonhydrogen
atoms, and δT is the Kronecker delta that equals 1 if a pair T exists and 0 otherwise.
This descriptor can be easily extended to the 3D situation, in which distances
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measured in 3D space are used instead of topological distances. The original
application of the autocorrelation idea was grounded on an atom charge model
instead of on generalized PPP types (Figure 13.5) [37].

Once descriptors have been calculated for all compounds, the question arises as
to which similarity metric is to be used to obtain maximal enrichment of actives in
the library subset [42]. Several comparative studies have revealed that there is no
single best similarity metric that outperforms all others [37, 40, 42–44]. Nevertheless,

Figure 13.5  The principle of correlation vector
representation (CVR).
(a) During calculation of the topological (2D)
CVR descriptor, the 2D structure of the
molecule is converted to its molecular graph
representation and generic atom types are
assigned to the vertices of this graph. Then
all possible pairs of atom types are counted;
only the shortest path (number of bonds)
between two vertices is taken into account.
Yellow balls represent lipophilic centers,
cyan balls H acceptors, blue balls positive
centers, and magenta balls H donor.
An example of an acceptor–lipophilic pair
spaced three bonds apart is depicted by bold
edges, where db is the distance in number of
bonds.
(b) For calculation of the 3D CVR descriptor,
the explicit 3D conformation of a molecule is

converted into a 3D distribution of potential
pharmacophore points. The descriptor
encodes the number of pairs of generalized
atom types that fall into predefined distance
bins. The color scheme of the atom types is
consistent with (a). Additionally, green balls
represent polar atoms. An example of an
acceptor–lipophilic pair is depicted with a
black line; ds indicates the spatial distance
between the two atoms.
(c) The atom charge-based CVR descriptor
maps the partial atom charges of a molecule
into predefined distance bins. Blue represents
positive charge, red represents negative
charge; color intensity indicates the charge
value. The black line shows the spatial
distance ds between a partially positive atom
with charge qi and a partially negative atom
with charge qj (adapted from [40]).
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there seem to exist certain application domains for individual similarity metrics,
i.e., in combination with a particular descriptor and target. This is shown in
Figure 13.6, which demonstrates the application of the three CVR methods outlined
above. Known ligands of three selected protein targets, cyclooxygenase-2 (COX-2),
human immunodeficiency virus (HIV) protease, and matrix metalloproteinases
(MMP), were used in a retrospective virtual screening study [40]. A comparison of
the three descriptors revealed that none is generally superior for all datasets, but
often one descriptor is preferred for a given dataset. This reflects the suitability of
a specific descriptor for a specific ligand–receptor interaction pattern.

However, the information induced in each descriptor seems to differ, as illustrated
in Figure 13.6 by the number of compounds that were exclusively identified by a

13.2  A Straightforward Approach: Similarity Searching

Figure 13.6  Results of retrospective screening with CVR methods.
Top: Elements of the Euler–Venn diagrams represent compounds that can
be found among the first 5% of the ranked lists resulting from similarity
searching with COX-2, MMP, and HIV protease subsets of the COBRA
database. The Manhattan distance was used as a distance metric.
Membership in a set indicates that the respective compound was retrieved
by retrospective screening with the corresponding descriptor. The diagrams
reveal that the three descriptors complement one another to different
extents, depending on the underlying dataset (adapted from [40]).
Bottom: Models of the binding pockets containing bound ligands of COX-2
(PDB identifier: 1CX2), MMP-3 (PDB identifier: 1D5J), and HIV protease
(PDB identifier: 1HSG). Molecular surfaces are colored according to partial
charges as implemented in the MOE modeling software (Chemical
Computing Group Inc., Montreal).

1239vch13.pmd 22.06.2004, 10:14353



354 13  Navigation in Chemical Space: Ligand-based Design of Focused Compound Libraries

single descriptor. The sizes of the intersection (shaded area) are six, one, and zero
compounds for the COX-2, MMP, and HIV protease subsets, respectively. The small
intersection sizes suggest that the information contents of the individual descriptors
complement one another. Exclusive selection of compounds that are recognized as
potential candidates by all three descriptors would result in a significant loss of
actives. This finding implies that a single descriptor alone does not cover all aspects
of molecular features that are necessary for a ligand to bind successfully. Thus, it
seems appropriate to combine the most promising candidates from each ranked
list of compounds that was produced by individual similarity searches of a compound
library [45]. This strategy might be particularly useful for combinatorial library
design and building-block selection aiming at activity-enriched subsets, com-
plementing computationally more demanding techniques for target-family biased
library design [46, 47].

Figure 13.6 also shows that there is a possible structural explanation for the
different performance of descriptors. The binding pocket of COX-2 is buried and
narrow, and almost all portions of the small ligands participate in binding. This is
reflected by the considerable performance of all three correlation vector descriptors
for the COX-2 dataset. The binding pocket of MMP-3 is rather shallow, and a great
portion of the ligand surface is accessible to the solvent. Since the CVR descriptors
described above take into account PPP types and partial charge information for the
entire molecule, much of the encoded information is worthless for the binding
pattern of the MMP ligands. This may contribute to noise in the descriptor data.
Finally, the HIV protease binding pocket is deep, long, and tunnel-like. Here, the
topological correlation vector descriptor achieved better overall results than the
two descriptors that are based on 3D distances. A closer look at the HIV protease
ligands revealed that they contain more rotatable bonds (on average 19 compared
to 6 and 15 for COX-2 and MMP ligands, respectively) and have a higher molecular
weight (on average 607 compared to 360 and 439 for COX-2 and MMP ligands,
respectively) than the COX-2 and MMP ligands. In consequence, it is much more
difficult to generate conformations resembling the receptor-bound ligand confor-
mation which might explain the performance of the two 3D correlation vector
descriptors with the HIV protease test data.

Despite several limitations, correlation vector methods were shown to be suited
for ligand-based similarity searching, i.e., considerable enrichment of actives was
obtained by retrospective analysis [40]. These alignment-free descriptors seem to
be applicable to early-phase virtual screening campaigns, where a course-grained
filtering of datasets is required in combination with a high execution speed. If a
single similarity metric is to be used, the Manhattan distance seems to be particularly
applicable because of its computational simplicity and ability to produce significant
enrichment in actives. Again, this statement does not imply that this is the metric
of choice for any similarity search. Appropriate tuning of method parameters is
essential, e.g., binning options or the definition of pharmacophore types, as well
as meaningful data preprocessing, e.g., descriptor scaling. This aspect is of utmost
importance for application of similarity concepts in chemogenomics and large-
scale HTS data analysis.
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13.3
Fuzzy Pharmacophore Models

Pharmacophore models represent the location of generalized interaction sites in
3D space which are considered to be related to biological activity. Two basically
different approaches for representing the pharmacophore can be distinguished,
traditional 3D pharmacophore models and pharmacophore fingerprints [41]. The
traditional approach, implemented in program packages like Catalyst [48], DISCO
[49], GASP [50], and MOE [51], usually determines the most-conserved features of
a set of structurally aligned known active ligands. The spatial configuration of
generalized interaction sites is the basis for screening new molecules with the
same biological activity. Molecules that have all or a user-defined minimum number
of the features are presumed to be active. One significant drawback of this approach
is the necessity to align a molecule to the pharmacophore query before it can be
classified as potentially active or inactive. This step can be very time-consuming
and thus prevent the screening of very large databases. Another drawback is the
lack of information about less-conserved regions for virtual screening. It is not
easy to take such regions into consideration, since a minimum number of features
have to be satisfied by a molecule for it to be classified as active. Excluded volumes
can sometimes compensate for part of this problem by preventing the selection of
molecules that are too large for the binding pocket [41].

Pharmacophore fingerprints describe the spatial arrangement of pharmacophoric
features as a bitstring in which each bit corresponds to a certain feature, or in the
form of a CVR (see above) [40, 52, 53]. The latter has the advantage that no alignment
is needed to estimate the activity of a molecule under consideration, which allows
for rapid screening of large compound databases and makes the method prone to
alignment errors. Pharmacophore fingerprints contain information about the
number or the presence or absence of the spatial arrangement of defined multiplets
of generalized pharmacophoric features. Although information is retained about
all PPP features present in a molecule, a drawback of these methods is usually that
no information is available about the conservation and tolerance of the features.
Successful attempts have been made to include conservation information extracted
from conserved positions in the CVRs of sets of known active molecules [54].
However, information about conserved features extracted from molecular align-
ments needs to be more reliable. Initial studies on introducing fuzziness into CVR-
based retrospective screening showed no significant improvement [55]. A short-
coming of the initial approach might have been that a uniform degree of fuzziness
was used for all pairs of features of the molecules. Another property of pharmaco-
phore fingerprints – which can either be considered a benefit or a drawback – is
that the descriptor of a molecule is not necessarily unique to that molecule. On the
one hand this can lead to molecules that are different overall from the query molecule
and do not have any of the desired biological activity. On the other hand this provides
an opportunity to perform scaffold hopping.

An example of fuzzy pharmacophores is shown in Figure 13.7 (S. Renner,
G. Schneider, unpublished results) [56]. Three known COX-2 inhibitors, 5 (SC-558),

13.3  Fuzzy Pharmacophore Models
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6 (M5), and 7 (Rofecoxib), were used as reference structures for calculation of a 3D
pharmacophore model (Scheme 13.2). 3D conformers and pharmacophore align-
ments were generated with the MOE software suite [51]. Figure 13.7 shows the
resulting superpositioning, with crucial pharmacophoric points indicated. According
to Palomer and coworkers, essential interactions for specific COX-2 inhibition are
mediated by the aromatic rings A and B and the sulfonyl group [57]. Four resulting
pharmacophore models with different degrees of fuzziness are illustrated below
the superposed molecules. Each of these models can serve as a query for similarity
searching. The important difference from standard similarity searching is that
ensemble information from several reference structures is used to define important
PPP sites. Increased fuzziness can be introduced by larger clustering radii for
determination of pharmacophore points. The pharmacophore models consist of
only three generalized interaction types: H-bond donors, H-bond acceptors, and
hydrophobic interactions. The model resulting from a 1-Å cluster radius is the
most detailed model. In most instances, only close-by atoms are combined to PPPs,

Figure 13.7  
Top: 3D alignment of COX-2 inhibitors 5, 6, and 7. Rofecoxib and M5 were
aligned to the crystal structure conformation of SC-558 bound to COX-2.
Bottom: Pharmacophore models calculated with different cluster radii from
the aligned COX-2 inhibitors. The cluster radii of the four shown models are
1.0 Å, 1.5 Å, 3.0 Å, and 3.5 Å. The colored spheres represent potential
pharmacophore points (PPP) of the models. The radii of the spheres denote
the standard deviations of the spatial distributions of the atoms contributing
to each PPP. Yellow: hydrophobic interactions, magenta: H-bond donors,
cyan: H-bond acceptors. Color intensity denotes the extent of conservation
of the PPP among the aligned molecules (courtesy S. Renner).
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which results in a low degree of abstraction from the scaffold of the molecules in
the alignment. Note that, in contrast to the other models shown here, the preferred
angles between the two aromatic rings A and B are preserved in this model. The
models resulting from 1.5-Å and 3.0-Å cluster radii exhibit a higher degree of
generalization from the molecular alignment. Many atoms, especially in the regions
of the aromatic rings A and B, are combined into large PPPs, covering several
atoms in each of the molecules. Finally, in the model resulting from 3.5-Å cluster
radius, the shape of the underlying alignment is only marginally visible, thus this
model represents the highest degree of abstraction from the chemical entities 5, 6,
and 7.

So, which of the models should be used for library design? One way of finding
out is to again conduct a retrospective screening study. The different models will
lead to different enrichment factors. In the present example, the 1.5-Å model
performed best [56]. The appropriate degree of PPP fuzziness again depends on
the particular project and must be determined separately for each alignment of
reference molecules. A challenge for any pharmacophore model is to assess its
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Figure 13.8  Comparison of the enrichment obtained with the
combined pharmacophore model (PPP model) resulting from a
1.5-Å PPP cluster radius with the results of retrospective screening
using the COX-2 inhibitors Rofecoxib, M5, and SC-558 as seed
structures (courtesy S. Renner).

13.3  Fuzzy Pharmacophore Models
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performance in comparison to straightforward similarity searching taking the
individual reference molecules as queries. Figure 13.8 shows the results of such a
comparison obtained for the COX-2 example. Generally, a significant enrichment
of actives among the top-ranking library members was observed. In addition,
Rofecoxib performed much better than the other two COX-2 inhibitors. Both
pharmacophore models performed similar to Rofecoxib for the first 1% of the
database. Up to the first 20% of the database, the pharmacophore model clearly
outperformed Rofecoxib. The pharmacophore model retrieved 80% of the known
active COX-2 inhibitors into the first 8% of the ranked database, yielding an
enrichment factor of 35 for the 8% subset. In comparison, Rofecoxib ranked 80%
of the actives into the first 18% of the library. This means that a COX-2-focused
library could be compiled from the first 8% of the ranked database and that the
inherent fuzzy description of the molecules should support the goal of scaffold
hopping, especially with higher degrees of fuzziness.

In the past, assay data were analyzed primarily by medicinal chemists, by looking
at the active compounds and then deciding on which hits to focus their efforts.
With the increase in the number of experimentally determined actives, this approach
becomes increasingly ineffective, and computational techniques are increasingly
used to classify the hits and derive hypotheses. One should keep in mind that it is
basically impossible for a human being to also take into account the large number
of inactive compounds. The development of a pharmacophore hypothesis, for
example, ideally incorporates additional information on inactive compounds. As
we have seen, sets of candidate structures can be rapidly compiled from databases
or virtual chemical libraries by similarity searching. Practical experience shows
that such hypotheses are often weak, and there clearly is no cure-all recipe or
generally valid hypothesis leading to success in chemical similarity searching.
Nevertheless, similarity searching methods provide a useful concept for rapid first-
pass virtual screening and focused library design.

13.4
Fast Binary Classifiers for Library Shaping

Automated compound classification is a further approach for rapid library design.
It can be divided into three major steps:

1. Molecule encoding. Several molecular attributes, such as predicted and mea-
sured properties and structural descriptors, span a high-dimensional feature
space. The selection of descriptors is mainly driven by the experience of the
scientists, project-specific considerations, and existing knowledge about putative
structure–activity relationships.

2. Class assignment. If activity values are available at this stage, the tested molecules
can be assigned class labels representing activity classes (e.g., low, medium,
high). Otherwise, classes can be automatically assigned by analysis of the data
distribution, e.g., by cluster analysis.
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3. Feature extraction. A small set of class-discriminating features is selected
(extracted) from the descriptor space, which provide the basis for activity (class)
predictions. Traditional feature-extraction methods are based on factor analysis
and projection methods [58].

A common theme in molecular feature extraction is the transformation of raw data
into a new coordinate system, in which the axes of the new space represent ‘factors’
or ‘latent variables’ – features that might help to explain the shape of the original
distribution. The most widely applied statistical feature-extraction method in drug
design belongs to the class of factorial methods: principal component analysis (PCA).
PCA performs a linear projection of data points from the high-dimensional space
onto a low-dimensional space. In addition to PCA, nonlinear projection methods
like the self-organizing map (SOM) and various types of encoder networks have been
employed in drug design projects to address the fact that most structure–activity
relationships are inherently nonlinear [7, 59, 60]. Since none of these methods
require a priori knowledge of target values (e.g., inhibition constants, properties)
or active/inactive assignments, they are considered ‘unsupervised’. Unsupervised
procedures can be used to perform a first data analysis step, complemented by
supervised methods later during the molecular design process (see below).

A straightforward approach to library shaping employs filtering routines that are
based on binary classifiers solving two-class problems and are meant to either
eliminate potentially unwanted molecules from a compound library or enrich a
library with molecules predicted to reveal some kind of desired activity [61, 62].
The basic idea is to define two classes of compounds, one sharing a desired property
(the positive set), and another lacking this property (the negative set). Then a binary
classifier, e.g., a separating hyperplane, is developed, which can be applied in early-
phase virtual screening and compound library shaping. Independent of the
particular classification method used and the particular project under investigation,
appropriate preprocessing of data is essential for successful feature extraction.
Currently, two classifier systems are most often used in these applications:
PLS-based classifiers [63, 64] and various types of artificial neural networks (ANN)
[65–69]. Typically, these systems follow the ‘likeness concept’ in virtual screening
[66, 67]. A recent addition to this set of methods is the support vector machine
(SVM) approach, which was first introduced by Vapnik as a potential alternative to
conventional artificial neural networks [70, 71]. Its popularity has grown ever since
in various areas of research, and its first applications in molecular informatics and
pharmaceutical research have been described [72].

The basic idea of an ANN is to find a typically nonlinear classifier directly in the
n-dimensional descriptor space, whereas SVM relies on preprocessing the original
n-dimensional data to represent patterns in a much higher-dimensional space. With
an appropriate nonlinear mapping to a sufficiently high dimension, two data classes
can always be separated by a hyperplane [73, 74]. The classifier found in the very
high-dimensional space can be applied to the original n-dimensional data by an
elegant method using so-called kernel functions [75, 76].

13.4  Fast Binary Classifiers for Library Shaping
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13.4.1
Artificial Neural Networks

Conventional two-layered neural networks with a single output neuron are the
most frequently employed class of ANN models for virtual screening and library
design purposes (Figure 13.9). As a result of network training, a decision function
is chosen from the family of functions represented by the network architecture.
This function family is defined by the complexity of the neural network, i.e., the
number of hidden layers, number of neurons in these layers, and topology of the
network. The decision function is determined by choosing appropriate weights for
the neural network. Optimal weights usually minimize an error function for the
particular network architecture. The error function describes the deviation of
predicted target values from observed or desired values. For a class/nonclass
classification problem, the target values could be 1 for ‘class’ (e.g., GPCR modulators)
and –1 for ‘nonclass’ (e.g., molecules which are known or expected not to be GPCR
modulators). Standard two-layered neural network with a single output neuron
can be represented by the following equation:

= =

⎡ ⎤⎛ ⎞
= ⋅ ⋅ + +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑(2) (1) (1) (2)

00
1 1

M d

ij jji
j i

y g w g w x w w (13.4)

In most of the current ANN applications in virtual screening, g  and g are sigmoi-
dal transfer functions of the form g(in) = 1 / (1 + exp(–in)).

A neural network is typically trained by variations of gradient descent-based
algorithms, trying to minimize an error function [77]. It is important that additional
validation data be left untouched during ANN training, so as to have an objective
measure of the model’s generalization ability [78].

Figure 13.9  Architecture of a fully connected feed-forward network.
Formal neurons are drawn as circles, and weights are represented by
lines connecting the neuron layers. ‘Fan-out’ neurons are drawn in
white, sigmoidal neurons in black.

 Input
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Output
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13.4.2
Support Vector Machines

SVM classifiers are generated in a two-step procedure. First, the sample data vectors
are mapped (projected) to a very high-dimensional space. The dimension of this
space is significantly greater than the dimension of the original data space. Then
the algorithm finds a hyperplane in this space that separates classes of data by the
largest amount (Figure 13.10). Classification accuracy usually depends only weakly
on the specific projection, provided that the target space is sufficiently high-
dimensional [70]. The decision function represented by an SVM can be expressed
as follows (Figure 13.10):

⎡ ⎤
= α +⎢ ⎥

⎣ ⎦
∑ SV( ) sign ( , )i i

i

D bx x x (13.5)

where αi are Lagrange multipliers determined during training of SVM. The sum is
only over the support vectors xsv, i.e., those molecules that determine the separating
hyperplane. Parameter b determines the shift of the hyperplane, which is also
determined during SVM training. For further details see references [70, 71].

Figure 13.10  SVM training results in the optimal hyperplane separating
classes of data. The optimal hyperplane is the one with the maximum
distance from the nearest training patterns (support vectors). The three
support vectors defining the hyperplane are shown as solid symbols.
D(x) is the SVM decision function (classifier function).

D(x) = -1 D(x) = 1D(x) = 0

D(x) > 1

D(x) < -1

optimal hyperplane

x2

x1

maximum
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13.4.3
An Important Step: Data Scaling

Independent of the particular classification method used and the particular project
under investigation, appropriate preprocessing of data is essential for successful
feature extraction. We bring this fact to attention here, because appropriate data
scaling can be a key to successful library design. In our experience, four scaling
methods have been proven useful for meaningful feature extraction: autoscaling,
logistic scaling, histogram equalization, and block scaling.

Autoscaling results in data with zero mean and unit variance. Logistic scaling,
which is also called ‘softmax’ transformation, first performs autoscaling and then
transforms the data with a logistic function. Histogram equalization transforms the
descriptor vectors in three steps: (1) ascending ordering of the values of the descriptor
vector, (2) replacing the values with their ordinal numbers, and (3) scaling the ordinal
numbers to the interval [0,1]. Block scaling is based on the idea that parts of the
descriptor vector having a similar meaning, e.g., topological features vs. charge-based
features, are independently scaled (as separate blocks). This can facilitate identifi-
cation of feature sets that are relevant for a certain structure–activity relationship.

The choice of an appropriate scaling method critically depends on the dataset,
on the set of descriptors, and on the classification goal. To demonstrate the influence
of scaling on a classification experiment, let us consider drug/nondrug classification
as an example. Supervised neural networks were developed with raw and with scaled
data (A. Givehchi, G. Schneider, unpublished). The networks contained a single
hidden layer containing six hidden units (Figure 13.9). The mean-square-error (mse)
values obtained were mse = 0.13 for logistic scaling, mse = 0.14 for histogram
scaling, and mse = 0.41 without scaling. With logistic scaling the network model
produced the most accurate prediction. To see whether scaling would deliver lower
error and better prediction with other update algorithms, various network training
methods were used and additional network architectures were tested. It turned out
that logistic scaling and histogram equalization generally resulted in predictions
with lower error than no scaling. In some combinations of network size and training
methods logistic scaling was favorable, and in others histogram equalization yielded
better predictions. But the highest mse values were always obtained without scaling,
irrespective of the training method and the size of the neural network. These studies
show that appropriate data scaling can lead to significantly improved results.

13.4.4
Application to Library Design

How can we exploit such fast filtering systems for library design? One possibility is
to use predicted values like drug-likeness, cytotoxicity, ‘frequent-hitter-likeness’, or
aqueous solubility and other generic properties in combination with target-class
specific predictions of ‘GPCR-ligand-likeness’, ‘kinase-inhibitor-likeness’, and
similar properties to define a fitness or quality space (Figure 13.11). SVM and ANN
are methods that can be used for this purpose. As a result, each compound
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Figure 13.11  Principle of PCA-based library design. The original data
space X is spiked with a virtual optimum (denoted by a star in a);
whereas in b) a set of reference compounds defines the optimum),
thereby defining a target area for compound selection. After PCA,
the relevant principal components (PC) span an orthogonal space,
and distance criteria are used for picking compounds that are
closest to the a) virtual optimum, or b) reference compounds.

represents a point in a prediction space. To eliminate correlation between the
individual axes, principal component analysis (PCA) can be performed, and the
coordinates of the original quality space are thus represented by orthogonal principal
components, i.e., score values of the PCA:

X = S LT (13.6)

where X is the original data matrix (quality space) consisting of n rows (number of
compounds in a library) and p columns (prediction values), S is the scores matrix
with n rows and d columns (number of principal components considered; note
that p principal components exist, but usually only the first d components having
an eigenvalue > 1 are used), and L is the loadings matrix with d columns and p
rows representing the correlation between the principal components and the axes
of the original data space. T denotes the transpose of the matrix. The new coordinates
are linear combinations of the original variables, and the principal components
can be considered projections of the original data matrix X onto the scores matrix S:

S = X L (13.7)

A straightforward method for PCA is the NIPALS (nonlinear iterative partial
least squares) algorithm; it is quickly implemented and can be applied to large
datasets [58, 79].
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Now the whole trick of this procedure is the following. Prior to PCA, artificial
compounds (or a real set of reference compounds) are added to the data matrix X.
These additional data points (library ‘spikes’) have coordinates that represent
idealized properties of the library. For example, if the aim is to generate a library
for the cannabinoid receptor family, possible coordinates of the idealized artificial
compound might be 1 for drug-likeness, 1 for GPCR-ligand-likeness, 1 for
cannabinoid-likeness, 0 for dopamine-likeness, 0 for kinase-inhibitor-likeness, and
so forth. In this example, the value ‘1’ indicates the maximum value of a property
(presence of a feature), ‘0’ indicates minimum values (absence of a feature). Of
course, appropriate prediction models must be at hand.

