

Mastering Bitcoin

Andreas M. Antonopoulos

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Preface

Writing the Bitcoin Book
I first stumbled upon bitcoin in mid-2011. My immediate reaction was more or less “Pfft! Nerd
money!” and I ignored it for another 6 months, failing to grasp its importance. This is a reaction which
I have seen repeated among many of the smartest people I know, which gives me some consolation.
The second time I came across bitcoin in a mailing list discussion, I decided to read the white paper
written by Satoshi Nakamoto, to study the authoritative source and see what it was all about. I still
remember the moment I finished reading those 9 pages, when I realized that bitcoin was not simply a
digital currency, but a network of trust that could also provide the basis for so much more than just
currencies. That realization: “This isn’t money, it’s a de-centralized trust network,” started me on a
four month journey to devour every scrap of information about bitcoin I could find. I became
obsessed and enthralled, spending twelve or more hours each day glued to a screen, reading, writing,
coding and learning as much as I could. I emerged from this state of fugue, more than 20 lbs lighter
from lack of consistent meals, determined to dedicate myself to working on bitcoin.
Two years later, after creating a number of small startups to explore various bitcoin-related services
and products, I decided that it was time to write my first book. Bitcoin was the topic that had driven
me into a frenzy of creativity, consumed my thoughts and is the most exciting technology I have
encountered since the Internet. It was now time to share my discovery of this amazing technolgy and
my passion with a broader audience. This is the bitcoin book.

Intended Audience
This book is mostly intended for coders. If you can use a programming language, this book will teach
you how cryptographic currencies work, how to use them and how to develop software that works
with them. The first few chapters are also suitable as an in-depth introduction to bitcoin for non-
coders - those trying to understand the inner workings of bitcoin and cryptocurrencies. The examples
are illustrated in Python and on the command-line of a Unix-like operating system such as Linux.

Early-Release Note
The early release version of the book is a raw and rough draft and will change regularly. New
chapters will be added as they are drafted and there will be plenty of changes to the content,
examples and diagrams. There will be factual and technical errors in the early release and some of
the examples may not work or refer to obsolete versions of the code. Nevertheless, I hope you will
enjoy the content and find it useful. I also hope that you will take the opportunity to “fork” the source
code of the book and provide feedback by creating a pull request or submitting a patch. I present this
work in the spirit of Cunningham’s Law, named after the inventor of the wiki, Ward Cunningham:

The best way to get the right answer on the Internet is not to ask a question, it’s to post the wrong
answer
I hope you can help me find and publish the “right answer” by the time this book is ready to print.

Why Are There Bugs On The Cover?
The Leafcutter Ant is a species that exhibits highly complex behavior in a colony super-organism, but
each individual ant operates on a set of simple rules driven by social interaction and the exchange of
chemical scents (pheromones). Per Wikipedia: “Next to humans, leafcutter ants form the largest and
most complex animal societies on Earth.” Leafcutter ants don’t actually eat leaves, but rather use them
to farm a fungus, which is the central food source for the colony. Get that? These ants are farming!
While ants form a caste-based society and have a queen for producing offspring, there is no central
authority or leader in an ant colony. The highly intelligent and sohpisticated behavior exhibited by a
multi-million member colony is an emergent property from the interaction of the individuals in a
social network.
Nature demonstrates that de-centralized systems can be resilient and can produce emergent
complexity and sophistication without the need for a central authority, hierarchy or complex parts.
Bitcoin is a highly sophisticated de-centralized trust network that can support a myriad of financial
processes. Yet, each node in the bitcoin network follows a few simple mathematical rules. The
interaction between many nodes is what leads to the emergence of the sophisticated behavior, not any
inherent complexity or trust in any single node. Like an ant colony, the bitcoin network is a resilient
network of simple nodes following simple rules that together can do amazing things without any
central coordination.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements such as
variable or function names, databases, data types, environment variables, statements, and
keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined by context.

T IP
This icon signifies a tip, suggestion, or general note.

WARNING
This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if example code is offered with this book,
you may use it in your programs and documentation. You do not need to contact us for permission
unless you’re reproducing a significant portion of the code. For example, writing a program that uses
several chunks of code from this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require permission.
We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: “Book Title by Some Author (O’Reilly). Copyright 2012 Some
Copyright Holder, 978-0-596-xxxx-x.”
If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers expert content in both book and
video form from the world’s leading authors in technology and business.
Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem solving,
learning, and certification training.
Safari Books Online offers a range of product mixes and pricing programs for organizations,
government agencies, and individuals. Subscribers have access to thousands of books, training
videos, and prepublication manuscripts in one fully searchable database from publishers like
O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams,
Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann,
IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals

& Bartlett, Course Technology, and dozens more. For more information about Safari Books Online,
please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)
We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at http://shop.oreilly.com/product/0636920032281.do.
To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.
For more information about our books, courses, conferences, and news, see our website at
http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Quick Glossary
This quick glossary contains many of the terms used in relation to bitcoin. These terms are used
throughout the book, so bookmark this for a quick reference and clarification.

address (aka public key)
A bitcoin address looks like 1DSrfJdB2AnWaFNgSbv3MZC2m74996JafV, they always start
with a one. You can have as many as you like, share them so people can send you coins.

bitcoin
The name of the currency unit (the coin), the network and the software

block
A grouping of transactions, marked with a timestamp, and a fingerprint of the previous block. The
block header is hashed to find a proof-of-work, thereby validating the transactions. Valid blocks
are added to the main blockchain by network consensus.

blockchain
A list of validated blocks, each linking to its predecessor all the way to the genesis block.

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://shop.oreilly.com/product/0636920032281.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

confirmations
Once a transaction is included in a block, it has “one confirmation”. As soon as another block is
mined on the same blockchain, the transaction has two confirmations etc. Six or more
confirmations is considered final.

difficulty
A network-wide setting that controls how much computation is required to find a proof-of-work.

difficulty target
A difficulty at which all the computation in the network will find blocks approximately every 10
minutes.

difficulty re-targetting
A network-wide re-calculation of the difficulty which occurs once every 2106 blocks and
considers the hashing power of the previous 2106 blocks.

fees
An excess amount included in each transaction as a network fee or additional reward to the miner
who finds the proof-of-work for the new block. Currently 0.5 mBTC minimum.

hash
A digital fingerprint of some binary input.

genesis block
The first block in the blockchain, used to initialize the crypto-currency

miner
A network node that finds valid proof-of-work for new blocks, by repeated hashing

network
A peer-to-peer network that propagates transactions and blocks to every bitcoin node on the
network.

proof-of-work
A piece of data that requires significant computation to find. In bitcoin, miners must find a
numeric solution to the SHA256 algorithm that meets a network wide target, the difficulty target.

reward
An amount included in each new block as a reward by the network to the miner who found the
proof-of-work solution. It is currently 25BTC per block.

secret key (aka private key)
The secret number that unlocks bitcoins sent to the corresponding address.

transaction
In simple terms, a transfer of bitcoins from one address to another. More precisely, a transaction
is a signed data structure expressing a transfer of value. Transactions are transmitted over the
bitcoin network, collected by miners and included into blocks, made permanent on the blockchain.

wallet
Software that holds all your addresses. Use it to send bitcoin and manage your keys.

Chapter 1. Introduction

What is Bitcoin?
Bitcoin is collection of concepts and technologies that form the basis of a digital money ecosystem. It
includes a currency, with units called bitcoins, that are used to store and transmit value among
participants in the bitcoin network. Bitcoin users communicate with each other using the bitcoin
protocol, primarily via the Internet, although other transport networks can also be used. The bitcoin
protocol stack, available as open source software, can be run on a wide range of computing devices,
including laptops and smartphones, making the technology easily accessible.
Users can transfer bitcoin over the network to do just about anything that can be done with
conventional currencies, such as buy and sell goods, send money to people or organizations, or extend
credit. Bitcoin technology includes features, based on encryption and digital signatures, to ensure the
security of the bitcoin network. Bitcoins can be purchased and sold, exchanged for other currencies at
a floating exchange rate, at specialized currency exchanges. Bitcoin in a sense is the perfect form of
money for the Internet: fast, secure, borderless.
Unlike traditional currencies, bitcoins are entirely virtual. There are no physical coins, or even
digital coins per se. The coins are implied in transactions which transfer value from sender to
recipient. Users of bitcoin own keys which allow them to prove ownership of transactions in the
bitcoin network, unlocking the value to spend it and transfer it to a new recipient. Those keys are
stored in a digital wallet on each user’s computer. Possession of the key that unlocks a transaction is
the only prerequisite to spending bitcoins, putting the control entirely in the hands of each user.
Bitcoin is a fully-distributed, peer-to-peer system, and as such there is no “central” server or point of
control. Bitcoins are created through a process called “mining”, which involves looking for a solution
to a difficult problem. Any participant in the bitcoin network (i.e. any device running the full bitcoin
protocol stack) may operate as a miner, using their computer’s processing power to attempt to find
solutions to this problem. Every 10 minutes on average, a new solution is found by someone who then
is able to validate the transactions of the past 10 minutes and is rewarded with brand new bitcoins.
Essentially, the currency-issuance function of a central bank and the clearing function are de-
centralized and turned into a global competition.
The bitcoin protocol includes built-in algorithms that regulate the mining function across the network.
The difficulty of the problem that miners must solve is adjusted dynamically so that, on average,
someone finds a correct answer every 10 minutes regardless of how many miners (and CPUs) are
working on the problem at any moment. The protocol also halves the rate at which new bitcoins are
created every 4 years, and limits the total number of bitcoins that will be created to a fixed total of 21
million coins. The result is that the number of bitcoins in circulation closely follows an easily
predictable curve that reaches 21 million by the year 2140. As a result, the bitcoin currency is
deflationary and cannot be inflated by “printing” new money above and beyond the expected issuance

rate.
Behind the scenes, bitcoin is also the name of protocol, a network and a distributed computing
innovation. The bitcoin currency is really only the first application of this invention. As a developer, I
see bitcoin as akin to the Internet of money, a network for propagating value and securing the
ownership of digital assets via distributed computation. There’s a lot more to bitcoin than first meets
the eye.
In this chapter we’ll get started by explaining some of the main concepts and terms, getting the
necessary software and using bitcoin for simple transactions. In following chapters we’ll start
unwrapping the layers of technology that make bitcoin possible and examine the inner workings of the
bitcoin network and protocol.

History of Bitcoin
The emergence of viable digital money is closely linked to developments in cryptography. This is not
surprising when one considers the fundamental challenges involved with using bits to represent value
that can be exchanged for goods and services. Two fundamental questions for anyone accepting
digital money, are:

1. Can I trust the money is authentic and not counterfeit?

2. Can I be sure that no one else can claim that this money belongs to them and not me? (aka the
“double-spend” problem)

Issuers of paper money are constantly battling the counterfeiting problem, by using increasingly
sophisticated papers and printing technology. Physical money addresses the double-spend issue
easily because the same paper note cannot be in two places at once. Of course, conventional money is
also often stored and transmitted digitally. In this case the counterfeiting and double-spend issues are
handled by clearing all electronic transactions through central authorities that have a global view of
the currency in circulation. For digital money, which cannot take advantage of esoteric inks or
holographic strips, cryptography provides the basis for trusting the legitimacy of a user’s claim to
value. Specifically, cryptographic digital signatures enable a user to sign a digital asset or transaction
proving the ownership of that asset. With the appropriate architecture, digital signatures also can be
used to address the double-spend issue.
In the late 1980s, when cryptography started becoming more broadly available and understood, many
researchers began trying to use cryptography to build digital currencies. These early digital currency
projects issued digital money, usually backed by a national currency or precious metal such as gold.
While these earlier digital currencies worked, they were centralized and as a result they were easy to
attack by governments and hackers. Early digital currencies used a central clearinghouse to settle all
transactions at regular intervals, just like a traditional banking system. Unfortunately, in most cases
these nascent digital currencies were targeted by worried governments and eventually litigated out of
existence. Some failed in spectacular crashes when the parent company liquidated abruptly. To be

robust against intervention by antagonists, be they legitimate governments or criminal elements, a
digital currency needed to avoid the use of a central currency issuing or transaction clearing authority
that could be a single point of attack. Bitcoin is such a system, completely de-centralized by design,
lacking any central authority or point of control that can be attacked or corrupted.
Bitcoin represents the culmination of decades of research in cryptography and distributed systems and
includes four key innovations brought together in a unique and powerful combination. Bitcoin consists
of:

A de-centralized peer-to-peer network (the bitcoin protocol);

A public transaction ledger (the blockchain);

A de-centralized mathematical and deterministic currency issuance (distributed mining), and;

A de-centralized transaction verification system (transaction script)

Bitcoin was invented in 2008 by Satoshi Nakamoto with the publication of a paper titled “Bitcoin: A
Peer-to-Peer Electronic Cash System”. Satoshi Nakamoto combined several prior inventions such as
b-money and HashCash to create a completely de-centralized electronic cash system that does not
rely on a central authority for settlement and validation of transactions. The key innovation was to use
a Proof-Of-Work algorithm to conduct a global “election” every 10 minutes, allowing the de-
centralized network to arrive at consensus about the state of transactions. This elegantly solves the
issue of double-spend, a weakness of digital money, where a single currency unit can be spent twice.
Previously, the double-spend problem was solved by clearing all transactions through a central
clearinghouse.
The bitcoin network started in 2009, based on a reference implementation published by Nakamoto
and since revised by many other programmers. During the first four years of operation, the network
has grown to include an enormous amount of Proof-Of-Work computation, thereby increasing its
security and resilience. In 2013, the total market value of bitcoin’s primary monetary supply measure
(M0) is estimated at more than 10 billion US dollars. The largest transaction processed by the
network was $150 million US dollars, transmitted instantly and processed without any fees.
Satoshi Nakamoto withdrew from the public in April of 2011, leaving the responsibility of
developing the code and network to a thriving group of volunteers. The name Satoshi Nakamoto is an
alias and the identity of the person or people behind this invention is currently unknown. However,
neither Satoshi Nakamoto nor anyone else exerts control over the bitcoin system, which operates
based on fully transparent mathematical principles. The invention itself is groundbreaking and has
already spawned new science in the fields of distributed computing, economics and econometrics.