Then PCA is performed, and the compounds of a virtual library are ranked
according to their distance from the optimum in principal component space. A
focused library can then be compiled by picking those compounds that are closest
to the optimum. Of course, many variations of this scheme are feasible, e.g., by
application of experimental design techniques. Also, instead of an artificial optimum
defined by extreme values, experimentally determined values of reference com-
pounds can be used. For example, if an activity profile of a set of reference molecules
is available for a panel of receptor classes, it might be wise to define the relative
activities of reference compounds against different target classes as optimal for
library design. This might help in the identification of truly isofunctional molecules
with a comparable activity panel, yet with a lower risk of generating artifact designs,
since constellations of idealized compound features do exist that represent an ill-
posed problem, i.e., a contradiction in itself. We should stress that this library-
design tactic can only help identify trends and generate an enrichment of activity
for a set of molecules (a library). It is not recommended for application to the
design of single molecules, simply because all prediction systems are faulty and
the definition of optimal properties is somewhat arbitrary. Despite this obvious
limitation, the method offers the following advantages:

Straightforward implementation.
Speed of execution; large virtual or physically existing libraries can be analyzed.
Definition of user-, project-, or company-specific filtering criteria and optimal
compound properties.
Possibility to include experimental observations made for reference compounds,
e.g., activity profiles, solubility issues, etc.

PCA is not the only projection method that can be used. Various types of nonlinear
projections have been employed, e.g., Sammon mapping and nonlinear PCA [80],
and several software packages can be used to graphically visualize library distri-
butions and aid compound selection [81].

Fast binary filtering methods can also be used for scaffold ranking, i.e., the
prioritization of combinatorial scaffolds based on predicted properties. ‘Privileged’
scaffolds were selected to demonstrate this idea [82]. Piperazines S1, benzo-
diazepines S2, and spiroindolines S3 have been described as GPCR-privileged
scaffolds [83]. Scaffold S4 represents a SPIKET motif for tubulin binding which is
effective for inhibiting cellular proliferation [84]. Dysidiolide-derived compounds
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S5 exhibit antiproliferative properties [85]. Finally, scaffold S6 represents a kinase-
privileged structure. Derivatives inhibit cyclin-dependent kinases (CDK) 1 and 2
and prevent loss of cell cycle control and uncontrolled proliferation of cancer cells
[86]. Each of these scaffolds contains two attachment sites, R1 and R2. Virtual libraries
were constructed from a set of 60 generic building blocks which were linked to the
attachment sites, leading to a maximum of 60 × 60 = 3600 virtual products per
scaffold [87]. Then the virtual products were encoded by the topological CATS
descriptor and subjected to library analysis by various prediction systems. The results
are summarized in Table 13.2. Generally, the predictions met the expectations, i.e.,
target-family preferences become apparent when library averages are considered.
It is noteworthy that all six virtual libraries received a high drug-likeness score
(indicated by ++), although scaffolds S4 and S5 tend to induce a library bias toward
antiproliferative properties. The comparison of virtual combinatorial libraries can
be further extended, from such viable libraries that are relatively small in size and
are assembled from chemical building blocks that have been filtered by medicinal
chemists, to massive virtual libraries. As briefly outlined in the introduction to this
chapter, such virtual libraries can never be physically synthesized in their entirety;
hence, novel methods for in-silico screening must be developed that can cope with
this problem. Several such systems have already been conceived, and we expect
this area to deliver valuable novel tools soon [7, 88].

13.5
Mapping Chemical Space by Self-organizing Maps: A Pharmacophore Road Map

The introduction of combinatorial chemistry, HTS, and the presence of large
compound selections have put us in the comfortable position of having a large
number of hits to choose from for lead optimization – at least for certain classes of
drug targets. We anticipate that, although the size of the compound libraries and
the number of HTS hits will continue to increase, leading to a larger number of
hits, the number of leads actually being followed up per project will remain roughly
the same. The challenge is to select the most promising candidates for further
exploration, and computational techniques will play a very important role in this
process. Assuming a hit rate of 0.1%–1% and a compound collection size of 106

compounds, we have (or will have) about 1000–10 000 hits that are potential starting
points for further work. It is important to realize that, although screening throughput
has increased significantly, the throughput of a traditional chemistry laboratory
has not. While it is true that automated and/or parallel chemistry is now routinely
used, there are still many molecules that are not amenable to these more automated
and high-throughput approaches. Thus, the question to be answered is: How can
we select the most promising compounds for library design and subsequent
optimization? Various computational approaches toward defining pharmacophore
road maps that reflect findings in chemogenomics might play a practical role here.
The self-organizing map (SOM) has proven its usefulness for drug discovery, in
particular, for the tasks of data classification, feature extraction, and visualization
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[37, 89–91]. Therefore this method is described in some more detail as one possible
way of dealing with the task of similarity-based design of target-family-focused
libraries.

The SOM belongs to the class of unsupervised neural networks and was pioneered
by Kohonen in the early 1980s [92]. Among other applications, it can be used to
generate low-dimensional, topology-preserving projections of high-dimensional
data. In contrast to the supervised, multilayered ANN discussed in the previous
section of this chapter, the neurons of a SOM adopt either an active or an inactive
state. For data processing, the input pattern (a molecular descriptor vector) is
compared to all neurons of the SOM, and the one neuron that is most similar to
the input pattern – the so-called winner neuron – fires a signal, i.e., it is active. All
other neurons are inactive. In this way, each input pattern is assigned to exactly
one neuron. The data patterns belonging to a neuron form a cluster, since they are
more similar to their neuron than to any other neuron of the SOM. During the
SOM training process – an optimization procedure following the principles of
unsupervised Hebbian learning [93] – the original high-dimensional space is
tessellated, resulting in a certain number of data clusters. As many clusters are
formed as there are neurons in the SOM. The neurons represent prototype vectors
of each cluster, and the resulting prototype vectors capture features of the input
space that are unique to each data cluster. Feature analysis can be done, e.g., by
comparing adjacent neurons. Kohonen’s SOM algorithm represents a strikingly
efficient way of mapping similar patterns, given as vectors close to each other in
input space, onto contiguous locations in the output space (the so-called map). For
an introductory overview to SOM and further details, see references [7, 37, 92].

The SOM approach can be applied to visualizing a chemical space, e.g., the
distribution of reference compounds in a pharmacophore space. Figure 13.12
displays the areas populated by six different ligand classes. It is evident that the
particular molecular descriptor used for this purpose (the 2D CATS descriptor)
provides a basis for rough discrimination of the classes. Although the separation is
not perfect and the descriptor may not be suited for all ligand classes (see. e.g., the
scattering of kinase inhibitors), several activity islands are visible, i.e., clusters of
neurons containing a significant fraction of ligands of one class. This visualization
serves two purposes: (1) to assess the suitability of a molecular representation and
its discrimination power; and (2) to use the map for library design. The latter has
been exemplified for the task of identifying members of a combinatorial library
that specifically bind to the purinergic receptor subtype A2A [89]. Scaffold 8 provided
the basis for virtual library enumeration and projection onto a SOM that was
developed by using a reference set of known purinergic receptor ligands. Compound
9 was picked from the most promising activity island, synthesized, and tested;
it had a Ki = 2.4 nM and 120-fold selectivity over the A1 receptor subtype. Overall,
the focused library had binding affinity three times that of the reference set.

A list of privileged scaffolds – several of which are natural-product derived – for
target-family-biased combinatorial libraries was recently presented by Müller [94].
These scaffolds were proven to produce biologically active compounds for more
than one member of a given target family. A rough-and-ready in-silico evaluation

13.5  Mapping Chemical Space by Self-organizing Maps
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of the preferred target families of such structures can be made by projecting the
appropriate virtual combinatorial libraries onto a SOM that was developed using a
representative set of drugs and drug-like compounds, e.g., the COBRA reference
structures. Figure 13.13 gives an impression of the distribution of a privileged library:
20 generic building blocks were used for scaffold decoration, obtaining a virtual
library containing 20 × 20 × 20 = 8000 compounds. Although the building blocks
were not specifically selected, an apparent overlap of the densely populated areas
(shown in red) of both maps can be observed. This straightforward analysis
demonstrates how the approach can help qualify combinatorial libraries. The study
was performed in product space (rather than educt space) and complements
established techniques for building-block selection, such as statistical design or

Scheme 13.3

Figure 13.12  A SOM-based pharmacophore road map. Different sets
of ligands were projected onto a SOM that was generated by using
the complete COBRA library. Black areas indicate the characteristic
distributions of the compounds. Crosses indicate empty neurons in the
map, i.e., areas of pharmacophore space that are not populated by the
respective compound class. All molecules were encoded by a topological
pharmacophore descriptor (CATS) [4]. Note that each map forms a torus.
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heuristic sampling procedures [21, 95]. Of course, it accordingly is limited to
manageable library sizes. A related SOM approach was also successfully employed
for identification of novel natural-product-derived scaffolds, following the strategy
outlined here [90].

Although the sample SOMs shown in this chapter are relatively coarse, they
already point to the matter of overlapping activity areas, i.e., potential promiscuous
binding behavior of compounds. An example is provided by the well known
unspecific binding behavior of many serotonin receptor ligands (Figure 13.14).
The areas populated by known dopamine and serotonin receptor ligands are in
fact very similar and cannot be distinguished, considering the resolution and
inherent noise of the SOM. Two promiscuous binders, Sertindole (primary target:
5-HT2a) and Clozapine (primary target: D4.2), were projected onto the COBRA
SOM. Based on their location on the SOM, they would actually be predicted to
exhibit binding activity to various dopamine and serotonin receptor subtypes and
some related receptors. A literature study of known activities reported for the two
compounds confirmed the SOM prediction. We want to again stress that, due to
the coarseness of the approach, such predictions should be made only for whole
libraries, and this example is just meant to demonstrate the concept. Despite the
appeal of the SOM technique, we should point out that several alternatives exist,
and the SOM concept might not even be the wisest option for focused library design.
SOMs can even be misleading, e.g., due to mapping errors, the usual high-
dimensionality of the data, premature end of training, the problem of local optima,
and other issues. Additional information and different approaches to the nonlinear
mapping task can be found elsewhere [96]. An extension of the SOM, the visuali-
zation-induced SOM (ViSOM), was presented recently to overcome some of the
limitations of manifold mapping by conventional SOMs. In particular, ViSOM
directly preserves distance information on the map, along with the topology [97].

Figure 13.13  SOM showing the distribution of known serine protease
inhibitors (left), and a virtual combinatorial library that was constructed
around a serine protease-privileged scaffold [94]. Red areas indicate
high compound density. Note that each map forms a torus.

13.5  Mapping Chemical Space by Self-organizing Maps
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Although this method has not yet been applied to library design, it represents a
promising approach that might help improve the SOM-based pharmacophore road
map.

The observation of promiscuous binding behavior has also been described for
other ligand classes, e.g., steroids and kinase inhibitors [94, 98]. We will certainly
see many more such surprises in the future as chemogenomics techniques are
increasingly applied. A pharmacophore road map can help unearth such candidates.
A related large-scale analysis of compound activity was carried out by Covell and
coworkers [99], who performed a SOM cluster analysis using the National Cancer
Institute’s tumor-screening database and found indications of compound selectivity
between various types of cellular activity. This study supports the idea of SOM-
based compound clustering to identify receptor-family-specific pharmacophore
patterns.

Figure 13.14  Projection of two promiscuous binders, Sertindole
(primary target: 5-HT2a, left) and Clozapine (primary target: D4.2,
right), onto the COBRA SOM. The distribution of known serotonin
receptor ligands is shown in the left map, the distribution of known
dopamine receptor ligands is shown in the right map. The colored
areas of the two maps overlap, indicating similar activity of the
compounds. Blue: few compounds; red: many compounds;
crosses indicate unpopulated areas of pharmacophore space.
Colors were scaled separately for each map.
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13.6
Concluding Remarks

The issue of designing compound libraries that are focused toward a target family
has been approached by many research teams in the pharmaceutical industry and
in academia, and various strategies are emerging within the teams, relying on
similarity searching and virtual screening, structure-based design, and high-
throughput analytical methods [100]. Despite the many studies that have already
been performed, the availability of chemogenomics data will enable a more thorough
investigation of neighborhood behavior of virtual chemistry spaces with respect to
biological activity and receptor spaces. In this chapter, we presented only a small
fraction of what is already possible from a ligand-based virtual screening perspective.
Still, this process of connecting target with ligand space has only just begun, and
there are several crucial questions to be answered – independent of the particular
computational concept chosen, e.g., How can the large body of available HTS data
be fully exploited for target-family-specific SAR modeling [101]? Which level of
fuzziness of pharmacophoric descriptors is appropriate for a particular target family
and allows for scaffold hopping within the respective ligand family [102]? How can
multidimensional optimization be implemented so that pharmacokinetic and
pharmacodynamic profiling of focused compound libraries can be addressed during
the early library design phase [103]? How can promiscuous binders, frequent hitters,
and target-family-specific preferred scaffolds be differentiated and systematically
identified [16, 94, 104]? The concept of chemogenomics might provide an approach
to solving some of these questions, and molecular informatics represents a key
discipline for coming up with practical solutions. Fragment-based library assembly,
e.g., by combinatorial design, has proven to be suitable for rapid lead identification
[105]. A challenging task in this respect is to refine rules for lead-likeness (in contrast
to generic drug-likeness) so that they are amenable to virtual screening of virtual
lead-like libraries [106], and it remains to be seen whether generic definitions of
lead-likeness will have to be adapted to meet the requirements of target-family-
specific ligand design. Chemogenomics studies will undoubtedly push virtual
screening concepts and methods to a higher level, as we will once more have to
face the fact that both the drug-design process and the target organisms represent
complex systems, and adaptation of project strategies and technologies are key to
future success in this game [107].
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14
Natural Product-derived Compound Libraries
and Protein Structure Similarity as Guiding Principles
for the Discovery of Drug Candidates

Marcus A. Koch and Herbert Waldmann

14.1
Introduction

The last decade brought tremendous gains in biological information through large-
scale and global approaches addressing the aspects of DNA sequence (genomics),
protein structure (structural genomics), and protein expression and interactions
(proteomics). Bioinformatics tools help to convert this vast amount of basic data into
actual knowledge exploitable for the benefit of mankind, in particular for the develop-
ment of new therapies for diseases. Of preeminent interest is the relationship
between protein structure and function, as its understanding will help to find small
molecules that alter protein function by selective inhibition or activation [1, 2]. On
the other hand, tight-binding, target-specific small molecule tool-compounds can be
used to study the biological functions of a known target protein or to validate it as
a drug target. This chemobiological strategy, commonly subsumed under the terms
‘chemical genetics’ and ‘chemical genomics’, implicates the need for cell-permeable
chemical ligands for any interesting target protein that allow modulation of the
protein’s activity at low concentrations as selectively as possible. Compound develop-
ment via combinatorial chemistry techniques will become the method of choice in
undertaking this herculean task. But since the universe of thinkable chemical
compounds is almost infinite [3], one important question arises: Where in chemical
structural space are compounds with the desired biological properties to be found?

The original expectation that the synthesis of vast random compound libraries
will produce as many or even more drug candidates as have historical libraries of
pharmaceutical companies and that such libraries will overcome the problem of
efficient hit and lead finding was not fulfilled. It was soon recognized that it is not
numbers that determine the quality of a library, but its diversity [4–6], its drug-
likeness [7–11], and its biological relevance [12, 13]. A central and crucial task is the
identification of compound classes that represent already biologically validated start-
ing points in structural space, to find a synthetic access to them that is amenable to
combinatorial variation, and to design and synthesize combinatorial libraries cen-
tered on the identified underlying structural frameworks of these compound classes.
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Biologically active natural products, usually low molecular weight chemical
compounds, are synthesized by biological organisms as secondary metabolites and
endow their producers with a survival advantage, for example, plants that synthesize
metabolites that act as deterrents against herbivores. Natural products are selected
by Nature in the process of evolution along the parameter of interaction capability
with biomolecules, usually proteins. The necessity of gaining fitness through potent
biologically active compounds and the strict structural requirements for tight
binding to the respective target protein have acted as important evolutionary
constraints on the producing organisms. Using these naturally preselected
molecules, with their unique diversity as examples, provides biologically validated
and thus relevant starting points for library design. Natural product-based libraries
permit finding of hit or lead compounds with enhanced probability and quality if
they are included in high-throughput screening programs [12–14]. Scaffolds of
certain natural products and nonnatural compounds embody so-called privileged
structures. This term was originally coined by B. E. Evans and coworkers at Merck,
who recognized in their pharmacological studies of benzodiazepines that derivatives
within this compound class bind not only to benzodiazepine receptors of the central
nervous system, but also to cholecystokinin receptors and to the unrelated class
of peripheral benzodiazepine receptors [15]. Being peptidomimetics, benzo-
diazepines can be assumed to have intrinsically good binding affinity to various
proteins that bind similar regions of peptides or other proteins. According to Evans’
definition, privileged structures constitute a class of structural frameworks that
can bind to various proteinaceous receptor surfaces, implying that they can be
reused as common ‘shape themes’ in widely divergent drug-design situations
[16]. The biological relevance of natural products and privileged structures can
be understood in the light of the structural and/or functional relationships of
proteins.

14.2
Protein Folds and Protein Function

Proteins can be regarded as modularly built biomolecules assembled from individual
building blocks. These building blocks are called domains – discrete parts of the
proteins with their own functions that fold independently from the rest of the
structure into a compact arrangement of secondary structural elements inter-
connected via more or less complex linker peptides. The term domain family, as it
is used here, refers to a family of related sequences that have an ancient common
ancestor, which means that they have developed via divergent evolution. Different
sequence families (domains) can adopt the same fold. This can be regarded either
as convergence due to functional and physical constraints, because of the limited
number of acceptable spatial arrangements of secondary structural elements, or as
a result of divergent evolution to such an extent that the sequence relationship is
no longer recognizable [17, 18]. Protein domains can be regarded as structurally
conserved yet genetically mobile units [19].
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Although the estimate for the number of different proteins in humans ranges
from 100 000 to 450 000, there is common agreement that the number of domain
families and – even more – of topologically distinct folds is much smaller. At present,
approximately 600 folds are known, derived by classifying all structurally cha-
racterized proteins according to their 3D structures [18, 20–22]. Data from the
ongoing genome sequencing projects allow the number of existing folds and families
in Nature to be estimated. Current estimates vary between 600 and 8000 distinct
folds and between 4000 and 60 000 sequence families [22–26]. In this context we
must mention that fold definition often remains an empirical approximation, and
even experts disagree on fold assignments for many proteins. This is mainly due
to the fact that the criteria used are often rather loose. Frequently, not only structural
data but also evolutionary and functional considerations are taken into account.
Instead, categorization along exclusively structural aspects would be more appro-
priate, because proteins having the same fold do not necessarily share a common
ancestor or play similar physiological roles.

There is an ongoing effort to reveal the correlation patterns of protein functions
and sequences [27–29]. Although we are still far away from a deep and consistent
understanding, and analysis is hampered by the small number of available X-ray
structures of proteins with bound small-molecule ligands, some interesting
observations relevant to the topic of the theme discussed in this chapter have been
made about the diversity and evolutionary relationships of ligand binding sites in
proteins [30–32].

14.3
Implications for Library Design: Nature’s Structural Conservatism and Diversity

In a classical chemical genomics approach, potential targets are clustered into target
families on the basis of functional relatedness and amino acid sequence homology
alignments reflecting their genetic relationship. This categorization is then used
to pool known ligands of a target family and to take them as starting points for
combinatorial library design. This strategy constitutes a rationale that allows direct
conversion of genetic information and relatedness into actual chemical ligand
design. A further, analogous principle was outlined as the structure–activity
relationship homology concept. Potential drug discovery targets are grouped into
families based on the relatedness of the structure–activity relationships of their
ligands [33]. It is assumed that the conservation of binding site architectures and
thus the relatedness of molecular recognition specificities within a target family
or one of its subfamilies translate into a conservation of ligand scaffolds that bind
to these targets [34]. The major limitation of these concepts is that usually only
close sequence homologs are considered, because target proteins and their ligands
are predominantly categorized on the basis of function and sequence similarity.
Family assignment derived from sequence information alone in the absence
of structural information usually requires sequence identities greater than 30%
[31].
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An approach based on both sequence and fold analysis promises that in the long
run the process from gene identification to lead discovery may be shortened and
accelerated significantly. For instance, the analysis of a newly discovered gene with
bioinformatics tools may suggest that the corresponding protein will be a multi-
domain protein composed of already-known structural domains [35]. Subsequent
comparison of domain architectures can reveal highly diverged homologs even if
they have completely different biological functions, for example, catalyze different
reactions. This requires in the end that, for every unique fold, at least one 3D
structure must be solved so that protein sequences of unknown 3D structures can
be modeled by structure prediction without the immediate need for experimental
verification by X-ray or NMR techniques. Very often, Nature’s structural conser-
vatism is confined to the domain’s overall architecture, whereas the binding sites
for ligands are structurally diverse yet often topologically similarly located. This
observation has led to the introduction of the term supersites, for example,
concerning the ferredoxin-like fold [36]. A potential supersite can also be observed
in the cystatin-like fold. These similarities are thought to result from divergent
evolution [37]. Sometimes conserved sequence elements that are required for the
recognition of certain ligand partial structures or for the catalytic mechanism may
remain. If small-molecule binders to these domains are already known – for
example, natural products whose binding capabilities for a certain protein domain
were selected during a long-term evolutionary process – then these can serve as
starting points for the design and synthesis of libraries targeting a structurally

Scheme 14.1  Fold similarity and binding site diversity and their
implications for combinatorial library development.
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related protein. Despite their particular biological prevalidation, not only natural
products can serve as guiding structures for combinatorial libraries. Of course,
nonnatural synthetic compounds may also meet this selection criterion. The
chemical diversity subsequently generated by combinatorial elaboration of a thus-
identified core structure has to match the biological diversity occurring in the ligand-
binding cavities of the template domain and the respective target domain, thus
evolving optimal binding properties.

The conserved overall architecture of protein domains is used as an abstracting
guiding principle leading to the core structure around which chemical diversity is
generated (Scheme 14.1). This development of small-molecule binders, in principle
(although it is not necessarily desirable), could be initiated without further
knowledge of the target’s biological functions, binding partners, and so forth –
information that is usually obtained by laborious biochemical and cell biological
techniques. In fact, the evolved ligands can be used for further characterization of
the physiological role of the target protein, which is of outstanding importance in
the target-validation process.

14.4
Development of Natural Product-based Inhibitors for Enzymes
Belonging to the Same Family

14.4.1
Nakijiquinone Derivatives as Selective Receptor Tyrosine Kinase Inhibitors

The value of using a natural product as a guiding structure, elaborating it into a
combinatorial compound library, and screening the library against a set of proteins
exhibiting the same fold was demonstrated by Waldmann and Giannis and co-
workers [38, 39]. Receptor tyrosine kinases (RTKs) represent a family of closely
related homologs. The challenge here is to generate selectivity for one or a distinct
group of this protein family, resulting in a biological effect that is exploitable for
therapeutic intervention. Nakijiquinones 1a–d (Scheme 14.2) are naturally occurring
inhibitors of human epidermal growth factor receptor 2 (HER-2/neu), which is over-
expressed in about 30% of primary breast, ovarian, and gastric carcinomas. In light
of the concept described above, a focused compound library of 56 analogs of this
lead structure was synthesized and screened for its inhibitory activity toward other
RTKs involved in cell signaling and proliferation, such as the vascular endothelial
growth factor receptors (VEGFR-2 and VEGFR-3), the Tie-2-receptor, the insulin-like
growth factor 1 receptor (IGF1R), and the epidermal growth factor receptor (EGFR)
(Scheme 14.2, Figure 14.1). The nakijiquinone-based library was designed on the
basis of the modular structure of the natural products. The nakijiquinones consist
of a hydrophobic diterpene unit, which may interact with a hydrophobic pocket close
to the ATP binding site, a quinone-type building block, and an amino acid. The
quinone group and the amino acid may form H bonds to the ATP binding site of
kinases. Consequently, the diterpene part was replaced with simple hydrophobic

14.4  Development of Natural Product-based Inhibitors for Enzymes Belonging to the Same Family
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structures (2, 3 and 5, Scheme 14.2). The hydrophilic amino acids serine and
threonine (4, Scheme 14.2) and the hydrophobic amino acids valine (5, Scheme 14.2)
and glycine were chosen, and the stereochemistry was also varied. To modify the type
and number of putative H-bond donors and acceptors, either one or two amino acids,
an amino acid and an OH group, or only one amino acid were introduced.

Although none of the natural nakijiquinones exhibited significant inhibitory
activity against the new set of RTKs, six members of the library of analogs were
identified as kinase inhibitors in the low micromolar range. In particular, a structural
pattern emerged that may allow selective targeting of Tie-2 RTK, which is of
paramount importance in the regulation of angiogenesis, that is, the formation of
blood vessels from preexisting vessels and, thereby, in cancer development. This
result stresses the importance of compound libraries based on natural products, in
contrast to using only the natural substances themselves. In a screen with the
natural products alone, these inhibitors would have been missed.

Scheme 14.2  Representatives of a 56-member library of nakijiquinone analogs
leading to a structural pattern for the targeting of Tie-2 RTK and VEGFR-3.
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14.4.2
Dysidiolide Derivatives as Cdc25 Phosphatase Inhibitors

An interesting example of a natural product-based focused library of inhibitors
targeting the Cdc25 family was elaborated by Waldmann and coworkers [40, 41].
The natural product dysidiolide (6, Scheme 14.3) was found to inhibit the dual-
specificity Cdc25 protein phosphatase family and was used as a guiding principle.
Dysidiolide was considered particularly promising, since it inhibits Cdc25A with
an IC50 value of 9.4 µM but does not inhibit the phosphatases calcineurin, CD45,
and LAR [42]. In addition, dysidiolide induces growth arrest of various cancer cell
lines and arrest in the G1 phase of the cell cycle or apoptosis [42, 43].

The 6-epi diastereomer of dysidiolide (7, Scheme 14.3) and seven analogs of it
were synthesized using a solid-phase approach. A notable feature of the multistep
reaction sequence on solid phase is that a wide range of transformations with vastly
differing requirements could be successfully developed. Key transformations of
the synthesis include an asymmetric Diels–Alder reaction with the chiral dienophile

Figure 14.1  Superposed receptor tyrosine kinases inhibited by members
of the nakijiquinone-based library. Yellow: Tie-2 RTK (homology model);
red: VEGFR-3 (homology model); blue: IGF1R with bound ATP analog
(X-ray structure).

14.4  Development of Natural Product-based Inhibitors for Enzymes Belonging to the Same Family

1239vch14.pmd 22.06.2004, 10:16383



384 14  Natural Product-derived Compound Libraries and Protein Structure Similarity

8 and an oxidative elaboration of the furan 9 with singlet oxygen on solid phase, as
well as traceless cleavage of the products, via olefin metathesis, from the support
(Scheme 14.3).

Scheme 14.3  Solid-phase synthesis of 6-epi-dysidiolide.
Dysidiolide is a naturally occurring inhibitor of Cdc25A.
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To determine whether the solid-phase synthesis delivered biologically active
natural product analogs with high frequency, 6-epi-dysidiolide and compounds
10–16 (Scheme 14.4) were investigated as inhibitors of the protein phosphatase
Cdc25C. From the Cdc25 phosphatase family, the Cdc25C protein was chosen
because 6-epi-dysidiolide (7, Scheme 14.3) was previously investigated as an inhibitor
of Cdc25A and Cdc25B [44], thus allowing for comparison of data.

Scheme 14.4  Dysidiolide analogs obtained by solid-phase synthesis.
The IC50 values shown refer to inhibition of Cdc25C.
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The results obtained in the phosphatase assays demonstrate that all dysidiolide
analogs inhibit Cdc25C in the low micromolar range, with IC50 values varying by a
factor of 20. The IC50 of 5.1 µM determined for inhibition of Cdc25C by 6-epi-
dysidiolide (7) is considerably lower than the values recorded for the inhibition of
Cdc25A (13 µM) and Cdc25B (18 µM). Furthermore, the most active compound in
this enzyme assay, ketone 11 (Scheme 14.4), exhibited an IC50 value in the high
nanomolar range (800 nM) and was 6.4 times as active as 7. These results indicate
that dysidiolide analogs and their derivatives can differentiate selectively between
different types of phosphatases and, conceivably, among the three Cdc25 family
members. The data also indicate that substantial variation of the precise structural
details of the natural product itself is tolerated and leads to inhibitors with
significantly enhanced potency. Hence, replacement of the hydroxyethyl bridge
between the annelated core ring system and the hydroxybutenolide in compound 7
by an unsaturated three-carbon unit (14) or introduction of a keto group (11 and
12) lead to more potent Cdc25C inhibitors.

14.5
Development of Natural Product-based Small-molecule Binders to Proteins
with Low Sequence Homology yet Exhibiting the Same Fold

It has often been found that proteins with statistically unrelated sequences and/or
which play different physiological roles with a different arrangement of binding-
site residues have similar folds, evolved from the same ancestors, and can still
bind similar ligands [30, 45]. Since sequence homology is sometimes weak or not
recognizable, the detection of such distant relatives is not necessarily straightfor-
ward. The reason why the most divergent homologs are usually missed in sequence
similarity searches is that the respective programs are based on amino acid similarity
matrices usually derived from evolutionary models or homology alignments. The
instances of divergent evolution with no detectable sequence similarity can therefore
be revealed only by comparing the proteins’ spatial structures since these are typically
more conserved in evolution than are amino acid sequences [46].

14.5.1
Development of Leukotriene A4 Hydrolase Inhibitors

Leukotriene A4 hydrolase/aminopeptidase (LTA4H) catalyzes the final step in LTB4

biosynthesis. LTB4 is a potent chemoattractant and immune-modulating lipid
modulator involved in inflammation, immune responses, host defense against
infection, and platelet activating factor (PAF)-induced shock. The critical role of
LTA4H in LTB4 generation makes it an attractive drug target. LTA4H is a bifunctional
enzyme whose aminopeptidase functionality is combined with an additional
function, namely, the vinylogous hydrolysis of the leukotriene epoxide LTA4 into
LTB4. Both reactions are catalyzed in the same Zn2+-containing active site [47]. The
zinc ion serves as a Lewis acid, polarizes the epoxide ring or the amide carbonyl,
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and stabilizes the negative charge occurring in the transition state. In LTA4H the
presence of the zinc-binding motif (HEXXH-X18-E) was sufficient to prompt
investigations of the relationship of this enzyme to zinc-binding metallopeptidases
[48]. The evolutionary relationship of the LTA4H fold to metallopeptidases would
have immediately suggested searching for peptidase inhibitors as potential ligands,
and indeed, the aminopeptidase inhibitor bestatin (17) also inhibits LTB4 bio-
synthesis (Scheme 14.5). This finding, and the related observation that the
angiotensin-converting enzyme (classified as an M2 metallopeptidase) inhibitor
captopril (18, Scheme 14.6) also inhibits LTA4H [48], have inspired the combinatorial
variation of these lead structures, which led to the syntheses of potent inhibitors of
the peptidase and epoxide hydrolase activity of LTA4H that proved to be selective
for LTA4H when compared with the inhibitory effect toward other aminopeptidases
(compounds 20 and 21, Scheme 14.6) [49–53].

Scheme 14.5  LTA4 hydrolase and aminopeptidases are inhibited
by the natural product bestatin, but they catalyze two different
reactions.

 

OH

O

O

H
N

N
H

H
N

O

O

N
H

O CO2HNH2

OH

H
N

OH

O

OH

O

HO

HO

H2N

H
N

O

LTA4 Hydrolase

Aminopeptidase

Leukotriene A4

Leukotriene B4

+

Bestatin (17)

R R' R
R'

14.5  Development of Natural Product-based Small-molecule Binders

1239vch14.pmd 22.06.2004, 10:16387



388 14  Natural Product-derived Compound Libraries and Protein Structure Similarity

Scheme 14.6  Bestatin- and captopril-derived inhibitors of LTA4 hydrolase.
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A comparison of the subsequently determined crystal structure of LTA4H,
classified as a member of the M1 metallopeptidase family, with the recently solved
structure of human angiotensin-converting enzyme, a member of the M2 family,
and with the structure of thermolysin, which belongs to the M4 family (and shares
only 7% sequence identity with LTA4H) revealed that the catalytic domains of all
three enzymes exhibit significant structural homology (Figure 14.2).
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14.5.2
Development of Sulfotransferase Inhibitors

Schultz and coworkers developed a purine scaffold-based compound library
synthesized on solid support to target cyclin-dependent kinases (CDKs), using the
natural product olomoucine (22, Scheme 14.7) as a lead structure [54]. This library
afforded a moderately potent inhibitor of CDK2. Further development of this library
by synthesizing several hundred 2,6,9-trisubstituted purine derivatives, using solid-
and solution-phase chemistry, yielded more-potent CDK inhibitors (CDK1/CDK2),
such as 23 [55, 56]. Screening this representative library of purines against
recombinant inositol-1,4,5-trisphosphate-3-kinase (IP3K) led to the discovery of
inhibitors of IP3K (24, Scheme 14.7) [57].

For the combinatorial synthesis of the olomoucine-based library, Schultz and
coworkers developed a traceless linkage strategy (Scheme 14.8) [58], the major
advantage of which was that anchoring the purine ring did not require that one
substituent had to be kept invariant. To achieve linkage to the solid support, primary
amines were coupled by reductive amination using sodium triacetoxyborohydride

Figure 14.2  Superposed X-ray structures of the catalytic domains of
LTA4H (blue), angiotensin-converting enzyme (red), and thermolysin
(yellow), each with bound zinc ion (colored accordingly).

14.5  Development of Natural Product-based Small-molecule Binders
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to a 4-formyl-3-5-dimethoxyphenoxymethyl-functionalized polystyrene resin (PAL)
(27) [59]. The purine ring (30) was then captured at the C2 position by reacting the
PAL-amine resin (28) with the crude N9-alkylated 2-fluoro-6-phenylsulfenylpurine
(30) and diisopropylethylamine in n-butanol at 80 °C. The C6 position could then
be substituted after oxidation-activation of the thioether to the sulfone (32).

Scheme 14.7  Representatives of olomoucine-based libraries
of inhibitors targeting kinases and sulfotransferases.
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hexokinase: no inhibtion at 10 µM
pyruvate kinase: no inhibtion at 10 µM

NodH: IC50 = 20 µM
other carbohydrate sulfotransferases: no inhibition at 200 µM
keratan sulfate sulfotransferase: no inhibition at 200 µM
CDK2/cyclin A: IC50 = 15 - 40 µM

23 24

25 26
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Kinases and sulfotransferases utilize similar substrates and catalyze similar
reactions. Both transfer anionic groups (Scheme 14.9). Both enzyme classes are
capable of binding adenosine-based substrates. Sulfotransferases bind 3′-phospho-
adenosine-5′-phosphosulfate (PAPS) (35) as a sulfate donor and kinases bind
adenosine-5′-triphosphate (ATP) (36) as a phosphoryl donor.

Scheme 14.8  Traceless solid-phase synthesis of olomoucine
analogs developed by Schultz and coworkers [58].
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Moreover, the close structural resemblance between sulfotransferases and
nucleotide kinases, as shown by the superposition of yeast uridylate kinase (yUK)
with murine estrogen sulfotransferase (mEST) (Figure 14.3), is intriguing. It is all
the more astonishing when we consider that the catalytic domains exhibit little or
no sequence similarity (sequence identity: 8%). Although the specific sidechain
interactions differ, both structures bind their cofactors through backbone amide
H-bond interaction utilizing a P-loop motif to bind the penultimate phosphate. In
addition, the phosphate on the substrate that is phosphorylated by yUK has the
same orientation with respect to the cofactor as the phenolic hydroxy group of 17β-
estradiol that is sulfated in the mEST-catalyzed reaction. This suggests that the
catalytic mechanism of sulfuryl and phosphoryl transfers may be similar. Despite
structural resemblance however, there are only a few conserved amino acids, and
the specific residues involved in catalysis derive from different locations in the
active site [60, 61].

The similarities concerning the bound cofactors, the reaction mechanism, and
the adenine-binding pockets led to a screen of the above-described purine-based
library of ATP-competitive inhibitors originally designed to target CDKs for cross-
reactivity with the carbohydrate sulfotransferase NodH from Rhizobium meliloti.

Scheme 14.9  Reactions catalyzed by sulfotransferases and kinases.
The cofactors are structurally similar. The catalytic mechanisms of
nucleotide kinases and sulfotransferases are also similar.
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PAPS-competitive NodH inhibitors (25, Scheme 14.7) with modest inhibitory activity
(IC50 values ranging from 20 to 40 µM) were found that showed selectivity among
several tested sulfotransferases. They all displayed inhibitory activity in the
micromolar range against several kinases [62].

The library was also tested with murine estrogen sulfotransferase (mEST). This
screen afforded a purine-based inhibitor of mEST with nanomolar potency that
displayed weak activity against several CDKs and selectivity for mEST when tested
with representative members of the carbohydrate sulfotransferase family [63].
Finally, a screen of the library against β-arylsulfotransferase-IV (β-AST-IV) led to
the discovery of a potent, highly selective inhibitor (26, Scheme 14.7) of β-AST-IV
(Ki = 96 nM). This compound was also screened against a variety of nucleotide-
binding proteins (several kinases, sulfotransferases, and others) and proved to be
selective [64].

14.5.3
Development of Nuclear Hormone Receptor Modulators

Nuclear receptors (NRs) are ligand-inducible transcription factors consisting of a
ligand-binding domain (LBD) and a DNA-binding domain (DBD). NRs are

Figure 14.3  Superposed X-ray structures of estrogen sulfo-
transferase, uridylate kinase, and their cofactors and substrates.
Estrogen sulfotransferase: green with consumed cofactor (PAP)
and substrate (17β-estradiol) in yellow; uridylate kinase: blue with
consumed cofactor (ADP) and substrate analog (ADP) in red.

14.5  Development of Natural Product-based Small-molecule Binders
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phylogenetically related proteins that evolved through divergent evolution and
therefore are clustered into a large superfamily. Structural comparison of the
moderately conserved NR LBDs reveals that these domains exhibit a canonical fold
consisting of 12 α-helices, which is better conserved than the primary sequence.
The fully buried ligands bind in the hydrophobic core of the LBD. NRs comprise
receptors for hydrophobic molecules such as steroid hormones (estrogens,
glucocorticoids, progesterone, mineralocorticoids, androgens, vitamin D3, ecdysone,
oxysterols, bile acids, and so on), retinoic acids (all-trans and 9-cis isoforms), thyroid
hormones, fatty acids, leukotrienes, and prostaglandins [65]. Since NRs are naturally
switched on and off by small-molecule hormones having physicochemical properties
that are very similar to those of therapeutic chemical entities, NRs are one of the
most promising target families in terms of therapeutic applications. NRs therefore
represent intrinsically very attractive protein targets for the prevention and treatment
of diverse diseases. Examples of the current therapeutic exploitation of NRs include
the use of estrogen receptor-α (ERα) antagonists (for example, tamoxifen) for the
treatment of breast cancer and the clinical use of the structural class of thiazolidine-
diones or glitazones (agonists of peroxisome proliferator-activated receptor γ
(PPARγ) and insulin sensitizers) as antidiabetic drugs [66, 67].

In comparing the natural NR ligands, Bogan and coworkers discovered that they
have in common a mean molecular van der Waals volume of 318 ± 53 Å3 despite
their chemical diversity. Their mean molecular weight of 368 ± 110 g mol–1 is less
conserved. This suggests that coevolution of receptor and ligand took place, leading
to the selection of ligands with conserved volumes capable of filling the 3D space
of the ligand-binding cavity in the LBD. The canonical LBD fold determines the
volume of the binding pocket that the ligand must fill and thus dictates the tolerated
range of ligand volumes. Thus, molecular volumes may serve as a valuable tool for
judging putative ligands [68].

The plant sterol guggulsterone (GS, 4,17(20)-pregnadiene-3,16-dione (37, Scheme
14.10), isolated from an extract of the gum resin of the guggul tree (Commiphora
mukul), lowers LDL (low-density lipoprotein) cholesterol levels in humans. GS is a
highly efficacious antagonist of the farnesoid X receptor (FXR), which is a NR that
is activated by bile acids (BAs) such as chenodeoxycholic acid (CDCA, 3α,7α-
dihydroxy-5β-cholane-24-acid, 38, Scheme 14.10). GS competes with CDCA for
binding to the LBD of FXR. It also binds to PPARα, whose natural ligand is
leukotriene B4 (39, Scheme 14.10), and to the pregnane X receptor (PXR). GS
activates PXR approximately 50% as effectively as the specific nonnatural PXR
agonist pregnenolone 16α-carbonitrile (PCN, 40, Scheme 14.10) [69]. Recent results
suggest that the physiological effect of GS is due to both inhibition of the bile acid-
induced activation of FXR and activation of PXR [70].

Because GS can be seen as a congener of PCN, it is not surprising that it can
bind to PXR in addition to FXR. In contrast, its affinity to PPARα, whose natural
ligand is leukotriene B4 (39, Scheme 14.10), is quite surprising. This cross-reactivity
indicates that combinatorial variation of the structure of a ligand for one NR,
irrespective of its scaffold (for example, steroidal or not), also leads to ligands for
other NRs.
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As described above, FXR functions as a BA sensor and coordinates cholesterol
metabolism. Currently it is hypothesized that FXR senses BA levels and mediates
the transcriptional repression of genes responsible for the conversion of excess
cholesterol into BAs, as well as the induction of genes necessary for BA transport.
This makes FXR an interesting pharmacological target. For further validation of
FXR as a potential drug target, it is necessary to understand its physiological role
exactly. A selective high-affinity agonist would be helpful as a tool-compound. But
where can a biologically validated starting point for the design of a combinatorial
library be found? The benzopyran moiety – a privileged motif – occurs in many
natural products that cover a broad spectrum of biological activities, such as
antitumor, antibacterial, and estrogenic effects, to name but few. Genistein, an
isoflavone phytoestrogen (41, Scheme 14.10), is found in significant levels in
soybeans and soy products. Genistein binds to both estrogen receptor (ER) isoforms
α and β with moderate affinity, but exhibits a preference for ERβ as a partial agonist
[71]. Additionally, 41 is a ligand of PPARγ and acts as an agonist [72]. A known
synthetic PPARγ agonist that also bears the benzopyran core structure is troglitazone
(42, Scheme 14.10), which was in clinical use as an antidiabetic agent but was
withdrawn from the market due to its liver toxicity [73].

The intriguing structural homology of ERβ and PPARγ  to FXR despite their low
sequence homology (sequence identity: approximately 20%) (Figure 14.4) would

Scheme 14.10  Structurally diverse natural and nonnatural
ligands of some nuclear hormone receptors.
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have immediately suggested – in light of the structural conservation of the LBD
fold – employing the benzopyran moiety, which can be regarded as the core motif
of genistein, as the guiding structure for a combinatorial library of potential
nonsteroidal FXR agonists.

A combinatorial natural-product-like and diversity-orientated library of 10 000
benzopyran-based small molecules was constructed by Nicolaou and coworkers
[74, 75]. They chose a solid-phase approach and an anchoring strategy that does
not limit complexity building operations (Scheme 14.11). They used a polystyrene-
based selenyl bromide resin (43) on which substrates can be immobilized by
electrophilic cyclization reactions. Here, ortho-prenylated phenol 44 was reacted
with the selenyl bromide (43) to form the benzopyran scaffold (45) via a 6-endo-trig
cyclization.

The high chemical stability of the selenyl ether bridge through which the
benzopyran moiety was linked to the solid support allowed further elaborations at
all four possible positions on the aromatic ring (R1–R4 of 45, Schemes 14.11 and
14.12), such as annulations, condensations, aryl/vinyl couplings, glycosidations,
and organometallic additions (Scheme 14.12). Finally, the benzopyran analogs were
released by oxidation of the selenide, followed by syn elimination to produce the
benzopyrans 46 (Scheme 14.11).

Figure 14.4  Superposed X-ray structures of the ligand-binding domains
of ERβ, PPARγ, and FXR, each with bound ligand. ERβ with genistein
(41, blue), PPARγ with rosiglitazone (red), FXR with 50 (yellow).
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Initial screening of the above-detailed benzopyran library in a cell-based assay
for FXR activation afforded several lead compounds (47 and 48, Scheme 14.13)
with low-micromolar activity (EC50 values ranging from 5 to 10 µM). Further
elaboration of these lead structures applying a combined solid- and solution-phase
approach yielded FXR binders with EC50 values in the low-nanomolar range, such
as 49 with an EC50 value of 188 nM and 50 with an EC50 of 25 nM (Scheme 14.13)
in which the benzopyran moiety was further deconstructed to the privileged biaryl
motif [76, 77].

Scheme 14.11  Solid-phase synthesis of a benzopyran-based
natural-product-like combinatorial library.
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Scheme 14.12  Diversification of the benzopyran scaffold on solid support.

Scheme 14.13  FXR agonists generated by combinatorial solid- and solution-phase chemistry.
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14.6
Conclusion: A New Guiding Principle for Chemical Genomics?

In a general sense, chemical genomics can be defined as the genomic response to
chemical compounds, that is, chemistry is used to probe a biological system. A more
focused, workable definition appears to be the identification of small-molecule lead-
like compounds for a member of a gene family product and the subsequent use of
these compounds to elucidate the function of other (disease-associated) members
of that gene family. Currently, in this approach the gene family products are classified
on the basis of sequence alignment and function, that is, into kinases, phosphatases,
proteases, and so on (Scheme 14.14). A protein domain-centered approach that
considers the domain organization and architecture, however, may provide a new
guiding principle for the combinatorial development of compounds, which will
pave the way to a new series of proteomics and genomics experiments. Accordingly,
a family of gene products (proteins) of interest would be dissected in structural
terms, that is, into domains (Scheme 14.14). After domain assignment, structural
comparison with known domains/folds would take place, leading to a cluster of
structurally related domains that may share little sequence homology. This pool of
protein domains with their respective ligands may serve as paradigm for the
generation of potent and selective small-molecule modulators of protein function.
The structures of known ligands of a spatially similar reference domain constitute
biologically validated starting points in chemical structural space for the design of
focused libraries. Selectivity can be achieved by generating diversity around the
ligand core structure, thus taking into account the requirements of the individual
binding pockets. This strategy initially reduces complexity and focuses on the 3D
similarity of protein domains. This leads to the core structure on which the focused
compound library will be based. With natural products, it is postulated that their
evolutionarily selected scaffolds represent prevalidated solutions in terms of basic
affinity to the protein domains they interact with. Natural products can thus be
regarded as inherently promising guiding compounds for the design of domain-
selective small-molecule modulators of protein function. But nonnatural, synthetic
small-molecule ligands exhibiting selectivity and potency for a specific target protein
also can be regarded as valuable starting points, considering that their properties
have usually been evolved in an accelerated artificial selection process. Once a
biologically relevant structural framework is found, the varying requirements of
the different binding sites are addressed by generating diversity around this core
structure. At this stage, molecular modeling techniques can be used to plan the
substitution patterns required for potency and selectivity. Hence, in the initial step,
the overall structural homology of protein domains is employed as a guiding
principle for choosing possible ligand scaffolds. In a second step, the structural
diversity found in the binding sites of the protein domains is addressed by
synthesizing a focused compound library. Ideally, chemical entities are thus evolved
that match the diversity found in the binding sites of reference and target domains,
yielding selective and potent binders. The advantage of a certain initial indeter-
minateness in comparing overall domain structures is that predicted and modeled
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protein structures having a certain fault tolerance concerning the binding site can
also be considered as reference domains because, in the end, the indeterminateness
is overcome by the combinatorial approach. A predominantly structure-based
approach can be very helpful in the initial stages of screening, when little is known
about the function of a newly discovered protein. Here, all existing ligands and
their analogs generated by combinatorial synthesis against sequentially and/or
structurally related proteins could be tried so as to dissect the physiological role of
the protein, in a combined chemical and biological approach, and finally to find
new leads for drug discovery.
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Scheme 14.14  Approaches to the categorization of target proteins.
The currently predominating approach in chemical genomics, based
on the clustering of target proteins according to their sequence and
function, is contrasted to an alternative approach based on structural
classification of protein domains.
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15
Combinatorial Chemistry in the Age of Chemical Genomics

Reni Joseph and Prabhat Arya

15.1
Introduction

The concept of chemical genetics/genomics has emerged recently in the chemical
biology community in recognition of a renewed desire to generate small molecules
and use them as chemical probes for understanding protein functions [1]. Parallel
to genetic approaches, the use of small molecules as highly specific modulators
(i.e., inhibitors or activators) of protein functions is a powerful approach and is
commonly applied for understanding dynamic processes that involve protein–
protein interactions, protein networking, etc. [2]. In general, due to the irreversible
effects caused by genetic manipulations, these systems are difficult to study by
traditional biological approaches [3].

An excellent viewpoint article by Strausberg and Schreiber [4] discusses the
challenges we face today in the post-genomics age, i.e., (1) what is the next step,
(2) how to move forward in developing better medicines, (3) how to benefit from
knowing the gene(s)/gene products to modulating their functions.

For the success of chemical genetics/genomics-based research programs, rapid
access to diverse sets of small molecules is of prime importance, because these
derivatives pave the way for dissecting biological processes and are valuable tools
as probes for understanding biological events [5]. Over the years, combinatorial
chemistry has emerged as an important technology, because it allows efficient
synthesis of many compounds in a parallel manner. It has usually been successfully
applied to the high-throughput synthesis of simple compounds (i.e., compounds
with no stereogenic centers) [6]. With few exceptions, the development of combi-
natorial methods that allow the high-throughput synthesis of complex, highly
functionalized, natural product-like polycyclic derivatives remains a daunting task
[7]. The need for these efforts is increasing constantly, due to (1) the rapid rise in
new biological targets emerging from genomics and proteomics research, (2) the
growing interest in understanding protein–protein interactions in signal trans-
duction, and (3) the need for small molecules that can be used to search for highly
specific modulators of protein function.
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Over the years, natural products have been widely utilized as small-molecule
chemical probes for understanding biological pathways [8]. Many compounds that
elicit specific cellular responses have complex, chiral, highly functionalized
structures. These properties are valuable in searching for specific binding to protein
targets or in differentiating related proteins. Although combinatorial chemistry is
well accepted in the medicinal chemistry community for the rapid synthesis of
simple molecules, the current challenge is to develop stereo- and enantioselective
synthesis (asymmetric synthesis) methods in solution and on solid phase to obtain
fast access to complex, functionalized, natural product-like compounds. The
development of asymmetric synthesis-derived organic reactions on solid phase
allows the synthesis of complex natural products and natural product-like com-
pounds in a high-throughput manner. In recent years, several research groups
have taken the challenge of developing stereoselective reaction-based methods on
solid phase and are utilizing them for the high-throughput synthesis of complex
natural product-like derivatives. Some recent achievements toward this objective
are highlighted in this chapter.