A SO LU T IO N TO A D IST R IB U T ED C O M PU T IN G PR O B LEM
Satoshi Nakamoto’s invention is also a practical solution to a previously unsolved problem in distributed computing, known as the
Byzantine Generals problem. Briefly, the problem consists of trying to agree on a course of action by exchanging information over
an unreliable and potentially compromised network. Satoshi Nakamoto’s solution, which uses the concept of Proof-of-Work to

achieve consensus without a central trusted authority represents a breakthrough in distributed computing science and has wide
applicability beyond currency. It can be used to achieve consensus on decentralized networks for provably-fair elections, lotteries,
asset registries, digital notarization and more.

Bitcoin Uses, Users and Their Stories
Bitcoin is a technology, but it expresses money which is fundamentally a language for exchanging
value between people. Let’s look at the people who are using bitcoin and some of the most common
uses of the currency and protocol through their stories. We will re-use these stories throughout the
book to illustrate the real-life uses of digital money and how they are made possible by the various
technologies that are part of bitcoin.

North American Retail
Alice lives in Northern California, in the Bay Area. She has heard about bitcoin from her techie
friends and wants to start using it. We will follow her story as she learns about bitcoin, acquires
some and then spends some of her bitcoin to buy a cup of coffee at Bob’s Cafe in Palo Alto. This
story will introduce us to the software, the exchanges and basic transactions from the perspective
of a retail consumer.

Offshore Contract Services
Bob, the cafe owner in Palo Alto is building a new website. He has contracted with an Indian
web developer, Gopesh, who lives in Bangalore India. Gopesh has agreed to be paid in bitcoin.
This story will examine the use of bitcoin for outsourcing, contract services and international
wire transfers.

Charitable Donations
Eugenia is the director of a children’s charity in the Philippines. Recently she has discovered
bitcoin and wants to use it to reach a whole new group of foreign and domestic donors to
fundraise for her charity. She’s also investigating ways to use bitcoin to distribute funds quickly
to areas of need. This story will show the use of bitcoin for global fundraising across currencies
and borders and the use of an open ledger for transparency in charitable organizations.

Remittances and Reverse Remittances
Gopesh, the Indian web developer, is supporting his daughter Radhika who is a student in Essex,
England. Gopesh is now considering sending Radhika bitcoin, eliminating the fees he used to pay
for remittances. This story will demonstrate the use of local exchange and peer-to-peer exchanges
for international remittances with bitcoin.

Import/Export
Mohammed is an electronics importer in Dubai. He’s trying to use bitcoin to buy electronics from
the USA and China for import into the U.A.E., to accelerate the process of payments for imports.
This story will show how bitcoin can be used for large business-to-business international
payments tied to physical goods.

Mining for Bitcoin
Jing is a computer engineering student in Shanghai. He has built a “mining” rig to mine for
bitcoins, using his engineering skills to supplement his income. This story will examine the
“industrial” base of bitcoin, the specialized equipment used to secure the bitcoin network and
issue new currency.

Peer Lending
Zenab is a shopkeeper in Kisumu, Kenya and needs a loan to buy new inventory for her shop.
With the assistance of a micro-lending organization, she is financing a micro-loan in bitcoin from
individual lenders all across the world. This story will demonstrate the potential for bitcoin to
offer peer-to-peer micro-lending by aggregating small investments, matching them with borrowers
in developing nations.

Each of the stories above is based on real people and real industries that are currently using bitcoin to
create new markets, new industries and innovative solutions to global economic issues.

Getting Started
To join the bitcoin network and start using the currency, all a user has to do is download an
application. Since bitcoin is a standard, there are many implementations of the bitcoin client
software. There is also a “reference implementation”, also known as the Satoshi Client, which is
managed as an open source project by a team of developers and is derived from the original
implementation written by Satoshi Nakamoto.
The three primary forms of bitcoin clients are:

Full Client
A full client, or “full node” is a client that stores the entire history of bitcoin transactions,
manages the user’s wallets and can initiate transactions directly on the bitcoin network. This is
similar to a standalone email server, in that it handles all aspects of the protocol without relying
on any other servers or third party services.

Light Client
A lightweight client stores the user’s wallet but relies on third-party owned servers for access to
the bitcoin transactions and network. The light client does not store a full copy of all transactions
and therefore must trust the third party servers for transaction validation. This is similar to a
standalone email client that connects to a mail server for access to a mailbox, in that it relies on a
third party for interactions with the network.

Web Client
Web-clients are accessed through a web browser and store the user’s wallet on a server owned
by a third party. This is similar to webmail, in that it relies entirely on a third party server.

M O B ILE B IT C O IN
Mobile clients, for smartphones such as those based on the Android system can either operate as full clients, light clients or web
clients. Some mobile clients are synchronized with a web or desktop client, providing a multi-platform wallet across multiple devices
but with a common source of funds. See (to come)

The choice of bitcoin client depends on how much control the user wants over funds. A full client
will offer the highest level of control and independence for the user, but in turn put the burden of
backups and security on the user. On the other end of the range of choices, a web client is the easiest
to setup and use, but the security and control is shared by the user and the owner of the web service,
which introduces counterparty risk. If a web-wallet service is compromised, as many have been, the
users can lose all their funds. Conversely, if a user has a full client without adequate backups, they
may lose their funds through a computer mishap.
For the purposes of this book, we will be demonstrating the use of a variety of bitcoin clients, from
the reference implementation (the Satoshi client) to web-wallets. Some of the examples will require
the use of the reference client, which exposes APIs to the wallet, network and transaction services. If
you are planning to explore the programmatic interfaces into the bitcoin system, you will need the
reference client.

Quick Start - Web Wallet
A web-wallet is the easiest way to start using bitcoin, and is the choice of Alice who we introduced
in Bitcoin Uses, Users and Their Stories. Alice is not a technical user and only recently heard about
bitcoin from a friend. She starts her journey by visiting the official website bitcoin.org, where she
finds a broad selection of bitcoin clients. Following the advice on the bitcoin.org site, she chooses a
web-wallet by blockchain.info a popular hosted-wallet service. Following a link from bitcoin.org,
she opens the blockchain.info wallet page at https://blockchain.info/wallet and selects “Start a New
Wallet”. To register her new wallet, she must enter an email address, a password and prove that she
is a human by completing a CAPTCHA test.

WARNING
When creating a bitcoin wallet you will need to provide a password or passphrase to protect your wallet. There are many
bad actors attempting to break weak passwords, so take care to select one that cannot be easily broken. Use a combination
of upper and lower-case characters, numbers and symbols. Avoid personal information such as birthdates or names of
sports teams. Avoid any words commonly found in dictionaries, in any language. If you can, use a password generator to
create a completely random password, at least 12 characters in length. Remember: bitcoin is money and can be instantly
moved anywhere in the world - that makes it easy to steal and disappear.

Once Alice has completed the registration form, she is presented with a Wallet Recovery Mnemonic.
This is a series of words that can be used to reconstruct her wallet in case she loses the password or
account details. Following the instructions on screen, Alice copies the words onto paper, locking it
away in a secure location.

https://blockchain.info/wallet

Figure 1-1. Blockchain.info - Wallet Recovery Mnemonic

A few seconds later, Alice can start using her new bitcoin web-wallet by logging in with her account
ID and password. In her web browser, she sees the web-wallet home screen:

Figure 1-2. Blockchain.info - Wallet Home Screen

The most important part of this screen is Alice’s bitcoin address. Like an email address, Alice can
share this address and anyone can use it to send money directly to her new web-wallet. On the screen
it appears as a long string of letters and numbers: 1Cdid9KFAaatwczBwBttQcwXYCpvK8h7FK.
Next to the wallet’s bitcoin address, there is a QR-code, a form of barcode that contains the same
information in a format that can be easily scanned by a smartphone’s camera. Alice can print the QR
code as a way to easily give her address to others without them having to type the long string of
letters and numbers.

T IP
Bitcoin addresses start with the digit “1”. Like email addresses, they can be shared with other bitcoin users who can use
them to send bitcoin directly to your wallet. Unlike email addresses, you can create new addresses as often as you like, all
of which will direct funds to your wallet. A wallet is simply a collection of addresses and the keys that unlock the funds
within. There is practically no limit to the number of addresses a user can create.

Alice is now ready to start using her new bitcoin web-wallet.

Getting your first bitcoins
It is not possible to buy bitcoins at a bank, or foreign exchange kioks, at this time. It is not possible to
use a credit card to buy bitcoins, either. At the time this book is being written, in 2013, it is still quite
difficult to acquire bitcoins in most countries. There are a number of specialized currency exchanges
where you can buy and sell bitcoin in exchange for a local currency. These operate as web-based
currency markets and include:

Bitstamp (bitstamp.net), a European currency market that supports several currencies including
euros (EUR) and US dollars (USD) via wire transfer

Coinbase (coinbase.com), a US-based currency market, based in California, that supports US
dollar exchange to and from bitcoin. Coinbase can connect to US checking accounts via the ACH
system

Crypto-currency exchanges such as these operate at the intersection of national currencies and crypto-
currencies. As such, they are subject to national and international regulations and are often specific to
a single country or economic area and specialize in the national currencies of that area. Your choice
of currency exchange will be specific to the national currency you use and limited to the exchanges
that operate within the legal jurisdiction of your country. It takes several days or weeks to setup the
necessary accounts with the above services, as they require various forms of identification to comply
with KYC (Know Your Customer) and AML (Anti-Money Laundering) banking regulations,
essentially like opening a new bank account. Once you have an account on a bitcoin exchange, you

can then buy or sell bitcoins quickly, just like buying a foreign currency with a brokerage account.
A more complete list can be found at http://bitcoincharts.com/markets/, a site that offers price quotes
and other market data across many dozens of currency exchanges.
There are three other methods for getting bitcoins as a new user:

Find a friend who has bitcoins and buy some from them directly. Many bitcoin users started this
way.

Use a classified service like localbitcoins.com to find a seller in your area to buy bitcoins for cash
in an in-person transaction.

Sell a product or service for bitcoin. If you’re a programmer, sell your programming skills. If you
have an online store, see (to come) to sell in bitcoin.

Alice was introduced to bitcoin by a friend and so she has an easy way of getting her first bitcoin
while she waits for her account on a California currency market to be verified and activated.

Sending and receiving bitcoins
Alice has created her bitcoin web-wallet and she is now ready to receive funds. Her web-wallet
application generated a bitcoin address and the corresponding key (an elliptic curve private key,
describe in more detail in (to come)). At this point, her bitcoin address is not known to the bitcoin
network or “registered” with any part of the bitcoin system. Her bitcoin address is simply a number
that corresponds to a key that she can use to control access to the funds. There is no account or
association between that address and an account. Until the moment this address is referenced as the
recipient of value in a transaction posted on the bitcoin ledger (the blockchain), it is simply part of
the vast number of possible addresses that are “valid” in bitcoin. Once it has been associated with a
transaction, it becomes part of the known addresses in the network and anyone can check its balance
on the public ledger.
Alice meets her friend Joe who introduced her to bitcoin at a local restaurant so they can exchange
some US dollars and put some bitcoins into her account. She has brought a print out of her address
and the QR code as shown on the home page of her web-wallet. There is nothing sensitive, from a
security perspective, about the bitcoin address, it can be posted anywhere without risking the security
of her account and it can be changed by creating a new address at any time. Alice wants to convert
just $10 US dollars into bitcoin, so as not to risk too much money on this new technology. She gives
Joe a $10 bill and the printout of her address so that Joe can send her the equivalent amount of
bitcoin.
First, Joe has to figure out the exchange rate so that he can give the correct amount of bitcoin to Alice.
There are hundreds of applications and web sites that can provide the current market rate, here are
some of the most popular:

bitcoincharts.com, a market data listing service that shows the market rate of bitcoin across many
exchanges around the globe, denominated in different local currencies

http://bitcoincharts.com/markets/

bitcoinaverage.com, a site that provides a simple view of the volume-weighted-average for each
currency.

ZeroBlock, a free Android and iOS application that can display a bitcoin price from different
exchanges.

Figure 1-3. ZeroBlock - A bitcoin market-rate application for Android and iOS

Using one of the applications or websites above, Joe determines the price of bitcoin to be
approximately $100 US dollars per bitcoin. At that rate, he should give Alice 0.10 bitcoin, also
known as 100 milli-bits, in return for the $10 US dollars she gave him.
Once Joe has established a fair exchange price, he opens his mobile wallet application and selects to
“send” bitcoin. He is presented with a screen requesting two inputs:

The destination bitcoin address for the transaction

The amount of bitcoin to send

Figure 1-4. Bitcoin mobile wallet - Send bitcoin screen

In the input field for the bitcoin address, there is a small icon that looks like a QR code. This allows

Joe to scan the barcode with his smartphone camera so that he doesn’t have to type in Alice’s bitcoin
address (1Cdid9KFAaatwczBwBttQcwXYCpvK8h7FK), which is quite long and difficult to type.
Joe taps on the QR code icon and activates the smartphone camera, scanning the QR code from
Alice’s wallet, from the printed page she brought with her. The mobile wallet application fills in the
bitcoin address and Joe can check that it scanned correctly by comparing a few digits from the
address with the address printed by Alice.
Joe then enters the bitcoin value for the transaction, 0.10 bitcoin. He carefully checks to make sure he
has entered the correct amount, as he is about to transmit money and any mistake could be costly.
Finally, he presses “Send” to transmit the transaction. Joe’s mobile bitcoin wallet constructs a
transaction that assigns 0.10 bitcoin to the address provided by Alice, sourcing the funds from Joe’s
wallet and signing the transaction with Joe’s private keys. This tells the bitcoin network that Joe has
authorized a transfer of value from one of his addresses to Alice’s new address. As the transaction is
transmitted via the peer-to-peer protocol, it quickly propagates across the bitcoin network. In less
than a second, most of the well-connected nodes in the network receive the transaction and see
Alice’s address for the first time.
If Alice has a smartphone or laptop with her, she will also be able to see the transaction. The bitcoin
ledger - a constantly growing file that records every bitcoin transaction that has ever occurred - is
public, meaning that all she has to do is look up her own address and see if any funds have been sent
to it. She can do this quite easily at the blockchain.info website by entering her address in the search
box. The website will show her a page
(https://blockchain.info/address/1Cdid9KFAaatwczBwBttQcwXYCpvK8h7FK) listing all the
transactions to and from that address. If Alice is watching that page, soon after Joe hits “Send”, it will
update to show a new transaction transferring 0.10 bitcoin to her balance.

C O N FIR M AT IO N S
At first, Alice’s address will show the transaction from Joe as “Unconfirmed”. This means that the transaction has been
propagated to the network but has not yet been included in the bitcoin transaction ledger, known as the blockchain. To be included,
the transaction must be “picked up” by a miner and included in a block of transactions. Once a miner has discovered a solution to
the Proof-of-Work algorithm for this block, in approximately 10 minutes, the transactions within the block will be accepted as
“confirmed” by the network and can be spent. The transaction is seen by all instantly, but is only “trusted” by all when it is included
in a newly mined block. The more blocks mined after that block, the more trusted it is, as more and more computation is “piled” on
top of it.

Alice is now the proud owner of 0.10 bitcoin which she can spend. In the next chapter we will look at
her first purchase with bitcoin and examine the underlying transaction and propagation technologies in
more detail.

https://blockchain.info/address/1Cdid9KFAaatwczBwBttQcwXYCpvK8h7FK

Chapter 2. How Bitcoin Works

Transactions, Blocks, Mining and the Blockchain
The bitcoin system, unlike traditional banking and payment systems, is based on de-centralized trust.
Instead of a central trusted authority, in bitcoin, trust is achieved as an emergent property from the
interactions of different participants in the bitcoin system. In this chapter we will examine bitcoin
from a high-level by tracking a single transaction through the bitcoin system and watch as it becomes
“trusted” and accepted by the bitcoin mechanism of distributed consensus and is finally recorded on
the blockchain, the distributed ledger of all transactions.
Each example below is based upon an actual transaction made on the bitcoin network, simulating the
interactions between the users (Joe, Alice and Bob) by sending funds from one wallet to another.
While tracking a transaction through the bitcoin network and blockchain, we will use a blockchain
explorer site to visualize each step. A blockchain explorer is a web application that operates as a
bitcoin search engine, in that it allows you to search for addresses, transactions and blocks and see
the relationships and flows between them.
Popular blockchain explorers include:

blockchain.info

blockexplorer.com

biteasy.com

Each of these has a search function that can take an address, transaction hash or block number and
find the equivalent data on the bitcoin network and blockchain. With each example, we will provide a
URL that takes you directly to the relevant entry, so you can study it in detail.

Bitcoin Overview
In the overview diagram below, we see that the bitcoin system consists of users with wallets
containing keys, transactions which are propagated across the network and miners who produce
(through competitive computation) the consensus blockchain, the authoritative ledger of all
transactions. In this chapter, we will trace a single transaction as it travels across the network and
examine the interactions between each part of the bitcoin system, at a high level. Subsequent chapters
will delve deeper into the technology behind wallets, mining and merchant systems.

Figure 2-1. Bitcoin Overview

Buying a cup of coffee
Alice, who we introduced in the previous chapter, is a new user who has just acquired her first
bitcoin. In Getting your first bitcoins, Alice met with her frined Joe to exchange some cash for
bitcoin. The transaction created by Joe, funded Alice’s wallet with 0.10 BTC. Now Alice will make
her first retail transaction, buying a cup of coffee at Bob’s coffee shop in Palo Alto, California. Bob’s
coffee shop recently started accepting bitcoin payments, by adding a bitcoin option to his point-of-
sale system (see (to come) for information on using bitcoin for merchants/retail). The prices at Bob’s
Cafe are listed in the local currency (US dollars) but at the register, customers have the option of
paying in either dollars or bitcoin. Alice places her order for a cup of coffee and Bob enters the
transaction at the register. The point-of-sale system will convert the total price from US dollars to
bitcoins at the prevailing market rate and displays the prices in both currencies, as well as showing a
QR code containing a payment request for this transaction:

Displayed on Bob’s cash register.

Total:
$1.50 USD
0.015 BTC

Figure 2-2. Payment Request QR Code - Hint: Try to scan this!

The payment request QR code above encodes the following URL, defined in BIP0021.

bitcoin:1GdK9UzpHBzqzX2A9JFP3Di4weBwqgmoQA?\
amount=0.015&\
label=Bob%27s%20Cafe&\
message=Purchase%20at%20Bob%27s%20Cafe

Components of the URL

A bitcoin address: "1GdK9UzpHBzqzX2A9JFP3Di4weBwqgmoQA"
The payment amount: "0.015"
A label for the recipient address: "Bob's Cafe"
A description for the payement: "Purchase at Bob's Cafe"

T IP
Unlike a QR code that simply contains a destination bitcoin address, a “payment request” is a QR encoded URL that
contains a destination address, a payment amount and a generic description such as “Bob’s Cafe”. This allows a bitcoin
wallet application to pre-fill the information to send the payment while showing a human-readable description to the user.
See (to come), for more details. You can scan the QR code above with a bitcoin wallet application to see what Alice would
see.

Bob says “That’s one-dollar-fifty, or fifteen milibits”.
Alice uses her smartphone to scan the barcode on display. Her smartphone shows a payment of
0.0150 BTC to Bob’s Cafe and she selects Send to authorize the payment. Within a few seconds
(about the same time as a credit card authorization), Bob would see the transaction on the register,
completing the transaction.
In the following sections we will examine this transaction in more detail, see how Alice’s wallet
constructed it, how it was propagated across the network, how it was verified and finally how Bob,

the owner of the cafe, can spend that amount in subsequent transactions

NOTE
The bitcoin network can transact in fractional values, e.g. from millibitcoins (1/1000th of a bitcoin) down to 1/100,000,000th
of a bitcoin, which is known as a Satoshi. Throughout this book we’ll use the term “bitcoins” to refer to any quantity of
bitcoin currency, from the smallest unit (1 Satoshi) to the total number (21,000,000) of all bitcoins that will ever be mined.

Bitcoin Transactions
In simple terms, a transaction tells the network that the owner of a number bitcoins has authorized the
transfer of some of those bitcoins to another owner. The new owner can now spend these bitcoins by
creating another transaction that authorizes transfer to another owner, and so on, in a chain of
ownership.
Transactions are like lines in a double-entry bookkeeping ledger. In simple terms, each transaction
contains one or more “inputs”, which are debits against a bitcoin account. On the other side of the
transaction, there are one or more “outputs”, which are credits added to a bitcoin account. The inputs
and outputs (debits and credits) do not necessarily add up to the same amount. Instead, outputs add up
to slightly less than inputs and the difference represents an implied “transaction fee”, a small payment
collected by the miner who includes the transaction in the ledger.

Figure 2-3. Transaction As Double-Entry Bookkeeping

The transaction contains proof of ownership for each amount of bitcoin (inputs) whose value is
transfered, in the form of a digital signature from the owner, that can be independently validated by
anyone. In bitcoin terms, “spending” is signing the value of a previous transaction for which you have
the keys, over to a new owner identified by a bitcoin address.

T IP
Transactions move value from transaction inputs to transaction outputs. An input is where the coin value is coming
from, usually a previous transaction’s output. A transaction output assigns a new owner to the value by associating it with a
key. The destination key is called an encumberance, it imposes a requirement for a signature for the funds to be redeemed
in future transactions. Outputs from one transaction can be used as inputs in a new transaction, thus creating a chain of
ownership as the value is moved from address to address.

Figure 2-4. Transaction Chain

Alice’s payment to Bob’s Cafe utilizes a previous transaction as its input. In the previous chapter
Alice received bitcoin from her friend Joe in return for cash. That transaction has a number of
bitcoins locked (encumbered) against Alice’s key. Her new transaction to Bob’s Cafe references the
previous transaction as an input and creates new outputs to pay for the cup of coffee and receive
change. The transactions form a chain, where the inputs from the latest transaction correspond to
outputs from previous transactions. Alice’s key provides the signature which unlocks those previous
transaction outputs, thereby proving to the bitcoin network that she owns the funds. She attaches the
payment for coffee to Bob’s address, thereby “encumbering” that output with the requirement that Bob
produces a signature in order to spend that amount. This represents a transfer of value between Alice
and Bob.

Common Transaction Forms
The most common form of transaction is a simple payment from one address to another, which often
includes some “change” returned to the original owner. This type of transaction has one input and two
outputs and is shown below:

Figure 2-5. Most Common Transaction

Another common form of transaction is a transaction that aggregates several inputs into a single
output. This represents the real-world equivalent of exchanging a pile of coins and currency notes for
a single larger note. Transactions like these are sometimes generated by wallet applications to
cleanup lots of smaller amounts that were received as change for payments.

Figure 2-6. Transaction Aggregating Funds

Finally, another transaction form that is seen often on the bitcoin ledger is a transaction that
distributes one input to multiple outputs representing multiple recipients. This type of transaction is
sometimes used by commercial entities to distribute funds, such as when processing payroll payments
to multiple employees.

Figure 2-7. Transaction Distributing Funds

Constructing A Transaction
Alice’s wallet application contains all the logic for selecting appropriate inputs and outputs to build a
transaction to Alice’s specification. Alice only needs to specify a destination and an amount and the
rest happens in the wallet application without her seeing the details. Importantly, a wallet application
can construct transactions even if completely offline. Like writing a cheque at home and later sending
it to the bank in an envelope, the transaction does not need to be constructed and signed while
connected to the bitcoin network, it only has to be sent to the network eventually for it to be executed.

Getting the right inputs
Alice’s wallet application will first have to find inputs that can pay for the amount she wants to send
to Bob. Most wallet applications keep a small database of “unspent transaction outputs” that are
locked (encumbered) with the wallet’s own keys. Therefore, Alice’s wallet would contain a copy of
the transaction output from Joe’s transaction which was created in exchange for cash (see (to come)).
A bitcoin wallet application that runs as a full-index client actually contains a copy of every unspent
output from every transaction in the blockchain. This allows a wallet to construct transaction inputs
as well as to quickly verify incoming transactions as having correct inputs.

If the wallet application does not maintain a copy of unspent transaction outputs, it can query the
bitcoin network to retrieve this information, using a variety of APIs available by different providers,
or by asking a full-index node using the bitcoin JSON RPC API. Below we see an example of a
RESTful API request, constructed as a HTTP GET command to a specific URL. This URL will return
all the unspent transaction outputs for an address, giving any application the information it needs to
construct transaction inputs for spending. We use the simple command-line HTTP client cURL to
retrieve the response:

Lookup all the unspent outputs for Alice’s address
1Cdid9KFAaatwczBwBttQcwXYCpvK8h7FK.

$ curl https://blockchain.info/unspent?active=1Cdid9KFAaatwczBwBttQcwXYCpvK8h7FK

{

 "unspent_outputs":[

 {
 "tx_hash":"186f9f998a5...2836dd734d2804fe65fa35779",
 "tx_index":104810202,
 "tx_output_n": 0,
 "script":"76a9147f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a888ac",
 "value": 10000000,
 "value_hex": "00989680",
 "confirmations":0
 }

]
}

The response above shows that the bitcoin network knows of one unspent output (one that has not
been redeemed yet) under the ownership of Alice’s address
+1Cdid9KFAaatwczBwBttQcwXYCpvK8h7FK+. The response includes the reference to the
transaction in which this unspent output is contained (the payment from Joe) and it’s value in Satoshis,
at 10 million, equivalent to 0.10 bitcoin. With this information, Alice’s wallet application can
construct a transaction to transfer that value to new owner addresses.

T IP
Lookup the transaction from Joe to Alice, to see the information referenced above, as it is stored in the bitcoin blockchain.
Using the blockchain explorer web application, follow the URL below:

https://blockchain.info/tx/7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6f18

As you can see, Alice’s wallet contains enough bitcoins in a single unspent output to pay for the cup
of coffee. Had this not been the case, Alice’s wallet application might have to “rummage” through a
pile of smaller unspent outputs, like picking coins from a purse, until it could find enough to pay for

https://blockchain.info/tx/7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6f18

coffee. In both cases, there might be a need to get some change back, which we will see in the next
section, as the wallet application creates the transaction outputs (payments).

Creating the outputs
A transaction output is created in the form of a script, that creates an encumberance on the value and
can only be redeemed by the introduction of a solution to the script. In simpler terms, Alice’s
transaction output will contain a script that says something like “This output is payable to whoever
can present a signature from the key corresponding to Bob’s public address”. Since only Bob has the
wallet with the keys corresponding to that address, only Bob’s wallet can present such a signature to
redeem this output. Alice will therefore “encumber” the output value with a demand for a signature
from Bob.
This transaction will also include a second output, because Alice’s funds are in a the form of a 0.10
BTC output, too much money for the 0.015 BTC cup of coffee. Alice will need 0.085 BTC in change.
Alice’s change payment is created by Alice’s wallet in the very same transaction as the payment to
Bob. Essentially, Alice’s wallet breaks her funds into two payments, one to Bob, one back to herself.
She can then use the change output in a subsequent transaction, thus spending it later.
Finally, for the transaction to be processed by the network in a timely fashion, Alice’s wallet
application will add a small fee. This is not explicit in the transaction, it is implied by the difference
between inputs and outputs. If instead of taking 0.085 in change, Alice creates only 0.0845 as the
second output, there will be 0.0005 BTC (half a millibitcoin) left over. The input’s 0.10 BTC is not
fully spent with the two outputs, as they will add up to less than 0.10. The resulting difference is the
transaction fee which is collected by the miner as a fee for including the transaction in a block and
putting it on the blockchain ledger.
The resulting transaction can be seen using a blockchain explorer web application

Figure 2-8. Alice’s transaction to Bob’s Cafe

Use the following link to see it the transaction on the bitcoin blockchain:

Link to Alice’s transaction on the bitcoin blockchain.

https://blockchain.info/tx/0627052b6f28912f2703066a912ea577f2ce4da4caa5a5fbd8a57286c345c2f2

Adding the transaction to the ledger
The transaction created by Alice’s wallet application is 258 bytes long and contains everything
necessary to confirm ownership of the funds and assign new onwers. Now, the transaction must be
transmitted to the bitcoin network where it will become part of the distributed ledger, the blockchain.
In the next section we will see how a transaction becomes part of a new block and how the block is
“mined”. Finally, we will see how the new block, once added to the blockchain is increasingly
trusted by the network as more blocks are added.