The first part of the chapter covers several examples of stereoselective solution
and solid-phase approaches to obtaining natural product analogs. The examples
discussed here represent focused strategies to library generation that are based on
specific bioactive natural products. These libraries have often served as natural
product analogs in searches for better biological responses than those exhibited by
the parent natural products. The generation of libraries of natural product-like
compounds by solution and solid-phase synthesis methods is discussed in the
second half.

Here, we cover several examples that included stereoselective diversity-oriented
synthesis approaches. The examples covered in this section are indicative of the
growing interest in this area and of the need for developing novel approaches leading
to fast access to obtaining natural product-like compounds to be used as small-
molecule probes.

15.2
Combinatorial Approaches to Natural Product Analogs

Due to their 3D structural architectures, natural products have been a source of
inspiration for developing efficient stereo- and enantioselective synthesis methods
[9]. There are several examples (see Figure 15.1 for a few bioactive complex natural
products: taxol, FK 506, rapamycin, vinblastine) in the literature where the complex
architectures of natural products are the key to exhibiting highly specific cellular
responses (i.e., highly specific modulations of protein functions). The unique shapes
of natural products make them ideal as small-molecule candidates that may
selectively bind to enzymes and to other proteins. In combinatorial chemistry,
interest in the development of solution or solid-phase methods leading to generation
of libraries of bioactive natural products analogs is growing. Several selected
examples are discussed in this section.
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Based on the development of solution-phase synthetic methods [10] for fumi-
quinazoline alkaloids, Wang and Ganesan [11] developed a solid-phase method
and then utilized this approach to generate a library of nonnatural analogs of
fumiquinazoline alkaloids. (+)–Glyantrypine was the first target for the development
of a solid-phase synthetic method. Commercially available Wang resin loaded with
Fmoc-L-Trp 2.1 (Figure 15.2) was deprotected and then coupled with anthranilic
acid in the presence of EDC as an activating agent. The next step was acylation of
aniline 2.2 with Fmoc-amino acid chloride and pyridine to result in 2.3. The key
dehydrative cyclization of the linear tripeptide 2.3 was then carried out with
Ph3P/I2/DIPEA, giving the desired product 2.4. The final step was piperidine-
mediated deprotection of the Fmoc and rearrangement of the oxazine 2.4 to the
amidine carboxamide 2.5. The resin was then refluxed in acetonitrile to induce
cyclative cleavage, giving the target compound 2.6. The feasibility of using
substituted anthranilic acids was tested by repeating the synthesis with 4-chloro-
anthranilic acid. Finally, nonnatural fumiquinazoline derivatives were prepared to
further examine the scope of the reaction, replacing l-Trp with l-Ala, l-Leu, l-Phe,
and performing acylation with a set of five anthranilic acids, followed by final
coupling with d or l amino acid chlorides.

Bonnet and Ganesan [12] developed a new route toward the solid-phase synthesis
of tetrahydro-β-carboline hydantoins, which appear in a diverse array of biologically
active alkaloids. Due to the presence of tetrahydro-β-carbolines and diketo-
piperazine ring skeletons in several bioactive natural products, these two scaffolds
became attractive targets for developing a combinatorial chemistry program.
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These derivatives could then be tested for small molecules to block eukaryotic cell
cycle progression or as chemical probes in mechanistic studies. A series of indole
alkaloids having a prenyl functional group are known to interfere with the cell
cycle at the G2/M transition [13]. A retrosynthetic analysis of tetrahydro-β-hydantoins
(Figure 15.3) involves construction of the ring skeleton by classical hydantoin
synthesis whereby the urea form of 3.2 undergoes intramolecular cyclization. The
intermediate urea 3.2 in turn is derived from the reaction of 3.3, the product of an
acid-catalyzed Pictet–Spengler reaction with an isocyanate. In Ganesan’s methodo-
logy, the urea derivative 3.2 could be obtained by an alternative disconnection
approach that involved displacement of an activated carbamate. In a model study,
the cis and trans diastereomers of known tetrahydo-β-carbolines (4.1 and 4.4 in
Figure 15.4) were individually treated with p-nitrophenyl chloroformate to give
carbamates 4.2 and 4.5, respectively, which, upon treatment with benzylamine and
triethylamine, result in 4.3 and 4.6. Interestingly, both cis (4.1) and trans (4.4)
carbolins produced trans-hydantoins 4.3 and 4.6, presumably due to epimerization

Figure 15.2  Solid-phase synthesis of fumiquinazoline alkaloids by Wang and Ganesan [11].
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of the cis isomer adjacent to the carbonyl functionality to the thermodynamically
stable trans product. Carbamate 4.8 was also obtained from l-tryptophan methyl
ester by an N-acyliminium Pictet–Spengler process, in which the tryptophan amine
was reacted with p-nitrophenyl chloroformate under basic conditions. This reaction
was then investigated on a solid support (4.9 to 4.10) of polystyrene Wang resin.
The scope of this methodology was further demonstrated by the synthesis of a
small library on solid support. In summary, this methodology features a new
approach to hydantoins that proceeds via amine addition to an activated carbamate
and avoids the need for isocyanate building blocks.

Since the goal is to obtain simple analogs, the unique structural architectures of
bioactive natural products present tremendous challenges in developing a com-
binatorial chemistry program. Because natural products have been a major source
of lead compounds in drug discovery research, there is growing interest in
developing combinatorial chemistry (high-throughput solution or solid phase
synthesis) based on their core structures. Curacin A (5.1 in Figure 15.5) promotes
arrest of the cell cycle at the G2/M checkpoint and inhibits the binding of
(3H)-colchicine to tubulin [14]. This marine natural product has served as the lead
compound for combinatorial synthesis of 6-compound mixture libraries [15].

Figure 15.4  Solid-phase approach to tetrahydro-β-carboline hydantoins.
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The solution-phase synthesis achieved by Wipf’s group prompted their interest in
developing a combinatorial chemistry approach to obtaining fast access to analogs
[16]. The goal was to substitute the heterocycle ring of curacin A with electron-rich
aromatic moieties and the homoallylic methyl ether terminus with a broad range
of hydrophobic benzylic alcohols. Three building blocks of 5.4 were prepared by
solution synthesis from the readily available aldehyde 5.2 After protection with
ethylene glycol, desilylation, mesylation, and then Finkelstein reaction with sodium
iodide, the dioxalane 5.3 was produced. The corresponding Wittig reagent was
condensed with 2,4-dimethoxy-, 2,5-dimethoxy-, and 3,4,5-trimethoxy benzaldehydes
to give the aldehydes 5.4. Next, seven mixtures of 6–9 compounds were prepared
individually by exposing 5.4 as well as the derivatives having other aryl substituents
to a cocktail of 3–6 aryl lithium reagents. The most active biological mixtures were
obtained from reactions of 4–6 compounds with 2-lithiated furan, thiophene,
benzofuran, benzothiophene, anisole, and 1,4 dimethoxybenzene. The lithiation
was performed directly on the mixture. Since a large excess of organolithium was
used, the resulting alcohols 5.4 were heavily contaminated with Nu-H. Fluorous

Figure 15.5  Approach to a library based on the antimitotic
marine natural product curacin A by Wipf et al. [15].
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quenching with the vinyl ether 5.6 was then utilized to streamline purification of
the heterogeneous multicomponent reaction products after the diversification step
in the library synthesis and to provide structurally defined mixtures 5.7. The
screening profile of one mixture library was attractive enough to warrant synthesis
of the individual components. Several compounds exhibited significant activity in
altering the cell cycle as well as the microtubule cytoskeleton in living human
carcinoma cells. For example, 5.7a and 5.7b inhibited tubulin polymerization with
an IC50 of ca. 1 µM. Compounds 5.7a and 5.7b represent some of the most important
curacin A analogs identified to date.

de Frutos and Curran [17] developed an improved radical annulation approach
to synthesizing rac-mappicine, (S)-mappacine (6.2), and mappicine ketone (6.1)
analogs. The mappicine ketone derivative possesses antiviral activity; in particular,
it is active against herpes virus and human cytomegalovirus in low micromolar
concentrations [18]. Developing a combinatorial chemistry program on the lead
bioactive natural product could provide fast access to its analogs. This could also be
very useful in understanding the structure–activity relationship of the natural
product, and it may also provide interesting simpler analogs with enhanced
biological responses. To date, there are very few examples of combinatorial chemistry
approaches to polycyclic natural products. The free radical cascade strategy to
synthesizing mappacine is summarized in Figure 15.6. The synthesis design
permits the combinatorial assembly of three building blocks: BB-1 (6.3), BB-2 (6.4)
and BB-3 (6.5). The pyridone D ring (BB-1) was first alkylated with a suitable
propargylating agent (BB-2) bearing the B ring substituent, followed by cascade
radical annulation with an isonitrile having the A ring substituent (BB-3) to obtain
mappicine analogs.

Figure 15.6  Combinatorial approach to mappicine and mappicine
ketone analogs of de Frutos and Curran [17].
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Mappicine ketones, which exhibit antiviral activity, can be prepared by parallel
oxidation of the mappicine analogs. The synthesis begins with the known formyl
pyridine 6.6. Reduction of the aldehyde with Et3SiH in the presence of BF3OEt2

afforded 6.7, which, after transmetallation reaction with i-PrMgCl, generated the
heteroaryl Grignard reagent; after quenching this yielded compound 6.8. TMS–
iodine exchange, demethylation, and N-propargylation provided the iodopyridone
6.9. For the synthesis of enantiomerically pure (S)-mappicine, a slight modification
was made. Quenching of the cuprate reagent with propionyl chloride afforded the
ketone, which was subjected to (–)DIP-chloride reduction (i.e., enantioselective
reduction), resulting in compound 6.11 as the pure enantiomer. Finally, radical
cyclization with 6.12 and phenyl isonitrile in the presence of hexamethylditin in
benzene afforded (–)-mappicine, 6.13. Using four isonitriles (BB-3), four propargyl
bromides (BB-2), and iodopyridone (BB-1), respectively, in separate parallel synthesis
resulted in a 64-member library of mappicine analogs. Similarly, a 48-member
library of mappicine ketone analogs was also synthesized. The researchers also
synthesized a library of 560 compounds as mappicine analogs by a fluorous mixture
synthesis approach [19].

In 1997, Lavergne et al. [20] reported the solution synthesis of homocamptothecin.
This compound is an analog of camptothecin in which the six-membered ring E
has been modified to a seven-membered ring derivative. The ring expansion results
in improved stability of the compound in human plasma, and this derivative is an
interesting lead compound for developing antitumor agents [21]. These researchers
proposed that camptothecin and homocamptothecin may not function in a similar
manner for topoisomerase-induced DNA cleavage [22]. This observation sparked
interest in obtaining further analogs in the homocamptothecin series, with the
goal of developing homocamptothecin-based antitumor agents.

Gabarda and Curran [23a] developed a practical, efficient strategy to synthesize
the homocamptothecin class of antitumor agents and further accomplished
parallel synthesis of 115 homosilatecans. The synthetic pathway to (rac)-homo-
silatecans is shown in Figure 15.7. The synthesis of 7.7 started with 3-formyl-
4-iodo-2-methoxy-6-trimethylsilyl pyridine, 7.1 [23b]. Treatment of the iodo-
formylpyridine 7.1 with NaBH4 afforded the hydroxymethyl pyridine, which, on
protection with MOMCl, resulted in 7.2. Treatment of 7.2 with i-PrMgCl followed
by addition of CuCN/LiCN and then quenching, by cuprate reagent with prop-
ionyl chloride, provided the key intermediate 7.3 [23c]. Aldol condensation
between the ketone 7.3 and the enol ether generated from methyl acetate afforded
the crude β-hydroxy ester, which, upon treatment with TFA, provided the lactone
7.4. Iodinative desilylation of TMS-lactone 7.4 was then performed with ICI to
afford the iodolactone. Demethylation was accomplished by addition of TMSCl
and NaI, providing the iodopyridone 7.5. The next step involved parallel N-alkyla-
tion of the iodopyridone 7.5 with several propargyl bromides to yield 7.6, followed
by parallel annulation with ditrimethyltin of the N-propargylated iodopyridones
with a collection of isonitriles to result in 7.7. By using this strategy, 115 new
analogs were prepared, and biological evaluation of these compounds is under
investigation.
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Figure 15.7  Parallel synthesis of homosilatecan analogs by Gabarda and Curran [23a].

Figure 15.8  Bleomycin A5 analogs.

 

O OO O

OOH

OH

OH O

O

NH2

OH
OH

HO

OH
HO

HO OH
OHHO

OH OHHO
HO

HO

N N

NH2O
H
N NH2

O

H2N
CH3

O

HN

R1O

N
H

N

O

N
H

O

H
N

O

NH S

N S

N

O

NH HN
NH2

H

H

HO
CH3

HO CH3HCH3

NH2H

8.1

R1 = R1 = H

8.2 D-mannose (8.3) D-gulose (8.4) L-rhamnose (8.5)

O

H

The bleomycins (BLMs), exemplified by BLM A5 (Figure 15.8), are anticancer
antibiotics that affect single and double-strand DNA cleavage [24] and RNA cleavage
[25] in the presence of metal cofactor and oxygen [26]. Although the deglyco-BLM
analogs have provided insights into the function of the amino acid constituents of
BLM, the role of the carbohydrate moiety is not well understood.
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To explore the role of the glycosides on bleomycin, Boger and coworkers [27, 28]
prepared BLM A2 derivatives containing the monosaccharides α-d-mannose and
2-O-methyl-α-l-gulose. These derivatives retained the selective cleavage of DNA,
however, only the 2-O-methyl-α-l-gulose BLM A2 derivative cleaved DNA efficiently.
The carbohydrate moiety apparently has little influence on the sequence selectivity
of DNA cleavage by BLM [29], and no study has defined the effect of the carbohydrate
moiety on RNA cleavage.

Thomas et al. [30] undertook a study of solid-phase synthesis of BLM A5 containing
α-mannose, α-l-gulose, and α-l-rhamnose as glycoside moieties. Solid-phase
synthesis of BLM A5 and its monosaccharide derivatives was carried out by analogy
with the synthesis of deglyco-BLM. The synthesis utilized Boc- or NBS-(2-nitro-
benzenesulfonyl)-protected spermidine resin 9.1 (Figure 15.9). The addition of
bithiazole intermediates 9.2 [31] to free amine was accomplished by using HBTU
and DIPEA. Fmoc was removed with 20% piperidine in DMF. N-α-Fmoc-(S)-
threonine 9.4 was then coupled by using HBTU and DIPEA in DMF.

Figure 15.9  Solid-phase synthesis of bleomycin analogs by Thomas et al. [30].
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Again following Fmoc deprotection, N-α-Fmoc-(2S,3S,4R)-4-amino-3-hydroxy-2-
methylvalerate 9.6 was conjugated to the resin in the same fashion. Fmoc- and
trityl-protected histidine analogs 9.7–9.9 and 9.10 containing the disaccharide and
each of the three monosaccharide derivatives were then coupled. The Boc-protected
pyrimidoblamic acid 9.11 [32] was then coupled to the resin-bound pentapeptide.
The resin bound fully functionalized BLM A5 and each of the monosaccharide
analogs was then deprotected and cleaved from the resin, affording BLM A5

derivatives 9.12–9.15. The α-l-gulosyl BLM A5 analog affected single- and double-
stranded DNA cleavage to nearly the same extent as BLM A5 itself. The α-mannosyl
and α-l-rhamnosyl analogs had diminished DNA cleavage efficiencies, comparable
to that of deglyco-BLM A5. Only the α-l-gulosyl analog exhibited a relatively high
level of oxidative RNA cleavage. Thus, these experiments provide evidence that the
carbohydrate moiety of BLM plays a significant role in defining its competence in
DNA and RNA cleavage.

(–)-Indolactam V, the core structure of tumor-promoting teleocidins [33], has
generated strong interest as the key compound for generating its synthetic analogs
(Figure 15.10). Waldmann’s laboratory [34, 35] reported an efficient synthesis of a
library of indolactam analogs based on using a combination of solution and solid-
phase approaches. For the design of the library, they took into consideration the
substituents at R1, and R2 (see 10.3 in Figure 15.10). These two sites influence the

Figure 15.10  Solid-phase synthesis of indolactam library by Waldmann’s laboratory [34, 35].
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conformation of the nine-membered lactam ring. Furthermore, substitution at R3

facilitates membrane-binding, and the hydroxyl group in the lactam ring is critical
for biological activity. Hence, indolactam analogs 10.3 (with diversity at R1, R2, and
R3) may lead to the identification of more potent PKC modulators. Diversity at R1

was introduced by alkylation of the aromatic amine with three different α-hydroxy
acid ester triflates. The triflate derivatives were displaced by aminoindole 10.4 in
dichloromethane, and removal of the Cbz group and amide bond formation using
TBTU as the coupling reagent gave the indolactam derivative 10.5. Attachment of
indolactams 10.5 to the solid support was achieved with a tetrahydropyran linker
by converting 10.5 to the corresponding acetals. Removal of the benzyl ester group
followed by coupling to chloromethyl polystyrene beads by esterification with CsCO3

resulted in substrate–linker–resins 10.6. This resin-bound indole was N-alkylated
by reductive amination (aldehydes and NaHB(OAc)3) for incorporation of R2.
Diversity was then introduced at R3 by a Sonogashira coupling reaction with
acetylenes to obtain the alkyne derivatives. Finally, the resin was cleaved (TFA/H2O)
to give compounds 10.7 in overall yields ranging from 10% to 65%.

The saframycins are structurally complex alkaloids, constituting a series of natural
antiproliferative agents containing a cyanopiperazine core, or its functionalized
equivalent, with a complex polycyclic framework. Saframycin A is the most potent
antiproliferative saframycin. Myers and coworkers [36] developed a solid-supported,
enantioselective synthesis procedure suitable for rapid preparation of large numbers
of diverse structural analogs of (–)saframycin A [37]. Several other members of this
family are also used in the treatment of solid tumors, which has sparked interest in
obtaining analogs showing enhanced pharmacological properties [38]. Myers and
Plowright [39] found that a bishydroquinone derivative of saframycin A showed
enhanced antiproliferative activity in a few cell lines. Several analogs of bishydro-
quinone derivatives of saframycin A were synthesized, and in some instances, the
compounds exhibited greater than 20-fold activity in antiproliferative assays.
Although these two types of compounds are structurally different, it was suggested
that they exhibited a similar biological function by a common mechanism [40].

The solid-phase synthesis to obtain fast access to saframycin analogs began with
anchoring the antimorpholino nitrile [41] (11.1, Figure 15.11) to a solid support by
silyl ether formation with 4-(chlorodiisopropyl-silyl)polystyrene, providing the first
resin-bound intermediate (11.2). Selective deprotection of the tert-butyldimethylsilyl
ether group occurred upon exposure to tetrabutylammonium fluoride buffered with
acetic acid. Subsequent treatment with piperidine in DMF unmasked the amino
terminus, affording the phenolic amine. This, upon treatment with N-protected α-
amino aldehyde (X), provided the corresponding resin-supported imine. Warming
the imine in a saturated solution of anhydrous lithium bromide in 1,2-dimethoxy-
ethane induced a stereoselective Pictet–Spengler cyclization reaction, affording the
cis-tetrahydroisoquinoline derivative 11.3. The secondary amine group of 11.3 was
then reductively methylated. Subsequent deprotection of the phenol and primary
amino groups of the resulting N-alkylated product produced 11.4, which was then
subjected to a Pictet–Spengler cyclization upon exposure to N-Fmoc glycinal. The
resulting bis-tetrahydroisoquinoline derivative 11.5 was formed in quantitative yield
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with the required cis stereochemistry in the newly formed ring. The next key step,
the bis-tetrahydroisoquinoline intermediate 11.5, was subjected to cyclization
autorelease by warming in the presence of ZnCl2 at 55 °C for 1.5 h. This trans-
formation was presumed to involve reversible morpholinium-ion formation through
expulsion of cyanide, internal capture by cyclization of the secondary amino group
formed in the final Pictet–Spengler cyclization, and subsequent extrusion of the
resin-bound morpholine dual linker through its secondary point of attachment
(i.e., the amino group). The newly liberated iminium ion is presumably captured
in solution by the cyanide, providing the saframycin analog 11.6. A key feature of
this reaction is the distereospecificity. Additional diversity was introduced by
employing a range of alkyl bromides in N-alkylation of the resin 11.4 and simul-
taneously varying the aldehyde reactant in the second Pictet–Spengler cyclization,
thus resulting in a 16-member library of saframycin A analogs prepared by parallel
synthesis.

Figure 15.11  Enantioselective solid-phase synthesis of saframycin
analogs by the Myers group [36, 39, 40].
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15.3
Diversity-oriented Synthesis of Natural-product-like Libraries

The term, ‘diversity-oriented synthesis (DOS)’ was coined by Schreiber [42a]; the
purpose of this approach is to build complex, natural-product-like architectures in
a high-throughput manner so as to use these skeletons in library generation. Unlike
the traditional combinatorial approaches that focus on generating libraries of
aromatic and heterocyclic products, DOS focuses on building 3D structural
complexity by exploring stereo- and enantioselective reactions on solid phase. In
contrast to the classical analog-based approaches discussed earlier, the libraries
generated by DOS are utilized as small-molecule chemical probes for understanding
cellular processes. In general, these libraries are not biased toward a given biological
target. Although this is a new research activity within the combinatorial community
and most of the work reported to date is from Schreiber and coworkers, we have
tried to cover DOS-related work from other research groups too.

In 1998, Tan et al. [43a] developed a highly efficient, multistep synthesis process
for obtaining enantiomerically pure template 12.4 (Figure 15.12) from shikimic
acid 12.1. Shikimic acid was first converted into both enantiomers of the epoxy-
cyclohexenol carboxylic acid derivative 12.2, which was then coupled to a photo-
cleavable linker immobilized onto Tentagel-S-NH2 poly(ethyleneglycol)–polystyrene
copolymer. Treatment of the resin-bound epoxycyclohexenol derivative 12.3 with
various nitrone carboxylic acids under esterification conditions, followed by an
intramolecular cycloaddition reaction, yielded the tetracyclic scaffold 12.4 with
complete regio- and stereoselectivity, via a tandem acylation/stereoselective
1,3-dipolar cycloaddition reaction. The tetracyclic derivative 12.4 is rigid and densely
functionalized, allowing it to undergo a variety of organic transformations without
the use of protecting groups. Upon treatment with a variety of organic and
organometallic reagents, this template can be used to obtain highly functionalized
bicyclic and tricyclic derivatives, as indicated in Figure 15.12.

Figure 15.12  Stereoselective diversity-oriented synthesis (DOS)
of natural-product-like polycyclics by Tan et al. [43].
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In the example shown in Figure 15.13, the tetracyclic template anchored to a
solid support, 13.1, was subjected to a Cu(I)- or Pd(II)-mediated carbon–carbon
bond-forming reaction with an iodoaryl moiety of the template, giving product
13.2. Upon reaction with various amines, the lactone ring was opened, giving the
carboxylamide derivative 13.3, which has a free hydroxyl group. The hydroxyl
derivative 13.3 was further acylated under standard acylation reactions to obtain
compound 13.4 in high yield. Several key reactions were well optimized before any
library synthesis was undertaken. In a split-and-mix solid-phase synthesis method,
the tetracyclic template 13.4 was utilized to develop a method for stereoselective
synthesis of a library exceeding 2 million compounds. It is interesting to note that
the library synthesis plan did not incorporate functional group protection and
deprotection, which is usually a daunting task during total synthesis of complex
molecules.

The library was then tested in several miniaturized cell-based assays to search
for cell-permeable small-molecule protein-binding agents. For example, several
members of this library were found to activate a reporter gene in mink lung cells.
The driving force in the library synthesis plan was to develop a method for
stereoselective synthesis of the highly functionalized tetracyclic derivative 12.4,
which could undergo several simple nucleophilic and acylation reactions. This is
the first example of synthesis of a complex natural-product-based library, in which
an enantiomerically pure template was developed by utilizing a highly functionalized
chiral starting material.

Pelish et al. [44] demonstrated the use of a biomimetic-based, diversity-oriented
synthesis method to produce galanthamine-like molecules (Figure 15.14) with
biological properties superior to those of natural product, galanthamine. As first

Figure 15.13  Development of specific natural-product-like polycyclics by DOS.
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reported by Barton and Kirby [45], a single precursor, norbelladine, is converted via
specific oxidative phenolic coupling pathways to an entire class of natural products,
including the crimines, galanthamines, lycoranes, and pretazzetines. Each com-
pound is structurally different and elicits a different biological response.