Transmitting the transaction
Since the transaction contains all the information necessary to process, it does not matter how or
where it is transmitted to the bitcoin network. The bitcoin network is a peer-to-peer network, with
each bitcoin client participating by connecting to several other bitcoin clients. The purpose of the
bitcoin network is to propagate transactions and blocks to all participants.

How it propagates

Alice’s wallet application can send the new transaction to any of the other bitcoin clients it is
connected to, over WiFi or mobile data, or any Internet connection. Her bitcoin wallet does not have
to be connected to Bob’s bitcoin wallet directly and she does not have to use the Internet connection
offered by the cafe, though both those options are possible too. Any bitcoin network node (other
client) that receives a valid transaction it has not seen before, will immediately forward it to other
nodes it is connected to. Thus, the transaction rapidly propagates out across the peer-to-peer network,
reaching a large percentage of the nodes within a few seconds.

Bob’s view
If Bob’s bitcoin wallet application is directly connected to Alice’s wallet application, it may be the
first node to receive the transaction. However, even if Alice’s wallet sends it through other nodes, the
transaction will reach Bob’s wallet within a few seconds. Bob’s wallet will immediately identify
Alice’s transaction as an incoming payment because it contains outputs redeemable by Bob’s keys.
Bob’s wallet application can also independently verify that the transaction is well-formed, uses
previously-unspent inputs and contains sufficient transaction fees to be included in the next block. At
this point, Bob can assume, with little risk, that the transaction will shortly be included in a block and
confirmed.

T IP
A common misconception about bitcoin transactions is that they must be “confirmed” by waiting 10 minutes for a new
block, or up to sixty minutes for a full six confirmations. While confirmations ensure the transaction has been accepted by
the whole network, for small value items like a cup of coffee, such a delay is unecessary. A merchant may accept a valid
small-value transaction with no confirmations, with no more risk than a credit card payment made without ID or a signature,
as many do today

Bitcoin Mining
The transaction is now propagated on the bitcoin network. It does not become part of the shared
ledger (the blockchain) until it is verified and included in a block, in a process called mining. See
(to come) for a detailed explanation.
The bitcoin system of trust is based on computation. Transactions are bundled into blocks which
require an enormous amount of computation to prove, but only a small amount of computation to
verify as proven, in a process called mining. Mining serves two purposes in bitcoin:

Mining creates new bitcoins in each block, almost like a central bank printing new money. The
amount of bitcoin created is fixed and diminishes with time

Mining creates trust by ensuring that transactions are only confirmed if enough computational
power was devoted to the block that contains them. More blocks mean more computation which
means more trust.

A good way to describe mining is like a giant competitive game of sudoku that resets every time

someone finds a solution and whose difficulty automatically adjusts so that it takes approximately 10
minutes to find a solution. Imagine a giant sudoku puzzle, several thousand rows and columns in size.
If I show you a completed puzzle you can verify it quite quickly. If it is empty, however, it takes a lot
of work to solve! The difficulty of the sudoku can be adjusted by changing its size (more or fewer
rows and columns), but it can still be verified quite easily even if it is very large. The “puzzle” used
in bitcoin is based on a cryptographic hash and exhibits similar characteristics: it is assymetrically
hard to solve, but easy to verify and its difficulty can be adjusted.
In Bitcoin Uses, Users and Their Stories we introduced Jing, a computer engineering student in
Shanghai. Jing is participating in the bitcoin network as a miner. Every 10 minutes or so, Jing joins
thousands of other miners in a global race to find a solution to a block of transactions. Finding such a
solution, the so-called “Proof-of-Work” requires quadrillions of hashing operations per second,
across the entire bitcoin network. The algorithm for “Proof-of-Work” involves repeatedly hashing the
header of the block and a random number with the SHA256 cryptographic algorithm, until a solution
matching a pre-determined pattern emerges. The first miner to find such a solution wins the round of
competition and publishes that block into the blockchain.
Jing started mining in 2010 using a very fast desktop computer to find a suitable Proof-of-Work for
new blocks. As more miners started joining the bitcoin network, the difficulty of the problem
increased rapidly. Soon, Jing and other miners upgraded to more specialized hardware, such as
Graphical Processing Units (GPU), as used in gaming desktops or consoles. As this book is written,
by 2014, the difficulty is so high that it is only profitable to mine with Application Specific Integrated
Circuits, essentially hundreds of mining algorithms printed in hardware, running in parallel on a
single silicone chip. Jing also joined a “mining pool”, which much like a lottery-pool allows several
participants to share their efforts and the rewards. Jing now runs two ASIC machines, which are USB
connected devices, to mine for bitcoin 24 hours a day. He pays his electricity costs by selling the
bitcoin he is able to generate from mining, creating some income from the profits. His computer runs a
copy of bitcoind, the reference bitcoin client, as a back-end to his specialized mining software.

Mining transactions in blocks
A transaction transmitted across the network is not verified until it becomes part of the global
distributed ledger, the blockchain. Every ten minutes, miners generate a new block, which contains all
the transactions since the last block. New transactions are constantly flowing into the network from
user wallets and other applications. As these are seen by the bitcoin network nodes, they get added to
a temporary “pool” of unverified transactions maintained by each node. As miners build a new block,
they add unverified transactions from this pool to a new block and then attempt to solve a very hard
problem (aka Proof-of-Work) to prove the validity of that new block. The process of mining is
explained in detail in (to come)
Transactions are added to the new block, prioritized by the highest-fee transactions first and a few
other criteria. Each miner starts the process of mining a new block of transactions as soon as they
receive the previous block from the network, knowing they have lost that previous round of

competition. They immediately create a new block, fill it with transactions and the fingerprint of the
previous block and start calculating a the Proof-of-Work for the new block. Each miner includes a
special transaction in their block, one that pays their own bitcoin address a reward of newly created
bitcoins (currently 25 BTC per block). If they find a solution that makes that block valid, they “win”
this reward because their successful block is added to the global blockchain and the reward
transaction they included becomes spendable. Jing, who participates in a mining pool, has setup his
software to create new blocks that assign the reward to a pool address. From there, a share of the
reward is distributed to Jing and other miners in proportion to the amount of work they contributed in
the last round.
Alice’s transaction was picked up by the network and included in the pool of unverified transactions.
Since it had sufficient fees, it was included in a new block generated by Jing’s mining pool.
Approximately 5 minutes after the transaction was first transmitted by Alice’s wallet, Jing’s ASIC
miner found a solution for the block and published it as block #277316, containing 419 other
transactions. Jing’s ASIC miner published the new block on the bitcoin network, where other miners
validated it and started the race to generate the next block.
You can see the block that includes Alice’s transaction here: https://blockchain.info/block-
height/277316
A few minutes later, a new block, #277317 is mined by another miner. As this new block is based on
the previous block (#277316) that contained Alice’s transaction, it added even more computation on
top of that block, thereby strengthening the trust in those transactions. One block mined on top of the
one containing the transaction, is called “one confirmation” for that transaction. As the blocks pile on
top of each other, it becomes exponentially harder to reverse the transaction, thereby making it more
and more trusted by the network.
In the diagram below, we can see block #277316, the one which contains Alice’s transaction. Below
it are 277,315 blocks, linked to each other in a chain of blocks (blockchain) all the way back to block
#0, the genesis block. Over time, as the “height” in blocks increases, so does the computation
difficulty for each block and the chain as a whole. The blocks mined after the one that contains
Alice’s transaction act as further assurance, as they pile on more computation in a longer and longer
chain. The blocks above count as “confirmations”. By convention, any block with more than 6
confirmation is considered irrevocable, as it would require an immense amount of computation to
invalidate and re-calculate six blocks. We will examine the process of mining and the way it builds
trust in more detail in (to come).

https://blockchain.info/block-height/277316

Figure 2-9. Alice’s transaction included in block #277,317

Spending the transaction
Now that Alice’s transaction has been embedded in the blockchain as part of a block, it is part of the
distributed ledger of bitcoin and visible to all bitcoin applications. Each bitcoin client can
independently verify the transaction as valid and spendable. Full-index clients can track the source of
the funds from the moment the bitcoins were first generated in a block, incrementally from transaction
to transaction, until they reach Bob’s address. Lightweight clients can do a Simple Payment
Verification (See SPV:(to come)) by confirming that the transaction is in the blockchain and has
several blocks mined after it, thus providing assurance that the network accepts it as valid.
Bob can now spend the output from this and other transactions, by creating his own transactions that
reference these outputs as their inputs and assign them new ownership. For example, Bob can pay a
contractor or supplier by transferring value from Alice’s coffee cup payment to these new owners.
Most likely, Bob’s bitcoin software will aggregate many small payments into a larger payment,
perhaps concentrating all the day’s bitcoin revenue into a single transaction. This would move the
various payments into a single address, utilized as the store’s general “checking” account. For a
diagram of an aggregating transaction, see Figure 2-6.
As Bob spends the payments received from Alice and other customers, he exends the chain of
transactions, which in turn are added to the global blochcain ledger for all to see and trust. Let’s
assume that Bob pays his web designer Gopesh in Bangalore for a new web site page. Now the chain
of transactions will look like this:

Figure 2-10. Alice’s transaction as part of a transaction chain from Joe to Gopesh

Chapter 3. The Bitcoin Client

Bitcoin Core - The Reference Implementation, aka Satoshi
Client
You can download the Reference Client, also known as Bitcoin Core from bitcoin.org. The reference
client implements all aspects of the bitcoin system, including wallets, a transaction verification
engine with a full copy of the entire transaciton ledger (blockchain) and a full network node in the
peer-to-peer bitcoin network.
Go to http://bitcoin.org/en/choose-your-wallet and select “Bitcoin Core” to download the reference
client. Depending on your operating system, you will download an executable installer. For
Windows, this is either a ZIP archive or an EXE executable. For Mac OS it is DMG disk image.
Linux versions include a PPA package for Ubuntu or a TAR.GZ archive.

Figure 3-1. Bitcoin - Choose A Bitcoin Client

Bitcoin Core - Running the client for the first time
If you download an installable package, such as an EXE, DMG or PPA, you can install it the same
way as any application on your operating system. For Windows, run the EXE and follow the step-by-
step instructions. For Mac OS, launch the DMG and drag the Bitcoin-QT icon into your Applications
folder. For Ubuntu, double-click on the PPA in your File Explorer and it will open the package
manager to install the package. Once you have completed installation you should have a new
application “Bitcoin-Qt” in your application list. Double-click on the icon to start the bitcoin client.
The first time you run Bitcoin Core it will start downloading the blockchain, a process that may take
several days. Leave it running in the background, until it displays “Synchronized” and no longer
shows “Out of sync” next to the balance.

http://bitcoin.org/en/choose-your-wallet

T IP
Bitcoin Core keeps a full copy of the transaction ledger (blockchain), with every transaction that has ever occured on the
bitcoin network since its inception in 2009. This data set is several gigabytes in size (approximately 16GB in late 2013) and
is downloaded incrementally over several days. The client will not be able to process transactions or update account
balances until the full blockchain dataset is downloaded. During that time, the client will display “Out of sync” next to the
account balances and show “Synchronizing” in the footer. Make sure you have enough disk space, bandwidth and time to
complete the initial synchronization.

Figure 3-2. Bitcoin Core - The Graphical User Interface, during the blockchain initialization

Bitcoin Core - Compiling the client from the source code
For developers, there is also the option to download the full source code, either as a ZIP archive or
by cloning the authoritative source repository from Github. Go to https://github.com/bitcoin/bitcoin
and select “Download ZIP” from the sidebar. Alternatively, use the git command line to create a local
copy of the source code on your system. In the example below, we are cloning the source code from a
unix-like command-line, in Linux or Mac OS:

$ git clone https://github.com/bitcoin/bitcoin.git

https://github.com/bitcoin/bitcoin

Cloning into 'bitcoin'...
remote: Counting objects: 31864, done.
remote: Compressing objects: 100% (12007/12007), done.
remote: Total 31864 (delta 24480), reused 26530 (delta 19621)
Receiving objects: 100% (31864/31864), 18.47 MiB | 119 KiB/s, done.
Resolving deltas: 100% (24480/24480), done.
$

T IP
The instructions and resulting output may vary from version to version. Follow the documentation that comes with the code
even if it differs from the instructions you see here and don’t be surprised if the output displayed on your screen is slightly
different from the examples here.

When the git cloning operation has complete, you will have a complete local copy of the source code
repository in the directory bitcoin. Change to this directory by typing cd bitcoin at the prompt:

$ cd bitcoin

By default, the local copy will be synchronized with the most recent code which may be an unstable
or “beta” version of bitcoin. Before compiling the code, we want to select a specific version, by
checking out a release tag. This will synchronize the local copy with a specific snapshot of the code
repository identified by a keyword tag. Tags are used by the developers to mark specific releases of
the code by version number. First, to find the available tags, we use the git tag command:

$ git tag
v0.1.5
v0.1.6test1
v0.2.0
v0.2.10
v0.2.11
v0.2.12

[... many more tags ...]

v0.8.4rc2
v0.8.5
v0.8.6
v0.8.6rc1
v0.9.0rc1

The list of tags shows all the released versions of bitcoin. By convention, release candidates, which
are intended for testing, have the suffix “rc”. Stable releases that can be run on production systems
have no suffix. From the list above, we select the highest version release, which at this time is
v0.9.0rc1. To synchronize the local code with this version, we use the git checkout command:

$ git checkout v0.9.0rc1
Note: checking out 'v0.9.0rc1'.

HEAD is now at 15ec451... Merge pull request #3605
$

The source code includes documentation, which can be found in a number of files. Review the main
documentation located in README.md in the bitcoin directory, by typing more README.md at the
prompt, using the space bar to progress to the next page. In this chapter we will build the command-
line bitcoin client, also known as bitcoind on Linux. Review the instructions for compiling the
bitcoind command-line client on your platform by typing more doc/build-unix.md. Alternative
instructions for Mac OSX and Windows can be found in the doc directory, as build-os.md or build-
msw.md respectively.
Carefully review the build pre-requisited which are in the first part of the build documentation. These
are libraries that must be present on your system before you can begin to compile bitcoin. If these pre-
requisites are missing the build process will fail with an error. If this happens because you missed a
pre-requisite, you can install it and then resume the build process from where you left off. Assuming
the pre-requisites are installed, we start the build process by generating a set of build scripts using
the autogen.sh script.

T IP
The bitcoind build process was changed to use the autogen/configure/make system starting with version 0.9. Older versions
use a simple Makefile and work slightly differently from the example below. Follow the instructions for the version you
want to compile. The autogen/configure/make introduced in 0.9 is likely to be the build system used for all future versions of
the code and is the system demonstrated in the examples below.

$./autogen.sh
configure.ac:12: installing s̀rc/build-aux/config.guess'
configure.ac:12: installing s̀rc/build-aux/config.sub'
configure.ac:37: installing s̀rc/build-aux/install-sh'
configure.ac:37: installing s̀rc/build-aux/missing'
src/Makefile.am: installing s̀rc/build-aux/depcomp'
$

The autogen.sh script creates a set of automatic configuation scripts that will interrogate your system
to discover the correct settings and ensure you have all the necessary libraries to compile the code.
The most important of these is the configure script that offers a number of different options to
customize the build process. Type ./configure --help to see the various options:

$./configure --help

`configure' configures Bitcoin Core 0.9.0 to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE. See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:
 -h, --help display this help and exit
 --help=short display options specific to this package
 --help=recursive display the short help of all the included packages
 -V, --version display version information and exit

[... many more options and variables are displayed below ...]

Optional Features:
 --disable-option-checking ignore unrecognized --enable/--with options
 --disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no)
 --enable-FEATURE[=ARG] include FEATURE [ARG=yes]

[... more options ...]

Use these variables to override the choices made by `configure' or to help
it to find libraries and programs with nonstandard names/locations.

Report bugs to <info@bitcoin.org>.

$

The configure script allows you to enable or disable certain features of bitcoind through the use of the
--enable-FEATURE and --disable-FEATURE flags, where FEATURE is replaced by the feature
name, as listed in the help output above. In this chapter, we will build the bitcoind client with all the
default features, so we won’t be using these flags, but you should review them to understand what
optional features are part of the client. Next, we run the configure script to automatically discover all
the necessary libraries and create a customized build script for our system:

$./configure
checking build system type... x86_64-unknown-linux-gnu
checking host system type... x86_64-unknown-linux-gnu
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /bin/mkdir -p
checking for gawk... no
checking for mawk... mawk
checking whether make sets $(MAKE)... yes

[... many more system features are tested ...]

configure: creating ./config.status
config.status: creating Makefile
config.status: creating src/Makefile
config.status: creating src/test/Makefile
config.status: creating src/qt/Makefile
config.status: creating src/qt/test/Makefile
config.status: creating share/setup.nsi
config.status: creating share/qt/Info.plist
config.status: creating qa/pull-tester/run-bitcoind-for-test.sh
config.status: creating qa/pull-tester/build-tests.sh

config.status: creating src/bitcoin-config.h
config.status: executing depfiles commands
$

If all goes well, the configure command will end by creating the customized build scripts that will
allow us to compile bitcoind. If there are any missing libraries or errors, the configure command will
terminate with an error instead of creating the build scripts as shown above. If an error occurs, it is
most likely a missing or incompatible library. Review the build documentation again and make sure
you install the missing pre-requisites, then run configure again and see if that fixes the error. Next, we
will compile the source code, a process that can take up to an hour to complete. During the
compilation process you should see output every few seconds or every few minutes, or an error if
something goes wrong. The compilation process can be resumed at any time if interrupted. Type make
to start compiling:

$ make
Making all in src
make[1]: Entering directory /̀home/ubuntu/bitcoin/src'
make all-recursive
make[2]: Entering directory /̀home/ubuntu/bitcoin/src'
Making all in .
make[3]: Entering directory /̀home/ubuntu/bitcoin/src'
 CXX addrman.o
 CXX alert.o
 CXX rpcserver.o
 CXX bloom.o
 CXX chainparams.o

[... many more compilation messages follow ...]

 CXX test_bitcoin-wallet_tests.o
 CXX test_bitcoin-rpc_wallet_tests.o
 CXXLD test_bitcoin
make[4]: Leaving directory /̀home/ubuntu/bitcoin/src/test'
make[3]: Leaving directory /̀home/ubuntu/bitcoin/src/test'
make[2]: Leaving directory /̀home/ubuntu/bitcoin/src'
make[1]: Leaving directory /̀home/ubuntu/bitcoin/src'
make[1]: Entering directory /̀home/ubuntu/bitcoin'
make[1]: Nothing to be done for `all-am'.
make[1]: Leaving directory /̀home/ubuntu/bitcoin'
$

If all goes well, bitcoind is now compiled. The final step is to install the bitcoind executable into the
system path, using the make command:

$ sudo make install
Making install in src
Making install in .
 /bin/mkdir -p '/usr/local/bin'
 /usr/bin/install -c bitcoind bitcoin-cli '/usr/local/bin'
Making install in test
make install-am
 /bin/mkdir -p '/usr/local/bin'

 /usr/bin/install -c test_bitcoin '/usr/local/bin'
$

We can confirm that bitcoin is correctly installed, as follows:

$ which bitcoind
/usr/local/bin/bitcoind

The default installation of bitcoind puts it in /usr/local/bin. When we first run bitcoind it will remind
us to create a configuration file with a strong password for the JSON-RPC interface. We run it by
typing bitcoind into the terminal:

$ bitcoind
Error: To use the "-server" option, you must set a rpcpassword in the configuration file:
/home/ubuntu/.bitcoin/bitcoin.conf
It is recommended you use the following random password:
rpcuser=bitcoinrpc
rpcpassword=2XA4DuKNCbtZXsBQRRNDEwEY2nM6M4H9Tx5dFjoAVVbK
(you do not need to remember this password)
The username and password MUST NOT be the same.
If the file does not exist, create it with owner-readable-only file permissions.
It is also recommended to set alertnotify so you are notified of problems;
for example: alertnotify=echo %s | mail -s "Bitcoin Alert" admin@foo.com

Edit the configuration file in your preferred editor and set the parameters, replacing the password
with a strong password as recommended by bitcoind. Do not use the password shown below. Create
a file inside the .bitcoin directory, so that it is named .bitcoin/bitcoin.conf and enter a username and
password:

rpcuser=bitcoinrpc
rpcpassword=7p687uGU8wMyBprB2aQrnt72r9Lh6jZy

Using bitcoind from the command line
The reference client bitcoind offers a number of commands that can be run from the command line.
These are the same commands as those offered via the JSON-RPC API, so the command line allows
us to experiment interactively with the capabilities that are also available programmatically. To start,
we can invoke the help command to see a list of the available bitcoin commands:

Bitcoind command list.

addmultisigaddress nrequired ["key",...] ("account")
addnode "node" "add|remove|onetry"
backupwallet "destination"
createmultisig nrequired ["key",...]
createrawtransaction [{"txid":"id","vout":n},...] {"address":amount,...}
decoderawtransaction "hexstring"
decodescript "hex"
dumpprivkey "bitcoinaddress"

dumpwallet "filename"
encryptwallet "passphrase"
getaccount "bitcoinaddress"
getaccountaddress "account"
getaddednodeinfo dns ("node")
getaddressesbyaccount "account"
getbalance ("account" minconf)
getbestblockhash
getblock "hash" (verbose)
getblockcount
getblockhash index
getblocktemplate ("jsonrequestobject")
getconnectioncount
getdifficulty
getgenerate
gethashespersec
getinfo
getmininginfo
getnettotals
getnetworkhashps (blocks height)
getnewaddress ("account")
getpeerinfo
getrawchangeaddress
getrawmempool (verbose)
getrawtransaction "txid" (verbose)
getreceivedbyaccount "account" (minconf)
getreceivedbyaddress "bitcoinaddress" (minconf)
gettransaction "txid"
gettxout "txid" n (includemempool)
gettxoutsetinfo
getunconfirmedbalance
getwork ("data")
help ("command")
importprivkey "bitcoinprivkey" ("label" rescan)
importwallet "filename"
keypoolrefill (newsize)
listaccounts (minconf)
listaddressgroupings
listlockunspent
listreceivedbyaccount (minconf includeempty)
listreceivedbyaddress (minconf includeempty)
listsinceblock ("blockhash" target-confirmations)
listtransactions ("account" count from)
listunspent (minconf maxconf ["address",...])
lockunspent unlock [{"txid":"txid","vout":n},...]
move "fromaccount" "toaccount" amount (minconf "comment")
ping
sendfrom "fromaccount" "tobitcoinaddress" amount (minconf "comment" "comment-to")
sendmany "fromaccount" {"address":amount,...} (minconf "comment")
sendrawtransaction "hexstring" (allowhighfees)
sendtoaddress "bitcoinaddress" amount ("comment" "comment-to")
setaccount "bitcoinaddress" "account"
setgenerate generate (genproclimit)
settxfee amount
signmessage "bitcoinaddress" "message"
signrawtransaction "hexstring" ([{"txid":"id","vout":n,"scriptPubKey":"hex","redeemScript":"hex"},...] ["privatekey1",...] sighashtype)
stop
submitblock "hexdata" ("jsonparametersobject")

validateaddress "bitcoinaddress"
verifychain (checklevel numblocks)
verifymessage "bitcoinaddress" "signature" "message"

Running bitcoind
Commands: -daemon, getinfo
Now, run the bitcoin client. The first time you run it, it will rebuild the bitcoin blockchain. This is a
multi-gigabyte file and will take on average 2 days to download in full. You can shorten the
blockchain initialization time by downloading a partial copy of the blockchain using bittorrent from
http://sourceforge.net/projects/bitcoin/files/Bitcoin/blockchain/.
Run bitcoind in the background with the option -daemon:

$ bitcoind -daemon
$
Bitcoin version v0.9.0rc1-beta (2014-01-31 09:30:15 +0100)
Using OpenSSL version OpenSSL 1.0.1c 10 May 2012
Default data directory /home/bitcoin/.bitcoin
Using data directory /bitcoin/
Using at most 4 connections (1024 file descriptors available)
init message: Verifying wallet...
dbenv.open LogDir=/bitcoin/database ErrorFile=/bitcoin/db.log
Bound to [::]:8333
Bound to 0.0.0.0:8333
init message: Loading block index...
Opening LevelDB in /bitcoin/blocks/index
Opened LevelDB successfully
Opening LevelDB in /bitcoin/chainstate
Opened LevelDB successfully

[... more startup messages ...]

Bitcoin’s getinfo command shows us basic information about the status of the bitcoin network node,
the wallet and the blockchain database:

$ bitcoind getinfo
{
 "version" : 90000,
 "protocolversion" : 70002,
 "walletversion" : 60000,
 "balance" : 0.00000000,
 "blocks" : 286216,
 "timeoffset" : -72,
 "connections" : 4,
 "proxy" : "",
 "difficulty" : 2621404453.06461525,
 "testnet" : false,
 "keypoololdest" : 1374553827,
 "keypoolsize" : 101,
 "paytxfee" : 0.00000000,
 "errors" : ""
}

The data is returned as a JavaScript Object Notation (JSON), a format which can easily be
“consumed” by all programming languages but is also quite human-readable. Among this data we see
the version of the bitcoin software client (9000), protocol (70002) and wallet file (60000). We see
the current balance contained in the wallet, which is zero. We see the current block height, showing
us how many blocks are known to this client, 286216. We also see various statistics about the bitcoin
network and the settings related to this client. We will explore these settings in more detail in the rest
of this chapter.

T IP
It will take some time, perhaps more than a day, for the bitcoind client to “catch up” to the current blockchain height as it
downloads blocks from other bitcoin clients. You can check its current progress using getinfo to see the number of known
blocks.

Wallet setup and encryption
Commands: bitcoind encryptwallet, walletpassphrase
Before we proceed with creating keys and other commands, we will first encrypt the wallet with a
password. For this example, we use the encryptwallet command with the password “foo”. Obviously,
replace “foo” with a strong and complex password!

$ bitcoind encryptwallet foo
wallet encrypted; Bitcoin server stopping, restart to run with encrypted wallet. The keypool has been flushed, you need to make a
new backup.
$

We can verify the wallet has been encrypted, by running getinfo again. This time you will notice a
new entry unlocked_until which is a counter showing how long the wallet decryption password will
be stored in memory, keeping the wallet unlocked. At first this will be set to zero, meaning the wallet
is locked:

$ bitcoind getinfo
{
 "version" : 90000,

[... other information...]

 "unlocked_until" : 0,
 "errors" : ""
}
$

To unlock the wallet, we issue the walletpassphrase command that takes two parameters, the
password and a number of seconds until the wallet is locked again automatically (a time counter):

$ bitcoind walletpassphrase foo 360
$

Confirm the wallet is unlocked and see the timeout by running getinfo again:

$ bitcoind getinfo
{
 "version" : 90000,

[... other information ...]