Shair and coworkers utilized these characteristics in developing a biomimetic
synthesis method on solid phase to obtain a chiral template for diverse libraries of
complex molecules. Figure 15.14 outlines the procedure for synthesizing amaryl-
lidaceae like alkaloids by mimicking the oxidative phenolic coupling reaction that
takes place in Nature with a hypervalent iodine reagent. By using a simple orthogonal
protecting-group strategy, a common dienone intermediate was then directed to
cyclize at a nitrogen to generate crimine- or galanthamine-type structures after
selective liberation of the phenolic moiety. This was followed by split-pool-derived
organic synthesis on two core systems to generate a structurally rich amaryllidaceae
alkaloid-based library. Library synthesis commenced with attachment of tyrosine
derivatives to 500–600-µm high-capacity polystyrene beads through a Si-O bond to
generate derivative 14.5. Reductive amination, followed by protecting-group
adjustments, yielded compound 14.3 anchored to a solid support, which, upon
exposure to PhI(OAc)2, afforded the quinone derivative 14.4. Then 14.4 was subjected
to Pd-mediated deprotection and a spontaneous intramolecular hetero-Michael-
type reaction, giving the cyclic derivative 14.5. The diversity steps were accomplished
by (1) phenolic hydroxyl group alkylation, (2) an intermolecular Michael-type reaction
with thiols in the presence of n-BuLi, (3) imine formation from the carbonyl group,
and (4) secondary amine alkylation or acylation. It is interesting to note that the
intermolecular Michael-type reaction with various thiol-based nucleophiles is highly

Figure 15.14  Biomimetic solid-phase synthesis of galanthamine-like
compounds by Pelish et al. [44].
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diastereoselective, giving a single diastereomer as the product. The product was
finally cleaved from the solid support by using HF-pyridine, and the library was
then screened with a cell-based phenotypic assay. A new natural-product-like
derivative was identified as a potent inhibitor of VSVG-GFP movement from Golgi
apparatus to the plasma membrane, even though galanthamine itself has no
observed effects on this secretory pathway.

Another novel method from Schreiber’s group [46] was a strategy of macrocyclic
ring closure and functionalization aimed at split-pool synthesis. The ring-closure
substrate, 15.4 (Figure 15.15), was prepared by simultaneous or sequential acylation
of a 1,2-aminoalcohol derivative with 4-pentenoic acid or its 2-substituted derivatives.
The ring-closing metathesis reaction was then performed in the presence of Grubbs
catalyst to produce compound 15.6 in moderate to excellent yields.

To further illustrate the use of bifurcating reaction pathways to produce different
backbone scaffolds, Schreiber and coworkers went on to further functionalize
reactions under macrocyclic stereocontrol and to ring-permutation reactions.
Functional groups such as olefins and carbonyl groups present in the macrocycle
could then undergo various macrocyclic-based stereocontrolled reactions (i.e.,
epoxidation, enol ether reactions, etc). Finally, to demonstrate the feasibility of
performing the ring-closing metathesis reaction sequence on a solid support, a
traceless linker was used to synthesize the macrocyclic derivative 15.8 with excellent
purity following cleavage with 10% TFA.

Micalizio and Schreiber [47] developed a key reaction, the transesterification of
unsaturated boronic esters with allylic esters or propargylic alcohols. This reaction
transiently provided mixed organoboronic esters that could be trapped by using

Figure 15.15  DOS approach for synthesizing macrocyclic compounds by Lee et al. [46].
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ring-closing metathesis to afford cyclic boronic esters. The cyclic boronic esters
provided access to a diverse family of boron-containing heterocycles whose
unsaturation facilitated functionalization reactions (Figure 15.16). 3-Hydroxybenz-
aldehye loaded onto 500–600-µm polystyrene alkylsilyl-derivatized macrobeads [48]
16.1 was subjected to Grignard reaction with 1-propynylmagnesium bromide to
yield 16.2. This, upon treatment with the unsaturated boronic ester, resulted in a
mixed organoboronic ester, which was then trapped by ring-closing metathesis, to
afford cyclic boronic ester 16.3. A Diels–Alder reaction on 16.3 resulted in
stereoselective production of polycyclic heterocycle 16.4. Finally, the resin was cleaved
with HF-pyridine to yield 16.5. This boronic ester approach to diversity-oriented
synthesis yields complex structures containing multiple rings, four stereogenic
centers, and unsaturated units in just four steps.

Kubota et al. [49] developed an efficient, stereoselective syntheses of tricyclic
compounds by exploring Ferrier and Pauson–Khand [50] reactions on a glycal
template. This methodology was further utilized to develop a method for stereo-
selective synthesis of a library of 2500 compounds. Solid-phase synthesis was
performed on 500–600-µm polystyrene alkylsilyl-derivatized macrobeads. The initial
loading element was synthesized according to the reaction shown in Figure 15.17.
A Ferrier reaction of 3,4,6-tri-O-acetyl-d-glucal 17.1 with (S)-1[tert-butyldiphenyl-
silyl)oxy]-3-buytyn-2-ol gave the pseudoglucal as the α anomer, whereas a Ferrier
reaction with the (R) isomer gave a mixture of the α and β isomers in a ratio of 5:1,
from which the α anomer could be isolated by column chromatography. Removal

Figure 15.16  Boronic ester annulation, including a Diels–Alder reaction,
developed by Micalizio and Schreiber [47].

 
Si

i-Pr i-Pr

O
H

O

Me MgBr

THF

B
OPr-i

i-PrO

Si
i-Pr i-Pr

O
OH

Me

Si
i-Pr i-Pr

O
O

B
OH

Me

N

O

O

Ph

Si
i-Pr i-Pr

O
O

B
OH

Me
N

O

O
Ph

H

H

H

H

HO
OH

Me
N

O

O
Ph

H

H

OH

16.1 16.2

16.4 16.3

16.5

Ru
Cl

Cl H
PCy3

PCy3
Ph

H2O2, NaOH, THF

HF-Pyr/pyr

(10 equiv)

(15 mol%)

(8 equiv)

PhMe, 
80 oC

Si
i-Pr i-Pr

OMe

500-600 µM macrobeads

Resin

1239vch15.pmd 06.06.2004, 14:25422

www.ebook3000.com

http://www.ebook3000.org


423

of the TBDMS protecting group followed by protection of the primary hydroxyl
functionality as the 4-butyloxybenzyl (BOB) ether, a compatible protecting group
that can be easily removed by DDQ without affecting the solid-phase silyl ether-
based linking element, resulted in 17.3. This was then loaded onto 500–600-µm
polystyrene alkylsilyl-derivatized macrobeads, giving 17.4. The first solid-phase
diversity step (R1) was functionalization of the 4-hydroxy group of the pseudoglucal.
Phenylisocyanate reacted quantitatively to afford the carbamate. Deprotection of
the BOB group resulted in the alcohol 17.5, which was the second diversity position
after triflation followed by SN2 reaction with a primary amine. Reaction of the
resulting secondary amine with various acylation agents resulted in the third
diversity point, 17.6. Performing a Pauson–Khand reaction on 18.1 (Figure 15.18)
resulted in the tricyclic α,β-unsaturated ketone 18.2, which was further subjected
to a hetero-Michael reaction to result in the fourth diversity point, 18.3. Finally,
treatment of the macrobeads with HF-pyridine resulted in the tricyclic compound
18.4 with four diversity points. This methodology resulted in a library of 2500
compounds.

Chen et al. [51] recently developed a procedure to enhance the use of enantio-
selective 1,3-dipolar cycloadditions of azomethine ylides [52] with electron-deficient
olefins. The reaction is of interest because its stereospecificity enables stereo-
chemical diversification of up to four tetrahedral centers on a pyrrolidine ring
skeleton. A commercial catalyst, (S)-QUINAP, in combination with Ag(1) acetate,
was used to carry out the enantioselective cycloaddition reaction (Figure 15.19).
Both enantiomers of the new catalyst system are easily prepared from commercially
available reagents. 4-Hydroxybenzaldehyde was loaded onto 500–600-µm poly-
styrene alkylsilyl-derivatized macrobeads to result in 19.1, which was then subjected

Figure 15.17  Stereoselective DOS-based approach to glycals by Kubota et al. [49].
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to condensation with methyl glycinate. The iminoester 19.2 was then reacted with
tert-butylacrylate using 10 mol% Ag(1) acetate/(S)-QUINAP at –45 °C for 40 h,
followed by cleavage with HF-py and a TMSOEt quench, producing the pyrrolidine
19.3 in 79% yield and 90% ee in just three steps. Thus, these reactions enable
introduction of up to four consecutive stereogenic centers in the (3+2) azomethine
ylide cycloaddition. This methodology would thus be a powerful tool for the synthesis
of stereochemically diverse alkaloid-like compounds.

Su et al. [53] used allylsilanes having C-centered chirality and a distannoxane
transesterification catalyst [54] in a sequence of transesterification reactions to
rapidly assemble a set of stereochemically diverse macrodiolides reminiscent of
polyketide-derivative natural products. Figure 15.20 summarizes the synthesis of
stereochemically well defined 14- and 16-member macrodiolides 20.4 and 20.5,
resembling known polyketide-derived natural products, from hydroxyl esters 20.2
and 20.3. The feasibility of cyclodimeriztion was studied using different solvents
and variable concentrations. Reactions were affected by the choice of the solvent.

Figure 15.18  Kubota et al. [49] approach (continued).

Figure 15.19  Stereoselective DOS-based approach to azomethine
cycloaddition by Chen et al. [51].
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High dilutions reduced the amount of oligomers formed. Preliminary experiments
on enantio-enriched hydroxyl esters 20.6 and 20.7, using distannoxane trans-
esterification catalyst, produced stereochemically diverse homo- and heterodimers
20.8–20.10. Functionalization of the macrodiolides was investigated in an effort to
create additional structural diversity. Electrophilic epoxidation of macrodiolide 20.9
afforded bis-epoxide 20.11. Further diversification was achieved by treating the
macrodiolide bis-epoxide with DBU, which resulted in epoxide ring opening to
afford α,β-unsaturated macrolide 20.12.

Several natural products are known that posses indole and indoline scaffolds,
and a number of these derivatives exhibit a wide range of biological activities [55].
For these reasons, Arya et al. [56] initiated a program aimed at developing solid-
phase synthesis methods to produce a variety of complex polycyclic derivatives. We
developed the synthesis route so as to obtain the hydroxyindolinol derivative 21.1
(Figure 15.21). A Mitsunobu reaction-based strategy for the synthesis of hydroxy-
indoline-derived tricyclic derivatives 21.4 was achieved by solution and solid-phase
synthesis [56]. A 10-step solid-phase synthesis was then successfully utilized to
generate a libraries of 16 and 100 derivatives in yields ranging from 20%–35%
using the IRORI split-and-mix type approach. Compound 21.1 was anchored to

Figure 15.20  Cyclodimerization approach to functionalized
macrocycles of Su et al. [53].
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the solid support by using (bromomethyl)phenoxymethyl polystyrene (loading
1.3 mmol g–1). The N-alloc group was removed by treating the resin with Pd(PPh3)4

in CH2Cl2 in the presence of acetic acid and N-methylmorpholine. The free amine
derivative was then coupled with Fmoc-protected phenylalanine under standard
amide-coupling reaction conditions (DIC, HOBt). This introduced the first diversity
site in an overall yield of 80% in three steps after cleavage from the resin. Following
Fmoc removal, the free amine was further protected as an o-nosyl derivative by
reaction with o-nitrobenzenesulfonyl chloride, a requirement for exploring the
intramolecular Mitsunobu reaction. The free primary hydroxyl group was generated
by debenzoylation (NaOMe, MeOH/THF), giving the free hydroxyl derivative (after
step 5, overall yield of 65% in six steps after cleavage from the support). This was
then subjected to Mitsunobu reaction conditions (EtOOC-N=N-COOEt, Ph3P). To
complete the synthesis on solid phase, the o-nosyl group was removed without any
difficulty and the free amine was then coupled with p-tolyl acetic acid under standard
amide-coupling condition. Cleavage from the support by treatment with 10% TFA
in CH2Cl2 provided the desired indoline-derived tricyclic derivative 21.4 in an overall
yield of 35% in 10 steps. Further work is in progress to explore the use of these
indoline-derived tricyclic derivatives as small-molecule probes to study cellular
processes. For example, the library is being tested in a search for small-molecule
inhibitors of eukaryotic protein synthesis and the findings will be reported when
they become available [57].

In another approach, Arya et al. [58] describe solution and solid-phase synthesis
of two polycyclic derivatives, 22.2 and 22.3 (Figure 15.22), from enantiopure

Figure 15.21  Intramolecular Mitsunobu approach to indoline-based
polycyclics of Arya et al. [56].
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tetrahydroquinoline-based β-amino acid 22.1. The broad usefulness of quinoline-
and tetrahydroquinoline-based natural products prompted us to develop a diversity-
oriented strategy for synthesizing natural-product-like polycyclic derivatives having
this privileged structure.

Central to this idea is the development of an efficient solution method to obtain
the enantiopure tetrahydroquinoline-based β-amino acid 22.1, which is a versatile
building block. For model studies, the synthesis of enantiopure tetrahydroquinoline
β-amino acid 23.5 (Figure 15.23) was carried out as follows. 2-Nitropiperonal was
converted to the unsaturated carboxyl ester by the Wittig reaction (95%) and then
subjected to the Sharpless dihydroxylation reaction, giving the enantiopure
dihydroxyl derivative 23.2 (88%, > 90% ee, determined by chiral HPLC). After
acetonide protection, the carboxyl ester was then reduced by lithium borohydride
to 23.3. Compound 23.4 was then obtained from 23.3. This was then subjected to
nitro group reduction, and then treatment with LDA or NaH, to obtain the hetero-
Michael product 23.5 as a single diastereomer. The stereochemistry of the new
stereogenic center in 23.5 was assigned by NOE (H-2 and H-4). The reaction seems
to be independent of the choice of base and provides easy access to enantiopure β-
amino acid on a large scale. It appears that acetonide protection of vicinal hydroxyls
at C3 and C4 is an important factor (see 23.7) in the asymmetric hetero-Michael
reaction. Tetrahydroquinoline β-amino acid contains several important features:
(1) vicinal hydroxyls at C3, C4, and (2) a phenolic moiety that can be utilized as an
anchor site in solid-phase synthesis.

Figure 15.23  Tetrahydroquinoline-based β-amino acids synthesized
by an asymmetric hetero-Michael approach.
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The solid-phase synthesis of tetrahydroquinoline-based tricyclic derivative 24.3
having an enamide functional group is shown in Figure 15.24. Compound 24.1
was obtained from hydroxynitrobenzaldehyde and then anchored to a solid support
by using 4-(bromomethyl)phenoxymethyl polystyrene resin (loading 93%). After
alloc removal and acryloylation, the ring-closing metathesis reaction gave the cyclic
enamide product 24.3. As observed in solution studies, compound 24.4 was obtained
as a single diastereomer (attack from the α face) upon reaction with PhSH after
cleavage from the solid support (27% overall yield for six steps). NMR studies of
compound 24.4 showed NOE between C3-H and C4′-H.

In a model study of the regio- and stereoselective hetero-Michael approach
(Figure 15.25), enantiopure tetrahydroquinoline β-amino acid 25.1 was converted
into the free dihydroxyl derivative 25.2. With compound 25.2 as the starting material,
the stage was now set to explore the asymmetric hetero-Michael reaction. We were
pleased to note that this reaction proceeded very smoothly and gave a single
diastereomer in high yield (84%) [58]. The tetrahydroquinoline-based tricyclic
derivative 25.3 was well characterized by MS and NMR. As observed earlier, this
reaction seems to be independent of the choice of the base and is an excellent
example of a highly regio- and stereoselective (reaction with benzylic-OH at C4

only) hetero-Michael reaction. Based on extensive NMR studies (compound 25.3)
that showed no NOE between C2-H and C4-H (except for compound 25.2, which
did show NOE between C2-H and C4-H), we propose a boat structure for the newly
formed pyran ring, due to a boat-shaped transition state. The regio- and stereo-
selective outcome could be envisioned by a pseudo-axial occupation of functional
groups at C-2, C-3, and C-4, allowing selective facial attack of the oxygen nucleophile
at the Michael site.

Figure 15.24  RCM-based stereocontrolled DOS approach.
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For solid-phase synthesis of 26.4 (Figure 15.26), compound 26.1 was immobilized
on the resin as for the previous example (loading 86%, 26.2). The free hydroxyl
derivative obtained after the acetonide removal was subjected to crucial hetero-
Michael reaction. The use of NaH as a base at room temperature provided the
expected product 26.3. After cleavage from the support, the crude sample was
purified giving product 26.4 (25% overall yield in four steps), which was further
assigned by NMR. It was interesting to note that this unusual regio- and stereo-
selective hetero-Michael reaction worked in a similar manner as in solution
synthesis. For comparison purposes, compound 26.5 was also synthesized in
solution in a similar manner.

Figure 15.25  Model studies: regio and stereoselective hetero-Michael
approach to tetrahydroquinoline-based polycyclics.

Figure 15.26  Stereocontrolled solid-phase synthesis of tetra-
hydroquinoline-based natural-product-like polycyclics.
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15.4
Conclusions

The early approach of combinatorial chemistry, when library generation based on
simple heterocyclic compounds was the main thrust, is now challenged by the
growing need for developing efficient high-throughput synthesis methods leading
to libraries of natural-product analogs or natural-product-like complex polycyclics.
An evolving area of stereo- and enantioselective diversity-oriented synthesis and
the development of novel methods leading to 3D skeletal diversity are likely to play
important roles in populating the required chemical space so as to provide rapid
access to natural-product-like compounds as highly valuable small-molecule probes.
The recent combinatorial chemistry literature provides a very good reflection of
the growing interest in DOS and in the generation of libraries of natural-product-
like polycyclics. An efficient mapping of the desired chemical space and its
appropriate function in developing highly effective therapeutics will be a topic of
discussions for years to come. Whatever the outcome of this exercise, the synthetic
community is well positioned to undertake some of these challenges.
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a
A II receptor    30
– antagonists    10, 28, 29
Abelson kinase, abl kinase    117, 171, 201
– 3D structures    211
– see also bcr-abl kinase, c-abl kinase
absorption, distribution, etc., see ADME,

ADMET
academia, role in research    72
ACC transforms    292
ACD database    82, 83, 90, 318
ACE    17
– catalytic domain    389
– inhibitors    10, 28, 43
acetazolamide    48
acetylcholine    84
acetylcholinesterase, see AChE
acetylsalicylic acid, see ASS
AChE inhibitors    23, 60, 62, 90
Aciphex®    9, 10
Acova®    17
activation
– inhibitors of kinases    200
– loop, kinases    198
active site
– clefts    102
– conservation    109
– detection    107
– identification    104
– templates    109
activity profile    364
activity-enriched subsets    353
activity-seeded clustering    85
Actos®    9, 10
adenine
– binding region, kinases    205
– binding sites    119, 120
– – diversity    119
– recognition motifs    120
adenosine deaminase    115

adenylate binding pockets    108
ADH binding sites    114
ADIR_1    150
ADME, ADMET    13, 14, 55, 145
– models    331
– prediction    329, 330
– profiles    13, 98, 325
– soft flags    331
adrenergic receptors    298, 301
α1 adrenergic receptors    296
– mutated    297, 298
Advair®    9
adverse drug effects    44
AEE-788    194
affinity
– chromatography    77, 183, 184
– fingerprinting    87
AG-538    199
AG-13736    193
aggregates    21
– formation    89, 327
aggregation-based inhibitors    20
agonism    74
agonists    52, 86
– motif    348
albuterol    9
alcohol dehydrogenase    114
aldose reductase    104, 115
alerts    329
algorithms, distance-based    85
alignment by pharmacophore points    350
alignment-free
– descriptors    350, 354
– models    350
alkaline
– diuresis    47
– phosphatase    113
alkaloids    298
allergic inflammation    54
allometric scaling    330
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allosteric
– enzymes    103
– modulators of kinases    200
AlogP    153
alternative splicing    71
alvocidib    193
Alzheimer’s disease    178, 193, 277
amaryllidaceae alkaloids    420
AMBER force field    231
AMG-548    194
amiloride    222
β-amino acids    426
amino acids, z scale descriptors    292
aminopeptidase LTA4H    386–388
2-aminothiazoles, as privileged structure

22, 23
amitryptiline    25
amlodipine    8
amoxapine    24
amphetamine    52
amrinone    269
amyl nitrite, discovery    44
anagrelide    270
analgesic activity    46, 47
analog-sensitive kinase alleles, see ASKAs
anesthetic gases, history    44
anesthetics    226
angina pectoris    45
angiogenesis    76, 81, 382
– inhibition    75
angiotensin    316, see also A II
– angiotensin II    10, 28
– converting enzyme, see ACE
annotations    144
– compounds    93
– genes and proteins    141
– schemes for ligands    141
– small molecules    92
ANP    51
Antabus®, discovery    45
antagonism    74
antagonists    52, 86
– promiscuous    87
β-antiadrenergic compounds    59
antiallergic xanthines    50
antiarrhythmic activity    60
antiarrhythmic drug    59
antiarrhythmics    238
– atrial-selective    228
anticoagulants    59–61
antidepressant activity    54
antidepressants    9, 59–61
– tricyclic    24
antidiabetic sulfonamides    49, 50

antihistaminic activity    25
antihistaminic drug    54
antihistaminics, sedative side effect    53
antihypertensives    50, 59, 60
antiinfectives    344
anti-inflammatory activity    25
antipsychotics    9, 153, 298
antisecretory agents    75
antitargets    100, 120, 122
antithyroid drugs    48
antituberculosis drug    50
antitumor agents    412
antitussive activity    46, 47
anti-ulcerants    9
AP-23573    194
apoptosis    171, 191
APROPOS program    104
aqueous solubility, see solubility
α-L-arabinanase    107
arachidonic acid    45
argatroban    17
arginine-glycine-aspartate, see RGD
Ariflo®    260
arofylline    266, 267
arrhythmia    221
arsphenamine (E 606)    46
arthritis    10
artificial intelligence    347
artificial neural networks (ANN)    359, 360,

see also neural networks
arylsulfonylhydroxamic acid template    27
β-arylsulfotransferase-IV    393
ASKA
– knockin cell lines    178
– mice    178
– system    178–180
– technology    176, 177
Asn and Gln side chains    125, 126
– orientation    127, 128
aspartame, discovery    45
aspartate protease inhibitors    32, 35, 36
asperlicin    54
asperlicin    55
ASS, Aspirin®

– discovery    45
– gastrointestinal bleeding    43, 45
ASSAM    111
astemizole    221
asthma    221, 260, 266
atom pair descriptors    351
– shape descriptor    82
atom types
– assignment in protein 3D structures    125
– generalized    351
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– pairs    352
atorvastatin    8
ATP    30, 31, 112, 117
– analogs in ASKA approach    177
– as kinase co-substrate    168
– binding site    110, 381
– – key residues    195
– – kinases    79, 391, 392
– cofactor, of kinases    119
– concentration, in cells    198
– pocket    124
– recognition    117, 122
– site-directed kinase inhibitors    86, 153
ATP-binding proteins    113
ATP-binding sites    117, 212, 196
– competitors    171–180, 201
– – specificity    200
– inhibitors    198
– kinases    168
– – inhibitors    175
atrial fibrillation    221
atrial natriuretic peptide (ANP)    51
atropine    46
attachment sites    100
attrition rates, in R&D    15
auto cross-covariance, see ACC
autoimmune disorders    114
automated parallel synthesis    12, 15, 343, 366
autoscaling    362
Available Chemicals Directory, see ACD
Avandia®    9, 10
AWD 12-281    266, 268
AZD-2171    194
AZT    12

b
B2 receptor    28 ff., see also bradykinin
backbone scaffolds    421
backup compounds    341
barbitone    46
batrachotoxin binding    226
BAY-19-8004    266, 268
BAY-43-9006    191–193
BAY-57-9352    194
BAY-60-7550    276, 277
Bayes theorem    336
Bayesian neural network    82
BBB, blood-brain barrier
– filter    333
– permeation    330, 332
– – in-silico filter    335
– – optimization    82
bcr-abl protein kinase    57, 59, 171, 181, 182
– inhibition    57

– see also abl kinase, see also Gleevec®

BCUT
– descriptors    153
– metrics    85, 86
– parameters    314
benzimidazole carboxamides    56
benzodiazepines    18, 19, 22, 52–56, 86, 87,