 "unlocked_until" : 1392580909,
 "errors" : ""
}

Wallet backup, plain-text dump and restore
Commands: backupwallet, importwallet, dumpwallet
Next, we will practice creating a wallet backup file and then restoring the wallet from the backup
file. Use the backupwallet command to backup, providing the file name as the parameter. Here we
backup the wallet to the file wallet.backup:

$ bitcoind backupwallet wallet.backup
$

Now, to restore the backup file, use the importwallet command. If your wallet is locked, you will
need to unlock it first (see walletpassphrase above) in order to import the backup file:

$ bitcoind importwallet wallet.backup
$

The dumpwallet command can be used to dump the wallet into a text file that is human-readable:

$ bitcoind dumpwallet wallet.txt
$ more wallet.txt
Wallet dump created by Bitcoin v0.9.0rc1-beta (2014-01-31 09:30:15 +0100)
* Created on 2014-02- 8dT20:34:55Z
* Best block at time of backup was 286234 (0000000000000000f74f0bc9d3c186267bc45c7b91c49a0386538ac24c0d3a44),
mined on 2014-02- 8dT20:24:01Z

KzTg2wn6Z8s7ai5NA9MVX4vstHRsqP26QKJCzLg4JvFrp6mMaGB9 2013-07- 4dT04:30:27Z change=1 #
addr=16pJ6XkwSQv5ma5FSXMRPaXEYrENCEg47F
Kz3dVz7R6mUpXzdZy4gJEVZxXJwA15f198eVui4CUivXotzLBDKY 2013-07- 4dT04:30:27Z change=1 #
addr=17oJds8kaN8LP8kuAkWTco6ZM7BGXFC3gk
[... many more keys ...]

$

Wallet addresses and receiving transactions

Commands: getnewaddress, getreceivedbyaddress, listtransactions, getaddressesbyaccount,
getbalance
The bitcoin reference client maintains a pool of addresses, the size of which is displayed by
keypoolsize when you use the command getinfo. These addresses are generated automatically and can
then be used as public receiving addresses or change addresses. To get one of these addresses, you
can use the getnewaddress command:

$ bitcoind getnewaddress
1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL

Now, we can use this address to send a small amount of bitcoin to our bitcoind wallet from an
external wallet (assuming you have some bitcoin in an exchange, web wallet or othe bitcoind wallet
held elsewhere). For this example, we will send 50 millibits (0.050 bitcoin) to the address returned
above.
We can now query the bitcoind client for the amount received by this address, and specify how many
confirmations are required before an amount is counted in that balance. For this example, we will
specify zero confirmations. A few seconds after sending the bitcoin from another wallet, we will see
it reflected in the wallet. We use getreceivedbyaddress with the address and the number of
confirmations set to zero (0):

$ bitcoind getreceivedbyaddress 1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL 0
0.05000000

If we ommit the zero from the end of this command, we will only see the amounts that have at least
minconf confirmations, where minconf is the setting for the minimum number of confirmations before
a transaction is listed in the balance. The minconf setting is specified in the bitcoind configuration
file. Since the transaction sending this bitcoin was only sent in the last few seconds, it has still not
confirmed and therefore we will see it list a zero balance:

$ bitcoind getreceivedbyaddress 1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL
0.00000000

The transactions received by the entire wallet can also be displayed using the listtransactions
command:

$ bitcoind listtransactions
[
 {
 "account" : "",
 "address" : "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL",
 "category" : "receive",
 "amount" : 0.05000000,
 "confirmations" : 0,
 "txid" : "9ca8f969bd3ef5ec2a8685660fdbf7a8bd365524c2e1fc66c309acbae2c14ae3",
 "time" : 1392660908,

 "timereceived" : 1392660908
 }
]

We can list all addresses in the entire wallet using the getaddressesbyaccount command:

$ bitcoind getaddressesbyaccount ""
[
 "1LQoTPYy1TyERbNV4zZbhEmgyfAipC6eqL",
 "17vrg8uwMQUibkvS2ECRX4zpcVJ78iFaZS",
 "1FvRHWhHBBZA8cGRRsGiAeqEzUmjJkJQWR",
 "1NVJK3JsL41BF1KyxrUyJW5XHjunjfp2jz",
 "14MZqqzCxjc99M5ipsQSRfieT7qPZcM7Df",
 "1BhrGvtKFjTAhGdPGbrEwP3xvFjkJBuFCa",
 "15nem8CX91XtQE8B1Hdv97jE8X44H3DQMT",
 "1Q3q6taTsUiv3mMemEuQQJ9sGLEGaSjo81",
 "1HoSiTg8sb16oE6SrmazQEwcGEv8obv9ns",
 "13fE8BGhBvnoy68yZKuWJ2hheYKovSDjqM",
 "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL",
 "1KHUmVfCJteJ21LmRXHSpPoe23rXKifAb2",
 "1LqJZz1D9yHxG4cLkdujnqG5jNNGmPeAMD"
]

Finally, the command getbalance will show the total balance of the wallet, adding up all transactions
confirmed with at least minconf confirmations:

$ bitcoind getbalance
0.05000000

T IP
If the transaction has not yet confirmed, the balance returned by getbalance will be zero. The configuration option
“minconf” determines the minimum number of confirmations that are required before a transaction shows in the balance

Exploring and decoding transactions
Commands: gettransaction, getrawtransaction, decoderawtransaction
We’ll now explore the incoming transaction that was listed above, using the gettransaction. We can
retrieve a transaction by its transaction hash, shown at txid, above with the gettransaction command:

$ bitcoind gettransaction 9ca8f969bd3ef5ec2a8685660fdbf7a8bd365524c2e1fc66c309acbae2c14ae3
{
 "amount" : 0.05000000,
 "confirmations" : 0,
 "txid" : "9ca8f969bd3ef5ec2a8685660fdbf7a8bd365524c2e1fc66c309acbae2c14ae3",
 "time" : 1392660908,
 "timereceived" : 1392660908,
 "details" : [
 {
 "account" : "",

 "address" : "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL",
 "category" : "receive",
 "amount" : 0.05000000
 }
]
}

T IP
Transaction IDs are not authoritative until a transaction has been confirmed. Absence of a transaction hash in the
blockchain does not mean the transaction was not processed. This is known as “transaction malleability”, as transaction
hashes can be modified prior to confirmation in a block. After confirmation, the txid is immutable and authoritative.

The transaction form shown above with the command gettransaction is the simplified form. To
retrieve the full transaction code and decode it we will use two commands, getrawtransaction and
decoderawtransaction. First, getrawtransaction takes the transaction hash (txid) as a parameter and
returns the full transaction as a “raw” hex string, exactly as it exists on the bitcoin network:

$ bitcoind getrawtransaction 9ca8f969bd3ef5ec2a8685660fdbf7a8bd365524c2e1fc66c309acbae2c14ae3
0100000001d717279515f88e2f56ce4e8a31e2ae3e9f00ba1d0add648e80c480ea22e0c7d3000000008b483045022100a4ebbeec83225dedead659bbde7da3d026c8b8e12e61a2df0dd0758e227383b302203301768ef878007e9ef7c304f70ffaf1f2c975b192d34c5b9b2ac1bd193dfba2014104793ac8a58ea751f9710e39aad2e296cc14daa44fa59248be58ede65e4c4b884ac5b5b6dede05ba84727e34c8fd3ee1d6929d7a44b6e111d41cc79e05dbfe5ceaffffffff02404b4c00000000001976a91407bdb518fa2e6089fd810235cf1100c9c13d1fd288ac1f312906000000001976a914107b7086b31518935c8d28703d66d09b3623134388ac00000000

To decode this hex string, we can use the decoderawtransaction command. Copy and paste the hex as
the first parameter of decoderawtransaction to get the full contents interpreted as a JSON data
structure (for formatting reasons the hex string is shortened in the example below):

$ bitcoind decoderawtransaction 0100000001d717...388ac00000000
{
 "txid" : "9ca8f969bd3ef5ec2a8685660fdbf7a8bd365524c2e1fc66c309acbae2c14ae3",
 "version" : 1,
 "locktime" : 0,
 "vin" : [
 {
 "txid" : "d3c7e022ea80c4808e64dd0a1dba009f3eaee2318a4ece562f8ef815952717d7",
 "vout" : 0,
 "scriptSig" : {
 "asm" :
"3045022100a4ebbeec83225dedead659bbde7da3d026c8b8e12e61a2df0dd0758e227383b302203301768ef878007e9ef7c304f70ffaf1f2c975b192d34c5b9b2ac1bd193dfba201
04793ac8a58ea751f9710e39aad2e296cc14daa44fa59248be58ede65e4c4b884ac5b5b6dede05ba84727e34c8fd3ee1d6929d7a44b6e111d41cc79e05dbfe5cea",

 "hex" :
"483045022100a4ebbeec83225dedead659bbde7da3d026c8b8e12e61a2df0dd0758e227383b302203301768ef878007e9ef7c304f70ffaf1f2c975b192d34c5b9b2ac1bd193dfba2014104793ac8a58ea751f9710e39aad2e296cc14daa44fa59248be58ede65e4c4b884ac5b5b6dede05ba84727e34c8fd3ee1d6929d7a44b6e111d41cc79e05dbfe5cea"

 },
 "sequence" : 4294967295
 }
],
 "vout" : [
 {
 "value" : 0.05000000,
 "n" : 0,
 "scriptPubKey" : {

 "asm" : "OP_DUP OP_HASH160 07bdb518fa2e6089fd810235cf1100c9c13d1fd2 OP_EQUALVERIFY
OP_CHECKSIG",
 "hex" : "76a91407bdb518fa2e6089fd810235cf1100c9c13d1fd288ac",
 "reqSigs" : 1,
 "type" : "pubkeyhash",
 "addresses" : [
 "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL"
]
 }
 },
 {
 "value" : 1.03362847,
 "n" : 1,
 "scriptPubKey" : {
 "asm" : "OP_DUP OP_HASH160 107b7086b31518935c8d28703d66d09b36231343 OP_EQUALVERIFY
OP_CHECKSIG",
 "hex" : "76a914107b7086b31518935c8d28703d66d09b3623134388ac",
 "reqSigs" : 1,
 "type" : "pubkeyhash",
 "addresses" : [
 "12W9goQ3P7Waw5JH8fRVs1e2rVAKoGnvoy"
]
 }
 }
]
}

The transaction decode shows all the compoenents of this transaction, including the transaction inputs,
and outputs. In this case we see that the transaction that credited our new address with 50 milibits
used one input and generated two outputs. The input to this transaction was the output from a
previously confirmed transaction (shown as the vin txid starting with d3c7 above). The two outputs
correspond to the 50 milibit credit and an output with change back to the sender.
We can further explore the blockchain by examining the previous transaction referenced by its txid in
this transaction, using the same commands (eg. gettransaction). Jumping from transaction to
transaction we can follow a chain of transactions back as the coins are transmitted from owner
address to owner address.
Once the transaction we received has been confirmed, by inclusion in a block, the gettransaction
command will return additional information, showing the block hash (identifier) in which the
transaction was included:

$ bitcoind gettransaction 9ca8f969bd3ef5ec2a8685660fdbf7a8bd365524c2e1fc66c309acbae2c14ae3
{
 "amount" : 0.05000000,
 "confirmations" : 1,
 "blockhash" : "000000000000000051d2e759c63a26e247f185ecb7926ed7a6624bc31c2a717b",
 "blockindex" : 18,
 "blocktime" : 1392660808,
 "txid" : "9ca8f969bd3ef5ec2a8685660fdbf7a8bd365524c2e1fc66c309acbae2c14ae3",
 "time" : 1392660908,
 "timereceived" : 1392660908,
 "details" : [

 {
 "account" : "",
 "address" : "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL",
 "category" : "receive",
 "amount" : 0.05000000
 }
]
}

Above, we see the new information in the entries blockhash, the hash of the block in which the
transaction was included, and blockindex with value 18, indicating that our transaction was the 18th
transaction in that block.

Exploring blocks
Commands: getblock, getblockhash
Now that we know which block our transaction was included in, we can query that block. We use the
getblock command with the block hash as the parameter:

$ bitcoind getblock 000000000000000051d2e759c63a26e247f185ecb7926ed7a6624bc31c2a717b true
{
 "hash" : "000000000000000051d2e759c63a26e247f185ecb7926ed7a6624bc31c2a717b",
 "confirmations" : 2,
 "size" : 248758,
 "height" : 286384,
 "version" : 2,
 "merkleroot" : "9891747e37903016c3b77c7a0ef10acf467c530de52d84735bd55538719f9916",
 "tx" : [
 "46e130ab3c67d31d2b2c7f8fbc1ca71604a72e6bc504c8a35f777286c6d89bf0",
 "2d5625725b66d6c1da88b80b41e8c07dc5179ae2553361c96b14bcf1ce2c3868",
 "923392fc41904894f32d7c127059bed27dbb3cfd550d87b9a2dc03824f249c80",
 "f983739510a0f75837a82bfd9c96cd72090b15fa3928efb9cce95f6884203214",
 "190e1b010d5a53161aa0733b953eb29ef1074070658aaa656f933ded1a177952",
 "ee791ec8161440262f6e9144d5702f0057cef7e5767bc043879b7c2ff3ff5277",
 "4c45449ff56582664abfadeb1907756d9bc90601d32387d9cfd4f1ef813b46be",
 "3b031ed886c6d5220b3e3a28e3261727f3b4f0b29de5f93bc2de3e97938a8a53",
 "14b533283751e34a8065952fd1cd2c954e3d37aaa69d4b183ac6483481e5497d",
 "57b28365adaff61aaf60462e917a7cc9931904258127685c18f136eeaebd5d35",
 "8c0cc19fff6b66980f90af39bee20294bc745baf32cd83199aa83a1f0cd6ca51",
 "1b408640d54a1409d66ddaf3915a9dc2e8a6227439e8d91d2f74e704ba1cdae2",
 "0568f4fad1fdeff4dc70b106b0f0ec7827642c05fe5d2295b9deba4f5c5f5168",
 "9194bfe5756c7ec04743341a3605da285752685b9c7eebb594c6ed9ec9145f86",
 "765038fc1d444c5d5db9163ba1cc74bba2b4f87dd87985342813bd24021b6faf",
 "bff1caa9c20fa4eef33877765ee0a7d599fd1962417871ca63a2486476637136",
 "d76aa89083f56fcce4d5bf7fcf20c0406abdac0375a2d3c62007f64aa80bed74",
 "e57a4c70f91c8d9ba0ff0a55987ea578affb92daaa59c76820125f31a9584dfc",
 "9ca8f969bd3ef5ec2a8685660fdbf7a8bd365524c2e1fc66c309acbae2c14ae3",

[... many more transactions ...]

],
 "time" : 1392660808,
 "nonce" : 3888130470,

 "bits" : "19015f53",
 "difficulty" : 3129573174.52228737,
 "chainwork" : "001931d1658fc04879e466",
 "previousblockhash" : "0000000000000000177e61d5f6ba6b9450e0dade9f39c257b4d48b4941ac77e7",
 "nextblockhash" : "0000000000000001239d2c3bf7f4c68a4ca673e434702a57da8fe0d829a92eb6"
}

The block contains 367 transactions and as you see above, the 18th transaction listed (9ca8f9…) is
the txid of the one crediting 50 millibits to our address. The height entry tells us this is the 286384’th
block in the blockchain.
We can also retrieve a block by its block height, using the getblockhash command, which takes the
block height as the parameter and returns the block hash for that block:

$ bitcoind getblockhash 0
000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f

Above, we retrieve the block hash of the “genesis block”, the first block mined by Satoshi Nakamoto,
at height zero. Retrieving this block shows:

$ bitcoind getblock 000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
{
 "hash" : "000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f",
 "confirmations" : 286388,
 "size" : 285,
 "height" : 0,
 "version" : 1,
 "merkleroot" : "4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b",
 "tx" : [
 "4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b"
],
 "time" : 1231006505,
 "nonce" : 2083236893,
 "bits" : "1d00ffff",
 "difficulty" : 1.00000000,
 "chainwork" : "000100010001",
 "nextblockhash" : "00000000839a8e6886ab5951d76f411475428afc90947ee320161bbf18eb6048"
}

The getblock, getblockhash and gettransaction commands can be used to explore the blockchain
database, programmatically.

Creating, signing and submitting transactions based on unspent
outputs
Commands: listunspent, gettxout, createrawtransaction, decoderawtransaction, signrawtransaction,
sendrawtransaction
Bitcoin’s transactions are based on the concept of spending “outputs”, which are the result of
previous transactions, creating a transaction chain that transfers ownership from address to address.

Our wallet has now received a transaction that assigned one such output to our address. Once this is
confirmed, we can now spend that output.

First, we use the listunspent command to show all the unspent confirmed outputs in our wallet:

$ bitcoind listunspent
[
 {
 "txid" : "9ca8f969bd3ef5ec2a8685660fdbf7a8bd365524c2e1fc66c309acbae2c14ae3",
 "vout" : 0,
 "address" : "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL",
 "account" : "",
 "scriptPubKey" : "76a91407bdb518fa2e6089fd810235cf1100c9c13d1fd288ac",
 "amount" : 0.05000000,
 "confirmations" : 7
 }
]

We see that the transaction 9ca8f9… created an output (with vout index 0) assigned to the address
1hvzSo… for the amount of 50 millibits, which at this point has received 7 confirmations.
Transactions use previously created outputs as their inputs, by referring to them by the previous txid
and vout index. We will now create a transaction that will spend the 0’th vout of the txid 9ca8f9… as
its input and assign it to a new output that sends value to a new address.
First, let’s look at the specific output in more detail. We use the gettxout to get the details of this
unspent output above. Transaction outputs are always referenced by txid and vout and these are the
parameters we pass to gettxout:

$ bitcoind gettxout 9ca8f969bd3ef5ec2a8685660fdbf7a8bd365524c2e1fc66c309acbae2c14ae3 0
{
 "bestblock" : "0000000000000001405ce69bd4ceebcdfdb537749cebe89d371eb37e13899fd9",
 "confirmations" : 7,
 "value" : 0.05000000,
 "scriptPubKey" : {
 "asm" : "OP_DUP OP_HASH160 07bdb518fa2e6089fd810235cf1100c9c13d1fd2 OP_EQUALVERIFY OP_CHECKSIG",
 "hex" : "76a91407bdb518fa2e6089fd810235cf1100c9c13d1fd288ac",
 "reqSigs" : 1,
 "type" : "pubkeyhash",
 "addresses" : [
 "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL"
]
 },
 "version" : 1,
 "coinbase" : false
}

What we see above is the output that assigned 50 millibits to our address 1hvz…. To spend this
output we will create a new transaction. First, let’s make an address to send the money to:

$ bitcoind getnewaddress
1LnfTndy3qzXGN19Jwscj1T8LR3MVe3JDb

We will send 25 millibits to the new address 1LnfTn… we just created in our wallet. In our new
transaction, we will spend the 50 millibit output and send 25 millibits to this new address. Because
we have to spend the whole output from the previous transaction, we must also generate some change.
We will generate change back to the 1hvz… address, sending the change back to the address from
which the value originated. Finally, we will also have to pay a fee for this transaction. To pay the fee,
we will reduce the change output by 0.5 millibits, and return 24.5 millibits in change. The difference
between the sum of the new outputs (25mBTC + 24.5mBTC = 49.5mBTC) and the input (50mBTC)
will be collected as a transaction fee by the miners.
We use the createrawtransaction to create the transaction described above. As parameters to
createrawtransaction we provide the transaction input (the 50 millibit unspent output from our
confirmed transaction) and the two transaction outputs (money sent to the new address and change
sent back to the previous address):

bitcoind createrawtransaction
 '[{"txid" : "9ca8f969bd3ef5ec2a8685660fdbf7a8bd365524c2e1fc66c309acbae2c14ae3", "vout" : 0}]'
'{"1LnfTndy3qzXGN19Jwscj1T8LR3MVe3JDb": 0.025,
"1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL": 0.0245}'

0100000001e34ac1e2baac09c366fce1c2245536bda8f7db0f6685862aecf53ebd69f9a89c0000000000ffffffff02a0252600000000001976a914d90d36e98f62968d2bc9bbd68107564a156a9bcf88ac50622500000000001976a91407bdb518fa2e6089fd810235cf1100c9c13d1fd288ac00000000

The createrawtransaction command produces a raw hex string that encodes the transaction details we
supplied. Let’s confirm everything is correct by decoding this raw string using the
decoderawtransaction command:

$ bitcoind decoderawtransaction
0100000001e34ac1e2baac09c366fce1c2245536bda8f7db0f6685862aecf53ebd69f9a89c0000000000ffffffff02a0252600000000001976a914d90d36e98f62968d2bc9bbd68107564a156a9bcf88ac50622500000000001976a91407bdb518fa2e6089fd810235cf1100c9c13d1fd288ac00000000

{
 "txid" : "0793299cb26246a8d24e468ec285a9520a1c30fcb5b6125a102e3fc05d4f3cba",
 "version" : 1,
 "locktime" : 0,
 "vin" : [
 {
 "txid" : "9ca8f969bd3ef5ec2a8685660fdbf7a8bd365524c2e1fc66c309acbae2c14ae3",
 "vout" : 0,
 "scriptSig" : {
 "asm" : "",
 "hex" : ""
 },
 "sequence" : 4294967295
 }
],
 "vout" : [
 {
 "value" : 0.02500000,
 "n" : 0,
 "scriptPubKey" : {
 "asm" : "OP_DUP OP_HASH160 d90d36e98f62968d2bc9bbd68107564a156a9bcf OP_EQUALVERIFY
OP_CHECKSIG",
 "hex" : "76a914d90d36e98f62968d2bc9bbd68107564a156a9bcf88ac",

 "reqSigs" : 1,
 "type" : "pubkeyhash",
 "addresses" : [
 "1LnfTndy3qzXGN19Jwscj1T8LR3MVe3JDb"
]
 }
 },
 {
 "value" : 0.02450000,
 "n" : 1,
 "scriptPubKey" : {
 "asm" : "OP_DUP OP_HASH160 07bdb518fa2e6089fd810235cf1100c9c13d1fd2 OP_EQUALVERIFY
OP_CHECKSIG",
 "hex" : "76a91407bdb518fa2e6089fd810235cf1100c9c13d1fd288ac",
 "reqSigs" : 1,
 "type" : "pubkeyhash",
 "addresses" : [
 "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL"
]
 }
 }
]
}

That looks correct! Our new transaction “consumes” the unspent output from our confirmed
transaction and then spends it in two outputs, one for 25 millibits to our new address and one for 24.5
millibits as change back to the original address. The difference of 0.5 millibits represents the
transaction fee and will be credited to the miner who finds the block that includes our transaction.
As you may notice, the transaction contains an empty scriptSig, because we haven’t signed it yet.
Without a signature, this transaction is meaningless, we haven’t yet proven that we own the address
from which the unpsent output is sourced. By signing, we remove the encumberance on the output and
prove that we own this output and can spend it. We use the signrawtransaction command to sign the
transaction. It takes the raw transaction hex string as the parameter.

T IP
If the wallet is encrypted, you have to unlock it before you sign a transaction, as that operation requires access to the secret
keys in your wallet

$ bitcoind walletpassphrase foo 360
$ bitcoind signrawtransaction
0100000001e34ac1e2baac09c366fce1c2245536bda8f7db0f6685862aecf53ebd69f9a89c0000000000ffffffff02a0252600000000001976a914d90d36e98f62968d2bc9bbd68107564a156a9bcf88ac50622500000000001976a91407bdb518fa2e6089fd810235cf1100c9c13d1fd288ac00000000

{
 "hex" :
"0100000001e34ac1e2baac09c366fce1c2245536bda8f7db0f6685862aecf53ebd69f9a89c000000006a47304402203e8a16522da80cef66bacfbc0c800c6d52c4a26d1d86a54e0a1b76d661f020c9022010397f00149f2a8fb2bc5bca52f2d7a7f87e3897a273ef54b277e4af52051a06012103c9700559f690c4a9182faa8bed88ad8a0c563777ac1d3f00fd44ea6c71dc5127ffffffff02a0252600000000001976a914d90d36e98f62968d2bc9bbd68107564a156a9bcf88ac50622500000000001976a91407bdb518fa2e6089fd810235cf1100c9c13d1fd288ac00000000",

 "complete" : true
}

The signrawtransaction command returns another hex encoded raw transaction. We decode it to see
what changed, with decoderawtransaction:

$ bitcoind decoderawtransaction
0100000001e34ac1e2baac09c366fce1c2245536bda8f7db0f6685862aecf53ebd69f9a89c000000006a47304402203e8a16522da80cef66bacfbc0c800c6d52c4a26d1d86a54e0a1b76d661f020c9022010397f00149f2a8fb2bc5bca52f2d7a7f87e3897a273ef54b277e4af52051a06012103c9700559f690c4a9182faa8bed88ad8a0c563777ac1d3f00fd44ea6c71dc5127ffffffff02a0252600000000001976a914d90d36e98f62968d2bc9bbd68107564a156a9bcf88ac50622500000000001976a91407bdb518fa2e6089fd810235cf1100c9c13d1fd288ac00000000

{
 "txid" : "ae74538baa914f3799081ba78429d5d84f36a0127438e9f721dff584ac17b346",
 "version" : 1,
 "locktime" : 0,
 "vin" : [
 {
 "txid" : "9ca8f969bd3ef5ec2a8685660fdbf7a8bd365524c2e1fc66c309acbae2c14ae3",
 "vout" : 0,
 "scriptSig" : {
 "asm" :
"304402203e8a16522da80cef66bacfbc0c800c6d52c4a26d1d86a54e0a1b76d661f020c9022010397f00149f2a8fb2bc5bca52f2d7a7f87e3897a273ef54b277e4af52051a0601
03c9700559f690c4a9182faa8bed88ad8a0c563777ac1d3f00fd44ea6c71dc5127",
 "hex" :
"47304402203e8a16522da80cef66bacfbc0c800c6d52c4a26d1d86a54e0a1b76d661f020c9022010397f00149f2a8fb2bc5bca52f2d7a7f87e3897a273ef54b277e4af52051a06012103c9700559f690c4a9182faa8bed88ad8a0c563777ac1d3f00fd44ea6c71dc5127"

 },
 "sequence" : 4294967295
 }
],
 "vout" : [
 {
 "value" : 0.02500000,
 "n" : 0,
 "scriptPubKey" : {
 "asm" : "OP_DUP OP_HASH160 d90d36e98f62968d2bc9bbd68107564a156a9bcf OP_EQUALVERIFY
OP_CHECKSIG",
 "hex" : "76a914d90d36e98f62968d2bc9bbd68107564a156a9bcf88ac",
 "reqSigs" : 1,
 "type" : "pubkeyhash",
 "addresses" : [
 "1LnfTndy3qzXGN19Jwscj1T8LR3MVe3JDb"
]
 }
 },
 {
 "value" : 0.02450000,
 "n" : 1,
 "scriptPubKey" : {
 "asm" : "OP_DUP OP_HASH160 07bdb518fa2e6089fd810235cf1100c9c13d1fd2 OP_EQUALVERIFY
OP_CHECKSIG",
 "hex" : "76a91407bdb518fa2e6089fd810235cf1100c9c13d1fd288ac",
 "reqSigs" : 1,
 "type" : "pubkeyhash",
 "addresses" : [
 "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL"
]
 }
 }
]
}