316, 318, 364, 378
– agonists    55
– antagonists, use in surgery    55
– intoxication    55
– receptors    378
benzopyran scaffold    396, 397
benzylbenzoate    20
bertosamil    227
bestatin    387, 388
best-in-class drugs    36
Big Bang    342
big numbers game    13
binary classifiers    358, 359
binary fingerprints    228, 350
BIND    304
binding affinity    32
binding modes    16, 100
– kinase inhibitors    205–211
– multiple    85
– similar    348
binding of ion channel ligands    226
binding partners, of kinases    183–186
binding pockets
– classification    118
– comparison    353, 354
– shapes    118
binding regions of kinases    215
– region II selectivity    205
binding sites    97 ff., 102, 108, 129
– 3D motifs    108
– 3D similarity    400
– applications of analyses    114
– architecture    379
– comparisons    99, 114, 126, 128
– – caveats    124
– description    107
– differences    100
– diversity    380
– evolutionary conservation    141
– flexibility    101
– functional aspects    104
– identification    106
– – programs    104
– ligand similarity    118
– motifs    109
– mutant kinases    79
– potassium channels    227
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– prediction    106
– pseudocenters    116
– recognition, ion channels    231
– relationships    130
– shape    100
– similarity    97 ff., 107, 112, 120, 130, 156,

162
– – vs. ligand similarity    102
– structural biology    101
– structures    99
– typical aa side chains    102
binning    354
bioactive conformation    316
bioactive natural products    406, 407
bioassay technology    314
bioavailability    329, 332
biochemical effect    73
Biofocus approach    159, 161
bioinformatic tools    380
bioinformatics    15, 139, 141, 377
– target discovery    145
biological
– activity
– – discovery    89
– – distribution in chemical space    78
– diversity    381
– prevalidation    381
– profile    75
– screens    77
– selectivity    86
– similarity    24
– – and chemical similarity    84
– system perturbation    74
biologically active natural products    377 ff.
biology space    86
biomimetic synthesis    420
Biomolecular Interaction Network

Database    304
BioPrint    145
Bioreason HTS data analysis    155
biotechnology industry    37, 168
biotransformations    104
BIRB-796    191–193
– binding to p38 kinase    202
BLAST    142
bleomycins    413, 414
– A5 analogs    413, 415
– DNA cleavage    413, 414
block scaling    362
blockbuster philosophy    306
β-blocker    59, 60
Blocks database    148
blood-brain barrier    46, 52, 82
– see also BBB

BMS-268770    22
BMS-341400    254
BMS-387032    194
bottlenecks, in drug discovery    12
bradykinin    28, 29, 316
– B2 antagonists    28–30
bradykinin-derived peptides    28
bradykinin-mediated cough    43
brevetoxin binding    226
bridging the knowledge gap    94
bronchitis    222
building blocks    366
– selection    353
bumetanide    48
buried ligands    102

c
C5a antagonist    87
c-Abl tyrosine kinase    171
– Gleevec binding    201
Caco-2 permeability filter    333
Caenorhabditis elegans    174
caffeine    247, 248
calcineurin    76, 78, 383
calcium channels    222
– blockers    222
– T-type    341
calcium-calcineurin-NFAT signaling

pathway    78
calmodulin    245, 272
cAMP    243
– recognition by PDE4    246
cAMP-dependent kinase    112
camptothecin    412
canertinib    193, 204
Capoten®    12
captopril    387, 388
carbohydrate sulfotransferases    30, 390–393
– NoDH    392
carbonic anhydrase    112, 113
– inhibition    47–49
carbutamide    49, 50
cardiac action potential    228
cardiac hypertrophy    178
cardiovascular diseases    114
CAST program    104
CASTp
– database    111
– surface topography    104
Catalyst program    355
catalytic
– domains, superposition    389
– machinery motifs    105
– mechanism    115, 380
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– – kinases vs. sulfotransferases    392
– residue prediction    107
– triad    109–113
Catapresan®    50
catechol-type inhibitors, PDE4    260–263
CATH    145
cathepsin B    34, 35
cathepsin K    34
– inhibitors    33
cathepsin L    34
cation channels    221
CATS
– descriptor    351, 368
– – 2D and 3D    354
– – topological    366
– method    348
– pharmacophore model    351
– similarity search    349
CavBase    116, 124
– algorithm    111–114
caveats, protein 3D structures    123 ff.
cavities in proteins    104
– detection    111
CBS-113-A    22
CC-401    194
CCK, cholecystokinin    18, 3116
– antagonist    54, 87
– receptors    378
CCKβ antagonist    87
CCK1 agonist    316
CCK-A antagonists    18
CCK-B antagonist    55
CCR2b receptor    148, 149
– antagonists    148
cdc 25 phosphatases    115
cdc25B phosphatase    116
– inhibitors    383–386
CDKs    122, 173
– inhibitors    183, 389
– – purines    123
– – selectivity profiles    123
CDK1 and 2    366
CDK1/cyclin B inhibitors    390
CDK1p from S. cerevisiae    177
CDK2    118, 124
– 3D structures    210, 211
– active site    195
– cyclin-A binding    197
– inhibitor, de novo design    215
– purvalanol B complex 3D structure    215
– staurosporine complex    124
CDK2/cyclin A inhibitors    390
CDK3, 3D structures    210
CDK4 inhibitors    215

CDP 480    261
CDP 840    262
Celebra®    23
Celebrex®    8, 12
celecoxib    8, 23
– cross-reactivity    112
Celexa®    9
cell biology    71
cell membrane penetration    314
cell-surface receptors    56
cellular proliferation    366
CEP-701    193
CEP-1347    191–193
c-Fos expression    182
cGMP    51, 243
– recognition    251
– – by PDE5    246
CGP 57148B, see imatinib
CGS-2466    22
ChemBank initiative    92
CHEM-DOCK algorithm    119
ChemGPS navigation    331
chemical
– and biological similarity    55, 84, 153
– biology    77, 168, 169, 341
– chameleon, Asn vs. Gln    127
– diversity    314, 381
– – maximum    12
– fingerprinting    175
– genetics    69 ff., 75, 78, 92, 94, 170, 313,

377, 405
– – advantages    77
– – databases    93
– – definition    3, 73
– – forward    74, 75
– – in drug discovery    69 ff.
– – libraries    74, 89
– – reverse    74
– – tools    74
– genomic profiling    177
– genomics    167–170, 174, 183, 222, 239,

377, 379, 405 ff.
– – guiding principle for    399
– – ion channel modulators    221 ff.
– kinomics    167 ff.
– libraries    311 ff.
– master keys    327
– probes    408
– proteomics    170, 183
– similarity    24
– – searching    347
– space    341 ff.
– – descriptors    350
– – exploration    100
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– – mapping    366
– – navigation    341 ff.
– – visualization    367
– structure space    377
– tools    77
– – in target validation    75
– validation    174–176
cheminformatics    139, 141, 149
– similarity searches    142
chemistry
– and biology integration    91
– automation    169
– space    341
– – dimensionality    85
– – enumeration    342
– – exploration    97
– – genome space linkage    97
– – metrics    85
– – virtual    314
chemistry-biology integration    75
chemogenomics    16, 36, 37, 43, 114, 119,

130, 139, 140, 145, 149, 155, 162, 239, 341
– 3D aspects    97 ff.
– and molecular informatics    139
– and structural biology    98
– based on medicinal chemistry    15
– chemical libraries    311 ff.
– definition    1–4, 7, 15, 313
– general aspects    5 ff.
– knowledge-based approaches    139 ff., 161
– library design    313 ff.
– paradigm    7
– phosphodiesterase inhibitors    243 ff.
– target families    7 ff., 137 ff.
– template design    313 ff.
chemokine
– GPCR motif    148
– receptor    148
chemometrics, definition    290
chemotherapeutics    330
chemotypes    326, 327
– drug-like    325 ff.
– focused libraries    236
– novel    337
– prioritization    331
chenodeoxycholic acid    394, 395
cherry-picking    345
chimeric MC receptor    295
chloride channels    222, 225
chloromethoxybenzyl inhibitors, PDE5

253–255
8-chlorotheophylline    53
chlorpromazine    53, 54
cholecystokinin, see CCK

cholesterol
– levels    394
– metabolism    395
– reducers    9
cholinergic and dopaminergic agonists,

pairs    84
chromosomes    9
– 9+    22
– 22–    57
chronic myelogenous leukemia, CML

57, 171, 179
chymotrypsin    20, 113
CI-930    270, 271
CI-1029    61
CI-1033    193, 204
CI-1040    193
– binding mode    203
– MEK1 complex    202, 203
CI-1044    265, 267
Cialis    255
cilomilast    260, 264
cilostamide, cilostazol    271
cipamfylline    266, 267
cisapride    221
citalopram    9, 57
class assignment    359
classifications    144, 290, 291
– problem    360
class-specific MMP inhibitors    27
clean target profile    24
click chemistry    90
clinical
– effect    73
– failure rates    341
– observation of side effects    47
– trials of kinase inhibitors    171
clique detection    112
clonidine    50
clotiapine    24
clotrimazole    20
clozapine    24, 150, 301, 369, 370
cluster analysis    332
clusters of target families    97
CMC database    82, 155, 343, 344
CNS disorders    221
CNS-active molecule design    161
COBRA database    343, 345, 348, 354, 368–370
– properties    345
– receptor classes    344
cocrystallization    100, 179
coevolution of ligand and receptor    394
colchicine    409
combinatorial
– approaches    400, 406
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– chemistry    12–15, 25, 33, 35, 142, 366, 405 ff.
– – early approaches    430
– design    371
– explosion    342
– libraries    18–22, 56, 78, 342, 377 ff., 398,

405 ff.
– – design    155, 230, 346, 353
– – natural-product-derived    377 ff.
– – qualification    368
– – virtual    342, 366–369
– methods    405
commercial
– compound collections    343
– databases    342
Commiphora mukull    394
common template    316
comparative analyses    16
competitive inhibition    74
complementary ligands    119
complex systems, reductionism    330
complexity of ligands    328
compound, compounds
– annotation    93
– as chemical probes    405
– classification, automated    358
– collections, commercial    343
– fragmentation    21
– libraries    341 ff.
– – design    313 ff.
– – diverse    314
– – focused    341 ff., 400
– – properties    334
– – ranking    332
– natural product-like    405, 406
– score profiles    332
– selection    363
– – criteria    14
– sets, prioritizing    337
compound-based toxicity    178
compound-target interaction mode    25
compound-to-product    170
Comprehensive Medicinal Chemistry, see CMC
computational
– chemistry    325
– filters, lead generation    325 ff.
– screening    100
– strategies    326
computer-aided drug design    14, 15
computer-assisted library design    347
conformational
– constraints    22
– flexibility    351
– – proteins    124
– space    130

Connolly algorithm    113
consensus
– maps    108
– PCA    122
conservation analysis    109
conserved
– molecular recognition    139, 145, 149,

162
– sequence elements    380
ConSurf program    106
contact surface area    102
convergent
– evolution    97, 378
– pharmacophores    27–30
COPD    247, 260, 266
core structures    21
COREX algorithm    103
coronary heart disease    221
correlation vector
– approach    350
– representations    350–355
co-substrate similarity    30, 31
COX-2    353, 354
– binding pocket    353
– inhibitors    112, 356, 358
CPG-79787    193
CP-146662    22
CP-547632    194
CP-690550    194
CP-724714    194, 204
CPG-79787    191
c-RAF binding    179
crimines    420
Crohn’s disease    10, 178, 193
cromoglycate    51
cross-reactivity    392
cross-terms in proteochemometrics    294
cross-validation    302
crystal packing effects    128
crystallization conditions    131
c-src tyrosine kinase inhibitors    90
curacin A    409
– library of analogs    410
customizable filters    326
CYC-202    193
cyclamate, discovery    45
cyclic nucleotide phosphodiesterases    243
3′,5′-cyclic nucleotides    243
cyclooxygenase    43
– inhibitors    23
CYP2C9 deficiency    44
CYP2D6    43
CYP3A4    44
cystatin-like fold    380
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cysteine protease inhibitors    32–36
cytochrome P450 induction    43, 44
cytotoxicity    365

d
D-4418    264
dapsone    48, 49
data
– mining    21
– scaling    362
– transformation    359
– warehouse    325
databases
– chemical genetics    93
– commercial    342
– mining    21
Daylight fingerprints    83, 84, 89, 328, 333
de novo
– design    351
– – CDK2 inhibitor    215
– – evolutionary    161
– – programs    130
– synthesis, virtual    342
– techniques    342
deconvolution
– of receptor ligands    155
– of targets    77
decoration    27, 31
– of masterkeys    16
– of structures    21
– pattern    28
degree of conservation    105
delavirdine    20
denbufylline    266, 267
deorphanization    146
dephosphorylation mechanisms    115
depression    50, 54, 71, 72, 260
descriptors
– alignment-free    354
– field-based    346
– molecular surface    331
– scaling    355
– vector    362
design
– combinatorial libraries    155, 346, 379
– computer-assisted    347
– knowledge-driven strategy    239
– ligand-based    341 ff.
– of targeted libraries    315
desipramine    54
devazepide    54, 55
development candidates    70
dextromethorphan    46, 47
DF-1012    56

DHFR inhibitors, QSAR    85
diabetes    114, 118
diarrhea    46, 47
diazepam    55
dibozan    150, 157
dielectric constant, local    102
Diflucan®    12
dihydrofolate reductase, see DHFR
dihydrofolic acid biosynthesis    48
dihydropyridines    19, 43, 230
dihydropyrimidines    19
diketopiperazines    19
dimenhydrinate    53
Diovan®    9, 10, 154
diphenhydramine    53, 54
diphenylmethane moiety    24
dipyramidole    278
directed organic chemistry    168
DISCO program    355
discodermolide    76
discovery process    7, 15, 70
discriminant analysis    290, 291
disease effect    73
disease process    74
disparate core compounds    91
distance metric    347
distance-averaging methods    151
distance-based algorithms    85
disulfiram, discovery    45
diuretics    45, 46, 48
divergent
– evolution    97, 378, 394
– protein homologs    386
diverse
– compound libraries    314
– monomer selection    161
– sets, of compounds    405
– vs. targeted libraries    314
diversity    22
– library, natural product-like    80
– locations in libraries    90
– molecular    314
– of drugs from side chains    82
– of ligand binding sites    379
– of natural products    79, 378
– pharmacophore-based    314
– relevant    316
– space    314
diversity-oriented synthesis    77, 406,

418–420, 428, 430
DMPPO    249, 250
DNA
– chip technologies    98
– cleavage by bleomycins    413, 414

1239vch16.pmd 23.06.2004, 16:32440

www.ebook3000.com

http://www.ebook3000.org


441Subject Index

– sequence level    139
DNA-binding domain    394
DNA-protein interactions    303
domains of proteins    378, 380
– 3D similarity    399, 400
– assignment    399
– families    81, 378, 379
– structural comparison    399
domain-centered approach    399
donors and acceptors, assignment    126
dopa decarboxylase inhibitor    52
dopamine    43, 52, 84
– pharmacophores    348
– receptors    298, 301, 348, 349
– – antagonist    46, 53, 54
– – ligands    369, 370
– transporter    349
– – inhibitors    23
D-optimal design    306
doramapimod    191–193, 202
dorzolamide    48, 49
dose range in humans    330
dosulepin    25
doxepin    25
DRESPAT approach    110
Drosophila melanogaster    174
drug, drugs
– and nondrugs    82, 83, 161, 328
– approvals in the US    70
– association to HSA    331
– best-selling    8
– candidates
– – discovery    377
– – in the clinics    43
– databases    82, 83
– – analysis    82
– – characterization    81, 82
– development times    10
– discovery    3, 7, 14, 15, 36, 69–74, 140
– – bottlenecks    12
– – chemical genetics    69 ff.
– – from side effects    43, 65
– – history    44
– – pipeline    130
– – program    86
– – project    342
– – serendipitous    44, 65
– – strategies    16, 162
– – target-based    139
– frameworks    82
– risk-benefit relationship    44
– shapes    234
– side chains    82
– side effects    43, 65

– – clinical observation    47
– – in the clinics    44
– targets    379
– – in human genome    16
– – number    16, 18
– vs. nondrugs, classification    362
drug-discovery process    325, 341
drug-drug interactions    44
drug-insensitive kinase    179–182
drug-like    19, 20, 314–318, 326, 329, 342
– character    326
– chemotypes    325 ff.
– compounds    82, 83, 140
– – number of    75, 99, 289, 341
– libraries    342
drug-likeness    14, 83, 89, 327, 329, 365, 371, 377
– filter    333, 362
– predictive models    331
drug-protein interaction    73
drug-related off-target effects    174
drug-related side effects    44
druggability    99, 118
– drug targets    18
– gene families    140, 141
– ion channels    221
– kinases    171, 174
druggable
– genome    17
– targets    97, 180
DRY probe    122, 123, 298–301, 331
dual PDE4/3 inhibitors    268
dual-specificity
– PDE inhibitors    257
– phosphatases    117
dyclonine    172
dynamic
– combinatorial chemistry    90
– light scattering    326
dynamite    45
dysidiolide    366, 383
– derivatives    383–386

e
E 606 (arsphenamine)    46
E 4010    254
E 4021    254
eberconazole    26
EDG (endothelial differentiation gene)

receptors    146
EF-hand proteins    110
eF-Site database    111, 112
EGF receptor    204, 381
– 3D structures    210
– mutants    182
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– pathway    181, 182
– tyrosine kinase    171, 181, 182, 203
EGFR/MAP kinase cascade    182
EHNA    276
EKB-569    193, 204
elastase    32
– 3D structures    126
electron transfer    102
electrostatic forces in enzyme catalysis    103
eliprodil    350
enantioselective
– cycloaddition    423
– syntheses    406, 430
endogenous ligands    145, 150
endothelin receptor antagonists    63
engineered orthogonal ligand-receptor

pairs    78
enolase    115
enoximone    269
enrichment    152
– factor    347, 348
– maximal    353
– with PPP model    357
entropy penalty    201
enzymes    88
– active sites, identification    104
– adsorption to surface    21
– catalysis    105
– catalytic ability    104
– clustering    113
– inhibitors    23, 26
– – natural product-based    381
enzyme-aggregate adsorption    21
ephedrine    52
epidermal growth factor, see EGF
6-epi-dysidiolide    383–386
epinastine    26
epinephrine    52
epistasis experiments    173
epoxide hydrolase    387, 388
ErbB2 receptor tyrosine kinase    171
erbstatin    199
erectile dysfunction    51, 247
ERG2 knockout in yeast    172
ERK2 MAP kinase    106
ERK2 substrate identification    177
erlotinib    191–193
erythropoetin    8
esomeprazole    9, 10
E-state descriptors    151, 152
estrogen receptor-α    394
estrogen receptor-β    395
– ligand domain    396
estrogen sulfotransferase    30, 31, 392, 393

ETA receptor antagonists    64
ether as anesthetic    44
Euler-Venn diagrams    354
evolution    378
evolutionary
– aspects of proteins    105
– binding-site conservation    141
– conserved motifs    110
– data mapping    106
– de novo design    161
– models    386
– tracing    105
experimental design    306

f
factor analysis    359
factor Xa 3D structures    128, 129
fail early, fail cheap paradigm    325
failure rates
– clinical    341
– in R&D    70
fallen angel    99
false positives    326, 336, 337
– in HTS    20
– in screening    315
famotidine    22
farnesoid X receptor, FXR    394, 395
– agonists    398
– ligand domain    396
– ligands    397
fast binary classifiers    358
fasudil    193
favorable interactions    107
feature extraction    346, 347, 359
FEATURE program    109
feature trees    151
features, unwanted    326
feed-forward neural network    83
FemA factor    107
fenpropimorph    64
fentanyl    46, 47
ferredoxin-like fold    380
fexofenadine    44
fibrinogen receptor    56
field-based descriptors    346
filamilast    260, 261
file enrichment    21
filtering tools, see filters
filters    315, 346
– computational    325 ff.
– customizable    326
– hard and soft    326, 329
– in silico    326 ff.
– settings    328

1239vch16.pmd 23.06.2004, 16:32442

www.ebook3000.com

http://www.ebook3000.org


443Subject Index

fingerprint analyses    145
fingerprints, binary    350
first-in-class drugs    36
FK 506    76, 78, 406, 407
FKBP12    78, 173
flags    329
flat binding sites    117, 118
flavopiridol    173
flexibility of proteins    124
flipping a coin    337
fluoxetine    57
fluticasone    9
fluvoxamine as hERG channel ligand    226
focused libraries    159, 341, 342, 371, 400
– design    233, 236
– ion channels    233, 236, 239
fold, folds
– and protein function    81, 378 ff.
– comparison    108
– conservation    130
– of proteins, number    131, 379
– recognition    109
– relationships    115
– similarity    380, 386
– space    131
forward chemical genetics    74, 75, 174
four-point pharmacophores    350
fractional-factorial design    306
fragment
– linking    230
– positioning    158
– promiscuity    157
– screening    100
fragmentation of compounds    21
fragment-based
– approaches    271
– compounds    21
– de novo design    162
– library assembly    371
framework analysis, topological    234
frameworks of drugs    82, 155
frequent hitters    19, 89, 327, 329, 336, 371
– filter    333
– in HTS    155
– prediction    327, 336
frequent-hitter-likeness    362
frusemide    48
fumagillin    75, 76
fumiquinazoline alkaloids    407
fun parties    44
function
– and sequence homology    379
– mapping, genome    289
– relationships    115

functional
– annotation of proteins    106
– aspects of binding sites    104
– binding sites    106
– – detection    105, 130
– sites    103
function-based screening    70
fungicides as σ1 receptor ligands    64
furosemide    48
fuzzy
– functional forms    108
– pharmacophores    356
– – models    355
FXR, farnesoid X receptor    394–398

g
G protein-coupled receptor, see GPCR
GABA
– agonists    54, 87
– antagonist    54
– inverse agonist    54
– transporter GAT1    349
galanthamines    419, 420
Garland-Dean geometries    316–319
GASP program    355
gatekeeper    177, 180, 184
– amino acids, kinases    176
– mutation    176
– residue    179
– – kinases    212, 213
gateway region    122
gefitinib    17, 168, 193
gene, genes
– expression profiles    172, 173
– families    18, 145, 399
– – analysis    140
– – clusters    97
– family-directed masterkeys    7 ff., 37
– number of    167
– – orphan members    145
– ontologies    141
– products, number    71
– profiling    172
gene-expression compendiums    174
General Ballou sailing    53
generalized interaction sites    355
genetic disposition    44
GENFIT    110
genistein    395, 396
genome space    130
– function mapping    289
– neighbors    98
– vs. ligand space    118
genomic blueprint    178
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genomics    1, 2, 4, 14, 15, 16, 36, 37, 289, 377
ginsenosides    274
glaucoma    48, 49
GlcNac-6-sulfotransferase NoDH    30, 31
Gleevec®    17, 57, 117, 124, 168, 171, 179,

182, 191–193, 200, see also imatinib
– binding to c-Abl    201
– conformational changes    201
– selectivity    212
glibenclamide    49, 50, 236
glitazones    394
Glivec®, see Gleevec®, imatinib
Gln3p transcription factor    77
glutamic acid analogs    80
glutaredoxins    108
glyburide    20
glyceraldehyde 3-phosphate dehydrogenase

114
glycerol kinase    103
glycosylation, of proteins    167
Golgi apparatus    421
GP IIb/IIIa integrin    56
GPCRs    16–18, 32, 86, 88, 140 ff., 148, 168,

316, 325
– affinities, olanzapine    63
– agonists    23
– antagonists    23, 26, 154, 155
– binding sites    150
– chemogenomics    139 ff.
– chemotypes    238
– family    24, 146
– libraries    158, 238
– ligand-likeness    362–365
– ligands    344
– – interactions    299
– – motifs    160
– – one-, two-, three-site    150
– – recognition    146
– – tricyclic    52
– mutation data    148
– number    144
– ontology    142, 143
– pharmacology    145
– preferred structures    316
– proteochemometrics    303
– sequence motifs    148
– targeted libraries    315, 344
– targets    318
GPCRDB    142, 143, 304
– classification    144
GRAFS classification    144
GRID program    108, 331
– fields    122
GRID/PCA contour plots    123

grid-based methods    108
GRIND descriptors    298
GSK3β kinase    186
GSK-681323    194
GSK-786034    194
guggul tree    394
guggulsterone    394, 395
gut feeling    347
GW 5823    317
GW-572016    193

h
H 26214    232
haloperidol    46, 47, 301, 348, 349
– GPCR affinities    350
HARB    260
hard filters    326, 329
HCMV protease    32
heart attack    45
Hebbian learning    367
hemithioketal    32
hepatitis C NS3-4A protease    32
HER-2/neu inhibitors    381
herbicide lead, for ETA antagonists    64
herbivores    378
Herceptin®    171
hERG channel    65, 221, 226, 331
– activated state    227
– fluvoxamine    226
– inactivated state    227
– inhibition    43, 44, 221
– – in-silico filter    333, 335
heterocycles, 1,2-diphenyl-substituted    23
heterocyclic scaffolds    18
heuristic
– predictions    341
– sampling    369
hidden layer    360, 362
hierarchical clustering    301
high-content leads    325
high-information content screens    13
high-throughput
– crystallography    131
– docking (HTD)    162
– screening, see HTS
– synthesis    405
hinge
– domain, kinases    214
– region    180
hinge-directed selectivity, kinases    214
Hismanal®    12
histamine receptor    146, 298
– H1 antagonists    43
– H3 receptor    350
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histogram equalization    362
histone
– deacylase inhibitor    76
– lysine methyltransferase    107
hit and lead
– assessment    21
– identification    341
hit, hits
– false positive    326
– initial    326
– rates    153
– – in biology-based library    88, 89
– – ion channels    238
hit-to-lead, hit-to-candidate    169, 326
hitters, frequent vs. nonfrequent    336
HIV protease    103, 112, 353, 354
– binding pocket    353
– inhibitors    60, 61
HMG-CoA inhibitors    86
homocamptothecin synthesis    412
homologous
– proteins    99
– receptors    141, 142, 155
– targets    151
homology models    101, 131, 233
– ion channels    226, 230
homology-based similarity searching    151–153
homosilatecan analogs    412, 413
hotspot prediction    103
HPLC characterization    343
HSA binding filter    333
5-HT binding site    157, 158
5-HT receptors    157
5-HT1A ligands    153
5-HT1A receptor 3D model    156
5-HT3 affinity, olanzapine    63
5-HT3 antagonists    62
5-HT3 receptor    56
5-HT4 receptor    56
5-HT6 receptor    148
5-HT7 receptor    153
HTS    12–15, 59, 77, 88, 99, 343, 366
– assays    327
– collection    153
– data    371
– – large-scale analysis    355
– filters    315
– hit lists    144
– ion channel ligands    223
– programs    378
– success rate    13
– technology    13
– virtual    99
human genes, number of    289

human genome    1, 14, 17, 18, 69, 71, 97,
140, 167, 289

– mining    146, 149
– project    94
Human Genome Organization (HUGO)    144
human proteins, number of    289, 379
HX-600    26
hydantoins    19
hydrochlorothiazide    48
hydrogen bonds    102, 127
– networks, partners    126
hydrophobic collapse    24
hyperactive bladder    222
hyperplane, optimal    361
hypertension    221
hypoglycemia    49

i
IBMX    247, 248, 253, 266, 277, 279
IC-197    264, 265
ICE inhibitors    33
identification, hits and leads    341
IGF1 receptor    81, 381, 383
– complex with ATP analog    383
imatinib    17, 57, 59, 168, 171, 193
imidazoles    19
imipramine    25, 53, 54
immunosuppression    76
in cerebro approach    334
indazole inhibitors, PDE4    265
Inderal®    12
indirubin-5-sulfonate    194
indolactam V library    415, 416
indole-type inhibitors, PDE5    255–257
indolidan    270
INDs from HTS    13
induced-fit effects    124, 125
industrial discovery technology    140
inflammation    193, 194, 221
inflammatory diseases    27, 114, 178
infliximab    9, 10
information management    91, 92
information-rich compounds    92
inhibitor, inhibitors
– ATP-competitive    200
– competitive/noncompetitive    74
– design, phosphodiesterases    281
– nonspecific    89
– scaffolds    400
inhibitor-insensitive kinase    180–181, 186
in-house screening    21
initial hits    326
in silico
– database mining    21
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– filters, 326 ff.
– – BBB permeation    335
– – hERG channel inhibition    335
– methods    99
– models    329, 332–336
– – predictive    330
– screening    152
– technology    162
– vs. in cerebro approach    334
insulin    269
– secretion    221, 222
– sensitizers    394
integrated drug discovery    37
integration of chemistry and biology    75, 91
integrins    23, 32, 56
– integrin αvβ3    56
– integrin GP IIb/IIIa    56
interaction
– π-π    127, 128
– partners    306
– sites, generalized    355
– space, molecular    289 ff.
– – modeling and interpretation    292
– types    127
interleukin 1β converting enzyme, see ICE
intestinal
– infections    48
– permeation    330
intron endonuclease    107
inverse agonists    86
Investigational Drugs database, IDdb    141
investigational new drug, see IND
Invirase®    12
in-vitro kinase assay    184, 185
ion channels    16, 17, 88, 221 ff., 325
– 3D pharmacophores    233
– biased screening collection    239
– binding site recognition    231
– blockers    26
– chemotypes    234, 235, 238, 239
– classification schemes    223
– computational analysis    233
– crystallization experiments    226
– discovery    221
– druggability    221
– exploitation as drug targets    222
– families    223
– focused library    233, 235, 236, 239
– gating behavior    223
– hit rates    238
– homology modeling    230, 233
– homology models    226, 239
– ion channels, homology models    239
– in diseases    222

– ion-conducting pore    223
– ion-conducting pathway    224
– lead identification    239
– libraries    236–238
– – design, principles    233
– – key properties    237
– – screening    238
– ligand-based lead finding    228
– ligand-gated    222
– ligands, 3D database searching    231
– modulators    221 ff., 233, 235, 239
– – chemical genomics    221 ff.
– – lead finding    227
– physiological effects    221
– privileged chemotypes    235, 236
– S4, S5, S6 helices    223, 224
– specific pharmacophores    235
– structural information    223
– structure-based lead finding    230
– subtype-specific chemotypes    238
– virtual library design    236
– virtual screening    233, 235
– voltage-sensor paddle    224
ion conducting pore, pathway    223, 224
ion selectivity, potassium channels    224
ionizable residues, in active site    104
iProClass database    145
iproniazid    50
IPTD    48, 49
Iressa®    17, 168, 171, 191–193
irreversible inhibitors    32
– kinase inhibitors    203
– toxicity    203
IRS-727 peptides    199
ISIS keys    151, 152
isobutylmethylxanthine (IBMX)    247, 248
isoniazid    50
isoquinolinones    19
isoxazoles    19

j
Janssen_1    150
JNK, 3D structures    213, 214
JNK3 kinase
– 3D structures    210, 211
– SB 203580 binding    213, 214

k
K(ATP) channel blockers    236
kallikrein    35
KCNQ1 potassium channel    227
KcsA potassium ion channel    224, 230, 232
– 3D structure    225
keratan sulfate transferase    390
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kernel functions    360
ketanserin    150
ketoconazole    227
KF-13218    26
KF-17828    26
kinase, kinases    16, 17, 115, 122, 167 ff.,

191 ff., 325
– 3D structures    123, 191, 194, 216
– activated    194
– activation    197, 200
– – inhibitors    200
– – loop    198
– adenine binding region    205
– allosteric modulators    200
– and phosphatases, mechanism    114
– assay    184, 185
– ATP binding    194, 195, 391, 392
– ATP binding site    79, 168
– ATP-competitive inhibitors    200
– back and front pockets    180
– biased library    174
– binding partners    183, 184, 186
– binding region I and II selectivity    215
– binding regions I and II    205
– binding sites of mutants    79
– catalytic
– – mechanism    115, 392
– – pathway    196
– cell-free assay    175, 176
– cellular disease model    175, 176
– chemical proteomics    183
– cocrystallization    191
– conformational
– – changes    196, 201
– – flexibility    201
– conserved aa    196, 198
– druggability    117, 171, 174
– drug-insensitive    179–182
– evolution    115
– family    200
– front and back pockets    168
– gatekeeper
– – amino acid    176
– – residue    212, 213
– hinge region    180
– hinge-directed selectivity    214
– inactive    197
– inhibition, inhibitors    20, 23, 172, 173,

191, 199, 370, 382, 390
– – ATP site-directed    86
– – binding modes    205 ff.
– – clinical trials    171, 191–194
– – fingerprints    176
– – immobilized    184, 186

– – irreversible inhibitors    203
– – marketed    191–193
– – of gene expression    177
– – orthogonal    178
– – principles    198
– – selective    123, 216
– – selectivity    187
– – structural aspects    205 ff.
– – vs. knockout    173
– in signal transduction    171
– lead optimization    186, 187
– ligand binding    183
– ligand immobilization    183
– mutagenesis studies    212
– mutants    179 ff.
– – inhibitor-insensitive    186
– – orthogonal    179, 180
– orthogonal inhibitors    177
– pathway elucidation    177
– phosphate binding region    205
– phosphate-binding residues    196
– phosphoryl transfer    196
– rate-determining step    196
– research programs    191
– ribose binding region    205
– selectivity dogma    212
– specific domains    191
– structural aspects    191 ff.
– structural transition    200
– substrate identification    177
– substrate-binding    115
– substrate-competitive inhibition    198,

199
– superfamily    176
– target expression    175
– target validation    176, 177, 180, 186
– transition state    117
– validation as drug targets    178
– see also protein kinases
kinase-inhibitor-likeness    362
kinase-ligand-likeness    365
KinaTor™    170, 174, 183 ff.
kinome    216
kinomics    167 ff.
Kissei_1    150
knockin/out by siRNA    74
knockouts as add-on technology    173
knowledge
– creation    69
– exploitation in drug discovery    94
– from HTS data    155
– gap    69, 71, 74, 94
– generation    77
– management    70, 91, 92
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knowledge-based
– approaches    162
– companies    145
– decisions    325
– discovery    139 ff.
– library design    155
– strategies    140, 141, 149, 155
knowledge-driven
– approach    327
– design strategy    239
Kohonen maps, networks (SOM)    83, 113, 367
Kv1.3 potassium ion channel    222, 226, 230
– inhibitors    231
Kv1.5 potassium ion channel    226, 228, 232
– homology modeling    231, 232
– inhibitors    231, 232
– – pharmacophore    229
KvAP potassium channel, 3D structure    224

l
L-791943    262
L-869298    262
L-640,035    26
lactacystin    76
β-lactamase    20, 113
β-lactams    19
Lagrange multipliers    361
lansoprazole    8
LARB    260
large organizations, ineffectiveness    306
large-scale proteochemometrics    303–307
LCK, 3D structures    210, 211
L-dopa    43, 52
leads, lead structures
– complexity    12, 169, 328
– discovery    3, 37, 139, 161, 380
– finding    37, 77, 98, 99, 139, 141, 142, 151
– – ion channel modulators    227, 239
– from HTS    13
– generation, computational filters    325 ff.
– identification    341
– nonselective    55
– optimization    37, 55, 100, 151, 159, 325,

326
– prioritization    341
– selection    341
lead-drug pairs    327, 328
lead-like compounds    15, 19, 236, 326, 328
lead-likeness    327, 342, 371
LeadScope software    90
– classification    155
lectins    113
leprosy    48, 49
leukotrienes    394

– A4 hydrolase inhibitors    386, 387
– B4    394, 395
– – activation of P2Y7    146
– epoxide LTA4    386, 387
Levitra®    250
levocromakalim    59, 60
levorphanol    46, 47
liability alerts    326
libraries    14, 78
– chemotype-focused    236
– combinatorial    18, 19, 342
– design    313 ff., 327, 345, 346, 350, 362,

371, 379
– – applications    362
– – computer-assisted    347
– – ligand-based    341, 343
– – PCA-based    363
– – principles    233
– – property-based    346
– diverse    314
– – vs. targeted    314
– diversity    90
– drug-like    342
– evaluation by affinity fingerprinting    88
– focused    341 ff.
– fragment-based assembly    371
– generation    430
– GPCR-targeted    315, 344
– in chemogenomics    311 ff.
– natural product-like    418, 419
– privileged    368
– purine scaffold-based    389
– shaping    346, 358, 359
– spikes    364
– subset    346
– virtual    342, 347, 366
library-based approach    341
lidocain    222
ligand, ligands
– and binding site similarity    118
– and targets, similarity    141
– assembly
– – dynamic    90
– – target-guided    89
– bioactive conformation    316
– binding, energetic aspects    102
– binding sites, diversity    379
– complexity    328
– deconvolution    157
– discovery by cheminformatics    149
– fragments    157, 158
– identification    139
– of target families    139
– ontology concept    142
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– pairs    154
– promiscuous    326
– properties    345
– receptor-bound conformation    353
– recognition    16
– scaffolds    379
– selectivity    120, 149, 294
– sites    315
– vs. binding site similarity    102
– vs. genome space    118
ligand-based
– design    315, 341 ff.
– lead finding, ion channels    228
– library design    341, 343
– pharmacophores    315
– template design    315
ligand-binding cavities, domain    381, 394
ligand-biopolymer cross-terms    294
ligand-gated ion channels, LGIC    142 f., 222
ligand-ion channel complexes    226
ligand-protein interaction    72–75, 105
ligand-receptor
– coevolution    394
– cross-terms    297, 299
– pairs, orthogonal    78
ligand-target
– classification    142–145
– ontology    142, 144
– relationships    313
Ligbase    101
LIGCDB    142, 143
Ligsite algorithm    111, 113, 118
likeness concept    359
lipases    110
Lipinski’s rule of five, see rule-of-five
Lipitor®    8
lipophilicity prediction    329, 330
loading plot, properties    333
local dielectric constant    102
lock and key modification    176
log D prediction    329
log P
– in drug databases    82
– prediction    329
logistic scaling    362
lonafarnib    26
loop diuretics    48
loperamide    46, 47
Lopressor®    12
loratadine    25
losartan    29
lotrafiban    56
lovastatin as LFA-1 inhibitor    86
low-dimensional projections    153

low-dose ASS treatment    45
low-molecular weight compounds    17
loxapine    24
LTA4, leukotriene epoxide
– hydrolase    387, 388
– – catalytic domain    389
– to LTB4    386, 387
LUDI program    230
LY 354740    80
LY-317615    193
LY-333531    191–193
lycoranes    420
lysergic acid diethylamide (LSD)    45

m
M&B 22,948    51
M1 partial agonist    60
MACCS fingerprints    153
malate dehydrogenase    20
male erectile dysfunction    51, 247
Manhattan distance    354
maniac disorders    46
MAO inhibitor    50, 52
MAP kinase
– family    122, 179
– p38    178
mappicine    411
– ketone analogs    411, 412
mapping
– of chemical space    366
– procedures    153
market exclusivity    12
marketed drugs    17
Markush-type substructures    326
MARS model    303
MASCOT program    184
masked catechol-type inhibitors    264
masterkey concept    7, 16, 30–32, 36, 155,

187, 327
matrix metalloprotease, see MMP
maximal enrichment    353
maximum auto- and cross-correlation

(MACC)    298
maximum chemical diversity    12
Maybridge database    83
MC (melanocortin) receptor
– chimeric    295
– subtypes    302
MCH receptor    146
MDL Drug Data Report, MDDR    141, 142,

343
mechanism-based toxicity    178
medical innovation    140
medical needs    69
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medicinal chemistry strategies    15–17
medorinone    269
mefenamic acid    20
MEK1 complex, with CI-1040    202, 203
melanocortin, see MC
melanocyte-stimulating factor    316
melperone    349
8-MeOMe-IBMX    273
meperidine    46
merbaphen    45, 46
mercury salicylate    46
merger philosophy    306
meribendan    270, 271
mersalyl    46
metabolic pathways    145
metalloproteases    113, 388
– catalytic domains    389
methamphetamine    52
methionine aminopeptidase    75, 76
methylxanthines, as PDE inhibitors    247
Mevacor®    12
MGAS 0028    80
Mg-ATP binding motifs    110
mGluRs    80
mianserin    25
mibefradil    341
microtubule binders    76
midostaurin    193
MIFs    298
milrinone    269, 271, 273
minaprine    60–62
mini-fingerprints    350
mirtazapine    25
misassignments, in PDB    126
MK-499    227
MLN-518    194
MMP    353, 354
– binding pocket    353
– family    27
– MMP-1, -2, -3    27, 28
models
– in-silico    334, 336
– predictivity range    335
modulation    74
– of protein function    73
modulators
– of ion channels    221 ff.
– of nuclear hormone receptors    393
MOE software    355, 356
molar refractivity    152
– in drug databases    82
molecular
– aggregates in HTS    20
– architecture    150

– complexity    328
– – in lead finding    80
– – index    81
– – quantification    80
– descriptors    346
– design    13
– diversity    14, 25, 314
– – space    13
– fingerprints    88, 153
– framework    18
– informatics and chemogenomics    139 ff.
– information systems    141–145, 151
– interaction
– – classification    145
– – fields (MIFs)    298
– – space    289 ff.
– machinery    104
– masterkeys    154
– pharmacology    140
– recognition    37, 151, 290, 294, 325, 379
– – conserved    139, 145, 149, 162
– scores plot    333
– similarities    150
– surface descriptors    331
– target information    141
– target-specific    377
– targets    77
– topology    23
– weight in drug databases    82
molecule-phenotype association    92
monoamine GPCRs    140, 147–161, 298–301
– cluster analysis    147
– consensus sequences    299
– ligands    150
– subfamily    146
monoamine oxidase    50, 52
monoamine receptors    24
monoclonal antibodies    10
mononucleotide binding sites    112
morphine    46, 47
– respiratory depression    43
mRNA transcript levels    173
MS-857    269
MscL mechanosensitive ion channel    226
MSH peptides    295, 296
MthK potassium channel    224, 230
– 3D structure    225
mTor kinase    173
multicomponent reactions    411
multidimensional
– index tree    109
– ranking    346
– scaling    332
multidomain enzymes    144
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multilayered neural networks    367
multiple
– activity    350
– binding modes    85
– binding sites    155
– conserved regions    148
– lead series    325
– sequence alignment    106, 109
multiple sclerosis    222
multipoint pharmacophores    346
multireceptor profiles    160
multiscale approach    107
multivariate
– approaches    306
– calibration    290
– modeling    291
– preference mapping    333, 334
– profiling    331, 332
muscarinic M1 receptor    60, 61
mutagenesis
– studies    156
– virtual    103
mutant
– kinases, binding sites    79
– targets    44
mutants, inhibitor-insensitive    186
mysoseverin    78

n
NAD binding    114
naftopidil    154
nakijiquinone    381
– library    81, 381, 382
nalorphine    47
nateglinide    222
natural products    377 ff., 406
– 3D skeletal diversity    430
– 3D structural architecture    406
– as chemical tools    75
– as guiding compounds    400
– bioactive    406, 407
– diversity    79, 378
– in evolution    378
– in target identification    76
– libraries    79–81, 377 ff.
– scaffolds    378
– screening    167
natural product-derived
– combinatorial libraries    377 ff.
– enzyme inhibitors    381
– libraries    377 ff., 386
natural product-like
– compounds    405 ff.
– diversity library    80

– libraries    377 ff., 397, 405 ff., 418, 419
– polycyclics    419, 429, 430
nature’s
– structural conservatism    379, 380
– structural diversity    379
navigation in chemical space    341 ff.
NCEs    11, 36
NCI ChemBank initiative    92
needle screening    162
nefopam    54
neighborhood behavior    371
neural networks    113, 161, 329, 344, 359–361
– architecture    360, 362
– drugs and nondrugs    82
– in binding site prediction    106
– multilayered    367
– training methods    362
– unsupervised    367
neuroleptics    46, 47, 53
– tricyclic    24
neurological disorders    147
neuron layers    360
neuropeptide GPCRs    147
neurosyphilis    46
neurotransmitter
– GPCRs    25
– uptake inhibitors    54
nevirapine    26
new chemical entities, see NCEs
Nexium®    9, 10
NFAT proteins    78
NHE-1 inhibitors    236
nicardipine    20
nicotine    84
– agonists, similarity    84
nifedipine as lead    228, 230
Nil1p transcription factor    77
NIMH Psychoactive Drug Screening    145
nimodipine    222
NIPALS algorithm    363
N-isopropyl-thiadiazolylsulfanilamide    48, 49
nisoxetine    57
nitraquazone    265, 267
nitroglycerin, discovery    44, 45
nitrous oxide as anesthetic    44
NMR    100
NMR-based screening    21
NodH
– carbohydrate sulfotransferase    390, 392
– inhibitors, PAPS-competitive    393
noncompetitive inhibition    74
nondrug-like molecules    82, 329
nondrug-likeness    329
nonfrequent hitters    336
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non-GPCR antagonists    26
non-Hodgkin’s lymphoma    10
nonlinear PCA    364
nonlinear projections    364
nonpeptide templates    316, 318
nonselective lead structures    55
nonspecific inhibitors    20, 89
norbelladine    420
norepinephrine    52
– uptake    57
Norvasc®    8
Norvir®    12
Novasurol®    45, 46
novel chemotypes from HTS    144
NSAIDs    9
nuclear hormone receptors    16, 17, 78, 140,

168, 325, 345, 395
– LBA and DBA    394
– modulators    393
NuclearDB    142, 143
nucleoporin Tpr    177
number
– of atoms in drug databases    82
– of genes in human genome    71
– of targets    86

o
observation of side effects    65
8-OH-DPAT    150, 156
– binding site    157, 159
olanzapine    8, 63
old chemistry as lead source    65
old drugs, reexamination    75
olomoucine    123, 389
– analogs, synthesis    391
– library    390
olopatadine    25
omeprazole    8
omics    2–4, 15, 130, 167, 169
one-site-filling fragments, ligands    150, 156
opiate
– agonists    46, 47, 54, 55
– antagonists    46, 47
– receptors    148
– – subtypes    46
κ-opioid agonist    18
optimal complexity in lead finding    80
optimal hyperplane    361
optimization programs    20
organic nitrites, antianginal    44
organomercurial diuretics    45, 46
orphan
– GPCRs    146
– – number    146

– members of gene families    145
– receptors    155, 157
orphanin FQ    349
orphenadrine    54
orthogonal
– chemical genetics    169, 176
– kinase inhibitors    177–180
– ligand-receptor pairs    78
– – engineered    78
– ligands    178
2-oxalylamino-benzoic acid (OBA)    120, 121
oxaprozine    20
oxcarbazepine    26
oxyanion hole    105, 109
oxytocin antagonist    87

p
P2Y purinoreceptors    146
P2Y7 receptor    146
p38-ASCA mice    178
p38 MAP kinase    178, 179 186, 212
– 3D structures    210, 211
– p38α and β    212
– – inhibitors    178, 179
– BIRB-796 binding    202
– inhibitors    171, 185
– – p38-specific    178
– mutants    214
– – inhibitor-sensitive    178
– SB 203580 binding    213
– structural rearrangement    202
packing effects in protein crystals    128
pairs of atom types    352
pairwise vector comparison    350
p-aminobenzoic acid    48
pantoprazole    9, 10
papain    35
papaverine    273, 279, 280
PAPS    30, 31
– binding to sulfotransferases    391, 392
paradigms, in drug discovery    15
parallel synthesis    90
– automated    343, 366
Parkinson’s disease    52
paroxetine    8
partial agonism    74
partial least squares, see PLS
PASS algorithm    231
patch-clamp measurements    331
pattern recognition    290, 328, 346
paullones    183
Paxil®    8
PCA    122, 332, 359, 363, 364
– nonlinear    364
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– of compound properties    334
– principal properties    292
– score plots    122
PCA-based library design    363
PCM, see proteochemometrics
PD-153035    181, 182, 203, 204
PD 173955    201
PD 180970    202
PD-183805    193
PD-184352    193
PDB    98, 112, 119
– misassignments    126
– structures    130
PDEs, phosphodiesterases    27, 140, 243 ff.
– adenine binding site    246
– allosteric binding sites    246
– binuclear metal center    246
– catalytic domains    244
– conserved metal binding sites    244, 245
– functional domains    244
– GAF regions    246
– gene duplication, gene shuffling    244
– inhibitors    23, 51, 243 ff.
– – chemogenomic view    280
– – design    281
– – dual-specificity    257
– – methylxanthines    247
– – nonselective xanthine    248
– – nonspecific    247
– – therapeutic applications    247
– isoenzymes    244
– – selectivity    248
– N-terminal regulatory domains    244, 245
– phosphate cleavage mechanism    247
– structural information    246
– superfamily    243
– tissue expression    244
PDEs1-11, nonselective inhibitors    248
– characteristics    245
PDE1    272 ff.
– calmodulin binding sites    245, 272
– imidazotriazinone inhibitors    274
– inhibitors    272–275
PDE1/3, dual inhibitors    273
PDE1/5, dual inhibitors    273
PDE2    275 ff.
– inhibitors    275–277
PDE3
– adenine-binding pocket    272
– dual substrate specificity    248
– homology model    271
– inhibitors    247, 259, 269–272
– – selectivity    252
– PDE3A vs. 3B    247