Now, the inputs used in the transaction contain a scriptSig, which is a digital signature proving
ownership of address 1hvz… and removing the encumberance on the output so that it can be spent.
The signature makes this transaction verifiable by any node in the bitcoin network.
Now it’s time to submit the newly created transaction to the network. We do that with the command
sendrawtransaction which takes the raw hex string produced by signrawtransaction, the same string
we just decoded above:

$ bitcoind sendrawtransaction
0100000001e34ac1e2baac09c366fce1c2245536bda8f7db0f6685862aecf53ebd69f9a89c000000006a47304402203e8a16522da80cef66bacfbc0c800c6d52c4a26d1d86a54e0a1b76d661f020c9022010397f00149f2a8fb2bc5bca52f2d7a7f87e3897a273ef54b277e4af52051a06012103c9700559f690c4a9182faa8bed88ad8a0c563777ac1d3f00fd44ea6c71dc5127ffffffff02a0252600000000001976a914d90d36e98f62968d2bc9bbd68107564a156a9bcf88ac50622500000000001976a91407bdb518fa2e6089fd810235cf1100c9c13d1fd288ac00000000

ae74538baa914f3799081ba78429d5d84f36a0127438e9f721dff584ac17b346

The command sendrawtransaction returns a transaction hash (txid) as it submits the transaction on the
network. We can now query that transaction id with gettransaction:

$ bitcoind gettransaction ae74538baa914f3799081ba78429d5d84f36a0127438e9f721dff584ac17b346
{
 "amount" : 0.00000000,
 "fee" : -0.00050000,
 "confirmations" : 0,
 "txid" : "ae74538baa914f3799081ba78429d5d84f36a0127438e9f721dff584ac17b346",
 "time" : 1392666702,
 "timereceived" : 1392666702,
 "details" : [
 {
 "account" : "",
 "address" : "1LnfTndy3qzXGN19Jwscj1T8LR3MVe3JDb",
 "category" : "send",
 "amount" : -0.02500000,
 "fee" : -0.00050000
 },
 {
 "account" : "",
 "address" : "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL",
 "category" : "send",
 "amount" : -0.02450000,
 "fee" : -0.00050000
 },
 {
 "account" : "",
 "address" : "1LnfTndy3qzXGN19Jwscj1T8LR3MVe3JDb",
 "category" : "receive",
 "amount" : 0.02500000
 },
 {
 "account" : "",
 "address" : "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL",
 "category" : "receive",
 "amount" : 0.02450000
 }
]
}

As before, we can also examine this in more detail using the getrawtransaction and decodetransaction
commands. These commands will return the exact same hex string that we produced and decoded
previously just before we sent it on the network.

Alternative clients, libraries and toolkits
Beyond the reference client, bitcoind, there are other clients and libraries that can be used to interact
with the bitcoin network and data structures. These are implemented in a variety of programming
languages, offering programmers native interfaces in their own language.
Alternative implementations include:

libbitcoin and sx tools, a C++ multi-threaded full node client and library with command-line tools
(https://libbitcoin.dyne.org/)

bitcoinj, a Java full node client library (https://code.google.com/p/bitcoinj/)

btcd, a Go language full node bitcoin client (https://opensource.conformal.com/wiki/btcd)

Bits of Proof (BOP), a Java enterprise-class implementation of bitcoin (https://bitsofproof.com)

picocoin, a C implementation of a light-weight client library for bitcoin
(https://github.com/jgarzik/picocoin)

Many more libraries exist in a variety of other programming languages and more are created all the
time.

Libbitcoin and sx tools
The libbitcoin library is a C++ scalable multi-threaded and modular implemntation that supports a
full-node client and a command-line toolset named “sx”, which offers many of the same capabilities
as the bitcoind client commands we illustrated in this chapter. The sx tools also offer some key
management and manipulation tools that are not offered by bitcoind, including type-2 deterministic
keys and key mnemonics.

Installing sx
To install sx and the supporting library libbitcoin, download and run the online installer on a Linux
system:

$ wget http://sx.dyne.org/install-sx.sh
$ sudo bash ./install-sx.sh

You should now have the sx tools installed. Type sx with no parameters to display the help text,
which lists all the available commands:

https://libbitcoin.dyne.org/
https://code.google.com/p/bitcoinj/
https://opensource.conformal.com/wiki/btcd
https://bitsofproof.com
https://github.com/jgarzik/picocoin

Usage: sx COMMAND [ARGS]...

 -c, --config Specify a config file

The sx commands are:

DETERMINISTIC KEYS AND ADDRESSES
 genaddr Generate a Bitcoin address deterministically from a wallet
 seed or master public key.
 genpriv Generate a private key deterministically from a seed.
 genpub Generate a public key deterministically from a wallet
 seed or master public key.
 mpk Extract a master public key from a deterministic wallet seed.
 newseed Create a new deterministic wallet seed.

TRANSACTION PARSING
 showscript Show the details of a raw script.
 showtx Show the details of a transaction.

BLOCKCHAIN QUERIES (blockexplorer.com)
 blke-fetch-transaction Fetches a transaction from blockexplorer.com

FORMAT
 base58-decode Convert from base58 to hex
 base58-encode Convert from hex to base58
 base58check-decode Convert from base58check to hex
 base58check-encode Convert from hex to base58check
 decode-addr Decode an address to its internal RIPEMD representation.
 embed-addr Generate an address used for embedding record of data into the blockchain.
 encode-addr Encode an address to base58check form.
 ripemd-hash RIPEMD hash data from STDIN.
 unwrap Validates checksum and recovers version byte and original data from hexstring.
 validaddr Validate an address.
 wrap Adds version byte and checksum to hexstring.

BRAINWALLET
 brainwallet Make a private key from a brainwallet
 mnemonic Work with Electrum compatible mnemonics (12 words wallet seed).

BLOCKCHAIN WATCHING
 monitor Monitor an address.
 watchtx Watch transactions from the network searching for a certain hash.

BLOCKCHAIN QUERIES (blockchain.info)
 bci-fetch-last-height Fetch the last block height using blockchain.info.
 bci-history Get list of output points, values, and their spends
 from blockchain.info

MISC
 btc Convert Satoshis into Bitcoins.
 initchain Initialize a new blockchain.
 qrcode Generate Bitcoin QR codes offline.
 satoshi Convert Bitcoins into Satoshis.
 showblkhead Show the details of a block header.
 wallet Experimental command line wallet.

MULTISIG ADDRESSES
 scripthash Create BIP 16 script hash address from raw script hex.

LOOSE KEYS AND ADDRESSES
 addr See Bitcoin address of a public or private key.
 get-pubkey Get the pubkey of an address if available
 newkey Create a new private key.
 pubkey See the public part of a private key.

STEALTH
 secret-to-wif Convert a secret exponent value to Wallet. Import. Format.
 stealth-new Generate a new master stealth secret.
 stealth-recv Regenerate the secret from your master secret and provided nonce.
 stealth-send Generate a new sending address and a stealth nonce.

CREATE TRANSACTIONS
 mktx Create an unsigned tx.
 rawscript Create the raw hex representation from a script.
 set-input Set a transaction input.
 sign-input Sign a transaction input.

VALIDATE
 validsig Validate a transaction input's signature.

BLOCKCHAIN QUERIES
 balance Show balance of a Bitcoin address in satoshis.
 fetch-block-header Fetch raw block header.
 fetch-last-height Fetch the last block height.
 fetch-transaction Fetch a raw transaction using a network connection to make requests against the obelisk load balancer
backend.
 fetch-transaction-index Fetch block height and index in block of transaction.
 get-utxo Get enough unspent transaction outputs from a given set of
 addresses to pay a given number of satoshis
 history Get list of output points, values, and their spends for an
 address. grep can filter for just unspent outputs which can
 be fed into mktx.
 validtx Validate a transaction.

BLOCKCHAIN UPDATES
 sendtx-bci Send tx to blockchain.info/pushtx.
 sendtx-node Send transaction to a single node.
 sendtx-obelisk Send tx to obelisk server.
 sendtx-p2p Send tx to bitcoin network.

See 'sx help COMMAND' for more information on a specific command.

SpesmiloXchange home page: <http://sx.dyne.org/>

Generating and manipulating keys with sxBitcoin Core
Generate a new private key, using the operating system’s random number generator, with the newkey
command. We save the standard output into the file private_key:

$ sx newkey > private_key
$ cat private_key
5Jgx3UAaXw8AcCQCi1j7uaTaqpz2fqNR9K3r4apxdYn6rTzR1PL

Now, generate the public key from that private key, using the pubkey command. Pass the private_key
file into the standard input and save the standard output of the command into a new file public_key:

$ sx pubkey < private_key > public_key
$ cat public_key
02fca46a6006a62dfdd2dbb2149359d0d97a04f430f12a7626dd409256c12be500

We can re-format the public_key as an address, using the addr command. We pass the public_key into
standard input:

$ sx addr < public_key
17re1S4Q8ZHyCP8Kw7xQad1Lr6XUzWUnkG

Deterministic keys with sx
The keys generated above are so called type-1 non-deterministic keys. That means that each one is
generated from a random number generator. The sx tools also support type-2 deterministic keys,
where a “master” key is created and then extended to produce a chain or tree of subkeys.
First, we generate a “seed” that will be used as the basis to derive a chain of keys, compatible with
the Electrum wallet and other similar implementations. We use the newseed command to produce a
seed value:

$ sx newseed > seed
$ cat seed
eb68ee9f3df6bd4441a9feadec179ff1

The seed value can also be exported as a word mnemonic that is human readable and easier to store
and type than a hexadecimal string, using the mnemonic command:

$ sx mnemonic < seed > words
$ cat words
adore repeat vision worst especially veil inch woman cast recall dwell appreciate

The mnemonic words can be used to reproduce the seed, using the mnemonic command again:

$ sx mnemonic < words
eb68ee9f3df6bd4441a9feadec179ff1

With the seed, we can now generate a sequence of private and public keys, a key chain. We use the
genpriv command to generate a sequence of private keys from a seed and the addr command to
generate the corresponding public key.

$ sx genpriv 0 < seed
5JzY2cPZGViPGgXZ4Syb9Y4eUGjJpVt6sR8noxrpEcqgyj7LK7i
$ sx genpriv 0 < seed | sx addr
1esVQV2vR9JZPhFeRaeWkAhzmWq7Fi7t7

$ sx genpriv 1 < seed
5JdtL7ckAn3iFBFyVG1Bs3A5TqziFTaB9f8NeyNo8crnE2Sw5Mz
$ sx genpriv 1 < seed | sx addr
1G1oTeXitk76c2fvQWny4pryTdH1RTqSPW

With deterministic keys we can generate and re-generate thousands of keys, all derived from a single
seed in a deterministic chain. This technique is used in many wallet applications to generate keys that
can be backed up and restored with a simple multi-word mnemonic. This is easier than having to
backup the wallet with all its randomly generated keys every time a new key is created.

T IP
The sx toolkit offers many useful commands for encoding and decoding addresses, converting to and from different formats
and representations. Use them to explore the various formaat such as base58, base58check, hex etc.

About the Author
Andreas is a passionate technologist, who is well-versed in many technical subjects. He is a serial
tech-entrepreneur, having launched businesses in London, New York, and California. He has earned
degrees in Computer Science and Data Communications and Distributed Systems from UCL. With
experience ranging from hardware and electronics to high level business and financial systems
technology consulting and years as CTO/CIO/CSO in many companies — he combines authority and
deep knowledge with an ability to make complex subjects easy to understand. More than 200 of his
articles on security, cloud computing and data centers have been published in print and syndicated
worldwide. His expertise includes Bitcoin, crypto-currencies, Information Security, Cryptography,
Cloud Computing, Data Centers, Linux, Open Source and robotics software development. He also has
been CISSP certified for 12 years.

As a bitcoin entrepreneur, Andreas has founded three bitcoin businesses and launched several
community open-source projects. He often writes articles and blog posts on bitcoin, is a permanent
host on Let’s Talk Bitcoin and prolific public speaker at technology events. Andreas serves on the
advisory boards of several bitcoin startups and serves as the Chief Security Officer of Blockchain.

Mastering Bitcoin
Andreas M. Antonopoulos
Editor
Allyson MacDonald

Editor
Mike Loukides
Revision History
2014-04-07
Early release revision 1
Copyright © 2014 Andreas M. Antonopoulos LLC.
O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles
(http://my.safaribooksonline.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. !!FILL THIS
IN!! and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for errors or
omissions, or for damages resulting from the use of the information contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2014-04-07T13:22:22-07:00

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

	Mastering Bitcoin
	Preface
	Writing the Bitcoin Book
	Intended Audience
	Early-Release Note
	Why Are There Bugs On The Cover?
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Quick Glossary

	1. Introduction
	What is Bitcoin?
	History of Bitcoin
	Bitcoin Uses, Users and Their Stories
	Getting Started
	Quick Start - Web Wallet
	Getting your first bitcoins
	Sending and receiving bitcoins

	2. How Bitcoin Works
	Transactions, Blocks, Mining and the Blockchain
	Bitcoin Overview
	Buying a cup of coffee

	Bitcoin Transactions
	Common Transaction Forms

	Constructing A Transaction
	Getting the right inputs
	Creating the outputs
	Adding the transaction to the ledger
	Transmitting the transaction
	How it propagates
	Bob’s view

	Bitcoin Mining
	Mining transactions in blocks
	Spending the transaction

	3. The Bitcoin Client
	Bitcoin Core - The Reference Implementation, aka Satoshi Client
	Bitcoin Core - Running the client for the first time
	Bitcoin Core - Compiling the client from the source code

	Using bitcoind from the command line
	Running bitcoind
	Wallet setup and encryption
	Wallet backup, plain-text dump and restore
	Wallet addresses and receiving transactions
	Exploring and decoding transactions
	Exploring blocks
	Creating, signing and submitting transactions based on unspent outputs

	Alternative clients, libraries and toolkits
	Libbitcoin and sx tools
	Installing sx
	Generating and manipulating keys with sxBitcoin Core
	Deterministic keys with sx

	About the Author
	Copyright