– recognition pocket    271
– upstream conserved regions    259
PDE4    27, 28
– 3D structure    271
– cAMP recognition    246
– cAMP specificity    248
– complex with zardaverine    261
– inhibitors    87, 247, 260, 261
– – catechol-type    259–263
– – heterocyclic scaffolds    266, 267
– – in clinical development    268
– – indazole inhibitors    265
– – masked catechol-type    264
– – privileged structures    266
– – xanthine-based    267
– rolipram binding mode    262
– upstream conserved regions    259
– zardaverine binding mode    262
PDE4/3, inhibitors, dual    268
PDE5
– allosteric site    249
– cGMP recognition    246, 251
– cGMP specificity    248, 249
– inhibitors    249
– – chloromethoxybenzyl    253–255
– – in erectile dysfunction    247
– – indole-type    255–257
– – selectivity    250
– – side effects    259
– – substrate-analogous    249, 252
– – xanthin-type    253
– metal-binding domain    249
– sildenafil binding    250, 251
– splice variants    249
– tadalafil analogs    258
– vardenafil binding    250
– X-ray structure    251
PDE6
– GMP specificity    248, 249
– in vertebrate retina    258
– inhibitors    249, 258, 259
– – selectivity    250
PDE7    277
– inhibitors    277, 278
PDE8    247
PDE8-11, inhibitors    278
PDE9    247
– inhibitors    280
PDE10, inhibitors    279
PDSP    304
D-penicillamine    50
Penicillium wortmannii    203
pentoxyfylline    247, 248
pentoxyfylline    248
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peptide GPCRs    146
peptidomimetics    316, 378
– somastatin analogs    57
performance, of prediction model    337
pergolide    84
peripheral diversity    35
permeability    327, 328
peroxisome proliferator-activated receptor,

see PPAR
perturbation, of biological systems    74
pethidine    46, 47
Pfam database    144
pharma
– market
– – growth    9, 10
– – share    9
– product sales    8, 9
– value chain    170
pharmaceutical
– industry    2, 7, 14, 36, 37, 72, 168, 325
– – expenses    11
– productivity    15, 69
– R&D costs    69
pharmacodynamic profiles    326
pharmacodynamic profiling    371
pharmacogenetics    70
pharmacokinetic profiles    326, 371
pharmacokinetics    70, 330
pharmacological profiling    169
pharmacophore    31, 151
– descriptor    341
– diversity    315
– – space    315
– features    151
– fingerprints    355
– fuzzy, fuzziness    356, 371
– holograms    153
– hypothesis    358
– ligand-based    315
– models    348, 350, 355, 357
– – fuzzy    355
– patterns    23, 370
– points    350, 351
– – in alignment    350
– road map    366, 368
– searches    236
– similarity    348
– – search    350
– types    315, 354
pharmacophore-based diversity    314
pharmacophoric
– attributes    346
– convergence    28
– elements    18, 19

– features    355
– similarity    331
PharmaProjects    141
phenethylamines    52
phenotypes    1, 73, 173, 314
– assay    74
– changes    77
– linking to structures    92
phenprocoumon    43, 60, 61
Philadelphia chromosome    57
phosphatases    17, 115, 117, 325
– binding site comparison    114
– catalytic mechanism    115
– families    115
– inhibitors    23
– number    117
phosphate
– group anchoring    117
– metabolism genes    173
phosphodiesterases, see PDEs
phosphoenolpyruvate carboxykinase    112
phosphomannose isomerase    104
phosphorylation
– mechanisms    115
– of proteins    167
phylogenetic
– analyses    145
– distance    152
– related proteins    394
physicochemical properties    101
– prediction    329, 336
phytoestrogen    395
piclamilast    260
pimobendan    270
PINTS Web service    110
pioglitazone    9, 10, 349
piperoxane    53
PIR superfamilies    144
pKa calculators    329
PKA kinases    122, 196
– 3D structure    194
PKC    57, 59, 212
– modulators    416
PKCβ    191
PKC-412    193
Placket Burman design    306
plasma protein binding    330
plasmin    35
plasmon resonance    292
PLS analysis    294, 295, 306
PNU-96 988    60, 61
Poisson-Boltzmann equation    112
polar surface area    330
– topological, tPSA    330
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polycyclics, natural product-like    419, 429, 430
post-genomic age    162, 405
posttranslational modification    71, 167
potassium channels    221 ff., 230
– 3D structures    224, 227
– activators    227
– – binding site    227
– architecture    224
– blocker    87
– cavity binding site    227
– ion-conducting pathway    224
– ion selectivity    224
– opener    59, 60
– structural data    224
– toxin binding site    227
– voltage-gated    226
potassium ion, coordination geometry    224
potency profile    100
potential pharmacophore points (PPP)    352,

355–357
– fuzziness    358
PPARα    394
PPARγ    394, 395
– agonists    10, 349
– ligand domain    396
PPP, see potential pharmacophore points
PQS database    105
prapimexole    22
Pravachol®    12
preclinical
– candidates    16
– research    15
– – productivity    16
precursor chemotypes    30
prediction
– models    329
– – performance    337
– of frequent hitters    336
– of physicochemical properties    329, 336
predictive
– in-silico models    330
– models, drug-likeness    331
predictivity range of models    335, 337
preference mapping    332
– multivariate    333, 334
preferred
– structures    316, 317, 320
– templates    320
pre-genome era    14, 16
pretazzetines    420
Prevacid®    8
Prilosec®    8
principal component analysis, see PCA
principal components    332, 363

– scores    333
principal properties, in PCA    292
PRINTS database    144, 148
prioritization, of compound sets    337
privileged
– building blocks    161
– chemotypes, ion channels    235, 236
– geometries    315
– GPCR ligands    160
– library    368
– scaffolds    364, 367, 369
– structures    7, 17–22, 30–36, 51, 52, 86, 87,

100, 154, 155, 233, 315, 378
PROCAT database    109
procovulsant    55
Procrit®    8
ProDom database    144
product-based selection methods    342
productivity gap    69, 325
profiles of leads    326
profile-scaling methods    153
promethazine    53, 54
promiscuous
– antagonists    87
– binding    20, 370, 371
– inhibitors    21, 89
– ligands    63, 326, 327, 369, 370
Prontosil rubrum®    47, 48
propafenone    59, 60
– toxicity    43
properties
– COBRA database    345
– distributions    346
– loadings plot    333
– tresholds    345
– value distribution    345
property-based library design    346
propranolol    150
– binding site    157, 158
PROSITE database    144, 148
prostacyclin    45
prostaglandins    394
proteases    16, 17, 32, 110, 168
– function    105
– inhibitors    154, 155, 345
proteasome inhibition    76
protein, proteins
– 3D similarity    400
– 3D structures    97 ff., 130, 290, 379
– – atom type assignment    125
– – caveats    123 ff.
– architecture    131
– binding    330
– – cavity    98

1239vch16.pmd 23.06.2004, 16:32455



456 Subject Index

– – filter    333
– – pockets    101
– cavities, CASTp    104
– classification    110, 145
– code for recognition    75
– crystallization    100, 130
– crystals, packing effects    128
– destabilization by mutation    103
– domain-centered approach    399
– domains    378, 380
– – families    81
– evolutionary aspects    105
– families    98, 131, 134, 315
– – folds    81
– – in genome    17
– flexibility    101, 124
– folds    107
– – and functions    378 ff.
– – number    107, 131, 379
– function    102, 129, 129
– – and sequence homology    379
– – assessment    290
– – modulation    405
– homologs, divergent    386
– kinases    115, 117, 140, 153, 168–172, 191
– – 3D structures    194
– – binding site comparison    114
– – catalytic domains    117
– – conformational flexibility    117
– – history    171
– – number    117
– – see also kinases
– kinase A, see PKA
– kinase C, see PKC
– modeling    15
– mutants    105
– number of molecules    167
– phosphatases    124
– phylogenetically related    394
– pockets    100
– posttranslational modification    167
– quaternary structure, see PQS
– sequence and fold analysis    380
– sequence families    379
– secondary structures    378
– similar folds    386
– specificity vs. function    105
– structural data    97
– structural similarity    377 ff.
– structure determination    101
– structure ontologies    145
– subfamilies    305
– superfamilies    106, 325
– surface    102

– – sampling    107
– targets, number    17
– tyrosine phosphatase 1B, see PTP-1B
protein-protein interactions    117, 405
protein-protein interfaces    103
proteochemometric modeling    292–305
proteochemometrics    289 ff.
– biopolymer description    293
– central approach    291
– cross-terms    293, 294
– definition    290
– large-scale    303- 307
– ligand description    293
– models    292, 296
– principles    290
– structural descriptors    293
proteolytic enzymes    105
proteome    75, 167, 289
proteomics    1, 15, 15, 36, 37, 78, 377
proton pump inhibitors    10
Protonix®    9, 10
Prozac®    12
PSA filter    333
pseudocenters    112
psoriasis    194
psychiatric disorders    53, 147
PTPs
– catalytic domains    121
– ligand selectivity    122
– PTPα    122
– PTP-1B    116–125
– – active site    124, 125
– – crystal structure    121
– – flexibility    124, 125
– – substrate recognition    121
– SHP-1    122
pumafentrine    268, 277
purine CDK inhibitors    123
purine scaffold-based library    389
purvalanol    183
– A and B    123
– – CDK selectivity    215
– B    173
– – 3D structure of CDK2 complex    215
pyrazoles    19
pyridoxal phosphate binding site    110
pyrrolidines    19

q
QSAR    85, 290–292, 302, 329, 343
– DHFR inhibitors    85
QSPR    329
– models, drugs and nondrugs    83
QT syndrome, long    221
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qualifying range of drug database properties
82

quantitative structure-activity relationships,
see QSAR

quetiapine    9
quinalapril    28, 29

r
R&D
– costs    11, 69
– productivity    12
– timelines    10
R-112    193
R-1487    194
rabeprazole    9, 10
radar plots    300, 301
radioligand binding    292
rapamycin    173, 406, 407
RasMol    126, 127
Rate4Site program    106
rational drug discovery    70
raw data transformation    359
reaction center shielding    102
reactive metabolites    328
RECAP procedure    161, 234, 235
receptor
– classes in COBRA database    344
– kinases    122
– ligands, deconvolution    155
– tyrosine kinases    81, 383
– – inhibitors    381
receptor-bound conformation    353
recognition
– features    98, 101
– motifs    15, 18
– principles    19, 31
– templates    108
recombinate procedure    12
recurring
– fragments    25
– structural motifs    22
– substructures    21
reduced graphs    151
reductionism of complex systems    330
reductive amination    160
reference
– and target definition    342
– domain    400
– protein panel    87
regulatory binding sites    103
relevant diversity    316
Relibase+    111
Remicade®    9, 10
renin inhibitors    35

renin-angiotensin system    28
research in pharmaceutical industry    169
response triggering    104
restriction endonucleases    110
retinoic acids    394
retrospective
– screening    347, 348, 355, 358
– virtual screening    353, 354, 358
retrosynthetic
– analysis    408
– reactions    161, 234, 235
reverse chemical genetics    74
reverse-turn mimics    31
RGD motif    56
rheumatoid arthritis    50, 193, 194
ribose-binding pocket, kinases    205
RICK    186
rigid conformation    317
risk of failure, in drug discovery    72
risperidone    150
Rituxan®    9, 10
rituximab    9, 10
RO-16814    150
Ro-61-8048    22
Ro-320-1195    194
rofecoxib    8, 23, 356, 358
roflumilast    260, 261, 264
rolipram    259–261, 277, 278
– binding, low- and high-affinity    260
– binding mode, to PDE4    262
roscovitine    123
rosiglitazone    9, 10, 396
rotatable bonds    314
roughness, of protein surfaces    103
RS-14203    267
RS-504393    154
ruboxistaurin    191–193
rule-of-five    17, 99, 328, 344–346

s
σ1 receptor ligands    64
S 09947    232
S 12564    232
S 99176    232
S4, S5, S6 helices, ion channels    223, 224
saccharin, discovery    45
Saccharomyces cerevisiae    173
safety margins    330
saframycin A analogs    416
– enantioselective synthesis    417
saframycins, antiproliferative    416
saluretic sulfonamides    48
Sammon mapping    364
SAR homology concept    379
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SARAH    158
– SAR homology    141
SB 203580    171, 178, 179, 183–186, 212
– binding to p38 and JNK-3    213
– bound proteins, analysis    185, 186
SB 214857    56
SB 218665    23
SB 223245    56
SB 242235    178
SB 265123    26
SC-558    356
SC-19220    26
SC-80036    193
scaffold hopping    149, 151, 155, 341,

348–351
scaffolded combinatorial library    27
scaffolds    22, 154
– privileged    364, 367, 369
scaling
– methods    351, 362
– multidimensional    332
SCH 444877    253
schizophrenia    46, 54
SCI-323    194
SCIO-469    193
scissile peptide bond    32
SCOP    145
– protein classification    110
– superfamilies    110
scores plot of molecules    333
scorpion toxin binding    226
screening    14
– automation    169
– collection, ion channels    239
– departments    13
– hits, promiscuous    20
– libraries    77
– retrospective    347, 348, 353, 354
seasickness    53
second messengers cAMP and cGMP    243
secondary
– metabolites    378
– structures of proteins    378
γ-secretase inhibitor    87
sedative side effect of antihistaminics    53
Seldane®    12
selection
– criteria    342
– methods, product-based    342
selective optimization of side activities,

see SOSA
selectivity
– 5-HT affinities    56
– dogma, kinases    212

– integrin affinities    56
– optimization    55
– profiles    100, 120
– somatostatin receptor subtypes    58
– uptake inhibitors    57
self-organizing maps (SOM)    359, 366–369
Sepharose beads    183
sequence
– and fold analysis    380
– comparison    108
– conservation    130
– conserved elements    380
– families    378
– homology    379
– – of target proteins    97
– mapping    99
– motifs of GPCRs    148
– similarities    115, 157
– – lack of    386
– – searches    148
– space    119
sequential insertions and deletions    100
serendipitous drug discoveries    43, 44, 65
serine proteases    32, 113, 140
– inhibitors    34, 36, 369
serine/threonine kinases    86
Seroquel®    9
serotonin    150, 156
– receptors    298, 301
– – ligands    369, 370
– uptake    57
sertindole    300, 369, 370
SET domain    107
SH2 domains    32
SH3 domains    110
shape description    82
SHAPES NMR library    155
shapes, of binding pockets    118
shikimic acid    418
side activities, selective optimization,

see SOSA
side effects
– clinical observation    47
– observation    65
– of drugs    43
side chains
– flexibility    127, 128
– of drugs    82, 155
– orientations, Asn and Gln    127
– rotamers    127, 128
sigma receptor    172
sigmoidal transfer functions    360
signal transduction    114, 405
– pathways    191
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signaling pathways    145
siguazodan    270
sildenafil    50, 51, 249, 250, 254, 261
– binding to PDE5    250, 251
– blue vision    259
similar
– folds    386
– ligands and targets    141, 149
– pharmacophores    325
– property searches    111
– shape searches    111
– structural motifs    108
– targets    325
similarity
– chemical and biological    84
– database searching    229
– metrics    149, 342, 348, 353
– of protein structures    377 ff.
– ranking    149, 347, 349
– relationships    325
– score    152
– searches    149, 151, 228, 233, 236, 346,

347, 354, 356, 371
– – CATS    349
– – cheminformatics-based    142
– – performance    153
– – pharmacophore    350
Similog centroid method    153
Similog keys    151, 152
simvastatin    8
single nucleotide polymorphisms,

SNPs    289
siRNA    74, 78
site-specific ligand fragments    157
SJA-6063    26
skeletal diversity    90
– natural products    430
small molecule
– annotation    92
– drug discovery    72
– probes    406
– tools    77
small molecule-protein interactions

74, 75
SMART database    144
SMILES    330
SMoG dataset    119
sodium channels    222
– voltage-gated    223, 226
soft
– filters    326, 329, 333
– selection    346
solid-phase chemistry    18, 19, 383 f., 406,

414

solubility    327, 328, 342
– prediction    330
solution phase chemistry    406
solvent-accessible surface    113
SOM cluster analysis    370
somatostatin    58, 316
– analogs    57
– – receptor subtype selectivity    58
– receptors    146, 148, 157
– – subtypes    57, 58
SOSA approach    59
sotalol    238
space, chemical    341 ff.
sphingosine-1-phosphate    146
SPIKET motif    364
spiropiperidines    154
split-and-mix approach    425
split-pool synthesis    421
Sporanox®    12
SPTREMBL database    146
SR 141716    23
src kinase    124
– inhibitor    87
SSR-125543    22
statins    86
statistical experimental design    306
staurosporine    124
– analogs    200
stereocontrolled synthesis    406, 419, 429 f.
steroid, steroids    20, 52, 345, 370
– hormones    54, 394
STI 571, see imatinib
stroke    45
structural
– binding motifs    86
– biology    130
– – of binding sites    101
– conservatism of nature    379, 380
– diversity of nature    379
– families    144
– frameworks    378
– genomics    98, 130, 131
– motifs
– – searches for    108
– – similar    108
– scaffolds    19
– stability of proteins    103
structure-activity relationships    37, 93, 140
structure-based
– clustering    85
– design    12, 77, 78, 169
– lead finding    230
– molecular design    15
structure-selectivity relationships    37
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SU-11248    193
SU-6668    193
subarachnoid hemorrhage    222
subpocket similarity    130
subsets
– activity-enriched    353
– selection    85
– – by affinity fingerprinting    88
substance P    71, 72
– antagonists    71
substrate-analogous inhibitors, PDE5    252
substructure
– elements    21
– filters    315
– preferred    320
– searching    233
– similarity    161
subtilisin    113
success rate of HTS    13
sulfaguanidine    48, 49
sulfamidochrysoidine    47, 48
sulfanilamide    47–49
sulfonamides    46–48
– antidiabetic    49
– diuretics    46, 48
sulfotransferases    390
– catalytic mechanism    392
– inhibitors    389
– PAPS binding    391, 392
SuMo approach    111, 113
superoxide dismutase    113
supersites    380
SuperStar    108
support vector machines (SVM)    359, 361
surface
– area    103
– patches    112
– properties    102
– topography atlas    104
surgical shock prevention    53
survival advantage    378
SVM classifiers, training    361
S-warfarin    44
SwissProt    142, 146
– nomenclature    147
SynGen program    91
synthesis
– automated parallel    343
– biomimetic    420
– design    91
– diversity-oriented    406, 418–420, 428–430
– stereocontrolled    429
syphilis    46
systems biology    71

t
T1 ribonuclease    108
tadalafil    256–259
– analogs    258
– selectivity    259
TAE/RECON descriptors    119
Tagamet®    11, 12
talopram    57
tamoxifen    394
Tanimoto
– distance    89, 152
– histogramm    83
– index    151, 314
– similarity    82–84
Tarceva®    191–193
target, targets
– affinities    14
– assessment    98
– classes    4, 15, 17, 140, 144, 154
– – know-how    16
– deconvolution    77
– definition    342
– discovery    139, 161
– – by bioinformatics    145
– families    7 ff., 16, 19, 27, 31, 32, 36, 37,

43, 137 ff., 155, 168, 371, 379
– – approach    169
– – clusters    97
– – exploration    139, 239
– – preference    366
– family-based
– – drug discovery    140
– – libraries    100, 367
– family-directed masterkeys    7 ff., 36
– family-specific
– – libraries    345
– – SAR    371
– hopping    27
– identification    74–77, 139, 141, 174
– number of    86
– profiles    19
– – clean    24
– proteins    21, 24, 97, 130
– – categorization    399
– – estimated number    18
– – related    99
– selection    98
– selectivity    32
– similarity    30
– structure    16
– subfamilies    145, 151, 157
– – conserved molecular recognition    149
– validation    3, 14, 72–75, 149, 180, 186, 381
– – roadmap    73
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– – strategies    173
target-based drug discovery    139
target-guided ligand assembly    89
target-selective pharmaceuticals    307
target-specific molecules    172, 377
target-to-product    170
targeted libraries, design    315
taxol    406, 407
T-cell activation    221, 277
TCH-346    26
teleocidins    415
templates    18, 19
– design    313 ff., 319
– – ligand-based    315
– preferred    320
– search    108
– types    318
Tentagel    418
terfenadine    221
– cardiotoxicity    44
tertiary amine
– chemotype    148, 149
– combinatorial libraries    153, 158
– prototypes    160
TESS template search    108, 109, 113
tetracyclic guanines    252, 274
tetrahydro-β-carboline hydantoins    407–409
tetrahydroisoquinolines    19
– library    427
tetrodotoxin binding    226
THEMATICS, enzyme active sites    104
theobromine    247, 248
theophylline    247, 248
therapeutic
– class information    141
– discoveries    43
– hypothesis    14
– target classes    344
thermal motion of side chains    124
thermolysin    245, 387 f.
– catalytic domain    389
thioredoxins    108
thioridazine    234
thiouracil    48
thioureas    48
three-dimensional (3D)
– conformers    350
– database searching    229, 231
– pharmacophores    233, 355
– similarity, domains    399, 400
– skeletal diversity, natural products    430
– structural architecture, natural products

406
– structural information    101

– structures
– – kinases    210, 211
– – proteins    379
three-binding sites hypothesis    156, 157
thrombin    32
thrombocytes    45
thrombosis protection, by ASS    45
thromboxane    45
thyroid hormones    394
– biosynthesis    48, 49
– receptor    78
Tie-2    81
– receptor    381–383
tifluadom    18, 55
TIGRFAMs database    144
TIM barrel fold    115
tiospirone    301
tipranavir    60, 61
titration curves, theoretical    104
tolafentrine    268
tolbutamide    49, 50
tool compound    395
top-20 drug side chains    82
top-42 drug frameworks    82
topological
– CATS descriptor    366
– descriptors    153
– distances    352
– features    362
– framework analysis    234
– information encoding    351
– pharmacophore descriptor    368
Tor protein signaling    173
Tor1p, Tor2p kinases    173
toxicity
– mechanism- vs. compound-based    178
– prediction    329, 330
toxicology    70
tPSA    330
tranquilizer    55
transcription factors    393
transcriptional profiles    173, 174
transcriptome analysis    172
transition state stabilization    105
7 transmembrane (TM) domains    146, 157
– cluster analysis    147
transporter ligands    52
transposition hypothesis    148
trapoxin    76
trastuzumab    171
travel sickness    53
tricyclics    24, 26
tridemorph    64
triosephosphate isomerase    104, 115
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troglitazone    395
true positives    336, 337
trypanothione reductase    112
trypsin 3D structures    127, 128
trypsin digestion    184, 185
trypsin-like proteases    109
T-type calcium channel    341
tubulin    409
Tufts University data    10
turn mimic    31
β turns    316
– constraints    316
– mimics    318, 320
– peptide conformation    22
two-dimensional (2D)
– fingerprint descriptors    86
– similarity measures    83
– topological descriptors    151, 152
tyrosine kinases    59, 86
tyrphostins    199

u
U 54924    232
ubiquitin ligase EDD    177
ubiquitination, of proteins    167
UCN-01    193
UCRs, PDE3, PDE4    259
Ugi reaction products    343
uHTS, ultra HTS    314
UK 342664    250
UK 84149    26
UK 92480, see sildenafil
understanding gene function    168
unexpected side effects    44
Unity fingerprints    84, 151, 152
unsupervised methods    359, 367
unwanted features    326
upstream conserved region, see UCR
uptake inhibitors    54
UR-12947    22
Ure2p protein    77, 78
uretupamine    77, 78
uridylate kinase    392, 393
urokinase    35
urotensin receptor    146
US drug approvals    70
US National Cancer Institute (NCI)    92

v
V-11294A    266
validated targets    98
validation library    174, 175
valsartan    9, 10
value chain in pharma    170

van der Waals contacts    102, 103
vardenafil    249, 250, 261, 280
– binding to PDE5    250
– PDE6 inhibition    259
Vasotec®    12
vatalanib    191–193
vector comparison, pairwise    350
VEGFR-2    381–383
VEGFR-3    81
veratridine binding    226
vesnarinone    227
vHTS    99
viable intellectual property    11
Viagra®    50, 51, 250
Videx® (ddI)    12
viloxazine    59, 60
vinblastine    406, 407
vinpocetine    273
Vioxx®    8, 12, 23
virtual
– chemistry space    314, 350, 371
– combinatorial libraries    342, 365–369
– compounds    342
– database screening    30
– de novo synthesis    342
– HTS, see vHTS
– libraries    342, 347, 364, 366
– – construction    347
– – design, ion channels    236
– – enumeration    367
– mutagenesis    103
– organic chemistry, size    13
– screening    89, 233, 235, 341, 347, 351,

355, 359, 360, 371
– – early phase    354
– – retrospective    353, 354, 358
ViSOM    369, 370
visual signal transduction    258
vitamin D
– analogs    78
– receptor    78
vitamin D-resistant rickets    78
vitamin K
– antagonists    59, 61
– biosynthesis    43
vitronectin receptor    56
VolSurf descriptors    330, 331
voltage-gated
– calcium channels    230
– potassium channels    226
– sodium channels    223, 226
voltage-sensor paddle, ion channels    224
VSVG-GFP movement    421
VX-702    193
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w
warfarin    43
warhead    32, 35
water retention    221
WDI database    83, 141, 161, 328, 343
Web interfaces    334
WebFEATURE    109
Wilson’s disease    50
WIN 61626    273, 275
WIN 61691    273, 275
WIN 63291    270
World Drug Index, see WDI
wortmannin    203
– binding to PI3K    204
WY-41770    26

x
xanthine-type inhibitors, PDE4, PDE5   253, 267
X-ray
– crystallography    100, 124
– data collection    130
– structures, kinases    210, 211

y
YM-976    267
YM-58997    267
yohimbine    301

z
z scale descriptors    292, 296
Z-338    22
Zantac®    12
zaprinast    51, 249, 250, 273, 277, 279
zardaverine
– binding mode, PDE4    262
– PDE4 complex    261
ZD-6474    193
zinc metalloproteases    114, 140, 387
ZK-258594    193
Zocor®    8
Zoloft®    12
Zyprexa®    24
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